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ABSTRACT 
 

 Zoonotic pathogens are infections in wildlife that are transmittable to 

humans.  In natural settings, most wild animals host multiple species of parasitic 

organisms and other zoonotic pathogens.  These parasites may interact and 

increase host susceptibility to secondary infections including zoonotic agents.  

Thus, understanding the parasite community of wild animals is important from 

ecological and public health perspectives, since parasites may increasing the risk 

of transmission of zoonotic pathogens to humans in close association with 

wildlife.  The purpose of this thesis was to identify the helminth parasites and to 

document patterns of coinfections between helminths and Sin Nombre virus 

(SNV) in deer mice (Peromyscus maniculatus) from two distinct ecoregions in 

Utah.  I utilized a long-term database collected over seven years (2003-2009) 

along with necropsy of freezer-archived deer mice to identify patterns of 

coinfection between helminths and SNV.  In year 2006, I found that SNV 

prevalence negatively correlated with helminth infection.  This result suggests 

that one infection provides protection against the other.  I sought to further 

elaborate on this study by live-sampling deer mice in a peridomestic habitat in 

Emigration Canyon, Utah from June 2010 through August 2010.  I found 
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similarities between the helminth communities in this study, but I found an 

additional species Trichuris peromysci.  Due to low SNV prevalence, I did not 

observe SNV / helminth coinfections.  Finally, I designed a method to study 

tradeoffs between mounting a humoral antibody response to SNV antigen and 

bacterial killing capacity of serum in deer mice.  I injected treatment mice with 

SNV nucleocapsid antigen while control mice received vehicle injection.  Both the 

treatment and control mice significantly increased bacterial killing post injection; 

there were no significant differences between groups post injection.  This 

suggests there is no tradeoff between mounting a humoral antibody response 

and the ability to kill bacteria.  In summary, this was the first study to consider the 

role of parasite coinfections on the emerging viral pathogen, Sin Nombre virus.  

Since parasites can increase susceptibility to secondary infections, it is important 

for researches to investigate coinfections instead of focusing on a single parasite 

species. 
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CHAPTER 1 
 

INTRODUCTION 
 

All animals at some time point during their lives are exposed to parasitic 

organisms.  It is now accepted that most wild animals simultaneously host 

multiple parasite infections at any given time (1).  For example, helminths are 

parasitic organisms commonly found in the gastrointestinal tracts of many 

species of wild animals, including mammals (2).  Previous research 

demonstrates that infections with gastrointestinal helminths can increase 

susceptibility to secondary pathogen challenges (3-5).  From a public health 

perspective, it is important to investigate the patterns of coinfections between 

helminths and viral zoonoses due to the frequent overlap of humans and wildlife.  

One area currently understudied in the literature is coinfections between 

gastrointestinal helminth infections and Hantaviruses.  Only one study to date 

examined this and it finds a positive association between helminths and Puumala 

hantavirus (6).  Thus, the overall goal of this thesis is to identify the primary 

gastrointestinal helminths and patterns of coinfections between helminths and 

Sin Nombre virus in populations of wild rodents from two distinct regions in Utah.  
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The study species for this thesis is the deer mouse (Peromyscus 

maniculatus), one of the most abundant nocturnal rodents across North America 

(7).  Deer mice host an array of parasitic organisms including gastrointestinal 

helminths (8) and Sin Nombre virus (SNV), the etiological agent of human 

hantavirus infections in the United States (9).  Previous studies hypothesize the 

virus is transmitted among rodents during aggressive interactions (10) and 

subsequently transmitted to humans in mouse excrement (11).  Moreover, 

ecological factors such as deer mouse density (10, 12, 13), species diversity (14, 

15), vegetative structure (16, 17), and anthropogenic disturbance (18) correlate 

with viral prevalence.  Few identify, however, the impacts of helminths on 

infection with SNV (6).  Helminth parasites have immunological effects on their 

hosts by stimulating a costly immune response and by increasing susceptibility to 

secondary pathogens (19-21).  It is important to document the patterns of 

coinfections between these two different types of parasites since one type of 

infection may change host susceptibility to the other types of infection.  

In Chapter 2, I described the gastrointestinal helminths of deer mice and 

patterns of coinfections with SNV and helminths.  I utilized archived deer mice 

that were collected over a seven-year span from the Great Basin desert in Utah.  

This was the first study to look for patterns between these two infections.  I 

identified six species of gastrointestinal helminths that infect deer mice in the 

Great Basin desert.  In the year with the largest sample size (2006), deer mice 

with helminth infections had a lower prevalence of SNV infection compared to 

mice without helminth infections.  These results suggest infection with 
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gastrointestinal helminths may decrease the likelihood of acquiring an SNV 

infection and this protection may be context dependent.  

In Chapter 3, I identified the helminth community composition and 

prevalence of SNV in deer mice in a peridomestic setting.  I utilized both field and 

snap trap capture approaches at a site in Emigration Canyon, Utah.  In the field 

study, I followed a population of deer mice to determine if there were temporal 

changes in helminth infections by using a modified McMaster fecal egg flotation 

method (22).  In conjunction with the field study, I also snap-trapped individuals 

to identify helminths.  Similar species of helminths were found in the Great Basin, 

with the exception of a new nematode species, Trichuris peromysci.  I found a 

female sex bias in helminth infection and intensity in snap-trapped animals.  I 

also tested deer mice for antibodies against SNV to determine if the virus was 

present in this habitat and found that 2.8% of mice tested positive for antibodies 

but coinfections with helminths and SNV were not identified. 

Finally, in Chapter 4 I challenged deer mice with SNV nucleocapsid 

antigen to determine if induction of an adaptive immune response would 

suppress the innate immune response.  In this experiment, I characterized the 

ability of deer mouse serum to kill bacteria as a measure of innate immune 

function both pre and post antigen challenge.  Both the treatment and control 

animals responded to injection by significantly increasing their bactericidal 

activity.  There were no significant differences between the treatment and control 

groups.  This result suggests there are no tradeoffs between mounting a humoral 

response to an antigen (adaptive) and ability to kill bacteria (innate).  
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Conclusions 

 These studies demonstrate the importance of considering the role of 

coinfections between helminths and SNV in deer mice.  Parasites have the ability 

to modulate the host immune reposes and impact host immunity (3-5).  Thus, 

identifying the patterns of coinfection between parasites and zoonosis are 

important from a public health perspective since an increasing number of 

humans are living in close association with wildlife.  Further work further 

elucidating the immunological impacts of gastrointestinal helminths on SNV is 

needed to verify the impacts of parasites on the prevalence of a viral pathogen. 
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CHAPTER 2 
 

HELMINTH INFECTION NEGATIVELY CORRELATED WITH 

VIRAL PREVALENCE IN A WILD RODENT 
 

Abstract 

 Most wild animals host parasite infections at some point during their life.  

Although animals simultaneously host many parasites, most studies examine the 

effects of a single parasite species.  The goal of this study was to identify the 

gastrointestinal helminths of deer mice (Peromyscus maniculatus) and to identify 

patterns of coinfection between helminths and Sin Nombre virus (SNV).  

Parasites were isolated from the intestinal tracts of mice (N=98) that had been 

frozen until dissection.  An enzyme-linked immunosorbent assay was used to 

determine SNV infection status.  We identified six species of helminths and found 

an overall prevalence of 68% in deer mice.  SNV prevalence was 22%.  For the 

year 2006, we found that mice with helminths had a lower prevalence of SNV 

infection compared to mice lacking infections.  The results imply that helminth 

infections may provide protection to a host, although direction of protection needs 

further elucidation.
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Introduction 

All organisms are subject to infection by parasites.  Parasitism is a highly 

successful strategy that is reflected by the enormous degree of parasite diversity 

identified to date (1).  Most animals are generally coinfected with multiple species 

of parasites at any given point during their life (2, 3).  The few studies that have 

looked at the effects of parasite coinfections on hosts have had mixed results in 

terms of how a primary infection influences susceptibility to secondary infections 

(4-6).  That is, coinfections have been shown to both benefit and harm the host.  

For example, African buffalo (Syncerus caffer) are more susceptible to bovine 

tuberculosis when infected with a strongyle nematode compared to buffalo 

lacking nematode infections (5).  Alternatively, viruses of field voles (Microtus 

agrestis) can have both positive and negative effects on the hosts, either 

increasing or decreasing the probability of acquiring a secondary infection (6). 

The outcomes of interacting parasites appear to be context-dependent, highly 

variable, and dependent on species interactions (7, 8).  Thus, more research is 

needed to fully understand the complexity and unpredictability of parasite 

coinfection since these interactions may play an important role in the 

transmission of zoonotic pathogens. 

  We examined patterns of coinfections between helminths and a virus in 

deer mice, Peromyscus maniculatus.  Deer mice are ubiquitous across North 

America (9) and are the primary reservoir of Sin Nombre virus (10), the 

etiological agent of Hantavirus Pulmonary Syndrome in humans, with an 

associated mortality rate of 36% (11).  Additionally, they host other parasites 
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including intestinal helminths (12-15).  Thus, deer mice are excellent candidates 

in which to study the occurrence of macro and microparasite coinfections.  The 

primary objectives of this study were to identify the gastrointestinal helminths of 

deer mice and to document the patterns of helminth coinfections, as well as 

helminth/SNV coinfections. We predicted that coinfections with gastrointestinal 

helminths and SNV were more common than predicted by chance alone, since 

helminths have been shown to increase host susceptibility to viral infections in 

other wildlife systems (4, 5). 

 

 Methods 

Deer mouse sampling 

 For this study, we utilized archived deer mice collected during a long-term 

ecological survey of small mammals.  The survey was conducted from 2003 to 

2009 in the Great Basin Desert, west of the Tintic Mountains, Juab County, Utah.  

The deer mice represented the incidental mortalities that occurred over 96,940 

trap nights of collection.  Trapping, animal handling, and sample processing 

details can be found elsewhere (16, 17) and were approved by the Institutional 

Animal Care and Use Committee at the University of Utah (IACUC numbers # 

08-02012 and 11-01007). 

 

Helminth identification 
 

Frozen deer mice (N = 98; 40 female, 58 male) were thawed in a BSL-2 

laminar flow hood.  Mice were pinned to a dissection tray and sprayed with 90% 

ethanol.  The body cavity was opened with dissection scissors and the intestinal 
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tract, from the lower esophagus to the anus, was removed.  The intestines were 

then placed into conical tubes containing 90% ethanol for a minimum of 24 hours 

to inactivate any viable SNV (Jason Botten, personal communication).  The 

intestinal tract (stomach, small intestines, cecum, colic spiral, large intestines) 

was slit open and carefully examined under a dissection microscope to detect 

parasites.  Contents were filtered through a 150-micron sieve (VWR International, 

Radnor, Pennsylvania 19087, USA) and reexamined a second time for parasites.  

If helminths were present, location in the gut was noted.  The parasites were 

removed and placed in preservation fluid (9 parts 70% ethanol: 1 part glycerol) 

and were then identified to species by J M Kinsella, an expert parasitologist.  

Voucher specimens were deposited in the U.S. National Parasite Collection, 

Beltsville, Maryland under accession numbers 102724 to 102728. 

 

Detection of SNV antibodies 
 

Enzyme-linked immunosorbent assays (ELISAs) were used to test for 

SNV specific IgG antibodies (18).  Since SNV infection is chronic (19, 20), 

infected deer mice produce antibodies against the infection for life, making 

ELISAs a reliable measure of infection status.  The majority of the archived mice 

in this study had previously been tested for SNV antibodies with blood samples 

collected during the long-term ecological study (17, 18).  Animals that died prior 

to processing or blood collection were tested with ELISA using homogenized 

heart and liver tissue collected at time of dissection.  We validated the tissue 

ELISA by running sera samples from five deer mice infected with SNV in 

conjunction with the collected homogenized tissue.  ELISAs were conducted in a 
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BSL-2 facility at the University of Utah following the methods of (21). 

 

Statistical analyses 
 

For each parasite species, we calculated prevalence (number of 

individuals with infection / total number of individuals sampled X 100), mean 

infection intensity (total number of each worm species / number of infected 

individuals with that worm species).  The data were analyzed across all years as 

well as year 2006 alone, since 58% of the samples were collected in the year 

2006 (Table 2.1).   

 We tested whether coinfections with helminths and SNV were more 

common than predicted by chance alone based upon the observed prevalence of 

helminths and SNV. The calculated expected values were: All years 14.6 % 

coinfected, Year 2006: 15.6% coinfected.  Pearson Chi square analyses were 

used to determine if there were differences in SNV prevalence based upon 

helminth infection status.  Since helminth distributions were aggregated, 

nonparametric Wilcoxon rank sum tests were used to determine if mean parasite 

intensities differed by sex.  All statistical analyses were conducted in JMP 9 (SAS 

Institute, Cary NC) and considered to be significant if P ≤ 0.05. 

 

Results 

Gastrointestinal helminths 

 A total of 67 out of 98 deer mice were infected with gastrointestinal 

helminths, which were found inhabiting all anatomical locations of the gut.  
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Prevalence of all helminth species combined was 68.3% in all years and 68.4% 

for year 2006 (Table 2.1).  Six species of helminths were found in the intestinal 

tracts of deer mice.  Five were nematodes: Protospirura numidica (PRNU; 

Seurat), Syphacia peromysci (SYPE; Harkema), Pterygodermatites peromysci 

(PTPE; Lichtenfels), Aspicularis americana (ASAM; Erickson), Gongylonema 

peromysci (GOPE; Hall), and one was a cestode: Hymenolepis sp.(HYME).  The 

most common helminth was P. numidica (31%) and the rarest species were 

Hymenolepis sp. and G. peromysci, which were each found in only one deer 

mouse (Table 2.2).  The majority of deer mice (51%) harbored a single species of 

helminth, while 17% harbored coinfections (Figure 2.1).  

 

SNV prevalence and coinfection with helminths 
 

 A total of 21 deer mice tested positive for SNV antibodies.  SNV prevalence 

ranged from 13.3% in year 2005, peaked at 33.3% in year 2007, and averaged 

21.4% for all years (Table 2.1).  There were no differences in SNV infection with 

respect to sex for the two subsets (all years: χ2 = 1.659, df = 1, P = 0.19; year 

2006: χ2 = 0.09, df = 1, P = 0.76).  There was no difference in SNV prevalence in 

animals with and without helminth infections across all years (all years: χ2 = 

1.785, df = 1, P = 0.18; Figure 2.2) and, we found that 12.2% of deer mice were 

coinfected with SNV and helminths (expected 14.6%).  In contrast, during 2006, 

SNV prevalence of deer mice without helminth infections was 2.5x greater than 

individuals with worm infections (χ2 = 3.865, df = 1, P = 0.05; Figure 2.2), and we 
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found that only 10.5% of deer mice were coinfected with SNV and helminths 

(expected 15.6%).  

 

Discussion 

The main objectives of this study were to identify the primary species of 

gastrointestinal helminths that infect deer mice and to document the patterns of 

coinfections with helminths and SNV.  We predicted that coinfections with 

gastrointestinal helminths and SNV are more common than predicted from the 

prevalence of worm infection and SNV infection.  The data did not support the 

hypothesis.  We found that the majority of individuals hosted either helminths or 

SNV.  Few individuals were coinfected with both of these parasites 

simultaneously (12.2% in all years, 10.5% year 2006).  We found that deer mice 

with helminth infections, collected in year 2006, had lower SNV prevalence than 

individuals lacking a helminth infection.  

 

Helminths of deer mice 
 

 We found six species of helminths throughout the gastrointestinal tracts of 

deer mice.  Moreover, most individuals hosted single infections with a small 

number of individuals harboring multiple helminths.  Infection prevalence was 

similar to other studies in Peromyscus (12, 22-24).  For the nematode 

Pterygodermatites peromysci, for example, Vandegrift and Hudson (25, 26)   
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Figure 2.1: Frequency of gastrointestinal helminth infections in deer mice.  The 
majority of animals (51%) hosted a single species of helminth and only 17% were 
coinfected. 
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Figure 2.2: Prevalence of SNV infection in deer mice with and without helminth 
infection.  Mice with worm infections had a lower prevalence of SNV in the year 
2006 only (χ2 = 4.284, df = 1, P = 0.05). Numbers above the bars represent 
sample sizes.  
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found infection prevalence in white-footed mice (Peromyscus leucopus) ranged 

from 6.9 to 30% across a multi-year study and peaked at 52% in a different study.  

Additionally, Smith and Carpenter (24) found the prevalence of 

Pterygodermatites peromysci ranged from 30.4 to 56.5% in deer mice inhabiting 

different Channel Islands in California.  We found infection prevalence of 14.28%, 

within the variation of previous studies.  

Two factors may have biased the helminth prevalence observed in this 

study.  First, the sample consisted of incidental trap mortalities.  If an infection 

with helminths is costly to deer mice, either from directly decreasing nutrient 

availability or indirectly from the energetic cost of the immune system (27), 

infected mice may need to alter their foraging behavior to meet increased 

energetic demands.  This may result in infected mice being trapped more 

frequently than uninfected mice, thus biasing the sample towards animals with 

greater parasite prevalence.  

Second, high amounts of seasonal precipitation in 2005 (17) increased 

vegetation at the field sites (28) and may have increased the abundance of 

intermediate hosts during 2006.  An increased vegetation structure may permit 

an increase in the abundance in the intermediate hosts (insects), thus increasing 

helminth prevalence.  Moreover, two of the three most common parasites in this 

study (Protospiruria numidica and Pterygodermatites peromysci) have complex 

life cycles that require insect intermediate hosts for their transmission (12, 29).  

These results suggest that insects are common in the diets of deer mice at the 
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study sites and that high levels of precipitation and increased vegetative structure 

may indirectly influence the prevalence of helminth infections. 

 

Pattern of coinfection between helminths and SNV 
 

In 2006 only, prevalence of SNV was lower in deer mice with helminth 

infections compared to animals lacking infections.  The sample acquired in 2006 

was the largest of any single year in the study and also represents the majority of 

all individuals (58%) in the study, thus permitting detection of this pattern. 

Alternatively, it is possible that the protective effects of helminth infection against 

SNV are context dependent.  Transmission of SNV requires direct contact 

between individuals and the interaction between individuals is in part a function 

of density (30), which was twofold higher in 2006 compared to all other years 

(17).  If helminths modify host behavior (e.g., decreased aggressiveness) or 

cause morbidity, helminth infected mice may be less likely to engage in 

behaviors that promote SNV transmission, in turn, leading to a decrease in SNV 

prevalence.  This suggests helminth infections may confer protection against 

SNV or SNV may protect against helminths.  We will focus on mechanisms of 

helminths providing protection against SNV.  

 Immunological theory predicts that a host should not be able to 

successfully defend itself against a simultaneous attack from microparasites and 

macroparasites.  Due to the cross-regulatory nature of T lymphocytes (31), it is 

possible that helminth infection may “prime” the immune system by increasing 

other immunological defenses.  For example, complement protein, a molecule of 

innate immunity, can recognize many different pathogens, including viruses and 
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helminths (32, 33).  If a helminth infection up-regulates complement, there could 

be a decrease in the probability of a host acquiring an SNV infection. 

Second, helminth infections could elicit behavioral changes in the host that 

reduce the probability of a secondary infection.  Several studies have shown that 

harboring parasites imposes energetic costs on the host (27) or increases host 

stress (34).  These demands may change the behaviors of deer mice.  For 

example, hosting helminths during years of high conspecific density may 

negatively impact deer mice and lead to their inability to successfully defend 

territories and, therefore, decrease the likelihood of contracting an SNV infection 

due to decreases in aggressive encounters.  This would hold true if helminth 

infection could decrease aggressiveness.  Such a behavior change could reduce 

the probability of SNV infection through decreased contact rates or a reduction in 

aggressive encounters (35-38).  

Another possible mechanism for lower SNV prevalence in helminth-

infected deer mice would be dilution of SNV prevalence by juvenile mice (17).  

SNV is more common in older mice (39) compared to juvenile mice.  In 2006, the 

mouse population was undergoing a large expansion (20-25 mice per hectare) 

and there were more juveniles in the population.  Despite the shift in age 

structure of the population, SNV prevalence in the population at large was high 

(25% prevalence SNV in spring of 2006).  Moreover, average body mass of the 

mice in this study did not differ between year 2006 and all other years combined 

(All except 2006 = 18.20 g, S.E = 0.65; Year 2006 = 17.35, S.E. = 0.56; ANOVA 

P = 0.32), thus lower SNV prevalence in helminth-infected mice of 2006 is not 
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due to dilution by juveniles.  This result supports the hypothesis that helminth 

infection may provide protection against SNV. 

 

Implications 
 

The results imply that infection with helminths may provide protection to 

deer mice by decreasing their susceptibility to SNV.  It is equally plausible, 

however, that SNV may provide protection against helminths.  Studies 

manipulating either SNV or helminths are needed to determine the direction of 

protection.  Although these effects might only apply to years of high mouse 

densities, this could positively impact humans since SNV outbreaks are linked to 

years of high deer mouse densities (36, 39).  In a broader sense, this study 

highlights the importance of considering the effects of multiple parasite infections 

in disease ecology studies and how parasite infections may manipulate host 

behavior, immunological defense, and infection dynamics of zoonotic pathogens. 
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CHAPTER 3 
 

GASTROINTESTINAL HELMINTHS OF DEER MICE (PEROMYSCUS 

MANICULATUS) FROM A PERIDOMESTIC HABITAT IN 

EMIGRATION CANYON, UT 
 

Abstract 

Parasites directly cause detriment to a host by utilizing host energy for 

their own growth and survival, and they cause detriment indirectly by stimulating 

a costly immune response by the host.  Helminth parasites can also increase 

host susceptibility to secondary pathogens (e.g., viruses).  The first goal of this 

study was to identify gut helminths infecting deer mice in a peridomestic habitat 

using both live capture and destructive sampling methods.  The second goal of 

this study was to test deer mice in the field study for the presence of Sin Nombre 

virus (SNV) antibodies, a viral zoonosis that poses a threat to humans inhabiting 

peridomestic locations, and to document patterns of coinfections between 

helminths and SNV.  We live-trapped deer mice (Peromyscus maniculatus) in 

peridomestic habitats in Emigration Canyon, UT and snap-trapped deer mice 

inside human dwellings.  We found eight species of helminths with an overall 

infection prevalence of 35.8% in field study and 44.1% in the snap-trap study.
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 A gender bias in helminths prevalence was found in the field study where 

reproductive males had higher helminth infection prevalence compared to 

reproductive females.  Yet female mice shed a significantly greater number of 

parasite eggs per gram for Trichuris peromysci compared to males.  A gender 

bias was also found in the snap trap study, with females showing significantly 

higher helminth prevalence and intensity compared to males.  Deer mice 

expressed an SNV infection prevalence of 2.8% and lacked coinfections of SNV 

and helminths.  In summary, deer mice in Emigration Canyon host helminths but 

have low levels of SNV infections compared to other peridomestic habitats.  We 

did not find any coinfections between helminths and SNV; however, extensive 

long-term studies may better estimate the risk of SNV transmission to humans 

and to elucidate patterns of coinfections between helminths and SNV. 

 

Introduction 

Parasitic organisms acquire resources needed for survival at the expense 

of their hosts, which results in several forms of host detriment.  Parasites 

recognized by the immune system initiate an immune response (1-6) that is 

energetically costly to the host (6-13).  The parasites that withstand the immune 

response may establish a chronic infection and increase host susceptibility to 

secondary pathogen challenges (14-17).  Such coinfections increase the risk of 

pathogen transmission to humans living in close association with wildlife carriers 

(18, 19).  For example, Sin Nombre virus (SNV) is a zoonotic pathogen carried 

by deer mice (Peromyscus maniculatus) and the etiological agent of Hantavirus 
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Pulmonary Syndrome in humans (20, 21), which has an associated mortality rate 

of 36% (22).  Hantavirus infections occur when humans are exposed to 

aerosolized mouse excreta (20), with a major proportion of transmission 

occurring in human dwellings (20, 21,23-26).  It is of great importance for 

humans living in close association with wildlife to understand the infection 

patterns between parasites and other zoonotic pathogens and to therefore better 

assess the risk of infection. 

In this study, we investigated the parasitic helminth community infecting 

deer mice (Peromyscus maniculatus) inhabiting a peridomestic habitat in 

Emigration Canyon, Utah.  This habitat provides possibly greater food availability 

and shelter compared to sylvan habitats.  In addition, the majority of SNV 

infections in humans are acquired in peridomestic habitats (24-26), they are 

therefore important habitats to study from a human health perspective.   

Deer mice naturally host a variety of parasitic organisms including 

intestinal helminths (27-31) and SNV (21).  We followed a population of deer 

mice to identify temporal changes in helminth infections.  Temporal changes in 

helminths may arise due varying transmission strategies, either direct (host to 

host) or complex (host to intermediate host), of helminths or seasonal changes in 

intermediate hosts (29, 31).  Temporal changes may also be due to the duration 

of helminth infections (chronic vs acute), however, this information is not known 

for deer mouse specific helminths.  We also sought to determine if demographic 

factors (e.g., sex and reproductive condition) were important to helminth infection 

status.  Moreover, snap-trapped deer mice were provided to us from 
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homeowners, which we dissected for second measure of helminth prevalence.  

Mice were also screened for SNV infection to estimate the prevalence of the 

virus and to document patterns of coinfections between helminths and SNV. 

 

Methods 

Study sites  
 

This study was conducted on private property in Emigration Canyon, Salt 

Lake County, UT.  Predominant vegetation in the canyon was Gambel oak 

(Quercus gambelii) interspersed with residential homes and paved roadways.  

Four trapping locations, a minimum of 150 meters apart, were established within 

close proximity (≤ 10 meters) of residential homes.  Deer mice were live-trapped 

using standard small mammal traps (H.B. Sherman Co. Florida) from the first 

week of June 2010 through the third week of August 2010 (11 weeks).  Traps 

were baited with rolled oats and peanut butter and set two consecutive nights at 

dusk and checked shortly after sunrise each morning.  The trapping layout was a 

grid design with approximately 5 meters between each trap and 20 meters 

between transects.  Due to differences in property size and field personnel, 

trapping intensity varied weekly.  Sampling effort was estimated using trap nights 

(number of traps set X number of days sampled) and calculated for each week 

(Table 3.1).  
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Animal processing 
 

 Data recorded for each individual were sex, weight, and reproductive 

condition.  Mice were weighed using Pesola® scales (± 0.1 g; Baar, Switzerland), 

individually marked with ear tags (National Band and Tag Co., Kentucky)...  

Females were classified as reproductive if vaginas were perforate, or if they were 

pregnant or lactating, and males if testes were descended.  Fecal samples 

(approx. 0.2 g) were collected from each individual and placed in tubes 

containing 10% neutral buffered formalin to deactivate SNV and preserve 

helminth eggs.  Additionally, blood (approx. 150 µl) was collected from each 

individual and stored at -80˚C until assayed for SNV using an Enzyme Linked 

Immunosorbent Assay (ELISA).  After all animals were processed, they were 

released at the point of capture and all traps were sprayed with a 10% bleach 

solution. The Institutional Animal Care and Use Committee at the University of 

Utah approved procedures in this study (IACUC numbers # 08-02012 and 11-

01007). 

 

Snap-trapping by homeowners 
 

Snap traps were set by a homeowner inside their residence that is in close 

proximity to one trapping location of the field study.  These samples were used to 

estimate helminth infections using a second trapping method.  During the field 

study, only six rodents were snap trapped inside the home, thus the impact of 

mouse removal was negligible.  The majority of deer mice were snap-trapped 

after the cessation of the field study in August.  Samples were immediately  
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Table 3.1: Trapping effort and the capture success of deer mice for the field 
study.  Total captures is the number of deer mice captured each week.  Percent 
recapture is the percent of total captures that were trapped previously and used 
as an estimate of the proportion of mice that are residents.  Trap nights 
represent overall sampling effort each week.  
 
 

 
Week 1 2 3 4 5 6 7 8 9 10 11 

Total 
captures 10 17 25 22 21 24 26 20 18 26 15 

Trap nights 88 88 136 120 136 168 168 168 240 240 168 
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frozen after death and stored at -4˚C until necropsied for intestinal helminths.   

 

Parasite identification 
 

We used two distinct methods to identify the gastrointestinal parasites in 

this study: a modified McMaster fecal floatation and animal necropsy.  The 

McMaster method is a common, nondestructive method for identifying and 

quantifying helminth infections in ecological studies (32-36).  Fecal pellets (N = 

131 individuals) were removed from the collection tubes and weighed (0.01 g) 

using an analytical balance.  Feces were mashed in 1.0 ml of 1:1 zinc sulfate 

flotation solution (ZnSO4 dissolved in distilled H2O) for every 0.1 grams of feces, 

filtered through a 50 µm sieve, and pipetted into the chamber of the McMaster 

slide (Hawksley, Lancing, Sussex).  Each sample rested at room temperature for 

5 minutes to allow the parasite eggs to float to the counting surface.  The number 

of eggs floating in each sample was counted using a microscope at 100x 

magnification.  We calculated the mean parasite eggs per gram for each 

individual as a measure of parasite burden (36, 37).  Slides and sieves were 

soaked in a 10% bleach solution and vigorously rinsed with distilled water after 

each use to prevent contamination of subsequent samples.  Egg morphology 

was compared to eggs isolated from dissected helminths to verify species 

identification.  

Snap-trapped deer mice (N = 68) were thawed in a BSL-2 laminar flow 

hood.  Mice were pinned to a dissection tray and sprayed with 90% ethanol.  The 

body cavity was opened with dissection scissors and the intestinal tract, from the 



 

   

33 

lower esophagus to the anus, was removed.  The intestines were then placed in 

conical tubes containing 90% ethanol for a minimum of 24 hours to inactivate any 

viable SNV (Jason Botten, personal communication).  Each anatomical location 

of the intestinal tract (stomach, small intestines, cecum, colic spiral, large 

intestines) was slit open and carefully examined under a dissection microscope 

to detect parasites.  Contents were filtered through a 150-micron sieve (VWR 

International, Pennsylvania) and re-examined a second time for parasites.  If 

helminths were present, anatomical location in the gut was noted.  The parasites 

were then removed, placed in preservation fluid, and identified to species by J. M. 

Kinsella, an expert parasitologist.   

 

Statistical analysis 
 

For the field study, data from all sites were combined and analyzed.  For 

all helminth species, we calculated helminth prevalence (number of mice with 

helminth infections/ total number mice sampled X 100), and helminth eggs per 

gram (EPG) (number of eggs X total vol. soln. (mL)) / ((0.3 vol. chamber (mL)) X 

feces (g)).  A one-way ANOVA was used to compare mean EPG (log 

transformed) by sex and this analysis was restricted to the two most common  

parasite species, Pterygodermatites peromysci and Trichuris peromysci.  A 

Pearson Chi square test was used to determine if there were differences in the 

distributions of helminth infections by sex and reproductive condition of deer 

mice. 
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For the snap trap study, we calculated helminth prevalence and mean 

infection intensity per species (sum of helminth species / number of indiv. with 

that particular species).  A Pearson Chi square test was used to determine if 

there were gender differences in infection prevalence and a Kruskal-Wallis H-test 

to test for differences in helminth intensities.  All statistical analyses were 

conducted in JMP 9 (SAS Institute, Cary, NC) and differences were considered 

to be significant if P ≤ 0.05.  

 

Results 
 

Gastrointestinal helminths in fecal samples 
 

 A total of 131 unique deer mice were captured over 1,720 trap nights 

(Table 3.1).  Overall prevalence of helminth eggs in the feces was 35.8% (Table 

3.2).  We identified six nematode species: Protospirura numidica (PRNU; 

Seurat), Syphacia peromysci (SYPE; Harkema), Pterygodermatites peromysci 

(PTPE; Lichtenfels), Aspicularis americana (ASAM; Erickson), Heligmosomoides 

vandegrifti (HEVA; Kinsella), Trichuris peromysci (TRPE; Chandler) and one 

cestode: Hymenolepis sp. (HYME). The most prevalent species identified in the 

feces was Pterygodermatites peromysci (12.2%) and the least prevalent species 

were Aspicularis americana and Syphacia peromysci (1.5%).  Several other 

helminth eggs were found, but we were unable to identify them to species level. 

We observed a pattern showing that parasites with complex transmission 

strategies were absent from the early weeks (1-5) of sampling but appear in mice 

feces between week 5 and week 11 (Figure 3.1).  Two of the common parasites,  
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Table 3.2:  Demographic data on the gastrointestinal helminths in the field and 
snap trap studies.  The 95% confidence interval is provided for both the field and 
dissection helminth prevalence (% infection).  Mean helminth eggs per gram 
(EPG; range) is reported for the field study.  Infection intensity (± standard error) 
is for the snap-trap study.  Gut location of each species was determined using 
dissection data.  
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Figure 3.1: Prevalence of gastrointestinal helminths by transmission strategy in 
the field study.  Parasites can be directly transmitted from host to host (ASAM, 
HYME SYPE, TRPE; see table 2.1) or have complex life cycles that require 
intermediate hosts (PTPE and PRNU).   
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Figure 3.2:  Frequency distribution of gastrointestinal helminth infections in deer 
mice from the field (A) and snap trap (B) studies.  The majority of mice harbored 
single infections while few individuals were coinfected.  No animals hosted more 
than two species.  
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PRNU and PTPE, require passage through intermediate hosts to complete their 

lifecycles.  Most deer mice (89.4%) were infected with a single species of 

helminth while only 10.6% of animals were coinfected (Figure 3.2a).  

There was no relationship between sex and helminth infection (χ2 = 1.61, 

df = 1, P = 0.20).  However, we found that helminth prevalence was 1.8 times 

higher in reproductive (mean = 0.595; χ2 = 6.27, df = 1, P = 0.01) than non-

reproductive deer mice (mean = 0.404).  When the analysis was performed by 

sex, there was no trend for females (N = 71; χ2 = 1.69, df = 1, P = 0.16).  This 

trend was driven by reproductive males, which had 1.3 times greater helminth 

prevalence (mean = 0.560, N = 60; χ2 = 6.93, df = 1, P < 0.01) compared to non-

reproductive males with helminths (mean = 0.440).   

 EPG varied widely between species and ranged from 57.1 EPG for S. 

peromysci up to 11,368.2 EPG for P. numidica (Table 3.2).  There were no 

differences between EPG and sex for P. peromysci (F [1,14] = 0.0, df = 1, P = 

0.99). Female deer mice, however, had higher mean EPG for T. peromysci (F 

[1,14] = 3.19, df = 1, P = 0.01) compared to males. 

 

Gastrointestinal helminths in dissections 
 

A total of 68 deer mice were snap-trapped, with an overall helminth 

infection prevalence of 44.1%.  We found gastrointestinal helminths inhabiting all 

anatomical locations of the gastrointestinal tract, although species exhibited high 

fidelity to a region of the gut (Table 3.2).  We found the same eight species of 

nematodes and cestodes as in the fecal analysis, but we found one additional 
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nematode species, Gongylonema peromysci (Hall).  The most prevalent species 

of helminth in the dissections was S. peromysci (11.8 %) and the least prevalent 

species were P. numidica and G. peromysci (1.5%; Table 3.2).  

Most deer mice (80%) hosted single species of helminth while only some 

(20%) hosted dual helminth infections (Figure 3.2b).  Female deer mice were 

more likely to be infected with helminths (χ2 = 7.77, df = 1, P < 0.01) than males.  

Additionally, female deer mice had higher mean helminth intensities (mean male 

= 2.56; mean female = 12.40; H = 6.02, df  = 1, P = 0.01) compared to male deer 

mice.  

 

Prevalence of SNV antibodies 
 

 A total of 106 deer mice were sampled to test for SNV antibodies.  Three 

out of 106 deer mice tested positive for antibodies against the virus (2.8%).  All 

mice that tested positive were adults that were greater than 15 grams in weight.  

No juveniles (< 15 grams) tested positive for antibodies.  We did not find any 

mice with helminths and SNV coinfections (expected 1% mice to be coinfected, 

or one mouse).    

 

Discussion 

Humans residing in peridomestic habitats run the risk of exposure to 

wildlife zoonoses.  Previous studies have shown that concurrent parasitic 

infections increase host susceptibility to secondary pathogens (14-17), thus we 

were interested in the frequency of coinfections involving helminths and SNV in 
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deer mice residing in a peridomestic setting.  The first objective of this study was 

to identify the gastrointestinal helminths of deer mice in Emigration Canyon, UT.  

We used two distinct methods to characterize the helminth community infecting 

deer mice.  A field method was used to follow mice to determine if the helminth 

community varied temporally and to identify if helminth prevalence and intensities 

varied with sex and reproductive condition, since sex biases in helminth 

prevalence exist in other systems (35).  We also dissected deer mice snap-

trapped by homeowners to estimate helminth prevalence and intensity.   

We found helminths in both studies with an overall prevalence of 35.8% in 

the field study and 44.1% in the snap trap study.  There was temporal variation in 

helminth infection in the recapture study with the appearance of indirectly 

transmitted helminths at week five.  We found a female sex bias in helminth 

prevalence and intensity in the snap trap study.  Also, we found higher female 

parasite shedding rates for T. peromysci in the field study.  We found a sex bias 

in helminth prevalence in the field study where reproductive males had higher 

helminth prevalence than reproductive females.  

The second objective was to screen all mice for the presence of Sin 

Nombre virus antibodies and to determine infection prevalence of SNV in a 

peridomestic habitat.  Moreover, we were interested in determining if SNV 

infection was correlated with helminth infection.  Overall infection prevalence of 

SNV was 2.8%.  We did not document any coinfections between helminths and 

SNV.   
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Comparison of helminths  
 

Two common methods for documenting helminth infections in wildlife 

include the non-invasive McMaster fecal flotation method and destructive 

sampling methods such as snap trapping with necropsy.  These two methods 

were utilized to identify the helminth community of deer mice in a peridomestic 

setting.  Overall prevalence was 35.8% in the field study and 44.1% in the 

dissection study and relatively few animals were coinfected with multiple 

helminths.  Snap trap studies are highly effective for identifying helminths 

infecting rodents since they identify nongravid parasites that would otherwise be 

missed by fecal analysis.  Previous studies have shown that helminths shed eggs 

following a rhythmic pattern (38), thus we may have underestimated their 

prevalence. 

Similar helminth species were found between these methods; however, 

the stomach parasite G. peromysci was not seen in the field study.  The helminth 

species in this study were similar to those found in deer mice in the Great Basin 

desert (Chapter 2).  However, we found a roundworm, Trichuris peromysci, which 

was absent in the previous study but has been documented in the Bonneville 

Basin of Utah (39).   

 

Temporal variation in helminth species 
 

Parasitic helminths have differing transmission strategies and can be 

transmitted directly from host to host or indirectly by utilization of intermediate 

hosts.  During the first five weeks of trapping, we only found eggs of directly 
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transmitted parasites (ASAM, HYME SYPE, TRPE) in the feces of the deer mice 

(Figure 3.2).  Around week five, however, there was an increase in the 

prevalence of helminths that require passage through intermediate hosts to 

complete their life cycles (PTPE and PRNU).  Many trophically transmitted 

helminths that utilize intermediate hosts exhibit a temporal increase in prevalence 

from summer into fall (28, 40-43).  For example, the prevalence of the nematode 

Pterygodermatites peromysci (PTPE) increases seasonally in mice due to 

increases in both abundance and age of the intermediate camel cricket hosts 

(Ceuthophilus spp.)  (31).  Moreover, studies conducted in Utah have shown the 

prevalence of Protospiruria numidica increases seasonally, with the majority of 

deer mice infected with this nematode occurring in the fall (28).  This trend is 

often attributed to an increase of insects in the diets of deer mice (28, 31, 41, 44).  

The seasonal increase in prevalence of trophically transmitted parasites in our 

research is in concordance with previous work and suggests an increase in use 

of insects as a food source for deer mice in early to late summer.  

 

Sex bias in helminth prevalence and intensities 
 

There is a trend that male hosts tend to exhibit higher parasite prevalence 

and intensities compared to females in species ranging from birds (45-47) to 

mammals (48-50).  In the snap trap study there was a female bias in helminth 

infection prevalence.  Female biases in infections occur (51, 52) and may arise 

for several reasons.  The energetic cost of lactation and reproduction (8, 53, 54) 

may lead to decreases in immune investment, thus putting females at risk for 
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acquiring helminths.  With an increase in energetic demands, females may be 

required to forage more to increase energy intake and, consequently, their 

exposure to parasites increases.  Furthermore, if females selectively feed on 

insects to meet their energetic demands, they increase their risk of exposure to 

trophically transmitted helminths (28, 40-43, 55). 

Female deer mice infected with Trichuris peromysci shed a significantly 

greater amount of eggs in their feces compared to infected males.  Since our 

study was conducted during seasons when deer mice are reproductive, we 

speculate the energetic cost of lactation (8, 53, 54) or tradeoffs between 

immunity and reproduction (7, 10, 56) may be responsible for the increased egg 

shedding rate of this parasite in females.  For example, studies conducted in big 

horn sheep have shown that fecal egg counts increase in lactating females (57, 

58).  We did not observe a gender bias trend for Pterygodermatites peromysci.  

Thus, increases in helminth fecal eggs counts are species dependent. 

In the field study, the prevalence of helminths was 1.7 times greater in 

male deer mice that were reproductive compared to reproductive females.  This 

trend, however, was not observed generally across the dataset.  These results 

are in concordance with the literature that shows males have higher parasite 

prevalence than females (45-50).  This pattern could be the result of increased 

susceptibility to helminths or increased exposure.  Male-biased infections are 

often attributed to higher levels of testosterone (59, 60).  Testosterone acts as an 

immunosuppressant in numerous species (47, 49, 60, 61).  Thus, it is possible 
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that high levels of testosterone during the breeding season may make male deer 

mice more susceptible to helminth parasites.   

Increases in testosterone can alter the behavior of male mice and 

potentially increase the risk of exposure to parasites (48).  For example, Grear et 

al. (2009) showed that increases in testosterone (by receiving a testosterone 

implant) increased the connectedness between male white-footed mice 

(Peromyscus leucopus), which increased the transmission risk of parasites (62).  

In the present study, reproductive male deer mice may harbor more helminths 

due to differences in parasite exposure or decreases in immune function.  

Further research is warranted to untangle the potential effects of testosterone 

and reproductive condition on helminth infections in deer mice.   

 

SNV in Emigration Canyon 
 

Prevalence of SNV was low in Emigration Canyon compared to other 

studies conducted in peridomestic habitats (24, 25).  Studies by Kuenzi and 

colleagues (2001) have reported SNV prevalence from 20 to 25% in peridomestic 

habitats (25).  The vegetation type in the Kuenzi and colleagues (2001) study 

was quite different (sagebrush) from this study and might account for low SNV 

prevalence in this study (63).  For example, Mills and colleagues (1997) 

estimated prevalence of SNV across different biomes.  They found SNV 

prevalence varied from 17% in pinyon juniper habitats to 4% in chaparral (63). 

The authors attributed the variation in SNV prevalence to differences in mouse 

movements in each biome.  The sampling sites in this study were chapparal with 
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the predominate vegetation composing on scrub oak (Q. gambelii), thus 

prevalence of SNV is similar to their findings.  We did not find any animals 

coinfected with helminths and SNV in this study  
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CHAPTER 4 
 

TESTING FOR TRADEOFFS WITHIN THE IMMUNE 

SYSTEM OF A WILD VERTEBRATE 
 

Abstract 

 It is commonly understood that tradeoffs exist between the immune 

system and other physiological processes.  Tradeoffs within components of 

vertebrate immune systems, however, are less understood.  The objective of this 

study was to test if tradeoffs occur between the innate and adaptive immune 

systems of wild vertebrate.  To test this, we measured the ability of deer mice 

(Peromyscus maniculatus, N = 20) to kill bacteria ex vivo before and after the 

stimulation of a humoral immune response.  To elicit the adaptive immune 

response, we injected the nucleocapsid antigen from Sin Nombre virus, and then 

measured the subsequent innate immune response using bacterial killing assays. 

We found that both the antigen and vehicle injections increased the bacterial 

killing capacity post antigen injections compared to pre-injection values.  There 

was no significant difference between treatment and vehicle controls.  The data 

suggests that there is no tradeoff between mounting a humoral antibody 

response and the ability to kill bacteria. 
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Introduction 

Nearly all animals at some time point in their lives are subjected to 

infection by parasites and pathogens.  Pathogens and parasites have placed 

strong evolutionary pressure on the host to develop immune defenses that 

reduce the fitness costs of infections (1-4).  Immune defenses can be costly (5-

10) and investment in immune defenses has consequences on other 

physiological processes (10-15, reviewed in 16).  Recent investigations show that 

tradeoffs exist between immunity and other energetically expensive processes 

like reproduction (17, 18) and lactation (19).  Tradeoffs could exist within the 

immune system and few studies have directly investigated this possibility (12, 

20). 

The immune system is a complex set of interconnected mechanisms that 

are typically divided into two arms known as the innate and adaptive immune 

systems.  The innate immune system provides the host with the first line of 

defense against invading pathogens.  It is nonspecific and includes, but is not 

limited to, natural antibodies, phagocytic cells (e.g., macrophages), and 

opsonizing molecules (e.g., complement proteins) (21).  In contrast, the adaptive 

immune system is pathogen-specific and includes both B and T lymphocytes 

(21).  Investment in one branch of the immune system could retard investment 

towards the other branch.  Previous work by Martin II and colleagues showed 

that eliciting a cutaneous wound has negative impacts on delayed-type 

hypersensitivity reactions to dinitrofluorobenzene in female white-footed mice 
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(12).  These challenges were localized to the skin of the host.  Thus, it is 

important to build upon these findings and examine if tradeoffs exist systemically.   

The goal of this study was to determine if there was a tradeoff between 

the two arms of the immune system.  Specifically, I investigated whether there 

was a tradeoff in mounting an innate immune response after an adaptive 

response had already been mounted.  We tested if induction of an adaptive 

immune response, stimulated by an antigen challenge, would suppress the 

innate immune response (bacterial killing ability) during times of high antibody 

production in deer mice (Peromyscus maniculatus). In this study, we challenged 

deer mice with the nucleocapsid antigen from Sin Nombre virus and measured 

their ability to kill Escherichia coli using bacterial killing assays.  We selected 

these two immune measures for the following reasons.  First, deer mice are the 

reservoir species of Sin Nombre virus (22), a pathogen that causes 36% mortality 

in reported cases in humans (23).  The use of SNV NAg is a novel method to 

study the immune response of SNV infection in the laboratory because it 

eliminates the need for BSL-4 and outdoor research facilities (24).  Second, 

bacterial killing assays provide an excellent measure of innate immune function 

and are relevant to the ability of organisms to respond to pathogens (25-30).  

Finally, these immune measures and challenges are relevant to free-living deer 

mice since they have evolutionary experience with both the antigen and bacterial 

challenges.  
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Methods 

Animal care 

 All mice in this study were obtained from a breeding colony established at 

the University of Utah.  Mice (N =14) were bred under standard conditions, 

following guidelines for establishing a Peromyscus breeding colony using wild 

caught founders (31).  All mice used in this study were first generation animals 

(F1).  

Deer mice (N = 30; all virgin, ca. 12 months old) were individually housed 

in standard mouse cages outfitted with aspen bedding and ad libitum access to 

food (Harland Tekad 8604) and filtered tap water.  Animals were housed in a 

long day (16 hours light, 8 hours dark) light cycle at 22.5˚C ± 3˚C for the duration 

of the study to simulate photoperiods during the reproductive season (12).  The 

Institutional Animal Care and Use Committee at the University of Utah approved 

the procedures used in this study (IACUC numbers # 08-02012 and 11-01007).  

 

Bacterial killing assays 

We used bacterial killing assays to measure the ability of deer mouse 

serum to kill Escherichia coli.  Bacterial killing assays are the gold-standard 

measure of innate immune function and provide a relevant measure of the ability 

of a host to responds to a bacterial pathogen (25-30).  The killing of E. coli 

requires both complement proteins and natural antibodies.  We followed the 

methods of French and colleagues (2010) and French and Neuman-Lee (2012) 

(29, 30).  Briefly, tryptic soy agar (30 g tryptic soy agar in 750 ml diH2O) was 
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autoclaved and dispensed into petri plates using sterile techniques in a laminar 

flow hood.  The plates were then placed in a refrigerator upside-down overnight.  

A lyophilized pellet of E. coli (EpowderTM: Microorganisms #0483E7, 

MicroBioLogics, St. Cloud, MN) was activated in 40 ml of 1M sterile phosphate 

buffered saline (PBS) and incubated at 37˚C for 30 minutes.  Bacterial stock was 

diluted in sterile PBS to achieve a bacterial concentrate of 50,000 bacteria per 

ml.  Serum was diluted (1:20 ratio) in glutamine enriched CO2 independent 

media.  Twenty µl of bacterial solution were added to each serum sample, 

vortexed and incubated for 30 minutes at 37˚C.  Positive controls (20 µl bacteria 

solution and 200 µl media) and negative controls (220 µl media) were also 

vortexed and incubated.  After incubation, samples and controls were vortexed, 

50 µl of each was plated using a sterile bacterial spreader on the center of a petri 

dish in duplicate.  Plates were covered and sealed, placed upside-down in an 

incubator at 37˚C for 12 hours.  After incubation, the number of colonies was 

counted and killing capacity ((mean colonies per each sample / mean colonies of 

pos. cntl.)  X 100) were calculated relative to the positive control.  

 

Antigen injections 
 

Truncated Sin Nombre virus nucleocapsid antigen (25 µg; SNV NAg) was 

emulsified in Incomplete Freund’s Adjuvant (IFA) using 2 cc glass syringes with 

18 gauge emulsification tubes.  The emulsification was mixed at a 1:1 ratio (500 

µl SNV Ag plus 500 µl IFA) and delivered approximately 25 µg of antigen per 

injection.  Emulsions were mixed for approximately five minutes to ensure the 
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formation of a stable emulsion.  Experimental injections (N = 20 mice) were 

injected subcutaneously with 50 µl of emulsion bilaterally near the base of the tail 

using 24 gauge hypodermic needles.  All injections were performed between 

08:00 and 13:00 hours.  Needles were left under the skin for about five seconds 

to ensure no emulsion leaked out from the injection site.  The site of injection was 

cleaned with 95% ethanol prior to injections.  The needles were sterilized with 

95% ethanol after each injection.  Control animals (N = 10) were injected with 50 

µl of sterile 1% phosphate buffered saline emulsified in IFA (1:1 ratio).  All mice 

(N = 10 control; N = 20 experimental) received booster injections 21 days post- 

injection to elicit a strong antibody response to the antigen.  

 

Blood collection and processing handling 

Blood was collected from each individual at two distinct time points.  Mice 

were sampled prior to injections to obtain baseline measurements of bacterial 

competence.  Four weeks after the initial injection with antigen, mice were 

sampled to obtain measurements post injection bactericidal competence after 

challenged with either the antigen or a sham treatment.  Approximately 75 µl of 

blood were collected from the retro orbital sinus of each individual using sterile 

capillary tubes.  The blood was allowed to clot for 30 minutes at 22.5˚C inside a 

sterile laminar flow hood.  Clots were removed from each tube and samples were 

spun at 2,500 rpm at 4˚C for 30 minutes (Microfuge 22R centrifuge, Beckman 

Coulter, California).  Plasma was removed and immediately frozen in two aliquots 

at -80˚C until used in the immunological assays.   
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Sin Nombre virus antibody detection 
 

We used an Enzyme Linked Immunosorbent Assay (ELISA) to detect SNV 

antibodies in serum samples.  ELISAs were conducted in a BSL-2 facility at the 

University of Utah following the methods of (32).  Briefly, 96-well plates (BD 

Falcon, BD Biosciences, MA) were coated with 100 µl of SNV nucleocapsid 

antigen (1:400 dilution in PBS; Shountz Labortory, University of Northern 

Colorado) in a milk diluent buffer and incubated at 4˚C for a minimum of 24 

hours.  After 24 hours, plates were washed four times with 180 µl of ELISA wash.  

Next, the samples and controls were diluted 1:50 in milk diluent and added to 

each plate in duplicate, and then incubated for 1 hour at 37˚C.  After incubation, 

plates were washed four times with 180 µl of ELISA wash then 100 µl of 

secondary antibody (10 µl of peroxidase labeled anti- Peromyscus antibody 

diluted 1:1000 in milk buffer; KPL Laboratories, MD) was added to each well and 

incubated at 37˚C for 1 hour.  Plates were washed four times with 180 µl of 

ELISA wash and then 100 µl of ABTS solution was added to all wells and 

incubated for 30 minutes at 37˚C.  Immediately following incubation, absorption 

was measured for each sample (405 nm; Power Wave HT, BioTek,VT).  

Absorption values three times greater than the negative control were considered 

positive (33).  Positive ELISA results verified the adaptive immune response 

occurred to the antigen. 
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Statistical analysis 
 

A repeated measures ANOVA was used to determine if there were 

significant differences (± relative standard error) in bacterial killing ability between 

treatment and control groups.  All statistical analyses were conducted in JMP 9 

(SAS Institute, Cary, NC) and differences were considered to be significant if P ≤ 

0.05.  

 

Results 
 

Verification of immune response to antigen treatment 
 

 Six out of 20 deer mice (30%) injected with the IFA SNV NAg emulsion 

responded to the treatment (data omitted for nonresponders; Table 4.1).  Animals 

were considered to test positive if optical density (OD) values post injection were 

greater than 1.14 OD thus indicating the initiation of an adaptive immune 

response and subsequent generation of antibodies against SNV (Table 4.1).  

This positive cut-off point was determined by multiplying the negative control 

value (0.383) by three (33).  The geometric mean OD for animals that tested 

positive was 3.26.  

 

Bactericidal killing capacity  
 

Baseline bacterial killing ability was not significant (F [1,14] = 1.25 P = 0.28) 

between control and treatment (Table 4.2).  Bacterial killing increased from pre to 

post injection (F [1,14] = 17.27 P < 0.01; Figure 4.1).  However, there was no 
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significant difference between groups (control: = 59.2% ± 21.9%; treatment = 

69.7% ± 20.0%; F [1,14] = 0.72 P = 0.40; Figure 4.1; Table 4.2). 

 

Discussion 

 The immune system of a host must respond appropriately to challenges 

from pathogens and parasites.  A host has a limited amount of resources in the 

form of energy to dedicate to immunity.  Several studies have highlighted 

tradeoffs between immune function and other physiological processes (17-19).  

We sought to identify whether there were tradeoffs between the innate and 

adaptive immune systems of deer mice.  Specifically, we were interested in any 

tradeoffs between mounting an antigen (adaptive, humoral) response and the 

bactericidal killing ability of deer mouse serum (innate).  Six out of the 20 

treatment mice (30%) responded to the antigen challenge.  Both the treatment 

and control groups responded to the injections and significantly increased the 

bacterial killing ability.  However, there were no significant differences between 

the treatment and experiment groups.  Thus, the results suggest there are no 

tradeoffs between the adaptive and innate immune systems of deer mice. 

 

Variation in immune response 
 

 Despite strong selection for increased immunity against pathogens (1-4), a 

significant amount of variability in immunological measures of wild organisms 

exists (34).  In our study, there was variability in both the ability of the mice to 

respond to the antigen challenge and in their ability to kill bacteria   
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Table 4.1: Enzyme-Linked Immunosorbent Assay (ELISA) results pre- and 
post antigen injections. ID = animal ID, Trmt = treatment, Cntl = control, + = 
positive ELISA result, – = negative ELISA result. 
 

ID Group Pre inj. OD Post inj. OD ELISA  

163 Trmt 0.234 4.01 + 

164 Trmt 0.208 3.873 + 

168 Trmt 0.296 3.442 + 

172 Trmt 0.205 4.079 + 

186 Trmt 0.148 3.963 + 

194 Trmt 0.15 1.404 + 

179 Cntl 0.195 0.271 – 

180 Cntl 0.168 0.258 – 

184 Cntl 0.123 0.318 – 

185 Cntl 0.21 0.237 – 

188 Cntl 0.194 0.216 – 

189 Cntl 0.173 0.258 – 

192 Cntl 0.159 0.165 – 

193 Cntl 0.149 0.172 – 

197 Cntl 0.168 0.275 – 

I Cntl 0.221 0.352 – 

POS Cntl = 4.124       

NEG Cntl = 0.383       
Cut-off for + 1.149       
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Figure 4.1:  Bacterial killing competency (% bacteria killed relative to positive 

control) for deer mice pre- and postinjection.  Experimental injection significantly 

increased the bacterial killing capacity of deer mice (F [1,14] = 17.27 P < 0.01).  

Trt = treatment, Cntl = control.  Asterisks indicate significant differences (P < 

0.05). 
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Table 4.2: Percent bacteria killed values for deer mice pre- and postinjections.  
Difference was calculated by subtracting the post injection killing values from pre 
injection values. Negative killing values were converted to zeros.  ID = animal ID, 
Trmt = treatment, Cntl = control, % killed = percent of bacteria killed relative to the 
positive control.  
 
 

ID Group % Killed pre inj. % Killed post inj. Difference 

163 Trt 0 15.3 15.3 

164 Trt 27.2 98.2 71 

168 Trt 0 40 40 

172 Trt 68.2 87.6 19.4 

186 Trt 90 77.1 -12.9 

194 Trt 65.9 100 34.1 

179 Cntl 0 0 0 

180 Cntl 0 0 0 

184 Cntl 56.8 96.5 39.7 

185 Cntl 0 61.2 61.2 

188 Cntl 9.1 73.5 64.4 

189 Cntl 0 6.5 6.5 

192 Cntl 40.9 100 59.1 

193 Cntl 0 94.7 94.7 

197 Cntl 59.1 87.1 28 

I C 0 73.5 73.5 
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 (see Tables 4.1 - 4.2).  The majority of deer mice (70%) did not respond to the 

antigen injections, which could be do to a couple reasons.  First, it is possible 

that animals did not receive an effective injection due to improper technique (e.g., 

improper injection, emulsion stabilization) and thus a response would not be 

generated.  Moreover, if a stable emulsion of the antigen and IFA was not 

achieved, the antigen may be released rapidly and cleared before sufficient 

presentation and initiation of the humoral immune response (35).  Second, the 

antigen used in this study was a truncated version of the full-length nucleocapsid 

antigen.  The truncated antigen (15kD) contained the dominant epitope 

recognized by the B cells in natural infections (Jason Botten, Personal 

communication).  The full-length antigen (56kD) has been verified to generate 

antibodies.  This is the first time a truncated version has been used to generate 

the same response (Jason Botten, Personal communication).  Thus, the 

truncated antigen may have not been adequate to generate a detectable 

response in some mice.  Moreover, since most molecules are poor immunogens 

(35), a follow up study using the full-length antigen may provide an increase in 

humoral immune activation and produce greater success in initiating an adaptive 

immune response in deer mice.  

We also found a considerable amount of variation in the baseline bacterial 

killing ability of deer mice in this study.  In general, the use of wild animals, 

instead of their inbred congeners, captures the natural variation in immune 

responses seen in the wild (20, 36, 37).  In this study, we used first generation 

young derived from wild-caught deer mice captured at the study sites of chapter 
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three in Emigration Canyon.  Other studies have also documented intraspecific 

variation of bactericidal competence in birds and mammals (12, 25, 27).  For 

example, studies conducted in wild house mice have documented variability in 

immune responses between individuals (36).  The variation between individuals 

is often attributed to either genetic composition (38-40) or environmentally-

induced differences due to varying pathogen exposures (41, 42).  

 

Tradeoffs within the immune system  
 

 Bacterial killing increased in both the control and antigen treated groups 

post injection.  However, there were no significant differences in bacterial killing 

detected between treatment and control groups.  This result suggests that the 

increases in bacterial killing were solely due to the IFA adjuvant and that the IFA 

primed the bacterial killing ability of deer mice.  Studies show that IFA has the 

ability to stimulate humoral immunity to raise antibody titer (43).  However, 

previous work has only been completed with adjuvant antigen emulsions not 

adjuvant only scenarios.  Since the immune system is highly interconnected, it is 

possible that differences might arise in an alternative measure of immune 

function.  

 Although there was no difference in bacterial killing ability of the antigen 

treated animals versus the control animals, the increase in BKA of both groups 

post injection suggests that there is not a tradeoff between the adaptive and 

innate immune systems in this experimental system.  Previous studies both in the 

field and laboratory show mixed results.  For example, bacterial killing capacity of 
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Peromyscus melanophrys was negatively related to antibody production to 

keyhole limpet hemocyanin (KLH; a novel antigen), while P. maniculatus 

increased bacterial killing in response to KLH injections (12).  Moreover, a study 

of free ranging African buffalo demonstrated that buffalo naturally infected with 

bovine tuberculosis had higher bacterial competence of whole blood (20).  

Alternatively, a study in Brazilian free-tailed bats showed a negative correlation 

between bacterial killing and a swelling response to phytohaemagglutinin (PHA) 

(42).  In this study we found no evidence for tradeoffs.  If there were, we would 

have expected a decrease in BKA in both groups post injection.  One difference 

between this study and previous work is that deer mice have evolutionary 

experience with the antigen challenge.  Thus, the differences documented in the 

previous studies may result due to the novel aspect of the antigen (e.g., KLH and 

PHA).   

The immune system of vertebrates is composed of the innate and 

adaptive arms and is highly interconnected (21).  Although we did not find direct 

tradeoffs between the innate and adaptive immune systems, there were impacts 

on other cells of the immune system.  In conjunction with this study, white blood 

cell counts were conducted to measure stress response to the SNV antigen 

challenge.  Deer mice challenged with the SNV NAg had increases in monocytes 

and decreases in lymphocytes as measured by blood smears (Dizney et al; 

unpublished data).  Studies conducted in wild African buffalo (Syncerus caffer) 

show that animals with lower lymphocyte counts have higher BKA competence, 

which suggests polarization of the adaptive immune response (20).  Stimulation 
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of the humoral immune response requires T helper cells of the Th2 lineage (44).  

Additionally, monocytes are precursor cells of antigen presenting cells (e.g., 

dendritic cells and macrophages) that migrate to infection sites (21).  Thus, the 

increase in monocytes over controls may be due to the foreign SNV antigen.  

Future studies using whole blood, with emphasis on multiple measures of 

immune function (45), may elucidate differences between the controls and 

antigen challenged mice.  
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