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ABSTRACT 

 Synapses are the places where neurons communicate with their targets. At 

chemical synapses, neurotransmitters are contained in synaptic vesicles and are released 

into the synaptic cleft upon fusion with the plasma membrane. This event happens at high 

frequency at synapses and thus synaptic vesicles need to be regenerated locally to prevent 

vesicle depletion. The popular model for synaptic vesicle endocytosis is to re-sort vesicle 

proteins left in the plasma membrane into an invaginated vesicle by clathrin-mediated 

endocytosis. However, some pieces of evidence suggest that clathrin-independent 

endocytosis might also contribute to synaptic vesicle recycling. 

 In this dissertation, we present the studies on endocytic accessory proteins from 

clathrin-mediated endocytosis and focus primarily on their potential roles in 

neurotransmission by using the genetic model organism Caenorhabditis elegans. The 

proteins investigated include the major adaptor complex AP2, the synaptotagmin adaptor 

UNC-41 and the membrane bending protein, Epsin. We demonstrate that, one; AP2 is 

responsible for 70% synaptic vesicle recycling in C. elegans. Second, synaptic recycling 

of synaptotagmin requires UNC-41. Third, Epsin is not required for curvature acquisition 

in clathrin-mediated endocytosis at synapses. Thus these studies push forward our 

understanding towards synaptic vesicle recycling at synapses and demonstrate clathrin-

mediated endocytosis is likely the major mechanism for synaptic vesicle endocytosis in C. 

elegans. 
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CHAPTER 1 

 INTRODUCTION 

 Neurons communicate with their targets via a specialized structure called the 

synapse. There are two kinds of synapses: electrical synapses and chemical synapses. At 

an electrical synapse, a channel that allows electrical charges to flow through connects 

two cells and the signal is transmitted in the form of electrical currents. At a chemical 

synapse, neurons release neurotransmitters, such as acetylcholine or glutamate into an 

extracelluar space called the synaptic cleft. The neurotransmitter diffuses across the cleft 

and binds its receptor on the plasma membrane of the postsynaptic cell. One kind of 

receptors is ligand-gated ion channels. Binding with the corresponding neurotransmitter 

opens the channel, allowing ions to flow through it and across the plasma membrane. 

This in turn alters the activity of the postsynaptic cell. My research focuses on chemical 

synapses in Caenorhabditis elegans. In this dissertation, synapse refers to the chemical 

synapse. 

 At the synapse, there are up to hundreds of membrane-bound organelles called 

synaptic vesicles. These vesicles are acidified by the vacuolar type H+-ATPase. The pH 

gradient can be used to exchange protons for neurotransmitters through neurotransmitter 

transporters. A synaptic vesicle is always filled with a fixed amount of neurotransmitter. 

Voltage-gated calcium channels at the plasma membrane control the release of filled 



vesicles. Upon calcium influx, the calcium sensor on the synaptic vesicle senses the 

elevated calcium level at the synapse and then triggers the fusion machinery, SNARE 

complexes, to form. SNARE complexes are helical bundles formed by t-SNARE from 

the plasma membrane and v-SNARE from the synaptic vesicle. These helical bundles can 

bring a synaptic vesicle close to the plasma membrane. Finally fusion occurs and 

neurotransmitters are released into the synaptic cleft. 

 Synaptic vesicle release can happen at a very high frequency. After vesicle 

exocytosis, vesicle numbers are dramatically reduced. To sustain neurotransmission, cells 

can use two strategies. One, the cell can synthesize vesicle proteins and form new 

vesicles or vesicle precursors in the soma and then transport them through the axon all 

the way down to the synapse. However, this process is slow. Synthesizing new proteins 

takes at least half an hour. Vesicular transport velocity is only a couple micrometers per 

second, but the length of an axon in humans can reach up to 1 meter; therefore, this de 

novo pathway is necessary but not sufficient to maintain the release of synaptic vesicles 

at the synapse. The second strategy is to recycle synaptic vesicle locally, called synaptic 

vesicle endocytosis. When a synaptic vesicle fuses with the plasma membrane, the 

contents of the vesicle are released into the synaptic cleft and vesicle proteins, such as the 

V-ATPase and SNAREs, are left in the pre-synaptic plasma membrane. Synaptic vesicle 

endocytosis retrieves vesicle proteins from the plasma membrane and sorts the proper 

amount of these proteins into a vesicle-sized vacuole to generate a new vesicle. These 

recycled vesicles can then load neurotransmitters and once again join the queue for 

vesicle exocytosis. Compared to the first strategy, recycling is more efficient and is likely 

the major strategy used at active synapses.  

2



Three potential mechanisms of synaptic vesicle endocytosis 

Synaptic vesicle endocytosis is a basic but critical step in neurotransmission. 

There are three potential mechanisms for a synapse to recycle synaptic vesicles: clathrin-

mediated endocytosis, kiss-and-run and bulk endocytosis. The following section will 

introduce these three mechanisms respectively. 

 
Clathrin-mediated endocytosis 

John Heuser and Tom Reese first discovered this mechanism in 1973. They used 

electron microscopy to visualize frog neuromuscular junction and saw synaptic vesicles 

with clathrin coats (Heuser and Reese, 1973). The clathrin-mediated endocytosis is 

required in almost every single cell of a living organism. This endocytosis pathway can 

be divided into four steps. First transmembrane cargo proteins are enriched at the site of 

endocytosis. Second, clathrin forms a soccer-ball shaped coat on the invaginated 

membrane. Third, a GTPase called dynamin pinches off the coated vesicle from the 

membrane. And last, the clathrin-coat is removed to free the newly formed vesicle. 

Numerous studies after Heuser have confirmed the importance of clathrin in synaptic 

vesicle endocytosis. For example, when clathrin is pulled down from rat brain 

homogenate, synaptic vesicle proteins are co-immunoprecipitated (Maycox et al., 1992). 

Disrupting other accessory proteins in the same pathway with clathrin, such as dynamin, 

endophilin or synaptojanin, severely compromises neurotransmission (De Camilli et al., 

1995; Verstreken et al., 2002; Verstreken et al., 2003). It is almost certain that clathrin is 

involved in synaptic vesicle endocytosis. However, it is extremely difficult to completely 

block clathrin-mediated endocytosis at synapses due to lethality after the elimination of 

clathrin or other central components in the same pathway. Therefore, new techniques and 
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further studies are still required in order to fully understand the importance of the 

clathrin-mediated pathway in neurotransmission. 

 
Kiss-and-run 

This model was first proposed in 1973 by B. Ceccareli, who thought synaptic 

vesicles can release their neurotransmitters by forming a transient fusion pore with the 

plasma membrane. After releasing, the synaptic vesicle will back off and seal the fusion 

pore. The vesicle will then wait to be refilled with neurotransmitters for the next round of 

exocytosis. Throughout this entire process the synaptic vesicle identity is maintained. 

This is also a completely clathrin-independent mechanism for synaptic vesicle recycling. 

The existence of kiss-and-run was first observed in mast cells (Spruce et al., 1990) by 

capacitance measurement. Several different approaches were subsequently used to detect 

this releasing mechanism, such as amperometry (Alvarez de Toledo et al., 1993), FM dye 

(Aravanis et al., 2003) and synaptophluorin (Gandhi and Stevens, 2003). From all these 

studies, a fast endocytosis mode can be detected with the  about 1 second or less. 

Because the  for clathrin dependent endocytosis is more than 10 s (Smith et al., 2008), 

this fast mode of endocytosis fits the idea of kiss-and-run. However the importance of 

kiss-and-run may vary between different kinds of synapses. In addition the proteins 

specifically involved in kiss-and-run are still unknown. 

 
Bulk endocytosis 

In this mode of endocytosis, a large portion of plasma membrane is internalized 

and forms an endosome in the cytoplasm. This mechanism of endocytosis was noted at 

frog neuromuscular junction under moderate to heavy stimulation protocol (Heuser and 
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Reese, 1973). This process is thought of as a slow endocytosis and not the major 

mechanism used by synapses to recycle synaptic vesicles under regular conditions; 

however, it could function as a compensatory pathway when synapses are under stress. 

This form of endocytosis may also have an intimate connection with clathrin-mediated 

endocytosis. First of all, both types of endocytosis may share proteins for membrane 

bending and vesicle scission. Second, newly formed synaptic vesicles likely bud from 

this endosomal structure through clathrin-mediated endocytosis (Takei et al., 1996). From 

these points of view, this endocytosis method helps prevent cell surface expansion at 

heavily stimulated synapses and also facilitates vesicle biogenesis from an endosomal 

intermediate, which is probably dependent on a clathrin adaptor complex AP3 (Danglot 

and Galli, 2007). 

 
Clathrin adaptors and membrane-bending proteins 

Of the three models for synaptic vesicle endocytosis, the easiest one to be tested is 

clathrin-mediated endocytosis, which has basically four steps: clathrin recruitment, 

membrane invagination, vesicle scission and clathrin uncoating. Clathrin requires help 

from other proteins to complete this four-step endocytosis; thus, each step of this pathway 

can be blocked by eliminating the corresponding proteins. My research focuses on the 

proteins for clathrin recruitment and membrane invagination, which will be introduced in 

more detail below. 

 
Clathrin adaptors 

This group of proteins has two functions: clathrin recruitment and cargo trapping. 

On its own, clathrin cannot interact with lipids. It relies on its interaction with different 
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types of clathrin adaptors to localize to various membrane-bound organelles. The 

organelles have different lipid compositions which attract unique clathrin adaptors. By 

doing this, clathrin can be specifically recruited to whichever place needs vesicle budding. 

The other function of the adaptors is to bind with transmembrane cargo proteins. This 

interaction occurs at the other side of the protein, thus the cargoes are trapped and 

enriched at the budding place. Of all the clathrin adaptors, one of the most important 

types is called adaptor protein (AP) complex. There are four AP complexes, AP1-AP4, in 

mammalian cells and three AP complexes, AP1-3 in Caenorhabditis elegans (Robinson, 

2004). A common feature of these AP complexes is that they have four different subunits, 

two large ones, a medium one and a small one. AP2 is the only complex that primarily 

localizes on the plasma membrane by interacting with PI(4,5)P2 (Gaidarov and Keen, 

1999), making it the obvious candidate for clathrin-mediated endocytosis of synaptic 

vesicles. 

The medium subunit of AP2 is called 2 adaptin and its major function is to 

recruit cargoes into clathrin-coated pits (Owen and Evans, 1998). Knocking-out 2 in 

mice causes embryonic lethality (Mitsunari et al., 2005), but in C. elegans 2 adaptin 

mutants can survive until adulthood. The corresponding gene in the worm is named apm-

2. In Chapter 2, we investigate the function of 2 in synaptic vesicle recycling. We found 

that in the absence of 2, there is a 40% reduction in synaptic vesicles and that the 

motility of the mutant animal is close to wild type after skin-specific rescue. Therefore 

we concluded that 2 facilitates but is not absolutely required for synaptic vesicle 

endocytosis.  

Based on our previous study on 2 adaptin, we realized that AP2 function is 
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probably not completely eliminated in apm-2 mutants, so we aimed at knocking out the 

entire AP2 in order to fully understand its function in synaptic vesicle endocytosis. One 

of the big subunits of AP2 is called  adaptin. Its functions are binding with PI(4,5)P2 

and interacting with other accessory proteins in clathrin-mediated endocytosis (Owen et 

al., 1999; Traub et al., 1999). In C. elegans, the gene name of  adaptin is apa-2. We 

conducted a noncomplementation screen and isolated a null allele of this gene. In Chapter 

3 we discuss our investigation of the role of  adaptin in synaptic vesicle endocytosis. We 

found that apa-2 mutants have a 50% reduction in synaptic vesicle and nearly wild-type 

motility. We further built apm-2 apa-2 double mutants. In this case the mutations are 

almost lethal with survival rate of about 10%. The double mutant has 30% of the normal 

amount of synaptic vesicles and is more impaired for movement than the apa-2 mutant. 

However, skin-rescued double mutants can still move fairly well. Based on these results 

we concluded that AP2 contributes to the majority of synaptic vesicle recycling at C. 

elegans motor-neuron synapses. But AP2-independent endocytosis, either clathrin 

dependent or not, exists to support neurotransmission in the absence of AP2. 

 
Neuronal-specific clathrin adaptors 

Synaptic vesicle endocytosis is a specialized endocytic event and neurons have 

evolved some neuronal-specific adaptors to assist clathrin for synaptic vesicle 

endocytosis. Two of these adaptors have been characterized, AP180 and stonin2. AP180 

is the adaptor for a SNARE protein, synaptobrevin (Nonet et al., 1999) and is also 

involved in regulating the size of synaptic vesicles (Zhang et al., 1998). Stonin2 has been 

identified as the adaptor for another vesicle protein, synaptotagmin I, in Drosophila and 

mammals (Fergestad and Broadie, 2001; Fergestad et al., 1999; Jung et al., 2007). In 
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Chapter 4 we discuss our characterization of the orthologue of stonin2 in C. elegans, unc-

41. We found UNC-41 is also required for recruiting synaptotagmin I at synapses in C. 

elegans. The synaptotagmin-binding motif in UNC-41 is essential for UNC-41 synaptic 

localization. UNC-41 also has a - homologous domain at its C-terminus that is similar 

to the signal-binding domain of the  adaptins. We studied the potential functional 

redundancy between UNC-41 and APM-2 in synaptic vesicle endocytosis by 

ultrastructural analysis. We found that UNC-41 and APM-2 do not function redundantly 

but rather in the same pathway. 

 
Membrane-bending proteins 

Vesicle invagination during clathrin-mediated endocytosis is accomplished by a 

highly organized protein-protein network. Clathrin is most likely acting to maintain the 

shape of invaginated vesicles by forming a clathrin coat at the surface. But how is the 

membrane curvature generated at the beginning? And how does the cell sense that 

curvature to know the proper time for terminating vesicle growth? These functions are 

accomplished by N-BAR and ENTH domain proteins. Both types of proteins have the 

ability to generate membrane curvature by inserting an amphipathic N-terminal helix into 

the cytosolic leaflet of the lipid bilayer (Itoh and De Camilli, 2006). The representative 

N-BAR domain protein is amphiphysin. Its N-BAR domain can generate and sense the 

curvature at the neck of the invaginated membrane. The middle portion of the protein 

contains the clathrin and AP2 binding sites (Slepnev et al., 2000). Finally the C-terminal 

SH3 domain binds dynamin and synaptojanin for vesicle scission and clathrin uncoating 

(David et al., 1996; McPherson et al., 1996). Thus amphiphysin probably functions at the 

end of clathrin-mediated endocytosis by coupling the scission neck formation with 

8



vesicle release. The representative ENTH domain protein is epsin. It has an ENTH 

domain at its N-terminus, which can bind PI(4,5)P2 and cause membrane invagination in 

a similar way as amphiphysin (Itoh and De Camilli, 2006). The rest of the protein 

contains clathrin, AP2, eps15 and ubiquitin binding sites (Chen et al., 1998; Polo et al., 

2002; Rosenthal et al., 1999). Epsin was shown to be essential for clathrin to generate 

invaginated pits on a lipid monolayer (Ford et al., 2002); thus it was proposed that Epsin 

functions at the beginning of clathrin-mediated endocytosis for curvature acquisition. In 

Chapter 5, we characterize a deletion allele of epn-1, the orthologue of epsin in C. 

elegans. In the absence of EPN-1, worms are embryonic lethal suggesting a broad 

requirement for this protein for worm viability. To study the potential role of EPN-1 in 

synaptic vesicle endocytosis, we first examined the expression pattern of epn-1 by 

tagging the protein with a fluorescent marker, GFP. We found that epn-1 is expressed in 

almost every tissue. However, to our surprise, when EPN-1 is expressed exclusively in 

neurons, the protein does not localize to synapses. This is a piece of strong evidence that 

EPN-1 is not required for synaptic vesicle endocytosis, but further characterization of this 

protein in other types of endocytosis should still be interesting.  

 
Dissertation outline and summary 

This dissertation summarizes all of my graduate work on the importance of 

clathrin-mediated endocytosis for synaptic vesicle recycling in the nematode, 

Caenorhabditis elegans. To block clathrin-mediated endocytosis, I removed pathway 

components such as clathrin adaptors and membrane bending proteins. Each chapter of 

this dissertation details the findings for a particular component. Chapter 2 presents a 

published paper about the function of 2 adaptin in synaptic vesicle endocytosis. Chapter 

9



3 discusses the endocytic defects of  adaptin and AP2 deficient synapses. Chapter 4 

contains the study of C. elegans stonin-2 and its relationship with synaptotagmin 

recycling at synapses. The final chapter is the preliminary characterization of an ENTH-

domain protein, Epsin, in clathrin-mediated endocytosis. 
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My contribution to this work including the following: 

1. Outcrossing mutant alleles of apm-2, which encodes the orthologue of 2 adaptin 
in C. elegans.  

2. Cuticle defect analysis of apm-2 mutants. 
3. Investigating the expression pattern of apm-2. 
4. Investigating the pre-synaptic localization of APM-2. 
5. Examining the distribution of vesicle proteins in the dorsal nerve cord from apm-

2 mutants. 
6. Tissue-specific rescue of apm-2 mutants. 
7. Aldicarb assay on apm-2 mutants and tissue-specific rescued animals. 
8. Thrashing assay on apm-2 mutants and tissue-specific rescued animals.  

Paul Baum (University of California, San Francisco) contributed to the following: 
 Isolating and characterizing apm-2 alleles. 
Shigeki Watanabe (University of Utah, Salt Lake City) contributed to the following: 

Characterizing apm-2 mutants and tissue-specific rescued animals by electron 
microscopy. 

Qiang Liu (University of Utah, Salt Lake City) contributed to the following: 
Characterizing apm-2 mutants and tissue-specific rescued animals by 
electrophysiology. 
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    Introduction 
 After synaptic vesicle fusion, vesicle proteins are retrieved from 

the plasma membrane and recycled into new synaptic vesicles 

to sustain neuronal transmission. Recycling is thought to be ini-

tiated by the recruitment of clathrin to patches of membrane 

containing synaptic vesicle proteins. The reformed vesicle with 

a geodesic coat is budded into the cytoplasm. This model is 

 supported by extensive associative and functional evidence. 

In electron micrographs of the frog neuromuscular junction, in-

vaginating vesicles at presynaptic terminals are enveloped by a 

coat ( Heuser and Reese, 1973 ). Purifi cation of vesicles from rat 

brain indicate that clathrin is associated with synaptic vesicle 

proteins ( Maycox et al., 1992 ). Genetic disruption of clathrin-

associated endocytic proteins such as AP180, synaptojanin, dy-

namin, and endophilin leads to a depletion of synaptic vesicles 

( De Camilli et al., 1995 ;  Nonet et al., 1999 ;  Harris et al., 2000 ; 

 Verstreken et al., 2002 ,  2003 ;  Schuske et al., 2003 ;  Newton 

et al., 2006 ). Finally, specifi c disruption of clathrin interactions 

with the adaptor protein AP180 disrupts synaptic vesicle re-

cycling ( Augustine et al., 2006 ;  Granseth et al., 2006 ). These data 

suggest that clathrin-mediated endocytosis is the main mecha-

nism used by synapses to recycle vesicles after exocytosis. 

 Clathrin is linked to cargo and membranes by the clathrin 

adaptor complex ( Keen, 1987 ). Four different adaptor  omplexes 

have been identifi ed in mammals: AP1, AP2, AP3, and AP4 ( Keen, 

1987 ;  Simpson et al., 1997 ;  Dell ’ Angelica et al., 1999 ). These 

adaptor protein complexes localize to different membranes in 

the cell and coordinate cargo selection and vesicle biogenesis 

( Lewin and Mellman, 1998 ;  Robinson and Bonifacino, 2001 ; 

 Robinson, 2004 ). AP2 is the adaptor complex functioning dur-

ing endocytosis at the plasma membrane ( Mahaffey et al., 1990 ; 

 Traub, 2003 ). There are four different subunits in the AP2 com-

plex:  �  (large),  � 2 (large),  � 2 (medium), and  � 2 (small;  Matsui 

and Kirchhausen, 1990 ), and each subunit serves a specifi c 

function. In particular, the  � 2 subunit recruits cargo proteins 

containing the tyrosine-based Yxx �  motif ( Owen and Evans, 

1998 ) and mediates in part the association of the AP2 complex 

to membranes ( Gaidarov and Keen, 1999 ;  Rohde et al., 2002 ; 

 Honing et al., 2005 ). 

 Here, we characterize mutants that lack  � 2 adaptin, en-

coded by the  apm-2  gene (also called  dpy-23 ), in the nematode 

 Caenorhabditis elegans . We demonstrate that  � 2 is partially re-

quired for synaptic localization of clathrin and for the stability 

of the AP2 complex. However, synaptic vesicles are still re-

cycled in the absence of  � 2. Our data suggest that despite previous 

predictions,  � 2 is not absolutely required for synaptic vesicle 

endocytosis. Moreover, the decrease in synaptic vesicle number 

S
ynaptic vesicles must be recycled to sustain neuro-

transmission, in large part via clathrin-mediated 

endocytosis. Clathrin is recruited to endocytic sites 

on the plasma membrane by the AP2 adaptor complex. 

The medium subunit ( � 2) of AP2 binds to cargo proteins 

and phosphatidylinositol-4,5-bisphosphate on the cell 

surface. Here, we characterize the  apm-2  gene (also 

called  dpy-23 ), which encodes the only  � 2 subunit in the 

nematode  Caenorhabditis elegans . APM-2 is highly ex-

pressed in the nervous system and is localized to syn-

apses; yet specifi c loss of APM-2 in neurons does not 

affect locomotion. In  apm-2  mutants, clathrin is mislocal-

ized at synapses, and synaptic vesicle numbers and 

evoked responses are reduced to 60 and 65%, respec-

tively. Collectively, these data suggest AP2  � 2 facilitates 

but is not essential for synaptic vesicle recycling.
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 The  dpy-23  mutant phenotype was mapped to the interval 

between  – 7.91 to  – 7.55 on chromosome X ( Fig. 1 A ). [ID]FIG1[/ID]  The gene 

encoding  � 2 adaptin, called  apm-2 , maps to this interval, and 

RNA interference to this gene gave rise to a variable dumpy 

phenotype suggesting  dpy-23  is likely to encode  � 2 ( Grant and 

Hirsh, 1999 ). We cloned the  dpy-23  gene and demonstrated that 

the mutated gene is  apm-2 . Two overlapping cosmids, D1079 

and C33G6, in the region rescued the  dpy-23  mutant phenotype. 

A 12-kb genomic PCR fragment (5 kb upstream, 5 kb coding 

sequence of  � 2 adaptin, and 2 kb downstream) could fully rescue 

the dumpy, uncoordinated, and egg-laying defects of  dpy-23(e840)  
and  dpy-23(gm17)  (Fig. S1 A). Interestingly, overexpression of 

 dpy-23  in a wild-type background causes the same phenotypes 

as  dpy-23  loss-of-function mutations (Fig. S1 A). Because 

 dpy-23  encodes  � 2 we will refer to the gene by its alternative 

name,  apm-2  (adaptor protein medium subunit 2), throughout 

the remainder of the manuscript. 

  apm-2  encodes the only  � 2 subunit in  C. elegans  ( Fig. 1 D ). 

It is somewhat surprising that disruption of the single  � 2 subunit 

in the worm gives rise to a viable animal. To determine whether 

 � 2 adaptin is completely disrupted in the mutants, the lesions were 

identifi ed. Genomic Southern analysis showed that  apm-2(e840)  

does not cause a locomotion defect in  � 2 knockout mutants, so 

a smaller reserve pool might be adequate for  C. elegans  under 

normal condition. 

 Results 
  dpy-23/apm-2  encodes  � 2 adaptin in 
 C. elegans  
 Two mutant alleles for the locus  dpy-23 (e840  and  gm17 ) have 

been identifi ed. Both mutants have a variable dumpy (Dpy) 

phenotype in which animals vary from almost wild-type length 

to approximately half the size (Fig. S1 A, available at http://

www.jcb.org/cgi/content/full/jcb.200806088/DC1). The dumpy 

phenotype is likely caused by defects in cuticle morphology. 

Specifi c defects in the cuticle are observed in the head and 

along the body. About 5% of the animals have  “ jowls ”  or 

protrusions on either side of the head (Fig. S1 B). The cuti c-

ular ridges along the body, called alae, are distorted and 

have multiple breaks along their length (Fig. S1 C). In addition, 

mutant worms are slightly uncoordinated (Unc) and have a 

strong egg-laying defect suggesting a role for  dpy-23  in the 

nervous system. 

 Figure 1.     apm-2  cloning.  (A) Genetic map 
position of  apm-2  on chromosome X. (B) Ei-
ther of two overlapping cosmids, C33G6 
and D1079, rescue  apm-2(gm17) . Below, the 
mutation  e840  (also called  eDf44 ) is a dele-
tion of 100 kb that removes 18 ORFs from 
 col-165  to F25F6.1. (C) Genomic structure of 
 apm-2  gene. The  e840  allele deletes the en-
tire ORF;  gm17  is a G to A transition at the 
donor site of the last intron. The splice form 
R160.1a ( Lee et al., 1994 ) includes an exon 
encoding six amino acids. This splice form 
is not essential because it is not required for 
rescue of  apm-2  mutant phenotypes (see 
 Fig. 6 B ) and is also not conserved in other 
species. (D) Phylogenetic tree of  �  subunits from 
mouse,  Drosophila , and  C. elegan s. For stonin B, 
only the  �  homology domains were used in 
the alignment. See Materials and methods for 
accession numbers.   
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and Fig. S4, pMG3). Thus,  apm-2  is expressed in all tissues ex-

amined, which confi rms and extends a previous paper claiming 

that  apm-2  is expressed in neurons and some hypodermal cells 

( Shim and Lee, 2000 ). 

  � 2 is not essential for synaptic vesicle 
recycling in  C. elegans  
 AP2 is thought to recruit synaptic vesicle proteins and clathrin 

to the endocytic zone. If  � 2 is required for synaptic vesicle re-

cycling, then several predictions can be made. First,  � 2 should 

be localized to synapses. Second,  � 2 should contribute to clath-

rin localization at the synapse. Third, the focus of the uncoordi-

nated phenotype should be the nervous system. Fourth,  apm-2  

mutants will have a depletion of synaptic vesicles as assayed by 

electron microscopy. Fifth,  apm-2  mutants will have impaired 

synaptic transmission as assayed by electrophysiology because 

of an inability to recycle vesicles. 

 Because  apm-2  is expressed in virtually all tissues, it is 

not possible to assay synaptic localization with the rescuing 

GFP construct, the fl uorescence signal is simply too high. To look 

at a small subset of neurons, the  apm-2  cDNA (R160.1b) was 

placed under the control of a GABA neuron – specifi c promoter 

and GFP was fused at the C terminus. APM-2::GFP is local-

ized at synapses and colocalizes with the synaptic vesicle pro-

tein synaptobrevin/VAMP ( Fig. 3 A ). [ID]FIG3 [/ID]  In addition, APM-2:: GFP  

colocalizes with C-terminal RFP-tagged clathrin heavy chain 

(CHC) at the synapse ( Fig. 3 B ). Interestingly, synaptic localiza-

tion of APM-2::GFP is not dependent on AP180 ( unc-11 ), 

synaptojanin ( unc-26 ), synaptotagmin ( snt-1 ), or stonin ( unc-41 ) 

(Fig. S2 A, available at http://www.jcb.org/cgi/content/full/jcb

.200806088/DC1). These data indicate that  � 2 associates with 

synaptic varicosities as predicted, but this localization is inde-

pendent of other endocytosis proteins. 

contains a deletion of  � 100 kb that includes the entire coding 

 sequence of  � 2 adaptin. To identify the endpoints of the deletion, 

individual open reading frames (ORFs) were PCR amplifi ed from 

 apm-2(e840)  mutant DNA and it was found that the deletion 

removes 17 additional ORFs from  col-165  to F25F6.1 ( Fig. 1 B ). 

 apm-2(gm17)  was found to contain a G to A point mutation in the 

splice donor site of the last intron ( Fig. 1 C ). Failure to splice at 

this intron would introduce a stop codon 27 nt downstream of the 

splice junction. If translated, 9 amino acids encoded by the intron 

would replace the 40 amino acids at the C terminus comprising 

 �  strands 15, 16, and 17.  � 16 has been shown to be critical for 

binding cargo containing the YXX �  motif ( Ohno et al., 1995 ; 

 Owen and Evans, 1998 ). Although  apm-2(gm17)  appears to have 

a slightly dominant phenotype, the recessive phenotypes of 

 apm-2(e840)  and  apm-2(gm17)  are virtually identical, suggesting 

that  gm17  fully disrupts  � 2 function. 

  � 2 is thought to be a critical component of the AP2 com-

plex and should therefore be present in all tissues. To determine 

where  � 2 is expressed, a construct fusing GFP to the APM-2 

protein was expressed under the control of the endogenous 

 apm-2  promoter (Fig. S4, pMG4, available at http://www.jcb

.org/cgi/content/full/jcb.200806088/DC1). Because the N termi-

nus of  � 2 adaptin is involved in assembly of the AP2 complex 

( Aguilar et al., 1997 ;  Collins et al., 2002 ), GFP was fused to the 

C terminus of the APM-2 protein. The APM-2::GFP fusion pro-

tein fully rescues  apm-2  mutant phenotypes, suggesting the 

tagged protein is functional and is expressed in tissues that re-

quire  � 2 function. Fluorescence is observed in the nervous sys-

tem, coelomocyte, spermatheca, and vulva ( Fig. 2 ). [ID]FIG2[/ID]  In addition, 

weaker expression is observed in the intestine and the hypo-

dermis. Although fl uorescence is not detected in body muscles 

of animals expressing the tagged protein, muscle expression is 

observed in animals expressing a transcriptional reporter ( Fig. 2  

 Figure 2.    APM-2 is expressed ubiquitously.  The expression pattern of translational fusion protein APM-2::GFP (Fig. S4, pMG4, available at http://www
.jcb.org/cgi/content/full/jcb.200806088/DC1) in young adult hermaphrodites. Worms are oriented anterior left and dorsal up. The image of the muscle 
is from the transcriptional fusion of GFP driven by the  apm-2  promoter (Fig. S4, pMG3) in a young adult hermaphrodite. Muscle expression was not 
observed using GFP-tagged  � 2, perhaps because of faint expression or synaptic localization, which overlaps strong APM-2 expression in the presynaptic 
terminals. The vulva and muscle expression fi gures are single-slice confocal images. The rest of the images are z-stack projections through the whole worm 
or the tissues of interest. The contrast for the image of the vulva was increased to show the outline of the worm. Bars, 20  μ m. DNC, dorsal nerve cord; 
VNC, ventral nerve cord.   
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et al., 1999 ), synaptojanin, and endophilin ( Schuske et al., 2003 ), 

synaptic vesicle proteins are diffuse along the axon instead 

of clustering at synaptic varicosities. In contrast, the vesicle 

proteins synaptobrevin, synaptogyrin, and synaptotagmin are 

localized properly in the dorsal and lateral nerve cords of 

 apm-2  mutants ( Fig. 4 ). These results suggest that  � 2, unlike 

other endocytosis proteins, is not required to maintain vesicle 

proteins at the synapse. 

 Mutants with defects in synaptic vesicle endocytosis 

exhibit reduced synaptic transmission and are uncoordinated 

( Nonet et al., 1999 ;  Harris et al., 2000 ;  Schuske et al., 2003 ). 

 apm-2  mutants are also uncoordinated but the uncoordinated 

phenotype arises from defects in the hypodermis rather than 

the nervous system. When APM-2::GFP is expressed under the 

control of a ubiquitous promoter the tagged  � 2 protein rescues 

all  apm-2(e840)  mutant phenotypes ( Fig. 5, A and B ). [ID]FIG5[/ID]  When  � 2 

protein is expressed under a pan-neuronal promoter, the  apm-2  

mutants are still dumpy, uncoordinated, and egg-laying defec-

tive, effectively looking the same as the original  apm-2(e840)  
mutants. In contrast, when  � 2 protein is expressed under a 

 hypodermal promoter, the  apm-2(e840)  transgenic animals are 

 Clathrin interacts with AP2 via the appendage domain of 

the  � 2 subunit ( Dell ’ Angelica et al., 1998 ). Thus, if  apm-2  mu-

tations disrupt AP2 function, then it is possible that clathrin lo-

calization at the synapse should be altered. We analyzed the 

distribution of N-terminal GFP-tagged clathrin (GFP::CHC) in 

the dorsal and ventral nerve cords of GABA neurons in  apm-2  

mutants. In the dorsal cord of  apm-2  mutants clathrin is diffuse 

compared with the wild type ( Fig. 4 ; percentage of animals 

scored with diffuse clathrin in the dorsal cord: in the wild type, 

31%,  n  = 29; in  dpy-23(e840) , 80%,  n  = 15, P  <  0.01; in  dpy-
23(gm17) , 70%,  n  = 30, P  <  0.01). [ID]FIG4[/ID]  However, in the ventral 

nerve cord clathrin distribution is punctate, similar to wild-type 

animals (Fig. S2 B). It is possible clathrin localization near cell 

bodies in the ventral nerve cord is caused by AP1 function at the 

Golgi apparatus. Clathrin is still localized at dorsal synapses in 

20 – 30% of the mutant animals; perhaps by other clathrin-binding 

proteins such as AP180, epsin, or amphiphysin. Thus,  � 2 contrib-

utes to, but is not essential for, clathrin synaptic localization. 

 Defects in synaptic vesicle endocytosis cause the mis-

localization of synaptic vesicle proteins. For example, in the 

absence of the endocytosis proteins, such as AP180 ( Nonet 

 Figure 3.    APM-2 colocalizes with synaptic proteins and clathrin.  Young adult hermaphrodites were used for imaging. (A) APM-2 is localized to synapses. 
(top) GFP-tagged APM-2 in the GABA neuron processes in the dorsal nerve cord. (middle) mCherry-tagged synaptobrevin in the GABA neuron processes in 
the dorsal nerve cord. Synaptobrevin is localized to synaptic regions. The fl uorescent puncta corresponds to synaptic varicosities along the dorsal muscles 
(arrows). (bottom) Merged image demonstrates that APM-2::GFP colocalizes with synaptobrevin at synapses. (B) APM-2 is colocalized with CHC. (top) 
GFP-tagged APM-2 in the GABA neuron processes in the ventral nerve cord. (middle) RFP-tagged CHC-1 in the GABA neuron processes in the ventral nerve 
cord. CHC is localized to both synaptic regions (arrows) and GABA neuron cell bodies (arrowhead). (bottom) Merged image demonstrates that APM-2::GFP 
colocalizes with CHC at synapses. Images are confocal z-stack projections through the worm nerve cord. Bars, 10  μ m.   

 Figure 4.    Clathrin but not synaptic vesicle proteins are mislocalized in  apm-2  mutants.  For CHC, synaptobrevin (SNB), and synaptotagmin (SNT), GFP-
tagged proteins were expressed in the GABA neurons and imaged in the dorsal nerve cord. Presynaptic varicosities of neuromuscular junctions along the 
dorsal nerve cord of an adult hermaphrodite are visible as fl uorescent puncta. For synaptogyrin (SNG), GFP-tagged protein is expressed in all neurons 
under its own promoter and imaged in the lateral cord. Images are confocal z-stack projections through the worm nerve cord. Bars, 10  μ m.   
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not dumpy ( Fig. 5 B , skin APM-2); moreover, the jerky un-

coordinated phenotype is also rescued. Previous studies have 

demonstrated that the  � 2 functions in the skin rescue develop-

mental defects in the nervous system ( Pan et al., 2008 ); our data 

suggest that these nonautonomous defects might extend to de-

velopment or function of motor neurons as well. However, skin-

rescued animals are egg-laying defective and the body bends 

are increased in amplitude, suggesting neuronal function is 

somewhat altered. To quantify locomotion in the mosaic strains, 

animals were placed in a drop of liquid and body bends were 

counted for 90 s for each strain ( Fig. 5 C ). Thrashing rates of 

the hypodermal rescued strains are the same as in the wild type; 

whereas neuronal expression of  � 2 does not rescue thrashing. 

The reduced thrashing is not due to a dominant-negative effect 

because overexpression of  � 2 in the neurons does not impair 

locomotion in the wild type. Collectively, these data suggest 

the uncoordinated phenotype of  apm-2  mutants is almost exclu-

sively caused by hypodermal defects rather than defects in the 

nervous system. 

 To directly visualize synaptic vesicles, we characterized 

 apm-2  mutant synapses using electron microscopy. In AP180 

mutants the diameter of synaptic vesicles is increased, implicat-

ing a role for this adaptin in the control of the diameter of 

the reforming vesicles ( Zhang et al., 1998 ;  Nonet et al., 1999 ). 

In  apm-2(e840)  mutants, however, the diameters of synaptic ves-

icles are the same as in the wild type ( Fig. 6 and Fig. 7 A ), sug-

gesting  � 2 adaptin, unlike AP180, is not required for regulating 

the size of synaptic vesicles. [ID]FIG6[/ID]  In  apm-2(e840)  mutants, the number 

of remaining vesicles are 58% in acetylcholine neurons and 64% in 

GABA neurons compared with the wild type ( Fig. 6 and Fig. 7 B ). [ID]FIG7[/ID]  

Similar vesicle reductions relative to the wild type were also 

observed in  apm-2(gm17)  (unpublished data). Vesicle number is 

rescued in  apm-2(e840)  animals containing the neuron-specifi c 

AMP-2::GFP construct but not in animals that contain the hypo-

dermal specifi c APM-2::GFP, indicating that the defect is caused 

by a loss of neuronal APM-2 function ( Fig. 6 and Fig. 7 B ). The 

decrease in synaptic vesicle number in  apm-2  mutants suggests 

 � 2 has a signifi cant role in synaptic vesicle recycling. Other mu-

tants lacking endocytosis proteins such as synaptojanin and en-

dophilin have only 38 and 30% the normal number of vesicles, 

respectively ( Harris et al., 2000 ;  Schuske et al., 2003 ). Thus the 

endocytosis defect in the absence of  � 2 is less severe than other 

endocytosis mutants. Interestingly, the reduced vesicle pool in 

 apm-2  mutants is able to sustain neuronal transmission because 

animals lacking  � 2 in the nervous system are not uncoordinated. 

Consistent with this observation, the number of docked vesicles 

in  apm-2  mutants is only slightly decreased in GABA neurons 

and is almost normal in acetylcholine neurons ( Fig. 7 C ).  Figure 5.     apm-2(e840)  tissue-specifi c rescue.  (A) APM-2::GFP expression 
pattern under different promoters. Ubiquitous expression is driven by the 
 dpy-30  promoter, hypodermal expression (skin) is driven by the  pdi-2  pro-
moter, and neuronal expression is driven by the  rab-3  promoter (Fig S4, 
pMG10, pMG8, and pMG9, respectively; available at http://www.jcb
.org/cgi/content/full/jcb.200806088/DC1). Worms are oriented ante-
rior left and dorsal up. Images are confocal z-stack projections through 
the whole worm or the tissue of interest. All worms were imaged under 
identical conditions; the contrast for skin APM-2gfp panel was increased 
to show skin-specifi c expression. NR, nerve ring. Bar, 20  μ m. (B) Expres-
sion of APM-2 in the skin rescues the dumpy phenotype. See Materials 
and methods for full genotypes. The injection concentration of  apm-2::GFP  
DNA is at 1 ng/ μ l in all genotypes. Bar, 100  μ m. (C) Thrashing assay. 

Expression of APM-2 in the skin rescues the locomotory phenotype. Worms 
were placed in buffer and body bends were counted for 90 s. Overexpres-
sion of APM-2::GFP in the nervous system (EG4017) does not create a 
dominant-negative phenotype (*, P  <  0.01.). Expression of APM-2 under 
its own promoter (EG1616), a ubiquitous promoter (EG4015), or a skin 
promoter (EG4029 and EG4030) rescues thrashing. Expression of APM-2 
in neurons alone does not rescue thrashing (EG4213). The data are pre-
sented as mean  ±  SD.   
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fl uorescence in oocytes. Over 98% of the gonads in both  apm-
2(e840)  and  apm-2(gm17)  mutants were scored as positive for 

yolk protein uptake ( Fig. 9 A ). [ID]FIG9[/ID]  However, the number of oocytes 

within each gonad containing YP170-GFP was reduced in both 

alleles of  apm-2  compared with the wild type (wild type: one 

oocyte, 7%; two or more, 93%;  apm-2(e840) : one oocyte, 42%; 

two or more oocytes, 58%;  apm-2(gm17) : one oocyte, 36%; two 

or more oocytes, 64%;  Fig. 9 B ). In all genotypes yolk accumu-

lation is greatest in the oldest oocyte, which is found adjacent to 

the spermatheca. The defect is not as severe as that seen when 

the  �  or  � 2 subunits of the complex are depleted by RNA inter-

ference ( Grant and Hirsh, 1999 ), suggesting that  � 2 adaptin 

subunits are less important than the  �  adaptin or  � 2 adaptin 

subunits in this process. 

 Second, some  �  adaptin remains in a complex with  � 2 

adaptin in the  � 2 adaptin mutants. Previous results suggested 

that each subunit is required for function and stability of the AP2 

complex; e.g., RNA interference of the  � 2 subunit in HeLaM 

cells greatly reduced the expression level of the  �  subunit 

( Motley et al., 2003 ). In addition, expression of any single AP2 

subunit in bacteria produces an insoluble protein; only simulta-

neous expression of all subunits produces a soluble protein com-

plex ( Collins et al., 2002 ). To determine if the AP2 complex is 

stable in the absence of the  � 2 subunit, we performed quantita-

tive Western blot analysis of  �  adaptin.  �  adaptin is reduced to 

60% in  apm-2(e840)  and to 12% in  amp-2(gm17)  ( Fig. 9 C ). 

Oddly, the reduction in  �  adaptin is more severe in the truncated 

allele of  � 2 rather than in the null mutant; it is possible that 

 incorporation of truncated  � 2 leads to a destabilization of the 

whole complex. Consistent with this result,  apm-2(e840)/+  

heterozygous animals are wild type, whereas  apm-2(gm17)/+  

animals are slightly uncoordinated and have an egg-laying de-

fect. The reduction in  �  adaptin levels in both alleles indicates 

that  � 2 is required to stabilize the AP2 complex; however, some 

residual  �  adaptin remains in the absence of  � 2. 

 To assay neurotransmitter release, animals were tested for 

sensitivity to the acetylcholinesterase inhibitor aldicarb ( Nguyen 

et al., 1995 ).  apm-2  mutants are slightly hypersensitive to aldicarb 

(Fig. S3 A, available at http://www.jcb.org/cgi/content/full/

jcb.200806088/DC1), and the neuronally rescued worms exhibit an 

identical hypersensitivity to the  apm-2  strain. Expression of  apm-2  

in the hypodermis rescued the hypersensitivity to a wild-type level 

(Fig. S3 B), suggesting that the hypersensitivity could be caused by 

defects in the cuticle. To directly measure synaptic transmission, 

we recorded currents at neuromuscular junctions. In the  apm-2  mu-

tants, the miniature frequency and the evoked amplitude are re-

duced to 60 and 82% of the wild-type levels, respectively ( Fig. 8 , 

skin rescue). [ID]FIG8[/ID]  These values correlate fairly well with the 55 and 69% 

levels of synaptic vesicles observed at GABA and acetylcholine 

synapses ( Fig. 7 B , skin rescue). Full rescue of synaptic transmis-

sion is only observed when  apm-2  is simultaneously expressed in 

both the hypodermis and neurons ( Fig. 8 ). Collectively, our data 

demonstrate that  � 2 has a detectable role in synaptic vesicle re-

cycling, although this role is not visible in locomotion assays. 

 Knocking out  � 2 is not equal to knocking 
down AP2 
 Residual function from the AP2 complex could still remain in 

the absence of the medium subunit. There are two lines of evi-

dence: genetic and biochemical. First,  �  adaptin knockdowns 

are more severe than  � 2 adaptin knockdowns in the yolk uptake 

assay ( Grant and Hirsh, 1999 ). RNA interference against clath-

rin,  �  adaptin, or  � 2 adaptin each abolished uptake of a GFP-

tagged vitellogenin (YP170-GFP) into oocytes. In contrast, 

RNA interference against either  � 2 or  � 2 adaptin did not dis-

rupt uptake, suggesting that not all of the subunits of the AP2 

complex are required for this process. Because RNA interfer-

ence is not always fully penetrant we used our deletion allele to 

assay  � 2 function in yolk uptake. Approximately 120 gonads of 

each genotype were assayed for the presence of YP170-GFP 

 Figure 6.     apm-2(e840)  neuromuscular junc-
tion ultrastructure.  Representative images of 
neuromuscular junctions in the ventral nerve 
cord from wild-type, EG3622  dpy-23(e840) , 
EG4029  dpy-23(e840) Ex[Ppdi-2::APM-2::
GFP] , and EG4213  dpy-23(e840) Ex[Prab-
3::APM-2::GFP]  adult hermaphrodites.  apm-
2(e840)  shows reduced numbers of synaptic 
vesicles. Vesicle number is restored in the neuronal-
rescued animals but not in the skin-rescued 
animals. Bar, 200 nm. SV, synaptic vesicle; mt, 
microtubule; dense proj, dense projection.   
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 The residual  �  adaptin remains bound to  � 2 adaptin. 

 �  adaptin tagged with GFP was immunoprecipitated from the 

wild type and  apm-2  mutants.  �  adaptin coimmunoprecipitated 

from the wild-type animals but not from  � 2 mutant animals 

(Fig. S5 A, available at http://www.jcb.org/cgi/content/full/jcb

.200806088/DC1). In contrast,  � 2 adaptin (HA tagged) co-

immunoprecipitated from both the wild-type and  � 2 mutant an-

imals (Fig. S5, B and C). Moreover, residual  �  adaptin can still 

be localized in the absence of  � 2. Coelomocytes are scavenger 

cells in  C. elegans  with high levels of endocytosis. N-Terminal 

tagged  �  adaptin is localized properly to the plasma membrane 

of mutant coelomocytes ( Fig. 9 D ). Similarly, tagged  �  adaptin 

is localized to synapses in  apm-2  mutants. These data suggest 

that the protein is folded and transported correctly in mutant 

cells. Thus, it is possible that AP2 is at least partially functional 

in  apm-2  mutants. 

 Discussion 
 In this study, we characterized the only AP2  � 2 adaptin subunit 

in  C. elegans  and its function in synaptic vesicle endocytosis. 

 � 2 adaptin is encoded by the gene  dpy-23  ( apm-2 ). It is ex-

pressed ubiquitously in adult worms and is highly expressed in 

the nervous system. Absence of  � 2 impairs but does not elimi-

nate synaptic vesicle endocytosis. Animals lacking  � 2 have 

 � 60% of the normal number of vesicles at synaptic varicosities, 

and synaptic vesicle proteins are properly localized at the syn-

apse. This phenotype is much less severe than worm mutants 

lacking other recycling proteins such as AP180 ( unc-11 ), syn-

aptojanin ( unc-26 ), and endophilin ( unc-57 ) ( Nonet et al., 1999 ; 

 Harris et al., 2000 ;  Schuske et al., 2003 ). For example, the num-

ber of synaptic vesicles in synaptojanin and endophilin mutants 

is reduced to  � 35%, the normal number of synaptic vesicles 

found at neuromuscular junctions. 

 The conclusion that  � 2 is not essential for synaptic vesicle 

recycling leads to several considerations. (a) Do other proteins 

recruit cargo? (b) Can other medium subunits stabilize AP2? 

(c) Do other proteins recruit clathrin? 

 The specifi c role of  � 2 is in cargo recruitment, in par-

ticular, its interactions with synaptotagmin were thought to be 

essential for synaptic vesicle biogenesis ( Zhang et al., 1994 ; 

 Jorgensen et al., 1995 ;  Haucke et al., 2000 ). However, our data 

indicate that  � 2 is not required to recruit proteins to synaptic 

vesicles. The essential synaptic vesicle proteins are synapto-

brevin, synaptotagmin, and the neurotransmitter transporters. 

Other ancillary proteins have been identifi ed that recruit these 

synaptic vesicle proteins to sites of endocytosis. AP180 is re-

quired to recruit synaptobrevin to synaptic vesicles ( Zhang 

et al., 1998 ;  Nonet et al., 1999 ;  Bao et al., 2005 ). Stonin, which is 

distantly related to  � 2, is required for synaptotagmin recycling 

( Fergestad and Broadie, 2001 ;  Martina et al., 2001 ;  Walther 

et al., 2004 ). The vesicular GABA transporter is recruited by a 

 Figure 7.    Synaptic vesicle numbers are reduced in  apm-2(e840)  mutants.  
The ventral nerve cord was reconstructed from serial electron micro-
graphs and distribution of synaptic vesicles at neuromuscular junctions 
was measured from two young adult hermaphrodites for each genotype. 
(A) Vesicle diameters are identical in wild-type,  apm-2(e840) , and  apm-
2(e840)  tissue-specifi c rescued animals. Mean size of synaptic vesicles per 
profi le containing a dense projection in nanometers  ±  SEM is as follows: 
wild-type acetylcholine, 28.52  ±  0.38,  n  = 734 vesicles;  apm-2(e840)  
acetylcholine, 29.71  ±  0.47,  n  = 377 vesicles; neuronal-rescued  apm-
2(e840)  acetylcholine, 28.38  ±  0.40,  n  = 744 vesicles; skin-rescued  apm-
2(e840)  acetylcholine, 28.38  ±  0.85,  n  = 675 vesicles; wild-type GABA, 
28.70  ±  0.35,  n  = 904 vesicles;  apm-2(e840)  GABA 28.27  ±  0.44,  n  = 
474 vesicles; neuronal-rescued  apm-2(e840)  GABA, 28.59  ±  0.48,  n  = 
1073 vesicles; skin-rescued  apm-2(e840)  GABA, 30.15  ±  0.96,  n  = 700 
vesicles. (B) The number of synaptic vesicles is reduced in neurons lacking 
APM-2. Mean number of synaptic vesicles per profi le containing a dense 
projection  ±  SEM: wild-type acetylcholine, 19.63  ±  1.28,  n  = 38 syn-
apses;  apm-2(e840)  acetylcholine, 10.83  ±  1.13,  n  = 35 synapses; neuro-
nal-rescued  apm-2(e840)  acetylcholine, 17.74  ±  0.97,  n  = 42 synapses; 
skin-rescued  apm-2(e840)  acetylcholine, 13.5  ±  1.18,  n  = 50 synapses; 
wild-type GABA, 25.11  ±  1.17,  n  = 36 synapses;  apm-2(e840)  GABA, 
15.83  ±  2.23,  n  = 30 synapse; neuronal-rescued  apm-2(e840)  GABA, 
21.46  ±  1.34,  n  = 50 synapses; skin-rescued  apm-2(e840)  GABA, 13.92  ±  
1.51,  n  = 50 synapses. (C) The number of docked synaptic vesicles is 
slightly reduced in neurons lacking APM-2. Mean number of docked syn-
aptic vesicles per profi le containing a dense projection  ±  SEM: wild-type 
acetylcholine, 1.82  ±  0.13;  apm-2(e840)  acetylcholine, 1.60  ±  0.19; 
neuronal-rescued  apm-2(e840)  acetylcholine, 2.24  ±  0.20; skin-rescued 

 apm-2(e840)  acetylcholine, 1.60  ±  0.16; wild-type GABA, 2.36  ±  0.17; 
 apm-2(e840)  GABA, 1.8  ±  0.22; neuronal-rescued  apm-2(e840)  GABA, 
2.06  ±  0.18; skin-rescued  apm-2(e840)  GABA, 1.44  ±  0.14. The number 
of synapses is the same as in B. *, P  <  0.05; ***, P  <  0.001.   
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tors ( Traub, 2003 ). In particular, AP180 is required for normal 

synaptic vesicle endocytosis and it is likely that AP180 could 

recruit clathrin and form vesicles in the absence of AP2 ( Zhang 

et al., 1998 ;  Nonet et al., 1999 ). Our results for  � 2 seem to 

confl ict with previous studies that suggest that the AP2 subunit 

 �  adaptin is essential for synaptic vesicle recycling in  Dro-
sophila melanogaster . A weak mutation in the  Drosophila   �  

adaptin subunit  D- � Ada 1   leads to slowly moving larvae, which 

die as pupae ( Gonzalez-Gaitan and Jackle, 1997 ). The neurons 

of these animals are not effi cient in taking up FM1-43 dye at 

boutons upon stimulation. The null mutants die before hatch-

ing and the electron microscopy data suggest that these animals 

are depleted of synaptic vesicles. However, in  C. elegans , the 

behavioral defects of  apm-2  – null mutants are less pronounced. 

The hypodermal rescued mutants have almost normal move-

ment and the evoked current upon stimulation is close to the 

wild type. Thus the neurotransmission defect in  � 2 mutants 

in worms is less severe than that of  �  adaptin mutants in fl ies. 

Although it is possible that residual AP2 function accounts for 

vesicle recycling in  � 2 mutants, it is also possible that AP2 is 

not essential for synaptic vesicle recycling at  C. elegans  neuro-

muscular junctions. 

 Materials and methods 
 Mapping and mutation analysis 
 The mutation  e840  was isolated in an x-ray mutagenesis by S. Brenner 
(Agency for Science, Technology, and Research, Biopolis, Singapore). The 
mutation  gm17  was isolated in an EMS screen for egg-laying defective 
 animals.  gm17  was mapped between two polymorphisms on the X chro-
mosome,  gmP �   and  pgP2 , and was successfully rescued by two overlap-
ping cosmids, D1079 and C33G6. The sequence of  gm17  was determined 
by DNA sequencing. The molecular nature of  e840  was determined by ge-
nomic southern analysis and the break points of  e840  deletion were further 
characterized by PCR against  apm-2  neighboring ORFs. Because  e840  
is a multigene deletion, an alternative name,  eDf44 , has been given by 
J. Hodgkin (University of Oxford, Oxford, England). 

LAMP-related protein called UNC-46 ( Schuske et al., 2007 ). 

Because of these defects in cargo recruitment, all of these mu-

tants are severely uncoordinated in worms. In contrast, mutants 

lacking  � 2 in the nervous system are not uncoordinated and 

evoked responses are at 82% of the levels observed in the wild 

type, indicating that synaptic transmission is largely intact. 

Thus, if  � 2 recruits cargo to recycling vesicles it is unlikely to 

be a component essential for neurotransmission. 

 The medium subunit  � 2 is also known to stabilize the 

AP2 complex ( Motley et al., 2003 ). One could imagine that 

medium subunits from the AP1 or AP3 complexes (there is no 

AP4 in  C. elegans ) could substitute for  � 2 and provide AP2 

complex function. However, adaptins from different complexes 

do not appear to be redundant in other organisms. For example, 

in yeast, overexpression of  � 2 cannot substitute for the loss of 

 � 1 ( Phan et al., 1994 ). Similarly, we found that other medium 

subunits cannot substitute for  � 2 in  C. elegans . Mutants lack-

ing  � 1 ( unc-101 ) are severely uncoordinated and exhibit defects 

in anterograde transport of olfactory receptors to olfactory cilia 

( Dwyer et al., 2001 ). Overexpression of  � 2 cannot rescue the se-

verely uncoordinated phenotype of the  � 1 mutant in a thrashing 

assay (unpublished data). Moreover,  apm-2 unc-101  ( � 1  � 2) 

double mutants exhibit an additive dumpy and uncoordinated 

phenotype rather than a synthetic phenotype, suggesting that 

these proteins are not acting redundantly. Mutants lacking  � 3 

( apm-2(tm920) ) are outwardly wild type but slightly aldicarb 

resistant. Again,  � 2 and  � 3 mutations do not show synthetic 

interactions:  apm-2 apm-3  double mutants (with  � 2 rescued in 

skin) exhibit similar aldicarb sensitivity as the  � 3 mutant alone. 

In addition, our data show that AP2 is destabilized in the ab-

sence of  � 2, suggesting  � 2 is the only medium subunit used by 

AP2 in  C. elegans.  
 Our data are consistent with a study in other systems 

suggesting that clathrin can be recruited by alternative adap-

 Figure 8.    Electrophysiological analysis at 
neuromuscular junctions of wild-type,  apm-
2(e840)  ,  and various  apm-2(e840)  tissue-
specifi c rescued worms.  (A) sample traces of 
mPSC recorded from wild-type,  apm-2(e840) , 
neuronal-rescued  apm-2(e840) , skin-rescued 
 apm-2(e840) , neuronal- and skin-rescued 
 apm-2(e840) , and ubiquitously rescued  apm-
2(e840)  worms. (B) sample traces of ePSC 
recorded from the aforementioned animals. 
(C) Summary of mPSC frequencies (Hz  ±  SEM): 
wild type, 54.1  ±  8.0,  n  = 8;  apm-2(e840) ,   
25.4  ±  3.7,  n  = 9; neuronal-rescued  apm-
2(e840) , 22.4  ±  2.7,  n  = 8; skin-rescued  apm-
2(e840) , 31.9  ±  2.2,  n  = 12; neuronal- and 
skin-rescued  apm-2(e840) , 53.9  ±  10.7,  n  = 8; 
ubiquitously rescued  apm-2(e840) , 49.5  ±  
7.9,  n  = 8. (D) Summary of ePSC amplitudes 
(nA  ±  SEM): wild type, 2.19  ±  0.18,  n  = 8; 
 apm-2(e840) , 1.38  ±  0.13,  n  = 7; neuronal-
rescued  apm-2(e840) , 1.81  ±  0.39,  n  = 7; 
skin-rescued  apm-2(e840) , 1.79  ±  0.31,  n  = 8; 
neuronal- and skin-rescued  apm-2(e840) , 2.14  ±  
0.17,  n  = 6; ubiquitously rescued  apm-2(e840) , 
2.50  ±  0.34,  n  = 7. *, P  <  0.05, compared with 
wild-type; unpaired  t  test.   
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Punc-122::GFP] , EG4015  apm-2(e840)X; oxEx745[Pdpy-30::APM-2(cDNA)::
GFP (pMG10) Punc-122::GFP] , EG4029  apm-2(e840)X; oxEx753[Ppdi-
2::APM-2(cDNA)::GFP (pMG8) Punc-122::GFP] , EG4030  apm-2(e840)X; 
oxEx745[Ppdi-2::APM-2(cDNA)::GFP (pMG8) Prab-3::APM-2(cDNA)::GFP 
(pMG9) Punc-122::GFP] , and EG4093  apm-2(e840)X, oxEx773[Ppdi-2::
APM-2(cDNA)::GFP (pMG8) Pmyo-2::GFP]. Punc-122  is the coelomo-
cyte promoter. 

 The strains used in yolk uptake assay were DH1033  sqt-1(sc103)II; 
bIs1[[vit-2::GFP rol-6(su1006)]X , EG4062  apm-2(e840) bIs1[vit-2::GFP 
rol-6(su1006)]X , EG4059  apm-2(gm17) bIs1[vit-2::GFP rol-6(su1006)]X . 

 The strain used in  �  adaptin coelomocyte plasma membrane local-
ization assay were RT490  unc-119(ed3) III; pwIs177[Punc-122:mRFP::
apa-2; cb-unc-119(+)] , EG4188  apm-2(e840) X; pwIs177[Punc-122:
mRFP::apa-2; cb-unc-119(+)] , EG4189  apm-2(gm17) X; pwIs177[Punc-
122:mRFP::apa-2; cb-unc-119(+)] . They were provided by B.D. Grant 
(Rutgers University, Piscataway, NJ) 

 The strains used in  �  adaptin GABA synaptic localization assay 
were GK275  unc-119(ed3) III; dkIs160[Punc-25:GFP::apa-2,unc-119(+)] , 
EG4203  apm-2(e840) X; dkIs160[Punc-25:GFP::apa-2,unc-119(+)] , and 
EG4204  apm-2(gm17) X; dkIs160[Punc-25:GFP::apa-2,unc-119(+)] . They 
were provided by K. Sato (Gunma University, Gunma, Japan). 

 The strains used in AP2 assembly immunoprecipitation were EG5264 
 oxEx1275[Papa-2::apa-2::GFP Punc-122::GFP],  EG5265  apm-2(e840)X ,  
oxEx1275[Papa-2::apa-2::GFP Punc-122::GFP] , EG5266  oxEx1276[Papa-
2::apa-2::GFP Paps-2::aps-2::HA Punc-122::GFP] , and EG5267  apa-
2(e840)X oxEx1276 [Papa-2::apa-2::GFP Paps-2::aps-2::HA Punc-122::GFP].  

 Phylogenetic analysis 
 The phylogenetic tree of  �  adaptin was made by ClustalX (1.83.1 Mac) and 
Treeview X. The protein accession numbers are as follows:  � 3A mouse 
( Q9JKC8 );  � 3B mouse ( Q8R2R9 );  � 3  Drosophila  ( NP_788873 ); APM-3 

  C. elegans  strains 
 The wild strain is Bristol N2. The reference strains for  e840  and  gm17  
were outcrossed twice before phenotypic analysis. The outcrossed strains 
are EG2988  apm-2(gm17)X  and EG3622  apm-2(e840)X.  

 The strains used in the synaptobrevin and clathrin colocalization as-
says were EG4052  lin-15(n765ts)X; oxEx761[Punc-47:APM-2(cDNA)::
GFP Punc-47:SNB::mCherry lin-15(+)]  and EG4051  lin-15(n765ts)X; 
oxEx759[Punc-47:APM-2(cDNA)::GFP Punc-47:CHC-1::RFP lin-15(+)] . 

 The strains used in the synaptic vesicle protein distribution assays 
were MT8247  lin-15(n765ts) nIs52[Punc-25::SNB::GFP lin-15(+)]X , 
EG3733  apm-2(e840) nIs52[Punc-25::SNB::GFP lin-15(+)]X , EG3229 
 apm-2(gm17) nIs52[Punc-25::SNB::GFP lin-15(+)]X , NM1233  jsIs219[SNG-
1::GFP rol-6(su1006)]II , EG3563  jsIs219[SNG-1::GFP rol-6(su1006)]II; 
apm-2(e840)X , EG3736  jsIs219[SNG-1::GFP rol-6(su1006)]II; apm-
2(gm17)X , EG3855  lin-15(n765ts) oxIs224[Punc-47::GFP::SNT-1 lin-
15(+)]X , EG3889  apm-2(e840) oxIs224[Punc-47::GFP::SNT-1,lin-15(+)]X , 
and EG3891  apm-2(gm17) oxIs224[Punc-47:GFP::SNT-1 lin-15(+)]X . 

 The strains used in the clathrin distribution assays were EG3381  oxIs-
164[Punc-47::GFP::CHC-1 lin-15(+)]IV; lin-15(n765)X , EG3735  oxIs-
164[Punc-47:GFP::CHC-1 lin-15(+)]IV; apm-2(e840)X  and EG3564 
 oxIs164[Punc-47::GFP::CHC-1 lin-15(+)]IV; apm-2(gm17)X . 

 The strains used in APM-2 distribution assays were EG4055 
 snt-1(n2665)II; oxEx763[Punc-47::APM-2(cDNA)::GFP Pmyo-2::GFP] , 
EG4091  unc-41(n268)V; oxEx767[Punc-47::APm-2(cDNA)::GFP Pmyo-2::
GFP] , EG4103  unc-11(e47)I; oxEx767[Punc-47::APM-2(cDNA)::GFP 
Pmyo-2::GFP] , and EG4089  unc-26(s1710)IV; oxEx767[Punc-47::APM-
2(cDNA)::GFP Pmyo-2::GFP].  

 The strains used in APM-2 tissue-specifi c rescue assay were EG4017 
 lin-15(n765)X; oxEx747[Prab-3::APM-2(cDNA)::GFP (pMG9) lin-15(+)] , 
EG1616  apm-2(e840)X; oxEx730[APM-2::GFP (pMG4) Punc-122::GFP] , 
EG4213  apm-2(e840)X; oxEx789[Prab-3::APM-2(cDNA)::GFP (pMG9) 

 Figure 9.    Yolk protein endocytosis in  apm-2  mutants.  
(A) Oocytes from adult worms expressing yolk pro-
tein YP170::GFP. Arrowheads indicate the GFP-positive 
oocytes. Figures are single-slice confocal images. 
Bar, 20  μ m. (B) A bar graph showing the percentage 
of gonads with different numbers of GFP-positive oo-
cytes. (C) A Western blot of the wild-type and  apm-2  
mutant worm lysates probed with an antibody against 
 �  adaptin (APA-2). 200  μ g of protein was loaded in 
each lane. (D) APA-2 localization in scavenger cell, 
coelomocytes, and GABA synapses. Images were 
taken from adult worms. Arrowheads indicate the RFP-
positive plasma membrane of coelomocytes. Arrows 
indicate the GFP-positive synapses. Coelomocyte fi g-
ures are single-slice confocal images. GABA synapse 
images are z-stack projections. Bars, 5  μ m.   
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ladder (Fermentas) was used to make the injection mix fi nal concentration 
100 ng/ μ l. 

 Rescue experiment.   10 ng/ μ l of 12-kb  apm-2  genomic PCR fragment 
was injected into N2 to overexpress APM-2 in wild-type animals. 0.25 ng/ μ  
of 12-kb  apm-2  genomic PCR fragment was injected into N2. The extra-
chromosomal array was then crossed into  apm-2(e840)  and  apm-2(gm17)  
mutants to evaluate rescue. 

 Tissue-specifi c rescue.   1 ng/ μ l each of pMG10  Pdpy-30::apm-2::
GFP , pMG8  Ppdi-2::apm-2::GFP , and pMG9  Prab-3::apm-2::GFP  DNAs 
were injected, respectively, into  apm-2(e840) . For the skin and nervous 
system double rescue experiment, 1 ng/ μ l each of pMG8 and pMG9 were 
injected together. 10 ng/ μ l pMG9 and 50 ng/ μ l  lin-15(+)  were coinjected 
into  lin-15(n765ts)  to overexpress APM-2::GFP only in the nervous system. 
1 ng/ μ l pMG8 and 2 ng/ μ l  Pmyo-2::GFP  were coinjected into  apm-
2(e840)  to rescue  apm-2  mutant in skin with a different injection marker. 

 AP2 complex immunoprecipitation.   pMG16 was injected at 10 ng/ μ l 
into the wild type. The array was crossed into  apm-2(e840).  pMG16 and 
pMG28 were coinjected at 10 ng/ μ l into the wild type and the same array 
was then crossed into  apm-2(e840).  

 Western blot analysis 
 Worm samples were prepared by boiling 1 vol of the worm pellet in 9 vol 
of 1 ×  loading buffer for 5 min. Samples were run on a 10% SDS-PAGE gel 
then transferred to polyvinylidene fl uoride transfer membrane (Immobilon). 
Primary antibody for  �  adaptin was a rabbit polyclonal APA-2 antibody at 
a dilution of 1:500 (provided by B. Grant). Primary antibody incubation 
was done in 1% milk at room temperature for 4 h. Primary antibody for the 
standard control tubulin was a 12G10 mouse monoclonal antibody (Devel-
opmental Studies Hybridoma Bank) at a dilution of 1:5,000. Primary anti-
body incubation was done in 1% milk at room temperature for 1 h, and 
then the membrane was washed three times in 10 ml of 1 ×  PBS plus Tween 20 
(PBST). Secondary antibodies were anti-rabbit and mouse IgG fragment 
conjugated with HRP (GE Healthcare). Secondary incubations were done 
in 10% milk at room temperature for 45 min, and then the membrane 
was washed fi ve times in 10 ml of 1 ×  PBST. Detection reagent used was 
Lumigen PS-3 (GE Healthcare). 

 AP2 complex immunoprecipitation 
 250  μ l ( ±  50  μ l) of worm pellet was harvested. The pellet was suspended 
in 2 ml of ice-cold lysis buffer (5% Triton X-100, 50 mM Hepes, pH 7.3, 
50 mM NaCl, and 1 tablet of protease inhibitor cocktail [Roche]). The sam-
ple was lysed by a bead beater (NMB) for 10 s, three times, and was spun, 
and the supernatant was recovered. The supernatant was pushed through 
a 0.22- μ m fi lter. 15  μ l of agarose-conjugated rat anti-GFP IgG2a beads 
(MBL International) were added to the lysate. The mixture was incubated at 
4 ° C for 2 h. Beads were harvested and washed with 1 ml of lysis buffer 
three times. 100  μ l of loading buffer was added on the bead pellet and 
boiled for 15 min. 

 Samples were run on 7, 10, or 15% SDS-PAGE and transferred to a 
polyvinylidene fl uoride membrane. Primary antibody for GFP was a mouse 
monoclonal antibody at a dilution of 1:5,000 (Clontech Laboratories, 
Inc.). Primary antibody for HA was a mouse monoclonal antibody (12CA5; 
Santa Cruz Biotechnology, Inc.) at a dilution of 1:5,000. Primary antibody 
for  �  adaptin was a mouse monoclonal antibody (Thermo Fisher Scientifi c) 
at a dilution of 1:5,000. Primary antibody incubation was performed in 
5% BSA at 4 ° C overnight, and then the membrane was washed three times 
in 10 ml of 1 ×  PBST. Secondary antibodies were goat anti – mouse IgG 
fragment conjugated with HRP (GE Healthcare). Secondary incubations 
were performed in 5% BSA at 22.5 ° C for 2 h, and then the membrane was 
washed fi ve times in 10 ml of 1 ×  PBST. Detection reagent was SuperSignal 
West Dura kit (Thermo Fisher Scientifi c). 

 Thrashing assay 
 A single worm was put into a 50- μ l drop of M9 solution. The worm was al-
lowed to adapt to the liquid environment for 2 min. The number of body 
bends was counted for 90 s for each genotype ( n  = 7). We analyzed lines 
of  apm-2(e840 ) rescued by skin APM-2::GFP with two different injection 
markers (EG4029  Punc-122::GFP  and EG4093  Pmyo-2::GFP ). The results 
are the same. 

 Aldicarb resistance assay 
 Each agar plate was seeded with bacteria and weighed to top spread 
plates with the appropriate amount of aldicarb. Plates with six different al-
dicarb fi nal concentrations were prepared (0.1, 0.3, 0.5, 0.7, 0.9, and 
1.1 mM). Aldicarb was allowed to soak in overnight at room temperature. 

( NP_508184 ); stB  Drosophila  ( Q24212 ); APT-10 (stB Ce;  NP_505566 ); 
stB mouse ( NP_780576 );  � 2  Drosophila  ( NP_732744 );  � 2 mouse 
( NP_033809 ); APM-2 ( NP_001024865 ); APM-1( NP_491572 ); UNC-101 
( NP_001040675 );  � 1A mouse ( AAF61814 );  � 1B mouse ( AF067146 );  � 1 
 Drosophila  ( NP_649906 ). 

 GFP constructs 
 pMG1,  apm-2  genomic region.   A 12-kb  apm-2  genomic PCR fragment was 
amplifi ed from cosmid C33G6, including 5 kb upstream of the start codon, 
5 kb of coding sequence, and 2 kb downstream of the stop codon, and 
was cloned between BamHI and PstI restriction sites in pGEM-3zf(+) (Pro-
mega). Primers used were 5 � -ATTAGGATCCAGGTGGTGGTGGTGAAGA-3 �  
and 5 � -AGATCTGCAGTCGGCTAACGGCTAATTCGGCTAA-3 � . 

 pMG2,  apm-2  transcriptional GFP.   The construct comprises the  apm-2  
promoter only driving GFP. This construct does not show expression in neu-
rons, suggesting that a neuronal enhancer is contained within an intron. 

 pMG3,  apm-2  transcriptional GFP.   GFP with the  unc-54  3 � UTR was 
PCR amplifi ed from the plasmid pPD95.77 (provided by A. Fire, Carnegie 
Institution of Washington, Baltimore, MD). The primers used were 5 � -GGC-
TGAAATCACTCACAACGATGG-3 �  and 5 � -TACAGTCGACTACGGCCG-
ACTAGTAGGAAACAGT-3 � . This fragment contains SalI restriction sites 
at both ends and was inserted into the SalI site of pMG1, which is in the 
second exon of  apm-2.  

 pMG4,  apm-2  translational GFP.    apm-2  10-kb genomic PCR fragment, 
including 5 kb upstream of the start codon and 5 kb of coding sequence 
without the stop codon, was amplifi ed from pMG1 and cloned between 
the BamHI and PstI restriction sites in pGEM-3zf(+). Primers used were 
5 � -ATTAGGATCCAGGTGGTGGTGGTGAAGA-3 �  and 5 � -ACAGCTG-
CAGGCATCTGGTTTCATACAGTCCCGA-3 � . GFP with the  unc-54  3 � UTR 
was cloned from the plasmid pPD95.77 with a PstI site at one end and a 
HindIII site at the other end and was then inserted after the  apm-2  coding 
sequence to make a GFP fusion protein. Primers used were 5 � -ACATCTG-
CAGTTGGCCAAAGGACCCAAAGGTATG-3 �  and 5 � -ACGCAAGCTTCG-
GCCGACTAGTAGGAAACAGTTA-3 � . 

 Constructs for  apm-2  tissue-specifi c rescue assay 
 Multisite Gateway three-fragment construction vectors were used (Invitro-
gen). Promoter entry vectors, including pENTRY4-1  Pdpy-30  and pEN-
TRY4-1  Ppdi-2 , were ordered from Open Biosystems. The  Ppdi-2  construct 
(Open Biosystems) lacks 373 nt ( � 808 to approximately  � 435 from the 
start codon of  pdi-2 ) in the promoter region; however, skin expression 
was still observed using this construct. pENTRY4-1  Prab-3  was generated 
by BP reaction. ORF entry vector pENTRY1-2  apm-2  (ORF) was ordered 
from Open Biosystems. 3 � UTR entry vector pENTRY2-3 GFP:: unc-54  
3 � UTR was made by a Gateway BP reaction. The fi nal constructs,  apm-2 ::GFP 
fusion gene driven by different promoters, were generated by Gateway 
LR reactions. 

 Constructs for AP2: assembly immunoprecipitation 
 pMG16,  apa-2  translational GFP.    apa-2  6-kb genomic sequence, includ-
ing 2.3 kb of promoter and 3.7 kb of coding sequence without stop 
 codon, was cloned between KpnI and XbaI sites in pGEM-3zf(+). Primers 
used were 5 � -ACTCGGTACCGCATACTTGATGGAAAACCCGCTC-3 �  and 
5 � -AGCCTCTAGAAAATTGGTTGCCCAATAAGTCTAC-3 � . 

 GFP with the  unc-54  3 � UTR was cloned from Fire laboratory vector 
pPD 95.77 with an XbaI site at one end and a HindIII site at the other end. 
This fragment was inserted after the  apm-2  coding sequence to make a 
GFP fusion protein. Primers used were 5 � -ACCGTCTAGAGGGGTAGAAA-
AAATGAGTAAAGGA-3 �  and 5 � -AGCGAAGCTTCGGCCGACTAGTAGG-
AAACAGTTA-3 � . 

 pMG28, HA-tagged translational APS-2.    aps-2  2-kb genomic se-
quence, including 1 kb of promoter and 1 kb of coding sequence (stop 
codon is replaced by HA tag), was cloned between EcoRI and PstI sites 
in pGEM-3zf(+). Primers used were 5 � -AGCGGAATTCCGTTTAGTTCTT-
GAGTGGCTTG-3 �  and 5 � -ACAGCTGCAGAGCGTAATCTGGAACATCG-
TATGGGTATTCCAGGGAAGTAAGCATGAGCA-3 � . 

  unc-54  3 � UTR was cloned from Fire laboratory vector pPD 95.77 
with a PstI site at one end and a HindIII site at the other end. This fragment 
was inserted after the  aps-2::HA  coding sequence. Primers used were 
5 � -AGGCCTGCAGTAGCATTCGTAGAATTCCAACTGA-3 �  and 5 � -AGG-
CA AGCTTCCCATAGACACTACTCCACTTTC-3 � . 

 Microinjection 
 The total DNA concentration of injection mix is 100 ng/ μ l. The injec-
tion marker was 50 ng/ μ l  Punc-122::GFP , if not specifi ed. 1-kb DNA 
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 Amplitude and frequency of mPSCs were analyzed using MiniAnalysis 
(Synaptosoft). A detection threshold of 10 pA was used in initial auto-
matic analysis, followed by visual inspections to include missed events ( ≥ 5 pA) 
and to exclude false events resulting from baseline fl uctuations. Amplitudes 
of ePSCs were measured with Fitmaster (HEKA). The amplitude of the largest 
peak of ePSCs from each experiment was used for statistical analysis. Data 
were imported into Origin, version 7.5 (OriginLab), for graphing and statisti-
cal analysis. Unpaired  t  test was used for statistical comparisons. A value 
of P  <  0.05 is considered statistically signifi cant. All values are expressed 
as mean  ±  SEM.  n  is the number of worms that were recorded. 

 Quantifi cation 
 ImageJ 1.36b was used for the pixel intensity analysis of  �  adaptin West-
ern blot. 

 Online supplemental material 
 Fig. S1 shows rescue of the  apm-2  mutant phenotype. Fig. S2 shows 
that APM-2 is not mislocalized in endocytic mutants. Fig. S3 shows 
 apm-2  aldicarb assay. Fig. S4 is a cartoon structure of  apm-2::GFP  
DNA constructs. Fig. S5 depicts the assembly of AP2 with or with-
out  � 2. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200806088/DC1. 
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For each genotype, 20 worms were put onto plates containing each differ-
ent aldicarb concentration. The plates were blinded and the percentage of 
paralyzed worms were scored after 4 h of exposure to aldicarb. The same 
experiment was repeated fi ve times for each genotype except  apm-2(e840) 
oxEx755[Prab-3::apm-2::GFP, Punc-122::GFP] , which had only 10 worms 
on each plate and the experiment was repeated four times because of 
fewer transgenic animals. 

 Confocal microscopy 
 Worms are immobilized by using 2% phenoxy propanol and imaged on a 
confocal microscope (Pascal LSM5; Carl Zeiss, Inc.) with a plan-Neofl uar 
10x 0.3 NA, 20x 0.5 NA, or 40x 1.3 NA or plan-apochromat 63x 1.4 NA 
oil objectives (Carl Zeiss, Inc.). 

 Electron microscopy 
 Wild-type (N2),  apm-2(e840) , EG4029  apm-2(e840) ;  oxEx753[Ppdi-2::
apm-2::GFP ,  Punc-122::GFP] , and EG4213  apm-2(e840); oxEx789[Prab-
3::apm-2::GFP ,  Punc-122::GFP]  adult nematodes were prepared in parallel 
for transmission electron microscopy as previously described ( Hammarlund 
et al., 2007 ). In brief, 10 young adult hermaphrodites were placed onto a 
freeze chamber (100- μ m well of type A specimen carrier) containing 
space-fi lling bacteria, covered with a type B specimen carrier fl at side 
down, and frozen instantaneously in the HPM 010 (Leica). This step was 
repeated for animals of all genotypes. The frozen animals were fi xed in the 
EM AFS system (Leica) with 1% osmium tetroxide and 0.1% uranyl acetate 
in anhydrous acetone for 2 d at  – 90 ° C and for 38.9 more hours with 
gradual temperature increase (6 ° C/h to  � 20 ° C over 11.7 h, constant 
temperature at  � 20 ° C for 16 h, and 10 ° C/h to 20 ° C over 4 h). The fi xed 
animals were embedded in araldite resin following the infi ltration series 
(30% araldite/acetone for 4 h, 70% araldite/acetone for 5 h, 90% 
araldite/acetone overnight, and pure araldite for 8 h). Mutant and control 
blocks were blinded. Ribbons of ultra-thin (33-nm) serial sections were col-
lected using an Ultracut 6 microtome (Leica) at the level of the anterior re-
fl ex of the gonad. Images were obtained on an electron microscope 
(H-7100; Hitachi) using a digital camera (Gatan). 250 ultra-thin contigu-
ous sections were cut, and the ventral nerve cord was reconstructed from 
two animals representing each genotype. Image analysis was performed 
using ImageJ software. The numbers of synaptic vesicles ( � 30 nm), dense-
core vesicles ( � 40 nm), and large vesicles ( > 40 nm) in each synapse were 
counted and their distance from presynaptic specialization and plasma 
membrane as well as the diameter of each were measured from acetylcho-
line neurons VA and VB and the GABA neuron VD. A synapse was defi ned 
as the serial sections containing a dense projection as well as sections on 
either side of that density, which contain synaptic vesicle numbers above 
the mean number of synaptic vesicles per profi le. 

 Electrophysiology 
  C. elegans  were grown at room temperature (22 – 24 ° C) on agar plates 
with a layer of OP50  Escherichia coli . Adult hermaphrodite animals were 
used for electrophysiological analysis. Miniature and evoked postsynaptic 
currents (mPSCs and ePSCs) at the neuromuscular junction were recorded 
as previously described ( Liu et al., 2007 ) using a technique originally de-
veloped by  Richmond and Jorgensen (1999) . In brief, an animal was im-
mobilized on a sylgard-coated glass coverslip by applying a cyanoacrylate 
adhesive along the dorsal side. A longitudinal incision was made in the 
dorsolateral region. After clearing the viscera, the cuticle fl ap was folded 
back and glued to the coverslip, exposing the ventral nerve cord and two 
adjacent muscle quadrants. A microscope (Axioskop; Carl Zeiss, Inc.) 
equipped with a 40 ×  water immersion lens and 15 ×  eyepieces was used 
for viewing the preparation. Borosilicate glass pipettes with a tip resistance 
of  � 3 – 5 M Ω  were used as electrodes for voltage clamping. The classical 
whole-cell confi guration was obtained by rupturing the patch membrane of 
a gigaohm seal formed between the recording electrode and a body wall 
muscle cell. The cell was voltage clamped at  � 60 mV to record mPSCs and 
ePSCs. ePSCs were evoked by applying a 0.5-ms square wave current 
pulse at a supramaximal voltage (25 V) through a stimulation electrode 
placed in close apposition to the ventral nerve cord. Postsynaptic currents 
were amplifi ed (EP10; HEKA) and acquired with Patchmaster software 
(HEKA). Data were sampled at a rate of 10 kHz after fi ltering at 2 kHz. The 
recording pipette solution contained the following: 120 mM KCl, 20 mM 
KOH, 5 mM TES, 0.25 mM CaCl 2 , 4 mM MgCl 2 , 36 mM sucrose, 5 mM 
EGTA, and 4 mM Na 2 ATP; pH adjusted to 7.2 with KOH and osmolarity at 
 � 310 – 320 mosM. The standard external solution included the following: 
150 mM NaCl, 5 mM KCl, 5 mM CaCl 2 , 1 mM MgCl 2 , 5 mM sucrose, 
10 mM glucose, and 15 mM Hepes; pH adjusted to 7.35 with NaOH with 
osmolarity  � 330 – 340 mosM. 
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Figure S1.  Rescue of the apm-2 mutant phenotype. (A) Bright field images of various apm-2 genotypes are shown. For the wild type with over-
expressed APM-2, the apm-2 DNA was injected at 10 ng/µl; for apm-2(e840) and apm-2(gm17) rescued worms, the apm-2 DNA was injected at 0.25 
ng/µl. Bar, 100 µm. (B) Jowls phenotype of apm-2 mutants. An apm-2(gm17) adult hermaphrodite (top) and enlargement of head of the same animal (bot-
tom). Arrowheads indicate jowls. Bars, 100 µm. (C) Alae are cuticular ridges along the sides of animals. Both apm-2 alleles exhibit breaks or buckles in 
the alae (arrowheads). The mosaic apm-2(e840) strain expressing APM-2::GFP in just the skin is rescued for breaks in the alae. Strain and genotype of 
skin-rescued strain: EG4029 apm-2(e840)X; oxEx753[Ppdi-2::APM-2(cDNA)::GFP (pMG8) Punc-122::GFP]. Bar, 5 µm.
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JCB� S2

Figure S2.  APM-2 is not mislocalized in endocytic mutants. (A) APM-2::GFP in the dorsal nerve cord of GABA neurons in snt-1(n2665), unc-
11(e47), unc-26(s1710), and unc-41(e268) animals. All of these mutants exhibit defects in endocytosis in C. elegans (Jorgensen, E.M., E. Hartwieg, K. 
Schuske, M.L. Nonet, Y. Jin, and H.R. Horvitz. 1995. Nature. 378:196–199; Zhang, B., Y.H. Koh, R.B. Beckstead, V. Budnik, B. Ganetzky, and H.J. Bellen. 
1998. Neuron. 21:1465–1475; Nonet, M.L., A.M. Holgado, F. Brewer, C.J. Serpe, B.A. Norbeck, J. Holleran, L. Wei, E. Hartwieg, E.M. Jorgensen, and A. 
Alfonso. 1999. Mol. Biol. Cell. 10:2343–2360; Harris, T.W., E. Hartwieg, H.R. Horvitz, and E.M. Jorgensen. 2000. J. Cell Biol. 150:589–600; Martina, 
J.A., C.J. Bonangelino, R.C. Aguilar, and J.S. Bonifacino. 2001. J. Cell Biol. 153:1111–1120). The fluorescent punctas correspond to synaptic varicosities 
along the dorsal muscles. (B) Clathrin heavy chain exhibits a punctate distribution in the ventral nerve cords of GABA neurons in both wild-type (EG3381 
oxIs164[Punc-47::GFP::CHC-1 lin-15(+)]IV; lin-15(n765)X) and apm-2 animals (EG3735 oxIs164[Punc-47:GFP::CHC-1 lin-15(+)]IV; apm-2(e840)X and 
EG3564 oxIs164[Punc-47::GFP::CHC-1 lin-15(+)]IV; apm-2(gm17)X). The large fluorescent spots are the cell bodies of neurons. Bars, 10 µm.
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Figure S3.  Aldicarb sensitivity. Percentage of adult animals paralyzed at given concentration after 4 h. (A) apm-2(e840) is aldicarb hypersensitive at 
0.1 mM (P < 0.01), but it is not significantly different from wild type at other concentrations. (B) Aldicarb sensitivity of apm-2(e840) tissue-specific rescued 
animals. Ubiquitous and skin rescued animals are not significantly different from the wild type. Neuronal rescued animals are aldicarb hypersensitive at 
0.3 mM (P < 0.05), but are not significantly different from wild type at other concentrations. For each genotype, 100 animals were tested at each concen-
tration, except for neuronal rescue for which only 40 animals were tested at each concentration because of the paucity of transgenic animals. Values are 
expressed as mean ± SEM.
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Figure S4.  Cartoon structure of apm-2::GFP DNA constructs.
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Figure S5.  Assembly of AP2 with or without m2. (A) Agarose beads conjugated with rat anti-GFP IgG2a were used to pull down APA-2::GFP from the worm 
lysate (strain carries array oxEx1275[Papa-2::APA-2::GFP; Punc-122::GFP].). The presence of APA-2::GFP and APB-1 from the pull-down samples were tested by 
Western blot. The failure to pull down b adaptin in the apm-2 mutants was confirmed in four blots, from injections of the APA-2::GFP transgene at 1 and 10 ng/µl. (B) 
Agarose beads conjugated with rat anti-GFP IgG2a were used to pull down APA-2::GFP from the worm lysate (strain carries array oxEx1276[Papa-2::APA-2::GFP; 
Paps-2::APS-2::HA; Punc-122::GFP].). The presence of APA-2::GFP and APS-2::HA from the pull-down samples was tested by Western blot. (C) The molecular mass 
of APS-2::HA could not be resolved from 10% SDS-PAGE in B. The same samples were run again in 15% SDS-PAGE and blotted with anti-HA mouse IgG2b.
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CHAPTER 3  

 
AP2 SUBUNITS CONTRIBUTE INDEPENDENTLY TO SYNAPTIC  

VESICLE ENDOCYTOSIS IN CAENORHABDITIS ELEGANS. 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
My contribution to this work includes the following: 

1. Isolating the null allele of apa-2, which encodes the orthologue of  adaptin in C. 
elegans. 

2. Investigating the pre-synaptic localization of APA-2. 
3. Examining the distribution of vesicle proteins in the dorsal nerve cord in apa-2 

and apm-2 apa-2 double mutants 
4. Tissue-specific rescue of apa-2 and apm-2 apa-2 mutants 
5. Electron microscopy imaging of motor neurons in the ventral nerve cord from 

apa-2, apm-2 apa-2 mutants and tissue-specific rescued animals 
6. Thrashing assay on apa-2 and apm-2 apa-2 mutants  

Shigeki Watanabe (University of Utah, Salt lake City) contributed to the following: 
Electron microscopy analysis of apa-2, apm-2 apa-2 mutants and tissue-specific 
rescued animals. 

Qiang Liu (University of Utah, Salt lake City) contributed to the following: 
Electrophysiological analysis of apa-2, apm-2 apa-2 mutants and tissue-specific 
rescued animals. 



Abstract 

 Multiple mechanisms for synaptic vesicle endocytosis might co-exist at 

presynaptic terminals. To determine the importance of clathrin-mediated endocytosis for 

synaptic vesicle recycling, we conducted a genetic screen and isolated a null allele of  

adaptin from the AP2 complex in C. elegans. We found, in the absence of adaptin, the 

other half of the AP2 complex is still localized and functioning. By building the double 

mutant with the existing  adaptin knockout, we eliminated the entire AP2 complex 

from the worms. The double adaptin mutants exhibit a low survival rate; however, they 

can be rescued to a maintainable strain by introducing  and  adaptins specifically 

back to the hypodermis. Ultrastructural analysis suggests that in  adaptin mutants, the 

total number of synaptic vesicles is reduced by 50% in motor neurons, which is similar to 

what has been observed from  adaptin mutants. The double adaptin mutants have a 

more severe phenotype with a 70% vesicle reduction. When assayed by electrophysiology, 

skin-rescued  adaptin mutants exhibit 50% spontaneous release and 75% evoked release. 

The skin-rescued double mutants show more severe phenotypes with 30% spontaneous 

release and 50% evoked response. However, all of these mutants have mild swimming 

defects when assayed by worm thrashing. Taken together, our data suggest that most 

synaptic vesicles are recycled through an AP2-dependent process in C. elegans motor 

neurons. However, we have found that there is an AP2-independent endocytosis 

mechanism, either clathrin-dependent or clathrin-independent, that supports the observed 

residual synaptic vesicle recycling.  
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Introduction 

 Synaptic vesicles need to be recycled and refilled with neurotransmitters locally to 

support the high rate of neurotransmission at nerve terminals. Clathrin mediated-

endocytosis has been confirmed as one mechanism for synaptic vesicle recycling 

(Augustine et al., 2006; Granseth et al., 2006; Logiudice et al., 2009). However different 

mechanisms of endocytosis have also been observed. One of them is bulk endocytosis, 

which tends to happen when synapses are under sustained or high-frequency stimulation 

(Gaffield et al., 2009; Meunier et al., 2010). Another mechanism is clathrin-independent 

kiss-and-run, which has fast kinetics with a  of 1 s or less (Aravanis et al., 2003; Gandhi 

and Stevens, 2003). It is still controversial whether neurons employ all of these 

mechanisms or if only clathrin-mediated endocytosis is required.  

 To provide a better understanding of synaptic vesicle endocytosis, we disrupted 

clathrin-mediated endocytosis by eliminating the major adaptor AP2. The AP2 complex 

has four subunits– two big subunits,  and  adaptin, a medium subunit,  adaptin, and 

a small subunit, 2 adaptin. It functions at the plasma membrane as an interaction hub for 

clathrin, transmembrane cargoes and other endocytic accessory proteins (Robinson, 2004; 

Traub, 2003). Because of this, genetically disrupting AP2 components induces embryonic 

lethality in mice and Drosophila (Gonzalez-Gaitan and Jackle, 1997; Mitsunari et al., 

2005). However, worms missing 2 adaptin are egg-laying defective but can grow to 

adulthood (Pan et al., 2008). Our previous studies suggest that the relatively mild 

phenotype from worm 2 adaptin mutants is likely due to the residual function of AP2. In 

C. elegans,  and 2 adaptins are still capable of forming half of the AP2 complex and 

is localized to the plasma membrane in the absence of 2 (Gu et al., 2008). This agrees 
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with the crystallography data suggesting  is more closely associated with 2 and 2 is 

more closely associated with 2 (Collins et al., 2002a). 

  adaptin contains an N-terminal trunk domain and a C-terminal appendage 

domain. The trunk domain is part of the AP2 core complex and has a PI(4,5)P2 binding 

site that is responsible for AP2 localization at the plasma membrane (Collins et al., 

2002a). The appendage domain can physically associate with endocytic accessory 

proteins through two interaction sites. One of them recognizes WxxF motifs found in 

synaptojanin, AAK1, and stonin2 (Mishra et al., 2004; Praefcke et al., 2004). The other 

binds DPW/F or FxDXF motifs found in binding partners including amphiphysin, Eps15 

and Epsin (Owen et al., 1999). This mechanism of one common interaction site with 

multiple targets allows temporal and spatial regulation of clathrin-mediated endocytosis. 

 In Drosophila, a hypomorphic allele of  adaptin leads to slow moving larvae 

with inefficient FM-dye uptake upon stimulation at boutons (Gonzalez-Gaitan and Jackle, 

1997). In cultured hippocampal neurons endocytosis is significantly slowed down but not 

abolished when AP2 is knocked down by 96% (Kim and Ryan, 2009). These findings 

suggest a requirement for AP2 in synaptic vesicle endocytosis. Here we characterize 

mutants lacking  adaptin, which is encoded by the gene apa-2 in C. elegans. We 

demonstrat that in the absence of  adaptin, 2 adaptin is capable of localizing to the cell 

surface and regulating the endocytosis of AP2-dependent cargo. In contrast,  adaptin is 

essentially gone in the absence of subunit. To completely block AP2 functions, we find 

that  and2 subunits must be removed simultaneously. For synaptic vesicle recycling, 

adaptin is partially responsible for the synaptic localization of a subset of synaptic-

vesicle proteins and the apa-2 mutants show 50% reduction in the number of synaptic 
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vesicles. Only 30% of synaptic vesicles remain in skin rescued and 2 adaptin double 

mutant neurons, and these neurons exhibit 50% of the normal amount of evoked release 

after electrical stimulation. Behaviorally, both  adaptin mutants and and  adaptin 

skin-rescued double mutants are essentially not defective in a swimming assay. Taken 

together, our data demonstrate that AP2 complex is capable of working as two loosely-

connected half complexes because blocking AP2 functions in C. elegans requires 

elimination of both and 2 adaptins. Surprisingly, some synaptic vesicles still appear to 

recycle at AP2-deficient synapses. This is possibly due to compensation by a functionally 

redundant clathrin adaptor or may represent a residual clathrin-independent endocytosis 

mechanism. 

                                    
Results 

Isolation of  adaptin null alleles 

 Based on phylogenetic analysis, the  adaptin ortholog in worms is encoded by 

the gene apa-2 (Figure 3.1A, D). We have identified two alleles of apa-2 (Figure 3.1B). 

The first allele, b1044, contains a 925 bp deletion, which starts within the second intron 

and ends in the middle of the fourth exon. We isolated a second allele, ox422, from a non-

complementation screen for b1044. This allele has an A to T transition that changes K215 

to an early stop. We failed to detect any wild-type APA-2 proteins in western blots from 

both of these alleles (Figure 3.1C), suggesting they are likely null alleles. 

  To determine where apa-2 is expressed, we generated an APA-2::GFP fusion 

expressed under the control of the apa-2 promoter. This construct can fully rescue apa-2 

mutants (data not shown), which is inconsistent with a previous study claiming that a C-

terminal tagged  adaptin is completely nonfunctional (Motley et al., 2006). The GFP 
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Figure 3.1. apa-2 cloning. (A) Genetic map position of apa-2 on chromosome X. (B) 
Genomic structure of the apa-2 gene. The b1044 allele deletes 925 bp from the 
second intron to the fourth exon. ox422 is a A to T transition at Lys215, which is 
changed to a stop. (C) Western blot for detecting α adaptin expression in apa-2 
mutants. Both alleles of apa-2 failed to show any α adaptin expression, suggesting 
they are null alleles. Antibodies are rabbit polyconal anti- α adaptin and mouse 
monoclonal anti-tubulin. (D) Phylogenetic tree of α adaptins from mouse, Drosophila 
and C. elegans and the corresponding adaptins from other worm AP complexes. 
Accession numbers are listed as follows: α adaptin APA-2 Ce: NP_509572.1; α 
adaptin Drosophila: NP_476819.2; α adaptin mouse: NP_031485.3; γ adaptin APG-1 
Ce: NP_740937.1 and δ adaptin APD-3 Ce: NP_494570.1. 
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signals are observed ubiquitously in transgenic worms (Figure 3.2A). Specifically, the 

fusion protein is expressed in three major tissues: nervous system, intestine and 

hypodermis (Figure 3.2B). In addition, GFP expression is also found around the vulva 

region and on the cell surface of coelomocytes (C. elegans scavenger cells) (Figure 3.2A). 

Thus APA-2 is broadly expressed in C. elegans in a pattern similar to that of  adaptin 

(Gu et al., 2008). 

 
 adaptin and 2 adaptin play different roles in the C. elegans hypodermis 

  adaptin (apa-2) mutants are grossly similar to  adaptin (apm-2) mutants. Both 

adaptin mutants are egg-laying defective, and low percentages of both have cuticle 

protrusions on either side of the head. However the variable dumpy phenotype of apa-2 is 

less severe than that of apm-2 (Figure 3.3A). In  adaptin mutants, expression of APM-

2 under a skin-specific promoter can fully restore the worm body-length back to wild-

type levels, whereas neuron-specific rescue has no effect on the dumpiness (Gu et al., 

2008). We followed the same rescuing strategy for apa-2 mutants (Figure 3.3B). In most 

aspects, the results for  and 2 adaptin are similar: APA-2::GFP driven by a ubiquitous 

promoter can fully rescue the mutant animals (Figure 3.3C). Both skin- and neuron-

rescued apa-2 animals are egg-laying defective. The cuticle protrusions are rescued by 

hypodermal expression but not neuronal expression of APA-2 (Figure 3.3C). However, 

unlike in 2 adaptin, the dumpy phenotype of apa-2 is restored by neuron-specific rescue 

but not skin-specific rescue, and the neuron-rescued worms are even longer than the wild 

type (Figure 3.3A, C). This result suggests that  adaptin has different functions in the 

worm hypodermis compared to 2 adaptin and different subunits of AP2 are not required 
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Figure 3.2. APA-2 is expressed ubiquitously as µ2 adaptin. (A) The expression pattern 
of translational fusion protein APA-2::GFP in young adult hermaphrodite. The worm 
is oriented dorsal up and anterior left. The white arrows indicate the GFP expression 
around the vulva region and in the scavenger cell, coelomocyte. (B) APA-2::GFP is 
expressed in three major tissues: neurons, intestine and hypodermis. The white arrow 
heads indicate the GFP expression in head nerve ring, intestine cells and seam cells 
from hypodermis. The scale bar represents 50 µm. 
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Figure 3.3. apa-2(ox422) tissue-specific rescue. (A) Body length quantification of 
apm-2(e840) (null allele of µ2 adaptin), apa-2 mutants and apa-2 tissue-specifc 
rescued animals. Average body length in µm ± SEM: wild type 762.79 ± 9.70; 
apm-2(e840) 609.35 ± 12.08; apa-2(ox422) 710.83 ± 12.23; apa-2(b1044) 684.26 ± 
15.14; ubiquitous rescued apa-2(ox422) 773 ± 11.90; neuronal rescued apa-2(ox422) 
820.32 ± 16.91; skin rescued apa-2(ox422) 727.45 ± 10.04. n = 10 L4 worms. (B) 
APA-2::GFP expression pattern under different promoters. Ubiquitous expression is 
driven by the dpy-30 promoter. Hypodermal expression (skin) is driven by the dpy-7 
promoter. Neuronal expression is driven by the rab-3 promoter. Worms are oriented 
anterior left and dorsal up. Images are confocal Z-stack projections through the whole 
worm or the tissue of interest. All worms were imaged under identical conditions. The 
scale bar represents 20 µm. (C) Bright field images of tissue-specific rescued apa-2 
mutants. Worms are rescued by strains carrying single-copy inserted transgenes. 
Ubiquitously rescued apa-2 mutants are wild-type. Hypodermal rescued apa-2 
mutants don't have jowls but are still Dpy and Egl. Neuronal rescued apa-2 mutants 
are Egl with jowls but are not Dpy. The scale bar represents 100 µm. * P<0.05, ** 
P<0.01, *** P<0.001. 
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equally in every cell. 


 adaptin functions in the absence of adaptin 

 In our previous study, we demonstrated that adaptin is capable of localizing to 

the plasma membrane and forming a half AP2 complex with  in  adaptin mutants 

(Gu et al., 2008). Since both and  adaptins have a PI(4, 5)P2 binding site (Collins et 

al., 2002a), we wondered if  adaptin is also localized to the cell surface in the absence 

of the  subunit. Ubiquitously expressing APM-2::GFP can rescue apm-2 mutants (data 

not shown). In these worms, the cell surface localization of APM-2::GFP molecules is 

most easily visualized on maturing oocytes in worm gonads (Figure 3.4A). Without 

adaptin, APM-2::GFP is still present at plasma membrane (Figure 3.4A) although its 

total protein level is reduced (Figure 3.4B). This result suggests adaptin contributes to 

the stability of AP2 complex; however,  adaptin is properly recruited to the cell surface 

in the absence of adaptin

  Although  adaptin exhibits correct subcellular localization in apa-2 mutants, it 

might be unable to mediate the endocytosis of AP2-dependent cargo. To test this, we 

examined the endocytosis of wntless (MIG-14) in both apm-2 and apa-2 mutants. 

Without the  subunit, MIG-14::GFP shows strong accumulation on the cell surface in 

intestine cells, whereas in the absence of  adaptin, only mild accumulation of MIG-

14::GFP is observed (Figure 3.4C-D). We also examined the endocytosis of a clathrin-

independent cargo, human IL-2 receptor alpha subunit Tac (hTAC). This protein lacks 

internalization signal but still gets internalized through arf-6 dependent recycling 

(Radhakrishna and Donaldson, 1997). In C. elegans, hTAC goes to the basolateral 
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Figure 3.4. APM-2 is destabilized but functional in apa-2 mutants. (A) APM-2::GFP 
expression in adult worm gonads. GFP signals are enriched at the plasma membrane, 
indicated by white arrow heads. The allele apa-2(ox422) is used. apm-2::GFP is 
driven by ubiquitous promoter Pdpy-30 and the fusion protein can fully rescue apm-2 
mutants back to wild type (data not shown). The scale bar represents 20 µm. (B) 
Western blot for detecting the expression level of µ2 adaptin GFP in apa-2(ox422). 
The APM-2::GFP is reduced by 58% in the absence of apa-2. Antibodies are mouse 
monoclonal anti-GFP and anti-tubulin. (C) Endocytosis of an AP2-dependent cargo 
MIG-14 in worm intestine. MIG-14 is accumulated at the cell surface after disrupting 
the adaptor complex AP2. The defect is severe in apm-2(e840) but is mild in 
apa-2(ox422). (D) Quantification of total fluorescent intensity of MIG-14 in wild type 
and AP2 mutants. Fluorescent intensity mean±STD: wild type 7363±3498 n=18; 
apm-2(e840) 92648±34237 n=18; apa-2(ox422) 25110±11570 n=18. (E) Endocytosis 
of an AP2-independent cargo hTAC in worm intestine. hTAC endocytosis is 
essentially unaffected in AP2 mutants. (F) Quantification of total fluorescent intensity 
of hTAC in wild type and AP2 mutants. Fluorescent intensity mean±STD: wild type 
16080±7875 n=18; apm-2(e840) 22948±9488 n=18; apa-2(ox422) 21950±12953 
n=18. * P<0.05, ** P<0.01, *** P<0.001. 
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membrane of the intestine and its endocytosis is unaffected in either adaptin mutant 

(Figure 3.4E-F). These data suggest  adaptin is the key subunit of AP2 mediating MIG-

14 endocytosis. In the absence of adaptin,  adaptin is still localized to the cell surface 

and promotes the endocytosis of AP2-dependent cargo. 

 
AP2 function is blocked in  and  double mutants 

 If AP2 functions are essentially eliminated by mutating one of its subunits, the 

phenotypes of andadaptin double mutants should resemble those of either adaptin 

single mutant. We used two independent allele combinations (apm-2(e840) apa-2(ox422) 

and apm-2(gm17) apa-2(b1044)) to build apm-2 apa-2 double mutants. When apa-2 and 

apm-2 mutants are crossed together, the double mutants are actually much worse than 

either of the single mutants (Figure 3.5A). They grow extremely slowly and show a high-

death rate with small brood size, which is reminiscent of the lethality phenotype of AP2 

mutants from other organisms (Gonzalez-Gaitan and Jackle, 1997; Mitsunari et al., 2005). 

However, occasionally there are double mutants that grow to adulthood, suggesting that 

there are endocytosis mechanisms in the worm that do not depend on AP2 for viability. 

  To further test if AP2 is completely eliminated in apa-2 apm-2 double mutants, 

we investigated the subcellular localization and the protein expression level of  adaptin 

in these AP2 mutants.  is the small subunit of AP2 and is encoded by the gene aps-2 in 

C. elegans. In wild type, the expression pattern of APS-2::GFP is similar to that of APA-

2::GFP. The plasma membrane localization of APS-2::GFP can be easily observed in 

maturing oocytes. In the absence of  adaptin, APS-2::GFP is essentially gone and its cell 

surface localization is totally disrupted; however, in apm-2 mutants, APS-2::GFP is still 

present and could maintain its cell surface and synaptic localization (Figure 3.5B). A 
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apa-2(ox422). The apm-2(e840) apa-2(ox422) double mutant is sicker than either of 
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different AP2 mutants. APS-2::GFP can still maintain its synaptic localization in 
neurons and its cell surface localization in oocytes without apm-2. These localizations 
are totally disrupted in the absence of apa-2. The synaptic localization is indicated by 
white arrow heads and the cell surface localization is indicated by white arrows. The 
scale bar represents 20 µm. (C) Western blot for detecting the expression level of σ2 
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43



western blot for GFP also shows a more severe reduction of APS-2::GFP in apa-2 

mutants compared to apm-2 mutants (Figure 3.5C). These results are consistent with the 

crystallography data that  more closely associates with adaptin to form half of the 

AP2 complex (Collins et al., 2002a). APS-2::GFP also shows a similar loss of cell 

surface localization in apm-2 apa-2 double mutants to that of apa-2 single mutants 

(Figure 3.5B). Because  adaptin is shared between AP1 and AP2 in C. elegans, all 

adaptins specific to AP2 complex are eliminated in apm-2 apa-2 double mutants. Due to 

the low viability of this double mutant, it is almost impossible to maintain it as a regular 

lab strain. However, when  and 2 adaptins are simultaneously introduced back into the 

hypodermis, 100% of the double mutants grow into adults. These rescued animals are 

still egg-laying defective and slow-growing. 

 Taken together, our data suggest residual function of AP2 remains in both apa-2 

and apm-2 single mutants but that the entire AP2 complex is eliminated when  and  

adaptin are mutated simultaneously. Skin-rescued and adaptin double mutants can 

grow into viable adults, thus allowing the opportunity to study AP2-knockout synapses in 

a living organism. 

 
Vesicle protein localization in mutants 

 Proteins involved in synaptic vesicle endocytosis should localize to synapses. We 

assayed the synaptic localization of APA-2 by expressing an apa-2::GFP fusion construct 

specifically in GABAergic neurons. In this subset of neurons, APA-2 colocalizes with a 

synaptic vesicle protein, synaptobrevin, in both the dorsal and ventral nerve cords (Figure 

3.6A). This result suggests  adaptin, similar to 2 adaptin (Gu et al., 2008), associates 

with synaptic varicosities. 
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Figure 3.6. APA-2 colocalizes with synaptobrevin at synapses and is partially required 
for synaptic localization of a subset of synaptic vesicle proteins. (A) Young adult 
hermaphrodites were used for imaging. Left: APA-2 and synaptobrevin localize at the 
dorsal nerve cord from GABAergic neurons. Top, GFP–tagged APA-2 in the GABA 
neuron processes in the dorsal nerve cord. Middle, tagRFP-tagged synaptobrevin in 
the GABA neuron processes in the dorsal nerve cord. Synaptobrevin is localized to 
synaptic regions. The fluorescent puncta correspond to synaptic varicosities along the 
dorsal muscles (white arrow head). Bottom, merged image demonstrates that 
APA-2-GFP colocalizes with synaptobrevin at synapses. Right: APA-2 and 
synaptobrevin localization at the ventral nerve cord from GABAergic neurons. A 
GABA neuron cell body is indicated by the white arrow. Images are confocal Z-stack 
projections through the worm nerve cord. The scale bar represents 10 µm. (B) 
Synaptic localization of synaptic vesicle proteins in apa-2 and apm-2 apa-2 double 
mutants. For UNC-47 and synaptogyrin (SNG), GFP-tagged proteins were expressed 
in GABAergic neurons and imaged in the dorsal nerve cord. Presynaptic varicosities 
of neuromuscular junctions along the dorsal nerve cord of an adult hermaphrodite are 
visible as fluorescent puncta. For synaptotagmin (SNT), GFP-tagged protein is 
expressed in all neurons under its own promoter and imaged in ventral sublateral 
cords. The axon regions with increased fluorescence are indicated by white arrow 
heads. Images are confocal Z-stack projection through the worm nerve cord. The 
scale bar represents 10 µm. (C) Quantification of the average fluorescent intensity 
ratio between axon region and synaptic region. Ratio of SNT-1::GFP mean± SEM: 
wild type 0.041±0.007 n=10; apa-2(ox422) 0.204±0.029 n=10; apa-2(b1044) 
0.196±0.017 n=10; apm-2(e840) apa-2(ox422) 0.219±0.032 n=6. Ratio of 
UNC-47::GFP mean± SEM: wild type 0.108±0.004 n=8; apa-2(ox422) 
0.239±0.009 n=8; apa-2(b1044) 0.22±0.024 n=7; apm-2(e840) apa-2(ox422) 
0.247±0.032 n=6. Ratio of SNG-1::GFP mean± SEM: wild type 0.077±0.008 n=8; 
apa-2(ox422) 0.116±0.019 n=10; apa-2(b1044) 0.095±0.011 n=10; apm-2(e840) 
apa-2(ox422) 0.143±0.032 n=5. * P<0.05, ** P<0.01, *** P<0.001. 
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 One basic function of adaptors is to nucleate transmembrane cargoes into cl- 

athrin-coated pits. However the mechanism for resorting synaptic-vesicle proteins into 

pits is still poorly understood. We examined the requirement of AP2 in recycling several 

synaptic-vesicle proteins. Synaptotagmin I is well known as a binding partner of AP2 

(Haucke et al., 2000; Zhang et al., 1994). In  adaptin and  adaptin double mutants, 

the fluorescence of synaptotagmin::GFP is slightly increased in the axonal region; 

however, most of the GFP signals are still enriched at synaptic varicosities (Figure 3.6B, 

C). This result suggests AP2 is not essential for synaptotagmin I endocytosis, which 

supports the idea that the AP2 binding site of synaptotagmin I is a regulator of 

endocytosis but not an internalization signal (Jarousse and Kelly, 2001). The next vesicle 

protein we tested was the vesicular GABA transporter, UNC-47. Because AP2 has been 

found to be involved in the trafficking of the vesicular acetylcholine transporter (Barbosa 

et al., 2002; Kim and Hersh, 2004), we wondered if AP2 is also required for the 

trafficking of UNC-47. The GFP distribution of UNC-47 is similar to that of 

synaptotagmin I (Figure 3.6B, C), which is consistent with a previous finding that the 

LAMP-related protein UNC-46 recruits UNC-47 to synapses (Schuske et al., 2007). We 

also tested the vesicle protein synaptogyrin. The synaptic localization of this protein has 

been found to be independent of the 2 adaptin of AP2 (Zhao and Nonet, 2001). Here we 

again confirmed that its synaptic localization is almost unaffected by the absence of 

either  adaptin or the whole AP2 complex (Figure 3.6B, C). Thus our data suggest that 

AP2 contributes to the recycling of a subset of synaptic-vesicle proteins but it is not the 

specific adaptor for any of the proteins tested above. 

 
 

47



Vesicle number is reduced in apa-2 and apm-2 apa-2 double mutants  

 The mild mislocalization of synaptotagmin I and UNC-47 in apa-2 mutants 

implies that endocytosis at synapses is compromised. To elucidate the role of AP2 in 

synaptic vesicle recycling, we used electron microscopy to directly visualize synaptic 

vesicles at motor neurons synapses (Figure 3.7). 

 The size of synaptic vesicles is roughly normal in apa-2 and skin-rescued apm-2 

apa-2 double mutants (Figure 3.8A), suggesting that the AP2 complex is not absolutely 

required for regulating vesicle size. However the number of vesicles is reduced in apa-

2(ox422) mutants. Compared to wild type, apa-2 mutants only have 56% the number of 

vesicles in cholinergic neurons and 29% in GABAergic neurons (Figure 3.8B). A similar 

amount of vesicle loss was also observed in apa-2(b1044) (data not shown). Neuron-

rescue of apa-2 fully restores the number of synaptic vesicles to the wild-type level, 

which suggests the defect is due to the loss of APA-2 within neurons. Unexpectedly, the 

skin-rescued apa-2 animals are partially rescued for synaptic vesicle number in both 

cholinergic (71%) and GABAergic (59%) neurons (Figure 3.8B), suggesting hypodermis 

can regulate synaptic activity to some extent. Compared to the skin-rescued apa-2(ox422) 

mutants, the skin-rescued apm-2(e840) apa-2(ox422) double mutants have only 28% of 

the number of vesicles in cholinergic neurons and 31% in GABAergic neurons (Figure 

3.8B). Since skin-rescued apm-2 mutants still have 69% of synaptic vesicles (Gu et al., 

2008), this result actually proves the idea that eliminating the function of AP2 requires 

knocking out both the  and 2 adaptins. Taken together, our data suggest that AP2 plays 

an important role at motor neuron synapses and contributes to 70% of synaptic vesicle 

recycling. 
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Figure 3.7. Neuromuscular junction ultrastructure of adaptin mutants. Representative 
images of neuromuscular junctions in the ventral nerve cord. The scale bar represents 
200 nm. Abbreviations: SV, synaptic vesicle; LV, large vesicle; dense proj, dense 
projection. 
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Figure 3.8. Ultrastructure analysis of adaptin mutants. (A) Vesicle diameters are 
identical in wild type, apa-2(ox422), apa-2(ox422) tissue specific rescued and 
apm-2(e840) apa-2(ox422) skin-rescued animals. Average size of synaptic vesicles 
per profile containing a dense projection nm ± SEM: wild type ACh 28.38 ± 0.63, n= 
17 vesicles; apa-2(ox422) ACh 28.67 ± 0.8, n= 8 vesicles; ubiquitous rescued 
apa-2(ox422) ACh 27.74 ± 0.54, n= 19 vesicles; neuronal rescued apa-2(ox422) ACh 
27.79 ± 0.55, n= 22 vesicles; skin rescued apa-2(ox422) ACh 31.23 ± 0.75, n= 15 
vesicles; skin rescued apm-2(e840) apa-2(ox422) ACh 32.51 ± 1.05, n= 5 vesicles 
wild type GABA 28.29 ± 0.45, n= 33 vesicles; apa-2(ox422) GABA 30.98 ± 0.99, n= 
8 vesicles; ubiquitous rescued apa-2(ox422) GABA 27.51 ± 0.45, n= 30 vesicles; 
neuronal rescued apa-2(ox422) GABA 28.86 ± 0.52, n= 24 vesicles; skin rescued 
apa-2(ox422) GABA 31.52 ± 0.64, n= 18 vesicles; skin rescued apm-2(e840) 
apa-2(ox422) GABA 31.83 ± 0.96, n= 9 vesicles. (B) The number of synaptic vesicles 
is reduced in neurons lacking APM-2 or APM-2 and APA-2. Average number of 
synaptic vesicles per profile containing a dense projection ± SEM: wild type ACh 22 
± 1.41, n=35 synapses; apa-2(ox422) ACh 12.32 ± 1.06, n=66 synapses; ubiquitous 
rescued apa-2(ox422) ACh 19.11 ± 1.09, n=54 synapses; neuronal rescued 
apa-2(ox422) ACh 25.1 ± 1.47, n=49 synapses; skin rescued apa-2(ox422) ACh 15.59 
± 0.79, n=97 synapses; skin rescued apm-2(e840) apa-2(ox422) ACh 6.16 ± 0.76, 
n=47 synapses; wild type GABA 36.87 ± 1.46, n=36 synapses; apa-2(ox422) GABA 
10.73 ± 0.74, n=46 synapse; ubiquitous rescued apa-2(ox422) GABA 33.88 ± 1.43, 
n=33 synapses; neuronal rescued apa-2(ox422) GABA 32.5 ± 2.65, n=40 synapses; 
skin rescued apa-2(ox422) GABA 21.73 ± 1.33, n=45 synapses; skin rescued 
apm-2(e840) apa-2(ox422) GABA 11.48 ± 0.94, n=52 synapses. (C) The number of 
large vesicles is greatly increased in neurons lacking APA-2. Average number of large 
vesicles per profile containing a dense projection ± SEM: wild type ACh 0.33 ± 0.11, 
n= 30 synapses; apa-2(ox422) ACh 3.06 ± 0.34, n= 72 synapses; ubiquitous rescued 
apa-2(ox422) ACh 0.68 ± 0.13, n= 43 synapses; neuronal rescued apa-2(ox422) ACh 
0.56 ± 0.08, n= 62 synapses; skin rescued apa-2(ox422) ACh 1.8 ± 0.2, n= 97 
synapses; skin rescued apm-2(e840) apa-2(ox422) ACh 2.24 ± 0.29, n= 53 synapses; 
wild type GABA 0.86 ± 0.13, n= 41 synapses; apa-2(ox422) GABA 4.87 ± 0.52, n= 
43 synapses; ubiquitous rescued apa-2(e840) GABA 0.94 ± 0.22, n= 32 synapses; 
neuronal rescued apa-2(ox422) GABA 1.03 ± 0.18, n= 37 synapses; skin rescued 
apa-2(ox422) GABA 3.64 ± 0.54, n= 45 synapses; skin rescued apm-2(e840) 
apa-2(ox422) GABA 4.8 ± 0.42, n= 50 synapses. (D) Cumulative vesicle diameter 
curves in cholinergic neurons. * P<0.05, ** P<0.01, *** P<0.001. 
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 Another noticeable phenotype by electron microscopy is that apa-2(ox422) 

synapses have an accumulation of large vesicles (diameter > 40nm) (Figure 3.8C, D). A 

similar phenotype is observed in skin-rescued apm-2 apa-2 double mutants (Figure 3.8C, 

D). We speculate that these large vesicles are endosome intermediates generated by bulk 

endocytosis. This observation suggests that there may be a shift from clathrin-mediated 

endocytosis to bulk endocytosis in apa-2 mutant synapses. 

 
apa-2 and apm-2 apa-2 double mutants have impaired neurotransmission 

 In the absence of AP2, the number of synaptic vesicles is largely reduced, which 

is likely to affect neurotransmission at synapses. Here we assayed the direct release of 

neurotransmitters by electrophysiology (Figure 3.9A, B). In apa-2(ox422) mutants, the 

amplitude from spontaneously released vesicles is increased by 40% (Figure 3.9C). Since 

AP2 is known to regulate the recycling of AMPA (Kastning et al., 2007) and GABA(A) 

receptors (Kittler et al., 2005; Vithlani and Moss, 2009), the enhanced mini amplitude 

could be due to an increase in postsynaptic receptor number. We found this not to be the 

case, as the neuronal rescued apa-2 mutants exhibit a normal mini amplitude (Figure 

3.9C), suggesting the mini defect is caused by a loss of APA-2 specifically in neurons. 

The increased mini amplitude might be from direct release of large vesicles accumulated 

in apa-2 mutants. 

 In our previous study, we demonstrated that skin-rescued apm-2 mutants have 

60% of the normal rate of minis, which is roughly proportional to the number of residual 

synaptic vesicles (Gu et al., 2008). Surprisingly, apa-2 mutants have a noticeable 80% 

reduction in mini frequency. The skin-rescued apa-2 animals that only lose 30% of 

synaptic vesicles partially restore the mini frequency to 50% (Figure 3.9D). Therefore,  
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Figure 3.9. Electrophysiological analysis at neuromuscular junctions of various 
apa-2(ox422) tissue specific rescued worms and skin-rescued apm-2(e840) 
apa-2(ox422) double mutants. (A) sample traces of miniature postsynaptic current 
(mPSC) recorded from wild type, apa-2(ox422), apa-2(ox422) neuronal rescued, 
apa-2(ox422) skin rescued, apm-2(e840) apa-2(ox422) skin rescued worms. (B) 
sample traces of evoked postsynaptic current (ePSC) recorded from above animals. (C) 
Summary of mPSC amplitude (pA±SEM): wild type 26.39±2.48 n=16; apa-2(ox422) 
36.9±2.48 n=19; ox422 skin-res 35.22±3.6 n=9; ox422 neu-res 28.06±2.43 n=21; 
ox422; e840 skin-res 33.28±3.77 n=9. (D)Summary of mPSC frequency (Hz± SΕΜ):  
wild type 43.93±5.92 n=16; apa-2(ox422) 7.75±1.52 n=19; ox422 skin-res 
22.48±4.54 n=9; ox422 neu-res 44.85±4.79 n=21; ox422; e840 skin-res 
14.15±3.99 n=9. (Ε) Summary of ePSC amplitude (nA±SEM): wild type 
2159.55±131.12 n=11; apa-2(ox422) 1259.06±274.86 n=5; ox422 skin-res 
1627.33±181.97 n=6; ox422 neu-res 2090.67±149.03 n=6; ox422; e840 skin-res 
1264.32±323.68 n=6. * P<0.05, ** P<0.01, *** P<0.001. 
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APA-2 might have a specific role to facilitate the recycling of spontaneously released 

vesicles. However this phenotype is gone when apm-2 apa-2 double mutant is built. The 

skin-rescued apm-2 apa-2 double mutants with 30% vesicles exhibit also 30% mini 

frequency. 

 We also evaluated the evoked release from apa-2 and apm-2 apa-2 skin-rescued 

double mutants by electrical stimulation. There is a 30% reduction of evoked release in 

skin-rescued apa-2 mutants, which can be rescued by expressing apa-2 in neurons. The 

skin-rescued doubles exhibit 50% evoked response (Figure 3.9E). Since skin-rescued 

apm-2 apa-2 double mutants have only 30% of vesicles left, the defect of evoked 

response is in general milder than that of vesicle reduction, which suggests limited 

amount of releasing sites are available during an acute stimulation. 

 
Adaptin mutants exhibit mild behavioral defects 

 Mutants of apa-2 have wild-type forward and slightly jerky backward movements 

on agar plates. The skin-rescued apm-2 apa-2 double mutants are sicker in general; 

however, the best-rescued animals move similarly to apa-2 mutants. To quantify their 

movement defects, worms were placed in drops of liquid and the number of body bends 

per minute was counted. apa-2 mutants have a 15% reduction in their thrashing rate. 

Introducing apa-2 back into either the skin or neurons can rescue this defect. The skin-

rescued apm-2 apa-2 double mutants with the best locomotion on agar plates were picked 

for this assay. These animals have a similar thrashing rate as that of apa-2 mutants 

(Figure 3.10), indicating that neurons without AP2 can still release enough 

neurotransmitter to support worm swimming. Thus, in the absence of AP2, synaptic-

vesicle recycling continues at worm synapses.     
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Figure 3.10. Adaptin mutants are moderately impaired for movement. Worms were 
placed in buffer and body bends were counted for 60 seconds. The thrashing rate for 
apa-2 (EG6147) and skin-rescued apm-2 apa-2 (EG6151) double mutants is reduced 
by about 15%. Expression of APA-2 under a ubiquitous promoter (EG6149), a skin 
promoter (EG6150), or a neuronal promoter (EG6148) rescues thrashing. Average 
body bends per minute ± SEM: wild type 94.4 ± 6.0; apa-2(ox422) 82.4 ± 3.97; 
apa-2(b1044) 74.6 ± 2.69; ubiquitous rescued apa-2(ox422) 93.4 ± 6.15; neuronal 
rescued apa-2(ox422) 98.2 ± 6.26; skin rescued apa-2(ox422) 106.8 ± 5.19; skin 
rescued apm-2(e840) apa-2(ox422) 83.2 ± 3.2. n = 5 adult hermaphrodites. * P<0.05. 
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Discussion 

 In this study, we characterized the C. elegans  adaptin mutant apa-2. We found 

that in the absence of apa-2, the small subunit of AP2, 2 is essentially eliminated 

whereas the medium subunit of AP2, 2, can still maintain its plasma membrane 

localization and promote the endocytosis of AP2-dependent cargo. When we crossed the 

apa-2 mutants into our previously characterized apm-2 mutants, we found the double 

mutant combination to be worse than either of the single mutants. Thus, in C. elegans, 

completely blocking AP2 functions requires removing  and adaptins simultaneously. 

Therefore, we propose that AP2 functions as two loosely connected half complexes. 

Disrupting half of the complex will destabilize but not eliminate the other half. 

 We demonstrated that we can eliminate essentially the entire AP2 adaptor 

complex from worms. After introducing these two adaptins back into the hypodermis, the 

lethal double mutants are rescued successfully to viable adults. apa-2 and skin-rescued 

apm-2 apa-2 double mutants have relatively normal locomotion which is contradictory to 

the phenotype observed in Drosophila  adaptin mutants (Gonzalez-Gaitan and Jackle, 

1997). AP2 deficient synapses have a 70% reduction in synaptic vesicles and a 50% 

decrease in their evoked response. This suggests that although the majority of synaptic 

vesicle endocytosis depends on AP2 in C. elegans, the residual vesicles can still be 

recycled to support locomotion. Since there are so many other adaptor proteins, clathrin-

mediated endocytosis may still be working without AP2, but at a lower efficiency. 

However, almost all of the adaptors interact with AP2, for instance the LDLR adaptor 

Dab2 (Morris and Cooper, 2001) and the GPCR adaptor  arrestin (Edeling et al., 2006). 

Furthermore  and  adaptins can interact with many different endocytic accessory 
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proteins for spatial and temporal regulation of clathrin-coated pits, but it is difficult for 

another adaptor to fulfill the role of AP2 as an interaction hub. Thus the best candidates 

to substitute AP2 are other AP adaptor complexes. There is evidence suggesting 1 and 

2 adaptins are partially redundant. Silencing the 1 and 2 subunits simultaneously is 

required to recapitulate the phenotype of  adaptin RNAi (Keyel et al., 2008). 

Considering the fact that there is only one  adaptin shared by AP1 and AP2 in C. 

elegans, it is likely that AP1 partially takes over the job of AP2 in apm-2 apa-2 double 

mutants. This has been observed in cultured hippocampal neurons (Kim and Ryan, 2009). 

In addition, neurons from 1 adaptin knockout mice have an accumulation of endosomal 

intermediates at synapses (Glyvuk et al., 2010). We observed the same phenotype in apa-

2 mutants. It is possible that synaptic-vesicle biogenesis can happen either at endosomal 

intermediates through AP1 or at plasma membrane through AP2. Large vesicle 

accumulation in the 1 adaptin knockout is likely due to the blocking of synaptic vesicle 

biogenesis. In the case of apa-2 mutants, the endocytic balance shifts towards bulk 

endocytosis, illustrated by the increase in endosomal intermediates in synapses lacking 

APA-2. Thus AP1 and AP2 possibly contribute to synaptic vesicle endocytosis at 

different subcellular compartments. Since clathrin-mediated endocytosis is unlikely to be 

completely blocked in AP2 knockout worms, it is still not clear whether clathrin-

independent endocytosis contributes to the residual vesicle recycling.  

 Taken together, our data suggest an important role for AP2 in synaptic vesicle 

endocytosis at worm synapses. However, in the absence of AP2, synaptic vesicle 

recycling continues through AP2-independent mechanisms. 
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Materials and methods 

Strains 

 The wild strain is Bristol N2. The reference strain EG6147 for apa-2(ox422) X 

was outcrossed seven times before phenotypic analysis. The reference strain EG4739 for 

apa-2(b1044) X was outcrossed twice before phenotypic analysis. All oxSi strains were 

generated by mosSCI (Frokjaer-Jensen et al., 2008), so the exogenous genes were 

inserted as a single copy. 

 The strain used in APA-2 translational GFP experiment was: EG4521 lin-

15(n765ts)X oxEx947[apa-2::GFP lin-15(+)]. 

 The strains used in APM-2::GFP localization experiment were: EG6291 

oxSi54[Pdpy-30::apm-2::GFP unc-119(+)]II apm-2(e840)X and EG6292 oxSi54[Pdpy-

30::apm-2::GFP unc-119(+)]II apm-2(e840) apa-2(ox422)X. 

 The strains used in APS-2::GFP localization experiment were: EG6293 

oxSi108[aps-2::GFP unc-119(+)]II unc-119(ed3)III; EG6294 oxSi108[aps-2::GFP unc-

119(+)]II apm-2(e840)X; EG6295 oxSi108[aps-2::GFP unc-119(+)]II apa-2(ox422)X 

and EG6296 +/szT1[lon-2(e678)]I oxSi108[aps-2::GFP unc-119(+)]II szT1/apm-2(e840) 

apa-2(ox422)X. 

 The strain used in the APA-2 and SNB-1 colocalization experiment was: EG6155 

dkIs160[Punc-25::GFP::apt-4 unc-119(+)] oxEx1411[Punc-47::snb-1::tagRFP Punc-

122::GFP]. 

 The strains used in the vesicle protein localization experiment were: EG5932 snt-

1(md290)II; unc-119(ed3)III; oxSi180[snt-1::GFP unc-119(+)]IV; EG6156  

oxSi180[snt-1::GFP unc-119(+)]IV; apa-2(ox422)X; EG6157  oxSi180[snt-1::GFP 
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unc-119(+)]IV; apa-2(b1044)X; EG6159 +/szT1[lon-2(e678)]I;  oxSi180[snt-1::GFP 

unc-119(+)]IV; szT1/apm-2(e840) apa-2(ox422)X; EG5717 unc-119(ed3)III; oxSi36[unc-

47::GFP unc-119(+)]IV; EG6160 oxSi36[unc-47::GFP unc-119(+)]IV; apa-2(ox422)X; 

EG6161 oxSi36[unc-47::GFP unc-119(+)]IV; apa-2(b1044)X; EG6162 +/szT1[lon-

2(e678)]I; oxSi36[unc-47::GFP unc-119(+)]IV; szT1/apm-2(e840) apa-2(ox422)X; 

EG6163 unc-119(ed3)III; oxSi184[Punc-47::sng-1::GFP unc-119(+)]IV; EG6164 

oxSi184[Punc-47::sng-1::GFP unc-119(+)]IV; apa-2(ox422)X; EG6165 oxSi184[Punc-

47::sng-1::GFP unc-119(+)]IV; apa-2(b1044)X and EG6166 +/szT1[lon-2(e678)]I; 

oxSi184[Punc-47::sng-1::GFP unc-119(+)]IV; szT1/apm-2(e840) apa-2(ox422). 

 The strains used for electron microscopy and electrophysiology were: EG6147 

apa-2(ox422)X; EG 6149 oxSi254[Pdpy-30::apa-2::GFP, unc-119(+)]II, apa-2(ox422)X; 

EG6148 oxSi253[Prab-3::apa-2::GFP, unc-119(+)]II, apa-2(ox422)X; EG6150 

oxSi53[Pdpy-7::apa-2::GFP unc-119(+)]II, apa-2(ox422)X and EG6151 apm-2(e840) 

apa-2(ox422)X, oxEx1452[Pdpy-7::apa-2::mCherry Pdpy-7::apm-2::GFP Punc-

122::GFP]. 

 
GFP and mosSCI constructs 

 Multisite Gateway three fragment construction vectors were used (Invitrogen 

catalog no.12537-023) for generating all constructs. pENTRY4-1 was used as the 

promoter entry. Promoters include Pdpy-30, Pdpy-7, Prab-3 and Punc-47 and do not 

include the initiating methionine codon (ATG). PENTRY1-2 was used as the ORF entry, 

including apa-2(cDNA), apm-2(cDNA) and sng-1, all of which have an ATG at the 

beginning but no stop at the end. PENTRY2-3 was used for the C-terminal tag and 3'UTR 

entry, including GFP-unc-54 3'UTR and mCherry-unc-54 3'UTR. The destination vectors 
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are Gateway pDEST R4-R3, pCFJ150 for mosSCI on chromosome II and pCFJ201 for 

mosSCI on chromosme IV (Frokjaer-Jensen et al., 2008). 

 1.2 kb aps-2 promoter region and 1kb aps-2 genomic coding sequence were 

directly cloned by PCR from wild-type genomic DNA. GFP with unc-54 3’UTR was 

fused to the C-terminus of aps-2 and the entire fusion fragment was dropped between the 

restriction sites BssHII and SpeI on pCFJ151 for mosSCI on chromosome II. 

 
Microinjection 

 The final DNA concentration of each injection mix is 100 ng/ul. This target 

concentration was obtained with the addition of Fermentas 1kb DNA ladder (#SM0311). 

 APA-2 translational GFP experiment: pMG16 apa-2::GFP was injected into lin-

15(n765ts)X animals at 1 ng/ul. The coinjection marker lin-15(+) was used at 50 ng/ul.  

 APA-2 and synaptobrevin colocalization experiment: pRH324 Punc-47::snb-

1::tagRFP was injected into wild type (N2) at 0.25ng/ul. The coinjection marker Punc-

122::GFP was used at 50 ng/ul. In the next generation, transgenic worms were picked. 

One of the transgenic lines oxEx1411 was crossed into dkIs160 [Punc-25::GFP::apt-4 

unc-119(+)]. 

  apm-2 apa-2 double mutant skin rescue: pMG50 Pdpy-7::apm-2::GFP and 

pMG40 Pdpy-7::apa-2::mCherry were coinjected into the adaptin double-mutant 

balanced strain EG6158 +/szT1[lon-2(e678)] I; szT1/apm-2(e840) apa-2(ox422) X at 

1ng/ul each. The coinjection marker was Punc-122::GFP at 50ng/ul. In the next 

generation, rescued Egl worms were picked and maintained. One of the lines, EG6151, 

was used in the electron microscopy and electrophysiology assays. 
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Western blot analysis 

 Worm samples were prepared by boiling 1 volume of worm pellet in 1 volume of 

2X loading buffer for 5 mins. Samples were run on a 10% SDS-PAGE gel then 

transferred to PVDF transfer membrane (Immobilon). The primary antibody for adaptin 

was a rabbit polyclonal anti APA-2 at a dilution of 1:500 (generously provided by Barth 

Grant). Primary antibody incubation was done in 5% BSA at 4 degrees overnight. The 

primary antibody for the standard control was 12G10 mouse monoclonal anti-tubulin 

(Developmental Studies Hybridoma Bank) at a dilution of 1:10,000. Primary antibody 

incubation was done in 5% BSA at room temperature for 1 hour. Secondary antibodies 

were anti-rabbit and mouse IgG fragments conjugated with HRP (GE Healthcare). 

Secondary incubations were done in 5% BSA at room temperature for 45 mins. Detection 

reagent used was SuperSignal West Dura (Thermo scientific). 

 For anti-GFP western blot, the primary antibody for GFP was mouse monoclonal 

anti-GFP at a dilution of 1:5000 (Clontech Cat. No. 632375). Primary antibody 

incubation was done in 5% sea block blocking buffer (Pierce prod#37527) at 4 degrees 

overnight. 

 
Confocal microscopy 

 Worms are immobilized by using 2% phenoxy propanol and imaged on a Pascal 

LSM5 confocal microscope using a Zeiss plan-Neofluar 10x 0.3 NA, 20x 0.5 NA, 40x 

1.3 NA oil or Zeiss plan-apochromat 63x 1.4NA oil objectives. 
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Electron microscopy 

 Wild-type (N2); EG6147 apa-2(ox422)X; EG 6149 oxSi254[Pdpy-30::apa-2::GFP, 

unc-119(+)]II, apa-2(ox422)X; EG6148 oxSi253[Prab-3::apa-2::GFP, unc-119(+)]II, apa-

2(ox422)X; EG6150 oxSi[Pdpy-7::apa-2::GFP unc-119(+)]II, apa-2(ox422)X; EG6151 

apm-2(e840) apa-2(ox422)X, oxEx[Pdpy-7::apa-2::mCherry Pdpy-7::apm-2::GFP Punc-

122::GFP] adult nematodes were prepared in parallel for transmission electron 

microscopy as previously described (Hammarlund et al., 2007). Briefly, 10 young adult 

hermaphrodites were placed onto a freeze chamber (100µm well of type A specimen 

carrier) containing space-filling bacteria, covered with a type B specimen carrier flat side 

down, and frozen instantaneously in the BAL-TEC HPM 010 (BAL-TEC, Liechtenstein).  

This step was repeated for animals of all genotypes. Then, the frozen animals were fixed 

in Leica EM AFS system with 1% osmium tetroxide and 0.1% uranyl acetate in 

anhydrous acetone for 2 days at –90ºC and for 38.9 more hours with gradual temperature 

increase (6ºC/hr to –20ºC over 11.7 hours, constant temperature at -20ºC for 16 hours, 

and 10ºC/hr to 20ºC over 4 hours). The fixed animals were embedded in araldite resin 

following the infiltration series (30% araldite/acetone for 4 hours, 70% araldite/acetone 

for 5 hours, 90% araldite/acetone for over night, and pure araldite for 8 hours). Mutant 

and control blocks were blinded. Ribbons of ultra-thin (33 nm) serial sections were 

collected using an Ultracut 6 microtome at the level of the anterior reflex of the gonad.  

Images were obtained on a Hitachi H-7100 electron microscope using a Gatan digital 

camera. Two hundred and fifty ultra-thin contiguous sections were cut, and the ventral 

nerve cord was reconstructed from two animals representing each genotype.  Image 

analysis was performed using Image J software. The numbers of synaptic vesicles 
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(~30nm), dense-core vesicles (~40nm) and large vesicles (>40nm) in each synapse were 

counted. Their distance from the presynaptic specialization and the plasma membrane, as 

well as their diameter, was measured in acetylcholine neurons VA and VB and the GABA 

neuron VD.  A synapse was defined as the serial sections containing a dense projection 

as well as sections on either side of that density, which contain synaptic vesicles numbers 

above the average number of synaptic vesicles per profile. 

 
Electrophysiology 

 C. elegans were grown at room temperature (22–24°C) on agar plates with a layer 

of OP50 Escherichia coli. Adult hermaphrodite animals were used for 

electrophysiological analysis. Postsynaptic currents (mPSCs and ePSCs) at the NMJ were 

recorded as previously described (Liu et al., 2007) using a technique originally developed 

by Richmond (Richmond et al., 1999). Briefly, an animal was immobilized on a sylgard 

coated glass coverslip by applying a cyanoacrylate adhesive along the dorsal side. A 

longitudinal incision was made in the dorsolateral region. After clearing the viscera, the 

cuticle flap was folded back and glued to the coverslip, exposing the ventral nerve cord 

and two adjacent muscle quadrants. A ZEISS AXIOSKOP microscope equipped with a 

40X water immersion lens and 15X eyepieces were used for viewing the preparation. 

Borosilicate glass pipettes with a tip resistance of 3~5 MΩ were used as electrodes for 

voltage clamping. The classical whole-cell configuration was obtained by rupturing the 

patch membrane of a gigaohm seal formed between the recording electrode and a body 

wall muscle cell. The cell was voltage-clamped at –60 mV to record mPSCs and ePSCs. 

ePSCs were evoked by applying a 0.5 ms square wave current pulse at a supramaximal 

voltage (25V) through a stimulation electrode placed in close apposition to the ventral 
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nerve cord. Postsynaptic currents were amplified with a HEKA EP10 amplifier 

(InstruTECH), and acquired with Patchmaster software (HEKA). Data were sampled at a 

rate of 10 kHz after filtering at 2 kHz. The recording pipette solution contained the 

following (in mM): 120 KCl, 20 KOH, 5 TES, 0.25 CaCl2, 4 MgCl2, 36 sucrose, 5 

EGTA, and 4 Na2ATP, pH adjusted to 7.2 with KOH, osmolarity 310~320 mOsm. The 

standard external solution included the following (in mM): 150 NaCl, 5 KCl, 5 CaCl2, 1 

MgCl2, 5 sucrose, 10 glucose and 15 HEPES, pH adjusted to 7.35 with NaOH, 

osmolarity 330~340 mOsm. 

 Amplitude and frequency of mPSCs were analyzed using MiniAnalysis 

(Synaptosoft, Decatur, GA). A detection threshold of 10 pA was used in initial automatic 

analysis, followed by visual inspections to include missed events (≥5 pA) and to exclude 

false events resulting from baseline fluctuations. Amplitudes of ePSCs were measured 

with Fitmaster (HEKA). The amplitude of the largest peak of ePSCs from each 

experiment was used for statistical analysis. Data were imported into Origin, version 7.5 

(OriginLab, Northampton, MA), for graphing and statistical analysis. A unpaired t test 

was used for statistical comparisons. A value of p <0.05 is considered statistically 

significant. All values are expressed as mean ± s.e.m. n is the number of worms that were 

recorded from. 

 
Thrashing assay 

 A single worm was placed into a 50ul drop of M9 solution. The worm was 

allowed to adapt to the liquid environment for 2 min. The number of body bends was 

counted for 60s for each genotype (n=5). 
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Image quantification 

 All worm nerve cord images were exported as 8-bit RGB files. ImageJ 1.43u was 

used for quantification. The region of interest was selected by hand-drawing. The total 

pixel intensity and the total number of pixels were recorded to calculate the average 

fluorescent intensity at both synaptic regions and axonal regions. Each image gives a 

ratio of fluorescent intensity between synapses and axons. n means the number of images 

used in quantification. 
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CLATHRIN ADAPTOR PROTEIN UNC-41, STONEDB/STONIN HOMOLOG IS 

REQUIRED FOR SYNAPTIC FUNCTION IN CAENORHABDITIS ELEGANS 

 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
My contribution to this work including the following: 

1.  Generating GFP::unc-41 construct 
2.  Confocal imaging of GFP::UNC-41 in snt-1 mutants. 
3.  Building unc-41; apm-2 double mutant. 
4.  Confocal imaging of the synaptic localization of vesicle proteins in unc-41. 
5.  Overexpressing SNT-1::GFP under different conditions in unc-41 

Gregory P. Mullen (Oklahoma Medical Research Foundation, Oklahoma City) 
contributed to the following: 

1.  Sequencing analysis and cloning of unc-41. 
2.  Analysis of unc-41 expression pattern. 

Shigeki Watanabe (University of Utah, Salt lake City) contributed to the following: 
      Electron microscopy analysis of unc-41 and unc-41; apm-2 mutants 



Abstract 

 Recycling of synaptic vesicle proteins requires the participation of clathrin-

associated adaptors such as AP2 and AP180. Each type of adaptors is likely to recognize 

different transmembrane cargo proteins. One class of adaptors, the Stonins, are thought to 

link the synaptic vesicle protein Synaptotagmin 1 to the clathrin coated pit, facilitating 

the recovery and sorting of this vesicular protein. The unc-41 gene in the nematode 

Caenorhabditis elegans encodes two protein isoforms with strong similarity to the 

Drosophila STNB and mammalian stonin 2 proteins. The UNC-41 isoforms are 

differentially expressed in the C. elegans nervous system; UNC-41A is expressed in all 

neurons, while UNC-41B is expressed in a subset of neurons, including the GABA motor 

neurons in the ventral nerve cord. The synaptotagmin I binding motif (KYE) in the -

homologous domain of UNC-41 is critical for its synaptic localization, however UNC-41 

still localizes to synapses in various synaptotagmin mutants. Ultrastructural analysis 

indicates that unc-41mutants have 50% reduction of synaptic vesicles. Consistent with it, 

in unc-41 mutants, synaptic vesicle proteins are partially mislocalized and synaptotagmin 

I is completely mislocalized from synapses in sublateral nerve cords. In addition, over-

expression of Synaptotagmin I can’t bypass the requirement of UNC-41, suggesting that 

UNC-41 is essential to recruit Synaptotagmin 1 to sites of synaptic vesicle endocytosis in 

C. elegans. 

 
Introduction 

 The release of neurotransmitters at synapses occurs through the regulated fusion 

of synaptic vesicles with the plasma membrane. The recovery of synaptic vesicle proteins 

and the reconstitution of functional synaptic vesicles, in turn, are dependent on a large 
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complex of proteins associated with clathrin (Dittman and Ryan, 2009). However the 

mechanism to re-sort synaptic vesicle proteins into endocytic pits is still not clear. 

Adaptors, such as the AP2 complex, recruit transmembrane cargo proteins to endocytic 

sites and link clathrin to the membrane (Robinson and Bonifacino, 2001). During 

synaptic vesicle endocytosis, the adaptor AP180 has been identified as the specific 

adaptor for recruiting V-SNARE synaptobrevin (Nonet et al., 1999; Zhang et al., 1998). 

However the adaptors for various other vesicle proteins remain undecided. One adaptor 

called stonin that is similar to the medium subunit of AP complex has been proposed to 

be the specific adaptor to recycle vesicle protein synaptotagmin I. 

 StonedB (STNB), the founding member of the STNB/stonin family, was 

identified in Drosophila in a screen for temperature-sensitive paralytic mutants (Grigliatti 

et al., 1973). Stoned mutants exhibit a variety of behavioral, electrophysiological, and 

ultrastructural defects that suggest that synaptic vesicle recycling is severely 

compromised (Fergestad et al., 1999). Two STNB homologs, designated stonin 1 and 

stonin 2, have been identified in mice and humans (Martina et al., 2001). Of the two 

mammalian homologs, Stonin 2 is more closely related to STNB, and like the Drosophila 

protein, has been implicated in synaptic vesicle recycling (Diril et al., 2006; Walther et 

al., 2004). 

 Experiments in Drosophila suggest STNB interacts with the C2B domain of the 

synaptic vesicle protein synaptotagmin I (Phillips et al., 2010; Phillips et al., 2000). More 

recently, mammalian cell culture indicates that stonin-2 proteins bind to the C2 domains, 

preferentially to C2A domain of synaptotagmin 1 and are required for the efficient 

recovery of synaptotagmin after synaptic vesicle fusion (Jung et al., 2007). The -
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homology domain of stonin mediates interactions with the C2 domains of synaptotagmin 

I (Jung et al., 2007; Phillips et al., 2000). The endocytosis of synaptotagmin I by stonin is 

likely to be AP2 dependent (Diril et al., 2006) and it is possibly through the interactions 

between Stonins and the ear domain of alpha subunits from AP2 to incorporate stonin-

synaptotagmin complex into clathrin-coated pits (Maritzen et al., 2010). Replacing -

homology domain with 2 subunit from AP2 failed to rescue the lethality of Stoned 

mutants, suggesting distinct roles of stonin and 2 adaptin at synapses (Phillips et al., 

2010). Intriguingly, overexpression of Synaptotagmin 1 in Drosophila rescues the 

lethality and synaptic vesicle recycling defects observed in Stoned mutants (Fergestad 

and Broadie, 2001). Thus, the current view is that synaptotagmin recruitment to sites of 

endocytosis is the major function of STNB/stonin 2 proteins. 

 To characterize the role of Stonins in synaptic vesicle endocytosis we 

characterized unc-41, the stonin ortholog in the nematode Caenorhabditis elegans. unc41 

mutants exhibit uncoordinated movement, resistance to inhibitors of cholinesterase, 

elevated levels of acetylcholine, slow growth, and small adult size (Harada et al., 1994; 

Nguyen et al., 1995; Rand and Russell, 1985). This set of phenotypes is usually 

associated with defects in acetylcholine release or synaptic vesicle function (Miller et al., 

1996; Nguyen et al., 1995). In addition, unc-41 animals display a defecation-expulsion 

defect associated with defective GABA function (McIntire et al., 1993). These 

phenotypes suggest that unc-41 encodes a protein important for the release of most or all 

neurotransmitters. Here we characterize the unc-41 gene. The unc-41 gene is transcribed 

from two promoters that produce isoforms that differ at the amino terminus by the 

presence or absence of a nonconserved extension. The UNC-41 isoforms are 
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differentially expressed in the C. elegans nervous system and are localized to synapses. 

Synaptic vesicle numbers are 50% depleted in unc-41 mutants. No further reduction of 

synaptic vesicles is observed in unc-41; apm-2 (the medium subunit of AP2) double 

mutants suggesting UNC-41 functions in the same endocytic pathway with AP2. 

Moreover, synaptic vesicle proteins are partially mislocalized from synaptic region in 

unc-41 mutants. Especially, synaptotagmin I exhibits complete mislocalization from 

synapses in sublateral nerve cords. This finding is reminiscent of the localization defect 

of synaptobrevin observed in AP180 mutants (Nonet et al., 1999). However, when 

synaptotagmin I is overexpressed in unc-41 mutants, the mutant phenotypes are not 

improved. This suggests providing more synaptotagmin I can’t bypass the requirement of 

UNC-41 in synaptic vesicle endocytosis. Thus the major function of UNC-41 is to recruit 

synaptotagmin I. 

 
Results 

Cloning and genomic organization of the unc-41 gene 

 We cloned unc-41 by transposon tagging (see methods and materials), and found 

that it corresponds to the gene C27H6.1. The unc-41 gene consists of 12 exons and 

extends over approximately 9-kb of genomic DNA (Figure 4.1A). A genomic clone 

containing the entire unc-41 coding region plus 3529-bp of upstream sequence fully 

rescued the unc-41 locomotion and defecation phenotypes. The longest composite cDNA, 

designated unc-41A, consists of all 12 exons, with a 5’ trans-spliced SL1 leader (Figure 

4.1A). In addition, a number of cDNA clones were identified with the SL1 leader trans-

spliced to the 5'-end of exon 3, suggesting that exon 3 is an alternative starting exon. The 

cDNAs beginning at exon 3 were designated unc-41B. If both of the transcripts have the 
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Figure 4.1. unc-41 cloning. (A) Diagram of the unc-41 gene, showing intron–exon 
structure, and location of relevant mutations. The unc-41 gene consists of twelve 
exons spanning ~9 kb of genomic DNA, and encodes two protein isoforms of ~188 
and 160 kDa. The location of the two promoter regions is shown in green, and the 
locations of several unc-41 mutations are indicated. (B) The unc-41 gene products are 
homologous to the Drosophila Stoned B and mammalian Stonin 2 proteins. Each of 
these proteins possesses a central stonin-homology domain (SHD) and a C-terminal 
µ-homology domain (µHD). Significant sequence similarity between the proteins is 
limited to the stonin- and µ-homology domains. Arrows indicate NPF motifs for 
interacting EH domain proteins such as Eps15, and arrowheads indicate DPF motifs 
for interacting with AP2.  
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same 3'-end, the predicted sizes would be 5.3 kb (unc-41A) and 4.5 kb (unc-41B).  

Except for the alternative 5'-ends, we found no evidence for additional structural 

heterogeneity in the unc-41 gene products. 

Northern blot analysis revealed two low abundance unc-41 transcripts: a 5.3 kb 

gene product that hybridizes to probes derived from both the 5' and 3' regions of the gene, 

and a 4.5 kb gene product that is recognized by probes from the entire gene except for 

exons 1 and 2 (data not shown).  The sizes and hybridization patterns of these two bands 

are consistent with the structures of the two cDNAs shown in Figure 4.1A. 

Sequence comparisons demonstrate that the unc-41 gene encodes the C. elegans 

homolog of STNB and Stonin 2. A carboxy terminal domain of approximately 500 amino 

acids is strongly conserved in homologs from all three species (Figure 4.1B). UNC-41 

and STNB are approximately 45% identical, and UNC-41 and mouse stonin-2 are 

approximately 31% identical in this region. The domain organization of the two UNC-41 

isoforms is similar to that of the other members of stonins. The N-terminal region does 

not share significant sequence similarity with other members of this family, but contains 

two proline-rich regions (Figure 4.1B black box), and has been termed the proline-rich 

domain (PRD). Following this is a domain found only in members of the stonin family 

called the stonin homology domain (SHD). The C-terminal domain is similar to the 

signal-binding domain of the µ subunits of AP complexes, and is called the µ-homology 

domain (µHD). There is no apparent similarity between any part of the UNC-41 proteins 

and the stonedA gene product. 
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unc-41 expression pattern 

 As described above, the two unc-41 transcripts have alternate 5’ exons; unc-41A 

begins with exon 1 and unc-41B begins with exon 3. To determine if these gene products 

were transcribed from different promoters, we generated reporter constructs with the 

putative unc-41A regulatory region (2672-bp upstream of exon 1) or the unc-41B 

regulatory region (2343-bp upstream of exon 3) driving CFP or YFP expression. We 

found that both reporter constructs were expressed almost exclusively in the nervous 

system (Figure 4.2). The unc-41A reporter was expressed in most or all neurons in C. 

elegans, while the unc-41B reporter was expressed in a subset of neurons, including the 

GABA motor neurons (DD and VD cells) in the ventral nerve cord (Figure 4.2). A 

significant number of neurons did not express unc-41B; these included the ventral cord 

cholinergic motorneurons (VA, VB, DA, DB, VC, and AS cells). We conclude that the 

unc-41A and B gene products are chiefly expressed in the nervous system, and that the 

unc-41B protein is restricted to a subset of unc-41A-expressing cells. 

 
Sequence analysis of unc-41 mutants  

 We identified the sequence alterations associated with 33 unc-41 alleles. Sixteen 

of the mutations were associated with DNA rearrangements leading to altered fragment 

lengths. These included 13 alleles with Tc1 transposon insertions, a 176-bp tandem 

duplication, and two significant (≥100-bp) deletions. The remaining seventeen alleles 

included six point mutations (base-substitutions) and eleven small insertions or deletions, 

and all led to termination codons or frameshifts. The canonical allele, e268, is associated 

with a base substitution in exon 10, which converts Trp1468 to a stop codon (Figure 

4.1A); it is likely to be a null allele. It was noteworthy that we did not identify any 
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Punc-41A::NLS-CFP

Punc-41B::NLS-YFP

Merge

Figure 4.2. unc-41 expression pattern. The unc-41 gene products are differentially 
expressed in the C. elegans nervous system.  Transgenic animals carrying the 
Punc-41A::NLS-CFP (green, A-F) and Punc-41B::NLS-YFP (red, D-I) transgenes 
were imaged on a confocal microscope. An L1 larva is shown in the left column. The 
head region of an adult hermaphrodite is shown in B, E, H, and K, and the tail section 
is shown in C, F, I, and L. Anterior is to the left, ventral is down, and the bar is 10 µm. 
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missense mutations, even among the EMS-induced alleles. 

 
The synaptic localization of UNC-41 does not require synaptotagmin I 

 The UNC-41 binding motif to synaptotagmin I C2A domain is the three residues 

KYE in -homologous domain. Mutating KYE to AAA strongly impairs the interaction 

between UNC-41 and synaptotagmin I, which causes transfected synaptotagmin I to get 

accumulated on the plasma membrane in HEK293 cells (Jung et al., 2007). In C. elegans, 

UNC-41 with KYE to AAA mutation can be expressed normally in the nervous system; 

however it loses its synaptic localization and diffuses throughout axons (Jung et al., 

2007). Therefore we predicted that UNC-41 is recruited to synapses by synaptotagmin I. 

To test this, GFP::UNC-41 is expressed in wild type and snt-1(md290) mutant. In both 

cases, the fusion protein is highly enriched in the nervous system and is localized 

properly to synapses (Figure 4.3), suggesting synaptotagmin I is not necessary for UNC-

41 synaptic localization. Previous study from mammalian stonin2 demonstrates that 

stonin2 co-localizes with several synaptotagmin paralogues: Syt1, Syt2 and Syt9 at the 

cell surface (Diril et al., 2006), which suggests functional redundancy might exist within 

synaptotagmin family for stonin2 recruitment. In C. elegans, there are 6 synaptotagmin 

paralogues from snt-1 to snt-6. We further tested synaptic localization of GFP::UNC-41 

in two different synaptotagmin triple mutants snt-4, snt-1, snt-2 and snt-6, snt-1, snt-3. As 

a result, UNC-41::GFP still maintains its synaptic localization even in these mutants 

(Figure 4.3). Thus, either the remaining synaptotagmins in the triple mutants recruit 

UNC-41 or UNC-41 is localized to synapses by proteins other than synaptotagmins. 

 
 

84



wild type

snt-1(md290)

snt-1 snt-4 snt-2

snt-1 snt-6 snt-3

Head Dorsal

Ventral

Figure 4.3. GFP::UNC-41 can properly localize to the synapses in various snt mutants. 
Punc-41A::gfp::unc-41B exprssion pattern in wild-type, snt-1(md290), snt-4(ok503) 
snt-1(md290)snt-2(tm1711) and snt-6(tm3686)snt-1(md290)snt-3(tm2426). The scale 
bar represents 20 µm. 
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Ultrastructural analysis of unc-41 mutants 

 Because of the potential role of Stonins in synaptic vesicle endocytosis, we 

quantified synaptic vesicles numbers using electron microscopy in unc-41 mutants 

(Figure 4.4A). We observed a 50% reduction of vesicles in both acetylcholine and GABA 

motor neurons (Figure 4.4B). The number of docked vesicles is proportionally reduced 

suggesting that the phenotype is not caused by a specific loss in docking (Figure 4.4C). In 

addition, there is a slight increase in the diameter of synaptic vesicles from 28.5 nm in the 

wild type to around 32 nm in the unc-41(e268) mutant (Figure 4.4D). 

 Both adaptin and stonin contain a -homology domain. The reduction in 

synaptic vesicles in unc-41 is roughly similar to that of apm-2 (Gu et al., 2008). In both 

cases, the phenotype is less severe than that of severe endocytosis defects such as those 

observed in synaptojanin mutants (Harris et al., 2000). It is possible that adaptin and 

stonin provide somewhat redundant functions. To test this, we performed ultrastructural 

analysis on the unc-41(e268) apm-2(e840) double mutant (Figure 4.4A). The double 

mutant shows almost identical phenotypes to the unc-41 single mutant (Figure 4.4B-D). 

These data suggest that adaptin and stonin/UNC-41 do not have significant functional 

redundancy but rather function in the same pathway during synaptic vesicle endocytosis. 

 
Synaptic localization of vesicle proteins is disrupted in unc-41 mutants 

 Because synaptic vesicles are partially depleted in unc-41 mutants, the recycling 

of synaptic vesicle proteins from the cell surface is possibly compromised. This would 

cause vesicle proteins to accumulate at the plasma membrane and then diffuse away from 

synapses. We investigated the synaptic localization of the following vesicle proteins in 

unc-41 mutants: synaptobrevin, GABA transporter UNC-47 and synaptotagmin I. All of 
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Figure 4.4. Ultrastructural analysis of synaptic structure in unc-41 mutants. (A) 
Representative images of neuromuscular junctions in the ventral nerve cord of wild 
type, unc-41(e268) and unc-41(e268) apm-2(e840). Bar, 200nm. sv, synaptic vesicle; 
dense proj, dense projection. (B) The number of synaptic vesicles is reduced in 
unc-41(e268) and unc-41(e268) apm-2(e840) mutants. Average number of synaptic 
vesicles per profile containing a dense projection in nanometers ± SEM is as follows: 
wild-type acetylcholine, 19.63 ± 1.28, n = 38 synapses; unc-41(e268) acetylcholine, 
9.53 ± 0.52, n = 40 synapses; unc-41(e268), apm-2(e840) acetylcholine, 8.93 ± 0.72, 
n = 30 synapses; wild-type GABA, 25.11 ± 1.17, n = 36 synapses; unc-41(e268) 
GABA, 14.51 ± 0.81, n = 45 synapses; unc-41(e268), apm-2(e840) GABA, 11.64 ± 
0.84, n = 39 synapses. (C) The number of docked synaptic vesicles is reduced in 
unc-41(e268) and unc-41(e268) apm-2(e840) mutants. Average number of docked 
synaptic vesicles per profile containing a dense projection in nanometers ± SEM is as 
follows: wild-type acetylcholine, 1.82 ± 0.16, n = 38 synapses; unc-41(e268) 
acetylcholine, 1.05 ± 0.13, n = 40 synapses; unc-41(e268), apm-2(e840) acetylcholine, 
0.9 ± 0.1, n = 30 synapses; wild-type GABA, 2.36 ± 0.17, n = 36 synapses; 
unc-41(e268) GABA, 1.13 ± 0.12, n = 45 synapses; unc-41(e268), apm-2(e840) 
GABA, 1.46 ± 0.13, n = 39 synapses. (D) Vesicle diameters are slightly increased in 
unc-41(e268) and unc-41(e268), apm-2(e840) mutants. Average size of synaptic 
vesicles per profile containing a dense projection in nanometers ± SEM is as follows: 
wild-type acetylcholine, 28.52 ± 0.12, n = 733 vesicles; unc-41(e268) acetylcholine, 
31.51 ± 0.29, n = 380 vesicles; unc-41(e268), apm-2(e840) acetylcholine, 31.55 ± 
0.22, n = 265 vesicles; wild-type GABA, 28.7 ± 0.11, n = 904 vesicles; unc-41(e268) 
GABA, 34.5 ± 0.27, n = 652 vesicles; unc-41(e268), apm-2(e840) GABA, 32.18 ± 
0.24, n = 453 vesicles. *** P<0.001. 
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these GFP tagged vesicle proteins are normally clustered at synapses in wild type; 

however they exhibit increased axonal fluorescence in unc-41 mutants suggesting these 

proteins are mislocalized from synapses (Figure 4.5). Consistent with the studies from 

Drosophila (Fergestad et al., 1999), the localization of synaptotagmin I is affected the 

most (Figure 4.5). This result suggests that in C. elegans, UNC-41 is required to recycle 

synaptotagmin I after exocytosis. The localization defect of other vesicle proteins in unc-

41 mutant is caused either directly by missing UNC-41 or indirectly by mislocalized 

synaptotagmin I because syanptotagmin I is required for synaptic vesicle endocytosis 

(Jorgensen et al., 1995). 

 
Recruiting synaptotagmin I is the major function of UNC-41 

 If UNC-41 is the adaptor for resorting synaptotagmin I back into recycled vesicles, 

providing more synaptotagmin I should be able to bypass the requirement of UNC-41. A 

particularly compelling observation that supports this view is that overexpression of 

Synaptotagmin 1 in Drosophila rescues the lethality and synaptic vesicle recycling 

deficits associated with StonedB mutations (Fergestad and Broadie, 2001). We attempted 

to duplicate these experiments in C. elegans by overexpressing functional SNT-1::GFP 

fusions. When the snt-1::GFP construct is expressed at its endogenous level, the fusion 

proteins localize exclusively to synapses (Figure 4.6A) and fully rescue the snt-1 null 

phenotype (data not shown). The same construct was injected directly into unc-41 

mutants at 25 ng/l to overexpress SNT-1:GFP. From the trasgenic animals of the next 

generation, the fluorescent intensity of GFP is greatly increased and SNT-1::GFP starts to 

accumulate on the cell surface of neuronal cell bodies (Figure 4.6A); however these 

animals still have an uncoordinated body posture (Figure 4.6B) and retain locomotory  
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Wild type unc-41(e268)

SNT-1

UNC-47

SNB-1

Figure 4.5. The synaptic localization of vesicle proteins is disrupted in unc-41 null 
mutants. snt-1::GFP and unc-47::GFP are integrated into worm genome as single 
copy insertion by mosSCI. Punc-25::snb1::GFP is integrated into worm genome as 
multiple copies by X-ray. Images of SNT-1::GFP are ventral sub-lateral cords. The 
rest images are dorsal nerve cords. The scale bar represents 10 µm. 
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unc-41(e268) snt-1(md290)
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unc-41(e268) unc-41(e268)
SNT-1::GFP OE injected at 25 ng/µl SNT-1::GFP OE injected at 25 ng/µl

SNT-1::GFP OE injected at 5 ng/µl
SNT-1(δTM)::GFPSNT-1::GFP OE 
injected at 25 ng/µl

B

wild type unc-41(e268)

unc-41(e268) unc-41(e268)
SNT-1::GFP endogenous lvl SNT-1::GFP OE Inject 5ng/µl

SNT-1(δTM)::GFP &SNT-1::GFP OE
Inject 25ng/µlSNT-1::GFP OE Inject 25ng/µl

A

Figure 4.6. Overexpressing synaptotagmin I can not rescue unc-41 mutants. (A) 
Representative images of SNT-1::GFP expression level under different overexpression 
conditions. All images were taken at identical settings. The scale bar represents 20µm. 
(B) DIC images of unc-41 mutant, unc-41 mutants carrying snt-1::GFP 
overexpressing arrays, snt-1 mutant and snt-1 mutant carrying snt-1::GFP 
overexpressing array. The scale bar represents 100µm. 
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deficits as assayed by worm swimming (Figure 4.7). Meanwhile the same extra-

chromosomal array overexpressing snt-1::GFP was crossed into wild type and snt-1 null 

mutant. We found the same array could rescue the body size and posture of snt-1 mutants 

(Figure 4.6B) but caused wild- type animals to slow down in worm swimming. It is 

possible that overexpression of SNT-1::GFP results in retention of protein in the soma 

that affects the normal transportation process to synapses, so we re-injected the same 

construct either at lower concentration (5ng/ul) or along with snt-1::GFP without a 

transmembrane domain that has been shown to significantly rescued snt-1 mutants (data 

not shown) to alleviate retention. In all of these conditions, no rescue of unc-41 animals 

is observed (Figure 4.6 and 4.7). Thus, providing more synaptotagmin I in unc-41 

mutants can not bypass the requirement of UNC-41, suggesting UNC-41 is absolutely 

required for maintaining the proper sub-cellular localization of synaptotagmin I. 

 
Discussion 

In this study, we show that the unc-41 gene in C. elegans encodes two proteins that 

are members of the STNB/Stonin family. Like other members of the STNB/stonin family, 

the UNC-41 proteins possess a central stonin-homology domain, and a C-terminal µ-

homology domain. The unc-41 mutant phenotype was significantly rescued by expression 

of a STNB cDNA under control of the unc-41A promoter, we conclude that the UNC-41 

proteins are directly orthologous to the Drosophila STNB protein.  

 The two isoforms of UNC-41 are expressed almost exclusively in neurons and are 

localized to synapses. In our previous study, we found that the synaptotagmin I binding 

motif in UNC-41 is critical for its synaptic localization (Jung et al., 2007); however 

missing synaptotagmin I does not disrupt the synaptic localization of UNC-41. After 
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Figure 4.7. Rescue of unc-41 is assayed by worm swimming. Thrashing rate per 
minute ± SEM is as follows: wild type 114 ± 3.39, n = 7; unc-41(e268) 21.43 ± 3.65, 
n = 7; SNT-1::GFP OE in wild type (injected at 25 ng/ul) 60.57 ± 2.26, n = 7; 
SNT-1::GFP OE in snt-1(md290) (injected at 25 ng/ul) 49 ± 5.62, n = 7; SNT-1::GFP 
OE in unc-41(e268) (injected at 25 ng/ul) 8.83 ± 1.54, n = 6; SNT-1::GFP OE in 
unc-41(e268) (injected at 5 ng/ul) 10.5 ± 2.14, n = 6; SNT-1::GFP and 
SNT-1::GFP(δTM) OE in unc-41(e268) (injected both at 25 ng/ul) 7.14 ± 1.82, n = 7. 
All t tests are compared with the thrashing rate of unc-41(e268). * P<0.05, ** P<0.01, 
*** P<0.001. 
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testing UNC-41 localization in synaptotagmin triple mutants, other paralogues of 

synaptotagmin in C. elegans do not play an important role for localizing UNC-41 either. 

Due to the potential redundancy between synaptotagmins, it might require to knock down 

all synaptotagmin paralogues simultaneously. On the other hand, besides synaptotagmins, 

UNC-41 interacts with other endocytic proteins, which can possibly recruit or stabilize 

UNC-41 at synapses. In C. elegans, several endocytic protein mutants exhibit the same 

phenotypes as those of unc-41. These proteins include synaptojanin, endophilin and 

AP180. So it will be interesting to investigate UNC-41 localization in these mutants. 

 Based on ultra-structural analysis, unc-41 mutants have 50% synaptic vesicle 

reduction, which is similar to the defect observed from the medium subunit mutant of 

AP2. The unc-1 apm-2 double mutants have the same amount of vesicles as unc-41 single 

mutants suggesting UNC-41 functions in the same endocytic pathway with AP2. Thus 

UNC-41 and APM-2 do not have functional redundancy consistent with a previous study 

that the -homologous domains from UNC-41 and APM-2 are not interchangeable 

(Phillips et al., 2010). 

 One major function of UNC-41 is possibly to re-sort synaptotagmin I into 

clathrin-coated pit for endocytosis, which is supported by the observation that 

synaptotagmin I is completely mislocalized from synapses at sub-lateral cords in unc-41 

mutants. Phenotypically, unc-41 and snt-1 mutant animals are similar to each other. 

However the vesicle reduction level in snt-1 mutants is more severe than that in unc-41 

mutants (personal communication with Rob Hobson, Jorgensen lab), suggesting 

synaptotagmin I localized at the plasma membrane can still facilitate synaptic vesicle 

endocytosis. In the future, dendra or tdEOS tagged synaptotagmin I can be crossed into 
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unc-41 mutants to test if synaptic vesicles left in unc-41mutants are lack of 

synaptotagmin I by fluorescent electron-microscopy. 

 In C. elegans, overexpressing synaptotagmin I does not bypass the requirement of 

UNC-41, which conflicts with the result from Drosophila that overexpression of 

Synaptotagmin I rescues the lethality and synaptic vesicle recycling deficits associated 

with StonedB mutations (Fergestad and Broadie, 2001).Thus it suggests that unlike 

StoneB from Drosophila, UNC-41 is essential to maintain synaptotagmin I at the right 

sub-cellular place in C. elegans. In addition, the size of synaptic vesicles is increased 

10% in unc-41 mutants, so UNC-41 involves in regulating the size of synaptic vesicles 

possibly by affecting the organization of clathrin-coated pits. 

 
Materials and methods 

Strains 

 The wild strain is Bristol N2. The reference strain EG1531 for unc-41(e268)V was 

outcrossed twice before phenotypic analysis. All oxSi strains were generated by mosSCI 

(Frokjaer-Jensen et al., 2008), so the exogenous genes were inserted as a single copy. 

The strains used for UNC-41::GFP localization experiment were: EG4775: snt-

1(md290) II; oxEx1072[Punc-41A::GFP::unc-41B Pcc::GFP] EG4741: 

oxEx1050[Punc-41A::GFP::unc-41B Pcc::GFP] EG6426: snt-4(ok503)I; snt-1(md290) 

II; snt-2(tm1711)III; oxEx1528[Punc-41A::GFP::unc-41B Pcc::GFP] EG6427: snt-

6(tm3686)II snt-1(md290) II; snt-3(tm2426)V; oxEx1529[Punc-41A::GFP::unc-41B 

Pcc::GFP]. 

The strain used for electron microscopy was EG4216 unc-41(e268)V; apm-2(e840)X. 

The strains used for localization of synaptic vesicle proteins were: EG5882: snt-
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1(md290)II; oxSi114[snt-1::GFP unc-119(+)] IV EG6428 oxSi114[snt-1::GFP unc-

119(+)]IV; unc-1(e268)V EG5717: unc-119(ed3)III; oxSi36[unc-47::GFP unc-

119(+)]IV EG6429 oxSi36[unc-47::GFP unc-119(+)]IV; unc-41(e268)V MT8247: lin-

15(n765ts)X nIs52[Punc-25::snb::GFP lin-15(+)]X EG3049: unc-41(e268)V; lin-

15(n765ts)X nIs52[Punc-25::snb::GFP lin-15(+)]X 

The strains used for UNC-41 overexpression experiment were EG6430: 

oxEx1534[snt-1::GFP(25ng) Pcc::GFP] EG6431: md290II; oxEx1534[snt-1::GFP(25ng) 

Pcc::GFP] EG6432: unc-41(e268)V oxEx1534[snt-1::GFP(25ng) Pcc::GFP] EG6433: 

unc-41(e268)V; oxEx1535[snt-1::GFP (5ng) Pcc::GFP] EG6434: unc-41(e268)V; 

oxEx1536[snt-1::GFP (25ng) snt-1::GFP(TM 25ng) Pcc::GFP]. 

 
Origin of unc-41 mutants 

 The mutants with md allele designations were isolated in the Rand laboratory as 

spontaneous mutants resistant to the acetylcholinesterase inhibitor aldicarb (Miller et al., 

1996; Nguyen et al., 1995). They were identified as unc-41 alleles by genetic mapping 

and complementation, and were outcrossed at least six times. All of the unc-41 alleles 

with e allele designations were isolated at MRC, Cambridge, and were generously 

provided by Jonathan Hodgkin. The unc-41 alleles n2163 and n2913 were isolated by 

Erik Jorgensen and H. R. Horvitz, and ox63 was isolated by Erik Jorgensen. 

 
Molecular biology, sequence analysis and cloning of unc-41 

 Standard molecular biology techniques were used for preparing C. elegans DNA 

and RNA, screening cDNA and genomic libraries, and performing Northern blot analyses. 

The unc-41 gene was cloned by transposon tagging (Moerman et al., 1986). We isolated 
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several spontaneous unc-41 mutations in screens for aldicarb-resistant mutants in a 

mutator background. We then probed genomic DNA from these mutant strains, along 

with isogenic revertants, with Tc1 sequences. We identified a Tc1-hybridizing SacI 

fragment that was present in strains containing the unc-41(md1175) allele, and absent in a 

spontaneous revertant of md1175. This SacI fragment was subcloned, and the sequences 

flanking the Tc1 transposon were used to probe genomic and cDNA libraries. The 

genomic phage RM#231L was isolated from a C. elegans genomic library prepared by 

Heidi Browning and Tom Blumenthal. It contains the complete unc-41 gene plus 3529-bp 

of upstream sequence. The genomic sequence was determined by "primer walking", 

using plasmid subclones from phage RM#231L as templates. Sequencing primers were 

synthesized at the Molecular Biology Resource Facility at the University of Oklahoma 

Health Sciences Center.  Genomic clones and cDNAs were completely sequenced on 

both strands using the fmol DNA Cycle Sequencing System (Promega, Madison, WI). 

The larger isoform, UNC-41A, has a predicted mass of 188 kDa, and the smaller isoform, 

UNC-41B, has a predicted mass of 160 kDa. The unc-41 gene, which has the cosmid 

designation C27H6.1, was subsequently sequenced by the C. elegans Genome 

Sequencing Consortium (Genbank Accession number NM073165), with identical results. 

The cosmid G18K16 (Genbank Accession number AC084520) contains the C. briggsae 

homolog of unc-41. 

 
Analysis of mutations 

 Mutations were analyzed by Southern blot or PCR analysis.  Some of the 

mutants have altered fragment lengths, which allowed us to determine the approximate 

nature of the rearrangement. Further analysis involved amplification of specific 1-2 kb 
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unc-41 genomic regions using direct single-worm PCR from individual mutant animals. 

The precise deletion endpoints or insertion sites were then determined by sequencing 

purified PCR products using internal primers. PCR products from those mutants without 

rearrangements were used for Restriction Endonuclease Fingerprinting analysis. Several 

of the mutations were analyzed by direct sequencing of PCR-amplified genomic DNA. 

Most of the sequencing of mutants was performed by the DNA Sequencing Center at 

Oklahoma State University. 

 
Transgenic methods for determining UNC-41 expression pattern 

 Expression plasmids for transformation utilized the pPD49.26 vector, or 

derivatives (gifts of Andy Fire, Stanford School of Medicine). Putative promoter regions 

from the unc-41 gene were cloned into the first multiple cloning site of pPD49.26. The 

cDNA to be expressed was cloned into the second multiple cloning site: CFP or YFP 

reporter gene carrying a nuclear localization signal (gift of Andy Fire, Stanford School of 

Medicine). 

DNA transformation methods for C. elegans were essentially as described by Mello 

et al. (Mello et al., 1991) except that a plasmid containing the wild-type pha-1 cDNA 

(gift of Heinke and Ralf Schnabel, Max-Plank-Institute fur Biochemie, Martinsried) was 

used as a transformation marker. The pha-1(e2123) mutation results in a temperature-

sensitive embryonic lethal phenotype ; animals homozygous for this mutation will not 

grow at 25 degree, but are viable and grow normally at 16 degrees. The fluorescent 

reporter constructs and wild-type pha-1 cDNA were injected directly into pha-1 animals; 

After injection, the recipient animals were transferred to 25 degrees to select for those 

progeny expressing the wild-type PHA-1 protein. 
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UNC-41 GFP construct 

 The GFP–UNC-41B WT (pMG13) C. elegans expression plasmid consisted of 

the 2.5-kb unc-41 promoter (from RM536), 0.85-kb GFP fragment (from fire lab vector 

95.77), and 5.4-kb unc-41b cDNA plus 3′UTR (from RM 536) inserted into the EcoRI–

SalI restriction sites of pGEM-3zf(+) using the following primers: 

5′-AGGAGAATTCCTCCCGGCAATTCGTAATACGTC-3′; 5′-

GGGTCCTGAAAATGTTCTATG-3′; 5′-

ACATTCCCGGGATGGAACAAGCAGAAAAAGCA-3′; 5′-

ACTTGTCGACCATGTGTCAGAGGTTTTCACCGTC-3′; 5′-

AGATCCCGGGAGAACCTCCGCCTCCTTTGTATAGTTCATCCATGCCATG-3′; 

and 5′-ACCGCCCGGGATGAGTAAAGGAGAAGAACTTTTC-3′. 

 
Microinjection 

 The final DNA concentration of each injection mix is 100 ng/ul. This target 

concentration was obtained with the addition of Fermentas 1kb DNA ladder (#SM0311). 

 pMG13 was injected at 1ng/ul in all strains in UNC-41::GFP experiments. The 

coinjection marker Pcc:GFP was injected at 50 ng/ul. 

  pRH353 snt-1::GFP was injected at 25ng/ul, 5 ng/ul or 25 ng/ul along with 25 

ng/ul pRH426 snt-1GFPTM) respectively in synaptotagmin I over-expression 

experiment. The coinjection marker Pcc:GFP was injected at 50 ng/ul. 

 
Microscopy and imaging 

 Images of UNC-41 expression pattern.  Confocal images were collected on a 

Leica TCS NT confocal microscope. Images were collected with a 40x magnification 
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objective, at 1024x1024 pixels, with 0.5 micron Z-steps. Images were cropped to size, 

assembled, and annotated using Adobe Photoshop CS2. All images within a given 

experiment were collected in the same session using identical settings and were 

processed identically.  

 All other images. Worms are immobilized by using 2% phenoxy propanol and 

imaged on a Pascal LSM5 confocal microscope using a Zeiss plan-Neofluar 10x 0.3 NA 

or Zeiss plan-apochromat 63x 1.4NA oil objectives. 

 
Electron microscopy 

 Wild type (N2), unc-41(e268) and unc-41(e268) dpy-23(e840) adult nematodes 

were prepared in parallel for transmission electron microscopy (Rostaing et al., 2004; 

Adler et al., 2006). All animals were raised at room temperature (22.5°C). After high-

pressure freezing, chemical fixation and substitution, and embedding, mutant and control 

blocks were blinded, and ribbons of ultrathin (33 nm) serial sections were collected using 

an Ultracut 6 microtome (Leica). 250 contiguous ultrathin sections were cut from two 

animals from each genotype.  Images were collected on a Hitachi H-7100 125keV 

electron microscope using a Gatan slow scan digital camera. Image analysis was 

performed using ImageJ software (v1.38 NIH). Axonal processes in the ventral nerve 

cord were reconstructed for the VA and VB acetylcholine motor neurons and the VD γ-

aminobutyric (GABA) motor neurons. Neuromuscular synapses were identified by the 

presence of a varicosity containing synaptic vesicles surrounding a dense projection 

oriented toward the muscle. The total number of neuromuscular junctions analyzed was 

19 synapses (10 acetylcholine and 9 GABA) for unc-41 and 18 synapses (9 acetylcholine 

and 9 GABA) for unc-41 dpy-23 double mutants. Vesicles were analyzed only in sections 
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containing a dense projection. The numbers of synaptic vesicles (~30nm), dense-core 

vesicles (~40nm) and large vesicles (>40nm) at each synapse were counted, and their 

distances from presynaptic specialization and plasma membrane were determined, as well 

as their diameters. The average number of synaptic vesicles and docked vesicles per 

profile were calculated for each set of images containing a part of the presynaptic dense 

projection. The numbers for each profile were averaged to obtain the final value. 
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CHAPTER 5  

 
PRELIMINARY CHARACTERIZATION OF THE EPSIN  

ORTHOLOGUE IN C. ELEGANS  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
My contribution to this work includes the following: 

1. Balancing and outcrossing epn-1(tm3357) allele. 
2. Investigating the expression pattern of epn-1. 
3. Building constructs and rescuing epn-1 in tissue-specific manner. 



Abstract 

Epsin, as the representative ENTH domain protein, functions in clathrin-mediated 

endocytosis presumably for membrane bending. In the absence of Epsin, clathrin-coated 

pits lack membrane curvature, suggesting an early but critical role in endocytosis. Studies 

from Drosophila and lamprey show conflicting results regarding the function of Epsin in 

neurotransmission. In this chapter, we investigated the Epsin ortholog epn-1 in C. elegans 

and its potential role in synaptic vesicle recycling. To our surprise, EPN-1 is not a 

synaptic protein in worms. When EPN-1 is specifically expressed in neurons, it is not 

localized to presynaptic terminals, which suggests EPN-1 is not required for synaptic 

vesicle endocytosis in C. elegans. 

 
Introduction 

Epsin is a well-studied endocytic protein involved in clathrin-coated pit formation. 

It was first discovered as a binding partner of another accessory protein Eps15 in 

clathrin-mediated endocytosis (Chen et al., 1998). Therefore it is named as Eps15 

Interacting protein or Epsin (Horvath et al., 2007). This protein has potential roles in both 

membrane bending and cargo recruitment. One of the important characteristics of Epsin 

is that it has a well-conserved protein module at its N-terminus called the ENTH domain. 

The ENTH domain stands for Epsin N-terminal homologous domain. It is present in a 

protein family required for membrane trafficking throughout eukaryotes (De Camilli et 

al., 2002). 

The ENTH domain is a globular structure composed of 7 -helices (helix1-7) and 

an unstructured 14-residue region at its N-terminus (Koshiba et al., 2002). Upon binding 

with PI(4,5)P2 or Ins(1,4,5)P3, the disordered N-terminal region will fold into an 
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amphipathic -helix, called helix 0 (Ford et al., 2002). Helix 0 was proposed to insert 

into the cytosolic leaflet of lipid bilayer to drive membrane bending. In addition, the 

concaved surface formed by the newborn helix 0 and the rest of ENTH domain can sense 

the membrane curvature (Itoh and De Camilli, 2006). Thus ENTH-domain proteins bind 

specifically to PI(4,5)P2 enriched membranes and likely provide the driving force for 

membrane invagination. 

Outside the ENTH domain, Epsin has several conserved binding motifs for 

interacting with different binding partners. The type and number of these motifs varies 

between Epsin homologs. Generally, the ENTH domain of Epsin is followed by two 

ubiquitin interacting motifs (UIM), which can fulfill the function of Epsin as an adaptor 

protein to recruit ubiquitinated cargo proteins into clathrin-coated pits (Kazazic et al., 

2009). Next to the UIMs are multiple repeats of DPF/W motifs for interacting with the 

appendage domain of adaptin from the AP2 complex. The DPF/W motifs are always 

flanked by clathrin boxes, which are responsible for clathrin interaction (Legendre-

Guillemin et al., 2004; Owen et al., 1999). At the C-terminus of Epsin, there are NPF 

repeats for interacting with EH domain proteins, such as Eps15 and intersectin (De 

Camilli et al., 2002).  

Epsin can stimulate clathrin cage assembly from soluble clathrin triskelia 

(Kalthoff et al., 2002). In vitro, Epsin recruits clathrin to a PI(4,5)P2 monolayer to form 

an invaginated clathrin-coated pit. If Epsin is changed to AP180, another clathrin adaptor 

that can also facilitate clathrin-cage formation, the coated pit is flat (Ford et al., 2002). 

This result demonstrates the importance of Epsin for the acquisition of membrane 

curvature, suggesting that Epsin functions at the onset of clathrin-mediated endocytosis.  
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Even though the roles of Epsin in clathrin-mediated endocytosis have been 

studied for a decade, the function of this protein in synaptic vesicle recycling is still not 

clear. In Drosophila, the loss of Epsin in neurons does not cause neurotransmission 

defects and the total number of synaptic vesicles is wild-type (Bao et al., 2008). However 

in lamprey, the active synapses show dramatic loss of vesicles and coated-pits after 

blocking Epsin function by antibody injection (Jakobsson et al., 2008). In order to 

enhance our knowledge of Epsin’s function in neurotransmission, we investigated the 

Epsin ortholog in C. elegans, epn-1. Our data suggest that EPN-1 is not required for 

synaptic vesicle recycling in worms. 

 
Results 

epn-1 encodes the only Epsin ortholog in C. elegans 

 A mutant allele (tm3357) of epn-1 was successfully isolated by the Mitani lab. It 

contains a 329 bp deletion from the second intron to the fourth exon. Right at the deletion 

junction, there is a 7 bp insertion of the sequence GATATAT, according to the coding 

strand of epn-1 (Figure 5.1A, B). This gene is located on chromosome X. epn-1(tm3357) 

makes the worm embryonic lethal so this allele is balanced by szT1 which is a 

translocation between chromosome I and X. 

 Phylogenetic analysis of the ENTH domain shows that epn-1 is grouped in the 

same clade with Drosophila liquid facets and human epsin 1-3 (Legendre-Guillemin et al., 

2004), suggesting this gene encodes the only ortholog of Epsin in Caenorhabditis elegans. 

The protein structure of EPN-1 is shown in Figure 5.1 C. It contains the well-conserved 

ENTH domain at its N-terminus. Immediately adjacent are two UIM motifs for binding 

ubiquitinated protein cargoes. In the middle of the protein three DPF/W motifs are  
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Figure 5.1. The gene and protein structure of the Epsin ortholog in C. elegans. (A) 
Genetic map position of epn-1 on chromosome X. (B) Genomic structure of the epn-1 
gene. The deleted region from allele tm3357 is indicated by the black bar. The first 
exon is on the right hand side. (C) The protein domain and motif cartoon of EPN-1. 
The protein N-terminus is on the left hand side. 
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identified as the potential binding sites for  adaptin, which are flanked by three clathrin 

binding motifs (DLL) (Morgan et al., 2000). At the C-terminus of EPN-1, four NPF 

motifs interact with EH domain proteins, such as Eps15.  

 
epn-1 expression pattern 

 EPN-1 is predicted to be required in almost every living cell for cell-surface 

endocytosis. To better understand where epn-1 is expressed, we made a construct fusing 

GFP to the C-terminus of the epn-1 coding sequence. This construct is driven by the 

endogenous promoter for epn-1 and can fully rescue epn-1(tm3357) mutants. After 

making transgenic worms, fluorescence is observed in hypodermis (Figure 5.2A, B tail), 

spermatheca (Figure 5.2A), head nerve ring (Figure 5.2B, head), pharyngeal muscle 

(Figure 5.2B head), vulva (Figure 5.2B, body) and coelomocytes (Figure 5.2C). Intestine 

expression is also observed (data not shown). Interestingly, GFP signal is not detected in 

any motor neuron synapses along both the ventral and dorsal sides of the worm (Figure 

5.2 C). Thus, epn-1 is expressed in all tissues examined and the protein is likely enriched 

at the plasma membrane as suggested by the expression pattern in coelomocytes.  

  
EPN-1 is not a synaptic protein 

 Based on previous studies, Epsin is likely to function at the beginning of clathrin 

mediated endocytosis to acquire membrane curvature and recruit clathrin for coat 

formation. If this is true, eliminating EPN-1 in neurons will block clathrin-mediated 

endocytosis for synaptic vesicle recycling. However, the lack of synaptic expression of 

the epn-1::GFP fusion construct suggests that EPN-1 is not even a synaptic protein in C. 

elegans. It is also possible that the expression level of EPN-1 driven by its own promoter 
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Figure 5.2. epn-1 translational GFP expression pattern. (A) A single worm overview 
of EPN-1::GFP under a 20X objective. (B) Closer view of EPN-1::GFP in the head, 
mid-body and tail region under a 40X objective. (C) EPN-1::GFP localization in 
coelomocytes and the hypodermal ridge under a 63X objective. The scale bar 
represents 20 µm. 
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is very low at synapses, which is difficult to detect when GFP is also expressed in the 

hypodermis. Therefore we used the pan-neuronal promoter Prab-3 to drive epn-1::GFP 

expression. Fluorescence from these transgenic worms is observed exclusively in the 

nervous system; but surprisingly, EPN-1::GFP fusion proteins diffuse throughout the 

axon and are not specific to synapses (Figure 5.3 A, B). This result indicates that EPN-1 

is not functioning at synapses in C. elegans. The same construct was also used to rescue 

epn-1(tm3357) mutants. The rescued worms are still lethal. The best-rescued worms grow 

to adulthood but have skin problems, an infertile gonad and in general are very ill. Thus 

the lethality of epn-1 mutants is not exclusively due to a lack of EPN-1 function in 

neurons.  

 To further explore which tissue contributes to the lethality phenotype of epn-1, we 

did skin- specific rescue by using the dpy-7 promoter. The rescued F1 worms from the 

balanced strain can grow into adults but are sick and egg-laying defective. In the F2 

generation, almost all worms are dead as L2 larvae. In rare cases they become adults. 

Taken together, our data show that the lethality of epn-1 mutants is likely caused by the 

lack of EPN-1 activity from multiple tissues, suggesting a broad requirement of EPN-1 

during the worm life cycle. However, the lack of EPN-1 synaptic expression is consistent 

with the results from Drosophila Epsin and indicates that EPN-1 is not involved in 

synaptic vesicle recycling in C. elegans.     

 
Discussion 

 In this chapter we investigated the expression pattern and synaptic localization of 

epn-1, the Epsin ortholog in C. elegans. The gene epn-1 is expressed in almost every  

tissue and the loss of EPN-1 causes worm embryonic lethal. Failure to rescue epn-1  
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head dorsal cord

ventral cord

Figure 5.3. Pan-neuronal EPN-1::GFP diffues throughout the axon. (A) EPN-1::GFP 
localization in the head nerve ring. (B) EPN-1::GFP localization in the dorsal nerve 
cord. (C) EPN-1::GFP localization in the ventral nerve cord. The scale bar represents 
20 µm. 
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mutants in a single tissue suggests its broad requirement in worms. Considering that 

extrachromosomal arrays are silenced in the worm germline, it is quite surprising that 

EPN-1::GFP can fully rescue epn-1 mutants. It is possible that EPN-1 is not required for 

oocyte maturation. But due to the high rate of endocytosis in a growing oocyte , there 

likely exists a functionally redundant protein with EPN-1 in worm gonads. 

 Based on previous studies, Epsin functions at the clathrin-coated pit to acquire 

membrane curvature and also binds AP2 and clathrin. If clathrin-mediated endocytosis is 

the major mechanism for synaptic vesicle recycling, disrupting epn-1 will likely cause a 

profound effect on neurotransmission. However when epn-1::GFP is expressed 

exclusively in neurons, it diffuses throughout the axon, which is in contrast to the 

punctate distribution pattern seen for  and  adaptins. All three of these proteins are 

primarily localized on the plasma membrane through interactions with PI(4,5)P2; thus, it 

is interesting that only EPN-1 is excluded from the cell surface at synapses. This result 

suggests at least two possibilities. First, PIP2 is not sufficient to recruit EPN-1 to the 

plasma membrane and requires assistance from another protein that is not expressed in 

neurons. Second, during clathrin-mediated endocytosis, the spatial and temporal protein-

protein interactions for synaptic vesicle recycling are distinct from the well-studied 

transfferin and EGFR endocytosis. EPN-1 might not be involved in endocytosis at 

presynaptic terminals. Since AP2 is responsible for the majority of synaptic vesicle 

recycling, as suggested in Chapter 3, there may exist a neuronal specific BAR domain or 

ENTH domain protein to fulfill the role of EPN-1 in curvature acquisition. On the other 

hand, the expression of epn-1 in the nerve ring suggests that EPN-1 does in fact function 

in neurons. Studies from Drosophila indicate that Epsin functions in ubiquitin pathways 
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to regulate synapatic plasticity and structure (Bao et al., 2008), In C. elegans, Epsin is 

present in the head nerve ring but is absent from synapses and cell bodies of motor 

neurons suggesting if Epsin plays a similar role in worms, this function is only required 

in subset of neurons. 

 
Materials and methods 

Strains 

 The wild strain is Bristol N2. The reference allele tm3357 was nicely provided by 

the C. elegans gene knockout consortium and was outcrossed four times before 

phenotypic analysis. 

 The strain used for the EPN-1 translational GFP analysis was unc-119(ed3)III; 

oxEx1424[Pepn-1::epn-1::GFP unc-119(+)]. 

 The strains used for epn-1 tissue-specific rescue were: epn-1(tm3357)X; 

oxEx1399[ Pepn-1::epn-1::GFP Punc-122::GFP] and epn-1(tm3357)X; 

oxEx1406[Prab-3::epn-1::GFP Pcc::GFP] oxEx1413[ epn-1(+) Pmyo-2::mCherry]. 

 
GFP construct 

 The Multisite Gateway three fragment construction system was used (Invitrogen 

catalog no.12537-023) to generate all epn-1::GFP constructs. A 1.5 kb genomic fragment 

before the ATG of epn-1 was cloned into the pENTRY4-1 donor vector. ATGless, Prab-3 

and Pdpy7 4-1 entry vectors are the same as those described in Chapter 3. The epn-1 

genomic coding sequence of about 1.9 kb was cloned into the pENTRY 1-2 donor vector. 

The 3’ UTR entry vector pENTRY2-3 GFP::unc-54 3’UTR was made and used in the LR 

reaction to generate the epn-1::GFP fusion gene driven by different promoters.  
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Microinjection 

 The total DNA concentration of the injection mixes were 100 ng/ul. All epn-

1::GFP related constructs were injected at 1ng/ul. Different coinjection markers were 

injected at the following concentrations: Punc-122::GFP (50 ng/ul); unc-119(+) (50 

ng/ul); Pmyo-2::mCherry (2.5 ng/ul). Fermentas 1kb DNA ladder (#SM0311) was used 

to bring the final concentration to 100 ng/ul. 

  
Confocal microscopy 

 Worms were immobilized with 2% phenoxy propanol and imaged on a Pascal 

LSM5 confocal microscope using a Zeiss plan-Neofluar 10x 0.3 NA, 20x 0.5 NA, 40x 

1.3 NA oil or Zeiss plan-apochromat 63x 1.4NA oil objectives. 
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CHAPTER 6 

 
SUMMARY AND FUTURE DIRECTION 

To support the fast rate of neurotransmission, synaptic vesicles need to be locally 

recycled and reloaded with neurotransmitters after exocytosis. Clathrin-mediated 

endocytosis is widely accepted to be involved in this process. Here we investigated its 

role for synaptic vesicle recycling in C. elegans. The basic approach is to disrupt clathrin-

mediated endocytosis by knocking out endocytic accessory proteins in the same pathway 

which, in this thesis, include the major adaptor complex AP2, the synaptotagmin adaptor 

UNC-41 and a membrane bending protein Epsin. 

 
AP2 is required for synaptic vesicle recycling 

AP2 recruits transmembrane cargoes to the endocytic site and nucleates clathrin to 

initiate growth of the clathrin-coat. In addition, the two big subunits of AP2 can interact 

with a variety of endocytic accessory proteins, such as other adaptors, membrane-bending 

proteins and the pinchase, dynamin (Owen et al., 2000; Praefcke et al., 2004). Because of 

AP2’s central role, removal of the medium subunit  in mice (Mitsunari et al., 2005) or 

the big subunit  in flies (Gonzalez-Gaitan and Jackle, 1997) causes embryonic lethality. 

However, C. elegans are still viable after knocking out either 2 or  adaptin. The 

subcellular localization of  adaptin is normal in 2 adaptin mutants in C. elegans (Gu et 

al., 2008) and the reciprocal experiment gives the same result (Figure 3.4), suggesting 



AP2 might still partially function in single adaptin mutants. When these two adaptin 

mutants are crossed together, worms exhibit a high dead rate, which recapitulates the 

phenotypes from mice and flies. Based on the crystal structure,  adaptin forms half of 

the AP2 complex with one of the big subunits 2 and  adaptin forms the other half of 

the AP2 complex with the small subunit 2 (Collins et al., 2002b). This suggests that AP2 

is required for worm viability. Eliminating the entire AP2 complex requires knocking out 

at least 2 and  adaptins simultaneously. 

We rescued the adaptin double mutant back to a maintainable strain by 

introducing the 2 and  subunits specifically back to the hypodermis. Ultrastructural 

analysis indicates that the number of synaptic vesicles is reduced by 70% in the skin-

rescued double mutants. However their locomotion is fairly normal with just a mild 

defect in the worm thrashing assay. These results indicate that AP2 is responsible for the 

majority of synaptic vesicle recycling in C. elegans. On the other hand, AP2 independent 

endocytosis clearly exists. In the absence of  adaptin, synapses accumulate large 

vesicles that are likely to be endosomal intermediates. Disruption of clathrin-mediated 

endocytosis via AP2 elimination likely stresses the synapse. It is possible that under these 

conditions endocytosis at the cell surface leans more heavily on the AP2-independent 

bulk endocytosis. A recent study suggests that AP1 is involved in generating vesicles 

from endosomal intermediates (Glyvuk et al., 2010). And from an older point of view, 

this method of vesicle recycling could also depend on AP3 (Danglot and Galli, 2007). 

Further studies on the function of AP1 and AP3 in synaptic vesicle endocytosis will 

improve our understanding of vesicle recycling through endosomal intermediates. 

Mutants for the  subunits of each AP complex are currently available in C. elegans. 
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Because AP-dependent endocytosis also requires clathrin, the vesicle-recycling defect 

observed in a 1-3 triple mutant would also indicate the role of clathrin in synaptic 

vesicle recycling. 

 
UNC-41 is the absolute synaptotagmin recruiter in C. elegans 

In clathrin-mediated endocytosis, different transmembrane cargoes require 

specific adaptors for recruitment into clathrin-coated pits. However, the mechanism for 

re-sorting vesicle proteins into clathrin-coated pits is still poorly understood. AP180 is the 

specific adaptor for synaptobrevin in C. elegans. In AP180 mutants, synaptobrevin is not 

clustered at synaptic varicosities but diffuses throughout the axon (Nonet et al., 1999). 

The specific adaptor for synaptotagmin is stonin2 in mammals or stoned in Drosophila 

(Fergestad and Broadie, 2001; Jung et al., 2007). The orthologue of stonin2 is encoded by 

the gene unc-41 in C. elegans. We found that the synaptotagmin binding site on UNC-41 

is essential for UNC-41 synaptic localization. In the absence of UNC-41, synaptotagmin I 

diffuses away from synapses suggesting that in C. elegans, the mechanism for recycling 

synaptotagmin is similar to human and Drosophila. However in contrary to the previous 

StonedB result from Drosophila (Fergestad and Broadie, 2001), overexpressing 

synaptotagmin I can not by pass the requirement of UNC-41, which suggests UNC-41 is 

absolutely required for maintaining the proper sub-cellular localization of synaptotagmin 

I. Compared to stonin2 and stoned, UNC-41 is conserved at its C-terminus including the 

stonin homologous domain and the homologous domain. But its N-terminus is quite 

different and contains the DPF motif for interaction with AP2. Therefore this part of the 

protein could confer some novel functions. 
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Epsin is not required for curvature acquisition at synapses 

Membrane invagination is one of the critical steps in clathrin-mediated 

endocytosis. So far, proteins containing N-BAR domains or ENTH domains have been 

shown to generate membrane curvature (Itoh and De Camilli, 2006). Epsin is one of the 

well-known ENTH proteins. It is a potential adaptor for ubiquitinated cargoes and can 

bind clathrin, AP2 and EH domain containing proteins. More importantly, this protein 

facilitates clathrin coat formation on the invaginated membrane. In vitro, clathrin coated 

pits are flat in the absence of Epsin (Ford et al., 2002), suggesting Epsin functions at the 

onset of clathrin-mediated endocytosis. Therefore the absence of Epsin should cause all 

clathrin-mediated endocytosis to stall at the plasma membrane. In C. elegans, the absence 

of Epsin causes embryonic lethality, suggesting the early requirement of this protein 

during worm development. However, Epsin shows a low level of neuronal expression and 

is not expressed at worm synapses, indicating it is not involved in synaptic vesicle 

recycling. A study from Drosophila Epsin illustrates a similar result (Bao et al., 2008). 

Since clathrin-mediated endocytosis is clearly involved in synaptic vesicle recycling in C. 

elegans, some other membrane bending protein must acquire membrane curvature at 

synapses. One potential candidate is the N-BAR domain protein, endophilin. In lamprey, 

blocking endophilin at synapses causes the accumulation of shallow clathrin-coated pits 

(Andersson et al., 2010). In C. elegans, endophilin mutants show a severe synaptic 

vesicle recycling defect (Schuske et al., 2003). Another candidate is the N-BAR domain 

protein, amphiphysin. However, it is more likely to function at the end of clathrin-

mediated endocytosis by sensing the membrane curvature at the fission neck and 

recruiting dynamin and actin skeleton for vesicle scission from the plasma membrane 
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(Dawson et al., 2006). In the future, it will be interesting to do an in vitro assay on 

liposome tubulation by adding these synaptic enriched BAR domain or ENTH domain 

proteins. A screen for other BAR domain protein mutants will also be important.  
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