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ABSTRACT 
 
 
 

 The development of an animal from a single cell to an organism requires that 

individual cells undergo several sequential processes. The final stages, termed 

commitment and differentiation, rely heavily on the cell-intrinsic activity of regulatory 

transcription factor networks. The early B cell factor (EBF) family transcription factors 

are known to have an important influence on commitment and differentiation in neurons, 

B cells and adipocytes in vertebrate animals, and muscle cells in invertebrate animals. 

The full range of their activity, though, is not understood. We have utilized a microarray 

screen in Xenopus laevis to identify an extensive list of candidate targets of EBF 

transcriptional activity, as a step toward expanding understanding of the scope of EBF 

functions. This thesis focuses on the functions of EBF proteins in neuron and muscle cell 

development. To expand current knowledge of EBF functions in neuronal development, 

we selectively chose candidate targets from the microarray screen that have expected 

function in neurons, and verified that their expression depends on EBF activity. These 

targets demonstrate several previously unknown functions of EBF proteins in neuronal 

cell commitment and differentiation. We also have discovered a new function of the EBF 

protein partner ZFP423 as a synergistic mediator of the critical Notch signaling pathway, 

and show that EBF proteins can promote neuronal commitment in part by blocking the 

function of ZFP423. We next demonstrate that EBF proteins are necessary for normal 

Xenopus skeletal muscle development, and that they act by controlling 



expression of several genes critical for commitment and differentiation of muscle cells. 

This thesis significantly contributes to understanding of the function of EBF proteins in 

neuronal development. It also demonstrates for the first time an important role for EBF 

proteins in muscle cell development in vertebrates. Overall, this thesis expands our 

understanding of how EBF proteins participate in the complex transcriptional regulation 

of vertebrate development. 
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The mechanisms of animal development, though highly ordered, are exceedingly 

complex. One crucial aspect of this complexity is the progression of cells from an 

uncommitted state to, eventually, the highly differentiated states of the many tissue types 

of an adult animal. A common thread in the process of cell development is an early 

dependence on cell-extrinsic signals, followed by increasing dependence on cell-intrinsic 

signals, especially transcription factors.  

We now know that a relatively limited number of cell-extrinsic paracrine signals 

and signaling pathways underlie a great number of the processes of early development. 

For example, TGF-beta, Hedgehog, FGF, and Wnt family members are used as paracrine 

signals in widely divergent tissue types and across vastly different animal species 

(Reviewed in Ciani and Salinas, 2005; Dessaud et al., 2008; Wu and Hill, 2009). 

However, it is a less certain proposition that there could be extensively shared 

mechanisms involved in the more terminal events of cell development, as cells become 

dramatically different. A critical step toward an understanding of cell commitment and 

differentiation, then, is analysis of the precise transcriptional targets of the cell-intrinsic 

transcription factors that participate in these developmental events. The EBF (early B cell 

factor, also called Collier/Olf/Ebf (COE) and Olf/Ebf (O/E)) protein family is one such 

group of transcription factors, with involvement in a variety of processes in an intriguing 

array of tissue types. The aim of this thesis is to provide an extensive characterization of 

the transcriptional targets and an interacting protein partner of EBF transcription factors, 

and to use this knowledge to help explain how EBF proteins impact a wide array of 

developmental events. 
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Common processes in the development  
of different cell lineages 

A fertilized egg develops into a complicated organism containing many cell types, 

including muscle cells, neuronal cells, epithelial cells, and connective tissue cells such as 

lymphocytes and adipocytes. The process of development of any cell type is a 

progression through multiple events (Figure 1.1). These are patterning (or regional 

specification), proliferation, commitment, and differentiation (reviewed in Slack, 1991; 

Wolpert, 1977). Some cells also migrate during development. Generally, the term 

patterning refers to early events such as production of the three primary germ layers of an 

animal, regional specification of areas like the neural plate, or formation of the body 

axes. Proliferation generates adequate numbers of cells for formation of a particular 

tissue, and is therefore independently regulated in different tissues. Commitment 

describes the further maturation of cells, whereby they adopt a particular fate. It includes 

a reversible phase, called specification, and an irreversible phase, called determination. 

Finally, the term differentiation usually is used to describe all aspects of the further 

development of a committed cell. Fully differentiated cells have a multitude of 

specialized cell products and functions (reviewed in Slack, 1991).  

A combination of different extrinsic signals and intrinsic signals drives the 

specific developmental pathway for each lineage (Figure 1.1). While extrinsic signals are 

important for patterning and proliferation, intrinsic signals become more important for 

commitment and differention. Understanding more about how intrinsic signals work in 

their complex transcriptional networks will help us to understand the common yet 

different processes of commitment and differentiation of multiple lineages.  
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EBF molecular characterization, and functions in the  
development of connective tissue cells 

EBF family members and structure 

The EBF family of transcription factors is recognized for its multiple 

transcriptional roles in the development of a variety of tissues (reviewed in Dubois and 

Vincent, 2001; Liberg et al., 2002; Lukin et al., 2008). This family includes EBF1, 2, 3 

and O/E-4 in mammals (Garel et al., 1997; Hagman et al., 1993; Kudrycki et al., 1993; 

Malgaretti et al., 1997; Wang et al., 2002; Wang et al., 1997), XEBF2 and XEBF3 in 

Xenopus (Dubois et al., 1998; Pozzoli et al., 2001), and ZCOE2 in zebrafish (Bally-Cuif 

et al., 1998). Invertebrate members of this gene family include Collier in Drosophila, and 

UNC3 in C. elegans (Crozatier et al., 1996; Prasad et al., 1998).  

EBF family proteins contain a DNA binding domain (a zinc finger coordination 

motif), which can also participate in dimerization and transactivation, an atypical helix-

loop-helix (HLH) domain, which is critical for formation of homo- and heterodimers, and 

a C-terminal domain, which is also important for transactivation (Hagman et al., 1993; 

Hagman et al., 1995; Wang et al., 1997). The DNA binding domain of EBF family 

members recognizes the following sequence in promoters of targets: 5’-

ATTCCCNNGGGAAT-3’ (Hagman et al., 1993; Hagman et al., 1995; Wang and Reed, 

1993). The DNA binding domain is itself atypical, containing a Zn finger region known 

as a zinc knuckle motif, and this motif is important for the specificity of EBF binding to 

target gene promoters (Fields et al., 2008; Hagman et al., 1995). The atypical HLH motif 

in vertebrates contains helix 1, a loop, and a duplicated helix 2 (Hagman et al., 1995), 

while Collier and unc-3 have only one helix 2 (Crozatier et al., 1996; Prasad et al., 1998). 



  6 

EBF family members are expressed in nervous tissue, muscle tissue, B cells and 

adipocytes. Some functions of EBF proteins are conserved among the tissues, while 

others are tissue specific (reviewed in Dubois and Vincent, 2001; Liberg et al., 2002; 

Lukin et al., 2008). EBF functions in B cell and adipocyte development will be discussed 

in the following section, while functions in neuron development and muscle development 

will be discussed in separate sections below. 

 
 
EBF functions in B cell development 

Mature B lymphocytes are derived from hematopoietic stem cells (HSCs) through 

a multi-step pathway of differentiation. HSCs become multipotential progenitors (MPP), 

which then become common lymphoid progenitors (CLP), then B-biased progenitors, 

then pro-B cells, and then pre-B cells, before becoming mature B lymphocytes. Ebf1 

knockout mice do not have mature B cells, and B cell development is arrested in the pro-

B cell stage. They do not progress to the pre-B cell stage, as evidenced by the fact that the 

cells in knockout mice fail to express genes coding for proteins involved with B cell 

differentiation, including λ5, VpreB, CD19, mb-1, B29 and RAG1 (Lin and Grosschedl, 

1995). During B cell development, the expression of Ebf1 is controlled by PU.1, IL-7R 

and E2A, which are expressed from the MPP or CLP stages (reviewed in Hagman and 

Lukin, 2005; Singh et al., 2005; Smith and Sigvardsson, 2004). Interestingly, the bHLH 

E2A proteins (also called E proteins) E12 and E47 are upstream of Ebf1 (Greenbaum and 

Zhuang, 2002; Kee and Murre, 1998; Kwon et al., 2008; Seet et al., 2004; Smith et al., 

2002). Furthermore, E2A expression is dramatically upregulated at the time of Ebf1 gene 

expression in B cells, but this upregulation does not occur in Ebf1 null mice (Zhuang et 
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al., 2004). These experiments suggest that there is a positive feedback loop between E2A 

and EBF. Also, mice double heterozygous for E2A and Ebf1 have more severe defects of 

B cell development than single homozygous null mice of each genes, suggesting 

synergistic regulation of gene expression by E2A and EBF1 (O'Riordan and Grosschedl, 

1999). For the target genes λ5 and VpreB, this synergistic effect has been directly 

demonstrated (Sigvardsson, 2000; Sigvardsson et al., 1997). Ebf1 also can control the 

expression of Pax5, which is an important gene for B cell commitment (Lin and 

Grosschedl, 1995; O'Riordan and Grosschedl, 1999; Urbanek et al., 1994). For the 

expression of the B-cell differentiation marker mb-1, Ebf1 cooperates with E2A, Pax5 

and Runx1 (also called Aml1). In particular, Ebf1 is required, for unclear reasons, for 

demethylation of the mb-1 promoter, which is a critical step for the expression of mb-1 

(Gao et al., 2009; Maier et al., 2004; Sigvardsson et al., 2002).  These results, taken 

together, demonstrate a significant role for Ebf1 in mouse B cell commitment and 

differentiation, with important target genes and complex relationships with other 

transcription factors. Ebf3 is not expressed in B cells, and little is known of any potential 

role for Ebf2 in B cell development (Garel et al., 1997). 

 
 
EBF functions in adipocyte development  

Ebf1, Ebf2 and Ebf3 are expressed in mouse adult adipocytes, and in induced 

preadipocyte cells (Dowell and Cooke, 2002; Hagman et al., 1993; Jimenez et al., 2007). 

When Ebf1, Ebf2 and Ebf3 are ectopically expressed in the preadipocyte cells, they 

promote adipogenesis by controlling the expression of many genes involved in adipocyte 

differentiation and function. These targets include C/EBPα, C/EBPδ, PPARγ and Glut4 
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(Akerblad et al., 2002; Akerblad et al., 2005; Dowell and Cooke, 2002; Jimenez et al., 

2007). Ebf1 in particular can control the expression of PPARγ and C/EBPα directly, and 

C/EBPδ through C/EBPα (Jimenez et al., 2007). C/EBPδ and another protein, C/EBPβ, 

are critical for adipogenesis, and are expressed very early (within two hours) when 

preadipocyte cell lines are induced to differentiate (Cao et al., 1991; Jimenez et al., 2007; 

Yeh et al., 1995). Among C/EBPβ, C/EBPδ double knockout mice, 85% of animals die 

perinatally for unknown reasons, and the surviving animals have severe defects in 

adipose tissue (Tanaka et al., 1997). The expression of C/EBPα and PPARγ is later than 

C/EBPβ and C/EBPδ (Cao et al., 1991; Jimenez et al., 2007; Yeh et al., 1995), but these 

two genes are also very important genes for adipocyte differentiation (Barak et al., 1999; 

Lin and Lane, 1992; Rosen et al., 1999).  These results suggest that Ebf proteins may act 

downstream of C/EBPβ and C/EBPδ and upstream of PPARγ and C/EBPα, with a 

positive feedback loop to C/EBPδ, to reinforce the early phase of adipocyte 

differentiation (Jimenez et al., 2007). 

 
 

Neuronal development and EBF proteins 

Aspects of neuronal development relevant to the functions of EBF 

 The development of neurons follows the general progression through patterning, 

proliferation, commitment, and differentiation.  In animals with three germ layers, neural 

tissue is derived from ectoderm. The process of patterning to form nervous tissue relies 

on a combination of signaling pathways, including FGF, Wnt, and BMP signaling. One 

common mechanism, which is best understood in Xenopus, involves the signaling 

molecules Noggin and Chordin. These signals are secreted by the Spemann organizer, 
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and inhibit BMP signaling in the ectodermal tissue. This inhibition allows ectoderm 

tissue to follow its default course toward neural patterning (reviewed in De Robertis and 

Kuroda, 2004). These events lead to intrinsic activity of molecules like SoxD, Zic1, Zic3, 

and Geminin, which act to drive neurogenesis in the neural plate (reviewed in Chitnis, 

1999; Stern, 2005). Regions of ectoderm that do not receive this BMP antagonist 

signaling, due to their distance from the notochord, become epidermis. 

Patterning is followed by extensive mitotic proliferation of neuroblasts, to 

generate appropriate neuronal cell numbers. Proliferation occurs in a tissue-specific 

manner, driven both by intrinsic signals like Pax6 and Emx2 (Estivill-Torrus et al., 2002; 

Galli et al., 2002), and by extrinsic Notch signaling (discussed below), and terminates 

with cell cycle exit. 

The events of cell cycle exit and commitment of neurons are often coupled 

(Buttitta et al., 2007; Sakagami et al., 2009). A key event in neuronal commitment is the 

beginning of expression of members of the basic helix-loop-helix (bHLH) class of 

transcription factors, which act as important regulators of neurogenesis. The proneural 

bHLH transcription factors include an Ash group and an Ath group, defined based on 

their similarity to the Drosophila AS-C complex and the Drosophila atonal gene, 

respectively (reviewed in Vetter and Brown, 2001). The Ath group includes the 

Neurogenin family (Ngn1, 2, and 3) and the protein NeuroD. The Neurogenins and 

NeuroD are widely expressed in both the central and peripheral nervous systems 

(Sommer et al., 1996). The Neurogenins are involved in the commitment step of neuronal 

development, and mice lacking these genes have decreased cell numbers in spinal cord 

and in cranial and vertebral ganglia (Fode et al., 1998; Ma et al., 1998; Ma et al., 1999; 
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Scardigli et al., 2001). Furthermore, Neurogenin-related-1 (NGNR-1) can drive 

expression of the Notch ligand Delta1, which participates in lateral inhibition of 

neurogenesis in neighboring cells (Ma et al., 1996). NeuroD is a key target of 

Neurogenins, and despite the limited defects of NeuroD null mice, its widespread 

expression and its potent pro-neural activity suggest that it is important in the initiation of 

neural differentiation events in many nervous system regions (Lee et al., 1995; Logan et 

al., 2005; Seo et al., 2007). 

Another aspect of neuronal differentiation involves the outgrowth of axons and 

dendrites (collectively termed neurites). Actin microfilaments, microtubules, and 

intermediate filaments are all cytoskeletal elements involved in this process. In particular, 

actin filaments and microtubules are heavily involved in the growth and length of 

neurites, while intermediate filaments are involved in the diameter of neurites, stabilizing 

neurites, and the growth of neurites in certain neuronal populations (reviewed in 

Lariviere and Julien, 2004). These cytoskeletal elements are regulated both at the 

transcriptional level and by post-translational phosphorylation (reviewed in Sihag et al., 

2007). 

The abilities to regulate cellular homeostasis, form and strengthen appropriate 

synaptic connections, and migrate to their proper locations in the animal are all additional 

critical aspects of neuronal development, each requiring expression of large numbers of 

genes. To date, there is no complete picture of the transcription factor networks acting to 

regulate these complex processes of commitment, neurite growth, and other aspects of 

differentiation. 
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EBF function in neuronal development  

EBF transcription factors are known to influence many aspects of neuronal 

development, and some of their target genes and mechanisms of action are known. They 

are known to influence multiple populations of developing neurons, and they affect 

commitment, differentiation, neurite development, and cell migration (reviewed in 

Dubois and Vincent, 2001; Liberg et al., 2002). One of the best areas of understanding of 

EBF protein functions is in their roles in stabilizing cell commitment. Dubois et al. 

showed that EBF2 can affect neuronal progenitor cell commitment in early Xenopus 

embryos by reinforcing the expression of the proneural basic helix-loop-helix (bHLH) 

transcription factor NGNR-1, and by maintaining the expression of Delta1 (Dubois et al., 

1998). Misexpressed mouse Ebf1 in chick spinal cord leads to upregulation of the 

proneural bHLH genes Ngn1 and Ngn2, which also indicates that Ebf proteins stabilize 

neuronal commitment in this tissue (Garcia-Dominguez et al., 2003).  

EBF proteins also have critical roles in neuronal cell differentiation. 

Misexpression of Ebf1 in chick spinal cord leads to upregulation of the interneuron 

markers CRABP1 and Lim1 in motor neuron regions, which suggests an increase in 

interneurons (and a decrease in motor neurons). This suggests that EBF proteins can 

affect neuronal subtype specification (Garcia-Dominguez et al., 2003). In Ebf1 null 

mouse striatum, early neuronal cells show abnormal expression of several genes, 

indicating that their differentiation process is disrupted (Garel et al., 1999). In this mouse, 

the expression levels of CRABP-1 and cadherin-8 genes are downregulated in the lateral 

ganglionic eminence (LGE) (Garel et al., 1999). EBF2 and EBF3 both are important 

factors for neuronal differentiation during early Xenopus neurogenesis. When 
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overexpressed in Xenopus embryos, ebf2 and ebf3 lead to ectopic expression of neuronal 

specific markers like n-tubulin and nf-m (Dubois and Vincent, 2001; Pozzoli et al., 2001). 

In Drosophila and C. elegans ventral nerve cord, the EBF orthologs Collier and UNC-3 

control the fate of specific subsets of interneurons and motor neurons (Baumgardt et al., 

2007; Prasad et al., 2008). In Drosophila, there are some known targets through which 

Collier can affect interneuron fate. 

Several different experiments show a strong role for Ebf proteins in neurite 

formation and guidance. In Ebf1 null mice, the thalamocortical fibers in the LGE 

fasciculate abnormally (Garel et al., 1999). In this region, Sema6a expression also is 

downregulated and this may lead to abnormal fiber growth (Garel et al., 2002). Olfactory 

axons in both Ebf2 and Ebf3 null mice show defects in their projection to the dorsal 

olfactory bulb surface. In Drosophila, Collier is an important factor for the control of 

dendrite length and branching in type IV dendritic arborization (da) neurons, and Spastin 

is a known target in this neuron type (Crozatier and Vincent, 2008; Hattori et al., 2007; 

Jinushi-Nakao et al., 2007). In C. elegans, the unc-3 mutation causes modest 

defasciculation and pathfinding defects in motor neurons (Prasad et al., 1998).  

Finally, EBF proteins also are important for neuronal cell migration. Ebf2 null 

mice have defects of the migration of gonadotropin releasing hormone-synthesizing 

(GnRH) neurons from the olfactory epithelium to the hypothalamus, and defects of 

Purkinje neuron migration from the anterior cortical transitory zone to their final position 

beneath the external granular layer in cerebellar cortex (Corradi et al., 2003; Croci et al., 

2006). In Ebf1 null mice, facial branchiomotor (fbm) neurons migrate from rhombomere 

4 (r4) not only to r6 but also to r5 in the early embryo (Garel et al., 2000). In the 
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migrating fbm neurons in r5, the expression level of Tag-1 is slightly reduced, and the 

expression level of Cadherin-8 is upregulated (Garel et al., 2000). When Ebf1 is 

misexpressed in chick spinal cord, neuroepithelial progenitors migrate toward the mantle 

layer faster than normal, and the expression of NF and R-cadherin are upregulated 

(Garcia-Dominguez et al., 2003). 

Experiments like those described above provide excellent clues to EBF protein 

functions in neuronal development in these systems. However, Ebf genes are strongly 

expressed in differentiating central and peripheral neurons throughout development 

(Davis and Reed, 1996; Garel et al., 1997), so it is important to ask whether additional 

important targets and mechanisms of EBF function exist. 

 
 

EBF interactions with the protein ZFP423  
and the Notch pathway 

EBF forms heterodimers with ZFP423 

EBF proteins can function as homodimers, but can also function as heterodimers 

with the protein ZFP423 (Zinc finger protein 423) (Hata et al., 2000; Tsai and Reed, 

1997, 1998). ZFP423 (also known as OAZ (O/E associated zinc finger protein) and 

EBFAZ (EBF associated zinc finger protein)) is a 30 zinc finger domain nuclear protein. 

It has a DNA binding domain and protein interaction domains, and can function as a 

transcription factor by heterodimerizing with SMADs, in addition to EBF proteins. By 

interacting with the SMAD1-SMAD4 complex after BMP treatment, ZFP423 can control 

the expression of BMP target genes in cultured cells and in Xenopus (Hata et al., 2000; 

Ku et al., 2006; Shim et al., 2002).  
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There is a clear interaction between Zfp423 and EBF proteins in neuronal 

development in olfactory and cerebellar tissues. In rat olfactory neuron differentiation, 

ZFP423 prevents EBF1 and probably other EBF family members from binding to the 

EBF-binding sites of olfactory specific genes by forming heterodimers, which prevents 

EBF from promoting neuronal differentiation (Tsai and Reed, 1997, 1998). This 

involvement of both EBF and Zfp423 is seen in the finding that in both Zfp423 null mice 

and Ebf2 and Ebf3 null mice, the axons of olfactory receptor neurons (ORNs) fail to 

reach the caudal region of the olfactory bulb (Cheng and Reed, 2007; Wang et al., 2004). 

Interestingly though, artificially sustained expression of Zfp423 throughout ORN 

development leads to arrested ORN maturation at an early stage (Cheng and Reed, 2007). 

These results raise the possibility that inhibition of ZFP423 activity may also be 

important for neuronal commitment. Since EBF proteins are known to interact with 

ZFP423, they are good candidates for inhibitors of ZFP423 activity, but it is not known 

whether EBF proteins in fact have this function. 

Zfp423 null mice also show profound hypoplasia of the cerebellar vermis (Alcaraz 

et al., 2006; Cheng et al., 2007; Warming et al., 2006). In these null mice, proliferation of 

granule cells is reduced, and several aspects of Purkinje cell (PC) development are 

disrupted, including reduced PC number, defective migration and reduced dendritic 

arborization. Interestingly, there are similar defects in cerebellar PC development in Ebf2 

null mice (Croci et al., 2006), suggesting that the interaction between ZFP423 and EBF 

may be important for cerebellar development as well. The reduced proliferation of 

cerebellar granule cells in Zfp423 null mice suggests that ZFP423 must be involved in 

neuronal cell proliferation, but the mechanism is not known.  
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Notch signaling and EBF  

 Notch signaling is critical for a wide variety of events in development, with core 

mechanisms conserved across species separated by hundreds of millions of years 

(reviewed in Artavanis-Tsakonas et al., 1999; Kageyama et al., 2009). In neurogenesis, 

Notch signaling serves to delay neuronal commitment and differentiation (Figure 1.2). In 

doing so, it also maintains a progenitor population for the production of later-born 

neuronal and glial cell types (Dorsky et al., 1997, and reviewed in Kageyama et al., 

2007). 

 The mechanism by which Notch signaling delays neuronal commitment begins 

with the Notch receptor binding transmembrane ligands of the Delta or Jagged/Serrate 

family, expressed on adjacent cells. This binding leads to cleavage of the Notch 

intracellular domain (Brou et al., 2000; Mumm et al., 2000), which then translocates to 

the nucleus, and initiates transcription of target genes such as Drosophila Enhancer of 

Split, or vertebrate Hairy, Hes1 and Hes5/ERS1 (Fryer et al., 2002; Hsieh et al., 1999; 

Jarriault et al., 1995; Jennings et al., 1994; Ohtsuka et al., 1999; Sasai et al., 1992; 

Wallberg et al., 2002; Wu et al., 2000). These genes code for proteins that block the 

activity of bHLH transcription factors, like Neurogenin and ATH5 (Kageyama et al., 

2005; Schneider et al., 2001). The potency of Notch signaling is illustrated by the 

phenotype of Hes1/Hes5 double mutants, which exhibit massive premature 

differentiation, especially in the dorsal neural tube (Hatakeyama et al., 2004). 

 The interactions between Notch signaling and EBF proteins have been studied in 

several tissues, including Xenopus nervous system, Drosophila muscle and mouse B 

cells. During primary neurogenesis in Xenopus, the function of EBF2 (but not EBF3) as a  
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neuronal differentiation factor is controlled by Notch signaling (Dubois et al., 1998; 

Dubois and Vincent, 2001; Pozzoli et al., 2001). When ebf2 is coinjected with the 

dominant negative form of delta (XDeltadn, (Chitnis et al., 1995)), the ectopic expression 

of neuronal differentiation markers is strongly upregulated compared to the injection of 

ebf2 alone or XDeltadn alone (Dubois et al., 1998).  

Interestingly, although expression of ebf2 is slightly later than the expression of 

the bHLH gene ngnr-1 in Xenopus embryos, ebf2 can drive expression of ngn-r1 and 

delta (Dubois et al., 1998). These results suggest that there is an early period where 

Notch signaling blocks the expression of both ngnr-1 and ebf2 during neuronal progenitor 

development, followed, in some progenitors, by increased expression of ngnr-1 and then 

ebf2, followed in turn by a period where EBF2 provides positive feedback to drive ngnr-1 

and delta expression, to stabilize and promote neuronal commitment and differentiation 

(Dubois et al., 1998; Dubois and Vincent, 2001). The aspects of Notch signaling that 

suppress Collier or EBF activity, and whereby Collier or EBF eventually overcome this 

negative regulation, are similarly important regulatory pathways for Drosophila muscle 

development and murine B cell development (Crozatier and Vincent, 1999; Smith et al., 

2005; Souabni et al., 2002). While it is known that EBF proteins can increase delta levels 

cell-intrinsically, the full extent of interaction between EBF activity and Notch signaling 

is not known, and the involvement of EBF proteins in promoting cell commitment 

suggests the possibility of a more extensive interaction.  
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Muscle development and EBF proteins 

Xenopus skeletal muscle development 

In Xenopus, prior to metamorphosis, skeletal muscle arises from early mesoderm 

tissue, which is induced by the mesoderm inducing factors Nodal, BMP, Wnt and FGF 

(reviewed in Chanoine and Hardy, 2003; Elinson, 2007; Kimelman, 2006; Kumano and 

Smith, 2002). Mesoderm tissue becomes presomitic mesoderm, and somites are formed 

from this presomitic mesoderm through the process of somitogenesis. Xenopus 

somitogenesis is different from mouse somitogenesis. During Xenopus somitogenesis, a 

patch of vertically arrayed cells rotates together to assume a horizontal orientation, and 

after rotation, they form segmented somites (Hamilton, 1969; Youn and Malacinski, 

1981). Most cells in a somite are myotome cells, which will become myoblasts, while 

other cells will become dermis and cartilage. Next, some cells in the ventral lip (hypaxial 

dermamyotome, far from the neural tube) of the somites will migrate ventrally, to form 

mature hypaxial muscle (Martin and Harland, 2001, 2006), while cells in the dorsal lip 

(epaxial dermamyotome, close to the neural tube) will eventually become epaxial back 

muscle.  

In Xenopus, the myogenic regulatory factors (MRFs) MYF5 and MYOD are 

expressed early, in presomitic mesoderm during gastrulation (Dosch et al., 1997; 

Hopwood et al., 1989, 1991), while mouse MyoD and Myf5 are detected only from early 

somite stages (Kablar et al., 1998; Ott et al., 1991; Sassoon et al., 1989). In Xenopus, the 

mesoderm inducing factors FGF, TGFβ/activin, and Wnt8 can drive the expression of 

myod (and myf5) in presomitic mesoderm during gastrulation (Chen et al., 2003; Fisher et 

al., 2002; Hoppler et al., 1996; Isaacs et al., 1994; Kumano et al., 2001; Shi et al., 2002; 
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Standley et al., 2001). These early expression patterns suggest that MYOD and MYF5 

can be involved in Xenopus muscle developmental steps earlier than in mouse. Functional 

evidence of this early involvement comes from experiments showing that when MYF5 

function is blocked by morpholinos, normal development of presomitic mesoderm and 

somites is disrupted (Keren et al., 2005). In developing Xenopus somites, myf5 is 

expressed in the dorsal lip and ventral lip and myoD is expressed throughout the somite 

(Martin and Harland, 2001; Martin et al., 2007).  

While the cells of the dorsal lip are specified in a region close to the eventual 

placement of the muscles they will form, cells of the ventral lip must migrate 

substantially before maturation as muscle fibers. Myoblasts migrating ventrally from 

expanding hypaxial myotome compose what is termed the migrating hypaxial muscle 

anlagen, which will form abdominal muscles. LBX1 is an important homeobox 

transcription factor for this cell migration in Xenopus (Martin and Harland, 2006), but 

myf5 and myoD are also expressed in this migrating hypaxial muscle anlagen (Martin and 

Harland, 2001). 

 Muscle fiber formation prior to metamorphosis in Xenopus laevis is unusual 

compared to muscle formation in other species (Chanoine and Hardy, 2003; Elinson, 

2007). In Xenopus, a muscle fiber is formed by amitotic division of the nucleus of one 

myoblast, instead of the more typical process wherein multiple myoblasts undergo fusion 

to generate a multinucleated muscle fiber (Boudjelida and Muntz, 1987; Kielbowna, 

1966). However during metamorphosis most of the muscle cells that were formed for the 

tadpole undergo apoptosis. These muscle cells are replaced with secondary muscle fibers, 
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formed by the more typical process of myoblast fusion, in a process that progresses from 

dorsomedial to ventrolateral (Nicolas et al., 1998; Nishikawa and Hayashi, 1994, 1995). 

 
 
EBF function in muscle development  

For several Drosophila muscles, including the muscle dorsal-achete-3 (DA3), the 

Drosophila EBF ortholog Collier is expressed from the stages of promuscular clusters, 

through muscle progenitors and founders, to the stage of fused muscle precursors. Collier 

is required for the fusion of neighboring myoblasts (Crozatier and Vincent, 1999). The 

Drosophila MYOD ortholog Nautilus is also necessary for formation of the muscle DA3 

(Dubois et al., 2007; Keller et al., 1998). A cis-regulatory element of collier contains 

several muscle specific transcription factor binding sites, including a binding site for both 

Collier itself and for Nautilus, and both genes drive expression of collier synergistically 

(Dubois et al., 2007). In mouse, Northern blot analysis shows that Ebf3 is expressed in 

adult skeletal muscle (Garel et al., 1997). In this tissue, Ebf proteins are known to bind to 

the negative regulatory element of the Glut4 gene (Dowell and Cooke, 2002), which 

allows for insulin-mediated glucose uptake in muscle and adipocyte cells (Kahn, 1998). 

However the expression patterns, transcriptional targets, and functions of EBF genes in 

vertebrate muscle development are not understood. 

 

Thesis overview 

 This thesis is an attempt to improve our understanding of how EBF transcription 

factors contribute to vertebrate development. The processes of cellular commitment and 

differentiation depend on transcriptional regulatory networks, and our understanding of 
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these networks depends greatly on knowledge of the targets and protein interactions of 

transcription factors like the EBF family. In the thesis, I describe findings of targets and 

functions of EBF transcription factors for neuronal and muscle cell development in 

Xenopus. To better understand how EBF transcription factors are involved in neuronal 

cell commitment and differentiation we performed a microarray screen for EBF targets. 

Chapter 2 describes this screen and the characterization of the neuronal targets we 

discovered. Chapter 3 describes how EBF and its protein partner ZFP423 contribute to 

processes of neuronal development, including proliferation and commitment of neuronal 

progenitors. Chapter 4 describes the discovery of a requirement for EBF proteins in 

Xenopus muscle development, and describes the characterization of some transcriptional 

targets that likely mediate EBF effects on commitment and differentiation of Xenopus 

skeletal muscle cells. The conclusions of the thesis are in Chapter 5. 
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Abstract 

EBF family members are transcription factors known to have important roles in 

several aspects of vertebrate neurogenesis, including commitment, migration and 

differentiation. Knowledge of how EBF family members contribute to neurogenesis is 

limited by the absence of a systematic analysis of their transcriptional targets. We 

performed a microarray screen in Xenopus animal caps to search for candidate targets of 

EBF transcriptional activity, and identified targets with multiple roles, including 

transcription factors of several classes. We determined that, among the most up-regulated 

candidate genes with expected neuronal functions, most require EBF activity for some or 

all of their expression, and all have overlapping expression with ebf genes. The 

identification of targets that are transcription factor genes, including nscl-1, emx1 and 

aml1, improves our understanding of how EBF proteins participate in the hierarchy of 

transcription control during neuronal development, and suggests novel mechanisms by 

which EBF activity promotes migration and differentiation. Other targets, including 

pcdh8 and kcnk5, expand our knowledge of the types of processes that EBF proteins 

regulate. 

 
 

Introduction 

Throughout animal development, many processes must occur coordinately, 

including patterning, commitment, differentiation and migration of progenitor cells. In 

the nervous system in particular, these processes are exceedingly complex and depend on 

the coordinated expression of many sets of genes. A detailed understanding of gene 

regulation, including knowledge of the types of genes that different transcription factors 



 36 

target and the hierarchy of transcriptional activity, is therefore a critical foundation for 

understanding nervous system development. One group of transcription factors expressed 

strongly in the developing nervous system is the early B cell factor (EBF, also called 

Collier/Olf/Ebf (COE), and Olf/Ebf (O/E)) family of Zinc finger helix-loop-helix 

proteins. 

The EBF family includes EBF1, 2, 3 and O/E-4 in mammals (Garel et al., 1997; 

Hagman et al., 1993; Kudrycki et al., 1993; Malgaretti et al., 1997; Wang et al., 2002; 

Wang et al., 1997), with EBF2 and EBF3 being the known family members in Xenopus 

(Dubois et al., 1998; Pozzoli et al., 2001), and ZCOE2 a family member in zebrafish 

(Bally-Cuif et al., 1998). Invertebrate members of this family include Collier in 

Drosophila, and UNC-3 in C. elegans (Prasad et al., 1998). EBF family proteins contain 

a DNA binding domain (a zinc finger coordination motif), which can also participate in 

dimerization and transactivation, an atypical helix-loop-helix domain, which is critical for 

formation of homo- and heterodimers, and a C-terminal domain, which is important for 

transactivation (Hagman et al., 1993; Hagman et al., 1995; Wang et al., 1997).  

EBF proteins influence multiple processes in developing neurons (reviewed in 

Dubois and Vincent, 2001; Liberg et al., 2002). One of their best-understood functions is 

a role in stabilizing cell commitment. For example, Dubois et al. showed that EBF2 can 

affect neuronal progenitor cell commitment in early Xenopus embryos by reinforcing the 

expression of the proneural basic helix-loop-helix (bHLH) transcription factor ngnr-1, 

and by maintaining the expression of delta1 (Dubois et al., 1998). There is also strong 

evidence that EBF proteins stabilize neuronal cell commitment in developing chick spinal 
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cord, since electroporated mouse Ebf1 drives expression of Ngn1 and Ngn2 (Garcia-

Dominguez et al., 2003). 

EBF proteins also have critical roles in neuronal cell differentiation. For example, 

overexpression of ebf2 and ebf3 leads to ectopic expression of neuronal specific markers 

like n-tubulin and nf-m in Xenopus embryos (Dubois et al., 1998; Pozzoli et al., 2001), 

suggesting that EBF2 and EBF3 may drive specific aspects of the neuronal differentiation 

program. Consistent with this, in Ebf1 null mouse striatum, early neuronal cells show 

abnormal expression of several genes, indicating disruption of the process of 

differentiation (Garel et al., 1999). In this mouse, the expression levels of CRABP-1 (a 

cellular retinoic acid binding protein) and Cadherin-8 are downregulated in the lateral 

ganglionic eminence (LGE), providing further evidence of disruption of normal cellular 

differentiation (Garel et al., 1999). EBF proteins have also been shown to regulate aspects 

of cell differentiation in early chick spinal cord, where electroporated mouse Ebf1 

promotes expression of numerous neuronal markers (Garcia-Dominguez et al., 2003), and 

in both Drosophila and C. elegans ventral nerve cord (Baumgardt et al., 2007; Prasad et 

al., 2008). 

Several studies have found a strong role for EBF proteins in neurite formation and 

axon guidance. For example, in Ebf1 null mice, the thalamocortical fibers in the lateral 

ganglionic eminence fasciculate abnormally (Garel et al., 1999). In this region, Sema6a 

expression also is downregulated, which may lead to abnormal fiber growth (Garel et al., 

2002). Olfactory axons in both Ebf2 and Ebf3 null mice show defects in their projection 

to the dorsal olfactory bulb surface (Wang et al., 2004). Other evidence of abnormal fiber 

growth comes from alterations in dendritic arborization of Drosophila type IV neurons in 



 38 

Collier mutants (Crozatier and Vincent, 2008; Hattori et al., 2007; Jinushi-Nakao et al., 

2007), and defasciculation and pathfinding defects in motor neurons of C. elegans unc-3 

mutants (Prasad et al., 1998).  

Finally, EBF proteins also are critical for neuronal cell migration. Evidence for 

this comes from gonadotropin releasing hormone-synthesizing neurons, which fail to 

migrate normally from the olfactory epithelium to the hypothalamus in Ebf2 null mouse 

embryos (Corradi et al., 2003). Furthermore, Purkinje neurons show defects in migration 

from the anterior cortical transitory zone to beneath the external granular layer in 

cerebellar cortex (Croci et al., 2006). In Ebf1 null mice, facial branchiomotor (fbm) 

neurons migrate from rhombomere 4 (r4) not only to r6 but also to r5 in the early embryo 

(Garel et al., 2000). In the migrating fbm neurons in r5, the expression level of transient 

axonal glycoprotein (TAG-1) is slightly reduced, and the expression level of Cadherin-8 

is upregulated (Garel et al., 2000). When Ebf1 is misexpressed in chick spinal cord, 

neuroepithelial progenitors migrate toward the mantle layer faster than normal, and the 

expression of NF and R-cadherin are upregulated (Garcia-Dominguez et al., 2003). 

Ebf genes are strongly expressed in differentiating central and peripheral neurons 

throughout development (Davis and Reed, 1996; Garel et al., 1997), and the evidence 

described above provides strong indications of EBF protein function in neuronal 

development. However, it is not fully understood how these functions are executed since 

there has not previously been a systematic analysis of EBF transcriptional targets. The 

goals of this study were three-fold. First, we sought to identify the targets of EBF 

transcription factors, and to analyze in vivo the dependence of the discovered targets on 

EBF activity. We performed a microarray analysis to identify targets of EBF3 in the 
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developing Xenopus nervous system. The microarray results were confirmed with gain- 

and loss-of-function studies of EBF2 and EBF3 in Xenopus embryos. Second, we 

analyzed the expression of the candidate targets as compared to the ebf genes, to gain an 

understanding of where in the embryo these target genes may function. And third, we 

assessed which target genes are direct targets of EBF3, and which are indirect targets, to 

better understand the hierarchy of transcriptional control by EBF proteins. Many genes 

previously demonstrated to be required for neuronal development are strongly 

upregulated by EBF, but were not previously known to be targets of EBF transcriptional 

activity. These targets include transcription factors, cell structural proteins, an ion 

channel protein, and a gene involved in TGF-beta signaling. The variety of targets found 

expands our knowledge of the kinds of processes EBF proteins regulate, and reinforces 

the idea that EBF proteins can influence many aspects of neuronal development because 

they direct expression of several different functional classes of genes. The discovered 

targets open a new window to understanding the broader scope of EBF functions. 

 
 

Materials and methods 

Microinjection of RNA and morpholinos 

The following constructs were used as DNA templates to make capped RNA: 

pCS2+Noggin (Richard Harland), pCS2+hGR-MT-Xebf2, pCS2+hGR-MT-Xebf3, 

pCS2+MT-DN-Xebf, and pCS2+nβgal (Chitnis et al., 1995). Capped RNA was 

generated in vitro using the Message mMachine kit (Ambion). Antisense morpholino 

oligonucleotides (MOs) were designed by Gene Tools, and directed against a region at or 
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near the translational start site of ebf2 (5’-GCGCTTTGTCTCTCAAGGCAGTTCC-3’) 

and ebf3 (5’-GTATATTTTCCTGAATCCCAAACAT-3’). 

For microarray experiments, 1ng of hGR-XEBF3 mRNA and 0.2ng noggin 

mRNA were co-injected into Xenopus embryos at the one-cell stage. Alternatively, 0.4ng 

hGR mRNA and 0.2ng noggin mRNA were co-injected in control embryos. At stage 9, 

animal caps were dissected from the embryo, using either a Gastromaster or a 

hypodermic needle tip. Animal caps were treated with 30µM Dexamethasone (DEX) in 

1x MMR for 4.5 hours before harvesting of total RNA. 

For all other microinjections, a volume of 4nl containing capped RNA or 

morpholinos was injected into one blastomere of 2-cell stage embryos in the following 

amounts: hGR-XEBF2 (0.5ng), hGR-XEBFf3 (0.5ng), XEBF3∆D∆I (2ng), MyoD-hGR 

(0.5ng), nβgal (30pg), XEBF2 MO (15ng) and XEBF3 MO (15ng). In the MO 

experiments, both EBF2 and EBF3 MOs were co-injected. For all injections nβgal 

capped RNA was co-injected as a tracer. Embryos were grown until neural plate or tail 

bud stages (Nieuwkoop and Faber, 1994). hGR-XEBF2, hGR-XEBF3 and MyoD-hGR 

injected embryos were treated with 30µM DEX from the gastrula stage (stage 11/11.5) to 

the neurula stage (stage 14/15).  Embryos were then fixed with 4% paraformaldehyde 

(PFA) in PBS for 30 minutes. After washing embryos 3 times with PBS, X-gal staining 

was performed as described (Turner and Weintraub, 1994), followed by post-fixation in 

4% PFA for one hour at room temperature or overnight at 4°C.  
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Microarray analysis 

Total RNA was isolated from animal caps with the RNeasy mini kit (Qiagen). 

This RNA was used to perform two-color microarray analysis on the Xenopus Agilent 

microarray by the University of Utah Microarray core facility. Fluorescently labeled 

cRNA, containing either cyanine 3-CTP or cyanine 5-CTP, was generated using the 

Agilent Two-Color Quick Amp Labeling kit (catalog # 5190-0444). Next, microarray 

hybridizations were performed using Agilent surehyb hybridization chambers. Slides 

were then scanned in an Agilent Technologies G2505B microarray scanner at 5µm 

resolution. Finally, TIF files were generated from the scanned microarray image, and 

loaded into Agilent Feature Extraction Software version 9.5.1. Data generated by the 

software were recorded as a tab-delimited text file. Genesifter was used for microarray 

data analysis. Four replicate experiments were performed, and significance was 

determined with a t-test, using a p-value of <0.05. 

 
 
In situ hybridization 

The following constructs were used to generate antisense RNA probes: pBS-

Xebf2 (Pozzoli et al., 2001), pBS-Xebf3 (Pozzoli et al., 2001), pBS-Sox2 (Mizuseki et 

al., 1998), PCDH8 (IMAGE ID 6955713, ATCC), Peripherin (IMAGE ID 4959167, 

ATCC), GREB1 (IMAGE ID 5569934, ATCC), pBS-XNF-M (Pozzoli et al., 2001), 

KCNK5 (IMAGE ID 6863628, ATCC), NSCL-1 (IMAGE ID 5514274, ATCC), pBS-

XNeuroD (Lee et al., 1995), AML1 (IMAGE ID 4963637, ATCC), Activin beta B 

(IMAGE ID 5440215, ATCC), Emx1 (IMAGE ID 6957219, ATCC). Antisense RNA 

probe was generated in vitro using SP6, T7 or T3 RNA polymerase (Ambion) and labeled 
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with digoxigenin-11-UTP (Roche). Whole mount in situ hybridization was performed on 

the fixed and X-gal stained embryos as described (Harland, 1991; Kanekar et al., 1997).  

 
 
Real time quantitative PCR (RT-QPCR) 

For RT-QPCR experiments, 1ng hGR-XEBF3 mRNA and 0.2ng noggin mRNA 

were co-injected into Xenopus cells at the one-cell stage and animal caps isolated at stage 

9 as described above. The animal caps were divided into four groups. The control group 

received no treatment (-C-D).  The second group was treated with 30µM DEX alone for 3 

hour (-C+D), and the third group was treated with 5µg/ml cycloheximide (CHX) alone 

for 3.5 hours (+C-D). Finally the fourth group was treated with 5µg/ml CHX for 30 

minutes and then 30µM DEX was added for 3 hrs (+C+D). Total RNA was purified from 

animal caps with Trizol (Invitrogen) and then genomic DNAs were removed with the 

RNeasy mini kit (Qiagen).  

To make cDNA from the isolated total RNA from animal caps, the SuperScript III 

first-strand synthesis system for RT-PCR (Invitrogen) was used according to the 

manufacturer’s instructions, and then quantitative PCR (QPCR) was performed using 

Power SYBR Green PCR Master Mix (Applied Biosystems) on a 7900HT Real Time 

PCR System (Applied Biosystems). Alternatively, the Superscript III Platinum two step 

qRT-PCR kit and SYBR Green (Invitogen) were used to make cDNA and to generate the 

PCR solution, and QPCR was performed on the same 7900HT Real Time PCR System 

(Applied Biosystems).  MacVector Software was used to design the gene specific primers 

(Table 2.1). The relative gene expression level was determined by normalizing the 

threshold cycle (Ct) of each gene to the Ct of Histone H4. One Ct difference indicates a 
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Name              Sequence

protocadherin 8 forward  5’- AGGACAGCGGCAAAGGTGAC -3’

peripherin forward   5’- CCAAGCAAAGTCCAAAGAGCC -3’

greb1 forward   5’- TGACAAAAGGTTGGGCAGGG -3’

nf-m forward    5’- GAACAGGTACGCCAAGCTGACTG -3’

kcnk5 forward   5’- CGGGTTTGGAGACTATGTGGC -3’

nscl-1 forward   5’- TTCCATTGCTCCGTCAAGTTTC -3’

neurod forward   5’- CCAGAAACCCAAAAGACGAGG -3’

aml1 forward    5’- AACCAACCCAATCCAAGCAGTAG -3’

emx1 forward    5’- CGCTCCATCTACAACAACCCG -3’

activin beta b forward  5’- ATGATTGTGGACGAGTGCGG -3’

histone h4 forward   5’- TGCGGGATAACATTCAGGGC -3’

protocadherin 8 reverse 5’- GGCGGGGAGAGCAGATTTAG -3’

peripherin reverse  5’- GGTTGTGCCTGAACGGTCAC -3’

greb1 reverse   5’- AGGAAAACTATCGGCGGCTG -3’

nf-m reverse   5’- GCAGCAATTTCTATATCCAGAG -3’

kcnk5 reverse   5’- ATCCTTTGGGTTGGTCATTGG -3’

nscl-1 reverse   5’- GCCCATCGTGTCCATTGTTTTC -3’

neurod  reverse  5’- ATGCGACGGCACATCCTGAC -3’

aml1 reverse   5’- CAGCAACCTGTCCTGTATGTTCC -3’

emx1 reverse   5’- ATGTCGCTGCCTTGAAATCTG -3’

histone h4 reverse  5’- CGGTCTTCCTCTTGGCGTG -3’

activin beta b reverse  5’- TGCTTCTATCCCTTTGCCAGG -3’

Table 2.1: Primer sequences used for RT-QPCR.
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two-fold difference in the initial cDNA template amount. Finally, expression levels were 

normalized by setting the expression level in the condition of –C+D to 100.   

 
 

Results 

 Identification of candidate targets of EBF3 in animal caps 

To identify transcriptional targets of EBF3, we performed a microarray screen 

comparing the transcripts expressed in Xenopus animal cap ectoderm with and without 

active Xenopus EBF3 protein. To do this, we expressed a hormone-inducible fusion 

protein (hGR-XEBF3) that can be regulated by the hormone dexamethasone (DEX). In 

the absence of DEX, EBF3 remains inactive, while adding DEX to the explants induces 

EBF3 activity (Kolm and Sive, 1995). mRNA encoding hGR-XEBF3 was injected at the 

one-cell stage, animal caps were cut at the blastula stage then incubated with DEX for 4.5 

hours to induce EBF3 activity, after which total RNA was isolated (see Methods). 

Since EBF proteins are involved not only in neuronal development but also in the 

development of several other cell lineages, including B cell, adipocyte, and muscle cells 

(reviewed in Dubois and Vincent, 2001; Liberg et al., 2002; Lukin et al., 2008), we 

attempted to refine our search for EBF targets related to neuronal development by 

coinjecting Noggin mRNA to neuralize the animal caps (Lamb et al., 1993). Agilent 

Xenopus microarrays were used to compare target gene expression levels in DEX-treated 

animal caps, with activated hGR-XEBF3, to those in control, DEX-untreated animal 

caps, in four independent experiments. To exclude genes that had their expression levels 

affected by the hormone DEX itself, we performed a separate, control microarray 



 45 

analysis using animal caps treated with DEX expressing control hGR versus untreated 

animal caps expressing hGR-XEBF3. 

Since we were most interested in positive transcriptional targets of EBF activity, 

we screened the array data for genes that are selectively upregulated when EBF3 activity 

is induced. This study specifically focuses on the genes that were most strongly 

upregulated by EBF3, with increases in expression of more than ten-fold, and that have 

potential roles in nervous tissue. Although we neuralized animal caps with Noggin, many 

genes were upregulated by hGR-XEBF3 that are known to be involved in the 

development of other tissue types, such as myod, lmo2, and hex. The targets with 

predicted function in muscle tissue are described in a separate report (Green et al., in 

preparation). The complete data set is publicly available on the GEO database 

(submission pending). In cases of incomplete annotation for the Xenopus microarray, we 

used NCBI UniGene or BLAST to identify homologs in other species and determine 

likely gene identity. An indication of the integrity of our screen is the strong upregulation 

of nf-m, a known EBF3 target gene (Pozzoli et al., 2001). Microarray results were 

confirmed for key genes by reverse transcriptase polymerase chain reaction (RT-PCR) 

(data not shown). 

 
 

EBF2 and EBF3 are sufficient for the expression of 
candidate neuronal targets in vivo 

 
We previously showed that the protein sequences of Xenopus EBF2 and EBF3, as 

well as their functions in neuronal development, are very similar (Pozzoli et al., 2001). 

For these reasons, we included both EBF2 and EBF3 in the experiments that follow. In 

order to both confirm the microarray data and to determine if EBF2 and EBF3 are 
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sufficient for the expression of the candidate target genes in vivo, we examined the 

expression level of candidates after overexpression of hGR-XEBF2 and hGR-XEBF3. 

For this analysis, we selected 14 genes predicted to be involved in neuronal development, 

based on expression patterns and functions known from the published literature, as well 

as on our own observations with whole mount in situ hybridization (WM-ISH) (discussed 

below). Overexpression was achieved by injection of mRNA for hGR-XEBF2 or hGR-

XEBF3 into one cell of two-cell stage embryos, followed by treatment of the embryos 

with DEX from the gastrula stage (stage 11/11.5) to the neurula stage (stage 14/15). The 

expression level of candidate target genes was then examined by WM-ISH. We found 

that 10 of the 14 candidate target genes were upregulated by overexpression of EBF2 and 

by overexpression of EBF3 (Table 2.2 and Figure 2.1). These were pcdh8 (protocadherin 

8) (20/23 embryos by EBF2, 27/28 embryos by EBF3), peripherin (also called xif3) 

(15/15, 35/35), greb1 (genes regulated by estrogen in breast cancer) (12/12, 10/10), nf-m 

(neurofilament-m) (15/15, 35/38), kcnk5 (potassium channel subfamily K member 5, also 

called task2) (11/11, 39/40), nscl-1 (also called Xhen1 and nhlh1) (9/9, 33/40), neurod 

(20/21, 39/39), aml1 (acute myeloid leukemia, also called runx1) (12/12, 11/11), activin 

beta B (also called inhbb) (11/11, 37/40), and emx1 (11/13, 28/32) (Figure 2.1). However, 

four genes were not consistently upregulated by EBF2 or EBF3. The expression of en-2 

(10/19) and hoxd10 (30/44) were downregulated, while the expression of nr2f2 was 

upregulated (19/73) in some embryos but downregulated (30/73) in others, and the 

expression of wnt3a (24/24) was not changed by EBF3 (data not shown). We therefore 

believe that these four genes are unlikely to be in vivo targets of Ebf activity, and we have 

excluded them from the experiments that follow. The fact that the expression levels of 10 
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Gene name            Function     Fold change    GenBank

protocadherin 8 transmembrane protein  66         BC074360

peripherin                       type III intermediate !lament 37         BC056020

greb1   estrogen-regulated gene  32         BC043838

nf-m   type IV intermediate !lament 28         BC078128

kcnk5   K+ ion channel subunit  27         BC084931

nscl-1   bHLH transcription factor  26         BC084434

neurod   bHLH transcription factor  26         BC072996

aml1   Runt-related transcription factor 22         BC057739

emx1   homeobox transcription factor 16         BC077629

TGF-beta
superfamily memberactivin beta b 21         S61773

Table 2.2: Candidate targets of EBF activity.  The genes chosen for additional 

analysis are shown with their known functional roles. Fold change refers to the 

increase in expression in the microarray, compared to control.
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Figure 2.1: Target genes upregulated by overexpression of EBF2 or EBF3.

hGR-XEBF2 or hGR-XEBF3 mRNA was injected into one cell of two-cell stage 

embryos, followed by DEX treatment from the late gastrula stage (stage 11/11.5) to the 

neurula stage (stage 14/15). !-galactosidase mRNA was coinjected as a marker of the 

injected side. In all panels the right side is the injected side, showing the light blue color 

of X-gal staining. The expression levels of pcdh8 (A and B), peripherin (C and D), greb1 

(E and F), nf-m (G and H), kcnk5 (I and J), nscl-1 (K and L), neurod (M and N), aml1 (O 

and P), activin beta b (Q and R), and emx1 (S and T) are strongly upregulated by EBF2 

and EBF3 (brackets). A-R show dorsal views, while S and T show anterior views.
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genes among 14 candidates are upregulated by overexpression of EBF2 and EBF3 in the 

intact embryo supports the microarray data, and further shows that EBF2 and EBF3 

activity are sufficient to drive expression of these candidate genes in vivo.  

 
 

EBF2 and EBF3 are required for the expression 
of candidate targets in vivo 

To determine if the expression of our identified candidate target genes is 

dependent on EBF2 and EBF3 in vivo, we examined the expression level of targets after 

knockdown of EBF2 and EBF3 expression using translation blocking antisense 

morpholinos (MO). EBF2 MO and EBF3 MO were coinjected into one cell of two-cell 

stage embryos and the expression level of endogenous candidate target genes was 

examined at the neural fold stage (stage 15/16) or tailbud stage (stage 25-28), when 

expression of candidate target genes is apparent (Figures 2.2 and 2.3). Expression of the 

neural plate marker sox2 was first examined to determine if knockdown of EBF2 and 

EBF3 affects global neuronal development in the early embryos. sox2 expression did not 

change (10/10 embryos; Figure 2.2B), indicating early global neuronal development was 

unaffected.  After  coinjection  of  EBF2  MO and EBF3 MO, the expression of nscl-1 

(10/11), neurod (13/15), aml1 (7/12), emx1 (12/15), pcdh8 (12/13), peripherin (11/11), 

greb1 (11/12), nf-m (14/16), kcnk5 (10/15) and activin beta b (5/10) were downregulated 

(Figures 2.2 and 2.3). Control MO did not change the expression levels of these genes 

(Figures 2.2 and 2.3). 

            To confirm the MO results, we generated a dominant negative Xenopus EBF3 

construct (DN-EBF). This DN-EBF lacks the DNA binding domain in the N-terminal 

region, but it has an intact dimerization domain (amino acids 349-598). (Dubois et al., 
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Figure 2.2: Downregulation of transcription factor targets after knockdown of 

EBF2 and EBF3.  One cell of two-cell stage embryos was injected with either 

dominant negative Xenopus EBF3 (DN-XEBF) mRNA, both EBF2 MO and EBF3 

MO (2MO + 3MO), or control MO. !-gal mRNA was coinjected as a marker of the 

injected side. In all panels the right side is the injected side, showing the light blue 

color of X-gal staining. The expression of sox2 does not change in all three conditions 

(A-C). The expression of nscl-1 (E and F), neurod (H and I), aml1 (K and L), and emx1 

(M and O) is downregulated by EBF2 MO and EBF3 MO, and by DN-EBF (brackets), 

while control MO does not change their expression level (D, G, J, and M). A-L show 

dorsal views of neurula stage embryos (stage 15/16), and M-O are anterior views of tail 

bud stage embryos (stages 25-28).
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Figure 2.3: Downregulation of non-transcription factor target genes after 

knockdown of EBF2 and EBF3. One cell of two-cell stage embryos was injected with 

either EBF2 MO and EBF3 MO together (2MO + 3MO), or dominant negative Xenopus 

EBF3 (DN-XEBF) mRNA, or control MO. !-gal mRNA was coinjected as a marker of 

the injected side. In all panels the right side is the injected side, showing the blue color of 

X-gal staining. The expression of pcdh8 (B and C), peripherin (E and F), greb1 (H and I), 

nf-m (K and L), kcnk5 (M and O), and activin beta b (Q and R) is downregulated by EBF2 

MO and EBF3 MO, and by DN-EBF (brackets), while control MO does not change their 

expression level (A, D, G, J, M and P). A-I and P-R are neurula stage embryos (stage 

15/16), and J-O are tail bud stage embryos (stages 25-28). All panels show dorsal views.
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1998; Hagman et al., 1993; Hagman et al., 1995). Since EBF1, 2, and 3 can form 

homodimers or heterodimers in vitro (Hagman et al., 1993; Hagman et al., 1995; Wang et 

al., 1997), this DN-EBF is predicted to block the function of both EBF2 and EBF3 by 

forming non-functional dimers. Similar to our MO data, injection of RNA encoding DN-

EBF led to downregulation of the expression of nscl-1 (5/13 embryos), neurod (12/18), 

aml1 (6/14), emx1 (7/15), pcdh8 (8/18), peripherin (8/13), greb1 (8/14), nf-m (10/19), 

kcnk5 (7/19) and activin beta b (8/17) (Figure 2.2 and Figure 2.3) while sox2 expression 

was not changed by DN-EBF at the neural plate stage (13/14) (Figure 2.2C). However, 

the level of downregulation was weaker than that obtained by MO injection, perhaps 

because some EBF protein is able to form normal dimers even in the presence of DN-

EBF. In addition, a majority of embryos became bent toward the injected side at the 

tailbud stage because this side was smaller than the uninjected side (data not shown). It is 

therefore possible that some of the downregulation we observed in these dominant 

negative knockdown experiments was due to changes in development of other tissues. 

Taken together, these function-blocking experiments with MOs and DN-EBF suggest that 

EBF2 and EBF3 are required for the expression of our candidate neuronal targets in vivo. 

 

Classes of candidate target genes  

The EBF gene candidate target genes that we identified by microarray, and 

confirmed by EBF gain and loss of function experiments, were classified based on their 

known or predicted functions, and these are summarized in Table 2.2. There are several 

transcription factors, including NSCL-1, NeuroD, AML1, and EMX1. NSCL-1 and 

NeuroD are basic helix loop helix (bHLH) transcription factors (Bao et al., 2000; Lee et 
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al., 1995). AML1 is a Runt-related transcription factor (Tracey et al., 1998), and EMX1 is 

a homeobox transcription factor (Brox et al., 2004; Patarnello et al., 1997). Activin beta 

B is a ligand involved in TGF-beta signaling (Dohrmann et al., 1993). Three genes code 

for cell structural proteins. PCDH8 is a transmembrane protein (Strehl et al., 1998), and 

Peripherin and NF-M are intermediate filament proteins. KCNK5 is a potassium ion 

channel (Reyes et al., 1998). greb1 is a gene highly upregulated in breast cancer and by 

the hormone estrogen, but its function is not yet known (Ghosh et al., 2000). In our 

system, we found that about half of the EBF protein targets are transcription factors. The 

fact that so many transcription factors are strongly upregulated by EBF proteins suggests 

that there are multiple levels of transcriptional control that involve the activity of EBF 

proteins. The other half of the targets are involved in cell structure and neuronal function, 

reinforcing the idea that EBF proteins are involved in neuronal differentiation during 

development, as well as performing various functions in mature neurons. 

 
 

Comparison of the expression patterns of EBF2, EBF3 
and their targets in the Xenopus nervous system 

 
To determine if the functional relationships we identified above are likely to be 

meaningful during Xenopus development, and to determine if the targets have expression 

patterns consistent with a role in neuronal development, we compared the expression 

domains of ebf2 and ebf3 with those of target genes by WM-ISH at four different stages 

in early Xenopus embryos: stage 12.5 (data not shown), 15, 23 and 28 (Figures 2.4 and 

2.5). We chose these stages because the expression of ebf2 is clearly visible from stage 

12.5 and the expression of ebf3 is clearly visible at stage 15, by WM-ISH (Dubois et al., 

1998; Pozzoli et al., 2001), and their expression continues beyond stage 28. ebf2 and ebf3  
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Figure 2.4: Neuronal expression for ebf genes and transcription factor target genes. 
Ebf2 (A-C) and ebf3 (D-F) are expressed in multiple regions of the developing nervous 
system including the trigeminal ganglia (yellow arrows), olfactory placodes (black 
arrows), some domains in the brain, the spinal cord (white arrows), and neural crest 
derivatives like the branchial arches (Dubois et al., 1998; Pozzoli et al., 2001). nscl-1 (G-
I) and neurod (J-L) are expressed in the trigeminal placodes (yellow arrows) and three 
stripes of primary neurons in the neural plate (arrow heads) at stage 15, and are strongly 
expressed in the trigeminal placodes (yellow arrow), olfactory placodes (black arrow), 
and spinal cord (white arrows) at stage 23. At stage 28, nscl-1 is expressed in the 
olfactory placode, some domains in the midbrain/hindbrain, spinal cord and cranial 
ganglia IX and X. At stage 28, neurod is expressed in the olfactory placodes, retina, otic 
placodes, cranial ganglia, spinal cord and some domains in the brain. These expression 
patterns overlap with ebf2 and ebf3. aml1 (M-O) is expressed in the lateral primary 
neuron stripe at stage 15, sensory neurons of the spinal cord (white arrowheads) at stage 
23, and the olfactory placodes (black arrow) and otic placodes. emx1 (P-R) is expressed 
in the dorsal forebrain at all three stages. Stage 15 embryos show dorsal views except P 
(anterior view). Stage 23 and 28 embryos show lateral views. 
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Figure 2.5: Neuronal expression for non-transcription factor target genes.  pcdh8 
(A-C) is expressed in two stripes and in the anterior domain of the neural plate at stage 
15, and the spinal cord and some neuronal domains in the brain at stages 23 and 28. Like 
ebf2 and ebf3, peripherin (D-F) is expressed in the trigeminal placodes (yellow arrows) 
and three stripes of primary neurons in the neural plate (arrow heads) at stage 15, and is 
strongly expressed in the trigeminal placodes (yellow arrow), olfactory placodes (black 
arrow), and spinal cord (white arrows) at stages 23 and 28. greb1 (G-I) is expressed as a 
band in the prospective midbrain/hindbrain region at stage 15, and its expression 
becomes strong in the midbrain/hindbrain region and spinal cord (white arrows) at stages 
23 and 28, and in the olfactory placodes (black arrow) at stage 28. nf-m (J and K) is not 
expressed at the neural plate stage (not shown), but at stages 23 and 28 it is expressed in 
the trigeminal placodes (yellow arrow) and spinal cord (white arrows), similar to the 
expression patterns of ebf2 and ebf3. kcnk5 (L-N) is weakly expressed in two stripes and 
in the anterior neural plate at stage 15, and in the optic vesicle, otic placode and some 
domains in the brain at stage 23. It is expressed in several domains in the brain, retina, 
otic placode and spinal cord at stage 28. At all three stages, kcnk5 is expressed in spots 
distrubuted over the body. Activin beta B (J and K) is expressed in two bands in the 
prospective midbrain/hindbrain region and diffusely throughout the anterior neural plate 
at stage 15, and it is expressed in the optic vesicle and some brain domains at stages 23 
and 28. Stage 15 embryos show dorsal views, and stage 23 and 28 embryos show lateral 
views. 
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are expressed in very similar neuronal tissues (Figure 2.4A-F, Dubois and Pozzoli). At 

stage 15, both are expressed in the three stripes of primary neurons and trigeminal 

placodes. At stage 23, both are expressed in the olfactory placodes, spinal cord, and 

neural crest derivatives, including branchial arches. By stage 28, their expression expands 

to encompass much of the developing brain.  

First, we compared the expression patterns of ebf genes and the targets that are 

known transcription factors. The bHLH transcription factors NSCL-1 (Figure 2.4G-I, and 

Bao et al., 2000) and NeuroD (Figure 2.4J-L, and Lee et al., 1995) are expressed in the 

three stripes of primary neurons at stage 12.5, but their expression at this stage is much 

weaker than that of ebf2. They are expressed in the three stripes and trigeminal placodes 

at stage 15, and in the olfactory placodes, trigeminal placodes and spinal cord at stage 23 

and 28, overlapping strongly with ebf2 and ebf3 at these stages. The Runt-related 

transcription factor AML1 is expressed in sensory neurons including dorsal root ganglia 

(DRG) in mouse (Kramer et al., 2006; Yoshikawa et al., 2007). In Xenopus embryos, 

aml1 (Figure 2.4M-O, and Park and Saint-Jeannet, 2010; Tracey et al., 1998) is expressed 

only in the lateral stripe of primary neurons at stages 12.5 and 15, which gives rise to 

sensory neurons. At stage  23,  this  gene  is  expressed  only  in  sensory  neurons  in  the 

spinal cord, and this expression pattern overlaps with   ebf2 and ebf3  (Figure  2.4N,  and  

Park and Saint-Jeannet, 2010).  At  stage  28, expression of aml1 is strong in olfactory 

placodes. The aml1 expression in the lateral stripe at stage 15 and in olfactory placode at 

stage 28 overlaps with the expression of ebf2 and ebf3. The homeobox transcription 

factor gene emx1 (Figure 2.4P-R, and Brox et al., 2004; Pannese et al., 1998; Patarnello 

et al., 1997) is expressed in primordium of the forebrain region at stage 15. At stage 23 
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and 28, this gene is expressed in the dorsal forebrain region, and this expression overlaps 

with the expression of ebf2 and ebf3. 

Second, we compared the expression patterns of ebf genes and the targets that do 

not have transcriptional activity. The protocadherin PCDH8 (Figure 2.5A-C) is expressed 

in two stripes, but they do not appear to be the three stripes of primary neurons at stage 

15.  However, the expression of pcdh8 does overlap with that of ebf2 and ebf3 at stage 23 

and 28, in spinal cord, midbrain, and hindbrain. One neuronal intermediate filament gene 

peripherin (Figure 2.5D-F, and Gervasi et al., 2000), shows a strongly overlapping 

expression pattern with ebf2 and ebf3 from early embryonic stages, while another 

neuronal intermediate filament gene, nf-m (Figure 2.5J and 2.5K), also shows strong 

overlapping expression with that of ebf2 and ebf3 at stages 23 and 28. The partially 

overlapping expression regions for greb1 (Figure 2.5G-I) and ebf2 and ebf3 are in the 

spinal cord and some domains in the brain at stages 23 and 28. kcnk5 (Figure 2.5L-N) is 

expressed in two stripes but they also do not appear to be the three stripes of primary 

neurons at stage 15. Its expression does overlap with ebf2 and ebf3 in some domains in 

the brain and in the spinal cord at stage 28. The expression of activin beta b (Figure 

2.5O-Q, and Dohrmann et al., 1993) in some domains in the brain at stages 23 and 28 

partially overlaps with ebf2 and ebf3 expression. 

In summary, the expression patterns of bHLH transcription factor genes (nscl-1 

and neurod) and intermediate filament genes (peripherin and nf-m) strongly overlap with 

those of ebf2 and ebf3. The transcription factor genes aml1 and emx1 are expressed in a 

more limited domain within the nervous system, but their expression also overlaps with 

areas of ebf expression.  Pcdh8, greb1, and kcnk5 have not previously been strongly 
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implicated in Xenopus neuronal development, but we find that they are expressed in 

Xenopus neuronal tissues, and all three have at least partial overlap with ebf genes, 

suggesting potential importance for them in neuronal development downstream of EBF 

activity. 

 
 
Identification of direct targets for EBF3 in animal caps by RT-QPCR 

To better understand the transcriptional interaction between EBF3 and its 

candidate target genes, we sought to identify which genes are direct transcriptional 

targets and which are indirect transcription targets. We used an approach similar to the 

microarray analysis, with DEX treatment of animal caps to drive activation of hGR-

XEBF3, but we added cycloheximide (CHX) to block protein synthesis, so that only 

direct EBF3 targets should be transcribed. Animal caps were collected at stage 9 after 

injection of hGR-XEBF3, and divided into four groups: untreated controls (-C-D), DEX 

alone (-C+D), CHX alone (+C-D), and both CHX and DEX (+C+D). All animal caps 

were collected after a 3.5 hour incubation. CHX treatment lasted the entire 3.5 hours, 

while DEX treatment started after a 30 minute delay to time for CHX to take effect. The 

expression level of each target was examined by reverse transcriptase quantitative 

polymerase chain reaction (RT-QPCR) (Figures 2.6 and 2.7). We normalized the 

expression level of target genes with that of histone h4, and set the normalized expression 

level in the condition of –C+D to 100 percent.  

After treatment with both CHX and DEX, targets that had expression levels of 

less than 10% of the level in animal caps treated with DEX alone were considered to be 

indirect targets. These indirect targets are pcdh8, kcnk5, activin beta b, neurod and greb1 
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Figure 2.6: The identification of direct and indirect targets of EBF3 by RT-QPCR. 

hGR-XEBF3 mRNA and Noggin mRNA were injected into one-cell stage embryos, and 

animal caps were collected at the blastula stage (stage 9). The animal caps were divided 

into four groups, based on Cycloheximide and Dex treatment: -C-D, -C+D, +C-D, and 

+C+D. After a 3.5 hour incubation with CHX and/or a 3 hour incubation with DEX, total 

RNAs were isolated from each animal cap group. RT-QPCR was conducted with the 

isolated total RNAs. The expression level was normalized with the expression level of 

histone h4 and then normalized to the expression level of –C+D, for each gene, at 100 

arbitrary units. The expression levels of controls (–C-D and +C-D) in all target genes are 

very low compared to the treated condition of –C+D (A-C). The expression level of 

peripherin in +C+D (61%) is slightly lower than in –C+D, indicating that the majority of 

its expression is controlled by EBF3 directly (A). The expression level of pcdh8 in +C+D 

(5%) is much lower than in –C+D and is similar to the levels of the control conditions, 

indicating that it is an indirect target (B). The expression level of aml1 in +C+D (37%) is 

lower than the expression level in –C+D but higher than levels of the control conditions, 

indicating that its expression is controlled by EBF3 both directly and indirectly (C). Error 

bars represent SEM. The results for the remaining target genes are shown in Figure 2.7.
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Figure 2.7: Additional identification of direct and indirect targets of EBF3 by RT-

QPCR.  Expression levels for the remaining target genes tested by RT-QPCR after CHX 

and DEX treatment (those not shown in figure 2.6). The expression levels of emx1 

(88%) and nf-m (56%) in the +C+D are slightly lower than in –C+D, indicating that the 

majority of their expression is controlled by EBF3 directly (A and B). The expression 

level of nscl-1 (46%) in +C+D is lower than in –C+D but higher than that in the two con-

trols, indicating that its expression is under both direct and indirect control of EBF3 (C). 

The expression levels of kcnk5 (20%), activin beta b (10%), neurod (8%) and greb1 

(1%) in +C+D are similar to control levels (D) or much lower (less than 10%) than in 

–C+D (E-G).
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(Figures 2.6B and 2.7D-G). Target genes with expression levels of greater than 50% of 

the levels in animal caps treated with DEX alone are targets for which the majority of 

their expression is directly controlled by EBF3. These include peripherin, emx1 and nf-m 

(Figures 2.6A and 2.7A and B). Finally, there are genes with expression levels between 

10% and 50% of the level in animal caps treated with DEX alone. These genes, including 

aml-1 and nscl-1, likely have some expression that is under direct regulation by EBF3, 

but also have significant expression that is indirectly regulated (Figures 2.6C and 2.7C). 

Interestingly, the genes that appear to be indirect targets tended to be those that have the 

least overlap with Ebf genes in their WM-ISH expression patterns (with the exception of 

neurod, which does have significant overlap, probably due to the fact that NeuroD acts 

upstream of ebf genes (Dubois et al., 1998; Logan et al., 2005; Pozzoli et al., 2001; Seo et 

al., 2007) (Figures 2.4 and 2.5). The direct targets had more overlap in expression 

(Figures 2.4 and 2.5), and included the genes that code for axonal structural proteins 

(peripherin and nf-m) and one homeobox transcription factor (emx1). The targets with 

both direct and indirect regulation by EBF3 (aml-1 and nscl-1) were transcription factors, 

suggesting that their expression is controlled not only by EBF3 directly but also through 

other targets of EBF3. 

 
 

Discussion 

To better understand the range of activities that are driven by EBF transcription 

factors, we used a systematic approach to identify target genes of EBF activity in 

Xenopus. In this study, we emphasize candidate targets with potential functions in 

neuronal development. Most significantly, we have identified target genes that participate 
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in processes that were previously not known to be driven by EBF activity, and we have 

generated an extensive list of previously unknown targets that can aid future research into 

EBF functions. 

Our microarray screen for targets of EBF transcriptional activity revealed one 

gene (nf-m) that was a previously known target of EBF proteins (Pozzoli et al., 2001), but 

also revealed many genes that were previously not known to be targets of EBF activity. 

Some of these, like pcdh8, peripherin, greb1, kcnk5, nscl-1, aml1, activin beta b and 

emx1, were among the most strongly upregulated genes. Fourteen of the most strongly 

upregulated genes from the microarray were chosen as potentially important genes in 

neuronal development. The fact that ten of these fourteen genes were also upregulated in 

whole embryos in response to EBF overexpression shows that EBF activity is sufficient 

to drive expression of these targets in vivo. The fact that expression of all ten of these 

genes was decreased or eliminated in EBF loss-of-function experiments shows that EBF 

activity is at least partially required for their in vivo expression. In addition, since all of 

these genes have at least partially overlapping expression patterns with ebf genes, we 

believe that all these ten are bona fide targets of EBF proteins. Since some of these genes 

are direct targets, some are partially direct, and some indirect, and since most of them 

have only partially overlapping expression with ebf genes, it is clear that EBF proteins 

are part of a more complex transcriptional regulatory network involved in driving their 

expression. Individually, and as a group, the genes we have characterized give new 

insight into the range of functions driven by EBF transcriptional activity in the nervous 

system. The target genes we identified, but did not characterize further, also have the 

potential to reveal involvement of EBF proteins in additional activities. 
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EBF regulation of multiple transcription factor genes suggests involvement in 
extensive transcriptional networks for neuronal development 

 
Our finding that several transcription factors are among the strongest targets of 

EBF activity expands the potential routes by which EBF activity could exert its many 

effects on neuronal development, and suggests some interesting new potential functions. 

nscl-1 encodes a basic helix-loop-helix transcription factor that is strongly expressed in 

both the central and peripheral nervous system during development (Bao et al., 2000; 

Begley et al., 1992; Lipkowitz et al., 1992; Murdoch et al., 1999). In Xenopus embryos, 

NSCL-1 can drive expression of the proneural bHLH transcription factor NGNR-1, 

which is important for neuronal cell commitment (Bao et al., 2000; Ma et al., 1996). In 

chick and mouse, NSCL-1 can promote neuronal cell differentiation, and migration of 

cellular populations including GnRH-1 neurons (Kruger et al., 2004; Schmid et al., 2007; 

Xie et al., 2004). Interestingly, Ebf2 knockout mice show a migration defect of GnRH-1 

neurons (Corradi et al., 2003). We find that the expression of nscl-1 is at least partially 

under the direct control of EBF activity, and that the expression patterns of nscl-1 and ebf 

genes strongly overlap. This suggests that EBF activity may act through NSCL-1 to 

regulate neuronal cell commitment, differentiation or migration.  

The proneural basic helix-loop-helix transcription factor NeuroD is also strongly 

expressed in the central and peripheral nervous systems throughout development (Lee et 

al., 1995; Lee et al., 2000; Osorio et al., 2010; Schlosser and Northcutt, 2000). This study 

and previous studies show that neurod expression is very similar to that of ebf genes 

(Dubois et al., 1998; Lee et al., 1995; Pozzoli et al., 2001). The well-known functions of 

NeuroD in multiple species show that it is involved primarily in differentiation, but also 

acts to regulate cell fate, cell migration and cell survival (Ge et al., 2006; Kim et al., 
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2001; Lee et al., 1995; Liu et al., 2000; Seo et al., 2007). Previous studies showed that 

neurod is both downstream of EBF2 and upstream of ebf2 and ebf3 in Xenopus embryos 

(Dubois et al., 1998; Logan et al., 2005; Pozzoli et al., 2001; Seo et al., 2007). Our 

present data suggest that neurod is also an indirect target of EBF3. Together, these results 

support and expand the concept of multiple transcriptional interactions between EBF 

proteins and NeuroD (Dubois et al., 1998; Logan et al., 2005; Pozzoli et al., 2001; Seo et 

al., 2007). 

AML1 is most known for its affects on production of T lymphocytes (Ono et al., 

2007; Taniuchi et al., 2002). However, it is also known to be expressed in neurons, 

including cortical progenitors, olfactory receptor progenitors and neurons in the dorsal 

root ganglia (DRG) and to be involved in differentiation and cell type specification of 

several types of sensory and motor neurons, including neurons in the DRG (Chen et al., 

2006; Kramer et al., 2006; Theriault et al., 2005; Theriault et al., 2004; Yoshikawa et al., 

2007). Interestingly, AML1 is known to cooperate with EBF proteins in B cell 

development (Maier et al., 2004). We find that aml1 is partially under the direct control 

of EBF activity, and that the expression patterns of aml1 and ebf genes overlap strongly 

in the nervous system. Thus AML1 and EBF proteins may also act cooperatively in 

promoting neuronal differentiation. 

We show that the homeobox transcription factor Emx1 has a strong direct 

dependency on EBF activity for its expression. In multiple species, emx1 is strongly 

expressed in the developing forebrain, and the EMX1 protein is present in the axons of 

the olfactory neurons (Briata et al., 1996; Brox et al., 2004; Pannese et al., 1998; 

Patarnello et al., 1997; Simeone et al., 1992). Compared to Emx2 knockout mice, Emx1 
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knockout mice show only minor defects in brain development (Bishop et al., 2003; 

Mallamaci et al., 2000; Pellegrini et al., 1996; Qiu et al., 1996; Yoshida et al., 1997). 

However, Emx1 and Emx2 double mutant mice show more severe defects than Emx2 

knockout mice, including defects of neuronal differentiation and thalamocortical 

pathfinding (Bishop et al., 2003), similar to those found in Ebf1 knockout mice (Garel et 

al., 1999). Since we find emx1 to be a strong, direct target of EBF proteins, and emx1 and 

ebf genes are both strongly expressed in the forebrain, EBF proteins may control cell 

differentiation and axon growth in part by driving expression of emx1. 

 

EBF proteins drive expression of candidate targets involved 
in multiple aspects of neuronal differentiation 

 
The candidate targets that are not transcription factors illuminate some of the 

ways that EBF activity could help regulate late steps of neuronal differentiation and 

neuronal function. Peripherin and NF-M are important components of neuronal 

intermediate filaments, which help to form the cytoskeleton in the cell body and neurites 

of neurons (Belecky-Adams et al., 2003; Fiumelli et al., 2008; Garcia et al., 2003; 

Gervasi et al., 2000; Helfand et al., 2003; Lin and Szaro, 1995; Smith et al., 2006). We 

find through CHX experiments that the majority of expression of peripherin and nf-m is 

controlled directly by EBF3, and that their expression strongly overlaps with that of ebf 

genes. These discoveries correlate with previous evidence showing thalamocortical and 

olfactory receptor neuron axonal pathfinding defects in Ebf null mice, pathfinding defects 

of motor neurons in C. elegans UNC-3 mutants, and problems with dendritic arborization 

in Drosophila Collier mutants (Crozatier and Vincent, 2008; Garel et al., 1999; Garel et 

al., 2002; Hattori et al., 2007; Jinushi-Nakao et al., 2007; Prasad et al., 1998; Wang et al., 
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2004). Furthermore, we have identified peripherin as a new strong, direct target of EBF 

proteins with an expression pattern that strongly overlaps ebf expression. This finding 

both supports a role for EBF proteins in axon growth and provides a potential additional 

route for exploration of how EBF proteins can affect this important process. 

PCDH8 is a transmembrane calcium-dependant adhesion molecule that is 

expressed in several regions of the CNS in the mouse and ferret (Etzrodt et al., 2009; 

Makarenkova et al., 2005). The rat homolog Arcadlin affects the number of dendritic 

spines in cultured hippocampal neurons (Yasuda et al., 2007) and is required for activity-

induced long term potentiation (Yamagata et al., 1999). We find in our microarray screen 

and EBF gain of function experiments that EBF proteins positively regulate the 

expression of a gene that is likely the Xenopus pcdh8 homolog (based on sequence 

similarity and similar range of gene expression with mouse Pcdh8 in midbrain, hindbrain 

and spinal cord (Makarenkova et al., 2005)). We show that pcdh8 is an indirect target of 

EBF activity, and that pcdh8 and ebf expression patterns overlap in the brain and spinal 

cord, suggesting that EBF proteins may be involved in synaptic plasticity by controlling 

the expression of pcdh8. If true, this would be a new function for EBF proteins in the 

nervous system.  

KCNK5 is a K+ channel that is sensitive to extracellular pH, and is expressed in 

rat kidney cells, where it functions to stabilize bicarbonate transport and control cell 

volume  (Barriere et al., 2003; Reyes et al., 1998; Warth et al., 2004). It is also expressed 

in the mouse brainstem, where it appears to be involved in maintaining the membrane 

potential of chemoreceptor cells (Gestreau et al., 2010). We find that Xenopus kcnk5 is 

indirectly upregulated by EBF activity. In addition, we find overlap between ebf and 
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kcnk5 gene expression in the midbrain and hindbrain at the tailbud stage. Regulation of 

this gene represents a previously unknown function for EBF transcriptional activity. 

Activin beta B forms homodimers, or heterodimers with Activin beta A. Activins 

are ligands of the TGF-beta superfamily, which are involved in differentiation in tissues 

from many systems including the reproductive system (Itman et al., 2006; Knight and 

Glister, 2006; Matzuk et al., 1995a; Matzuk et al., 1995b). Activin beta B is expressed in 

the developing brain and retina (Belecky-Adams et al., 1999; Dohrmann et al., 1993; 

Roberts et al., 1996) and our data), but its function in neuronal development is not yet 

clear. Our study shows that the activin beta b gene is likely an indirect target of EBF 

proteins, and that its expression precedes that of ebf genes in midbrain, hindbrain and 

retina. These results suggest that EBF activity may maintain the expression of activin 

beta b instead of initiating its expression. 

GREB1 is thought to be involved in the estrogen-induced growth of breast cancer 

cells. Its expression is strongly upregulated by estrogen treatment in estrogen receptor 

positive breast cancer tissue (Ghosh et al., 2000; Rae et al., 2005). In our study, we find 

that the greb1 gene is expressed in several tissues, including neurons and muscle cells, 

during Xenopus development. Overlapping expression with ebf genes is limited to the 

spinal cord and a few brain regions at tailbud stages, and we find that the expression of 

greb1 is controlled by EBF proteins indirectly. We do not know which neuronal 

processes may be governed by GREB1, but our findings demonstrate a potential 

relationship between these genes and a possible role for GREB1 in neuronal 

development. 
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Our study shows that more than 50% of the expression of the target genes emx1, 

peripherin and nf-m depends directly on EBF3 transcriptional activity. Consistently, their 

expression patterns strongly overlap with those of ebf genes. The expression of nscl-1 and 

aml1 depends in part directly, and in part indirectly, on EBF3 transcriptional activity, and 

their expression also very strongly overlaps with the expression of ebf genes. Genes 

having indirect dependency on EBF activity show less overlap in expression patterns. 

These results suggest that expression of the direct target genes we have described is likely 

to be heavily dependent on EBF activity. 

 
 

EBF2 and EBF3 appear to share most targets 
during early Xenopus development 

The known functions of EBF2 and EBF3 are very similar during early Xenopus 

development (Dubois et al., 1998; Pozzoli et al., 2001). They are both important for 

neuronal differentiation, including control of the expression of the neuronal specific 

markers N-tubulin, N-CAM, and NF-M. Ebf2 knockout mice and Ebf3 knockout mice 

have similar phenotypes for olfactory axon growth (Wang et al., 2004). Supporting the 

similarity of the roles of these two genes, we find that the ten targets of EBF3 that were 

upregulated by hGR-XEBF3 in Xenopus animal caps and in vivo, could also be 

upregulated by hGR-XEBF2 in vivo. Although there is interesting evidence for some 

differences in expression patterns and functions of EBF2 and EBF3 (Dubois et al., 1998; 

Pozzoli et al., 2001), our results support the idea that at the transcriptional level EBF2 

and EBF3 have largely redundant functions. 
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Conclusion 

 In conclusion, we have found multiple candidate EBF targets with a systematic 

approach in Xenopus embryos. The expression patterns of direct targets of EBF3 have 

strong overlap with ebf gene expression, while targets having largely indirect dependency 

on EBF3 are expressed in less overlapping patterns, suggesting more complex modes of 

regulation. The novel candidate target genes suggest new potential routes for EBF 

transcription factors to carry out their previously known functions of neuronal cell 

commitment, differentiation, neurite formation and migration, and also suggest some new 

potential functions of EBF activity. 
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Abstract 

Zinc finger protein 423 encodes a 30 Zn-finger transcription factor involved in 

cerebellar and olfactory development. ZFP423 is a known interactor of SMAD1-SMAD4 

and of Collier/Olf-1/EBF proteins, and acts as a modifier of retinoic acid-induced 

differentiation. In the present paper, we show that ZFP423 interacts with the Notch1 

intracellular domain in mammalian cell lines and in Xenopus neurula embryos, to activate 

the expression of the Notch1 target Hes5 / ESR1. This effect is antagonized by EBF 

transcription factors, both in cultured cells and in Xenopus embryos, and amplified in 

vitro by BMP4, suggesting that ZFP423 acts to integrate BMP- and Notch signaling, 

selectively promoting their convergence onto the Hes5 gene promoter. 

 
 

Introduction 

A small set of regulatory factors, mostly secreted or surface molecules, modulates 

neural development, from neural induction through synaptogenesis. Morphogens, acting 

instructively, permissively, or through inhibitory interactions, control various aspects of 

neurogenesis, eliciting different responses in target cells, dependent upon their evolving 

windows of competence. The integrated effects of various morphogens regulate a range 

of developmental switches, controlling – among other aspects - regional identity, fate 

determination and the timing of neuronal commitment and differentiation. Although the 

activities of extracellular factors have been intensively studied, many of their cell-

intrinsic effectors have yet to be discovered and characterized. 

The Notch pathway exerts regulatory activities in a diverse array of 

developmental contexts (reviewed in Artavanis-Tsakonas et al., 1999; Kageyama et al., 
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2008). In neurogenesis, Notch signaling suppresses the neurogenic cascade, which is 

promoted and sustained by proneural basic helix-loop-helix (bHLH) transcription factors. 

When the Notch single pass receptor is bound by the Delta or Jagged/Serrate family of 

transmembrane ligands expressed by adjacent cells, the Notch intracellular domain 

(NICD) is cleaved proteolytically (Brou et al., 2000; Mumm et al., 2000) and translocates 

into the nucleus. There, it interacts with the DNA binding protein CSLCBF1/Su(H)/LAG-1 

(Jarriault et al., 1995), displacing a co-repressor complex (Hsieh et al., 1999) and 

recruiting a transcriptional activation complex (Fryer et al., 2002; Wallberg et al., 2002; 

Wu et al., 2000). This leads to the transcription of various immediate target genes, 

including Drosophila enhancer of Split, and its vertebrate homologs Hairy, Hes1, and 

Hes5 (Jennings et al., 1994; Ohtsuka et al., 1999; Sasai et al., 1992). These genes encode 

transcriptional repressors of the basic Helix-Loop-Helix family which act as inhibitors of 

neuronal differentiation. In the developing nervous system, Hes1, Hes5 double mutants 

feature a loss of mitotic progenitors and a massive premature differentiation, particularly 

in the dorsal neural tube (Hatakeyama et al., 2004). 

While this pathway effectively delays neuronal commitment and differentiation, it 

also promotes diversity in neuronal development by actively preserving a pool of 

uncommitted and mitotic neural progenitors, sustaining the birth of successive waves of 

distinct neuronal and glial types (reviewed in Kageyama et al., 2007). To perform this 

broad array of modulatory effects at different developmental stages and in distinct 

morphogenetic domains, the Notch signaling cascade is tightly regulated, from the cell 

surface to the nucleus (reviewed in Bray, 2006; Kadesch, 2004).  



 84 

The Zfp423 gene is expressed alongside the dorsal midline of the embryonic 

mouse neural tube, at the border with the roof plate, particularly in the hindbrain and 

cerebellum (Cheng et al., 2007). The roof plate provides critical signals for cerebellar 

development (Chizhikov et al., 2006). The gene encodes a 30 Zn-finger domain nuclear 

protein involved in cerebellar and olfactory development. Interestingly, Zfp423 null mice 

develop a profound hypoplasia of the cerebellar vermis (Alcaraz et al., 2006; Cheng and 

Reed, 2007; Warming et al., 2006), reminiscent of the Dandy-Walker malformation 

(reviewed in Millen and Gleeson, 2008), and a premature differentiation of olfactory 

neuron progenitors (Cheng and Reed, 2007), although the underlying molecular 

mechanisms remain unclarified.  

ZFP423 is known to interact with the SMAD1-SMAD4 complex, which 

transduces Bone Morphogenetic protein (BMP2/4/7) signaling (reviewed in Liu and 

Niswander, 2005) into the nucleus, upregulating Xvent2 transcription in Xenopus laevis 

gastrulae and mammalian cells (Hata et al., 2000). However, no information is available 

to date as to the functional significance (if any) of the interaction of ZFP423 and receptor-

dependent SMADs in mammalian neural development. 

ZFP423 has also been found to complex with EBF COE proteins (Tsai and Reed, 

1997, 1998). EBF COE TFs are important players in the context of neuronal differentiation 

and migration (Corradi et al., 2003; Dubois et al., 1998; Garcia-Dominguez et al., 2003; 

Pozzoli et al., 2001), olfactory neurogenesis (Davis and Reed, 1996; Wang and Reed, 

1993; Wang et al., 1997), cerebellar PC migration and survival (Croci et al., 2006, and 

Croci et al., submitted) and cerebellar cortical patterning (Chung et al., 2008; Croci et al., 

2006). Finally, a recent paper described the role of ZFP423 as a modifier of retinoic acid-



 85 

induced differentiation(Huang et al., 2009). Thus, ZFP423 is poised to interact with 

multiple signaling pathways and transcriptional effectors, likely integrating their function 

during development. 

In the present paper, we analyze some of the functional and molecular interactions 

established by ZFP423 in vitro and in vivo. We demonstrate that ZFP423 interacts 

functionally and molecularly with the Notch intracellular domain (NICD) in mammalian 

cell lines and in Xenopus neurula embryos, to activate the expression of the Notch target 

Hes5/ESR1. A small proximal region of the Hes5 promoter is sufficient to reproduce this 

cooperation in vitro. This effect is enhanced in BMP4 treated cells. By triggering Hes5 

expression and by modulating BMP signaling cell autonomously, ZFP423 may help 

maintain a pool of Hes5 positive neurogenic progenitors in the developing neural tube. 

 
 

Materials and methods 

Animal Care 

All experiments described in this paper were conducted in agreement with the 

stipulations of the San Raffaele Scientific Institute Animal Care and Use Committee, and 

the University of Utah Institutional Animal Care and Use Committee guidelines. 

 
 
Tissue preparation 

Pregnant mice were anesthetized with Avertin (Sigma). For in situ hybridization 

on sagittal sections, embryos were fixed overnight by immersion with 4% PFA, 

cryoprotected in 30% sucrose overnight, embedded in OCT (Bioptica), and stored at –

80°C, before sectioning on a cryotome (20 µm). For whole mount in situ hydridization 
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and whole mount LacZ staining embryos were fixed with 4% PFA 6 hours or 10 minutes, 

respectively. Zfp423 expression at embryonic day 10.5 was re-examined by LacZ staining 

using a transgenic line obtained from the German Genetrap Consortium (Id: W008G09, 

(Skarnes et al., 2004)) carrying a LacZ gene inserted by gene trapping within the Zfp423 

gene. LacZ staining was performed as described (Croci et al., 2006). 

 
 
Xenopus embryo microinjection 

Mouse Zfp423 from pCDNA3-Zfp423 was subcloned into the pCS2+ expression 

vector and used to make capped mRNA in vitro using the Message mMachine kit 

(Ambion). Also the following constructs were used as DNA templates to make capped 

mRNA : pCS2+X-Deltastu (Chitnis et al., 1996), pCS2+MT-Xotch∆E (Referred to here as 

Nact) (Coffman et al., 1993), pCS2+Xebf2 (Pozzoli et al., 2001), pCS2+Xebf3 (Pozzoli et 

al., 2001), pCS2+nβgal (Chitnis, 1999) and pCS2+GFP (Chalfie et al., 1994). The full 

length Xenopus Zfp423 (XZfp423) cDNA including part of 5’UTR was acquired by 

5’RACE (Roche) using the sequence of image clone 6636947, and then by RT-PCR with 

Superscript II Reverse Transcriptase (Invitrogen) and PfuUltraII fusion HS DNA 

polymerse (Stratagene) (GenBank accession No. GQ421283). The sequence of our 

XZfp423 morpholino (Gene Tools) is TCCACTGTACCTCAAAACTAACCCC, which is 

complementary to nucleotides –26 to –2. mRNA and morpholino were injected into one 

blastomere of 2-cell stage embryos in the following amounts: Zfp423 (1ng for single 

injection and co-injection with Deltastu, 600pg for co-injection with Xotch∆E), Deltastu 

(400pg), Xotch∆E (100pg), Xebf2 (100pg), Xebf3 (100pg), nβgal (50pg) and XZfp423 

morpholino (30ng). mRNA was injected into one dorsal blastomere of 16-cell stage 
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embryos in the following amounts: Zfp423 (300pg) and Gfp (200pg). mRNA for nβgal or 

Gfp was co-injected into all embryos as a tracer. Embryos were grown until neural plate 

stages (Nieuwkoop and Faber, 1994) and fixed in MEMFA for 30 minutes (Harland, 

1991). X-gal staining was performed on the embryos injected with nβgal as described 

(Turner and Weintraub, 1994). GFP expressing embryos were sorted under fluorescence 

based on which side was the injected side, and fixed for 30 more minutes. 

 
 
In situ hybridization 

For whole mount in situ hybridizations of Xenopus embryos, the following 

constructs were used to generate antisense RNA probes: pCMV-sport6-XZfp423 (Image 

clone 6636947, ATCC), pBS-ESR1 (Wettstein et al., 1997), pBS-Hairy1 (Dawson et al., 

1995), and pBS-Nrarp (Lamar et al., 2001). For mouse experiments, digoxygenin-labeled 

riboprobes were transcribed from plasmids containing Hes1, Hes5 and Zfp423 cDNAs. 

Antisense RNA probes were generated in vitro using T7 or T3 RNA polymerase (Roche) 

and labeled with digoxigeninin-11-UTP (Roche). In situ hybridizations of whole-mount 

mouse embryos and embryonic sections were performed as described by Pringle and 

Richardson (www.ucl.ac.uk/~ucbzwdr/double in situ protocol.htm). 

 

Cell Culture and DNA Transfection 

The P19 cell line was maintained in MEM-alpha (Invitrogen) supplemented with 

10% FBS (Invitrogen). The C2C12 myoblastic cells (American Type Culture Collection), 

COS7 and HEK293 cells were maintained in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 10% fetal bovine serum (FBS, EuroClone). P19, HEK293 
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and COS7 cells were transfected with Lipofectamine2000 according to the 

manufacturer’s instructions (Invitrogen). P19 cells were grown in MEM ALPHA medium 

(Invitrogen), 5% FBS and neuralized with 10-6 M retinoic acid (Sigma) treatment for 24 

hours. C2C12 cells were transfected using Lipofectamine2000 and Plus reagent, 

according to the manufacturer’s instructions (Invitrogen), and treated with 100 ng/ml 

BMP4 (R&D Systems) when specified. 

 

Plasmids and constructs 

To generate pCDNA3-6Myc-ZFP423, we subcloned ZFP423 from pXY-ZFP423 

(RZPD, IRAK MGC full length cDNA, clone 961, Berlin, Germany), in pC2+6Myc. 

6Myc-ZFP423 was excised and cloned into pCDNA3.1 vector (Clontech). pCDNA3-

Flag-Notch-Intracellular-Domain (Flag-NICD) was a kind gift of Georg Feger (Serono). 

1Kb and smaller fragment of the Hes5 promoter were amplified from wild type mouse 

genome, cloned into pBluescript SK and sequenced. The fragments were subcloned into 

the pGL3 vector (Promega). To generate pCDNA3-6myc-ZFP423Δ9-20, pCDNA3-

6myc-ZFP423 was digested with the enzymes SacI and PvuII and the fragment – 1381 

bps – was cloned into pBluescript SK, previously opened with PvuII. A second fragment 

– 2120 bps – obtained from pCDNA3-6myc-ZFP423 by SacI-SacII digestion and blunt, 

was cloned downstream of the first fragment in pBKS. 6myc-ZFP423Δ9-20 was excised 

with the enzymes HindIII-NotI and subcloned into pCDNA3.1 (Invitrogen). 
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RT-PCR 

Total RNA was extracted with RNeasy MicroKit (Qiagen), according to the 

manufacturer’s instructions. Total RNA (1-1,5 µg) was retro-transcribed using first strand 

cDNA MMLV-Retrotranscriptase (Invitrogen) and random primers. Each cDNA was 

diluted one to 10, and 3µl were used for each real-time reaction. mRNA quantitation was 

performed with LightCycler480 SYBR Green I Master Mix (Roche) on a LightCycler480 

instrument (Roche) following the manufacturer’s protocol. The following primers were 

used: Gapdh (Vincent et al., 2002); Hes5, Hes1 (Jensen et al., 2000); Blbp (Lowell et al., 

2006); Zfp423 (Hata et al., 2000); flagNICD F: 5’-ATGGACTACAAAGACGATGAC, 

flagNICD R: 5’-CAAACCGGAACTTCTTGGTC 

 

RNA Interference  

Single-stranded DNA oligos encoding the pre-miRNAs were annealed according to the 

manufacturer’s instructions (Invitrogen). Pre-miRNA double-stranded oligos were cloned 

in pCDNATM6.2-GW/-EmGFP-miR vector (Invitrogen). A Pre-miRNA containing a non-

targeting sequence (Invitrogen) was used as a negative control. The pre-miRNAs were 

transfected via Lipofectamine2000 (Invitrogen) according to the manufacturer’s 

instructions. To test the efficacy of the pre-miRNA, HEK293 cells were transfected with 

pcDNA3-6Myc-ZFP423 and either a nontargeting pre-miRNA or ZFP423-specific pre-

miRNA vector, and cell lysates were analyzed via Western blot. Among the specific pre-

miRNA tested, we selected the most effective one in abolishing protein expression. 

Transfected P19 cells were sorted for GFP expression and lysed for RNA extraction with 

RNeasy MicroKit (Qiagen), according to the manufacturer’s instructions. 



 90 

 

Coating assay 

To generate a soluble form of Notch1 ligand, 293T cells grown in a 10-cm Petri 

dish were transfected using Fugene HD (Roche), according to the manufacturer’s 

instructions, with either 5 µg Fc-TRAIL-Receptor 4 (Fc-control) or 5 µg Fc-Jagged1 

expression plasmids (Courtesy of Tom Kadesch, (Buas et al., 2009)). After 48 hours, the 

growth medium was collected and filtered through a 0.45-µm syringe filter. Fc-TRAIL-

R4 or Fc-Delta4 fusion protein was immobilized by incubating polystirene plates for 2 

hours at room temperature with 10 µg/mL rabbit anti–human IgG Fc antibody (Jackson 

ImmunoResearch Laboratories), and then incubated for 2 hours with respective filtered 

supernatant. The pre-miRNAs were transfected in P19 cells via Lipofectamine 2000. 

After 48 hours, the cells were split and grown for 24 hours on plates coated with Fc-

TRAIL-R4 (control) or Fc-Jagged1. Transfected P19 cells were sorted for GFP 

expression and RNA was extracted with RNeasy MiniKit (Qiagen), according to the 

manufacturer’s instructions.  

 

Promoter-reporter assays 

The day before transfection, C2C12 cells were plated in 12-well plates and grown 

in DMEM supplemented with 10% FBS. Luciferase assays were carried out 24 hours 

after transfection using Dual Luciferase Assay kit according to the manufacturer’s 

instructions (Promega). Each result is the average of three independent measurements, 

and each experiment was repeated at least three times. 
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Chromatin immunoprecipitation (ChIP) 

P19 cells (2X106) were treated with 1% paraformaldehyde in 1X PBS by rotation 

for 10 minutes at RT. Fixation was stopped by addition of glycine to a final concentration 

of 125 mM. Cells were washed two times in 1X PBS and centrifuged at 2,000 rpm for 2 

minutes. The pellet was resuspended in lysis buffer (5 mM PIPES pH 8, 85 mM KCl, 

0.5% NP40, and protease inhibitors cocktail) and incubated on ice for 10 minutes. After 

centrifugation at 4,000 rpm for 5 minutes at 4°C, the pellet was resuspended in sonication 

buffer (50 mM Tris-HCl pH 8, 10 mM EDTA pH 8, 0.1% SDS, and protease inhibitors 

cocktail). Sonication was performed five times with 20 second pulses using a microprobe 

at 40% output. Equal amounts of chromatin, precleared with blocked protein A-

Sepharose (GE Healthcare), were incubated by overnight rotation with rabbit anti-OAZ 

(ZFP423) antibody (5 µg, H-105, Santa Cruz Biotechnology). Protein A-Sepharose was 

added to each sample and incubated at 4°C with rotation for 3 hours. Beads were spun at 

14,000 rpm for 5 minutes, washed six to eight times with wash buffer (10mM Tris-HCl 

pH 8, 0.5 mM EGTA, 1mM EDTA 140 mM NaCl, 1% Triton X-100, 0.1% SDS, 0.1% 

sodium deoxycholate), and eluted with 1% SDS in 50 mM NaHCO3. Bound fractions 

were de-cross-linked by adding 200 mM NaCl and by incubation at 65°C for 6–8 hours. 

De-cross-linked samples were treated with RNase (0.03 mg/ml) and Proteinase K (0.3 

mg/ml) at 55°C for 2 hours. DNA was precipitated with 2.5 volumes of absolute ethanol 

and purified using Qiagen PCR Purification kit (Qiagen). Cross-link-reversed chromatin 

was used as a PCR control. For qPCR, each primer pair was assessed for amplification 

efficiency on serial dilutions of genomic DNA. PCR Primer sequences: Hes5 promoter 

(b), F: 5’-TTCCCACAGCCCGGACATT; R: 5’- GCGCACGCTAAATTGCCTGTGAA 
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T;  Hes5 sequence a, F: 5’- TCAACTACTGTCCCTTCGCCCAGA; R: 5’- GGATTGGA 

GTCCTCTAGTTTGCCT; Hes 5 sequence c: F: 5’-CTTGGTCATGTGGGAGAACA; R: 

5’- GGCTGCTAAGGACAGACGAG; Hes5 sequence d: F: 5’- TAGCTTACCACAGGA 

GCAGCAGAA; R: 5’-ACCCAGCAACTTCAGTCCCTGTAA; Mrps15 (mitochondrial 

ribosomal protein S15),  F: 5’-CTGGGACATAGTGGGTGCTT;  R: 5’-GAGCCTAGAG 

ATGGGCTGTG.  

 

Immunoprecipitation and Western blots 

All biochemical procedures were conducted as described (Ausubel et al., 1995). 

In particular, COS7 and HEK293 cells were harvested 24 hours after transfection and 

centrifuged; pellets were frozen at -80°C. For co-immunoprecipitation experiments, cell 

pellets were thawed at room temperature and lysed in 5 volumes of extraction buffer (10 

mM Hepes pH 7.9; 400 mM NaCl; 5% glycerol, PMSF 1mM, Leupeptin 0,5mM, NaF 

50mM, Pepstatin 1mM). Samples were centrifuged at 34,000 rpm for 30 minutes at 4°C, 

and supernatants were collected. Protein concentration was determined by the BCA assay 

(Pierce). Part of the lysate (20%) was kept as a positive input control. Lysates were 

incubated overnight with 10 µg of the indicated antibodies; 30 µl of protein G-Sepharose 

(GE Healthcare) were added for 4 hours at 4°C. The resin was washed five times with 

extraction buffer. Protein complexes were eluted by addition of sample buffer (Tris-Cl 

125 mM pH 6.8; 0.1 M 2-mercaptoethanol; 2% SDS; 20% glycerol; 25 mg/ml 

Bromphenol Blue), boiled for 15 minutes and separated on an 8% SDS-polyacrylamide 

gel. Proteins were transferred on a PVDF membrane (Millipore). Western Blots were 

performed with the following antibodies: mouse anti-myc (9E10, Santa Cruz 
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Biotechnology), rabbit anti-Notch (C-20, Santa Cruz Biotechnology), rabbit anti-OAZ 

(ZFP423) (H-105 Santa Cruz Biotechnology), mouse anti-βactin (Sigma). As secondary 

antibodies, a goat anti-rabbit HRP-conjugated antibody (Bio-Rad), and a sheep anti-

mouse HRP-conjugated antibody (Amersham) were used. Blots were developed with the 

LiteAblot substrate (EuroClone). 

 

Statistical Analysis 

Statistical significance was determined by the Student t test with a threshold for 

significance set to p= 0.05. All results are plotted as the mean + standard deviation. 

 

Results 

Zfp423 expression in the cerebellar primordium 

Since Zfp423 mutants feature a severe cerebellar midline deletion (Alcaraz et al., 

2006; Cheng et al., 2007; Warming et al., 2006), we re-examined the expression of 

Zfp423 at the onset of cerebellar neurogenesis. To this end, we used a transgenic line (Id: 

W008G09, (Skarnes et al., 2004)) carrying a LacZ gene inserted by gene trapping within 

the Zfp423 gene. Zfp423 expression in the neural plate is detectable by whole mount in 

situ hybridization as early as E7.5 (not shown). Zfp423 strongly labels the 

rhombencephalon and mesencephalon at E8.5 and E9.5 (not shown, (Cheng et al., 2007)), 

and the hindbrain and cerebellum thereafter (Figure 3.1A). In situ hybridization of 

embryonic tissue sections (Figure 3.1B-E) revealed that the gene is expressed in both 

germinative epithelia of the cerebellar primordium, i.e. the rhombic lip (RL, arrow), that 

will give rise to all glutamatergic progenitors,  and  the  cerebellar  ventricular  zone  (VZ,  
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Figure 3.1: Colocalization of Zfp423 and Hes5 in the medial cerebellar primordium. 

A) Whole mount LacZ staining of an E10.5 embryo carrying a gene trap insertion in the 

Zfp423 locus. A’, A”) Whole mount E10.5 embryos hybridized with Hes5 and Hes1, 

respectively. Cb, cerebellar primordium; Hb, hindbrain. Note Zfp423 expression at the 

border with the roof plate. B-E) E11.5 and E12.5 sagittal sections from medial and lateral 

territories of the cerebellar primordium, hybridized with Zfp423. Solid arrowhead: 

ventricular zone (VZ); arrow: rhombic lip (RL). B’-E’ and B”-E”) as above, hybridized 

with Hes5 and Hes1, respectively. Empty arrowhead in B” indicates the isthmic organizer 

(IO). Notably, Hes5 is expressed in VZ and RL and sharply silenced in the IO, whereas 

Hes1 is transcribed in the RL and IO, and silenced in most of the VZ.
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solid arrowhead), that harbors all GABAergic progenitors. Since Zfp423 mutants feature a 

severe cerebellar midline deletion (Alcaraz et al., 2006; Cheng et al., 2007; Warming et 

al., 2006), we asked if the gene is expressed at this site (Figure 3.1B,D). Interestingly, in 

the E12.5 cerebellar primordium, Zfp423 is expressed at high levels flanking the midline, 

where it colocalizes with Hes5 (Figure 3.1B’-D’), an immediate transcriptional target of 

the Notch1 signaling pathway expressed in the VZ and RL. In contrast, Hes1 is more 

restricted at this stage, labeling the isthmic organizer (empty arrowhead) and rhombic lip 

(arrow), adjacent to the cerebellar roof plate, while it is considerably downregulated in 

most of the VZ (Figure 3.1A”-E”). 

 

Functional and molecular interactions between 
ZFP423 and Notch signaling 

Based on the above observations, we sought to determine whether ZFP423 acts in 

the context of the Notch signaling pathway. To this end, we overexpressed the 

corresponding gene in neuralized P19 cells (see Experimental Procedures) together with a 

cDNA encoding NICD (Schroeter et al., 1998). Shown in Figure 3.2A is a sample semi-

quantitative RT-PCR analysis of P19 cells transfected with a fixed amount of Nicd and 

increasing concentrations of Zfp423, illustrating the conditions achieved in subsequent 

experiments.  

We measured the levels of four known direct targets of Notch signaling: Hes5 and 

Hes1 (Ohtsuka et al., 1999), Nrarp (Krebs et al., 2001), and Blbp (Anthony et al., 2005). 

As regards Hes5 (Figure 3.2B), while overexpression of Nicd alone produces a significant 

increase in Hes5 gene expression over mock transfected cells, the overexpression of 

Zfp423  alone  has  no  effect.  However,  combined  overexpression  of  Nicd and Zfp423  



 96 

 

 

 

 

 

 

Figure 3.2: Cooperative activation of Hes5 and Blbp gene expression by NICD and 
ZFP423 in cell lines. A) Semiquantitative RT-PCR analysis of exogenous Nicd and 
Zfp423 levels in transfected P19 cells. Note increasing Zfp423 levels in lanes 4-6. This is 
representative of the amounts of Nicd and Zfp423 cDNAs used in B-F. B-G) Quantitative 
RT-PCR analysis of P19 (B-E, G) and C2C12 (F) cells treated as indicated below. B,C) 
Nicd and Zfp423 coexpression in neuralized P19 cells upregulates endogenous Hes5 and 
Blbp expression, respectively, to a level greater than cells transfected with Nicd alone. 
Induction of Hes5 and Blbp transcription is dependent on Zfp423 dosage. D,E) 
Cotransfection of P19 cells with Nicd and Zfp423 fails to activate Hes1 and Nrarp gene 
expression to a level greater than Nicd alone. F) Transfection of C2C12 cells with Nicd 
and Zfp423 induces Hes5 gene expression in a Zfp423 dose-dependent fashion. In this 
line, Hes5 expression is strictly dependent on the addition of exogenous Zfp423. G) 
Zfp423 RNA interference in P19 cells reduces endogenous Hes5 expression. H) Zfp423 
RNA interference reduces Hes5 expression in P19 cells grown on Fc-Jagged1-coated 
plates compared to cells plated onto Fc-TRAIL-R4-coated plates. *, p≤0.05; **, p<0.01.  
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elicits a strong cooperative interaction, leading to a significant increase in Hes5 transcript 

levels that is dependent on Zfp423 DNA dosage. Likewise, Blbp gene expression (Figure 

3.2C) is cooperatively upregulated by NICD and ZFP423, whereas Hes1 and Nrarp 

transcript levels (Figure 3.2D and 3.2E, respectively) are unaffected by Zfp423 

overexpression in addition of Nicd. Because neuralized P19 cells express endogenous 

Hes5 and Zfp423 (Figure 3.1A, and Hata et al., 2000), we moved to a system in which 

neither gene is expressed: the C2C12 myoblastoid cell line (Hata et al., 2000). In this 

system, overexpression of Nicd upregulates Hes1 and Hey (Dahlqvist et al., 2003), but 

activates Hes5 transcription very weakly (our observation). Our results indicate that in 

C2C12 cells Hes5 expression is strictly dependent upon co-expression of Nicd and 

Zfp423 and that the levels of Hes5 expression are again Zfp423-dose dependent (Figure 

3.2F). Next, we asked whether ZFP423 contributes to Hes5 gene regulation even at 

physiological levels of expression. To address this point, we used RNA interference 

(RNAi). The efficiency of Zfp423 knockdown was tested and validated at the protein 

level (Figure 3.3). RNAs extracted from P19 cell lysates were analyzed by RT-qPCR for 

Hes5 gene expression. In unstimulated P19 cells, transfected with a Zfp423 shRNA, Hes5 

transcription was clearly downregulated (Figure 3.2G). Next, we activated endogenous 

Notch signaling by growing P19 cells, transfected with the Zfp423 shRNA, onto plates 

coated with a secreted form of the Notch ligand Jagged (Fc-Jagged) (Buas et al., 2009) or 

with an inactive control (Fc-TRAIL-R4). Our results indicated that in Jagged-activated 

P19 cells, Hes5 is upregulated (Figure 3.2H), and that Zfp423 RNAi causes a significant 

downregulation of the same gene.  
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Figure 3.3: A specific ShRNA effectively abolishes ZFP423 protein expression.  

HEK293 cells were transfected with avector encoding 6mycZFP423 and a vector either 

expressing unrelated shRNA or a ZFP423-specific shRNA. 48 hours after the transfec-

tion, cells were collected and lysed in RIPA buffer, and lysates loaded on an 8% acryl-

amide gel. The corresponding western blot was immunostained first with an anti-myc 

Ab to reveal ZFP423, then with a beta-actin antibody for normalization.
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          Next, we asked if the functional cooperation found to occur between ZFP423 and 

NICD also takes place in vivo. To address this question, we used Xenopus laevis neurula 

embryos. We identified a Xenopus expressed sequence tag clone (Image clone 6636947, 

GenBank accession: BU911031) very similar (83% identity at the nucleotide level) to 

Gallus gallus ZFP423 (see Experimental Procedures). This clone was used as an in situ 

probe to analyze Zfp423 distribution in neurula and tailbud stage embryos. The gene is 

expressed in the head and spinal cord (Figure 3.4A,B; see also stages 28 and 34 in Figure 

3.5). Subsequently, two-cell Xenopus embryos were injected unilaterally with mouse 

Zfp423 and/or mRNA for Xenopus Notch ∆E (Nact); beta galactosidase mRNA was 

included to mark the injected side. Nact encodes an N-terminally deleted, constitutively 

active Xenopus NOTCH protein (Coffman et al., 1993). Both Nact and Zfp423 mRNA 

concentrations were titrated so that either construct would produce moderate changes in 

target gene expression when overexpressed alone. As a first target, we analyzed the Hes5 

ortholog ESR1 (Davis and Turner, 2001; Lamar and Kintner, 2005). Our results (Figure 

3.4C-E) indicate that embryos injected with Zfp423 (600 pg) alone show a moderate 

activation of ESR1 expression (Figure 3.4C); likewise, injection of low amounts of Nact 

alone (100 pg) promoted a low-level expansion of the ESR1 domain (Figure 3.4D); 

however, the simultaneous overexpression of Nact (100 pg) and Zfp423 (600 pg) sharply 

increased ESR1 expression on the injected side (Figure 3.4E). Furthermore, we asked 

whether the effect on ESR1 expression produced by the injection of Zfp423 alone (600 

pg, Figure 3.4C; 1 ng, Figure 3.4F) requires endogenous Notch pathway activation. To 

address this question, Zfp423 (1 ng) was coinjected with a dominant  negative  Delta  

ligand  (DeltaStu,  Chitnis et al., 1995).  DeltaStu coinjection  
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Figure 3.4 - Selective, cooperative activation of ESR1 gene expression by Nact and 
ZFP423 in Xenopus embryos. A,B) Whole mount in situ hybridization analysis of 
Xenopus Zfp423 gene expression in stage 17 (frontal view) and stage 22 (lateral view, 
head to the left) embryos, respectively: the gene is widely expressed starting in the neural 
plate/tube first (arrow), and then moving to the cranial neural crest (arrowhead). C-E) 
Whole mount in situ hybridization analysis of ESR1 gene expression in embryos injected 
unilaterally (bracket) with Zfp423 (600 pg) and/or Nact (100 pg), as indicated. LacZ (blue 
stain) serves as an indicator of the injected side. Note strong ESR1 expression after 
coinjection of Nact and Zfp423. F) Embryo injected unilaterally (bracket) with 1 ng of 
Zfp423. G) Embryo injected unilaterally (bracket) with 1 ng Zfp423 and 400 pg DeltaStu, 
encoding a dominant negative Notch ligand. Note disappearance of ESR1 signal on the 
co-injected side. H,I) Unilateral injection (bracket) of a Zfp423 morpholino 
oligonucleotide (H) and of a control morpholino (I) (see Experimental Procedures). Note 
disappearance of ESR1 signal on the injected side in embryos injected with Zfp423-
specific morpholino unlike those injected with the control morpholino. J-L) Zfp423 
overexpression selectively upregulates ESR1 but not Hairy1 or Nrarp in Xenopus 
embryos. Whole mount in situ hybridization analysis of ESR1, Hairy1, and Nrarp gene 
expression in embryos injected unilaterally with Zfp423 (300pg, arrow) in a dorsal 
blastomere. Note expanded ESR1 expression domain (J), but reduced/unaffected 
expression of Hairy1 (K) and Nrarp (L) on the injected side. Gfp was coinjected with 
Zfp423 as a lineage tracer (not shown). 
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Figure 3.5: Zfp423 expression during Xenopus laevis development.  Whole mount in 

situ hybridization analysis of Zfp423 gene expression in embryos at different stages of 

development (stage 17 and 22, dorsal view; stage 28 and 34, lateral view).
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ablated the expansion of ESR1 consequent to Zfp423 overexpression (Figure 3.4G), 

indicating that this response is strictly dependent upon endogenous Notch signaling 

activation. Finally, we asked whether the endogenous expression of ESR1 depends upon 

the presence of endogenous ZFP423. We injected 2-cell embryos with a ZFP423-specific 

morpholino antisense oligonucleotide and found a significant downregulation of ESR1 on 

the injected side (Figure 3.4H) while the control morpholino had no effects on ESR1 

expression (Figure 3.4I).  

Because of the previously reported role of ZFP423 as a SMAD cofactor in the 

context of mesodermal patterning (Hata et al., 2000), the overexpression experiments 

were repeated by targeting unilaterally a dorsal blastomere at the 16-cell stage to prevent 

a possible interaction of exogenous ZFP423 with the BMP effector complex p-SMAD1-

SMAD4 during gastrulation. The results of this experiment further corroborated the 

notion that Zfp423 overexpression promotes ESR1/Hes5 upregulation on the injected side 

(Figure 3.4I). In the same experiment, the Hes1 ortholog Hairy1 (Dawson et al., 1995; 

Jennings et al., 1994) was either unchanged or slightly downregulated on the injected side 

(Figure 3.4J) and Nrarp (Krebs et al., 2001; Lamar et al., 2001) transcript levels were also 

either left unchanged or slightly downregulated (Figure 3.4K) in response to Zfp423 

overexpression, indicating that Zfp423 promotes a dissociation in the response to NICD in 

vivo, favoring the expression of Hes5 over Hes1 or other targets. Taken together, our in 

vivo results are consistent with those previously obtained in cell lines and point to a role 

for Zfp423 as a cell-autonomous modifier of Notch signal transduction.  
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Hes5 promoter analysis 

To identify and map Hes5 promoter sequences mediating the transcriptional 

response of Hes5 to ZFP423 and NICD, we performed luciferase assays in C2C12 cells, 

using different extents of the Hes5 5' flanking region, as described (Ohtsuka et al., 2006; 

Takizawa et al., 2003). NICD binds to the Hes5 promoter by forming a complex with 

CBF1/RBPjκ/CSL on a CBF1 recognition site(Jarriault et al., 1995), located 153 bp 

upstream of the murine Hes5 ATG. At first, we used a luciferase (luc) reporter containing 

1051 bp of the Hes5 5' flanking sequence + 5' UTR (Sketched in Figure 3.6A). Our 

results show that coexpression of Nicd and Zfp423 leads to a significant (twofold) 

increase in luc expression compared to Nicd alone (Figure 3.6A). Similar results were 

obtained using a reporter construct containing a shorter stretch of the Hes5 promoter / 5' 

UTR (267 bp) (Sketched in Figure 3.6B), although the absolute activity levels were lower 

(Figure 3.6B). These results indicate that while distal promoter regions contain elements 

that are important for Hes5 gene activation, those regions are however not essential for 

the cooperation between NICD and ZFP423 to occur.  

Next, we set out to establish whether ZFP423 interacts in vivo with the Hes5 

promoter. To this end, we performed a chromatin immunoprecipitation (ChIP) 

experiment using neuralized P19 cells (Figure 3.6C) (see Materials and methods). P19 

cell chromatin was immunoprecipitated using a ZFP423 Ab. For PCR amplification, we 

developed Hes5 promoter-specific primers amplifying a 94 bp product spanning the 

BMP-responsive element (BRE) located within the Hes5 promoter region depicted in 

Figure 3.6B, an extremely GC-rich, PCR unfriendly sequence. We performed a qPCR 

using the Hes5 primer pair and different control primers corresponding to an upstream  5’  
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Figure 3.6 – ZFP423 binds to and activates the most proximal 267bp of the Hes5 
promoter. A,B) Promoter-reporter assays performed in C2C12 cells using a long and a 
short version of the Hes5 gene promoter fused to luciferase. The two variants of the Hes5 
promoter are sketched above each histogram. A) A 1 kb wt 5’ sequence responds to 
cotransfection with Zfp423 by upregulating luciferase compared to levels reached with 
Nicd alone. B) Likewise, a 267 bp proximal element is cooperatively activated by Nicd 
and Zfp423, albeit to a lower level with respect to the experiment in A.*p<0.05; 
**p<0.01. C) A chromatin immunoprecipitation was conducted on neuralized P19 cells. 
Sheared chromatin immunoprecipitated with anti-ZFP423 was purified and amplified by 
quantitative PCR. a-d, primer pairs spanning the Hes5 gene (b is the primer pair spanning 
the BRE, see text). e, primer pair amplifying the syntenic gene Mrps15.   Data are plotted 
as fold enrichment relative to the abundance of the Mrps15 qPCR product (e). 
***p<0.0004.  
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flanking sequence (-2500 bp) and to two downstream sequences (+1600 bp and + 2500 

bp). In addition, we analyzed a syntenic gene (Mrps15) located megabases away from 

Hes5 (Henke et al., 2009). The histogram in Figure 3.6C shows a massive fold-

enrichment for the Hes5-promoter-specific product with respect to flanking Hes5 

sequences and to the syntenic Mrps15 gene.  

 

Molecular interactions between ZFP423 and NICD 

Since our results indicated that Zfp423 and Nicd cooperate functionally in vitro 

and in vivo, we investigated whether the corresponding proteins interact at the molecular 

level. First, COS7 cells were cotransfected with constructs encoding 6xmycZFP423 and 

flagNICD. Lysates were immunoprecipitated with an irrelevant anti-GFP, or with an anti-

myc monoclonal antibody. Immunoprecipitates were analyzed by WB using Abs for 

ZFP423 and for NICD, revealing an NICD-specific band only in the myc-

immunoprecipitated lane (Figure 3.7A). To exclude the possibility that NICD might bind 

aspecifically to the beads or the myc antibody, the experiment was repeated and lysates 

from single-transfected cells were immunoprecipitated as negative controls (Figure 3.7C). 

NICD coimmunoprecipitated only in the cell lysates containing both factors. 

 

EBF TF overexpression abolishes the cooperation 
of ZFP423 with NICD 

In previously published work (Pozzoli et al., 2001), we showed that Nicd 

overexpression was capable of reducing or abolishing the ability of XEbf2 to induce Nfm 

gene expression in Xenopus neurulas. This result suggested that Notch and EBF2 might 

act antagonistically in neuronal differentiation, through a mechanism independent of Ebf2  
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Figure 3.7: Molecular interaction between ZFP423 and NICD.  In A), COS7 cells 

transfected with the indicated constructs, were subjected to immunoprecipitation using 

anti-GFP as an irrelevant antibody, or anti-myc to precipitate 6xmycZFP423. Filters 

were cut and stained for ZFP423, NICD, and actin (unrelated protein). Only NICD 

coprecipitated in the fraction immunoprecipitated with anti-myc. B) Lysates of COS7 

cells, transfected with the indicated constructs, were blotted and immunostained as 

shown. C) The lysates shown in B were immunoprecipitated with the anti-myc 

antibody. Filters were immunostained for ZFP423, NICD and EBF3. Notably, NICD 

coprecipitated equally with ZFP423 in the presence or absence of EBF3. 
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gene transcription. Since ZFP423 is a molecular interactor of EBF TFs, we repeated the 

experiment described in figure 3.2B and added Ebf1, Ebf2, or Ebf3 to the transfection 

mix. Transfected cells were harvested, lysed and analyzed by RT-qPCR for Hes5 mRNA 

levels. Our results indicate that Ebf1-3 overexpression alone has no detectable effect on 

Hes5 transcription. However, cotransfecting cells with Nicd, Zfp423 and either Ebf1, 

Ebf2, or Ebf3 antagonizing the cooperative effect of ZFP423 and NICD on Hes5 gene 

transcription (Figure 3.8A). The experiment was repeated in vivo, by injecting 2-cell 

Xenopus embryos unilaterally with the same combination of mRNAs. Again, our in vivo 

results faithfully recapitulated those obtained in P19 cells: coinjection of either XEbf2 (C) 

or XEbf3 (Figure 3.8D) reduced ESR1 activation induced by exogenous Zfp423 (Figure 

3.8B). XEbf2 or XEbf3 injection led to a low level of ectopic ESR1 expression (Figure 

3.8E,F). This might be caused by increased X-Delta-1 expression, driven by XEBF2 

(Dubois et al., 1998), or to expression in differentiating neurons outside of the neural 

plate (Garcia-Dominguez et al., 2003). Since our data indicate that EBFs interfere with 

the cooperation of ZFP423 and NICD, we asked if EBF overexpression can antagonize 

the assembly of the ZFP423-NICD molecular complex. To address this point, COS7 cells 

were cotransfected with 6xmycZFP423, flagNICD and flagEBf3. Lysates were 

immunoprecipitated with anti-myc and analyzed by WB using Abs for ZFP423, NICD 

and EBF3. Both NICD-specific and EBF specific bands were present in the anti-myc 

immunoprecipitates (Figure 3.7C). Again, lysates from single-transfected cells were used 

as negative controls. These results suggest that the three proteins form a complex 

exhibiting a reduced ability to activate Hes5 gene expression. 
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Zfp423 enhances the cooperation between NICD 
and BMP/SMAD signaling 

Previous studies (Hata et al., 2000) showed that ZFP423 interacts with the 

SMAD1/SMAD4 complex in the nucleus to activate the Xvent2 promoter in response to 

BMP signaling activation. Moreover, other authors have described the existence of 

interactions between BMP and Notch signaling pathways, resulting in repression of 

neurogenesis (Takizawa et al., 2003) and myogenesis (Dahlqvist et al., 2003), while 

others have proposed BMP as a rhombic lip (RL)-inducing signal in cerebellar 

development, antagonized by Notch signaling, which sets the RL's ventral limit (Machold 

et al., 2007). Results obtained by other authors indicate that ZFP423 is a functional and 

molecular interactor of the SMAD1-SMAD4 complex. That interaction occurs thanks to a 

domain constituted by Zn fingers 9-20, encoded by exon 4 (Hata et al., 2000; Ku et al., 

2006). We asked if Zfp423 uses the same domain to interact with NICD. To address this 

question we generated a deleted construct missing Zn-fingers 9-20 (sketched in Figure 

3.9A). First, we overexpressed the construct in COS7 cells to determine the subcellular 

localization of the corresponding protein. Δ9-20 ZFP423 is expressed and displays a 

prevalent nuclear localization (Figure 3.9B). Subsequently, we performed a promoter-

reporter assay in C2C12 cells to compare the ability of wt and Δ9-20 ZFP423 to regulate 

Hes5 gene expression. Our results indicate that Δ9-20 ZFP423 fails to cooperate with 

NICD in Hes5 gene activation (Figure 3.9C).  

Since ZFP423 uses the same domain to interact functionally with both NICD and 

the SMAD complex, we asked whether and in which way ZFP423 might modulate the 

response of Hes5 to BMP signaling activation (Takizawa et al., 2003). In vivo, Zfp423 is 

expressed  in  the  cerebellar  primordium flanking the roof plate (Figure 3.1A), a territory  
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Figure 3.9: ZFP423 cooperates with NICD and BMP signaling activation to promote 
Hes5 gene expression. Δ9-20 ZFP423 localizes partially in the cell nucleus but fails to 
activate Hes5 gene expression in cooperation with NICD. A) scheme of the in frame 
deletion of exon 4 producing a protein devoid of Zn fingers 9-20, implicated in the 
interaction with SMAD proteins and the BMP-responsive element. B) 
Immunofluorescence analysis of the subcellular localization of a myc-tagged wt and Δ9-
20 construct in COS7 cells. Note that the mutant protein has a nuclear localization, 
although in some cells it is also distributed in the cytoplasm. DAPI labels DNA. ovl, 
overlay. C) Histogram illustrating the results of a promoter-reporter assay revealing the 
lack of a co-operative interaction between Zfp423 Δ9-20 and NICD in Hes5 gene 
activation. D) Cooperative activation of Hes5 gene expression by BMP4 and Notch 
mediated by ZFP423. Real-time RT-qPCR analysis of RNA from C2C12 cells, mock 
transfected or transfected with either Nicd, Zfp423, or both. Cells were either left 
untreated or treated with BMP4 for 2 hours. Transfection with Zfp423 strongly enhances 
the cooperative effect of NICD and BMP signaling on Hes5 gene expression. E) RNAs 
from the C2C12 cell lysates analyzed in figure 3.9D were subjected to RT-qPCR using 
primers specific for flagNICD. FlagNICD expression levels are comparable in the 
presence and absence of Zfp423. This excludes the possibility that differences in Hes5 
expression depend on different levels of flag-Nicd in Zfp423-transfected vs. Zfp423-
untransfected samples.*, p<0.05; **, p<0.005.  
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that expresses high levels of various BMP family molecules. To determine whether 

ZFP423 coordinates Notch- and BMP signaling recruiting both pathways in the activation 

of Hes5 transcription, we performed an RT-qPCR experiment in C2C12 cells, measuring 

Hes5 transcript levels in response to NICD and ZFP423, and in the presence or absence 

of purified BMP4 in the culture medium (Figure 3.9D). To exclude the possibility that 

Hes5 activation could stem from unequal expression levels of NICD in cells co-

transfected with NICD and ZFP423 versus NICD alone, the levels of NICD were 

analyzed by RT-qPCR and Nicd levels are virtually identical. (Figure 3.9E). Our results 

reproducibly indicate that, in the absence of ZFP423, a 2-hour BMP treatment does 

upregulate Hes5 compared to the transcript levels achieved by transfecting the cells with 

Nicd alone The interaction between BMP4 and NICD observed in C2C12 cells confirms 

the results reported by other authors (Takizawa et al., 2003). However, cotransfecting 

C2C12 with ZFP423 significantly potentiates (over ten-fold) the co-activating effect of 

BMP4 on NICD-induced Hes5 gene expression (Figure 3.9D), suggesting that this protein 

may play an important role integrating BMP and Notch signaling in dorsal territories of 

the neural tube. 

 

Discussion 

ZFP423 interacts functionally and molecularly with NICD 
to activate Hes5 gene expression 

 
In this paper, we show that ZFP423 interacts functionally with the Notch 

intracellular domain to activate cooperatively and selectively the expression of one direct 

Notch target: Hes5 (model in Figure 3.10). This effect occurs on a small stretch of Hes5  

proximal  promoter,  containing  both  a  CBF1  binding site and a BMP responsive  
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Figure 3.10: A working model of the interactions between ZFP423 and other 

networks in Hes5 gene activation.  Hes5 expression is induced upon Notch signaling 

activation independently of ZFP423. ZFP423 boosts the effect of Notch signaling by 

forming a complex with NICD and by recruiting it onto the Hes5 promoter. The 

interaction between the BMP4 transducer SMAD1-SMAD4 and ZFP423 further 

potentiates this effect (solid arrow), although BMP4 signaling might also cooperate 

with NICD in the absence of ZFP423 (stippled arrow). In overexpression experiments, 

EBF/COE transcription factors antagonize Hes5 activation, likely by recruiting NICD 

and ZFP423 into a different transcriptional network.
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element. This interaction occurs in vivo, as shown by the results of ChIP experiments. 

However, ZFP423 has no noticeable effect on the expression of other NICD targets, such 

as Hes1 or Nrarp. This conclusion is supported by experiments conducted both in cell 

lines and Xenopus embryos. The results of both gain-of-function and loss-of-function 

experiments, conducted in vivo and in vitro, support the notion of a cooperation between 

ZFP423 and NICD in Hes5 regulation. Strikingly, in C2C12 cells, that are negative for 

both the Hes5 and Zfp423 transcripts, the expression of Hes5 is strictly dependent upon 

the addition of exogenous Zfp423, as Nicd overexpression alone is not sufficient to 

activate it significantly, while it activates other Notch targets. This result suggests that 

ZFP423 acts selectively to recruit NICD onto the Hes5 promoter.  

 

ZFP423 coordinates BMP4 and Notch signaling to activate 
Hes5 gene expression flanking the dorsal midline 

 
Our results indicate that ZFP423, a known nuclear interactor of the BMP-

dependent SMAD complex (Hata et al., 2000), acts to modulate the function of NICD. 

The corresponding transcript, Zfp423, is expressed in two symmetric stripes of cells 

flanking the roof plate in the cerebellar primordium (Figure 3.1, and Cheng et al., 2007). 

Thus, we wondered if ZFP423 might integrate Notch signaling and roof plate signals cell-

autonomously to promote Hes5 gene expression. Functional interactions between Notch 

and BMP signaling have been observed in urogenital and endothelial cells (Grishina et 

al., 2005; Itoh et al., 2004), and BMP has been known to activate Hes5 transcription 

mildly in mouse neuroeptihelial cells (Takizawa et al., 2003), but the role of ZFP423 in 

this context was not examined. In C2C12 cells, we find that ZFP423 triggers a 

cooperative interaction between NICD and the SMAD complex, leading to a strong 
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activation of Hes5 gene expression. While this result could not be replicated in Xenopus 

embryos, since BMP activation in early embryos interferes with neural induction, in vitro 

studies reproducibly reveal that the cooperative interaction existing between NICD and 

the BMP pathway is enhanced by ZFP423 and results in Hes5 upregulation. For its 

cooperation with NICD (present paper) and SMAD1/4 (Hata et al., 2000), ZFP423 uses 

the same domain, containing Zn fingers 9-20. This is a very large domain, that likely 

accommodates both proteins permitting their cooperative rather than antagonistic 

interaction. 

Previous reports have shown that Zfp423 null mutants feature a disorganized 

cerebellar ventricular zone with disassembled radial glia. In neuralized P19 cells, ZFP423 

regulates both Hes5 and Blbp transcription in response to NICD. In vivo, Hes5 

transcription is strictly dependent upon Notch signaling activation and Hes5 is expressed 

in asymmetrically dividing radial glia (Ohtsuka et al., 1999; Ohtsuka et al., 2001). In the 

cerebellar primordium, Hes5 labels the cerebellar VZ and rhombic lip, whereas Hes1 is 

highly expressed in the rhombic lip and isthmic organizer, but is downregulated in most 

of the VZ (Figure 3.1). We speculate that in dorsal territories of the cerebellar 

primordium the interaction occurring between Notch and BMP signaling, and enhanced 

by ZFP423, could maintain a pool of Hes5 positive radial glial progenitors supporting 

several rounds of asymmetric, neurogenic cell division, and prevent the premature 

occurrence of terminal differentiation. In keeping with this interpretation, expression of 

the radial glia marker BLBP has been found reduced in Zfp423 mutants (Alcaraz et al., 

2006).  
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EBF TFs antagonize the ZFP423-NICD mediated 
activation of Hes5 gene expression 

The cooperative interaction established by ZFP423 and NICD can be quenched by 

cotransfecting cells with cDNAs encoding TFs of the EBF COE family. EBF TFs also 

block the cooperative interaction between ZFP423 and Nact in Xenopus embryos. EBF 

TFs have been implicated in neuronal differentiation, and ZFP423 acts as an EBF 

antagonist both in promoter-reporter assays (Tsai and Reed, 1997) and, in vivo, in 

olfactory neurogenesis (Cheng and Reed, 2007). The reported ability of ZFP423 to block 

differentiation when expressed ectopically in postmitotic precursors, and to revert them to 

an undifferentiated state, could be explained partially by the ability, shown here, of 

ZFP423 to promote Hes5 gene expression. Conversely, the ability of EBF TFs to couple 

cell cycle exit to the onset of differentiation may stem in part from recruiting ZFP423 into 

molecular processes other than its cooperation with Notch signaling. In other words, EBF 

TFs may compete with NICD for ZFP423 in differentiating radial progenitors, and recruit 

ZFP423 in neuronal differentiation and migration (Garcia-Dominguez et al., 2003). Our 

co-immuno-precipitation results indicate that EBF3 does not interfere significantly with 

the assembly of a ZFP423-NICD complex, thus suggesting that the presence of EBF TFs 

may recruit NICD and ZFP423 into a distinct regulatory network, sequestering it from the 

Hes5 promoter. 

In summary, ZFP423 synergizes with NICD and cell-autonomously integrates 

BMP signaling with the Notch pathway, leading to the selective upregulation of one 

direct target of Notch: Hes5. By doing so, Zfp423 may promote the maintenance of an 

undifferentiated radial glial progenitor pool. In vivo gain-of-function studies are now 

required to fully elucidate the roles of Zfp423 in the context of cerebellar neurogenesis. 
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Abstract 

EBF proteins have diverse functions in the development of multiple lineages, 

including neurons, B cells and adipocytes. During Drosophila muscle development EBF 

proteins are expressed in muscle progenitors and required for muscle cell differentiation, 

but there is no known function of EBF proteins in vertebrate muscle development. In this 

study, we examine expression of ebf genes in Xenopus muscle tissue and show that EBF 

activity is necessary for aspects of Xenopus skeletal muscle development, including 

somite organization, migration of hypaxial muscle anlagen toward ventral abdomen, and 

development of jaw muscle. From a microarray screen, we have identified candidate 

targets of EBF activity with known roles in muscle development. The candidate targets 

we have verified are MYOD, MYF5, M-Cadherin and SEB-4. In vivo overexpression of 

the ebf2 and ebf3 genes leads to ectopic expression of these candidate targets, and 

knockdown of EBF activity causes downregulation of the endogenous expression of the 

candidate targets. Finally we show that MYOD can upregulate the expression of ebf 

genes, indicating the presence of a positive feedback loop between EBF and MYOD that 

we find to be important for maintenance of MYOD expression in Xenopus. These results 

suggest that EBF activity is important for both stabilizing commitment and driving 

aspects of differentiation in Xenopus muscle cells. 

 

Introduction 

The processes of cell commitment and cell differentiation are important aspects of 

the development of muscle tissue. The group of transcription factors known as myogenic 

regulatory factors (MRFs) includes the proteins MYOD and MYF5, and these 



 128 

transcription factors are critical in driving both commitment and differentiation in muscle 

tissue, as seen by the complete lack of muscle cells in Myod, Myf5 double knockout mice 

(Rudnicki et al., 1993). While much is known about regulation of the process of 

myogenesis, and the actions of the MRFs in particular, there is no complete picture of the 

regulatory networks of transcription factors that drive vertebrate muscle development. In 

Drosophila, the Early B cell factor (EBF, also known as COE (collier/olfactory/EBF)) 

family member Collier plays a role in muscle development, but the roles of EBF proteins 

in vertebrate muscle development have not been explored. 

EBF family members are transcription factors involved in development in several 

different cell lineages, including neurons, B cells, adipocytes and muscle cells (reviewed 

in Dubois and Vincent, 2001; Liberg et al., 2002; Lukin et al., 2008). These proteins 

contain a zinc finger DNA binding domain and an atypical helix-loop-helix dimerization 

domain (Hagman et al., 1993; Hagman et al., 1995; Wang and Reed, 1993; Wang et al., 

1997). There are four family members in mammals (Ebf1, Ebf2, Ebf3 and O/E4), two 

known members in Xenopus (EBF2 and EBF3), and one in zebrafish (ZCOE2) (Bally-

Cuif et al., 1998; Dubois et al., 1998; Garel et al., 1997; Hagman et al., 1993; Malgaretti 

et al., 1997; Pozzoli et al., 2001; Wang and Reed, 1993; Wang et al., 1997). Among 

invertebrates, the proteins Collier in Drosophila and UNC3 (CeO/E) in C. elegans belong 

to the EBF family (Crozatier et al., 1996; Prasad et al., 1998). EBF proteins have been 

shown to regulate many aspects of differentiation during neuronal, B cell and adipocyte 

development, however much less is known about their role during muscle development. 

In Drosophila, the collier gene is expressed in progenitors for several muscles, 

and is required for myoblast fusion (Crozatier and Vincent, 1999). The expression of 
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collier in Drosophila is driven by both Collier itself and by the MYOD ortholog Nautilus, 

and this upregulation is synergistic when two genes are present together (Dubois et al., 

2007). In mouse, Northern blot analysis shows that Ebf3 is expressed in adult skeletal 

muscle (Garel et al., 1997). Furthermore, EBF proteins are known to bind to the negative 

regulatory element of the glut4 gene in muscle (Dowell and Cooke, 2002), which allows 

for insulin-mediated glucose uptake in multiple tissue types (Kahn, 1998). However, the 

exact expression patterns, transcriptional targets, and functions of EBF genes in the 

development of vertebrate muscle are not understood. 

The process of muscle development has been intensively investigated in multiple 

vertebrate models, including Xenopus. During vertebrate development, early mesoderm 

tissue forms somites, which contain myotome cells that will become myoblasts and give 

rise to muscle tissue. In Xenopus, cells in presomitic mesoderm undergo an early 

rotational event that gives rise to somites (reviewed in (Elinson, 2007).  

Somites contain two separate muscle cell lineages. The region of the somite called 

the dermamyotome contains a dorsal lip, near the neural tube, with cells that will form 

epaxial muscles (muscles of the deep back), and a ventral lip, far from the neural tube, 

with cells that will form hypaxial muscles (muscles of the body wall and limbs) (Gros et 

al., 2005; Mariani et al., 2001). The hypaxial cells bud off from the somite and migrate 

ventrally along the body wall before completing the processes of muscle development 

(Martin and Harland, 2001, 2006). Next, myoblasts localize to their correct positions and 

exit the cell cycle. In most species, myoblasts then align with neighboring myoblasts, 

undergo fusion, and continue differentiation as multinucleated muscle fibers. However, in 

Xenopus, muscle cells generated before metamorphosis utilize amitotic rounds of nuclear 
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division to generate multi-nucleated muscle cells (Boudjelida and Muntz, 1987; 

Kielbowna, 1966).  

Across many species, MYOD and MYF5 are expressed from the somite stage, 

and these bHLH proteins are well known for their critical role in myoblast commitment 

and differentiation. In Xenopus, MYOD and MYF5 are expressed even in presomitic 

mesoderm (Dosch et al., 1997; Hopwood et al., 1989, 1991), and when MYF5 function is 

blocked by morpholinos, normal development of both the presomitic mesoderm region 

and of somites is disrupted (Keren et al., 2005). MYOD and MYF5 are also expressed in 

Xenopus migrating hypaxial cells (Martin and Harland, 2001).  

We performed a microarray screen of Xenopus animal cap tissue with active 

EBF3 protein, and unexpectedly found that several muscle-related genes were among the 

most strongly up-regulated targets (Green et al., in preparation), suggesting a role for 

EBF factors in regulating vertebrate muscle differentiation. We demonstrate the 

sufficiency and requirement of EBF2 and EBF3 for in vivo expression of the muscle-

related genes myod, myf5, seb-4 (also called rbm24), and m-cadherin, identified in our 

microarray screen. We also describe the expression patterns of ebf2 and ebf3 in the 

tissues that give rise to Xenopus skeletal muscle, and show a requirement for EBF2 and 

EBF3 activity in normal muscle development. Finally, we show that MYOD can drive 

expression of ebf2 and ebf3, in vivo. Our results suggest several new functions of EBF 

proteins in vertebrate muscle development, and provide evidence in vertebrates of a 

reciprocal transcriptional relationship between EBF proteins and MYOD. 
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Materials and methods 

Microinjection of RNA and morpholinos 

The following constructs were used as DNA templates to make capped RNA: 

pCS2+Noggin (Richard Harland), pCS2+hGR-MT-Xebf2, pCS2+hGR-MT-Xebf3, p64T-

MyoD-GR (Kolm and Sive, 1995), and pCS2+nβgal (Chitnis et al., 1995). Capped RNA 

was generated in vitro using the Message mMachine kit (Ambion). Antisense morpholino 

oligonucleotides (MOs) were designed by Gene Tools, and directed against a region at or 

near the translational start site of ebf2 (5’-GCGCTTTGTCTCTCAAGGCAGTTCC-3’) 

and ebf3 (5’-GTATATTTTCCTGAATCCCAAACAT-3’). 

For microarray experiments, 1ng of hGR-XEBF3 mRNA and 0.2ng noggin 

mRNA were coinjected into Xenopus embryos at the one-cell stage. Alternatively, 0.4ng 

hGR mRNA and 0.2ng noggin mRNA were coinjected in control embryos. At stage 9, 

animal caps were dissected from the embryo, using either a Gastromaster or a syringe 

needle tip. Animal caps were treated with 30µM Dexamethasone (DEX) in 1x MMR for 

4.5 hours before harvesting of total RNA. 

For testing sufficiency of EBF and MYOD to drive target gene expression, a 

volume of 4nl containing RNA was injected into one blastomere of two cell stage 

embryos. The following amounts of capped RNA were used for injection: hGR-Xebf2 

(0.5ng), hGR-Xebf3 (0.5ng), MyoD-hGR (0.5ng), and nβgal (30pg). For morpholino 

experiments, a volume of 3nl containing Xebf2 morpholinos (Gene Tools, 7.5µg or 

10µg), Xebf3 morpholinos (Gene Tools, 7.5µg or 10µg), and nβgal (20pg) was injected 

into two vegetal blastomeres of 8-cell stage embryos. In all microinjections, nβgal capped 

RNA was co-injected with other capped RNA or morpholinos into embryos as a tracer. 
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Embryos were then grown and staged (Nieuwkoop and Faber, 1994). Embryos, which 

were injected with hGR-Xebf2, hGR-Xebf3 and MyoD-hGR, were treated with 30µM 

DEX from the gastrula stage (stage 11/11.5) to the neurula stage (stage 14/15).  All 

embryos were then fixed with 4% paraformaldehyde (PFA) in PBS for 30 minutes. After 

washing the embryos 3 times with PBS, X-gal staining was performed as described 

(Turner and Weintraub, 1994). Further fixation was done for one hour at room 

temperature or overnight at 4°C.  

 

Real time PCR 

The total RNAs generated for the microarray experiments were used for real time 

PCR (RT-PCR). To make cDNA from isolated total RNA from animal caps, the 

SuperScript II and oligodT12-18 primers (Invitrogen) were used according to the 

manufacture’s instructions. MacVector Software was used to design the gene specific 

primers (Table 4.1). PCR was performed as previously described (Hutcheson and Vetter, 

2001; Pozzoli et al., 2001). 

 

Whole mount in situ hybridization 

The following constructs were used to generate antisense RNA probes: pBS-

Xebf2 (Pozzoli et al., 2001), pBS-Xebf3 (Pozzoli et al., 2001), pSP73-XmyoD (Hopwood 

et al., 1989), pBS-XMyf5 (Hopwood et al., 1991), M-cadherin (IMAGE ID 5440166, 

ATCC), XSEB-4 (IMAGE ID 4970239, ATCC), Actin alpha (IMAGE ID, 5542285 

ATCC), and Tnnc1 (IMAGE ID 4407474, ATCC). Antisense RNA probe was generated 

in vitro using SP6, T7 or T3 RNA polymerase (Ambion) and labeled with digoxigeninin- 
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Table 4.1: Primer sequences used for RT-QPCR.

Name              Sequence

myod1 forward    5’- TCTGCCCCCTATTGGTCACTTG -3’

m-cadherin forward    5’- CCAAGATGGAACAAGGTCGCTC -3’

actin alpha forward    5’- CCTGGACTTTGAAAATGAAATGGC -3’

seb-4 forward     5’- AGGCACCAAAGCAATCTTCTTG -3’

tnnc1 forward     5’- TGGGAGGGACTTATCACTAAATAGG -3’

myf5 forward     5’- AACCAGGCTTTTGAAACGCTC -3’

brachyury forward    5’- GGATCGTTATCACCTCTG -3’

histone h4 forward    5’- TGCGGGATAACATTCAGGGC -3’

myod1 reverse   5’- CCCCATTGTCCGTATTCAACAC -3’

m-cadherin reverse   5’- GCTCATTTTTGACATTCAGTGCC -3’

actin alpha reverse   5’- CATACGGTCAGCAATACCTGGG -3’

seb-4 reverse    5’- CCAGCGGTTCAAAGTTTCCC -3’

tnnc1 reverse    5’- GGGCACAAAATGTCAAACGG -3’

myf5 reverse    5’- TTCTTCCAGACCATTGAGGGC -3’

brachyury reverse   5’- GTGTAGTCTGTAGCAGCA -3’

histone h4 reverse   5’- CGGTCTTCCTCTTGGCGTG -3’
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11-UTP (Roche). Whole mount in situ hybridization was performed on the fixed and X-

gal stained embryos as described (Harland, 1991; Kanekar et al., 1997). 

 

Immunostaining 

For whole mount immunostaining, pigmented embryos were bleached with 1% 

hydrogen peroxide and 5% formamide in 0.5X SSC solution under fluorescent light for 

about 1hour. The bleached embryos were fixed again with 4% PFA. 12/101 antibody 

hybridoma supernatant was used to stain differentiated skeletal muscle (Developmental 

Studies Hybridoma Bank, (Kintner and Brockes, 1984)). After washing embryos three 

times (1 hour for each wash) with PBS at 4°C, embryos were incubated with blocking 

solution containing 1% triton X-100 and 10% heat inactivated goat serum in PBS for 3 to 

5 hours at RT.  12/101 antibody was diluted in the blocking solution (1:300) and 

incubated for 2 to 4 days at 4°C. The embryos were then washed 3 times (1 hour for each 

wash) with the blocking solution, and the Alexa 488 conjugated goat anti-mouse IgG 

secondary antibody (Invitrogen) was diluted in the blocking solution (1:1000) and 

incubated with embryos for 2 days at 4°C. The embryos were washed with PBS three 

times before being photographed. 

 

Results 

EBF3 drives expression of multiple muscle development 
genes in explanted Xenopus animal caps 

 
To identify transcriptional targets of EBF3, we performed a microarray screen on 

Xenopus animal caps, comparing animal caps with and without active EBF3 protein 

(Green et al., in preparation; see GEO database). A hormone-inducible fusion protein 
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(hGR-XEBF3) was used to enable us to regulate EBF activity using the hormone 

dexamethasone (DEX). In the absence of DEX, EBF3 remains inactive. Adding DEX to 

the explants induces EBF3 activity (Kolm and Sive, 1995). We found that genes involved 

in muscle development were among the most strongly upregulated genes on the array, 

with myod being the second most strongly upregulated target of all genes. This study 

focuses on the muscle-related targets of EBF3. There were also significant candidate 

targets with expected neuronal functions, which are described elsewhere (Green et al., in 

preparation, and also see the GEO database).  

We found a variety of candidate targets that have known functions or expression 

in muscle tissue, and we performed additional analysis on six of these: myod (80-fold 

upregulated, Genbank accession number BC073672), muscle-cadherin (m-cadherin, 39-

fold, CF288050), actin alpha (34-fold, BC046739), seb-4 (16-fold, BC072812), tnnc1 (9-

fold, BC082829), and myf5 (6-fold, AJ009303). These results are the first to show myod 

transcriptionally downstream of an EBF family member, and suggest a potentially critical 

role of EBF proteins in Xenopus muscle development. To confirm our microarray results, 

we performed reverse transcriptase PCR (RT-PCR) and found that each candidate target 

gene listed above was upregulated in the presence of active hGR-XEBF3 (Figure 4.1). 

 

EBF2 and EBF3 are sufficient and required for 
the expression of muscle targets in vivo 

 
The function of EBF2 is known to be similar to that of EBF3, so EBF2 was also 

included in the remaining experiments of this study (Dubois et al., 1998; Pozzoli et al., 

2001). In order to determine if EBF2 and EBF3 are sufficient for driving the expression 

of  the  candidate  target  genes  in  vivo, we examined the expression level of targets after  
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Figure 4.1: Confirmation of microarray by RT-PCR.  hGR-XEBF3 mRNA and 

Noggin mRNA were injected into embryos at the single-cell stage. At the blastula 

stage, the animal caps were divided into two groups. One group was treated with DEX 

and the other, untreated, group was used as a control. Following a 4.5 hour incubation 

with or without DEX, total RNA was isolated from each group of animal caps. RT-PCR 

was conducted with the isolated total RNAs. The column labeled –RT is a negative 

control, in which reverse transcriptase was not added when cDNA was generated. 

cDNA from stage 12 (for myf5, Xbra and histone h4) or stage 27 (for the remaining 

genes) total embryos (TE) was used as a positive RT-PCR control.  brachyury was used 

to ensure there was no mesoderm contamination in animal caps. histone h4 was used as 

a loading control. All tested genes (except the loading and contamination controls) 

were upregulated in the presence of DEX. 
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overexpression of hGR-XEBF2 or hGR-XEBF3 in Xenopus embryos. Overexpression 

was achieved by injection of mRNA into one cell of two-cell stage embryos, followed by 

treatment of the embryos with DEX from the gastrula stage (stage 11/11.5) to the neurula 

stage (stage 14/15). The expression level of candidate target genes was then examined by 

whole mount in situ hybridization (WM-ISH) (Figure 4.2). We found that myod (16/16 

embryos for hGR-XEBF2 and 16/16 embryos for hGR-XEBF3), m-cadherin (28/33 and 

15/24), seb-4 (18/18 and 24/24), and myf5 (33/50 and 30/48) were upregulated by 

overexpression of EBF2 or EBF3 (Figure 4.2). However, the expression of actin alpha 

(17/24) and tnnc1 (36/48) were downregulated by EBF3 (data not shown). We therefore 

believe that actin alpha and tnnc1 are unlikely to be in vivo targets of EBF activity. The 

fact that the expression levels of myod, m-cadherin, seb-4 and myf5 are upregulated by 

overexpresion of EBF2 and EBF3 supports the microarray data, and suggests that EBF 

activity is sufficient to drive expression of these candidate genes in vivo.  

To determine if EBF2 and EBF3 activity is required for the expression of our 

candidate target genes in vivo, we examined their expression level after knockdown of 

EBF2 and EBF3 using translation blocking antisense morpholinos (MO), targeting both 

factors together since they often act redundantly. To block EBF2 and EBF3 function, 

EBF2 MO and EBF3 MO were coinjected into two vegetal cells of eight-cell stage 

embryos, which make minimal contributions to neuronal tissue where EBF factors are 

also known to be required ((Dubois et al., 1998; Pozzoli et al., 2001) and Green et al., in 

preparation). The expression level of endogenous candidate target genes was examined at 

the early tail bud stage (stage 21/22), a stage in which the anterior somites are clearly 

formed,  and  the expression of each target is apparent  (Figure 4.3).  After knockdown of  
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Figure 4.2: EBF2 and EBF3 are sufficient for muscle target gene expression. 

hGR-XEBF2 or hGR-XEBF3 mRNA were injected into one cell of two-cell stage 

embryos, followed by DEX treatment from the late gastrula stage (stage 11/11.5) to the 

neurula stage (stage 14/15). hGR mRNA was injected in control embryos. 

!-galactosidase mRNA was coinjected as a marker of the injected side. In all panels the 

right side is the injected side, showing the light blue color of X-gal staining. The 

(purple) expression of myod (B and C), m-cadherin (E and F), seb-4 (H and I), and myf5 

(K and L) is strongly upregulated by EBF2 and EBF3 (brackets), while hGR does not 

change the expression level of the target genes (A, D, G, and J). All panels show dorsal 

views.
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Figure 4.3: EBF2 and EBF3 are necessary for muscle target gene expression. Two 

vegetal cells of eight-cell stage embryos were injected with either XEBF2 MO and 

XEBF3 MO together, or control MO. !-gal mRNA was coinjected as a marker of the 

injected side. The expression level of target genes was examined at the stage 21/22.  In 

all panels the right side is the injected side, showing the light blue color of X-gal 

staining. The (purple) expression of myod (B), m-cadherin (D), seb-4 (F), and myf5 (H) 

are downregulated by XEBF2 MO and XEBF3 MO (brackets), while control MO does 

not change their expression level (A, C, E, and G). All panels show dorsal views.
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both EBF2 and EBF3, the expression of myod (16/18 embryos), m-cadherin (7/8), seb-4 

(6/10), and myf5 (14/17) were downregulated. Control MO did not change the expression 

levels of these genes. These four genes were also downregulated by expression of RNA 

encoding truncated dominant negative EBF3 (DN-EBF), which blocks the function of 

endogenous EBF proteins by forming non-functional dimers that do not bind DNA 

(Green et al., in preparation, (Dubois et al., 1998; Hagman et al., 1993; Hagman et al., 

1995) and data not shown). These knockdown experiments suggest that EBF factors are 

required for the expression of each of our candidate targets in vivo.  

 

EBF2 and EBF3 are expressed in developing muscle tissue 

Previous studies have focused mainly on neuronal expression of the ebf2 and ebf3 

genes (Dubois et al., 1998; Pozzoli et al., 2001), but there is also apparent expression of 

ebf3 in somites of stage 28 and stage 32 Xenopus embryos (Pozzoli et al., 2001). Since 

we have verified that EBF activity is critical for the expression of our muscle specific 

candidate target genes, we performed WM-ISH to obtain a more detailed picture of both 

ebf2 and ebf3 expression in somites and developing muscle tissue (Figure 4.4). At stage 

22, there is expression of ebf2 and ebf3 in presomitic mesoderm tissue. Expression of 

ebf2 and ebf3 is detectable in somites as well, and this somite expression becomes very 

clear at stage 28 (Figure 4.4, arrows). The somites will give rise to structures including 

dorsal epaxial muscle and ventral hypaxial muscle. At stage 37, ebf2 and ebf3 maintain 

somitic expression, and maintain expression in the migrating hypaxial muscle tissue 

(Figure 4.4, arrowheads). In sections through the somites at stage 28, ebf2 and ebf3 

appear  to  be  expressed  in  the  dermamyotome,  which  contains the cells that will form  
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Figure 4.4: Expression patterns of ebf2 and ebf3 in Xenopus muscle.  ebf2 (A-C) and 

ebf3 (D-F) are expressed in multiple developing nervous and muscle tissues. At stage 22, 

ebf2 and ebf3 are expressed in pre-somitic mesoderm. At all three stages, ebf2 and ebf3 

are expressed in the developing somites (arrows). At stage 37, they are also expressed in 

the migrating hypaxial muscle anlagen (arrowheads).
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epaxial and hypaxial muscle tissue (data not shown). These expression patterns provide a 

strong indication that ebf2 and ebf3 could regulate skeletal muscle development. 

 

Classes and expression patterns of target genes  

The EBF gene targets identified by microarray, and confirmed by EBF gain and 

loss of function experiments, were classified based on their known functions in Xenopus 

and other species. MYOD and MYF5 are basic helix-loop-helix transcription factors and 

also are myogenic regulatory factors (Braun et al., 1989; Davis et al., 1987; Hopwood et 

al., 1989, 1991). M-cadherin is a cell membrane protein (Donalies et al., 1991) and SEB-

4 is an RNA binding protein (Fetka et al., 2000).  

To determine if the functional relationships we identified above are meaningful 

relationships during Xenopus development, and to determine if the targets are expressed 

in a manner consistent with the expectation that they are involved in muscle 

development, we compared the expression domains of EBF2 and EBF3 target genes 

(Figure 4.5) with those of ebf2 and ebf3 (Figure 4.4) by WM-ISH at stage 37. We chose 

this stage because most structures that will give rise to skeletal muscles, including 

somites, migrating hypaxial muscle anlagen and developing jaw muscle, are clearly 

detectable at this stage. The WM-ISH expression patterns of myod, myf5 and seb-4 in 

Xenopus have previously been published (Dosch et al., 1997; Fetka et al., 2000; Martin 

and Harland, 2001), but to our knowledge this is the first report of expression patterns of 

m-cadherin in Xenopus. All four genes are expressed in the tissues that will give rise to 

skeletal muscle. myod is expressed in a strong central band in the somites, with especially 

strong  expression at  the  dorsal  and  ventral  lips.  It is also expressed in jaw muscle and  
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Figure 4.5: Expression patterns of muscle target genes in stage 37 embryos.  

myod, m-cadherin, seb-4, and myf5 are all expressed in the skeletal muscle. myod (A) 

and seb-4 (C) are expressed in the somites, migrating hypaxial muscle anlagen and jaw 

muscle, and these expression patterns overlap with those of ebf2 and ebf3 (Figure 4.4). 

m-cadherin (B) is expressed in a weak central band in somites, with expression 

throughout the somite. It is also expressed in migrating hypaxial muscle anlagen and 

jaw muscle. myf5 (D) expression in somites is weaker than other genes at this stage, and 

is expressed at the leading edge of migrating hypaxial muscle. This gene is 

also expressed in jaw muscle. All embryos show lateral views.
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migrating hypaxial muscle anlagen (Dosch et al., 1997; Martin and Harland, 2001, and 

Figure 4.5). m-cadherin is expressed in a weaker central band in the somites, and with 

diffuse expression throughout the somites. It is also expressed in jaw muscle and 

migrating hypaxial muscle anlagen (Figure 4.5). The expression pattern of seb-4 in 

muscle tissue is very similar to that of myod. It is expressed in the somites, jaw muscle 

and the migrating hypaxial muscle anlagen ((Fetka et al., 2000) and Figure 4.5). myf5 is 

expressed in the somites, jaw muscle and migrating hypaxial muscle anlagen, but the 

expression pattern of myf5 is different from other targets in the migrating hypaxial 

muscle anlagen, in that it appears to be at the leading edge, rather than within the bulk of 

the anlagen. Expression of myf5 is also weaker than that of the other targets at this stage 

((Dosch et al., 1997; Martin and Harland, 2001) and Figure 4.5). These expression 

patterns of myod, m-cadherin, seb-4 and myf5 are very similar to expression of ebf2 and 

ebf3 in somites and migrating hypaxial muscle anlagen. This strong correlation suggests 

that the transcriptional relationships we have identified could be very relevant for 

Xenopus muscle development. 

 

EBF2 and EBF3 are involved in Xenopus muscle development 

In order to determine if EBF2 and EBF3 have a functional requirement in the 

morphology of Xenopus muscle development, we assessed this after knockdown of EBF2 

and EBF3 with morpholinos. These morpholinos were injected either independently or 

together into two vegetal cells of eight-cell stage embryos. We then examined the 

expression pattern of the skeletal muscle marker myod (Dosch et al., 1997; Hopwood et 

al., 1989; Martin and Harland, 2001) after knockdown of EBF2 and EBF3 at stage 39/40 
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(Figure 4.6, A-H) by using WM-ISH. After knockdown of EBF2 and EBF3, the amount 

of migrating hypaxial muscle anlagen became smaller, and the anlagen migrated a shorter 

distance (black arrowheads) than on the injected side. The chevron shape of somites was 

more irregular (black arrows) than the uninjected side, and myod expression levels in jaw 

muscle were downregulated (yellow arrows). These defects of muscle development were 

present following single knockdown of either EBF2 or EBF3, and were more severe after 

double knockdown of both. We also found similar muscle defects after injection of DN-

EBF (data not shown). There were no visible defects after injection of control MO 

(Figure 4.6, A and B). Since myod is one of our candidate targets of EBF activity, we 

verified our findings by labeling embryos with an antibody against the differentiated 

skeletal muscle marker 12/101 (Kintner and Brockes, 1984) after knockdown of EBF2 

and EBF3 (Figure 4.6, I-L). At stage 39/40, skeletal muscle tissue staining positively with 

12/101 antibody can be seen in somites, jaw, and abdomen. When EBF2 MO and EBF3 

MO were coinjected, the region of skeletal muscle tissue was reduced in jaw (yellow 

arrows) and abdomen (white arrowheads) compared to the uninjected side. In the somites, 

the segmentation between somites was not clear, and the chevron shape was abnormal 

(white arrows). Control MO does not affect muscle differentiation (Figure 4.6, I and K). 

These defects of muscle development after knockdown of EBF2 and EBF3 give us good 

evidence that EBF proteins are required for normal Xenopus skeletal muscle 

development. 
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Figure 4.6: Defective skeletal muscle development after knockdown of EBF2 and 
EBF3  

Two vegetal cells of eight-cell stage embryos were injected with control MO or 
EBF2 MO (2 MO) and EBF3 MO (3 MO), either alone or together. β-gal mRNA was 
coinjected as a marker of the injected side. At stage 39/40, myod expression was 
examined (A-H), and 12/101 antibody was used as a marker of skeletal muscle tissue (I-
L). The left column (panels A, C, E, G, I, and K) shows the uninjected control side of the 
embryos, and the right column (panels B, D, F, H, J, and L) shows the injected side. All 
panels show lateral views. After injection of 2 MO or 3 MO, myod expression patterns 
show that the chevron shape of somites is abnormal (black arrows), the amount of 
hypaxial muscle anlagen is smaller, and the migration distance is reduced (black 
arrowheads) compared to the uninjected side. The expression of myod in jaw muscle is 
also reduced (yellow arrows). When 2 MO and 3 MO were coinjected (H), these defects 
were more severe than 2 MO or 3 MO alone (D and F). Control MO does not affect these 
phenotypes (B). 12/101 antibody staining shows that when 2 MO and 3 MO were 
coinjected, somite segmentation is not complete, and the chevron shape of somites is 
abnormal (white arrows). Also jaw muscle differentiation is reduced (yellow arrow) and 
abdominal hypaxial muscle differentiation is strongly reduced (white arrowheads), while 
control MO shows a mild defect of only hypaxial muscle differentiation (J). To visualize 
the injected side after immunostaining, beta-galactosidase antibody (not shown) was 
coimmunostained with 12/101 antibody. 
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MYOD can upregulate the expression of ebf2 and ebf3 
in vivo in a positive feedback loop 

  
In Drosophila, the MYOD ortholog Nautilus can drive expression of the ebf 

ortholog collier (Dubois et al., 2007). We therefore asked whether MYOD can also 

regulate ebf gene transcription in Xenopus. MYOD-hGR (Kolm and Sive, 1995) mRNA 

was injected into one cell of two-cell stage embryos, followed by treatment of embryos 

with DEX from the gastrula stage (stage 11/11.5) to the neurula stage (stage 14/15). The 

expression levels of ebf2 and ebf3 were then examined by WM-ISH. The expression 

levels of both ebf2 and ebf3 were upregulated by activated MYOD (31/31 for ebf2 and 

19/19 for ebf3, Figure 4.7). Combined with our result that EBF activity drives myod 

expression, this suggests that MYOD and EBF may have a reciprocal transcriptional 

interaction in vertebrates. 

 

Discussion 

While many functions of EBF proteins are proposed for regulation of neural and 

B cell development, nothing has been reported about their role in muscle development in 

vertebrates. Our finding that the ebf2 and ebf3 genes are expressed in developing muscle 

tissue in Xenopus, and that EBF activity is required for the normal development of 

muscle tissue reveals an unexpected role for EBF factors in vertebrate muscle 

development. We have identified multiple genes, with known function in muscle tissue, 

to be downstream of EBF transcriptional activity. These genes represent potential routes 

whereby EBF activity can help regulate commitment, differentiation, and migration of 

muscle cells. 
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Figure 4.7: MYOD drives expression of ebf2 and ebf3.  MYOD-hGR mRNA or 

control, hGR mRNA was injected into one cell of two-cell stage embryos, followed by 

DEX treatment from the late gastrula stage (stage 11/11.5) to the neurula stage (stage 

14/15). !-gal mRNA was coinjected as a marker of the injected side. In all panels the 

right side is the injected side, showing the light blue color of X-gal staining. The 

expression of ebf2 (B) and ebf3 (D) is strongly upregulated by activated MYOD-hGR 

(brackets), while control, hGR injection does not change the expression level of ebf2 

(A) or ebf3 (C). All panels show dorsal views.
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Ebf functions in muscle cell determination 
to drive myod and myf5 expression 

 Our discovery that MYOD and MYF5 are potential transcriptional targets of 

EBF3 demonstrates a potentially important role for EBF proteins in muscle cell 

determination. Myogenic regulatory factors (MRFs) including MYOD, MYF5, Myogenin 

and MRF4 are bHLH transcription factors and form heterodimers with other bHLH 

proteins, such as the ubiquitously expressed E proteins. These heterodimers are critical 

for driving transcription of muscle-related genes (Biressi et al., 2007; Buckingham, 2001; 

Chanoine and Hardy, 2003; Pownall et al., 2002; Shih et al., 2008). In particular, 

MyoD/Myf5 double knockout mice display a complete absence of muscle cells (Rudnicki 

et al., 1993). 

In this study we show that in Xenopus myod and myf5 are candidate targets of 

EBF proteins, and that ebf2 and ebf3 can in turn be regulated by MYOD. MYOD is 

expressed in early presomitic mesoderm. ebf2 and ebf3 are detected by WM-ISH in pre-

somitic mesoderm as well, but not at the early stages when myod is present. This suggests 

that EBF proteins are likely involved in maintaining and reinforcing the expression of 

myod rather than initiation of myod expression. Maintenance of myod expression by EBF 

proteins appears to be important in Xenopus, since we find that knockdown of EBF 

activity strongly reduces the expression of myod, and disrupts normal skeletal muscle 

development, including that of hypaxial muscle and jaw muscle. Our study therefore 

suggests that EBF proteins are involved in Xenopus myogenic determination by 

maintaining and reinforcing the expression of myod and myf5. It is known that MYOD 

also can drive its own expression (Thayer et al., 1989; Weintraub et al., 1989), but in 

Xenopus perhaps this auto-regulation of MYOD is not fast enough, or strong enough, on 
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its own, to give proper myogenic specification.  

Our finding, conversely, that MyoD drives expression of ebf genes is analogous to 

the finding in Drosophila that the MyoD ortholog Nautilus drives collier expression 

(Dubois et al., 2007). However, in two types of microarray screens for MyoD targets in 

mouse cultured cell lines, Ebf was found to either be a weak target of MyoD, or to even 

be downregulated (Bergstrom et al., 2002). Also, Ebf genes were not found to be a MyoD 

target by ChIP analysis in a mouse cultured cell line (Cao et al., 2006). There is no 

Ebf1/Ebf2/Ebf3 triple knockout mouse though, and the Ebf2 knockout mouse shows 

reduced sizes of skeletal muscle (Giacomo Consalez, unpublished observation), so the 

full contribution of EBF activity to mouse muscle development remains unknown. The 

fact that our findings are somewhat at odds with the microarray and ChIP experiments 

could be due to the species difference or differences in timing from our experiment. 

 

EBF functions in muscle cell differentiation to 
drive m-cadherin and seb-4 expression 

 
 The known functions of the candidate targets M-cadherin and SEB-4 suggest that 

EBF proteins may control aspects of myoblast migration and differentiation. The 

cadherin family of transmembrane proteins is generally involved in adhesion between 

cells, and is therefore important in a wide array of developmental processes. M-cadherin 

is present in developing and adult skeletal muscle, and at the adult neuromuscular 

junction. During development, it is known to be involved in the differentiation of skeletal 

muscle, with special importance for myoblast fusion (Charrasse et al., 2007; Cifuentes-

Diaz et al., 1996; Donalies et al., 1991; Moore and Walsh, 1993; Pouliot et al., 1994; 

Zeschnigk et al., 1995). There are also reports of its involvement in muscle cell migration 
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in zebrafish somites (Cortes et al., 2003), and of its association with microtubules in a 

myoblast cell line (Kaufmann et al., 1999). 

 Since we find that m-cadherin is expressed in Xenopus from as early as the pre-

somitic mesoderm period and continuing through the events of muscle differentiation, it 

is possible that it is involved in steps including somite formation, hypaxial muscle 

migration, and maintenance of proper cell relationships during late myoblast 

differentiation. The fact that EBF drives m-cadherin expression, and that expression of 

ebf2 and ebf3 overlaps with that of m-cadherin through most of muscle development, 

suggest a new avenue of importance for the EBF family of transcription factors in muscle 

development.  

 It has been shown that SEB-4 is necessary for myogenesis (Li et al., 2010; 

Miyamoto et al., 2009). SEB-4 is likely involved in regulation of cytoskeletal events in 

muscle development, since it is a Xenopus homolog of the C. elegans protein SUP-12, 

which regulates splicing of unc-60 mRNA (Anyanful et al., 2004). UNC-60 is the 

ortholog of actin depolymerizing factor (ADF)/cofilin which controls actin filament 

dynamics (Bamburg, 1999; Bamburg et al., 1999; Maciver and Hussey, 2002). The seb-4 

gene is expressed in the presomitic mesoderm from gastrulation, and its expression is 

restricted to somites, jaw muscle and myocardium at the tailbud stage ((Fetka et al., 

2000) and Figure 4.5). Since it is expressed at the somite stage, and since somite rotation 

in Xenopus involves actin rearrangement (Kragtorp and Miller, 2006), seb-4 may be 

necessary for proper somite rotation. Our study shows that seb-4 expression is heavily 

dependant on the presence of EBF activity. 

We show that knockdown of EBF activity leads to delayed migration of hypaxial 



 153 

muscle anlagen, defective somite organization, and reduced differentiation of skeletal 

muscle. It seems likely that EBF proteins could control these muscle cell migration and 

differentiation events in Xenopus by controlling the expression of m-cadherin and seb-4. 

In addition, MYOD and other MRFs can drive both m-cadherin expression and seb-4 

expression (Hsiao and Chen, 2010; Li et al., 2010). Since myod is downstream of EBF2 

and EBF3, there may be multiple possible pathways for EBF proteins to drive m-cadherin 

and seb-4 expression, including indirectly, through MYOD.  

 

The transcriptional relationship between 
EBF proteins and bHLH proteins 

 We believe that our systematic study of transcriptional targets of EBF proteins, 

together with evidence from other reports and other species, is expanding the scope of 

evidence for reciprocal transcriptional relationships between EBF proteins and bHLH 

proteins involved in cell commitment and differentiation in multiple cell lineages. First, 

during neuronal development EBF proteins have been shown to act upstream of bHLH 

genes in multiple contexts. For example, EBF2 can drive expression of the proneural 

bHLH genes ngnr-1 and neurod in Xenopus (Dubois et al., 1998; Pozzoli et al., 2001). 

Additionally, misexpressed mouse Ebf1 drives expression of ngn1 and ngn2 in chick 

spinal cord (Garcia-Dominguez et al., 2003). We also recently found that the bHLH gene 

nscl-1 is transcriptionally regulated by EBF activity (Green et al., in preparation). These 

findings show striking similarity to what we report here, namely that the bHLH genes 

myod and myf5 are regulated by EBF2 and EBF3.  

Conversely, there is also evidence that bHLH proteins can drive expression of ebf 

genes in multiple contexts. For example, in Xenopus, the bHLH transcription factors 
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NGNR-1, NeuroD and ATH5 can upregulate ebf2 and ebf3 (Dubois et al., 1998; Logan et 

al., 2005; Pozzoli et al., 2001; Seo et al., 2007), and Nautilus drives collier expression in 

Drosophila (Dubois et al., 2007). Also, misexpressed ngn2 drives ebf1 and ebf3 

expression in chick spinal cord (Garcia-Dominguez et al., 2003).  In our current study we 

further show that MYOD can drive expression of ebf2 and ebf3 in Xenopus embryos.  

These studies support the idea that EBF factors and bHLH proteins have 

reciprocal transcriptional relationships in multiple lineages. Because EBF proteins and 

bHLH proteins appear to control the expression of each other in positive feedback loops 

in both neuron and muscle tissues, and possibly in multiple species, we suggest that there 

may be an ancient transcriptional relationship between these two gene families. Evidence 

also exists of reciprocal relationships between EBF and bHLH proteins in B cell 

development (Greenbaum and Zhuang, 2002; Kee and Murre, 1998; Kwon et al., 2008; 

Seet et al., 2004; Smith et al., 2002; Zhuang et al., 2004). All of these relationships 

appear to be primarily centered on stabilizing commitment of cells to a particular lineage. 

Interestingly, the potential spectrum of activities in muscle tissue suggested by our 

experiments, including stabilizing commitment, directing migration, and directing 

cytoskeletal organization, is very analogous to the range of activities driven by EBF 

proteins in neural development.  
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In the production of multiple cell lineages, complex networks of transcription 

factors drive the developmental processes of cell commitment and differentiation. Our 

understanding of these networks is limited by a lack of knowledge of the range of 

transcriptional targets of the different families of transcription factors. EBF proteins are 

involved in the processes of cell commitment and differentiation in several lineages, and 

while there are some known targets of EBF transcriptional activity, there has previously 

been no systematic approach to identify their targets in vivo. We have screened for targets 

of EBF proteins by using microarray analysis and verified some of the candidates to be in 

vivo targets important for nervous system development in Xenopus embryos (Chapter 2). 

We have discovered that the protein ZFP423 potentiates Notch signaling, and that EBF 

proteins can reduce Notch signaling by blocking the function of ZFP423 (Chapter 3). We 

have also shown that EBF proteins are necessary for normal Xenopus muscle 

development and control the expression of several muscle specific genes (Chapter 4). 

Taken together, these experiments expand our understanding of how EBF proteins 

function in the complex regulatory networks of the development of multiple animal cell 

lineages. 

 

EBF functions during neuronal cell 
commitment and differentiation 

Our results indicate that EBF proteins have at least two types of functions in 

neuronal development. Following the sequence of developmental events, the first relates 

to EBF protein interactions with ZFP423 (Chapter 3), and the second relates to EBF 

transcriptional targets (Chapter 2). 

 



 164 

EBF can participate in neuronal cell commitment 
by inhibiting Notch signaling 

The Notch signaling pathway is important for keeping neuronal progenitors in the 

cell cycle to provide a sufficient number of cells during development. With our 

collaborators, we show in Chapter 3 that ZFP423, which is a protein known to interact 

with EBF (Hata et al., 2000; Tsai and Reed, 1997, 1998), can induce the expression of 

hes5/esr1 in vitro and in Xenopus embryos. HES5/ESR1 is a well-known Notch target 

that blocks the activity of proneural bHLH proteins and prevents neuronal progenitors 

from progressing toward commitment and differentiation (reviewed in Artavanis-

Tsakonas et al., 1999; Kageyama et al., 2009). However, the other Notch targets hairy1 

and nrarp are not upregulated by overexpressed ZFP423. The lack of effect on nrarp 

expression in particular is interesting, since nrarp is thought to function as a negative-

feedback regulator of Notch signaling, and is therefore acting in an opposite direction 

from canonical Notch targets (Lamar et al., 2001). These results suggest that ZFP423 

strengthens Notch signaling and helps prevent neuronal cell commitment (Figure 5.1).  

Bringing an end to the activity of ZFP423 and the Notch signaling pathway in a 

cell are important steps for initiating neuronal cell commitment. It is known that ZFP423 

can associate with EBF proteins, and block their ability to function as transcriptional 

activators of several genes involved in neuronal differentiation (Tsai and Reed, 1997, 

1998). Our finding that coinjection of zfp423 and ebf2 or ebf3 diminishes the 

upregulation of esr1 by ZFP423 suggests that EBF proteins function as inhibitors of 

ZFP423, and block the ability of ZFP423 to potentiate Notch signaling. Interestingly, 

EBF2 has been shown to upregulate the expression of the Notch ligand delta-1 in 

Xenopus embryos (Dubois et al., 1998). This previous study and our findings suggest that  
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Figure 5.1: Model of EBF functions during neuronal cell commitment and 
differentiation 
(A) During proliferation of progenitors, ZFP423 helps maintain the proliferating state by 
potentiating the ability of Notch to drive expression of esr1. (B) ngnr-1 is an important 
transcription factor in cells that have begun to commit to a neuronal fate, and NGNR-1 
drives the expression of both delta1 and ebf genes. EBF proteins may participate in 
strengthening neuronal cell commitment in two ways. First, they reinforce expression of 
ngnr-1, either directly or through NSCL-1. Second, they block the function of ZFP423, 
and thereby reduce the proliferative effects of Notch signaling. (C) EBF induces the 
expression of many genes involved in neuronal cell differentiation, directly or indirectly, 
as part of a complex transcriptional regulatory network. Black arrows indicate previously 
reported pathways, and red arrows indicate novel pathways described in this thesis. 



 166 

 
Differentiating cell

NGNR1

NGNR1

EBF

NSCL-1

NGNR1

NGNR1

Cell undergoing commitment

ESR1Notch

Delta

ZFP423

ESR1 Notch

Delta

ZFP423

ESR1Notch

Delta

ZFP423

ESR1 Notch

Delta

ZFP423

Proliferating cell Proliferating cell

Proliferating cell

EBF

NeuroD

NSCL-1

AML1

EMX1

NF-M

N-tubulin

Peripherin

PCDH8

KCNK5

Activin beta B

Greb 1

NGNR1



 167 

EBF proteins promote neuronal cell commitment cell-intrinsically by suppressing Notch 

signaling, and promote lateral inhibition cell-extrinsically by increasing the expression of 

the Notch ligand Delta (Figure 5.1).  

 
 

EBF functions during neuronal cell commitment and differentiation 
by controlling the expression of diverse targets 

 
EBF proteins have known roles in promoting neuronal cell commitment and 

differentiation. For differentiation, EBF proteins are known to be involved in cell type 

specification, neurite growth and neuronal cell migration. With our microarray screen, we 

have generated an extensive list of candidate targets of EBF proteins. We selected several 

genes that either have known functions for neuronal development or the potential to be 

involved in neuronal development, and verified that their expression depends on EBF 

activity in vivo (Chapter 2). These targets include transcription factors that can participate 

in neuronal cell commitment and differentiation, and non-transcription factors that can 

participate in neuronal cell differentiation (Figure 5.1). The functions of these targets help 

us to expand the understanding of EBF activity during neuronal development (Figure 

5.2). 

           EBF functions during neuronal cell commitment by driving expression of 

other transcription factors. During neuronal cell commitment, previous reports have 

shown that EBF proteins function to stabilize cell commitment rather than initiate 

commitment. Another interpretation of this is that EBF proteins likely participate in the 

irreversible determination stage of commitment, but not the reversible specification stage 

of commitment.  EBF proteins stabilize commitment by driving the expression of the 

proneural bHLH transcription factor ngnr-1, which is a critical intrinsic signal that 
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Figure 5.2. Functions of the neuronal targets of EBF.  EBF proteins may participate 

in neuronal cell commitment through NSCL-1, and may participate in neuronal cell 

differentiation through a variety of classes of target genes.
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promotes neuronal cell commitment (Dubois et al., 1998; Garcia-Dominguez et al., 2003; 

Ma et al., 1996). 

Among our newly identified targets of EBF proteins, the presence of the bHLH 

transcription factor NSCL-1 strengthens the role of EBF in neuronal cell commitment. 

NSCL-1 is known to be involved in neuronal cell differentiation. But in Xenopus 

embryos, NSCL-1 can drive expression of the proneural bHLH transcription factor 

NGNR-1 (Bao et al., 2000), which suggests that NSCL-1 is also an important 

transcription factor for neuronal cell commitment. The fact that EBF activity drives 

expression of nscl-1 provides more information about the route by which EBF proteins 

affect neuronal cell commitment. This does not alter the interpretation that EBF proteins 

are participating in the stabilization of commitment, since ebf genes are expressed after 

ngnr-1 expression begins. Overall, our results suggest two new potential routes for EBF 

proteins to drive neuronal cell commitment: first, through inhibition of ZFP423 activity, 

and second, by driving expression of nscl-1. 

EBF functions during neuronal cell differentiation by driving expression of 

other transcription factors. ebf genes are expressed broadly in the CNS and PNS in 

many different species. Gain and loss of function experiments show that EBF proteins are 

important for many aspects of neuronal cell differentiation, and some known targets of 

EBF activity are transcription factors while others are not. For example, when 

overexpressed in Xenopus embryos, EBF2 and EBF3 lead to ectopic expression of 

neuronal specific markers like N-tubulin and NF-M (Dubois et al., 1998; Pozzoli et al., 

2001). 
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In this study, five of the ten targets of EBF3 that we analyzed in detail are indirect 

targets, supporting the conclusion that driving transcription factor targets is an important 

part of EBF function. NSCL-1, NeuroD, AML-1 and EMX1 are all transcription factors 

that are targets of EBF activity. They are known to be involved in neuronal 

differentiation in many different neurons in several species and are strongly upregulated 

by EBF. For example, NSCL-1 can affect differentiation of GnRH neurons in mouse and 

cooperates with ATH5 to promote retinal ganglion cell differentiation (Kruger et al., 

2004; Schmid et al., 2007; Xie et al., 2004), while AML1 promotes differentiation of 

several types of sensory and motor neurons, including DRG neurons (Chen et al., 2006; 

Kramer et al., 2006; Theriault et al., 2004; Yoshikawa et al., 2007). We therefore 

conclude that these transcription factor targets are a key element of the role of EBF 

proteins in promoting neuronal differentiation. 

EBF induces the expression of genes involved in neurite growth. 

Thalamocortical axons in Ebf1 null mice, olfactory axons in Ebf2 and Ebf3 null mice, 

and axons of motor neurons in UNC-3 C. elegans mutants show pathfinding defects 

(Garel et al., 1999; Prasad et al., 1998; Wang et al., 2004). In Drosophila collier mutants, 

type IV neurons show problems with dendritic arborization (Crozatier and Vincent, 2008; 

Hattori et al., 2007; Jinushi-Nakao et al., 2007). These results suggest that EBF proteins 

have critical roles for neurite growth. Among the targets we verified, Peripherin, NF-M, 

EMX1 and NeuroD have known functions for neurite growth. In particular, Peripherin 

and NF-M are neuronal intermediate filament proteins found in the cell body and neurites 

(Belecky-Adams et al., 2003; Fiumelli et al., 2008; Garcia et al., 2003; Gervasi et al., 

2000; Helfand et al., 2003; Lin and Szaro, 1995; Smith et al., 2006). Emx1 and Emx2 
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double mutant mice show defects of thalamocortical pathfinding (Bishop et al., 2003), 

similar to phenotypes of Ebf1 knockout mice (Garel et al., 1999). There is also evidence 

that NeuroD participates in neurite outgrowth, as it has been shown to promote neurite 

growth in a neuroblastoma cell line and in cerebellar slice cultures (Cho et al., 2001; 

Gaudilliere et al., 2004). Our finding that Peripherin, NF-M, EMX1 and NeuroD are 

candidate targets of EBF activity suggest multiple possible mechanisms by which EBF 

may help regulate neurite growth. 

EBF drives the expression of genes involved in cell migration. Evidence that 

EBF proteins are required for some neuronal cell migration comes from experiments 

showing that fbm neurons migrate to the wrong location in Ebf1 null mice (Garel et al., 

2000) and that the migration of GnRH neurons and Purkinje neurons is delayed in Ebf2 

null mice (Corradi et al., 2003; Croci et al., 2006). Interestingly, Nscl-1 and Nscl-2 

double knockout mice have a phenotype of delayed migration of GnRH neurons similar 

to that found in Ebf2 null mice (Kruger et al., 2004). Migration of dentate precursor cells 

and newly born granule cells from the neuroepithelium to the dentate gyrus is defective in 

NeuroD knockout mice, and misexpressed NeuroD leads to faster neuronal cell migration 

in mouse cortical stem cells (Ge et al., 2006; Liu et al., 2000). These results suggest that 

EBF proteins may participate in neuronal cell migration by controlling the expression of 

NSCL-1 and NeuroD. 

Possible new functions for EBF proteins in neuronal differentiation. Several 

newly discovered EBF targets suggest that EBF may be involved in previously unknown 

functions. EBF may participate in regulation of synaptic plasticity through PCDH8, since 

the rat homolog Arcadlin affects the number of dendritic spines in cultured hippocampal 
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neurons (Yasuda et al., 2007) and is required for activity-induced long term potentiation 

(Yamagata et al., 1999). EBF also may participate in cellular homeostasis of mature 

neurons through KCNK5, which control several aspects of homeostasis in kidney cells 

(Barriere et al., 2003; Reyes et al., 1998; Warth et al., 2004). In the mouse brainstem, 

KCNK5 appears to be involved in maintaining the membrane potential of chemoreceptor 

cells (Gestreau et al., 2010). The newly discovered EBF targets Activin beta B and 

GREB1 do not yet have defined functions in the nervous system, but they are expressed 

in neuronal tissue, suggesting the possibility of more potential roles of EBF genes in 

neurons (our data, and Belecky-Adams et al., 1999; Dohrmann et al., 1993; Roberts et al., 

1996).  

 

EBF functions during Xenopus muscle development 

While many functions of EBF proteins have been proposed for the regulation of 

neuronal and B cell development, nothing has been reported about their role in promoting 

muscle development in vertebrates. Our finding that the ebf2 and ebf3 genes are 

expressed in developing muscle tissue in Xenopus, and that EBF activity is required for 

the normal development of Xenopus muscle tissue, is the first to show EBF family 

involvement in vertebrate muscle development. We have identified multiple genes with 

known function in muscle tissue to be downstream of EBF transcriptional activity 

(Chapter 4). These genes represent potential routes whereby EBF activity may help 

regulate commitment, differentiation, and migration of muscle cells (Figure 5.3). 
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Figure 5.3: EBF functions during Xenopus muscle cell commitment and 

differentiation in a transcriptional regulatory network.  EBF proteins may 

participate in muscle cell commitment and differentiation in a manner similar to the 

way EBF proteins participate in neuronal cell development. EBF proteins are 

downstream of the MRF MYOD, but can also reinforce the expression of myod and 

myf5. This positive feedback loop may help to stabilize muscle cell commitment. EBF 

proteins also can induce the expression of m-cadherin and seb-4, which will likely 

help the committed muscle cell to differentiate. Black arrows indicate previously 

reported pathways, and red arrows indicate novel pathways described in this thesis.
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Ebf functions in muscle cell commitment by reinforcing the 
expression of myod and myf5 

 
 Our discovery that MYOD and MYF5 are candidate transcriptional targets of 

EBF3 demonstrates a potentially important role for EBF proteins in muscle cell 

commitment. The muscle cell determinants MYOD and MYF5 are myogenic regulatory 

factors that lead muscle progenitors to commit to become myoblasts (Biressi et al., 2007; 

Buckingham, 2001; Chanoine and Hardy, 2003; Pownall et al., 2002; Shih et al., 2008). 

Their importance is demonstrated by the fact that MyoD, Myf5 double knockout mice 

show a complete absence of muscle cells (Rudnicki et al., 1993). 

In this study we show that myod and myf5 are transcriptional targets of EBF 

proteins and that ebf2 and ebf3 are targets of MYOD. MYOD is expressed in presomitic 

mesoderm earlier than ebf2 and ebf3. This suggests that EBF proteins are likely involved 

in maintaining and reinforcing the expression of myod rather than initiation of myod 

expression. Maintenance of myod expression by EBF proteins appears to be important in 

Xenopus, since we find that knockdown of EBF activity strongly reduces the expression 

of myod, and disrupts normal skeletal muscle development, including that of hypaxial 

muscle and jaw muscle. We therefore suggest that EBF proteins may be involved in 

Xenopus myogenic commitment by maintaining and reinforcing the expression of myod 

and myf5.  

 

EBF functions in muscle cell differentiation by inducing 
the expression of m-cadherin and seb-4 

 
 During development, M-cadherin participates in muscle cell adhesion and 

migration (Charrasse et al., 2007; Cifuentes-Diaz et al., 1996; Cortes et al., 2003; 
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Donalies et al., 1991; Moore and Walsh, 1993; Pouliot et al., 1994; Zeschnigk et al., 

1995). There is evidence that M-cadherin can associate with cytoskeletal structural 

proteins. During myoblast fusion M-cadherin controls the activity of the Rac1 GTPase 

(Charrasse et al., 2007), which controls actin polymerization. M-cadherin also can form a 

complex with the cytoplasmic proteins catenin and plakoglobin (Kuch et al., 1997), and 

this M-cadherin–catenin complex can associate with microtubules in a myoblast cell line 

(Kaufmann et al., 1999).  

It has been shown that SEB-4 is necessary for myogenesis (Li et al., 2010; 

Miyamoto et al., 2009). SEB-4 is potentially involved in regulation of cytoskeletal events 

in muscle development, given that it is a Xenopus homolog of the C. elegans protein 

SUP-12 that regulates splicing of unc-60 mRNA (Anyanful et al., 2004). UNC-60 is the 

ortholog of actin depolymerizing factor (ADF)/cofilin, which controls actin filament 

dynamics (Bamburg, 1999; Bamburg et al., 1999; Maciver and Hussey, 2002).  

We show that knockdown of EBF activity leads to delayed migration of the 

hypaxial muscle anlagen, defective somite organization, and reduced differentiation of 

skeletal muscle. It seems likely that EBF proteins could control these muscle cell 

migration and differentiation events in Xenopus by regulating the expression of genes 

involved in forming cytoskeletal structure including m-cadherin and seb-4. In addition, 

MYOD and other MRFs can drive both m-cadherin expression and seb-4 expression 

(Hsiao and Chen, 2010; Li et al., 2010). Because myod is downstream of EBF2 and 

EBF3, there are multiple possible pathways for EBF proteins to drive m-cadherin and 

seb-4 expression, including indirectly through MYOD (Figure 5.3) 
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Overview of EBF functions in development of  
cells from multiple lineages 

 
We have expanded our knowledge of how EBF proteins can promote neuronal 

cell commitment and differentiation, by controlling genes involved in these processes and 

by inhibiting Notch signaling through ZFP423.  In addition, we have discovered that EBF 

proteins can participate in muscle cell commitment and differentiation by inducing the 

expression of muscle specific genes involved in these processes.  

The involvement of EBF proteins in muscle, neuron, B-cell, and adipocyte 

lineages raises the question of how they perform different tasks in these different tissues. 

There is evidence that the identity of a cell is determined by a combinatorial code of 

transcription factors that cooperate to drive expression of the correct subset of genes 

(reviewed in Barrera and Ren, 2006; Tumpel et al., 2009). It is easy to see how 

transcription factors with expression in only a single tissue could contribute to such a 

combinatorial code.  EBF proteins, though, number only a few family members, and 

these are expressed in a variety of different tissues. It is less clear how they could drive 

expression of very different genes in these different tissues to contribute to such a code. 

 A possible explanation is that earlier, tissue specific factors drive the processes of 

chromatin remodeling necessary to allow EBF proteins access to the correct target genes 

for that tissue (for a review of the role of chromatin remodeling in cell differentiation, see 

Barrera and Ren, 2006; Hager et al., 2009; Istrail and Davidson, 2005). This is an 

example of epigenetic regulation of expression, given that the same enhancer elements 

could be present in the regulatory regions of a neuron-specific target gene and a muscle-

specific target gene, but EBF proteins would only have access to the neuron-specific 

target gene in a neuroblast and the muscle-specific target gene in a myoblast. This 
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explanation is supported by the fact that in neuron, muscle, and B cell development, ebf 

gene expression appears later than expression of factors that specify tissue type. 

Interestingly, in both neuron and muscle tissues, ebf genes are targets of bHLH 

transcription factors that drive commitment, including NGNR-1 and MYOD. Although 

the expression of ebf genes is later than that of the bHLH genes (Dubois et al., 1998, and 

Chapters 2 and 4), EBF can reinforce the expression of bHLH genes in positive feedback 

loops. These positive feedback loops between bHLH and EBF suggest that during both 

neuronal and muscle development, EBF proteins lead progenitors to stabilize their 

committed state. There are also positive feedback loops between bHLH and EBF proteins 

in B-cell development (Zhuang et al., 2004), and positive feedback loops between EBF 

proteins and transcription factors that drive differentiation of pre-adipocytes (Jimenez et 

al., 2007). 

 Taken together, the evidence points to a striking similarity of EBF protein 

functions in different tissue types. They function both up- and downstream of cell-type 

commitment genes in muscle, neuron, and B-cell commitment, and appear to be 

important for stabilizing commitment. Then, they function in muscle, neuron, B-cell, and 

adipocyte differentiation to drive expression of both transcription factors and non-

transcription factors, and therefore act as part of the respective combinatorial codes of 

transcription factors for development of these different lineages. 

 
 
Summary 

Commitment and differentiation are critical processes during the development of 

an animal cell, and combinatorial networks of transcription factors are important for these 
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processes. This thesis shows that the EBF transcription factor proteins have potentially 

important roles for cell commitment and differentiation during the development of 

Xenopus muscle cells and expands our knowledge of how EBF proteins participate in 

neuronal cell development. In addition to driving transcription of key sets of target genes, 

EBF also functions in neuroblasts by preventing the activity of its protein partner 

ZFP423. Placing EBF activity in the regulatory networks of transcription involved in 

development opens new insight into how this family of transcription factors can function 

in different lineages during animal development. 
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