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ABSTRACT 

 

      A majority of the functions in biological systems are mediated by specific interactions 

of cellular proteins. Such interactions also involve other biomolecules like antibodies, 

RNA and DNA, small molecules sometimes referred to as drugs, etc. A detailed 

understanding of functional proteomics necessitates the need for detection and 

quantification of such specific biochemical reactions with greater speed and precision. 

The primary biosensing technology that is employed for detecting these biological 

interactions optically and with good sensitivity and reproducibility is based on Surface 

Plasmon Resonance (SPR). 

     In this work, we aim at utilization of chemical signal processing techniques in 

microfluidic chips to produce SPR measurements with higher signal-to-noise ratio 

(SNR), shorter measurement times, and lower reagent volumes than those of 

conventional SPR systems like BIAcore, ProteOn, etc. The drawbacks of conventional 

methods are discussed and schemes based on signal processing in frequency domain are 

applied to minimize the influence of spurious signals that affect the measurement 

accuracy. With the choice of applied excitation signal, a 100-fold improvement in SNR 

has been achieved. Similarly, with alteration of signal postprocessing methodology, we 

have reported a 10-fold faster dual-slope method that can be employed for a variety of 
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high-throughput applications, especially in drug-discovery industry. To further optimize 

the microchip that uses less than a hundred nanoliter of reagent volume for bio-

characterization. Discrete liquid droplets are synthesized in an ordered fashion to carry 

out the bioreaction that conventionally utilizes reagent volumes ranging from a few 

hundred microliters to a few milliliters.  
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CHAPTER 1 

 

INTRODUCTION 

 

Proteomic and similar other kinds of bio-molecular interactions require a sensitive 

and preferably label-free sensing tool to characterize the interaction kinetics. The 

information is important for understanding the development of events such as cell 

adhesion, viral infection, and rational drug design. The most popular label-free sensing 

mechanism suited to this kind of biosensing is based on an optical phenomenon called 

Surface Plasmon Resonance (SPR). SPR is noninvasive and is capable of real-time 

sensing and quantification. In this chapter, we introduce the working principles of SPR- 

based transducers, the SPR system configurations, and its various tradeoffs for detection 

limit and speed. 

 

1.1 Surface Plasmon Resonance (SPR) 

Surface Plasmon Resonance (SPR) is an optical phenomenon based on excitation of 

surface plasmons (SPs) at the interface of a noble metal and a dielectric layer. The 

electrons on a metal surface collectively oscillate and are called surface plasma waves or 

surface plasmons. These oscillations of charge density are localized in z-direction within 

the Thomas-Fermi screening length of around 0.1 nm. SPs, however, cannot be



2 
 

 
 

transformed into light and vice-versa but can be excited optically or by electrons.   

In this work, we have used optical excitation-based SPR transducers. When excited 

optically, SPs couple with the exciting photons and form a standing electromagnetic 

wave that propagates along the metal/dielectric surface and decay exponentially 

perpendicular to the surface with a characteristic decay length. Two different SP 

excitation (optically) configurations exist, namely Kretschmann and Otto, for coupling 

photons with SP. Figure 1.1 shows a typical Kretschmann configuration. In this 

configuration, a thin metal layer of gold or silver is sputtered on top of this prism and 

photons from an incident source of wavelength λ (usually a laser) are coupled to SP 

through a prism.  

When the angle of incidence θi is greater than the critical angle θc, total internal 

reflection (TIR) conditions exist in the prism where most of the light at prism face is 

reflected back and an evanescent wave is formed. Under these conditions, the evanescent 

wave penetrates through the metal and couple with the SPs, exciting them. The 

evanescent wave vector KI at the prism/metal interface is given by 

                                                      0
I 0 i

ωK  = n sinθ
c

 
 
 

                                             (1.1) 

where ω0 is the wave frequency in vacuum, c is speed of light in vacuum, and n0 is the 

refractive index (R.I.) of the prism. Resonance conditions for SPs occur at the interface 

between metal and exiting dielectric layer when at a particular θi,  

                                                    1
0 i

1

ε (ω) = n sinθ
ε (ω)+1

                                           (1.2) 

where ε1(ω) is the frequency-dependent dielectric permittivity constant of the metal 

satisfying the condition Real [ε1]< 0 and |ε1| > ε2 where ε2 is the dielectric constant for the  
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Figure 1.1. A general Kretsschmann configuration of SPR sensing. The real-time sensing 

in this scheme and also for our system is carried out at a constant resonance angle θr.  
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dielectric. For the overlying exiting medium, ε2 is calculated as square of R.I. (ε2 is 1 for 

air and 2.25 for fused silica). At this resonance condition, the photons that are reflected 

from the prism/metal interface undergo destructive interference with the photons that are 

emitted by the excited SPs and the reflectance curve captured by a sensing devise shows 

a narrow dip in intensity. This phenomenon occurring at the interface is referred to as 

SPR [1,2]. The angle of incidence at this resonating condition is denoted by θr, as shown 

in Figure 1.1. Wave vector KSP of Figure 1.1 equals 2π/λp where λp is the wavelength of 

plasma oscillations. Wave vector in the perpendicular z-direction is denoted by KZ, the 

field amplitude of which (denoted by EZ) decays exponentially from the metal surface 

and is extremely sensitive to R.I. changes within a shallow region of this metal/dielectric 

interface. For metal/dielectric system, wave vector used in all equations and derivations is 

related to its frequency by the dispersion relation given by 

                                                  x 1 2
x

1 2

ω ε (ω) εK  = 
c ε (ω) ε




                                              (1.3) 

 

1.2 SPR-based Biosensing 

For a fixed angle of incidence and R.I. of the prism, the angle of resonance shift with 

change of local R.I. of the overlying exiting medium [3,4]. This dependence of 

reflectance minima around resonant condition is utilized by SPR-based biosensors.  

 

1.2.1 Sensing of Biological Interactions 

Biological interactions can be sensed using SPR (Figure 1.2) if a biomolecule of 

interest (we refer to this as a ligand) is immobilized on top of the metal layer (40~50 nm) 

and an analyte is transported over the metal surface. Since biological interactions with  
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Figure 1.2. Biosensing scheme of SPR. 
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SPR require surface modification prior to surface anchoring of the ligand, Au is preferred 

over other metals as it offers a wide range surface chemistry options. We will assume the 

metal layer to be Au henceforth. The use of Au and procedures of its surface modification 

will be explained in greater details in the next chapter.  

Chemical binding interaction and complex formation between the analyte and the 

ligand produces a mass change right at the surface, resulting in change of local R.I. 

Consequently, the angle of plasmon resonance shifts in a direction (increases with R.I. 

and vice-versa) corresponding to a shift of R.I. which manifests as a change in reflectance 

intensity. As shown in Figure 1.2, this reflectance change around the minima is 

monitored in real-time, producing a SPR signal intensity that is directly proportional to 

the accumulation of bio-mass on a gold surface. It must be noted that some SPR systems 

are calibrated to monitor the shift of θr in real-time as against the reflectance intensity (in 

our case); the SPR signal curve though remains linearly proportional to a change in 

either. Since the electric field amplitude decays exponentially in z-direction, SPR-based 

biosensors are able to sense R.I. changes that occur 300~400 nm from the gold surface. 

SPR devices have been reported to sense R.I. changes of around 10-7 refractive index 

units (RIU).  

As illustrated in Figure 1.2, for biosensors, the metal film is deposited on a glass 

substrate that is coupled to the prism with an index matching fluid. The TIR conditions 

now occur inside the glass substrate instead of the prism. This practical Kretschmann set-

up enables the user to couple a replaceable SPR sensing substrate with a fixed prism that 

is optically aligned with other instrument modules of the SPR imaging set-up. For a 

majority of SPR biosensors, the value of ε2 for plasmon excitation is designed to be 
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around 1.7. This value corresponds to a dielectric medium that has R.I around 1.3 which 

is similar to R.I of standard bench-top buffers that are used as the solvent medium for 

these biological interactions.  

Over the course of the last two decades, SPR has evolved into a popular and sensitive 

label-free sensing technique that is utilized for a variety of biosensing. SPR-based 

biosensing is being currently employed for studying a wide spectrum of bio-interactions 

in real-time, like DNA hybridization [5,6], DNA-RNA binding [7], DNA-protein binding 

[8,9], aptamer-protein binding [10], antibody-antigen binding [11,12], detection of 

proteins from whole blood [13], drug detection from saliva [14], and other biological [15-

17] and drug-protein [19] interactions.   

 

1.3 Microfluidics 

Microfluidics refers to the handling, manipulation, and control of fluids that are 

confined inside geometric features of micrometer scale [20]. Introduction of 

microfluidics dates back to the 1970s. The development and successful application of 

photolithography and semiconductor microfabrication technology like MEMS (Micro 

Electro Mechanical Systems) [21] in microelectronic industry prompted research groups 

to investigate the application of similar fabrication techniques to construct devices that 

can study biological and chemical processes in a confined volume. From the development 

of microfabricated pressure sensors in late 60s to the fabrication of the first microfluidic 

chromatographic analyzer [22], research and advancement in fabrication of miniaturized 

fluidic devices continued to grow. This was soon followed by the fabrication of micro-

channels and micro-impressions that can be molded and sealed (usually with a material  
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that provides mechanical stability and robustness) to form a microfluidic chip. Figure 1.3 

shows typical microfluidic chips made of PDMS as mold material and glass as sealing 

material.  

Over the years, many microfluidic devices or chips have been developed to perform 

more complicated laboratory procedures inside a single chip, also called ‘Lab-on-a-Chip’ 

(LOC) devices [23]. Microfluidics today is viewed as a necessary tool for studying a 

wide spectrum of biological, chemical, biochemical, electrical, electomechanical, and 

optical applications [20] mainly due to reduced sample consumption and sensing time 

and low dispersion characterestics which affect the detection accuracy otherwise. 

 

1.3.1 Microchips for Biosensing 

Miniaturization reduces expense in terms of chip fabrication and reagent consumption 

and provides a greater speed of sensing owing to faster experimental and analysis times. 

Microfluidics offer an added advantage of control and precision over fluid handling and 

manipulation conditions, making it a favorable platform for a large number of biological 

applications that demand greater control over micro-environment conditions and high-

throughput. Detection and sensing in a microchip format is being currently applied to a 

large pool of biological and biomedical analysis, including Polymerase Chain Reaction 

(PCR), DNA sequencing, DNA and Protein Microarrays, immunoassay, etc. [24, 25]. As 

we shall see in later chapters, the novel techniques that are proposed in this work require 

precise control over liquid flow and dispersive mixing of reagents for successful 

implementation. A detailed discussion on the fabrication and integration of microfluidic 

components suited to this biosensing is discussed in Chapter 2.  
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Figure 1.3. Hybrid PDMS/Glass microchips fabricated in our laboratory. 
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1.4 Conventional SPR Biosensing and Analysis Schemes  

Biomolecular interaction analysis (BIA) of macromolecules like proteins and 

oligonucleotides is the primary tool used for investigations and analytical findings in the 

fields of functional proteomics and genomics. Many widely-used BIA systems like 

BIAcore and ProteOn use SPR as their sensing technology [18,19]. BIA addresses a large 

pool of biological interactions that were discussed in Section 1.2.1. The final goal of BIA 

is characterization of the binding kinetics of bio-reactions with maximum analytical 

accuracy. In this section, we will first discuss the theoretical assumptions of a bio-

interaction involving two species which will be followed by conventional methods of 

quantification and rate constant extraction. Interactions where one of them can be a well-

behaved macromolecule follow a simple reversible bimolecular Langmurian equation 

[26] given by 

                                                  a

d

k

k
A + B  AB                                                    (1.4) 

where A and B are reacting species, AB is the interaction complex, and ka and kd are 

kinetic association and dissociation rate constants, respectively. We will henceforth refer 

to A as the analyte (the mobile species in solution), B as the ligand (immobilized on gold 

transducer surface) and AB as the bio-complex, respectively. The rate of formation of the 

complex AB as a function of time t in the association phase subject to analyte flow 

(concentration in buffer solution is [A]) can be written as 

                                            a d
d[AB]  = k [A][B] - k [AB]

dt
                                         (1.5) 

where [B] is the surface concentration of the immobilized ligand [18]. The dissociation 

rate of complex AB subject to buffer flow in dissociation phase is given by 
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                                                 d
d[AB]  = -k [AB]

dt                                                      (1.6) 

Analytical integration of rate Equations (1.5) and (1.6) yields piecewise exponential 

solutions of complex formation and dissociation, respectively. The concentration of 

complex AB can also be rearranged as the total surface concentration of immobilized 

ligand B0 minus available ligand B for binding.  This forms the basis for conventional 

SPR measurements, most common being a single association-dissociation step [18, 27-

29] depicted in the real-time sensorgram of Figure 1.4. At any point of sensing, the SPR 

sensorgram specified by the imager intensity I(t) is proportional to this bound complex 

concentration [AB]. The constant of this proportionality varies for different SPR imagers 

and is denoted by the term GSPR. In the association cycle, the signal intensity can then be 

written as 

                         a d-(k [A]+k ) ta o
A SPR SPR

a d

k [A][B ]I (t) = G [AB](t) = G (1-e )
k [A]+k

 
   

 
                       (1.7) 

where [B0] is the maximum surface concentration of the active ligand and [AB](t) is the 

time-dependent surface concentration of the complex. Similarly, the SPR signal for 

dissociation cycle can be written as  

                                        d-k t
D SPR SPR dI (t) = G [AB](t) = G [AB ] e 

                                        (1.8)  

where [ABd] is the concentration of bound complex AB prior to dissociation under buffer 

flow. This SPR signal intensity obtained from the sensing imager is fitted to the model 

exponential curves of Equations (1.7) and (1.8) and the characteristic association and 

dissociation kinetic constants are extracted [30,31] from the fitted parameters. Since the 

reaction is carried out under continuous flow conditions in subsequent steps of analyte 

and buffer flow, this conventional methodology of kinetic parameter estimation from the  
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Figure 1.4. SPR sensorgram for the conventional SPR biosensing in which the raw data 

are plotted postcapture in the above manner.  This is followed by postprocessing and 

extraction of the kinetic parameters that characterize the investigated biochemical 

reaction of the illustrated graphics. 
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experimental response is referred to as step-response method (SRM). Equations (1.7) and 

(1.8) represent the idealized SPR sensorgram response.  

 

1.4.1 Drawbacks of Conventional SRM 

    Typically SPR sensors are also sensitive to the bulk characteristics of the solvent 

which vary with its R.I. In the association and dissociation steps of the sensorgram, this 

manifests as an increment or decrement of the signal that stays constant for the time 

period of the solution introduced, thus producing a bulk output s(t) along with I(t). In 

addition, the sensorgram signal is subject to drifts and noise originating from a variety of 

environmental sources (ambient temperature fluctuations, slow drifts, thermal drifts, 

white noise, etc.) and the imaging equipment. These effects can be lumped together as 

disturbance d(t) that is added to idealized SPR output and given by 

                                          SPRI(t) = G .[AB](t) + s(t) + d(t)                                        (1.9) 

The contribution s(t) from the bulk characterestics of the solvent can be subtracted from 

equation (1.9) to yield an SPR sensorgram having an intensity change happening only 

due to bio-interaction and mass change at the surface of the transducer. This is usually 

done by using an independent measurement of the bulk R.I. shift denoted by sref (t) on a 

nonreacting surface that serves as our reference [19]. The two separate SPR signals are 

baselined to zero and sref (t) is substracted from I(t) which is then used for curve fitting 

and kinetic parameter estimation. Figure 1.4 shows an example SPR response that has 

been baselined and referenced in both association and dissociation phases. The 

contribution from disturbance d(t), however, cannot be completely eliminated in I(t) since 

GSPR is itself dependent on noise elements from the imaging camera.  This dependence of 
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SRM on spurious and uncorrelated signals presents a major drawback of the 

measurement scheme. As we shall see, these erroneous signals limit the resolution of 

detection and the parameter estimation accuracy by SRM gets compromised. In the 

following section, we will discuss the drawbacks of conventional SRM which forms the 

basis of this thesis work. 

 

1.4.1.1 Disturbance Rejection and Signal Orthogonality 

In a typical SPR experiment, the curve fitting procedure in conventional SRM uses 

Levenberg-Marquardt technique, geometrical interpretation of which requires 

orthogonality [32] between the Jacobian of the exponential and the disturbance d(t). This 

poses a problem because the exponential pulse is not orthogonal to common non-

oscillatory disturbances such as slow drifts. Let us first look into the structural origin of 

this disturbance susceptibility [33].  

The fundamental weakness of the fitting method becomes evident when the recorded 

data consist of purely spurious signals. Consider, for example, a simple linear drift of 

constant slope typically caused by a gradual temperature change in the experimental set-

up, as shown in Figure 1.5. Clearly, there is no reaction at the surface, but the linear drift 

yields a best-fitting SRM exponential pulse and an erroneous result. Similar errors are 

caused with many other nonlinear and monotonic drifts. This pitfall is the consequence of 

the poor orthogonality properties of the SRM exponential pulse.  

Specifically, two continuous time signals a(t) and b(t) representative of recorded and 

model responses are orthogonal when 

                                       a(t)b(t)dt  =a•b = <a,b> = 0                                                (1.10) 
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Figure 1.5. Fitted response to a linear drift. Best-fitting exponential pulse (top) and a 

rapid oscillatory response (bottom). 
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The best way to understand Equation (1.10) and its orthogonality meaning is to think of 

signals a(t) and b(t) as vectors a  and b  oriented in an infinitely dimensional signal 

space. The integral hence corresponds to their dot product which is zero when the two 

vector signals are orthogonal. In our real SPR system, the observed signal s and the true 

SPR response r are related by 

                                                              s = r + d                                                  (1.11) 

where d is the disturbance vector. The true response is estimated from the best fit to 

m(p)  corresponding to the model SPR response. The model response is a function of 

parameter vector p . The best fit corresponds to the parameter vector with the largest 

projection of s onto m(p) . In this procedure, note that the disturbance also influences the 

fit through its projection  

                                             P
d•m(p)d (p) = m(p)

m(p)•m(p)
 
  
 

                                   (1.12) 

thus producing an error. The error is minimized when the disturbance is orthogonal to the 

model response, or alternatively when the angle given by 

                                              
-1 d•m(p)Ω(p) = cos

d m(p)
 
 
 
 

                                          (1.13) 

is as close to ±90o as possible. Equation (1.13) states that one may improve the rejection 

of the disturbance by simply selecting an appropriate model response. For good rejection, 

it is desirable that the SPR response be orthogonal to all possible uncorrelated signals but 

itself. Generally speaking, for good orthogonality, the model response should be 

oscillatory in nature, while the regular SPR exponential model response is not. Figure 1.5 



17 
 

 
 

shows the angle Ω for a linear disturbance and two different model responses. For the 

single best fitting exponential pulse, Ω is 14o, but for a four-cycle sinusoid of fixed 

frequency, the angle is a much higher 81o; hence, the oscillatory signal has 5-fold 

superior rejection.  

     In the presence of substantial noise and systematic drifts, the step-response fitting 

scheme is only able to accurately detect relatively coarse interactions between the analyte 

and ligand.  In drug discovery applications, this is a major limitation, as often drug targets 

are large proteins with masses of 104-105 dalton (Da) or larger, and the interaction of 

interest is often triggered by the binding of a very small analyte (300 Da or less). In order 

to increase the sensitivity of these systems, commercial state-of-the-art instruments such 

as the BIAcore and ProteOn use many corrective schemes, including sophisticated 

referencing [19], data scrubbing software [34,35], temperature control [36], and most 

successfully, the use of high-density binding sites on three-dimensional dextran surfaces 

[28]. In spite of the commercial availability of several SPR systems for many years, they 

have not been able to sense interactions of small analytes, presently 100 Da being the 

minimum detectable mass.   

 

1.4.1.2 Slow Detection and High Sample Consumption 

In this section, we discuss the additional notable limitations of kinetic and 

equilibrium constants obtained by the method of nonlinear least squares in SRM [31]. As 

indicated in this detailed study, for dissociation constants less than 10-5 s-1, it is difficult 

to distinguish dissociation constant in the measurements of pure association phase at 

different analyte concentrations. For greater accuracy of parameter estimation, a longer 
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time period of data acquisition is recommended. In must be noted that curve fitting of 

dissociation phases can, however, distinguish between dissociation steps at different 

concentrations even below the value 10-6 s-1. In the instance of very high dissociation 

rates (> 10-1 s-1) and very low analyte mass, the dissociation phase data are deemed 

redundant as the rates are beyond limit of determination and are hence extracted from 

equilibrium analysis [37]. Therefore, the most thorough analysis of SPR data can be done 

when the equilibrium binding constant is relatively high [31]. In general, all conditions 

mentioned above require a sensorgram acquisition period in the order of a few minutes 

for a complete step-response cycle at one concentration [18,28,29,31,37-39] and hence 

consumes a substantial amount of precious bio-samples as well. This is accompanied by 

the fact that for rate estimation using equilibrium analysis [31,38], the association phase 

has to go to equilibrium which consumes more time. Besides, the association and 

dissociation phases in SRM are sequential and hence inseparable. These experimental 

limitations make SRM an intrinsically slow and a high sample consuming process, 

resulting in high detection costs of sensing and low throughput.   

 

1.4.2 Addressing Drawbacks: Chemical Signal Processing 

The key to further improvements in detection limits of SPR-based systems lies in the 

development of more robust sensing techniques that can reject experimental noise and 

disturbances more efficiently. Given the slow nature of SRM, the development of faster 

detection schemes has also emerged as an important area of research as SPR is presently 

being considered as a candidate label-free technology for high-throughput drug 

screening. Over the years, SPR-based BIA has gained considerable popularity in 
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pharmaceutical industry where it is used as a primary and secondary drug screening tool. 

However, the accuracy of binding kinetic parameters estimated from BIA relies heavily 

on its numerical techniques of quantification. As we have seen earlier, the conventional 

method currently employed in BIA uses SRM which is not very reliable when it comes to 

detection of fine biomolecular interactions in presence of systemic disturbances. 

Measurement techniques which are able to reject spurious and uncorrelated signals with 

maximum efficiency and improve SNR of the sensorgram in a time- and cost-effective 

way are highly desirable in the study of such fine interactions and thus require our greater 

attention. This thesis addresses the aforementioned drawbacks using chemical signal 

processing techniques implemented inside microfluidic chips integrated with SPR.  

In the following chapters, we will introduce the theory of the new techniques of 

measurement for kinetic characterization of bio-interactions. These schemes will address 

the drawbacks of SRM that were discussed in the previous chapter. The proposed 

methods are intended to be introduced in conjunction with microfluidic components in 

order to achieve maximum accuracy and speed of detection. Since these schemes require 

processing of the biochemical signals postdetection, we will broadly categorize them as 

chemical signal processing techniques. 

First in Chapter 2, we will discuss the fabrication and postfabrication processing of 

SPR microchips that will be used for the implementation of the new measurement 

schemes. 

From Chapters 3 through 6, we will discuss the theory behind the various chemical 

signal processing methods and demonstrate the implementation of these schemes using 
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these method specific microfluidic SPR chips. Experimental results and conclusions of 

individual measurement methods are discussed at the end of the chapter. 

Finally, we will present the conclusions and future scope of this research work in 

Chapter 7.    
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CHAPTER 2 

 

MICROCHIP DESIGN: MATERIALS, FABRICATION, AND TESTING 

 

2.1 Introduction 

         In this chapter, we will discuss the experimental methodologies that are employed 

for the implementation of the chemical signal processing microchips. These microchip 

fabrication and integration techniques will be employed for designing experiments of 

different signal processing methods in Chapters 3-6. We start with a broad section on 

SPR microchips where we first discuss the basic design and fabrication aspects. In 

following subsections, we discuss the surface modification strategies that follow the chip 

assembly. All the signal schemes we have introduced will be tested on a specific type of 

surface chemistry as a model. The kinetic constants of the chosen interaction pair will be 

evaluated separately for each of the schemes in later chapters.    

 

2.1.1 SPR Microchips 

The microfluidics of the chip should be able to support switching of flow between 

samples used in the bio-reaction and simultaneously generate the chemical signals with 

low dispersion. Secondly, it should have components integrated for sensing on-chip real-

time SPR sensorgrams. We will refer to such an assembled microfluidic chip as an SPR 

microchip. Here we will first discuss the considerations behind the design of the 
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microfluidics of the chips used in this study. General fabrication steps and integration of 

the chip with SPR components will be discussed in the fabrication subsection. In 

subsequent subsections, we discuss the surface chemistry and modifications of the 

sensing surface inside these SPR microchips prior to experimental runs of the schemes. 

This is followed by subsections where we will discuss the integration of the microchip 

with microfluidic signal generation instrumentation and the SPR optical instrumentation 

set-up separately.  

 

2.1.1.1 Design Considerations 

Generally speaking, in order to implement these spectral and other measurement 

techniques, it is necessary to generate and transport a stream of analyte plugs to the 

sensing site with minimal distortion for the entire frequency range of the scan. While this 

approach is theoretically straightforward, there are severe difficulties associated with the 

chemical signal generation and transmission. A practical scheme can only be realized 

within the microscopic channels available in microfluidic chips which provide low 

dispersion. Since we will be using pressure as the driving source of fluid flow, the 

transmission of solute signals is subject to Taylor dispersive mixing inside these 

microchannels which broadens and diffuses the solute plugs as they travel from the signal 

generator to the sensing site. This results in a large enhancement of the solute diffusion in 

the solution. The adjusted effective dispersion diffusion coefficient Deff in rectangular 

microfluidic channel capillaries [1] is approximately given by 

                                           
2

eff 0 2
0

α(w,h) VD D 1 + 
D

 
   

 
                                        (2.1) 

where α is a function of height h and the width w of the flow channel [10] 



26 
 

 

                                   
2 2

2 2

1 8.5 h wα(w,h)  
210 h  + 2.4 h w + w

  
   

  
                               (2.2) 

where D0 is the original solute diffusion coefficient and V is the average flow velocity.  

For channels having dimensions in millimeters and with average velocities in the range of 

few cm/s, the diffusion enhancement has very large values in the order of 107 or higher; 

precluding any signal resulting from transport in macroscopic environments. This 

enhancement factor has a quadratic reduction with channel diameter. The transmission of 

chemical signals through dispersion inside these channels has a low-pass filter behavior 

[2,3].  The low-pass filter transmission pole is given by 

                                             
1/23

t
eff

Vp   
D L

 
  

 
                                                       (2.3) 

where L is channel distance between the signal generator release point and the sensor 

site. An excitation signal transported through a channel with ω > pt will have inherently 

have amplitude reduction. This pole gives us an idea of the maximum frequency of the 

applied input signal.  For example, in a microfluidic flow cell which is about 5 mm long 

having rectangular cross-sectional dimensions of 10 × 25 µm2, a solute with diffusion 

constant  D0=10-9 m2/s and a flow velocity of 5 cm/s has a transmission pole of about 

11.5 Hz. In contrast, a flow cell having cross-sectional dimensions 1000 × 1000 µm2 and 

about 1 cm length at the same flow velocity gives us a cut-off frequency lower than 0.1 

Hz. This difference in the values of pole cut-off frequency mandates the viability of the 

technique in microfluidic environments for generation of chemical signals where 

dispersion is low. As we shall see, all the experimental data from all SPR microchips are 

processed for frequency components that are at least an order lower than this 

transmission pole frequency. 
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2.1.1.2 Materials 

In this section, we will list all the materials and reagents that have been used in 

fabrication and postfabrication procedures. The SPR microchips for the most part have 

been assembled using photolithographic equipments and methods at the Nanofabrication 

facility of the University of Utah. All photoresists (AZ 1500, AZ9260, SU-8, and S1813), 

developer solvents (AZ300MIF, AZ400MIF, 352, SU-8 developer), p-type Si wafers (4 

inch diameter), Chrome etch solution, Gold Etch solution, Buffered Oxide Etch (BOE), 

49 % Hydrofluoric Acid (HF), 30% Hydrogen Peroxide (H2O2), 96% Sulfuric Acid 

(H2SO4) solutions, and photolithographic instruments (Heidelberg MicroPG 101, Suss 

MA1006, TMV Super, Technics PE-II A, Oxford PlasmaLab 80) are provided by the 

fabrication facility.  Chemicals 5 kDa carboxymethyl-polyethylene glycol-thiol (cm-

PEG-SH) and 2 kDa methoxy-PEG-thiol (m-PEG-SH) were purchased from Laysan Bio. 

Sulfo-N-hydroxysuccinimide (S-NHS), N-ethyl-N’-(3-dimethylaminopropyl) 

carbodiimide (EDC), and phosphate buffered saline (PBS) tablets were obtained from 

Thermo Scientific.  Carbonic anhydrase II (CA-II), 4-(2-Aminoethyl) 

benzenesulfonamide (ABS) and 10% sodium dodecyl sulfate (SDS) solutions were 

obtained from Sigma.  Sylgard 184 from Dow Chemicals was used to make the PDMS. 

Square SF10 glass substrates (RI = 1.72) 2 x 2 inch2 were purchased from Schott glass.  

Deionized (DI) water for rinsing and buffer preparation was provided by an in-house 

plant associated with the University of Utah Nanofabrication house. Syringes of capacity 

1 mL, 5 mL, and 10 mL are obtained from General Stores and receiving, University of 

Utah and a programmable syringe pump (Cole-Parmer single-syringe infusion pump, 115 

VAC) is obtained from Cole-Parmer®. Tubing (Tygon PVC tubing, inner and outer 
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diameters of 0.01 and 0.03 inch, respectively) and syringe needles (Stainless Steel blunt 

needle with 30 gauge Luer Polypropylene hub, 0.5 inch) used for connecting and sample 

delivery from the sample reservoirs to the microchip is obtained online from 

Smallparts.com.   

 

2.1.1.3 Fabrication 

        Irrespective of the signal processing scheme, all the microfluidic chips are fabricated 

and implemented using a conventional two-level PDMS technology on glass substrates 

[3-5].  In this two-layer channel system, the top layer has microchannels that facilitate 

pressure driven fluid flow (buffer, analyte, etc.) and the bottom layer has micro-

impressions that are aligned beneath the flow channels. These impressions are called 

valves. Similar to the fluid flow, these valves are actuated by a driving pressure which is 

~5-10 PSI (pound per square inch) higher than the fluid driving pressure. When actuated, 

these valves seal the overlying microchannel and stops the flow, thus facilitating the flow 

switching and fluid plug generation. Each fluid channel has a dedicated valve that 

controls its flow. The switching pattern of these valves determines the type of input 

chemical signal [3,4] that is synthesized and transported to SPR sensing sites in output 

channels, and the designs for input signal generation will be discussed for individual 

schemes in respective chapters.   

    A graphic presentation of the general fabrication steps of a two-level PDMS microchip 

is illustrated in Figure 2.1. These PDMS/glass hybrid chips are fabricated using 

conventional photo-lithography, making it a relatively simple and inexpensive method of 
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Figure 2.1. A graphical illustration of fabrication steps for a two-level PDMS microchip 

integrated with SPR sensing gold spots. 
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microchip assembly. The basic layout of a chip for each scheme is first generated in an 

editing software (L-Edit in our case) which is then fed to a pattern generator (Heidelberg 

MicroPG 101) for generating the 2-D impression on a chrome mask (5×5 inch2 square, 

coated with AZ1500 photoresist). At this point, it must be noted that a pattern generation 

on any substrate (silicon Si in our case) implies that a photoresist-coated substrate is first 

exposed to 380 nm UV light through masks using an aligner (Suss MA1006) followed by 

developing in a solvent where the unexposed/exposed part of a negative/positive 

photoresist is etched away, leaving a 3-D pattern where the thickness of 2-D impression 

is that of the photoresist coat. The exposed masks are first developed in AZ300 MIF 

developer followed by dipping in a chrome etching solution for 2 minutes where the areas 

without the photoresist coat are etched away, leaving an opaque impression of the design 

layer in chrome on a transparent mask plate. The width of this 2-D impression, or in other 

words the microchannel width used in all the schemes, usually ranges from 180~200 µm. 

The Si wafers are first dipped in BOE solution for 1 minute followed by HF for another 1 

minute. They are blown dry with N2 and heated at 100 0C for 2 minutes, after which they 

are ready for spin-coating. As shown in Figure 2.1, three different masks (two for the 

layers and one for gold sensing spots on glass substrate) are generated and the ones for 

microfluidic layers are used to create the two different patterns on Si wafers. The top 

layer is patterned in a 23 µm thick layer of spin-coated AZ9260 photoresist (spin-coated 

@ 1000 rpm for 40 s) and the bottom layer is patterned using a 20 µm thick negative 

photoresist SU-8 (spin-coated @ 1600 rpm for 40 s). The developing solutions used for 

SU-8 and AZ9260 are SU-8 Developer and AZ400MIF, respectively. After this, the 

PDMS (mixed with curing agent in a ratio 10:1 by mass) is poured over these Si wafers 



31 
 

 

patterned with top layer and left to cure at 40 0C overnight. In case of the bottom layer, 

PDMS is spin-coated (@ 2000 rpm for 1 minute) and cured to form a thin peel on the Si 

wafer. After this, they are removed from the curing oven and stored at room temperature 

until used. A molded PDMS block is then cut out from the wafer with the top layer and 

this is cleaned with acetone and heated at 100 0C for 5 minutes and cooled down to room 

temperature (~ 23 0C) for another 10 minutes. A wafer piece that contains SU-8 pattern 

and the PDMS peel on top of it is similarly prepared. The two pieces are then exposed to 

oxygen plasma for 20 seconds at a pressure of 100 mTorr and RF power of 40 W (March 

Plasmod system, Technics PE-II A, Oxford PlasmaLab 80) and then aligned and bonded 

together using an in-house built alignment system.  

        The third mask is used for patterning gold spots on glass substrates (SF10 glass). 

The glass substrates are first cleaned by piranha etch (3:1 v/v, H2SO4:H2O2) for 20 

minutes, rinsed for 5 minutes in deionized (DI) water and then dried under nitrogen gas 

N2. The substrates are placed in an oven at 80 °C for 10 minutes before being transferred 

to a TM Vacuum sputter deposition system.  A 3 nm adhesion layer of Ti/W is deposited, 

followed by 40 nm of gold (Au).  The metal layers on the substrate are then collectively 

patterned using S1813 photoresist. After photolithographic exposure and developing in 

developer 352, the glass substrates are rinsed in DI water for 2 minutes blown dry in N2, 

after which the metals are etched with gold etch solution (4:1 ratio by mass of KI:I2) and 

H2O2 separately for 2 minutes each. The patterned substrates used in the assembly of SPR 

microchips consist of 200 x 200 μm2 Au spot arrays which form our SPR sensing sites. 

Finally, the photoresist is removed with acetone and the patterned SF10 substrates are 

stored in a desiccator until used. 
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The two-layer PDMS mold is then aligned, bonded, and sealed with the patterned 

SF10 substrate using a similar O2 plasma and alignment method.  Figure 2.2 shows the 

first-generation SPR microchip fabricated by the above methodology. At this point, our 

SPR microchip is ready for the next experimental step: surface modification of SPR gold 

spots for immobilization of the ligand. This forms the intermediate step between an SPR 

microchip assembly and the experimental procedures where a chemical signal in analyte 

will be synthesized and transported for monitoring SPR response of the bio-reaction. 

  

2.1.1.4 Surface Modification 
 
2.1.1.4.1 A Mixed PEG Layer 

As discussed in Section 1.2.1, the ligand of a bio-interaction pair to be studied is 

immobilized on the surface of Au which then gives us an SPR response when subject to 

analyte flow. Also, since referencing (see Section 1.4) needs a control reference surface 

which gives the SPR signal from the bulk R.I. shift of the analyte and buffer, we need a 

non-reacting surface in its vicinity which has no ligand anchored over it. The SPR 

response from such a referencing surface also gives us an idea of the nonspecific surface 

fouling by the biomolecules in analyte. It is also desirable for the immobilized ligand 

molecules to have an appropriate orientation on the surface for bio-recognition by the 

analyte. The modification of the surface with a brush of a hydrophilic polymer that can 

reduce this biofouling and improve the bio-recognition levels has been a wide topic of 

research.  Over the years, polyethylene glycol (PEG) has developed as the polymer of 

choice. Due to its biocompatibility with most biomolecules, large exclusion volume, and 

extensive hydrogen bonding and flexibility properties in aqueous medium, the use of  
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Figure 2.2. Image of a first-generation SPR microchip fabricated using two-level PDMS 

technology, with the patterned gold on the SF10 glass substrates. As we shall see, SPR 

biosensing of a biological interaction in general requires separate sensing and referencing 

compartments.  
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PEG as an antifouling agent was extensively studied [6-9]. Since reduction of the signal 

contributed from nonspecific surface events also improves SNR of the SPR response, we 

will use a surface chemistry protocol of biofouling reduction and ligand immobilization 

developed by Uchida [10] to modify our SPR surface. As demonstrated by authors 

[10,11], a SPR chip is modified by grafting two sulfanyl-ended PEG molecules of 

different chain lengths (2 and 5 kDa, respectively) to form a dense mixed brush of 

tethered PEG chains which are capable of eliminating the biofouling characteristics of 

biomolecules (particularly DNA and proteins). Another advantage of this protocol states 

that the surface modifications can be carried out in aqueous medium as opposed to other 

methods where self-assembled monolayers (SAMs) [12-14] of non-fouling agents like 

modified and unmodified alkanethiolates are grafted to the surface in ethanol. Since a 

large number of polymers that are used for making microchips (PDMS in our case) are 

porous to ethanol, it results in unwanted swelling.  

Modification of the Au spots is performed in situ to avoid disturbance of the delicate 

surface chemistry during O2 plasma step for the bonding steps of the PDMS with the 

glass substrates.  The assembled SPR microchip is first connected to a syringe pump 

which has a solution filled syringe (1 mL) and flushed with 0.01 M HCl for 5 minutes to 

remove any contaminants or oxide, followed by a 15-minute rinse with DI water.  The 

long 5 kDa cm-PEG molecule is introduced to the flow channels for 20 minutes at a flow 

rate of 0.8 mL/hour and concentration of 1mg/mL, followed by a 0.05 M NaOH rinse.  

Then the 2 kDa m-PEG is flown through the channels and rinsed in a similar manner. The 

PEG molecules are dissolved in a high ionic strength PBS buffer (50 mM Phosphate, 1 M 

Nacl, pH ~ 7.4).  The smaller PEG is applied a total of three times to backfill any gaps in 
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the initial PEG layer and prevent protein adsorption on the gold surface.  Once the PEG 

tethered chains are grafted, the longer PEG chains are chemically modified for 

conjugating and anchoring the ligand on the sensing surface and a blocking agent on 

reference surface, respectively.  

The surface is again treated with 0.01 M HCl and rinsed with DI water to ensure the 

proper chemical functionalization for the next step. This chemical modification of the 

cm-PEG chain is performed using S-NHS and EDC to create an amine reactive surface.  

S-NHS at 100 mM and EDC at 400 mM of concentration in water are mixed in 1:1 ratio 

and passed through both the reference and sensing channels for 30 minutes.  This 

modifies the carboxylic acid group of cm-PEG into a NHS ester for zero length cross-

linking with an amine-modified ligand and blocking agents. The system is rinsed with DI 

water for 2 minutes to wash away remnant S-NHS and EDC. A ligand (see next section) 

and a blocking agent (50 mM ethanolamine in PBS buffer at pH ~ 9) with the terminal 

amine group are then flown over the sensing and reference Au surface, respectively, for 

30 minutes. This is followed by another 20-minute flow of ethanolamine followed by DI 

water and 1X PBS (10 mM Phosphate, pH ~ 7.4) rinse.  

 

2.1.1.4.2 A Model Protein-Drug Pair 

All the signal-locking and other SPR detection concepts are tested using a well-

established protein-small molecule interaction pair of carbonic anhydrase-II (CA-II, M.W 

~ 29 kDa) and 4-(2-Aminoethyl) benzenesulfonamide (ABS, M.W ~ 200 Da) similar to 

that used previously [14-17]. As reported by authors [18,19], a para-substituted 

benzenesulfonamide molecule binds specifically to the enzyme CA by co-ordination of 
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the sulfonamide moiety with a zinc ion at the interaction site of CA. The small molecule 

with the sulfonamide group is anchored to the surface and acts as our ligand and CA II 

dissolved in 1X PBS is our analyte. For all experiments in this work, this pair will be the 

test model and 1X PBS is used as our standard running buffer. The para-group of 

benzenesulfomaide in our case is chosen to be an amino-ethyl group to take advantage of 

the amino group that can be cross-linked to surface carboxylic acids of cm-PEG using a 

standard S-NHS/EDC protocol [14,16], thus presenting a benzenesulfonamide group on 

the SPR surface for recognition and binding with CA II. The reported association and 

dissociation constant values for the binding reaction have a range of 103 ~ 107 M-1s-1 and 

10-3 ~ 10-1 s-1, respectively. Since the values are influenced by surface concentration of 

ligands and the type of hydrophilic brush used in the gold modification scheme, we will 

evaluate the kinetic constants using SRM for our PEGylated Au surface and use it as a 

reference value for the measured constants from all other SPR schemes. All the chemical 

modifications above can also be found in our previous work [20].  

The reaction and blocked reference SPR surfaces are now ready for the next 

experimental step: integration of the microchip with SPR instrumentation.    

  

2.1.1.5 Integration with SPR Instrumentation 

     Figure 2.3 shows our SPR instrument with the microfluidics and other sensing 

components. A modified GWC Technologies SPRimager®2 system is used for 

performing the SPR experiments and collecting real-time SPR sensorgram raw data.  The 

system was modified by the manufacturer so that we can use it in a horizontal [20]  
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Figure 2.3. Our SPR instrumentation system integrated with microfluidic components.  

 

 

 

 

 

 

 

 

 

• GWC SPRimager2 
platform

• 805 nm laser diode

• Hamamatsu EMCCD
• Navitar Zoom 6000 optics
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configuration incorporating a custom built microfluidic mounting stage and mounting 

cell. We further modified the instrument with the following instrumental parts: a World 

Star Tech TEGCIRL-100G-808 808 nm laser source, a rotating diffuser from Suss-

Microoptics, a Navitar Zoom 6000 lens system, and a Hamamatsu C9100-01 EMCCD 

camera. Following surface modification, the SPR microchip is coupled to a prism using 

index matching liquid and the cell is loaded onto the mounting stage. Inside the stage, the 

cell is positioned where the light from the laser excites and senses gold spots in the chip. 

The angle of incidence can be controlled by a rotating knob that tilts the stage. The output 

SPR signal subject to chemical input signal is collected by an EMCCD camera which is 

controlled by Wasabi Software. All the SPR integration steps above can also be found in 

our previous work [20].  

 

2.1.1.6 Integration with Microfluidic Components 

The SPR microchip of Figure 2.2 is first subject to surface modification procedures 

by solution flow in microchannels lined with sensing Au spots. This is done by 

programming the pump to deliver the samples at a predefined flow rate calibrated for 1 

mL syringe pumps. The syringe delivers the sample to the microchannels through 

polyvinyl chloride (PVC) tubing that is connected to a needle at the syringe tip at one end 

and a 0.02 inch diameter drilled inlet microfluidic port at the other.  

The integration of mounted SPR chips with microfluidic components post-surface-

modification is carried out in a similar fashion. As shown in Figure 2.2, drilled solution 

input ports are dedicated to the reservoir of a specific sample for both surface 

modification and actual experimental steps (analyte, buffer, and regeneration solutions, 
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respectively) and form a water-tight connection with the PVC tube. Output ports are 

similarly drilled which dumps the solutions from output channels to the waste reservoir 

through the tubes. The sample reservoirs are connected to a pressure source P0 which 

drives the solution through the channels. The flow switching of the samples is facilitated 

by the presence of dedicated valves beneath the flow channels.  

The SPR signal from the sensing Au spots in output channels (sense + reference) are 

recorded by the EMCCD camera using a camera-control Wasabi Software which 

converts the real-time sensorgram intensity values I(t) in a readable and extractable 

format (Microsoft Excel), which is used for further data processing.    

  

2.1.2 Signal Postprocessing 

Wasabi camera software first analyzes the collected data by selecting multiple 

sensing and reference SPR spots in the collected images.  The mean intensity values for 

all the user-chosen zones in each recorded frame are stacked in the readable format. 

Fourier transform analysis, exponential and linear curve-fitting, and similar other signal 

processing schemes postextraction are performed on this data by a digital algorithm 

which is coded in MATLAB®. As mentioned in conventional SRM of Section 1.4, the 

intensity values from both the sensing and reference surface are first baselined to zero 

and subtracted from each other followed by further postprocessing in MATLAB to 

extract kinetic parameters which are specific to the individual schemes. 
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CHAPTER 3 

 

METHOD 1: SIGNAL-LOCKING FOURIER TRANSFORM SPR  

 

Certain figures and text portions of this chapter content have been reproduced with 

permission from [1] (see footnote). As a statement of contribution from authors for this 

chapter (recommended by dissertation supervisory committee as the introductory 

paragraph), the theory and analytical background for the SLFT-SPR methods have been 

developed by the first and third authors. The SPR instrumentation, microchip design, and 

farbication have been contributed by the first author while chip testing has been 

contributed by the second author. The biochemical functionalization steps and the 

mathematical analysis in MATLAB have been contributed by the second author.  

 

3.1 Introduction and Theory 

In this chapter, we introduce the theory of the first chemical signal processing 

method, frequency domain signal-locking fourier transformSPR (SLFT-SPR), mentioned 

previously in section 1.4.2. This is followed by implementation of the signal analysis of 

signal-locking SPR method. Implementation strategy includes schematics of this 

measurement scheme followed by discussion on large signal SLFT-SPR chip and its 

input chemical signal synthesis. This is followed by a results section where we will 

discuss the experiments and analyze the kinetic parameters and the SNR obtained from 
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the conventional SRM and large signal SPR outputs. Finally, we conclude the chapter 

with a discussion on the merits, drawbacks, and future scope of the work. 

 

3.1.1 Frequency Domain Signal-Locking SPR Scheme 

The SRM discussed in Chapter 2 is not an optimal detection method because it does 

not attempt to reject the influence of the disturbance on the fit. In this section, we 

introduce the theory behind a new detection scheme based on measurement and 

subsequent kinetic constant calculation in frequency domain. This method is aimed at 

rejecting the influence of disturbances by improving the SNR of the SPR sensorgram and 

hence the detection resolution and accuracy. If the ordinary differential equation (1.6) for 

the biochemical interaction is linear in [A] (analyte concentration), it is possible to 

substantially improve the sensitivity of the measurement by appropriate selection of the 

input test signal. An improved detection scheme can be implemented if the analyte 

excitation and the corresponding interaction response are highly correlated. The SRM 

requires a-priori knowledge of the reaction dynamics, the number of species involved, 

and the order of the reaction.  The assumed model information is, however, not required 

if one treats the biochemical reaction as a general dynamical system under test as shown 

in the block diagram of Figure 3.1. The concentration of the product [C] (also referred to 

as formed complex [AB]) follows the first order reaction dynamics specified by the 

ordinary differential equation of Equation 1.6. Since the biochemical system is linear, the 

input signal and output response are correlated to each other at a particular input 

modulation frequency ωi, as shown in the figure. Since the analyte input signal and the 

corresponding sensorgram response have sharp autocorrelations, the input signal and the  
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Figure 3.1. The biochemical reaction under test can be abstracted as a general dynamical 

system that can be excited with input chemical signals. The system response under 

periodic excitation is its transfer function. 
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response are nearly orthogonal to all other signals except themselves, hence rejecting 

greatly the influence of uncorrelated noise and disturbances.  

An example of such an approach is the signal-locking Fourier-transform SPR (SLFT-

SPR) detection scheme shown in the diagram of Figure 3.2.  In this method the 

biochemical system is driven by a periodic input excitation of analyte or buffer of 

constant frequency f specified by digital clocks  and   .  The corresponding periodic 

association and dissociation cycles produce a highly correlated sensorgram output of the 

same frequency. This signal can be easily “locked” respect to the driving clock. The 

periodic sensorgram thus can be easily detected even in the presence of high levels of 

additive uncorrelated disturbances and noise. The virtues of the scheme are visibly 

evident when the power spectrum of the SPR response and the disturbance are plotted as 

shown in the example of Figure 3.3. While noise and disturbance have broad spectra, the 

power of the sensorgram dissociation and association response cycles are concentrated at 

a single modulation frequency, thus showing as a spike in the spectrum that can be easily 

discriminated from the noise using a narrow band filter. Most of the noise and 

disturbance power falls outside this narrow band; hence, it is greatly rejected.  This kind 

of signal-locking methodology offers a substantial improvement in the SNR of the SPR 

sensorgram. Noise rejection capability of such a SLFT scheme will be quantitatively 

analyzed in this and the following chapter. This scheme can be analyzed using two kinds 

of input signal considerations, small signal and large signal analysis. 
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Figure 3.2. Schematics of SLFT-SPR detection system.  The sensor input excitation is a 

periodic stream of analyte and buffer plugs controlled by clocks   and   .  This 

produces periodic association and dissociation steps modulated at frequency f which are 

easily separated from disturbances. 
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Figure 3.3. The power spectrum of the sensorgram versus frequency plot contains the 

narrowband response and broadband noise and disturbances.  The modulated response 

can be discriminated from the broadband noise using a signal locking sharp bandpass 

filter, thus greatly rejecting the influence of out-of-band noise and disturbances. 
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3.1.1.1 Small-Signal Analysis 

In order to utilize these signals effectively, we must first establish a relation between 

the excitation response and the kinetic constants. We can first set the clock frequency f 

and record the sensorgram response. By repeating this procedure at different discrete 

modulation frequencies, one may obtain a relation between the excitation frequency and 

the sensorgram response. Since both excitation and response are periodic, they can be 

expanded as Fourier series. As shown in Figure 3.1, the relation between the fundamental 

terms of response and input series is the Fourier transfer function (TF) H(j) of the 

biochemical system given by                                                     

                                                      

Y(jω)H(jω) = 
X(jω)

                                                (3.1) 

where X(j) and Y(j) are complex phasors [2] of the input analyte excitation and 

filtered sensorgram output, respectively, and  = 2πf is the excitation angular frequency. 

For small periodic input perturbations of the type 

                                 0 0 n
n=1

A(t) = A  + ΔA(t) = A + ΔA sin(n ω t)


                        (3.2) 

with |A(t)| ≤ 0.1∙A0, the sensorgram response is approximately proportional to the 

analyte-ligand complex which also has the form 

                               0 0 n n
n=1

C(t) = C  + ΔC(t) = C + c sin(n ω t + θ )


                   (3.3) 

where C0 is the equilibrium analyte-ligand complex concentration [1]. If the biochemical 

interaction is determined by Equation (1.6), the transfer function is directly related to the 

kinetic constants ka and kd, and it is obtained by direct substitution of Equations (3.2) and 

(3.3) into Equation (1.6), which reduces to 
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                            a 0 a 0 d

a 0 a 0 d

dΔC(t)  = k (B -ΔC(t)) ΔA(t) - (k A +k ) ΔC(t) 
dt

k B ΔA(t) - (k A +k ) ΔC(t)

   

    

                 (3.4) 

The above equation is valid for corresponding small changes in the analyte-ligand 

complex such that B0 >> C(t). The reduced simplified Equation (2.4) is linear in A(t) 

and its corresponding Fourier series components.  The small-signal transfer function (TF) 

H(j) is easily obtained from Equation (3.4) by substitution of the time derivative with  

j.  The small-signal sensorgram TF at the fundamental component has the single pole 

behavior 

                                  

1jθ1
SPR

1

a 0
SPR

a 0 d p

cH(jω) = G e
ΔA

k B 1  = G .
(k A + k ) (1 + jω/ω )

 
 
 





                           (3.5) 

with characteristic pole ωp given by 

                                                  p p a 0 dω = 2πf  = k A + k                                               (3.6) 

Therefore, we can measure the kinetic constants ka and kd by direct measurements of the 

small-signal transfer function and finding each TF pole for different A0 analyte 

concentrations. This is the basis for the SLFT-SPR methodology. Since SLFT-SPR relies 

on the repetition of rapid association and dissociation cycles, the depletion of analyte in 

solution is much less severe than that for the conventional single-pulse technique; 

therefore, experimental flow conditions that are not subject to transport issues in the 

conventional single-pulse method are also sufficient for this technique. 
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3.1.1.2 Large-Signal Analysis 
 
   In the SLFT-SPR [1] measurement, it is advantageous to increase the excursion of the 

input analyte beyond 0.1∙A0 because the magnitude of the corresponding sensorgram 

increases proportionally. For large analyte excursions, the analysis is more complex 

because Equation (1.6) differs for the association and dissociation cycles and input-output 

linearity of the Fourier components does not hold. In the large signal analysis, we assume 

the analyte excitation is a periodic square waveform of period T, amplitude A0, and clock 

frequency f = 1/T. At low frequencies, the sensorgram is also square, but as the 

frequency increases, it becomes triangular, thus changing the Fourier coefficients of the 

response.  We can account for the impact of the change in shape by calculating the 

Fourier series components of the sensorgram waveform. At steady state, C(0) = C(T); and 

we arrive at the following derivation 

                                       1 2-β -βa - b = (a - b e ) e                                                 (3.7) 

where a 0 1
1 a d 2 d 1

1

k A B α Ta =  , α = k A + k  , α = k  , β  = 
α 2

   
 

 
 and 2

2
α Tβ  = 

2


. Solving 

Equation (3.7) for b, the steady-state solution can then be written as  

                   
 

1
1

1 2

1 1
2

1 2

-β
-α t

-(β  + β )

- β -β T-α (t - )
2

-(β  + β )

1 - e Ta 1 - e ,  0 
1 - e 2

C(t) = 
1 - e e Ta 1 - e ,  T
1-e 2

t

t





   
     

  


              

                      (3.8) 

The first component of the complex Fourier series of Equation (3.8) for two limiting 

conditions as T∞ (0) and T0 () are determined (Appendix A). The 

amplitude of the sinusoidal component is 
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                                                               1
2ac  = 
π

                                                           (3.9) 

while the cosine amplitude is 

                                                        0 1 2
1 2

1 2

2α α aTc  = -
(α  + α )π

                                            (3.10) 

With the amplitude from these two limiting cases, an approximation for the magnitude of 

the normalized large signal TF can be written as  

                           

0
1

1

1 2 1 2 1 2
2

1 2 1 2 1 2

H(jω) c (jω)T(jω)  = =
H(0) c

2α α aT π α α 2α α =  = 
(α  + α )π 2a (α  + α )π×f (α  + α )ω






                       (3.11)                                 

At the pole frequency f = fp, the magnitude of the normalized TF equals 1/2; hence, the 

expression for the pole for large signal excitation is approximately 

                                                         1 2
p

1 2

2 α αf
π(α  + α )


                                                 (3.12) 

This can be written finally in terms of ka and kd (sometimes referred to as kon and koff, 

respectively) as 

                                                a 0 d d
p

a 0 d

2 (k A  + k ) kf
π(k A  + 2k )
  




                                       (3.13) 

Equation (3.13) provides a relation between the observed pole and the kinetic constants 

under the condition of large analyte square wave excitation. Note that this expression 

differs significantly from the small signal pole expression of Equation (3.6).  In 

particular, Equation (3.13) includes the effects of saturation which develop for large A0, 

making the pole approach 2∙kd/π. 

 



52 
 

3.1.2 Schematics of Measurement 

In the following sections of this chapter, we discuss the schematics and testing of 

large-signal SLFT-SPR. Analysis for small-signal SLFT-SPR will be discussed in the 

following chapter. The large-signal SLFT-SPR analysis method is implemented using the 

set-up shown in the schematics of Figure 3.2. As described in Section 3.1.1, the 

biochemical system under test is driven by a periodic input excitation of analyte and 

buffer of a constant frequency f  specified by digital clocks  and   . The corresponding 

periodic association and dissociation cycles in response produce a highly correlated 

sensorgram of the same frequency which is then “locked” with respect to the driving 

clock. In order to have the response over the entire frequency spectrum, this technique 

thus requires the sweeping of the clock modulation frequency f from low to a high 

frequency (f  typically should be higher than the pole frequency fp but preferably lower 

than signal transmission pole frequency) and the generation of a stream of high-frequency 

plugs that are transported to SPR sensing and control surfaces. In order to create such 

short fast plugs, it is necessary to use microfluidic chips which permit the transport of 

time-dependent chemical signals with low dispersion [3]. Figure 3.4 shows a SPR 

microchip that has been fabricated for synthesis and testing of the large-signal SLFT-SPR 

method. The chip consists of two signal generators (multiplexers or MUX) each of which 

has three plug generators (one for each of analyte, buffer and regeneration) and two 

output flow channels which are lined by several SPR sensing and reference Au spots. 

Each three-valve flow MUX along with its connected output channel is dedicated for 

signal generation on the reference (control) and the bio-interaction sensing surface, 

respectively. The two-channel arrangement also facilitates the functionalization of the  
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Figure 3.4. Photograph of large-signal SLFT-SPR microchip. 

 

 

 

 

 

 

 

 

 

 

 



54 
 

sensing and blocking of the reference sites simultaneously and separately. Two of the 

valves switch between pure buffer and analyte flows. The third valve is used for 

regeneration and cleaning of the sensor and reference surfaces. The analyte and buffer 

valves are driven by digital clock signals  and   , respectively, and pulsed at a specific 

frequency.  The test chip of Figure 3.4 was fabricated using conventional two-level 

PDMS technology [4-6]. Details of the fabrication and Au surface modification have 

been discussed previously in sections 2.1.1.3 and 2.1.1.4. 

 

3.2 Testing of Large-Signal SLFT-SPR 

3.2.1 Experiments 

The microfluidic chip is placed in the SPR mounting cell, with a refractive index 

matching fluid (R.I.=1.72) to couple the prism with glass substrate.  Microfluidic 

connections are made to the valves and flow channels, and then the valves control lines 

are filled with water, due to the gas permeability of PDMS. The valves are actuated by a 

pressure system at 30 PSI controlled by a computer. Syringes containing analyte (CA-II), 

buffer (PBS), and regeneration solution (0.1% SDS in PBS) are pressurized as well with a 

constant source at 10 psi which corresponds to a flow velocity of 16 cm/s, sufficiently 

high (> 6.7 cm/s, calculated) to overcome transport limiting effects [7]. CA-II samples 

were prepared as follows. We first measure the dry CA-II on an analytical balance with a 

resolution of 0.1 mg.  The dry CA-II is then added to an appropriate volume of the PBS 

running buffer to make our analyte solution, i.e., if we want a 100 μg/mL analyte solution 

(or 3.4 μM at 29 kDa MW for CA-II), we measure 1.0 ± 0.1 mg, and add that to 10 mL of 

buffer. We next measure the actual concentration in solution using a spectrophotometer 
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(GENSYS5, Thermo Scientific) at 280 nm.  Reported values of the extinction coefficient 

for bovine CA-II range from 55,300-57,000 L/mol-cm [8,9]. Three different (measured) 

concentrations of CA-II were used, 2.3, 5.3, and 11 µM.  Experiments are performed for 

each CA-II concentration by collecting the response from a single step input first, and 

then continuously running multiple cycles of a square wave input signal at different 

frequencies, swept from 2 mHz to 256 mHz.  The sampling rate was 4 Hz for all 

experiments. Figure 3.5 shows an example eight frequency (2, 4, 8, 16, 32, 64, 128, and 

256 mHz) input chemical signal coded in MATLAB. As we can see, this a relatively 

simple binary (on/off) digital signal, each on/off cycle of which has a particular 

frequency of oscillation. All frequency components are equally weighed (contains the 

same power in each frequency component) except for the lowest frequency component of 

2 mHz which has twice the power of others. This is done deliberately to improve the 

detection of the lowest frequency component in frequency domain. Wasabi camera 

control software from Hamamatsu is used to analyze the collected data by selecting 

multiple sensing and reference spots in the image as discussed in previous chapter.  After 

an experiment at a given concentration is completed, the channels are flushed with 

regeneration solution to clean the sensor surface. 

 

 3.2.2 Results 

Kinetic constants were obtained using both a single-step method and the large-signal 

SLFT-SPR scheme. In all the data sets, the fixed imager intensity offset Ioffset is first 

recorded at the beginning of the measurement and subtracted from all the recorded data.  

Each spot analyzed comprised approximately 1550 pixels on the CCD camera. In our  
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Figure 3.5. An example digital multifrequency binary input chemical signal encoded in 

MATLAB. 
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experiments, we observed a large discrepancy exists between the concentration prepared 

by weight and that measured in the spectrophotometer. This discrepancy can originate 

from several phenomena, including differences between weighted and active protein [7] 

concentration as well as various error sources of the scale and spectrophotometer. We 

believe our largest source of error originates from the uncertainty in the analyte 

concenetration. 

 

3.2.2.1 SRM Response 

For each concentration, a single-step experiment was first performed by flowing 

buffer for 5 minutes, CA-II for 5 minutes, and then buffer again for 5 minutes.  After 

removing Ioffset from the data, the signal from a reference spot, Iref, was subtracted from a 

sensor spot, Isensor, at the same distance downstream from the fluid control valves. This is 

needed to cancel the solvent bulk contribution s(t) of the analyte solution as compared to 

that of the buffer. The corrected responses from the single-step experiments are shown in 

Figure 3.6, along with the fits to the exponential solution 

                                                    
obs-k t

0I(t) = I (1 - e )

                                              (3.14) 

where kobs is the observed rate constant for the association phase, 

                                                      obs a 0 dk = k A  + k                                            (3.15) 

The observed rate values were then plotted against the respective concentration values 

and a linear fit was used to determine ka and kd according to Equation (3.15).  These 

values were found to be 6.5 x 103 1/M·s and 2.5 x 10-2 1/s, respectively, (R2 = 0.974) in 

reasonable agreement with published results [7]. 
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Figure 3.6. Plot of single step sensorgram response data for each concentration and the 

associated fit (top), and the resulting value for kobs versus the respective concentration, 

and a linear fit used to find ka and kd (bottom). 
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3.2.2.2 SLFT-SPR Response 

The continuous cycle intensity data were collected for each concentration at a discrete 

set of frequencies selected to give an even power distribution across the spectrum.  The 

input frequencies of the digital input signal of Figure 3.5 and its output SPR waveform 

are shown in Figure 3.7.  The frequencies began at 2 mHz and increased by doubling  

until 256 mHz was reached, keeping the time each frequency was applied constant.  This 

was performed after the single-step data were collected so that the system was near 

steady state when the cycles started to avoid a long transition during the experiment. 

Fourier transform analysis is used to determine the magnitude of the sensorgram response 

intensity and normalized transfer function ||T(jω)|| at the excitation frequencies from the 

magnitude of the measured power spectrum. ||T(jω)|| is next plotted versus each 

excitation frequency as shown in the Bode plot of Figure 3.8.  The pole frequency for 

each concentration was determined at the -3dB point. The experimental tail of the Bode 

plot at high frequencies differs from the single-pole behavior. We attribute this flattening 

of the experimental response to imperfect but not negligible reference cancellation of 

bulk signals which is independent of frequency. The ka and kd is determined from the 

SLFT-SPR analysis by fitting the pole values to Equation (3.13).  They were found to be 

9.4 x 103 1/M·s and 2.7 x 10-2 1/s, respectively (R2=0.968).  These values match 

reasonably well with those determined with the single step method.  The values 

determined by the large-signal SLFT-SPR method do differ slightly from reported values 

of ka and kd for the same model system, but the range of these values is very large among 

the different detection methods used.  We attribute the difference in the values we 

obtained as due to the particular surface chemistry employed in this work. 
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Figure 3.7. Plot of example input clock frequency sweep used for the FT-SPR 

measurement (top), and resulting SPR sensorgram waveform from the biochemical 

interaction system (bottom). 
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Figure 3.8. Plot of magnitude of the normalized transfer function T(jω) (bode plot) vs. 

frequency; the poor fit at the higher tail frequencies originates from imperfect 

cancellation of the bulk response (top), and the resulting pole frequencies vs. the 

respective CA-II input concentration (bottom). 
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3.2.2.3 SNR and Sensitivity Analysis 

The signal-to-noise ratio (SNR) in decibels (dB) for the step-response measurement 

was computed from the ratio of the average power of the exponential fitted signal to the 

average power of the fit residual over the measurement period as shown below 

 

                                     

τ
2
fit

0
step τ

2
meas fit

0

I dt
SNR  = 10 log

(I  - I ) dt

 
 
 
 
 
 





                                         (3.16) 

The measured SNR for the step response method was 26 dB, meaning that the average 

power of the fitted exponential was 400 times larger than that of the noise and 

disturbances. The SNR for the SLFT measurement is calculated differently from that of 

the SRM. First, we recorded the noise and disturbance intensity signal of the SPR system 

under no input excitation for 30 minutes at a sampling frequency of 4 Hz. After 

subtraction of the initial offset, the intensity was normalized to the full scale of the 

imaging camera. We next computed the power spectral density of the normalized 

intensity signal measured in dB-full scale/Hz (or dB-fs/Hz). Because this is a random 

signal, the power spectrum was averaged over 10 equal duration 180-second recording 

cycles. This procedure produces a reasonably well-defined estimate of the disturbance 

and noise spectral density. We can now readily compare the relative power of the system 

noise and disturbances to the power spectrum of the SLFT-SPR signal (also in dB-fs/Hz) 

as shown in Figure 3.9 (top). Note that the power spectrum of the SLFT-SPR interaction 

signal is simply ||H(j)||2 which is flat at low frequencies and displays a dual pole at fp. 

In contrast, the power spectrum of the noise and disturbance seems to be largely 
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concentrated at the lower frequencies becoming flat at the higher frequencies. The SNR 

for this large-signal SLFT-SPR measurement is equal to the ratio of the two power 

spectrums, as shown in Figure 3.9 (bottom). Note that unlike the fixed SNR for the 

single-pulse step response method, the SNR of the SLFT-SPR technique increases and 

peaks at a specific frequency near the TF pole. In addition, the peak SNR is much higher 

for this technique than SRM by a factor of 20 dB or 100-fold better than that of the step 

response method.  

 

3.3 Discussion and Summary 

         There are two reasons behind the observed SNR improvement in our results; (a) the 

measurement takes place in a region where the power density of the disturbances and 

noise is low and (b) the power spectrum of the disturbance is broad, hence only a small 

contribution of the disturbance and noise is present at the narrow excitation frequency. 

The major improvement in the SNR of the narrowband FT-SPR technique leads us to 

believe that it may be possible to directly detect small molecule binding on these surface. 

However, this improvement in SNR (100-fold) comes at the price of measurement times 

(~ 240 minutes), which is much longer than the conventional SRM of ~ 10 minutes.  

       Finally, we would like to state that in spite of the impressive SNR ratios, the large-

signal SLFT-SPR technique does have practical limitations. First, in order to make a 

clean measurement, the modulator chip has to be able to produce sufficiently high 

frequency plugs to reach the TF pole region. Therefore, small distances between the chip 

valves and the sensing spots are required to minimize the plug dispersion. In addition, 

smaller noisier spots must be used in the chip. The technique also requires periodic   
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Figure 3.9. Plot of comparison of the power spectrum of the sensorgram signal (from the 

lowest applied concentration of CA-II) and the power spectrum of the system noise and 

disturbances with no excitation (top), and the signal-to-noise ratios (SNR) for the step 

response and FT-SPR methods (bottom).  The SNR of the large-signal FT method is 20 

dB higher than that of the single-step method. This translates to a 100-fold improvement 

in the SNR for the FT-SPR method. 
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excitation and a periodic response; therefore, it cannot handle irreversible reactions with 

strong associations and weak dissociation, but such reactions could be measured with the 

use of periodic regeneration cycles.   
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CHAPTER 4 

 

METHOD 2: MULTISINE SLFT-SPR  

 

4.1 Introduction 

In this chapter, we discuss the synthesis and implementation of the small-signal 

analysis method of SLFT-SPR introduced in section 3.1.1.2. We start by introducing the 

background and the choice of a multifrequency small signal for our SPR measurements. 

This is followed by discussion on the small-signal SLFT-SPR chip and the input 

multisine small signal and results section. We will compare the results with those of SRM 

and large-signal SLFT-SPR interrogated in the previous chapter and discuss the 

improvements offered by this scheme. Finally, we conclude the chapter with a discussion 

and future scope of the work.  

 

4.1.1 Multisine: A Test Small-Signal 

As demonstrated in the earlier chapter, at a given frequency, the functionalized 

sensing and reference spots can be excited by introducing a binary digital (on/off) 

excitation signal in a flow cell using simple flow multiplexers. The TF and its 

characteristic pole are then obtained experimentally from a sequence of measurements at 

several frequencies. While these measurements are straight forward, they require 

considerably longer measurement times than those of the single pulse technique. We can, 



68 
 

 

however, reduce the measurement time dramatically if we use a test signal that has 

multiple frequencies. In this section, we will discuss the theory and practicality of one 

such signal. 

The choice of input excitation signal is critical in determining the speed and accuracy 

with which the response of a system is obtained [1,2]. Multifrequency input test signals 

are commonly used for estimation of transfer functions. These test signals have a well-

defined spectrum and hence are useful to determine spectral measurements at several 

frequencies simultaneously in a time-efficient manner. In this paper, we utilize an 

analyte excitation scheme that employs multisine waveforms s(t) of the type  

                                    
N

avg i i i
i=1

s(t) = A  +  A cos(ω t + θ )                                      

(4.1) where N is the number of frequency components. If we select the frequencies such 

that ωi= k.ωo where k is an integer, the multisine discrete frequencies are all contained 

within a single cycle of the lowest component, and the measurement interval 

corresponds of a few periods of ω1. The practical generation of a synthetic multisine 

signal requires careful consideration of component harmonics, their amplitude, and 

relative phases indicated in Equation (4.1) by θi. The phases are selected to minimize the 

waveform crest factor C [1,2] where 

                                                            
peak

rms

s
C = 

s                                                      (4.2) 

which is equal to the peak to root-mean-square average ratio. For a single sinusoid, the 

crest factor is 21/2. For a multisine, the crest factor is generally higher. A low crest factor 

is desirable because it avoids the presence of exceedingly large peaks in the waveform 
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and reduces the resolution requirements for waveform generation. For example, a 

commonly used low crest factor multisine is the Schroeder multisine [2,3] with 

quadratically weighted phases. Figure 4.1 shows a comparison of an equal phase 10-

component multisine (θi=0) and the Schroeder multisine (θi =π·i2/N). Both waveforms 

have the same Fourier power spectrum, but the Schroeder waveform is much easier to 

generate. The Schroeder scheme is not the only low crest phase configuration. One may 

also select the phases via numerical minimization of the crest factor.  

 

4.1.2 Schematics of Measurement 

Figure 4.2 shows the schematic of the spectral technique using the multisine analyte 

test signal. The spectral content of the signal permits the simultaneous measurement of 

the transfer function at multiple frequencies. If this input analyte excitation has equally 

weighed spectral components, after interaction with the functionalized sensing spots, the 

SPR sensorgram will be attenuated for frequencies larger than the pole frequency of 

Equation 3.5, thus shaping the sensorgram spectrum. The entire measurement can be 

done in a few cycles of the lowest multisine component, thus significantly reducing the 

measurement time compared to the frequency sweep scheme [4]. A major consideration 

in the multisine scheme is that the multisine is an analog signal; therefore, its generation 

requires a more complex microfluidic chemical signal generator [5]. We fabricated and 

tested the chip-based multisine synthesis in the SPR microchip system of Figure 4.3. The 

chip consists of two high-frequency chemical pulse coded modulators of the type 

discussed in [6] connected to flow channels that are lined by functionalized SPR gold 

sensing and reference spots. The chip is implemented using conventional two-level 
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Figure 4.1. Plot of 10-component multisine with zero phase (left), and 10 component 

multisine with quadratic phase (right). 
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Figure 4.2. Schematics of the multisine chip. The response spectrum at multiple 

frequencies is measured simultaneously. 
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Figure 4.3. Picture of dual-channel multisine SPR chip (left), and close-up of a flow 

channel lined by SPR gold spots (right). 
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PDMS technology [6,7]. 

 

4.2 Testing of Small-Signal SLFT-SPR 

4.2.1 Experiments 

The SPR multisine chip is mounted onto a cell and coupled to the prism using 

refractive index matching fluid. Post microfluidic connections to flow channels and 

valves, the valve control lines are filled with water to displace the air with water in the 

valves due to gas permeable properties of PDMS. Phosphate-buffered saline (5mM 

sodium phosphate, pH 7.4) was used as running buffer. The valves are actuated by 

pressure of 28 PSI while the analyte (CA II) and buffer (PBS) are pressurized by 8.7 psi 

and 7 psi, respectively. The reservoir pressure of analyte and buffer correspond to a flow 

velocity of approximately 14 and 11 cm/s in output channels, respectively. The final 

velocity of analyte signal plug is thus sufficient to overcome mass transport effects [4].  

The CA II samples were prepared using the following procedure. First, dry CA II 

powder was dissolved in the running buffer solution. Next, we measure the actual 

concentration in solution using a Spectrophotometer at a wavelength of 280 nm. 

Reported values for the extinction coifficient (a280) for bovine CA II range from 55300 

to 57000 L/mole-cm [8,9]. The protein concentration (C) is then given by the relation C 

(mole/L) = A280/(a280∙b) , where A280 is the value of absorbance at 280 nm and b being 

optical path length (1 cm for the given photometer). Three different concentrations (A0) 

of 5.2, 10.4, and 15.6 µM were used for the separate multisine excitation experiments, 

consisting of seven frequency components ranging from 2 mHz to 64 mHz. The 

sampling rate was kept constant at ~5.7 Hz for all the runs. Wasabi camera control 
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software integrated with the Hamamatsu EMCCD camera was used for analyzing the 

collected data. The mean intensity I(t) of the sensing and reference gold spots (700 

pixels) for all the frames were extracted using this software followed by its Fourier 

transform analysis in MATLAB. The channels were flushed with regeneration solution 

(0.1% SDS in running buffer) between the runs.  

 

 4.2.2 Results 

The kinetic constants ka and kd for this analyte-ligand pair were obtained by plotting 

the observed pole frequencies (p = 2πfp) obtained from the Bode plot of the transfer 

function H(jω) for the three different concentrations of the analyte. The term fp here 

refers to the -3dB point of the transfer function plots in the frequency (Hz) domain.  In 

all the data sets, there exists fixed imager intensity Ioffset for all the imaging gold spots. 

This is first recorded at the beginning of the experiment and later on substracted from the 

measured signals to bring the baseline of the extracted signal to zero. The signal from 

the reference spots (Iref) is then substracted from that of the sensor spots (Isensor) to obtain 

reference and sensor signals for further processing. The reference-sensor spot pairs are 

approximately at the same distance downstream from the either modulators and 

substraction of their signals ensure elimination of the signal component from bulk 

response of analyte. The corrected time-domain responses from the multisine 

experiments then follow the simple relation I(t) = I0·s(t) where I0 is the proportionality 

factor,  s(t) being the test signal in analyte.  
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4.2.2.1 Nonreactive Multisine  

In this chip, we first tested the proper generation and sensing of the multisine test 

signal using a 10% ethanol solution in PBS buffer as analyte. Figure 4.4 shows the time-

domain response observed on a bare gold spot for a multisine signal consisting of five 

discrete frequency components of {10, 20, 50, 100, 200} mHz with corresponding 

phases of {0, 0, π, 0, π}, generated by the two MPMs at a plug rate of 40 plugs/sec. This 

is equivalent to a single 28-level digitized output every 0.7 seconds. The multisine crest 

factor is 2.1. Note that the analyte solution does not react with these nonfunctionalized 

gold spots; hence, the SPR response corresponds to the multisine spectrum of the test 

signal. This time-domain signal does not look particularly periodic, but when we 

calculate the power spectrum, we can clearly see the discrete frequency components of 

roughly the same power, demonstrated in Figure 4.5. 

 

4.2.2.2 Biochemical Multisine  

     Next, we tested the feasibility of this spectral method for characterizing the 

biochemical reaction using functionalized sensor and passivated reference gold spots. A 

test multisine signal with minimized crest factor comprising equally weighed seven 

binary weigthed frequency components {1, 2, 4, 8, 16, 32, 64} mHz and corresponding 

phases {0, 2/3π, 5/3π, 5/3π, 5/3π, 5/3π, 0} was generated by the two MPMs. A time-

domain plot of this analog signal is shown in Figure 4.6. The multisine waveform has a 

crest factor of 2.2. The average flow velocity is about 10 cm/s, which is sufficiently high 

to overcome mass transport effects [10]. The duration of this multisine run was ~17 

minutes, corresponding to an input excitation synthesized with 40,000 plugs.  Figure 4.7  
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Figure 4.4. Time domain SPR signal recorded on bare Au spot using a of 5-component 

ethanol/PBS multisine. 
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Figure 4.5. Spectral density of the response signal showing the 5 discrete frequency 

components. 
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Figure 4.6. A 7-component multisine analyte waveform used for the SPR binding 

experiments. 
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Figure 4.7. Plot of SPR spectrum of 7-component multisine on reference (top), and of 

sensor spots for analyte concentration of 10.4 µM (bottom). Note that the sensor spot 

response is shaped by the pole of the reaction. 
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shows the comparison of the SPR spectra under the multisine excitation of Figure 4.6 for 

analyte concentration of 10.4 µM. We can clearly see the discrete frequency peaks in the 

spectra. The Fourier spectral density of the response from the nonreacting reference 

surface is relatively flat (expected for a signal with components of equal weight), while 

the spectrum at the reactive sensor surface is attenuated at frequencies higher than the 

pole frequency, thus shaping the spectra expected from the single pole roll-off behavior 

of the TF. The magnitude of the transfer function is next plotted versus the frequency to 

obtain a bode plot for different analyte concentrations, as shown in the top of Figure 4.8. 

The values of frequencies obtained from the -3 dB points for these three concentrations 

are then plotted versus their respective average concentrations. As discussed before, the 

pole frequency p follows a linear relation (y = mx + c) with the analyte concentration; 

thus, one can extract the kinetic constants ka and kd from the slope ‘m’ and y-intercept 

‘c’ of the linear fit, respectively, as shown in the bottom of Figure 4.8. The values for ka 

and kd from this fit are found to be 9.5x103 1/(M.s) and 6.2x10-2 1/s, respectively. These 

values match reasonably well with those obtained in our previous sweeping spectral 

scheme. 

 

4.2.2.3 SNR and Comparative Study 

Note that the noise floor of Figure 4.7 for all the components is about ten times lower 

than each of the frequency peaks; hence, the response due to the input excitation signal 

can be clearly discriminated from the noise. The signal-to-noise ratio (SNR) for this 

multisine measurement is about 32 dB, corresponding to a minimum detectable protein 

concentration of 250 nM. The noise floor is about 7 dB higher (2.5X) than that observed  
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Figure 4.8. Plot of normalized bode plot of observed transfer function at three different 

average concentrations (top), and pole frequency vs analyte concentration (bottom). 
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in the single step-response method reported previously, while the overall measurement 

time is twice as long as required by the SRM. Table 4.1 shows a comparison of the 

resolution, measurement time, SNR, and system complexity for four different 

techniques: SRM, repeated SRM (calculated reolution ~ N-0.5), periodic large-signal 

SLFT-SPR, and the multisine method.  

 

4.3 Discussion and Summary 

We have thus demonstrated a multisine Fourier-domain SLFT-SPR method for the 

measurement of binding constants of an analyte-ligand pair within a microfluidic 

environment using SPR as the detection technology. Compared to the conventional 

SRM, the multisine-SPR methodology provides cleaner measurement of parameters with 

higher SNR in about twice the time required by the conventional SRM method. This sort 

of measurement scheme can thus be used as a practical input SPR signal in analyte to  

 

Table 4.1 Comparison of Different SPR Techniques 

 
TECHNIQUE 

 

 
SRM 

 
Repeated 

SRM(calc.) 

 
Periodic 
Fourier 

 
Multisine 

 
Resolution 

(RIU) 

 
10-5 

 
7×10-6 

 
8.9×10-7 

 
4×10-6 

 
Time (min) 

 
10 

 
20 

 
240 

 
17 

 
SNR (dB) 

 
25 

 
28 

 
45 

 
32 

 
Complexity 

 
simple 

 
simple 

 
medium 

 
complex 
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recover the kinetics of its ligand recognition with higher resolution of detection and 

acceptable experimental time duration.  
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CHAPTER 5 

 

METHOD 3: DUAL-SLOPE SPR  

 

5.1 Introduction and Theory 

In this chapter, we introduce a new signal processing method for faster detection of 

analyte-ligand binding. We first discuss the theory and basic principle underlining this 

fast measurement scheme called Dual-slope SPR. This is followed by the schematics of 

this measurement scheme and the fabricated SPR chip used for the dual-slope 

measurements of the biochemical reaction sensorgram. This will be followed by a results 

section where we will discuss the experiments and analyze the kinetic parameters 

obtained from the conventional SRM and Dual-slope SPR outputs. We next compare the 

results and verify the accuracy and viability of this technique. Finally, we conclude the 

chapter with a discussion on SNR of this method, drawbacks, and future scope of the 

work. 

 

5.1.1 Fast Detection Schemes 

The new Dual slope SPR technique provides a faster means for the measurement of 

the reaction kinetics. This is aimed at addressing the intrinsically slow nature of SRM, as 

discussed previously in Section 1.4.1.2. This new scheme utilizes rapid slope-based 
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measurements and it separates association and dissociation half reaction measurements at 

two separate reaction sites. As we shall see later, this scheme can speed up the detection 

times of the biochemical reactions by an order or more.  

 

5.1.1.1 Dual-Slope SPR 

In conventional SRM, Equations [1.8] and [1.9] are fitted to the experimental 

sensorgram to determine ka and kd. This sometimes results in a long measurement cycle; 

information, however, can be obtained in a much shorter time from the association and 

dissociation initial slopes [1] as follows. Differentiating Equation (1.8) with respect to 

time t gives 

                    A
A SPR a o SPR dt 0

dI (t)S  = lim  = G k [A][B ] = K k [A]
dt

                              (5.1) 

where SA is the associative slope and KSPR is a constant of proportional (since maximum 

surface concentration of ligand B0 is constant through the detection process). At a given 

flow rate, the associative slope is thus linearly proportional to the analyte concentration 

[A]. Similarly, from Equation (1.9), subsequent differentiation yields 

                                   D
D SPR d dt 0

dI (t)S  = lim  = -G k [AB ]
dt

                                 (5.2) 

SD being the dissociative slope. In order to extract ka and kd from Equations (5.1) and 

(5.2), we need to eliminate the constant terms. This can be done by deliberately reacting 

the species to equilibrium prior to the dissociation phase. Since a high analyte 

concentration ensures rapid surface saturation, we can use a high analyte concentration 

[ARE] to achieve a rapid complex equilibrium level [ABRE] with corresponding SPR 

intensity IRE given by 
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                               SPR a RE
RE SPR RE

a RE d

K k [A ]I  = G [AB ] = 
k [A ] + k

 
                                   (5.3) 

Rearranging the terms in Equations (5.1), (5.2), and (5.3), we can eliminate GSPR and 

KSPR. Since [A] and [ARE] are both known, and IRE is easily extracted from the 

sensorgram, ka and kd can then be written as 

                                                        D
d

RE

Sk  = -
I                                                     (5.4) 

and 

                                            A RE D
a

RE RE

S [A ] + S [A]k  = 
I [A ][A]
 


                                           (5.5) 

Therefore, the kinetic constants can be determined from a measurement of the association 

slope with analyte concentration [A] and a second measurement of the dissociation slope 

with predissociation equilibrium achieved with analyte concentration [ARE]. It should be 

noted that similar to a single cycle of association and dissociation in a conventional step 

response cycle, the dual slope technique estimates a single set of ka and kd for one set of 

[A] and [ARE]. 

 

5.1.2 Principles of Measurement 

As we have seen in section 5.1.1.1, three independent parameters, namely the 

association and dissociation slopes of the sensorgrams SA and SD and predissociation 

equilibrium intensity IRE, require to be extracted from the SPR response at fixed analyte 

concentrations of [A] and [ARE] to estimate one set of kinetic parameters kon and koff. The 

analyte signal is a binary on/off signal where analyte is tuned on during associative 

measurement step and turned off (pure buffer) for the dissociative step similar to that 
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used in the conventional SRM scheme. As shown in Figure 5.1, parameters SA, SD and 

IRE are determined from measurements at two identical but separate functionalized 

surface sites producing two distinct sensorgrams. At the association site, the 

functionalized surface is exposed to a brief positive association slope SA measurement 

step by exposing the surface to analyte of concentration [A], followed by a brief 

regeneration step and subsequent short buffer wash. At the dissociation site, the surface is 

exposed to a solution of high analyte concentration [ARE], quickly producing the pre-

dissociation equilibrium level IRE. The analyte solution at the dissociation site, [ARE], has 

a much higher magnitude than [A] in order to reach rapid equilibrium. The rapid 

equilibrium step is followed by a brief negative dissociation slope SD measurement in 

pure buffer. Both chemical excitation sequences are repeated multiple times to produce 

measurements of progressively improved quality.  

The associative and dissociative phases of the biochemical reaction are made 

independent of each other to reduce the measurement time. In addition, the linearity 

assumptions of the dual-slope scheme holds true for first few seconds of the analyte and 

buffer introduction. Thus, the time required for the slope measurement is short, also in 

the order of few seconds, making the overall process of detection and sensing is fast. The 

minimum measurement time is limited only by the amount of noise present in the system. 

Generally speaking, the slope measurement time is much less than that required by the 

full step response. In this report, we demonstrate a measurement realized 10-fold faster 

than the SRM technique. 
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Figure 5.1. Basic principle used in the new fast dual-slope SPR technique.  Two identical 

functionalized sites are exposed to different sequences of analyte, buffer, predissociation 

rapid equilibrium, and regeneration solutions. The association and dissociation constants 

are obtained from the two decoupled slopes SA, SD, and the equilibrium sensorgram 

intensity level IRE.  
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5.1.3 Schematics of Measurement 

In order to utilize the dual-slope technique, we need to introduce short flow cycles 

with steep chemical gradients. Such flow switching profiles can only be achieved in 

microfluidic environments which exhibit low dispersive mixing [2]. Figure 5.2 shows a 

schematic of a dual-slope SPR chip. The experiments and data acquisition are carried out 

in two separate dedicated chambers. The association chamber performs the association 

half reaction using two gold sensor spots (sensor + control) and three microvalves, each 

for the flow control of buffer, analyte, and regeneration solutions. The dissociative 

chamber utilizes two gold spots and two microvalves each of which control the flow of 

analyte and regeneration solutions. The dual-slope SPR scheme was implemented using a 

conventional two-level PDMS microchip [3,4]. Figure 5.3 shows an image of the 

fabricated PDMS chip. It consists of two separate microfluidic chambers for associative 

and dissociative half reactions, respectively, each of which is connected to three pressure-

driven input sources controlled by separate microvalves and two output channels. The 

two output channels in each chamber are lined by gold sensor spots which record the 

sensor and control sensorgrams, respectively.  

 

5.2 Testing of Dual-Slope SPR 

5.2.1 Experiments 

The chip-on-substrate is placed onto a SPR mounting cell and coupled to a prism 

using an index matching fluid (R.I.=1.72). The input sources are then connected to 

pressure driven fluid reservoirs using plastic tubing (0.01 inch diameter, Tygon®). Due to 

gas permeable properties of PDMS, the valve control lines filled with water to displace  
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Figure 5.2. Schematic of a Dual-slope SPR chip consisting of four SPR spots and five 

microvalves.  
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Figure 5.3. Photograph of Dual-slope SPR microchip. 
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air and are connected directly to pressure sources. The input reservoirs contain PBS (10 

mM Phosphate, pH 7.4) as flow buffer, CA II as analyte, and 0.01% SDS as regeneration 

solution, respectively. The fluid flow and valve actuating pressures are 10 PSI and 25 

PSI, respectively. The reservoir pressure corresponds to a flow velocity of ~16 cm/s in 

output channels which is sufficient to overcome mass transport effects [5]. The analyte 

samples are prepared by dissolving dry CA II powder in PBS followed by concentration 

measurement using a spectrophotometer at a wavelength of 280 nm. Reported values of 

extinction coefficient (a280) for bovine CA II range from 55300 to 57000 L/mole-cm 

[6,7]. The protein concentration (C) is then given by the relation C (mole/L) = 

A280/(a280.b), where A280 is the value of absorbance at 280 nm and b being optical path 

length (1 cm for the given photometer). The high concentration analyte ([ARE]) solution 

is first prepared followed by appropiate dilution using PBS to make low concentration 

solution [A]. Two different concentration sets ([A] and [ARE]) were prepared and used in 

experiments to calculate two sets of kon and koff. The analyte concentrations used to 

record the conventional step-response sensorgrams were used for associative half 

reactions on the same sensor surface. Values of analyte concentration sets {[A], [ARE]} 

were {1.63, 54.4} and {3.4, 56.67} µM, respectively.  The lowest allowable 

concentration of [A] is dictated by the background noise of the sensorgram,  and the 

maximum concentration [ARE] was selected as the saturation limit of protein 

concentration for our spectrophotometer. The sampling rate was ~ 7.143 Hz for all data 

recordings. Wasabi camera control software integrated with EMCCD camera is used for 

data acquisition and analysis. The sensorgram intensity I(t) for sensing and reference 
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spots (1160 pixels) for all data frames were first retrieved using the in-built software 

followed by further analysis using MATLAB.  

 

 5.2.2 Results 

The measurement parameters SA and SD were obtained from linear curve fitting of the 

associative and dissociative sensorgrams and IRE from the observed equilibrium intensity 

value of the rapid equilibrium sensorgram. The kinetic constants kon and koff for the 

analyte-ligand pair were then obtained from Equations 5.5 and 5.4, respectively. In all the 

data sets, there exists fixed imager intensity Ioffset for all the imaging gold spots. This is 

first recorded at the beginning of the experiment and later on substracted from the 

measured signals to bring the baseline of the extracted signal to zero. The signal from the 

reference spots (Iref) is then substracted from that of the sensor spots (Isensor) to obtain 

reference and sensor signals for further processing. The reference-sensor spot pairs are 

approximately at the same distance downstream from the either modulators and 

substraction of their signals ensure elimination of the signal component from bulk 

response of analyte.  

 

5.2.2.1 Dual-Slope and SRM  

In order to serve a basis for comparison, we first ran a conventional step-response 

curve of a functionalized spot within a PDMS chip. Figure 5.4 shows the step-response 

sensorgram for analyte concentration of 3.4 µM requiring 5 minutes of recording time. 

Next, using a dual-slope SPR chip, we tested the feasibility of the new technique of 

parameter estimation using two different sets of associative and dissociative analyte  
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Figure 5.4. Conventional SPR step-response. The sensorgram consists of one association 

and one dissociation step (5 min for CAII-ABS). 
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concentrations. Figure 5.5 shows a sensorgram of ten half reaction cycles at analyte 

concentration of [A] =3.4 µM recorded from Au spots in the association chamber, 

indicating associative slope SA. The time preiod for analyte, buffer, and regeneration 

flows are 10, 7, and 13 seconds, respectively. The flow cycle periods were adjusted to be 

sufficiently long as to achieve signal-to-noise ratios much greater than one; yet the cycle 

times were much shorter than expected exponential association and dissociation time 

constants. Figure 5.6 shows a sensorgram of ten dissociative half reaction cycles, 

indicating dissociative slope SD for analyte concentration of [ARE] =56.67 µM. While 

predissociation saturation is allowed for 17 seconds, the dissociation is carried out for 13 

seconds using buffer flow. The kinetic constants for conventional step response were 

calculated first by exponential curve fitting of sensorgrams using the method of least 

squares. The results are summarized in Table 5.1. The rates reported were averaged over 

10 cycles. The rates are in good agreement with previously reported values [8]. Although 

the off-rate estimation using method of least squares is more accurate and reproducible, 

the on-rate tends to vary with analyte concentration and is hence less reproducible [9]. 

Our studies confirm that as well. However, as indicated by our estimate using the dual-

slope method, both the on and off rates appear to be more reproducible for different sets 

of analyte concentrations. One possible explanation for the apparent reproducibility may 

be the result of the short measurement of the slope technique which intrinsically has a 

much lower sensitivity to drift induced errors when compared to the longer conventional 

step response measurement. Besides, the low dispersion characteristics of the microchip 

and less distance between the point of switch-flow and the sensing site make it possible 

to remove the erroneous sensorgram signals that appear at these solvent interfaces. 
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Figure 5.5. Rapid multistep measurement of association slopes for CAII-ABS. For the 

association slope measurement,we use a three-step buffer, analyte, and regeneration 

solution cycle. The top trace is unreferenced SPR trace and the bottom is referenced to a 

passivated spot. 
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Figure 5.6. For the dissociation slope measurement, we use a two-step short rapid 

equilibrium and dissociation cycle. The analyte concentrations [A] and [ARE] are 3.4 and 

56.67 µM, respectively. 

 

 

 

 

 

 

 

 

 

 

 



99 
 

Table 5.1 Rate Constants of SRM and Dual-slope SPR  

 
TECHNIQUE 

 
ANALYTE 

CONCENTRATION 
(µM) 

 
KINETIC  
ON-RATE 
kon  (M-1s-1) 

 
KINETIC  

OFF-RATE 
koff  (s-1) 

 
Conventional 

SRM 

 
1.63 

 
4.75±0.42×103 

 
4.81±0.15×10-

2 
 

3.4 
 

8.68±0.35×103 
 

4.76±0.20×10-
2 

 
Dual-slope 

Method 

 
[A]=1.63,[ARE]=54.4 

 
3.66±0.19×103 

 
4.83±0.17×10-

2 
 

[A]=3.4, [ARE]=56.67 
 

3.60±0.22×103 
 

4.74±0.21×10-
2 

 

 

5.2.2.2 SNR and Comparative Study 

The experimentally observed signal-to-noise ratio or SNR for the dual slope SPR 

technique is about 18 dB compared to 28 dB of the step-response of Figure 5.4. The SNR 

was calculated as the ratio of the root-mean-square intensity of the fitted response over 

that of the recorded signal in the absence of any excitation. The SNR is improved when 

the measurement is performed over a longer period of time or averaged over many cycles 

because the standard deviation of random noise does not grow as much as the strength of 

the signal does. Therefore, for a shorter measurement period, the slope scheme yields a 

lower SNR. A figure of merit more useful for comparison is given by 

                                                        
meas

SNRFOM = 
T

                                                      (5.6) 

where Tmeas is the total measurement time. The ratio of FOMs for the slope versus the 

step response measurement is approximately 1.4 when using measurement periods of 30 

seconds and 5 minutes, respectively. This indicates that the FOM for the dual slope 
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methodology is slightly better than that of the conventional step response. This technique 

should therefore be utilized in situations where random noise is not a limiting factor for 

the measurement when one can trade speed with SNR or when the noise is not random. 

 

5.3 Discussion and Summary 

While a complete on-off cycle in conventional method takes about 250~300 seconds 

[5,10,11], the new dual slope technique requires only 30 seconds for one cycle. While the 

associative cycle takes only about 10 seconds, the saturation level prior to dissociation 

(17 seconds in our case) can be achieved even faster using a higher concentration, hence 

reducing the overall time to complete the two half reactions. Besides, rate estimation 

using equilibrium analysis [9,11] requires association phase going to equilibrium, hence 

consuming time and larger volumes of bio-samples. The dual-slop technique circumvents 

such drawbacks. It must, however, be noted that the rapid equilibration time also depends 

on the value of rate constants for a particular bimolecular binding system. In our case, the 

detection process can be achieved ~10 times faster without compromising the quality or 

accuracy of rate estimation. This technique of kinetic characterization can be adopted in 

the instance of all high-throughput experiments of analyte-ligand binding using SPR 

owing to its speed and accuracy.     
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CHAPTER 6 

 

METHOD 4: PLUG-TRAIN SPR  

 

6.1 Introduction and Theory 

In this chapter, we discuss the theory and implementation of a low consumption 

scheme called plug-train SPR using singulated plug approach. We start with background 

followed by the schematics of this method. Next we introduce a new strategy for 

hydrophobic modification of PDMS channel walls needed to implement such an 

approach. In the results section, we will test the plug-train technique using this SPR 

microchip. We next compare the results with those obtained from other schemes from 

previous chapters. Finally, we conclude the chapter with a discussion where we will look 

into the accuracy and viability of this method.  

 

6.1.1 Low Sample Consumption Scheme 

As discussed in section 1.4.1.2, another pitfall of SRM is the bio-sample consumption 

due to continuous flow conditions of sensing. In the case of SRM and also other schemes 

[1,2,3], a substantial volume of bio-samples ranging from a few microliters (µL) to a few 

milliliters (mL) are consumed in one experimental run, increasing the reagent costs as 

well. If the reagent switching technique can be manipulated to transfer optimal volume to 
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the sensing zone, the volume requirements of the experiment can be reduced manifold. 

This extends to conventional SRM as well where the precise volume and time of the 

bio-reaction can be controlled by the user. Smaller volumes of analyte (in the order of 

nano-liters) when passed over the sensing zone need a faster detection scheme to support 

such a scheme. Thus, the dual-slope method of kinetic characterization we have 

introduced in previous sections can also be used in a flow switching scheme where the 

volumes of reagents consumed in the reaction and the biosensing time is reduced.  In the 

following section, we present such a scheme of SPR detection.  

 

6.1.1.1 Droplet-Train SPR 

While continuous flow of sample is needed to eliminate transport limited reactions, in 

many of these cases, the sample consumption can be reduced by confinement of sample 

into droplets or plugs. Using short discrete solution plugs while employing conventional 

SRM for extracting reaction constants is potentially a fast and inexpensive technique for 

label-free high throughput analysis,  provided the speed of droplet transport is high 

enough to overcome diffusion-limited reaction. Recently, it was demonstrated [4-6] that 

by manipulation of the flow switching method, singulated drug plugs separated by an 

immiscible oil phase can be can be synthesized and transferred to surface immobilized 

cells for bio-reaction. Therefore, this suggests that a similar technique could be used to 

separate plugs while delivering different compounds to a SPR sensing surface. However, 

while cells might be compatible with oil, the nature of surface chemistry in our case of 

SPR sensing is delicate and might not be compatible. Besides, the ligand molecules are 

immobilized on a hydrophilic layer (monolayer or 3-D matrix) that is anchored to the 
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gold transducer surface. The presence of such a hydrophilic brush can be a source of 

inconsistent SPR sensorgram during the passage of plugs of separate phases. In addition, 

the physical effect of hydrophobic molecules on this brush is unknown.  

One way of circumventing this problem is the use of air as the inert gas phase for 

plug separation. Under switch flow conditions where discrete reactant droplets are 

isolated by air and transported to SPR sensing sites, we can meet the goal of reduction in 

sample consumption. The reaction kinetic constants can be extracted either by 

conventional SRM or dual-slope method. We call such a scheme a Droplet-Train SPR 

method. As we shall see later, the accuracy and viability of the scheme cannot be 

validated unless we look into the physical phenomenon at the sensor surface during SPR 

sensing and explain it from the findings of Jennissen et al. [7].   

 

6.1.2 Principles of Measurement  

     Figure 6.1 shows the basic principle of plug-train technique. Unlike other SPR 

schemes, solution samples are first loaded as discrete plugs separated by an immiscible 

inert phase. In our chip, we use an inert gas as the separating phase as the delicate 

chemistry of the functionalized SPR surface might be adversely affected by oil exposure. 

When these plugs are transported to the Au sensing functionalized spot, brief association 

and dissociation reactions occur for analyte and buffer plugs, respectively. The alternate 

air and solution plugs are transported sequentially over the gold spots to the output 

storage reservoir. As we shall see, these plug volumes range between 80-200 nano-liters 

(nL). Kinetic constants are then measured using conventional step response curve fitting 

of observed sensorgrams [8-10]. 
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Figure 6.1. Basic principle of plug-train SPR microchip scheme. The chip consists of two 

channel reservoirs where analyte and buffer are separated into plugs by an immiscible 

inert phase (air). Plugs are first loaded in the input reservoir followed by transport in the 

forward phase, where association and dissociation cycles are measured with all plugs 

ending at the output reservoir. 
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The use of air as the inert separation phase, however, requires additional 

considerations as compared to all other SPR microchips we have used so far. Since 

PDMS is gas permeable, an impermeable thin layer of a coat material that remains 

adhered to the walls permanently is necessary to prevent alternate air plugs from 

collapsing. It also requires being hydrophobic. Since air is hydrophobic, it prefers to stick 

to a hydrophobic surface. Therefore, the channel wall surfaces of the reaction flow cell 

has to be modified to make it permanently hydrophobic and impermeable so that alternate 

plugs of the reagents that are synthesized and flown are discrete and disconnected from 

each other. This is also because studies [7] have shown that a discretized plug system 

with alternate air bubbles or short air plugs retain a thin layer of solvent on an otherwise 

hydrophilic wall surface which can also be a potential source of collapse of air plugs and 

hinder discretization. Besides, discretization is also crucial from the standpoint of being 

able to control the volume of plug delivered eventually to the SPR sensor surface. We 

will use amorphous fluoropolymer Teflon (Teflon AF) resin as this coating material.  

In addition to above, the implementation of the chip requires preserving the bare gold 

spots from contamination of reagents, especially prior to the formation of hydrophilic 

PEG brush with an underlying small PEG molecule. This is primarily because the 

hydrophilic brush formation on the sensory gold surface is necessary for functionalization 

and also for avoiding spurious nonspecific signals from the gold surface. Since the 

sensory functionalization is carried out only after all other modification steps inside the 

microchip, the hydrophobic coating procedure of microchannels with Teflon AF needs to 

incorporate modification steps that protect the gold surface during the coating and then 

de-protect it when the coating is complete.  
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A plug-train of alternating plugs of Figure 6.1 is synthesized by simply opening the 

microfluidic valve that controls the flow through the channels from the reservoir source 

for a certain prechosen time period while keeping all other valves closed. A solvent plug 

(analyte or buffer) is introduced in the input channel in an alternating manner with air 

plugs. 

 

6.1.3 Schematics of Measurement  

Figure 6.2 shows the schematic of a plug-train SPR Microchip implementing a dual 

(sense + reference) chamber arrangement. Each of its chambers has four pressure driven 

load sources connected to buffer, analyte, regeneration, and a heterogeneous separation 

phase (air), respectively, and two outputs, all connected to flow channels. Flow of each of 

these solution sources is controlled by a set of microvalves. The chip microchannels are 

lined with functionalized SPR sensing and reference spots in order to record sensorgrams.  

Figure 6.3 shows a photograph of a plug-train microchip. This microchip is fabricated 

using a modified two-level PDMS technique [11-13]. In the next section, we will discuss 

how a methodology of protecting and then de-protecting the bare gold spots is employed 

during the hydrophobic modification of the walls of microchannels inside the fabricated 

chip prior to further surface modification procedures. 

 

6.1.4 Hydrophobic Modification of Microchannels  

In fabrication steps of Figure 2.1, Ti/W-Au spots are patterned on the glass substrate 

by conventional deposition, lithography, and etching; the photoresist S1813 covering the 

spots is not removed away by acetone and instead left as a protective layer. The Au- 
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Figure 6.2. Schematics of plug-based SPR chip. Valves O, B1 and B2, and A regulate air, 

buffer, and analyte plugs, respectively, while valves W1 and W2 control the transport of 

the plug-train system to the SPR sensing channel via input storage channel. 

 

 

 

 

 

 

 

 

 



109 
 

 

 

Figure 6.3. Photograph of fabricated SPR microchip. The chip measures 1.8 by 2.2 cm. 
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protected glass substrate is next bonded to a conventional two-level PDMS chip using an 

oxygen plasma step. It must be noted that the photoresist layer (~2.2 µm) on the gold 

spots is sufficiently high to avoid its etching and removal after the plasma etch step 

(oxygen plasma is performed for 20 seconds at an S1813 etch rate of ~200 nm/minute). 

Next, the microchannel walls are coated with a fluorination agent (Teflon-AF) that 

renders the channel walls permanently hydrophobic (θ ~ 108o). A Teflon-AF (6% resin 

by weight dissolved in fluorinert solvent FC-40 with glass transition temperature Tg = 

160 0C) solution and Fluorinert (FC-3283) dissolving solvent were purchased from 

DuPontTM and 3M FluorinertTM, respectively. A solution of 0.2 % Teflon-AF by volume 

in FC-3283 solvent is first prepared and flown inside the microchannel for 1 minute 

followed by removal of excess fluorinating solvent using pressure of 20 PSI. The chip is 

then baked at 950 C for 12 hours to complete the hydrophobic coating. The Au protective 

resist is next removed by acetone exposure, rinsing, and subsequent HCL cleaning. This 

is followed by the SPR sensing and reference spot functionalization, as discussed in 

surface modifications steps of section 2.1.1.4. The flow process of Figure 6.4 shows the 

Teflon coating steps of this microchip. 

  

6.2 Testing of Plug-Train SPR 

6.2.1 Experiments 

The SPR chip of Figure 6.3 is mounted onto a cell and coupled to the prism using 

refractive index matching fluid. Post microfluidic connections to flow channels and 

valves, the valve control lines are filled with water due to displace the air with water in 

the valves due to gas permeable properties of PDMS. Phosphate-buffered saline (PBS, 
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Figure 6.4. Fabrication process for coating of Teflon AF of a two-level PDMS SPR 

microchip. The gold spots are protected during the coating followed by release of the 

protective photoresist layer for further functionalization steps. 
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5mM sodium phosphate, pH 7.4) was used as buffer. The valves that control the air 

source are actuated by pressure of 9 PSI while the analyte (CA II) and buffer (PBS) are 

both pressurized by 10 PSI. The CA II samples were prepared using the procedures 

discussed in previous chapters. First, dry CA II powder was dissolved in the running 

buffer solution. Next, we measure the actual concentration in solution using a 

Spectrophotometer at a wavelength of 280 nm. The protein concentration (C) is then 

given by the relation C (mole/L) = A280/(a280∙b) , where A280 is the value of absorbance at 

280 nm and b is optical path length (1 cm for the given photometer).  

The sampling rate was kept constant at ~5.6 Hz for all the runs. Wasabi camera 

control software integrated with the Hamamatsu EMCCD camera was used for analyzing 

the collected data. The mean intensity I(t) of the sensing and reference gold spots (900 

pixels) for all the frames were extracted using this software followed by its Fourier 

transform analysis in MATLAB. The channels were flushed with regeneration solution 

(0.1% SDS in running buffer) between the runs.  

 

 6.2.2 Results 

The kinetic constants ka and kd for this analyte-ligand pair were obtained by using the 

conventional exponential curve fitting procedure of SRM. In all the data sets, there exists 

fixed imager intensity Ioffset for all the imaging gold spots. This is first recorded at the 

beginning of the experiment and later on substracted from the measured signals to bring 

the baseline of the extracted signal to zero. The signal from the reference spots (Iref) is 

then substracted from that of the sensor spots (Isensor) to obtain reference and sensor 

signals for further processing. The reference-sensor spot pairs are approximately at the 
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same distance downstream from the either modulators and substraction of their signals 

ensures elimination of the signal component from bulk response of analyte. The corrected 

time-domain responses from the experiments then follow the simple relation I(t) = I0·s(t) 

where I0 is the proportionality factor, s(t) being the test signal in analyte.  

 

6.2.2.1 Viability of Plug-Train Method 

In this chip, we first tested the feasibility of the hypothesized plug-train measurement 

method. Fluorescent solvent plugs with alternating air plugs were first synthesized in the 

chip (without SPR gold spots) which was then transported to the actual SPR sensing zone 

and their fluorescent intensity signal is recorded in real-time. Figure 6.5 shows an 

example plug train where discrete solvent plugs of fluorescent solution (Fluorescein in 

PBS buffer) with alternating air plugs are transported through microchannels by a driving 

pressure source. This plug system is then plotted in real-time as illustrated by the 

fluorescent intensity plot of Figure 6.6. Droplets have an approximate volume of ~110 

nanoliters and plug duration of 2 seconds at a source pressure of 10 PSI (for both solvent 

and air plugs). While solvent plugs of duration 1 second have an observed volume of 52  

3 nanoliters, shorter plugs have reduced reproducibility and higher standard deviation. 

The upper limit of plug volume is, however, determined by the maximum volume 

permissible in the input storage channels of this fabricated devise. The total volume of 

the fluidic channel system in this storage chamber is about 730 nanoliters.  Generally 

speaking, optimal parameters for the devise of given dimensions and measurement 

technique is an input plug ranging from 400~600 nanoliters at flow rate of 10 PSI or 

higher. The air plugs can range from 2~4 seconds depending on the number of analytes 
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Figure 6.5. Snapshots of alternating solvent plugs in green (P1-4 in sequence from point of 

injection) and air plugs (dark regions between solvent plugs) transported inside the chip 

(flow direction from left to right in input channel via sensing zone to the output channel 

downwards). The images are obtained from a fluorescent microscope.  
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Figure 6.6. Recorded fluorescence intensity plot from a spot of 900 pixels in the sensing 

zone of the chip. Plugs of two different concentrations (C0 and 2C0) of fluorescein 

alternated by air plugs are flown at constant pressure of 10 PSI and average flow velocity 

V. 
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and total input chamber volume. 

 

6.2.2.2 Kinetic Characterization  

     Next, we tested the characterization of the biochemical reaction using functionalized 

sensor and passivated reference gold spots in a SPR chip. Analyte concentrations of 1.2, 

3.1, and 4.6 µM were used for the analyte plugs in separate plug-train experiments. PBS 

buffer was chosen for the buffer plugs. Figure 6.7 (right) shows a time-domain SPR 

sensorgram obtained from the sense and reference gold spots for a flow of alternating 

analyte and buffer plugs (solvent plugs have a volume of ~480 nanoliters) separated by 

an air plug at a flow pressure of 15 PSI. Table 6.1 shows a comparison of the kinetic 

constant value obtained by all these reported SPR characterization techniques. While 

these estimation values vary for different sensing surfaces, we compare the kinetic 

constants from different techniques for same protocol of gold functionalization. 

 

6.3 Discussion 

While one can argue that PDMS is hydrophobic and might not require any further 

modification, the use of PEG reagents in SPR functionalization steps has been observed 

to reduce the wetting angle. This is probably due to the physical adsorption of 

hydrophilic thiol-terminated PEGs on PDMS surface. In the case of chips without Teflon 

modification, the air plugs sandwiched between two solvent plugs can diminish in 

volume as the combined plug system is driven by pressure through the channels to the 

point where the two solvent plugs can coalesce and move together as a combined plug.  

This is primarily due to gas permeable properties of PDMS. As Figures 6.6 and 6.7 
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Figure 6.7. Image of the sensing zone in activated surface plasmon mode (left); the two 

separate channels are dedicated to sensing and control spots which are placed in 

proximity of each other [2] (left), and time-domain plug-based SPR sensorgram extracted 

from the analysis of sequence of images like one to the left (right). Two cycles of 

alternating analyte and buffer plugs (8 s) with an air plug in between (3 s) are synthesized 

and transported. Corresponding association and dissociation for the CAII-ABS 

biochemical interaction system are recorded from a gold spot for analyte concentaruion 

of 3.1 µM. The final referenced data set has been baselined to 300 for the figure. 
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Table 6.1 Comparison of Rate Constants of Different SPR schemes  

 

indicate, however, notable or inconsistent volume reduction of air plugs do not occur 

throughout the transport process in the modified devices. Since air is hydrophobic, it has 

a stronger affinity for more hydrophobic surfaces and hence, this Teflon coat on PDMS 

might therefore aid in withholding discretization requirements while transporting plugs.  

Figure 6.7 shows another interesting observation. Since air (R.I. = 1) has much less 

R.I. than buffer (R.I. = 1.33), the SPR signal intensity for air plugs must be less than that 

of buffer and correspond to the baseline value instead of the peak value in the real-time 

sensorgram [15]. As observed, a quantifiable SPR value within the dynamic range of our 

 
TECHNIQUE 

 
ANALYTE 

CONCENTRATION 
(µM) 

 
KINETIC  
ON-RATE 
kon  (M-1s-1) 

 
KINETIC  

OFF-RATE 
koff  (s-1) 

 
Conventional 
SRM [2,14] 

 
1.63 

 
4.75×103 

 
4.81×10-2 

 
3.4 

 
8.6×103 

 
4.76×10-2 

 
Multisine  

Method [3] 
 

 
5.2, 10.4 and 15.6 

 
9.5×103 

(Average value) 

 
6.2×10-2 

(Average 
value) 

 
Dual-Slope 
Method [2] 

 
[A ; ARE] = [1.63 ; 

54.4] 

 
3.66×103 

 
4.83×10-2 

 
[A ; ARE] = [3.4 ; 

56.67] 

 
3.60×103 

 
4.74×10-2 

 
Plug-Train 
Method[17] 

 
  1.2 

 
8.33×103 

 
4.58×10-2 

 
3.1 

 
7.83×103 

 
4.13×10-2 

 
4.6 

 
9.08×103 

 
5.36×10-2 
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EMCCD capture device leads us to believe that due to unconventionally high R.I. change 

from buffer to air and vice versa, the SPR resonance conditions undergo a reduction of 

angle of resonance (θr) in a manner that the SPR signal around buffer conditions (on the 

left of initial resonance dip curve at a fixed θr of our SPR imaging system) changes for air 

plugs and now corresponds to the intensity from the right side of the shifted resonance 

curve.  

Finally, in order to validate the feasibility of such a singulated plug approach, we 

need to account for the effect it has on the observed kinetics of the bio-reaction. Although 

continuous flow conditions with a flow velocity (V of Figure 6.6) higher than a threshold 

value [14,16] ensures that the reaction involving the macromolecule is not diffusion 

limited, a switched flow condition incorporated with air plugs might affect this mass 

transport and alter the reaction kinetics. As mentioned earlier, Jennissen et al. [7] 

demonstrated that for a flow of air bubbles alternating with solvent plugs, a stationary or 

slow-moving nanofilm of liquid (~200 nm thickness from the wall boundary) is retained 

on a hydrophilic sensing surface. This liquid film is metastable and the analyte 

replenishment occurs through “vortex flow” mechanism upholding the exponential 

kinetics. Such flow mechanism rather improves the mass transport rate by drastically 

reducing the Nernst diffusion layer thickness and eliminating the mass transport 

limitations of the bio-reaction [7]. Since our sensing gold surface bears a highly 

hydrophilic dense brush of PEG, it must retain such a solvent nanofilm that upholds the 

bio-reaction kinetics during plug-train transportation. The SPR intensity for air plugs of 

Figure 6.7 is then a combined effect of this nanofilm and the overlying layer of air for 

another ~100 nm [15]. 
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6.4 Summary 

We demonstrated a novel droplet-based SPR sensing inside a microchip. In this chip, 

solution plugs of few hundred nanoliters or less can be synthesized and singulated by an 

inert, immiscible gas phase to form a short solvent stream in place of a long continuous 

one. The device is well-suited for multi-analyte and high throughput drug screening 

systems where the sample consumption and reagent cost are important. Using plug-train 

SPR method, one can characterize an SPR bio-reaction with acceptable accuracy and 

manifold reduction of bio-sample volumes as compared to the conventional. It also 

eliminates the effects of dispersive mixing that might be a source of error in parameter 

estimation. On a concluding note, the numerical technique for the conventional SPR bio-

sensing used in this characterization analysis is based on method of least squares [18] 

which has been reported to be less reproducible [2,18]. While in this work we introduce 

the concept of droplet-based SPR characterization, more accurate and reproducible 

measurements would require SPR microchips that are tailored for more complex dual-

slope type SPR measurement method. 
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CHAPTER 7 

 

CONCLUSION 

 

As we arrive at the conclusive phase of this research work, we realize that the signal 

processing methods, their conceptualization, and implementation were eventually aimed 

at improving methods of kinetic characterization for what we broadly identify as 

macromolecular interactions of biological interest and otherwise. To give this research 

work a structure and basis, we have broken down the implementation strategy into 

several but discrete modules; SPR instrumentation, microfabrication technology for SPR 

biochips, and the bridging bio-chemistry and associated surface modification methods 

being the most important ones. While we have had a comprehensive discussion to each 

individual scheme and methodology in previous chapters, in this chapter, we will look 

beyond this work and try and conclude their ramifications on a broader scale and its 

future scope.  

First, we discuss a critical aspect of all the experiments conducted for various SPR 

methods, the observed kinetic constants. Since the biochemical functionalization steps 

that have enabled the subsequent characterization of binding kinetics are the same 

irrespective of SPR measurement method, we need to analyze the effects of mass-

transport, the diffusive versus convective considerations, and the possible influence of 

lateral interactions during the binding events on the sensor surface. This would give us a 
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good idea of whether the measured constants are reflective of true kinetics. 

 

7.1 Observed Kinetic Rate Constants 

7.1.1 Continuous Flow 

The two SLFT-SPR methods and the Dual-slope SPR methods fall in the category of 

continuous flow systems with a finite flow velocity through rectangular channels under 

the application of a finite flow pressure. In this section, we calculate the depletion zone 

and compare the diffusive versus convective fluxes to give us an estimate of whether our 

binding kinetics is mass-transport or reaction limited. Let us first have a look into the 

diffusion boundary layer. 

 

7.1.1.1 Diffusive Depletion Layer δ 

Typically in sensors, the target molecules (protein CA-II in our case) with a finite 

coefficient of diffusion D diffuse through the solution and reach the sensor surface. As a 

result, a depleted zone is formed with a thickness given by 

                                                             δ(t) = D t                                                       (7.1) 

where δ(t) is time-dependent length of the depletion layer over the sensor surface that 

grows radially and indefinitely spanning the channel dimensions [1]. As this layer grows, 

diffusive flux of target molecules gets slower, impeding its collection by sensor. 

Convection, where the target molecules are moving with the flow velocity of the solution, 

somewhat stops this δ(t) from growing indefinitely by providing a steady flux of target 

molecules due to convection. As a result, a steady state depletion layer δs is formed. A 

ratio of the diffusive to the convective time, also denoted by Peclet number PeH 
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(references [25-27] of original reference [1]), gives us an idea of the mass-transport 

regime the sensor is operating in. PeH is given by the relation 

                                                  H
Diffusive Time QPe =  = 

Convective Time D W
                                 (7.2) 

where Q is the flow rate of the target molecules (Q = u.W.H) and u, W, and H are flow 

velocity, microchannel width, and height, respectively. For PeH << 1, diffusive flux 

trumps the convective flux, resulting in a diffusion-limited reaction with the depletion 

zone propagating indefinitely. Whereas for PeH >> 1, we have a steady state depletion 

layer δs, where the target molecules within this layer are captured by the sensor while the 

rest are swept away by convection [1]. In the case of our microsensor, the values of u, W, 

H, and D are 0.1 m/s, 200 μm, 20 μm, and 1 x 10-10 m2/s, respectively, giving us PeH 

value of 2 x 104. This number is sufficiently large to ensure that we are not operating in a 

diffusion-limited regime of mass transport. With the above values, we can also estimate 

the length of our δs to approximately be around 1.6 μm, sufficiently less than the sensor 

length of 200 μm. 

 

7.1.1.2 Reaction Rates and the Surface 

A steady state depletion layer alone does not nullify the effects of mass-transport 

especially through the boundary layer to the surface or its bearing on the observed rate 

constants. We also need to analyze whether our kinetics is indeed reaction-limited or 

mass-transport limited by considering the concentration of target molecules c0 and 

surface density of immobilized ligand bm. Let us first define the kinetic rates. Assuming 

first-order Langmuir kinetics, the equilibrium dissociation constant KD is given by the 

relation 
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                                                               off
D

on

kK  = 
k

                                                       (7.3) 

where kon and koff are first-order observed kinetic on and off rates, respectively. For 

concentrated solutions (c0 >> KD), sensor surface is saturated by the target whereas c0 ≤ 

KD implies only a fraction of immobilized ligands are target bound. We have used 

concentrations of the target protein ranging in μΜ with observed KD ~ 10-5 M. Hence, we 

have a situation where only a fraction of surface receptors capture the target and we need 

to look further into the reactive flux at the surface to find whether these observed values 

are indicative of true kinetics.  

     Given the dense brush of functionalization-group-bearing PEG molecules that is 

grafted on the sensor surface for ligand immobilization [2] and consistent with values 

reported by authors [1,3], the surface density of ligands (bm) in our case is assumed to be 

1015 molecules/m2 or more. The mass-transport flux within the depletion layer is given by  

                                                o s S
D

s

D (c - c ) L WJ  ~ 
δ

                                                    (7.4) 

where cs, Ws, and L are surface concentration of target, sensor width, and length, 

respectively, and the initial reactive flux is given by 

                                                 R on s m SJ  ~ k c b L W                                                      (7.5) 

For our case where PeS ~ L/ δs >> 1 [1], a ratio of the two fluxes is given by an expression 

called Damkohler number  

                                                      on s m
a

k δ bD  = 
D
                                                        (7.6) 

For our system where the kinetic on-rate is in the order on 103, this value turns out to be 

in the order of 10-3. This means that Da << 1 which according to authors [1,3]  implies 
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that our kinetics is indeed reaction-limited. In other words, the observed kinetics is also 

the true kinetics. However, since the initial reactive flux is proportional to the 

concentration (cs ~ co), the on-rate tends to decrease with increase in time periods of 

reaction as compared to a less dense surface coverage of ligands [3]. This is primarily 

attributed to the effects of lateral interactions [3] between closely packed target molecules 

on surface which are subject to effects of steric hindrance and complications involving 

binding, unbinding, and then rebinding of target molecules to adjacent ligands. This 

might also be the reason why in the case of dual-slope SPR measurement (conducted for 

10 times or more shorter periods), we have more accurate measurements, particularly for 

the on-rates. 

     While our measured values of on-rate are indeed in the same order with those 

measured previously [3], the off-rates are an order higher that the same report. While this 

can be attributed to a different chain length of both the presenting PEG molecule and the 

para-substituted group of the benzenesulfonamide ligand used, the value of the on-rate 

still being in the same order indicates that our surface density of ligands might be very 

high to induce repeated and rapid binding and unbinding and other more complex 

phenomenon that is happening on the surface. Therefore, the fact that the binding is 

reaction-limited (as indicated by calculations) is not entirely true as there are other effects 

that supplement the true kinetics. Generally speaking, the secondary reactions rates due to 

conformational changes of the protein on the sensor surface  has also been left out of our 

assumption and derivation of rate constants, which further complicates the process of 

linking the observed rate estimation to the true kinetic measurements. 
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7.1.2 Singulated Plug Flow 

In this kind of fluid flow inside the sensor cell, we have a situation where the target 

bearing and plain buffer solutions are separated and discretized by an immiscible air 

phase. These two solutions are alternated and transported over our SPR sensor surface 

yielding corresponding association and dissociation sensorgrams. The rate constants are 

then extracted from exponential fitting with the assumption of first-order Langmuir 

kinetics. While the flow velocity of plugs is in the same range as our previous 

experiments and measurements, from the above calculations, our reaction is not mass-

tranport limited (through the diffusion layer) and the observed kinetics are expected to be 

the similar. Although the measured rate constants tell us a similar story as well, we would 

like to have a look at the diffusion layer from the perspective of Jennissen et al. [4].  

The boundary layer which has been calculated to be around 1.6 μm for our previous 

cases now correspond to about 200~300 nm which reduces the effects of mass-tranport 

even further. This liquid nanofilm which is metastable replenishes the target molecules 

onto the surface by what has been described as a ‘vortex flow’ [4]. This kind of effect 

results in virtual absence of target depletion. The exponential kinetics persists for a time 

longer that the passage of air bubbles.  

Since, in our case, the air bubble passes for a time shorter than both the fluid flow 

(both association and dissociation phases) and the assumed persistence time of 20~50 s 

[4], this might explain the higher spread in the kinetic off-rate values for the three 

different concentrations (see Table 6.1) as compared to the conventional SRM method 

used in all the exponentially fitted measurements. A plausible reason is that the kinetics is 

persisting beyond our assumed experimental times of only the association and 
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dissociation flow phases. The anomalies that arise from the noninclusion of the air bubble 

flow times in exponential fitting and rate-estimation steps in our opinion somewhat 

makes the measured values less consistent and accurate.  

   

7.2 Conclusive Remarks and Future Scope 

7.2.1 Frequency Domain Signal-Locking SPR Schemes 

The prime goal of introducing signal processing schemes that utilize frequency 

domain analysis was to introduce signal-to-noise (SNR) higher than the conventional 

step-response method (SRM). Frequency domain schemes were separated into large- and 

small-signal SLFT-SPR analysis and the improvements and drawbacks offered by the 

schemes have been discussed in detail in Chapters 3 and 4, respectively. In the following 

subsections, we will discuss the schemes and their improvements briefly. The benefits 

they might offer to related but dissimilar biosensing applications are also mentioned.  

 

7.2.1.1 Large-Signal SLFT-SPR: Spectral Sweeping 

    While this scheme has been demonstrated to offer a 78% (100-fold) improvement in 

SNR compared to conventional SRM, it comes at the expense of 24-fold longer detection 

time. A 100-fold improvement, however, points to the fact that detection resolution has 

increased, offering a potential solution to more fine bio-molecular interactions. 

Nevertheless, these frequency-domain studies have utilized microfluidic channel 

dedicated to reference and unreferenced SPR sensing units enabled by the advancements 

in microfabrication technology.  Hence, our implementation starategies are cleaner and 

more immune to dispersion issues that are common to the commercial SPR flow-cells 
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otherwise. The SLFT schemes and the SPR technology itself are universal and therefore 

applicable to bio-interactions that involves all other class of bio-molecules and clinically 

relevant analytes.   

 

7.2.1.2 Small-Signal SLFT-SPR: Multisine 
 
    Following the drawbacks of large signal sweeping scheme, efforts were made to 

improve the detection time of frequency domain schemes. The multisine scheme offered 

similar detection times while improving SNR by approximately 28%. The trade-off 

though comes in the form of complexity. It is interesting to note that for clinically critical 

interactions where complexity is less relevant, small-signal SLFT-SPR is the signal 

processing scheme of choice for kinetic characterization of bio-molecular interactions.  

There is, however, another interesting thing to note. The multisine chip uses multi-

plug-modulator (MPM) units that synthesize an analog concentration signal from a binary 

digital one. For physiological chemical signals that have their own characteristic 

waveforms, e.g., β–cell intracellular cytosolic Ca2+ oscillations, SPR chips using such 

MPMs can also find use in a viable and label-free study of such unique biological signals 

and corresponding cellular responses.     

 

7.2.2 Other Schemes 

We will lump the Dual-slope and Plug-Train SPR schemes in this section and discuss 

the drawbacks of conventional SRM they have aimed and addressed. In following 

individual subsections, we will talk about their implications and future scope. 
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7.2.2.1 Dual-slope SPR 

This measurement scheme was aimed at improving the detection and characterization 

time of a bio-chemical interaction. The acquired data from testing the concept of dual-

slope schematics showed a 10-fold faster method that is also more accurate than SRM. 

Although the SNR dropped by 35% for the method, the figure-of-merit (see Chapter 5) 

showed a 40% improvement. For interactions where time rather than SNR is of priority, 

like high-throughput screening, this is a method that is potentially implementable at a 

larger scale for screening and characterizing without compromising accuracy.  

 

7.2.2.2 Plug-train SPR 

Plug-train SPR scheme was introduced with the aim of reducing the bio-sample 

consumption in interaction and characterization studies from the order of µL and mL to 

the order of nL. The tailored SPR microchip could separate and discretize sample plugs 

into droplets and transport them though the microchannels without dispersion between 

adjacent plugs.  This scheme is the first of its kind in label-free studies. While the goal is 

kinetic characterization of a protein-small molecule pair, it can be employed for droplet 

based cellular and other biological studies as well. 
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APPENDIX  

 

DERIVATION OF AMPLITUDES OF COMPLEX FOURIER SERIES 

 

     We determine the first components of the complex Fourier series of Equation (3.8) for 

two limiting conditions as T∞ (ω0) and T0 (ω∞) while replacing the 

exponentials with simplified first term expansions.  When T0, the exponential solution 

becomes a plain square wave of frequency fφ with corresponding first (or fundamental) 

complex Fourier series coefficients  

                          

T/2 T/22πt 2πt-j +j
T T

1 -1
0 0

1 a 1 aC = a e dt=-j , C = a e dt =+j
T π T π

   
                               (1) 

The first component of the complex Fourier series as T∞ is 

                  

2πt 2πtj -j
T T

1 1
ja ja 2a 2πt 2πtc (t)=- e + e = sin =c sin
π π π T T

    
   

                  (2)  

The amplitude c1
α = 2a/π of the sinusoidal component will be used later on to find the 

magnitude of the transfer function. For the case when T0, the complex Fourier 

coefficients at the fundamental are 

    

 1 11
2

1

1 2 1 2

-β -βT/2 T2πt T 2πt-β +j -α (t- ) +j-α t0 T 2 T
-1 -(β +β -(β +β

0 T/2

1-e e1 1-e 1C = a 1- e e dt+ a 1- e e dt
T 1-e ) T 1-e )

    
               

 
   (3) 
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 1 11
2

1

1 2 1 2

-β -βT/2 T2πt T 2πt-β -j -α (t- ) -j-α t0 T 2 T
1 -(β +β -(β +β

0 T/2

1-e e1 1-e 1C = a 1- e e dt+ a 1- ×e e dt
T 1-e ) T 1-e )

    
              

 
     (4) 

Taking the limit of Equations (3) and (4) as T0, we obtain  

                                                       0 0 1 2
-1 1 2

1 2

α α aTC =C =-
(α +α )π

                                                  (5) 

and the fundamental component of the complex Fourier series is 

      
2πt 2πtj -j0 01 2 1 2 1 2T T

1 12 2 2
1 2 1 2 1 2

α α aT α α aT 2α α aT 2πt 2πtc (t)=- e - e =- cos =c cos
(α +α )π (α +α )π (α +α )π T T

   
     

   
         (6) 

Therefore, the cosine amplitude at the fundamental is 

                                                         

0 1 2
1 2

1 2

2α α aTc =-
(α +α )π                                                        (7)
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