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ABSTRACT

The problem of pollution is not going away. As global Gross Domestic Product (GDP)

rises, so does pollution. Due to the existence of environmental externalities, polluting

firms lack the incentive to abate their pollution, and without regulations, markets do not

adequately control pollution. While regulators are responsible for enacting regulations, the

firms ultimately determine the environmental outcomes through their production decisions.

Furthermore, polluting industries are typically large and concentrated, raising the concern

that market power may be present in these industries. In this dissertation, we study the

interactions between powerful, strategic, firms operating under pollution regulations and

the regulator when markets are imperfectly competitive.

An important contribution of this work is our integrated pollution-production model,

which incorporates the firms’ emissions, abatement technologies, the damage from pollution,

and three widely-used regulatory mechanisms–Cap, Cap-and-Trade, and Tax. The firms

compete with each other and control prices by setting their production quantities. In our

model, the firms have many options to comply with the pollution constraints enforced by

the regulator, including abating pollution, reducing output, trading in emission allowances,

paying emission taxes, investing in abatement innovations, colluding, and combining some

of these options. Following the introduction in Chapter 1, we address three broad questions

in three separate chapters.

• Chapter 2: What is the e↵ect of the pollution control mechanisms on firms, consumers,

and society as a whole? Which mechanisms and policies should regulators use to

control pollution in a fair, e↵ective, and practical manner?

• Chapter 3: Does Cap-and-Trade enable collusion? If it does, what are the e↵ects of

collusion?

• Chapter 4: Which mechanisms encourage more investments in abatement innovations?

Our results apply to di↵erent types of pollutants and market structures. Our research

provides guidelines for both policy-makers and regulated firms.
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CHAPTER 1

INTRODUCTION

With the explosion of world GDP comes mounting pressure on the natural ecosystems

that support life on earth. Consider the case of climate change. The most recent assess-

ment report of the Intergovernmental Panel on Climate Change (Alexander et al. 2013)

unequivocally confirms the warming of the climate system, and rea�rms the human factor

as the dominant cause of the warming. It is well-known that the human component of

global warming is primarily driven by uncontrolled emissions of greenhouse gases. Because

producers lack the incentives to reduce their emissions, government-mandated regulations

are required. Since the early 1970s, regulators around the world have used a variety of

pollution control mechanisms to enforce pollution reductions, and encourage investments in

abating technologies. This dissertation studies three widely-used types of pollution control

mechanisms: (i) emission taxes, in which polluters are assessed a fee that is proportional to

their emissions; and emission quotas with (ii) or without (iii) the ability to trade on such

quotas. Cap-and-Trade is the popular term for tradable emission quotas; we use the single

word ‘Cap’ when trading is not allowed. These three mechanisms are commonly used in

practice to regulate various types of air, water, or land pollutants. For example, in the

context of climate change, carbon taxes are used in several European Countries (Stavins

2003), as well as in Australia, India, and Japan (KPMG 2013). The European Union

(E.U. Publications O�ce 2013), California (Barringer 2011), and China (Plumer 2013)

have chosen Cap-and-Trade to limit greenhouse gas emissions by large industrial emitters1.

In the United States, taxes and Cap-and-Trade have also been debated at the national level.

The current proposal by the U.S. regulator consists in limiting carbon emissions by coal

and natural-gas power plants to 1,100 and 1,000 lbs per Megawatt-hour, respectively (Shear

2013). This is an example of the Cap mechanism (i.e., emission quotas without trading).

1
Cap-and-Trade was first used in the U.S. starting in 1995 to combat acid rains caused by sulfur-dioxide

emissions from coal-fired power plants
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As advocated by Plambeck and Toktay (2013), the operations management (OM) com-

munity can help mitigate climate change, for example, by extending “the knowledge base

to design products, services and systems ... that require little energy” (Plambeck and

Toktay 2013, p. 523). With its pragmatic systems approach, the OM community has an

important role to play in greening today’s production and consumption systems. Such

a role would naturally include an analysis of processes, business models, and incentive

systems that guarantee that the stated objectives are met. In the context of pollution

regulations, while regulators define the objectives, it is important to recognize that the firms

act as independent entities, and ultimately determine the environmental outcomes. Ho↵man

(2004) argues that “no solution to the environmental problems society faces will be solved

without the involvement of business” (Ho↵man 2004, p. 5), because it is the firms, not the

regulator, who design and make the products, and firms typically have more information,

and often more resources also, than the regulators themselves. For this reason, we focus on

powerful, strategic firms that interact in noncooperative games with each other, and with

a pollution-sensitive regulator. In our models, the firms have many options to comply with

regulations, including abating pollution, reducing output, trading in emission allowances,

paying emission taxes, investing in abatement innovations, colluding, and combining some

of these options.

The contribution of this work arises from the combination of four key elements:

• Wemake amethodological contribution by constructing a rich, yet tractable, integrated

pollution-production model. From a pollution point of view, the model captures (i)

pollution generation as an output of production, (ii) abatement e↵orts by the polluting

firms, (iii) the damage to society, and (iv) the enacted regulations. The model is

presented in detail in the next chapter (see section 2.3). The proofs are in Appendix

A.

We use the model throughout this work to answer a series of related questions. In

Chapter 2 we study the e↵ects of the three pollution control mechanisms mentioned

above on firms, consumers, and society as a whole, and discuss which mechanisms

regulators should use to control pollution in a fair, e↵ective, and practical manner.

In Chapter 3, we focus on the risks of collusion under Cap-and-Trade regulation. In

Chapter 4, we compare the mechanisms in terms of their e↵ectiveness at stimulating

the adoption of abatement innovations;

• An important component of this work is our focus on strategic firms in imperfect mar-
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kets. In large, concentrated industries such as those subject to pollution regulations,

firms are powerful. Previous empirical research points to the presence of market power

is these industries (see, for example, U.S. EPA 2010). Wielding market power gives

firms more leverage as they deal with pollution regulations. It is not uncommon for

firms targeted by government-mandated regulations to issue threats to curb or even

shut down operations. In our model, the firms can manipulate the output prices by

controlling the supply side of the market.

In addition to controlling output, our strategic firms can abate pollution, trade (un-

der Cap-and-Trade), pay the tax (under the Tax mechanism), invest in abatement

innovations, collude, and combine some of these actions.

• In reality, competition can limit the firms’ ability to exercise market power. We allow

the intensity of competition to vary on a continuum, from no competition at all, i.e.,

the firms are local monopolies, to competition a la Cournot. As we show, the results

are sensitive to the degree of competition.

• Finally, we introduce the temporal dimension in Chapters 3 and 4. As discussed in

these chapters, there are few dynamic models in the literature. The timing of trading

under Cap-and-Trade is a key determinant of the collusion outcome in Chapter 3. In

Chapter 4, it is the ability to invest in an abatement innovation before production

that drives our results.

The rest of the work consists of three independent chapters, each of which provides

answers to the questions mentioned above. As indicated previously, these chapters rely

on the same modeling framework, i.e., the integrated pollution-production model. The

full-fledged n-firm model is presented and solved in Chapter 2. In Chapter 3, we limit the

number of firms to two. This makes the analysis easier, but no important insights are lost.

In Chapter 4, we consider n firms but ignore competition. All proofs are in the appendices.

To improve navigation through the document, there is a separate appendix for each chapter.



CHAPTER 2

POLLUTION REGULATION OF FIRMS

PRODUCING PARTIAL SUBSTITUTES

2.1 Introduction
Pollution regulation in the United States is a controversial a↵air, with every new rule

giving rise to heated debate. Opponents argue that pollution controls constrain output

and choke businesses, while proponents point to the adverse e↵ects of pollution on human

health, wildlife habitat, and the natural environment. The regulator needs to balance the

costs and benefits of pollution reduction (Arrow et al. 1996).

Pollution is an inevitable by-product of production, and an ancient problem. Hong et al.

(1996) analyze air molecules trapped in Greenland ice to track air-pollution from copper

smelting over the last 5,000 years. They find evidence of soaring pollution levels 2,000 and

900 years ago, coinciding precisely with the peaks of the Roman empire and the Chinese

Song dynasty– two periods of bustling economic activity (see Figure 2.1).

During the last few decades, concerns over climate change have thrown greenhouse

gases (GHG) under the spotlight. Carbon dioxide (CO2) emissions represent the bulk of

man-made GHG emissions (83.7% in the U.S., 82.4% in Europe, and 94.8% in Japan).

Figure 2.1. History of air pollution from copper smelting
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In the U.S., business operations contribute 62% of GHG emissions, while personal vehicle

use and residential buildings account for the rest (Hockstad and Cook 2012). Carbon

dioxide emissions “track economic growth, slowing with recessions, but essentially rising

and rising” (Matthew Arnold–World Resources Institute–in Iannuzzi 2002, Foreword). A

reading of the carbon barometer for May 2013 puts carbon dioxide concentrations in the

Earth’s atmosphere at 399.89 ppm, a 41 percent increase since the early 1800s (Scripps

2013). Before carbon emissions became an issue, concerns crystallized around acid rains

arising from sulfur dioxide discharges by fossil-fuel power plants, smog caused by particulate

matter and ozone emissions around our cities, and other environmental problems originating

from rapidly expanding business activities.

A firm’s pollution imposes a negative externality on society, in that the pollution a↵ects

people, wildlife, and the natural environment outside the firm’s boundaries.1 An unregulated

firm does not bear the full costs of its pollution, since its incentives to control or abate its

pollution are not commensurate with the pollution damage it causes. Thus, regulation is

inevitable to mitigate pollution in the context of negative externalities (cf. Baumol and

Oates 1988, Cropper and Oates 1992). Almost inevitably, firms and industry lobby groups

oppose regulation, claiming that it increases their production costs and forces them to

reduce output, resulting in higher prices, lower consumer surplus, and lower social welfare.

For instance, consider the regulation of airborne mercury pollution. Mercury is a deadly

poison that can permanently damage the development of the brain and nervous systems

in fetuses and children. In 2010, the Environmental Protection Agency (EPA) in the U.S.

proposed national standards for airborne mercury pollution from coal-fired power plants.

The National Association of Manufacturers, representing power generating firms, objected

vehemently to this proposal, stating that “...overly burdensome and unnecessary rules...will

crush economic growth and job creation” (Broder and Stolberg 2010). American Electric

Power, one of the nation’s largest utilities, warned that “new air quality rules could force

it to ‘prematurely’ shut down about two dozen big coal-fired units and fire hundreds of

workers” (New York Times 2011).

Polluting industries are typically large and concentrated, which raises the concern that

firms operating in these markets may be in a position to exercise market power (Cropper

and Oates 1992). As an example, the EPA conducted a survey of market concentration in

the power generation sector in 31 states in the eastern half of the United States (U.S. EPA

2010). Power generation from fossil fuels produces large quantities of pollutants, such as

1
We will refer to these adverse societal e↵ects collectively as the pollution damage.
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sulfur dioxide, nitrogen oxides, carbon dioxide, ozone, mercury, and particulate matter. In

16 states, only one or two companies controlled more than 60% of the power generation

capacity. The Herfindahl-Hirschman Indices (Rhoades 1993), a commonly excepted measure

of market concentration, were greater than 1,800 in 25 states, suggesting a strong likelihood

that market power exists in these markets. The threat to shut down production facilities

and layo↵ employees is more credible when firms hold some market power.

In this research, we develop analytical models to rigorously study the impact of pollution

regulation on firms, consumers, and the economy when the output markets are imperfectly

competitive. There are n firms in our model, each of which chooses how much to produce

of a single product. The output price is a function of the firm’s output, as well as of the

output chosen by the other firms. In other words, the products are partial substitutes,

and competition is exercised by the firms’ output choices. For completeness, we allow for

di↵erent degrees of product substitutability from homogeneous (i.e., perfectly substitutable)

to heterogeneous goods, which enables us to vary the intensity of competition between

the firms. Many products fit such a description. A used, e.g., remanufactured, product

may be a substitute for the original, new product. Di↵erent generations of the same

product are also partial substitutes. Even when the product is a commodity, there may

be some heterogeneity between customers; for example, some customer segments may

have a preference for products locally supplied. Alternative forms of a commodity, such

as renewable versus fossil-fuel energy, are another example. We model the processes of

pollution generation, pollution abatement, and pollution damage to society. We identify

normative criteria to guide the regulator’s choice of pollution control mechanisms and

develop theoretical benchmarks based on these criteria. We also model and compare three

widely-used pollution regulation mechanisms–Cap, Cap-and-Trade, and Taxes. With a Cap,

the regulator limits the firm’s total emissions or its emission rate. Under Cap-and-Trade, the

regulator also sets a cap, but firms can trade emission allowances among themselves. Under

Taxes, the firms pay a fee proportional to their pollution. We derive the Subgame-Perfect

Nash equilibria for a series of games involving the regulator and multiple profit-maximizing

firms with heterogeneous abatement costs. We study firms’ choices of trade-o↵s between

costly pollution abatement and revenue losses due to output reduction under each of these

regulatory mechanisms, and analyze their ripple e↵ects on the economy. We analyze and

compare the output, pollution abatement, firms’ profits, consumer surplus, and social

welfare under Cap, Cap-and-Trade, and Taxes.

Our results show that firms always reduce output to comply with pollution regulations,
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a finding well supported by the empirical literature. Firms that hold some market power

strategically lower their output to comply with pollution constraints, and at the same time

command higher prices for their products. Competition limits the firms’ ability to reduce

output strategically, and thus mitigates the output reduction e↵ect. Because the firms

cannot reduce output as much, they have to exert more e↵ort toward pollution abatement.

Such a shift in the firms’ strategies is good for social welfare. We find that when competitive

forces are su�cient, the introduction of pollution constraints improves welfare because the

mitigation of the pollution damage and gains in consumer surplus outweigh the losses in

firm profits. Our results also confirm the equivalence between Tax and Cap-and-Trade,

except for firm profits, which are always higher under Cap-and-Trade. More interesting, we

find that, if the cap or tax rate are chosen appropriately, Cap-and-Trade and Tax are both

fair and e↵ective, in the sense that they can achieve any pollution limit set by the regulator,

and at the same time, ensure that firms bear the exact and entire cost of their pollution,

but no more. The “pure Cap” mechanism is less e↵ective. The optimal regulatory policy

depends critically on how intense the competition is. When firms are local monopolies,

we show that the regulator should charge firms less than the full extent of their pollution

damage, in other words, set a tax rate lower than the tax rate corresponding solely to the

marginal pollution damage. Conversely, when competition is very intense (but firms still

hold some market power), the regulator can maximize welfare by charging more than the

firms’ pollution damage. This is a direct outcome of firms’ output reduction and their

competitive interactions under regulation.

2.2 Literature Review
When markets are perfectly competitive, the increase in firms’ marginal production costs

due to regulatory constraints causes the output price to rise. As a result, demand falls. Thus,

when regulations are introduced to curb pollution in perfectly competitive industries, output

reduction is an expected theoretical outcome. When markets are imperfectly competitive,

the producers can simultaneously influence demand and pollution by adjusting their pro-

duction quantities (or setting prices) strategically. Requate (1993a) shows that pollution

regulations also cause a reduction in output when firms are local monopolies (Requate

1993a). Requate (1993b) extends this result to a Cournot duopoly. The connection between

pollution regulations and lower productivity and output is well supported in the empirical

literature (cf. Denison 1978, GAO 1986, Gray 1987, Jorgenson and Wilcoxen 1990, Boyd

and McClelland 1999, Greenstone 2002). Boyd and McClelland (1999) find a reduction
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in productivity between 1% and 4% at U.S. paper plants due to government-mandated

environmental investments. Greenstone (2002) studies the economic impact of the Clean

Air Act for the period 1972-1987. He finds that counties in the U.S. subject to stringent

regulations lost 590,000 more jobs and $75 billion more in output in polluting industries

than counties that experienced looser regulatory supervision. Jorgenson and Wilcoxen

(1990) simulate the long-term growth of the U.S. economy and find that pollution controls

are responsible for a 0.19% annual reduction in the gross national product. A study of

sulfur dioxide pollution from nonferrous smelters in the U.S. found that, between 1970 and

1984, pollution abatement accounted for just 44% of the pollution reductions, while the

remaining 56% reduction was achieved by output reduction (GAO 1986).

A reduction in output mechanically lowers the pollution; consequently, the resulting

damage on consumers, the environment, and society as a whole, is reduced. However

less production has a negative impact on consumer surplus, e.g., in the form of higher

prices and fewer jobs. The net e↵ect on social welfare is ambiguous. In economic theory,

the problem of optimal pollution control is traditionally framed as one of maximizing a

comprehensive measure of social welfare, which captures the benefits of production to

producers and consumers, as well as the dis-utility arising from pollution (see for examples

Baumol and Oates 1988, Requate 1993b, Requate 1993a, Nault 1996, Levi and Nault 2004).

This social optimal defines the first-best standard against which various mechanisms for

pollution control are evaluated.

In this paper, we develop normative criteria and a set of benchmarks to guide our

discussion. In addition to the classical first-best (i.e., welfare-maximization) approach,

we apply the Groves mechanism, a theoretical benchmark from the public-goods literature

(Clarke 1971, Groves 1973, Groves and Loeb 1975) to our context. In the first-best approach,

the firms are not strategic. The main advantage of the Groves mechanism is that it focuses

solely on the externality without interfering with the market structure, competition, or the

firms’ incentives to maximize profits. The Groves mechanism has only rarely been used

before by researchers in Operations. In particular, Anand and Mendelson (1997) develop a

Groves mechanism-based transfer pricing scheme that aligns the incentives of local branches

of a firm’s supply chain so that they behave as a team and jointly maximize the firm’s total

profits.

Under the assumption of perfect competition and complete and perfect information, it is

well known that Taxes are equivalent to Cap-and-Trade (see, for example, Weitzman 1974).

If the tax rate is set equal to the marginal social damage from pollution, the first-best
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outcome (as defined above) can be achieved. This optimal taxation scheme is known as the

Pigovian tax after economist Arthur Pigou (1932). Similarly, Cap-and-Trade can achieve

first-best if the total number of allowances equals the aggregate pollution generated under

first-best. The above results are highly sensitive to the assumption of perfect competition.

Buchanan (1969) and Barnett (1980) study the e↵ect of Pigovian taxes on a monopoly.

Buchanan (1969) shows that Pigovian taxation of a monopoly could result in lower welfare

because the tax causes the monopoly to contract output even further, and the loss in profit

and consumer surplus exceeds the reduction in the pollution damage.2 Barnett (1980)

shows that the welfare-maximizing tax rate should be less than the marginal social cost of

pollution, in order to counterbalance the output distortion due to the exercise of monopoly

power. Requate (1993a) (cited earlier) confirms the equivalence between emission taxes and

Cap-and-Trade when firms are local monopolies; however, Requate (1993b) shows that this

equivalence no longer holds in an asymmetric Cournot duopoly in which firms are allowed

to trade emission rights to maximize their joint profits. In Requate (1993b), there is no

unambiguous ranking of Taxes and Cap-and-Trade from a welfare point of view. We see

that the exercise of market power and the presence of competitive forces significantly impact

the outcome of pollution control regulations. We study these interactions in a context in

which strategic firms produce imperfectly substitutable goods. This allows us to isolate the

e↵ect of varying degrees of competition.

Requate (2006) surveys the literature on environmental policy under imperfect com-

petition. Emission taxes are reviewed in some detail. Barnett’s (1980) finding that the

tax rate should be less than the social cost of pollution is found to be robust to several

variants of the original model (e.g., models with or without abatement technology, and

with linear or convex costs). Requate (2006) shows that a subsidy on output could restore

the e�ciency of the Pigovian tax. The main limitations of this literature is the paucity of

work on Cap-and-Trade systems. Research on Cap-and-Trade under imperfect competition

is limited to local monopolies or two-firm duopolies, due to the analytical di�culty of

solving the trading model in more complicated industry settings. We address this gap. We

specifically model the trading process among multiple competing firms when the level of

competition varies. Thus, our research makes an important methodological contribution by

proposing a reusable, integrated, pollution-production model that incorporates Cap-and-

2
In Buchanan’s model, this happens because the damage from pollution is linear in the output quantity

of the monopoly. In this special case, the loss in pollution damage dues to output reduction is always less

than the combined losses in firm profits and consumer surplus.
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Trade regulation.

Environmental concerns are becoming increasingly important in business today. As

suggested by Kleindorfer et al. (2005), “The modelers (the OR-based OM population)

must revisit the classical models... to reformulate the objective function and the set of

constraints... in the new context” [Emphasis added]. In our model, (i) firms are profit-

maximizers (as commonly assumed in traditional supply chain research) but constrained by

pollution regulations, and (ii) these regulatory constraints are a key driver of the equilibrium

outcomes, profits, consumer surplus, and welfare.

There is a growing body of literature dedicated to the impact of pollution regulations,

in particular carbon regulations, on operations. Carbon emissions markets are an artifact

of requiring that pollution costs be borne by the pollution creators (cf. Pigou 1912),

known in international parlance as the “polluter pays” principle (OECD 1972). Both Drake

(2011) and Plambeck et al. (2012) study the impact of carbon pricing under di↵erential

stringency of regulations in di↵erent regions, when firms can choose where to locate (or

relocate) their production. Production relocation can lead to emission leakage– a net

increase in global emissions. In Drake’s (2011) model, the regulator can use border tari↵s

as a corrective surcharge to products imported into the regulated region, which have

profound but unintended consequences for clean technology choice, o↵-shoring, and entry.

For instance, when the border tari↵ is equal to the carbon cost in the regulated region,

Drake (2011) finds that foreign entrants and o↵shore plants will use cleaner technologies

than local plants. Plambeck et al. (2012) study the impact of emission price variability under

Cap-and-Trade on firms’ optimal location, production and export quantities, emissions, and

expected profits. They find that, surprisingly, emission price variability does not necessarily

hurt firms’ profits, and can, under certain conditions, lead to higher social welfare and lower

expected emissions than a fixed-price scheme such as a carbon tax.

Under very di↵erent settings, Benjaafar et al. (2010) and Cachon (2011) show that

operational leverage can enable emissions reductions at minimal cost. In Benjaafar et al.

(2010), the firm, facing mandated carbon constraints, chooses the quantity and timing of

production, but cannot abate pollution. Their numerical studies suggest that adjustments

to the ordering policy can have a large impact on emissions with limited cost increases, and

that the choice of pollution control mechanism (Carbon Cap, Carbon Tax, Cap-and-Trade

with exogenously-specified carbon prices or carbon o↵sets) can significantly a↵ect the firm’s

incentives to adopt more energy-e�cient technologies. Cachon (2011) studies the problem

of deciding on the number and location of retail stores to minimize total transportation
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costs, including associated carbon costs, incurred by a retailer and its customers, when

replenishments and customer visits are regular (and exogenous). Cachon (2011) shows that

his solution is robust to errors in the model parameters, and in particular, to whether carbon

costs are internalized or not.

Several researchers have analyzed regulatory alternatives to Taxes and Caps, such as

subsidies for pollution abatement and legal mandates requiring firms to disclose information,

recycle, or dispose used products. Nault (1996) shows the equivalence of subsidies and taxes

in terms of output, pollution damage, and welfare. Kalkanci et al. (2012) find that voluntary

disclosure of a firm’s environmental footprint leads to more learning by the firm and

lower environmental impact than mandatory disclosures. Atasu et al. (2009), Subramanian

et al. (2009), and Jacobs and Subramanian (2012) study extended producer responsibility, a

mechanism wherein the manufacturer is legally responsible for collecting and treating some

fraction of end-of-use products, thus supporting recycling or disposal. Plambeck and Taylor

(2010) study competitive testing and whistle-blowing as a means to achieve compliance on

environmental, health, and safety standards. Keskin and Plambeck (2011) study the e↵ect

of accounting rules on allocation of carbon emissions across co-products serving a domestic

and an export market. They find that letting the firm choose the allocation rule, as is

current practice, can contribute to higher emissions, and identify the allocation rule that

leads to the lowest emissions.

Similar to Benjaafar et al. (2010), we model the firm’s operational decision-making

process under di↵erent pollution control mechanisms. However, unlike Benjaafar et al.

(2010), the trade-o↵ between pollution abatement and output reduction is one of the key

features of our model, since firms can choose to abate pollution (albeit at a cost) in addition

to reducing output. Another key di↵erence is that the price of emission allowances in our

Cap-and-Trade model is endogenous, and arises as the unique equilibrium outcome of the

firms’ trading game. We also model the regulator’s problem of selecting a fair, e↵ective, and

practical mechanism to achieve her pollution reduction goals. Finally, we derive analytical,

closed-form solutions to generate insights. Like Drake (2011) and Plambeck et al. (2012),

we show that the introduction of environmental regulations has significant implications

for firms’ operations, but our focus is the firms’ internal operations within the regulated

region. We refer the reader to Kleindorfer et al. (2005), Corbett and Klassen (2006), Linton

et al. (2007), and Souza (2012) for comprehensive reviews of the literature in sustainable

operations.

To summarize, our contribution is threefold: (1) We make a methodological contribution,
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extending a traditional supply chain model to include environmental and regulatory con-

straints. Alternatively, our approach can also be seen as an extension of environmental eco-

nomic models that focuses on strategic firms operating in imperfectly competitive markets;

(2) We compare three widely-used pollution control mechanisms–Cap, Cap-and-Trade, and

Tax–to the Groves mechanism, a theoretical benchmark from the public-goods literature;

(3) Finally, we model competition on a continuum, which allows us to study how the firms’

reactions under Cap, Cap-and-Trade, and Tax, and the regulator’s optimal policies change

with competition.

2.3 Elements of the Model

2.3.1 Modeling Pollution

Consider a firm whose production generates a harmful pollutant. We model four inter-

related aspects of pollution: (i) Pollution generation: This relates the quantity of pollution

emitted to the production quantity q as well as to the degree of pollution abatement;

(ii) Pollution abatement: This describes how the firm can (fully or partially) abate the

pollution it generates, and the costs of abatement; (iii) Pollution damage: This quantifies

the dis-utility to society from pollution; and, finally (iv) Pollution regulation: This describes

the mechanisms that the regulator could employ to control pollution. We discuss each of

these four elements below.

2.3.1.1 Pollution Generation

Let eP denote the total quantity of pollution emitted by the firm. Clearly, the quantity

of pollutant should be an increasing function of production. We further assume that the

total pollution eP (prior to any investment in abatement) is proportional to the production

quantity q; i.e., eP = e · q where e � 0 is the emissions rate. Several factors suggest that

our linearity assumption is reasonable in the context of many industrial sectors. Pollution

concentrations arise from di↵usion patterns which, by the law of conservation of mass,

are typically linear in the quantity of pollution released. In many industries–the power

generation industry being a classical example–the output and the pollution generated are

linear functions of fuel consumption, and hence, of each other. Without loss of generality,

we normalize e to 1, i.e., eP = q.

2.3.1.2 Pollution Abatement

Our model of pollution abatement relies on two complementary notions: (i) the abate-

ment level, which determines how much pollution is abated, and (ii) the cost of abating
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pollution. In our model, the firm can control the quantity of pollution it generates (albeit at

a cost) by setting the abatement level, denoted by x, where x 2 [0, 1]. The decision variable

x can be interpreted as the percentage of pollution abatement chosen by the firm. In other

words, q · x is the quantity of pollution abated. The relation between the net (or residual)

pollution P , the total pollution eP , and abatement is modeled as P = eP � q ·x = q · (1� x).

At one extreme, when x = 0, the pollution is unabated (hence, P = eP = q). When x = 1,

the pollution is completely abated and P = 0. Intermediate values of x correspond to partial

abatement.

In our model, we assume that pollution abatement costs are increasing and convex in

the quantity of pollution abated (which is q · x). Specifically, we assume that the pollution

abatement cost C(q;x) = c · (q · x)2 , where c is the abatement cost coe�cient. We justify

our assumption of a convex abatement cost curve on several grounds: (i) It is logical that

the first units of pollution are easy to abate, but once the low-hanging fruits have been

exploited, pollution abatement becomes increasingly di�cult. (ii) Hartman et al. (1997)

estimate the cost of pollution abatement for 7 common air pollutants, namely particulates,3

sulfur oxides, nitrogen dioxide, carbon monoxide, hydrocarbons, lead, and other hazardous

emissions, using census data from 100,000 U.S. manufacturing firms across 37 industrial

sectors. They find support for quadratic abatement cost curves in several industrial sectors.

(iii) Finally, quadratic abatement costs are commonly assumed in the extant academic

literature (cf. Parry and Toman 2002, Subramanian et al. 2007). Nault (1996) and Levi

and Nault (2004) assume a convex, but not necessarily quadratic, cost function.

2.3.1.3 Pollution Damage

Pollution a↵ects human health, wildlife habitat, and the natural environment. In a

widely cited study, Pope et al. (2002) found that a 10 µg/m3 increase in fine particulate

air pollution was associated with an increased risk of all-cause, cardiopulmonary, and lung

cancer mortality, by 4%, 6%, and 8%, respectively. Particulates contribute to the creation

of haze, increase the acidity of lakes and rivers, and alter the balance of nutrients in waters

and the soil.4 Sulfur dioxide, another common air pollutant, contributes to acid rains, which

cause widespread damage to surface waters, aquatic animals, forests, crops, and buildings.

The pollution damage function, which we introduce next in our model, captures both

present and future damage to society from emissions. Clearly, pollution damage would

3
Particulates are a mixture of fine solid particles and liquid droplets suspended in the air.

4
http://www.epa.gov/air/particlepollution/health.html
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be increasing in the net pollution generated (Nault 1996; Jacobs and Subramanian 2012).

Furthermore, Tietenberg and Lewis (2011) suggests that “the marginal damage caused by

a unit of pollution increases with the amount emitted” [p. 359]. Intuitively, while pollution

is tolerable in small quantities, the damage from pollution increases with the quantity of

pollution at an increasing rate. Also, the vast majority of epidemiological studies use either

a log-linear or logistic functional form, suggesting that epidemiologists generally believe

that the health impact of pollution is convex in the pollution concentration. Thus, we

model the pollution damage function D(P ) as an increasing, convex function of the net

total pollution, P . Specifically, we let D(P ) = d · P 2, where d � 0, the pollution damage

factor, varies with the pollutant under consideration. A high value of d indicates a very toxic

pollutant, whereas low d suggests a pollutant with moderate, albeit still harmful, impact on

society. By modeling the damage as a function of the total pollution, we focus on a global

pollutant, i.e., firm i’s pollution a↵ects consumers everywhere, not just in market i. This

assumption is appropriate for many pollutants that travel over extensive areas, such as sulfur

dioxide and carbon dioxide. It is also important to note that Cap-and-Trade regulation is

well suited for global pollutants, and not so well for localized pollutants, because local

pollutants typically result from fewer point sources, and hence result in smaller emission

trading markets. Cap-and-Trade has been successfully deployed for global pollutants in

large markets (e.g., the European Union, California, the Eastern United States).

2.3.1.4 Pollution Regulation

Perhaps the earliest recorded instance of pollution regulation was in London in 1272,

when King Edward I banned the burning of sea-coal– a cheap, abundant but very smoky

fuel.5 Centralized control mechanisms used today include technology mandates and per-

formance standards such as the maximum permissible emissions rate for a particular tech-

nology.6 Often, such centralized mandates are suboptimal because (i) the regulator is

unlikely to be fully informed about each firm’s operating conditions (e.g., its abatement

costs); (ii) e�ciencies that could be achieved by tapping into firms’ expertise are forgone

(Tietenberg 1985); (iii) the regulator incurs high monitoring and information acquisition

costs, particularly when the incentives of firms and the regulator diverge (cf. Iannuzzi 2002);

5
http://www.epa.gov/aboutepa/history/topics/perspect/london.html

6
For example, according to the U.S. EPA Standards of Performance for Stationary Combustion Turbines

(2006), a turbine of less than 50 MMBTU/h must not emit more than 8.7 pounds of nitrogen oxides per

megawatt-hour.
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and (iv) such mandates frequently invite litigation, with its related financial burdens and

compliance delays (Tietenberg 1985).

To overcome these di�culties, economists have long urged the use of economic incentives,

such as pollution taxes and tradable emission allowances (Stavins 1998, 2003). In this

research, we analyze and compare three widely-used mechanisms: Cap, Cap-and-Trade, and

Tax. Under the Cap mechanism, the regulator directly imposes a pollution limit (the ‘Cap’)

on each firm with heavy fines as a deterrent for flouting. Firms must comply using some

combination of (a) pollution abatement and (b) output reduction. Under Cap-and-Trade

also, the regulator specifies a Cap, but firms can comply through some combination of

three actions: (a) pollution abatement, (b) output reduction, and (c) trading in emission

allowances, which e↵ectively shifts firms’ pollution constraints up or down. The premise

is that Cap-and-Trade would facilitate e�cient allocation of emission allowances via the

market mechanism (Coase 1960, Dales 1968, Montgomery 1972, Schmalensee et al. 1998).

Since 1995, the U.S. Acid Rain Program has included a Cap-and-Trade system for the

reduction of Sulfur Dioxide (SO2) emissions by coal-fired power plants. Cap-and-Trade

is increasingly popular among environmental regulators, in particular for greenhouse gas

(GHG) regulations. In 2005, the European Union launched a large-scale Cap-and-Trade

system for GHG emissions–the E.U. Emissions Trading Scheme. The State of California

is currently rolling out a Cap-and-Trade system for GHG as part of the Global Warming

Solutions Act (Barringer 2011), and China recently announced that it will operate carbon

markets to curb GHG emissions in several large cities (Forrister and Bledsoe 2013).

Under the Tax mechanism, the regulator charges each firm with a tax commensurate

with its pollution. Formally, the tax is equal to ⌧ · [q · (1� x)], where q · (1� x) is the net

pollution generated by the firm and ⌧ � 0 is the tax rate set by the regulator, common

to all firms. By increasing the tax rate, the regulator makes pollution more costly to the

firm causing it to reduce its emissions. Stavins (2003) identifies ten applications of emission

taxes in Europe, including to carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide

(SO2), and nitrogen oxides (NO
x

). France and Sweden tax emissions of sulfur and nitrogen

oxide. Finland was the first country in the world to introduce a Carbon Tax in 1990, with

Denmark, Italy, Netherlands, Norway, and Sweden following suit. In the United States, the

Carbon Tax is being debated as an alternative to Cap-and-Trade.

2.3.2 Modeling Firms, the Regulator, and Their Interactions

In the model, we consider n firms and study the strategic interactions among them and

a pollution-sensitive regulator. Since our research focuses on output and its interaction
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with pollution abatement under competition, we model competing firms with a measure

of control over their output, i.e., firms with some market power. As mentioned earlier, we

study the case of partial substitutes. For each horizontal market demand is characterized

by the linear inverse demand curve p
i

= a� b · q
i

� � · b ·Q�i

where p
i

is the price in market

i, a > 0, b > 0, 0  �  1, q
i

is the quantity produced by firm i for market i, and Q�i

the

quantity serving all the other markets (market i excluded). When � = 0, the firms are local

monopolies. The case � = 1 is the classical Cournot oligopoly. The parameter � captures

the intensity of the competition between the firms.

Firm i has an abatement cost coe�cient c
i

, meaning that the total cost of pollution

abatement to firm i, C
i

= c
i

· (q
i

· x
i

)2 , where x
i

is the abatement level (i.e., the percentage

of pollution abated), q
i

is the output, and q
i

· x
i

is the quantity of pollution abated by

firm i. We assume that the abatement cost coe�cients c
i

can take one of two values– c
l

or

c
h

, where 0  c
l

 c
h

without loss of generality. Abatement cost coe�cients vary across

pollutants, geographic regions, and industries. Even for the same pollutant and the same

product, these coe�cients vary across di↵erent abatement technologies, and even across

abatement technologies of di↵erent vintages (Pittman 1981, Hartman et al. 1997, Swinton

1998, U.S. Census Bureau 2005, Creyts et al. 2007). We will use the subscript l to denote

a low-cost firm; i.e., one with a low abatement cost coe�cient c
l

, and the subscript h to

denote a high-cost firm, which has a high abatement cost coe�cient c
h

. Let m denote the

number of firms with cost coe�cient c
l

. Thus, n�m firms have a cost coe�cient of c
h

. The

firms are otherwise identical.

2.3.3 Information Assumptions

We assume that n, m, c
l

, and c
h

are common knowledge. Thus, the regulator knows the

size of the industry, is aware of the existence of two di↵erent abatement technologies, and

knows the distribution of these technologies within the industry. Note that we do not assume

that the regulator knows precisely the cost coe�cient of each firm. This is known with

certainty only by the firm itself. However, the regulator and the firms know in the aggregate

the number of firms with each abatement technology. In practice, trade associations (or

the technology vendors themselves) often make publicly available information about the

di↵usion of particular technologies without disclosing the identity of the firms that employ

such technologies.

Based on scientific, historical, and political considerations, the regulator typically spec-

ifies a pollution cap for the entire region. Let S denote this cap. Given that the regulator

cannot distinguish between firms based on their cost coe�cients, and that the firms are
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otherwise identical, it is reasonable to assume that the same cap will be allocated to each

firm under the Cap mechanism. In the early stages of Cap-and-Trade implementation,

each firm typically receives for free an endowment of emission rights. Free allocation is

called “grandfathering”. The sum of these initial endowments equals the overall cap S for

the region. Most Cap-and-Trade programs make provisions in later stages for auctioning

of the emission allowances, either in part or in full. In the US Acid Rain program,

auctioning was limited to 3% of the total allowances. In the European Cap-and-Trade

program, more than 95% of the emission allowances were grandfathered during the initial

phase covering the period 2005-2008, and more than 90% for the period 2008-2012. In

California, auctions are conducted on a quarterly basis, but a large number of allowances is

also grandfathered for transition assistance, and in sectors that are vulnerable to external

competition and emission leakage (California Air Resources Board 2010). It is important

to note that if the trading market is e�cient, the equilibrium outcome is independent of

the allocation mechanism (whether grandfathered or auctioned o↵). The firms’ optimal

production schedule is una↵ected by the allocation mechanism (Requate 2006), although

the firms’ profits are. For the same reason as the Cap mechanism, we will hereafter assume

that the firms are initially given the same allocation. Let s = S�n denote the pollution cap

imposed on an arbitrary firm, and t be the number of emission allowances traded by the

firm. Without loss of generality, t � 0 indicates that the firm is a net seller of allowances,

and t < 0 that the firm is a net buyer. The firm’s constraint is q · (1� x)  s� t. The ‘pure

Cap’ mechanism emerges as a special case of the Cap-and-Trade mechanism, with pollution

limits but no trading in emission allowances (i.e., t = 0 for all firms). This arises if there

is only one firm being regulated, or if firms are not allowed to trade with each other for

regulatory or other reasons. By comparing Cap with Cap-and-Trade, we can isolate the

impact of trading on firms’ production quantities, abatement levels, and profits.

Knowing n, c
l

, c
h

, and m is su�cient for the regulator to achieve any predetermined

pollution goal under Tax. To facilitate comparisons, we assume that the pollution target,

S, is the same under each of the regulatory mechanisms under consideration.

Firms maximize their profits. Firm i’s profit before Tax,

⇡
i

(q
i

, x
i

| Q�i

) = q
i

· (a� b · q
i

� � · b ·Q�i

)� c
i

· (q
i

· x
i

)2

is the di↵erence between its revenues and its pollution abatement costs. We assume that all

other production costs, whether fixed or variable, are zero. It is straightforward to relax this

assumption in our analysis; nevertheless, this assumption enables us to minimize clutter.
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2.3.4 Performance Measures

The performance measures we use to evaluate the three mechanisms include the total

output, the total abated pollution, firms’ profits, consumer surplus, and social welfare. We

augment the concept of consumer surplus (and by extension, welfare) to include environ-

mental e↵ects. The traditional measure of consumer surplus focuses solely on consumers’

economic surplus (CES). CES is the monetary gains enjoyed by consumers from the acqui-

sition of a good or service, and is measured as the di↵erence between their willingness-to-pay

and the price they actually pay. A pollution-sensitive regulator should be concerned not

only with the welfare of consumers measured in monetary terms, but also with society’s

dis-utility from pollution, which is the pollution damage D(P ). Thus, we measure consumer

surplus as CS = CES �D(P ). Social welfare, measured as the sum of producers’ profits

(⇧) and the consumer surplus, automatically incorporates the e↵ects of pollution damage

as well. In this, we follow the approach adopted by Nault (1996), Jacobs and Subramanian

(2012), and others: Welfare, W = ⇧+CS = ⇧+CES�D. Using this augmented measure of

social welfare, our model helps us study the trade-o↵s between pollution and production for

society, between the benefits of pollution abatement and economic e�ciency, and between

consumers’ monetary utility from consumption and their dis-utility from pollution. Our

model also enables comparisons of the di↵erent pollution control mechanisms along these

di↵erent dimensions. Our notations are summarized in Table 2.1.

2.4 Developing Benchmarks
Pollution regulation is contentious, since it a↵ects multiple economic actors including

firms and consumers in myriad, complex ways. Thus, normative guidelines are needed to

help frame regulations that balance the interests of these diverse constituencies. In this

section, we develop a set of normative guidelines, propose regulatory benchmarks, and

finally, examine how well these benchmarks meet our normative criteria. Benchmarks help

clarify some of the challenges facing the regulator, and will also be useful to assess the

performance of the Cap, Cap-and-Trade, and Tax regulatory mechanisms that we analyze

later.

2.4.1 Normative Criteria

Any pollution control mechanism should meet three important criteria: (i) e↵ectiveness,

(ii) fairness, and (iii) practicality. E↵ectiveness is the ability to achieve a given pollution

reduction goal–the primary reason for the regulation. Fairness is a controversial concept,

given that there are multiple parties a↵ected in di↵erent ways. We use the term “fairness”to
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Table 2.1. Model notations (Chapter 2)
n Number of regulated firms
q
i

Production quantity chosen by firm i, q
i

� 0
Q Total production quantity, Q =

P

n

i=1 qi
Q�i

Production of all the firms except firm i

� Coe�cient of product substitutability
p
i

Price in firm i ’s market, p
i

= a� b · q
i

� � · b ·Q�i

x
i

Abatement level chosen by firm i, 0  x
i

 1
c
i

Abatement cost coe�cient of firm i , c
i

2 {c
l

, c
h

}
m Number of firms with the low cost coe�cient c

l

P
i

Pollution generated by firm i, P
i

= q
i

· (1� x
i

)
P Total pollution generated by the firms, P =

P

n

i=1 Pi

⇡
i

Profit of firm i

⇧ Firms’ joint profits, ⇧ =
P

n

i=1 ⇡i
d Pollution damage factor, d � 0
D Pollution damage, D = d · P 2

CES Consumer economic surplus
CS Consumer surplus, CS = CES �D

W Social welfare, W = ⇧+ CS

S Pollution cap specified for the entire region (all firms)
s Cap assigned to individual firms, s � 0
t
i

Number of emission allowances traded by firm i

⌧ Tax rate, ⌧ � 0

mean that (a) the polluter pays for the damages caused by its pollution–the so-called

“polluter pays principle”(Pigou 1912, OECD 1972), and (b) the polluting firm pays only for

the damages it causes, i.e., it is not charged excessively (“unfairly”). Finally, a mechanism

is practical if (a) it is easy to understand, (b) it can be implemented at reasonable control

and administrative costs, and (c) the various decision-makers have the right information to

make their decisions.

It should be understood that these criteria are not absolute, and in fact, often in

conflict. A mechanism that is highly e↵ective might be impractical for political reasons, or

viewed as unfair by some constituencies. For a concrete example, consider that firms rather

than the regulator are likely to have the most accurate information on pollution-reduction

opportunities and costs. We know from previous research that for e↵ective organizations,

the decision rights structure should be aligned with the information structure (cf. Anand

and Mendelson 1997), suggesting that firms should have a significant say on their pollution

targets. However, given the conflicting goals of the regulator and the profit-maximizing firm,

e↵ectiveness might require that the regulator have the greater say in setting a firm’s pollu-
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tion targets, setting up a conflict between practicality and e↵ectiveness of the regulation.

Nevertheless, these normative criteria serve as useful guideposts to evaluate any proposed

regulation, and any regulation should strive to fulfill these criteria as far as possible.

2.4.2 Optimizing Trade-o↵s: The First-Best as Benchmark

A direct approach through this morass of conflicting incentives is for the regulator to

optimize the trade-o↵s between the costs and benefits of pollution reduction by maximizing

social welfare. Presumably, the first-best solution (social welfare-maximization) would

balance firms’ pollution abatement costs against the benefits of pollution damage reduction

to society. The problem of social welfare-maximization may be formulated as follows:

max
q�0, 0x1

W (q,x) =
n

X

i=1



q
i

· (a� b · q
i

� � · b ·Q�i

)� c
i

· (q
i

· x
i

)2 +
b

2
· q2

i

�

�d ·
 

n

X

i=1

q
i

· (1� x
i

)

!2

(2.1)

where q = (q1, ..., qn) and x = (x1, ..., xn) are the production quantity and abatement level

vectors, b

2 · q2
i

is the consumer economic surplus in market i, and the last term in (2.1) is

the pollution damage D (P ), where the total net pollution P =
P

n

i=1 qi · (1� x
i

).

One major di�culty under the first-best scenario is that the regulator prescribes the

quantity and abatement-level decisions for all the firms, thus also setting prices in all

markets. Such a centralized, statist approach from a pollution-focused regulator (such as

the Environmental Protection Agency) would be correctly viewed as excessive interference

in the economy. Thus, the first-best (welfare-maximization) approach has limited merit as a

benchmark, since it conflates pollution and output regulation. While e↵ective for pollution

regulation, it is neither fair nor practical. We explore an alternative approach in the next

section.

2.4.3 Internalizing the Externality: The Groves Mechanism as
Benchmark

We saw that the need for pollution regulation is largely driven by the negative exter-

nalities created by pollution (see discussion in Section 2.1). Thus, an alternative approach

would be to force firms to internalize the costs of the pollution damage they create–ideally,

without compromising much on their incentives to exercise market-power and maximize

their profits. We adapt the Groves mechanism, a classic solution to the public good problem

in economics (Clarke 1971, Groves 1973, Groves and Loeb 1975), to our context. In our
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context, the Groves mechanism consists of charging each firm with a corrective tax equal to

the extra pollution damage that its production and abatement decisions inflict on society.

Let P
i

denote the pollution generated by firm i, P�i

the pollution generated by all the

firms except firm i, and P the total pollution (i.e., P =
P

n

i=1 Pi

). We have the following

relationships: P
i

= q
i

· (1� x
i

) and P�i

=
P

j 6=i

P
j

= P � P
i

. Recall that the pollution

damage D = d · P 2. The formula for the Groves tax charged to firm i, denoted G
i

, is

G
i

(q,x) = d · P 2 � d · P 2
�i

(2.2)

Note that the taxes levied are simply a money transfer from the firms to the regulator,

and so, do not directly a↵ect welfare. However, the Groves tax a↵ects firms’ incentives

(specifically, their choice of production quantities and abatement levels), and hence, welfare,

indirectly. Firm i’s problem (i = 1, ..., n) is to maximizes its profits net of the Groves tax:

max
qi�0, 0xi1

⇡
i

(q
i

, x
i

| Q�i

) = q
i

· (a� b · q
i

� � · b ·Q�i

)� c
i

· (q
i

· x
i

)2 �G
i

(q,x) (2.3)

Theorem 1 shows that there is a unique Nash Equilibrium for the system of n optimiza-

tion problems given by (2.3) (i = 1, ..., n), and also provides the solution. All proofs are in

Appendix A.

Theorem 1 A unique Nash Equilibrium exists under the Groves tax given by (2.2). There

exists a threshold value of the pollution damage factor, d = clch
(n�m)(ch�cl)

, such that the

equilibrium production quantities and abatement levels under the Groves mechanism are7:

Case 1: d  d

qg
l

= qg
h

=
a [((n�m) c

l

+mc
h

) d+ c
l

c
h

]

b (2 + (n� 1) �) (((n�m) c
l

+mc
h

) d+ c
l

c
h

) + 2nc
l

c
h

d

xg
l

=
nc

h

d

((n�m) c
l

+mc
h

) d+ c
l

c
h

xg
h

=
nc

l

d

((n�m) c
l

+mc
h

) d+ c
l

c
h

The total emissions are Sg = naclch
b(2+(n�1)�)(((n�m)cl+mch)d+clch)+2nclchd

.

7
We use the following superscripts: g to denote the Groves mechanism, fb to denote the first-best solution

(discussed below), ct for Cap-and-Trade, cap for Cap, and tax for Tax.
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Case 2: d > d

qg
l

=
a
⇣

b (2� �) + 2(n�m)chd
ch+(n�m)d

⌘

[b (2 + (m� 1) �) + 2c
l

]
h

b (2 + (n�m� 1) �) + 2(n�m)chd
ch+(n�m)d

i

�m (n�m) �2b2

qg
h

=
a [b (2� �) + 2c

l

]

[b (2 + (m� 1) �) + 2c
l

]
h

b (2 + (n�m� 1) �) + 2(n�m)chd
ch+(n�m)d

i

�m (n�m) �2b2

xg
l

= 1

xg
h

=
(n�m) d

c
h

+ (n�m) d

The total emissions are Sg =
(n�m)ach(b(2��)+2cl)

[b(2+(m�1)�)+2cl][b(2+(n�m�1)�)(ch+(n�m)d)+2(n�m)chd]�m(n�m)�2
b

2(ch+(n�m)d) .

Theorem 1 shows that the optimal pollution abatement levels xfb
l

and xfb
h

are strictly

increasing, and the production quantities qfb
l

and qfb
h

strictly decreasing, in the pollution

damage factor d. Thus, as might be expected, a more harmful pollutant requires a more

stringent pollution abatement strategy. When d = 0 (i.e., the pollutant is harmless), it is

socially optimal not to abate any pollution (i.e., xfb
l

= xfb
h

= 0) and have the firms produce

qfb
l

= qfb
h

= a

b[2+(n�1)�] . This is identical to the unregulated oligopoly outcome– each firm’s

output is a

b[2+(n�1)�] . When d is very high, it is optimal to abate all the pollution; in this

case, xfb
l

= 1 and even xfb
h

converges to 1. For even the slightest pollution damage (i.e.,

any d > 0), the Groves mechanism induces a reduction of output to below unregulated

monopoly levels in every market, and further, we see that xg
l

> xg
h

and qg
l

� qg
h

i.e., firms

with low pollution abatement costs produce more output and also abate more pollution

than the high-cost firms.

We now return briefly to the Welfare maximization scenario, simply for the sake of

evaluating the e↵ectiveness of the Groves mechanism as a benchmark. Theorem 2 proves

that the solution to the optimization problem (2.1) exists and is unique, and also provides

the solution.

Theorem 2 The first-best solution exists and is unique. The optimal production quantities

and abatement levels in the first-best solution are:

Case 1: d  d
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qfb
l

= qfb
h

=
a [((n�m) c

l

+mc
h

) d+ c
l

c
h

]

b (1 + (n� 1) �) (((n�m) c
l

+mc
h

) d+ c
l

c
h

) + 2nc
l

c
h

d

xfb
l

=
nc

h

d

((n�m) c
l

+mc
h

) d+ c
l

c
h

xfb
h

=
nc

l

d

((n�m) c
l

+mc
h

) d+ c
l

c
h

Case 2: d > d

qfb
l

=
a
⇣

b (1� �) + 2(n�m)chd
ch+(n�m)d

⌘

[b (1 + (m� 1) �) + 2c
l

]
h

b (1 + (n�m� 1) �) + 2(n�m)chd
ch+(n�m)d

i

�m (n�m) �2b2

qfb
h

=
a [b (1� �) + 2c

l

]

[b (1 + (m� 1) �) + 2c
l

]
h

b (1 + (n�m� 1) �) + 2(n�m)chd
ch+(n�m)d

i

�m (n�m) �2b2

xfb
l

= 1

xfb
h

=
(n�m) d

c
h

+ (n�m) d

As under the Groves mechanism, we find that the optimal pollution abatement levels xfb
l

and xfb
h

are strictly increasing, and the production quantities qfb
l

and qfb
h

strictly decreasing,

in the pollution damage factor d. When d = 0 (i.e., the pollutant is harmless), it is socially

optimal not to abate any pollution (i.e., xfb
l

= xfb
h

= 0) and have the firms produce

qfb
l

= qfb
h

= a

b

, driving prices in all markets to 0. This confirms the heavy-handed nature of

the first-best solution. When d is very high, it is optimal to abate all the pollution; in this

case, xfb
l

= 1 and even xfb
h

converges to 1. For even the slightest pollution damage (i.e., any

d > 0), we see that xfb
l

> xfb
h

and qfb
l

� qfb
h

i.e., firms with low pollution abatement costs

produce more output and also abate more pollution than the high-cost firms.

Proposition 1 compares the two proposed benchmarks–Welfare maximization (i.e., first-

best) and the Groves mechanism. We find that total pollution is lower under the Groves

tax than under the first-best solution obtained through welfare maximization. Thus, the

Groves tax is a surprisingly e↵ective mechanism for pollution regulation, even compared to

the first-best solution.

Proposition 1 The abatement levels under first-best and Groves are identical (i.e., xg
l

=

xfb
l

and xg
h

= xfb
h

). The total pollution is lower under the Groves mechanism than under

first-best.

Figures 2.2 and 2.3 plot the pollution and production outcomes under first-best and

Groves as a function of the pollution damage factor d. The graphs are for � = 0. However,
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Figure 2.2. Abatement levels and Total pollution under First-best and Groves (� = 0)

Figure 2.3. Production quantities and Total output under First-best and Groves (� = 0)

these structural results are the same for any �. In fact, the abatement levels do not depend

on �. Under Groves and first-best, the total pollution decreases as � increases because the

output decreases while the abatement levels remain constant, but the total pollution under

first-best is always strictly greater than the pollution under Groves. One might expect the

output to increase with competition. For example, it is well known that the output of a

Cournot duopoly is greater than that of a monopoly. Our results di↵er because we are

considering n markets, and not just one. The aggregate output of n monopolies is greater

than the aggregate output of n oligopolistic firms producing imperfect substitutes. We

see that the Groves mechanism induces firms to abate pollution exactly to first-best levels.
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However, production quantities, both individual and aggregate, are lower under Groves

than under first-best (see Figure 2.3). These two factors together explain why there is less

pollution under Groves than under first-best.

The Groves mechanism meets the gold standard for fairness, because each firm pays

for the incremental pollution damage that it inflicts on society (and no more). Unlike the

first-best solution, the Groves mechanism also does not interfere excessively in firms’ output

decisions: Firms are free to maximize their profits net of the social cost of their pollution.

In addition, we see from Proposition 1 that the Groves mechanism is surprisingly e↵ective

as well–generating less total pollution in equilibrium than even the first-best solution.

Unfortunately, the Groves tax charged to a firm depends on the emissions of all the other

firms, which are unknown to the firm when it makes its production decisions. This drawback

renders the Groves mechanism impractical. Nevertheless, the Groves mechanism is suitable

as a benchmark against which to measure the performance of the more practical pollution

control mechanisms such as Cap, Cap-and-Trade, and Tax.

2.5 Alternative Mechanisms: Equilibrium Analysis
We saw that setting welfare-maximization as the goal of pollution regulation is neither

fair nor practical, and is, besides, a clear overreach of the pollution regulator’s mandate

(Recall Section 2.4.2). In practice, pollution regulations such as Cap, Cap-and-Trade, and

Taxes focus on pollution targets, usually determined by some combination of cost-benefit

analyses and political expediency.

Consider first the case when the pollution constraint is slack (e.g., the cap S is set very

high). The firm’s unconstrained problem is to choose a production quantity q
i

� 0 and an

abatement level x
i

2 [0, 1] that maximize its profit q
i

· (a� b · q
i

� � · b ·Q�i

)� c · (q
i

· x
i

)2 .

It is not di�cult to see that the solution is (x
i

= 0, q
i

= a

b(2+(n�1)�))
8, and the total

pollution generated is Su = n · q
i

· (1� x
i

) = na

b(2+(n�1)�) , where the superscript u stands

for unfettered. Thus, an unfettered oligopoly produces a pollution of Su = na

b(2+(n�1)�) , and

any cap � Su is irrelevant. Another trivial case arises when S = 0, requiring that the

firm’s pollution q
i

· (1� x
i

) = 0, 8i. In this case, the firm’s optimal solution is (x
i

= 1, q
i

=
a[b(2��)+2c�i]

b

2(2��)(2+(n�1)�)+2b[(2+(n�m�1)�)cl+(2+(m�1)�)ch]+4clch
), resulting in a positive profit. Thus,

the only meaningful (nontrivial) case arises in the range S 2
⇣

0, na

b(2+(n�1)�)

⌘

, which will be

the focus of the rest of this analysis. The firms can react to the pollution constraint in one

of several ways:

8
For details of this proof, see the proof of Theorem 3 in Appendix A.
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1. Abate pollution (as intended by the regulator), i.e., increase the abatement level x to

bring down the pollution q · (1� x) to the level enforced by the regulator.

2. Purchase emission allowances (only possible under Cap-and-Trade). This relaxes the

firm’s pollution constraint, and may be less expensive than abating pollution directly.

3. Pay emissions taxes (only possible under the Tax mechanism). Again, this may be

less expensive than abating pollution.

4. Reduce the output. Such a strategy mechanically brings pollution down. However,

as discussed in Section 2.1, lower output (leading, presumably, to higher prices) is

socially undesirable, and even more so under monopoly, as in our model.

5. Some combination of the above options.

In this section, we derive the unique (Subgame-perfect) Nash equilibrium under each

type of regulation, for any arbitrary pollution target. We will then compare the equilibrium

outcomes in Section 2.6.

2.5.1 The Cap Mechanism

Under Cap, the regulator directly assigns a cap to each firm’s emissions, with a hefty

fine for exceeding the cap. We assume that the penalty is su�ciently high that the firm

will prefer to operate within the cap. A profit-maximizing firm i (for i 2 {1, ..., n}) subject

to a cap s = S�n solves the following problem:

max
qi�0, 0xi1

⇡
i

(q
i

, x
i

| Q�i

) = q
i

· (a� b · q
i

� � · b ·Q�i

)� c
i

· (q
i

· x
i

)2

subject to q
i

· (1� x
i

)  s

Theorem 3 gives the firm’s optimal response to the Cap mechanism.

Theorem 3 The firm’s unique optimal strategy under the Cap mechanism is

qcap
i

=
a [b (2� �) + 2c�i

] + 2s [(2 + (m�i

� 1) �) bc
i

�m�i

�bc�i

+ 2c
i

c�i

]

[b (2 + (m
i

� 1) �) + 2c
i

] [b (2 + (m�i

� 1) �) + 2c�i

]�m
i

m�i

�2b2

xcap
i

=
[b (2� �) + 2c�i

] [a� bs (2 + (n� 1) �)]

a [b (2� �) + 2c�i

] + 2s [(2 + (m�i

� 1) �) bc
i

�m�i

�bc�i

+ 2c
i

c�i

]

where c�i

is the cost coe�cient of the other type of firms, and m�i

the number of firms of

the other type.
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Theorem 3 shows that as s decreases (i.e., regulation becomes more stringent), the

production quantities qcap
l

and qcap
h

strictly decrease while the abatement levels xcap
l

and

xcap
h

strictly increase. This has several implications: (i) Output reduction is inevitable

under the Cap mechanism. (ii) When the regulator lowers s, the firms simultaneously

abate pollution and reduce output. Thus, the regulator achieves her pollution target

partly through (desirable) pollution abatement, and partly through (undesirable) output

reduction. (iii) Firms’ reactions to the cap depend on their abatement cost coe�cients. In

particular, a firm with low abatement costs (c
i

= c
l

) produces a higher output and abates

more pollution than a high cost firm (c
i

= c
h

), i.e., qcap
l

> qcap
h

and xcap
l

> xcap
h

.

2.5.2 The Cap-and-Trade Mechanism

As with the Cap mechanism, the regulator assigns a cap s to each firm under Cap-and-

Trade; however, firms have the additional option of trading emission allowances amongst

themselves. Recall that t
i

denotes the number of emission allowances sold by firm i (a

negative t
i

means that the firm is a net buyer of emission allowances). Clearly t
i

 s,

because a firm can only sell allowances up to its initial endowment. Firm i’s problem is

given by:

max
qi�0, 0xi1, tis

⇡
i

(q
i

, x
i

, t
i

| Q�i

, r) = q
i

· (a� b · q
i

� � · b ·Q�i

)� c
i

· (q
i

· x
i

)2 + r · t
i

subject to q
i

· (1� x
i

)  s� t
i

where t = (t1, t2, ..., tn) denotes the vector of trades among the firms, and r is the price of

emission allowances at which the firms trade, i.e., the market clearing price. The equilibrium

price r is uniquely determined by the market-clearing condition
P

n

i=1 ti = 0.

Theorem 4 gives the unique Nash Equilibrium of the Cap-and-Trade game.

Theorem 4 When all firms have the same abatement cost coe�cient (i.e., m = 0 or m =

n), no trading occurs (t = 0), and the solution is identical to that of the Cap mechanism

(Theorem 3). When 0 < m < n, the unique Nash Equilibrium of the Cap-and-Trade game

is given by:

Case 1: S  S < Su

qct
l

= qct
h

=
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h
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h
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a ((n�m) c
l

+mc
h

) + 2c
l

c
h

S

xct
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+mc
h

) + 2c
l

c
h

S
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where S = (n�m)a(ch�cl)
ch[b(2+(n�1)�)+2cl]

.

The market clearing price is r = 2c
l

c
h

na�b(2+(n�1)�)S
(2+(n�1)�)b((n�m)cl+mch)+2nclch

, and each low-cost firm

sells t
l

= (n�m)(ch�cl)[a�b(2+(n�1)�)s]
b(2+(n�1)�)((n�m)cl+mch)+2nclch

emission allowances to the high-cost firms.

Case 1: S  S < Su

qct
l

=
a [b (2� �) + 2c

h

]� 2�bc
h

S

[b (2 + (m� 1) �) + 2c
l

] [b (2 + (n�m� 1) �) + 2c
h

]�m (n�m) �2b2

qct
h

=
a [b (2� �) + 2c

l

] + 2c
h

[b (2 + (m� 1) �) + 2c
l

]S� (n�m)

[b (2 + (m� 1) �) + 2c
l

] [b (2 + (n�m� 1) �) + 2c
h

]�m (n�m) �2b2

xct
l

= 1

xct
h

=
a [b (2� �) + 2c

l

]� b [b (2� �) (2 + (n� 1) �) + 2c
l

(2 + (n�m� 1) �)]S� (n�m)

a [b (2� �) + 2c
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h
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]S� (n�m)

The market clearing price is r = 2c
h

a[b(2��)+2cl]�b[(2��)(2+(n�1)�)b+2cl(2+(n�m�1)�)]S�(n�m)
[b(2+(m�1)�)+2cl][b(2+(n�m�1)�)+2ch]�m(n�m)�2

b

2 ,

and the low-cost firms sell all their emission allowances (t
l

= s) to the high-cost firms.

The structural results under Cap-and-Trade are similar to Cap. When the regulator

lowers S, both types of firms simultaneously abate pollution and reduce output. Thus,

output reduction is inevitable under Cap-and-Trade. Low-cost firms abate pollution faster.

S corresponds to the cap at which low-cost firms have abated all their pollution, and further

abatement is achieved solely by the high-cost firms.

2.5.3 The Tax Mechanism

We assume in our model that the regulator charges a tax proportional to the firm’s

emissions, i.e., firm i pays a tax ⌧ ·q
i

· (1� x
i

), where ⌧ is the linear tax rate and q
i

· (1� x
i

)

is firm i’s emissions. Stavins (2003) identifies seven subcategories of environmental taxes.

With the exception of fixed administrative charges such as permit fees, taxes are almost

universally linear in the pollution generated. Linear taxes are simple to understand and

implement, and moreover, are analytically tractable.

In choosing the tax rate ⌧, the regulator anticipates firms’ reactions, and chooses the

minimum ⌧ to ensure that the total pollution generated by the firms is at most S. Recall

that the regulator does not know which firm has which cost coe�cient, but knowing m is a

su�cient statistic for determining the tax rate that achieves S. Then, each firm chooses its

production quantity and pollution abatement level to maximize its profits net of pollution

taxes. The firms simultaneously solve

max
qi�0, 0xi1

⇡
i

(q
i

, x
i

| Q�i

, ⌧) = q
i

· (a� b · q
i

� � · b ·Q�i

)� c
i

· (q
i

· x
i

)2 � ⌧ · q
i

· (1� x
i

)
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We solve the two-stage game of our model using backward induction. First, we solve for

the firms’ optimal production quantities and abatement levels as a function of ⌧ . Then, we

plug the firms’ decisions into the regulator’s problem, which is to find the minimum ⌧ such

that P  S. Theorem 5 shows that there is a unique Subgame-Perfect Nash Equilibrium

for the two-stage Tax game.

Theorem 5 The unique Subgame-Perfect Nash Equilibrium of the Tax game is given by:

Case 1: S  S < Su
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Case 2: 0 < S < S
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We see that output reduction is inevitable under emissions taxes as well. When the

regulator wants to make the pollution targets more stringent, she has to raise the tax rate

⌧ . In response, both types of firms simultaneously abate pollution and reduce output.

2.6 Analysis and Comparisons

2.6.1 Cap-and-Trade versus Cap

Clearly, the di↵erences in outcomes under Cap-and-Trade and Cap are solely due to the

ability to trade emission permits, since the models are identical in all other respects. Thus,

their comparison illustrates the value of tradable emissions. The results that follow hold

for any � :
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• Low-cost firms abate more pollution under Cap-and-Trade than under Cap (i.e., xct
l

>

xcap
l

) because they can sell emission allowances to the high-cost firms, who in turn

need to abate less pollution (i.e., xct
h

< xcap
h

).

• Total abatement costs across all firms are lower under Cap-and-Trade, because high-

cost firms purchase emission allowances from low-cost firms instead of spending on

(costly) pollution abatement.

• The opportunity to trade also drives output. Ceteris paribus, low-cost firms produce

less under Cap-and-Trade (i.e., qct
l

< qcap
l

) because this lowers their pollution; hence,

they can sell more emission allowances to the high-cost firms, who can then increase

their output–thus, qct
h

> qcap
h

. We see that total production (across all firms) is greater

under Cap-and-Trade than under Cap for any S and �, because emissions trading

exploits abatement cost heterogeneity. Thus, the ability to trade under Cap-and-Trade

mitigates the output reduction e↵ect.

Figures 2.4 and 2.5 illustrate these results (for � = 0. The results are structurally the

same for other values of �).

Firms’ total profits are also higher under Cap-and-Trade than Cap, because of higher

output and lower pollution abatement costs. Higher output also translates into greater

consumer economic surplus under Cap-and-Trade. Total pollution, and hence the pollution

damage, are the same under both mechanisms. So consumer surplus (which is consumer

economic surplus net of pollution damage) is also higher under Cap-and-Trade. Since both

Figure 2.4. Abatement levels and Total abated pollution for Cap, Cap-and-Trade, and
Tax (� = 0)
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Figure 2.5. Production quantities and Total output for Cap, Cap-and-Trade, and Tax
(� = 0)

firms and consumers are better o↵, social welfare is also higher under Cap-and-Trade. These

results are summarized in Proposition 2 below.

Proposition 2 For any �, firms’ total output and profits, the total abated pollution, con-

sumer economic surplus, consumer surplus, and social welfare are all higher under Cap-

and-Trade than Cap.

Proposition 2 shows that Cap-and-Trade outperforms Cap by all measures. This di↵er-

ence is amplified when the abatement cost c
l

is small. Observe that for c
l

�! 0, and S � S,

the output under Cap-and-Trade is close to na

b[2+(n�1)�] , the total output of n unfettered

producers. In other words, the output reduction e↵ect is almost entirely mitigated, whereas

under Cap, the output reduction is still significant. The intuition is that when c
l

is small,

low-cost firms can produce at a level close to the unfettered scenario, and further, support

most of the pollution abatement for high-cost firms, allowing them also to purchase emissions

and produce at close to the level of the unfettered scenario. This observation emphasizes

the relevance of Cap-and-Trade when a cheap pollution abatement technology exists. With

technological innovation, the cost of pollution abatement is likely to decrease over time,

suggesting that Cap-and-Trade is likely to improve all outcomes in the long run, relative to

the pure Cap model. Ceteris paribus, Cap-and-Trade provides the highest benefits relative

to Cap when the number of low-cost and high-cost firms are almost equal, ensuring adequate

supply and demand of emission permits.
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2.6.2 Cap-and-Trade versus Tax

Comparing Theorems 4 and 5, we see that Cap-and-Trade and Tax induce identical

output and abatement levels from firms for any �. Consequently, firms’ total output, total

abated pollution, consumer economic surplus, consumer surplus, and social welfare are

identical under the two regimes. Firms’ profits are greater under Cap-and-Trade than under

Tax; the di↵erence is accounted for by the pollution tax paid to the regulator. Proposition

3 summarizes these results.

Proposition 3 (i) For any pollution target, and for any �, firms’ total output, the total

abated pollution, consumer economic surplus, consumer surplus, and social welfare are all

identical under Cap-and-Trade and Tax. (ii) The one exception is firms’ profits: 8 S, 8 i,

⇡CT

i

> ⇡T

i

. The di↵erence ⇡CT

i

� ⇡T

i

is exactly equal to the emission taxes paid by firm i

to the regulator, viz., ⌧ · s = ⌧ ·S�n. (iii) 8 S, the tax rate ⌧ is equal to the Cap-and-Trade

equilibrium (market-clearing) price r.

For every cap S, there is a unique tax rate ⌧ that induces firms to reduce pollution in

a manner identical to Cap-and-Trade. Further, this tax rate is equal to the equilibrium

(market-clearing) price r under Cap-and-Trade. The e↵ect of either mechanism is to shift

the burden of pollution abatement from the high-cost firms to the low-cost firms. Under

Cap-and-Trade, low-cost firms are rewarded for bearing a higher load of the pollution

reduction through the sale of surplus emission permits. Under Tax, they abate more

pollution simply because abatement is cheaper than paying more emission taxes, until their

marginal cost of pollution abatement equals the tax rate.

Proposition 3 shows that Taxes and Cap-and-Trade are equivalent for any �. The

general equivalence between price and quantities under perfect competition (Weitzman

1974) extends to imperfect competition. In particular, our result extends the findings

in Requate (1993a), who showed such an equivalence for n local monopolies (which in our

model corresponds to � = 0).

The equivalence of the Tax and Cap-and-Trade mechanisms can be formally shown by

observing that the firms’ programs under each mechanism di↵er only by a constant. Recall

that under Cap-and-Trade, firm i’s objective is max
qi�0, 0xi1, tis

⇡
i

(q
i

, x
i

| Q�i

) = q
i

·

(a� b · q
i

� � · b ·Q�i

)� c
i

· (q
i

· x
i

)2 + r · t
i

, subject to q
i

· (1� x
i

)  s� t
i

. First, we show

that the pollution constraint is binding under Cap-and-Trade. Suppose it is not; then the

firm can increase t
i

slightly, or decrease x
i

slightly to make the constraint binding holding

everything else constant. This action improves its profits, as long as r � 0. If t
i

= s, the

firm can no longer increase t
i

but the pollution constraint is binding because the upper
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bound of the pollution constraint is s � t
i

= 0. Since the pollution constraint is binding,

we have t
i

= s� q
i

· (1� x
i

) . Substituting in the objective function, the program becomes9

max
qi�0, 0xi1 ⇡i (qi, xi|Q�i

) = q
i

·(a� b · q
i

� � · b ·Q�i

)�c
i

·(q
i

· x
i

)2�r ·q
i

·(1� x
i

)+r ·s.

Let ⌧ = r. This is exactly the Tax mechanism up to the constant r ·s. Under Cap-and-Trade,

the price, r, at which firms trade emission allowances is determined by the market clearing

condition
P

n

i=1 ti = 0 () P = S, which means that the total pollution constraint is

satisfied. Note that ⌧ is also determined in such a way that the total pollution P = S.

Stiglitz (2007) argued that: “[A] tax would increase global e�ciency. Of course, polluting

industries like the cap-and-trade system. While it provides them an incentive not to pollute,

emission allowances o↵set much of what they would have to pay under a tax system. Some

firms can even make money o↵ the deal.” Proposition 3 shows that, in fact, all firms “make

money o↵ the deal”– but only because they save on the taxes paid to the regulator. The

di↵erence in the total profits across all firms, between Cap-and-Trade and Tax, is the tax

payment ⌧ ·S. In principle, the regulator could correct this gap in profits through a lump-sum

payment (or subsidy) to each firm equal to ⌧ · s. In this spirit, several initiatives to make

pollution taxes “revenue-neutral” have been proposed recently–to ensure that pollution

taxes are used exclusively for externality correction, not for revenue generation.

2.6.3 The E↵ect of Competition

We found that output reduction is inevitable under all three pollution regulation mech-

anisms analyzed. By reducing output, firms reduce pollution; in addition, the higher prices

they are able to charge partially compensates them for the lower sales volume. When firms

invest in pollution abatement, there is no such compensatory dynamic. When markets are

imperfect, and firms can set quantities, the firms exercise their market power to reduce

demand even further.

As � increases, the products become more and more similar, and the competition more

fierce. In this section, we discuss how output and abatement e↵orts vary as the competition

intensifies while the regulator maintains the same pollution target S. Two related obser-

vations arise: first, the output reduction e↵ect is less pronounced when the competition

intensifies. In other words, the decrease in total output relative to the unfettered level

is smaller if � is higher (for the same fixed S); secondly, the abatement levels for both

types of firms and for all mechanisms are increasing in �. This means that a more intense

competition forces firms to increase their abatement e↵orts. The intuition behind this

9
The constraint ti  s is automatically satisfied.
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finding is that competition limits the firms’ ability to use quantities strategically. Since the

firms cannot reduce output as easily, they are compelled to abate more pollution. Thus,

from a pollution regulation standpoint, competition has a beneficial e↵ect.

Proposition 4 summarizes these results.

Proposition 4 Competition mitigates the output reduction e↵ect. The output reduction

e↵ect is less pronounced when competition increases. The abatement levels for both types of

firms and for all mechanisms are increasing in the competition intensity.

2.6.4 Welfare Considerations

Clearly, the output reduction e↵ect common to all mechanisms has a negative impact

on consumer economic surplus. The e↵ect of regulation on welfare is a trade-o↵ between

lower firm profits and lower consumer economic surplus (on the one hand) and avoidance

of pollution damage on the other. The magnitude of pollution damage, i.e., the social

dis-utility from pollution, is driven by the pollution damage factor d. Theorem 6 shows

that pollution regulations improve welfare for a very large range of parameters.

Theorem 6 Tax and Cap-and-Trade improve welfare i↵ d > bclch(1�(n�1)�)
2nclch+(2+(n�1)�)b((n�m)cl+mch)

.

Theorem 6 shows that there is a threshold value of the pollution damage factor above

which both Tax and Cap-and-Trade improve welfare. Intuitively, regulation is desirable

for a pollutant with a high pollution damage factor. Conversely, when d is small (i.e., less

than the threshold), the pollutant’s harmful e↵ects are mild, and so regulation worsens

social welfare (similar to Buchanan’s (1969) finding–recall the discussion in Section 2.2) by

constraining output excessively, leading to lower firm profits and lower consumer economic

surplus. In this case, laissez-faire is the optimal policy. The shaded area of Figure 2.6

corresponds to parameter values for which regulation improves social welfare.

As the figure illustrates, it is generally the case that Cap-and-Trade and Tax regulations

will improve welfare. Specifically, regulations always improve social welfare when � >

1�n�1, where n is the number of regulated firms. Thus, our findings show that Buchanan’s

(1969) finding that regulating a single polluting monopoly with a Pigovian tax could reduce

welfare, would be limited to cases where there is very little competition, and the pollutant

is not too harmful. In practice, pollution regulations would improve welfare in the majority

of cases. In Figure 2.6, d0 =
bclch

2n(clch+bec) denotes the threshold value of the pollution damage

factor above which regulations improve welfare if the firms are local monopolies, i.e., � = 0.

When c
l

is small, d0 is small also. This suggests that pollution regulations are even more
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Figure 2.6. Region in which Cap-and-Trade and Tax regulations improve social welfare.

likely to improve social welfare when a low-cost abatement technology is available and

operated by some firms. One could expect the cost of pollution abatement to go down over

time as technologies scale up and improve, making the case for pollution regulations even

more compelling.

2.6.5 Comparisons with the Groves Benchmark

We saw that the Groves mechanism is both fair and e↵ective, but impractical (Section

2.4). In this section, we explore how well these practical mechanisms (Cap, Cap-and-Trade,

and Tax) can mimic the Groves mechanism. We then compare these outcomes to welfare-

maximization, with important policy consequences.

It is easy to show that for any d, the total pollution under Groves, Sg (given by Theorem

1), can be attained under Cap or Cap-and-Trade by setting the cap S = Sg. A total

pollution of Sg can also be attained under Tax by setting the tax rate ⌧ = ⌧ g, where ⌧ g is

the tax rate that corresponds to Sg, i.e., ⌧ g = ⌧ (Sg) . (The function ⌧ is given in Theorem

5). Proposition 5 shows that, remarkably, for any �, both Cap-and-Trade and Tax can

induce outcomes (i.e., abatement levels and output quantities at the firm level) identical

to the Groves mechanism, simply by setting S = Sg and ⌧ = ⌧ g, respectively. The Cap

mechanism cannot.

Proposition 5 Either Cap-and-Trade or Tax can exactly mimic the Groves mechanism by

setting the cap Sg or the tax rate ⌧ g. The Cap mechanism cannot.

Proposition 5 implies that the regulator can, simply by choosing the cap or tax rate

judiciously under Cap-and-Trade or Tax, induce an outcome that is (a) fair : Every firm pays



36

exactly for the pollution damage externalities that it imposes on society, (b) e↵ective: Any

pollution target (depending on the pollution damage factor d of the specific pollutant and

other factors) can be achieved and, moreover, (c) practical : Unlike the Groves mechanism,

the firm knows its initial emissions allocation (Cap) or the tax rate before it makes its

production decisions. By setting S = Sg, the Cap mechanism can achieve the same pollution

level as Groves, but the total output, the total abated pollution, consumer surplus, and

welfare are all lower than Groves. Thus the Cap mechanism, unlike Cap-and-Trade, does

not perform as well as Groves, illustrating the power of the trading mechanism once again.

An important policy question is whether, and under what conditions, a welfare-maximizing

regulator should replicate the Groves mechanism using either Cap-and-Trade or Tax (by

setting S = Sg or ⌧ = ⌧ g). To answer this, Theorem 7 compares Sg, the cap under

the Cap-and-Trade mechanism that induces the Groves outcome, with S⇤, the cap that

maximizes social-welfare under Cap-and-Trade. We focus on the two polar cases: � = 0,

the case of local monopolies, and � = 1, the Cournot scenario, because the large number of

parameters in our model compounds the welfare calculations for any �.

Theorem 7 When � = 0, Sg < S⇤ for any d > 0.

When � = 1, S⇤ < Sg for any d > 0.

Theorem 7 shows that the Groves mechanism is overly restrictive from the perspective of

welfare-maximization when the firms are local monopolies (i.e., � = 0), but not su�ciently

strict when firms compete à la Cournot (i.e., � = 1). Firms respond to regulatory constraints

by both abating pollution and reducing output. When firms are local monopolies, output

reduction raises prices, lowers consumers’ economic surplus, and reduces welfare. By taxing

firms for the entire pollution they produce, the Groves mechanism neglects the e↵ect of

output reduction on welfare. On the other hand, a welfare-maximizing cap should balance

the social costs of pollution damage with the full costs of output reduction to society.

Thus, S⇤ is higher than Sg, meaning that to maximize welfare, local monopolies should not

be constrained to the full extent of the pollution damage they cause– the gains in firms’

profits and consumer economic surplus from the higher cap more than compensate for any

additional pollution damage. This result extends Barnett’s (1980) result who finds that the

optimal tax rate on a single monopoly may be less than the marginal pollution damage.

When the product is a homogeneous commodity resulting in intense competition between

the firms (i.e., � = 1), the result is reversed. To maximize welfare, the regulator must

increase regulatory stringency above the level corresponding solely to the firms’ pollution

damage, because the reduction in pollution damage now dominates the welfare losses due
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to output reduction. Again, competition is good for pollution regulation. Setting the cap

at Sg is suboptimal, and a strategic regulator should set a more aggressive cap; doing so

allows more pollution reductions, while tapping into competitive forces that will prevent the

firms from reducing output too much. In other words, the regulator can use competition

to her advantage. Results for Tax are analogous, using ⌧ g and ⌧⇤ instead of Sg and S⇤.

Proposition 6 summarizes this insight.

Proposition 6 The regulator’s optimal strategy under Tax and Cap-and-Trade depends

on how intense the competition is. To maximize welfare: the regulator must subsidize

firms’ pollution when the firms are local monopolies; the regulator must over-penalize firms’

pollution when the firms compete à la Cournot.

2.7 Concluding Remarks
Several years ago, research into the field of “supply chain management” exploded in

response to the increasing importance of interfirm operational issues. This research in-

tegrated interfirm coordination, information and agency issues within the framework of

traditional research in Operations. Similarly, sustainable operations is an increasingly

important research area that expands the scope of traditional supply chain management to

include environmental considerations. In this spirit, our model contributes several analytical

“building-blocks”–notably of pollution generation, abatement, damage, and regulation–that

can be integrated into traditional supply chain models for use by future researchers in

sustainable operations.



CHAPTER 3

DOES CAP-AND-TRADE ENABLE

COLLUSION?

3.1 Introduction
Emission Taxes and Cap-and-Trade are two leading approaches for pollution regulation.

Proponents of Taxes have argued that Cap-and-Trade could facilitate collusion among firms

via the trading mechanism, leading to suboptimal welfare outcomes. We examine this claim

using a rigorous yet rich model of production and pollution under competition that allows

for the possibility of collusion among firms via trading.

Beginning in the 1970s, regulators around the world have started using various mech-

anisms to regulate pollution from industrial sources. Centralized command-and-control

mechanisms, such as technology mandates and performance standards, are a common form

of regulation.1 As discussed in Chapter 2, such centralized mandates are suboptimal, and

decentralized mechanisms relying on economic incentives should be preferred. In this paper,

we analyze and compare two widely used decentralized mechanisms for pollution control:

Tax and Cap-and-Trade. Under the Tax mechanism, the regulator charges each firm with

a tax proportional to its pollution. Under Cap-and-Trade, the regulator directly imposes a

pollution limit (the “cap”) on firms, but firms have the ability to trade to lower or increase

their individual caps (see Chapter 2 for more details on Cap-and-Trade).

Polluting industries are typically large and concentrated. Consider the case of the U.S.

power generation industry. It generates large quantities of sulfur dioxide, nitrogen oxides,

ozone, mercury, particulate matter, and carbon dioxide, all of which adversely a↵ect human

health and the natural environment. In 2010, the U.S. Environmental Protection Agency

1
An example of technology mandate is the Zero-Emission Vehicles program of the California Air Resources

Board. It requires large-volume manufacturers to produce a minimum percentage of electric and hybrid

vehicles, namely 12% for the period 2012-2014, and 14% for 2015 through 2017 (California Secretary of State

2012). Performance standards that limit the maximum permissible emission rate for a particular technology

are also very widely used. See, for example, the proposal by the U.S. Environmental Protection Agency to

limit carbon dioxide emissions by new natural gas power plants to 1,000 pounds per megawatt-hour (Shear

2013).
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(EPA) released a study on market concentration in the power generation industry in 31

continental states and the District of Columbia (U.S. EPA 2010). The study found that

around 5% of the generation owners control more that 40% of the overall generation capacity.

Power generation is highly concentrated in many states: in Tennessee, one firm controls

100% of the generation capacity; in Delaware, Maryland, Nebraska, and North Carolina,

two firms control more than 90%; in Alabama, Georgia, Illinois, Iowa, Kansas, Kentucky,

Massachusetts, Michigan, Mississippi, South Carolina, and West Virginia, one or two firms

control more than 60%. The study also calculated Herfindahl-Hirschman Indices (Rhoades

1993) scores in every state, and found high scores in 25 out of 31 states, suggesting that

the industry is concentrated and that market power is likely to be present. Mansur (2007)

found empirical evidence for the presence of market power in the Pennsylvania, New Jersey,

and Maryland electricity market, the world’s largest restructured electricity market.

With the exercise of market power comes the risk that powerful firms may take advantage

of the flexibility o↵ered by market mechanisms to shift the burden of pollution control to

smaller firms, rivals, and potential entrants, and by so doing increase their market position

even more. Heyes (2009) discusses several examples of environmental regulations that have

weakened competition: for example, environmental regulations in the U.S. have put small

firms at a disadvantage relative to large firms (Pashigian 1984), and have resulted in fewer

small business creations (Dean et al. 2000). Ryan (2012) found that the Clean Air Act

Amendments of 1990 raised the costs of entry in the U.S. cement industry by 35%.

A popular argument against Cap-and-Trade is that it is vulnerable to market manipu-

lations by firms who try to bypass pollution regulations at the expense of society. Shapiro

(2007) commented that “unlike cap-and-trade schemes, carbon taxes cannot be manipulated

by the markets” (see also Stiglitz 2007). Market manipulations are not possible under taxes,

because (i) the regulator sets the tax rate, not the firms, and (ii) the firms pay the same

tax rate regardless of their market position. As a result, the firms’ responses to emission

taxes are independent of each other. Under Cap-and-Trade, however, the firm’s trading

quantity a↵ects the permit price paid by all the firms. Strategic trading in the market for

emission allowances could impact the firms’ production costs, and indirectly the conditions

of competition in the output market. More importantly, trading gives firms a mechanism

for collusion whereby they may collectively choose a trading strategy to reach some common

goal. Such a mechanism does not exist with taxes.

We define collusion as a form of market manipulation in which firms that sell in com-

petitive markets cooperate to set prices. Through collusion, the firms seek to collectively
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control the output market as one monopoly. Collusive price-fixing is forbidden by antitrust

laws in many countries. For example, see the 1890 Sherman Act in the U.S., and articles

101 and 102 of the Treaty on the Functioning of the European Union. In this paper, we

examine the firms’ incentives to collude using an integrated pollution-production model that

allows for the possibility of collusion among firms via trading. We analyze several related

questions: does cap-and-trade enable collusion between the regulated firms? If collusion

is possible, what is its e↵ect on firms, consumers, and society as a whole? What can the

regulator do to limit the possibly negative consequences of collusion?

3.2 Literature Review
Antitrust regulations encourage competition to resist the firms’ desire to monopolize,

and ensure that consumers are not overcharged. A well-known collusion model is analyzed

and discussed in Gibbons (1992) and Viscusi et al. (2000). In it, two Cournot duopolists

with linear production technology and inverse demand function compete for output. As

a result of competition, the duopolists produce more than the monopoly output. The

firms can maximize their profits if each of them charges exactly half the monopoly quantity.

However, such an arrangement is di�cult to enforce because each firm would like to produce

a little more to increase its revenues at the expense of its competitor. In other words, the

collusive outcome is not a Nash equilibrium. Friedman (1971) was the first to show that a

collusive Nash equilibrium can be achieved in a repeated Cournot game (i.e., two symmetric

firms repeatedly play the one-period Cournot game) by the use of a trigger strategy in which

collusion is played at every period until a deviation is observed; from that point on, collusion

breaks down and the game forever moves to the Cournot equilibrium. Due to the inherent

di�culty in enforcing collusion, there have been some empirical studies focusing on cartel

stability and durability (see, for example, Grossman 2004). The empirical literature on

collusion is sparse because collusion is di�cult to observe. Connor (2007) analyzed hundreds

of social science reports and judicial decisions from antitrust authorities published between

1770 and 2004 around the world. He found (only) 262 cartels suspected of practicing some

form of price-fixing, resulting in an average surcharge of 25% compared to the price of

competitive benchmarks. In this paper, we also adopt the Cournot duopoly model, but

we focus on a one-period model in which trading in the market for emission allowances is

the mechanism whereby collusion can take place. Our objective is not to understand cartel

self-policing; it is to know if emission trading can give rise to collusion.

As discussed in the introduction, there is some empirical evidence that environmental
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regulations have weakened competition by increasing market concentration or deterring

entry and small business creation (Heyes 2009), but very little work on collusion per se.

Burtraw et al. (2009) conduct experiments to investigate whether collusion in emission

allowance auctions would be more likely under discriminatory price, uniform price, or clock

auctions. We do not model the emission allowance allocation process. We take the initial

allocations as given, and focus on the trading process.

Requate (2006) reviews several papers studying pollution regulations (especially emission

taxes) under imperfect competition, of which Requate (1993b) and Von der Fehr (1993)

are closest to ours. In Requate (1993b), two asymmetric firms with linear production

technologies engage in Cournot competition. The firms di↵er in their marginal production

costs and emission rates. Production generates pollution, and the firms have no other

abatement option than reducing output. Requate (1993b) compares a linear emission

Tax to a Cap-and-Trade system in which firms trade to maximize their joint profits. He

shows that Tax and Cap-and-Trade di↵er from each other; neither can implement the

welfare-maximizing outcome; and no mechanism is always superior to the other. Recall

that in Chapter 2, we prove the equivalence of Tax and Cap-and-Trade under more general

assumptions. In this paper, we resolve this apparent contradiction.

Von der Fehr (1993) specifically studies the firms’ incentives under Cap-and-Trade to use

trading strategically to increase their market power (i.e., monopolize) or exclude entry. He

models a symmetric Cournot duopoly (i.e., the firms have the same cost structure) in which

a dominant firm is initially allocated more emission allowances than its competitor, because

it is bigger. Von der Fehr shows the existence of Pareto-improving trades between the

firms, and that the dominant firm can use these trading opportunities to its advantage. By

trading, the dominant firm can influence the permit price to lower its own abatement costs,

and improve its strategic position in the output market; this manipulation also impacts its

rival’s cost structure. He shows that, if the products are homogeneous, monopolization can

occur (under some conditions on the firms’ cost structures). However, monopolization is

less likely when the products are di↵erentiated and the cost functions exhibit dis-economies

of scale. He also shows that, if the quantities are strategic substitutes, the exercise of

market power in the output market causes firms to over-invest in emission rights. This

is because buying more emission rights lowers the buyer’s marginal cost, which allows it

to be more aggressive in the output market. The rival facing a decreasing output price is

forced to reduce its production quantity, which improves the profits of the first. This is an

example of a Top-Dog commitment strategy in which the decision to over-invest (i.e., act
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tough) causes the rival to behave less aggressively. This result follows from Von der Fehr’s

assumption that marginal costs are decreasing in the number of emission rights.

Under cap-and-trade, ad-hoc markets are created for the exchange of emission allowances.

Such markets may themselves be subject to imperfections, in particular if some firms receive

a large percentage of the initial emission allowances. For example, in the initial phase of

the U.S. Acid Rain Program, the first large-scale implementation of cap-and-trade system

in the world, four companies were allocated 43 percent of the total emission allowances

(Liski and Montero 2011). Thus, imperfect competition in the output market may interact

or be compounded by imperfections in the allowance market. Hahn (1984) was the first

to study the situation in which a firm exercises power in the trading market (while all the

other firms are price-takers), but the output market is perfectly competitive. He shows that

if the dominant firm is a buyer of permits, it will tend to buy more emission allowances

in order to keep the allowance price down. If it is a seller, it will sell less to bring the

price up. Thus, in equilibrium, the firms’ aggregate compliance costs are higher than if the

permit market was perfectly competitive. Misiolek and Elder (1989) extend the work in

Hahn (1984) by studying what would happen if the dominant firm intentionally purchased

more permits to exclude its rivals. They find that such exclusionary manipulations could

improve or aggravate the e�ciency losses due to the dominant firm’s power in the permit

market.

Our contribution is threefold:

• We explicitly model the trading mechanism under Cap-and-Trade, and analyze two

di↵erent trading modes: in the first one, trading occurs at the time of production.

This means that the production, abatement, and trading decisions are simultaneous.

In the second one, the firms trade before production is realized. This subtle distinction

in the timing of trading o↵ers a clean and insightful comparison of the mechanisms

in a manner not previously done. By comparing two variants of Cap-and-Trade to

the Tax mechanism under which no collusion is possible, we are able to generate

new insights into the firms’ incentives to collude. Von der Fehr (1993) finds that

collusion is possible under limited conditions. We show that the incentive to collude

is unavoidable. Contrary to Von der Fehr (1993), we show that firms under-invest in

trading under collusion.

• We use a richer yet tractable model, which allows for a more detailed analysis, by

disentangling the firms’ production, abatement, and trading decisions. In Requate

(1993b), the firms can reduce pollution only by reducing output, and there is no
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alternative way to abate pollution. In (Requate, 2006, chapter 7), this assumption

is relaxed but the model becomes intractable. In Von der Fehr (1993), emission

allowances serve as a proxy for production, in the sense that firms cannot produce

without emission allowances; so capturing permits from the other firm restricts its

production capacity, and could push the firm out of the market. Furthermore, Von der

Fehr (1993) does not explicitly model the trading process. In our paper, we allow the

firms to choose their production quantities, levels of abatement, and trading quantity

as three separate and independent decision variables. We distinguish and explicitly

model the processes of production, pollution generation, abatement, and regulation.

Our closed form solutions make it possible to compare outcomes, including output,

abatement e↵orts, firm profits, consumer surplus, and welfare.

• Finally, we generalize the polar cases of monopoly and duopoly by considering strategic

firms serving their respective markets with partially substitutable products, as in

Chapter 2. In our model, varying the degree of substitutability allows us to explore

the e↵ect that di↵erent levels of competition intensity has on the firms’ incentives

to collude. As we show, competition intensity is a key parameter of the equilibrium

outcomes.

3.3 The Model
The model in this chapter is closely related to the model in Chapter 2. We adopt the

same modeling assumptions and notations as in Chapter 2, except that, for simplicity, we

consider two firms instead of n. This makes the analysis easier without losing any important

insights. We refer the reader to Chapter 2 for justification of our assumptions. Specifically,

we adopt the same integrated pollution-production model as in Chapter 2.

The firms produce partially substitutable products. Each firm chooses a production

quantity q
i

for its product i. The price of product i is determined by the production

quantities chosen by firm i and its competitor according to the following formula: p
i

=

a � bq
i

� �bq
j

, where 0  �  1 is the coe�cient of substitutability. The parameter �

determines how similar the products are, and serves as a proxy for competition intensity.

When � = 0, the products are su�ciently di↵erent that the price p
i

is determined only

by the quantity produced by firm i. In other words, each firm is a local monopoly in its

market. The firms do not compete. At the other extreme, when � = 1, the product is

a homogeneous commodity. This means that the firms produce the same product, and

competition is intense. Recall that the pollution model in Chapter 2 is characterized by
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four components:

1. Pollution generation. The pollution eP
i

generated by each firm is equal to its

production quantity,2 i.e., eP
i

= q
i

.

2. Pollution abatement. The firms can abate pollution albeit at a cost. Each firm

independently determines what percentage of its pollution to abate. x
i

denotes the

percentage of pollution abated by firm i. If the firm abates q
i

· x
i

, with x
i

2 [0, 1] ,

the residual pollution is P
i

= eP
i

� q
i

·x
i

= q
i

· (1� x
i

) . The costs of abating pollution

are quadratic, convex, and increasing in the quantity of pollution abated, i.e., the

costs are c
i

· (q
i

· x
i

)2. There are two di↵erent cost coe�cients, c
i

and c
j

. Without

loss of generality, we assume that 0 < c
i

 c
j

. Note that when c
i

= 0, pollution

abatement is costless. The firm can e↵ortlessly ensure that the pollution constraint

is not binding. This implies that the problem coincides with the unregulated case

or business-as-usual. From now on, we will let c
l

= c
i

and c
h

= c
j

, and we will

use the subscript l to denote the low-cost firm; i.e., the firm with a low abatement

cost coe�cient c
l

, and the subscript h to denote the high-cost firm, which has a high

abatement cost coe�cient c
h

. We assume that c
l

and c
h

are common knowledge.

3. Pollution damage. The firms’ pollution causes damage. The pollution damage

function D denotes the economic value of this damage to society. We assume that

D is a quadratic, convex, and increasing function of the total pollution P, where

P = P
l

+ P
h

. Thus, D = d · P 2, where the pollution damage factor d � 0 captures

how harmful the pollutant is.

4. Pollution regulation. As mentioned previously, we focus on two popular mecha-

nisms:

(a) The Tax mechanism. Under the Tax mechanism, the regulator charges the

firm with a fee proportional to its emissions. Under this mechanism, the tax is

equal to ⌧ · [q · (1� x)] where q · (1� x) is the net pollution generated by the

firm and ⌧ � 0 is the tax rate set by the regulator, common to all firms. By

increasing the tax rate, the regulator makes pollution more costly to the firm

causing it to reduce its emissions. Thus, the regulator can strategically set the

tax rate to achieve a particular emission reduction goal.

2
As in Chapter 2, the emission rate is normalized to 1
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(b) The Cap-and-Trade mechanism. Under Cap-and-Trade, the regulator spec-

ifies a limit on emissions but firms are allowed to trade with each other. At

the end of each year, each firm must surrender a number of allowances equal

to its actual emissions, or pay a hefty fine. Based on scientific, historical, and

political considerations, the regulator typically assigns a cap S for the entire

region. As argued in Chapter 2, we assume that each firm is initially allocated

the same number of emission allowances, i.e., s
l

= s
h

= S�2, where s denotes an

individual allocation of emission allowances. Recall that t denotes the number

of emission allowances traded by the firm. Without loss of generality, t � 0

indicates that the firm is a net seller of allowances, and t < 0 that the firm

is a net buyer. The firm’s constraint is q · (1 � x)  s � t. We consider two

variants of Cap-and-Trade that di↵er only in the timing of trading. (1) The first

Cap-and-Trade model is called the “single-stage” model because trading occurs

simultaneously with production; (2) In the second Cap-and-Trade model, trading

occurs before production. We call this variant the “two-stage” Cap-and-Trade

model.

To allow meaningful comparisons between Tax and Cap-and-Trade, we further assume

that the regulator’s goals are the same: that the total pollution does not exceed an

amount S.

Firms maximize their profits. Firm i’s profit (i = l or h)

⇡
i

(q
i

, x
i

| q
j

) = q
i

· (a� b · q
i

� � · b · q
j

)� c
i

· (q
i

· x
i

)2 is the di↵erence between its revenues

and its pollution abatement costs. The firms’ joint profits or industry profits are denoted

⇧ = ⇡
l

+ ⇡
h

.

As in Chapter 2, the performance measures we use to evaluate the two mechanisms

include the total output, Q = q
l

+q
h

, the total abated pollution, q
l

x
l

+q
h

x
h

, the firms’ joint

profits, ⇧, consumer surplus, CS, which includes the damage from pollution, D = d · P 2,

and the social welfare W = ⇧ + CS, where ⇧ is the profits before tax. Our notations are

summarized in Table 3.1.

3.4 Equilibrium Analysis
In this section, we analyze the Tax mechanism, and the two variants of the Cap-and-

Trade mechanism, and derive the unique (Subgame-Perfect) Nash equilibrium under each

type of regulation, for any arbitrary pollution target, and for any �.
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Table 3.1. Model notations (Chapter 3)
q
i

Production quantity chosen by firm i, i = l or h , q
i

� 0
Q Total production quantity, Q = q

l

+ q
h

� Competition coe�cient, 0  �  1
p
i

Price in firm i’s market, p
i

= a� b · q
i

� � · b · q
j

, a > 0, b > 0
x
i

Pollution abatement level chosen by firm i, 0  x
i

 1
c
i

Abatement cost coe�cient of firm i, c
i

2 {c
l

, c
h

} , 0 < c
l

 c
h

P
i

Pollution generated by firm i, P
i

= q
i

· (1� x
i

)

P Total pollution generated by the firms, P =
P2

i=1 Pi

⇡
i

Profit of firm i

⇧ Firms’ joint profit, ⇧ =
P2

i=1 ⇡i
d Pollution damage factor, d � 0
D Pollution damage, D = d · P 2

CS Consumer surplus CS = CES �D

W Social welfare W = ⇧+ CS

S Total cap chosen by the regulator, S � 0
s
i

Individual firm cap
t
i

Number of emission allowances traded by firm i

⌧ Tax rate, ⌧ � 0

3.4.1 The Tax Mechanism

As mentioned previously, under the Tax mechanism, the regulator charges a tax propor-

tional to the firm’s emissions, i.e., firm i pays a tax ⌧ · q
i

· (1� x
i

), where ⌧ is the linear

tax rate and q
i

· (1� x
i

) is firm i’s emissions. In choosing the tax rate ⌧ , the regulator

anticipates firms’ reactions, and chooses the minimum ⌧ to ensure that the total pollution

generated by the firms is at most S. Then, each firm chooses its production quantity and

pollution abatement level to maximize its profits net of pollution taxes. Firm i’s objective

is

max
qi�0, 0xi1

⇡
i

(q
i

, x
i

| q
j

, ⌧) = q
i

· (a� b · q
i

� � · b · q
j

)� c
i

· (q
i

· x
i

)2 � ⌧ · q
i

· (1� x
i

)

The regulator then chooses ⌧ such that the total pollution, P  S. We know from chapter

2 that this game has a unique Subgame-Perfect Nash Equilibrium. Theorem 8 gives the

solution to that game.

Theorem 8 Let su = a

b(2+�) and s = a(ch�cl)
2ch(b(2+�)+2cl)

.

1. s � su. The optimal tax rate is ⌧ = 0.
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The optimal production quantities and abatement levels are

q
l

= q
h

=
a

b (2 + �)
x
l

= x
h

= 0

2. s  s < su. The optimal tax rate is ⌧ = 4c
l

c
h

a�b(2+�)s
(2+�)b(cl+ch)+4clch

.

The firms react with

qtax
l

= qtax
h

=
a (c

l

+ c
h

) + 4c
l

c
h

s

(2 + �) b (c
l

+ c
h

) + 4c
l

c
h

x
l

= 2c
h

a� b (2 + �) s

a (c
l

+ c
h

) + 4c
l

c
h

s

x
h

= 2c
l

a� b (2 + �) s

a (c
l

+ c
h

) + 4c
l

c
h

s

3. 0 < s < s. The optimal tax rate is

⌧ = 2c
h

a (b (2� �) + 2c
l

)� 2b
�

b
�

4� �2
�

+ 4c
l

�

s

4 (b+ c
l

) (b+ c
h

)� �2b2

The optimal production quantities and abatement levels are:

q
l

=
a (b (2� �) + 2c

h

)� 4�bc
h

s

4 (b+ c
l

) (b+ c
h

)� �2b2

q
h

=
a (b (2� �) + 2c

l

) + 8c
h

(b+ c
l

) s

4 (b+ c
l

) (b+ c
h

)� �2b2

x
l

= 1

x
h

=
a [b (2� �) + 2c

l

]� 2b
⇥

b
�

4� �2
�

+ 4c
l

⇤

s

a (b (2� �) + 2c
l

) + 8c
h

(b+ c
l

) s

Theorem 8 is a special case of Theorem 5 (see Chapter 2) with n = 2 and m = 1. See

Figure 3.1 for a graph of the production quantities and abatement e↵orts as a function of

s for � = 0, � = .5, and � = 1.

As the regulation becomes more stringent (i.e., the cap decreases), the firms simultane-

ously reduce output and abate pollution. The emission tax acts as a damper on output for

both firms. The low-cost firm abates more pollution than the high-cost firm (i.e., x
l

> x
h

)

because it can abate more pollution for every dollar spent. When the cap is su�ciently low,

the low-cost firm has abated all its pollution (i.e., x
l

= 1). Beyond that point (i.e., s  s), in

the absence of competition (i.e., � = 0), the low-cost firm will maintain its output constant.

Since it has abated all its pollution, it no longer pays any taxes. To maximize its revenues,

the low-cost firm sells all its emission allowances to the high-cost firm. However, when the
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� = 0 � = .5 � = 1

Figure 3.1. Production quantities and abatement levels under the Tax mechanism.

firms compete (i.e., � > 0, see the center and right panes), the dynamic of the Cournot

competition changes for s  s. The high-cost firm reduces its output more and abates

more pollution, while the low-cost firm increases its output. Overall, the total output,

Q = q
l

+ q
h

, decreases. The quantities are the outcome of a noncooperative game. Recall

that the firms have three levers to comply with the regulation: (i) reduce the output, (ii)

increase their abatement e↵ort, or (iii) pay a tax. We saw in Chapter 2 that the firms prefer

output reduction over pollution abatement, because reducing their production quantities

allows them to increase prices. When x
l

= 1, the low-cost firm abates all its pollution. Since

its pollution abatement costs are sunk, it can credibly increase its output. The low-cost

firm’s cost advantage translates into the ability to commit credibly. Because the low-cost

firm is more aggressive in the Cournot game, the high-cost firm is forced to decrease its

output. The high-cost firm still has to balance output and abatement, and pay a tax for its

residual emissions. The low-cost firm does not.

3.4.2 The Single-stage Cap-and-Trade Mechanism

In the single-stage Cap-and-Trade mechanism, trading, production, and abatement are

simultaneous. The firm i’s problem is given by:

max
qi�0, 0xi1, tis

⇡
i

(q
i

, x
i

, t
i

| q
j

) = q
i

· (a� b · q
i

� � · b · q
j

)� c
i

· (q
i

· x
i

)2 + r · t
i

where r is the price of emission allowances at which the firms trade, i.e., the market clearing

price. Firm j solves a similar problem. The market clearing condition stipulates that the

demand for emission allowances equals the supply, i.e., t
i

+ t
j

= 0. Rewrite t
i

= t; the

market clears if there exists a price r � 0 such that t
j

= �t. The single-stage model
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correspond to the Cap-and-Trade model of Chapter 2. From Chapter 2, we know that this

game has a unique Nash Equilibrium, which is given in Theorem 9.

Theorem 9 The production quantities and abatement levels under the single-stage Cap-

and-Trade are the same as the Tax mechanism. Furthermore

1. When s � su, the firms do not trade (i.e., t = 0).

2. When s  s < su, the low-cost firm sells t = (ch�cl)[a�b(2+�)s]
(2+�)b(cl+ch)+4clch

emissions allowances

at the price r = 4c
l

c
h

a�b(2+�)s
(2+�)b(cl+ch)+4clch

to the high-cost firm.

3. When 0 < s < s, the low-cost firm sells all its emission allowances (i.e., t = s) at the

price r = 2c
h

a(b(2��)+2cl)�2b(b(4��

2)+4cl)s
4(b+cl)(b+ch)��

2
b

2 to the high-cost firm.

Theorem 9 is a special case of Theorem 4 and Proposition 3 of Chapter 2 with n = 2

and m = 1.

The equivalence between Tax and the single-stage Cap-and-Trade mechanism are dis-

cussed in some detail in Chapter 2. In equilibrium, the marginal abatement costs of the

firms are equal to each other and to the emission allowance price r, which is the shadow

price of the pollution constraint. Under Tax, the firms’ marginal abatement costs are also

equal to each other and to the tax rate. The firms abate pollution up to the point where

their marginal abatement costs (which are increasing in the abatement e↵ort) equal the tax

rate. Beyond that point, the firms’ marginal abatement costs continue to increase and the

firms are better o↵ paying the tax at the fixed rate. The equilibrium tax rate is equal to the

equilibrium shadow price of the pollution quantity allocated to firms under Cap-and-Trade

(i.e., r = ⌧). As expected, trading is always from the low-cost to the high-cost firm (i.e.,

t � 0).

This equivalence between Cap-and-Trade and Tax proves that no collusion occurs under

the single-stage Cap-and-Trade mechanism. There is a unique price r at which the supply

of emission allowances by the low-cost firm equals the demand from the high-cost firm. The

market clearing condition deprives the firms from the opportunity to choose t strategically.

The fact that the marginal abatement costs across firms are equal guarantees that the

abatement costs are minimized. Cost minimization is a key argument in favor of Tax and

Cap-and-Trade.

3.4.3 The Two-stage Cap-and-Trade Model

In the previous section, we have studied a Cap-and-Trade mechanism where the market-

clearing price is the driving force of the equilibrium. We found a unique price at which the
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volume of allowances o↵ered by the low-cost firm equals the demand from the high-cost firm.

This price is equal to the marginal abatement cost of the firms, and is the shadow price of

the firms’ pollution constraints. We did not impose any other condition on the equilibrium.

A natural question arises: is the equilibrium in Theorems 8 and 9 Pareto-optimal? It not,

does there exists another trading equilibrium that Pareto-dominates the trading equilibrium

of the single-stage Cap-and-Trade? Remember from our discussion in the literature review

(see Section 3.2) that Von der Fehr (1993) and Requate (1993b) use Pareto optimality as

the trading objective in their Cap-and-Trade models.

A trade is Pareto-optimal if it is impossible to come up with a di↵erent trade that

would make one of the firms better o↵ without hurting the other firm. Pareto optimality is

a powerful criterion because, given di↵erent options, the firms will prefer a Pareto-optimal

equilibrium, provided that its gives each firm a pay-o↵ at least equal to what they would

get otherwise through a di↵erent trade. Pareto optimality requires that the firms maximize

their joint profits. In other words, the firms trade to make the pie as big as possible, and then

figure out a way to share the profits. The trading quantities and prices may not be unique

and will typically depend on the firms’ bargaining power. A powerful firm, whether buyer or

seller of emission allowances, may have the ability to extract all the Pareto improvements;

however, to participate in the trade, each firm will require a payo↵ that is at least as much

as what they get under the single-stage model. Otherwise, the less powerful firm will not

trade in the first stage, and instead force the duopoly to trade at the time of production.

Note that the trading price being simply a transfer between firms does not a↵ect total firm

profits, consumer surplus, or welfare. With this in mind, consider the following time-line

for the Cap-and-Trade mechanism:

First, the regulator chooses an aggregate cap S, and assigns a cap s = S

2 to each firm

(as before).3 Second the firms trade with each other to maximize their joint profits. Third

and finally, the firms play the Cournot game. This scenario di↵ers from the previous one

in the timing of the trade. In the previous scenario (Section 3.4.2), the firms trade at the

time of production. In other words, the production, competition, and trading stages are

simultaneous (hence, the adjective single-stage to denote this trading process). In the alter-

native scenario (current section), the trading is decoupled from production/competition, and

occurs before. We call this the two-stage Cap-and-Trade model. At the time of trading, the

firms anticipate each other’s reaction in the final stage of the game and focus on executing

3
As in Chapter 2, we assume that the regulator cannot discern between the low-cost and the high-cost

firm, although she knows the value of cl and ch . See Chapter 2 for a discussion of this assumption.
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a Pareto-optimal trade. By placing trading before production, we allow the firms to use

the ability to trade as a strategic lever in the Cournot game. Such a lever could be used as

a means to collude. Formally, the firms solve the following problem:

1. Trading: choice of t
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We solve by backward induction. Theorem 10 shows that a Subgame-Perfect Nash

Equilibrium of the two-stage Pareto-optimal Cap-and-Trade game exists and is unique. See

Appendix B for the proof of this Theorem.
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The optimal production quantities and abatement levels are
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Case 3: 0 < s  s1. The optimal trade is t = s. The optimal production quantities and

abatement levels are the same as the Tax mechanism.

The assumption in Theorem 10 that none of the firms shuts down should not be

overlooked. Under single-stage Cap-and-Trade, the firms never shut down (see Theorem

9). When the pollution constraints are extremely stringent, the firms continue to produce,

even if they are forced to abate all their pollution. By contrast, we show in the proof of the

two-stage Cap-and-Trade model that, although the low-cost firm never shuts down, there

are values of the model parameters for which the high-cost firm shuts down. Selling the
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high-cost firm to the low-cost firm could be a form of collusion; however, we prefer to focus

on the interesting case where both firms are producing.

As can be seen from Theorem 10–Case 3, the three mechanisms (Tax, single-stage Cap-

and-Trade, and two-stage Cap-and-Trade) coincide when s  s1, except for the firms’

profits. The firms’ profits under Tax are lower than under Cap-and-Trade by ⌧ · S, which

is the tax payment to the regulator. The situation s  s1 corresponds to a very stringent

pollution cap requiring the low-cost firm to abate all its pollution (i.e., x
l

= 1) and, under

Cap-and-Trade, to sell all its emission allowances to the high-cost firm. In other words, when

s  s1, the firms no longer choose t, but are forced to set t = s in both the single-stage

and two-stage models. The firms cannot collude, because they do not have the freedom to

trade at the Pareto-optimal level. Although the firms would like to trade more, trading is

limited by the supply of emission allowances.

When s > s1, di↵erences in the firms reactions suggest that collusion may be present. We

investigate the potential for collusion, and its e↵ects on output, abatement, and pollution

in the next section.

3.5 Results
Our results are derived from the comparison of the firms’ compliance strategies and the

resulting outcomes under the single-stage and two-stage Cap-and-Trade mechanisms.

3.5.1 The Evidence for Collusion

Consider first the special case � = 0. This corresponds to the firms being local monopo-

lies, i.e., the firms do not compete, and have full market power in their respective markets.

Note that the concept of collusion makes sense only if the firms are competing (i.e., � > 0).

It is easy to see from Theorems 9 and 10 that single-stage and two-stage Cap-and-Trade

mechanisms coincide when � = 0. This means that the single-stage Cap-and-Trade is Pareto

optimal if � = 0. When � > 0, the firms’ response under the two-stage Cap-and-Trade is

di↵erent from the single-stage Cap-and-Trade mechanism if and only if s > s1. In particular,

this means that the single-stage Cap-and-Trade mechanism is not Pareto optimal when

� > 0 and s > s1. Note that the same conclusion can be reached for the Tax mechanism.

The total output of the duopoly as a function of the cap s is plotted in Figure 3.2 for

� = 0, � = .5, and � = 1.

When � > 0, the total output is less under two-stage than under single-stage Cap-and-
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� = 0 � = .5 � = 1

Figure 3.2. Total output under single-stage (solid line) and two-stage (dashed line)
Cap-and-Trade.

Trade. As a result, the prices of both products are higher,4 and the consumer economic

surplus is reduced. In other words, the output reduction e↵ect of pollution regulations is

amplified in the two-stage Cap-and-Trade mechanism. Consider next the firms’ abatement

e↵orts. To evaluate the extent of the firms’ abatement, we define the pollution abatement

ratio as the ratio of the total quantity of pollution abated, q
l

x
l

+q
h

x
h

, to the total unabated

pollution, q
l

+q
h

. Figure 3.3 compares the pollution abatement ratio under each mechanism.

The firms’ abatement e↵ort under the two-stage is less than under the single-stage Cap-

and-Trade when s  es. In summary, under two-stage Cap-and-Trade, the firms use trading

to reduce the output, which allows them to increase prices, and at the same time relax

their abatement e↵orts. This result gives support to the claim that firms can use Cap-and-

Trade to by-pass the regulations at the expense of society (Shapiro 2007). The production

quantities, abatement levels and trading volume are discontinuous at es; however, the firms’

profits are not. At es, the firms’ compliance strategies shift from a regime where the pollution

constraints are binding for both firms, and both firms have to abate pollution (when s  es),

to a regime where the low-cost firm abates no pollution (i.e., x
l

= 0) and buys emission

allowances from its rival who abates pollution (when s > es). The industry profits in this

case are even higher than the unregulated scenario (i.e., when x
l

= x
h

= 0). Recall that

the low-cost firm has the upper hand in the Cournot game because of its cost advantage.

By increasing output, it forces the high-cost firm to reduce output drastically and abate

more pollution. This drives the output price up, and at the same time generates a surplus of

emission allowances which allow the low-cost firm to produce even more than the unfettered

4
Note that 8i, pi = a� bqi � �bqj = a� b (1� �) qi � �bQ
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� = 0 � = .5 � = 1

Figure 3.3. Pollution abatement ratio under single-stage (solid line) and two-stage (dashed
line) Cap-and-Trade.

level. Because of its cost advantage, the low-cost firm can produce at a higher level of output

than the high-cost firm. The output e↵ect once again dominates the abatement e↵ect. The

increase in revenues outweigh the pollution abatement costs borne by the high-cost firm.

Note that this phenomenon occurs for large caps, in and around the unregulated region

(i.e., in the vicinity of su). In general, firms have an incentive to over-report their emissions

before Cap-and-Trade is introduced in order to get the regulator to choose a large cap, or

to get more emission allowances from the regulator. Our results show that the possibility

of collusion makes over-reporting even more attractive to the firms. Not only will the

pollution constraints not be binding, but the firms will be able to improve their profits

through trading.

When implementing Cap-and-Trade, the regulator supplies the emission allowances, but

she does not have any say in the timing of the trade. It is the firms’ choice. By definition, the

firms’ joint profits in the Pareto-optimal condition are greater than under any other trading

arrangement; this means that the Pareto-optimal equilibrium is a dominant strategy. Since

there exists a unique Pareto-dominant equilibrium for each s > s1, we can expect collusion

under Cap-and-Trade when s > s1. Proposition 7 summarizes these results.

Proposition 7 The firms have an incentive to collude under Cap-and-Trade if � > 0 and

s > s1.
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An important corollary is that when s  s1, the firms cannot collude. It follows that by

setting stringent pollution reduction objectives, the regulator could preclude collusion.

3.5.2 The E↵ects of Collusion

Figure 3.4 compares the trading volume under both mechanisms.

In the left pane of Figure 3.4, the firms do not compete. The trading pattern is

determined by supply and demand. For s  s, the supply e↵ect dominates. The firms

would like to trade more, but trading is limited by the number of allowances available. As s

increases, more allowances become available, and the trading volume increases. When s > s,

the demand e↵ect dominates. The high-cost firm needs fewer allowances as s increases. The

trading volume is decreasing in s.

When firms compete, the same dynamic is at play. The supply e↵ect dominates for low

caps; the demand e↵ect for high caps. Because the demand e↵ect dominates for large caps

(i.e., s � s1), the high-cost firm is now in the best position to commit. Collusion in the

market for emission allowances hinges on the high-cost firm’s output. The high-cost firm

will drastically reduce its output. As a result, its pollution is also greatly reduced. If s

is su�ciently large, it no longer needs to buy emission allowances, and instead becomes a

seller, as evidenced by negative values of t.

Figure 3.5 shows the firms’ individual decisions under collusion.

Contrary to Von der Fehr (1993), we find that trading in emission allowances is depressed

under collusion, meaning that the trading volume under collusion is less than under no

collusion. The intuition behind this result is that collusion makes emission allowances less

desirable. This e↵ect is mainly driven by the fact that output is reduced more under

collusion.

As a result of collusion, the total output goes down. This can actually be good for

society if the pollutant is very harmful, because the damage avoided is very large, and more

� = 0 � = .5 � = 1

Figure 3.4. Trading volume t under the single-stage (solid line) and two-stage (dashed
line) Cap-and-Trade.



57

� = 0 � = .5 � = 1

Figure 3.5. Production quantities under the single-stage (solid line) and two-stage (dashed
line) Cap-and-Trade.

than compensates for losses in consumer surplus.

The firms’ joint profits are plotted in Figure 3.6. Note that when � > 0, there is a

range of caps for which the pollution constraints bind for both firms (i.e., s < es) and the

firms’ joint profits are higher than when regulations are absent (i.e., when s � su). In

other words, the introduction of pollution constraints actually improves the firms’ profits.

This phenomenon is explained once again but the e↵ect of output reduction, which not only

lowers the firms’ pollution, which limits the need for pollution abatement, but also increases

revenues through higher prices. Note that this result does not hold for � = 0. The industry

profits when firms do not compete are strictly increasing in the cap, meaning that relaxing

the cap increases industry profits. As mentioned in Chapter 2, under competition pollution

regulations improve social welfare. We find that these welfare improvements are driven in

part by improvements in industry profits.

Using two decades of panel data on the U.S. Portland cement industry, a highly con-

centrated industry, Ryan (2012) (cited earlier, see Section 3.1) found that the 1990 Amend-

ments to the Clean Air Act were responsible for significant welfare losses, primarily due

to increased industry concentration; interestingly, he also found that, consistent with our

results, incumbent firms had benefited from the regulation. The increase in industry profit

was driven by higher prices due to increased market concentration.

3.6 Conclusion
In this paper, we show that collusion is possible under Cap-and-Trade regulation. Collu-

sion requires two conditions: (i) the presence of imperfect competition in the output markets;

and (ii) a su�cient supply of emission allowances. Although the pollution regulator may
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Figure 3.6. Industry profits under single-stage (solid line) and two-stage (dashed line)
Cap-and-Trade. The dotted line is the industry profits under Tax.

be limited in her ability to stimulate competition, she can prevent collusion by controlling

tightly the supply of emission allowances; in other words, the regulator should set ambitious

pollution reduction goals under Cap-and-Trade to limit the risk of collusion.

Collusion occurs as the firms manipulate the market for emission allowances to execute

Pareto-optimal trades. If there are many firms on the emission allowance exchange, collusion

may be limited; however, there is no way to preclude it entirely. The e↵ects of collusion

are not all bad. The firms will reduce output more under collusion. If the pollutant is very

harmful, this could improve social welfare. We show that the firms profits can be higher

under pollution constraints than in the absence of regulation, because firms exercise their

market power to increase prices through output reduction, which boosts their revenues. By

squeezing output, the pollution constraints actually help the firms.

One of the main insights of this research is that the timing of trading is critical. One can

think of several other important aspects of the trading process that require further attention,

such as, for example, multiperiod trading with or without banking, the relationship between

allowance auctions and trading, or the impact of trading on firms’ incentives in vertical

supply chains.



CHAPTER 4

INVESTMENT IN POLLUTION

ABATEMENT INNOVATIONS

UNDER CAP, CAP-AND-

TRADE, AND TAX

4.1 Introduction
Regulations can influence technological progress (Ja↵e et al. 2003) by creating incentives

or obstacles to the adoption of new technologies. This is especially true in the environmental

area. For example, technology mandates in pollution control can stifle innovations in

abatement technologies. Under flexible, decentralized pollution control mechanisms such as

Cap-and-Trade and Taxes, firms have considerable latitude in the production and abatement

technologies that they choose to use. In this paper, we study how three widely used pollution

control mechanisms–Cap, Cap-and-Trade, and Tax–influence investments in abatement

innovations by regulated firms.

To illustrate the connection between environmental regulations and the di↵usion of

innovations, consider the case of climate change. The most recent assessment report of the

Intergovernmental Panel on Climate Change (Alexander et al. 2013) unequivocally confirms

the warming of the climate system, and rea�rms the human factor as the dominant cause

of the warming. It is well-known that the human component of global warming is primarily

driven by uncontrolled emissions of greenhouse gases (GHG). The International Energy

Agency (Birol 2012) analyzes energy trends for the foreseeable future, and estimates that,

given the known reserves and under current policies, fossil fuels will constitute 80% of the

world’s total primary energy demand in 2035. Such a trend will lead to an increase of 46%

in carbon emissions relative to 2010 levels. Under any scenario, the agency identifies energy

e�ciency and carbon capture and storage (CCS) as key options for reducing man-made

GHG emissions, CO2 being the most abundant GHG, and mitigating the risks associated

with climate change.
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Energy e�ciency designates the set of technological options for reducing the ratio of

energy use per unit of output, also known as energy intensity. Common examples of energy

e�cient alternatives are found in building technologies for lighting (compact fluorescent

lights and LEDs), insulation, and electronic energy management, as well as in motor vehicle

technologies (e.g., fuel economy light trucks and cars). Energy e�ciency works to reduce

energy consumption at the source.

CCS consists in capturing the carbon dioxide emitted by large stationary industrial

sources, e.g., coal-fired power plants, and injecting it in deep geological formations for

long-term storage. The technology was developed in the oil and gas industry to facilitate

oil recovery; several large-scale demonstration projects are ongoing to evaluate the feasibility

of this abatement technology for power generation, and other energy intensive industries

(see Global CCS Institute 2013 or CRC for Greenhouse Gas Technologies 2013). Krass

et al. (2013) explains that CCS technology could also be used in the cement industry.

A 2007 McKinsey study (Creyts et al. 2007) evaluated 250 opportunities for reducing

GHG emissions in the U.S., including energy e�cient technologies and CCS. For each option,

the potential for emission reduction was estimated, and the corresponding cost per ton

of CO2 abated was calculated. The study found that a combination of energy e�ciency

options could reduce emissions in buildings and transportation by 1 to 1.5 Gt1 of CO2 per

year depending on the scenario, or between 17 and 26% of 2010 net U.S. emissions. All

of these options come with a negative price tag, meaning that their adoption provides net

benefits to their adopters. For example, Creyts et al. (2007) estimates that e�cient lighting

in buildings yields a net benefit of about $80 for every tonne of CO2 abated. However,

in spite of the fact that energy e�ciency pays for itself, much of the potential for carbon

abatement through improvements in energy e�ciency remains unrealized (four fifth of the

potential in buildings and more than half in industry according to the International Energy

Agency), and public policies are required to achieve large-scale adoption (Birol 2012). It

may also occur that the policy objectives of the government require abatement levels above

and beyond what energy e�ciency alone can provide. According to the study, this would

be the case if reductions in excess of 1.5 Gt of CO2 per year are required.

The McKinsey study cited earlier also considers CSS. It estimates that CCS could reduce

emissions by about .5 Gt per year (or about 9% of 2010 emissions). An MIT study (Katzer

et al. 2007) considers CCS a critical carbon abatement technology if coal use is to remain at

or exceed current levels. This MIT study concludes that installing CCS at coal-fired power

1
1 Gt = 1 Giga tonne, or 1 billion metric ton.
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plants can reduce carbon emissions by 87%. However, power plants with CCS are almost

twice as expensive to build (from $1,280 to $2,230 per kilowatt for pulverized coal generators,

see Katzer et al. 2007, p. 19). Islegen and Reichelstein (2011) study the U.S. power

generation industry, and find that the break-even point of CCS investments in coal-fired

power plants is at about $30 per tonne of CO2 ($60 for plants relying on natural gas), a

number consistent with both the McKinsey and the MIT studies. In other words, unless

carbon emissions are costly to the firms, and the cost of emitting one tonne of CO2 exceeds

$30, power generators are not likely to adopt CCS.

To control GHG emissions, Carbon Taxes and Cap-and-Trade are currently used by

regulators around the world. Cap-and-Trade is growing in popularity among regulators

with large-scale implementations in Europe (E.U. Publications O�ce 2013), California

(Barringer 2011), and China (Plumer 2013). Taxes are also widely used. Australia, India,

Japan (KPMG 2013), the Canadian provinces of British Columbia and Quebec, and several

European countries have opted for Carbon Taxes (SBS 2013). In the U.S., the EPA recently

announced its intention to lower permissible carbon emissions by new power plants to 1,000

lbs per megawatt-hour for gas-fired plants, and 1,100 lbs for coal-burning generators (Shear

2013). The most advanced coal-fired plants currently have emissions in the order of 1,800

lbs per megawatt-hour. If implemented, the new regulation would force power generators to

take drastic measures to cut their emissions, and CCS would likely to become an essential

technology.

The above examples illustrate that regulations can play a role in facilitating the di↵usion

of abatement technologies. In particular, large (and hence costly) reductions in GHG

emissions would necessitate putting a price on emissions either directly through a tax,

or indirectly by forcing emission reductions.

In this paper, we study how the choice of pollution control mechanisms by the regu-

lator influences the di↵usion of abatement innovations. Specifically, we analyze the firms’

incentives to invest in a new abatement technology under three popular mechanisms: (i) a

direct limit (or cap) on the firm’s emission (the Cap mechanism); (ii) a cap on emissions

with the ability to adjust the cap by trading emission allowances (the Cap-and-Trade

mechanism); and (iii) a tax proportional to the firm’s emissions (the Tax mechanism).

We address the following research questions: which mechanism encourages more firms to

adopt an abatement innovation? Is more adoption always better for society? Given the

firms’ technology adoption strategies, which mechanism maximizes social welfare?
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4.2 Literature Review
Following the Schumpeterian tradition, the literature categorizes the process of techno-

logical change into three sequential stages (Ja↵e et al. 2003): (i) the invention phase at

which a scientific or technical breakthrough enables the creation of a new product, service,

or process; (ii) the innovation phase: at this stage, the invention is packaged by a firm into

a marketable merchandise. In other words, innovation occurs only after commercialization

in the marketplace; and (iii) the di↵usion process during which the innovation disseminates

through the market to its intended users.

The invention and innovation phases are often lumped together into the generic term

of R&D (for research and development). The literature identifies two main drivers of the

e↵ect of environmental regulations on the R&D process. First, by making polluting inputs

more expensive, environmental regulations persuade firms to look for better, cheaper ways to

produce and reduce pollution, which may result in some firms pushing the e�ciency frontier.

This e↵ect is known as induced innovation (Ja↵e et al. 2003). It is supported in several

empirical studies. For example, Johnstone et al. (2010b) find evidence that public policies

play a significant role in determining patent applications in renewable energies. Johnstone

et al. (2010a) find that the stringency, predictability, and flexibility of the pollution control

mechanisms are positively associated with the number of patent applications in air pollution

abatement, wastewater e✏uent treatment, and solid waste management. In the second

approach, called evolutionary, boundedly rational managers do not optimize, but instead

satisfice (Simon 1979), i.e., make decisions that meet a set of criteria but are not guaranteed

to be optimal. Due to information, time, or other resource limitations, managers sometimes

overlook cost reduction opportunities that are hard to see. In their study of the pulp and

paper industry, Boyd and McClelland (1999) find that input use and pollution output could

be simultaneously reduced between 2% and 8% while maintaining given productive output,

suggesting that managers consistently miss opportunities for productivity improvements.

King and Lenox (2002) find additional evidence in a sample of U.S. manufacturing firms

that report to the Toxic Release Inventory of the EPA. Regulations that force managers to

reconsider their operating practices may bring such opportunities to their attention.2 Porter

and van der Linde (1995) give several examples of firms that improved their profitability

after innovating to reduce their pollution to meet a new regulatory requirement. Profits

2
The same has been said of quality management programs, which generally pay for themselves because of

the costs of poor quality that are saved after managers redesign their production processes to avoid defects

(Crosby 1979).
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improved because the innovations provided benefits in excess of the costs of compliance.

The innovation process may be hampered by the existence of a (positive) R&D exter-

nality because knowledge spillover and imitation by competitors may prevent the innovator

from capturing all the rents from innovation. Parry (1998) and Fischer et al. (2003) take

into account both the R&D and environmental externalities in their comparative study of

several pollution control mechanisms. Fischer et al. (2003) find that the welfare rankings

of the various mechanisms they study depend on the ability to imitate the innovation, the

cost of innovation, the slope and level of the marginal damage function, and the number

of polluting firms, suggesting that there exists no unambiguous ranking of the mechanisms.

The literature concludes that no mechanism adequately addresses both market failures

(Goulder and Parry 2008).

Our focus in this paper is on the di↵usion phase. The fundamental di↵erence between

R&D and di↵usion models is that R&D models typically include a stochastic element

(e.g., the outcome of the research process is uncertain) or features related to intellectual

property such as technology patents or the existence of knowledge spillovers (Requate 2005).

Di↵usion has important economic significance because through it, the latent benefits of the

invention are actually realized at a large scale. We distinguish three drivers of the di↵usion

of innovations: (i) social interactions; (ii) market forces; and (iii) regulatory pressures.

4.2.1 Di↵usion as Social Process

Rogers (2003) conceptualizes di↵usion as a social process by which new ideas spread

among a population over time. Such a di↵usion process involves interpersonal communi-

cation through various channels requiring high levels of social interaction. This process is

captured analytically as an information transfer from innovators to potential adopters in

models called epidemic (Kemp 1997) because the di↵usion resembles the spread of a disease

(Griliches 1957, Bass 1969). Alternatively, researchers have used threshold models in which

adoption occurs after a stimulus variable exceeds a certain value (David 1969, Bonus 1973).

Adopters are characterized by a distribution of values with early adopters having the highest

value. The di↵usion swipes the entire distribution over time as the innovation becomes more

a↵ordable giving rise to the familiar S-shaped curve. These models do not take into account

the market position of the innovation in relation to the products it intends to replace, and

particularly the risk of cannibalization of old products by innovative ones.
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4.2.2 Market-driven Di↵usion of Innovations

Market forces can have a powerful influence on the di↵usion of innovations, especially

when managers create new and attractive value propositions through product or service

innovations. Christensen (2003) finds that a well-chosen new product development strategy

can harness market forces to spur di↵usion. He finds many instances of what he calls

disruptive innovations in several industries. Such innovations reached market dominance

and displaced incumbents by changing the product attributes and performance measures

along which firms compete. The di↵usion pattern of a disruptive innovation typically starts

at the low-end of the market, a customer segment typically ignored by incumbent firms,

and di↵uses upward, eventually luring away mainstream customers of the initial market.

Schmidt and Druehl (2008) propose an analytical framework for identifying and categorizing

disruptive innovations. The point is that the extent to which managers understand their

markets to create attractive value propositions seems to play a key role in the di↵usion of

new products or services.

4.2.3 Regulations and the Di↵usion of Environmental Innovations

Regulations play a role in the adoption of new technologies, particularly when the

innovations provide environmental benefits such as a reduction in harmful emissions. This

is because without regulations, firms under-invest in environmentally-friendly (but costly)

innovations, because they cannot appropriate all the benefits from their investments. In

other words, investments in emission reductions have the characteristics of a public good.

Popp (2006) studies the adoption of NOx control technology by U.S. coal-fired power plants,

and finds that regulations play a dominant role in the firms’ adoption decisions.

Several papers reviewed in Kemp (1997), Ja↵e et al. (2002), and Newell (2009) study the

impact of regulations on the di↵usion of environmental innovations. The literature broadly

falls into three main categories: “graphical” models (to use Kemp’s (1997) terminology),

game theoretic models, and empirical studies. A widely shared result is that decentralized

mechanisms based on economic incentives, such as emission taxes and emission trading,

promote more technology adoption than direct command-and-control.

4.2.3.1 The “Graphical” Models

In the graphical models, the firms’ incentives to adopt pollution control innovations are

analyzed by comparing the change in aggregate industry compliance costs before and after

the innovation is adopted (Wenders 1975, Downing and White 1986, Milliman and Prince

1989). The e↵ect of the innovation is to lower the industry’s marginal abatement cost curves.
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Amechanism is deemed to provide higher incentives than another if its aggregate compliance

costs are lower. The regulator is assumed to be perfectly informed. In particular, she knows

the firms’ costs prior to innovation and the pollution damage function, and implements the

optimal, i.e., welfare-maximizing, policy before the innovation is introduced. However, due

a lag in perceiving the innovation or political pressures, she does not adjust the control

mechanism after the innovation has di↵used. Wenders (1975) and Downing and White

(1986) focus on a single polluter. Milliman and Prince (1989) consider n firms, one of

which innovates while the others merely adopt the innovation, and analyze the process

of technological change under five mechanisms: emission taxes, emission subsidies, free

and auctioned tradable emission allowances, and direct controls. The process begins with

the innovation, then proceeds with di↵usion from the innovator to all the other firms–

they distinguish between patented and unpatented technologies–, and ends with the firms’

incentives to lobby for a response from the regulator after the innovation has di↵used. If the

regulator responds, she will implement the optimal policy, which will require more pollution

reductions. In other words, the regulator’s optimal response is to ratchet. They find

that direct controls provide the least incentives to promote technological change. This key

finding underpins the move away from centralized command-and-control, such as technology

mandates and performance standards, in environmental policy. They also find significant

di↵erences between the mechanisms based on economic incentives, with auctioned emission

allowances providing the most incentives for innovation and di↵usion, and emission taxes

the most incentives for lobbying in favor of policy adjustment. Under tradable emission

allowances, the innovation lowers the demand for allowances, reducing their price. This

benefits all the firms under auctioned allowances, including the innovator and those that

adopt the innovation, because all firms are buyers. Under free allowances, only the firms that

do not adopt are buying. Auctioned allowances encourage di↵usion while emission taxes

have no impact on di↵usion, unless the regulator reacts. Firms have an incentive to lobby for

policy adjustments under taxes because under the optimal policy the regulator lowers the

tax rate, which means that firms will pay less tax on their residual emissions. Under all the

other mechanisms, ratcheting increases the firms costs in greater proportion. Critics of the

graphical models argue that focusing solely on the aggregate industry costs is not su�cient

to capture an individual firm’s incentives (Requate 2005). Instead, researchers need to

consider strategic, autonomous firms and the consumer markets they serve. In particular,

the graphical models assume that all the firms adopt the innovation, and completely ignore

the output market. These limitation have been addressed in several papers.
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4.2.3.2 Game Theoretic Models

Requate (1995, 1998) and Requate and Unold (2003) show that the above results no

longer hold when one explicitly considers the output market and strategic firms in an

equilibrium context. In Requate (1995), n perfectly competitive firms can choose between

two abatement technologies, a conventional one and an innovative (i.e., more e�cient)

technology, and both types of firms may freely enter the market (i.e., n is endogenous).

Similar to Milliman and Prince (1989), the industry is initially regulated optimally, and

the regulation is unchangeable. In addition to choosing an abatement technology, each

firm chooses a production quantity and an emission level to minimize its costs. The

main objective of the paper is to investigate how emission taxes (for any tax rate) and

auctioned tradable allowances (for any aggregate limit on emissions) spur the di↵usion of

the abatement innovation in the long run, and what is the e↵ect of this induced di↵usion

on social welfare under each mechanism. He shows that the two technologies do not coexist

under tax in equilibrium, meaning that either the conventional technology or the innovation

fill the entire market. When the social damage of pollution is moderate, an emission

tax may lead to over-investment or under-investment in the new technology compared

to the social optimum, with possibly a reduction in welfare compared to the level prior

innovation. This happens when firms over-invest because too much money is spent on

new abatement equipments. Under auctioned tradable allowances, Requate (1995) shows

that partial adoption is possible. Since the regulation is unchangeable, this also leads

to a suboptimal welfare outcome. (Remember that the regulation was initially optimal.)

However, under tradable allowances, the introduction and di↵usion of the innovation never

lead to a reduction in welfare. A critical assumption in Requate (1995) is that the regulator

does not adjust the tax rate or the number of emission allowances after the innovation is

introduced. Because of political pressures or delays in the regulatory process, the regulator

may be hampered in her ability to ratchet. However, since she is fully informed, she can

ultimately implement the social optimum after some time. In other words, in the long run,

the regulator should be allowed to adjust.

Requate (1998) also considers the output market and a fully informed regulator, but the

focus is on the firms’ incentives to pursue R&D activities, not on di↵usion. In his model, the

firms can reduce pollution by reducing output, but cannot exert e↵ort to abate pollution.

In Chapter 2, we have shown that although output reduction is an inevitable component

of the firms’ compliance strategies, firms will also exert e↵ort to abate pollution even when

they exercise monopoly power.
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Requate and Unold (2003) consider the incentives for perfectly competitive firms to

adopt an innovation in equilibrium. They show that, contrary to Milliman and Prince (1989),

the incentives are the same under auctioned and free emission allowances in equilibrium

because the initial allocation method translates into a lump sum payment (or fee) to the

firms whether they adopt or not, and the e↵ect of adoption on the allowance price does not

depend on the allocation rule.

Several authors study the e↵ect of the timing of the regulation on adoption and welfare

(Petrakis and Xepapadeas 1998, Kennedy and Laplante 2000, and Requate and Unold

2003). All of these papers assume perfect competition and a perfectly-informed regulator.

Petrakis and Xepapadeas (1998) study a single monopolist, and only consider emission

taxes. In their three-stage model, the monopolist decides on its abatement e↵ort before

or after the regulation is enacted; output is determined in the last stage; however, the

firm’s technology is fixed. They show that when the regulator cannot commit ex-ante, the

firm strategically increases its abatement e↵ort to obtain a lower tax rate in the second

period. However, welfare is always higher if the regulator can precommit. Kennedy and

Laplante (2000) analyze technology adoption and welfare under tax and tradable emission

allowances in a two-period model to determine which mechanism is time-consistent, meaning

that the regulator can credibly precommit to a level of regulatory enforcement. If she cannot

pre-commit, ratcheting will be required to achieve welfare optimality. They find instances

where neither the tax nor the emission trading policy are time-consistent if the damage

function is strictly convex.

Montero (2002) and Subramanian et al. (2007) are the only analytical papers that

consider imperfect competition in a dynamic game of technology adoption. Montero (2002)

compares investments in environmental R&D under emission standards (i.e., without trad-

ing) and emission trading in a Cournot duopoly. He finds that standards can o↵er greater

incentives than emission trading because the e↵ort of the investing firm spills over to its rival

through the emission allowance market, thus allowing the rival to increase output which

hurts the investing firm. Subramanian et al. (2007) focus on the compliance strategies of

profit-maximizing firms under auctioned emission allowances in a three stage model. In the

first stage, firms choose how much to invest to lower their emission rates. Then, firms bid

for emission allowances in a sealed-bid uniform price share auction. Finally, firms produce

output to serve consumers in monopolistic or oligopolistic markets. Their main finding is

that changing the number of available allowances influences the abatement to a lesser extent

in dirty firms (i.e., firms with high emission intensity) relative to firms relying on cleaner
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technology.

Drake et al. (2012) study the e↵ects of demand uncertainty on the capacity and produc-

tion decisions of a firm under emission tax or emission trading. They model emission trading

as an emission tax with a stochastic rate. In their model, the firm first chooses production

capacity in two technologies, clean and dirty, when demand is uncertain, and then how much

to produce with each technology after demand is observed. They find that the expected

firm profits under emission trading are higher than under emission tax, contrary to the

popular belief that uncertainty in the emission price would hurt the firm’s profitability

under emission trading regulation. This is because the firm can forgo production when the

emission trading price is so high as to make production unprofitable. Drake et al. (2012)

also find that demand uncertainty makes the capacity decision more sensitive to changes

in a subsidy rate than the production decision. They identify conditions under which an

increase in the tax rate decreases the share of the clean technology in the firm’s portfolio.

Similarly, Krass et al. (2013) find that an increase in the tax rate encourages the firm to

switch to a cleaner technology up to a certain point after which the firm reverts back to

the dirty technology. Their model is deterministic and the result is driven by the a�ne

structure (i.e., fixed and variable cost) of the firm’s production and abatement costs. In

Krass et al. (2013), the regulator moves first as a Stackelberg leader. They analyze the

welfare properties of a policy mix, including an emission tax, a lump sum subsidy, and

consumer rebates.

Plambeck et al. (2012) also find that variability in the emission trading price can improve

firm profits in a model where firms choose where to locate their production facilities in or

out of a regulated region, accounting for entry and competition.

Chen and Tseng (2011) study in a real options framework the timing of investment in

natural gas power generation (a cleaner technology) by a coal-fired power plant subject to

load obligation and various price shocks under emission taxes and emissions trading. They

also find that price volatility creates value, in their case by creating profitable opportunities.

They have two main findings: (1) emission trading could trigger adoption of clean technology

at a lower emission price than emission taxes; (2) volatility in emission price under emission

trading are likely to induce firms to adopt earlier to hedge against emission risks.

4.2.3.3 Empirical Studies

The empirical literature on the role played by regulations in the di↵usion of abatement

innovations is sparse due to the lack of usable data (see Ja↵e et al. 2002 and Popp et al. 2009

for detailed reviews). Finding adequate measures of regulatory stringency and of the firms’
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innovativeness is di�cult. Early studies focused on tax credits and energy-e�cient standards

in buildings (Ja↵e and Stavins 1995, Hassett and Metcalf 1995), home appliances (Newell

et al. 1999), and motor vehicles (Greene 1990) because data were available. Popp (2005)

discusses the use of patent data to measure technological change in environmental models.

The recent interest in Cap-and-Trade and its deployment in the U.S. and Europe provide

opportunities for theory testing. Kerr and Newell (2003) find that increased regulation

increased the adoption of new technology in the context of the lead phase-down at U.S.

oil refineries. Johnstone et al. (2010b) find empirical evidence that public policies play

a significant role in determining patent applications in renewable energies. Johnstone

et al. (2010a) find that the stringency, predictability and flexibility of the pollution control

mechanisms are positively associated with the number of patent applications in air pollution

abatement, wastewater e✏uent treatment, and solid waste management, suggesting that

the design characteristics of environmental regulations matter. Keohane (2007) finds that

adoption decisions for sulfur dioxide scrubbers in the U.S. power generation industry was

more sensitive to cost di↵erences under Cap-and-Trade than under direct command and

control, confirming the theory that incentive-based mechanisms provide more incentives for

innovation. Hascic et al. (2010) find an acceleration of the rate of innovation in a selection

of climate change mitigation technologies coinciding with the implementation of the Kyoto

Protocol.

Rogge et al. (2011) conduct and analyze 19 case studies in the German power sector,

including power generators, specialized technology providers, and project developers. They

find evidence that the EU Emissions Trading System (EU ETS) strongly increased R&D

e↵orts toward CCS, and to a lesser extent, toward research improvements in coal e�ciency.

They also find that the change e↵ective in 2013 from gratis allocation of allowances to

auctioning makes new coal-fired power plants less profitable but does not ultimately change

the decision to invest in coal versus natural gas. This confirms the theory that whether

emission allowances are auctioned o↵ or given out for free does not change the firms’

incentive to adopt (Requate and Unold 2003). Their analysis further suggests that the EU

ETS, by putting a price on carbon emissions, encouraged coal plant retrofits, particularly

for older plants, by making them more cost e↵ective. Calel and Dechezleprêtre (2013) find

that the EU ETS has had a strong impact on the patenting activity of regulated firms.

They estimate that the EU ETS has increased the patenting of low-carbon technologies

by the sampled firms by 36.2% compared to what would have happened in the absence of

regulation.
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Zhang et al. (2011) study the drivers of di↵usion of alternative fuel vehicles in the U.S in

an agent-based simulation that interestingly combines word-of-mouth (a form of social in-

teraction), manufacturer technology choices (i.e., market forces), and government-mandated

fuel e�ciency standards with a penalty for noncompliance (i.e., regulatory pressures). They

find that word-of-mouth has a positive impact on the adoption of electric vehicles, but a

negative e↵ect on SUVs, both hybrid and gasoline engines. Their findings also suggest that

fuel e�ciency standards increase the overall market share of alternative fuel vehicles, but

result in higher emissions because the share of highly emitting SUVs (both gasoline and

hybrid) increases sharply.

4.2.4 Our Contribution

To the best of our knowledge, our paper is the only one to analyze the firms’ incentives to

invest in an innovation under Cap, Cap-and-Trade, and Tax when markets are imperfect. In

our model, the firms and the regulator are strategic. We do not assume that the regulator is

fully informed, nor that the regulation was optimal to begin with. The equilibrium outcomes

are the consequences of the strategic interactions in the dynamic game. In particular, the

number of firms that adopt the innovation is endogenously determined, as are the production

quantities and abatement levels that determine output, pollution, consumer surplus, and

welfare. Based on the equilibrium outcomes, the regulator can decide which mechanism to

use, and how stringent the aggregate cap should be.

4.3 The Model
In order to analyze the impact of regulations on the di↵usion of abatement innovations,

we develop a dynamic version of the model in Chapter 2 to account specifically for tech-

nological choices in pollution abatement. We adopt the same modeling assumptions and

notations as in Chapter 2 and refer the reader to Section 2.3 for the justification of these

assumptions.

Recall that in Chapter 2, we analyze a game in which the regulator moves first by

choosing (i) a pollution reduction goal in the form of an overall cap, S, on the region’s

aggregate emissions, and (ii) a mechanism to achieve that goal. Within the regulated region,

strategic firms play a Cournot game: they compete on quantities and sell substitutable

products in n horizontal markets. The model incorporates pollution generation, pollution

abatement, and the social damage ensuing from residual emissions. In addition to choosing

their production quantity, the firms also determine how much of their pollution to abate. In

the baseline model of Chapter 2, the firms’ abatement technologies are fixed (i.e., the cost
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coe�cients that characterize the abatement technologies are exogenous). In this paper, we

endogenize the choice of abatement technology by the firms. In other words, our approach

consists in including one additional step in the game after the regulator moves and before

the Cournot game. The timeline of this new game is shown in Figure 4.1. The baseline

game of Chapter 2 consists of steps 1, 2 and 4. In this paper, we add the third step to the

game. We first review the principal features of the baseline model, which we will hereafter

refer to as the static model, because the firms’ actions are concentrated on a single step,

i.e., the last stage of the model.

4.3.1 The Static Model

In the static model, we consider n symmetric, profit-maximizing firms operating within

the same regulated region. For simplicity, we assume that the firms are local monopolies.

In other words, the firms exercise full market power over their local markets; competition

is absent. This simplification compensates for the added complexity of the game, which

results from adding one more move. Each firm chooses a production quantity, q, to serve

the customers in its local market. The choice of q determines the selling price p through

the linear inverse-demand function p = a � b · q, with a, b > 0. Pollution occurs as a

by-product of production. We assume that firms’ unabated emissions are proportional to

their production quantities, and that the firms have the same emission rate, which we

normalize to 1 without loss of generality. The firms can spend money to abate pollution.

The cost of pollution abatement is increasing convex in the quantity of pollution abated.

Let x
i

denote the fraction of pollution that firm i chooses to abate. The cost of abating

q
i

· x
i

units of pollution is c
i

· (q
i

· x
i

)2. The residual emissions of firm i after abatement are

P
i

= q
i

· (1� x
i

).

The pollution control mechanisms are the same as in Chapter 2. We model Cap, Cap-

and-Trade, and Tax as done previously. The key performance measures are the total output,

the firms’ profits, and the social welfare (see Section 2.3 for a description of these measures).

Figure 4.1. Timeline of the model with technological adoption
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4.3.2 The Dynamic Model

In the static model, the firms have no control over their pollution abatement costs.

Such costs are forced upon them by external factors or the firms have no time to make

changes to their abatement technology after the regulation is introduced. As mentioned

above, the purpose of the dynamic model is to make the abatement cost coe�cients, c
i

,

endogenous. As in Chapter 2, we assume that there are two pollution control technologies,

each of which is characterized by its cost coe�cient c
i

: an existing, widely-used, technology

whose abatement cost coe�cient is c
h

, and a new, more e�cient, technology whose cost

coe�cient is c
l

< c
h

. The pollution abatement innovation results in a lower cost coe�cient

for the firms that adopt it. At the beginning of the game, all n firms operate under the

existing technology. We assume that the new technology is licensed by a third party. We

allow each firm to choose whether or not to invest in the new technology. Let F � 0 denote

the fixed investment cost if the firm invests. F captures both the acquisition cost, as well as

the one-time costs associated with retrofitting the firm, changing the production processes

and training the workforce. We will interchangeably use the terms fixed cost, investment

cost, or switching cost to denote F . By investing F , the firm is able to change its cost

coe�cient to c
l

. Thus, the firm faces a trade-o↵ between the fixed cost of investing and the

benefits of lower abatement costs.

Although the cap may be adjusted frequently (say, every year), the choice of a particular

mechanism is a long-term decision possibly spanning several decades. For this reason, it

makes sense that this decision would be made first. Let S denote the total pollution allowed,

i.e., the cap. As before, we assume that, when choosing the Tax mechanism, the regulator

sets the tax rate in such a manner that the total pollution is less than the cap S.

The investment model is characterized by two parameters: the cap S, which captures

how stringent the regulation is, and the exogenous switching cost F . We compare the three

mechanisms in terms of their ability to induce firms to invest for a given pair {S, F}, and

study the impact of the firms’ decisions on output, pollution abatement, firms’ profits, and

welfare. The model also allows to study the impact of a reduction in S keeping F constant,

and reciprocally of a reduction in F keeping S constant. The former case corresponds

to an increase in regulatory stringency, while the latter describes a situation where the

regulation is stable, but the technology becomes increasingly a↵ordable. Learning e↵ects

and economies of scale may cause F to decrease over time. The notations are summarized

in Table 4.1.
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4.4 Equilibrium Analysis

4.4.1 The Cap Mechanism

Under the Cap mechanism, each firm is not allowed to pollute more than s = S

n

. Since

s and the mechanism have been chosen, there remains two steps to the Cap game. First,

each firm decides whether to adopt the abatement innovation or not. Second, the firms

maximize their profits subject to the pollution constraint. The equilibrium is derived by

backward induction. In the first stage of the solution procedure, each firm maximizes its

profits, given its choice of c
i

. Formally,

max
qi�0, 0xi1

⇡
i

(q
i

, x
i

| c
i

) = q
i

· (a� b · q
i

)� c
i

· (q
i

· x
i

)2 subject to q
i

· (1� x
i

)  s (4.1)

In the second stage of the solution procedure, each firm decides whether to invest in

the innovation or not. Specifically, firm i will invest, i.e., choose c
i

= c
l

if and only if

⇡
i

(q⇤
i

, x⇤
i

| c
l

) � F > ⇡
i

(q⇤
i

, x⇤
i

| c
h

) , where ⇡
i

is defined by equation (4.1) and F is the

fixed switching cost. It will keep c
i

= c
h

otherwise. Theorem 11 shows that the Cap game

has a unique Subgame-Perfect Nash equilibrium. All the proofs are in Appendix C.

Theorem 11 Let F cap = (ch�cl)(a�2bs)2

4(b+cl)(b+ch)
.

All the firms invest, i.e., c
i

= c
l

8i, if and only if F < F cap. Otherwise c
i

= c
h

8i.

Table 4.1. Model notations (Chapter 4)
n Number of regulated firms
q
i

Production quantity chosen by firm i, q
i

� 0
p
i

Price in firm i ’s market, p
i

= a� b · q
i

x
i

Abatement level chosen by firm i, 0  x
i

 1
c
i

Abatement cost coe�cient of firm i , c
i

2 {c
l

, c
h

}
F Fixed cost of adopting the abatement innovation, also called switching cost
m Number of firms with the low cost coe�cient c

l

M Nash Equilibrium of the investment game in which m firms invest
P
i

Pollution generated by firm i, P
i

= q
i

· (1� x
i

)
P Total pollution generated by the firms, P =

P

n

i=1 Pi

⇡
i

Profit of firm i

⇡a

i

Firm i’s profits if it takes action a = I for invest or N for do not invest
⇡a

m

Firm’s profits when it takes action a and m firms invest
S Pollution cap specified for the entire region (all firms)
s Cap assigned to individual firms, s � 0
t
i

Number of emission allowances traded by firm i

⌧ Tax rate, ⌧ � 0
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The firms’ production quantities and abatement levels are

q
i

=
a+ 2c

i

s

2 (b+ c
i

)

x
i

=
a� 2bs

a+ 2c
i

s

The equilibrium outcome under the Cap mechanism is a bang-bang, all-or-nothing

outcome in which either all the firms invest in the innovation, or none of the firms invest.

This result is intuitive. The firms do not invest if the switching cost is prohibitively

expensive or the cap not su�ciently stringent. Because the firms’ objective functions are

independent of each other, the firms investment strategies are identical. See Figure 4.2 for

a representation of the firms’ investment strategies under the Cap mechanism.

4.4.2 The Cap-and-Trade Mechanism

The Cap-and-Trade is an extension of the Cap model in which firms are allowed to adjust

their pollution constraints by trading emission allowances amongst themselves. Similar

to the Cap mechanism, the game also consists of two steps. In the first step, each firm

chooses whether to invest in the innovation or not. In the second step, the firms make

their production, abatement, and trading decisions. Similar to Chapter 2, we assume that

production, abatement, and trading happen simultaneously. Solving for the Subgame-

Perfect Nash Equilibrium also involves backward induction. First, we determine the firms’

production quantities, abatement levels, and trading quantities given that all the firms have

Figure 4.2. Investment equilibrium under the Cap mechanism, F1 =
a

2(ch�cl)
4(b+cl)(b+ch)
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made the decision to invest or not, and the firms’ decisions are common knowledge. The

firms simultaneously maximize their profits given their abatement technologies,

8i, max
qi�0, 0xi1, ti

⇡
i

(q
i

, x
i

, t
i

| c
i

) = q
i

· (a� b · q
i

)� c
i

· (q
i

· x
i

)2 + r · t
i

subject to q
i

· (1� x
i

)  s� t
i

and t
i

 s and
n

X

i=1

t
i

= 0

Second, the firms choose their abatement technologies. The Nash equilibrium of pure

strategies is the appropriate equilibrium concept since the firms’ investment decisions are

observed by all the firms before production is determined.

Let ⇡a

m

denote the profits of a firm that takes action a, where a = I if it invests, a = N

if it does not invest, and m is the number of firms that invest. We know from Chapter 2

that a firm’s equilibrium response under Cap-and-Trade, and hence its profits, is uniquely

determined by two parameters: (i) its own cost coe�cient (i.e., whether it invests or not),

and (ii) m, the number of firms with the low-cost coe�cient (which is a su�cient statistic

for the distribution of costs in the industry). Since each firm has the same action space

{I, N} , there are 2n di↵erent strategy profiles. However, the m firms that invest have the

same payo↵, and so do the n � m firms that do not invest. Thus, there are only n + 1

strategy profiles to consider, depending on the value taken by m 2 {0, 1, ..., n} . For each

m, there are

✓

n
m

◆

identical equilibria. We let M denote an equilibrium in which m firms

invest.

M is a Nash equilibrium () ⇡I

m

> ⇡N

m�1 (m > 0) and ⇡N

m

� ⇡I

m+1 (m < n) (4.2)

The first inequality gives the equilibrium condition for a firm that invests; the second,

the equilibrium condition for a firm that does not invest. In equation (4.2), the profits if the

firm invests incorporate the fixed cost F . Theorem 12 gives the unique Subgame-Perfect

Nash Equilibrium of the Cap-and-Trade game.

Theorem 12 For every F and every s, there exist n continuous, decreasing, functions of

s,
�

F ct

k

 

k=1,...,n
such that 8k 2 {1, ..., n} ,

F ct

k

(0) = F1

F ct

k

⇣ a

2b

⌘

= 0

8s 2
�

0, a

2b

�

, F ct

k+1 (s) < F ct

k

(s)

Then 8s 2
�

0, a

2b

�

, if F ct

m+1 (s)  F < F ct

m

(s), then M is the unique Subgame-Perfect

Nash Equilibrium of the Cap-and-Trade game.
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The firms’ production quantities and abatement levels are given in Theorem 4 with � = 0

(see Chapter 2). In particular, the firms’ reactions are the same as the Cap mechanism if

F � F ct

1 (s) or F  F ct

n

(s) . In the former case, m = 0; in the latter case, m = n.

The mathematical expressions for the series of functions
�

F ct

k

 

k=1,...,n
is given in the

proof of Theorem 12 in Appendix C. A graph of
�

F ct

k

 

k=1,...,n
is given in Figure 4.3. When

the switching cost is either very high, or very low, the Cap-and-Trade and Cap mechanisms

coincide, because in this case, the firms all have the same cost coe�cients, and there are

no gains from trade. Trading is useless. For intermediate values of the switching cost (i.e.,

inside the leaf-like pattern defined by F ct

1 and F ct

n

), partial adoption of the innovation is

the unique equilibrium. m firms will invest, with 0 < m < n, abate more pollution than

they would have, had they not invested, and trade the excess emission allowances to the

remaining n �m firms that do not invest. The price of emission allowances is su�ciently

low that the firms prefer buying emission allowances rather than investing. As the cap

becomes more stringent, the supply of emission allowances is depleted. At some point, it

becomes profitable for one additional firm to invest. The revenue to the investing firm from

the sale of emission allowances more than compensates the switching cost F . Theorem 12

extends to the case of local monopolies the result of partial adoption under Cap-and-Trade

in Requate (1995). Recall that in Requate (1995), the markets are perfectly competitive.

Figure 4.3. Partial adoption under the Cap-and-Trade mechanism, F1 =
a

2(ch�cl)
4(b+cl)(b+ch)
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4.4.3 The Tax Mechanism

Under the Tax mechanism, every firm is assessed a fee linear in its emissions. The tax

rate ⌧ is fixed and identical for all firms. Thus, the tax paid by firm i is ⌧ · q
i

· (1� x
i

) .

The regulator anticipates the firms’ reactions and chooses ⌧ so that the aggregate pollution

is less than S. As discussed in Chapter 2, knowing m is su�cient to determine such a tax

rate.

The Tax game has three steps: (i) The regulator chooses ⌧ ; (ii) Each firm determines if

it will adopt the abatement innovation; and (iii) The firms produce and sell their products

in their respective markets. Each firm’s problem during the production stage is

max
qi�0, 0xi1

⇡
i

(q
i

, x
i

| c
i

, ⌧) = q
i

· (a� b · q
i

)� c
i

· (q
i

· x
i

)2 � ⌧ · q
i

· (1� x
i

)

When investigating the abatement innovation, each firm chooses the option with the

highest payo↵. The condition to adopt the innovation is

⇡
i

(q⇤
i

, x⇤
i

| c
l

, ⌧)� F > ⇡
i

(q⇤
i

, x⇤
i

| c
h

, ⌧) (4.3)

Based on condition (4.3) the cost coe�cients are determined for every firm.

In choosing the tax rate, the regulator chooses the smallest ⌧ such that the total pollution

P =
P

n

i=1 qi · (1� x
i

)  S.

Theorem 13 shows that there is a unique Subgame-Perfect Nash Equilibrium for every

s and every F , and gives the solution.

Theorem 13 Let

F0 =
a2c

l

(c
h

� c
l

)

4c
h

(b+ c
l

)2

F t (s) =
c
l

(c
h

� c
l

) (a� 2bs)2

4c
h

(b+ c
l

)2

F T (s) =

8

<

:

a

2(ch�cl)
4(b+cl)(b+ch)

� bchs
2

b+ch
, for 0  s  a(ch�cl)

2ch(b+cl)
ch(ch�cl)(a�2bs)2

4cl(b+ch)
2 , for a(ch�cl)

2ch(b+cl)
 s  a

2b

Then F t (s) < F T (s) , 8s 2
�

0, a

2b

�

There exists a unique Subgame Perfect Nash Equilibrium of the Tax game.

The firms’ reactions are the same as the Cap mechanism if F  F t (s) or F � F T (s) .

All the firms invest, i.e., c
i

= c
l

8i, if and only if F < F T . Otherwise c
i

= c
h

8i.

When F t < F < F T ,
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If F < F0, the firms’ reaction is

q
i

=
1

2b

 

a� 2

r

c
l

c
h

F

c
h

� c
l

!

x
i

= 2b
a
p

c
h

(c
h

� c
l

)F/c
l

+ 2c
h

F

a2 (c
h

� c
l

)� 4c
l

c
h

F

If F � F0, the firms’ reaction is

q
i

=
a

2 (b+ c
l

)
x
i

= 1

In either case, the total pollution is less than S, i.e., P < S.

The firms’ investment equilibrium strategies under the Tax mechanism are represented

in Figure 4.4.

Similar to the Cap mechanism, the equilibrium under Tax is an all-or-nothing outcome

in which the firms’ investment decisions coincide. There is no partial adoption like we saw

under Cap-and-Trade. The firms face the same switching cost F and the same tax rate

⌧ . In equilibrium, the incentive to invest is the same for all the firms, and they all invest

when the switching cost is su�ciently low, or the tax rate high enough. There is however

an interesting di↵erence for intermediate values of F . When F t < F < F T , all the firms

invest and, as a whole, abate more pollution than required, so that P < S. This is because

the regulator has to increase the tax rate to force the firms to invest. After the firms

Figure 4.4. Investment equilibrium under the Tax mechanism
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have invested, their abatement cost coe�cient is low, and it is more profitable for them to

abate pollution rather than pay a prohibitive tax. If the regulator lowers the tax rate, the

firms will not invest. If the firm lowered the abatement level x to save on abatement costs

and make the pollution constraint bind, it would have to pay in tax more than it saves

by abating less pollution. Thus, a profit-maximizing firm will abate more pollution than

required to forgo having to pay an excessive tax. Pollution abatement is the cheaper of the

two compliance options. When F < F t, the pollution constraint becomes binding again,

i.e., P = S. The region between F T and F T is a region of over-abatement under the Tax

mechanism.

4.5 Comparisons of the Three Mechanisms
Based on the analysis of each mechanism in equilibrium, we compare the mechanisms to

each other in terms of their e↵ectiveness at inducing investment in the abatement innovation.

To illustrate the discussion, the equilibrium investment strategies under Cap, Cap-and-

Trade, and Tax are represented in Figure 4.5, where the cap s, representing the level of

regulatory stringency, is plotted along the x-axis and the investment cost F along the

y-axis. The numbers 0, 1, 2, ..., n� 2, n� 1, n are the number of firms that invest under

Cap-and-Trade. This figure is plotted for n = 10.

Note that the strategies coincide for F � F T and F  F t. When F � F T , the

switching cost is prohibitively high, or the regulation too lax to justify investments in the

Figure 4.5. Investment equilibrium under Cap, Cap-and-Trade, and Tax
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innovation. Because none of the firms invest, they all have the same cost coe�cients (i.e,

c
i

= c
h

, 8i), and the mechanisms coincide exactly. Conversely, when F  F t, all the firms

invest (i.e, c
i

= c
l

, 8i) and the mechanisms coincide. This happens because the technology

is a↵ordable and the regulation strict. We will hereafter focus on the interesting case where

F t < F < F T . This region of the {s, F} space delineates a leaf-like pattern.

Recall that F T , F cap, and F ct

1 are the limits of the investment strategy under Tax,

Cap, and Cap-and-Trade, respectively, i.e., the lines above which no firm invests, and below

which at least one firm invests. F ct

n

is the line below which the nth firm invests under

Cap-and-Trade, and F t the lower bound of the over-abatement region under Tax. Theorem

14 reveals an interesting pattern.

Theorem 14 8s 2
�

0, a

2b

�

, F t < F ct

n

< F cap < F ct

1 < F T

Theorem 14 shows that there are more firms that invest in the abatement innovation

under Tax than under any other mechanism. Specifically F T > F ct

1 shows that more firms

invest under Tax than Cap-and-Trade, whereas F T > F cap shows the superiority of Tax

over Cap. We compare the mechanisms two by two in the next sections and provide some

intuition for this result. To facilitate the discussion, we include Figure 4.6, which contains

three graphs comparing Cap and Tax, Cap and Cap-and-Trade, and Cap-and-Trade and

Tax, respectively.

4.5.1 Cap versus Tax

Because F cap < F T , there is more investment under Tax than Cap. Recall that the

Cap mechanism focuses on attaining a predetermined pollution target, whereas the Tax

mechanism charges a fee for emitting any amount of pollution. Under Cap, when the

pollution goal has been met, the incentive to abate pollution ceases to function. Under

Tax, however, the incentive to abate is always present because even though the firm has

reduced its emissions down to the permissible level, it continues to pay a tax on its residual

emissions. Thus, putting a price on residual emissions nudges the firms to continue to look

for cheap abatement opportunities. Such incentives are absent under Cap. We summarize

this result in proposition 8.

Proposition 8 The Tax mechanism provides more incentives to invest in abatement in-

novations than the Cap mechanism, because under Tax, the firms pay a tax on residual

emissions, which means that the incentives continue to take e↵ect after the pollution target

has been achieved.
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Figure 4.6. Investment equilibria. Comparisons two by two
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4.5.2 Cap versus Cap-and-Trade

Comparing the Cap and Cap-and-Trade mechanisms allows us to isolate the e↵ects of

trading on the decision to invest. As we have seen, investment in the abatement innovation

may be partial under Cap-and-Trade with some firms investing when others do not, whereas

all the firms adopt the same strategy under Cap. As shown in Theorem 14, F ct

1 > F cap

proves that some (but not all) firms invest under Cap-and-Trade before they invest under

Cap, meaning that the firms would invest for higher values of F and s. The ability to trade

creates an incentive for some firms to invest because the future gains from trade more than

compensate these firms for paying the fixed investment cost F .

F cap > F ct

n

shows that some firms will defer investment under Cap-and-Trade when

compared to Cap. In other words, between F cap and F ct

n

, more firms invest under Cap

than Cap-and-Trade. The intuition behind this result is that, for some firms, trading acts

as a substitute for investment. Whenever a firm invests, it creates an opportunity for all

the firms that have not yet invested to purchase emission allowances from that firm, rather

than invest themselves. Our results show that there are values of F and s for which firms

are better o↵ trading than investing. To summarize, the e↵ect of trading on investment

is a double-edged sword: it encourages investment by some firms while at the same time

discouraging investment by other firms. Our results show that in the aggregate, there could

be less investment under Cap-and-Trade than under Cap.

4.5.3 Cap-and-Trade versus Tax

Because F ct

1 < F T , there is more adoption under Tax than Cap-and-Trade. Recall

that in the static model of Chapter 2, Tax and Cap-and-Trade are equivalent. In our

dynamic investment model, however, Tax and Cap-and-Trade provide di↵erent incentives

for investing in abatement innovations. When compared to Tax, the possibility to trade

emission allowances acts as a deterrent to investment for all firms. Our first research question

was to determine which mechanisms encourage more investment in abatement innovations.

Our results show that the Tax mechanism emerges as the dominant mechanism in this

regard. Our results also show that the ability to trade under Cap-and-Trade does not

always improve the incentives to invest compared to the strict Cap mechanism.

When discussing the results of Theorem 13 (the Tax mechanism equilibrium analysis),

we noted that in the over-abatement region defined by F t < F < F T , the firms abate more

than required under the Tax mechanism, i.e., P < S. By contrast, P = S always under

Cap and Cap-and-Trade. Thus, we get an additional benefit with the Tax mechanism in

the form of additional emission reductions. These results are summarized in Proposition 9.
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Proposition 9 Trading acts as a substitute for investment. By putting a price on residual

emissions, the Tax mechanism generates perpetual incentives for investment and abatement,

leading to more investment under Tax than any other mechanism, as well as more pollution

abatement under Tax than any other mechanism.

Proposition 9 establishes the superiority of the Tax mechanism to promote both techno-

logical investments and abatement e↵orts. Over-abatement causes additional reductions in

the pollution damage, which is clearly good for society. However, it could significantly hurt

the firms’ profits to the point that the overall e↵ect on society is negative because the firms

are losing more than the welfare gains resulting from less pollution. In addition to forcing

excessive pollution reductions, the Tax mechanism may also cause too much investment in

the abatement innovation, i.e., investments in excess of what is optimal from a welfare point

of view. If the regulation is too heavy-handed, the firms could be forced to spend a lot of

money, which hurts their profitability, or to reduce output a lot, which hurts consumers.

To sift through these conflicting objectives, we investigate in the next section the welfare

e↵ects of Cap, Cap-and-Trade, and Tax.

As explained from the outset, the goal of pollution regulators (such as the EPA in the

U.S) is to limit pollution to a certain level, and possibly to bring this level down over

time. In practice, pollution limits are the outcomes of a complex process in which scientific,

economic, and political factors are weighed. In this paper, we do not know what the ideal

pollution limits are. For this reason, we consider any pollution limit, and analyze the

firms’ compliance strategies taking this limit (i.e., the cap S) as given. We compare the

mechanisms with each other, and not to some external benchmarks.

Recall that, consistent with the literature (Nault 1996, Jacobs and Subramanian 2012),

we define welfare as the sum of the firms’ profits and the consumer surplus after correction

for the pollution damage, because consumers ultimately support the social costs of pollution.

This measure of social welfare captures the net e↵ects of the firms’ compliance strategies on

society by taking into account changes in firm profits, consumer surpluses, and the pollution

damage.

Let W denote the social welfare, ⇧ the firms’ joint profits, CES the consumer economic

surplus, and D the pollution damage. Consistent with previous chapters, we have

W = ⇧+ CES �D

where D = d · P 2 and P is the total net pollution P =
P

n

i=1 qi · (1� x
i

). Formally,
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W (q,x) =
n

X

i=1



q
i

· (a� b · q
i

)� c
i

· (q
i

· x
i

)2 +
b

2
· q2

i

�

� d ·
 

n

X

i=1

q
i

· (1� x
i

)

!2

where q = (q1, ..., qn) and x = (x1, ..., xn) are the production quantity and abatement level

vectors, b

2 ·q
2
i

is the consumer economic surplus in market i, and the last term is the pollution

damage D (P ).

At this point, we make two important observations:

1. In the formula for W , the firm profits ⇧ are before tax, because the tax is simply a

transfer between the firms and the regulator. The proceeds from the tax stay in the

economy. Likewise, we consider the profits net of the investment cost F . The rationale

for this choice is that the money spent by the firms that adopt the innovation also

stays in the economy. From a welfare point of view, it is not lost. It is redistributed

to other economic actors, e.g., the third party that licenses the innovation.

2. If the pollutant is very harmful (i.e., the pollution damage factor d is large), over-

abatement under Tax will generate enough welfare gains to compensate any losses in

firm and consumer surpluses. In this case, more investment under Tax will be good

for society. Conversely, when the pollutant causes very little harm (i.e., d is small),

regulations do not improve welfare. The regulator should actually do nothing. In

the next section, we will assume that the pollutant is su�ciently harmful to warrant

regulation, but not to the point that the Tax mechanism would always dominate. As

we show next, the welfare rankings of the Cap, Cap-and-Trade, and Tax mechanisms

in this case are not unambiguous.

4.6 Welfare Considerations: A Numerical Analysis
Our focus will be on the welfare outcomes for any pair {s,F} within the leaf-life region

identified in the previous section, because outside of this region, the mechanisms coincide.

In the leaf-like region, the firms always invest under Tax, but not necessarily under Cap and

Cap-and-Trade. To simplify the analysis without losing any important insight, we consider

only two firms. We compare the welfare outcomes numerically. Our analysis relies on four

graphs represented in Figures 4.7—4.10. The graphs correspond to di↵erent values of the

fixed investment cost F . The graphs are ordered by decreasing value of F . On each of these

graphs, the cap s runs along the x-axis while welfare is measured on the y-axis. The regions

shaded in gray correspond to values of s and F outside the leaf-like pattern. The focus of
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Figure 4.7. Welfare comparisons for large F > F0.

Figure 4.8. Welfare comparisons for small F > F0

our discussion will be on the unshaded region delimited by s
t

and s
T

. Three functions are

plotted on each graph: (1) the solid line corresponds to the welfare under Cap-and-Trade;

(2) the dashed line the welfare under Tax; and (3) the dotted line the welfare under Cap.

The first two figures (4.7 and 4.8) correspond to F > F0. Under the Tax mechanism,

the firms produce a fixed quantity Q = a

b+cl
and abate all their pollution (i.e., x

i

= 0).

Figure 4.7 corresponds to F significantly higher than F0 (but less than F1). The Tax

mechanism dominates Cap and Cap-and-Trade except when both firms invest under Cap.

The output is greater under Tax than under Cap when the firms do not invest under Cap.

Since the firms abate all their pollution under Tax, they do not pay a tax and the pollution

damage is completely avoided. When the cap is su�ciently small so that the firms invests

under Cap, the output is higher under Cap than Tax, and the Cap mechanism becomes
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Figure 4.9. Welfare comparisons for large F < F0

Figure 4.10. Welfare comparisons for small F < F0

dominant.

Figure 4.8 corresponds to a lower value of F , although F > F0 still. The pattern

identified in Figure 4.7 continues to hold (i.e., Cap dominates for low caps, while Tax

dominates elsewhere), except that Cap-and-Trade may become dominant for some values

of s. In the figure, this is evidenced by the solid line intersecting the dashed line. Note

that while the welfare under Tax is constant, as F decreases, the range of caps for which

trading will occur shifts to the right. This means that the cap is less stringent: the firms’

profits and the output are increasing in s. The welfare under Cap-and-Trade increases to

the point that it surpasses the welfare under Tax. Next, we consider values of F < F0 in

Figures 4.9 and 4.10.

In this case, the firms still produce a fixed quantity under Tax (for any s), but they do
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not abate all their pollution. Similar to the case F > F0, the Cap mechanism dominates for

small s, while the Tax mechanism dominates everywhere else. For large values of F < F0,

the Cap-and-Trade mechanism could dominate Tax. (There is no figure corresponding to

this scenario.) The main di↵erence in this case is that, as illustrated by Figure 4.10, the

Tax mechanism will dominate for all s 2 (s
t

, s
T

) when F is small.

Comparing Cap and Cap-and-Trade shows that more investment in innovations always

improves welfare. The welfare jumps up when the number of firms that invest goes from 0

to 1, or from 1 to 2. Although there is always more investment under Tax, the comparisons

with Cap and Cap-and-Trade are confounded by the contradictory e↵ects of over-abatement

on firm profits and consumer surplus.

4.7 Concluding Remarks
Because of environmental externalities, polluting firms lack the incentives to reduce

their pollution, and markets fail to control pollution. As a result, regulations are needed.

Cap-and-Trade regulation has several appealing features: (i) from a practical standpoint, it

directly controls pollution; (ii) from an implementation point of view, firms have a preference

for Cap-and-Trade over emission Taxes, because with Cap-and-Trade, some firms can make

money, whereas under Tax, everybody pays, because everybody pollutes to some extent.

Thus, firms are less likely to resist Cap-and-Trade than they would a flat, uniform tax;

(iii) Cap-and-Trade is conceptually appealing because it creates ad hoc markets, i.e., the

exchanges on which emission allowances are traded, to correct for the failure of traditional

markets. In spite of its merits, this paper shows that the ability to trade under Cap-and-

Trade deters investments in abatement innovations, because trading serves as a substitute

for investing. This results in less firms investing in abatement innovation than under the

Tax mechanism, and even the centralized Cap mechanism. This is a serious drawback for

two main reasons: (i) Innovations make it easier for firms to abate pollution. If pollution

abatement is cheap, there will be very few residual emissions, and pollution becomes a

nonissue. For this reason, it is paramount that cost-e�cient abatement innovations reach

critical mass quickly; and (ii) the long-term benefits of abatement innovations can be huge,

because they compound over extended periods of time. We show that under taxes, there

is more investment than under any other mechanism. The Tax mechanism puts a direct,

unavoidable price on emissions. Under taxes, the firms still pay something for their residual

emissions. For this reason, the incentive to invest never goes away. Under emission quotas,

the incentive disappears as soon as the quota is met. We find one additional benefit with
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taxation. Firms abate more pollution under taxes because investing makes it cheaper for the

firm to abate pollution, than to pay a tax on emissions. Thus, the unpopular tax mechanism

has several merits of its own. It is very e↵ective at controlling pollution, encourages the

adoption of cost-e↵ective abatement innovations, and can generate additional government

revenues to fund infrastructures, health care, education, and research.



APPENDIX A

CHAPTER 2 PROOFS
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A.1 Proof of Theorem 1
There are four main steps to the proof:

1. We analyze the Lagrangian and derive necessary conditions on q
i

, x
i

based on the

Kuhn-Tucker conditions;

2. We show that the equilibrium is symmetric, meaning that firms that have the same

cost coe�cient adopt the same response;

3. We solve for the equilibrium (there is only one);

4. We prove that the equilibrium is a global maximum.

A.1.1 Step 1 - Analysis of the Lagrangian

Write the Lagrangian of the problem for firm i,

L = q
i

· (a� b · q
i

� � · b ·Q�i

)� c
i

· (q
i

· x
i

)2 �G
i

(q,x) + �
i

· q
i

+µ
i1 · xi �µ

i2 · (xi � 1).

The Kuhn-Tucker necessary conditions are

a� � · b ·Q�i

� 2q
i

·
�

b+ c
i

· x2
i

�

� 2d · (1� x
i

) · P + �
i

= 0 (A.1)

2q
i

· (d · P � c
i

· q
i

· x
i

) + µ
i1 � µ

i2 = 0 (A.2)

with the complementary slackness conditions �
i

· q
i

= 0, µ
i1 · xi = 0 and µ

i2 · (xi � 1) = 0,

and the feasibility constraints 0  x
i

 1 and q
i

, �
i

, µ
i1, µ

i2 � 0.

For each i, it is not possible for µ
i1 and µ

i2 to be simultaneously > 0.

First, we show that µ
i1 = 0. Proof. (By contradiction.) Suppose that µ

i1 > 0. Then

µ
i2 = 0 and x

i

= 0, and by equation (A.2) µ
i1 = �2dPq

i

 0. ⇤
From now on, rewrite µ

i2 simply as µ
i

(the Lagrangian associated with the constraint

x
i

 1).

We will assume that q
i

> 0 (which implies that �
i

= 0), and check that the solutions

give positive production quantities and profits. There are two cases:

• µ
i

> 0. Then x
i

= 1 and by equation (A.1) ,

q
i

=
a� �bQ�i

2 (b+ c
i

)

The solution holds if

dP > c
i

q
i

(This reflects the condition µ
i

> 0).
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• µ
i

= 0. Then by equation (A.2) , dP = c
i

q
i

x
i

. After substitution in (A.1), we get

q⇤
i

=
a� �bQ�i

2 (b+ c
i

x
i

)

The condition

x
i

 1 () dP  c
i

q
i

A.1.2 Step 2 - Proof of Symmetry

Next, we show the following lemma.

Lemma 1 The equilibria are symmetric, i.e., if firms i and j have the same abatement

cost coe�cient, µ
i

= µ
j

. This implies that firms with the same cost coe�cient will adopt

the same response.

Proof. Consider two firms, indexed i and j 6= i, and suppose that c
i

= c
j

= c.

Consider the case where µ
i

= 0 and suppose that µ
j

> 0. Then, because µ
i

= 0, the

Kuhn-Tucker conditions imply that

q
i

=
a� �bQ�i

2 (b+ cx
i

)
(A.3)

dP = cq
i

x
i

and because µ
j

> 0, we have

x
j

= 1

q
j

=
a� �bQ�j

2 (b+ c)
(A.4)

dP > cq
j

Rewrite (A.3) as

2bq
i

+ 2cx
i

q
i

= a� �bQ�i

Subtract �bq
i

from both sides of the equation: in equilibrium, we must have

q
i

=
a� �bQ

b (2� �) + 2cx
i

Similarly, for firm j

q
j

=
a� �bQ

b (2� �) + 2c
The conditions

dP = cq
i

x
i

> cq
j

() (a� �bQ)x
i

b (2� �) + 2cx
i

>
a� �bQ

b (2� �) + 2c
() x

i

> 1

Thus, if µ
i

= 0, then µ
j

= 0 also.
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Consider now the case µ
i

> 0. We have just shown that we must have µ
j

> 0. (If not,

µ
j

= 0 leads to x
j

> 1.)

Thus, we have

x
i

= x
j

= 1

q
i

= q
j

=
a� �bQ

b (2� �) + 2c
µ
i

= 2q
i

(dP � cq
i

) = 2q
j

(dP � cq
j

) = µ
j

⇤

A.1.3 Step 3 - Equilibrium Analysis

Consider the special case m = 0 (c
i

= c
h

for all i). There are only two cases to consider:

• µ
i

> 0. In this case, x
i

= 1 8i and P = 0. This is true as long as c
h

q
i

< dP = 0, a

contradiction.

• µ
i

= 0. Then, dP = dnq
i

(1� x
i

) = c
h

q
i

x
i

which implies that

x
i

=
nd

c
h

+ nd
2 [0, 1]

from which we derive

q
i

=
a� �bQ�i

2 (b+ c
h

x
i

)
() 2q

i

✓

b+
nc

h

d

c
h

+ nd

◆

+ �bQ�i

= a (A.5)

We can rewrite

q
i

=
a� �bQ

b (2� �) + 2c
h

x
i

And since all the x
i

are equal, we immediately have that all the q
i

are equal.

(A.5) ) 2q
i

✓

b+
nc

h

d

c
h

+ nd

◆

+ (n� 1) �bq
i

= a

) q
i

=
a

b [2 + (n� 1) �] + 2nchd
ch+nd

The symmetric case m = n is obtained from the case m = 0 by substituting c
l

for c
h

.

Assume now 0 < m < n. Knowing that the equilibria are symmetric, the n–firm problem

simplifies to a 2-firm problem. There are four cases to analyze depending on the values taken

by µ
l

and µ
h

:

1. µ
l

> 0 and µ
h

> 0. Then, x
l

= x
h

= 1. This implies that P = 0 and µ
l

= �2c
l

q2
l

 0,

a contradiction (similarly µ
h

 0).
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2. µ
l

= 0 and µ
h

> 0. Then, x
h

= 1, q
h

= a��bQ�h

2(b+ch)
, dP > c

h

q
h

and q
l

= a��bQ�l

2(b+clxl)
, dP =

c
l

q
l

x
l

. Note that

dP = mdq
l

(1� x
l

) = c
l

q
l

x
l

() x
l

=
md

c
l

+md
2 [0, 1]

We have the following expressions for q
l

and q
h

:

q
l

=
a� �bQ

b (2� �) + 2mcld

cl+md

q
h

=
a� �Q

b (2� �) + 2c
h

Finally, we must have

dP = c
l

q
l

x
l

> c
h

q
h

() mc
l

(a� �bQ) d

b (2� �) (c
l

+md) + 2mc
l

d
>

c
h

(a� �bQ)

b (2� �) + 2c
h

() mb (2� �) c
l

d+ 2mc
l

c
h

d > b (2� �) c
h

(c
l

+md) + 2mc
l

c
h

d

() d < � c
l

c
h

m (c
h

� c
l

)
< 0, a contradiction

3. µ
l

> 0 and µ
h

= 0. Then, x
l

= 1, q
l

= a��bQ�l

2(b+cl)
, dP > c

l

q
l

and q
h

= a��bQ�h

2(b+chxh)
, dP =

c
h

q
h

x
h

. Note that

dP = (n�m) dq
h

(1� x
h

) = c
h

q
h

x
h

() x
h

=
(n�m) d

c
h

+ (n�m) d
2 [0, 1]

We have the following expressions for q
l

and q
h

:
(

2 (b+ c
l

) q
l

+ �bQ�l

= a

2
⇣

b+ (n�m)chd
ch+(n�m)d

⌘

q
h

+ �bQ�h

= a

()
(

(b [2 + (m� 1) �] + 2c
l

) q
l

+ (n�m) �bq
h

= a

m�bq
l

+
⇣

b [2 + (n�m� 1) �] + 2(n�m)chd
ch+(n�m)d

⌘

q
h

= a

The unique solution is (using Cramer’s rule)

q
l

=
a
h

b (2� �) + 2(n�m)chd
ch+(n�m)d

i

[b (2 + (m� 1) �) + 2c
l

]
h

b (2 + (n�m� 1) �) + 2(n�m)chd
ch+(n�m)d

i

�m (n�m) �2b2

q
h

=
a [b (2� �) + 2c

l

]

[b (2 + (m� 1) �) + 2c
l

]
h

b (2 + (n�m� 1) �) + 2(n�m)chd
ch+(n�m)d

i

�m (n�m) �2b2
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Recall that

x
l

= 1

x
h

=
(n�m) d

c
h

+ (n�m) d

Finally, we must check that

dP = c
h

q
h

x
h

> c
l

q
l

() (n�m) [b (2� �) + 2c
l

] c
h

d

c
h

+ (n�m) d
> c

l



b (2� �) +
2 (n�m) c

h

d

c
h

+ (n�m) d

�

() (n�m) b (2� �) c
h

d

c
h

+ (n�m) d
> b (2� �) c

l

() (n�m) c
h

d > c
l

c
h

+ (n�m) c
l

d

() d >
c
l

c
h

(n�m) (c
h

� c
l

)
⌘ d

Note that q
l

, q
h

> 0. Call this stationary point M1.

4. µ
l

= µ
h

= 0. Then, q
l

= a��bQ�l

2(b+clxl)
, q

h

= a��bQ�h

2(b+chxh)
and dP = c

l

q
l

x
l

= c
h

q
h

x
h

. Rewrite

q
l

=
a� �bQ�l

2 (b+ c
l

x
l

)
=

a� �bQ

b (2� �) + 2c
l

x
l

() q
l

=
a� �bQ� 2dP

b (2� �)

Similarly

q
h

=
a� �bQ� 2dP

b (2� �)

Thus,

q
l

= q
h

This implies that c
l

x
l

= c
h

x
h

. Thus,

dP = dq
l

[m (1� x
l

) + (n�m) (1� x
h

)]

= dq
l



n�
✓

m+
(n�m) c

l

c
h

◆

x
l

�

= c
l

q
l

x
l

We can now solve for x
l

and calculate x
h

= clxl
ch

and q
l

= q
h

. We find

x
l

=
nc

h

(n�m) c
l

+mc
h

+ clch
d

=
nc

h

d

((n�m) c
l

+mc
h

) d+ c
l

c
h

x
h

=
nc

l

d

((n�m) c
l

+mc
h

) d+ c
l

c
h

q
l

=
a� �bQ

b (2� �) + 2c
l

x
l

=
a� n�bq

l

b (2� �) + 2nclchd
((n�m)cl+mch)d+clch

() q
l

= q
h

=
a [((n�m) c

l

+mc
h

) d+ c
l

c
h

]

b (2 + (n� 1) �) (((n�m) c
l

+mc
h

) d+ c
l

c
h

) + 2nc
l

c
h

d
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Clearly, x
l

, x
h

, q
l

, and q
h

are always positive, and x
h

 x
l

. The condition

x
l

 1 () d  d

Call this stationary point M2. Note that M1 and M2 extend to the special cases m = 0

and m = n.

A.1.4 Step 4 - Second Order Su�cient Condition

To complete the proof, we now check the second order su�cient condition, a test we

must do for each firm i. The Hessian H
i

for firm i is the following 2⇥ 2 matrix:

H
i

= �2

✓

b+ c
i

x2
i

+ d (1� x
i

)2 2c
i

q
i

x
i

� d [P + q
i

(1� x
i

)]
2c

i

q
i

x
i

� d [P + q
i

(1� x
i

)] q2
i

(c
i

+ d)

◆

We prove that H is negative definite. The diagonal elements of H
i

are negative.

We need to show that det (H
i

) > 0.

Let us start with stationary point M2. At stationary point M2, we have dP = c
l

q
l

x
l

=

c
h

q
h

x
h

. Thus,

H
i

= �2

✓

b+ c
i

x2
i

+ d (1� x
i

)2 c
i

q
i

x
i

� dq
i

(1� x
i

)
c
i

q
i

x
i

� dq
i

(1� x
i

) q2
i

(c
i

+ d)

◆

and det (H
i

) = 4q2
i

(bc
i

+ bd+ c
i

d) > 0.

At stationary point M1, we have dP = c
h

q
h

x
h

. Thus, det (H
h

) > 0. For the low-cost

firms, however, we have x
l

= 1 and dP > c
l

q
l

.

H
l

= �2

✓

b+ c
l

2c
l

q
l

� dP
2c

l

q
l

� dP q2
l

(c
l

+ d)

◆

) det (H
l

) = 4
h

(b+ c
l

) (c
l

+ d) q2
l

� (2c
l

q
l

� dP )2
i

If d is su�ciently large, det (H
l

) could be negative. We use a direct approach to show

that M1 is a local maximum for low-cost firms using a method inspired from Luenberger

and Ye (2008). Note that for low-cost firms, M1 is on the boundary of the feasible set.

There is only one active constraint at M1 : g (q
l

, x
l

) = x
l

� 1. 5g =
�

0 1
�

T 6= 0, where

the first coordinate is the production quantity q
l

, and the second the abatement level x
l

.

Thus, M1 is regular.

We will show that for any feasible move away fromM1, the value of the objective function

decreases. The gradient of the objective function at M1 is

5⇡
l

|
M1 =

�

0 2q
l

(dP � c
l

q
l

)
�

T
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A non-zero feasible direction, d =
�

d1 d2
�

T

, is defined by (5g)T · d  0. This

condition is equivalent to

d2  0

Note that if d is a feasible direction, d ·5⇡
l

|
M1 = 2q

l

· (dP � c
l

q
l

) · d2  0, because at M1,

dP > c
l

q
l

. ⇤

A.2 Proof of Theorem 2
Write the Lagrangian

L =
P

n

i=1 qi·
⇥

a�
�

b

2 + c
i

· x2
i

�

· q
i

� � · b ·Q�i

⇤

�d·P 2+
P

n

i=1 [�i

· q
i

+ µ
i1 · xi � µ

i2 · (xi � 1)],

where �
i

, µ
i1 and µ

i2 are Lagrange multipliers. The Kuhn-Tucker necessary (first order)

conditions are, for all i:

a� � · b ·Q�i

� q
i

·
�

b+ 2c
i

· x2
i

�

� 2d · (1� x
i

) · P + �
i

= 0 (A.6)

2q
i

· (d · P � c
i

· q
i

· x
i

) + µ
i1 � µ

i2 = 0 (A.7)

(and the usual complementary slackness conditions and feasibility constraints).

(A.7) is exactly (A.2) (Groves mechanism) and (A.6) is identical to (A.1) except for the

coe�cient of q
i

which is �
�

b+ 2c
i

x2
i

�

instead of �2
�

b+ c
i

x2
i

�

. The proof is very similar to

Theorem 1, and we only highlight the main points. Please, refer to the proof of Theorem 1

above for details.

Conditions similar to Theorem 1 are derived from the Kuhn-Tucker conditions (step 1),

and the equilibrium is also symmetric (step 2).

• dP  c
i

q
i

(this corresponds to µ
i

= 0) : Then,

dP = c
i

q
i

x
i

q
i

=
a� �bQ�i

b+ 2c
i

x
i

• dP > c
i

q
i

(this corresponds to µ
i

> 0) : Then,

x
i

= 1

q
i

=
a� �bQ�i

b+ 2c
i

When analyzing the equilibrium (step 3), the cases (µ
l

> 0; µ
h

> 0) and (µ
l

= 0; µ
h

> 0)

lead to contradictions. The following cases lead to the unique equilibrium:
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1. µ
l

> 0 and µ
h

= 0. Then, x
l

= 1, q
l

= a��bQ�l

b+2cl
, dP > c

l

q
l

and q
h

= a��bQ�h

b+2chxh
, dP =

c
h

q
h

x
h

. Note that

dP = (n�m) dq
h

(1� x
h

) = c
h

q
h

x
h

() x
h

=
(n�m) d

c
h

+ (n�m) d
2 [0, 1]

We have the following expressions for q
l

and q
h

:

(

(b+ 2c
l

) q
l

+ �bQ�l

= a
⇣

b+ 2(n�m)chd
ch+(n�m)d

⌘

q
h

+ �bQ�h

= a

()
(

(b [1 + (m� 1) �] + 2c
l

) q
l

+ (n�m) �bq
h

= a

m�bq
l

+
⇣

b [1 + (n�m� 1) �] + 2(n�m)chd
ch+(n�m)d

⌘

q
h

= a

The unique solution is (using Cramer’s rule)

q
l

=
a
h

b (1� �) + 2(n�m)chd
ch+(n�m)d

i

[b [1 + (m� 1) �] + 2c
l

]
h

b [1 + (n�m� 1) �] + 2(n�m)chd
ch+(n�m)d

i

�m (n�m) �2b2

q
h

=
a [b (1� �) + 2c

l

]

[b [1 + (m� 1) �] + 2c
l

]
h

b [1 + (n�m� 1) �] + 2(n�m)chd
ch+(n�m)d

i

�m (n�m) �2b2

Recall that

x
l

= 1

x
h

=
(n�m) d

c
h

+ (n�m) d

Finally, we must check that

dP = c
h

q
h

x
h

> c
l

q
l

() (n�m) [b (1� �) + 2c
l

] c
h

d

c
h

+ (n�m) d
> c

l



b (1� �) +
2 (n�m) c

h

d

c
h

+ (n�m) d

�

() (n�m) b (1� �) c
h

d

c
h

+ (n�m) d
> b (1� �) c

l

() (n�m) c
h

d > c
l

c
h

+ (n�m) c
l

d

() d >
c
l

c
h

(n�m) (c
h

� c
l

)
⌘ d

Note that q
l

, q
h

> 0. Call this stationary point M1.
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2. µ
l

= µ
h

= 0. Then, q
l

= a��bQ�l

b+2clxl
, q

h

= a��bQ�h

b+2chxh
and dP = c

l

q
l

x
l

= c
h

q
h

x
h

. Rewrite

q
l

=
a� �bQ�l

b+ 2c
l

x
l

=
a� �bQ

b (1� �) + 2c
l

x
l

() q
l

=
a� �bQ� 2dP

b (1� �)

Similarly

q
h

=
a� �bQ� 2dP

b (1� �)

Thus,

q
l

= q
h

This implies that c
l

x
l

= c
h

x
h

. Thus,

dP = dq
l

[m (1� x
l

) + (n�m) (1� x
h

)]

= dq
l



n�
✓

m+
(n�m) c

l

c
h

◆

x
l

�

= c
l

q
l

x
l

We can now solve for x
l

and calculate x
h

= clxl
ch

and q
l

= q
h

. We find

x
l

=
nc

h

(n�m) c
l

+mc
h

+ clch
d

=
nc

h

d

((n�m) c
l

+mc
h

) d+ c
l

c
h

x
h

=
nc

l

d

((n�m) c
l

+mc
h

) d+ c
l

c
h

q
l

=
a� �bQ

b (1� �) + 2c
l

x
l

=
a� n�bq

l

b (1� �) + 2nclchd
((n�m)cl+mch)d+clch

() q
l

= q
h

=
a [((n�m) c

l

+mc
h

) d+ c
l

c
h

]

b (1 + (n� 1) �) (((n�m) c
l

+mc
h

) d+ c
l

c
h

) + 2nc
l

c
h

d

Clearly, x
l

, x
h

, q
l

, and q
h

are always positive, and x
h

 x
l

. The condition

x
l

 1 () d  d

Call this stationary point M2. Note that M1 and M2 extend to the special cases m = 0

and m = n. ⇤

A.3 Proof of Theorem 3
Suppose that the pollution constraint is binding. Then, s = S�n = q

i

·(1� x
i

) . Rewrite

q
i

· x
i

= q
i

� s and substitute in the objective function. We have

max
qi�0

q
i

· (a� b · q
i

� � · b ·Q�i

)� c
i

· (q
i

� s)2
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The objective function for firm i having to choose q
i

is strictly concave. The first order

condition is necessary and su�cient. We get the unique solution:

q
i

=
a� �bQ�i

+ 2c
i

s

2 (b+ c
i

)

Rewrite this equation

q
i

=
a� �bQ+ 2c

i

s

b (2� �) + 2c
i

(A.8)

So in equilibrium, the firm’s production quantity is uniquely determined by its cost

coe�cient, and the equilibrium is symmetric.

Note that (A.8) implies that in equilibrium q
i

> 0 8i, because a� �Q > 0. If it were not

the case, then the price of product i,

p
i

= a� bq
i

� �bQ�i

= a� �bQ� b (1� �) q
i

, 8i

and there exists at least one market k for which q
k

> 0 leading to p
k

< 0.

q
l

and q
h

solve the following equations:
⇢

2 (b+ c
l

) q
l

+ �bQ�l

= a+ 2c
l

s
2 (b+ c

h

) q
h

+ �bQ�h

= a+ 2c
h

s

()
⇢

[b (2 + (m� 1) �) + 2c
l

] q
l

+ (n�m) �bq
h

= a+ 2c
l

s
m�bq

l

+ [b (2 + (n�m� 1) �) + 2c
h

] q
h

= a+ 2c
h

s

This implies (using Cramer’s rule)

q
l

=
a [b (2� �) + 2c

h

] + 2s [(2 + (n�m� 1) �) bc
l

� (n�m) �bc
h

+ 2c
l

c
h

]

[b (2 + (m� 1) �) + 2c
l

] [b (2 + (n�m� 1) �) + 2c
h

]�m (n�m) �2b2

q
h

=
a [b (2� �) + 2c

l

] + 2s [(2 + (m� 1) �) bc
h

�m�bc
l

+ 2c
l

c
h

]

[b (2 + (m� 1) �) + 2c
l

] [b (2 + (n�m� 1) �) + 2c
h

]�m (n�m) �2b2

from which we derive

x
l

=
q
l

� s

q
l

=
[b (2� �) + 2c

h

] [a� bs (2 + (n� 1) �)]

a [b (2� �) + 2c
h

] + 2s [(2 + (n�m� 1) �) bc
l

� (n�m) �bc
h

+ 2c
l

c
h

]

x
h

=
q
h

� s

q
h

=
[b (2� �) + 2c

l

] [a� bs (2 + (n� 1) �)]

a [b (2� �) + 2c
l

] + 2s [(2 + (m� 1) �) bc
h

�m�bc
l

+ 2c
l

c
h

]

The conditions

0  x
i

 1, 8i () 0  s  a

b (2 + (n� 1) �)

Suppose now that the pollution constraint is not binding. It is clear that the firm will

choose x
i

= 0. The objective function is strictly concave. The unique solution satisfies

q
i

=
a� �bQ�i

2b
() q

i

=
a� �bQ

b (2� �)

Thus, in equilibrium, the firms’ quantities are equal.
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We get

b (2� �) q
i

= a� �bQ = a� n�bq
i

() q
i

=
a

b (2 + (n� 1) �)
> 0

The condition

q
i

· (1� x
i

) < s () s >
a

b (2 + (n� 1) �)
⇤

A.4 Proof of Theorem 4
The firms’ objective is, 8i

max
qi�0, 0xi1, tis

⇡
i

(q
i

, x
i

|Q�i

) = q
i

· (a� b · q
i

� � · b ·Q�i

)� c
i

· (q
i

· x
i

)2 + r · t
i

subject to

8

>

<

>

:

q
i

· (1� x
i

)  s� t
i

(pollution constraint)
n

X

i=1

t
i

= 0 (market clearing condition)

This is a nonlinear constrained optimization problem.

Note that the conditions q
i

� 0, x
i

 1 and the pollution constraint jointly guarantee

that t
i

 s.

There are five main steps to the proof:

1. We analyze the Lagrangian and derive necessary conditions on q
i

, x
i

, t
i

, and the

market clearing price r based on the Kuhn-Tucker conditions;

2. We show that the equilibria are symmetric;

3. We solve for the equilibrium (there is only one);

4. We show that firms always produce a positive quantity;

5. We prove that the equilibrium is a global maximum.

A.4.1 Step 1 - Analysis of the Lagrangian

Write the Lagrangian

L = q
i

· (a� b · q
i

� � · b ·Q�i

)� c
i

· (q
i

· x
i

)2 + r · t
i

+ �
i

· q
i

+ µ
i1 · xi � µ

i2 · (xi � 1)�

⌫
i

· (q
i

· (1� x
i

)� s+ t
i

). The Kuhn-Tucker necessary conditions are:
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a� �bQ�i

� 2q
i

·
�

b+ c
i

· x2
i

�

+ �
i

� ⌫
i

· (1� x
i

) = 0 (A.9)

q
i

· (⌫
i

� 2c
i

· q
i

· x
i

) + µ
i1 � µ

i2 = 0 (A.10)

⌫
i

= r (A.11)

�
i

· q
i

= 0

µ
i1 · xi = 0

µ
i2 · (xi � 1) = 0

⌫
i

· (q
i

· (1� x
i

)� s+ t
i

) = 0

q
i

, �
i

, µ
i1, µ

i2, ⌫
i

� 0

0  x
i

 1

q
i

· (1� x
i

)  s� t
i

Necessary conditions are ⌫
i

= r, 8i and also (as in Theorem 1) µ
i1 = 0. Rewrite µ

i2 as

µ
i

.

Suppose that �
i

> 0. Then q
i

= 0 and Q�i

= Q.

When ⌫
i

= 0, equation (A.9) implies that

a� �bQ = ��
i

(A.12)

Consider the output price in market j for which q
j

> 0 (there exists at least one such

market):

p
j

= a� bq
j

� �bQ�j

= a� �bQ� b (1� �) q
j

Equation (A.12) implies that

p
j

= ��
i

� b (1� �) q
j

< 0, a contradiction

Thus, ⌫
i

> 0, which means that

q
i

(1� x
i

) = s� t
i

= 0 () t
i

= s

As expected, the firm sells all its emission allowances, and makes a profit

⇡
i

= rs

Suppose for now that �
i

= 0, 8i.
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• If ⌫
i

= 0, then r = 0 and

(A.10) ) µ
i

= x
i

= 0

(A.9) ) q
i

=
a� �bQ�i

2b
t
i

 s� q
i

(pollution constraint)

• If ⌫
i

> 0, then

q
i

(1� x
i

) = s� t
i

(A.13)

There are two subcases to consider:

1. µ
i

> 0 : Then

x
i

= 1

(A.13) ) t
i

= s

(A.9) ) q
i

=
a� �bQ�i

2 (b+ c
i

)
µ
i

> 0 ) r > 2c
i

q
i

2. µ
i

= 0 : Then

(A.10) ) r = 2c
i

q
i

x
i

) x
i

=
r

2c
i

q
i

� 0

(A.13) ) t
i

= s� q
i

(1� x
i

)

Rewrite (A.9)

a� �bQ�i

� 2bq
i

� 2c
i

q
i

x2
i

� r + rx
i

= 0

() a� �bQ�i

� r � 2bq
i

+ x
i

(r � 2c
i

q
i

x
i

) = 0

() q
i

=
a� �bQ�i

� r

2b

The conditions

x
i

 1 () r  2c
i

q
i

A.4.2 Step 2 - Proof of Symmetry

Next, we show that only symmetric equilibria are possible, i.e., equilibria in which if

firms i and j have the same abatement cost coe�cient, µ
i

= µ
j

. This implies that firms

with the same cost coe�cient will adopt the same response.

Proof. If r = 0, then µ
i

= µ
j

= 0. If r > 0, then write r = 2dP and use Lemma 1 (cf.

proof of Theorem 1). ⇤
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A.4.3 Step 3 - Equilibrium Analysis

Knowing that the equilibrium is symmetric, the n–firm problem simplifies to a 2-firm

problem. If the firms all have the same abatement cost coe�cient (i.e., m = 0 or m = n),

we know that in equilibrium

t
i

= t
j

8i 6= j

This implies that

t
i

= S�n = s, 8i

In other words, the firms do not trade. They maintain their initial allowances. The

solution is given by Theorem 3 with c
i

= c
h

if m = 0, and c
i

= c
l

if m = n. The

corresponding profits are positive, and therefore, the firms would produce strictly positive

quantities (i.e., �
i

= 0, 8i).

Suppose now that 0 < m < n. We know that, in equilibrium, firms with the same

abatement cost coe�cient will have the same posttrading cap (i.e., if c
i

= c
j

, then t
i

= t
j

).

Let s
l

and s
h

denote the equilibrium (posttrading) cap of the low-cost and high-cost firms,

respectively. Since all firms have an initial cap s, when a low-cost firm sells s� s
l

emission

allowances, a high-cost firm buys s
h

�s allowances. The market clearing condition stipulates

that

m (s� s
l

) + (n�m) (s� s
h

) = 0 () s� s
h

= � m

n�m
(s� s

l

)

We can rewrite the n-firm problem as a two-firm problem:

max
ql�0, 0xl1, ql(1�xl)s�t

q
l

· (a� b · q
l

� � · b ·Q�l

)� c
l

· (q
l

· x
l

)2 + r · t

max
qh�0, 0xh1, qh(1�xh)s+ m

n�m t

q
h

· (a� b · q
h

� � · b ·Q�h

)� c
h

· (q
h

· x
h

)2 � m

n�m

r · t

where t = t
l

= s � s
l

and t
h

= s � s
h

= � m

n�m

t
l

. The first order necessary conditions are

given by equations (A.9�A.11) . We need to consider the following five cases:

1. r = 0. Then 8i

x
i

= 0

q
i

=
a� �bQ�i

2b
t
i

 s� q
i

The production quantities must solve

q
i

=
a� �bQ

b (2� �)
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Thus, in equilibrium,

q
l

= q
h

⌘ q

and

b (2� �) q = a� n�bq () q =
a

b (2 + (n� 1) �)

We get

t  s� q (for firm l)

� m

n�m
t  s� q (for firm h)

This is equivalent to

n�m

m

✓

a

b (2 + (n� 1) �)
� s

◆

 t  s� a

b (2 + (n� 1) �)

A necessary condition is that LHS  RHS which implies

n�m

m

✓

a

b (2 + (n� 1) �)
� s

◆

 s� a

b (2 + (n� 1) �)

() s � a

b (2 + (n� 1) �)

Note that since r = 0, the trading volume t has no impact on the firms’ objective

functions. Assume that in this case, the firms will choose the smallest feasible |t|.

Since t = 0 is feasible, then

t⇤ = 0

2. r > 0, µ
l

> 0, µ
h

> 0. Then,

x
l

= x
h

= 1

t = s = � m

n�m
s ) s = 0

When s = 0, the firms have nothing to trade, and the solution coincides with the pure

Cap mechanism with s = 0 (see Theorem 3).
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3. r > 0, µ
l

> 0, µ
h

= 0. Then

x
l

= 1

t = s

q
l

=
a� �bQ�l

2 (b+ c
l

)
r > 2c

l

q
l

and

r = 2c
h

q
h

x
h

t =
n�m

m
[q
h

(1� x
h

)� s] (A.14)

q
h

=
a� �bQ�h

� r

2b
(A.15)

r  2c
h

q
h

Since t = s,

(A.14) ) ms

n�m
+ s = q

h

� q
h

x
h

() q
h

x
h

= q
h

� ns

n�m

This in turn implies that

r = 2c
h

q
h

x
h

= 2c
h

q
h

� 2nc
h

s

n�m

We can substitute this expression of r in (A.15) and solve for q
l

and q
h

:
⇢

[b (2 + (m� 1) �) + 2c
l

] q
l

+ (n�m) �bq
h

= a

m�bq
l

+ [b (2 + (n�m� 1) �) + 2c
h

] q
h

= a+ 2nchs
n�m

From which we derive (using Cramer’s rule)

q
l

=
a [b (2� �) + 2c

h

]� 2�bc
h

S

[b (2 + (m� 1) �) + 2c
l

] [b (2 + (n�m� 1) �) + 2c
h

]
�m (n�m) �2b2

q
h

=
(n�m) a [b (2� �) + 2c

l

] + 2c
h

[b (2 + (m� 1) �) + 2c
l

]S

(n�m)



[b (2 + (m� 1) �) + 2c
l

] [b (2 + (n�m� 1) �) + 2c
h

]
�m (n�m) �2b2

�

It follows that

r = 2c
h



q
h

� S

n�m

�

 2c
h

q
h

x
h

= 1� S

(n�m) q
h

=

(n�m) a [b (2� �) + 2c
l

]�
bS [b (2� �) (2 + (n� 1) �) + 2c

l

(2 + (n�m� 1) �)]

(n�m) a [b (2� �) + 2c
l

] + 2c
h

S [b (2 + (m� 1) �) + 2c
l

]
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The condition

r > 2c
l

q
l

) 2c
h

q
h

� 2c
h

S

n�m
> 2c

l

q
l

() S <
(n�m) a (c

h

� c
l

)

c
h

[b (2 + (n� 1) �) + 2c
l

]
⌘ S

The condition

x
h

 1 () S � 0

Finally, the condition

x
h

� 0 () (n�m) q
h

� S

() S  (n�m) a [b (2� �) + 2c
l

]

b [b (2� �) (2 + (n� 1) �) + 2c
l

(2 + (n�m� 1) �)]

This condition also guarantees that r � 0. In the equation above, the RHS � S, so

that the solution holds as long as

0  S < S

In this case,

t⇤ = s

r = 2c
h



q
h

� S

n�m

�

= 2c
h

a [b (2� �) + 2c
l

]�
b [(2� �) (2 + (n� 1) �) b+ 2c

l

(2 + (n�m� 1) �)]S� (n�m)

[b (2 + (m� 1) �) + 2c
l

] [b (2 + (n�m� 1) �) + 2c
h

]�
m (n�m) �2b2

Call this stationary point M1.

4. r > 0, µ
l

= 0, µ
h

> 0. Then,

r = 2c
l

q
l

x
l

t = s� q
l

(1� x
l

)

q
l

=
a� �bQ�l

� r

2b
(A.16)

r  2c
l

q
l

and

x
h

= 1

t = �n�m

m
s

q
h

=
a� �bQ�h

2 (b+ c
h

)
r > 2c

h

q
h
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Since

t = s� q
l

(1� x
l

) = �n�m

m
s

We have

q
l

x
l

= q
l

� ns

m

This in turn implies that

r = 2c
l

q
l

x
l

= 2c
l

q
l

� 2nc
l

s

m

We can substitute this expression of r in (A.16) and solve for q
l

and q
h

:

⇢

[b (2 + (m� 1) �) + 2c
l

] q
l

+ (n�m) �bq
h

= a+ 2ncls
m

m�bq
l

+ [b (2 + (n�m� 1) �) + 2c
h

] q
h

= a

From which we derive (using Cramer’s rule)

q
l

=
ma [b (2� �) + 2c

h

] + 2c
l

S [b (2 + (n�m� 1) �) + 2c
h

]

m [b (2 + (m� 1) �) + 2c
l

] [b (2 + (n�m� 1) �) + 2c
h

]
�m (n�m) �2b2

q
h

=
a [b (2� �) + 2c

l

]� 2�bc
l

S

[b (2 + (m� 1) �) + 2c
l

] [b (2 + (n�m� 1) �) + 2c
h

]
�m (n�m) �2b2

It follows that

r = 2c
l

✓

q
l

� S

m

◆

 2c
l

q
l

x
l

= 1� S

mq
l

=
ma [b (2� �) + 2c

h

]� bS [b (2� �) (2 + (n� 1) �) + 2c
h

(2 + (m� 1) �)]

ma [b (2� �) + 2c
h

] + 2c
l

S [b (2 + (n�m� 1) �) + 2c
h

]

The condition

r > 2c
h

q
h

) c
l

q
l

� c
l

S

m
> c

h

q
h

) S < � mab (2� �) (c
h

� c
l

)

2c
l



b2 (2� �) (2 + (n� 1) �)+
bc

l

(2 + (n�m� 1) �) + bc
h

(4 + (m� 2) �) + 2c
l

c
h

�

< 0, a contradiction
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5. r > 0, µ
l

= µ
h

= 0. Then,

r = 2c
l

q
l

x
l

= 2c
h

q
h

x
h

t = s� q
l

(1� x
l

) =
n�m

m
[q
h

(1� x
h

)� s] (A.17)

q
l

=
a� �bQ�l

� r

2b
(A.18)

q
h

=
a� �bQ�h

� r

2b
r  2c

l

q
l

and r  2c
h

q
h

Rewrite equation (A.18)

2bq
l

= a� �bQ�l

� r

Subtract �bq
l

from both sides

b (2� �) q
l

= a� �bQ� r

() q
l

=
a� �bQ� r

b (2� �)

Likewise

q
h

=
a� �bQ� r

b (2� �)
= q

l

(A.19)

This means that

Q = nq
l

= nq
h

c
l

x
l

= c
h

x
h

We can solve for q
l

and x
l

by rearranging (A.17) and (A.19)

q
l

x
l

= ch
ec (q

l

� s)
r = 2c

l

q
l

x
l

= a� b (2 + (n� 1) �) q
l

From which we derive

2c
l

c
h

ec
(q

l

� s) = a� b (2 + (n� 1) �) q
l

() q
l

= q
h

=
a ((n�m) c

l

+mc
h

) + 2nc
l

c
h

s

(2 + (n� 1) �) b ((n�m) c
l

+mc
h

) + 2nc
l

c
h

x
l

=
c
h

ec

✓

1� s

q
l

◆

= c
h

na� b (2 + (n� 1) �)S

a ((n�m) c
l

+mc
h

) + 2nc
l

c
h

s

x
h

= c
l

na� b (2 + (n� 1) �)S

a ((n�m) c
l

+mc
h

) + 2nc
l

c
h

s
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x
l

and x
h

will be positive if

S  na

b (2 + (n� 1) �)

We have x
h

 x
l

and

x
l

 1 () S � (n�m) a (c
h

� c
l

)

c
h

[b (2 + (n� 1) �) + 2c
l

]
= S

In this case,

t⇤ =
(n�m) (c

h

� c
l

) [a� b (2 + (n� 1) �) s]

b (2 + (n� 1) �) ((n�m) c
l

+mc
h

) + 2nc
l

c
h

r = 2c
l

q
l

x
l

= a� b (2 + (n� 1) �) q
l

=
2c

l

c
h

[na� b (2 + (n� 1) �)S]

(2 + (n� 1) �) b ((n�m) c
l

+mc
h

) + 2nc
l

c
h

Call this stationary point M2.

A.4.4 Step 4 - Proof that q
i

> 0, 8i
Under Cap-and-Trade, a firm can produce nothing and sell all its emission allowances on

the emission trading market. We show that such a strategy is always dominated. Assume

that n > 2.

The firm’s optimal profits are

⇡⇤
i

= q⇤
i

�

a� bq⇤
i

� �bQ⇤
�i

�

� c
i

(q⇤
i

x⇤
i

)2 + rt⇤
i

= q⇤
i

⇥

a�
�

b+ c
i

x⇤2
i

�

q⇤
i

� �bQ⇤
�i

⇤

+ rt⇤
i

In equilibrium, the pollution constraint is always binding. Thus,

t⇤
i

= s� q⇤
i

(1� x⇤
i

)

and

⇡⇤
i

= q⇤
i

⇥

a�
�

b+ c
i

x⇤2
i

�

q⇤
i

� �bQ⇤
�i

� r (1� x⇤
i

)
⇤

+ rs

=
�

b+ c
i

x⇤2
i

�

q⇤2
i

+ rs (by the first order condition w.r.t. q
i

)

If a firm produces nothing, it will make a profit ⇡
i

= r
n�1 · s, where r

n�1 denotes the

price for emission allowances when there are n� 1 firms producing. By not producing, the

firm reduces the demand for allowances, which drives the price down.

This is formally verified by
@r

n

@n
> 0

Thus, r
n�1  r

n

. By producing q⇤
i

> 0, the firm will earn

�

b+ c
i

x⇤2
i

�

q⇤2
i

+ r
n

· s � r
n�1 · s
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A.4.5 Step 5 - Second Order Su�cient Condition

We complete the proof by checking the second order condition at our two stationary

points, a test we must do for each individual firm. We need only show the optimality in

terms of (q, x) because the objective function is separable in (q, x) and t, and linear in t.

For an arbitrary firm i, the Hessian H is the following 2⇥ 2 matrix.

H =

✓

�2
�

b+ c
i

x2
i

�

r � 4c
i

q
i

x
i

r � 4c
i

q
i

x
i

�2c
i

q2
i

◆

Note that the diagonal elements are strictly negative. A strictly positive determinant

establishes that the Hessian is negative definite, and proves strict concavity.

At stationary point M2, r = 2c
l

q
l

x
l

= 2c
h

q
h

x
h

. Hessian becomes

�2

✓

b+ c
i

x2
i

c
i

q
i

x
i

c
i

q
i

x
i

c
i

q2
i

◆

Its determinant is 4bc
i

q2
i

> 0.

Similarly, at stationary point M1, the Hessian is negative definite for the high-cost firms

(because it is still true that r = 2c
h

q
h

x
h

). For the low-cost firms, however, the Hessian

becomes
✓

�2 (b+ c
l

) r � 4c
l

q
l

r � 4c
l

q
l

�2c
l

q2
l

◆

Its determinant is 4 (b+ c
l

) c
l

q2
l

� (r � 4c
l

q
l

)2 could be negative for r su�ciently large.

We use a direct approach to show that M1 is a local maximum for low-cost firms using

a method inspired from Luenberger and Ye (2008). Note that for low-cost firms, M1 is on

the boundary of the feasible. The active constraints at M1 are g1 (q
l

, x
l

, t
l

) = x
l

� 1 and

g2 (q
l

, x
l

, t
l

) = q
l

(1� x
l

)� s+ t
l

.

5g1 =
�

0 1 0
�

T

and 5g2 =
�

0 �q
l

1
�

T 6= 0, where the first coordinate is

the production quantity q
l

, the second the abatement level x
l

, and the third the trading

volume t
l

. 5g1 and 5g2 are linearly independent. Thus, M1 is regular.

We will show that for any feasible move away fromM1, the value of the objective function

decreases. The gradient of the objective function at M1 is

5⇡
i

|
M1 =

�

0 q
l

(r � 2c
l

q
l

) r
�

T

A non-zero feasible direction, d =
�

d1 d2 d3
�

T

is defined by (5g1)
T · d  0 and

(5g2)
T · d  0. These conditions are equivalent to

d2  0 (condition for g1)

and

�d2 · qi + d3  0 ) d3  d2 · qi  0 (condition for g2)
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Note that if d is a feasible direction, 5⇡
i

|
M1 · d = q

l

· (r � 2c
i

q
i

) · d2 + r · d3  0, because at

M1, r > 2c
i

q
i

. ⇤

A.5 Proof of Theorem 5
There are three main steps to the proof:

1. Using the backward induction procedure, we show that the firms’ Nash Equilibrium

is symmetric, and solve it given the tax rate ⌧ ;

2. We solve for the Subgame-Perfect Nash equilibrium (there is only one), by finding the

minimum ⌧ such that the total pollution P  S;

3. We prove that the equilibrium is a global maximum.

A.5.1 Step 1 - The Firms’ Nash Equilibrium Given ⌧

The firms’ objective is, 8i

max
qi�0,0xi1

⇡t

i

(q
i

, x
i

|Q�i

) = q
i

· (a� b · q
i

� � · b ·Q�i

)� c
i

· (q
i

· x
i

)2 � ⌧ · q
i

· (1� x
i

)

Write the Lagrangian

L = q
i

·(a� b · q
i

� � · b ·Q�i

)�c
i

·(q
i

· x
i

)2�⌧ ·q
i

·(1�x
i

)+�
i

·q
i

+µ
i1 ·xi�µ

i2 ·(xi�1).

The Kuhn-Tucker necessary conditions are:

a� � · b ·Q�i

� 2q
i

·
�

b+ c
i

· x2
i

�

� ⌧ · (1� x
i

) + �
i

= 0 (A.20)

q
i

· (⌧ � 2c
i

· q
i

· x
i

) + µ
i1 � µ

i2 = 0 (A.21)

(and the usual complementary slackness conditions and feasibility constraints).

First, we show that µ
i1 = 0. Proof. (By contradiction.) Suppose that µ

i1 > 0. Then,

µ
i2 = 0 and x

i

= 0, and by equation (A.21) µ
i1 = �⌧q

i

 0. ⇤
We next show that �

i

= 0. Proof. If �
i

> 0 (i.e., q
i

= 0), the firm makes a profit of 0. If

�
i

= 0, it is easy to verify that, if q
i

and x
i

satisfy (A.20) and (A.21) , ⇡t

i

=
�

b+ c
i

x2
i

�

q2
i

>

0. ⇤
There are only two cases to consider:
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• µ
i2 > 0. Then x

i

= 1 and by equation (A.20)

q
i

=
a� �bQ�i

2(b+ c
i

)

() q
i

=
a� �bQ

b (2� �) + 2c
i

Note that q
i

> 0, because a��Q > 0. If it were not the case, then the price of product

i,

p
i

= a� bq
i

� �bQ�i

= a� �bQ� b (1� �) q
i

, 8i

and there exists at least one market k for which q
k

> 0 ) p
k

< 0.

The solution holds if

µ
i2 > 0 () ⌧ > 2c

i

q
i

• µ
i2 = 0. Then, by equation (A.21), ⌧ = 2c

i

q
i

x
i

. After substitution in (A.20), we get

q
i

=
a� ⌧ � �bQ�i

2b

() q
i

=
a� ⌧ � �bQ

b (2� �)

() q
i

=
a� �bQ

b (2� �) + 2c
i

x
i

> 0

and x
i

= ⌧

2ciqi
. The condition

x
i

 1 ) ⌧  2c
i

q
i

In particular, we have shown that in equilibrium q
i

> 0, 8i.

Lemma 1 (cf. proof of Theorem 1) with ⌧ = 2dP shows that the equilibrium must be

symmetric, i.e., firms with the same cost coe�cients adopt the same responses. Because of

symmetry, we only need to consider the following 4 cases to solve the general n-firm case:

1. ⌧ > max {2c
l

q
l

, 2c
h

q
h

} . Then, x
l

= x
h

= 1 and
(

q
l

= a��bQ�l

2(b+cl)

q
h

= a��bQ�h

2(b+ch)

()
⇢

[b (2 + (m� 1) �) + 2c
l

] q
l

+ (n�m) �bq
h

= a
m�bq

l

+ [b (2 + (n�m� 1) �) + 2c
h

] q
h

= a

From which we derive

q
l

=
a [b (2� �) + 2c

h

]

[b (2 + (m� 1) �) + 2c
l

] [b (2 + (n�m� 1) �) + 2c
h

]
�m (n�m) �2b2

q
h

=
a [b (2� �) + 2c

l

]

[b (2 + (m� 1) �) + 2c
l

] [b (2 + (n�m� 1) �) + 2c
h

]
�m (n�m) �2b2
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This is feasible as long as ⌧ > max {2c
l

q
l

, 2c
h

q
h

}

) ⌧ >
2ac

h

[b (2� �) + 2c
l

]

[b (2 + (m� 1) �) + 2c
l

] [b (2 + (n�m� 1) �) + 2c
h

]
�m (n�m) �2b2

⌘ ⌧1

Call this stationary point M1.

2. 2c
h

q
h

< ⌧  2c
l

q
l

. Then x
h

= 1, x
l

= ⌧

2clql
and

(

q
l

= a�⌧��bQ�l

2b

q
h

= a��bQ�h

2(b+ch)

()
⇢

b (2 + (m� 1) �) q
l

+ (n�m) �bq
h

= a� ⌧
m�bq

l

+ [b (2 + (n�m� 1) �) + 2c
h

] q
h

= a

From which we derive:

q
l

=
a [b (2� �) + 2c

h

]� ⌧ [b (2 + (n�m� 1) �) + 2c
h

]

b [(2� �) (2 + (n� 1) �) b+ 2c
h

(2 + (m� 1) �)]

q
h

=
a (2� �) +m�⌧

(2� �) (2 + (n� 1) �) b+ 2c
h

(2 + (m� 1) �)

We must have

2c
h

q
h

< ⌧  2c
l

q
l

() 2ac
h

(2 + (n� 1) �) b+ 2c
h

< ⌧

 2ac
l

(b (2� �) + 2c
h

)

[b (2 + (m� 1) �) + 2c
l

] [b (2 + (n�m� 1) �) + 2c
h

]
�m (n�m) �2b2

(A.22)

This solution is not feasible because the LHS of (A.22) is greater than the RHS.

3. 2c
l

q
l

< ⌧  2c
h

q
h

. Then x
l

= 1, x
h

= ⌧

2chqh
and

(

q
l

= a��bQ�l

2(b+cl)

q
h

= a�⌧��bQ�h

2b

()
⇢

[b (2 + (m� 1) �) + 2c
l

] q
l

+ (n�m) �bq
h

= a
m�bq

l

+ b (2 + (n�m� 1) �) q
h

= a� ⌧

From which we derive:

q
l

=
a (2� �) + (n�m) �⌧

(2� �) (2 + (n� 1) �) b+ 2c
l

(2 + (n�m� 1) �)

q
h

=
a [b (2� �) + 2c

l

]� ⌧ [b (2 + (m� 1) �) + 2c
l

]

b [(2� �) (2 + (n� 1) �) b+ 2c
l

(2 + (n�m� 1) �)]

x
h

=
⌧

2c
h

q
h

=
b [(2� �) (2 + (n� 1) �) b+ 2c

l

(2 + (n�m� 1) �)] ⌧

2c
h

[a [b (2� �) + 2c
l

]� ⌧ [b (2 + (m� 1) �) + 2c
l

]]
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We must have

2c
l

q
l

< ⌧  2c
h

q
h

() ⌧2 ⌘
2ac

l

(2 + (n� 1) �) b+ 2c
l

< ⌧  ⌧1

It is true that

⌧2 < ⌧1

Call this stationary point M2.

4. ⌧  min {2c
l

q
l

, 2c
h

q
h

} . Then

⌧ = 2c
l

q
l

x
l

= 2c
h

q
h

x
h

q
l

=
a� ⌧ � �bQ�l

2b
(A.23)

q
h

=
a� ⌧ � �bQ�h

2b
(A.24)

Rewrite (A.23)

2bq
l

= a� ⌧ � �bQ�l

and subtract ��bq
l

from both sides:

b (2� �) q
l

= a� ⌧ � �bQ

Do the same with (A.24). This implies that

q
h

=
a� ⌧ � �bQ

b (2� �)
= q

l

Thus

Q = nq
l

We can now solve for q
l

and calculate x
l

and x
h

. We find

q
l

= q
h

=
a� ⌧

b (2 + (n� 1) �)

x
l

=
⌧

2c
l

q
l

=
b (2 + (n� 1) �) ⌧

2c
l

(a� ⌧)

x
h

=
⌧

2c
h

q
h

=
b (2 + (n� 1) �) ⌧

2c
h

(a� ⌧)

Clearly, x
l

� x
h

� 0. The condition

x
l

 1 () ⌧  2ac
l

b (2 + (n� 1) �) + 2c
l

⌘ ⌧2

Call this stationary point M3.
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A.5.2 Step 2 - The Subgame-Perfect Nash Equilibrium

Next, we solve the regulator’s problem which is to choose the smallest ⌧ such that P  S.

We need to do this for the intervals of ⌧ for which each of our 3 stationary points is defined.

We start with M3 :

1. (M3) : 0  ⌧  ⌧2 =
2acl

(2+(n�1)�)b+2cl

Given the firms’ reaction functions, the total pollution generated is

P (⌧) =
n

X

i=1

[q
i

(⌧) (1� x
i

(⌧))]

= mq
l

(1� x
l

) + (n�m) q
h

(1� x
h

)

= q
l

[n�mx
l

� (n�m)x
h

]

= nq
l

�mq
l

x
l

� (n�m) q
h

x
h

=
n (a� ⌧)

b (2 + (n� 1) �)
� m⌧

2c
l

� (n�m) ⌧

2c
h

P is linear decreasing in ⌧. Thus, the smallest tax rate ⌧ such that P (⌧)  S is

n (a� ⌧)

b (2 + (n� 1) �)
� m⌧

2c
l

� (n�m) ⌧

2c
h

= S

() ⌧ =
2c

l

c
h

[na� b (2 + (n� 1) �)S]

(2 + (n� 1) �) b ((n�m) c
l

+mc
h

) + 2nc
l

c
h

⌘ ⌧⇤3

The condition

0  ⌧⇤3  ⌧2

() (n�m) a (c
h

� c
l

)

c
h

[b (2 + (n� 1) �) + 2c
l

]
 S  na

b (2 + (n� 1) �)

Recall that S = (n�m)a(ch�cl)
ch[b(2+(n�1)�)+2cl]

and Su = na

b(2+(n�1)�) .

We have just shown that when S  S  Su

q⇤
l

= q⇤
h

=
a� ⌧⇤3

b (2 + (n� 1) �)
=

aec+ 2c
l

c
h

S�n

(2 + (n� 1) �) bec+ 2c
l

c
h

x⇤
l

=
⌧⇤3

2c
l

q⇤
l

=
c
h

[na� b (2 + (n� 1) �)S]

a ((n�m) c
l

+mc
h

) + 2c
l

c
h

S

x⇤
h

=
c
l

x⇤
l

c
h

=
c
l

[na� b (2 + (n� 1) �)S]

a ((n�m) c
l

+mc
h

) + 2c
l

c
h

S

The firm’s profits are

⇡
i

= q
i

⇥

a� �bQ�i

� ⌧ (1� x
i

)�
�

b+ c
i

x2
i

�

q
i

⇤
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By equation (A.20)

a� �bQ�i

� ⌧ (1� x
i

) = 2q
i

�

b+ c
i

· x2
i

�

Thus,

⇡
i

=
�

b+ c
i

x2
i

�

q2
i

= bq2
i

+
⌧2

4c
i

and after algebraic simplifications

⇡⇤
i

=

a2
h

b ((n�m) c
l

+mc
h

)2 + c
i

c2�i

i

+

2abc
i

c�i

[2 ((n�m) c
l

+mc
h

)� (2 + (n� 1) �) c�i

]S�n+

bc
i

c2�i

h

b (2 + (n� 1) �)2 + 4c
i

i

(S�n)2

[(2 + (n� 1) �) b ((n�m) c
l

+mc
h

) + 2c
i

c�i

]2

When ⌧ = 0,

P (0) =
na

b (2 + (n� 1) �)
= Su

This means that the pollution constraint is slack if S � Su.

2. (M2) : ⌧2 < ⌧  ⌧1 =
2ach[b(2��)+2cl]

[b(2+(m�1)�)+2cl][b(2+(n�m�1)�)+2ch]�m(n�m)�2
b

2

The low-cost firms do not pollute (i.e., x
l

= 1). The total pollution generated comes

only from the high-cost firms:

P (⌧) = (n�m) q
h

(1� x
h

)

= (n�m) [q
h

� q
h

x
h

]

= (n�m)



q
h

� ⌧

2c
h

�

= (n�m)



a [b (2� �) + 2c
l

]� ⌧ [b (2 + (m� 1) �) + 2c
l

]

b [(2� �) (2 + (n� 1) �) b+ 2c
l

(2 + (n�m� 1) �)]
� ⌧

2c
h

�

It is strictly decreasing in ⌧. Thus, the smallest tax rate such that P  S is

(n�m)



a [b (2� �) + 2c
l

]� ⌧ [b (2 + (m� 1) �) + 2c
l

]

b [(2� �) (2 + (n� 1) �) b+ 2c
l

(2 + (n�m� 1) �)]
� ⌧

2c
h

�

= S

() ⌧ = 2c
h

a [b (2� �) + 2c
l

]�
b [(2� �) (2 + (n� 1) �) b+ 2c

l

(2 + (n�m� 1) �)]S� (n�m)

[b (2 + (m� 1) �) + 2c
l

] [b (2 + (n�m� 1) �) + 2c
h

]�
m (n�m)2 �2b2

⌘ ⌧⇤2

The condition

⌧2 < ⌧⇤2  ⌧1

() 0  S < S
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In this case,

q
l

=
a (2� �) + (n�m) �⌧⇤2

(2� �) (2 + (n� 1) �) b+ 2c
l

(2 + (n�m� 1) �)

=
a [b (2� �) + 2c

h

]� 2�bc
h

S

[b (2 + (m� 1) �) + 2c
l

] [b (2 + (n�m� 1) �) + 2c
h

]
�m (n�m) �2b2

q
h

=
a [b (2� �) + 2c

l

]� ⌧ [b (2 + (m� 1) �) + 2c
l

]

b [(2� �) (2 + (n� 1) �) b+ 2c
l

(2 + (n�m� 1) �)]

=
a [b (2� �) + 2c

l

]� 2c
h

[b (2 + (m� 1) �) + 2c
l

]S� (n�m)

[b (2 + (m� 1) �) + 2c
l

] [b (2 + (n�m� 1) �) + 2c
h

]
�m (n�m) �2b2

x
l

= 1

x
h

=
⌧⇤2

2c
h

q⇤
h

=

a [b (2� �) + 2c
l

]�
b [b (2� �) (2 + (n� 1) �) + 2c

l

(2 + (n�m� 1) �)]S� (n�m)

a [b (2� �) + 2c
l

] + 2c
h

[b (2 + (n�m� 1) �) + 2c
l

]S� (n�m)

The firms’ profits are

⇡⇤
l

= (b+ c
l

) q⇤2
l

=
(b+ c

l

) [a [b (2� �) + 2c
h

]� 2�bc
h

S]2


[b (2 + (m� 1) �) + 2c
l

] [b (2 + (n�m� 1) �) + 2c
h

]
�m (n�m)2 �2b2

�2

⇡⇤
h

= bq⇤2
h

+
⌧⇤22
4c

h

=
1



[b (2 + (m� 1) �) + 2c
l

] [b (2 + (n�m� 1) �) + 2c
h

]
�m (n�m)2 �2b2

�2 ⇥

2

4

b [a [b (2� �) + 2c
l

]� 2c
h

[b (2 + (m� 1) �) + 2c
l

]S� (n�m)]2

+c
h



a [b (2� �) + 2c
l

]�
b [(2� �) (2 + (n� 1) �) b+ 2c

l

(2 + (n�m� 1) �)]S� (n�m)

�2

3

5

3. (M1) : ⌧ > ⌧1 =
2ach[b(2��)+2cl]

[b(2+(m�1)�)+2cl][b(2+(n�m�1)�)+2ch]�m(n�m)�2
b

2

In this case, the total pollution generated is P (⌧) = 0. This is true for any S. The

minimum ⌧ that satisfies the pollution constraint is simply ⌧⇤1 = ⌧1. We show that

this tax rate is higher than ⌧⇤2 and ⌧⇤3 so that it is dominated.

⌧⇤2 is decreasing in S, whereas ⌧⇤1 is independent of S, and ⌧⇤2 (0) = ⌧⇤1 .

Similarly, ⌧⇤3 is also decreasing in S, and at S = (n�m)a(ch�cl)
ch[b(2+(n�1)�)+2cl]

, we have ⌧⇤3 = ⌧⇤2 =
acl

b(2+(n�1)�)+2cl
.
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A.5.3 Step 3 - Second Order Su�cient Condition

We complete the proof by checking the second order su�cient condition at stationary

points M2 and M3, a test we must do for each individual firm. In general, the Hessian for

firm i is
✓

�2
�

b+ c
i

x2
i

�

⌧ � 4c
i

q
i

x
i

⌧ � 4c
i

q
i

x
i

�2c
i

q2
i

◆

Note that the diagonal elements are strictly negative. A strictly positive determinant

established that the Hessian is negative definite, which proves strict concavity.

At stationary point M3, ⌧ = 2c
l

q
l

x
l

= 2c
h

q
h

x
h

. The Hessian becomes

�2

✓

b+ c
i

x2
i

c
i

q
i

x
i

c
i

q
i

x
i

c
i

q2
i

◆

Its determinant is 4bc
i

q2
i

> 0.

Similarly, at stationary point M2, the Hessian is negative definite for the high-cost firms

(because it is still true that ⌧ = 2c
h

q
h

x
h

). For the low-cost firms, however, the Hessian

becomes
✓

�2 (b+ c
l

) ⌧ � 4c
l

q
l

⌧ � 4c
l

q
l

�2c
l

q2
l

◆

Its determinant is 4 (b+ c
l

) c
l

q2
l

� (⌧ � 4c
l

q
l

)2 could be negative for ⌧ su�ciently large.

We use a direct approach (similar to the proofs of Theorems 1 and 4). Note that for

low-cost firms, M2 is on the boundary of the feasible set. The gradient of the only binding

constraint, i.e., g (q
i

, x
i

) = x
i

� 1, is
�

0 1
�

T 6= 0. Thus, M2 is regular. We will show

that for any feasible move away from M2, the value of the objective function decreases. The

gradient of the objective function at M2 is

5⇡
i

(M2) =
�

0 q
i

· (⌧ � 2c
l

q
l

)
�

T

where the first coordinate is the production quantity q
i

, and the second the abatement level

x
i

. A non-zero feasible direction, d =
�

d1 d2
�

T

, is defined by (5g)T · d  0. This

condition is equivalent to d2  0. If d is a feasible direction, 5⇡
i

(M2)
T ·d = q

i

· (⌧ � 2c
l

q
l

) ·

d2  0, because at M1, ⌧ > 2c
l

q
l

. ⇤

A.6 Proof of Theorem 6
The social welfare W is continuous in S because W is a continuous function of q

i

and

x
i

, which are themselves continuous in S.

For S � Su, W is the constant

W u =
na2 (3b� 2nd)

2b2 (2 + (n� 1) �)2

We study the conditions under which W is decreasing to the left of Su. This means that

by lowering the cap below Su, W increases above W u.
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W (S) = ⇧ (S) + CES (S)�D (S)

Recall that under the Tax mechanism, the tax payment is a transfer from the firms to

the regulator, and as such does not impact welfare. Similarly, under Cap-and-Trade, money

is transferred between the firms as they trade emission allowances, but these transfers do

not impact the firms’ joint profits, and welfare is no a↵ected. Thus, in calculating welfare,

we only need to consider the profits before tax.

CES is given by

CES =
n

X

i=1

Z

qi

0
[d

i

(q)� p
i

(q
i

)] dq

where

d
i

(q) = a� �bQ�i

� bq

is the demand curve for product i, and

p
i

(q) = a� �bQ�i

� bq
i

is the price charged for product i.

CES =
n

X

i=1

Z

qi

0
b (q

i

� q) dq =
b

2

n

X

i=1

q2
i

Finally, since the pollution constraints are binding,

D (S) = dS2

Thus,

W (S) = mq
l

(a� �bQ�l

� bq
l

)�mc
l

(q
l

x
l

)2

+(n�m) q
h

(a� �bQ�h

� bq
h

)� (n�m) c
h

(q
h

x
h

)2

+
b

2

�

mq2
l

+ (n�m) q2
h

�

�dS2

On the interval [S, Su] ,

W (S) =
a (3bec+ 2c

l

c
h

) (naec+ 4c
l

c
h

S)

2 (2c
l

c
h

+ (2 + (n� 1) �) bec)2

�

0

@d+
bc

l

c
h

⇣

2 (1 + 2 (n� 1) �) c
l

c
h

+ (2 + (n� 1) �)2 bec
⌘

n (2c
l

c
h

+ (2 + (n� 1) �) bec)2

1

AS2

where ec = (n�m)cl+mch
n

.
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The condition is

W 0 (Su) < 0

() 2a [n (2c
l

c
h

+ (2 + (n� 1) �) bec) d� bc
l

c
h

]

b (2 + (n� 1) �) (2c
l

c
h

+ (2 + (n� 1) �) bec)
> 0

() d >
bc

l

c
h

(1� (n� 1) �)

n (2c
l

c
h

+ (2 + (n� 1) �) bec)
⌘ f (�)

Cap-and-Trade and Tax regulations improve welfare i↵

d > f (�)

Note that this will always be the case if � > 1
n�1 . In the special monopoly case, i.e.,

� = 0, the condition is

d > d0 =
bc

l

c
h

2n (c
l

c
h

+ bec)
⇤

A.7 Proof of Proposition 5
By Theorems 4 and 5, we have, for i 2 {l, h} and for all s,

qtax
i

= qct
i

xtax
i

= xct
i

Next, we calculate qct
i

(Sg) and xct
i

(Sg) . In other words, we calculate the firms’ decision

variables when the cap is set equal to the total pollution under Groves.

Assume d  d. Then,

Sg =
nac

l

c
h

b (2 + (n� 1) �) (necd+ c
l

c
h

) + 2nc
l

c
h

d

Note that

d  d () Sg � S

Thus,

qct
l

(Sg) = qct
h

(Sg) =
aec+ 2c

l

c
h

Sg�n

(2 + (n� 1) �) bec+ 2c
l

c
h

=
a (necd+ c

l

c
h

)

b (2 + (n� 1) �) (necd+ c
l

c
h

) + 2nc
l

c
h

d

= qg
l

= qg
h

where ec = (n�m)cl+mch
n

and

xct
l

(Sg) =
c
h

[a� b (2 + (n�m� 1) �)Sg�n]

aec+ 2c
l

c
h

P g�n

=
nc

h

d

necd+ c
l

c
h

= xg
l
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xct
h

(Sg) =
c
l

x
l

c
h

=
nc

l

d

necd+ c
l

c
h

= xg
h

Assume d > d. Then,

Sg =
(n�m) ac

h

(b (2� �) + 2c
l

)

[b (2 + (m� 1) �) + 2c
l

]
h

b (2 + (n�m� 1) �) + 2(n�m)chd
ch+(n�m)d

i

�m (n�m) �2b2

Note that

d > d () Sg < S

Thus,

qct
l

(Sg) =
a [b (2� �) + 2c

h

]� 2�bc
h

Sg

[b (2 + (m� 1) �) + 2c
l

] [b (2 + (n�m� 1) �) + 2c
h

]
�m (n�m) �2b2

=
a
⇣

b (2� �) + 2(n�m)chd
ch+(n�m)d

⌘

[b (2 + (m� 1) �) + 2c
l

]
h

b (2 + (n�m� 1) �) + 2(n�m)chd
ch+(n�m)d

i

�m (n�m) �2b2

= qg
l

qct
h

(Sg) =
a [b (2� �) + 2c

l

] + 2c
h

[b (2 + (m� 1) �) + 2c
l

]Sg� (n�m)

[b (2 + (m� 1) �) + 2c
l

] [b (2 + (n�m� 1) �) + 2c
h

]
�m (n�m) �2b2

=
a [b (2� �) + 2c
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]

[b (2 + (m� 1) �) + 2c
l

]
h

b (2 + (n�m� 1) �) + 2(n�m)chd
ch+(n�m)d
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�m (n�m) �2b2

= qg
h

and

xct
l

(Sg) = 1 = xg
l

xct
h

(Sg) =
a [b (2� �) + 2c

l

]� b [b (2� �) (2 + (n�m� 1) �)Sg� (n�m)]

a [b (2� �) + 2c
l

] + 2c
h

[b (2 + (m� 1) �) + 2c
l

]Sg� (n�m)

=
(n�m) d

c
h

+ (n�m) d
= xg

h

Hence, when S = Sg, all outcomes, except the firms’ profits, are identical under Groves,

Tax, and Cap-and-Trade (the expressions as functions of q
i

and x
i

are the same). From

Proposition 2, we know that Cap-and-Trade dominates Cap for all outcomes and for any

cap S. In particular, when S = Sg, Cap does worse than Cap-and-Trade, which mimics

Groves. ⇤
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A.8 Proof of Theorem 7
The social welfare W is continuous in S because W is a continuous function of q

i

and

x
i

, which are themselves continuous in S.

More precisely, W (S) is concave, quadratic on [0, S] and on [S, Su] , and constant after

that, because W is a quadratic function of {q
i

}1in

and {q
i

x
i

}1in

, all of which are linear

in S.

From Proposition 5, we know that W ct (Sg) = W g. Recall that S = (n�m)a(ch�cl)
ch(b(2+(n�1)�)+2cl)

.

(a) Assume that � = 0.

On each interval (i.e., [0, S] and [S, Su]), W is a parabola whose summit is at �B�2A,

where A is the coe�cient of S2 and B the coe�cient of S.

There are two cases:

1. d  d : Then Sg = naclch
2[bclch+n(bec+clch)d]

, and S  Sg  Su, where ec = (n�m)cl+mch
n

.

On [0, S] ,

W ct (S) = W tax (S)

=
ma2 (3b+ 2c

l

)

8 (b+ c
l

)2
+

(n�m) a2 (3b+ 2c
h

)

8 (b+ c
h

)2

+
c
h

(n�m) a (3b+ 2c
h

)S

2 (n�m) (b+ c
h

)2

�
✓

d+
bc

h

(2b+ c
h

)

2 (n�m) (b+ c
h

)2

◆

S2

The summit is at
(n�m) ac

h

(3b+ 2c
h

)

2 (n�m) d (b+ c
h

)2 + bc
h

(2b+ c
h

)
> S

In other words, W ct is increasing on [0, S] , which implies that S⇤ > S.

On [S, Su] ,

W ct (S) = W tax (S)

=
na2ec+ 4c

l

c
h

S (a� bS�n)

4 (bec+ c
l

c
h

)

+
nb (aec+ 2c

l

c
h

S�n)2

8 (bec+ c
l

c
h

)2

�dS2
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The summit is at
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2. d > d : Then Sg = (n�m)ach
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< S.

On [0, S] ,
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=
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l

)
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+
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h
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h

+ (n�m) (b+ c
h

) d]
= Sg

(b) Assume that � = 1.

There are also two cases:

1. d  d : Then Sg = naclch
(n+1)b(clch+necd)+2nclchd

, and S  Sg  Su.

On [S, Su] ,

W ct (S) =
a (3bec+ 2c

l

c
h

) (naec+ 4c
l
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h

S)

2 (2c
l
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l

c
h
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n (2c
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c
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c
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+ (n+ 1)2 bec
⌘

<
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c
h

2 [bc
l

c
h

+ n (bec+ c
l

c
h

) d]
= Sg, for n � 2.

In other words, W is strictly decreasing on [Sg, Su] , which implies that S⇤ < Sg.
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2. d > d :

Then Sg = (n�m)ach(b+2cl)
((m+1)b+2cl)((n�m+1)b(ch+(n�m)d)+2(n�m)chd)�m(n�m)b2(ch+(n�m)d) < S.

On [S, Su] , the summit is at
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In other words, W ct is strictly decreasing on [S, Su] , which implies that S⇤ < S.

On [0, S] ,
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B.1 Proof of Theorem 10
We assume that, if several trades are feasible and give the same payo↵, the firms prefer

the smallest trading volume, i.e., t = argmin {|t| , 8t feasible}. In particular, if t = 0 if

feasible, the firms will choose not to trade.

In the two-stage model, the firms first trade emission allowances with each other to

maximize their joint profits, then produce and compete in the market. The solution

is derived by backward induction, starting from the production/competition stage, and

working backwards to the trading stage.

There are six main steps to the proof:

1. We analyze the Lagrangian and derive necessary conditions on q
i

, x
i

, and t
i

based on

the Kuhn-Tucker conditions of the Cournot game;

2. We solve the Cournot game (choice of q
i

and x
i

);

3. For each Cournot Nash Equilibrium in step 2, we solve the trading game (choice of

t
i

) and derive the Subgame-Perfect Nash Equilibrium;

4. For s given, we derive the Pareto-dominant Subgame-Perfect Nash Equilibrim.

5. We investigate conditions under which one of the firms may shut down (i.e., q
i

= 0

for some i);

6. We prove that the objective function is strictly concave.

B.1.1 Step 1 - Analysis of the Lagrangian

In the first stage, the firms’ problem is to solve the following joint-maximization problem

(Cournot game):

max
ql>0, 0xl1

⇡
l

(q
l

, x
l

|t, q
h

) = q
l

· (a� b · q
l

� � · b · q
h

)� c
l

· (q
l

· x
l

)2

subject to q
l

· (1� x
l

)  s� t and t  s

max
qh>0, 0xh1

⇡
h

(q
h

, x
h

|t, q
l

) = q
h

· (a� b · q
h

� � · b · q
l

)� c
h

· (q
h

· x
h

)2

subject to q
h

· (1� x
h

)  s+ t and t � �s

Consider an arbitrary firm i. Write the Lagrangian

L = q
i

(a� bq
i

� �bq
j

)� c
i

(q
i

x
i

)2 + �
i

q
i

+ µ
i1xi � µ

i2 (xi � 1)� ⌫
i

[q
i

(1� x
i

)� s+ t
i

]

where �
i

, µ
i1, µi2, and ⌫

i

are Lagrange multipliers. The Kuhn-Tucker necessary conditions

are:
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a� �bq
j

� 2q
i

�

b+ c
i

x2
i

�

+ �
i

� ⌫
i

(1� x
i

) = 0 (B.1)

q
i

(⌫
i

� 2c
i

q
i

x
i

) + µ
i1 � µ

i2 = 0 (B.2)

with the complementary slackness conditions �
i

q
i

= 0, µ
i1xi = 0, µ

i2 (xi � 1) = 0, and

⌫
i

[q
i

(1� x
i

)� s+ t
i

] = 0, and the feasibility constraints 0  x
i

 1, and q
i

, �
i

, µ
i1, µi2, ⌫i �

0.

First, we show that µ
i1 = 0. Proof. (By contradiction.) Suppose that µ

i1 > 0. Then,

µ
i2 = 0 and x

i

= 0, and by equation (B.2), µ
i1 = �⌫

i

q
i

 0. ⌅
Assume for now that �

i

= 0. (We analyze the case �
i

> 0, i.e., q
i

= 0 later.)

Rewrite µ
i2 = µ

i

. There are 2 Lagrange multipliers leading to the following cases:

• µ
i

= ⌫
i

= 0 (The pollution constraint is slack):

(B.2) ) x
i

= 0 (assume for now that q
i

> 0.)

By equation (B.1),

q
i

=
a� �bq

j

2b

We also have

q
i

 s� t
i

• µ
i

= 0, ⌫
i

> 0 (The pollution constraint binds):

⌫
i

> 0 ) q
i

(1� x
i

) = s� t
i

() q
i

x
i

= q
i

� (s� t
i

) (B.3)

(B.2) ) ⌫
i

= 2c
i

q
i

x
i

(B.4)

Note that this case is feasible only if q
i

> 0 and x
i

> 0.

Combining (B.3) and (B.4) into (B.1), we get

q
i

=
a� �bq

j

+ 2c
i

(s� t
i

)

2 (b+ c
i

)

Then

x
i

= 1� s� t
i

q
i

 1

provided that

q
i

> s� t
i

(this condition guarantees that x
i

> 0)
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• µ
i

> 0. Then x
i

= 1 and by equation (B.1), q
i

= a��bqj

2(b+ci)
. We must have ⌫

i

> 0,

otherwise by (B.2), µ
i

= �2c
i

q2
i

 0.

⌫
i

> 0 ) q
i

(1� x
i

) = 0 = s� t
i

) t
i

= s

This is a special case of the previous situation where the pollution constraint binds.

To summarize, we have the following two cases:

The pollution constraint is slack:

q
i

 s� t
i

: q
i

=
a� �bq

j

2b
, q

i

� 0, x
i

= 0

The pollution constraint binds:

q
i

> s� t
i

: q
i

=
a� �bq

j

+ 2c
i

(s� t
i

)

2 (b+ c
i

)
, q

i

� 0, x
i

= 1� s� t
i

q
i

, t
i

 s

B.1.2 Step 2 - Cournot Nash Equilibrium

Next, we solve the Cournot game, given t. Four production equilibria are feasible:

1. The pollution constraints are slack for both firms.

The firms solve the following system of equations:
⇢

2bq
l

+ �bq
h

= a
�bq

l

+ 2bq
h

= a

From which we derive

q
l

= q
h

=
a

b (2 + �)

We also have

x
l

= x
h

= 0

The feasibility conditions are

a

b (2 + �)
� s  t  s� a

b (2 + �)

In particular, we must have s � a

b(2+�) ⌘ su. Call this stationary point E1.

Let ⇧ denote the firms’ joint profits. The firms’ joint profits under E1 are

⇧1 =
2a2

b (2 + �)2

In the second stage (step 3 - Sub-game perfect Nash equilibrium), the firms choose t

to maximize their joint profits. Since the profits are independent of t, the firms will

choose the smallest feasible |t| .

t⇤1 = 0
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2. The pollution constraint is slack for firm l but binds for firm h.

The firms must solve

⇢

2bq
l

+ �bq
h

= a
�bq

l

+ 2 (b+ c
h

) q
h

= a+ 2c
h

(s+ t)

The solution is

q
l

=
a [b (2� �) + 2c

h

]� 2�bc
h

(s+ t)

b [b(4� �2) + 4c
h

]

q
h

=
a(2� �) + 4c

h

(s+ t)

b(4� �2) + 4c
h

x
l

= 0

x
h

=
(2� �) [a� b (� + 2) (s+ t)]

a (2� �) + 4c
h

(s+ t)

⇧2 =
1

b [b (4� �2) + 4c
h

]2
⇥

2

6

6

6

4

a2
h

2b2 (2� �)2 + bc
h

(6� �) (2� �) + 4c2
h

i

+4abc
h

h

b (2� �)2 + 4c
h

(1� �)
i

(s+ t)

�b2c
h

h

b
�

4� �2
�2

+ 4c
h

�

4� 3�2
�

i

(s+ t)2

3

7

7

7

5

Call this stationary point E2. Feasibility conditions are

q
l

 s� t () t  (b (2� �) + 2c
h

) (b (2 + �) s� a)

b (2� �) (b (2 + �) + 2c
h

)
⌘ f (s)

q
h

> s+ t () t <
a

b (� + 2)
� s

t � �s

f intersects the line �s at s
f

= a(b(2��)+2ch)
2b(b(4��

2)+4ch)
and the line a

b(�+2) � s at s = su. (See

Figure B.1).

In the second stage (step 3 - Subgame-Perfect Nash Equilibrium), the firms choose t

to maximize ⇧2.

⇧2 is quadratic and concave in s+ t; thus, there is a unique maximum

t⇤2 =

8

<

:

f (s) if s
f

 s < s2
2a[b(2��)2+4(1��)ch]
b[b(4��

2)2+4ch(4�3�2)]
� s if s � s2

where

s2 =
a
h

b (2� �)2 (4 + �) + 2c
h

(8� � (6 + �))
i

2b
h

b (4� �2)2 + 4c
h

(4� 3�2)
i
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Figure B.1. Representation of the feasible region in the {s, t} space.

is the cap at which

f (s) =
2a

h

b (2� �)2 + 4 (1� �) c
h

i

b
h

b (4� �2)2 + 4c
h

(4� 3�2)
i � s

When s � s2, the optimal production quantities and abatement levels are:

q⇤
l

=
a
h

b (2� �)2 (2 + �) + 2c
h

[4� � (2 + �)]
i

b
h

b (4� �2)2 + 4c
h

(4� 3�2)
i

q⇤
h

=
a
h

b (2� �)2 (2 + �) + 8 (1� �) c
h

i

b
h

b (4� �2)2 + 4c
h

(4� 3�2)
i

x⇤
l

= 0

x⇤
h

=
b (2� �)2 �

b (2� �)2 (2 + �) + 8 (1� �) c
h

⇧⇤
2 =

a2
h

2b (2� �)2 + c
h

[8� � (8� �)]
i

b
h

b (4� �2)2 + 4c
h

(4� 3�2)
i



131

(Step 4) It is straightforward to verify that ⇧⇤
2 � ⇧⇤

1 so that E1 is dominated by E2.

We will later show that E2 is dominated when s < s2 and t⇤ = f (s), so we can ignore

that case.

3. The pollution constraint is binding for firm l but slack for firm h.

The firms must solve
⇢

2 (b+ c
l

) q
l

+ �bq
h

= a+ 2c
l

(s� t)
�bq

l

+ 2bq
h

= a

The solution is

q
l

=
a(2� �) + 4c

l

(s� t)

b(4� �2) + 4c
l

q
h

=
a [b (2� �) + 2c

l

]� 2�bc
l

(s� t)

b [b(4� �2) + 4c
l

]

x
l

=
(2� �) [a� b (� + 2) (s� t)]

a (2� �) + 4c
l

(s� t)
x
h

= 0

⇧3 =
1

b [b (4� �2) + 4c
l

]2
⇥

2

6

6

6

4

a2
h

2b2 (2� �)2 + bc
l

(6� �) (2� �) + 4c2
l

i

+4abc
l

h

b (2� �)2 + 4c
l

(1� �)
i

(s� t)

�b2c
l

h

b
�

4� �2
�2

+ 4c
l

�

4� 3�2
�

i

(s� t)2

3

7

7

7

5

Call this stationary point E3. Feasibility conditions are

q
l

> s� t () t > s� a

b (2 + �)
t  s

q
h

 s+ t () t � (b (2� �) + 2c
l

) (a� b (2 + �) s)

b (2� �) (b (2 + �) + 2c
l

)
⌘ g (s)

g intersects the line s at s
g

= a(b(2��)+2cl)
2b(b(4��

2)+4cl)
and the line s � a

b(�+2) at s = su. (See

Figure B.1.)

In the second stage (step 3 - Sub-game perfect Nash equilibrium), the firms choose t

to maximize ⇧3.

⇧3 is quadratic and concave in s� t; thus,

t⇤3 =

8

<

:

g (s) if s
g

 s  s4

s� 2a[b(2��)2+4(1��)cl]
b[b(4��

2)2+4cl(4�3�2)]
if s � s4

where s4 =
a[b(2��)2(4+�)+2cl(8��(6+�))]

2b[b(4��

2)2+4cl(4�3�2)]
is the cap at which g (s) = s� 2a[b(2��)2+4(1��)cl]

b[b(4��

2)2+4cl(4�3�2)]
.
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The optimal production quantities and abatement levels are:

q⇤
l

=
a
h

b (2� �)2 (2 + �) + 8 (1� �) c
l

i

b
h

b (4� �2)2 + 4c
l

(4� 3�2)
i

q⇤
h

=
a
h

b (2� �)2 (2 + �) + 2c
l

[4� � (2 + �)]
i

b
h

b (4� �2)2 + 4c
l

(4� 3�2)
i

x⇤
l

=
b (2� �)2 �

b (2� �)2 (2 + �) + 8 (1� �) c
l

x⇤
h

= 0

⇧⇤
3 =

a2
h

2b (2� �)2 + c
l

[8� � (8� �)]
i

b
h

b (4� �2)2 + 4c
l

(4� 3�2)
i

(Step 4) It is straightforward to verify that ⇧⇤
2 � ⇧⇤

3, meaning that E3 is dominated

by E2. We will later show that E3 is also dominated when s < s4 and t⇤ = g (s), so

we can ignore that case. In other words, E3 is dominated.

4. The final case is for both pollution constraints to bind.

The firms must solve
⇢

2 (b+ c
l

) q
l

+ �bq
h

= a+ 2c
l

(s� t)
�bq

l

+ 2 (b+ c
h

) q
h

= a+ 2c
h

(s+ t)

From which we derive

q
l

=
a [b (2� �) + 2c

h

]� 2�bc
h

(s+ t) + 4c
l

(b+ c
h

) (s� t)

4 (b+ c
l

) (b+ c
h

)� �2b2

q
h

=
a [b (2� �) + 2c

l

]� 2�bc
l

(s� t) + 4c
h

(b+ c
l

) (s+ t)

4 (b+ c
l

) (b+ c
h

)� �2b2

The feasibility conditions

q
l

> s� t () t > f (s)

q
h

> s+ t () t < g (s)

A necessary condition is that s < su. (This is because f and g are linear functions of

s that intersect at su.)

q
l

=
a (b+ 2c

h

)� 2�bc
h

(s+ t) + 4c
l

(b+ c
h

) (s� t)

4 (b+ c
l

) (b+ c
h

)� �2b2

q
h

=
a (b+ 2c

l

)� 2�bc
l

(s� t) + 4c
h

(b+ c
l

) (s+ t)

4 (b+ c
l

) (b+ c
h

)� �2b2

x
l

= 1� s� t

q
l

x
h

= 1� s+ t

q
h



133

The expression for the joint profits is complicated.

⇧4 = � 1

(4 (b+ c
l

) (b+ c
h

)� �2b2)2
⇥

2

6

6

6

6

6

6

6

6

6

6

6

4

[a (b (2� �) + 2c
h

) + 2b (2c
l

(s� t)� c
h

� (s+ t)) + 4c
l

c
h

(s� t))]⇥


a (b+ 2c
l

) (b� � 2 (b+ c
h

))+
2b
�

b
�

c
h

� (s+ t) + c
l

�

2� �2
�

(s� t)
�

+ 2c
l

c
h

((1 + �) s� (1� �) t)
�

�

+ [a (b (2� �) + 2c
l

)� 2 (b (c
l

� (s� t)� 2c
h

(s+ t)) + 2c
l

c
h

(s+ t))]⇥


a (b+ 2c
h

) (b� � 2 (b+ c
l

))+
2b
�

2c
l

c
h

(s� t+ � (s+ t)) + b
�

c
l

� (s� t) + c
h

�

2� �2
�

(s+ t)
��

�

+c
h

[(b (2� �) + 2c
l

) (a� b (2 + �) s)� b (2� �) t (b (2 + �) + 2c
l

)]2

+c
l

[(b (2� �) + 2c
h

) (a� b (2 + �) s) + b (2� �) t (b (2 + �) + 2c
h

)]2

3

7

7

7

7

7

7

7

7

7

7

7

5

Call this stationary point E4. ⇧4 is quadratic and concave in t.

The unique maximum is at

t⇤4 =

(c
h

� c
l

)
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)
�
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�
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l
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�
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l

+ c
h

) + 4b
�

3c2
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+ 4c
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+ 3c2
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+ 12c
l

c
h

(c
l

+ c
h

)
�

�

t⇤ is a linear, decreasing function of s. We need to check that it is feasible.

Define
s1 as the point at which t⇤4 intersects t = s
s3 as the point at which t⇤4 intersects t = f (s)

We have

s1 =
a (c

h

� c
l

)
�

b2�2 + 4 (1� �) (b+ c
l

) (b+ c
h

)
�

c
h
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b2 (2� �)2 (c
l

� + c
h

(4 + �)) + 2bc
h

(8� � (6 + �)) (c
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h

) + 16c
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c2
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⌘

2bc
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✓

b2
�

4� �2
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+
2b (c

l

(8� � (4 + � (2 + �))) + 2 (4� 3�) c
h

) + 8c
l

c
h

�

2� � � �2
�

◆

By construction, we have

0  s1  s3  su

(see Figure B.1)

t⇤4 is feasible () s1  s  s3



134

The optimal production quantities and abatement levels are

q⇤
l
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(a (c
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h
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h
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h

= 1� s+ t⇤4
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The firms’ joint profits are

⇧t<s

4 = (B.5)
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When 0  s  s1, t⇤4 hits a boundary of the feasible set.

t⇤4 = s

q⇤
l

=
a (b (2� �) + 2c

h

)� 4�bc
h

s

4 (b+ c
l

) (b+ c
h

)� �2b2

q⇤
h

=
a (b (2� �) + 2c

l

) + 8c
h
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l

) s
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l

) (b+ c
h

)� �2b2

x⇤
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x⇤
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= 1� 2s
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l

) (b+ c
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2

6
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a2
⇥

b2�2 (2b+ c
l

+ c
h

) + 4 (b+ c
l

) (b+ c
h

) (2b (1� �) + c
l

+ c
h

)
⇤

+8ac
h

s (b+ c
l

) (4 (b+ c
l

) (b+ c
h

)� b� ((4� �) b+ 4c
h

))

�4bc
h

s2
h

b3�4 � 4b�2 (b+ c
l

) (2b+ 3c
h

) + 16 (b+ c
l

)2 (b+ c
h

)
i

3

7

5

When s3  s  su, t⇤4 hits another boundary of the feasible set.

t⇤4 = f (s)
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(Step 4) We now show that this solution is dominated. The firms’ production and

abatement decisions are continuous along the boundary t = f (s) and so are the joint

profits. We have

s3 � s2

which implies that the joint profits under E4 along t = f (s) (when t⇤ hits the boundary

of the feasible set) are less than the interior solution of E2. In other words, E2

dominates E4 when s � s3. We have the following result:

E2 is the global maximum for s � s3 (B.7)

A similar reasoning is used to prove that E4 dominates E2 when s  s2 (in this case,

E2 sits on the boundary and E4 is the interior point solution), and that E4 dominates

E3 when s  s4 (in this case, E3 sits on the boundary and E4 is the interior point

solution). Since s2  s3, we have the following result:

E4 is the global maximum for s  s2 (B.8)

Combining results (B.7) and (B.8) and the fact that ⇧⇤
2 is independent of s and ⇧⇤

4

is strictly concave in s, we have the following result:

There exists a unique es 2 [s2, s3] such that E4 is the unique global maximum for

s 2 (s1, es) and E2 is the unique global maximum for s � es ⇤.

B.1.3 Step 5a - Can the High-cost Firm Shut Down, i.e., q
h

= 0?

When q
h

= 0, firm l is a monopolist. The firms jointly maximize

max
ql�0, 0xl1

⇧m (q
l

, x
l

) = q
l

· (a� b · q
l

)� c
l

· (q
l

· x
l

)2

subject to q
l

· (1� x
l

)  s� t and t � �s

Using the same notations as previously, the first order conditions are:

a� 2q
l

�

b+ c
l

x2
l

�

� ⌫
l

(1� x
l

) = 0 (B.9)

q
l

(⌫
l

� 2c
l

q
l

x
l

)� µ
l

= 0 (B.10)
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• Suppose ⌫
l

= 0 (slack pollution constraint). Equation (B.10) implies that µ
l

= 0 and

q
l

x
l

= 0. Equation (B.9) implies that

q
l

=
a

2b

Since q
l

> 0, x
l

= 0. We have the following conditions

�s  t  s� a

2b

A necessary condition is that s � a

4b . The optimal joint profits are

⇧m⇤ =
a2

4b

• Suppose ⌫
l

> 0 (binding pollution constraint). Then, q
l

(1� x
l

) = s� t.

– If µ
l

= 0, equations (B.9) and (B.10) imply

⌫
l

= 2c
l

q
l

x
l

q
l

=
a+ 2c

l

(s� t)

2 (b+ c
l

)

x
l

=
a� 2b (s� t)

a+ 2c
l

(s� t)

provided that

s� a

2b
< t  s

t � �s

The firms’ joint profits are

⇧m =
a2 + 4ac

l

(s� t)� 4bc
l

(s� t)2

4 (b+ c
l

)

If s � a

4b , to maximize their joint profits, the firms will choose

t⇤ = s� a

2b

and

⇧m⇤ =
a2

4b

If s < a

4b , then t⇤ = �s and the joint profits are

⇧m =
a2 + 8ac

l

s� 16bc
l

s2

4 (b+ c
l

)

⇧m is continuous at s = a

4b .



137

– µ
i

> 0 is a special case of the previous case with t = s = 0, leading to a joint

profit = a

2

4(b+cl)
.

We conclude by comparing the firms’ joint profits when q
h

= 0 and when q
h

> 0.

Note that s1  a

4b  s2. This implies that a

4b  es.

• When s > es, if firm h shuts down, the firms’ joint profits is

⇧m =
a2

4b

If the firms compete, they make a joint profit

⇧2 =
a2
h

2b (2� �)2 + c
h

[8� � (8� �)]
i

b
h

b (4� �2)2 + 4c
h

(4� 3�2)
i

Thus firm h shuts down if and only if

a2

4b
> ⇧2 (B.11)

The condition (B.11) is equivalent to

b�4 � 16 (b+ c
h

) �2 + 32 (b+ c
h

) � � 16 (b+ c
h

) > 0

The LHS has a unique root � between 0 and 1. Define ↵
h

= ch
b

.

� = 2
p
1 + ↵

h

2

4

s

1 +

r

1

1 + ↵
h

� 1

3

5

� ranges from 2
�

p
2� 1

�

⇡ .83 to 1.

The condition (B.11) () � > �

• When a

4b < s < es, the firms still make a profit ⇧m = a

2

4b if firm h shuts down. However,

when they compete, the firms’ joint profits is given by equation (B.6).

⇧t<s

4 =
1

(4 (b+ c
l

) (b+ c
h

)� �2b2)2
⇥

2

4

a2
⇥

b2�2 (2b+ c
l

+ c
h

) + 4 (b+ c
l

) (b+ c
h

) (2b (1� �) + c
l

+ c
h

)
⇤

+8ac
h

s (b+ c
l

) (4 (b+ c
l

) (b+ c
h

)� b� ((4� �) b+ 4c
h

))
�4bc

h

s2
⇥

b3�4 � 4b�2 (b+ c
l

) (2b+ 3c
h

) + 16 (b+ c
l

) (b+ c
h

) (b+ c
l

)
⇤

3

5

Thus, firm h shuts down if and only if

a2

4b
> ⇧t<s

4 (B.12)

This condition is complicated.
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Since ⇧t<s

4 is strictly decreasing on
⇥

a

4b , es
⇤

, we can derive the following su�cient

conditions:

1. If �  �, then ⇧t<s

4 > ⇧2 � a

2

4b , meaning that firm h will not shut down.

2. There is a threshold value of � above which firm h will shut down. Specifically,

firm h will shut down if

⇧t<s

4

⇣ a

4b

⌘

<
a2

4b

This condition is equivalent to

b2�4 � 16
�

b2 + bc
l

+ bc
h

+ c
l

c
h

�

�2 +

32
�

b2 + bc
l

+ bc
h

+ c
l

c
h

�

� � 16
�

b2 + bc
l

+ bc
h

+ c
l

c
h

�

> 0

This equation in � has a unique root � between 0 and 1. Define ↵
l

= cl
b

, and

recall that ↵
h

= ch
b

.

� =
�

b

2

4

s

1 + ↵
l

+ ↵
h

+ ↵
l

↵
h

+
p

(1 + ↵
l

) (1 + ↵
h

)

(1 + ↵
l

) (1 + ↵
h

)
� 1

3

5

where � = 2
p

(b+ c
l

) (b+ c
h

).

The condition (B.12) () � > �

Note that �  �  1.

We provide a graphical representation of condition (B.12) in Figure B.2. Our results

show that if � is su�ciently high, firm h shuts down. There are parameter values for

which collusion could lead to the extreme situation in which q
h

is forced out (i.e., the

low-cost firm becomes a monopoly).

• When s1  s  a

4b , if firm h shuts down, the firms’ joint profits is

⇧m =
a2 + 8ac

l

s� 16bc
l

s2

4 (b+ c
l

)

If the firms compete, they still make a joint profit

⇧t<s

4 (see equation B.6)

Thus, firm h shuts down if and only if

a2 + 8ac
l

s� 16bc
l

s2

4 (b+ c
l

)
> ⇧t<s

4 (B.13)

This condition is also complicated, but the result is the same as before. For �

su�ciently high, firm h shuts down. A graphical representation is given in Figure

B.2.
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Figure B.2. Does the high-cost firm shut down?

• When 0  s  s1, if firm h shuts down, the firms’ joint profits is still

⇧m =
a2 + 8ac

l

s� 16bc
l

s2

4 (b+ c
l

)

However, when they compete, the firms’ joint profits is given by equation (B.6).

⇧t=s

4 =
1

(4 (b+ c
l

) (b+ c
h

)� �2b2)2
⇥

2

6

4

a2
⇥

b2�2 (2b+ c
l

+ c
h

) + 4 (b+ c
l

) (b+ c
h

) (2b (1� �) + c
l

+ c
h

)
⇤

+8ac
h

s (b+ c
l

) (4 (b+ c
l

) (b+ c
h

)� b� ((4� �) b+ 4c
h

))

�4bc
h

s2
h

b3�4 � 4b�2 (b+ c
l

) (2b+ 3c
h

) + 16 (b+ c
l

)2 (b+ c
h

)
i

3

7

5

Thus, firm h shuts down if and only if

a2 + 8ac
l

s� 16bc
l

s2

4 (b+ c
l

)
> ⇧t=s

4 (B.14)

Similar to the previous case, when � is large, condition (B.14) will be satisfied. See

Figure B.2. ⇤

B.1.4 Step 5b - Proof That the Low-cost Firm Never Shuts Down

The case q
l

= 0 is the symmetric of q
h

= 0. The proof is obtained by swapping l and h.

When comparing firm l’s profits if q
l

= 0 to its profits if q
l

> 0, note that the conditions

are the same as the case q
h

= 0 when s > a

4b . In other words, we have a tie: if one of the
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firms is to shut down, it does not matter which one. When s  a

4b , however, note that for

any s,
a2 + 8ac

l

s� 16bc
l

s2

4 (b+ c
l

)
� a2 + 8ac

h

s� 16bc
h

s2

4 (b+ c
h

)

with equality only when s = a

4b . This means that the high-cost firm will shut down before

the low-cost firm. Using a continuity argument at s = a

4b , we conclude that the low-cost

firm never shuts down. ⇤

B.1.5 Step 6 - Second Order Necessary Conditions

We now check the second order conditions. We need to do this for the Cournot game

only, because we have already established that the joint-profit maximization problems are

quadratic concave in t.

For an arbitrary firm i, the Hessian H
i

of the Cournot game is the following 2⇥2 matrix.

H
i

=

✓

�2
�

b+ c
i

x2
i

�

�4c
i

q
i

x
i

+ v
i

�4c
i

q
i

x
i

+ v
i

�2c
i

q2
i

◆

Note that the diagonal elements are negative. If det (H
i

) > 0, then the Hessian is

negative definite, which implies concavity of the objective function.

At stationary point E1, we have

H
i

= �2

✓

b 0
0 c

i

q2
i

◆

whose determinant is det (H
i

) = 4bc
i

q2
i

> 0.

At stationary point E2, we have ⌫
l

= 0 and x
l

= 0, which implies that

H
l

= �2

✓

b 0
0 c

l

q2
l

◆

and det (H
l

) = 4bc
l

q2
l

> 0.

We also have ⌫
h

= 2c
h

q
h

x
h

, which implies that

H
h

= �2

✓

b+ c
h

x2
h

c
h

q
h

x
h

c
h

q
h

x
h

c
h

q2
h

◆

and det (H
h

) = 4bc
h

q2
h

> 0.

E3 is o↵ the equilibrium path.

At stationary point E4, ⌫
i

= 2c
i

q
i

x
i

8i which implies that

H
i

= �2

✓

b+ c
i

x2
i

c
i

q
i

x
i

c
i

q
i

x
i

c
i

q2
i

◆

and det (H
i

) = 4bc
i

q2
i

> 0. ⇤
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C.1 Notations and Assumptions
⇡a

i

denotes the profit of firm i if it takes action a, where a = I if the firm invests, and

a = N if the firm does not invest.

⇡a

m

denotes the profit of a firm that takes action a, where a = I or N , when m firms

invest.

Let

F0 =
a2c

l

(c
h

� c
l

)

4c
h

(b+ c
l

)2

F1 =
a2 (c

h

� c
l

)

4 (b+ c
l

) (b+ c
h

)

Without loss of generality, we will assume that if the firm is indi↵erent between investing

and not investing, it will not invest.

C.2 Proof of Theorem 11
Consider any firm i. The firm’s profit are given by Theorem 3 of Chapter 2.

⇡N

i

=
a2

4 (b+ c
h

)
+

c
h

(a� bs) s

(b+ c
h

)

⇡I

i

=
a2

4 (b+ c
l

)
+

c
l

(a� bs) s

(b+ c
l

)
� F

Firm i will invest if and only if

⇡I

i

> ⇡N

i

() F <
(c

h

� c
l

) (a� 2bs)2

4 (b+ c
l

) (b+ c
h

)
⌘ F cap (s) ⇤

C.3 Proof of Theorem 12
We solve by backward induction.

The solution to the last stage is given by Theorem 4 of Chapter 2. Then, we solve the

n-firm investment game.

M is a Nash equilibrium () ⇡I

m

> ⇡N

m�1 (m > 0) and ⇡N

m

� ⇡I

m+1 (m < n)

The first inequality specifies the equilibrium condition for a firm that invests; the second

the equilibrium condition for a firm that does not invest. Let

c
m

=
(n�m) c

l

+mc
h

n

s
m

=
(n�m) a (c

h

� c
l

)

2nc
h

(b+ c
l

)

s 2
⇣

0,
a

2b

⌘

We first consider the two special cases m = 0 and m = n.
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• When m = 0, none of the firms invest. This will be an equilibrium i↵

⇡N

0 � ⇡I

1 ()
8

<

:

a

2+4chs(a�bs)
4(b+ch)

� a

2

4(b+cl)
+ chs[(n�1)a�2nbs]

(n�1)(b+ch)
� F, if s < s1

a

2+4chs(a�bs)
4(b+ch)

� a

2(bc21+clc
2
h)+4clchs(a�bs)[b(2c1�ch)+clch]

4(bc1+clch)
2 � F, otherwise

() F > F ct

1 (s) ⌘
8

<

:

F1 � (n+1)bchs2

(n�1)(b+ch)
, if s < s1

a

2(bc21+clc
2
h)+4clchs(a�bs)[b(2c1�ch)+clch]

4(bc1+clch)
2 � a

2+4chs(a�bs)
4(b+ch)

, otherwise

• When m = n, all the firms invest. This will be an equilibrium i↵

⇡I

n

> ⇡N

n�1 ()
8

<

:

a

2+4cls(a�bs)
4(b+cl)

� F > a

2

4(b+ch)
+ chs[a+n(n�2)bs]

b+ch
, if s < s

n�1

a

2+4cls(a�bs)
4(b+cl)

� F >
a

2(bc2n�1+c

2
l ch)+4clchs(a�bs)[b(2cn�1�cl)+clch]

4(bcn�1+clch)
2 , otherwise

() F < F ct

n

(s) ⌘
8

<

:

F1 +
cls(a�bs)

b+cl
� chs[a+n(n�2)bs]

b+ch
, if s < s

n�1

a

2+4cls(a�bs)
4(b+cl)

� a

2(bc2n�1+c

2
l ch)+4clchs(a�bs)[b(2cn�1�cl)+clch]

4(bcn�1+clch)
2 , otherwise

Now, consider the general case 0 < m < n.

As we will shortly show, for any fixed s, the equilibrium condition for a firm that invests,

i.e., ⇡I

m

> ⇡N

m�1, translates into the condition F < g (m, s) , where g is some function of m

and s.

Observe that the equilibrium condition for a firm that does not invest, ⇡N

m

� ⇡I

m+1, can

be written as F � g (m+ 1, s) . In other words,

M is a Nash equilibrium () g (m+ 1, s)  F < g (m, s)

We will show that g is strictly decreasing in m and that g (1, s) = F ct

1 (s) and g (n, s) =

F ct

n

(s) . This means that there exists a unique equilibrium for every F and s. The set of

functions {g (m, s) , m = 1, ..., n} partition the {s, F} space in m+ 1 regions, one for each

of the Nash equilibria.

From Theorem 4 of Chapter 2, we have

⇡I

m

=

8

<

:

a

2

4(b+cl)
+ chs[(n�m)a�2nbs]

(n�m)(b+ch)
� F if s < s

m

a

2(bc2m+clc
2
h)+4clchs(a�bs)[b(2cm�ch)+clch]

4(bcm+clch)
2 � F otherwise

and

⇡N

m�1 =

8

<

:

a

2

4(b+ch)
+

chs[(n�m+1)2a�n(n�2m+2)bs]
(n�m+1)2(b+ch)

if s < s
m�1

a

2(bc2m�1+c

2
l ch)+4clchs(a�bs)[b(2cm�1�cl)+clch]

4(bcm�1+clch)
2 otherwise
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Since s
m

< s
m�1, the equilibrium conditions for a firm that invests are

F <

8

<

:

g1 (m, s) , if s < s
m

g2 (m, s) , if s
m

 s < s
m�1

g3 (m, s) , otherwise

where

g1 (m, s) = F1 �
bc

h

s2

b+ c
h



n (n+ 2)

(n�m+ 1)2
+

2n

(n�m) (n�m+ 1)2

�

g2 (m, s) =
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�
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l

c2
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�

+ 4c
l

c
h

s (a� bs) [b (2c
m

� c
h

) + c
l

c
h

]

4 (bc
m

+ c
l

c
h

)2

�a (a+ 4c
h

s)

4 (b+ c
h

)
+

n (n� 2m+ 2) bc
h

s2

(n�m+ 1)2 (b+ c
h

)

g3 (m, s) =
a2
�

bc2
m

+ c
l

c2
h

�

+ 4c
l

c
h

s (a� bs) [b (2c
m

� c
h

) + c
l

c
h

]

4 (bc
m

+ c
l

c
h

)2

�
a2
�

bc2
m�1 + c2

l

c
h

�

+ 4c
l

c
h

s (a� bs) [b (2c
m�1 � c

l

) + c
l

c
h

]

4 (bc
m�1 + c

l

c
h

)2

Note that

g1 (m, s
m

) = g2 (m, s
m

)

=
a2 (c

h

� c
l

)

4c
h

(b+ c
l

)2 (b+ c
h

)

⇥


b
[2m (n�m+ 1)� n] c

h

+ (n�m) [(n�m) (n+ 2) + 2] c
l

n (n�m+ 1)2
+ c

l

c
h

�

g2 (m, s
m�1) = g3 (m, s

m�1)

=
a2c

l

(c
h

� c
l

)
h

bch(b+cl)(ch�cl)

n(bcm+clch)
2 + 2[cl(b+ch)�mch(b+cl)]

m(bcm+clch)
+ n+ 2� 2

m

i

4nc
h

(b+ c
l

)2

Define g (m, s) as the concatenation of g1, g2, and g3. The above establishes the conti-

nuity of g with respect to s.

It is easy to show that g1 is strictly decreasing in m.1 Next, we show that g3 is also

strictly decreasing in m.

Let

G
i

(m) =
bc2

m

+ c
l

c
h

c
i

(bc
m

+ c
l

c
h

)2
, i 2 {l, h}

H
i

(m) =
b (2c

m

� c
i

) + c
l

c
h

(bc
m

+ c
l

c
h

)2
, i 2 {l, h}

We have

g3 (m, s) =
a2

4
G

h

(m) + c
l

c
h

s (a� bs)H
h

(m)�
✓

a2

4
G

l

(m) + c
l

c
h

s (a� bs)H
l

(m)

◆

1 @g1
@m = � 2nbchs2

(b+ch)(n�m+1)3

h
n+ 2 +

3(n�m)+1
(n�m)2

i
< 0
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and

@G
i

(m)

@m
=

2bc
l

c
h

(c
h

� c
l

) (c
m

� c
i

)

n (bc
m

+ c
l

c
h

)3

@H
i

(m)

@m
=

2b2 (c
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� c
l

) (c
i

� c
m

)

n (bc
m

+ c
l

c
h

)3

Thus,

a2

4

@G
h

(m)

@m
+ c

l

c
h

s (a� bs)
@H

h

(m)

@m
= �bc

l

c
h

(c
h

� c
l

) (c
h

� c
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) (a� 2bs)2

2n (bc
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l

c
h
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a2

4

@G
l

(m)

@m
+ c

l

c
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s (a� bs)
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l

c
h
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l

) (c
l

� c
m

) (a� 2bs)2

2n (bc
m

+ c
l

c
h

)3
> 0

and
@g3 (m, s)

@m
< 0

Finally, we need to show that g2 (m, s) > g3 (m+ 1, s) for s 2 [s
m

, s
m�1] and that

g1 (m, s) > g2 (m+ 1, s) for s 2 [s
m+1, sm]. Observe that

@g2 (m, s)

@s
=

c
l

c
h

(a� 2bs) [b (2c
m

� c
h

) + c
l

c
h

]

(bc
m

+ c
l

c
h

)2
�

c
h

⇣

a� 2n(n�2m+2)

(n�m+1)2
bs
⌘

b+ c
h

@g3 (m, s)
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= c
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c
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(a� 2bs)



b (2c
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� c
h

) + c
l
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l
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c
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From which we derive
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c
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c
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(a� 2bs) [b (2c
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a� 2n(n�2m+2)
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⌘
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Note that n (n� 2m+ 2)  (n�m+ 1)2 . Thus, for s � 0,

@g2 (m, s)

@s
� @g3 (m, s)

@s
 c

h

(a� 2bs)



c
l

[b (2c
m�1 � c

l

) + c
l

c
h

]

(bc
m�1 + c

l

c
h

)2
� 1

b+ c
h

�

 0

with equality only when m = 1.

When m = 1, g3 (m+ 1, s) < g3 (m, s) = g2 (m, s) for any s 2
⇥

0, a

2b

�

.

When m > 1, g3 (m+ 1, s) < g3 (m, s) < g2 (m, s) because g3 (m, s
m�1) = g2 (m, s

m�1)

by continuity of g, and g2 decreases faster than g3 on [s
m

, s
m�1].
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Next, we show that g2 is also strictly decreasing in m.

@g2 (m, s)

@m
= �bc

l

c
h

(c
h

� c
m

) (a� 2bs)2

2n (bc
m

+ c
l

c
h

)3
� 2n (m� 1) bc

h

s2

(n�m+ 1)2 (b+ c
h

)
< 0

Thus, g2 (m+ 1, s) < g2 (m, s). We conclude by showing that g1 (m, s) � g2 (m, s) for

s 2 [s
m+1, sm] . By continuity of g, we have g2 (m, s

m

) = g1 (m, s
m

) .

g1 (m, s)� g2 (m, s) = � b

(bc
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l
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6
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6

4
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b(ch�cl)+n(n+m)cl(b+ch)]
(n�m)n(b+ch)

s2

�ach(ch�cl)[m2
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n

2(b+ch)
s

+ (n�m)2a2cl(ch�cl)
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4n2(b+cl)

3
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5

g1 � g2 is in inverted parabola whose summit is

s⇤ =
(n�m) a (c

h

� c
l

)
⇥

m2b (c
h

� c
l

) + n2c
l

(b+ c
h

)
⇤

2nc
h

(b+ c
l

) [2m2b (c
h

� c
l

) + n (n+m) c
l

(b+ c
h

)]
< s

m

It has one real root at s
m

and another one at some s < 0. Thus, g1�g2 � 0 on [s
m+1, sm].

The verification that g (1, s) = F ct

1 (s) and g (n, s) = F ct

n

(s) is straightforward. Note in

particular that g2 (1, s) = g3 (1, s) and that s
n

= 0.

The series of functions F ct

k

is the series g (k, s). ⇤

C.4 Proof of Theorem 13
We solve by backward induction.

From the proof of Theorem 5 of Chapter 2, we have firm i0s reaction function given ⌧

and c
i

as:
(

q⇤
i

= a�⌧

2b , x⇤
i

= b⌧

ci(a�⌧) , for 0  ⌧  aci
b+ci

q⇤
i

= a

2(b+ci)
, x⇤

i

= 1, otherwise

This gives the solution to the third stage.

In the second stage,

Firm i will invest () ⇡I

i

> ⇡N

i

Note that the objective functions of firm i and j 6= i are independent of each other.

Since c
l

< c
h

, we have acl
b+cl

< ach
b+ch

, and there are three cases to consider:

1. 0  ⌧  acl
b+cl

: In this case,

⇡I

i

=
(a� ⌧)2

4b
+

⌧2

4c
l

� F

⇡N

i

=
(a� ⌧)2

4b
+

⌧2

4c
h

⇡I

i

> ⇡N

i

() F <
(c

h

� c
l

) ⌧2

4c
l

c
h

⌘ F
l

(⌧)
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2. acl
b+cl

< ⌧  ach
b+ch

: In this case,

⇡I

i

=
a2

4 (b+ c
l

)
� F

⇡N

i

=
(a� ⌧)2

4b
+

⌧2

4c
h

⇡I

i

> ⇡N

i

() F <
a2

4 (b+ c
l

)
� (a� ⌧)2

4b
� ⌧2

4c
h

⌘ F
h

(⌧)

3. ⌧ > ach
b+ch

: In this case,

⇡I

i

=
a2

4 (b+ c
l

)
� F

⇡N

i

=
a2

4 (b+ c
h

)

⇡I

i

> ⇡N

i

() F < F1

Define

f (⌧) =

8

<

:

F
l

(⌧) for 0  ⌧  acl
b+cl

F
h

(⌧) for acl
b+cl

< ⌧  ach
b+ch

F1 otherwise

Let F0 = a

2
cl(ch�cl)

4ch(b+cl)
2 , and recall that F1 = a

2(ch�cl)
4(b+cl)(b+ch)

. f is continuous di↵erentiable,

increasing and positive on [0,+1) . It is useful to consider its inverse f�1. It is easy to show

that

f�1 (F ) =

8

<

:

f�1
1 (F ) = 2

q

clchF

ch�cl
, for 0  F  F0

f�1
2 (F ) = ach

b+ch
� 2

q

bch
b+ch

(F1 � F ), for F0 < F  F1

See Figure C.1 for a plot of the function f�1.

The firm invests () F < f (⌧)

() ⌧ > f�1 (F )

We conclude with the regulator’s problem to find the minimum ⌧ such that the pollution

generated by the firms is less than S.

Suppose that F 2 [0, F0] . In that case, f�1 = f�1
1 and 0  f�1

1 (F )  acl
b+cl

.

If ⌧ > f�1
1 (F ), the firms invest (i.e., c

i

= c
l

). We need to consider the following two

sub-cases:
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Figure C.1. Graph of f�1

1. ⌧ > acl
b+cl

. The firms’ reaction function is q
i

= a

2(b+cl)
and x

i

= 1. The pollution

generated is 0 (the firms abate all their pollution), and the minimum tax rate that

satisfies the pollution constraint is simply ⌧⇤ = acl
b+cl

.

2. f�1
1 (F ) < ⌧  acl

b+cl
. The firms’ reaction function is q

i

= a�⌧

2b and x
i

= b⌧

cl(a�⌧) . The

pollution generated is P (⌧) = n · acl�(b+cl)⌧
2bcl

, which is strictly decreasing in ⌧ . The

minimum ⌧ such that P (⌧)  S is

P (⌧⇤) = S () ⌧⇤ =
c
l

(a� 2bs)

b+ c
l

, if ⌧⇤ > f�1
1 (F )

and ⌧⇤ = f�1
1 (F ) , otherwise. The condition

⌧⇤ > f�1
1 (F ) () F <

c
l

(c
h

� c
l

) (a� 2bs)2

4c
h

(b+ c
l

)2
⌘ F t (s)

When F < F t, ⌧⇤ = cl(a�2bs)
b+cl

and the firm reacts with q
i

= a+2cls
2(b+cl)

and x
i

= a�2bs
a+2cls

.

When F t  F  F0, ⌧⇤ = f�1
1 (F ) = 2

q

clchF

ch�cl
and the firm reacts with q

i

=

1
2b

⇣

a� 2
q

clchF

ch�cl

⌘

and x
i

= 2b
a

p
ch(ch�cl)F/cl+2chF
a

2(ch�cl)�4clchF
. Note that in this case, P (⌧⇤) =

1
b

⇣

a� 2 (b+ c
l

)
q

chF

cl(ch�cl)

⌘

, which is decreasing in F . When F > F t, P (⌧⇤) <

P
�

F t

�

= S. The pollution constraint is slack.

If ⌧  f�1
1 (F ), the firm does not invest, and since ⌧  acl

b+cl
< ach

b+ch
, the firm’s reaction

function is q
i

= a�⌧

2b and x
i

= b⌧

ch(a�⌧) . The pollution generated is P (⌧) = n · ach�(b+ch)⌧
2bch

.

The minimum ⌧ such that P (⌧)  S is ⌧⇤ = ch(a�2bs)
b+ch

.
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The condition

⌧⇤  f�1
1 (F ) () F � c

h

(c
h

� c
l

) (a� 2bs)2

4c
l

(b+ c
h

)2
⌘ F T1 (s)

The firms react with q
i

= a+2chs
2(b+ch)

and x
i

= a�2bs
a+2chs

.

Note that for F 2 [0, F0] ,

c
l

(a� 2bs)

b+ c
l

 min

⇢

c
h

(a� 2bs)

b+ c
h

,
ac

l

b+ c
l

�

f�1
1 (F )  ac

l

b+ c
l

This means that the regulator will choose ⌧⇤ = cl(a�2bs)
b+cl

when F < F t.

When F t  F  F0, the regulator will choose ⌧⇤ = min
n

f�1
1 (F ) , ch(a�2bs)

b+ch

o

.

In other words, (as we have just established), she will choose

• ⌧⇤ = f�1
1 (F ) () F t  F  min

�

F T1, F0
 

;

• ⌧⇤ = ch(a�2bs)
b+ch

() F T1  F  F0.

Suppose now that F 2 (F0, F1] . In that case, f�1 = f�1
2 and acl

b+cl
< f�1

2 (F )  ach
b+ch

.

If ⌧ > f�1
2 (F ), the firms invest, and since ⌧ > acl

b+cl
, the firms’ reaction function is

q
i

= a

2(b+cl)
and x

i

= 1.

The pollution generated is 0 (the firms abate all their pollution), and the minimum tax

rate that satisfies the pollution constraint is simply ⌧⇤ = f�1
2 (F ) = ach

b+ch
�2

q

bch
b+ch

(F1 � F ).

If ⌧  f�1
2 (F ) the firms do not invest, and since ⌧  ach

b+ch
, the firms’ reaction function

is q
i

= a�⌧

2b and x
i

= b⌧

ch(a�⌧) .

The pollution generated is P (⌧) = n · ach�(b+ch)⌧
2bch

, and ⌧⇤ = ch(a�2bs)
b+ch

.

The condition

⌧⇤  f�1
2 (F ) () F � a2 (c

h

� c
l

)

4 (b+ c
l

) (b+ c
h

)
� bc

h

s2

b+ c
h

⌘ F T2 (s) 2

Thus, the regulator will choose

⌧⇤ =

(

f�1
2 (F ) if F0 < F  F T2

ch(a�2bs)
b+ch

if F > max
�

F0, F
T2
 

When the regulator chooses ⌧⇤ = f�1
2 (F ), the firms respond with q

i

= a

2(b+cl)
and

x
i

= 1.

2FT2 is greater than Ft because the former is always greater than F0 while the latter is always smaller

than F0.
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When the regulator chooses ⌧⇤ = ch(a�2bs)
b+ch

, the firms respond with q
i

= a+2chs
2(b+ch)

and

x
i

= a�2bs
a+2chs

.

Finally, since F 2 (F0, F1] , then s 2
h

0, a(ch�cl)
2ch(b+cl)

⌘

.

Let

F T (s) =

(

F T2 (s) for 0  s  a(ch�cl)
2ch(b+cl)

F T1 (s) for a(ch�cl)
2ch(b+cl)

 s  a

2b

It is straightforward to show that F T is continuous, decreasing, and positive. In

particular, we have shown that the firm invests if and only if F < F T , and that when

F t < F < F T , the pollution constraint is slack. ⇤

C.5 Proof of Theorem 14
We need to show that 8 s 2

�

0, a

2b

�

F t (s) < F ct

n

(s) < F cap (s) < F ct

1 (s) < F T (s)

We begin by showing that 8 s 2
�

0, a

2b

�

F t (s) < F ct

n

(s)

Recall that

F t (s) =
c
l

(c
h

� c
l

) (a� 2bs)2

4c
h

(b+ c
l

)2

On the interval (0, s
n�1) where s

n�1 =
a(ch�cl)

2nch(b+cl)

F ct

n

(s) =
a2

4 (b+ c
l

) (b+ c
h

)
+

c
l

s (a� bs)

b+ c
l

� c
h

s [a+ n (n� 2) bs]

b+ c
h

We will show that F ct

n

� F t is strictly decreasing for s 2 (0, s
n�1), which implies that

�

F ct

n

� F t

�

(s) >
�

F ct

n

� F t

�

(s
n�1) =

a2bc
l

(c
h

� c
l

)2 [b (c
l

+ 2 (n� 1) c
h

) + (2n� 1) c
l

c
h

]

4n2c3
h

(b+ c
l

)4
> 0

�

F ct

n

� F t

�0
(s) = � b

c
h

(b+ c
l

)2 (b+ c
h

)
⇥

h

ab (c
h

� c
l

)2 + 2s
h

(n� 1)2 c
l

c
h

(2bc
h

+ c
l

c
h

) + b2
�

c
l

(2c
h

� c
l

) + n (n� 2) c2
h

�

ii

< 0
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On the interval
⇥

s
n�1,

a

2b

�

F ct

n

(s) =
c
l

(c
h

� c
l

)
⇥

n2c
l

c
h

+ b
�

c
l

+
�

n2 � 1
�

c
h

�⇤

(a� 2bs)2

4 (b+ c
l

) [b (c
l

+ (n� 1) c
h

) + nc
l

c
h

]2

Likewise, we show that F ct

n

� F t is strictly decreasing for s 2
�

s
n�1,

a

2b

�

, which implies

that
�

F ct

n

� F t

�

(s) >
�

F ct

n

� F t

�

⇣ a

2b

⌘

= 0

�

F ct

n

� F t

�0
(s) = �b2c

l

(c
h

� c
l

)2 [b (c
l

+ 2 (n� 1) c
h

) + (2n� 1) c
l

c
h

] (a� 2bs)

c
h

(b+ c
l

)2 [b (c
l

+ (n� 1) c
h

) + nc
l

c
h

]2
< 0

Next, we show that 8 s 2
�

0, a

2b

�

F ct

n

(s) < F cap (s)

Recall that

F cap (s) =
(c

h

� c
l

) (a� 2bs)2

4 (b+ c
l

) (b+ c
h

)

On the interval (0, s
n�1)

F ct

n

(s) =
a2

4 (b+ c
l

) (b+ c
h

)
+

c
l

s (a� bs)

b+ c
l

� c
h

s [a+ n (n� 2) bs]

b+ c
h

We have

F cap (s)� F ct

n

(s) =
(n� 1)2 bc

h

s2

b+ c
h

> 0

On the interval
�

s
n�1,

a

2b

�

F ct

n

(s) =
c
l

(c
h

� c
l

)
⇥

n2c
l

c
h

+ b
�

c
l

+
�

n2 � 1
�

c
h

�⇤

(a� 2bs)2

4 (b+ c
l

) [b (c
l

+ (n� 1) c
h

) + nc
l

c
h

]2

We have

F cap (s)� F ct

n

(s) =
(n� 1)2 bc

h

(c
h

� c
l

)2 (a� 2bs)2

4 (b+ c
h

) [b (c
l

+ (n� 1) c
h

) + nc
l

c
h

]2
> 0

Next, we show that 8 s 2
�

0, a

2b

�

F cap (s) < F ct

1 (s)

On the interval (0, s1) where s1 =
(n�1)a(ch�cl)
2nch(b+cl)

F ct

1 (s) =
a2 (c

h

� c
l

)

4 (b+ c
l

) (b+ c
h

)
� (n+ 1) bc

h

s2

(n� 1) (b+ c
h

)

We have

F ct

1 (s)� F cap (s) =
bs

(n� 1) (b+ c
l

) (b+ c
h

)
⇥

[(n� 1) a (c
h

� c
l

)� [(n+ 1) c
l

c
h

+ b (c
l

+ n (2c
h

� c
l

))] s]
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F ct

1 (s)� F cap (s) > 0

() s <
(n� 1) a (c

h

� c
l

)

(n+ 1) c
l

c
h

+ b (c
l

+ n (2c
h

� c
l

))

This is true because

s1 =
(n� 1) a (c

h

� c
l

)

2nc
h

(b+ c
l

)
<

(n� 1) a (c
h

� c
l

)

(n+ 1) c
l

c
h

+ b (c
l

+ n (2c
h

� c
l

))

On the interval
�

s1,
a

2b

�

F ct

1 (s) =
c
h

(c
h

� c
l

)
⇥

n2c
l

c
h

+ b
��

n2 � 1
�

c
l

+ c
h

�⇤

(a� 2bs)2

4 (b+ c
h

) [b ((n� 1) c
l

+ c
h

) + nc
l

c
h

]2

We have

F ct

1 (s)� F cap (s) =
(n� 1)2 bc

l

(c
h

� c
l

) (a� 2bs)2

4 (b+ c
l

) [b ((n� 1) c
l

+ c
h

) + nc
l

c
h

]2
> 0

We conclude with the proof that 8 s 2
�

0, a

2b

�

F ct

1 (s) < F T (s)

There are three cases:

1. On the interval (0, s1)

F ct

1 (s) =
a2 (c

h

� c
l

)

4 (b+ c
l

) (b+ c
h

)
� (n+ 1) bc

h

s2

(n� 1) (b+ c
h

)

F T (s) =
a2 (c

h

� c
l

)

4 (b+ c
l

) (b+ c
h

)
� bc

h

s2

b+ c
h

It follows immediately that

F ct

1 (s) < F T (s)

2. On the interval (s1, sn�1)

F ct

1 (s) =
c
h

(c
h

� c
l

)
⇥

n2c
l

c
h

+ b
��

n2 � 1
�

c
l

+ c
h

�⇤

(a� 2bs)2

4 (b+ c
h

) [b ((n� 1) c
l

+ c
h

) + nc
l

c
h

]2

F T (s) =
a2 (c

h

� c
l

)

4 (b+ c
l

) (b+ c
h

)
� bc

h

s2

b+ c
h
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F T is strictly concave3, while F ct

1 is strictly convex4. Thus, F T � F ct

1 is strictly

concave, which implies that on the interval (s1, sn�1)

�

F T � F ct

1

�

(s) � min

⇢

�

F T � F ct

1

�

(s1) ,
�

F T � F ct

1

�

✓

a (c
h

� c
l

)

2c
h

(b+ c
l

)

◆�

)
�

F T � F ct

1

�

(s) � min

8

<

:

(n�1)a2b(ch�cl)
2

2n2
ch(b+ch)(b+cl)

2 ,

a

2
bcl(ch�cl)

2[b(2(n�1)cl+ch)+(2n�1)clch]

4ch(b+cl)
2[b((n�1)cl+ch)+nclch]

2

9

=

;

> 0

3. On the interval
�

s
n�1,

a

2b

�

F ct

1 (s) =
c
h

(c
h

� c
l

)
⇥

n2c
l

c
h

+ b
��

n2 � 1
�

c
l

+ c
h

�⇤

(a� 2bs)2

4 (b+ c
h

) [b ((n� 1) c
l

+ c
h

) + nc
l

c
h

]2

F T (s) =
c
h

(c
h

� c
l

) (a� 2bs)2

4c
l

(b+ c
h

)2

The condition

F ct

1 (s) < F T (s) ()

b (c
h

� c
l

) [(2n� 1) c
l

c
h

+ 2 (n� 1) bc
l

+ bc
h

] > 0

which is always true. ⇤

3FT 00
(s) = � 2bch

b+ch
< 0

4F ct00
1 (s) =

2b2ch(ch�cl)[b((n
2�1

)

cl+ch)+n2clch]

(b+ch)[b((n�1)cl+ch)+nclch]2
> 0
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