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ABSTRACT

This paper proposes a probabilistic-based method to produce liquefaction-induced
ground failure maps so that hazard levels can be assessed for a large area, such as a
county, township, or quadrangle. The method focuses on using probabilistic approaches
to map estimates of liquefaction-induced lateral spread displacement, and defining the
uncertainty associated with the displacement estimates. The proposed mapping method
uses a newly developed empirical model for estimating quantities of lateral spread
displacement, current probabilistic liquefaction triggering analyses, probabilistic strong
ground motion estimates, surficial geologic maps, digital elevation models, and
geotechnical data compiled into a spatial database. The proposed method accounts for
variations in soil conditions, age, topography, spatial distribution, and major sources of
uncertainty. Such major uncertainties include variability over space, lack of or poor
quality data, and limitations of the empirical models to estimate liquefaction phenomena.
The proposed mapping method accounts for these uncertainties by Monte Carlo random
sampling.

Soil type and thickness are important factors in estimating horizontal
displacement from lateral spread. Thus, this paper presents a new empirical model for
estimating the amount of lateral spread displacement based on these factors, along with

other factors such as earthquake magnitude, distance to the seismic source, and



topography. In addition, the paper discusses how cone penetration test (CPT) data can be
used in conjunction with the proposed empirical model to estimate the amount of lateral
spread displacement.

To test its suitability and provide an example, the proposed mapping method is
implemented to produce probabilistic liquefaction triggering and lateral spread
displacement maps for a study area in Weber County, Utah. The new maps indicate
substantial risk for liquefaction-induced ground failure in the study area during large-
magnitude seismic events. This is because the study area is filled with potentially
liquefiable sediments, nearly all subsurface explorations encountered shallow
groundwater, and the study area is near the seismically active Wasatch fault zone. Large
uncertainties in the mapped estimates leads to producing maps for 16th, 50th, and 84th

percentile probabilities—enabling estimation of a distribution of probabilities.
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CHAPTER 1

INTRODUCTION

Research Project Background

Liquefaction-induced ground failure can cause significant damage to
infrastructure and other facilities during major earthquakes. Ground displacements
ranging from a few tenths ofa meter to several meters are common in liquefaction prone
areas (Bartlett and Youd 1992). Ground failures from most-recent earthquakes in Japan
and New Zealand raise questions about our ability to assess, delineate and quantify the
hazard in vulnerable locations. The best defense against such damage is to first, identify
areas prone to liquefaction-induced ground failure; then, establish planning, development,
and engineering strategies to mitigate the hazard. The purpose of this research is to
develop a method to produce liquefaction-induced ground failure maps so that hazard
levels can be assessed for a large area (i.e., county, township, quadrangle, etc.). The
research focuses on: (1) using probabilistic methods to map estimates of lateral spread
displacement potential for a large study area; and, (2) estimate the uncertainty associated
with the displacement estimates. The intent is to develop a mapping method that is
applicable to all areas in the United States with significant risk of damage from

liquefaction.



To test its suitability and provide an example, the mapping method is
implemented to produce new probabilistic liquefaction hazard maps for the urban area
(i.e., Wasatch Front) of Weber County, Utah. Unfortunately, many locales along the
Wasatch Front have considerable liquefaction hazard due to the common presence of
loose, saturated, cohesionless soils and the proximity to sources of significant seismic
shaking, such as the Wasatch fault zone. Harty and Lowe (2003) identified numerous
prehistoric liquefaction-induced flow failures and lateral spreads along the Wasatch
Front. Because of the relatively high potential of liquefaction damage, previous
researchers have mapped areas susceptible to liquefaction in the urban areas of Utah.

Mapping of liquefaction hazards for urban areas located along the Wasatch Front
began in the 1980s when Utah State University received a National Earthquake Hazards
Reduction Program (NEHRP) grant to assess Davis County (Anderson and Keaton 1982;
Anderson et al. 1994). Their mapping techniques were further developed and extended to
map liquefaction hazards in eleven additional counties in northern and central Utah,
including Weber County (e.g., Anderson et al. 1994b).

However, since the production of the Anderson et al. maps, there have been
several advancements that warrant the development of new maps. Such advancements
include: (1) progress in probabilistic liquefaction triggering and lateral spread analyses
(e.g., Cetin et al. 2004, Moss et al. 2006, Bartlett et al. 2005, Bartlett et al. 2010b); (2)
updated probabilistic strong ground motion estimates via the USGS National Seismic
Hazard Mapping Project (Peterson et al. 2008); (3) larger amounts of quality geotechnical
data due to recent development; (4) support over the past two decades by the National

Cooperative Geologic Mapping Program to federal, state, and university partners to



3
produce digital surficial geologic maps; and, (5) widespread adoption and use of
Geographic Information Systems (GIS) to store and analyze spatial databases.

In 2003, members from government, academia, and industry with expertise in
liquefaction mapping formed the Utah Liquefaction Advisory Group (ULAG). This
group seeks to guide future mapping efforts, establish a consensus on technical
approaches and needs, and form partnerships with private and government entities to
accomplish goals. Since its inception, this group has developed mapping methods and
produced new liquefaction hazard maps for Salt Lake County (Bartlett et al. 2005;
2010a,b). Their mapping method for Salt Lake County is based on a relatively extensive
database of compiled geotechnical investigations, including: Standard Penetration Tests
(SPT), Cone Penetrometer Tests (CPT), Shear Wave Velocity (Vs measurements, and
other measures of soil properties (i.e., soil classification, fines content, mean grain size,
etc.). From this subsurface database, members of ULAG employed the Youd et al.
(2002) empirical model to estimate lateral spread displacement at each borehole location.
Using mapped surficial geology as constraints, they then generalized these point
estimates to produce liquefaction hazard maps for Salt Lake County.

However, there are less developments and geotechnical data in other areas in Utah
vulnerable to liquefaction damage (i.e., Weber, Utah, Davis, and Box Elder County). To
extend the mapping program to these areas, the method must be modified significantly.
The primary issues to address are: (1) how to estimate liquefaction-induced ground
failure hazards for geologic units that lack or have little geotechnical data; and, (2) how

to quantify the uncertainty in the estimates given varying levels of data quality and



4
statistical support within the mapped domain. These issues must be successfully resolved

in order to develop a defensible and reliable mapping methodology.

Organization of the Dissertation

This dissertation consists of three journal quality papers that I intend to submit for
publication within scholarly engineering journals. Each of these papers represents a
separate chapter within this dissertation; specifically, Chapters 3, 4, and 5. Additional
information that did not fit in these papers is in the appendices.

Chapter 2 contains a literature review and evaluation of several existing
approaches to predict liquefaction-induced ground failures. The chapter also includes a
briefreview of previous efforts to map liquefaction hazards in urban areas of Utah.

Chapter 3 discusses significant revisions to the Youd et al. (2002) empirical
model for predicting liquefaction-induced lateral spread displacements. These revisions
make the empirical model more parsimonious and implementable for regional hazard
analysis while preserving much of its original predictive power. The chapter also
provides guidance on how to use data from the Cone Penetration Test (CPT) to predict
lateral spread displacements.

Chapter 4 proposes a reliability-based method to map estimates of the probability
of liquefaction triggering and lateral spread displacement exceeding specified thresholds
for a scenario earthquake. The method uses the revised empirical model discussed in
Chapter 3, and accounts for major sources of uncertainty in the mapped estimates using

Monte Carlo random sampling.
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After implementing the mapping method proposed in Chapter 4, Chapter 5
presents probabilistic liquefaction-induced ground failure maps for the Wasatch Front of
Weber County, Utah. Chapter 5 also describes how to define the uncertainties in the
mapped probabilities.

Chapter 6 contains a discussion of the conclusions and major findings of this
research.

Finally, the appendices contain an explanation of the structure of the geotechnical
database for the mapping project, histograms of geotechnical data for several geologic
units in the study area, additional probabilistic liquefaction-induced ground failure maps
for Weber County, and Matlab® computer programming code for reducing raw data and

performing numerous calculations.
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CHAPTER 2

REVIEW OF EXISTING METHODS TO PREDICT
LIQUEFACTION-INDUCED

GROUND FAILURES

Abstract

Liquefaction-induced ground failures can cause severe and costly damage to the
built-up environment. Hence, numerous researchers have developed techniques to
predict and map the potential severity of ground failures induced by liquefaction during
earthquakes. Such techniques are based on geologic setting, topographic conditions,
seismic hazards, the thickness of potentially liquefiable soils, and/or geotechnical data.
Because the mechanisms that produce liquefaction-induced ground failures are complex,
approaches to predict ground failures are often based on empirical or semiempirical
approaches. This paper reviews and evaluates many of the popular approaches used by
researchers. In addition, this paper discusses previous efforts in Utah to map potential
liquefaction-induced ground failure hazards during large seismic events. Based on this
literature review, there is a need to develop a new method to map predictions of
liquefaction-induced lateral spread displacements during earthquakes, and estimate the

uncertainty of these predictions.



Introduction

Soil liquefaction occurs when saturated soil loses significant shear resistance due
to cyclic loads generated usually by major earthquakes. The phenomenon is most
commonly observed in saturated, loosely deposited, poorly-cemented, and young, sandy
soils. Such loose, sandy soils tend to compress or densify under loading. If the soil is
saturated with water, increased pore water pressures are generated as the soil attempts to
reach a denser state. When large loads are rapidly applied or repeated many times, the
excess pore water pressure in the soil does not have sufficient time to dissipate. Such
undrained conditions result in a decrease in the effective stresses of the soil, causing the
soil to lose shear resistance and behave more like a liquid.

Upon liquefaction, sediments undergo various types of ground deformation that
can be very damaging. On relatively flat ground, structures atop the liquefied layer may
tip or settle due to loss of bearing strength. In addition, blocks of mostly intact, surficial
soil above the liquefied layer of sediment may collide and jostle during ground
oscillations (NRC 1985). On gentle slopes (typically ground slopes between 0.3 to 5%),
these blocks of soil may displace down slope or towards a free-face (i.e., channel or
abrupt depression), along a shear zone formed by liquefaction (Bartlett and Youd 1992).
Such displacements are called lateral spreads, which may tear or compress foundations,
and shear utility lines. On steeper slopes, catastrophic flow failures may occur where
tens of kilometers of blocks of surficial sediment can travel tens of meters (Youd 1984).
The eruption of sand and water onto the ground surface (sand boils or blows) may

accompany all of these ground failures during liquefaction.
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Because of the potential for severe and costly damage to infrastructure and other
facilities due to liquefaction, numerous researchers have developed approaches to predict
liquefaction-induced ground failures. Such predictions are most commonly mapped in
regions prone to major earthquakes. This paper reviews and evaluates many of the
popular approaches to predict liquefaction-induced ground failure hazards.

Many of the urban areas in Utah (i.e.,, the Wasatch Front) are filled with
potentially liquefiable sediments and are prone to large-magnitude seismic hazards.
Hence, researchers have produced liquefaction hazard maps in several urban areas in
Utah (e.g., Anderson et al. 1994, Anderson et al. 1994b, Solomon et al. 2004, Bartlett et

al. 2005; 2010a,b). This paper also briefly reviews these mapping efforts.

Predictions from Seismicity and Geology

Youd and Perkins (1978) were some of the first authors to develop a procedure
that uses geologic and seismological information to produce liquefaction-induced ground
failure potential maps. The procedure required combination of two constituent maps: (1)
a ground failure opportunity map, and (2) a ground failure susceptibility map. The
ground failure opportunity map is based on estimates of regional seismicity and a
correlation between earthquake magnitude and distance from a seismic energy source.
Ground failure opportunity occurs when the intensity of seismic shaking is strong enough
to cause liquefaction in susceptible materials.

The ground failure susceptibility map is based on data of Quaternary geology and
correlations between geologic setting and susceptibility to liquefaction-induced ground

failure.  Youd and Perkins (1978) compiled a table of criteria necessary for evaluating
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ground failure susceptibility of various depositional environments, as shown in Table 2.1.
In that table, they noted that liquefaction resistance of soils increases with age.
Combination ofthe ground failure opportunity maps and the ground failure susceptibility
maps generate a map showing the potential for liquefaction-induced ground failure, or a
ground failure potential map. These maps are useful for identifying areas where further
site-specific investigations are needed. However, these maps lack the geotechnical data

required for a more comprehensive analysis.

Predictions from Liquefaction Potential
From case studies of liquefaction in Japan, lwasaki et al. (1979) introduced a
parameter that describes the potential severity of liquefaction called the liquefaction
potential index (LPI). The LPI assumes the severity of liquefaction is proportional to: (1)
the thickness of the liquefiable deposit; (2) the proximity of the liquefiable deposit to the
surface; and, (3) the amount that the factor of safety (FS) against liquefaction is less than
one. In this case, FS is the ratio of soil capacity to resist liquefaction to seismic demand

imposed upon the soil by the earthquake. Iwasaki et al. (1979) defined the LPI by egn.

2.1).

(2.1)

where F is defined by egn. (2.2) and w(z) is defined by eqgn. (2.3).



Table 2.1. Estimated susceptibility of sedimentary deposits to liquefaction during strong
seismic shaking (after Youd and Perkins 1978)

Likelihood that Cohesionless Sediments, When
Saturated, Would be Susceptible to Liguefaction (by
Age of Deposit)

General
Distribution of
Cohesionless

sediments in Pre-
Type of Deposit deposits <500 yr Holocene Pleistocene Pleistocene

(1) @ ®) @ 5) ®)

(a) Continental Deposits
River Channel Locally Variable Very High High Low Very Low
Floodplain Locally Variable High Moderate Low Very Low
Alluvial Fan and Plain ~ Widespread Moderate Low Low Very Low
MarineTerraces/ Plains  Widespread Low Very Low Very Low
Delta and Fan-delta Widespread High Moderate Low Very Low
Lacustrine and Playa Variable High Moderate Low Very Low
Colluvium Variable High Moderate Low Very Low
Talus Widespread Low Low Very Low Very Low
Dunes Widespread High Moderate Low Very Low
Loess Variable High High High Unknown
Glacial Till Variable Low Low Very Low Very Low
Tuft Rare Low Low Very Low Very Low
Tephra Widespread High High ? ?

Residual Soils Rare Low Low Very Low Very Low
Sebkha Locally Variable High Moderate Low Very Low

(b) Coastal Zone

Delta Widespread Very High High Low Very Low
Esturine Locally Variable High Moderate Low Very Low
Beach

High Wave Energy Widespread Moderate Low Very Low Very Low
Low Wave Energy Widespread High Moderate Low Very Low
Lagoonal Locally Variable High Moderate Low Very Low
Fore Shore Locally Variable High Moderate Low Very Low
(c) Artificial

Uncompacted Fill Variable Very High

Compacted Fill Variable Low
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1- FS forFS <1

2.2
0 forFS >1 (22)

w(z) =10—0.5¢z (2.3)

Because surface effects from liquefaction at depths greater than 20 meters are
rarely reported, the summing ofthe LPI is limited to a depth (z) of 20 meters.

Based on case history data of ground failures, Iwasaki et al. (1982) and Toprak
and Holzer (2003) correlated the significance of LPI values to surface manifestations of
liquefaction. lwasaki et al. (1982) concluded that severe liquefaction is likely to occur at
sites with LPI1 > 15, and is not likely at sites with LPI < 5. Toprak and Holzer (2003)
concluded that sand boils typically occur where LPI > 5, and lateral spreads typically
occur where LPI > 12,

Numerous researchers have mapped the LPI to describe the spatial variability of
the severity of liquefaction hazards in a study area. For instance, Holzer et al. (2006)
combined a surficial geology base map and over 200 CPT soundings to determine values
of FS for each geological unit in the Oakland, California area. They found values of FS
using the simplified procedure (introduced by Seed and Idriss 1971; updated by Youd et
al. 2001). Utilizing an LPI threshold value of 5 for the surface manifestations of
liquefaction, Holzer et al. (2006) calculated cumulative frequency distributions of LPI for
each geological unit in the study area; and, set the resulting distributions equal to the
percent of area for each unit predicted to liquefy for a scenario seismic event. This

approach offers some advantages to a purely deterministic analysis of whether or not
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liquefaction triggers. However, the drawback with this approach is that these maps do
not quantify the expected amount of ground displacement. This makes them less
attractive from an engineering standpoint, where damage is strongly related to the
quantity of ground displacement. In addition, the Holzer et al. (2006) mapping method
assumes that each mapped geological unit is spatially homogeneous, and does not
consider variations in topography.

Analyzing CPT data in three different regions in the United States, Lenz and
Baise (2007) concluded there is significant variability of LPI within a given geological
unit, and significant overlap of LPI values between geological units. They further
concluded that to fully characterize this variability, regional liquefaction classification
schemes should provide a distribution of liquefaction potential. As an alternative to using
distributions, Lenz and Baise (2007) suggested geostatistical methods (such as kriging) to
interpolate between data points to provide spatial information about liquefaction
potential. However, often during regional hazard mapping projects, there are insufficient

amounts of spatial data to develop a kriging model.

Predictions from the Thickness of the Liquefiable Layer
The thickness of loosely deposited, saturated, cohesionless deposits is one of the
most significant factors affecting the severity of liquefaction. Based on field data from
two large earthquakes in Japan, Ishihara (1985) found a relationship between the
thicknesses ofa soil layer susceptible to liquefaction and the occurrence of surface effects
due to liquefaction. Using liquefaction triggering criteria in the Japanese bridge code,

Ishihara calculated the thickness of the liquefiable layers and the thickness of the
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overlying non-liquefiable layers. Thickness data are shown in Figure 2.1 for numerous
sites. From these data, Ishihara (1985) developed curves for predicting the occurrence of
surface effects due to liquefaction, as shown in Figure 2.2. Many engineers have used
these thickness relationships to assess the potential for liquefaction-induced ground
failures in their study areas.

Youd and Garris (1995) evaluated Ishihara’s criteria by testing it against a wider
range of site and earthquake conditions. They divided liquefaction-induced surface
effects (or lack of effects) into four categories: (1) no observed surface effects; (2) sand
boils and small ground fissures, but without noticeable lateral ground displacement; (3)
sand boils and fissures plus the effects of ground oscillation; (4) surface effects generated
by lateral spreads, including a consistent pattern of lateral ground displacement. Their
study found that Ishihara’s criteria for predicting surface effects is insufficient at
numerous sites where ground oscillations or lateral spreads occurred.

O’Rourke and Pease (1997) reached the same conclusion that Ishihara’s criteria
for predicting surface effects are not valid at several sites in San Francisco where lateral
spreads or ground oscillations occurred during major earthquakes in 1906 and 1989.
Based on numerous borehole investigations in the San Francisco area, they used
geographic information systems (GIS) and kriging models to develop contours of the
thickness of the liquefiable deposits in the area. O’Rourke and Pease (1997) found the
measurements of lateral spread displacement are approximately equal to 30 percent of the
thickness of liquefiable deposits, with a coefficient of determination, R2, equal to 0.50.
O’Rourke and Pease (1997) also found that areas with liquefiable deposits thicker than

two meters are generally highly susceptible to liquefaction.



Figure 2.1. Thickness of liquefied and overlying non-
liquefied layers compiled by Ishihara (1985) for
determining occurrence and nonoccurrence of surface
effects of liquefaction (Youd and Garris 1995)

15
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Figure 2.2 Boundary curves proposed by Ishihara
(1985) for determining the occurrence and
nonoccurrence of surface effects of liquefaction
(Youd and Garris 1995)

The O’Rourke and Pease (1997) method for mapping the thickness of the
liquefiable deposits in a given area provides a means of locating areas susceptible to
severe liquefaction-induced ground failures. The method also predicts the amount of
expected lateral spread displacement. However, because the linear correlation between
the thickness of a liquefiable deposit with the amount of lateral spread has a relatively
low coefficient of determination, other parameters are needed in the predictive model to

more accurately estimate lateral spread displacement.
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Predictions from Empirical Models

Lateral spread displacement on gently sloping ground is generally the most
pervasive type of liquefaction-induced ground failure generated by earthquakes (NRC
1985). Accordingly, when analyzing areas susceptible to liquefaction, it is paramount to
assess lateral spread hazards. Because the mechanisms that produce lateral spreads are
complex, procedures for predicting lateral spread displacements are often empirical or
semiempirical. This section discusses some of the numerous empirical models for
predicting lateral spread displacements; specifically, those introduced by: Hamada et al.
(1986), Youd and Perkins (1987), Bartlett and Youd (1992, 1995), Rauch and Martin
(2000), Bardet et al. (2002), and Youd et al. (2002). The next section discusses
semiempirical models for predicting lateral spread displacements.

Hamada et al. (1986) observed lateral spread displacements induced by
liquefaction in the cities of Niigata and Noshiro, Japan, during the 1964 Niigata and 1983
Nihonkai-Chubu earthquakes, respectively. Hamada et al. noticed both the thickness of
the liquefied layer, and the slope along the longitudinal axis of each displaced block
influences the magnitude of the lateral spread displacement. They proposed the

regression model shown in egn. (2.4).

D =0.75H0DH 3 (2.4)

where D is the estimated amount of lateral spread displacement (m), d is the larger of the

ground surface slope or the slope of the lower boundary of the liquefied zone (%), and H

is the thickness of the liquefied layer of soil (m). This thickness-slope model does not
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consider the importance of varying earthquake factors. For instance, it only appears to
produce reasonable estimates for earthquakes with magnitude, Mw ~ 7.5, and for highly
liquefiable sediments that are located approximately 20 to 30 km from the seismic source
(Bartlett and Youd 1990). In addition, the liquefied deposits in the Niigata and Noshiro
cities consist of relatively uniform, medium to fine-grained, clean sands. Extrapolation
ofthe regression equation to coarser or finer sediments yields poorer predictions (Bartlett
and Youd 1990).

Youd and Perkins (1987) introduced the Liquefaction Severity Index (LSI) model
to characterize the severity of liquefaction effects at a locality by a single number. They
evaluated cases of liquefaction-induced lateral spreads that occurred on gentle slopes or
into river channels with widths greater than 10 meters. Their study was restricted to
Holocene floodplains, deltas, or other fluvial deposits. Based on these specific geologic
deposits and site conditions, Youd and Perkins developed the regression model shown in

egn. (2.5).

Log(LSI)=-3.49 -1.86 sLogR +0.98-M (2.5)

where LSI is the estimated maximum amount of lateral spread displacement (inches), M
is the moment magnitude of the earthquake (Mw), and R is the horizontal distance from
the seismic energy source (km). As defined, the LSI represents an estimate of the
maximum ground displacement normalized to the above site conditions; therefore,
failures with smaller displacements could be expected in areas with older deposits, and

failures with larger displacements could be expected in areas with steep slopes or
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unusually loose deposits. Thus, the LSI model is insufficient for mapping predicted
values of ground displacement in areas not specific to the above conditions. Bardet et al.
(2002) found the LSI model is inaccurate for a wider range of site conditions.

Bartlett and Youd (1992, 1995) developed a more comprehensive empirical
model using multilinear regression (MLR) analyses of factors that most strongly
influenced lateral spreads from a large database of case histories. Their empirical model
relates lateral spread displacements to topographical, seismic, and soil factors. Youd et
al. (2002) further updated the coefficients of the MLR model based on inclusion of data
from more recent lateral spread case studies and corrections to the original dataset. The
Youd et al. (2002) empirical model is shown in 2 equations, according to the controlling
topographic conditions at the point of interest. Eqn. (2.6) is for free-face conditions (e.g.,
presence of a river channel or steep topographical depression), and eqgn. (2.7) is for gently

sloping ground conditions.

— —16.713+1.532 +M —1.406-Log(R*) —0.012-—+0.592-Log(W) —

Log(Dp) = 2.
09 (OR) = 1.40,540 «Log (TI5) +3.413 +Log (100 —FI5) —0.795 +Log (D0 + 0.1mm) (26)
— 16213 +1.532 M —1.406 +L0og (R*) —0.012 +—+0.338 +L0g (S) # _ - ,
Log (D = )
1+0.540¢ Log(1]5) +3.413+ Log(100 —+ 5) —0.795 <L og(D505+ 0.1mm) J

where DH is the estimated lateral spread displacement (m); M is the moment magnitude
of the earthquake (Mw); R is the nearest horizontal or mapped distance from the site to the
seismic energy source (km); and, R* is a nonlinear magnitude-distance function

calculated by eqn. (2.8).

n.
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R*= R + 10089VH564 (2.8)

W is the ratio of the height of the free-face to the horizontal distance between the base of
the free-face and the point of interest (%); S is the ground slope (%); T15is the cumulative
thickness (m) of saturated, cohesionless deposits in the upper 15 meters of the soil profile
with corrected Standard Penetration Test (SPT) blows counts, N18 < 15; F15 is the
average fines content (percentage of sediment passing a No. 200 sieve) of the materials
comprising T1 (%); and, D501 is the average mean grain size of the materials
comprising T15(mm).

Implementation of the Youd et al. (2002) empirical model requires sufficient site-
specific geotechnical information such as thickness, fines content, and mean grain size of
layers susceptible to lateral spread. Often during regional hazard mapping, such
information is not readily available. Hence, some researchers have used estimates, or
averages, of these factors in applying the empirical model to map predictions of lateral
spread displacement for a particular seismic event (e.g., Olsen et al. 2007). However,
averaging or estimating factors results in predictions of lateral spread displacement with
indeterminate confidence.

To avoid the issue of insufficient data, Rauch and Martin (2000) grouped case
histories of individual lateral spreads displacement vectors into “slide areas”, and
proposed the Empirical Prediction of Liquefaction-Induced Lateral Spreading (EPOLLYS).
In EPOLLS, the modeler selects one of three MLR equations for predicting the average

lateral spread displacement based on the amount of data in the study area.
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Figure 2.3 shows the MLR equations and a flow chart of the EPOLLS method.
The first MLR equation is regional-EPOLLS, which predicts average lateral spread
displacement solely from the following seismic factors: earthquake moment magnitude,
distance to fault rupture, peak ground acceleration, and duration of strong shaking. If
topographic and geometric factors are also known in the study area, the modeler should
select the second MLR equation, site-EPOLLS. Site-EPOLLS predicts average lateral
spread displacement by including the following factors with the seismic factors: ground
surface slope, height of the free-face, and the length of the sliding area. Finally, if soil
factors are also known from sufficient geotechnical investigations, the modeler should
select the most comprehensive and third MLR equation: geotechnical-EPOLLS.
Geotechnical-EPOLLS predicts average lateral spread displacement by including the
following factors to the fore mention factors: depth to the point in the site profile with the
lowest resistance to liquefaction, and depth to the top of the layer with the lowest
resistance to liquefaction. The EPOLLS method provides empirical means to predict
lateral spread displacement at a study area with varying levels of known factors. Unlike
the Youd et al. (2002) empirical model, the regional and site-EPOLLS methods can be
used to predict the average lateral spread displacement without knowing specific
geotechnical information. However, the EPOLLS method only predicts the average
overall magnitude of all measurable lateral spread displacements at a slide area, instead
ofpredicting lateral spread displacements at specific points in the study area. In addition,
EPOLLS offers no guidance on how to assess the spatial extent of potential slide areas.
Bardet et al. (2002) suggested removing the geotechnical variables F15and D5015

from the Bartlett and Youd empirical model because these variables are the least likely to
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Dr = {613M,, 139Rf - 2420 11.4 7~ }/1000.
Mw = earthquake moment magnitude Amax= peak horizontal acceleration (g)
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Figure 2.3. The EPOLLS method for predicting average lateral spread displacement of an
overall slide area in meters (Rauch and Martin 2000)

be available for regional mapping of lateral spread displacements. Therefore, Bardet et
al. (2002) proposed new MLR equations based on the same case history data compiled by
Bartlett and Youd (1992, 1995). They divided these data into two sets: (A) complete data
for all ranges of displacement amplitude, and (B) data limited to displacement amplitudes

smaller than 2 meters. Their empirical model has the general form shown in egn. (2.9).

Log(Dh +0.01 m) =bo+bd +\M +bZogR +bR +bdogW +b3ogS +baogTh (2.9)
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where the variables DH M, R, W, S, and T15are as defined for egns. (2.6) and (2.7). The
partial regression coefficients for this model are shown in Table 2.2 for datasets A and B.

For free-face cases, b5is set to zero, and the value of bdf is used as specified in
Table 2.2. For ground-slope cases, b4 and bdf are both set to zero. Overall, the Bardet et
al. (2002) empirical model enables estimation of lateral spread displacements for cases
where there is little information on the soil grain distribution. However, removing the
geotechnical variables from the Youd et al. (2002) empirical model introduces more
uncertainty in the estimate of the lateral spread displacement.  The predictive
performance of the empirical model is often judged by the coefficient of determination,
R2. For the Youd et al. (2002) empirical model, the adjusted value of R2 equals 83.3%.
For the Bardet et al. (2002) empirical model, the adjusted value of R2 is significantly
smaller: 64.3% for both datasets A and B (see Table 2.2). This means that only 64.3% of

the variability in the dependent variable is explained by the independent variables.

Table 22. Values of MLR
coefficients and adjusted R2 for the
Bardet et al. (2002) empirical model

Dataset
Coefficients A B
bo -6.815  -6.747
boff -0.465 -0.162
bi 1.017 1.001
b2 -0.278  -0.289
bs -0.026  -0.021
b4 0.497 0.090
b5 0.454 0.203
be 0.558 0.289

R2adjusted 64.25% 64.27%
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Predictions from Semiempirical Models

Semiempirical methods for characterizing liquefaction are based on a growing set
of laboratory studies calibrated to a growing database of case studies. This section
discusses predicting liquefaction-induced lateral spread displacements based on strain
potential models of Zhang et al. (2004), and Faris (2004). This section also briefly
describes using laboratory results to map potential volumetric strain and shear strain
induced by liquefaction (see Rosinski et al. 2004).

Zhang et al. (2004) proposed a semiempirical approach for predicting
liquefaction-induced lateral spread displacements using SPT and CPT data, liquefaction
case histories, and laboratory tests. Their approach is based on laboratory test results
(from Ishihara and Yoshimine 1992, and Seed 1979) of the maximum cyclic shear strain
(ymex) induced during undrained cyclic loading of saturated sandy soils. Zhang et al.
found a relationship (see Figure 2.4) between three properties of the saturated sandy soil:
ymex, the factor of safety against liquefaction (FS), and the relative density (Dr). From this
relationship, Zhang et al. (2004) define the lateral displacement index (LDI), per egn.

(2.10).

z
LDI = Jy-xdz (2.10)

0

where zmex is the maximum depth below all of the layers with a calculated FS < 2 (up to

23 meters).
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Figure 2.4. Relationship between the maximum cyclic shear
strain and factor of safety against liquefaction for different
relative densities of clean sands (Zhang et al. 2004)

There are numerous correlations for estimating relative densities from either SPT
or CPT data. For SPT data, Zhang et al. (2004) suggests using a modified version of a
correlation introduced by Meyerhof (1957), per egn. (2.11). For CPT data, Zhang et al.
(2004) suggests using a modified version of a correlation introduced by Tatsuoka et al.
(1990), per egn. (2.12). Unfortunately, neither of these equations defines the uncertainty

in the predicted variable.

o - JATNAD (2.11)
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Dr =-85 + 76 *Log (qcW) (2.12)

where Dris the relative density of clean sand (%), Ni60 is limited to 42 blows, and qciN is
the normalized CPT tip resistance corrected for effective overburden stresses (see
Robertson and Wride 1998).

Zhang et al. (2004) developed an empirical model by regression analyses of LDI
and topographic factors at several lateral spread case histories. Their model is divided
into two equations, according to the controlling topographic conditions at the point of
interest. Eqn. (2.13) is for gently sloping ground without a free-face. Eqn. (2.14) is for

level ground with a free-face.

LD =(S+0.2)sLDI for 0.2% <S <3.5% (2.13)

LD =6(L/H)-08+LDI for4<L/H <40 (2.14)

where LD is the estimated lateral spread displacement (m), S is the ground slope (%), L is
the horizontal distance between the base of the free-face and the point of interest (m), and
H is the height of the free-face (m).

The Zhang et al. (2004) semiempirical approach enables use of CPT data to
predict lateral spread displacements. However, they developed their approach using only
five available case histories with CPT data. Additional case history data, especially with

CPT data, are needed to further evaluate their proposed approach.
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Faris (2004) proposed a similar semiempirical approach for predicting
liquefaction-induced lateral spread displacements using SPT data, liquefaction case
histories, and laboratory research from Wu (2002). Wu (2002) compiled a database of
high-quality laboratory tests and developed a laboratory testing program to investigate
the influence of relative density and confining stress on the development of post-
liquefaction shear and volumetric strain. Wu performed unidirectional, undrained, cyclic
simple shear tests on fully saturated samples of sand. From these tests, Wu determined
the maximum shear strain attainable in the sand and called this the limiting shear strain.
Faris (2004) renamed the limiting shear strain the strain potential index (SPI).
Laboratory test results of SPI as a function of the normalized cyclic shear stress ratio
(CSR*) and equivalent clean-sand corrected SPT blow counts (Ni60,cs) are shown as solid
curves in Figure 2.5. Refer to Seed et al. (2001) for full definitions of CSR* and N],60,cs.
By extrapolating the laboratory results, Faris (2004) added the dashed curve in Figure
2.5, which represents 75% shear strain potential.
Next, Faris (2004) introduced the displacement potential index (DPI), which is the
summation of values of SPI for each potentially liquefiable layer of a site profile

multiplied by the thickness of the layer (see egn. (2.15)).

DPI =£ SPI XAz (2.15)

where DPI is in meters, SPI is in percent, and the summation occurs over all potentially

liquefiable layers of thickness Az, in meters.
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Figure 2.5. Strain potential index curves based on Wu (2002)
laboratory tests (Faris 2004)

Faris (2004) developed empirical models by Bayesian updating analyses of DPI
and topographic factors at several lateral spreading case histories. Faris included the
moment magnitude of the earthquake (M) as a model parameter to capture the additional
influence of duration on the resulting lateral spread displacement. Eqn (2.16) predicts the
maximum displacement on a particular lateral spread, Dmex. Eqn. (2.17) predicts the

average displacement on a particular lateral spread, Dag

Dnax = exp [1.0443 «InDPIna + 0.0046 +Ina +0.0029 M ] (2.16)

Dag=exp[0.6911 s«InDPlag+0.0036 ¢Ina + 0.0011 M ] (2.17)
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where Dnmexand Dag are in meters; DPImax is the maximum value of DPI determined from
an SPT borehole in a slide area (m); DPlag is the average value of DPI determined from
all SPT boreholes in a slide area (m); and, a accounts for topographic conditions at a slide

area as defined in egn (2.18).

for free-face cases
0.25 <L

S for sloping ground cases (2.18)

H +0.01S «0.25 L
0.25 L

for free-face and sloping ground cases
where S is the average ground slope (%) ofthe slide area, L is the length ofthe slide area
(m), and H is the height of the free-face (m).

Like the EPOLLS method, the semiempirical approach introduced by Faris (2004)
predicts either average or maximum lateral spread displacements for an entire site or slide
area. The method does not predict lateral spread displacements at specific points in the
study area.

Both semiempirical approaches by Zhang et al. (2004) and Faris (2004) are based
on the assumption that each layer of liquefied soil will reach its theoretical shear strain
potential or maximum cyclic shear strain when exposed to a particular level of strong
ground motion.  Such theoretical shear strain potential is based on laboratory

measurements of certain saturated, clean sand. It is unclear if shear strains measured in
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the laboratory will conform to permanent shear strains developed in situ during
liquefaction.

With surficial geologic maps and 650 geotechnical boreholes, Rosinski et al.
(2004) also used the laboratory tests of Wu (2002) to predict volumetric strain and shear
strain of potentially liquefiable layers of soil in each borehole (i.e., layers with FS < 1).
By spatial interpolation ofdata between each borehole, they predicted average strains for
each geological unit given a seismic event in the Santa Clara Valley, California, and
mapped these average strains into regional liquefaction hazard maps. These maps not
only yield the potential of deposits for liquefaction, but also estimate the amount of
surface disruptions due to liquefaction. Rosinski et al. (2004) found by geostatistical
methods that borehole investigations must be within 800 meters ofone another in order to
interpolate the thickness of potentially liquefiable sediments. This requires a dense
database of subsurface explorations. They concluded that late Holocene deposits have
the highest susceptibility of liquefaction, while early Holocene and late Pleistocene

deposits have much lower liquefaction susceptibility.

Mapping Efforts in Utah
Because many urban areas of Utah are filled with loosely deposited, saturated
sediments that are susceptible to liquefaction during major earthquakes, various
liquefaction hazard maps have been created in Utah. This began in the 1980s when Utah
State University collected available SPT borehole data, performed additional CPT
soundings, and assessed the potential of liquefaction triggering at each geotechnical

investigation during major earthquakes (e.g., Anderson et al. 1994, Anderson et al.
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1994b). They determined critical acceleration values needed to trigger liquefaction in
layers of potentially liquefiable soil based on the simplified method introduced by Seed
(1979) (Anderson and Keaton 1982). They then compared these acceleration values to
probabilistic predictions of strong ground motion studies. By using surficial geologic
maps and geological data as constraints, they developed liquefaction potential maps
delineating land areas into zones of low, moderate, and high liquefaction potential. In
their time, these maps were useful to government agencies and consultants. Their
mapping method did not attempt to predict the amount of liquefaction-induced ground
displacement.

Other liquefaction hazard maps have been created along the Wasatch Front
predicting liquefaction, lateral spreading, and ligquefaction-induced ground settlement
(Solomon et al. 2004). Solomon et al. produced these maps using HAZUS®, which is a
computer program developed by the Federal Emergency Management Agency (FEMA).
HAZUS® bases its analysis of liquefaction-induced ground failure on the LSI for various
geologic regions, and ground motion attenuation relationships. These maps were not
created using any site-specific geotechnical data. Solomon et al. (2004) stated that using
geotechnical data in their mapping efforts would improve accuracy.

More recently, members of the Utah Liquefaction Advisory Group (ULAG)
compiled a relatively extensive geotechnical database of SPT, CPT, and Vs
investigations. Based on these subsurface data, they produced new liquefaction hazard
maps in Salt Lake County, including: probabilistic liquefaction triggering maps (Bartlett
et al. 2010a), scenario lateral spread hazard maps (Bartlett et al. 2005, Olsen et al. 2007),

and probabilistic liquefaction-induced ground displacement maps (Bartlett et al. 2010b).
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These researchers estimated lateral spread displacements at each SPT borehole based on
the Youd et al. (2002) empirical model. As discussed, the Youd et al. (2002) empirical
model requires sufficient site-specific geotechnical information such as fines content and
mean grain size of layers susceptible to lateral spread. If a borehole lacked this specific
geotechnical information, they used average values in the corresponding geologic unit.
By using surficial geologic maps as constraints, they generalized the resulting point
estimates to produce the hazard maps. This mapping method does not define the
uncertainty in the mapped estimates of liquefaction-induced ground failures. The method
is reasonable in areas with extensive geotechnical sampling and sufficient data; however,
in areas that lack or have little geotechnical data, there is a need for a new mapping

method.

Conclusions

Certain criteria must be clearly defined, in order to produce the desired
liquefaction-induced ground failure maps. From the above literature survey, it is
desirable to develop maps based upon the following criteria: (1) recent seismic studies,
such as those completed by the National Seismic Hazard Mapping Project (NSHMP),
under the direction of the USGS (see Petersen et al. 2008); (2) current surficial geologic
maps; (3) degree of ground slope and/or size of an influential free-face; and, (4)
geotechnical data. Using criteria 1through 4, the maps should: (5) predict the quantity of
liquefaction-induced lateral spread displacement and (6) estimate the uncertainty ofthese
predictions. It is important to assess lateral spread hazards because they are generally the

most pervasive type of liquefaction-induced ground failure generated by earthquakes
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(NRC 1985). The amount of liquefaction-induced damage is strongly correlated with the
amount of horizontal displacement resulting from lateral spread.

There are numerous methods for predicting liquefaction-induced ground failures.
However, in order to meet all six of the above criteria, only four methods previously
discussed apply. These methods are: (1) the Youd et al. (2002) empirical model; (2) the
geotechnical-EPOLLS method (Rauch and Martin 2000); (3) the Zhang et al. (2004)
semiempirical approach utilizing the LDI; and, (4) the Faris (2004) semiempirical
approach utilizing the DPI. The other discussed methods do not meet the above criteria.
For instance, liquefaction potential maps based solely on seismicity and geology (Youd
and Perkins 1978) do not include geotechnical data. The Hamada et al. (1986) empirical
model does not include seismic factors; and, the LSI model introduced by Youd and
Perkins (1987) lacks geotechnical factors and is limited to very specific geologic settings.
Maps based on the LPI, such as from Holzer et al. (2006) delineate areas of high
liquefaction potential, but do not predict the quantity of lateral spread displacement.
Predictions of the severity of liquefaction-induced surface effects based upon the
thickness of the liquefiable layers (as introduced by Ishihara 1985) also do not predict the
quantity of lateral spread displacement; furthermore, these predictions are inaccurate
when tested against a wider range of site and earthquake conditions (Youd and Garris
1995). Finally, the models introduced by Bardet et al. (2002) and O’Rourke and Pease
(1997) have relatively low coefficients of determination; thus, other parameters are
needed in their predictive models to more accurately estimate lateral spread

displacements.
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Previous mapping efforts in Utah also do not meet the above criteria. Maps by
Anderson et al. predict liquefaction susceptibility and potential, but do not predict
amounts of lateral spread displacement. Maps by Solomon et al. (2004) are based upon
the LSI and lack geotechnical data. There are many advantages to the recent mapping
projects in Utah (e.g., Bartlett et al. 2005; 2010a,b). For instance, the recent Utah
mapping projects are based upon a substantial quantity ofgeotechnical data coupled with
mapped geologic units. They are also based on strong ground motion estimates from
current national seismic hazard maps and predictions of lateral spread displacements
from the Youd et al. (2002) empirical model. However, implementation of the Youd et
al. (2002) empirical model requires sufficient geotechnical data; such as the fines content
and mean grain size of each layer in a SPT borehole that is susceptible to lateral spread.
Often during regional mapping of liquefaction hazards, such data are not readily
available. Hence, at locations lacking these site-specific data, recent Utah mapping
methods used the average geotechnical values from the corresponding geologic unit. Due
to this averaging, it is difficult to define the uncertainty in the mapped estimates of lateral
spread displacement.

Although the Youd et al. (2002) empirical model is somewhat difficult to apply in
regions lacking sufficient geotechnical data, the other approaches that meet the above
criteria have some limitations. The geotechnical-EPOLLS method (Rauch and Martin
2000), and the DPI semiempirical approach (Faris 2004) yield average or maximum
predictions of lateral spread displacements for an entire slide area, instead of predicting
displacements at specific points in the area. Neither approach gives guidance on how to

adequately assess the spatial extent of potential slide areas. The LDI semiempirical
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approach (Zhang et al. 2004) is attractive because it enables predictions of liquefaction-
induced lateral spread displacements from CPT data. This approach is based on the
relationship of relative densities and laboratory measurements of maximum cyclic shear
strain of clean sands. However, site-specific measurements of relative densities are rarely
available; hence, Zhang et al. suggested using correlations to predict relative densities of
clean sands from SPT and CPT penetration resistance data. The uncertainty in the
predictions of relative densities from these correlations is undefined. Additionally, the
semiempirical approaches by Zhang et al. (2004) and Faris (2004) are based on the
assumption that each layer of potentially liquefiable soil will reach its theoretical
maximum shear strain potential during a specific level of strong ground motion. It is
unclear if shear strains measured in the laboratory on samples of clean sand will conform
to permanent shear strains developed in cohesionless layers in situ during liquefaction.

In conclusion, there is a need to develop or modify a method in order to predict
lateral spread displacements and produce liquefaction-induced ground failure maps that
meet the above criteria. The method should predict lateral spread displacements at
desired points in the study area. Often, when producing regional hazard maps (especially
from available data), there are geologic units with poorly defined geotechnical properties
and large variations in the quality of geotechnical data. Therefore, it is desirable to
develop a method that also defines the uncertainty associated with the predictions of

liquefaction-induced lateral spread displacement.
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CHAPTER 3

MULTILINEAR REGRESSION EQUATIONS FOR PREDICTING
LATERAL SPREAD DISPLACEMENTS FROM

SOIL TYPE AND CPT DATA

Abstract

This paper presents a new empirical model for estimating the amount of
horizontal displacement resulting from liquefaction-induced lateral spread. The proposed
approach modifies the Youd et al. (2002) multilinear regression model so that it is
applicable to a wider range of geotechnical data and is easier to apply to site-specific
engineering evaluations and to regional hazard mapping. This paper shows that
earthquake magnitude, distance to the seismic source, topography, layer thickness, and
soil type are important factors in estimating horizontal displacement resulting from lateral
spread. It also discusses how cone penetration test (CPT) data can be used in conjunction
with the proposed model to estimate the amount of lateral spread displacement. The CPT
approach is validated using geotechnical data obtained from a liquefaction hazard

mapping project in Utah.
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Introduction
Hamada et al. (1986), Youd and Perkins (1987), Bartlett and Youd (1992, 1995),
Rauch and Martin (2000), Youd et al. (2002), Bardet et al. (2002), Baska (2002), Zhang
et al. (2004), and Faris et al. (2006) have introduced empirical and semiempirical
methods for predicting the amount of lateral spread displacement at potentially
liquefiable sites. For the most part, these researchers derived their models from statistical
regression techniques ofcompiled case histories of liquefaction-induced lateral spread.
The widely used multilinear regression (MLR) model of Youd et al. (2002) is
based on earthquake source, topographical, and soil factors that have been shown to be
statistically significant in estimating the amount of liquefaction-induced lateral spread
displacement at liquefied sites (Bartlett and Youd 1992). That research has shown that
moment magnitude, horizontal distance to the fault or seismic source, presence of a free
face (e.g., river channel or steep topographical depression), and the degree of ground
slope in the vicinity of the site have a significant influence on the magnitude and nature
of the displacement pattern. In addition, soil factors such as the thickness of loose,
saturated, cohesionless sediments, and their corresponding fines content and mean grain
size strongly influence the amount of lateral spread displacement. Other factors may play
a role, but their contributing influence is less significant than the fore mention factors
(Bartlett and Youd 1992).
However, implementation ofthe Youd et al. (2002) model requires sufficient site-
specific geotechnical information such as thickness, fines content, and mean grain size of
layers susceptible to lateral spread. In some cases, such information is not readily

available (e.g., regional hazard mapping) and estimates, or averages, of these factors are
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sometimes used in applying the MLR model (Olsen et al. 2007). To avoid this
insufficiency issue, some researchers have removed site-specific factors from the
empirical model to make them more adaptable to regional analyses (e.g., Bardet et al.
2002). Although removal of the certain factors from the MLR model simplifies the data
requirements for the analysis, it also introduces more uncertainty into the estimate of the
lateral spread displacement and reduces the predictive power of the model.

In general, the preferred MLR model is one that includes all factors statistically
correlated with the dependent variable. The predictive performance of the model is often
judged by the coefficient of determination, R2 The coefficient generally increases with
the number of independent variables added to the model, if the independent variables are
not overly cross-correlated. Thus, a “full” model, which uses as many variables as
possible, is the most reliable model from a predictive standpoint and has the highest R2
value. However, in a statistical sense, a “full” model may not be the most parsimonious
model because some independent variables only incrementally improve the performance
ofthe model and their inclusion may not be justified by the effort and expense required to
obtain such information. For example, in regional mapping studies, where preexisting
data are used, not all sites have the required information to implement a “full” model,
often resulting in compromises and the use of a “reduced” model.

This paper discusses significant revisions to the Youd et al. (2002) empirical
model to make it more parsimonious and implementable for regional hazard analysis
while preserving much of its original predictive power. It also provides guidance on how

to incorporate CPT soundings into the lateral spread predictions.
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The “Full” MLR Model

Egn. (3.1) lists the general form of the “full” Youd et al. (2002) MLR model.

bo+boffa +bjM + b2 ogR *+bR +bd_ogW +b3_ogS +b@.ogTH+

LogDH
o9 +b7L0g (100 - F15 +b&_og(D505+ 0.1 mm)

(3.1)

where DH is the estimated horizontal spread displacement (m); M is the moment
magnitude of the earthquake (Mw); R is the nearest horizontal or mapped distance from
the site to the seismic energy source (km); and, R* is a nonlinear magnitude-distance

function calculated by eqgn. (3.2).

R*=R +10 (3.2)

W is the ratio of the height of the free face to the horizontal distance between the base of
the free face and the point of interest (%); S is the ground slope (%); T15is the cumulative
thickness (m) of saturated, cohesionless deposits in the upper 15 meters ofthe soil profile
with corrected Standard Penetration Test (SPT) blows counts, Ni,8 < 15; F15 is the
average fines content (percentage of sediment passing a No. 200 sieve) of the materials
comprising T15 (%); D5015is the average mean grain size of the materials comprising T
(mm); and, a is a dummy variable defining the controlling topographic conditions at the
point of interest. For sloping-ground conditions, a is set to zero, W is set to 1, and site-
specific estimates of S (%) are entered. For free-face conditions, a and S are set to 1, and

site-specific values of W (%) are entered. Youd et al. (2002) computed the following
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partial regression coefficients for egn. (3.1): bo= -16.213, bdf= -0.500, bi = 1.532, b2= -
1.406, b3=-0.012, b4= 0.592, b5= 0.338, b6= 0.540, b7= 3.413, and b8= -0.795.

The importance of each variable in the regression model is tested by an analysis
of variance (ANOVA) table, which comprises an F-test. The F-statistic is computed to
verify that a linear relationship exists between the dependent variable and at least one of
the independent variables. Table 3.1 summarizes the ANOVA results for egn. (3.1).
Since the F-statistic is much larger than the critical value for the null distribution at the
5% significance level, then the probability that none of the independent variables are
correlated to the dependent variable is essentially zero (P-value ~ 0). Therefore, for this
case, the full model is statistically significant for predicting the dependent variable, Log
Dh. The coefficient of determination for the full model, R2 is 83.6%; and, the standard

deviation of the predicted variable, olggCH is 0.1970.

Removing the Fn and D50n Variables from the MLR Model
Bardet et al. (2002) have suggested removing the F15 and D5015 variables from
the full MLR model because these factors are the least likely to be available, especially
for regional studies. Upon removal of the F15and D5015 variables, the “reduced” model

has the general form shown in egn. (3.3).

Table 3.1. ANOVA results of egn. (3.1), the full MLR model

Source of Sum of  Deg. of Mean
Variation Squares Freedom  Squares

Regression 93.53 9 10.3923 267.9 0.000
Error 18.39 474 0.0388
Total 111.92 483

F-statistic P-value
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LogDH =bo+badffa +bIM +bAdogR *+bR + b4 ogW +b3ogS +baogTh (3.3)

Upon regression of the case history database compiled by Youd et al. (2002), eqgn.
(3.3) has the following partial regression coefficients: bo= -9.087, bdf=-0.353, bl= 1.428,
b2=-0.902, b3= -0.020, b4= 0.401, b5= 0.293, and b6= 0.560. Table 3.2 summarizes the
ANOVA results for egn. (3.3). Although the F-statistic remains much larger than the
critical value for the null distribution at the 5% significance level, R2 for the reduced
model has decreased to 66.6%; which means only 66.6% of the variability in the
dependent variable, Log DH, is explained by the independent variables. Also, the
variance of the regression equation (i.e., MSE) has more than doubled that of the full
model; and, the standard deviation of the predicted variable, oiag®H has significantly
increased to 0.2802.

Figure 3.1a depicts predicted values of DHfrom egn. (3.3) versus measured values
of Dh from the case history database of Youd et al. (2002). The solid line on the plot
(that is at 45 degrees from the origin) represents a perfect prediction line or a mean-
estimate line. Points plotting near this line represent displacements that are closely
predicted by the model. The dashed lines, plotted at 2:1 and 1:2 slopes, represent a 100%

over-prediction boundary and a 50% under-prediction boundary, respectively.

Table 3.2. ANOVA results of egn. (3.3), the reduced MLR model

Source of Sum of  Deg. of Mean
Variation Squares Freedom  Squares
Regression 74.56 7 10.6520 135.7 0.000
Error 37.35 476 0.0785

Total 111.92 483

F-statistic P-value
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Figure 3.1. Predicted lateral spread displacement using (a) egn. (3.3), or (b) egn. (3.4), versus measured lateral spread
displacement from the case history database of Youd et al. (2002)
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Points plotting above or below these bounds represent displacements that are being over
or under-predicted by a factor of 2 or greater. Figure 3.1a shows that 18.6 % (90 out of
484) of the displacements predicted by eqn. (3.3) fall outside these bounds—of which
many fall well outside the bounds.
Other points in Figure 3.1a, as grouped and symbolized by earthquake, also trend
in one direction, either consistently above or below the 1:1 line. For instance, eqgn. (3.3)
heavily over-predicts all of the displacements recorded for the 1964 Alaska earthquake.
Instead of following the 1:1 line, these points plot along a line approximately 80 degrees
left of the horizontal axis. It is important to note that in the Alaska earthquake, high
amounts of fines and small mean grain sizes were found in many of the boreholes.
Therefore, because the predictive power of the model (eqn. (3.3)) has been reduced, and
because of its overall lack of fit, it is desirable to seek other variables to replace Fis and

D5015in the model without compromising its predictive power.

Adding the Soil Description Variables to the MLR Model

We found that the soil classification obtained from the borehole logs could
supplant Fis and D5015. Often there is a description or classification of the soil recorded
on a borehole log with the corresponding SPT N values, and we wanted to test if these
descriptions might be used in the regression analyses to replace F:s and D5015. Figure
3.2 is aplot of borehole data at a site in Alaska from the lateral spread database compiled
by Bartlett and Youd (1992). This figure shows SPT Ni,@values and corresponding soil
descriptions at a site with groundwater located near the surface. The five shaded layers

indicate zones that are cohesionless, saturated and have values of Ni,@< 15. The sum of
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147.4, Matanuska River, Alaska. The five shaded
layers comprise T15at this site
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the thickness of these 5 layers, T15 is equal to 20.6 meters. Layers like those shown in
Figure 3.2 can be found for every T15value in the Youd et al. (2002) lateral spread
database.

To implement our approach, we assigned a soil index, Sl, to each TI15 layer
according to the most general soil description or Unified Soil Classification System

(USCS) symbol. Table 3.3 summarizes the mean and standard deviation of the mean

grain size (D50 and olHX respectively), and the mean and standard deviation of the

fines content (FC and OFC respectively) for all of these TI15 layers in the database,

grouped according to soil description from the boring logs. In order to complete the
definition of S| for each soil type, Table 3.3 also includes an index for cohesive soil that
is not susceptible to liquefaction (i.e., SI = 6).

By including soil classification variables in the MLR model in lieu of the F15and

D5015variables, the modified model has the general form shown in egn. (3.4).

bo+ +bM +b2dogR *+bR +bdogW +bsLogS +

rn
LogDH = oA ogf +giXj +a2x2+a3x3+adxd +ax5 (34)

where xi is the ratio of TI5in a borehole that has an Sl value (defined in Table 3.3) equal
to i. For example, the borehole plotted in Figure 3.2 has Xi = 1.96 / 20.6 = 0.10; X2= 6.02
/20.6 = 0.29; x» = 0.25; x4= 0.33; and, x5=0.03. Ofcourse, the sum ofall values ofx in
the borehole equals 1.

Following the same technique as Bartlett and Youd (1992), we used an inverse-

weighted averaging scheme to assign computed values of x to every displacement vector.
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Table 3.3. Descriptions and distributions of T15layers in Youd et al. (2002) database

Typical Soil Descrip-
tions in Database

Silty gravel with sand,
silty gravel, fine gravel

Very coarse sand, sand
and gravel, gravelly
sand

Coarse sand, sand with
some gravel

Sand, medium to fine
sand, sand with some
silt

Fine sand, sand with
silt

Very fine sand, silty
sand, dirty sand,
silty/clayey sand

Sandy silt, silt with

sand

Silty clay, lean clay
(not partof Tis )

Count

n

6

32

76

50

39

38

D50
(mm)

5.69

2.15

0.62

0.35

0.17

0.11

0.07

&X
(mm)

4.26

0.83

0.18

0.02

0.05

0.12

0.08

FC
(%)
18.3

7.5

7.0

4.6

14.3

36.6

57.9

aC
(%)

6.4

6.4

4.2

2.3

11.0

12.4

12.2

General
USCS
Symbol

GM

GM-SP

SP

SP-SM

SM

SM-ML

ML

CL

Soil
Index
Sl

1



51
This averaging scheme assigns the largest weight to the borehole located closest to the
displacement location, and decreasingly smaller weights to boreholes located at greater
distances.

Eqn. (3.4) has the following partial regression coefficients based on regression of
the lateral spread database of Youd et al. (2002): bo= -8.453, bdf= -0.342, bl= 1.348, b2=
-1.068, BB3=-0.017, b4= 0.453, b5= 0.334, b6= 0.588, a = -0.647, a2= -0.176, a3= 0.278,
ad= 0.032, and a5= -0.571. Table 3.4 summarizes the ANOVA results for eqgn. (3.4). As
can be seen, the F-statistic increased to 156.5 and remains much larger than the critical
value for the null distribution at the 5% significance level. This indicates that egn. (3.4)
is statistically significant for predicting the dependent variable, Log DH Moreover, the R2
for this model is 80.0%, and the standard deviation of the predicted variable, olafh is
0.2182. These values are similar to those found for the full MLR model (egn. (3.1)). For
comparison, R2is only 3.6% less, and olay"His only 0.0212 more than the value found for
egn. (3.1). In addition, Figure 3.1b shows predicted values of DHfrom eqgn. (3.4) versus
measured values of DH from the case history database. Comparing this plot with Figure
3.1a, more points fall between the bounds of the 1:2 and 2:1 sloped lines (88.8% of the
points compared to 81.4% in Figure 3.1a). These comparisons demonstrate that Sl is a

reasonable surrogate of F15and D5015for predicting lateral spread displacement.

Table 3.4. ANOVA results of egn. (3.4), the modified MLR model

Source of Sum of  Deg. of Mean
Variation Squares Freedom  Squares
Regression 89.48 12 7.4567 156.5 0.000
Error 22.44 471 0.0476

Total 111.92 483

F-statistic P-value
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The values of the partial regression coefficients for the soil description variables
indicate their relative influence on displacement. For example, the maximum of these
coefficients is a3 indicating that fine to medium-grained sands with low fines content are
associated with larger lateral spread displacement than other soil types. Coarse grained
material, especially gravels with sufficient fines content to impede drainage, have smaller
coefficient values. Very fine-grained materials, such as sandy silts, have a negative
partial regression coefficient, which means they produce smaller displacements on
average when compared with the mean estimate from the regression model.

To further show how soil type and thickness affect the amount of lateral spread
displacement, the variable T15can be adjusted to an equivalent “clean sand” value, T15¢s.
We define T15s as a Tl5value for fine to medium-grained clean sand only, which occurs
when x3 = 1 and all other X s = 0. This new variable is calculated by using the final 6

terms in egn. (3.4), as listed in egn. (3.5).

bALogTx +[a][x] = bA.ogTx +ax +a2x2+ a3x3+ adx4+ a5x5 (3.5)

where [a] is a vector for althrough a5, and [x] is a vector for x1through x5. Inserting

Th= TIhes, x1=x2=x4=x5= 0, and x3 = 1, into the right-hand side of eqn. (3.5) results

in eqn. (3.6).

beLog T +[a][x] = beLog T + a3 (36)

We solve for TI5¢cs as shown in egn. (3.7).
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"MM -a-}

tps=tE10A (3.7)

Values of TI5¢cs for a given borehole provide a single geotechnical variable that
can be substituted into eqn. (3.4) for T15 (with x* = 1 and all other x ’s = 0). Most ofthe
ax terms in eqn. (3.4) are thereby removed, because their values ofx = 0. Using a single
regression variable also shows how soil type and thickness jointly affect lateral
spreading. For example, Figure 3.3 shows values of TI5¢s plotted versus T15 for various
soil types. This figure demonstrates that 1 meter of saturated, clean, fine to medium-
grained sand with N18) < 15 has about the same displacement potential asl5 meters of

saturated soil that is either gravel or silt with N180< 15.

Estimating Soil Description Variables, xi, with CPT Data

The Cone Penetration Test (CPT) has undergone rapid development and is widely
used in liquefaction evaluations. It would be useful to develop an approach to apply eqgn.
(3.4) to such data. Numerous researchers have developed relationships between CPT data
and soil type, typically by the use of charts (e.g., Schmertmann 1978, Douglas and Olsen
1981, Olsen and Malone 1988, Robertson et al. 1986, Robertson 1990, Jefferies and
Davies 1991).

Robertson (1990) introduced one of the most popular CPT-based charts to define
soil behavior type. This chart links normalized CPT tip resistance, Qi and normalized
friction ratio, Fr, to the in situ mechanical soil behavior, named the “normalized soil

behavior type” (SBTn).
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T15<m)

Figure 3.3. TIbvs. TIhesaccording to soil index

Often, soil classification such as the USCS which is based on grain-size
distribution and plasticity of disturbed samples, relate well with CPT-based SBTn (e.g.,
Molle 2005).

Jefferies and Davies (1993) introduced an index to define the soil behavior type,
named the Soil Behavior Type Index, Ic. This index is simply the radius of concentric
circles which plot on Jefferies and Davies (1991) SBTn chart. Robertson and Wride
(1998) modified the definition of Ic such that certain values of Ic will approximate the
boundaries of SBTn zones 2-7 on the Robertson (1990) Qt- Fr SBTn chart (see base layer
of Figure 3.4). Zhang et al. (2002) most recently updated the definition of Ic, which is
shown in eqn. (3.8). Jefferies and Davies (1993) suggested that Ic could be used to

develop empirical correlations of CPT-based data that vary with soil type.
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Figure 3.4. Data from Weber County, Utah, plotted on
Robertson (1990) Qt- Fr SBTn chart with contours oflc

lc=[(347 - LogQt)2+ (LogFr +1.22)3%® (3.8)

With this in mind, we compiled available “pairs” of side-by-side SPT borings and
CPT soundings in Weber County, Utah into a database. From this, there are 205 samples
that were classified according to the USCS from laboratory measurements. Based on
these evaluations, we assigned the samples values of Sl, as defined in Table 3.3. In

addition, at the depth intervals where these samples were taken, we found the median
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values of Qi Fr, and Ic from the adjacent CPT soundings. Figure 3.4 plots these CPT
data, symbolized by Sl, on the Robertson (1990) Qt- Fr SBTn chart. As can be seen, data
with the same Sl group together in reasonably distinct areas of the SBTn chart; thus, Ic
appears to be a good discriminator of soil type, although silty sands (SI = 4) have
somewhat high scatter. (We note that the Weber County database lacks samples with Sl
= 2, but the method presented below could be extended to include this soil type, if the
database was expanded. Almost all ofthe samples in the lateral spread database of Youd
et al. (2002) with SI = 2 are from Japanese case studies).

Figure 3.5 shows histograms of Ic, grouped by Sl, from the Weber County

database. A normal probability density function is fitted to each dataset. Table 3.5 lists
the mean and standard deviation (lcand slc, respectively) of Ic for each Sl along with

results of a Lilliefors’ goodness-of-fit test for normality. A Lilliefors’ test is a special
type ofthe Kolmogorov-Smirnov (K-S) statistical test used to test the null hypothesis that
data come from a normally distributed population where the mean and standard deviation
parameters are estimated rather than fully known (such as due to a small sample size).
Since the computed ~-statistic values are less than the critical values at the 5%
significance level, then the null hypothesis that the data are normally distributed cannot
be rejected.

With confidence that the groups are normally distributed, we next verified that Ic

statistically discriminates between each group ofSl. A one-way ANOVA test rejects the
global null hypothesis that the means, I c, are the same across the groups of Sl at the 5%

significance level. We then used multiple comparison procedures to determine if the

means differ between groups.



Figure 3.5. Histograms oflcand fitted normal probability density functions
for (a) SI=1, (b) SI=3, (c) SI=4, (d) SI=5, (e) S| = 6; data from Weber
County, Utah
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Table 3.5. Lilliefors’ goodness-of-fitness test results for normality

“?gélx Corl]mt lc Sc P-Value Kk Stat. C\:;'S:'
1 17 1.42 0.195 0.084 0.197 0.208
3 8 1.76 0.178 0.056 0.283 0.286
4 46 2.09 0.357 0.546 0.085 0.129
5 19 2.53 0.279 0.422 0.141 0.199
6 115 3.05 0.219 0.143 0.075 0.084

Figure 3.6 graphically displays the results of the comparison using the Tukey—
Kramer single-step method at the 5% significance level. Because none of the horizontal
lines of each group overlap, the means of each group are statistically different.

Due to small sample sizes and similar variances of Ic for SI =1 and SI =3, we
performed a two-sample F-test of the hypothesis that these two groups come from normal
distributions with the same variance. The test finds that the F-statistic = 1.208, and the
P-value = 0.841. Therefore, the null hypothesis cannot be rejected at the 5% significance
level. The pooled variance of Ic for SI =1 and SI =3 is 0.036; and, the pooled standard
deviation, slc, is 0.190.

If it is assumed that each of the five soil types listed in Table 3.5 have the same
probability of being encountered randomly in situ, then eqn. (3.9) is true for determining

the probability of a particular soil index, P(SI =1), given a value oflc.

P(st=ilic)=/ ( (3.9)
Si— n QCA )
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Figure 3.6. Multiple comparisons of the means oflc
grouped by SI; data from Weber County, Utah

where N is the normal probability density function of Ic, with mean = Icand variance =

sdc, for the particular SI =i. Zhang and Tumay (1999) found this equation rigorously for
the soil classification index, U, rather than for lc.

Figure 3.7 displays the recommended normal probability density functions of Ic
for each Sl based on the data from Weber County, Utah. Figure 3.8 depicts the graphical
solution of eqn. (3.9)for each Sl using the normal probability density functions in Figure
3.7.

Eqn. (3.9) (or Figure 3.8) provides a method to estimate the probability of each
soil type or Sl for a specific Ic value from the associated conditional probability density
functions. For example, if a CPT datum has a corresponding value oflc= 2.0, then P1=
0.01, P3 = 042, P4 = 047, P5= 0.10, and P6= 0.00, where Pi is the conditional

probability that SI =1.



Figure 3.7. Recommended normal probability density functions for
Ic, grouped by SI; Weber County, Utah
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Figure 3.8. CPT point estimation chart for Sl given Ic;
Weber County, Utah

If that same soil was considered susceptible to liquefaction- induced lateral spread (e.g.,
for that soil, T15> 0), then the values of P1, P3 P4 and Ps, could be inserted into eqn.
(3.4) as variables x1, x3 x4, and xs, respectively, for that datum.

Once again, soils with SI = 6 were not considered to be susceptible to

liquefaction.

Estimating T”with CPT Data
Numerous researchers have found a correlation between SPT-N values and CPT

cone tip resistance, (gt (e.g., Robertson et al. 1983, Robertson and Campanella 1986,
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Kulhawy and Mayne 1990, Jefferies and Davies 1993). In the aforementioned SPT-CPT

“pairs” database for Weber County, Utah, there are 327 samples with SPT-N values

corrected to an energy ratio of 60%, N60. Across the 0.3 meters of depth where these

blow counts were measured, we found the median values of gt, and Ic from the adjacent
CPT soundings. These points are plotted in Figure 3.9.

Values of gt are made dimensionless by dividing by the atmospheric pressure, Pa.

As can be seen, there is a negative correlation between the Log [(qt/ Pg / N&)] versus Ic

Linear regression of the data gives the relationship shown in egn. (3.10).

Log[(qt / Pa)/ N J] = 1.26 +0.295 eIc (3.10)

This regression model has a value of R2equal to 61.6%, and a standard deviation
of the predicted variable equal to 0.156. Although a high R2value would be preferable,
we observe less scatter about the regressed line when Ic< 2.60.

Robertson and Wride (1998) suggested that the approximate boundary between
cohesionless and cohesive behavior for a soil is around Ic= 2.60. Perhaps the additional
scatter in the cohesive area is due to small and thus less reliable values of SPT-N
measured in the soft and cohesive clays. Since T15 is defined as the thickness of
saturated, cohesionless soil, we recommend egn. (3.10) to predict values of N@from CPT
data for liquefaction studies.

After finding N6 from eqn. (3.10) and correcting it for overburden stress to N 160,
we identify layers in the upper 15 meters ofthe CPT logs that are saturated, cohesionless,

and have values 0fN160<15. T1 is found by summing the thickness of these layers.
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Log (qt/Pa/N60)= 1.26 -0.295 Ic

R2=0.616, ct=0.156
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Soil Behavior Type Index, Ic

Figure 3.9. Relationship between CPT-data and SPT N60; Weber
County, Utah

We then use eqn. (3.9) to compute the conditional probabilities of SI (P1, P3 P4, and P5)
from values of Icfor each of these layers. The averages of these conditional probabilities

are inserted into eqgn. (3.4) as the variables x1, x3 x4, and x5(per eqn. (3.11)).

X - (3.11)

4P

where 1j is the thickness of thej-th layer that comprises T15at the CPT sounding (m); Ptis
the conditional probability that SI =i for the j-th layer; and, xt is the average ratio of T15

at a CPT sounding that has SI = i.
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Conclusions

The Youd et al. (2002) model for predicting liquefaction-induced lateral spread
requires specific inputs from laboratory testing, namely mean grain size, Dso1s, and
average fines content, F15 Often in regional studies, these data are not available.
By replacing these two soil factors with the soil description, a new model is
developed which can use data routinely collected in the field and reported on the
borehole logs. This modified MLR model (egn. (3.4)) has a coefficient of
determination, R2 equal to 80.0%, only 3.6% less than R2for the Youd et al. (2002)
empirical model (egn. (3.1)). Therefore, Eqn. (3.4) is recommended for engineering
practice as the most parsimonious model for predicting liquefaction-induced lateral
spread when using existing data. The proposed empirical model shows that
seismic, topographic, and geotechnical factors are highly correlated with
liguefaction-induced lateral spread displacement.
Fine to medium-grained sands with low fines content are associated with larger
lateral spread displacement than coarse grained sands, silty sands, sandy silts, or
fine gravels. This can be seen from the partial regression coefficients of the soil
description variables of eqn. (3.4).
CPT data can be used in conjunction with the proposed empirical model (egn. (3.4))
because it is possible to use CPT data to estimate the required soil inputs. We have
presented a method to calculate the probabilities of each soil type (or index) given
the CPT soil behavior type index, Ic (eqn. (3.9)). Because of the structure of
proposed empirical model, these probabilities can be input directly into eqn. (3.4).

In addition, SPT-N values corrected to an energy ratio of 60% are correlated with
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CPT cone tip resistance and Ic (egn. (3.10)). Egn. (3.10) provides a method to
estimate the thickness of soil susceptible to liquefaction-induced lateral spread.

4.  We recommend researchers compile and analyze side-by-side SPT borings and CPT

soundings in their area of interest, in order to verify that their data follow the same

relationships as presented in Figure 3.8 and egn. (3.10). If necessary, the

methodology presented herein can be readily modified to fit a different dataset.
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CHAPTER 4

A RELIABILITY-BASED APPROACH TO MAPPING THE
PROBABILITY OF LIQUEFACTION

AND LATERAL SPREAD

Abstract

This paper presents a method to map the probability of liquefaction-induced
ground failure for a seismic event. The proposed method incorporates geotechnical and
geologic data, and accounts for variations in soil conditions, age, topography, spatial
distribution, and other major sources of uncertainty. For an example of implementation
of this method, liquefaction hazards are assessed in a study area in Weber County, Utah.
This study explored the necessary geotechnical properties to assess liquefaction, and
grouped these properties according to geologic unit. Analysis of the dispersion of the
geotechnical properties between geologic units of similar depositional environment
revealed that it is appropriate to combine these data from a statistical standpoint. These
property distributions were then assigned to grid points spaced in a manner so as to
capture topographic variations in the mapped domain. Then, at each grid point,
numerous Monte Carlo simulations were performed to randomly sample the geotechnical

distributions and output distributions of probabilities of liquefaction triggering and lateral
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spread displacement exceeding specified thresholds. Solving all grid points in the study
area produced the final liquefaction hazard maps. It is hoped that such maps will be

useful for probabilistic-based hazard calculations and risk assessment.

Introduction

Liquefaction-induced ground failures, particularly lateral spread displacements
from major earthquakes, can cause significant damage to infrastructure and other
facilities. Thus, many researchers have developed methods to map areas of significant
liguefaction risk (e.g., Olsen et al. 2007). In general, these methods begin with making
reasonable estimates of the necessary input variables, and then computing expected
values of liquefaction-induced ground failure based on these estimates. These expected
values are then generalized to an area of interest. However, almost all of these types of
methods do not formally quantify the uncertainty associated with the liquefaction hazard
mapping process.

Liquefaction-induced ground failure is a complex phenomenon, and the
uncertainties associated with predicting and modeling such hazard is further compounded
when mapped at a regional scale. The mapping procedure presented herein accounts for
the primary sources of uncertainty in the estimation process. By preserving the
uncertainty in the analyses rather than removing it, we can define the median estimate
and its distribution. This will aid investigators in deciding if there is a need to perform
site-specific analyses to better characterize subsurface conditions and thereby reduce

uncertainties in the mapped estimates of liquefaction hazards.
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As is usually done in geotechnical engineering, we treat the uncertainties in
liguefaction analysis inductively. We begin with limited observations of a large and
complex subsurface, and infer behavior based on engineering judgment, geologic
information, and statistical reasoning. Numerous sources of uncertainty exist, such as
natural variability over time and space, and knowledge uncertainty due to insufficient
data and limitations of our current models to represent real processes. Often during
engineering analyses, we despair that there are insufficient data or the models are too
complex to calculate the associated uncertainty. Ironically, it is when these limitations
are present that uncertainties should be fully addressed in a systematic manner.

Therefore, this paper describes a method to map the probability of liquefaction
triggering and the probability of lateral spread displacements exceeding specified
thresholds for a scenario seismic event. Primary uncertainty is preserved and modeled
throughout the process by using Monte Carlo random sampling and other statistical
techniques. As an example of implementation of this method, we map the liquefaction
hazards in Weber County, Utah, for a 2,500-year return period earthquake and its

associated strong motion.

Geologic Mapping
The proposed mapping procedure begins with surficial geologic maps. For Weber
County, the Utah Geological Survey (UGS) has published numerous surficial geologic
maps, including three 7.5-minute quadrangle maps: Ogden quadrangle (Yonkee and
Lowe 2004), Roy quadrangle (Sack 2005), and Plain City quadrangle (Harty and Lowe

2005). The majority ofthe North Ogden quadrangle in the study area incorporates a map
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of Harty and Lowe (2003). To complete the North Ogden quadrangle, we filled in a few
areas with an earlier U.S. Geological Survey (USGS) map by Crittenden and Sorensen
(1985). We decided to assess liquefaction hazards in these four quadrangles in Weber
County, Utah, because the majority of the development in the county is found within
these areas.

Using tools in ArcGIS®, we georeferenced each of the geologic maps in the study
area, and digitized each geologic unit into a polygon feature class. We attributed each
polygon feature with its geologic unit symbol and age. We then converted these polygon
attributes into raster images. Raster data are advantageous because we can readily extract
their cell values at any point feature using the “latticespot” tool in ArcGIS®.

The geology of the study area is dominated by Holocene and late Pleistocene
sediments deposited primarily by the Weber and Ogden Rivers, Lake Bonneville and its
successor, the Great Salt Lake. These deposits can be divided primarily into eight
groups: stream alluvium, delta, alluvial fan, fluvial terrace, fine-grained lacustrine,
coarse-grained lacustrine, landslide (mass-movement), and springs and marshes. We
classify three additional groups for mixed delta, alluvium, and lacustrine deposits, and the
North Ogden landslide complex. The UGS geologic maps further subdivide many of
these groups into units by approximate age. Table 4.1 lists these 11 groups, the map
symbols for each of the geologic units within every group, and the approximate age of the
units. The ages shown in the table are from the UGS maps.

Figure 4.1 is a composite map of the surficial geology in the study area. As can

be seen, the study area is bounded on the east by the Wasatch Mountains.



Table 4.1. Geologic units in study area, descriptions, approximate age, and sample size

Deposit
Symbol

Description

1. Stream Alluvium

Qah

Qalz
(O —

2. Delta
Qd1
Qd2
Qds
Qd4
Qds

QO6o'O P

Modern stream alluvium, currently or recently active
Modern stream alluvium
Stream alluvium

Modern fine-grained delta, currently or recently active
Modern fine-grained delta

Fine-grained delta of Gilbert shoreline age

Fine-grained delta from Lake Bonneville's regressive phase
Sand dominated delta from Lake Bonn.'s regressive phase
Deltaic sand from early regressive phase of Lake Bonn.

3. Alluvial Fan

Qaf

Modern alluvial fan

4. Fluvial Terrace

o g

Fluvial terrace, below the Gilbert shoreline

5. Fine-Grained Lacustrine

QIf

Qlfs
QIf4

Mixed from Lake Bonneville and Great Salt Lake lacustrine
Fine-grained lacustrine from Lake Bonn.'s regressive phase
Fine-grained lacustrine from Bonn.'s transgressive phase

6. Coarse-Grained Lacustrine

Qls

Qlgs
Qlg4

7. Landslide
Qms:
Qms:;
Qms3

Lacustrine sand from Lake Bonneville's regressive phase
Lacustrine gravel from Lake Bonneville's regressive phase
Lacustrine gravel from Lake Bonn.'s transgressive phase

Modern landslide, currently or recently active
Modern landslide
Liguefaction- induced landslide (East Ogden slide complex)

8. Springs & Marshes

Qsm

9 - 11. Others

Qda
Qla
Qmqg2

Springs and marshes, undivided

Undifferentiated delta and alluvium, sand-dominated

Undifferentiated lacustrine and alluvium
Liquefaction-induced landslide (N. Ogden slide complex)

Age

< 3,000
3,000 - 10,000
10,000 - 12,500

< 200
9,500 - 10,000
10,000 -11,000
12,000 - 12,100
12,100 - 12,300
12,300 - 14,500

< 5,000

12,000 - 13,300

2,500 - 14,500
10,000 - 14,500
14,500 - 28,000

12,200 - 12,500
10,000 - 14,500
14,500 - 28,000

< 5,000
5,000 - 10,000
10,000 - 14,500

< 12,000

< 12,500
< 12,500
3,000 - 10,000

72

#SPT/
CPT

79
92

20
19
22
18

12*

15

271*

8*
29*
30*

22

14

43
1

* = To increase the sample size, we analyzed geotechnical data from Salt Lake and Weber Counties of

the same geologic description. The sample size listed is for both counties.
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Figure 4.1. Study area, surficial geology, and location of a sample of the geotechnical
investigations; Weber County, Utah (See Table 4.1 for description of geologic units)
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We consider the deposits on the mountains as non-liquefiable because they are

very dense, and the groundwater table is very deep. Figure 4.1 also depicts the location
of the Wasatch fault zone, which is a segmented normal fault that extends along the
Wasatch Front. The Weber segment of the Wasatch fault is the primary seismic threat to

Weber County.

Geotechnical Database

We gathered all available geotechnical data in Weber County, Utah, and input
them into an electronic database. This was done to define distributions of geotechnical
properties for every geologic deposit listed in Table 4.1 and to assess possible data gaps.
A large portion of the geotechnical data came from the Utah Department of
Transportation (UDOT). Overall, the geotechnical database for this study contains data
from 251 Standard Penetration Test (SPT) boreholes and 157 Cone Penetrometer Test
(CPT) soundings. In general, we screened out subsurface tests that did not extend to
depths greater than 10 meters. Although deeper tests are preferred, Bartlett and Youd
(1992) found that the depth to the lowest factor of safety against liquefaction in numerous
case histories is typically (about 90% of the time) within the upper 10 meters of a site
profile. We also extracted data from 21 shear wave velocity tests (Vs) in a database
published by McDonald and Ashland (2008).

The SPT boreholes provide mostly soil descriptions and classifications for each
subsurface layer, depths to groundwater, and uncorrected SPT blow counts, N, with
depth. In addition, some of the boreholes contained recorded measurements of fines

contents, Atterberg limits, unit weights, and moisture contents. To keep track of the
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quality of the data, we assigned data ranking fields for each measured soil property. We
gave data a value of “1” if it was recorded in the borehole log of the original report. We
gave data a value of “2” if it could be estimated from a nearby borehole log in the same
report. Remaining estimates of missing data are filled in from Monte Carlo methods, as
described later in this paper.

All of the CPT soundings have measurements of cone tip resistance, sleeve
friction, and friction ratio. Nearly all of the soundings also have measurements of pore
water pressure behind the tip of the cone, and cone tip resistance corrected for pore-
pressure effects, at increments of 5 cm with depth. In addition, we found at least one
pore-water pressure dissipation test in each sounding. These tests allow reasonable
estimation of the depth to the groundwater table at each sounding location.

We used the data from the Vstests to assist in determining the site soil response of
a geologic unit, based on the upper 30 meters of the site profile, according to procedures
described in Chapter 20 of ASCE 7 (2010).

Figure 4.1 shows a sampling of the SPT, CPT, and Vs data in this database.
(Although we used all of the gathered subsurface data for the analyses, we do not have
permission from the owner to release the locations of some of the borehole and CPT data
provided by the local utilities.) Table 4.1 lists the number of SPT and CPT investigations
in each ofthe geologic units. As can be seen, some ofthe units have a small sample size,

and there are no SPT/CPT investigations in some of the very small units in the study area.
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Probabilistic Framework

This paper presents a method to map the probabilities of liquefaction hazards for a
seismic event. Although beyond the scope ofthis paper, it is certainly possible to extend
the methodology presented herein to consider the uncertainty in the seismic inputs, and
produce fully probabilistic liquefaction triggering and lateral spread hazard maps in an
area of interest. To estimate the probability of liquefaction-induced lateral spread
displacement exceeding certain thresholds for a scenario seismic event, we solve the

probability chain listed in egn. (4.1).

p [Dh >y] =P[Dh >y |L] *pl (4.1)

where DH is the predicted lateral spread displacement given the scenario seismic inputs, y
is a specified displacement threshold, L is the triggering of liquefaction, and PL is the
probability of liquefaction triggering given the scenario seismic inputs.

The probability of liquefaction triggering, PL, can be computed using the
liguefaction potential curves developed by Cetin et al. (2004) for SPT-based data, and
Moss et al. (2006) for CPT-based data. Both of these methods require identification of
the critical layer in the site profile that is most susceptible to liquefaction. After
identification of this layer, we solve for the probability of liquefaction triggering based on
the geotechnical properties of the critical layer. For SPT-based data, the necessary
geotechnical data describing the critical layer are: clean sand-equivalent corrected SPT
blow counts, N160cs, the effective stress, 0y, total stress ov, and depth to the critical layer,

d. For CPT-based data, the necessary geotechnical data describing the critical layer are:
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normalized cone tip resistance, qcl, friction ratio, Rf, stress normalization coefficient, c,
c'v,ov,and d. These SPT and CPT factors are discussed later.

To estimate the probability of lateral spread displacement exceeding a specified
threshold given liquefaction (P[DH>y |L]) from available data, we found it necessary to
develop a new empirical lateral spread model (Gillins and Bartlett 2012). We developed
the new model by revising the Youd et al. (2002) empirical model such that it is more
parsimonious and implementable for regional hazard analysis. This new model is shown
as two equations. Eqn. (4.2) is for gently sloping ground conditions, and eqn. (4.3) is for
free-face conditions (e.g., presence of a river channel or steep topographical depression,

Bartlett and Youd 1992).

f-8.453 +1.348 M W-1.068+ LOg(R*) - 0.017 *R +0.334 «L0og(S) +'

+0.588 sLog (TI5cs) + 0.278 (4.2)

Log (Dh) =

(®8.795 +1.348 M W- 1.068* Log(R*) - 0.017 *R +0.453 sLog (W) +'

+0.588 sLog (TI5¢s) + 0.278 (43)

Log (Dh) =

where Log(DH) is the mean value of the logarithm (base 10) of the lateral spread

displacement (DHis in meters), Mwis the moment magnitude of the earthquake, R is the
nearest mapped distance from the site to the seismic energy source (km), W is the ratio of
the height ofthe free-face to the horizontal distance between the base of the free-face and
the point of interest (%), S is the ground slope (%), and R* is a nonlinear magnitude-

distance function calculated by R*=R +1008aMnw5 64.
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As can be seen, the model listed in eqgns. (4.2) and (4.3) is a function of one

geotechnical variable: T15¢cs, which can be defined by eqn. (4.4).

0,647 X, - 0176 +X3+0.278 +x3+ 0.032 +X4- 0.571 +x5- 0.278 |
0.588 j

" =Tbe10al
c b I

(‘\1/-4),
where Tis is the cumulative thickness in the upper 15 meters of the site profile that is
susceptible to lateral spread (i.e., saturated, cohesionless, and with corrected SPT blows
counts, N18< 15), and xnis the respective ratios of TI5with a soil indices, Sl, equal to n.
Table 4.2 defines Sl as a function of the description or classification of a layer of soil.
For example, if a TS layer is 30% coarse, gravelly sand and 70% clean sand, then x2 is
0.3 and x* is 0.7. (Note that we consider soil with SI > 6 as not susceptible to
liquefaction; thus, x6and x7do not appear in egn. 4.4.)

There are several advantages to using this new empirical model for analysis of
lateral spread hazards at a regional scale. First, it uses data routinely collected in the field
and reported on the borehole logs. Second, it has a coefficient of determination, R2 =
80.0%, which is only 3.6% less than that found for the model of Youd et al. (2002).
Finally, CPT data can be used in conjunction with the new model, as described in greater
detail in Gillins and Bartlett (2012).

Based on eqgns. (4.2) and (4.3), we solve for the probability of lateral spread

exceeding a displacement threshold, y, given liquefaction, by eqn. (4.5).
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Table 4.2. Definition of soil indices and their modeled distributions of dry unit weight,
specific gravity, and water content

S| Soil Description from Log(w)
Borehole Log (W in %) ®Log(w)  Gs ~ vd

g Sy gravel, gravel with 0.998 0075 267 001 1075 7.3
fines

, Very coarse to coarse sand, 1204 0075 267 ool o34 73
gravelly sand

g Medium to fine clean sand, 1294 0075 267 001 984 7.3

sand with some silt

Very fine sand, silty sand,
4 sand with silt, dirty sand, 1.384 0.075 2.67 0.01 98.4 7.3
silty/clayey sand

5 Sandy silt, silt with sand, silt 1.424 0.075 2.65 0.02 93.3 7.3

6  Silty clay, lean clay 1.467 0.183 2.72 0.02 93.3 7.3
7  Fatclay 1.531 0.183 2.62 0.02 86.2 7.3
P[Dh >y |L]=0F Lo9(¥)- L°g(Dh) (4.5)
°Log (Dh)

where O is the standard cumulative normal distribution; and, cLogfH is the standard
deviation ofthe predicted variable for eqns. (4.2) and (4.3), which equals 0.218.

In summary, we solve eqgn. (4.1) as a function of certain geotechnical properties.
For SPT-based data, it is a function of. (Nj,60,cs, * v, v, d, Tis,cs). For CPT-based data, it is
a function of (qcl, Rf, ¢, o’v, ov, d, TI5c). We name these geotechnical variables the

“critical datasets”, and solve for them at each SPT borehole and CPT sounding. Then, we
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group each critical dataset according to their corresponding geologic unit. Since ¢ v, Gv,
and d, are strongly correlated, we will treat each individual critical dataset as an equally
likely outcome when sampling within its geologic unit. The next two sections of this
paper describe how we solved for the critical datasets, and accounted for their

uncertainty.

SPT Data
Cetin et al. (2004) developed probabilistic liquefaction potential curves based on
SPT data and a Bayesian framework, and produced a composite equation (egn. (4.6)) to
model these curves. We used this equation to estimate PL for every layer in an SPT
borehole, and then set the layer with the largest value of PL as the critical layer for the

site. After identification of the critical layer, we solved for its critical dataset: (N160Gs,

Gy, Gsd Th).

N 160c. -13.32 +In(CSR) - 29.53 sIn(Mw) - 3.70 «In(a'v) +16.85

_ 4.6
PI =® 270 (4.6)

where amaxis the peak horizontal ground surface acceleration (in units of gravity), CSR is
the equivalent uniform cyclic stress ratio, and g *vis in units of atmospheres (atm).
We used definitions by Cetin et al. (2004) to correct raw SPT blow counts, N, to

values of N18)cs (eqgns. (4.7) and (4.8)).
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N 160 for FC <5%
Njgoes =<NI180(1+0.004 «FC) +0.05+FC for 5<FC <35% 4.7)
1.14 «N 180 +1.75 for FC >35%
N,60 =N eCneCr ecs *Ch «Ce (4.8)

where FC is the fines content (%), Cnis the correction for overburden pressure, CRis the
correction for rod length, CS is the correction for sampler configuration, CB is the
correction for borehole diameter, and CE is the correction for hammer energy ratio.

We identified CEas a major source of uncertainty. The hammer energy ratio is the
ratio of the actual versus theoretical SPT impact hammer energy transmitted to the
sampler. This ratio is a function of actual hammer drop distance, sliding friction between
the hammer and the rods, number of loops of the rope around the cathead, rope
conditions, etc. It is best practice to directly measure the impact energy transmitted with
each blow of the hammer during the SPT, or to use a well calibrated mechanical hammer
release system. Unfortunately, even if these practices were used, they are not mentioned

in the reports of the SPT data in Weber County. Hence, we defined CE for each borehole

as a normally distributed random variable with mean, CE, and standard deviation, o(E

For the safety hammer, we set CE= 1.0 and 0(E=0.1; and for the automatic hammer, we

set CE= 1.1 and o0(E=0.1. These parameters are based on the recommended range of

values from Cetin et al. (2004).
Another major source of uncertainty is FC. Often, many of the cohesionless

layers in each borehole lacked measurements of FC. To fill in these missing data, we
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estimated distributions of FC according to soil type (or Sl). Distributions of FC
according to S| from data in Weber County are approximately uniform and conformed
well to definitions from the Unified Soil Classification System (USCS). Therefore, we
modeled the following uniform distributions. for SI = 1- 3, FC = 0 - 12%; for Sl = 4,
FC = 12 - 50%, and for SI =5, FC = 50 - 95%. Since we consider layers with SI > 6 as
not susceptible to liquefaction, we did not fill in their missing FC data.

In addition to many of the layers lacking FC, numerous layers within the
boreholes lacked measurements of soil unit weight and water content. We find that these
properties can be estimated reasonably well, resulting in minor uncertainty in the stress
profile. We filled in these missing data by estimating distributions of dry unit weight, yd
water content, w, and specific gravity, Gs, according to values of S| for the layer.
Distributions of ydper Sl in Weber County are normally distributed with equal variance,
according to statistical F-tests. Table 4.2 lists normal parameters fitted to these
distributions. Distributions of w per Sl in Weber County are lognormally distributed with
unequal variance, according to statistical F-tests. Table 4.2 lists lognormal parameters
fitted to these distributions. Although there are limited Gs data in Weber County, the
variability of Gs is typically small. Bowles (1996) lists typical ranges of values for Gs
according to soil type. Based on these ranges, we modeled Gs according to the normal
parameters listed in Table 4.2.

Due to the uncertainty of several ofthe input variables (specifically CE, FC, yd w,
and G9), we solved for the critical dataset in an SPT borehole by the Monte Carlo method.
In this method, we randomly sample from all of the distributions of the input variables

and compute the result. We then repeat this process numerous times until we have used
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enough combinations of the input random variables to define the distribution of the
results. We model the random sampling of a uniformly distributed random variable, Ry,

by eqn. (4.9).

Ru=a+ (b- a)erand(l) (4.9)

where a and b are the lower and upper bounds of the uniform distribution of a random
variable, respectively, and rand is a function that generates random values between 0 and
1.

Similarly, we model the random sampling of a normally distributed random

variable, Rn by eqn. (4.10).

Rn=/u+o0 erandn(1) (4.10)

where U and 0 are the mean and standard deviation parameters of the normal distribution
of the random variable, respectively, and randn is a function that generates random
values from the standard normal distribution.

We found that after 300 Monte Carlo simulations, we have adequately defined the
distribution of each variable in the critical dataset at a borehole. Figure 4.2 depicts
empirical cumulative distribution functions (CDFs) of each variable in the critical dataset
at SPT borehole no. 11 of the Weber County geotechnical database. This figure shows
CDFs after 10, 100, 300, 500, and 1000 Monte Carlo random sampling simulations. As

can be seen, the CDFs converge after 300 simulations. Therefore, we set 300 as the
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Figure 4.2. Cumulative distribution functions of the critical dataset at SPT site no. 11. The distributions converge
after 300 Monte Carlo simulations
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necessary number of simulations to ensure definition of the uncertainty of the critical
dataset at each SPT borehole. Since ¢\, ov, and d are strongly correlated, we treat each

ofthe 300 individual critical datasets as an equally likely outcome at the SPT borehole.

CPT Data
Moss et al. (2006) developed probabilistic liquefaction potential curves based on
CPT data and a Bayesian framework, and produced a composite equation (egn. (4.11)) to
model these curves. Similar to methods presented herein for SPT data, we used this
equation to estimate PL for every layer in a CPT sounding, and then set the layer with the
largest value of PL as the critical layer for the site. After identification of the critical

layer, we solve for the critical dataset of the layer: (gcl, Rf, ¢, o’v, oy, d, T15c).

022 +qci(0.110 «Rf) + (0.001 «Rf ) + c(1 + 0.850 *Rf ) + A

-7.177 *In(GSR) - 0.848 *In(Mw) - 0.002 *In(101.325 -0'v) - 20.923

P1=@® 1.632 (4.11)

where gcand qclare in MPa, Rf is in %, and o’vis in atm.

Moss et al. (2006) presented a method to iterate for the stress normalization
exponent, c, as a function of qcl and Rf. Their procedure is based on cavity expansion
models used in conjunction with field and laboratory test data. We use their method to
find c, and correct raw values of CPT tip resistance, qc to values of qcl.

To solve for the stress profile in a CPT sounding, we must estimate soil unit

weights. As mentioned in the analysis of SPT data, we found that this type of data can be
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estimated reasonably well, and has little uncertainty. However, to conform to SPT-based
methods, we model this minor uncertainty by relating the in situ soil behavior measured
by the CPT (termed the Soil Behavior Type, SBT) to values of SI. Numerous researchers
have found that soil classification or type relates well with CPT-based SBT (e.g., Molle
2005). Robertson (2009) introduced a non-normalized chart to estimate SBT based on
raw measurements of qcand Rf. The boundaries of the non-normalized SBT chart can be
modeled by concentric circles with radius equal to the soil behavior type index, 3BTI,

defined by egn. (4.12).

o0 =[(3.47 - Log(qc))2+ (Log (Rf) + 1.22)2]06 (4.12)

where qc is in atm and Rfis in %.

Robertson (2009) states that in general, normalized SBT charts provide more
reliable identification of SBT than non-normalized charts. However, he also reports that,
when the in situ vertical effective stress is between 50 kPa to 150 kPa, there is little
difference.  Since liquefaction is a shallow phenomenon, and since we are only
accounting for the minor uncertainty in the stress profile, we use values of non-
normalized SBT to model distributions of yd, w, and Gs. Table 4.3 lists how to compute
SBT from ISBT, and describes each SBT zone. We linked values of SBT to Sl according
to similar descriptions. Then, using these links, we assigned the distribution parameters
for yd w, and Gsto corresponding layers of sediment. We only used these links to

estimate the uncertainty in the stress profile at each CPT sounding.
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Table 4.3. Definition of SBT by ISBT, and approximate correlation to Sl for
estimating soil parameters

SBT
Isbt Zone SBT Description « Sl
Isbt< 1.31 7 Gravelly sand

1.31 < lIsbt< 2.05
2.05 <Isbt<2.60

6 Sands-clean sand to silty sand
5
2.60 < Isbt<2.95 4 Silt mixtures - clayey silt to silty clay
3
2

Sand mixtures- silty sand to sandy silt

2.95 < Isbt < 3.60
Isbt> 3.60

Clays

~N o o B w DN

Organic soils - peats

Gillins and Bartlett (2012) provide a general equation (egn. (4.13)) and method to
compute the probability of SI given values of normalized soil behavior type index, Ic. We
recommend this equation for developing most relationships between S| and CPT-based
SBT. There are many advantages to calculating the probabilities of soil type from CPT-
based data. For one, we can define the major uncertainty in estimating soil type by CPT.
The probabilities found from eqn. (4.13) can also be used directly as values ofXj - x5 in

egn. (4.4) to find T]5csat a CPT sounding.

P[SI =i\l']= N( (4.13)
EN(/,,4))

I1=1

where N is the normal probability density function of Ic, with mean, Ic , and variance,

sac, for avalue of Sl equal to i.
To implement eqn. (4.13), we recommend developing distributions of Ic per Sl

using data specific to the study area. For example, in this mapping project, we compiled
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available “pairs” of side-by-side SPT borings and CPT soundings in Weber County into a
database. From this, there are 205 samples that were classified according to the USCS
from laboratory measurements. Based on these evaluations, we assigned the samples a
value of SI. In addition, at the depth intervals where these samples were taken, we found
the median value of Ic from the adjacent CPT soundings. From statistical tests, the
distributions of Ic per Sl are normally distributed with unequal means and unequal

variances (except for SI = 1 and 3). We fit normal probability density functions to these
distributions for each Sl, and found their mean, lc, and variance, sAc. For a full

description of this process, refer to Gillins and Bartlett (2012). Since the database lacked
samples with SI = 2 and S| = 7 (these soil types are very sparse in the Weber County
geotechnical database), it was not possible to develop their probability density functions.
Zhang et al. (2002) most recently defined Icbased on the normalized Qt- FRSBT
chart of Robertson (1990). Similar to IS8l Ic is the radius of concentric circles that

approximate the boundaries of the normalized SBT chart (eqn. (4.14)).

Ic =[(3.47 - L0ogQ ))2+ (Log(FR) + 1.22)2]06 (4.14)

where Qn is the normalized cone tip resistance (in atm), and FR is the normalized friction
ratio (%).

In addition to the uncertainty with estimating soil type from CPT, another major
source of uncertainty is from estimating SPT blow counts, N160, from CPT. Per eqn.
(4.4), TIhcsis a function of T15 (i.e., the thickness of saturated, cohesionless soil in the

upper 15 meters of a site profile with N160 < 15) As described in Gillins and Bartlett
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(2012), we found a linear relationship between SPT blow counts and CPT data in Weber

County (egn. (4.15)).

Log(qt/Neo) =1.26- 0.295¢lC (4.15)

where gt is the cone tip resistance corrected for pore-pressure effects (atm), and Neo =
Nieo / C,, For this relationship, R2= 61.6% and the standard deviation of the predicted
variable, OLogg/Nw) = 0.156.

Similar to the SPT-based approach, we solved for the critical dataset at each CPT
sounding by the Monte Carlo method. We modeled the variables with uncertainty
(specifically yd, w, Gs, and Log(gt/ N8&)) as normally distributed random variables with
normal parameters p and 0 (egn. (4.10)). Like the SPT-based approach, we found that
300 Monte Carlo simulations adequately defined the distribution of each variable in the
critical dataset at a CPT sounding. Again, since g v, gv, and d are strongly correlated, we
treat each of the 300 individual critical datasets as an equally likely outcome at the CPT

sounding.

Critical Dataset Distributions by Geologic Unit
Previous researchers (Youd and Perkins 1978, Bartlett and Olsen 2005, Holzer
2006) found that general engineering properties of soils are similar within geologic units.
The reduction of SPT and CPT data enables quantitative description of the distribution of
geotechnical properties for a geologic unit.  This improves understanding of the

susceptibility of a unit to liquefaction-induced ground failure.
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Aforementioned models to estimate probabilities of liquefaction hazards are
functions of certain geotechnical variables we call “critical datasets”. In the previous two
sections, we described how we solved for the distribution of each variable in the critical
dataset at an individual SPT borehole or CPT sounding. To define the distribution of
each variable in the critical dataset for a geologic unit, we simply pool the critical
datasets of the SPT and CPT investigations within the unit. Since variables in each
critical dataset are correlated, and since we simulated 300 possible outcomes of datasets
by the Monte Carlo method at each SPT and CPT investigation, pooling data by geologic
unit results in very long lists of datasets.

To visualize and analyze the dispersion of the pooled geotechnical data by
geologic unit, it is desirable to relate the CPT data (qcl Rf, and c) to the SPT data
(NL @cs). We accomplish this by first, rearranging eqns. (4.6) and (4.11) for CSR. We
then set these two rearranged equations equal to each other, and solve for N18)c -
thereby relating CPT-based data for liquefaction analysis to SPT-based data. Eqn. (4.16)

is the complete solution for N160cs, as a function of g1, Rf, ¢, o’v;Mw and PL

180G
+3.696 *In(a'v) + 27.956 sIn(Mw) - 55.712 + 0.329 +0 -1(PL)

To simplify egn. (4.16) for this study, we found the controlling earthquake
magnitude for a 2,500-year return period event is approximately equal to 7, with small
variation. In addition, the ®-1(PL) term in eqn. (4.16) has a small coefficient; hence, the

total variability of PLwill result in only small variability in N1@)cs. Varying PL from 0.01
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- 0.99 results in a total variability of only 1.530 blows. By inserting Mw= 7, and an
average value of PLinto egn. (4.16), we approximated Ni6qes from CPT-based data by

eqgn. (4.17).

G
9 +3.696 ¢In(a 'v) -1.294 £ 0.765

We used eqn. (4.17) to convert the CPT data to SPT data, and produced frequency
histograms of geotechnical properties according to geologic unit. Figure 4.3 is an
example of such histograms for modern stream alluvium, Qallin Weber County.

We produced the same set of histograms for each geologic unit listed in Table 4.1
that has a minimum SPT/CPT sample size of 9 (note: a complete set of histograms are
available in the appendix of Gillins 2012). The histograms like in Figure 4.3 allow visual
exploration of the data: enabling recognition of patterns or trends, and comparison
between geologic units. Visual analysis is often better than any kind of statistical test of
the dispersion of the data. For instance, Figure 4.3a depicts two sets of frequency plots
for quick interpretation of the susceptibility of Qallto liquefaction-induced lateral spread.
The first set shows that 98.7% ofthe SPT and CPT investigations within this unit found a
critical layer - a layer that is saturated and cohesionless in the upper 15 meters of the site
profile. Only a small percentage of the investigations could not identify a critical layer
because either the site profile was entirely cohesive, or the groundwater table was too
deep (below 15 meters). The second set of histograms in Figure 4.3a show that 51.4% of

the critical datasets had a value of TI5> 0. In other words, just under half of the datasets
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Figure 4.3. Histograms of critical dataset variables for Qall, Weber County, Utah. Note
subplots (b) - (d) are for critical datasets where T15> 0

from the investigations have T15= 0. Ofcourse, we are most concerned with that portion
of the datasets with T15> 0; hence, Figure 4.3b - d shows frequency histograms of values
of 0’v, N160,cs, and T15¢s for critical datasets where T15> 0, respectively. As can be seen,
each of these three distributions is approximately lognormally distributed. Most of the
values (96.0%) of TI5csare between 0 - 1 meter, with a median value equal to 0.3 meters.
Based on these quantitative geotechnical properties, it appears that Qallis susceptible to
liguefaction and lateral spread. On the other hand, similar to Figure 4.3a, Figure 4.4

depicts frequency histograms for (a) alluvial fan, Qaf; and (b), North Ogden landslide
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Figure 4.4. Frequency of occurrences of T15 > 0 for (a) Qaf, and (b) Qmq2, Weber
County, Utah

complex deposits, Qmqg2. As can be seen, neither of these units have a significant
percentage of critical datasets with TI5> 0. Mostly, this is due to very dense, fine, or
cohesive sediments found in the borehole studies in these units. Therefore, based on
these data, it appears that the Qafand Qmq2 units have little to no susceptibility to lateral

spread.

Analysis of Dispersion by Geologic Deposit

In the previous section, we described a method to pool and visually explore
geotechnical data from individual SPT and CPT tests according to geologic unit. In
addition, we described how to convert CPT-based data to approximately equivalent SPT-
based data. With a sufficient amount of SPT and CPT investigations, it is possible to
quantitatively describe the distribution of geotechnical properties within a geologic unit.
Unfortunately, when mapping liquefaction hazards at a regional scale, especially from
available data, there is often insufficient sampling of every geologic unit in a study area.

To account for insufficient sampling, it is desirable to pool data for geologic units with
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similar geotechnical properties. Pooling data increases the robustness of the sampling,
thereby improving estimates of the variability of the geotechnical properties within a
geologic unit.

We pool data by inductive reasoning, starting with the hypothesis that geologic
units of similar depositional environment have similar critical datasets. Then, we analyze
the dispersion ofthe critical datasets for each unit within a depositional environment, and
examined visually and through statistical tests (such as multivariate analysis of variance,
MANOVA) if our hypothesis cannot be rejected. If our hypothesis cannot be rejected at
a certain significance level, then we conclude that it is appropriate to pool the data.

We found through such reasoning, that it is appropriate to pool critical datasets
from geologic units of similar depositional environment. Table 4.1 lists how we pooled
data from similar geologic units into 11 deposit classes. As can be seen, pooling data into
these 11 classes greatly increases the sample size of SPT and CPT investigations for each
unit and the robustness of the statistical analysis. The rest of this section describes the
methodology for analyzing the dispersion of critical datasets within units of similar
deposit type.

First, for each deposit, we compared the frequency histograms of T15= 0 versus
T15> 0 between geologic units (e.g., Figure 4.3a or Figure 4.4). For the delta units, there
are similarly high percentages of occurrences in the critical datasets where T15> 0: 100%
for Qd2, 85.2% for Qd3 95.5% for Qd4, and 100% for Qd5. For stream alluvium units,
there are similarly medium percentages of occurrences where T15> 0: 51.4% for Qall
and 65.1% for Qal2. And for coarse-grained lacustrine units, there are similarly low

percentages of occurrences where T15> 0: 16.1% for Qlg3, and 25.8% for Qlg4.
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Second, we compared the distribution of geotechnical variables for critical
datasets with T15> 0. Figure 4.5 depicts scatter plots in log-log scale of median values of
N 18)cs (or approximate N16)cs from CPT data per egn. (4.17)) versus T15cfrom SPT and
CPT investigations (with T15> 0). The data points are plotted in subplots according to
deposit class, and symbolized according to geologic unit. Figure 4.5a shows that stream
alluvium data from the Qalland Qal2 units in Weber County are very similar, since there
are not any distinct patterns separating them.

Similarly, Figure 4.5b shows that deltaic data plot in the same region, without
distinctness between the units in Weber County. Figure 4.5¢c - d depicts data for fine-
grained and coarse-grained lacustrine, respectively, from investigations in both Weber
and Salt Lake Counties. There are insufficient sample sizes for some of the lacustrine
units; however, it appears from the small samples that they could be similar. We
postulate that these units are similar based on the finding that the stream alluvium and
delta units are similar.

Finally, because there are adequate sample sizes of numerous units within the
stream alluvium and delta deposits, it is possible to perform one-way MANOVA of each
unit to statistically test our hypothesis. One-way MANOVA compares the mean vectors
of two or more groups of multivariate data, and tests the null hypothesis that the means
are the same. The test assumes the independent variables are approximately normally
distributed and not heavily correlated. Therefore, we analyzed the following
geotechnical variables for a geologic unit: Log(N18c), Log(T15c), and Log(o™). We
compared 16th, 50th, and 84th percentile values at all subsurface investigations where T15>

0. The 50th percentile value is the median value of these three variables at a SPT or CPT.
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Figure 4.5. Scatter plots of median values of N],@c vs. Ti5c according to geologic
deposit, at sites where T15> 0, for (a) stream alluvium and (b) delta in Weber County
only, (c) fine-grained lacustrine and (d) coarse-grained lacustrine in shown counties
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The 16th and 84th percentile values approximate the mean minus and mean plus one
standard deviation values, respectively.

Table 4.4 summarizes the results of the MANOVA tests for the stream alluvium
units, Qalland Qal2. As can be seen, results are similar for all 3 percentile values from
the SPT and CPT investigations. At every percentile, the determinant of the within-unit
dispersion, |W]|, is approximately equal to the determinant of the total dispersion of both
units, [T|. The ratio of these determinants, |W| / |T|, is equal to Wilks’s Criterion (Wilks
1932), L. IfL is equal to 1, then W and T are the same and there are no differences
between the units. We find L = 0.99 at every percentile. From Wilks’s work, we
transform L such that it is distributed approximately as x2 with 3 degrees of freedom,
enabling estimation of the significance of L. For every percentile, we find large
significance values (P = 0.71 - 0.77) that the null hypothesis cannot be rejected. For
additional interest, the Mahalanobis distance between the units, D, is only equal to 0.05-
0.06. Hence, we conclude that the subclassification of the two units, Qall and Qal2,
achieves nearly nothing in terms of the critical datasets. Therefore, we pooled the critical

datasets from Qalland Qal2into a single dataset.

Table 4.4. Summary of MANOVA results with 3
degrees of freedom for Qall, Qal2; Weber County, Utah.

Percentile variables from SPT/CPT

16th 50th 84th
W|  127x 103 134x 103 193 x 103
T 129x 103 135x 103  1.95x 103
L 0.99 0.99 0.99
N 1.26 1.12 1.38
P 0.74 0.77 0.71
D 0.06 0.05 0.05
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Figure 4.6 displays graphically the results of the MANOVA tests for stream
alluvium and delta deposits at the 50th percentile. Figures of this type aid in visually
examining how similar or different the units are from one another. To produce this
figure, we rotated the axes of the independent variables into canonical axes. In canonical
space, confidence ellipses that represent the distributions within the units become circles.
For this figure, we plotted 90% confidence circles of the data on the first two canonical
axes. As can be seen from Figure 4.6a, the confidence circles nearly perfectly overlap for
the stream alluvium units, at the 50th percentile. We find the same results at the 16th and
84th percentile; thus, there is nearly no distinctness between the two units. Similarly,
Figure 4.6b shows significant overlap of the circles for all of the delta units. It appears
that Qd3is the most different unit; however, it is not significantly different than the other
units. We conclude that the classification of the 4 delta units achieves little in terms of

the critical datasets. Therefore, we pooled the critical datasets from Qd2- Qd5.

Accounting for the Influence of Age

Several investigators have noted that liquefaction resistance of soils increases
with age. Youd and Perkins (1978) noted that older Holocene sediments are generally
less susceptible to liquefaction than sediments deposited within the past few thousand
years, and Pleistocene sediments are even less susceptible. Although these increases
have been noted, factors causing increased liquefaction with age are poorly understood
(Youd et al. 2001). Researchers have not found explicit evidence to fully explain the
mechanisms behind the phenomenon known as aging (Leon et al. 2006). Past research

has focused primarily on chemical and mechanical mechanisms (Leon et al. 2006).
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Canonical Variate 1
(b) Delta

Figure 4.6. Scatter of median values of 0’v, Ni:Bcs, and Ti5es at sites where Ti5> 0, on

planes of canonical axes for (a) stream alluvium and (b) delta, with 90 % confidence
circles; Weber County

Mitchell and Solymar (1984) suggested that aging is a result of chemical
mechanisms such as the formation of silica acid gel on particle surfaces and silica
precipitates from the water table over time. These precipitates may cause cementing
bonds at interparticle contacts. Schmertmann (1987) suggested that aging is a result of
mechanical mechanisms such as processes that take place during secondary
consolidation. During this consolidation phase, soil particles gradually rearrange to a
more stable system resulting in an increase in the number of interparticle contacts, in
macro-interlocking of sand grains, and in micro-interlocking of grain surface roughness.
Olsen et al. (2001) proposed that in the first few thousand years after sediment is

deposited, the majority of the aging process is explained by the rearrangement of soil
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particles during secondary consolidation. However, over geologic time, cementation
from chemical mechanisms may become significant.

In the previous section, we found that the critical datasets of geologic units of
similar depositional environment are similar, regardless oftheir age. For instance, we did
not find significant statistical differences in measurements of Nibgeg or TS in early
Holocene or late Pleistocene delta units. This leads to the conclusion that data from high-
strain penetration resistance tests, like the SPT or CPT, do not adequately identify the
influence of soil aging. Instead, some researchers have found more success detecting the
influence of age from low-strain tests, like the Vs (e.g., Andrus et al. 2009).
Unfortunately, there are little available Vs data in the study area.

To account for the influence of age using SPT-based or CPT-based liquefaction
analysis techniques, researchers suggest applying an age correction factor, KCR to CSR.
Hayati and Andrus (2009) combined 24 previous cases studies based on laboratory and/or
field tests of age strength gain factors, and proposed eqgn. (4.18) from linear regression of

the data.

«¢: =0.13 *Log(t) + 0.83 (4.18)

where t is the time since initial deposition or critical disturbance (i.e., liquefaction), in
years. Eqn. (4.18) suggests an average reference age (when KCR= 1) of approximately 23
years (Hayati and Andrus 2009). A reference age of 23 years seems logical because the

liguefaction potential curves were developed primarily with liquefaction case history data
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that occurred in the past 1 - 100 years. For egn. (4.18), R2is 62% and the standard

deviation ofthe model, olr, is 0.24.

To apply egn. (4.18), one must carefully estimate the age of the sediment (i.e.,
time since initial deposition or last critical disturbance) at the point of interest. Table 4.1
lists approximate ages of the geologic units in the study area from the UGS surficial
geology maps. Next, one computes KDR and then divides it into values of CSR that are
uncorrected for age, per egn. (4.19). Finally, one uses this reduced CSR in eqns. (4.6) or

(4.11) to estimate the probability of liquefaction triggering.

CSR =0.65 J rd (4.19)

1j vJ VKDR;j

where rdis the nonlinear shear mass participation factor. Cetin et al. (2004) proposed a
model to estimate rd with mean, rg, and standard deviation, <g. This model is a

function of the average shear wave velocity in the upper 12 meters of the site profile
(V*s,2). Moss et al. (2006) proposed a new regression model for rdwithout V*g .. Since
Vg 2data are sparse, we use these equations (instead of estimating V*§12and introducing

additional uncertainty).

Spatial Dependence and Weights
The first law of geography states that everything is related to everything else, but
near things are more related than distant things. Likewise, geotechnical properties at sites

that are close together are more correlated than properties at sites that are further apart.
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In this paper, we described a method to develop distributions of geotechnical properties,
specifically critical datasets, according to geologic deposit. When developing these
distributions, we treated results from each SPT or CPT investigation as independent and
equally likely to occur when sampling within a geologic unit. However, geotechnical
properties at a point in space are more likely to be similar to properties found from
nearby investigations than properties found from investigations that are further away.

A common way to describe the degree of variation of properties in space is
through a semivariogram. Cressie (1993) defined a semivariogram function as the
variance of the difference between field values at two locations across the realizations of
the field. Semivariance analysis is optimal when data are normally distributed and
stationary (i.e., the mean and variance do not vary significantly in space). In the study
area, we found that the median values of Log(T15¢cs) from SPT and CPT investigations are
approximately normally distributed and stationary. We computed the average semi-
variance of these values, 7(h), at numerous lags (distance and direction), h, according to

eqgn. (4.20).

1 m
Y(h) =5 Z [2(x9) - 2(X +)]2 (4.20)

where z(x) is the median value of Log(T15cs) for a point at vector coordinate X, z(x + h) is
the median value of Log(T15c) for a point at vector coordinate x + h, i is a pair of points

separated by h, and m is the number of pairs separated by h.
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Figure 4.7 depicts the average semivariance of median values of Log(T]5G), from

the SPT and CPT investigations in the study area, versus lag distances. We found the
data were approximately isotropic; thus, the lag h becomes the scalar h, which is simply
equal to the horizontal distance between pairs of points. As shown, we fit a theoretical
bounded linear semivariogram model through the data. Eqgn. (4.21) lists the formula for

this theoretical model.

forh <94.6 m
(4.21)
0.277 forh>94.6 m
0.35
L]
0.30 " - 0
0
0 100 200 300 400

lag distance h, (m)

Figure 4.7. Semivariogram of median
values of Log(T/5@; Weber County, Utah.
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As can be seen in Figure 4.7, the data within 20 meters of another (h = 20 meters)
are heavily correlated, because their semivariance is nearly equal to zero. As the lag
distance between data points increases, the semivariance also increases until reaching a
limit (or sill) where the semivariance flattens and becomes roughly constant with lag
distance. The semivariance at the sill represents the total semivariance of the variable.
The lag at which the semivariogram reaches its sill is the range. The range is the limit of
spatial dependence; beyond it the semivariance bears no relation to the separating
distance. From eqn. (4.21), we found that the range is approximately 95 meters, and the
sill variance is approximately 0.28. Therefore, ifa point of interest is within 95 meters of
a geotechnical investigation, then we expect that its value of Log(T15¢c) will be more
correlated to values found from that investigation than to values found from
investigations that are more than 95 meters away. On the other hand, if a point of interest
is not within 95 meters of any geotechnical investigation, then we have no spatial
dependence, and we model the total variance, and thus increased uncertainty, of
Log(Tis,) from all geotechnical investigations in the corresponding deposit.

We performed the same semivariance analysis for the median values of
Log(Nj,60c), from SPT and CPT investigations in the study area. We found that the
range of spatial dependence for this variable is also roughly 95 meters. Therefore, we set
95 meters as the rough limit of spatial dependence for critical datasets in the study area,
and modeled the critical datasets as random regional variables, weighted according to
their proximity to a point of interest. We used ordinary kriging theory to find these

weights.
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In ordinary kriging, the vector of weights for each data point, X is a function of
the semivariogram model. This vector of weights is set such that it sums to 1. Webster

and Oliver (1990) succinctly define the weights from ordinary kriging by eqn. (4.22).

A-lb (4.22)

For isotropic conditions, eqgn. (4.23) defines A and b.

r(di) r(di2) wme y(dm) 1 "r(dip)"
r(d2) r(d22) me r(d2) 1 r(d 2)
A= b=
Y(dnl) r(dn2) me r(dnn) 1 r(dnp)
1 1 1 0 1

where y is the Lagrange multiplier needed to ensure the weights sum to 1, n is the total
number of data points in the dataset, p is the point of interest, and y(dif) is the model
semivariogram evaluated at a lag equal to the distance between points i and j.

Calculating weights based on the semivariogram enables modeling of the spatial
dependence of the critical datasets. For example, suppose we are interested in estimating
the distribution of the critical dataset at a point in the stream alluvium deposits where
there are three geotechnical investigations within the range of the semivariogram. Say
SPT A'is 11.3 meters, SPT B is 26.3 meters, and CPT C is 60.6 meters from the point of
interest.  Calculating the weights to every geotechnical investigation in the stream

alluvium deposit, by eqn. (4.22), finds that the weights to SPT A, SPT B, and CPT C are
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0.71, 0.17, and 0.11, respectively. The weights to the other 168 investigations in the
stream alluvium deposits are nearly zero in comparison. As expected, the weights
decrease as the distance from the point of interest to the geotechnical investigation
increases. With the weights defined, we can treat each ofthe possible critical datasets for
the stream alluvium deposit as a weighted random variable. By weighted random
sampling, there is a higher probability of selecting critical datasets from SPT A, a lower
probability of selecting from SPT B or CPT C, and essentially no probability of selecting
critical datasets for any ofthe other investigations in the stream alluvium deposit.

Of course, if at a point of interest there are no geotechnical investigations within
the range of the semivariogram, then the weights to the critical datasets at each
investigation in the corresponding geologic deposit are equal. 1fthe point of interest is at
a geotechnical investigation, then the weight for the critical datasets at that investigation

will equal 1.

Accounting for the Influence of Topography

Numerous researchers found that the magnitude of lateral spread displacement is
highly correlated with the degree of ground slope, or the distance and height of a nearby
free-face (e.g., Bartlett and Youd 1992, Youd et al. 2002, Zhang et al. 2004, Faris et al.
2006, Gillins and Bartlett 2012).  Therefore, when mapping liquefaction hazards, it is
important to account for variations in topography. For this study, we selected the Gillins
and Bartlett (2012) empirical model for estimating lateral spread displacement (eqns.
(4.2) and (4.3)). This model is a function of the free-face ratio, W, and the ground slope,

S. To compute these variables in space, we obtained both a 1/3 arcsecond (about 10
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meters resolution) and 1 arcsecond (about 30 meters resolution) Digital Elevation Model
(DEM) of Weber County from the USGS National Elevation Dataset.

We identified two significant free-face features in the study area: the channels of
the Weber and Ogden rivers. Based on the 1/3 arcsecond DEM, and river data from the
USGS National Hydrography Dataset, it is possible to estimate the alignment and
elevation of the bottom of these channels throughout the study area. Since this DEM has
a resolution of approximately 10 meters, we assigned a uniform grid spaced at 10 meters
along the influential zone of the channels. Bartlett and Youd (1992) defined the
minimum value of W as 1%; hence, we set the influential zone as that area where W >
1%. We then extracted elevation values from the DEM at each grid point, and calculated
the perpendicular (or shortest) distance from the grid point to the river channel. Finally,
we computed W at each grid point by: first, differencing the elevations of the grid point
and the river channel at the point of intersection; and then, dividing by the distance
between the two points. Figure 4.8 shows values of W at numerous grid points along the
deepest portion of the Weber River in the study area. As expected, W is largest along the
edges of the river channel, and then decreases as the distance from the channel increases.
For this portion of the Weber River, we see the influential zone is approximately 0.6 to
0.8 km from the channel.

Similar to the method to find W, we estimated S by extracting ground slope values
at each point of a uniform grid. The ground slope term in the Gillins and Bartlett (2012)
empirical model is based on regression of case history data originally compiled by
Bartlett and Youd (1992). For those case history data, Bartlett and Youd used slightly

different techniques to measure S for nonuniform slopes than for uniformly long and
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Figure 4.8. Variation of W along a portion of the Weber
River; Weber County, Utah.

gentle slopes. From the observed displacement pattern in the case histories, they noted
that the zone of increased displacement near undulated slopes extended above and below
the toe and crest of the undulations. Thus, their measurements of S for displacement
vectors within this zone were steepened to either the crest or to the toe ofthe undulations.

In an effort to be more consistent with this definition of S, we found S using the 1

arc-second DEM of Weber County, as opposed to finding S from higher-resolution data.
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Using the “slope” tool in ArcGIS®, we converted this DEM raster to a percent ground
slope raster. This slope tool determines the slope at each cell of a raster by finding the
maximum change in elevation from the eight neighboring cells. Since the cell size ofthe
input DEM raster is approximately 30 meters, the slope at each cell of the raster is
smoother and more uniform over that area. To account for the variation of S in the study
area, we assigned a uniform grid, spaced at 30 meters (or 10 meters if the grid point is
within the influential zone of a free-face feature). We then extracted percent ground

slope values from the slope raster at each grid point.

Implementation of the Mapping Method

We implemented the hazard mapping process by assigning and solving a uniform
grid, spaced in a manner to capture topographic variations in the study area. At each grid
point, we solved the probability chain shown in egn. (4.1). This section of the paper
summarizes how to solve this probability chain at an individual grid point. Ultimately,
this process is repeated for all grid points in the study area to produce final probabilistic
liquefaction hazard maps.

The previous section of this paper explained how to extract raster data from
DEMs to compute W and S at a grid point. At each grid point, we also extracted values
of geologic deposit and age from the raster data developed from the geologic mapping.
We extracted values from raster data using the “latticespot” tool in ArcGIS®.

Next, we input the mean seismic variables, ana Mw and R, based on interactive
deaggragation (using the USGS website: https://geohazards.usgs.gov/deaggint/2008) of

the 2,500-year return period seismic hazard at the grid point.  The interactive
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deaggragation website uses the 2008 source and attenuation models of the National
Seismic Hazard Mapping Project (Peterson et al. 2008). These attenuation models
provide estimates of values of peak ground acceleration (am&) by accounting for soil
effects via direct input of the average shear wave velocity in the upper 30 meters of the
site profile (Vs3). We estimated values of Vs30 in the study area according to midrange
site classification values, defined by ASCE 7 (2010). Interactive deaggragation revealed
that the Weber segment of the Wasatch fault zone is the controlling seismic source for
this seismic event.

The subsequent step is to input the geotechnical variables (specifically the critical
datasets) from the corresponding geologic deposit. As discussed, we treat the
geotechnical data from each SPT or CPT investigation in the geologic deposit as
weighted random regional variables. We compute the weights to the data for each of
these investigations by eqgn. (4.22). For example, for this study, there are 82 SPT and
CPT investigations in the delta deposits. When solving a grid point within this deposit,
we calculate the weights for each of these 82 investigations. The weights will be larger
for data from investigations within the range of the semivariogram, as defined by eqn.
(4.21).

After computing the weights to every SPT or CPT investigation in the
corresponding geologic deposit, we used the Monte Carlo method to input the necessary
random variables and output resulting probabilities of liquefaction hazards. First, we
randomly selected an SPT or CPT investigation in the corresponding geologic deposit.
This random sampling was weighted (or nonuniform). Second, within the selected

investigation, we randomly selected one of its individual critical datasets. (Earlier, we
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described it takes roughly 300 Monte Carlo simulations to define the distribution of each
variable in the critical dataset at an SPT or CPT investigation.) Third, we randomly

sampled a value of KDR which is modeled as a normally distributed random variable with

mean, KR (egn. (4.18)), and standard deviation, oKdr. Fourth, we randomly sampled a

value of rd which is likewise modeled as a normally distributed random variable with

mean, rd, and standard deviation, ard Fifth, we computed CSR using the previously

selected random variables (eqn. (4.19)). Sixth, we calculated PL. If a critical dataset
from an SPT borehole is selected, we found PL using the SPT-based probabilistic
liquefaction potential curves (eqn. (4.6)). Likewise, if a critical dataset from a CPT

sounding is selected, we found PL using the CPT-based liquefaction potential curves
(egn. (4.11)). Seventh, we calculated DH according to the controlling topographic
conditions (egns. (4.2) and (4.3)). For cases where the grid point has a value of S and W,
we found DHfor both conditions and selected the maximum value. Finally, we found the

probability that the lateral spread displacement exceeds a specified threshold (egn. (4.1)).
We repeat these eight steps numerous times until we have defined a distribution of
outcomes (i.e., probabilities of liquefaction hazard) at a grid point. We found that 3,000
Monte Carlo simulations adequately defined the distribution of outcomes at a grid point.
Figure 4.9 shows histograms of resulting probabilities of liquefaction hazards at a
sample grid point in the stream alluvium. At this particular grid point, there are no
geotechnical investigations within the range of the semivariogram; hence, there is large
uncertainty in the probabilities. The distribution for the probability of liquefaction

triggering is bimodal. Figure 4.9a indicates that 28.1% of the critical datasets from SPT
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Figure 4.9. Example of a distribution of probabilities at a grid point in the stream
alluvium, for (a) liquefaction triggering, (b) lateral spread exceeding 0.1 m, (c) lateral
spread exceeding 0.3 m, (d) lateral spread exceeding 1 m.

and CPT investigations in the stream alluvium did not find a layer susceptible to
liquefaction; thus, for those datasets, PL= 0. On the other hand, due to the strong ground
motion from a 2,500-year return period event, nearly all critical datasets with a
liquefiable layer have PL= 100%.

The distribution for the probability of lateral spread displacement exceeding 0.1
meters is also bimodal. Figure 4.9b indicates that 41.3% of the critical datasets in the

stream alluvium have T15= 0. For those datasets with T15> 0, there is a high probability
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that the lateral spread will exceed 0.1 meters. However, Figure 4.9c - d indicate low
probability that the lateral spread at this point will exceed 0.3 or 1.0 meters. Since the
distributions in Figure 4.9 are either bimodal or heavily skewed and non-normal, this
figure lists the 16th, 50th, and 84th percentile probability values.

We solved for the probability distributions (like in Figure 4.9) for every grid point
in the study area. Figure 4.10 depicts a map of the 50th percentile (or median) probability
of lateral spread displacement exceeding 0.3 meters given a 2,500-year return period

event.

Conclusions

In this paper, we proposed a method to map the probabilities of liquefaction
hazards for a scenario seismic event. The method uses geologic, topographic, and
geotechnical inputs, and accounts for major sources of uncertainty. Such uncertainties
include variability over space, lack of data, and limitations of the empirical models to
estimate liquefaction phenomena. After gathering available data, we implemented this
method to produce liquefaction hazard maps in a study area in Weber County, Utah.

Empirical models that predict the probability of liquefaction triggering and lateral
spreads exceeding specified displacement thresholds are functions of certain geotechnical
properties. We found these particular geotechnical properties (we call “critical datasets”)
at each available SPT and CPT investigation in Weber County, Utah. When reducing
borehole data, we identified and accounted for two major sources of uncertainty: the
energy of the SPT impact hammer transmitted to the sampler, and missing laboratory

measurements of fines content for numerous layers in the site profile. When reducing
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Probability of Exceedance

Figure 4.10. 50th percentile probabilities of lateral spread displacement exceeding 0.3
meters for a 2,500-year seismic event; Weber County, Utah



115
CPT sounding data, we accounted for two major sources of uncertainty: estimating soil
type or classification, and converting CPT penetration resistance to SPT blow counts.

We found that the dispersions of the critical datasets are statistically similar
between geologic units of similar depositional environment. Therefore, in this study of
Weber County, we pooled data into 11 deposit classes, as shown in Table 4.1. Pooling
data increases the robustness of the sampling, thereby improving estimates of the total
variability of the geotechnical properties for each geologic unit.

Previous investigators noted that liquefaction resistance of soils increase with age.
However, we are unable to identify differences in the critical datasets according to the
age of the soil. This indicates that penetration resistance data from high-strain tests like
the SPT or CPT are poor detectors of the influence of the age of the soil. Hence, we
accounted for liquefaction resistance due to increased age by applying an age correction
factor, as defined by Hayati and Andrus (2009).

From semivariance analysis, we found that critical datasets from nearby
geotechnical investigations are spatially correlated, but only for a small range. To model
this spatial dependence, we fit a theoretical semivariogram to the critical data. We then
treated the critical datasets as weighted random regional variables; weighted according to
the semivariogram model and ordinary kriging theory. For the data in the study area of
Weber County, the range of this semivariogram is only approximately 95 meters. Since
this range is so small, and there are a somewhat limited number of geotechnical
investigations in the study area, we found large uncertainty in the estimates of the

probabilities of liquefaction hazards.
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We accounted for variations in topography by solving for probabilities of
liguefaction hazards at points in a finely spaced grid. We spaced the grid according to
the resolution of the topographic data from the DEMs (i.e., 10 or 30 meters).

At a grid point, we found that 3,000 Monte Carlo simulations are necessary to
define the total distribution of the resulting probabilities of liquefaction hazards. We
identified large uncertainty in the empirical models for KDR rd PL, and DH. We
accounted for these uncertainties by treating their results as normally distributed random
variables. Because of the large number of necessary simulations at each point of a very
fine grid, there is a large amount of calculations. Therefore, further research is needed in
Monte Carlo variance reduction methods—such as use of correlated and/or stratified
sampling.

We implemented this procedure to map probabilistic liquefaction hazards in a
study area in Weber County, Utah. Figure 4.10 depicts 50th percentile (median)
probabilities of lateral spread displacement exceeding 0.3 meters for a 2,500-year return
period seismic event. We recommend producing maps at other percentile values, such as

the 16thand 84th percentile values, in order to quantify the uncertainty in the estimates.
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CHAPTER 5

PROBABILISTIC LIQUEFACTION GROUND FAILURE MAPS

FOR WEBER COUNTY, UTAH

Abstract

This paper presents probabilistic liquefaction-induced ground failure maps for
Weber County, Utah. The mapping project presented herein better defines the
liguefaction hazard areas in this county over previous mapping efforts. The new maps
are produced from mapping techniques based on geologic and geotechnical inputs and a
rigorous quantification of uncertainty in the mapped domain. The proposed method
accounts for variations in soil conditions, age, topography, spatial distribution and major
sources of aleatory uncertainty. The degree of ground slope significantly influences the
amount of lateral spread potential. To illustrate the uncertainty associated with the
mapped estimates, the probability of horizontal displacements exceeding specified
thresholds are produced for 50th and 84th percentiles. This approach allows for estimates
of the median and approximately the median plus one standard deviation probabilities.
The maps identify a significant zone with relatively high probability of liquefaction
triggering for either a 500-year or a 2,500-year return period event. In addition, the new

ground failure maps identify zones with moderate probability of liquefaction-induced
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lateral spread displacement exceeding 0.3 meters for a 500-year seismic event, and high

probability of exceeding 0.6 meters for a 2,500-year seismic event.

Introduction

Soil liquefaction is a general loss of shear resistance in saturated, cohesionless
sediments caused by a rapid increase in excess pore water pressure usually generated by
major earthquakes. Liquefaction-induced ground failure can cause severe and costly
damage to infrastructure and other facilities. Such damage from recent earthquakes in
Japan and New Zealand raise questions about our ability to assess, delineate and quantify
the hazard in vulnerable locations. For example, a preliminary report indicates that much
of the estimated $309 billion (2011 USD estimate, BBC News, March 23) in damage to
infrastructure in the 2011 Tohoku, Japan earthquake was from liquefaction (Ashford et al.
2011). In this report, investigators noted liquefaction damage that included tilted and
settled structures, crippled utility lines, and lateral spread displacement of levees and
small water channels.

To aid in identifying and quantifying the hazard in areas vulnerable to
liqguefaction-induced ground failure, we proposed a probabilistic-based approach to map
the liquefaction hazard for a region, such as a municipal county (Gillins and Bartlett
2012b). The proposed method allows for the quantification of the probability of lateral
spread displacement exceeding specified thresholds. The method is based on geologic
mapping and available geotechnical data, and accounts for variations in topography,
sediment age, spatial dependence and other major sources of uncertainty. This is done

using random sampling methods and Monte Carlo simulations.
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In the 1980s to early 1990s, researchers developed liquefaction triggering maps
for urban areas located along the Wasatch Front in Utah using a relatively small
geotechnical database and strong ground motion studies that were available at that time
(e.g., Anderson et al. 1994). In their time, these maps were useful to government
agencies and consultants for delineating zones with high, moderate, or low liquefaction
hazards. However since then, the geotechnical database and liquefaction methods have
significantly improved and liquefaction prone areas should be reevaluated. In addition,
the urban Wasatch Front is one of the fastest growing areas in the United States and is
home to approximately 2 million people. It is located in a relatively deep intermountain
basin filled with potentially liquefiable sediments and is prone to relatively large-
magnitude earthquakes (7 < M < 7.5) from the nearby Wasatch fault zone, thus this
mapping project is important for improving seismic safety and preserving economic
development.

This paper presents liquefaction hazard mapping results for Weber County, Utah,
for two scenario earthquake events: (1) 500-year return period, and (2) 2,500-year return
period. The new maps we present in this study are based on state-of-the-art probabilistic
liguefaction analysis techniques, current seismic hazard data, extensive geotechnical
investigations, and recently published surficial geologic maps. In addition to identifying
zones with high probability of liquefaction, the new maps provide estimates of the
probabilities of lateral spread displacements exceeding specified thresholds. Such maps
are useful for probabilistic-based hazard calculations and risk assessment. In addition,
these maps are the first of their kind to formally quantify the uncertainty associated in the

mapped estimates.
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Setting and Geology

Continental sediments from Holocene (and possibly late Pleistocene)
unconsolidated fluvial, floodplain, deltaic, lacustrine, playa, colluvial, dunes, loess,
tephra, and sebkha depositional environments may be moderately to highly susceptible to
liquefaction (Youd and Perkins 1978). Saturated, cohesionless soils found in these
environments consist mainly of interbedded layers of loosely deposited sand, gravel, and
silt. In the study area in Weber County, Utah, there is a large amount of these soils
deposited in widespread fluvial, deltaic, and lacustrine environments. Since these
sediments are also located in a zone that is prone to large-magnitude earthquakes, the
study area has high potential for liquefaction-induced ground failures.

The geology of Weber County is dominated by Holocene and late Pleistocene
sediments, deposited primarily by the Weber and Ogden Rivers, Lake Bonneville and its
successor, the Great Salt Lake. Figure 5.1 displays a map ofthe extent and topography of
the study area which encompasses most of the urban development in Weber County,
Utah. Figure 4.1 displays a map ofthe surficial geology of the study area. Table 4.1 lists
the description and approximate age of the geologic units shown in Figure 4.1. The
mapped units shown in this figure are from a combination of recently published surficial
geologic maps at the 7.5-minute (1:24,000) scale (Crittenden and Sorenson 1985, Harty
and Lowe 2003, Yonkee and Lowe 2004, Sack 2005, Harty and Lowe 2005). See Gillins
and Bartlett (2012b) for more details on the production of Figure 4.1.

The study area is located within the Lake Bonneville hydrologic basin, a closed
basin dominated by evaporation and filled with a few tens to several hundred meters of

Quaternary deposits. The basin has been an area of internal drainage for much ofthe past
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Figure 5.1. Vicinity map and topography of study area (contours not shown for
mountainous land where ground slopes exceed 6%); Weber County, Utah (base map from
Utah AGRC)
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15 million years, and lakes of varying sizes likely existed in the area during all of that
time (Currey et al. 1984). Lake Bonneville occupied the basin in the late Pleistocene,
from about 12,000 to 28,000 years ago (Oviatt et al. 1992). This lake underwent phases
of transgression (lake expands in size) and regression (lake contracts in size). Near the
end of its final transgression, about 15,000 years ago, the lake reached its highest
elevation (the Bonneville Shoreline with approximate elevation equal to 1552 meters),
covered most of the study area, and deposited gravel-dominated lacustrine sediments
along its shoreline. Approximately 14,500 years ago, catastrophic threshold failure
caused sudden regression of the lake until it stabilized at 1,444 meters, where it formed
the Provo shoreline (Malde 1968). When the lake fell to the Provo level, much of the
study area remained submerged, and sand-dominated sediment supplied to the lake from
the then westerly-bearing Weber River began accumulating in the south-central most part
of Figure 4.1, forming the Provo-level delta (Sack 2005). Lake Bonneville began its
climatically-induced rapid regression from the Provo shoreline about 14,000 years ago,
causing the Weber River to incise its Provo-level delta and to construct, then incise, a
downward-stepping and northerly trending series of regressive, sand-dominated, deltaic
components (Sack 2005). About 12,200 years ago, additional regression of the lake
allowed the river to flow around the north end of the abandoned deltas and shift the
deltaic environment to the westerly portion of the study area (Sack 2005). It appears that
transgression and regression of the Great Salt Lake, and erosion due to the Weber River
floodplain, deposited Holocene sediments on the ground surface in the westerly portion

ofthe study area.
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Although there are not any records of historical liquefaction or lateral spread in

the study area, previous researchers have mapped two prehistoric liquefaction-induced
landslide complexes. The North Ogden landslide (first identified by Miller 1980) covers
approximately 25 square kilometers in the northeasterly portion of the study area, mostly
southwesterly of North Ogden City (labeled Qmq@2 in Figure 4.1). The East Ogden
landslide (first identified by Pashley and Wiggins 1972) covers approximately 10 square
kilometers in the southeasterly portion ofthe study area, mostly in the eastern Ogden City
area (labeled Qms3in Figure 4.1). Other deposits related to liquefaction-induced ground
oscillation and lateral spreads may be present, but have not been recognized due to

limited geomorphic expression (Yonkee and Lowe 2004).

Geotechnical Database

As discussed in Gillins and Bartlett (2012b) we gathered and input all available
geotechnical data into a database for Weber County, Utah. This geotechnical database
contains data from 251 Standard Penetration Testing (SPT) boreholes and 157 Cone
Penetrometer Testing (CPT) soundings. We also extracted data from 21 shear wave
velocity tests (Vs) in a database published by McDonald and Ashland (2008). Figure 4.1
shows a sampling of the SPT, CPT, and Vsdata in this database. (Although we used all
ofthe gathered subsurface data for the analyses, we do not have permission to release the
locations of some of the test data provided by the local utilities.) Table 4.1 lists the
number of SPT and CPT investigations in each of the surficial geologic units. In Gillins

and Bartlett (2012b) we described in detail: (1) how we reduced these data for
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liquefaction analysis; and, (2) how we developed distributions of geotechnical data for

each ofthe 11 geologic deposits listed in Table 4.1.

Seismicity and Faulting

The magnitude of liquefaction and lateral spread displacement decreases
markedly for M < 6.0 earthquakes (Bartlett and Youd 1992). Hence, when analyzing
liguefaction, we are particularly concerned with areas prone to moderate to large
magnitude earthquakes (M > 6.0). The study area lies in the Intermountain seismic belt, a
region of historical seismic activity that extends from northwestern Montana, through
Utah, to southern Nevada and northwestern Arizona (Smith and Arabasz 1991). This belt
contains major normal faults capable of generating 7 <M < 7.5 earthquakes, such as the
Wasatch fault zone, as well as numerous other faults capable of generating moderate-
sized earthquakes. The largest historical earthquake in the study area occurred in 1914,
had an estimated magnitude of 5.5, and caused local damage (Arabasz et al. 1979).

The Wasatch fault zone is the primary seismic threat to inducing liquefaction
because of its potential for generating large earthquakes, its recency of movement, and its
proximity to the study area. In the study area, this zone strikes north to northwest, and is
interpreted to dip about 40 to 45 degrees west (Yonkee and Lowe 2004, Crittenden and
Sorenson 1985). Based on paleoseismic data for the past 6,000 years, the average
recurrence interval for a large-magnitude earthquake (M > 6.5) along the combined five
most-active segments (Brigham City, Weber, Salt Lake City, Provo, and Nephi) of the

zone is about 320 years; and, the average recurrence interval for a large-magnitude
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earthquake on an individual segment, such as the Weber, is about 1,600 years (Pechmann
and Arabasz 1995).

The Weber segment of the Wasatch fault zone is nearest to the study area,
trending 60 kilometers from its southern end near North Salt Lake City to its northern end
in Pleasant View, Utah (Machette et al. 1992). The faults depicted in Figure 5.1 are
nearly entirely of the Weber segment of the Wasatch fault zone. This segment has had 4
surface-rupturing events over roughly the past 6,000 years, including its most recent
major event approximately 1,016 years ago (McCalpin and Nishenko 1996). Some of its
surface rupturing events produced 0.6 to 3.5 meters of vertical ground offset, giving
estimated paleoearthquake magnitudes of 7 to 7.5 (Nelson and Personious 1993).

For the study, we mapped liquefaction hazards based on two scenario seismic
events: a 500-year return period event (10% probability of exceedance in 50 years), and a
2,500-year return period event (2% probability of exceedance in 50 years). Engineers
often consider seismic design loading based on these two events because they closely
represent an “expected earthquake” and a “maximum considered earthquake (MCE),”
respectively. We found, by interactive deaggragation at numerous points in the study
area (using the USGS website: https://geohazards.usgs.gov/deaggint/2008), that the M for
both of these scenario events is greater than 6; and, that the Weber segment of the
Wasatch fault zone is primarily the contributing seismic source. For the 500-year return
period event, the mean M from contributing seismic sources is approximately 6.68 to 6.73
in the study area; and, for the 2,500-year return period event, the mean M is

approximately 6.85 to 7.00. Thus, for both of these scenario earthquakes, the
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corresponding strong motions are sufficiently high to induce liquefaction in susceptible
soils.

For strong motion evaluations located on soil profiles, it is important to consider
soil effects. Soft and/or deep soil profiles will either amplify or deamplify the strong
motion depending on the nature and frequency content of the strong motion and the
characteristics of the soil profile. The study area is a relatively deep intermountain basin
filled with interbedded alluvium, delta, and lacustrine deposits. Undoubtedly, soft soil
effects will play a role in modifying the strong ground motion in this area. The USGS
interactive deaggragation website uses the 2008 source and attenuation models of the
National Seismic Hazard Mapping Project (Peterson et al. 2008). These attenuation
models provide estimates of values of peak ground acceleration (PGA) by accounting for
soil effects via direct input of the average shear wave velocity in the upper 30 meters of
the site profile (Vs3). Unfortunately, there are only 21 available Vs tests in the study
area.

However, McDonald and Ashland (2008) have produced a Vs30 map along the
urban corridor of the Wasatch Front including the study area in Weber County. Because
this map is based on limited Vs data, and because we can supplement these Vs data with
additional SPT and CPT data from the geotechnical database, we decided to produce an
updated map. Figure 5.2 shows this map, shaded according to National Earthquake
Hazards Reduction Program (NEHRP) site classes. This map is based on knowledge of
geology, Vs, SPT, and CPT data of sufficient depth. Figure 5.2 depicts the location of

these geotechnical tests, colored per the definitions ofthe NEHRP site classes.



130

Figure 5.2. NEHRP site classification map and location of a sample of the geotechnical
investigations; Weber County, Utah
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ASCE 7 (2010) defines the site classes by measurements of Vs30, or average SPT

blow counts in the upper 30 meters of the site profile, N (see Table 5.1). Of course, we
found Vs at each Vs test location and considered these data as the best type for

classifying the site soil response of a geologic unit. Due to the sparse amount of Vsdata,

we calculated N at each SPT and CPT to further assist in classifying geologic units. We
followed empirical models developed in Gillins and Bartlett (2012a) to estimate SPT
blow counts from CPT penetration resistance data.

Figure 5.2 shows that the majority of the study area consists of site class E soil.
Holocene fine-grained lacustrine sediments, stream alluvium, the North Ogden landslide
complex, and very late Pleistocene to modern deltaic deposits are either soft or very
loosely deposited (site class E). Late Pleistocene deltaic deposits and the East Ogden
landslide complex appear somewhat stiffer (site class D). Although there are limited
geotechnical data in this area, alluvial fans deposited from mountain canyon streams, and
gravel-grained lacustrine sediments deposited along the upper-most shoreline of Lake
Bonneville are typically dense, with shallow deposits overlying mountain bedrock.
Hence, we map these units as site class C which conformed to the class mapped by

McDonald and Ashland (2008).

Table 5.1. NEHRP site class definitions (from ASCE 7 2010)

Site

Class Description Vs, (m/s) N
B Rock 760 to 1520 N/A
Cc Very dense soil and soft rock 370 to 760 > 50
D Stiff soil 180to 370  15to 50
E Soft clay soil < 180 <15
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We used a midrange Vs value in the aforementioned new attenuation models
within each mapped soil site class zone. More specifically, we input: Vs0= 537 m/s for
site class C, 259 m/s for site class D, and 180 m/s for site class E.

Because site class C sediments have low to no susceptibility to liquefaction, we
were mostly concerned with site class D and E soils. For a 500-year return period event
for the study area, the new attenuation models returned PGA values varying from 0.24 to
0.26 units of gravity (g) in areas classified as site class E; values were just slightly lower
(0.22 to 0.249g) in areas classified as site class D. For a 2,500-year return period event,
the new attenuation models returned PGA values which were significantly larger: 0.42 to
0.52g in areas classified as site class E, and 0.52 to 0.59g in areas classified as site class
D. These larger PGA values (particularly from the 2,500-year return period seismic

event) greatly increase the likelihood oftriggering liquefaction in susceptible sediments.

Brief Review ofthe Mapping Method
We implemented our proposed method (Gillins and Bartlett 2012b) to map the
median estimate of the probability of liquefaction triggering and the probability of lateral
spread displacement exceeding specified thresholds (i.e., 0.3 or 0.6 meters) for the two
scenario earthquake events. To estimate the probability of liquefaction-induced lateral
spread displacement exceeding certain distances given a scenario event, we solve the

probability chain shown in egn. (5.1).

P[Dnh >y] =P[Dh >y |L] *PL (5.1)
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where DH is the predicted lateral spread displacement given the scenario seismic inputs, y
is a specified displacement threshold, L is the triggering of liquefaction, and PL is the
probability of liquefaction triggering given the scenario seismic inputs.

In this paper, we briefly review our method to map the probabilities in egn. (5.1).
Refer to Gillins and Bartlett (2012b) for more details on analysis of the data in Weber
County and a full description of the mapping method. We began our analysis by
reducing available SPT and CPT data in the geotechnical database. For each of the
investigations, we found the necessary geotechnical variables for liquefaction assessment
(along with their uncertainty), and grouped these variables according to their mapped
geologic unit. Due to the somewhat limited number of available geotechnical
investigations in the study area, we analyzed the dispersion of the geotechnical variables
between geologic units of similar depositional environment. This analysis revealed it
was appropriate to pool the data into 11 deposit classes, as shown in Table 4.1. Pooling
data increases the sampling size of SPT/CPT investigations within each geologic unit,
thereby improving estimates of the total variability of geotechnical properties within a
given unit.

Subsequently, we input gridded topographical points to capture topographic
variations in the study area. In general, the grid points were evenly spaced every 30
meters. However, near the Ogden and Weber Rivers, we decreased the grid spacing to 10
meters to capture the influence of the river channels. Bartlett and Youd (1992) found it
important to model topographic conditions because the magnitude of lateral spread
displacement was highly correlated with the degree of ground slope, or the distance and

height of a nearby free-face, such a river channel. At each grid point, we extracted the
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following mapped values: (1) ground slope and/or distance and height of a nearby free-
face (based on Digital Elevation Models from the USGS National Elevation Dataset); (2)
surficial geologic deposit and age (Figure 4.1); and, (3) site classification (Figure 5.2).
For each grid point, we input the mean seismic variables at the ground surface based on
the site classification and the interactive deaggragation ofthe seismic hazard at the point.

Finally, we solved egn. (5.1) at each gridded point using the Monte Carlo random
sampling method. In this method, we randomly sampled geotechnical variables for a grid
point corresponding to its associated geologic deposit. This random sampling was
weighted (or nonuniform based on semivariance analysis) according to the proximity of
the grid point to an SPT or CPT borehole or sounding. Next, we computed PL from the
liguefaction potential curves developed by Cetin et al. (2004) for SPT-based data, and
Moss et al. (2006) for CPT-based data. We accounted for the influence of age by
applying an age correction factor (Hayati and Andrus 2009). We also accounted for
uncertainty in the empirical models by treating their results as normally distributed
random variables. Afterwards, we calculated P[DH >y | L] for a desired threshold, Yy,
based on our empirical model to predict lateral spread displacement from available data
(Gillins and Bartlett 2012a). Lastly, we repeat the random sampling process numerous
times until we have defined a distribution of outcomes (i.e., probabilities of liquefaction
hazard) at a gridded point. Ultimately, we solved all grid points in the study area to
produce the liguefaction hazard maps for both a 500-year return period seismic event and

a 2,500-year return period seismic event.
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Probabilistic Liquefaction Triggering Maps

At most gridded points, the mapping method returned probabilities of liquefaction
triggering that were bimodally distributed. For example, Figure 5.3 shows histograms of
resulting probabilities of liquefaction triggering at a sample grid point in the deltaic
deposits. As can be seen, most of the values of PL equal either 0 or 100%. There are
several reasons for this bimodality in the liquefaction triggering probability as seen in
Figure 5.3.

First, as is often the case, there were not any SPT/CPT investigations near the
gridded point; hence, we modeled the total variability of geotechnical data from all
investigations in the corresponding geologic deposit. Semivariance analysis indicates
that the geotechnical data were spatially correlated, but only for a range equal to about 95
meters (Gillins and Bartlett 2012b). The combination of small range of spatial
dependence, limited number of geotechnical investigations, and large total variability of
geotechnical properties for many geologic deposits increases the uncertainty in the
estimated probabilities.

Second, a major contributor to the bimodality of the distributions results from the
strong ground motion of the two scenario seismic events. Over 90% of the equivalent
cyclic stress ratio (CSR) values from PGA values for the 500-year return period
earthquake are between 0.15 and 0.30, and for the 2,500-year return period earthquake
are 0.30 to 0.60. Such large values of CSR for the latter event dramatically increase the
probability of triggering liquefaction in loosely deposited, saturated, sandy soils. Thus,

when assessing liquefaction for a relatively low SPT N value for a particular geologic
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Figure 5.3. Histograms of the probability of liquefaction triggering at a grid point in the
delta environment for: (a) a 500-year return period seismic event; and, (b) a 2,500-year
return period seismic event

deposit, often we found that PL equals 100%, especially for the 2,500-year return period
seismic event. On the other hand, when assessing nonliquefiable sediments (e.g., clayey
soils) from geotechnical tests in that same geologic deposit, PL, of course equaled 0%.

Finally another reason for the bimodality of the distributions is due to the shape of
the probabilistic liquefaction potential curves of Cetin et al. (2004) or Moss et al. (2006).
Because these curves of equal probability plot relatively close together (i.e., not
differential by large changes in Ni6gg) small variation in SPT penetration resistance can
significantly affect estimates of PL. This underscores the importance of obtaining high
quality geotechnical data when performing liquefaction analyses.

Because the probability distributions like those shown in Figure 5.3 are non-
normal, we mapped the median or 50th percentile probabilities instead of the mean
probabilities. The median value represents a typical value at a given location and has a

50% probability of exceedance.
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Figure 5.4 shows the 50th percentile probability of triggering liquefaction for a
500-year return period seismic event in the study area. Because there is a 10%
probability of PGA values exceeding the critical value for this seismic event in a 50 year
window, we must conclude that the study area has a relatively high risk of experiencing
liquefaction, especially in the zones where P1 = 75 to 100%.

Figure 5.5 shows 50th percentile probabilities of liquefaction triggering for the
2,500-year return period seismic event. This figure indicates that such a large (or
maximum considered) event could induce widespread liquefaction in the study area. It is
anticipated that such severe liquefaction would likely cause significant and costly damage

to large portions of the infrastructure in the study area.

Probabilistic Lateral Spread Ground Failure Maps

Liquefaction-induced damage is strongly correlated with the amount of horizontal
displacement resulting from lateral spread. Lateral spread displacement on gently sloping
ground is generally the most pervasive type of liquefaction-induced ground failure
generated by earthquakes (NRC 1985). Structures at the head of lateral spread ground
failures are commonly pulled apart; those at the toe are compressed or buckled. Buried
objects, such as pipelines and piles, are often sheared by differential movement (Bartlett
and Youd 1992). Accordingly, when analyzing liquefaction susceptibility, it is important
to assess the potential amount of lateral spread displacement.

During lateral spread, blocks of mostly intact, surficial soil displace down slope or
towards a free-face (i.e., channel or abrupt depression), along a shear zone formed by

liguefaction (Bartlett and Youd 1992). This type of displacement typically occurs on
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Probability of Liquefaction Triggering
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Figure 5.4. 50th percentile probabilities of liquefaction triggering for a 500-year seismic
event; Weber County, Utah



139

Probability of Liquefaction Triggering
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Figure 5.5. 50th percentile probabilities of liquefaction triggering for a 2,500-year
seismic event; Weber County, Utah
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gentle slopes that range from 0.3 to 5% (Youd 1978). Consequently, probabilistic lateral
spread ground failure maps should include topographic conditions in the mapping
methodology. Currently, it is popular to map the Liquefaction Potential Index, LPI
(lwasaki et al. 1978). Although LPI maps can indicate liquefaction-induced ground
failure potential, they do not directly incorporate the influence oftopography, nor do they
provide estimates of the expected amount of lateral spread displacement in the mapped
domain. The proposed method herein directly incorporates topographical effects by use
of a digital elevation model (DEM).

The topographic factors (i.e., percent ground slope, S, and free-face ratio, W) in
the Gillins and Bartlett (2012a) empirical model for estimating lateral spread
displacement are based on multilinear regression of case history data originally compiled
in Bartlett and Youd (1992) and further expanded in Youd et al. (2002). For most of the
lateral spread ground failures in these case histories, S ranged from 0.1 to 6%; and, for
most of the free-face ground failures, W ranged from 1to 20%. Hence, the Gillins and
Bartlett (2012a) empirical model is only valid for conditions within these ranges.
Liquefaction on steeper slopes or larger free-face values may induce flow failures rather
than lateral spreads. Flow failures usually travel farther distances than lateral spreads,
and, in certain cases, can displace materials by tens of kilometers at velocities of tens of
kilometers per hour (Youd 1984). For the study area, over 95% ofthe area susceptible to
liguefaction has gentle sloping ground (S < 5%) or small free-face ratio values (W < 5%).
Free-face ratio values generally begin to reach 20% only when within 35 meters of the

channels ofthe Ogden or Weber Rivers.



141

Resulting lateral spread displacement hazard maps in Weber County show that
estimates of the amount of horizontal displacement are highly correlated with the degree
of ground slope. Similar to the probabilistic liquefaction triggering maps, the mapping
method returns probabilities of lateral spread displacement that are not normally
distributed (i.e., the distributions are bimodal or skewed). Thus, similar to the
liguefaction triggering maps, we chose to map the median or 50th percentile probability of
lateral spread displacement exceeding specified thresholds. To show the uncertainty or
variation of estimates in the mapped domain, we also mapped the 16th and 84th percentile
probabilities. We selected these additional percentiles because they approximate the
mean minus and mean plus one standard deviation critical values, respectively, in
normally distributed populations. In non-normal distributions, the 84th percentile value
represents a conservative value in that it has only a 16% chance of being exceeded. Refer
to the appendix of Gillins (2012) for maps ofthe 16th percentile probabilities.

Figure 5.6 and Figure 5.7 show the 50th and 84th percentile probabilities of
liguefaction-induced lateral spreads displacing more than 0.1 meters for a 500-year return
period seismic event, respectively. These figures indicate moderate to high probabilities
(i.e., 50 to 100%) that the horizontal displacements will exceed 0.1 meters for this event
in numerous zones in the study area. However, the probabilities that the horizontal
displacements will exceed larger thresholds (i.e., y > 0 3 meters) for this event are
significantly smaller. Figure 5.8 and Figure 5.9 show the 50th and 84th percentile
probabilities of liquefaction-induced lateral spreads displacing more than 0.3 meters for

the same seismic event, respectively. As can be seen, only inthe very late Pleistocene
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Probability of Exceedance

Figure 5.6. 50th percentile probabilities of lateral spread displacement exceeding 0.1
meters for a 500-year seismic event; Weber County, Utah
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Figure 5.7. 84th percentile probabilities of lateral spread displacement exceeding 0.1
meters for a 500-year seismic event; Weber County, Utah
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Probability of Exceedance

1ir55'0"W
Projection: UTM NAD 83 Zone 12 N

Figure 5.8. 50th percentile probabilities of lateral spread displacement exceeding 0.3
meters for a 500-year seismic event; Weber County, Utah
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Probability of Exceedance

Projection: UTM NAD 83 Zone 12 N

Figure 5.9. 84th percentile probabilities of lateral spread displacement exceeding 0.3
meters for a 500-year seismic event; Weber County, Utah
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deltas where the ground slope is between 3 to 6% are values of exceedance probabilities
greater than 30%.In these deltas where ground slope is between 1.5 to 3%, exceedance
probabilities are only about 15 to 30%. Interestingly, for all zones in the study area with
slopes less than 1.5%, there is low to no probability of lateral spreads exceeding 0.3
meters. This leads to the conclusion that the 500-year return period seismic event is not
strong enough to induce lateral spreads greater than 0.3 meters in areas where ground
slope is less than 1.5%. From mapping greater thresholds, we also find that 0.4 meters
roughly represents the maximum probable displacement due to lateral spreading. In other
words, we believe the probability of lateral spreads exceeding 0.4 meters in any of the
study area is relatively low for the 500-year return period seismic event.

Unlike the 500-year return period event, we find that the 2,500-year return period
event is capable of generating lateral spreads that exceed displacements of 0.6 meters in
the study area, even for zones where ground slope is as little as 0.3%. Figure 5.10 and
Figure 5.11 show the 50th and 84th percentile probabilities of lateral spreads displacing
more than 0.1 meters for a 2,500-year return period seismic event, respectively. These
figures indicate high probabilities that the horizontal displacements will exceed 0.1
meters for this large event in most of the study area susceptible to liquefaction. Figure
5.12 and Figure 5.13 depict the 50th and 84th percentile probabilities of lateral spreads
displacing more than 0.3 meters for the same event, respectively. As can be seen, the
exceedance probabilities are somewhat smaller. Finally, Figure 5.14 and Figure 5.15
show the 50th and 84th percentile probabilities of lateral spreads displacing more than 0.6

meters for the same event, respectively. These figures indicate that the most susceptible
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Figure 5.10. 50th percentile probabilities of lateral spread displacement exceeding 0.1
meters for a 2,500-year seismic event; Weber County, Utah
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Figure 5.11. 84th percentile probabilities of lateral spread displacement exceeding 0.1
meters for a 2,500-year seismic event; Weber County, Utah
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Probability of Exceedance

Figure 5.12. 50th percentile probabilities of lateral spread displacement exceeding 0.3
meters for a 2,500-year seismic event; Weber County, Utah
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Probability of Exceedance

Figure 5.13. 84th percentile probabilities of lateral spread displacement exceeding 0.3
meters for a 2,500-year seismic event; Weber County, Utah
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Figure 5.14. 50th percentile probabilities of lateral spread displacement exceeding 0.6
meters for a 2,500-year seismic event; Weber County, Utah
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Figure 5.15. 84th percentile probabilities of lateral spread displacement exceeding 0.6
meters for a 2,500-year seismic event; Weber County, Utah
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zones for large lateral spread displacement are within the very late Pleistocene deltas with
ground slopes greater than 1.5%.Due to the higher ground motion near the fault, deltas
within 3.5 kilometers of the Wasatch fault zone (mostly within the Ogden City area) have
the highest and most uniform probability of lateral spreads exceeding 0.6 meters.
Consequently, these zones have the highest risk of damage due to liquefaction-induced

ground failures.

Discussion of Liquefaction Hazards by Geologic Deposit

Deltaic Deposits

Approximately 35% of the surficial geology of the study area consists of deltaic
sediments deposited since the late Pleistocene by the Ogden and Weber Rivers. Almost
all of these sediments were deposited roughly 9,500 to 14,500 years ago during and
shortly after the final regression of Lake Bonneville (Qd2- Qd11). Due to erosion of the
shorelines of the lake, these deltaic sediments are dominated with loosely deposited, fine
to medium-grained sands. Unfortunately, such saturated sands are highly susceptible to
liguefaction. Investigators have found uniformly thick layers of these sands in much of
the deltaic environments. For instance, considerable quantities of deltaic sand have been
quarried in the southwestern portion of the study area, and there remain some active sand
quarry sites (Sack 2005).

Seventy-seven of the available 82 SPT/CPT investigations in the deltaic deposits
also discovered relatively thick layers of loosely deposited and saturated clean to silty
sands. These 77 investigation sites have “typical values” of T15sranging from 0.3 to 0.9

meters; and, the liquefiable layers have typical values ofNi60,ranging from 5to 11. We
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define “typical values” as values between the 16th and 84th percentiles of the dataset.
Refer to Gillins and Bartlett (2012b) for development of the geotechnical distributions for
each geologic deposit and definitions of these geotechnical variables. Briefly, TI5cis the
clean-sand equivalent cumulative thickness of soil in the upper 15 meters of the site
profile that is susceptible to liquefaction and lateral spread (i.e., saturated, cohesionless,
and with corrected SPT blow counts, Ni,80< 15). The variable Ni60,cs is defined as clean-
sand equivalent corrected SPT blow counts. Young, saturated, cohesionless soils with
N],60cs < 15 have high probability for liquefaction during strong seismic events (Cetin et
al. 2004). Gently sloping sites with T15csgreater than 0.3 meters are highly susceptible to
liqguefaction-induced lateral spreads (Gillins and Bartlett 2012a).

The deltaic deposits in the study area appear highly susceptible to liquefaction due
to the near-consistent observation of loosely deposited, saturated, sandy soils at each
geotechnical investigation. Probabilistic liquefaction triggering maps indicate uniformly
high probabilities (i.e., 100%) of liquefaction triggering in the deltaic deposits for either
the 500-year or 2,500-year return period seismic event. As mentioned, almost all of the
surficial deltaic sediments in the study area were deposited during the very late
Pleistocene to the very early Holocene. Several investigators have noted that liquefaction
resistance of soils increases with age. For example, Youd and Perkins (1978) noted that
sediments deposited within the past few thousand years are generally more susceptible to
liguefaction than older Holocene sediments; and, older Holocene sediments are generally
more susceptible than Pleistocene sediments. Our mapping method accounted for the
influence of age by applying an age correction factor, as defined by Hayati and Andrus

(2009). Despite applying this age correction factor (which is approximately equal to 1.5
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for the age of the surficial deltaic sediments), the probabilities of liquefaction triggering
in the deltaic deposits remain high.

Probabilistic lateral spread displacement hazard maps show that gently sloping
deltaic zones may have low to moderately high probabilities (i.e., 15 to 75%) of lateral
spreads exceeding 0.3 meters for the 500-year return period seismic event, and uniformly
high probabilities (i.e., 100%) of lateral spreads exceeding 0.6 meters for the 2,500-year
return period event. The deltaic zones at risk of large lateral spread displacement are best
illustrated in Figure 5.14. As can be seen, these zones are mostly within the Ogden City
area, along the outer-most foothills of the Wasatch Mountains; or, in the south-central
portion ofthe study area, in the deltaic components formed to the north ofthe Provo-level
delta. In these zones, ground slopes range from 1.5 to 6%. In the higher elevations of
these zones, it is probable that depths to groundwater are much deeper than recorded
depths to groundwater at the lower elevation deltaic zones. Deeper groundwater depths
at a site result in lesser amounts of saturated soils; hence, modeled values of TI5cs within
these higher elevation zones might be somewhat conservative. However, based on the
recorded groundwater depths from the available SPT and CPT investigations, we are
unable to detect consistently deeper groundwater depths in these higher elevation zones.
This may be explained by large fluctuations in groundwater depth from year to year, and
season to season; and/or by localized areas containing perched groundwater.
Investigators have noted perched groundwater at many locations in the study area,
particularly along bluffs above streams incised in the river deltas, and even at higher

elevations in the eastern Ogden City area (Yonkee and Lowe 2004).
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Stream Alluvium Deposits

Approximately 30% of the study area consists of stream alluvium deposited
mostly during the Holocene by the Ogden and Weber Rivers (Qall, Qal2). Grain size and
sorting of the stream alluvium sediments vary with the location of an exposure as well as
with depositional sub-environments. At lower map elevations, such as near the Weber
River west of Interstate 15, finer grained sizes predominate and the river channel is
narrow and deep (Sack 2005). Farther upstream, along the Weber and Ogden River in
the eastern and south-central parts of the study area, wider and shallower channels tend to
reflect coarser loads, predominately of cobbles, gravels, and gravelly sands (Yonkee and
Lowe 2004). This leads to the hypothesis that geotechnical variables describing the
stream alluvium sediments should be divided into two groups: one group for finer
sediments at lower elevations, and another group for coarser sediments at higher
elevations. Although SPT investigations in stream alluvium deposits near the Ogden
River tend to reveal denser and coarser sediments than elsewhere in the study area, there
are insufficient data to support this hypothesis. Instead, geotechnical data from the SPT
and CPT investigations in the stream alluviums seem highly variable with little spatial
distinction.

Due to the high variability in geotechnical data, mapped probabilities of
liguefaction ground failure in the stream alluvium deposits have large uncertainties. Of
the available 171 SPT/CPT investigations in the stream alluvium deposits, 101 (or 59%)
discovered a layer of loosely deposited, saturated, and cohesionless soil. These 101
investigation sites have typical values of T15sranging from 0.1 to 0.7 meters; and, the

liquefiable layers have typical values of Ni60,s ranging from 4 to 13. Hence, although
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only three-fifths of the investigations identified a liquefiable layer of sediment, these
identified layers are very loosely deposited (thus, highly susceptible to liquefaction) and
potentially thick enough for lateral spread ground failures in zones with sufficient slope,
given large-magnitude seismic events.

The high and localized variability of geotechnical variables highlight the need to
carefully characterize site conditions when assessing liquefaction hazards in the stream
alluvium deposits. Some zones contain loosely deposited, sandy sediments that are
highly susceptible to liquefaction-induced ground failures. Other zones contain dense

and very coarse sediments that are not susceptible to liquefaction.

Fine-Grained Lacustrine Deposits

Approximately 8% of the study consists of thin layers of mixed lacustrine
sediments of Lake Bonneville and the Great Salt Lake which were deposited in near-
shore and offshore settings below an elevation of 1,300 meters (QIf). Unfortunately,
there are a limited number of available geotechnical investigations in the lacustrine
deposits in Weber County. To improve estimates of the total variability of geotechnical
properties in these deposits, we combined the limited geotechnical data in Weber County
with data from investigations in similar lacustrine in Salt Lake County. We postulate that
lacustrine sediments from Lake Bonneville and the Great Salt Lake are similar in both of
these counties. However, we recognize the need for more geotechnical investigations in
Weber County to fully validate this postulate.

Fine-grained lacustrine deposits from both counties appear hardly susceptible to

liguefaction, and likely not susceptible to lateral spreads. Geotechnical investigations in
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these deposits commonly found silty clays, with some thin layers of silts and fine sands.
Seventy-three percent of the geotechnical investigations found only cohesive sediments.
Consequently, mapped probabilities of liquefaction triggering in the fine-grained
lacustrine sediments are generally low. However, since slightly more than one-quarter of
the investigations found relatively thin layers of liquefiable soil, there is some probability
of liquefaction in localized areas for the larger 2,500-year return period seismic event.
Nearly 60% of these liquefiable layers have values of T15cs less than 0.4 meters. The
majority of the fine-grained lacustrine deposits are located on flat ground (i.e., slopes <
0.3%) in the western portion of the study area. These flat surfaces further increase the
resistance of the fine-grained lacustrine deposits to liquefaction-induced lateral spreads.
Hence, the probability of significant lateral spread displacement in these flat lying locales

is very low.

Undifferentiated Lacustrine and Alluvium Deposits

Approximately 9% ofthe study consists of complexly inter-lain sediments of fine-
grained lacustrine and alluvium, deposited over approximately the past 12,500 years
(Qla). Sheet wash, gullies, small alluvial fans, and shallow ephemeral channels have re-
worked the lake sediments such that neither depositional signature dominates (Sack
2005). These fluvial processes have partially eroded and buried shoreline bluffs,
resulting in predominantly loosely deposited, fine sands to sandy silts.

The Qla deposits are highly susceptible to liquefaction due to the near-consistent
observation of loosely deposited, saturated, cohesionless soils at each geotechnical

investigation. Forty-two of the available 43 SPT/CPT investigations in the Qla deposits



159
discovered thick layers of loosely deposited and saturated clean sands, silty sands, and
sandy silts. These 42 investigation sites have typical values of T15csranging from 0.4 to
1.1 meters; and, the liquefiable layers have typical values of N1@)c ranging from 5to 10.
All of these geotechnical investigations found depths to groundwater less than 5 meters.
Probabilistic liquefaction triggering maps indicate uniformly high probabilities (i.e.,
nearly 100%) of liquefaction triggering in the Qla deposits for either the 500-year or
2,500-year return period seismic event.

Fortunately, the majority of the Qla deposits are located on flat ground (i.e.,
slopes < 0.3%); and, these flat grounds are generally not susceptible to significant lateral
spreads for the scenario events. However, two zones of Qla deposits have gentle slopes:
(1) southwesterly of Pleasant View City in the north central portion of the study area
(with ground slopes between 1to 2%); and (2) near the center of Roy City in the south-
central portion of the study area (with ground slopes between 0.5 to 1.5%). Probabilistic
lateral spread displacement hazard maps show that zone 1 has low to moderately high
probabilities (i.e., 15 to 75%) of lateral spreads exceeding 0.3 meters for the 500-year
return period seismic event; and, both zones have moderate to high probabilities (i.e., 30
to 100%) of lateral spreads exceeding 0.6 meters for the 2,500-year return period seismic

event.

Landslide Deposits
The surficial geology of the study area includes two prehistoric liquefaction-
induced landslides: the East Ogden complex (Qms3) which makes-up less than 5% of the

surficial geology of the study area; and the North Ogden complex (Qmq2) which makes-
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up roughly 8%. Geomorphic features within these two landslides, such as scarps,
hummocks, closed depressions, and transverse lineaments, suggest complex flow failures,
lateral spreads, translational slides, and slumps (Harty and Lowe 2003). These
complexes contain mixtures of clay, silt, fine sand, and gravel, redeposited after ground
failures. Hence, geotechnical properties in these landslides are likely locally variable.

Geologic evidence indicates that liquefaction-induced land-sliding occurred at
least once in the eastern Ogden City area, approximately 13,000 to 13,500 years ago
(Harty and Lowe 2003). At that time, the area was likely close to the shoreline of the
lake. Although groundwater levels are deeper today, perched groundwater is common in
the eastern Ogden City area. Forty-two percent of the geotechnical investigations in the
landslides east of Ogden City identified groundwater levels less than 3 meters deep;
furthermore, 77% identified groundwater levels less than 6 meters deep.

Due to the high variability of geotechnical properties in the East Ogden landslide
complex and apparent shallow groundwater levels, there is some probability for
liqguefaction-induced ground failures in localized zones. Only 40% of the SPT
investigations in the landslides east of Ogden City found a layer susceptible to
liguefaction. Most of these liquefiable layers are very fine sands and silts. Nearly 60%
of these layers have values of TI5e less than 0.2 meters. The small values of TI5G
suggest low probability of large-magnitude lateral spreads due to liquefaction in this
complex. However, perched groundwater and steep slopes within this complex may
result in localized lateral spread ground failures for the larger 2,500-year return period

seismic event.
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Recent mass movement and shallow groundwater levels recorded from
geotechnical investigations (i.e., mostly less than 5 meters) within the North Ogden
landslide complex demonstrates that there is some likelihood of future liquefaction-
induced ground failures in localized areas. Geomorphic and geologic evidence indicates
that the North Ogden landslide complex may have initially moved as a single mass during
a large earthquake in the early Holocene or late Pleistocene, and since then, parts of the
landslide may have moved three or four more times (Harty and Lowe 2003).
Radiocarbon dating suggests initial flow failures deposited sediments approximately
7,860 years ago (Harty and Lowe 2003).

However, only one of the available 11 SPT investigations in the North Ogden
landslide complex found a layer of liquefiable soil. Since the geotechnical investigations
consistently encountered cohesive sediments, mapped probabilities of liquefaction
ground failures in the North Ogden complex are generally very low. This leads to the
conclusion that there are insufficient geotechnical data to fully characterize this large
landslide complex. Hence, we hatch this complex as a special study area in the
probabilistic liquefaction hazard maps.

Since the two landslide complexes have locally variable geotechnical properties,
we recommend collecting additional geotechnical data to carefully characterize site

conditions during assessment of liquefaction hazards.

Conclusions
This mapping project better defines liquefaction hazards in Weber County over

previous mapping efforts. The new maps incorporate: (1) state-of-the-art probabilistic
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liquefaction analysis techniques (Cetin et al. 2004, Moss et al. 2006, Gillins and Bartlett
2012b); (2) strong ground motion estimates from the current (2008) USGS National
Seismic Hazard Mapping Project (Peterson et al. 2008); (3) a larger geotechnical
database—allowing more robust characterization of the various geologic deposits; and,
(4) recently published surficial geologic maps at the 7.5-minute (1:24,000) scale
(Crittenden and Sorenson 1985, Harty and Lowe 2003, Yonkee and Lowe 2004, Sack
2005, Harty and Lowe 2005). In addition, these new liquefaction hazard maps account
for variations in topography, influence of age, spatial dependence, and major sources of
uncertainty. Due to the large uncertainties, we produced maps for 16th, 50th and 84th
percentile probabilities and identified zones with high probability of liquefaction
triggering. In addition, the new maps also estimate probabilities of lateral spread
displacement exceeding specified thresholds. Such displacement hazard maps are useful
for identifying areas susceptible to damaging liquefaction-induced ground failure.

Unfortunately, the probabilistic liquefaction triggering maps indicate high
probability of widespread liquefaction along the Wasatch Front in Weber County during
a 500-year return period seismic event; and, exceptionally widespread liquefaction during
the larger 2,500-year return period seismic event. This is because: (1) the study area is
filled with loose, cohesionless sediments deposited in deltaic, fluvial, and lacustrine
environments since the late Pleistocene; (2) Ofthe 408 available SPT/CPT investigations
in the study area, 390 (or 96%) identified shallow groundwater depths (i.e., less than 9
meters); and, (3) the study area is near the seismically active Wasatch fault zone, which is
capable of generating earthquakes of M = 7, or greater (Nelson and Personious 1993).

Because geotechnical investigations consistently found relatively thick, loose,
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cohesionless layers in the sand-dominated deltaic (Qd2 - Qd11) and undifferentiated
lacustrine/alluvium sediments (Qla), these geologic deposits appear to have uniformly
high probabilities of liquefaction triggering for either of the two scenario seismic events.
Additionally, stream alluvium and landslide deposits apparently have some probability
for liquefaction triggering in localized areas. Geotechnical properties of the stream
alluvium and landslide deposits are highly variable.

Zones of liquefiable sediments with sufficient slope have low to moderately high
probabilities of lateral spreads exceeding 0.3 meters for the 500-year return period
seismic event; and high probabilities of lateral spreads exceeding 0.6 meters for the
2,500-year return period seismic event. In general, if ground slopes are less than 1.5%,
there is no probability of lateral spreads exceeding 0.3 meters for the 500-year event.
However, even in areas where ground slope is as little as 0.3%, the 2,500-year event
appears capable of generating large lateral spreads exceeding 0.6 meters.

The results shown in the new liquefaction displacement hazard maps lead to two
conclusions.  First, the magnitude of liquefaction-induced displacements is highly
correlated to the degree of ground slope. Therefore, it is important to capture variations
in topography when mapping liquefaction-induced ground failure hazards. There is high
probability for significant lateral spread displacement in deposits that are both susceptible
to liquefaction and have ground slopes between 3 to 6% in the study area. Second, the
high probability of widespread liquefaction and the potential for large lateral spread
displacement in various gently sloping zones indicates substantial risk for liquefaction-
induced ground failures in the study area during large-magnitude seismic events. Due to

this substantial risk, we recommend additional work, such as performing site-specific
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analyses, where appropriate, to further characterize subsurface conditions and thereby
reduce uncertainties in the mapped liquefaction hazards. The new hazard maps are based
on available and varying quality geotechnical data. Certainly, performing additional and
more specific geotechnical investigations will improve understanding of groundwater
conditions, site profiles, soil properties, etc.

In addition, we encourage communities to develop a strategic emergency plan to
mitigate potential damage due to liquefaction ground failure in high hazard areas. Such
plans should identify provisions to protect or retrofit critical infrastructure and lifelines.
Furthermore, the plan should establish alternatives or redundancies should crucial
infrastructure become inoperable. We also encourage the design and construction of
communities that are resistant to liquefaction. We hope the new liquefaction hazard
maps presented herein will aid and encourage local governments, planners, and engineers

to improve the resiliency of their respective communities to earthquake hazards.
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CHAPTER 6

CONCLUSIONS

Major Findings from this Research

Liquefaction-induced ground failure can cause severe and costly damage to the
built-up environment during major earthquakes. The first step of defense against such
damage is to identify areas at significant risk. Once these areas are identified, planners,
developers, and engineers can strategize approaches to mitigate the risk. This dissertation
presented statistically-based methods to map estimates of the probability of liquefaction
triggering and the probability of lateral spread displacements exceeding specified
thresholds for a scenario seismic event. This method can be applied to assess hazard
levels for other areas throughout the United States with significant risk of damage from
liquefaction.

The mapping method uses the following: (1) a newly developed empirical model
for probabilistic lateral spread analysis; (2) state-of-the-art probabilistic liquefaction
triggering analyses (Cetin et al. 2004, Moss et al. 2006); (3) probabilistic strong ground
motion estimates from the current USGS National Seismic Hazard Mapping Project
(Petersen et al. 2008); (4) recently published surficial geologic maps at the 7.5-minute

(1:24,000) scale (e.g., Yonkee and Lowe 2004, Sack 2005, Harty and Lowe 2005); (5)
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Digital Elevation Models (DEMSs) from the USGS National Elevation Dataset; and, (6)
available SPT, CPT, and Vs data compiled into a spatial database—enabling more robust
characterization of various geologic units. This mapping method accounts for: (1)
changes in the degree of ground slope or the size of a free-face; (2) influence of the age
ofthe geologic deposit; (3) proximity to a geotechnical investigation; and, (4) other major
sources of uncertainty. The mapping method was implemented to produce new
probabilistic liquefaction-induced ground failure maps for a study area in Weber County,
Utah. The new maps are for a 500-year or a 2,500-year return period seismic event. To
illustrate the uncertainty associated with the mapped estimates, the probability of
horizontal displacements exceeding specified thresholds are produced for 16th, 50th and
84th percentiles.

This work proposed a new empirical model for predicting liquefaction-induced
lateral spread displacement by significantly revising the widely-used empirical model of
Youd et al. (2002). The Youd et al. (2002) empirical model requires specific inputs from
laboratory testing, namely mean grain size and average fines content. Often in regional
studies, these data are not readily available. By replacing these two soil factors with the
soil description, the new empirical model uses data routinely collected in the field and
reported on the borehole logs. Such replacement makes the new model more
parsimonious and implementable for regional hazard analyses while preserving much of
its original predictive power.

In addition, CPT data can be used in conjunction with the proposed empirical
model because it is possible to use CPT data to estimate the required soil inputs. Based

on side-by-side borehole and CPT data in Weber County, this research found the
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following,: (1) it is possible to calculate the probabilities of each soil type (or index) from
the CPT-based soil behavior type index, Ic; and, (2) SPT corrected blow count values,
N@&), are correlated with CPT penetration resistance data. Such correlations/relationships
make it possible to estimate the required soil inputs in the new empirical model using the
CPT, and define the uncertainty ofthe estimates.

Fine to medium-grained clean sands are associated with larger lateral spread
displacements than coarser sediments or sediments with higher fines content. Therefore,
a new geotechnical variable is introduced: TI15cs. This new variable is the equivalent
value of T15 for fine to medium-grained clean sand only. TI5¢cs shows how soil type and
thickness jointly affect lateral spreading. For example, 1 meter of saturated, clean, fine to
medium-grained sand with Ni,d0 <15 has about the same displacement potential as 15
meters of saturated soil that is either gravel or silt with Ni,d0< 15. Hence, it is important
to assess lateral spread hazards at locales with fine to medium-grained clean sand.

The empirical models used in the proposed mapping method are functions of
certain geotechnical properties. This research found that the distributions of these
geotechnical properties are statistically similar between geologic units of similar
depositional environment. Therefore, in the study of Weber County, it was appropriate to
pool data into 11 depositional classes. Pooling data increases the robustness of the
sampling, thereby improving estimates of the total variability of the geotechnical
properties for each geologic unit.

Previous investigators noted that liquefaction resistance of soils increase with age
(e.g., Youd and Perkins 1978). Unfortunately, the factor(s) causing increased

liguefaction resistance with age is poorly understood (Youd et al. 2001). This research
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was unable to identify differences in the geotechnical properties according to the age of
the soil. This leads to the conclusion that high-strain tests like the SPT or CPT are poor
discriminators of the influence of the age of the soil on liquefaction susceptibility. Thus,
the proposed mapping method accounts for the influence of age by applying an age
correction factor, KCR as defined by Hayati and Andrus (2009).

Semivariance analysis found that geotechnical properties from nearby
investigations are spatially correlated, but only up to roughly 95 meters. Since this range
is relatively small, and available geotechnical investigations are relatively sparsely
spaced in Weber County, there are large uncertainties in the estimates of the probability
of liquefaction hazards. These large uncertainties are also due to poor quality or missing
data in numerous borehole investigations (e.g., lacking measurements ofthe energy ofthe
SPT impact hammer transmitted to the sampler or the fines content of a layer of soil), and
error in the empirical models for estimating: KDR; the nonlinear shear mass participation
factor, rd; the probability of liquefaction triggering; the lateral spread displacement; and,
soil type and SPT blow counts from the CPT. The proposed mapping method accounts
for these major uncertainties by applying Monte Carlo random sampling.

Results shown in the new liquefaction hazard maps for Weber County lead to two
conclusions. First, the magnitude of liquefaction-induced ground displacement is highly
correlated to the degree of ground slope. Therefore, it is important to capture variations
in topography when mapping liquefaction-induced ground failure hazards. There is high
probability for significant lateral spread displacement in deposits that are both susceptible
to liquefaction and have ground slopes between 3 to 6% in the study area. The proposed

mapping method accounts for variations in topography by solving for probabilities of
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liguefaction hazards at points in a finely spaced topographical grid. The grid is spaced
according to the resolution ofthe topographic data from the DEMs (i.e., 10 - 30 meters).
Generally, about 3,000 Monte Carlo simulations at each grid point are necessary to define
the total uncertainty in the resulting probabilities of liquefaction hazards. Because of the
large number of simulations at each point of a very fine grid, there is a need for further
research in the use of Monte Carlo variance reduction methods (e.g., correlated and/or
stratified sampling). Second, the high probability of widespread liquefaction and the
potential for large lateral spread displacement in various gently sloping zones indicates
substantial risk for liquefaction-induced ground failures in the study area during large-
magnitude seismic events. This is because: (1) the study area is filled with loose, sand-
dominated sediments deposited in deltaic, fluvial, and lacustrine environments since the
late Pleistocene; (2) 96% of the 408 available SPT/CPT investigations in the study area
found shallow groundwater depths (i.e., less than 9 meters); and, (3) the study area is near
the seismically active Wasatch fault zone, which is capable of generating earthquakes of
magnitude equal to 7 or greater (Nelson and Personious 1993). Several zones of
liguefiable sediments with sufficient slope have: (1) low to moderately high probabilities
of lateral spreads exceeding 0.3 meters for the 500-year return period seismic event; and,
(2) high probabilities of lateral spreads exceeding 0.6 meters for the 2,500-year return
period seismic event.

Unfortunately, many of the zones with high probability of significant lateral
spread displacement are also areas with high population density and infrastructure.
Figure 6.1 depicts the population density (in units of people per km2) in the study area,

based on data from the 2010 U.S. Census. As can be seen, most of the population in the
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Figure 6.1. Population density map based on 2010 Census; Weber County, Utah
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study area resides either along a north-south corridor easterly of Interstate 15 (from North
Ogden City to Washington Terrace), or in the south-southwestern portion of the figure
(near Roy City). Some areas in the center of Figure 6.1 have a population density equal
to zero, indicating no one resides in these zones. However, many ofthese zones are filled
with large facilities, infrastructure, or business buildings. For instance, the zone with
zero population density northwesterly of Riverdale City is the Ogden-Hinckley Airport.
Hence, Figure 6.2 is shown to depict the development in the study area (from 2009 aerial
photography).  Accordingly, Figure 5.12 shows that most of the zones with 75 - 100%
probability of lateral spread displacements exceeding 0.3 meters given a 2,500-year
return period seismic event are located in zones with extensive development or with
population density greater than 2,000 people per km2. This substantial risk for
liquefaction-induced ground failure underscores the need to perform site-specific
analyses in the study area, where appropriate, to further characterize subsurface

conditions and also reduce uncertainties in the mapped liquefaction hazards.
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Figure 6.2. 2009 High Resolution Orthophotography (HRO); Weber County, Utah
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APPENDIX A

GEOTECHNICAL DATABASE STRUCTURE

Brief Explanation

We compiled all available geotechnical data in Weber County, Utah, and input
them into an electronic database. A large portion ofthe geotechnical data came from the
Utah Department of Transportation (UDOT), the Weber County Recorder’s office, and
local engineering firms. Overall, the geotechnical database for Weber County contains
data from 251 standard penetration test (SPT) boreholes and 157 cone penetrometer test
(CPT) soundings. There are also 21 shear wave velocity tests (V9 from a database
published by McDonald and Ashland (2008).

The SPT and CPT data are stored in a Microsoft® Access database, which is
available online at the Utah Liquefaction Advisory Group (ULAG) webpage
(http://www.civil.utah.edu/~bartlett/ULAG/). Scanned images of many of the reports
and/or logs, and spreadsheets of raw CPT data are also available. The geotechnical
database for Weber County is structured similar to the geotechnical database for Salt
Lake County (Bartlett and Olsen 2005), enabling compatibility between mapping

projects. The database consists of several tables filled with numerous data fields.
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The SITE and BLOW tables contain raw SPT data. We assign each borehole a
site identification number (SITEIDNO) in order to link together data in the two tables.
The SITE table contains information about the borehole site, such as: groundwater depth,
approximate address, type of equipment, source ofthe data, gratitude ofthe borehole, etc.
See Table A. 1 for a definition of each field in the SITE table. The BLOW table contains
various data for each sample obtained during the SPT, such as: depth of the sample,
properties of the sampler, the soil description and classification, uncorrected SPT blow
count, dry unit weight, moisture content, etc. In addition, the BLOW table has records
that identify the depth to each boundary of a layer of sediment in a borehole. See Table
A.2 for a definition of each field in the BLOW table. The SITE and BLOW tables also
have several fields to rank the quality ofthe data. In general, we assigned: a rank of “1”
for data extracted directly from the report or soil log; a rank of “2” for data that could be
reasonably estimated from other samples in the same borehole or nearby borehole logs;
and, a rank of “3” for data estimated from another source. Further details on the ranking
system for each data quality field are in Table A.1and Table A.2.

Similar to the SPT data, the CPT data are stored in two tables: SITECPT and
CPTDATA. We assigned each sounding an identification number (CPTIDNO) in order
to link together data in the two tables. The SITECPT table for CPT data is similar to the
SITE table for SPT data. It contains coordinates of the site and other general information
about the CPT sounding. See Table A.3 for a definition of each field in the SITECPT
table. The CPTDATA table contains near-continuous measurements from the cone with
depth, such as: cone tip resistance, sleeve friction, pore-water pressure behind the tip of

the cone, etc. See Table A.4 for a definition of each field in the CPTDATA table.
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Table A.1. Description of data fields for SITE table

Field Name
BOREELEV
BORING
BoreDiam
BoreDiamEs

DATE
DEPTHGW
DRILLER
DRILLMETH
ELEVEST

GWDATE
GWEST

HAMMER TYP
LATITUDE
LATITEST

LONGITUDE
NCORR

NOTES
REFERENCE
REPORT
RIGTYPE
SITEIDNO

SITENAME
EASTING
NORTHING
CE

CB

GEOLUNIT

Description Units

Surface elevation of SPT borehole feet

Identification of borehole listed on SPT log [text]
Diameter of borehole inches
Quality indicator of diameter of borehole: 1= directly

from log; 2 = from log drilled by same rig and driller

Date of borehole [text]
Depth to groundwater table feet

Name of company who drilled the borehole [text]
Drilling method [text]
Quality indicator for elevation of borehole: 1= directly

from log; 2 = estimated from nearby log; 3 = from maps

Date of depth to groundwater measurement [text]
Quality indicator of depth to groundwater measurement; 1

= directly from log at least 24 hours after drilling; 2 =

from log but date not listed; 3 = from nearby log

Hammer type (i.e., safety, donut, or automatic) [text]
NAD 1983 latitude (in decimal degrees) degree
Quality indicator of measurements of latitude and

longitude: 1= directly from log; 2 = scaled from maps

NAD 1983 longitude (in decimal degrees) degree
True/False whether SPT N-values on logs were already

corrected to Ni,®

Notes and other information [text]
Name of folder containing scanned images of SPT logs

Name of report where SPT log can be found [text]
Type of drill rig used by drillers [text]
Identification number assigned to SPT (link to BLOW

table)

Name of facility or address where SPT was performed [text]
NAD 1983, UTM Zone 12 easting meters
NAD 1983, UTM Zone 12 northing meters
Mean correction for hammer energy ratio : 1= safety; 1.1

= automatic. Apply to correct raw SPT blow counts to

NI,60

Correction for borehole diameter. Apply to correct raw

SPT blow counts to N],8

Mapped surficial geologic unit where SPT was performed [text]
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Table A.2. Description of data fields for BLOW table

Field Name Description Units
BOREIDNO Identification of boring listed on SPT log [text]
COMMENTS Comments or additional information [text]
DEPTH Depth to middle of sample or depth to boundary line feet
between layers
DRYUNIT Dry unit weight of sample kN/m3
DRYUNITPCF Dry unit weight of sample in pounds per cubic foot pcf
ESTATT* Quality indicator for Atterberg limits of sample
ESTDRY™* Quality indicator for dry unit weight of sample
ESTFINES* Quality indicator for fines content of sample
ESTMOIST* Quality indicator for moisture content of sample
ESTNM* Quality indicator for SPT blow counts for bottom 12
inches (0.3 m) of sample
ESTUSCS* Quality indicator for classification of sample according
to the Unified Soil Classification System
ESTWET* Quality indicator for wet unit weight of sample
FINES Fines content of sample (percent of sample passing a %
U.S. Standard No. 200 sieve)
LIQUIDLIMIT Liquid limit of sample %
MOISTURE Moisture content of sample %
CONTENT
N160 Corrected SPT blow counts (Ni,8) from borehole log for
bottom 12 in. (0.3 m) of sample
NVALUE Uncorrected SPT blow counts for bottom 12 in. (0.3 m)
of sample (more common than N160)
PERGRAVEL Percent of sample retained on a No. 4 sieve %
PERSAND Percent of sample passing a No. 4 sieve and retained on a %
No. 200 sieve
PLASTICINDEX Plastic index of sample %
PLASTICLIMIT  Plastic limit of sample %
SAMPLER Type of sampler: CS or MCAL = modified California;

DM = Dames & Moore; SH = thin-walled Shelby tube;
SS = split-spoon (standard for SPT)
SAMPLEREST Quality indicator for properties of sampler

SAMPLER- Length sample retained in the sampler feet
LENGTH
SAMPLER Outside diameter of sampler inches
OUTSIDE
DIAMETER
SITEIDNO Identification number assigned to SPT (link to SITE
table)
SOILTYPE Description of soil sample from log; blank values [text]

indicate boundary lines between layers
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Table A.2. (continued)

Field Name
SPGRAV
USCS
WETUNIT
WCLASS
MCLASS
SGCLASS

N60CE

SOIL INDEX

Description Units
Specific gravity of sample

Unified Soil Classification System [text]
Wet unit weight of sample pcf

Index assigned to sample for estimating its unit weight
Index assigned to sample for estimating its moisture class
Index assigned to sample for estimating its specific
gravity

SPT blow counts for bottom 12 in. (0.3 m) of sample,
corrected for rod length, sampler liner, sampler type, and
borehole diameter (but not for energy ratio, CE

Soil index of sample (SI)

* = A value of: 1= directly from log; 2 = from nearby log in same report; 3 = from
nearby log of different report; 9 = from log but likely inaccurate



Table A.3. Description of data fields for SITECPT table

Field Name
CONEID
CPTIDNO
DATE
DEPTHGW
ELEV
ELEVEST
GWEST

LATITUDE
LATITEST

LONGITUDE

PROJECT
REPORT
SOUNDING
SOURCE

AREA RATIO

EASTING
NORTHING

INCREMENT

GEOLUNIT

Description

Identification number of cone used for test

Identification number assigned to CPT

Date of sounding

Depth to groundwater table

Surface elevation of CPT sounding

Quality indicator for elevation of sounding: 3 = from map
Quality indicator of depth to groundwater measurement; 1
= from pore-water dissipation (PPD) test; 2 = from nearby
PPD test ; 3 = interpolated between PPD tests

NAD 1983 latitude (in decimal degrees)

Quality indicator of measurements of latitude and
longitude: 1= directly from log; 2 = scaled from maps; 3
= scale from maps of lesser quality

NAD 1983 longitude (in decimal degrees)

Name of folder containing raw CPT data

Name ofreport where CPT log can be found
Identification of CPT sounding from logs

Name of company who performed the CPT

Net area ratio of the cone

NAD 1983, UTM Zone 12 easting

NAD 1983, UTM Zone 12 northing

Change in depth between CPT measurements

Mapped surficial geologic unit where CPT was performed

Table A.4. Description of data fields for CPTDATA table

Field Name
CPTIDNO

DEPTH
PRESSURE
QC

QT

SLEEVE
SOUNDING
UBT
FRATIO
DEPTHM

Description

Identification number assigned to CPT (link to SITECPT
table)

Depth below ground surface

Pore-water pressure behind tip of cone (in feet of head)
Cone tip resistance

Cone tip resistance corrected for pore-pressure effects
Sleeve friction

Identification of CPT sounding from logs

Pore-water pressure behind tip of cone (in tsf)

Friction ratio (SLEEVE/QT*100)

Depth below ground surface, in meters
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Units
[text]

[text]
feet
feet

degree

degree

[text]
[text]
[text]

meters

meters

meters
[text]

Units

feet

feet
tsf
tsf
tsf

[text]
tsf
%

meters
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APPENDIX B

DISTRIBUTIONS OF GEOTECHNICAL PROPERTIES FOR

VARIOUS GEOLOGIC UNITS

Chapter 4 discussed production of frequency histograms of particular
geotechnical properties (we call “critical datasets”) according to geologic unit. For
example, Figure 4.3 shows histograms of critical dataset variables for modern stream
alluvium, Qallin Weber County. Figure 4.4 depicts frequency histograms for (a) alluvial
fan, Qaf; and, (b) North Ogden landslide complex deposits, Qmqg2 in Weber County.
Histograms in these figures allow visual exploration of the data: enabling recognition of
patterns or trends, and comparison between geologic units.

This appendix contains the same type of histograms for other geologic units listed
in Table 4.1 (with a minimum SPT/CPT sample size of 9). See Figure B.1 through
Figure B. 14 for these histograms. Refer to Chapter 4 for a discussion on how to interpret
the histograms in these figures. It is important to note that the data in subplots (b)
through (d) of these figures are from critical datasets where T15> 0, only.

As discussed in Chapter 4, we pooled critical datasets from geologic units of

similar depositional environment into 11 deposit classes (see Table 4.1).
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% o occurrences

Figure B.1. Histograms of critical dataset variables for Qal2; Weber County, Utah
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% o occurrences

Figure B.2. Histograms of critical dataset variables for Qat; Weber County, Utah
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% of occurrences

Figure B.3. Histograms of critical dataset variables for Qd2, Weber County, Utah
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% o occurrences

Figure B.4. Histograms of critical dataset variables for Qd3; Weber County, Utah
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% of occurrences

Figure B.5. Histograms of critical dataset variables for Qd4; Weber County, Utah
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Figure B.6. Histograms of critical dataset variables for Qd5; Weber County, Utah
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% of occurrences

Figure B.7. Histograms of critical dataset variables for Qda; Weber County, Utah
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Figure B.8. Histograms of critical dataset variables for Qla; Weber County, Utah
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Figure B.9. Histograms of critical dataset variables for QIf3; Salt Lake and Weber
Counties, Utah
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Figure B.10. Histograms of critical dataset variables for QIlg3; Salt Lake and Weber
Counties, Utah
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Figure B.11. Histograms of critical dataset variables for Qlg4; Salt Lake and Weber
Counties, Utah
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Figure B.12. Histograms of critical dataset variables for Qls; Salt Lake and Weber
Counties, Utah
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% of occurrences

Figure B.13. Histograms of critical dataset variables for Qms2; Weber County, Utah
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% of occurrences

Figure B.14. Histograms of critical dataset variables for Qsm; Weber County, Utah
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For the classes with more than one geologic unit, we produced histograms for the

pooled critical datasets. These histograms are also in this appendix (see Figure B.15

through Figure B.18). For instance, Figure B.15 shows histograms of pooled data from

all SPT and CPT investigations in the deltaic deposits (i.e., Qd2 - Qd1l) of Weber
County.

Finally, in Chapter 4 we tested the hypothesis that geologic units of similar
depositional environment have similar critical datasets. We presented Figure 4.6, which
plots 50th percentile values of critical dataset variables at each SPT/CPT investigation on
planes of canonical axes for: (a) stream alluvium deposits; and, (b) delta deposits in
Weber County. Figure B.19 and Figure B.20 show the same type of plots for 16th and
84th percentile values, respectively. In canonical space, confidence ellipses that represent
the distributions within the units become circles. As can be seen from these figures, there
is significant overlap of the circles. This indicates that the subclassification of the units
achieves little in terms of 16th, 50th, and 84th percentile values of the critical dataset

variables.
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% of occurrences

Figure B.15. Histograms of critical dataset variables for deltaic deposits; Weber County,
Utah
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Figure B.16. Histograms of critical dataset variables for stream alluvium deposits; Weber

County, Utah
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Figure B.17. Histograms of critical dataset variables for fine-grained lacustrine deposits;
Salt Lake and Weber Counties, Utah
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Figure B.18. Histograms of critical dataset variables for landslide deposits in the eastern
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Figure B.19. Scatter of 16thpercentile values of 0’v, Ni60,cs, and Tis,s at sites where Tis >
0 on planes of canonical axes for (a) stream alluvium and (b) delta, with 90 % confidence
circles; Weber County

Canonical Variate 1
(b) Delta

Figure B.20. Scatter of 84thpercentile values of 0’v, Ni60,cs, and Tis,s at sites where Tis >
0 on planes of canonical axes for (a) stream alluvium and (b) delta, with 90 % confidence
circles; Weber County



APPENDIX C

CONVERGENCE OF RESULTS FROM MONTE CARLO

SIMULATIONS

Figure 4.2 depicts empirical cumulative distribution functions (CDFs) of each
variable ofthe critical dataset for SPT borehole no. 11 ofthe geotechnical database. This
figure shows CDFs after 10, 100, 300, 500, and 1000 Monte Carlo random sampling
simulations. As can be seen, the CDFs converge after 300 simulations. Therefore, we
set 300 as the necessary number of simulations to ensure definition of the total
distribution of the critical dataset at each SPT borehole.

Similarly, Figure C.1 depicts CDFs of each variable of the critical dataset for CPT
sounding no. 1 of the geotechnical database. Certainly, after 300 Monte Carlo
simulations, the CDFs converge.

Figure C.2 shows CDFs at a grid point for the probability of liquefaction
triggering and the probability of lateral spread displacement exceeding various thresholds
for a scenario seismic event. This figure shows CDFs after numerous amounts of Monte
Carlo random sampling simulations. After thousands of simulations, the CDFs appear to
converge. Thus, we set 3,000 as the necessary number of simulations to ensure definition

ofthe distribution ofthe probabilities of liquefaction hazards at each grid point.
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Figure C.2. Cumulative distribution functions of the probability of: (a) liquefaction
triggering; and, lateral spread displacements exceeding (b) 0.1 meter, (c) 0.3 meter, and
(d) 1.0 meter. The distributions converge after roughly 3,000 Monte Carlo simulations



APPENDIX D

FINES CONTENT ACCORDING TO SOIL INDEX

For many of the layers of sediment in the borehole investigations in Weber
County, there is a lack of measurements of fines content, FC (percentage of sediment
passing a U.S. Standard No. 200 sieve). This appendix contains distributions of FC for
each soil index, SI. Such distributions enable estimation of lacking measurements of FC
according to the value of Sl for a layer of sediment. The distributions are based on
laboratory results of numerous soil samples (i.e., data with a quality rank equal to 1), as
listed on the borehole logs in the geotechnical database of Weber County.

Figure D.1 depicts histograms of FC for soil samples assigned a value of Sl equal
to 1, 3, 4, or 5. The figure also shows the sample size, n, for each Sl group. As can be
seen, distributions of FC for each S| are approximately uniform. For samples assigned a
value of Sl equal to 1or 3, FC is typically (at least 90% of the time) between 0 to 15%.
For samples assigned a value of Sl equal to 4, FC is typically between 10 to 50%.

Finally, for samples assigned a value of S| equal to 5, FC is typically between 50 to 95%.
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Figure D. 1. Histograms of fines content for samples with a value of: (a) SI = 1, (b) SI =3,
(c) SI =4, and (d) SI = 5; Weber County, Utah



APPENDIX E

ADDITIONAL PROBABILISTIC LIQUEFACTION-INDUCED
GROUND FAILURE HAZARD MAPS OF

WEBER COUNTY, UTAH

Chapter 5 presented probabilistic liquefaction-induced ground failure hazard maps
for the Wasatch Front of Weber County, Utah. The maps show the probability of
liguefaction triggering or lateral spread displacement exceeding certain thresholds for
scenario seismic events. This appendix contains additional maps. Figure E.1 and Figure
E.2 show 16th and 84th percentile probabilities of liquefaction triggering for a 500-year
return period seismic event, respectively. Similarly, Figure E.3 and Figure E.4 depict
16th and 84th percentile probabilities of liquefaction triggering for a 2,500-year return
period seismic event, respectively. Figure E.5 and Figure E.6 show 16th percentile
probabilities of lateral spread displacements exceeding 0.1 and 0.3 meters for a 500-year
return period seismic event, respectively. Figure E.7 through Figure E.9 show 16th
percentile probabilities of lateral displacements exceeding 0.1, 0.3, and 0.6 meters for a
2,500-year return period seismic event, respectively. Finally, Figure E.10 through Figure
E.12 depict 16th, 50th and 84th percentile probabilities of lateral spread displacements

exceeding 1.0 meters for a 2,500-year return period seismic event, respectively.
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Figure E.1. 16th percentile probabilities of liquefaction triggering for a 500-year seismic
event; Weber County, Utah
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Probability of Liquefaction Triggering

Figure E.2. 84th percentile probabilities of liquefaction triggering for a 500-year seismic
event; Weber County, Utah
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Figure E.3. 16th percentile probabilities of liquefaction triggering for a 2,500-year
seismic event; Weber County, Utah
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Probability of Liquefaction Triggering

Figure E.4. 84th percentile probabilities of liquefaction triggering for a 2,500-year
seismic event; Weber County, Utah
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Probability of Exceedance

Figure E.5. 16th percentile probabilities of lateral spread displacement exceeding 0.1
meters for a 500-year seismic event; Weber County, Utah
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Figure E.6. 16th percentile probabilities of lateral spread displacement exceeding 0.3
meters for a 500-year seismic event; Weber County, Utah
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Probability of Exceedance

Figure E.7. 16th percentile probabilities of lateral spread displacement exceeding 0.1
meters for a 2,500-year seismic event; Weber County, Utah
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Probability of Exceedance

Figure E.8. 16th percentile probabilities of lateral spread displacement exceeding 0.3
meters for a 2,500-year seismic event; Weber County, Utah



220

Probability of Exceedance

Figure E.9. 16th percentile probabilities of lateral spread displacement exceeding 0.6
meters for a 2,500-year seismic event; Weber County, Utah
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Figure E.10. 16th percentile probabilities of lateral spread displacement exceeding 1.0
meters for a 2,500-year seismic event; Weber County, Utah
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Probability of Exceedance

Figure E.11. 50th percentile probabilities of lateral spread displacement exceeding 1.0
meters for a 2,500-year seismic event; Weber County, Utah
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Probability of Exceedance

Figure E.12. 84th percentile probabilities of lateral spread displacement exceeding 1.0
meters for a 2,500-year seismic event; Weber County, Utah



APPENDIX F

MATLAB CODE

We wrote Matlab® computer code to perform the necessary computations and
Monte Carlo simulations. Matlab® is a programming language as well as an interactive
computational environment. Files that contain code in the Matlab® language are called
M-files. There are two kinds of M-files: scripts, which operate on data in the workspace
and execute commands found in the file; and, functions, which accept input arguments
and return output arguments. For the analysis, we wrote 9 scripts and 7 functions. This
appendix contains the code for all 16 of these M-files, which can be saved in a directory
and added to a Matlab® search path. The percent symbol (%) precedes comments that
briefly explain lines of code.

The first 4 M-files in this appendix are scripts that reduce raw SPT and CPT data
from the geotechnical database. They are set to run 300 Monte Carlo random sampling
simulations at each SPT borehole or CPT sounding, thereby solving for the distributions
of all variables in the critical dataset at each investigation. The fifth M-file
(BINC_CINC_COMBINER.m) is a script that combines and saves the outputs of the first

4 M-files into a binary file structure (ALLSITE.mat).
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The remaining 11 M-files find the distributions of the probability of liquefaction
triggering and the probability of lateral spread displacements exceeding certain thresholds
for a scenario seismic event. Four ofthese 11 M-files are scripts that use the 7 functions
to solve for these distributions. Each of the 4 scripts must be executed in the order
shown in this appendix. Prior to running these scripts, we filled the study area with a grid
of point features using GIS tools in ArcMap®. We saved these features into a shapefile.
As previously discussed, at each point feature we used the “latticespot” tool in ArcMap®
to extract values from the following raster data: the surficial geologic deposit and its age,
ground slope, site class, and elevation. The latticespot tool saves these raster values in
the attribute table of the point features. After developing the grid, we run the first of the
4 scripts (grid_reader.m) to import the shapefile into Matlab®. The next script
(mr_finder.m) loads mapped values of a scenario earthquake and interpolates for the
mean seismic variables (i.e., am& M, and R) at each grid point. The third script
(w_finder.m) loads line features that define the free-faces in the study area, and computes
the free-face ratio (W) at each grid point. Finally, the fourth script (grid_solver.m) loads
the geotechnical data from ALLSITE.mat, and runs 3,000 Monte Carlo random sampling
simulations at each grid point in order to calculate the distributions of the probability of
liquefaction triggering and the probability of lateral spread displacements exceeding
thresholds from 0.1 to 1.0 meters. This final script outputs gridded 16th, 50th, and 84th
percentile probabilities of each distribution, as well as the mean and standard deviation of

each distribution.
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1 SPT INCREMENTER.m

%This Matlab script loads SITE and BLOW tables and merges them into a structure
%for liquefaction analysis. It interpolates soil properties at increments of 0.1
%ft. It assigns indices to layers of sediment according to description.

%Outputs data into BLOWINC table.

clear all
close all
load BLOW

load SITE

[Bu lu Ju] =unique(BF.USCS); %all unique USCS classes
ibound = find(Ju==1); %index to all "boundary" lines (not samples)

idata = find(Ju~=1); %index to all samples in database

ifines = find(BF.ESTFINES <= 2); %index to all samples with fines content in
database
idry = find(BF.ESTDRY <= 2);

imoist = find(BF.ESTMOIST <=2);

e = length(SITE.SITEIDNO);

for idx = 1:e;
isite = SITE.SITEIDNO(idx); %index to individual boring
ibf = find(BF.SITEIDNO==isite); %index to data in an individual boring

ibfd = intersect(ibf,idata); %index to sample only data in a boring
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%determine SITEIDNO and GWT

BINC(idx).siteidno = isite;

zgw = SITE.DEPTHGW(idx);

BINC(idx).depthgw = zgw;

BINC(idx).geolunit = SITE.GEOLUNIT(idx);

BINC(idx).easting = SITE.EASTING(idx);

BINC(idx).northing = SITE.NORTHING(idx);

BINC(idx).amax = 0.2; %set temporary values to solve for critical layer

BINC(idx).Mw = 7;

%assign hammer type (CE = 1 is safety, CE = 1.1 is automatic)

BINC(idx).hammer = SITE.CE(idx);

%find the boundaries of each layer in the borehole
ibo=[]; top=[]; bot=[];

ibo = intersect(ibound, ibf);

top = BF.DEPTH(ibo(1:length(ibo)-1)); %depth to top of each layer

bot

BF.DEPTH(ibo(2:length(ibo))); %depth to bottom of each layer

%eliminate layers that begin below 100" (liquefaction is a shallow
%phenomena

itop50 = find(top >= 100);

top(itop50) = [I;

bot(itop50) = [];
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%set up depth increment
maxdepth(idx) = max(bot);

BINC(idx).z(:,1) = 0:0.1:maxdepth(idx);

%assign layer numbers to each depth increment, and soil index numbers
for i = 1:length(top);

ilay = find(BINC(idx).z >= top(i));

BINC(idx).zlay(ilay,1) = i;

end

%assign layer numbers to each sample in the BLOW database

BF.LAYER(ibfd,1) = interplq(BINC(idx).z, BINC(idx).zlay,BF.DEPTH(ibfd));

%assign soil index numbers, wclass, mclass, sgclass to each layer

%number

Sl = []; WCLASS = []; MCLASS = []; SGCLASS = [I;

for i = 1:length(top);
ilay2 = find(BF.LAYER(ibfd) == i);
BINC(idx).si(i) = mode(BF.SOIL_INDEX(ibfd(ilay2))); %soil index for a layer
BINC(idx).wclass(i) = mode(BF.WCLASS(ibfd(ilay2))); %wclass for a layer
BINC(idx).mclass(i) = mode(BF.MCLASS(ibfd(ilay2))); %mclass for a layer
BINC(idx).sgclass(i) = mode(BF.SGCLASS(ibfd(ilay2))); %sgclass for a layer

end

%assign FINES to layers with measured data from BLOW database

ifc = [I;
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BINC(idx).fines(1:length(BINC(idx).z),1) = NaN;
ifc = intersect(ibfd,ifines); %index to measured fines content in a borehole
if isempty(ifc) == 0;
[Bf If Jf] = unique(BF.LAYER(ifc)); %layers in boring with known fines
for i = 1:length(Bf);
jfines = find(Jf == i);
ilay3 = find(BINC(idx).zlay == Bf(i));
if length(jfines) == 1;
BINC(idx).fines(ilay3,1) = BF.FINES(ifc(jfines));
else %interpolate to nearest measurement in layers with multiple
measurements
BINC(idx).fines(ilay3,1) =
interp1(BF.DEPTH(ifc(jfines)),BF.FINES(ifc(jfines)),BINC(idx).z(ilay3), nearest’,'extra
P
end
end

end

%assign DRYUNITPCF to layers with measured data from BLOW database
idu = [I;
BINC(idx).dryunit(1:length(BINC(idx).z),1) = NaN;
idu = intersect(ibfd,idry); %index to measured dryunits in a borehole
if isempty(idu) == 0;
[Bd Id Jd] = unique(BF.LAYER(idu));
for i = 1:length(Bd);

jdry = find(dd == 1i);



230
ilay3 = find(BINC(idx).zlay == Bd(i));
if length(jdry) == 1;
BINC(idx).dryunit(ilay3,1) = BF.DRYUNITPCF(idu(jdry));
else
BINC(idx).dryunit(ilay3,1) =
interpl(BF.DEPTH(idu(jdry)),BF.DRYUNITPCF(idu(jdry)),BINC(idx).z(ilay3),'nearest’,’
extrap');
end
end

end

%assign MOISTURE_CONTENT to layers with measured data from BLOW

%database

iwn = []; ilay5 = [I;

BINC(idx).moisture_content(1:length(BINC(idx).z),1) = NaN;

iza = find(BINC(idx).z < zgw);

if isempty(iza) == 0;

BINC(idx).moisture_content(iza,1) = 0; %assume mc = 0 above GWT unless

otherwise measured and filled in below

end

iwn = intersect(ibfd,imoist); %index to measured moisture contents in a borehole

jabove = find(BF.DEPTH(iwn) < zgw); %index to mc's above GWT (assume moist
or wet)

jbelow = find(BF.DEPTH(iwn) >= zgw); %index to mc's below GWT (assume
saturated)

if isempty(jabove) == 0; %assign measured mc's to layers above GWT
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[Bm Im Jm] = unique(BF.LAYER(iwn(jabove))); %layers of a borehole with

measured mc's above GWT
for i = 1l:length(Bm);
jmc = find(Um == i);

ilay3 = find(BINC(idx).zlay == Bm(i));

ilay4 = find(BINC(idx).z < zgw);

ilay5 = intersect(ilay3,ilay4);
if length(jmc) == 1;
BINC(idx).moisture_content(ilay5,1) =
BF.MOISTURE_CONTENT (iwn(jabove(jmc)));

else

BINC(idx).moisture_content(ilay5,1) =

interp1(BF.DEPTH(iwn(jabove(jmc))),BF.MOISTURE_CONTENT (iwn(jabove(jmc))),BI

NC(idx).z(ilay5), nearest','extrap’);
end
end

end

if isempty(jbelow) == 0; %assign measured mc's to layers below GWT

[Bm Im Jm] = unique(BF.LAYER(iwn(jbelow))); %layers

measured mc's below GWT
for i = 1l:length(Bm);
jmc = find(Im == i);

ilay3 = find(BINC(idx).zlay == Bm(i));

ilay4 = find(BINC(idx).z >= zgw);
ilay5 = intersect(ilay3,ilay4);

if length(jmc) == 1;

of a borehole with
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BINC(idx).moisture_content(ilay5,1) =
BF.MOISTURE_CONTENT (iwn(jbelow(jmc)));
else
BINC(idx).moisture_content(ilay5,1) =
interp1(BF.DEPTH(iwn(jbelow(jmc))),BF.MOISTURE_CONTENT (iwn(jbelow(jmc))),BlI
NC(idx).z(ilay5),'nearest','extrap’);
end
end

end

%fill in measured values of N60/CE from BLOW database to nearest depth
%in BINC database
BINC(idx).n60ce(1:length(BINC(idx).z),1) = NaN;
for i = 1:length(ibfd);
ila = find(roundn(BINC(idx).z,-1) == roundn(BF.DEPTH(ibfd(i)),-1));
BINC(idx).n60ce(ila) = BF.N60CE(ibfd(i));

end

end

save BLOWINC BINC
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2. SPT BOREHOLE SIMULATOR.m

%Script uses Monte Carlo techniques to fill in NaN's of important soil inputs
%and then solves for the stress profile, N160, critical layer information,

%and T15cs (file solves for critical dataset at each SPT)

clear all

close all

load BLOWINC;

e = length(BINC);
n = 300; %specify number of simulations.
for idx = 1:e;

ce = [I;

%simulate energy ratio correction, CE

if BINC(idx).hammer == 1; %safety hammer
ce = 1.0 + 0.1.*randn(1,n);

else %automatic hammer
ce = 1.1 + 0.1.*randn(1,n);

end

ce = repmat(ce,length(BINC(idx).z),1);

%simulate fines content for layers w/o data (neglect SI = 6 since

%cohesive layers are not needed for liquefaction analysis)



234
fines = []; simfc = [I;
afines = [0 0 0 15 50]; %lower bound of uniform fines distribution for SI
bfines = [15 15 15 50 95]; %upper bound of fines distribution for SI

ich = find(BINC(idx).si ~=86);

jnan = isnan(BINC(idx).fines) == 1,

inan = unique(BINC(idx).zlay(jnan));

ifines = intersect(ich,inan)’; %index to cohesionless layers w/o fines data

fines = repmat(BINC(idx).fines,1,n);

if isempty(ifines) == 0;
for i = 1:length(ifines);
ilay = find(BINC(idx).zlay == ifines(i));
si = BINC(idx).si(ifines(i));
simfc(ifines(i),:) = afines(si) + (bfines(si) - afines(si)).*rand(1,n):
fines(ilay,:) = repmat(simfc(ifines(i),:),length(ilay),1);
end

end

%simulate dry unit weights for layers w/o data
dryunit = []; simdu = [J;
mudry = [86.2 93.3 98.4 107.5]; %means in pcf

sigmadry = 7.3; %pooled standard deviation

jnan = isnan(BINC(idx).dryunit) == 1;

idry = unique(BINC(idx).zlay(jnan)); %index to layers w/o dryunit data
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dryunit = repmat(BINC(idx).dryunit,1,n);

if isempty(idry) == 0;
for i = 1:length(idry);
ilay = find(BINC(idx).zlay == idry(i));
wclass = BINC(idx).wclass(idry(i));
simdu(idry(i),:) = mudry(wclass) + sigmadry.*randn(1,n);
dryunit(ilay,:) = repmat(simdu(idry(i),:),length(ilay),1);
end

end

%simulate moisture contents for layers w/o data

moisture_content = []; simmc = [];

mumoist = [1.531 1.467 1.424 1.384 1.294 0.998]; %logl0 means (log %)
sigmamoist = [0.0749 0.0749 0.0749 0.0749 0.1826 0.1826]; %log 10 standard

dev.

jnan = find(isnan(BINC(idx).moisture_content) == 1);

imoist = unique(BINC(idx).zlay(jnan)); %index to layers w/o m.c. data

moisture_content = repmat(BINC(idx).moisture_content,1,n);

if isempty(imoist) == 0;

for i = 1:length(imoist);

ilay = find(BINC(idx).zlay == imoist(i));
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mclass = BINC(idx).mclass(imoist(i));
simmc(imoist(i),:) = 10.*(mumoist(mclass) +
sigmamoist(mclass).*randn(1,n));
moisture_content(ilay,:) = repmat(simmc(imoist(i),:),length(ilay),1);
end

end

%simulate specific gravities for all layers
spgravity = []; simsg = [J;
musg = [2.72 2.65 2.67 2.62]; %mean of s.g. distribution for sgclass

sigmasg = [0.02 0.02 0.01 0.02]; %sigma of s.g. distribution

isg = 1:length(BINC(idx).sgclass); %index to each layer in a borehole

for i = 1:length(isg);
ilay = find(BINC(idx).zlay == isg(i));
sgclass = BINC(idx).sgclass(isg(i));
simsg(isg(i),:) = musg(sgclass) + sigmasg(sgclass).*randn(1,n);
spgravity(ilay,:) = repmat(simsg(isg(i),:),length(ilay),1);

end

%calculate unit weights of soil with depth for every simulation

unitwt = [J;

iabove = find(BINC(idx).z < BINC(idx).depthgw); %index to depths above GWT

ibelow = find(BINC(idx).z >= BINC(idx).depthgw); %index to depths below GWT
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unitwt(iabove,:) = dryunit(iabove,:).*(1+moisture_content(iabove,:)./100);

unitwt(ibelow,:)
spgravity(ibelow,:).*62.4.*(1+moisture_content(ibelow,:)./100)./(1 + moisture_cont
ent(ibelow,:)./100.*spgravity(ibelow,:));

unitwt(1,:) = 0; %set to zero at ground surface

%calculate stress profiles for every simulation

pwp = []; totalstress = []; effstress = []; dts = [];

pwp(iabove,:) = 0; %assume pwp = 0 above GWT
pwp(ibelow,:) = 62.4/2000 .* (BINC(idx).z(ibelow,:)-BINC(idx).depthgw); %in tsf
pwp = repmat(pwp,1,n);

pwp(1,)) = 0;

dts = unitwt./2000.*0.1; %incremental change in total stress
totalstress = cumsum(dts); %in tsf

effstress = totalstress - pwp; %in tsf

i = effstress < 0;

effstress(i) = 0;

%calculate CN for every simulation

cn =[],

cn = 2.2./(1.2 + effstress);
i=cn > 1.7;

cn(i) = 1.7;
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%correct measured blowcounts to N160 based on data from every simulation

[1; n160 = [I;

n60ce

n60ce

repmat(BINC(idx).n60ce,1,n);

n160 = n60ce .* ce .* cn;

%fill in values of N160 for every depth increment

for i = 1:length(isg);

inm = find(isnan(n160(:,1)) == 0); %index to measured blowcounts
ilay = find(BINC(idx).zlay == i); %index to data in a given layer

idat

intersect(ilay, inm); %index to measured blowcounts in a layer
if length(idat) == 1;
n160(ilay,:) = repmat(n160(idat,:),length(ilay),1);
else %linearly interpolate between measured values
n160(ilay,:) =
interpl(BINC(idx).z(idat),n160(idat,:),BINC(idx).z(ilay), linear");
inan = find(isnan(n160(ilay,1)) == 1); %extrapolate for points outside of
bounds
nl60(ilay(inan),:) =
interp1(BINC(idx).z(idat),n160(idat,:),BINC(idx).z(ilay(inan)),'nearest','extrap’);

end

end

n60

[1; n160cs = [];

n6o0 n160./ce;

FC=1[I;
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FC = fines; %use as fines content for correcting N160 to clean sand equivalent
i=FC<5;

FC(i) = 0;

i = FC > 35;

FC(i) = 35; %cap the fines correction to between 5 and 35%

n160cs = n160.*((1+0.004.*FC) +.05.*(FC./n160));

%Find average N160 value in the upper 100" per ASCE 7

nb = nl160;

i=nb == 0;

nb(i) = 1; %so that won't divide by zero.

i=nb > 100;

nb(i) = 100;

BINC(idx).Nbar =
sum(repmat(BINC(idx).z,1,n))./sum((repmat(BINC(idx).z,1,n))./nb);

BINC(idx).Nbarmed = median(BINC(idx).Nbar);

BINC(idx).zmax = max(BINC(idx).z);

%Find probability of liquefaction (PLINC) for every increment in each simulation.
%Then calculate the maximum value and set to the PL for each simulation
SI = [; plinc = []; plmax = []; iz = [];
for i = 1:length(isg);
ilay = find(BINC(idx).zlay == i);
Sl(ilay,1) = BINC(idx).si(i);
end

SI = repmat(Sl,1,n);
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plinc(1:length(BINC(idx).z),1:n) = NaN;
ich = find(SI ~= 6); %index to cohesionless increments in a borehole
isat = find(repmat(BINC(idx).z,1,n) >= BINC(idx).depthgw);
iligl = intersect(ich,isat);
i50 = find(repmat(BINC(idx).z,1,n) <= 50); %set critical depth to no more than
50 ft.

ilig = intersect(i50,iliql);

Rd = []; sigmard = []; sim_rd = []; csr = [];

[Rd, sigmard] = rd(0.3048.*BINC(idx).z, BINC(idx).amax, BINC(idx).Mw);

sim_rd = repmat(Rd,1,n) + repmat(sigmard,1,n) .*
repmat(randn(1,n),length(BINC(idx).z),1); %simulate values of rd

i=sim_rd > 1;

sim_rd(i) = 1;

i =sim_rd < 0.18;

sim_rd(i) = 0.18;

csr = 0.65 .* BINC(idx).amax .* totalstress./effstress.*sim_rd;

plinc(ilig) = probliq(n160cs(iliq), 0, csr(ilig), BINC(idx).Mw, effstress(iliq));

[pImax,iz] = max(plinc);
%Determine critical depth (d) by finding the depth for the maximum PL
%value.

izs = sub2ind([length(BINC(idx).z) n],iz,[1:n]); %convert index

BINC(idx).dcr = BINC(idx).z(iz)"; %in ft.



BINC(idx).n160cr = n160(izs);
BINC(idx).n160cscr = n160cs(izs);
BINC(idx).escr = effstress(izs); %in tsf

BINC(idx).tscr = totalstress(izs); %in tsf

%if liguefaction doesn't occur, set to zero
i = BINC(idx).dcr == 0;
BINC(idx).n160cr(i) = O;

BINC(idx).n160cscr(i) = O;

%Find T15 and x's, then T15cs for every simulation

t15i = []; t15 = [;

i15 = find(n160 <= 15);

isat = find(repmat(BINC(idx).z,1,n) >= BINC(idx).depthgw);

il5sat = intersect(il5,isat);

i50 = find(repmat(BINC(idx).z,1,n) <= 50); %clip to upper 15 m.
itl5a = intersect(ich,il5sat);

itl5 = intersect(itl5a, i50); %index to soil susceptible to lateral spread

t15i

zeros(length(BINC(idx).z),n);

t15i(it15) = 0.1;

t15 = sum(t15i).*0.3048; %T15 in meters

XI = []; xthick = []; x = [I;
for i = 1:5;

Xl = zeros(length(BINC(idx).z),n);

241
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isi = find(SI == i);
ix = intersect(isi,it15);
XI(ix) = 0.1;
xthick(i,:) = sum(X1).*0.3048;
x(i,:) = xthick(i,:)./t15;
end
inan = find(isnan(x) == 1);

x(inan) = 0; %replace NaN's with zeros (due to T15 = 0)

BINC(idx).t15¢cs = t15e(t15,x);

end

save BLOWINC BINC; %save results

3. CPT INCREMENTER.m

%Script takes raw CPT data (from SITECPT and CPTDATA tables) and puts it into a

%structure for liquefaction analysis. Each sounding is clipped to its upper 100 ft.

clear all;
close all;
load CPTDATA,
load SITECPT,;

e = length(SITEC.CPTIDNO);

i50 = find(CPT.DEPTH <= 102); %clip to 100 ft. (upper 30 meters)
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for idx = 1:e;
isite = SITEC.CPTIDNO(idx);
icptl = find(CPT.CPTIDNO == isite);

icpt = intersect(icptl,i50);

CINC(idx).cptidno = isite; %save CPTIDNO to structure

zgw = SITEC.DEPTHGW(idx);

CINC(idx).depthgw = zgw; %depth to GWT (in ft.)

CINC(idx).sounding = SITEC.SOUNDING(idx);

CINC(idx).geolunit = SITEC.GEOLUNIT(idx);

CINC(idx).northing = SITEC.NORTHING(idx);

CINC(idx).easting = SITEC.EASTING(idx);

CINC(idx).increment = SITEC.INCREMENT(idx); %measurement inc. in meters
CINC(idx).Mw = 7; %set temporary values to solve for critical layer

CINC(idx).amax = 0.5;

%insert raw data into structure
CINC(idx).z = CPT.DEPTH(icpt); %depth in ft.
CINC(idx).u2 = CPT.UBT(icpt); %pwp behind tip in tsf
CINC(idx).gc = CPT.QC(icpt); %tip resistance in tsf
CINC(idx).qt = CPT.QT{(icpt); %corrected tip resistance in tsf
CINC(idx).fs = CPT.SLEEVE(icpt); %sleeve friction in tsf
CINC(idx).rf = CPT.FRATIO(icpt); %friction ratio in %

end

save CPTINC CINC; %output results to CPTINC table
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4. CPT SOUNDING SIMULATOR.m

%Script uses Monte Carlo techniques to simulate inputs in order to find
%distributions of (d, qcl, Rf, ¢, sigmav, sigmav', T15cs) at the critical

%Ilayer for each CPT sounding (file solves for critical dataset at each CPT).

clear all;
close all;

load CPTINC

(0]
1

length(CINC);

=]
|

= 300; %specify number of simulations

%load SBT zones and their approximate boundaries defined by Ic
SBT=[776655443322];
ZONES = [0 1.31 1.310001 2.05 2.050001 2.60 2.600001 2.95 2.950001 3.60

3.600001 10];

for idx = 1:e;
%solve for ISBT and SBT vs. depth using Robertson (2009) method
isbt = []; sbt = [];
isbt = ((3.47 - log10(CINC(idx).qt))."2 + (logl0(CINC(idx).rf)+1.22).72).”0.5;

sbt = interpl(ZONES,SBT,isbt,'nearest");

%load unit weights, moisture contents, and spec. gravities by SBT

mudry = [0 86.2 93.3 93.3 98.4 98.4 107.5];
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sigmadry = 7.3;
mumoist = [0 1.531 1.467 1.424 1.384 1.294 0.998];
sigmamoist = [0 0.0749 0.0749 0.0749 0.0749 0.1826 0.1826];
musg = [0 2.62 2.72 2.65 2.67 2.67 2.67];

sigmasg = [0 0.02 0.02 0.02 0.01 0.01 0.01];

%simulate values of unit weights, moisture contents, and spgravity for
%each SBT
dryunit = []; moisture_content = []; spgravity = [];
dryunit(1:length(CINC(idx).z),1:n) = NaN;
fori= 1:7;
j = find(sbt == i);
if isempty(j) == 0;
dryunit(j,:) = repmat(mudry(i) + sigmadry.*randn(1,n),length(j),1);
moisture_content(j,:) = repmat(10.*(mumoist(i) +
sigmamoist(i).*randn(1,n)),length(j),1);
spgravity(j,:) = repmat(musg(i) + sigmasg(i).*randn(1,n),length(j),1);
end

end

iabove = find(CINC(idx).z < CINC(idx).depthgw); %index to depths above GWT

ibelow = find(CINC(idx).z >= CINC(idx).depthgw); %index to depths below GWT

moisture_content(iabove,:) = 0; %assume soil is "dry" above GWT

%calculate unit weights

unitwt = [J;
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unitwt(iabove,:) = dryunit(iabove,:).*(1+moisture_content(iabove,:)./100);

unitwt(ibelow,:)
spgravity(ibelow,:).*62.4.*(1+moisture_content(ibelow,:)./100)./(1 + moisture_cont
ent(ibelow,:)./100.*spgravity(ibelow,:));

unitwt(1,:) = 0; %set to zero at ground surface

%find incremental change in depth matrix

inc = [];

inc = CINC(idx).z(2:length(CINC(idx).z))-CINC(idx).z(1:length(CINC(idx).z)-1);

inc = vertcat(inc,inc(length(inc)));

%solve for stress profiles of every simulation

pwp = []; totalstress = []; effstress = [I;

pwp(iabove,:) = 0; %assume pwp = 0 above GWT

pwp(ibelow,:) = 62.4/2000 .* (CINC(idx).z(ibelow,:)-CINC(idx).depthgw); %in tsf
pwp(1,:) = 0;

pwp = repmat(pwp,1,n);

dts = unitwt./2000.*repmat(inc,1,n); %incremental change in total stress
totalstress = cumsum(dts); %in tsf

effstress = totalstress - pwp; %in tsf

i = effstress < 0;

effstress(i) = 0;

%solve for Ic by iterating for n and finding Qtn and Fr per Robertson (2009)
nR = []; %overburden stress normalization factor (n)

NR = ones(length(CINC(idx).z),n); %assume for first iteration
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=[], cqg=1[; Qtn =[]; Fr=1I; ic = [I;

for i = 1:5; %converges for nR after only a few iterations

ni = nR;

cq = (1./effstress).”ni;

j =cq> 17,

cq(j) = 1.7;

Qtn = (repmat(CINC(idx).qt,1,n) - totalstress).*cq;

Fr = (repmat(CINC(idx).fs,1,n))./(repmat(CINC(idx).qt,1,n)-totalstress).*100;
inan = Qtn < 0; %set to a small value so that it's not complex
Qtn(inan) = 1;

inan = Fr < 0;

Fr(inan) = 0.1;

ic = ((3.47 - 10g10(Qtn)).~2 + (logl0(Fr)+1.22).A2).A0.5;
nR = 0.381.*ic + 0.05.*effstress - 0.15;

j=nR > 1,

nRQ) = L

j =nR < 0.5;

nR(j) = 0.5;

end

%solve for Moss et al. (2006) overburden stress normalization

%coefficient, and gc,1

c =1
¢ = cfind(CINC(idx).qt.*0.09576,CINC(idx).rf); %assume for first iteration
j=c>1;

c(j) = 1; %set range for ¢ between 0.25 and 1.0
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j =c<0.25;
c(j) = 0.25;
cq = [

c = repmat(c,1,n);
c =[] qc1l = [I;
for i = 1:5; %converges for c after only a few iterations
ci =¢c;
cq = (1./effstress).”ci;
j =cq > 1.7; %cap correction at 1.7--similar to CN
cq(j) = 1.7;
gcl = cq.*repmat(CINC(idx).qt,1,n); %in tsf
¢ = cfind(gcl.%0.09576,repmat(CINC(idx).rf,1,n));
j=c¢>1;
c() = 1;
j =c<0.25;
c(j) = 0.25;

end

%solve for Rd with depth

Rd = []; sigmard = []; sim_rd = [];

[Rd, sigmard] = rd(0.3048.*CINC(idx).z,CINC(idx).amax,CINC(idx).Mw);

sim_rd = repmat(Rd,1,n) + repmat(sigmard,1,n) .*
repmat(randn(1,n),length(CINC(idx).z),1); %simulate values of rd

i=sim_rd > 1;

sim_rd(i) = 1;

i =sim_rd < 0.18;
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sim_rd(i) = 0.18; %cap rd between 0.18 and 1

%solve for csr with depth

csr = [I;

csr = 0.65 .* CINC(idx).amax .* totalstress./effstress.*sim_rd;
%solve for prob. of lig. with depth. Screen out cohesive soils defined
%as when Ic > 2.6 (ldriss & Boulanger). Use method by Moss et al.
%2006
ich = find(ic <= 2.6); %index to cohesionless increments in a borehole
isat = find(repmat(CINC(idx).z,1,n) > CINC(idx).depthgw);
iligl = intersect(ich,isat);
i50 = find(repmat(CINC(idx).z,1,n) <= 50);
iliq = intersect(i50,iliql); %set critical depth to no more than 50'.
plinc = [];
plinc(1:length(CINC(idx).z),1:n) = O;
RF = I,
RF = repmat(CINC(idx).rf,1,n);
plinc(ilig) = probligcpt(qcl(ilig).*0.09576, RF(ilig), c(ilig), csr(iliq), CINC(idx).Mw,
effstress(iliq).*95.76);

%eliminate thin layers as they are not susceptible to lateral spread.
%Define a thin layer as less than 0.3 m thick

=1 =00 k=1

i = find(plinc>0.01);

j=i-1
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itop = setdiff(j,i); %index to top of every simulated sublayer
k=1i+ 1;

ibot = setdiff(k,i); %index to bottom of every simulated sublayer

for m = 1:length(itop);
1 = find(i > itop(m));
D = find(i < ibot(m));
ilay = intersect(il,i2);
if length(ilay) < round(0.3/CINC(idx).increment);
plinc(i(ilay)) = 0; %layer is too thin
end

end

%solve for depth to maximum probability of liquefaction in a sounding.
%Set this depth as critical depth, and find its associated values of
%qcl, rf, ¢, sigma, sigma’

iz =1[]; izs = []; plmax =[],

[pImax,iz] = max(plinc);

izs = sub2ind([length(CINC(idx).z) n],iz,[1:n]); %convert index to matrix

CINC(idx).dcr = CINC(idx).z(iz)'; %in ft.
CINC(idx).qclcr = qcl(izs); %in tsf
CINC(idx).rfcr = CINC(idx).rf(iz)'; %in (%)
CINC(idx).ccr = c(izs);

CINC(idx).escr = effstress(izs); %in tsf

CINC(idx).tscr = totalstress(izs); %in tsf
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%solve for N160 with depth using regression eqn.

qtN60 = []; N60 = []; cn = [I; N160 = []; muqtN60 = [];

qtN60 = zeros(length(CINC(idx).z),n);

N60 = zeros(length(CINC(idx).z),n);

cn = zeros(length(CINC(idx).z),n);

N160 = zeros(length(CINC(idx).z),n);

muqtN60 = 10.2(1.26 - 0.295.%ic);

qtN60 = muqgtN60 + 10.7(0.156.*randn(length(CINC(idx).z),n));
N60 = repmat(CINC(idx).qt,1,n)./qtN60;

cn = 2.2./(1.2 + effstress);

i=cn > 1.7;

cn(i) = 1.7;

N160 = cn.*N60;

%Find average N160 value in the upper 100" per ASCE 7

nb = N160;

i=nb==0;

nb(i) = 1; %so that won't divide by zero.

i=nb > 100;

nb(i) = 100;

CINC(idx).Nbar =
sum(repmat(CINC(idx).z,1,n))./sum((repmat(CINC(idx).z,1,n))./nb);

CINC(idx).Nbarmed = median(CINC(idx).Nbar);

CINC(idx).zmax = max(CINC(idx).z);
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%solve for prob. of SI given IC with depth

pL=1[I p3 =10 p4 =1 p5 = [I; p6 = [I;
[p1, p3, p4, p5, p6] = pointest_16(ic);

%solve for T15 and x

%T15 is defined as the cumulative thickness of saturated, cohesionless
%soil with N160 <= 15 in the upper 15 meters of a site.

incs = [I; xi1l = []; xi3 = []; xi4 = []; xi5 = []; t15i = [];
t15=zeros(1,n);

X = zeros(5,n);

i50 = find(repmat(CINC(idx).z,1,n) <= 50);
i15 = find(N160 <= 15);

i5015 = intersect(i50,i15);

itl5 = intersect(i5015,isat);
incs = repmat(inc,1,n);
t15i = zeros(length(CINC(idx).z),n);

t15i(it15) = 1; %binary matrix indicating which zones are susceptible to I.s.
xil = sum(pl.*incs.*t15i); %total thickness of T15 for SI = 1 (in ft)

xi3 = sum(p3.*incs.*t15i);

xi4 = sum(p4.*incs.*t15i);

Xi5 = sum(p5.*incs.*t15i);

t15 = 0.3048.*(xil+xi3+xi4+xi5); %in meters

inan = isnan(tl5) == 1;

t15(inan) = 0; %replace NaN's with zeros
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x(1,:) = 0.3048.*xi1./t15;
x(3,:) = 0.3048.*xi3./t15;
x(4,:) = 0.3048.*xi4./115;
x(5,:) = 0.3048.*xi5./t115;
inan = isnan(x) == 1;

x(inan) = 0; %replace NaN's with zeros

%solve for T15cs
CINC(idx).t15cs = t15e(t15,x); %in meters

end

save CPTINC CINC; %save results

5. BINC CINC COMBINER.m

%Script extracts information from BLOWINC, and CPTINC and puts it into a

%combined table format (exports ALLSITE.mat).

clear all

close all

load BLOWINC
load CPTINC

load BLOWINCSLC %load BLOWINC table containing Salt Lake County data

n = 300;



%compile id numbers and insitu test types
siteidno = [BINC.siteidno]’;

spts = ones(length(BINC),1); %set index to 1 for spt data

cptidno = [CINC.cptidno]’;

cpts = 2.*ones(length(CINC),1); %set index to 2 for cpt data

ssiteidno = [SINC.siteidno]’;

sspts = ones(length(SINC),1);

AS.idno = vertcat(siteidno,cptidno, ssiteidno);

AS.test = vertcat(spts,cpts,sspts);

%compile geologic units
sgeology = [BINC.geolunit]’;
cgeology = [CINC.geolunit]’;

slcgeology = [SINC.geolunit]’;

AS.geolunit = vertcat(sgeology, cgeology, slcgeology);

%compile gwt depths
sgwt = [BINC.depthgw]’;
cgwt = [CINC.depthgw]’;
slcgwt = [SINC.depthgw]’;

AS.depthgw = vertcat(sgwt,cgwt,slcgwt);
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%compile coordinates
seasting = [BINC.easting]’;
ceasting = [CINC.easting]’;
slceasting = [SINC.easting]’;
snorthing = [BINC.northing]’;
cnorthing = [CINC.northing]’;

slcnorthing = [SINC.northing]’;

AS.easting = vertcat(seasting,ceasting,slceasting);

AS.northing = vertcat(snorthing,cnorthing,slcnorthing);

%compile median values of Nbar
%adjust those values where there was refusal (N = 100 for rock from zmax to
% 100")
irefuse = [139 166 514 515 516 517 518]; %SITEIDNO's with reported refusal
for i = 1:length(irefuse);

idx = find([BINC.siteidno] = =irefuse(i));

zmax = BINC(idx).zmax;

nbar = BINC(idx).Nbarmed;

nbarnew = zmax/100*nbar + (100-zmax)/100*100;

BINC(idx).Nbarmed = nbarnew;

BINC(idx).zmax = 100; %update max. depth to 100'

end

snbar = [BINC.Nbarmed]';

cnbar = [CINC.Nbarmed]’;



slcnbar = nan(length(SINC),1);

AS.Nbar = vertcat(snbar,cnbar,slcnbar);

%compile maximum depths
smaxz = [BINC.zmax]’;

cmaxz = [CINC.zmax]";
slcmaxz = nan(length(SINC),1);

AS.zmax = vertcat(smaxz,cmaxz,slcmaxz);

%compile critical depths
sdcr = fliplr(rot90(reshape([BINC.dcr],n,length(BINC)),-1));
cdcr = fliplr(rot90(reshape([CINC.dcr],n,length(CINC)),-1));

slcder = fliplr(rot90(reshape([SINC.dcr],n,length(SINC)),-1));

AS.dcr = vertcat(sdcr,cdcr,slcdcr);

%compile critical total stresses

stscr = fliplr(rot90(reshape([BINC.tscr],n,length(BINC)),-1));
ctscr = fliplr(rot90(reshape([CINC.tscr],n,length(CINC)),-1));
slctscr = fliplr(rot90(reshape([SINC.tscr],n,length(SINC)),-1));

AS.tscr = vertcat(stscr,ctscr,slctscr);

%compile critical effective stresses
sescr = fliplr(rot90(reshape([BINC.escr],n,length(BINC)),-1));
cescr = fliplr(rot90(reshape([CINC.escr],n,length(CINC)),-1));

slcescr = fliplr(rot90(reshape([SINC.escr],n,length(SINC)),-1));
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AS.escr = vertcat(sescr,cescr,slcescr);

%compile t15cs

st15cs = fliplr(rot90(reshape([BINC.t15cs],n,length(BINC)),-1));
ctl5c¢cs = fliplr(rot90(reshape([CINC.t15cs],n,length(CINC)),-1));
slctl5cs = fliplr(rot90(reshape([SINC.t15cs],n,length(SINC)),-1));

AS.t15cs = vertcat(stl5cs,ctl5cs,slctl5cs);

%compile N160cr, N160cscr
sn160cr = fliplr(rot90(reshape([BINC.n160cr],n,length(BINC)),-1));

slcn160cr = fliplr(rot90(reshape([SINC.n160cr],n,length(SINC)),-1));

sn160cscr = fliplr(rot90(reshape([BINC.n160cscr],n,length(BINC)),-1));
slen160cscr = fliplr(rot90(reshape([SINC.n160cscr],n,length(SINC)),-1));

cnl60cscr = fliplr(rot90(reshape([CINC.n160cscr],n,length(CINC)),-1));

cnan = nan(length(CINC),n); %fill in nan's for cpt data
AS.n160cr = vertcat(snl160cr, cnan, slcn160cr);

AS.nl160cscr = vertcat(snl160cscr, cn160cscr, slcn160cscr);

%compile gclcr, rfcr, and ccr

snan = nan(length(BINC),n); %fill in nan's for spt data

gclcr = fliplr(rot90(reshape([CINC.qclcr],n,length(CINC)),-1));
ccr = fliplr(rot90(reshape([CINC.ccr],n,length(CINC)),-1));

rfcr = fliplr(rot90(reshape([CINC.rfcr],n,length(CINC)),-1));

slcnan = nan(length(SINC),n);
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AS.qgclcr = vertcat(snan, gclcr,slcnan);
AS.ccr = vertcat(snan, ccr,slcnan);

AS.rfcr = vertcat(snan, rfcr,slcnan);

%assign "deposit" indices according to geologic units

load DEPOSITS; %this file assigns each geologic unit an index corresponding to its
deposit class (11 in Weber County)

[Bg Ig Jg] = unique(AS.geolunit);

[Bd Id Jd] = unique(DEP.usites);

deposit_index = interpl([1:length(Bg)],Jd,Jg,'nearest’);

AS.deposit = Bd(deposit_index);

AS.idxdeposit = deposit_index;

%compute median values of N160cscr, t15cs, and escr
AS.N160CSCR = median(AS.n160cscr,2);

AS.T15CS = median(AS.t15cs,2); %in meters
AS.ESCR = median(AS.escr,2); %in tsf

i = AS.T15CS == 0;

AS.N160CSCR(i) = NaN;

AS.ESCR(i) = NaN;

save ALLSITE AS; %save results to ALLSITE table
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6. GRID READER m

%Script loads grid shapefile from Arcmap. Use this file after running
%latticespot (in ArcGIS) and extracting the age, idxdeposit, siteclass, dem10m, and
%slope raster values at each grid point. This file outputs a GRIDDATA.mat type

%file that can be solved in Matlab.

%Load the attribute table of the grid points. This table should be filled with values
%extracted from raster images.
[S,A] = shaperead('D:\WEBER_COUNTY _GIS\Grids\sgridpts.shp','Attributes',{"'age'

'idxdeposit’ 'siteclass’ ‘dem10m’ 'slope’ });

GRID.easting = [S.X]’;
GRID.northing = [S.Y];
GRID.age = [A.age]’;
GRID.idxdeposit = [A.idxdeposit]’;
idxclass = [A.siteclass];
GRID.elev = [A.dem10m]’;

GRID.slope = [A.slope]’;

%remove nan data (empty data because grid points are outside of rasters)

inan = find(GRID.age == 0);
GRID.easting(inan) = [];
GRID.northing(inan) = [];
GRID.age(inan) = [J;

GRID.idxdeposit(inan) = [];



idxclass(inan) = [];
GRID.elev(inan) = [];

GRID.slope(inan) = [J;

%replace data such that slope is between 0.1 - 6 %.

%than 5% of the study area
j = find(GRID.slope < 0.1);
GRID.slope(j) = 0.1;

j = find(GRID.slope > 6);

GRID.slope(j) = 6;

%assign site class values, 1 ="'E', 2 = 'D

i = idxclass == 1;

siteclass(i) = {'E'};

i = idxclass == 2;

siteclass(i) = {'D'};

GRID.siteclass = siteclass';

save GRIDDATA GRID; %save results

Note: this represents less
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7. mr_finder.m

% Script spatially interpolates for seismic inputs from a grid. It uses the

% spatial_interpvec.m function for 2-D bilinear interpolation

clear all

close all

%Iload desired seismic event

load 10P50; %gridded values for a 10% in 50 yr. seismic event in Weber County

%specify grid points for analysis

load GRIDDATA,

%grid points should be in NAD83, Zone 12 N
% Use utm2deg function written by Rafael Palacios, Matlab central
% Version: Apr/06, Jun/06, Aug/06

utmzone(1l:length(GRID.northing),1) = {'12 T'};

%convert grid points into lats and longs

[lat,long] = utm2deg(GRID.easting, GRID.northing,char(utmzone));

%spatially interpolate for amax, Mw, and R (in km) based on gridded points'

%site class.

siteclass = char(GRID.siteclass);

i = siteclass == 'E;



amax(i) = spatial_interpvec(SEIS.LONG, SEIS.LAT, SEIS.PGA_E, long(i), lat(i));
Mw(i) = spatial_interpvec(SEIS.LONG, SEIS.LAT, SEIS.MW_E, long(i), lat(i));

R(i) = spatial_interpvec(SEIS.LONG, SEIS.LAT, SEIS.R_E, long(i), lat(i));

i = siteclass == 'D';
amax(i) = spatial_interpvec(SEIS.LONG, SEIS.LAT, SEIS.PGA_D, long(i), lat(i));
Mw(i) = spatial_interpvec(SEIS.LONG, SEIS.LAT, SEIS.MW_D, long(i), lat(i));

R(i) = spatial_interpvec(SEIS.LONG, SEIS.LAT, SEIS.R_D, long(i), lat(i));

i = siteclass == 'C";
amax(i) = spatial_interpvec(SEIS.LONG, SEIS.LAT, SEIS.PGA_C, long(i), lat(i));
Mw(i) = spatial_interpvec(SEIS.LONG, SEIS.LAT, SEIS.MW_C, long(i), lat(i));

R(i) = spatial_interpvec(SEIS.LONG, SEIS.LAT, SEIS.R_C, long(i), lat(i));

%output results
GRID.amax = amax'; %in units of gravity
GRID.Mw = Mw';

GRID.R = R'; %in km

save GRIDDATA GRID; %save results
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8. spatial_interpvec.m

function [ siteVals ] = spatial_interpvec( gridLons, gridLats, gridVals, siteLons,

siteLats )

%This function executes 2-d bilinear interpolation given a table of seismic data.
table
%structured as columns of lat, long, and seismic value

% Input

% gridLons = ( # grid points x 1) vector of longitudes for gridded seismic
% values

% gridLats = ( # grid points x 1) vector of latitudes for gridded seismic
% values

% gridVals = ( # grid points x # values ) matrix of seismic values

% siteLons = ( # sites x 1) vector of longitudes for new grid

% siteLats = ( # sites x 1) vector of latitudes for new grid

%

% Ouput

[ y—

% siteVals = ( # sites x # values ) matrix of interpolated values

%

X = unique( gridLons )';

nLons = length( X);

Xl = siteLons;



Y = flipud( unique( gridLats ) );

nLats = length( Y);

Yl = siteLats;

nVals = size( gridVals, 2 );

forj = l:nVals

Z = reshape( gridVals(:,j), nLons, nLats )";
tmp = interp2( X, Y, Z, XI, YI, 'linear’, NaN )’;

siteVals(:,j) = tmp(2);

end

9. w_finder.m

%Script computes the free-face ratio (W) for a list of grid points. It finds
%the elevation difference between the grid point and the bottom of the
%nearest free-face feature (H). It divides this difference by the distance

%from the grid point to that free-face feature (L).

clear all

close all

%specify grid points for analysis

load GRIDDATA,
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%load the polyline shapefile for the free-face features, A = bottom of channel
elevation

%Z_Mean from ArcMap "Add surface information” tool. This tool assigns
%elevations from a raster DEM to each line segment. The

%bottom of the channel was found at each short line segment using said tool and a
%10 m DEM in Arcmap.

[S.A] =
shaperead('D:\WEBER_COUNTY_GIS\Major_Rivers\MajorRivers\Final\webrivexp.shp',

'Attributes’,{'Z_Mean'});

for i = 1:length(S);
S(i).Z(1,1:length(S(i).X)) = A(i).Z_Mean; %set depth of channel equal to its
attribute in A array

end

%convert shapefile structure into a list of vectors of xy0, xy1, and z
X = [S.X];
Y = [S.Y],

Z = [S.Z];

inan = find(isnan(X) == 1); %index to NaN's which are ends of a feature

inan2 = inan;

inan2 (length(inan)) = [J;

ibegin = ones(length(X),1);



ibegin(inan) = 0;
ibegin(inan - 1) = 0;

ib = ibegin == 1;

iend = ones(length(X),1);
iend(inan) = 0;
iend(inan2+1) = 0;
iend(1) = 0;

ie = iend == 1;

xy0 = [X(ib) Y(ib)];
xyl = [X(ie) Y(ie)];

z = Z(ib)";

% % plot to verify channels were loaded properly
% line(X,Y); hold on;

% for i = 1:length(xy0);

%  east = [xy0(i,1) xy1(i,1)];

%  north = [xy0(i,2) xy1(i,2)];

% plot(east,north,'r-','linewidth’,2); hold on;

% end

xyP = zeros(length(xy0),2); %preallocate the points

W = zeros(length(GRID.northing),1);
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%Find W using distptolineseg function
for i = 1l:length(GRID.northing);
coords = [GRID.easting(i) GRID.northing(i)];
xyP = repmat(coords,length(xy0),1);
% find distance to nearest channel segment, r = L
[r,ir] = min(distptolineseg(xy0,xy1,xyP));
w = (GRID.elev(i) - z(ir))./r.*100; %define H of free face as elevation at point
%minus elevation of the bottom of the
%nearest channel segment
W(@i) = w;

end

i =W > 20;%limit Wto 20 % (less than 2% of data)
W(i) = 20;
i=Wc«< 1

W(i) = 0; %if W is less than 1%, it's not influential. Use slope model instead.

GRID.W =W,

save GRIDDATA GRID; %save results

10. distptolineseg.m

function r = distptolineseg( xy0, xy1, xyP )
% function calculates the distance from an input point row vector (xyP) to

% a line segment with endpoint row vectors xy0 and xy1.
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vx = xy0(:,1)-xyP(:,1);
vy = xy0(:,2)-xyP(:,2);
ux = xy1(:,1)-xyo(:,1);
uy = xy1(:,2)-xy0(:,2);

lenSgr= (ux.*ux+uy.*uy); %squared length of line segment

detP= -1.*vx.*ux + -1.*vy.*uy; %area of parallelogram created by the 3 vectors

r = abs(ux.*vy-uy.*vx)./sqrt(lenSqr); %perpendicular distance from point to line

I = detP < 0;

r(i) = sqrt((xy0(i,1) - xyP(i,1)).”2 + (xy0(i,2) - xyP(i,2))."2); %distance from point
to end point 1 of line

i = detP > lenSqr;

r(i) = sqrt((xy1(i,1) - xyP(i,1)).*2 + (xyl1(i,2) - xyP(i,2)).”2); %distance from point

to end point 2 of line

end

11. grid_solver.m

%Script solves for probability of liquefaction triggering and the
%probability of lateral spreads exceeding displacement thresholds for each grid
%point. It uses the Monte Carlo random sampling method and several Matlab

%function files. This is the "work-horse" script for solving the grid

clear all
close all

load GRIDDATA,; %specify grid points for analysis
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load VSTRUCT; %load variogram fitted to data (output of variogramfit.m), named
ng

%refer to Matlab central for the variogramfit.m function written by Wolfgang
%Schwanghart, October, 2010.

load ALLSITE; %load table of all geotechnical data (output from

%BINC_CINC_COMBINER.m)

s = 1;

[¢]
1

length(GRID.northing);

%simulate 3,000 rounds
n = 1000; %number of samples taken for analysis
m = 3; %number of columns taken from critical layer simulations (1 - 300)

test = repmat(AS.test,1,300); %300 is total number of columns in ALLSITE.mat

for idx = s:e;

%Find weights according to the variogram. If a sampled site is within
%95 meters of the grid point, it will have a higher weight

%Uses BLUE_ weights.m to solve for weights

dist = []; isamp = [];

dist = ((GRID.easting(idx) - AS.easting).2 + (GRID.northing(idx) -
AS.northing).~2).70.5; %distance to every point in database (in meters)

inear = find(dist<95);

igeo = find(AS.idxdeposit == GRID.idxdeposit(idx));
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isamp = unique(vertcat(inear,igeo)); %index to all sites that are nearby or within

same depositional environment.

if isempty(inear) == 1,
weights = ones(length(isamp),1)./length(isamp); %set weights as equally
likely if none are within 95 meters.
else
weights =
BLUE_weights(S,AS.easting(isamp),AS.northing(isamp),GRID.easting(idx),GRID.nort
hing(idx));
weights(length(isamp)+1) = []; %remove the lagrange multiplier
j = find(weights < 0.001); %remove weights that are essentially zero
compared to nearby weights
weights(j) = [I;
isamp(j) = [I;
weights = weights./sum(weights); %re-scale so that weights sum to one

end

%randomly sample the sites (or SPT/CPT investigations) according to the weights
(with replacement)
if length(isamp) == 1;
rrand = repmat(isamp,n,m); %indicates grid point is on top of a sample point
else
rrand = repmat(randsample(isamp,n,true,weights),1,m); %random index to
sites

end
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crand = randi(300,[n,m]);
ind = sub2ind(size(AS.dcr),rrand,crand); %index to all selected random samples

in ALLSITE.mat

%solve for the rigidity factor, rd. Use rd.m function.

Rd = []; sigmard = []; sim_rd = [];

[Rd, sigmard] = rd(0.3048.*AS.dcr(ind),GRID.amax(idx),GRID.Mw(idx));
sim_rd = Rd + sigmard.*randn(n,m);

i=sim_rd > 1;

sim_rd(i) = 1;

i =sim_rd < 0.18;

sim_rd(i) = 0.18; %cap rd between 0.18 and 1 (per Cetin et al. figure)

%solve for kdr, as a function of age. From Hayati and Andrus (2009),
% kdr = 0.13 logl0(age) + 0.83 with sigma = 0.24.

mukdr = []; kdr = [I;

mukdr = 0.13.*log10(GRID.age(idx)) + 0.83;

kdr = mukdr + 0.24.*randn(n,m);

i = kdr > 3; %cap kdr from 0.7 to 3

kdr(i) = 3;
i = kdr < 0.7;
kdr(i) = 0.7;

%solve for csr
csr = [I;

csr = 0.65 .* GRID.amax(idx) .* AS.tscr(ind)./AS.escr(ind).*sim_rd./kdr;
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inan = isnan(csr) == 1;
csr(inan) = 0; %if the csr = NaN, indicates there is no critical layer. Set to zero

so prob. of lig=10

%solve for prob. of liquefaction, PL. Use problig function for SPT-based data and

%probligcpt function for CPT-based data

PL = [I;

inds = test(ind) == 1; %SPT data

indc = test(ind) == 2; %CPT data

PL(inds) = problig(
AS.n160cscr(ind(inds)),0,csr(inds),GRID.Mw(idx),AS.escr(ind(inds))); %use SPT
data and Cetin's method

PL(indc) =
probliqcpt(0.09576.*AS.qclcr(ind(indc)),AS.rfcr(ind(indc)),AS.ccr(ind(indc)),csr(indc
),GRID.Mw(idx),95.76.*AS.escr(ind(indc))); %use CPT data and Moss's method

PL = reshape(PL,n,m);

%solve for probability of lateral spread exceeding specific thresholds
%(in increments of 0.1 meters). Use mlr_gillins function.
DHw = []; DHs = []; DHbar = [J;
pdl = []; pd2 = []; pd3 = []; pd4 =[]; pd5 = []; pd6 = []; pd7 = [I;
pd8 = []; pd9 = []; pd10 = [];
if GRID.W(idx) == 0;

DHw = zeros(n,m);

else
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DHw =
mlr_gillins(1,GRID.Mw(idx),GRID.R(idx),GRID.W(idx),GRID.slope(idx),AS.t15cs(ind),
[00 10 0]);
end
DHs =
mlr_gillins(0,GRID.Mw(idx),GRID.R(idx),GRID.W(idx),GRID.slope(idx),AS.t15cs(ind),
[00 10 0]);
DHbar = max(DHw,DHSs); %controlling topographic condition between slope and

free-face conditions (in meters)

%sigma_logDH = 0.2182
%probability lateral spread exceeds 0.1 - 1.0 meters given seismic event

pdl = (1

cdf('normal’,1og10(0.1),log10(DHbar),0.2182)).*PL;
pd2 = (1 - cdf('normal’,10g10(0.2),log10(DHbar),0.2182)).*PL;
pd3 = (1 - cdf('normal’,10g10(0.3),log10(DHbar),0.2182)).*PL;
pd4 = (1 - cdf('normal’,10g10(0.4),log10(DHbar),0.2182)).*PL;
pd5 = (1 - cdf('normal’,10g10(0.5),log10(DHbar),0.2182)).*PL;
pdé6 = (1 - cdf('normal’,10g10(0.6),log10(DHbar),0.2182)).*PL;
pd7 = (1 - cdf('normal’,10g10(0.7),log10(DHbar),0.2182)).*PL;
pd8 = (1 - cdf('normal’,10g10(0.8),log10(DHbar),0.2182)).*PL;

pd9 = (1

cdf(‘normal’,109g10(0.9),log10(DHbar),0.2182)).*PL;

pd10 = (1 - cdf(‘'normal’,log10(1.0),log10(DHbar),0.2182)).*PL;

%output resulting 16th, 50th, and 84th percentile values from each
%distribution. Also output mean &st. dev. of each distribution

GRID.PL(idx,1:3) = prctile(reshape(PL,numel(PL),1),[16 50 84]);



GRID.pd1(idx,1:3) = T O =xx OSSO

GRID.de(idX,123) = T O =Hex DUST APEQ. KICS

GRID.pd3(idx,1:3) = T O =hax DUSWT Ao WDCS

GRID.pd4(idx,1:3) = T O =x AOSS MEQ. PSS

GRID.pd5(idx,1:3) = T O =Hex DUDVT ABSQ. UBCS

GRID.pd6(idx,1:3) = T O == DUSWS o0, WET

GRID.pd7(idx,1:3) = T O =hax DUSWT ABSQ. “SBCT

GRID.pd8(idx,1:3) = T O == DUSWS ABoQ. WES

GRledg(ldX,13) = T O == DUSVT Ao O3

GRID.pd10(idx,1:3) = prctile(reshape(pd10,numel(PL),1),[16 50 84]);

Ranvl ol o

o

Ranvl ol o

o

Ranvh gl ol

Ranvl ol o

Ranvl ol o

o

Ranvh gl

GRID.PL(idx,4) = mean(reshape(PL,numel(PL),1));

GRID.pd1(idx,4) = mean(reshape(pdl,numel(PL),1

GRID.pd2(idx,4) = mean(reshape(pd2,numel(PL),1

GRID.pd3(idx,4) = mean(reshape(pd3,numel(PL),1

GRID.pd4(idx,4) = mean(reshape(pd4,numel(PL),1

GRID.pd5(idx,4) = mean(reshape(pd5,numel(PL),1

GRID.pd6(idx,4) = mean(reshape(pd6,numel(PL),1

GRID.pd7(idx,4) = mean(reshape(pd7,numel(PL),1

GRID.pd8(idx,4) = mean(reshape(pd8,numel(PL),1

GRID.pd9(idx,4) = mean(reshape(pd9,numel(PL),1

GRID.pd10(idx,4) = mean(reshape(pd10,numel(PL

GRID.PL(idx,5) = std(reshape(PL,numel(PL),1));

GRID.pd1(idx,5) = std(reshape(pdl,numel(PL),1));

GRID.pd2(idx,5) = std(reshape(pd2,numel(PL),1));

1));

16 50
S

16 50 84])
16 50 84])
16 50 84])
16 50 84])
16 50 84])
16 50 84])
16 50 84])

16 50 84])
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GRID.pd3(idx,5) = std(reshape(pd3,numel(PL),1));
GRID.pd4(idx,5) = std(reshape(pd4,numel(PL),1));
GRID.pd5(idx,5) = std(reshape(pd5,numel(PL),1));
GRID.pd6(idx,5) = std(reshape(pd6,numel(PL),1));
GRID.pd7(idx,5) = std(reshape(pd7,numel(PL),1));
GRID.pd8(idx,5) = std(reshape(pd8,numel(PL),1));
GRID.pd9(idx,5) = std(reshape(pd9,numel(PL),1));

GRID.pd10(idx,5) = std(reshape(pd10,numel(PL),1));

end

save GRIDDATA GRID %save results

12. BLUE_weights.m

function [lambda] = BLUE_weights(vstruct,x,y,xi,yi,chunksize)

% function solves for the weights using ordinary kriging theory
% A significant portion of this code is from kriging.m function written by

% Wolfgang Schwanghart, Matlab central, dated October, 2010

% Input arguments:

%

%  wvstruct structure array with variogram information as returned

% from variogramfit.m

% refer to Matlab central for the variogramfit.m function written by Wolfgang

% Schwanghart, October, 2010.
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% Xy coordinates of observations (i.e., location of SPT/CPT's)
%  xiyi  coordinates of locations for predictions (i.e., grid point)

%  chunksize nr of elements in zi that are processed at one time.

% The default is 100, but this depends largely on your
% available main memory and numel(x).
%

% Output arguments:

%

% lambda weights to each observation
%

% size of input arguments

sizest = size(xi);

numest = numel(xi);

numobs = numel(x);

% force column vectors

xi = Xi(:);
yi =yi(:);
x =x(:);
y =vy();
if nargin == 5;

chunksize = 100;
elseif nargin == 6;
else

error("'wrong number of input arguments")
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end

% check if the latest version of variogramfit is used
if ~isfield(vstruct, 'func')
error(‘please download the latest version of variogramfit from the FEX)

end

% variogram function definitions
switch lower(vstruct.model)
case {'whittle' 'matern'}
error('whittle and matern are not supported yet');
case 'stable’
stablealpha = vstruct.stablealpha; %#0k<NASGU> % will be used in an
anonymous function

end

% distance matrix of locations with known values

Dx = hypot(bsxfun(@minus,x,x"),bsxfun(@minus,y,y"));

% if we have a bounded variogram model, it is convenient to set distances
% that are longer than the range to the range since from here on the
% variogram value remains the same and we do not need composite functions.
switch vstruct.type;
case 'bounded'
Dx = min(Dx,vstruct.range);

otherwise
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end

% now calculate the matrix with variogram values
A = vstruct.func([vstruct.range vstruct.sill],Dx);
% if ~isempty(vstruct.nugget)

% A= A+vstruct.nugget;

% end

% the matrix must be expanded by one line and one row to account for
% condition, that all weights must sum to one (lagrange multiplier)

A = [[A ones(numobs,1)];ones(1,numobs) 0];

% A is often very badly conditioned. Hence we use the Pseudo-Inverse for
% solving the equations

A = pinv(A);

% parametrize engine

nrloops = ceil(numest/chunksize);

% initialize the waitbar

h = waitbar(0,'Kr...kr...kriging");

% now loop
for r = 1:nrloops;
% waitbar

waitbar(r / nrloops,h);



% built chunks
if r<nrloops
IX = (r-1)*chunksize +1 : r*chunksize;
else
IX = (r-1)*chunksize +1 : numest;
chunksize = numel(1X);

end

% build b
b = hypot(bsxfun(@minus,x,xi(1X)"),bsxfun(@minus,y,yi(1X)"));
% again set maximum distances to the range
switch vstruct.type
case 'bounded'
b = min(vstruct.range,b);

end

% expand b with ones
b = [vstruct.func([vstruct.range vstruct.sill],b);ones(1,chunksize)];
if ~isempty(vstruct.nugget)

b = b+vstruct.nugget;

end

% solve system

lambda = A*b; %solve for weights
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end

% close waitbar

close(h)

end

13. rd.m

function [rdhat, sigmard] = rd(d, amax, Mw)

%function calculates the nonlinear shear mass participation factor, rd, based on
Cetin
%et al.,2004. This function is simplified so to eliminate Vs40' as per Moss et al.,

%2006.

%Inputs: amax = pga from a seismic event in units of gravity
% Mw = moment magnitude

% d = depth in meters at the midpoint of the critical layer

%Outputs: rdhat = mean stress reduction factor

% sigmard = standard deviation of the stress reduction factor

ifd < 20;
rdtop = (1 + (-9.147 - 4.173 .* amax + 0.652.*Mw ) ./ (10.567 + 0.089 .*

exp(0.089 .* (-1.*d .* 3.28 - 7.760 .* amax + 78.576))));
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rdbot = (1 + (-9.147 - 4.173 * amax + 0.652.*Mw ) ./ (10.567 + 0.089 .*

exp(0.089 .* (-7.760 .* amax + 78.576))));

rdhat = rdtop ./ rdbot;
else
rdtop = (1 + (-9.147 - 4.173 .* amax + 0.652.*Mw ) ./ (10.567 + 0.089 .*

exp(0.089 .* (-1.*d .* 3.28 - 7.760 .* amax + 78.576))));
rdbot = (1 + (-9.147 - 4.173 .* amax + 0.652.*Mw ) ./ (10.567 + 0.089 .*

exp(0.089 .* (-7.760 .* amax + 78.576))));

rdhat

rdtop ./ rdbot - 0.0014.*(d.*3.28-65);

end

sigmard = (d .* 3.28) .A 0.864 .* 0.00814;

i = find(d >= 12.2);

sigmard(i) = 40 .~ 0.864 .* 0.00814;

end

14. problig.m

function [PL, brack] = probliq( N160, FC, CSR, Mw, effstress)

%function calculates the probability of liquefaction using methods outlined

%by Cetin et al. 2004

%Inputs: N160 -- corrected SPT blowcounts for the liquefiable layer



% FC -- fines content for liquefiable layer (%)

% CSR -- equivalent uniform CSR =

% 0.65*(amax/g)*(sigma/sigma')*rd/kdr
% Mw -- earthquake's moment magnitude
% effstress -- effective stress (in atm)

%Outputs: PL -- probability of liquefaction (in decimal)

brack = -1.*(N160 .* (1 + 0.004 .* FC) - 13.32.*log(CSR)-29.53.*log(Mw)-

3.70.*log(effstress)+0.05.*FC + 16.85)./2.70;

PL = cdf(‘'norm’,brack,0,1);

end

15. probligcpt.m

function [PL] = probliqcpt( gcl, rf, ¢, CSR, Mw, effstress)

%function calculates the probability of liquefaction using methods outlined

%by Moss et al. 2006, for CPT

%Inputs: gcl -- corrected tip resistance for the liquefiable layer (in MPa)
% rf -- friction ratio (%)

% ¢ -- overburden stress normalization exponent

% CSR -- equivalent uniform CSR =

% 0.65*(amax/g)*(sigma/sigma')*rd/kdr
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% Mw -- earthquake's moment magnitude

% effstress -- effective stress (in KPa)

%Outputs: PL -- probability of liquefaction (in decimal)

brack = -1.*(qc1.41.045 + qcl1.*(0.110.*rf)+(0.001.*rf) + c.*(1 + 0.850.*rf) -

7.177.*log(CSR) - 0.848.*log(Mw) - 0.002.*log(effstress) - 20.923)./1.632;

PL = cdf(‘norm’,brack,0,1);

end

16. mlir_gillins

function [spread] = mir_gillins(X_topo, M, R, W, S, T15, x)

%This function calculates the amount of lateral spread (in meters) using

%the modified MLR model (Gillins and Bartlett empirical model)

%INPUTS

%X_topo = controlling topographic condition (1 for free-face, 0 for slope)
% M = earthquake moment magnitude

% R = distance from point to fault (km)

% W = percentage of height of free face to distance from face to point (%)
% S = ground slope (%)

% T15 = thickness of spreadable layer (m)

% x = 1x6 vector that makes up the ratios of T15 (i.e., x(1) = ratio gravel,
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% x(2)=ratio very coarse sand and gravel, x(3) =ratio coarse and medium sand
such as SP,SP-SM,

% x(4)=ratio fine sand such as SM, and x(5)=ratio silt ML

%OUTPUTS

% spread = expected lateral displacement (m)

Rstar = R+ 107(0.89*M - 5.64);

if X_topo==1; %free-facing conditions so Sterm =0

logDh = -8.453 - 0.342 + 1.348*M - 1.068*log10(Rstar) - 0.017*R +
0.453*10g10(W) + 0.588*l0og10(T15) - 0.647*x(1) + 0.278*x(3) +0.032*x(4) -
0.571*x(5);
elseif X_topo==0; %sloping-ground conditions so Wterm = 0

logDh = -8.453 + 1.348*M - 1.068*log10(Rstar) - 0.017*R + 0.334*log10(S) +
0.588*10g10(T15) - 0.647*x(1) + 0.278*x(3)+0.032*x(4) - 0.571*x(5);

end

spread = 10.*ogDh;

end



