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ABSTRACT 

 

The purpose of this dissertation is to investigate the heterogeneity in patterns of 

aging and the factors throughout the life course that shape them.  By focusing on 

variability within the population we are able to advance our knowledge of how 

circumstances throughout the life course affect the way individuals age.  We find that the 

paths to disease and longevity are diverse and that the social environment plays an 

important role in shaping these patterns.  Our results support a wide body of literature 

showing that morbidity is not an inevitable consequence of aging, even in the oldest old 

population.  Health status and longevity are shaped by the historical circumstances and 

social environments that we live in.   This study offers three innovative and significant 

contributions to the understanding of biological and environmental determinants of aging 

by (1) disentangling the biological and temporal sources of trends in cancer incidence 

among the elderly, (2) investigating the possible social and physiological effects of 

fertility history on comorbidity trajectories after age 65, and (3) studying heterogeneity in 

the heritable contributions to variation in longevity across early life family and social 

environments.    
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CHAPTER 1 

 

AGING AND LONGEVITY: THE PAST AND FUTURE TRENDS 

 

Introduction 

Demographers, biologists, social scientists, geneticists, historians, and other 

scientists have long embarked on the quest of uncovering the secrets of healthy aging and 

longevity.  While the fascination with longevity is not unique to this time period, the 

rapid changes in life expectancy and population structure over the past century have 

elevated the importance of understanding determinants of healthy aging and longevity. 

The mortality profiles of the developed countries have especially undergone fundamental 

transformations over the past century.  Life-expectancy in these populations has increased 

linearly by approximately 3 months per year for the past 160 years (Oeppen & Vaupel, 

2002).  Historically, these improvements have been largely due to improvements in 

survival in infancy and childhood.  While less recognized, death rates at older ages have 

also greatly improved over the last half of the 20
th

 century (Vaupel et al., 1998).   

Significant declines in fertility during the demographic transition combined with 

gains in life expectancy past age 65 have led to population aging (rising proportions of 

the population age 65 and older) and increased levels of old-age dependency.  These 

changes have had profound policy implications.  It is estimated that the proportion of the 
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population age 65 years and older will increase from 12.3% in 2000 to 21.1% in 2050 in 

the United States (Uhlenberg, 2005).  The oldest old population (ages 85+) is projected to 

more than triple from its current estimate of 5.7 million to 24 million by 2050 (Vincent, 

Velkoff, & Bureau, 2010), making it the fastest growing segment of the population.   The 

rising proportions of the population above the age of 65, combined with increases in life 

expectancy and current trends in mortality decline in the oldest age categories, have made 

the determinants of longevity and healthy aging critical to understanding population 

health.  Aging research is an extremely important domain of population health, and its 

significance will increase as the proportion of the population age 65 and older continues 

to rise.   

The biological and social factors that determine healthy aging and longevity, and 

their interaction, are still not well understood.  In the past, misconceptions about the 

limits of life-span have led demographers to underestimate the rate of decline in old-age 

mortality (Uhlenberg, 2005).  Current  projections suggest that if the present gains in life 

expectancy continue, more than half of individuals born after 2000 will live to see their 

100
th

 birthday (Christensen, Doblhammer, Rau, & Vaupel, 2009).  Unfortunately, such 

projections ignore the complex interactions of social and biological factors that determine 

mortality.   

This dissertation improves upon previous research by investigating the influence 

of the social environment, biology, and heritability throughout the life course on healthy 

aging and longevity.  The studies presented in this manuscript seek to disentangle the 

biological and temporal sources of trends in cancer incidence, investigate the possible 

social and physiological effects of fertility history on comorbidity trajectories after age 

65, and explore the heterogeneity in heritable components of total phenotypic variation in 
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longevity across early life family and social environments.  A fuller understanding of 

heterogeneity in patterns of aging and the factors throughout the life course that shape 

them will lead to more accurate population prediction, identify at risk population that 

may benefit from more effective public health interventions, and characterize the process 

of aging in a diverse population.   

A rigorous investigation into biological and social causes of healthy aging and 

longevity at advanced ages requires a theoretical framework capable of assimilating 

theories from multiple disciplines.  Biodemography provides a multidisciplinary 

synthesis of biological, evolutionary, social science, ecological, life history and 

demographic theories and is primed to answer a range of questions including those about 

both how and why humans age (Vasunilashorn & Crimmins, 2008).  Over the past few 

decades, demographers have broadened the focus of work in the demography of aging 

from a population aging perspective (i.e., measures of change in population age 

structure), to include a perspective that integrates health and biological explanations with 

traditional demographic and social theories of aging to explain variations in health and 

mortality within and between populations (Olshansky, Carnes, & Brody, 2002; Siegel, 

2011; Vasunilashorn & Crimmins, 2008).   

 

The Biodemographic Perspective of Aging 

As developed countries began to recognize most of the longevity gains to be 

secured were achieved by improving infant and childhood mortality, questions began to 

surface about how much improvement can be made in mortality rates at the other end of 

the spectrum, what proportion of mortality at these ages is biologically determined, and 

whether we are approaching a maximum life expectancy or linear gains can continued to 
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be realized (Carnes & Olshansky, 2007; Vaupel et al., 1998).  “Aging, Natural Death, and 

the Compression of Morbidity,” an article published by James Fries (1980), resulted in  a 

lively debate about the limits of life-span within the field of demography, with some 

arguing that physiological decay was innately programmed (Fries, 1980), others 

suggesting that old age is not biologically determined but there are practical limits that 

will make steady improvements difficult (Carnes & Olshansky, 2007), and a third group 

projecting linear increases in life expectancy for the foreseeable future (Vaupel et al., 

1998).   

This debate is centered on a pivotal question; are we biologically programmed to 

die?    Even under ideal conditions, there is a progressive increase in age-specific death 

rates and senescence (Carey & Judge, 2001).  Theories aimed at answering why we 

senesce and inevitably die can be classified into two broad categories: thermodynamic 

and biological evolutionary theories of aging (Austad, 2001).  Thermodynamic theories 

implicitly or explicitly claim that aging is the inescapable consequence of the physical 

nature of matter. These theories arrive at the conclusion that senescence is a genetically 

programmed rate of decay, the natural consequence of approaching one’s maximum 

possible life-span (Fries, 1980).  Biological evolution theories explain senescence in 

terms of selection forces acting on life history traits (Kirkwood & Rose, 1991).  

Reliability theories of aging, optimization models, and nonadaptive mutation models (see 

Table 1.1 for a more detailed description of these theories) all describe senescence as a 

byproduct of evolution and not an innately programmed switch that is common to all 

organisms. 

The compression of morbidity hypothesis (Fries, 1980) argues that morbidity and 

disability can be compressed to shorter periods toward the end of the life-span through 
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primary prevention such as maintaining a healthy lifestyle.  Principally, he argued that 

the rectangularization of the survival curve would be accompanied by an increase in age 

at onset for chronic disease and disability which, in turn, compresses the time spent in a 

diseased or disabled state.  Others argued the failure of success hypothesis, which 

suggests that improved survival of frail individuals will lead to increases in disease later 

in life (Gruenberg, 1977; Kramer, 1980).   Not only did these hypotheses spark interest in 

determinants of life-span, but they also led to debate about heterogeneity in patterns of 

aging, whether increased life expectancy indicated increased healthy life expectancy, and 

whether centenarians escaped major age-related diseases.   

The evidence consistent with morbidity compression is still uncertain.  Most 

evidence for individuals younger than 85 suggests there has been a postponement in 

disease and disability over time, but little is known about trends in the population age 

85+.  This is largely because health data for this group of the population is not as readily 

available (Boscoe, 2008).  Although there are some studies of disease in centenarians that 

suggest that a proportion of these exceptionally long-lived individuals delay or escape 

disease, there is still considerable variation in disease experience (Andersen, Sebastiani, 

Dworkis, Feldman, & Perls, 2012; Evert, Lawler, Bogan, & Perls, 2003).  Uncertainty of 

the expected trends in morbidity with age coupled with the fiscal demands of the 

Medicare program have made the question of morbidity patterns above age 65 a central 

biodemographic question.  While the association between morbidity and mortality is 

complex and varies across populations and environments (Siegel, 2011), most 

classifications of morbidity (for example, heart disease and dementia) lead to higher rates 

of death (Vaupel, 2010).  Therefore, a more complete understanding of the determinates 
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of major morbid conditions and how these factors change over time can yield better 

predictions of morbidity and mortality trends at advanced ages.   

In his 1980 paper, Fries made a prediction: life expectancy would not exceed 85 

years. This prediction was quashed in 2007, when the average life-expectancy for 

Japanese women reached 86 years (Christensen et al., 2009).  The continued steady rise 

in life expectancy suggests that if there is a fixed limit, we have not yet reached it.  While 

limits in life expectancy suggested by those supporting a biological limit to life-span have 

been surpassed, Jean Calment’s documented life-span of 122 years has yet to be broken.   

Therefore two questions still remain: are we biologically programmed to die, and what 

patterns of disease can we expect to see if life expectancy continues to rise?  While these 

questions have important implications for future population projections, we cannot arrive 

at a suitable answer unless we consider another component that has been largely ignored 

up to this point in the discussion: the relationship between social context, healthy aging, 

and longevity.   

Aging does not take place in isolation.  It is heavily influenced by our 

environments.  Understanding the interplay between social context and biological factors 

is imperative to understanding and predicting future trends in aging and mortality. Social 

and historical context must be considered when determining morbidity and mortality 

trends within a population.  For example, studies have suggested that age, period, and 

cohort factors are all important factors that affect population trends in mortality (Preston 

& Wang, 2006; Yang, 2008).  Mortality at ages 80 years and above has fallen at an 

unprecedented pace since the 1950s (Kannisto, 1996), but old-age mortality in the United 

States has stagnated since 1980 (Rau, Soroko, Jasilionis, & Vaupel, 2008).  Other authors 

have also noted the potential flaws in predicting future trends in longevity without 
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considering the social and historical context which shapes it, and have suggested that the 

rapid increase in obesity may lead to declines in life expectancy in the near future (Jay 

Olshansky et al., 2005; Reither, Olshansky, & Yang, 2011).  Accurate predictions of 

health and mortality of the aged population requires an approach that crosses disciplinary 

boundaries and integrates biological and sociological concepts.   

Biodemographers embrace the view that sociological context affects healthy 

aging and longevity, for not only do social theories explain the demographic transition 

but the central idea that health and longevity is socially patterned is deeply rooted in the 

sociological tradition (Berkman & Syme, 1979; House, Landis, & Umberson, 1988; Link 

& Phelan, 1995; Wen, Browning, & Cagney, 2003; Wise, 2003).  But by integrating 

biological theories and measures with sociological theories, the field of biodemography 

has great potential for making contributions that will improve public health by 

considering how social, economic, behavioral, and psychological conditions “get under 

the skin” to cause health problems (Crimmins & Seeman, 2004; Robine, 2006; 

Vasunilashorn & Crimmins, 2008).  It has also become evident that proximate social 

circumstances alone cannot explain heterogeneity in aging and the experiences across the 

life course play an important role.   

 

Biology, the Life Course, and Aging 

Healthy aging and longevity cannot be understood by restricting analysis to a 

single life stage because aging is a lifelong process.  The life course perspective places 

importance on both the historical and demographic parameters related to aging and 

longevity, as well as the biological, social and psychological factors that influence aging 

and longevity through direct (e.g., biological imprinting) and indirect (e.g., cumulative 
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and pathway) mechanisms throughout the life course (S. H. Preston, Hill, & Drevenstedt, 

1998; Settersten, 2003).  Simply put, it requires the researcher to consider how risk is 

shaped throughout the life course, beginning with biological development in utero. 

Genetic influences have been cited as perhaps the earliest biological factor 

contributing to later life morbidity and mortality (Smith, Hanson, & Zimmer, 2012).  The 

two types of longevity genes, gerontogenes and longevity-assurance genes, can be used to 

describe the effects of genes on longevity  (Christensen, Johnson, & Vaupel, 2006; 

Sebastiani et al., 2012).  Gerontogenes negatively affect longevity, thus life-span 

increases when their expression is blocked.  Longevity assurance genes lead to a 

phenotypic expression of longer life-span and therefore longevity decreases when their 

expression is blocked.  Thus, genetic endowments may either be protective, as in the case 

of familial excess longevity (Smith, Mineau, Garibotti, & Kerber, 2009), or detrimental, 

as in the case of certain apolipoprotein E (APOE) alleles (Ewbank, 2004).  

Genes are fixed at birth, but is their expression?  To answer this question, 

comparisons of monozygotic and dizygotic twins have been made to compare life spans 

while holding the childhood environment constant.  These studies estimate heritability of 

life-expectancy to be 25% (Herskind et al., 1996; Skytthe et al., 2003).  Twin studies 

have also revealed the variable nature of gene expression with age (Fraga et al., 2005; 

Petronis et al., 2003) and it has been suggested that epigenetic mechanisms cause 

individuals with the same genotype to have increasingly divergent phenotypes with age.   

An individual’s genotype is inherited at birth and can be considered immutable.  

However, gene expression is malleable because it is influenced by the environment 

through the epigenome.  Epigenetic modifications can be defined as “the sum of heritable 

changes…that affect gene expression without changing DNA sequence” (Montesanto, 
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Dato, Bellizzi, Rose, & Passarino, 2012).  Epigenetics is a bridge between genetics and 

environment and may explain a portion of the variation in the rate of aging and longevity.  

It is one of several possible biological mechanisms that allow social circumstances to get 

“under the skin,” and epigenetic modifications have the propensity to persist across 

subsequent generations (Feinberg, 2007).   Differences in community and family 

environments may affect the epigenetic regulation of gene expression and lead to 

variation in the longevity phenotype.  Recent studies suggest a relationship between 

strength of genetic correlations and the quality and variability of an environment 

(Charmantier & Garant, 2005).  There may also be epigenetic changes in response to 

individual social experiences throughout the life course (Champagne, 2010).   Does the 

social environment throughout the life course shape later life health and mortality? 

Events throughout the life course can alter physiological functioning and affect 

later life health and longevity.  Early life conditions have been shown to be significantly 

correlated with adult mortality for individuals and cohorts (Abel & Kruger, 2010; Barker, 

1995; Doblhammer & Vaupel, 2001; Eriksson, Forsén, Tuomilehto, Osmond, & Barker, 

2001).  The fetal origins hypothesis and inflammation hypothesis are two theories that 

have been used to explain the biological programming of an individual early in life.  

According to the fetal origins hypothesis, individuals exposed to adverse conditions in 

utero may have altered morbidity and mortality trajectories due to altered development of 

key organ systems or epigenetic modifications during gestation.  The inflammation 

hypothesis argues that exposures to infectious disease during infancy and childhood 

result in altered morbidity and mortality trajectories in adulthood  (Crimmins & Finch, 

2006; Finch & Crimmins, 2004).  McDade, Rutherford, Adair, and Kuzawa (2010) have 

proposed a related but alternative hypothesis predicting a negative relationship between 
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exposure to infectious disease and inflammation in adulthood, arguing that exposure to 

infectious diseases are necessary for healthy development of the immune system.   

Early life conditions may also be indirectly associated with morbidity and 

mortality outcomes through correlated environments, cumulative processes, health 

selection, and mortality selection.  Indirect associations through correlated environments 

are based on the principle of continuity of the life course and that one’s environment 

during childhood is the same or similar to one’s adult environment.  Selection 

mechanisms may also lead to an indirect association between early life circumstances and 

later life health outcomes.  The health selection hypothesis argues that illness has social 

consequences that may lead to poor socioeconomic status (SES) later in life and that it 

may be the more proximate exposure to poor SES that is responsible for the observed 

association between early life conditions and later life health (Montez & Hayward, 2011).  

This continuity may lead to erroneously attributing the observed outcome to early life 

conditions, when it is the proximate environment that is leading to adverse health 

outcomes.  Alternatively, genetic heterogeneity in the population may lead to differential 

mortality selection; with those at the highest risk, the frail, being culled from the 

population early leading to a population with a disproportionate representation of robust 

individuals at older ages (Elo & Preston, 1992; Hawkes, Smith, & Blevins, 2012).    

Related to this argument is the cumulative advantage/disadvantage hypothesis, 

which argues that early life events can set into motion a trajectory where 

advantage/disadvantage is accumulated throughout the life course (O'Rand & Hamil-

Luker, 2005).  Sequential exposures to adverse environments may lead to excess stress or 

exposure to chronic stress that leads to increased risk for disease later in life.  

Conceptualizing aging and longevity as a lifelong processes allows for the study of how 
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inequalities are created through the accumulation of advantage/disadvantage across the 

life course (Elder & Giele, 2009).  Cumulative disadvantage can be set into motion by 

early life events or situations that lead to structural constraints throughout the life course 

(O'Rand & Hamil-Luker, 2005).   

Physiological changes to the body in response to social conditions are not 

constrained to critical or sensitive periods of development.  These changes can occur in 

response to prolonged exposure to stress throughout the life course.  Allostatis, the ability 

to achieve stability through change, is maintained in the body through the autonomic 

nervous system, hypothalamic-pituitary-adrenal (HPA) axis, and the cardiovascular, 

metabolic, and immune systems (McEwen, 1998).  Allostatic load describes a process 

through which exposure to chronic stress throughout the life course can lead to wear and 

tear in these systems and lead to poor health in adulthood (Geronimus, 1992; McEwen, 

1998), and these effects can be attenuated or accentuated by an individual’s access to 

economic, social, or personal resources (Elder & Giele, 2009).  Under this hypothesis, 

individuals that are continually exposed to stress may experience physiological 

deterioration of key systems that lead to chronic disease later in life.  Recent epigenetic 

research has also shown that epigenetic modifications occur across the life span 

(Champagne, 2010; Montesanto et al., 2012; Shanahan & Hofer, 2011).  While more 

research needs to be done, it has been suggested that epigenetic changes during the aging 

process may directly contribute to malignant transformation of cells (Fraga, 2009). 

Placing human lives in context is fundamental to life course research.  The life 

course perspective promotes the view that social and physical environments vary by time 

and space and underscores the multiple layers of human experience.  It also highlights the 

importance of historical change in determining health.  These temporal changes in the 
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social or ecological environment are dependent upon the age of an individual and are 

unique to a group of people born during the same time period or birth cohort.  

Biodemography adds to this concept by recognizing that we live in a very different 

environment from the one in which our life history evolved.  Genetic, social, and 

economic history and environments play an important role in shaping health and disease 

patterns across populations and communities.   

Birth cohorts are a measure of the social forces that shape health throughout the 

life course (Keyes, Utz, Robinson, & Li, 2010).   They vary in size, demographics, social 

norms, prevalence of infectious disease, food availability, level of medical knowledge, 

education, occupation, urbanization, etc., making each cohort unique.  For example, 

changes in smoking patterns or other environmental exposures over time may lead to 

cohort specific trends in cancer incidence.  They have been regarded as fundamental units 

of social organization (Easterlin, 1998; Elder, 1999).  Finch and Crimmins’ cohort 

morbidity phenotype hypothesis suggests that differential exposure to infectious diseases 

during childhood will lead to cohort differences in old age morbidity and mortality 

(Crimmins & Finch, 2006; Finch & Crimmins, 2004).  While cohort effects have proven 

important for a number of different outcomes related to aging and longevity (Chen, Yang, 

& Liu, 2010; Yang, 2008), some researchers are skeptical of the life course researcher’s 

fascination with historical time (Fry, 2003), and others have argued that period factors 

play a more important role in determining mortality rates in old age (Gagnon & Mazan, 

2009; Kannisto, 1996).   

The life course perspective facilitates questions about possible pathways to later 

life health and potential confounding factors.  The integration of biodemographic 

principles and the life course framework could lend important insight into how the 
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heritability of longevity may be altered by events throughout the life course. Biological, 

social, and psychological theories of development will be integrated in an attempt to 

create a more complete view of how later life health is shaped by a lifetime of past 

exposures. 

Population aging is one of the greatest societal challenges of the next 50 years 

(Kalache, Barreto, & Keller, 2005; Schoeni & Ofstedal, 2010).  There are both social and 

economic consequences of population aging.  Accurate projections of how the elderly 

population ages has policy implications for forecasting Social Security and Medicare 

expenditures and predicting the costs of aging nationally and globally.  The increase in 

the proportion of the population over the age of 65 will also change the types of illnesses 

and prevalent diseases in the population, affecting the types of medical services needed.  

The projected increase in the proportion of the population at advanced ages has grave 

implications for public pension programs, health care, and old age dependency.  A greater 

understanding of the sociological, biological, and heritable determinants of aging and 

longevity is essential to maintaining a healthy population and economy.  

  

The Determinants of Aging and Longevity 

 Perhaps the best way to elucidate mechanisms of aging and longevity is to study 

the heterogeneity in morbidity and longevity and determine what factors contributed to 

observed differences.  This research contributes to the scientific understanding of aging 

and longevity patterns and the factors throughout the life course that influence them.  

Understanding the sources of variation in patterns of aging and longevity is important for 

creating accurate population predictions, identifying at-risk populations that may benefit 
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from public health interventions, and characterizing the process of aging in a diverse 

population.  

Cancer was the second leading cause of death for individuals aged 65 and older in 

the United States in 2010 (Miniño & Murphy, 2011), making it an essential component to 

the study of aging and morbidity.  Studies that do not account for changes in the 

environment, diet, health behaviors, and screening and diagnostic practices are ignoring 

the multifaceted determinants of cancer and may be inadvertently attributing temporal 

determinates of observed trends to biological mechanisms.  Failing to account for cohort 

and period specific trends may confound the true age trajectory of cancer in this 

population.  Chapter 2 disentangles these trends for individuals age 65 to 99 using Utah 

cancer incidence rates from 1963 to 2002, which lend better understanding to the true 

age-specific trends in cancer incidence, including the previously understudied oldest old 

age group (85+).  It is important to account for cohort variations in aging and longevity in 

order to avoid misattributing patterns caused by historical circumstances to biological 

changes associated with age.  Disentangling age, period, and cohort effects for major 

health conditions in the oldest old categories will allow for more definitive assertions 

about the possible causes of mortality deceleration and increased accuracy in forecasting 

of future trends used to predict the fiscal burdens of an aging population.   

The pathology of chronic disease is multifaceted, determined by genetic profiles, 

biological and physiological development, and the social environment, with the strength 

and relative importance of each of these factors varying throughout the life course.   

Understanding longitudinal patterns of morbidity after age 65 is important to 

understanding the mechanisms of aging and longevity.  Equally important is what 
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predicts the observed patterns.  Are measures of fertility and reproductive health 

associated with morbidity profiles later in life?   

Biological, evolutionary, and social theories all predict a relationship between 

fertility and later life morbidity trajectories.  Chapter 3 examines the role of parity, young 

age at first birth, age at last birth, interbirth intervals, infant death, multiple births (twins), 

marital status at time of birth, birth weight of offspring, and preterm births for both men 

and women on disease progression after age 65.  This study utilizes Centers for Medicare 

(CMS) data spanning from 1992 – 2009 linked to the Utah Population Database, which is 

a rich source of longitudinal data.  Studying the effects of fertility history on men and 

women at several stages in the aging process will lend clues to biological, evolutionary, 

and social mechanisms that may lead to the observed outcomes.   

For a more complete understanding of population heterogeneity in life-span and 

the forces behind it, one must not only understand the average contribution of genes and 

environment within a population toward explaining variation in adult mortality, but 

uncover the factors that influence patterns of variation within the population.  While there 

is strong evidence supporting a genetic component to longevity, surprisingly, its size and 

relative importance is poorly understood.  Longevity is a complex trait, determined by a 

multiplicity of genetic and environmental factors, with each factor contributing a 

potentially small amount to phenotypic variation.   This phenotypic variation can be 

partitioned into genetic and environmental variation.  Chapter 4 tests for heterogeneity in 

the heritability of longevity across several early and midlife environments and explores 

the possibility of gene-environment interactions (GxE).  By examining sources of 

variation in heritability estimates, we can illuminate factors that modify the expression of 

genetic predisposition in a population.  Understanding the role of biological and 
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environmental determinants of aging and mortality, and how they interact, can allow for 

the identification of sources of variation in morbidity and mortality and improve 

predictions of morbidity and mortality for future generations. 

The final chapter provides a short summary of the findings from the studies 

presented in Chapters 2-3.  These studies provide insight into patterns and processes of 

aging and highlight important factors to consider as the proportion of the population aged 

65 years and older continues to grow.  This chapter also gives direction for future 

research and policy implications.   
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 CHAPTER 2  

 

AN AGE-PERIOD-COHORT ANALYSIS OF CANCER INCIDENCE  

AMONG THE OLDEST OLD
1
 

   

 

Abstract 

Disentangling age, period, and cohort effects for major health conditions in the 

oldest old categories will lead to better population projections of morbidity and mortality.  

Data from the Utah Cancer Registry (UCR), the U.S. Census, the National Center for 

Health Statistics (NCHS) and the National Cancer Institute’s Surveillence Epidemiology 

and End Results (SEER) program are used to generate age-specific estimates of cancer 

incidence for ages 65–99 from 1973–2002 for Utah.  Age-period-cohort (APC) analyses 

are used to describe the simultaneous effects of age, period and cohort on cancer 

incidence rates in an attempt to understand the population dynamics underlying their 

patterns. Our results show increasing cancer incidence rates up to the 85–89 age group  
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followed by declines for ages 90–99 net of period and cohort effects. We find significant 

period and cohort effects, suggesting the role of environmental mechanisms in cancer 

incidence trends between the ages of 85 and 100. 

 

Introduction 

The demographic profile of the United States is changing, with proportionately 

more individuals surviving to very old ages.  The oldest old population (ages 85+) is 

projected to more than triple from its current estimate of 5.7 million to 24 million by 

2050 (Vincent, Velkoff, & Bureau, 2010), making it the fastest growing segment of the 

population.  This substantial growth makes the study of morbidity and mortality for this 

age group increasingly important. 

The deceleration of all-site mortality at advanced ages is a commonly observed 

phenomenon in both humans and animal species (Horiuchi & Wilmoth, 1998; Vaupel et 

al., 1998) andcan be explained at the macrolevel due to changes in population 

composition  (e.g., heterogeneity hypothesis) or at the microlevel attributable to 

physiological changes related to aging, (e.g., individual risk hypothesis).  Alternatively, 

this observed trend may be the result of age misreporting in the oldest age categories, 

heterogeneous birth cohorts, and inaccurate measures of mortality in the oldest age 

categories (Gavrilov & Gavrilova, 2011).  While the association between morbidity and 

mortality is complex (Siegel, 2011), studying patterns of human morbidity gives insight 

into the age related changes in morbidity and mortality (Svetlana V. Ukraintseva & 

Yashin, 2001), particularly for prevalent diseases such as cancer.  A more complete 

understanding of the determinates of cancer and how these factors change over time can 

yield better predictions of morbidity and mortality trends at advanced ages.  
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Disentangling age, period, and cohort effects for major health conditions in the oldest old 

categories will allow for more definitive assertions about the possible causes of mortality 

deceleration and increased accuracy in forecasting of future trends used to predict the 

fiscal burdens of an aging population.   

Little is known about age-specific disease incidence and prevalence among the 

oldest old, including cancer (Boscoe, 2008).  In 2000, the oldest old age group accounted 

for 8% of all incident cancer cases, and this number is projected to rise to 17% by 2050 

assuming current incidence rates continue (Hayat, Howlader, Reichman, & Edwards, 

2007).    Unfortunately, traditional surveillance methods limit our ability to examine age-

specific cancer incidence in this subpopulation.  The National Cancer Institute’s 

Surveillance Epidemiology and End Results (SEER) program aggregates cancer 

incidence information for the 85+ age group, making it difficult to study cancer trends in 

the oldest old. 

The few studies that examine cancer incidence trends after age 85 present 

evidence of a deceleration in cancer incidence, prevalence, and mortality at the oldest 

ages. (C. Harding, Pompei, Lee, & Wilson, 2008; Kaplan & Saltzstein, 2005; Saltzstein, 

Behling, & Baergen, 1998).   While patterns for different time periods are presented for 

the oldest old population, the literature is limited with regard to analyzing change in the 

trends over time.  Time is a dimension of context, or the structure of the physical and 

social environment related to a specific period or historical experiences unique to a birth 

cohort, that influences health (Suzuki, 2012).  Recent studies have shown the importance 

of considering not only the effect of age, but also the role of period and cohort 

experiences when studying health outcomes (Reither, Hauser, & Yang, 2009; Yang, 

2008).  Sex-specific trends in both all-site and site-specific cancer also need to be 
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considered because there may be different biological and social determinants of cancer 

for men and women that vary by site (Yancik, 2005).  This study aims to contribute to the 

current literature by examining age, period, and cohort trends in cancer incidence from 

1973 to 2002 for ages 65 to 99 using data from the Utah Cancer Registry (UCR), the 

National Cancer Institute’s Surveillance, Epidemiology and End-Results Program 

(SEER), the decennial Census, and the National Center for Health Statistics (NCHS).   

 

Background 

Disentangling Age, Period, and Cohort Effects 

Age effects are generally understood to represent the biological characteristics of 

an individual.  Cross-sectional studies of all-site cancer incidence and death rates show 

that rates generally increase with age, peaking between ages 75 and 85, and then 

plateauing before declining in advanced ages (Andersen et al., 2005; Arbeev, 

Ukraintseva, Arbeeva, & Yashin, 2005a; C. Harding et al., 2008; Saltzstein et al., 1998; 

Stanta, 1997).  However, many of these studies can only offer limited conclusions about 

cancer trends in the oldest old because they aggregated ages 85+, examined a single 

period, or failed to consider period and cohort influences.   

Period effects can be described as the social and environmental context that 

modifies risk for all individuals in a population at a specific point in time. Changes in 

cancer screening technology may affect cancer incidence rates at all ages.  

Mammography screening became widespread during the 1980s, leading to an increase in 

incident female breast cancer diagnoses over the age of 65 (Edwards et al., 2002); colon 

cancer cases increased during the 1990s as a result of changes in colorectal screening 

(Edwards et al., 2002); and, there was a steep increase in incident prostate cancer cases 



28 

 

 

for males over the age of 65 between 1988 and 1992 due to the introduction of  the 

Prostate-Specific Antigen (PSA) screening test for prostate cancer (Edwards et al., 2002). 

Changes in health care policy may also create period effects in cancer incidence.  For 

example, Medicare began covering mammographies in 1991(Kelaher & Stellman, 2000) 

and colon cancer screening in 2001 (Berkowitz, Hawkins, Peipins, White, & Nadel, 

2008).  Thus, the introduction of new diagnostic tools into the health care market, and 

changes in screening policies and medical practices have an impact on incidence rates 

over time.     

Cohort effects describe the social or ecological environment unique to individuals 

born in the same group of years.  Epidemiologists often describe cohort effects as the 

interaction between age and period, while sociologists conceptualize them as a measure 

of social forces that shape health throughout the life course (Keyes, Utz, Robinson, & Li, 

2010).  For example, changes in smoking patterns or other environmental exposures over 

time may lead to cohort specific trends in cancer incidence.  Improvement in cancer 

screening technology may also have differential effects by birth cohort because the 

benefit is not equally shared amongst all ages.  For example, the Agency for Healthcare 

Research and Quality does not recommend routine colonoscopies after the age of 75 

(National Guideline), and questions about the efficacy of cancer screening for the oldest 

old have also been raised (Østbye, Greenberg, Taylor, & Lee, 2003).  In addition to the 

age-based bias created by cancer screening recommendations, cancer incidence rates for 

these ages may be subject to detection bias because screening is difficult for frail 

individuals (Ukraintseva & Yashin, 2003).  A more comprehensive understanding of the 

age, period, and cohort factors contributing to cancer incidence rates in the oldest old is 



29 

 

 

essential for developing effective screening and treatment recommendations for this 

population. 

Cross-sectional analyses show a decline in cancer incidence for the oldest old that 

is similar for men and women.  However, results from previous studies indicate that the 

shape, height, and peak of age-specific incidence curves are sensitive to both historical 

period, cancer site, and study (C. Harding et al., 2008; Kaplan & Saltzstein, 2005; 

Saltzstein et al., 1998).  If cancer incidence rates in this age group were based strictly on 

the biological factors contributing to aging, one would expect to see consistency in age-

specific rates over multiple periods of study.  However, the fluctuation in rates is 

evidence of the influence of external factors, related to period and birth cohort, 

contributing to cancer incidence.  Treating the pattern of decline as an effect of aging 

neglects evidence of a social and ecological context that may alter age-specific trends and 

ignores the multifaceted determinates of cancer risk (Kaplan & Saltzstein, 2005; Stanta, 

1997).  Using a comprehensive approach that studies cancer trends over time and 

accounts for period and cohort effects will allow for a more accurate depiction of the age-

specific trends in cancer incidence.   

 

Aging and Cancer 

 Disagreement exists among theories explaining the relationship between cancer 

and aging and the observed decline in cancer incidence in the oldest old (Anisimov, 

2003; Ukraintseva & Yashin, 2003).  These controversies are similar to those surrounding 

mortality deceleration and may prove useful for understanding the mechanisms driving 

mortality deceleration.   
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There are three prevailing hypothesis explaining mortality deceleration (Gavrilov 

& Gavrilova, 2011; Horiuchi & Wilmoth, 1998).  The first hypothesis asserts that the 

observed patterns of mortality deceleration are the result of age-misreporting and/or 

model misspecification (Gavrilov & Gavrilova, 2011), thereby suggesting that mortality 

does not decelerate with age, but is a statistical artifact.  The other two hypotheses are the 

heterogeneity hypothesis and the individual risk hypothesis (Horiuchi & Wilmoth, 1998).  

These hypotheses lead to similar predictions about age related changes in cancer 

incidence.   

  

Theories Predicting that an Individual’s Cancer Risk Increases  

with Age (Deceleration is an Artifact)  

The multistage theory predicts that cancer incidence rates should increase with 

age because the neoplastic transformation of cells occurs through several successive steps 

(Anisimov, 2003; Armitage & Doll, 1954).  This framework describes cancer incidence 

as a power function of exposure time rather than age because cancer is caused by the dose 

and duration of carcinogenic exposure over a person’s lifetime (Anisimov, 2003; 

Ukraintseva & Yashin, 2003).  Under this scheme, the path to cancer is step-wise and 

irreversible, with each step leading to an increased probability of malignant 

transformation with exposure time and therefore age.  However, exposure risks between 

cohorts may vary, giving rise to different patterns of age related incidence between birth 

cohorts.   

Physiological mechanisms may also explain increases of cancer incidence with 

age.  The cancer-longevity tradeoff hypothesis suggests that the cost of living a long life 

is cancer.  Physiological changes in the tissue microenvironment, telomere dysfunction,  
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a decline in immune surveillance, loss in tumor suppressor function, and mutation 

accumulation are additional factors that have been cited as possible mechanisms leading 

to the increasing rates of cancer incidence with age (Anisimov, 2003; Campisi, 2003; 

Ukraintseva & Yashin, 2003).  Many of these factors may be modified by environmental 

exposures and therefore the context of time. Factors such as diet, smoking, exposure to 

infectious disease (Ukraintseva & Yashin, 2003); and environmental interventions such 

as exercise, social support, and screening practices, may make age specific trends 

sensitive to temporal context.   

 

 

Theories Predicting that an Individual’s Cancer Risk Declines  

with Age (Individual Risk Hypothesis)   

The individual risk hypothesis argues that the deceleration in morbidity and 

mortality rates at older ages can be explained in terms of physiology, evolution, and 

health behaviors (Horiuchi & Wilmoth, 1998; Vaupel et al., 1998).  Although 

physiological mechanisms have been used to explain increasing cancer incidence with 

age, they may also predict the opposite—that cancer incidence in the oldest old age 

categories decelerate and decline.  Physiological changes can contribute to the decline in 

cancer incidence in the oldest old through age-related declines in rates of cellular 

metabolism, suppression of tumor generation, and increased cellular doubling time 

(Ukraintseva & Yashin, 2003).   

Natural selection may also affect age related declines in cancer incidence.  

Mutation accumulation theory argues that age-related declines in the force of natural 

selection may result in an accumulation of mutations that result in an increase in 

mortality beginning near the end of reproductive ages followed by mortality deceleration 
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in the oldest age categories (Horiuchi & Wilmoth, 1998).  In addition, mechanisms which 

may protect against cancer may increase longevity, suggesting that individuals in the 

oldest old age groups may be less susceptible to cancer (Campisi, 2003).   

Variation in age-related health behaviors could also explain a decrease in cancer 

incidence in the oldest old age groups.  Cancer trends periodically shift due to changes in 

screening procedures and recommendations, but these period effects may not be equal 

across all ages.  Routine cancer screening has increased in the general population 

(Edwards et al., 2002); however, studies have suggested that there is a decrease in 

surveillance for the oldest old and an increase in misdiagnosed or unreported tumors 

(Kaplan & Saltzstein, 2005; Stanta, 1997).  These factors may lead to cohort specific 

trends in cancer incidence. 

 

Population Heterogeneity Leads to Decreased Rates of Cancer  

Incidence in the Oldest Old (Heterogeneity Hypothesis).  

 Population heterogeneity, differential risk patterns within a population, can be the 

result of both within and between cohort differences, making the context of cohort an 

important consideration.  Within a single cohort heterogeneity can occur because the 

force of mortality may decrease at advanced ages (Horiuchi & Wilmoth, 1998), pointing 

researchers to a selection hypothesis to explain the decline.  According to these 

hypotheses, there is differential selection in a heterogeneous population with the frail 

being selected out of the population at earlier ages (Hawkes, Smith, & Blevins, 2012).  

Individuals culled from the population may have a genetic or environmental 

predisposition to cancer, leaving their robust counterparts to survive to the oldest ages 

with a survival advantage that protects them from cancer.   For example, individuals with 
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deleterious mutations, such as the BRCA1 mutation, have elevated cancer mortality rates 

as compared to the general population, making them less likely to survive to advanced 

ages (K. R. Smith, Hanson, Mineau, & Buys, 2011).   

Population heterogeneity can also arise because different cohorts have 

experienced different mortality schedules, environmental exposures, public health 

initiatives (such as antismoking campaigns), and cancer screening recommendations.  It 

has been suggested that the multistage theory is correct, and a plateau or decline in cancer 

incidence rates at old ages may reflect period and cohort trends (Yang, 2008).  If 

exposure to different carcinogens such as tobacco smoke, changes in diet, or other 

environmental carcinogens, fluctuates over time the deceleration in incidence rates at the 

oldest ages may reflect these changes rather than somatic aging per se.  A decline or 

deceleration in cancer trends in old ages may be a function of cohort experiences such as 

screening practices or health behaviors for this age group.   

Understanding the relationship between cancer incidence and age will not only 

improve future predictions of cancer incidence, it will help U.S. understand the 

mechanisms leading to mortality deceleration in the oldest old population.  Cancer trends 

for the oldest old population are understudied because cancer incidence rates are 

historically aggregated for all 85+ individuals (Boscoe, 2008).  This study aims to 

improve upon current literature by examining temporal trends of cancer incidence from 

1973 to 2002 for ages 65 to 99.   
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Methods 

Data 

This study uses data for the state of Utah from 1973 to 2002 collected from the 

Utah Cancer Registry (UCR), the National Cancer Institute’s Surveillance, Epidemiology 

and End-Results Program (SEER), the decennial Census, and the National Center for 

Health Statistics (NCHS).  Cancer incidence cases and the U.S. Census Bureau’s 

Population Estimates for the state of Utah for ages 65 to 84 were obtained from 

SEER*Stat software (2010; 2012).  Statewide cancer data are collected by the UCR as 

part of routine cancer surveillance for the Utah Department of Health and the National 

Cancer Institute’s SEER Program.  Cancer cases are reported to the UCR through health 

service providers and death certificates on which cancer is listed as a cause of death.  Site 

and histology are coded according to the International Classification of Diseases for 

Oncology (ICD-O) at the time of diagnosis (Stroup, Dibble, & Harrell, 2008). 

 Age-specific incidence counts for ages 85 to 99 are not reported by the SEER 

program.  At these ages, age misstatement is a widely recognized problem, making 

population estimates less reliable (Boscoe, 2008).  Tabulated incidence data by year and 

age were provided by the UCR.  Intercensal population estimates were calculated via the 

cohort-component and extinct-cohort methods using decennial data from the U.S. Census 

Bureau and mortality data from the National Center for Health Statistics (Shryock, 

Siegel, & Larmon, 1980).  The cohort-component method starts with the cohort 

populations reported in the decennial census and then subtracts deaths to estimate 

population sizes.  The use of census and death certificate data has been criticized because 

upward age-misstatement can lead to a downward bias of incidence rates for this 

population.  However, age misstatement has been shown to be a relatively rare 
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occurrence with error rates improving over time (Boscoe, 2008; Hill, Preston, & 

Rosenwaike, 2000; SH Preston, Stewart, & Elo, 1999).  Data collection issues have also 

caused errors in population estimates for the oldest old (Siegel & Passel, 1976).  The 

extinct-cohort method is an alternative method of calculating population counts. It relies 

on death certificate data and is thought to be more reliable when cohorts are close to 

extinction because it is less subject to bias caused by age misreporting.  Rates from both 

methods were compared and we found that when cohorts are farther from extinction 

estimates using the extinct-cohort method become less reliable.  The cohort component 

method was selected as the basis for the final models.  A detailed description of the 

methods and comparison between rates will be presented in an article by Rudy et al. and 

can be provided upon request.  The final data set consisted of population level cancer 

incidence counts (numerators) and cohort-component population estimates 

(denominators) for the 65 to 99 year old Utah population from 1973 to 2002 by sex.   

 

Statistical Methods 

 

 Sex- and site-specific cancer incidence trends from 1973-2002 for ages 65 to 99 

for the state of Utah were selected for analysis.  There were no incidence cases above age 

100 from 1973 – 1982 and 1988 – 1997 for males and 1973 – 1977 for females; therefore 

we did not include this age category in the analysis.  Cancer incidence rates were 

calculated as the ratio of incident cases to person years of exposure.  Age-specific 

incidence rates were tabulated in age a by calendar year period p arrays with diagonal 

elements of the matrix corresponding to the birth cohorts c (c = p + a -1), where the 

oldest cohort is observed for the oldest age interval during the earliest calendar period 

and the youngest cohort is observed for the youngest age interval during the latest 
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calendar period.  Seven 5-year age groups, ranging from 65 – 69 to 95 – 99, and six 5-

year time periods, from 1973 – 1977 to 1998 – 2002 were used in the analysis.  There is 

some ambiguity in the measurement of cohorts because data are tabulated into 5-year age 

and period groupings.  For example, an individual age 69 in 1973 would have a birth year 

of 1904 while an individual age 65 in 1978 would have a birth year of 1913.  This yielded 

12 successive ten year birth cohorts with midpoints ranging from 1878 – 1933, which 

were used for the age, period, and cohort (APC) analyses.   

Traditional APC analyses suffer from an “identification problem” resulting from 

the linear dependency between age, period and cohort (c=a +p), precluding a unique 

solution.  This problem can be solved by imposing constraints to the model to allow for 

an identifiable solution (Arbeev et al., 2005a; Arbeev, Ukraintseva, Arbeeva, & Yashin, 

2005b; Carstensen, 2007; Yang, Fu, & Land, 2004).   However, selection of the 

constraint requires some a priori knowledge of the disease under investigation and 

models are sensitive to the constraint selected.  Other authors have suggested using a 

proxy characteristic for cohort (O'Brien, 1989, 2000; O'Brien, Stockard, & Isaacson, 

1999). However, cohort characteristics may not entirely explain cohort effects and the 

residuals may still be confounded in the model estimates with age and period effects.  

The Intrinsic Estimator (IE) proposed by Yang et al. (Yang et al., 2004; Yang, 

Schulhofer‐Wohl, Fu, & Land, 2008) can also be viewed as a constrained approach; 

however, it does not require a priori assumptions about the constraints.  Other studies 

have shown that the IE produces substantively meaningful and empirically valid results 

(Yang et al., 2008), and the effects can be interpreted like conventional regression 

coefficients (D. J. Harding, 2009).  The limitations to this approach include the lack of a 

simple explanation of its assumptions and the lack of a full investigation of its properties 
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(D. J. Harding, 2009; H. L. Smith, 2004).  After initial estimations of a series of Poisson 

log-linear models, we selected the IE to estimate the APC effects of cancer incidence 

based on evidence of distinct age, period, and cohort effects and model fit.   

 Descriptive plots were produced by age group and sex for all-site, breast, colon, 

and prostate cancers to assess the age, period, and cohort cancer incidence trends.  Trends 

in lung cancer incidence rates were not assessed as part of this analysis because the 

incidence rates in Utah are very low (Jemal et al., 2008) and the case counts above age 85 

were sparse.  A similar approach to that used by Yang et al. (Yang et al., 2004; Yang et 

al., 2008) was used to identify an appropriate model to analyze the temporal trends in all-

site and site-specific cancer incidence rates.  A series of Poisson log-linear models were 

estimated for each site and sex:  

                        ln(mijk) = ln(cijk/nijk) = μ + αi + βj + γk  (eq. 2.1) 

 

where rateijk indexes the expected cancer incidence rate in cell (i, j, k); cijk indexes the 

observed number of cancer incidence cases; nijk indexes the number of person years; µ 

indexes the intercept of age adjusted mean rate; αi indexes the ith row age effect for i = 1, 

. . . , a age groups; βj represents the jth column period effect for j =1, . . ., p periods; and 

γk represents the kth diagonal cohort effect for k =1, . . ., (a + p -1) cohorts. 

One-way models (a, p, or c), two factor models (ap, pc, ca) and IE models were 

compared.  Both descriptive analyses and model fit, based on the Akaike Information 

Criterion (AIC), were used to select the final models.  Full analyses are available upon 

request.  The log-linear regression coefficients, standard errors, and model fit were 

computed using Stata 11. 2. Estimates of the full APC models using the IE approach and 

the apc_ie.ado downloaded from the Stata command line. To test whether our findings 
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were sensitive to method of denominator construction, the final models were replicated 

using denominators constructed using the extinct cohort method.   

 

Results 

 To assess the variation in age-specific incidence by period a series of age-period 

plots were created.  Figure 2.1 shows the sex-specific age and period all-site cancer 

incidence rate plots.  Each panel displays the age-specific incidence trends by calendar 

period, ranging from 1973 - 1978 to 1998 - 2002.  The solid lines present the full 85+ 

age-specific rates and the dashed lines display the trend when cancer rates are top-coded 

at age 85.  These plots show that when rates are aggregated for the 85 plus age group, 

specious conclusions about the age at which incidence rates peak may be drawn.  These 

plots indicate that for the vast majority of the periods, the age group with the highest 

incidence rates can be found in the 85 to 89 age groups.  The peak is then followed by a 

leveling off or decline for the 90 to 94 and 95 to 99 age groups.  These plots also show 

that the trends are not stable over time.   If the only factor influencing cancer incidence 

trends were age, one would expect the age-specific curves for all periods to follow 

similar trajectories.  However, the plots show variation in the intercept (depicted for age 

65 - 69), slope, and shape of the curve.  There has been a steady increase in the level of 

cancer incidence over time, with the most recent periods having the highest rates for a 

majority of the age groups.   

Age-cohort plots were created to assess the variation in the age trends by birth 

cohort and sex.  Figure 2.2 displays the variation in shape, slope, and peak in all-site 

cancer incidence age trends by cohort for both males and females.  We are unable to 

observe a single cohort for the entire age range because we have data for a 30 year 
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window only, from 1973 - 2002.  Age trends for the 1903 and 1908 cohorts have the 

longest follow-up, with incidence calculated for ages 70 to 99 and 65 to 94, respectively.  

There is less variation in the trend in age specific incidence rates between cohorts for 

females as compared to males.  The plots suggest that for men the peak in incidence is 

moving to younger ages for more recent birth cohorts; however, these peaks coincide 

with the expected rise in incidence that resulted from the PSA testing for prostate cancer.  

There is a general increase in cancer incidence rates at younger ages for more recent 

cohorts for both males and females.  For both sexes, the largest differences in cancer 

incidence occur at ages 90 – 99.  The imprecision at advanced ages is partially a function 

of decreased sample sizes.  The age-period and age-cohort plots indicate period and 

cohort factors may confound observed trends in age specific cancer incidence.   

 A series of Poisson log-linear and IE models were used to further investigate age, 

period, and cohort effects.  The goodness-of-fit statistics for the log linear models are 

displayed in Table S1 in the online supplement.   The IE model provided the best fit for 

both male and female all-site cancer, female breast cancer, and prostate cancer incidence.  

The fit statistics suggest weak cohort effects for women, with the IE model only 

providing a slightly better fit than the age-period models for both all-site and breast 

cancer incidence.  The age-period model provided the best fit for both male and female 

colon cancer incidence models.   

Figure 2.3 shows the IE results for all-site cancer incidence by sex.  The figure 

shows an increase across ages in cancer incidence up to age 85.  All-site cancer incidence 

rates are the highest for the 85 to 89 age group net period and cohort effects for both 

males and females.  Female all-site incidence rates for ages 90 and above level off and 

the estimated coefficients are not statistically significant.  There is a steeper decline in the 
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all-site incidence rate for  males after age 85; however, it is noteworthy that the estimated 

coefficient for rates at age 90 (p=0.06) is still higher than the estimated rates for both the 

60 to 64 and 65 to 69 age groups.   

The period specific trends show that there has been a gradual increase in cancer 

incidence over time.  While this gradual increase in cancer incidence with time may be 

indicative of changes in screening behaviors or environmental exposures, it may also be 

an artifact of changes in cancer surveillance methods, with more complete identification 

of cases recorded over time.  The period effects for males are as expected based on the 

descriptive analyses and the known increase in cancer incidence between 1988 and 1992, 

which is attributable to shifts in prostate screening practices.  The rates drop to pre-1988 

levels in the next period and continue their decline into the 1998 – 2002 period.   

Figure 2.3 also shows that there are moderate cohort effects for females.  All-site 

cancer incidence was significantly higher for the 1888 and 1893 birth cohorts and lower 

for the 1928 birth cohort.  The cohort effects for males resemble a trough, with slightly 

elevated risk (albeit insignificant) for early cohorts, followed by a decline and leveling 

off for the 1903 to 1917 birth cohorts, and ending with an increase that almost reaches the 

height of the 1883 birth cohort.   

 Figure 2.4 displays the IE estimates for breast and prostate cancer.  The age 

effects for the site specific cancers are somewhat different than the all-sites trends.  For 

females, the highest level of breast cancer incidence and the only estimate significantly 

different from zero, is found between the ages of 75 to 79 (p=0.03). The period effects 

are similar to those observed in the all-site rates as there is a gradual increase in female 

breast cancer incidence over time.  Cohort effects play a small role in determining female 

breast cancer incidence over age 65.  The decline in breast cancer incidence for the 1928 
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birth cohort is somewhat consistent with previous studies that show a decline in breast 

cancer incidence for the 1924 to 1938 birth cohorts (Lacey, Devesa, & Brinton, 2002).  

The age effect for males steadily increases up to age 75 where it reaches a plateau 

followed by a decline at age 90.    Male prostate cancer incidence steadily increases up to 

1988 and then sharply declines over time, again for reasons of PSA testing.  Male cohorts 

between 1898 and 1918 have slightly lower rates of prostate cancer incidence. A steady 

rise in prostate cancer rates is seen in subsequent cohorts.   

 Figure 2.5 shows the estimated coefficients for the log-linear AP models of colon 

cancer incidence.  Fit statistics showed that the two-factor model provided the best fit for 

colon cancer incidence, meaning that cohort effects can be constrained to zero.  Fig. 2.5 

indicates that there is a steady increase in colon cancer incidence with age up to age 85, 

followed by a slight decline (albeit still significantly higher than the referent category of 

65 – 69) at the advanced ages.  The period trends show a slight elevation in colon cancer 

incidence between 1983 and 1987 for females and between 1983 and 1992 for males as 

compared to the sex specific incidence rates in 1973 – 1977.  

 To test the sensitivity of our findings, the final models were estimated using 

denominators created using the extinct cohort method.  The results did not substantively 

change the findings presented and are not shown here. 

 

Discussion 

 

This study found evidence supporting hypotheses of an increase in all-site cancer 

incidence up to ages 85-89 net period and cohort effects, followed by a modest decline up 

to age 99.  Although incidence appears to drop after age 90, the rates up to age 99 are still 

higher than rates for individuals aged 65-74.  This finding is supported by other studies 
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and highlights the importance of disaggregating cancer incidence rates for the oldest old 

(C. Harding et al., 2008; D. W. E. Smith, 1996).  We found evidence of period and cohort 

effects influencing cancer trends, which highlights the importance of considering the 

social factors that influence biology when studying cancer trends in this population.  The 

benefits of disaggregated estimates for the oldest old far outweigh the potential 

challenges related to age misreporting.  As more people reach these advance ages, it will 

become increasingly important to understand the biological and social mechanisms 

affecting cancer trends in the oldest old.  These results answer Boscoe’s call for greater 

specificity in age-specific data for the oldest old (Boscoe, 2008).    

We conclude that the age, period, and cohort effects of site specific cancer 

incidence varied by site and sex.  Physiological mechanisms have been the primary 

mechanisms used to explain the decline in incidence by other authors.  Harding et al. 

propose a simple senescence theory, claiming that increasing senescence reduces the 

ability of cells to divide and limits cancer incidence in the oldest old population (C. 

Harding et al., 2008; C. Harding, Pompei, & Wilson, 2012).  Our results suggest that age 

is not the only factor contributing to the decline in cancer incidence in the oldest old age 

group.  We are not arguing against a biological model of cancer decline, but we do 

advocate a more inclusive theory that considers socio-environmental factors and 

mortality selection, which may influence the age-specific trends.   

For women, the gradual increase in all-site and breast cancer incidence over time 

may be partially due to increased detection by mammographic screening (Edwards et al., 

2002) and improvements in data collection and classification.  These trends in breast 

cancer incidence are also consistent with previously reported trends in breast cancer (C. 

Harding et al., 2008; Kaplan & Saltzstein, 2005; Saltzstein et al., 1998).  For men, the 
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dramatic increase in cancer incidence up to the 1988 – 1992 period is consistent with 

other studies of period trends in prostate cancer incidence (Edwards et al., 2002) and the 

introduction of the PSA screening test.  The clear period trends observed for both men 

and women bring attention to the importance of understanding how period factors 

influence cancer incidence. 

In our study, cohort effects played a larger role for males than females and did not 

affect colon cancer incidence rates.  Our results show variations in cohort trends of 

cancer incidence over time that coincide with changes in environmental exposure to 

tobacco products.  Birth cohort did not explain variation in incidence trends for all sites in 

this study.  The absence of a cohort trend in colon cancer incidence is inconsistent with 

other studies of colon cancer trends (Chu, Tarone, Chow, Hankey, & Ries, 1994); 

however, cancer mortality trends may reflect improvements in detection and treatment 

that prevent colon cancer mortality but do not necessarily modify the risk of colon cancer 

incidence (which was not reported in this study).   Failing to account for heterogeneity 

between cohorts may lead to erroneous conclusions about deceleration in trends where 

none exists (Gavrilov & Gavrilova, 2011).  We have shown that there is a difference in 

cancer susceptibility between cohorts, but controlling for these differences does not alter 

the conclusion that cancer incidence rates do not exponentially increase with age.  

Heterogeneity within a birth cohort may also be an important mechanism driving 

the deceleration and decline in cancer incidence in the oldest old.  Declines in the force of 

mortality at all ages may lead to increased population heterogeneity at old ages, thus 

possibly cohorts of individuals with more susceptibility to cancer (Hawkes et al., 2012).  

However, it is also possible that there is less within-cohort heterogeneity in more recent 

birth cohorts.  Lynch and Brown (2001), have found evidence of less variation in 
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population frailty in birth cohorts in more contemporary cohorts, suggesting that the 

population is becoming more homogeneously robust (Lynch & Brown, 2001).  If this is 

true, then it is possible that cancer incidence rates will decline in the future.  The gradual 

increase in cancer incidence for males during more recent birth cohorts, reported here, 

suggests changing cohort susceptibility to cancer, a position inconsistent with the 

argument that populations shift to become more homogenously robust.  While it is 

difficult to separate the environmental factors from the changes in population 

heterogeneity, this finding emphasizes the importance of both improved surveillance in 

cancer trends for the oldest old and consideration of cohort effects when studying oldest 

old cancer trends.     

Variation in health and cancer screening behaviors with age may also explain the 

decline in incidence and sex differences in period and cohort effects.  Sex differences in 

cohort experiences may reflect sex differences in the timing, prevalence, and frequency 

of smoking; sex differences in environmental exposures to carcinogens in the work place; 

or sex differences in other risky behaviors that are patterned by generational experiences.  

For example, Preston and Wang (2006) have demonstrated the close relationship between 

a cohort’s mortality trajectory and its history of cigarette smoking as well as sex 

differences in smoking prevalence within the cohort.  It is unlikely that between-cohort 

variability or period specific shifts in health behaviors are strong determinants of the age-

specific trend in cancer incidence because incidence rates decline above age 90 when 

controlling for cohort and period trends.   

 Screening bias is another individual level component that may reduce cancer 

incidence for the oldest old.  For example, there were strong period effects associated 

with the introduction of PSA testing for males.  The birth cohorts that would have been in 
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the oldest age categories at the time PSA testing was introduced have decreased cancer 

incidence rates relative to those cohorts that would have been under the age of 85.  This 

finding emphasizes the importance of both improved surveillance in cancer trends for the 

oldest as well as further investigation into the causes of cohort differences in cancer 

incidence.   Kaplan and Satlzstein note parallel downward sloping trends between breast 

cancer screening and prevalence in the aged population (Kaplan & Saltzstein, 2005).   

However, other studies not subject to screening bias show a similar trend (Stanta, 1997).  

This study also suggests that screening bias may not be the reason for decreases in cancer 

incidence with age.  SEER data collection processes include checking death certificate 

information.  Any cancer occurrence contributing to the cause of death of an individual is 

reported to the SEER registries.  Only cancers that are not an underlying factor in the 

death would be missed by the system, suggesting that detection bias is not a likely cause 

in the observed decrease in cancer at advanced ages.  

Our results differ slightly from previously reported trends in cancer incidence.  

The estimated peak in incidence in the 85 – 89 age category for males and females is 

higher than the Harding et al. (2008) estimates of 80.  However, our results are consistent 

with the peak observed by Saltzstein et al. (1998).  There are three possible explanations 

for the variation in the estimated peaks in age-specific incidence rates.  First, previous 

studies of age-specific cancer incidence in the oldest old age group have not considered 

the role of period and cohort effects.  Ignoring exogenous factors that may contribute to 

cancer incidence oversimplifies the problem and leads to the age-specific incidence rates 

that are confounded by period and cohort differences in cancer incidence.  APC analyses 

of cancer incidence may provide less biased estimates of the true relationship between 

cancer and aging.   
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Second, the differences may be caused by error in the estimated denominators.  

Preston et al. (1999) found that the difference between the correct population distribution 

and one estimated with age overstatement increased with time (Preston et al., 1999).  Any 

difference between the estimated peak cancer incidence and the true peak cancer 

incidence should be negative.  If age-misstatement led U.S. to overestimate the size of the 

oldest old population, then our estimate of a peak in incidence between the ages of 85 and 

89 is conservative.  Furthermore, because other studies have also used decennial census 

data to construct their denominators (C. Harding et al., 2008; C. Harding et al., 2012), we 

argue that this is not the reason for the observed differences in peak age-specific 

incidence rates.   

Third, while not directly assessed, our findings are suggestive of geographic 

variation in cancer incidence trends given the difference in the estimated peak of cancer 

incidence between our study and other U.S. studies of overlapping time periods (Harding 

et al., 2008; Harding et al., 2012; Saltzstein et al., 1998).   Regional differences in cancer 

incidence trends may be attributable to differences in sociodemographic characteristics, 

health beliefs, access to resources, reproductive characteristics, and exposure to 

environmental carcinogens.  Utah consistently has one of the lowest cancer incidence and 

mortality rates in the U.S. for both males and females and the lowest rates of lung cancer 

incidence and mortality (Jemal et al., 2008). However, Utah does not have low incidence 

rates for all cancer sites. Age-adjusted prostate cancer incidence rates are higher in Utah 

than the national averages (Stroup et al., 2008).   More research should be done to 

quantify geographic differences as it will provide valuable information about the social 

forces shaping cancer incidence rates in these age groups.     
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There are several structural limitations to studying cancer trends in the oldest old 

age groups.  Use of clinical and death certificate diagnoses may lead to an underreporting 

of trends in the oldest old (Kaplan & Saltzstein, 2005; Stanta, 1997).  Trends calculated 

using cancer registry and census data are subject to error because the reliability of age 

estimates for individuals over the age of 85 may be  questionable (Edwards et al., 2002; 

Vincent et al., 2010).  However, we used several different methods to create measures of 

population size and found no substantive differences in the age, period, and cohort trends 

in all-site cancer incidence.     

 There is not widespread consensus in the cause of the decline in cancer rates at 

advanced ages because it has been largely understudied.  This study contributes to the 

current literature by providing estimates of cancer incidence for the 85+ population 

within the broader context of period and cohort effects.  This study supports the 

individual risk hypothesis and mortality selection arguments that predict a deceleration in 

incidence at advanced ages.  Our findings do not support the position that deceleration is 

an artifact of variability in morbidity profiles between cohorts, nor do they support 

arguments that cancer incidence trends are strictly a function of biological mechanisms. 

Studies utilizing an APC approach to the analysis of cancer trends may provide less 

biased estimates of the relationship between cancer and aging and improve knowledge 

about the role of biological and social influences that modify trends. The existence of 

cohort and period effects also justifies the use of direct measures of the exogenous factors 

contributing to cancer incidence.  Future studies should evaluate the proportion of 

variation in cancer incidence explained by direct measures of period influences and 

cohort characteristics.  Future studies should also investigate morbidity trends in other 

major causes of death and explore the relationship between these trends and mortality 



48 

 

 

deceleration.  We also show that there is variation in cancer incidence trends in the oldest 

old population and reiterate the importance of treating this population as heterogeneous.  

In order to gain a more comprehensive understanding of morbidity and mortality patterns 

for this rapidly growing segment of the population, cancer incidence and U.S. Census 

population estimates need to be disaggregated for the oldest old population.   
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Figure 2.1.  All-site cancer incidence rates by age and period.  Panels A and B show Utah 

females and males, respectively.  Solid lines show trends up to age 99 and dashed lines 

show the trend when cancer incidence is aggregated for individuals 85 years and above. 
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Figure 2.2.  All-site cancer incidence by birth cohort.  Panels A and B show Utah females 

and males, respectively.  The scale of the y-axis is smaller than the scale for the male 

graphs to allow for the visibility of the variation.  Female incidence rates are lower 

 than male incidence rates and increase with age at a slower rate. 
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Figure 2.3.  APC IE estimated trends of all-site cancer incidence rates for ages 65 to 99 in 

the state of Utah.  Dotted lines represent 95% confidence intervals.  Panel A: Age effects 

net period and cohort.  Panel B: Period effects net age and cohort.  Panel C: Cohort 

effects net age and period. 
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Figure 2.4.  APC IE estimates of female breast and male prostate cancer incidence rates 

for ages 65 to 99 in the state of Utah.  Dotted lines represent 95% confidence intervals.  

Panel A: Age effects net period and cohort.  Panel B: Period effects net age and cohort.  

Panel C: Cohort effects net age and period. 
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Figure 2.5.  Poisson log-linear estimates of age and period effects on colon cancer 

incidence.  Dotted lines represent 95% confidence intervals.  Panel A: Age  

effects net period.  Panel B: Period effects net age. 

 



 

 

 

  

 

 

 

CHAPTER 3 

 

REPRODUCTIVE HISTORY AND LATER-LIFE COMORBIDITY  

TRAJECTORIES
2
 

 

Abstract 

The reproductive lives of men and women may provide significant insight into 

later-life health and mortality.  Sociological, biological, and evolutionary theories predict 

a relationship between reproductive history and later-life health and mortality, however, 

current research is lacking consensus on the direction of the relationship.  In this study, 

the relationship between reproductive history and later-life health is examined using data 

based on linkages between the Utah Population Database, a rich source of longitudinal 

data, and 18 years of Medicare Claims data. Later-life health is measured using the 

Charlson Comorbidity Index, a construct that summarizes nearly all serious illnesses 

afflicting older individuals. Single year comorbidity scores are constructed by year from 

1992 to 2009.  We used group based trajectory modeling that accounts for nonrandom 

attrition due to death to identify the number and types of morbidity trajectories by sex 

and age group for 52,924 individuals aged 65-84 in 1992.  For both males and females, 

                                                 
2
 Coauthored by Ken R. Smith and Zachary Zimmer.  We wish to thank the Pedigree and 

Population Resource of the Huntsman Cancer Institute, University of Utah for providing 

the data and valuable computing support. This work was also supported by NIH grant 

AG022095 (Early-life Conditions, Survival and Health; Smith PI). 
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trajectory groups ranged from a robust group with little to no comorbid conditions during 

the period of observation to a frail group with a consistently high comorbidity.  Parity, 

age at first birth, age at last birth, birth weight of offspring, having a child die as an 

infant, and having a preterm birth predicted trajectory group membership for women but 

had little association with trajectory group membership for men. 

 

Introduction 

Understanding how individuals experience disease after age 65 is important to 

understanding the mechanisms of aging and longevity.  Equally important is what 

predicts the observed patterns.  The etiological model of chronic disease has shifted its 

focus from adult risk factors to considering factors throughout the life course (Kuh & 

Ben-Shlomo, 2004).  Central to the life course approach is the idea that there are certain 

periods of plasticity, where individuals may experience physiological or social change 

that alter their future health trajectories.  The reproductive period is a sensitive period for 

both men and women, in which the timing of births, number of births, and birth outcomes 

might have adverse or protective effects on later-life health.  It also presents a critical 

period for women as physiological changes related to pregnancy may have lifelong 

effects on the structure or function systems in the body (Kuh & Ben-Shlomo, 2004; Kuh 

& Hardy, 2002).  Therefore, the reproductive lives of men and women may provide 

significant insight into later-life health and mortality, but current research is lacking 

consensus on the direction of the relationship.    

This study will examine the role of parity, age at first birth, age at last birth, 

interbirth intervals, infant death, multiple births (twins), birth weight of offspring, and 

preterm births for both men and women on disease progression after age 65.  This study 
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utilizes Centers for Medicare Services (CMS) data spanning from 1992 – 2009 linked to 

the Utah Population Database, which is a rich source of longitudinal data.  The goals of 

this analysis are threefold: 1- identify distinct trajectories of comorbidity from 1992 - 

2009 for individuals aged 66 – 84 in 1992 by sex and birth cohort; 2- estimate the 

association between measures of fertility and later-life comorbidity trajectories while 

controlling for early-life circumstances using information from a longitudinal, familial 

health database; 3- determine if the observed effects are part of a trajectory set in motion 

earlier during infancy and childhood (i.e., does fertility mediate known relationships 

between early-life circumstances and later-life comorbidity trajectories (K. R. Smith, 

Hanson, & Zimmer, 2012)).   

 

Background 

There is a substantial amount of variation in the morbidity profile of older adults, 

suggesting that morbidity is not an inevitable consequence of aging (Rowe & Kahn, 

1987; Rowe & Kahn, 1997).  Understanding the sources of variation in patterns of aging 

is important for creating accurate population predictions, identifying at risk populations 

that may benefit from public health interventions, and characterizing the process of aging 

in a diverse population.  Sources of heterogeneity in patterns of aging cannot be 

understood by restricting analyses to a single life stage, nor can its intricacies be 

understood without simultaneously considering biological and social mechanisms.  The 

pathology of chronic disease is multifaceted, determined by genetic profiles, biological 

and physiological development, and the social environment, with the strength and relative 

importance of each of these factors varying throughout the life course.   
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The majority of studies assessing the relationship between reproductive history 

and health have focused on mortality with mixed results.  Numerous studies have also 

demonstrated the relationship between reproductive history and later-life health as 

measured by activities of daily living (ADL), depressive symptoms, type 2 diabetes, 

cardiovascular disease, self-rated health, self-reported limiting chronic illness, cancer, 

and mental health (D. Smith, Sterne, Tynelius, & Rasmussen, 2004; Grundy & 

Tomassini, 2005; Henretta, 2008; Kravdal, 1995; Lawlor et al., 2003; Myklestad et al., 

2012; Spence, 2008; Yi & Vaupel, 2004). Yet none has looked at the relationship 

between reproductive history and comorbidity.  These studies also often fail to account 

for early-life conditions that may influence reproductive history and later-life health.   

Comorbidity is one of the major components of health aging, and its presence 

increases with age (L. P. Fried, Ferrucci, Darer, Williamson, & Anderson, 2004; 

Guralnik, 1996).  However, there is variation in the rate at which a transition into a 

comorbid state occurs and the trajectory of disease once it has occurred.  We assume that 

heterogeneity within a population follows a specific distribution, with robust individuals 

on one tail and frail individuals on the other.  Therefore, unlike the geriatric definition of 

frailty which refers to a variable state of physiological decline, we intend to invoke the 

demographic meaning of the term.  For example, individuals exhibiting a robust 

phenotype may delay or evade chronic disease completely, while individuals exhibiting 

the frail phenotype experience multiple morbid conditions (Andersen, Sebastiani, 

Dworkis, Feldman, & Perls, 2012; Evert, Lawler, Bogan, & Perls, 2003; Ken R.  Smith et 

al., 2012).  Identifying sources of this phenotypic variation is necessary for targeting 

periods of the life course that affect later-life health and to more fully understand the 

process of aging.  Preston, Hill, and Drevenstedt (1998) have proposed a widely used 
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model explaining the direct and indirect effects of childhood circumstances on later-life 

health.  A similar model can be used to classify the theories that predict a relationship 

between fertility history and later-life health.  Evolutionary, biological, and social 

theories predict that parity, age at first birth, age at last birth, interbirth intervals, 

twinning, birth weight of offspring, and giving birth prematurely may all be associated 

with later-life morbidity and mortality.  

  

Evolutionary and Genetic Theories Linking  

Reproductive Health to Aging 

Evolutionary theories predict a close relationship between fertility and mortality.  

Optimization hypotheses suppose that the forces of evolution select for traits that 

maximize the reproductive success of an organism.  Two such hypotheses, disposable 

soma and antagonistic pleiotrophy, predict a positive association between parity and 

comorbidity at advanced ages (Kirkwood & Rose, 1991).  The disposable soma theory 

argues that the two physiological costly functions of reproduction and somatic 

maintenance are in direct competition for a limited amount of resources.  This “trade-off” 

yields optimal reproductive success at the cost of longevity for females (Kirkwood & 

Rose, 1991).  Similarly, antagonistic pleiotrophy suggests that genetic mutations that 

increase postreproductive mortality may escape the force of natural selection because 

they increase fitness early on (Kirkwood & Rose, 1991; G. C. Williams, 1957).  A recent 

study of fertility in carriers of the breast cancer genes BRCA1 and BRCA2 suggests that, 

although these mutations significantly increase the risk of mortality, they may increase 

reproductive fitness and therefore have not been selected out of the population (K. R. 
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Smith, Hanson, Mineau, & Buys, 2012).  These theories predict that for females, young 

age at first birth and high parity are associated with increased comorbidity later in life. 

High parity, late age at last birth, multiple births, and short birth intervals may 

also be associated with decreased comorbidity later in life.  For example, it has been 

suggested that genetic variants influence both late female fertility and slowed rates of 

somatic aging (K. R. Smith et al., 2009). Fertility success may also be an indication of 

health status and robustness.  Women with higher fertility, shorter birth intervals, twins, 

and later ages at last birth may have increased longevity because their fertility success is 

a marker of a robust phenotype (Hawkes, 2010; Robson & Smith, 2011, 2012).  While 

evolutionary theories are an important factor in the relationship between fertility and 

later-life morbidity and mortality, it is necessary to consider the direct biological and 

indirect social effects of fertility history. 

 

Direct Biological Effects of Reproductive Health and  

Biological Indicators of Later-Life Health 

In the life course literature, physiological scarring has been used to define an 

event that permanently alters the physiological functioning of an organism.  For women, 

pregnancy may trigger physiological changes that may favorably or adversely affect 

later-life health.  Increased parity and early age at first birth have been shown to lower 

the risk of postmenopausal reproductive cancer and it has been posited that biological 

factors are responsible for this link.  Pregnancy is one of several factors that determine 

life time exposure to endogenous hormones.  Several hypotheses relate the level of 

endogenous hormones throughout the life course, such as androgen, insulin, 

progesterone, and estrogen, to cancer risk later in life (Kelsey, Gammon, & John, 1993; 
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Kobayashi et al., 2012; Lukanova & Kaaks, 2005).  There is an inverse association 

between parity and cancer incidence in tissues sensitive to hormone levels, such as breast, 

endometrial and ovarian (Kelsey et al., 1993; Kobayashi et al., 2012; Kvale, Heuch, & 

Nilssen, 1994; Permuth-Wey & Sellers, 2009).  Age at first birth has also a known risk 

factor for breast cancer, with younger age at first birth being a protective factor 

(MacMahon, Cole, & Brown, 1973).   

Reproductive history may also lead to physiological changes that adversely affect 

a woman’s health.  Pregnancy related biological responses may lead to increased risk for 

coronary heart disease and obesity later in life (Bastian, West, Corcoran, & Munger, 

2005; Lawlor et al., 2003).  A study of men and women aged 60 to 79 in Britain found a 

positive association between number of children and adverse lipid profiles and diabetes 

for women but not men, suggesting possible biological mechanisms (Lawlor et al., 2003). 

However, life style factors were also found to play a role in the association.  Birth 

spacing and having multiple births (twins) may also leave a physiological imprint on the 

mother.  The maternal depletion hypothesis argues that the physiological demands of 

pregnancy diminish physical resources and short birth intervals do not give the mother 

ample time to recover from the stresses of the previous pregnancy (Jelliffe & Jelliffe, 

1978; Kirkwood & Rose, 1991).  These theories predict a positive relationship between 

parity, short birth intervals, and multiple births and later-life comorbidity. 

Characteristics of a mother’s offspring at time of birth can be used to gauge the 

woman’s health during her reproductive period and may predict her health status as she 

ages.  Birth weight of her child and giving birth prematurely are examples of markers of 

the health and vitality of the mother (G. D. Smith, Whitley, Gissler, & Hemminki, 2000).  

Giving birth to an infant that is considered large for its gestation age (LGA) may be an 
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indication of pregnancy complications that affect the mother’s health, such as gestational 

diabetes  (Casey, Lucas, McIntire, & Leveno, 1997), which is a known risk factor for 

diabetes and cardiovascular disease later in life (Bellamy, Casas, Hingorani, & Williams, 

2009; Carr et al., 2006).  Studies have shown that there is a positive association between 

birth weight of offspring and the mother’s longevity (G. D. Smith et al., 1997; G. D. 

Smith et al., 2000).  However, the studies do not test whether there is a threshold to this 

effect.  There are several reasons for these associations.  First, it may be an indicator of 

the social and physical environment of the mother, with conditions affecting the 

development and health of both mother and fetus.  Second, it may be indicative of genetic 

variants carried by the mother or father that predispose them for cardiovascular disease 

later in life (Myklestad et al., 2012).  These studies suggest that high birth weight, low 

birth weight, and preterm babies are positively associated with adverse health outcomes 

later in life.   

 

Social Mechanisms Indirectly Linking Reproductive  

History to Later-Life Health 

 Social theories predict both positive and negative relationships between parity and 

later-life morbidity.  The social benefits of adult children may negate any adverse 

physiological effects of having children by providing social support, social engagement, 

and receipt of instrumental help.  Strong social support may foster feelings of meaning, 

reduce feelings of stress, and minimize risky behavior. Individuals with more social 

support and intimate ties have better health and lower levels of mortality (Berkman & 

Syme, 1979; House, Landis, & Umberson, 1988).   Children may provide a support 

network later in life, and having more children may increase the chance of having regular 
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contact with at least one child (Uhlenberg & Cooney, 1990) and receipt of help from 

children (Grundy & Read, 2012).  Later ages at first birth may allow for accumulation of 

wealth and resources and prevent adverse health outcomes later in life.   

Psychological, social, and economic impacts of children may also lead to a 

negative relationship between parity and later-life morbidity.  Increasing parity is 

associated with obesity and coronary heart disease for both men and women, suggesting 

that lifestyle factors associated with high parity may lead to increased risk of morbidity 

later in life (Lawlor et al., 2003). Increased parity may not translate to increased social 

support.  Smith (2002) suggests that high parity children may have fewer resources to 

devote to their parents and, due to the intergenerational transmission of fertility, high 

parity may lead to decreased social support from children later in life. These results 

suggest that the effect of fertility may be positive or negative for males and females.   

Early parenthood may lead to decreased opportunities for education and 

employment (Ross & Huber, 1985; Waldron, Weiss, & Hughes, 1998), which has been 

shown to lead to adverse health consequences later in life (Mirowsky, 2005; Phelan, 

Link, & Tehranifar, 2010).  Mirowsky (2005) suggests that the optimal period for 

childbirth in relation to health is the mid-thirties, but this finding may be unique to the 

historical and social environment.  The current literature presents conflicting findings 

related to the benefits of age at last birth after age 39, with some studies suggesting that 

later ages at last birth are protective (K. Smith, G. Mineau, G. Garibotti, & R. Kerber, 

2009; K. R. Smith et al., 2002) while others find adverse effects (Mirowsky, 2005).   
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Considering Events Throughout the Life Course that  

Affect Fertility and Morbidity 

Failure to look at the relationship between fertility and morbidity using a life 

course perspective and controlling for early-life circumstances can lead to an 

overstatement of their association.  Early-life factors may affect the reproductive health 

and behaviors of men and women (Doblhammer & Oeppen, 2003; Rich-Edwards, 2002).   

Therefore, part of the observed association between fertility and later-life morbidity may 

be merely a reflection  of genetic makeup or physiological changes during childhood.  

For example, adverse childhood and adolescent circumstances are also related to early 

motherhood (Geronimus & Korenman, 1992) and later-life health (Galobardes, Lynch, & 

Smith, 2008; Preston et al., 1998; K. R. Smith, G. P. Mineau, G. Garibotti, & R. Kerber, 

2009).  These are important confounders that must be controlled for when studying the 

effects of fertility on later-life morbidity.  For this reason, we will include measures of 

early-life circumstances that may affect fertility and later-life health outcomes. 

 

Hypotheses 

The research question addressed in this paper is whether measures of fertility and 

reproductive health are associated with morbidity profiles later in life.  We will examine 

the role of parity, young age at first birth, age at last birth, interbirth intervals, infant 

death, multiple births (twins), birth weight of offspring, and preterm births for both men 

and women.  We are able to control for a range of early-life circumstances, including a 

familial predisposition to longevity, childhood socioeconomic status, and death of a 

parent during childhood.  The specific hypothesis generated by suggested evolutionary, 

social, and biological mechanisms summarized in Table 3.1 are as follows: 
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 H1: The optimization of life history traits leads to a “trade-off” between 

fertility and somatic maintenance.  According to this hypothesis, young 

age at first birth, increased parity and shorter birth intervals should be 

positively associated with comorbidity after age 65 for females, and age at 

last birth should be negatively associated with comorbidity after age 65. 

 H2: Childbirth leads to physiological changes that affect later-life health.  

According to this hypothesis, increased parity, shorter birth intervals, later 

age at last birth, and unhealthy (high/low) birth weight of offspring should 

be adversely associated with later-life comorbidity after age 65 for females 

but not males.  Early age at first birth and parity may also have protective 

effects for females but not males. 

 H3: Reproductive history is a marker of a robust phenotype.  According to 

this hypothesis, increased parity, shorter birth intervals, later age at last 

birth, and twinning should be negatively associated with comorbidity after 

age 65 for both sexes and is possibly stronger for females.   

 H4: Social mechanisms are responsible for the observed association 

between reproductive history and comorbidity after 65.  According to this 

theory, the observed effects of fertility history should be similar for males 

and females, but there are competing hypotheses about the direction of the 

effect.   

 H4a: Increased parity is negatively associated with comorbidity 

after age 65 because children provide material, instrumental, and 

social support for both men and women. 
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 H4b: Increased parity is positively associated with comorbidity 

after age 65 because the psychological, social, and economic 

effects of having children outweigh the social benefit.  Children 

may also be unable to provide support because they are caring for 

their own large families. 

 H4c: Early age at first birth is positively associated with 

comorbidity after age 65 because it leads to constrained economic 

and educational opportunities.  Late age at first birth is negatively 

associated with comorbidity after age 65 because it leads to 

increased educational and economic opportunities.   

 

Methods 

Data 

The majority of life-span epidemiological studies examine health influences of 

early and adult life conditions with relatively modest sample sizes. This study utilizes 

data drawn from the Utah Population Database (UPDB). The UPDB is one of the world’s 

richest sources of linked population-based information for demographic, genetic, and 

epidemiological studies. UPDB has supported biodemographic studies as well numerous 

important epidemiological and genetic studies in large part because of its size, pedigree 

complexity, and linkages to numerous data sources. The full UPDB now contains data on 

nearly 7 million individuals due to longstanding and on-going efforts to add new sources 

of data and update records as they become available (e.g., including all statewide death 

certificate records (1904-present) and all Medicare claims (1992-2009). We have 

identified thousands of members of birth cohorts from the first half of the 20th century, 
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individuals for whom early and midlife conditions are measured and who are linked to 

their adult medical records generated decades later. These complex data links provide 

unparalleled data quality and depth that focus on families (nuclear, multigenerational, full 

pedigrees) and health outcomes that span entire life spans of individuals and their 

relatives. 

Given the large sample sizes and the quickly changing morbidity risks by age and 

sex, we will conduct all analysis by sex and 10 year age categories (66-74 and 75-84).  

The first age category begins at age 66 to eliminate the problems of prorating the partial 

year coverage of individuals who become age eligible part way into a year when they 

turn age 65.  Ages are considered in 1992, the first year in which we have Medicare data.  

Separating samples by age effectively holds the cohort constant and allows us to analyze 

the trends by birth cohort for an 18 year period.  Individuals aged 66 – 74  and 75 – 84 in 

1992 are considered members of the young-old cohort (born between 1918 and 1926) and 

old-old cohort (born between 1908 and 1917), respectively.  

We selected once married parous individuals.  Once married individuals were 

selected to limit complications related to fertility spanning more than one marriage 

partner.  We excluded individuals with a spouse deceased before the individual reached 

age 50 because they would not have completed childbearing (Gagnon et al., 2009).  The 

CMS data requires an individual to survive to the age of 66, therefore, by definition, the 

remaining individuals would have completed their childbearing.  Selecting parous 

individuals helps identify the multivariate effects of both the intensity and timing of 

fertility on comorbidity trajectories.  It is also a necessary restriction because the UPDB 

is derived from descendent genealogies in which identification of nulliparous women is 

not reliable (Moorad, Promislow, Smith, & Wade, 2011).  Accordingly, this analysis is 
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not intended to account for the impact of childlessness (Gagnon et al., 2009; K. R. Smith 

et al., 2002).  Individuals were also required to have sufficient information about parents 

in the database, which allowed for the inclusion of early-life circumstances in the model.  

Centers for Medicare Services (CMS) provides files that allow us to assess 

whether individuals are sufficiently represented in the Medicare claims data so that they 

can contribute to the construction of the morbidity trajectories. Our goal is to avoid 

characterizing someone as being disease-free when in fact their health events are simply 

not well represented in the Medicare data. CMS provides a monthly HMO indicator 

variable that describes when a beneficiary was enrolled in a managed care plan.  As 

expected, few claims exist in the file for individuals during the time they are enrolled in a 

managed care plan. For the purposes of this analysis, we exclude persons who have at 

least 1 month of enrollment in a managed care plan. We also required all individuals to 

have at least 1 full year of data and, therefore, all individuals deceased in 1992 were 

excluded from the sample.   

Subjects who met our data requirements (e.g., once married parous individuals for 

whom we have family data (parental death dates and full fertility history)) and had 

sufficient Medicare claims data are shown in Table 3.2. Individuals were then followed 

for a maximum of 18 years (to 2009), our last year of Medicare data, or until death.  The 

total sample size is N=41,158; age specific sample sizes are shown in Table 3.2.   

A secondary analysis of individuals aged 66 to 74 in 1992 was done using the 

information from birth certificates.  Birth certificate information in the UPDB is available 

from 1915 to 1921 and 1943 to the present; however, birth weight was not recorded until 

1947.  Because we are interested in birth weight and prematurity, all individuals used in 

this analysis were required to have their first birth in 1947 or later and all births in Utah 
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(giving us complete fertility information).  Approximately 40% (n=4,142) of women and 

55% (n=6,192) of men in the young-old cohort have birth certificate records for all births.  

Individuals aged 66 and 74 in 1992 would have had to have their first birth at age 21 if 

they were the youngest members of the cohort and at age 29 if they were the oldest.  For 

females, the average age at first birth in the birth certificate sample is 2.5 years greater 

than those excluded (25.8 vs. 23.3, p<0.01) and for males it is 1.4 years greater than those 

excluded (26.9 vs. 25.5, p<0.01).  These requirements make this a select cohort, but the 

benefits of linking birth outcomes to later-life health trajectories makes this a valuable 

analysis.   

 

Key Measures 

Comorbidity 

We are able to observe morbidity episodes from Medicare claims collected over 

time for each individual.  Health experience over time is measured by the Charlson 

Comorbidity Index (CCI) (Charlson, Pompei, Ales, & MacKenzie, 1987). The CCI was 

adapted for use with ICD-9 codes by Deyo et al. (Deyo, Cherkin, & Ciol, 1992) and 

Romano et al. (Romano, Roos, & Jollis, 1993). Deyo et al. adapted the index for use with 

ICD-9 diagnosis and procedure codes. Romano et al. included some diagnoses that were 

not in the original Charlson index. Both modifications were intended for use with the 

Medicare Part A records (Klabunde, Potosky, Legler, & Warren, 2000). Klabunde and 

colleagues (Klabunde, Warren, & Legler, 2002) created two indices, one for Medicare 

Part A records and one for Medicare Part B records. Introducing information from 

physician claims data significantly enhanced the index’s predictive value for the risk of 

mortality. In the present study, we have adopted this variant of the CCI based on the 
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SEER-Medicare Comorbidity macros 

(http://healthservices.cancer.gov/seermedicare/program/comorbidity.html).  We classified 

individuals into similar trajectory groups with respect to their morbidity patterns 

identified by their shared health experiences over time.  

The SEER-Medicare macro calculates the CCI with respect to cancer based on the 

Deyo adaptation of the index. Given that cancer originally was the index disease, it was 

not included as a comorbid condition in this SEER-Medicare program. Accordingly, we 

have added cancer as a comorbid disease. We identified specific episodes of the 

following 17 major morbidities conditions occurring during the interval 1992-2009 on a 

per annum basis that form the basis of the CCI.  Items are coded as “1” if they occur at 

any time during the year or “0” if they do not, and then weighted based upon their ability 

to predict mortality: 

1. Myocardial Infarction 

2. Congestive Heart Failure 

3. Peripheral Vascular Disease 

4. Cerebrovascular disease 

5. Dementia 

6. Chronic pulmonary disease 

7. Rheumatologic disease 

8. Peptic Ulcer Disease 

9. Mild Liver Disease 

10. Diabetes (mild to moderate) 

11. Diabetes with chronic complications 

12. Hemiplegia or paraplegia 
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13. Renal (kidney) disease 

14. Any malignancy 

15. Moderate or severe liver disease 

16. Metastatic Solid Tumor 

17. AIDS 

The independent variables used in the analysis can be partitioned into three domains: 

demographic, early-life conditions (ELCs), and fertility.    

 

 

Demographic Characteristics 

 

 All models controlled for age in 1992 centered on the mean for each sex and age 

group.  Widowhood is a frequent occurrence among individuals in this age range and 

may be linked to changes in health status (K. Williams & Umberson, 2004).  Time-

varying covariates are used to allow for altered shape of the trajectories due to loss of a 

spouse.  An indicator variable for each year was created for each year of observation and 

defined equal to “0” during all periods where the spouse is still alive and “1” during all 

periods where the spouse was deceased.   

 

Measures of Early-life Conditions 

Measures of age at parental death, childhood socioeconomic status, familial 

excess longevity (FEL), and religious participation are generated from the data within the 

UPDB. Death of a parent during childhood may have adverse effects on health later in 

life (Andersson, Hogberg, & Åkerman, 1996; Norton et al., 2011; Umberson & Chen, 

1994), and disruption of the family may affect the transition into adulthood, including 

timing of childbirth.  Birth, marriage and death dates are recorded comprehensively in the 
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UPDB and were used to construct eight categories of parental death.  The gender of the 

deceased parent may have different social and economic implications.  Therefore, two 

categories were created (one mother and one father) for each of the following 

circumstances related to parental death: mother/father died when child was under age 18, 

parent deceased after child was age 18 (reference category), and both parents deceased 

when child was under 18 (orphan).   

Childhood socioeconomic status may directly and indirectly influence marriage 

and reproductive success, timing of childbirth, and later-life comorbidity (Doblhammer & 

Oeppen, 2003; Geronimus & Korenman, 1992; D. Kuh & Ben-Shlomo, 2004).  

Childhood socioeconomic status is measured using usual occupation and industry 

information reported on a father’s death certificate for fathers who died in Utah and for 

whom we have a death certificate (deaths occurring from 1904 forward).  Occupational 

strings were converted to Nam-Powers socioeconomic (NP SES) scores, a measure of 

income and education based on occupational categories and range from 1 to 99, with 

higher scores being associated with higher socioeconomic status (Nam & Powers, 1983).  

NP SES scores were unavailable for approximately 20% of the sample.  Values for these 

individuals were imputed by substituting the mean plus a random number multiplied by 

the distribution of nonmissing values and an additional variable indicating missing 

values.  A large percentage of fathers from this era, a little over 30%, have the occupation 

“farmer,” resulting in a large heaping at the NP SES score of 40.  Farming may also 

confer a survival advantage related to life style factors (Gavrilov & Gavrilova, 2012), and 

a separate category was created for the occupation of farmer.   

To control for unobservable genetic and shared environmental effects, we used a 

measure of family history of longevity, Familial Excess Longevity (FEL).  FEL is a 
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statistic developed using deep genealogical data of multigenerational pedigrees drawn 

from the UPDB. We have published the development of this statistic (Kerber, O'Brien, 

Smith, & Cawthon, 2001) and have applied it to other life-span studies using UPDB 

(Garibotti, Smith, Kerber, & Boucher, 2006; Kerber, O'Brien, Boucher, Smith, & 

Cawthon, 2012; K. Smith et al., 2009).  At its foundation, the FEL is based on the 

assumption that family history of longevity follows Mendelian patterns of inheritance. To 

construct familial excess longevity, we first measure individual level excess longevity, 

defined as the difference between an individual’s attained age and the age to which that 

individual was expected to live according to a model that incorporates basic life-span 

predictors (sex, birth year). Expected longevity is estimated from an accelerated failure 

time (AFT) model, and excess longevity is simply the difference between expected and 

attained age. Expected longevity is based on the lognormal distribution and the AFT 

model was used because it provides a simple point estimate for duration that fits the 

observed data. Excess longevity is then extended to blood relatives who reached the age 

of 65 for each individual, a restriction that focuses on years less affected by external 

causes of death. The kinship coefficient, the probability that an individual shares a 

particular allele with another individual, is used as a weight in calculating familial excess 

longevity.  Averaging the excess longevities of all blood kin over 65 for each ego, with 

the appropriate weighting scheme, generates a point estimate of familial excess longevity.  

We have found that individuals with high FEL live longer and experience more healthful 

disease trajectories as they age (K. R.  Smith et al., 2012; K. R. Smith et al., 2009).   

Active affiliation with The Church of Jesus Christ of Latter-day Saints (LDS or 

Mormon) church is associated with increased life expectancy (Enstrom & Breslow, 2008) 

and high fertility rates (Arland, 1979).  Individuals actively affiliated with the LDS 
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church are more likely to abstain from alcohol and tobacco use, fast once a month, and 

participate in church related social activities (Mineau, Smith, & Bean, 2002).  The UPDB 

contains information on baptism and endowment dates from family history records.  

These were used to classify individuals as active followers, inactive, or nonmembers.  

Individuals with an endowment date have agreed to live their lives following the doctrine 

of the Church and are considered active Church followers if endowed before age 40.  

Individuals with a baptism but no endowment date are considered inactive, and 

individuals with no baptism or endowment date are considered nonmembers (reference 

category).   

 

Measures of Fertility 

Fertility information in UPDB comes from a combination of information collected 

from Family Group Sheets obtained from the Utah Family History Library and linked 

vital records, including birth certificate data from 1915 – 1921 and 1943 to the present.  

All women in the sample have completed fertility by definition because they are required 

to survive to at least age 65 to be visible in the Medicare Claims data.  

Parity was measured with a set of dummy variables to indicate whether a woman 

had 1-2, 3-5, 6-8, or 9+ children.  On average, women in this sample had 4 children, and 

the category for 3-5 children was used as the reference category.  To measure the effects 

of early and late childbirth, we created dummy variables for the following categories: age 

at first birth before the age of 18, between ages 18 and 24, and after age 25, with 18-24 

used as the reference category.  There were very few men under the age of 18, and 

therefore this category was combined with the 18-24 category for men.  For age at last 

birth we constructed three categories: under age 35 (reference group), 35 – 39, and 40 or 
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older.  A dummy variable is used to identify parents of multiples (twins).  Short birth 

intervals are defined as interbirth intervals less than 18 months, and long birth intervals 

are defined as interbirth intervals > 60 months (Conde-Agudelo, Rosas-Bermudez, & 

Kafury-Goeta, 2007).  Separate variables were created to identify individuals with one or 

more short or long interbirth interval.   

Infant mortality may be a marker for maternal health and adverse environments 

(McCormick, Shapiro, & Starfield, 1984).  Environments that lead to adverse health 

outcomes for the infant may also be risky for the parents.  Individuals losing one or more 

children during the first year of life will also be identified with a dummy variable.   

Birth certificate information in the UPDB is available from 1915 to 1921 and 

1943 to the present.  Birth certificates contain information on a mother’s marital status, 

prematurity, and birth weight (starting in 1947).  Using the information from the birth 

certificates, individuals are categoriezed as ever having a high birth weight baby (> 4,000 

grams) or low birth weight baby (<2,500 and carried 37+ weeks), which reflects the WIC 

Nutrition Risk Criteria (Medicine, 1996). Preterm birth was defined as the birth of an 

infant before 37 weeks of gestation.  Table 3.3 presents the descriptive statistics of all the 

measures by sex and age group.   

  

Constructing Morbidity Trajectories 

We seek to determine how reproductive history and health affect the likelihood of 

having a particular later-life comorbidity trajectory. Assessment of comorbidity 

trajectories is accomplished through the application of a finite mixture modeling 

approach that is currently available as a SAS procedure called PROC TRAJ through the 

work of Dr. Daniel Nagin and his colleagues (Haviland, Nagin, Rosenbaum, & Tremblay, 
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2008; Jones & Nagin, 2007; Nagin & Tremblay, 2001). The group-based modeling 

approach allows for identification of distinct clusters of individual trajectories.   

Given the quickly changing health landscape of an aging population, all models 

are estimated within age-sex categories. The excess mortality risks of men and the 

generally higher rates of morbidity of women necessitate that we use sex-specific models. 

As age profoundly affects the risks of morbidity as encompassed in the CCI, as noted 

above, we divide the sample into two birth cohorts determined by their age at baseline.  

Because the response variable in this analysis is a weighted count of the number of 

comorbid conditions, a zero-inflated Poisson (ZIP) based model was used.  The ZIP 

model is an expansion of the Poisson model that corrects for overdispersion by 

accounting for more zeros than would be expected under a Poisson process.  Both the 

Poisson and censored normal distributions were also considered, but the ZIP model 

provided the best fit for our data.   

Trajectories were modeled for two to six groups as a quadratic function of time.  

Model fit was assessed using the Bayesian information criterion (BIC), the log likelihood 

plus a penalty for the number of parameters in the model.  There are situations where BIC 

score continues to increase as more groups are added, but the additional groups are not 

necessary to summarize the distinct features of the data in a parsimonious way (Nagin, 

2005).  Therefore, average posterior probability of assignment, odds of correct 

classification, and estimated group probabilities versus the proportion of the sample 

assigned to the group (Nagin, 2005) were also used to assess the selected model’s 

correspondence with the data.   

Nonrandom attrition leads to altered characteristics of the population over time 

and can lead to biased estimates.  Because we excluded individuals who were enrolled in 
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a managed care plan during any period of a given year, our only source of truncation is 

death.  PROC TRAJ is used to simultaneously model the comorbidity trajectories and the 

probability of death, allowing the modeled probability of death to vary across trajectory 

groups.  Individuals in the analysis were required to be alive at time “1,” and therefore 

the probability of dropout during this period is zero for all trajectory groups.  All models 

accounted for nonrandom attrition due to death using the extension created by Haviland 

(Haviland, Jones, & Nagin, 2011; Zimmer, Martin, Nagin, & Jones, 2012).  This 

extension jointly models the trajectories with a model of the logit of the dropout 

probability, in this case death, by group that includes dependence on the prior period 

response until dropout and age.   

Trajectory group membership probabilities can vary as a function of time stable 

characteristics, or characteristics established before the observation periods (Jones & 

Nagin, 2007).   This third component jointly estimates a multinomial logit model that 

captures the effects of time stable characteristics on the probability of group membership.  

This makes it possible to test the effect of early-life conditions and fertility on the 

probability of membership in each group (Daniel S. Nagin & Odgers, 2010).  PROC 

TRAJ also allows for the inclusion of time-varying covariates measured during the 

observation time that may alter the shape of the observed trajectories, such as 

widowhood. 

A series of mediation analysis were conducted to test the hypothesis that fertility 

history mediated the relationship between early-life conditions and later-life health.  

Mediation tests used the Clogg test of differences in coefficients produced when fertility 

variables were added to the model (MacKinnon, Lockwood, Hoffman, West, & Sheets, 

2002). 
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For each group, the following analyses were conducted.  First, we derived the 

basic trajectory groups in which comorbidity is a function of time only in order to select 

the best model.  Second, we fit a model with covariates from the demographic and early 

life conditions (ELCs).  Third, we fit a model with the covariates from the demographic, 

ELCs, and fertility domains.  All models accounted for nonrandom attrition due to death.  

In addition, we examined how ELCs in the probability of trajectory membership are 

mediated by timing of childbirth (age at first and last birth), preterm birth, and parity. 

   

Addressing Sample Selection 

The data requirements for selection into the sample, once married parous 

individuals who survived to age 66, had a spouse survive until they were age 50, and 

never enrolled in a managed care plan during the observation period, could lead to biased 

estimates because the data are not representative of the population.  To correct for the 

potential problem of selection, we use a Heckman two-stage modeling strategy 

(Heckman, 1979) performed using Stata 11.   

In the first stage, a probit model assesses factors leading to selection into the 

sample among all individuals (see Table 3.2).  The dependent variable is a dichotomous 

indicator of selection into the sample.  This equation is used to generate the inverse Mills 

ratio (IMR), which is a nonlinear transformation of the probit index and a decreasing 

function of the probability of selection (Fu, Winship, & Mare, 2004).  The IMR can be 

interpreted as the hazard of not being selected into the sample on which the comorbidity 

trajectories are based.  The independent variables used in the selection equation are 

displayed in Table 3.4.  For the model to be correctly specified, the selection equation 
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must include variables that are more closely related to sample selection than the 

dependent variable in the substantive equation.   

Our sample selection is largely based on having complete information in UPDB 

and nonenrollment in a managed care organization (MCO).  Therefore, we selected 

independent variables for the selection equation that are closely related to these factors.  

Age in 1992 is derived from the CMS records.  The longitudinal information within the 

UPDB is more complete for individuals with a longer length of residence in the state of 

Utah.  The UPDB holds information on the birth place of individuals, and this was used 

to create an indicator variable for place of birth, Utah versus outside of Utah.  

Approximately 85% of the individuals selected into the sample were born in Utah, 

compared to 40% of those not selected into the sample.  Area level characteristics of an 

individual’s current place of residence may also predict selection into the sample.  

Information about an individual’s county of residence in 1992 was pulled from the 1990 

US Decennial Census.   

Table 3.4 shows that there are large differences in county level population and 

median family income between those selected and not selected into the final sample.  Of 

those selected into the final sample, 61% resided in the Wasatch Front region of Utah, 

compared to 48% of the nonselected individuals.  This contributes to the large difference 

in county level population between the groups because a larger proportion of individuals 

in the nonselected group resides in populous counties in California (such as LA county; 

population of 8.8 million in 1992).  In the second stage, trajectory models are estimated 

with the IMR from the first stage added as a covariate in the model, the goal being to 

account for possible sample selection bias in the final models.  The far right column in 

Table 3.4 shows all of the variables included in the probit models significantly predicted 
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selection into the sample, with the exception of age in the equation for males aged 75 – 

84.  Age and being born in Utah were positively associated with selection into the 

sample, while median family income and population were negatively associated with 

selection into the sample for all genders and cohorts (with the age exception mentioned 

above).  A similar sample selection strategy was used by Gagnon et al. (2009) when 

examining the relationship between fertility and postreproductive survival.   

 

Results 

Trajectories of Comorbidity and Morbidity 

 The best fitting models for both males and females ages 66 – 74 (the young-old) 

in 1992 revealed six distinct groups of trajectory groups, while those for ages 75 – 84 (the 

old-old) showed five distinct groups. Figures 3.1- 3.4 show the predicted comorbidity 

trajectories by sex and age group.  The figures show the diversity of comorbidity 

experience over the 18 year period of follow-up (the youngest individuals are 84 years 

old at the end of the follow-up period).  To aid in the interpretation of results, trajectory 

groups have been labeled as follows: “robust”- characterized by the absence of comorbid 

conditions; “slow initiates”- individuals in this group begin the observation period with 

no comorbid conditions, but the number gradually increases over time; “accelerated 

initiates”- individuals in this group begin the observation period with no comorbid 

conditions but the number of conditions quickly increases over time and then decelerates 

during the last 2 years of the 18 year period; “chronic low”- characterized by the steady 

level of comorbidity over time; “ailing”- this group of individuals has moderate levels of 

comorbidity at baseline which steadily increase over time; “frail”- these individuals have 

the highest level of comorbidity at baseline which remains high over time.    
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In addition to using BIC as model selection criteria, several other measures were 

used to assess the correspondence of our models with the data (D. Nagin, 2005; Zimmer 

et al., 2012).  First, we calculated the average posterior probability (APP) of membership 

in group j for all individuals who are most likely to belong to that group.  The 

recommended criterion is that the APP for each group should exceed 0.70.  All selected 

models met this criterion, with APP ranging from 0.79 to 0.92.  Second, we compared 

estimated proportions of group membership generated by the maximum likelihood 

procedure to the actual proportion of the sample assigned to each group based on 

maximum posterior probability of group membership.  For this criterion, our models were 

satisfactory, with no more than a 4 point difference in any of the selected models.   

The shape of the trajectories is similar between males and females in their 

respective age groups, but the intercepts differ.  Individuals surviving the full 18 year 

period range in age from 83 to 91 in 2009.  For females in the young-old age category, 

trajectory membership is fairly evenly distributed among the robust (19.1%), slow initiate 

(18.8%), chronic (19.7%), and ailing (21.8%).  Compared to females, males have lower 

percentages of individuals in the robust (15.7%) and slow initiate (16.4%) groups, and 

higher percentages of individuals in the ailing (26.1%), accelerated initiate (15.3%), and 

frail groups (8%).  The frail category constitutes the lowest proportion of group 

membership for both males and females, 8% and 7.3%, respectively.  These findings are 

somewhat unexpected given the health-survival paradox, where females have worse 

health and males have higher mortality.  However, recently reported prevalence estimates 

support our findings.  The 2011 summary statistics for US adults reports higher 

prevalence rates of heart disease, hypertension, and diabetes for men (Schiller, Lucas, & 

Peregoy, 2012).  A separate report using National Health Interview Survey (NHIS) from 
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2009 estimated that a higher percentage of men (49%) than women (42.5%) had two or 

more chronic conditions (conditions considered included hypertension, heart disease, 

diabetes, cancer, stroke, chronic bronchitis, emphysema, current asthma, and kidney 

disease; V. Fried, Bernstein, & Bush, 2012).   

 Individuals in the old-old cohort surviving the full 18 year period range in age 

from 92 to 101 in 2009.  For both sexes in this cohort, five distinct trajectory groups were 

identified.  The ailing category, with a CCI of approximately “1” at baseline that 

gradually increases over time, has the highest trajectory membership for both sexes, with 

29.7% of females and 35.3% of males falling into this category.  Compared to the young-

old, a smaller proportion of the old-old fall into the robust category (15.7% vs. 14.7% for 

males and 19.1% vs. 18.2% for females).  As expected, the robust in the old-old cohort 

do not maintain a disease free trajectory over the period of 18 years, with a predicted CCI 

of 0.74 for females and 1.5 for males in 2009.  While the pattern of this robust trajectory 

in the old-old cohort is similar to the pattern of the slow initiates in the young-old cohort, 

individuals in the old-old robust category have a slower rate of increase over time and 

end the period with a lower predicted CCI (the difference in CCI2009 is 0.82 for females 

and 0.44 for males).  Compared to the young-old, there is a near doubling in the 

proportion of frail females and a 50% increase for the males.  Another notable difference 

between the young-old and old-old frail trajectories is the maximum predicted CCI, 

which is higher in the young-old category for both sexes.  While the two cohorts are not 

directly comparable, the results suggest that there may be a decrease in the heterogeneity 

of morbidity patterns with age, with fewer categories in the older age groups.  The lower 

number of categories that fit the data may also be a function of the decreased sample size 

in the old-old cohort.   



87 

 

 

 We found six distinct trajectory groups for the male and female birth certificate 

samples.  The parameter estimates and estimated trajectory memberships were similar 

across samples (results not shown) with a slightly higher percentage in the robust group 

for both males and females compared to the full sample.  This is not unexpected given the 

younger age distribution of these subsamples.  The following trajectories were identified: 

robust (male=16.7%, female=20.3%); slow initiate (male=16.9%, female=19.2%); 

accelerated initiate (male=18.0%, female=14.3%); chronic low (male=16.1%, 

female=18.0%); ailing (male=25.2%, female=21.3%); and frail (male=6.9%, 

female=6.9%).   

 Figures 3.5 – 3.8 display the probability of death for each sex and age-group.  The 

probability of dropout due to death is modeled as a function of age and the comorbidity 

measurement in the previous year and is allowed to vary by trajectory group.  Mortality 

trajectories follow a similar hierarchy as the comorbidity trajectories, with the robust 

group generally having the lowest levels of mortality and the frail group having the 

highest.  Mortality in all groups rises with time, with the accelerated initiates having the 

fastest rate of increase in mortality over the 18 year period for the young-old cohort, and 

the ailing and initiates having the fastest rates of increase for females and males 

respectively in the old-old cohort.  Females have lower probabilities of death than males 

in their respective cohorts and comorbidity groups.  The young-old have lower 

probabilities of death than the old-old.  Both of these patterns are consistent with 

expected patterns of mortality in these age groups. 

 Widowhood altered the shape of the trajectory for some, but not all, trajectory 

groups.  In general, experiencing the death of a spouse led to an increase in the level of 

comorbidity.  Individuals in the frail categories and males in the old-old cohort were the 
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most impervious to the effects of widowhood, with few of the effects reaching 

significance.  Because these results are central to the hypothesis, they are not shown here 

but are available upon request. 

 

Fertility History and Later-Life Comorbidity 

 Once the best fitting trajectory models were selected, we jointly modeled 

multinomial logit models by sex and cohort, relating individual-level covariates to 

posterior probabilities to estimate the effects of ELCs and fertility on probability of group 

membership.  The first set of nested models included only ELCs and the results are not 

displayed in this paper, but they are available upon request.    Tables 3.5 – 3.8 display the 

odds ratios and 95% confident intervals for the full models that include demographic, 

ELCs, and fertility measures.  Comorbidity is the existence of multiple diseases.  Our 

results show that there are two groups in all models that escape transition into a comorbid 

state (two or more simultaneous conditions), the robust and chronic low. However, for 

ease of interpretation, the chronic low group will be referred to as a group with comorbid 

conditions.  The contrast group in all tables is the robust category, meaning that we are 

comparing the probability of membership in trajectory groups with comorbid conditions 

with the probability of membership in the group with no comorbid conditions.  All results 

discussed below are controlling for early-life events and demographic measures and, 

therefore, all results presented below are ceteris paribus.  Also, unless otherwise noted, 

the results highlighted below are significant at the 0.05 level. 

 For females in the young-old cohort, we do not find a significant association 

between parity and trajectory membership.  We do find a relationship between age at first 

birth and trajectory group.  Table 3.5 shows that, compared to women having their first 
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birth between the ages of 19 and 24, young age at first birth (<18) nearly doubles the 

odds of being in the frail versus robust trajectory.  The results also suggest that young age 

at first birth increases the odds of being in the other categories with increased 

comorbidity, but the differences are merely suggestive.  Age at last birth confers a 

protective effect, with women having a last birth at age 35 or later having a decrease in 

the odds of being in a comorbid trajectory.  Females who have their last birth between the 

ages of 35 and 39 and after age 40 have a 24% and 25% (p=0.07) respective decrease in 

the odds of being in the frail versus robust group compared to females ending 

childbearing earlier.  There is a 33% decrease in the odds of being in the accelerated 

initiate group versus the robust trajectory for women having one or more infant deaths, 

but this pattern is not evident for other categories.   There is no evidence of an association 

between twinning, short birth intervals, long birth intervals, and later-life comorbidity 

trajectories for females in the young-old cohort.   

 Table 3.6 shows the results for females in the old-old cohort.  We find little 

association between parity and trajectory membership ceteris paribus for females in the 

old-old cohort with the exception of the frail group, where females having nine or more 

children are nearly twice as likely to be in the frail versus robust group.  The relationship 

between age at first birth and trajectory membership are similar to the patterns observed 

in the young-old cohort.  Females having their first birth during the teenage years are 

more likely to be in the chronic low, ailing, and frail versus robust groups.  Females in 

this cohort having their first birth after age 25 are less likely to be in the chronic low and 

frail categories.  Compared to females having their last birth before the age of 35, females 

having their last child after the age of 35 are more likely to be in the chronic low group 

versus the robust group.  However, females having their last birth after the age of 40 have 
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a 24% decrease in the odds of being in the frail versus robust group.   As with the female 

young-old cohort, we find no association between trajectory membership and twinning, 

infant death, and short birth intervals ceteris paribus.  Having one or more long birth 

interval reduces the odds of being in any of the groups with more comorbid conditions 

versus the robust, with an 24%, 34%, 18%, and 27% respective decrease in the risk of 

being in the initiate, chronic low, ailing, and frail versus robust group (the difference in 

the magnitude of the effect across groups is not significant).    

We find no association between parity and trajectory membership for males in the 

young-old and old-old cohorts ceteris paribus.  Having a later age at first birth (over the 

age of 25 vs. less than 25) is protective for men in both cohorts.  Table 3.7 shows that for 

males in the young-old cohort, having their first birth at the age of 25 or older reduces the 

odds of being in the accelerated initiates, chronic low, ailing, and frail groups by a little 

over 20% for each group compared to the robust.  Table 3.8 shows that for males in the 

old-old cohort, having an older age at first birth is associated with an 18% and 29% 

reduction in the risk of being in the ailing and frail groups, respectively, compared to the 

robust group.  Males in the old-old cohort having their last child after the age of 40 have 

a 26% decrease in the odds of being in the ailing versus robust group.  We do not find an 

association between twinning, age at last birth, short birth intervals, long birth intervals, 

and infant deaths and group membership for males in these cohorts.   

 The results from of the birth certificate analysis are presented in Figures 3.9 and 

3.10.  Individuals included in these models were required to have birth certificate records 

for all births and, therefore, the results are based on a subsample of individuals in the 

young-old cohorts, with a higher percentage of the males from the full sample 

represented in the subsample than females (NFemale=4,124 and NMale= 6,192).  This is 
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because, on average, men have an older age at first birth and are therefore more likely to 

meet the selection criteria.  All models controlled for early-life conditions and the fertility 

covariates presented used in the earlier models.  As with the previous analyses, the 

multinomial logit model relates individual-level covariates to posterior probabilities of 

trajectory group membership.  Models were run simultaneously with the trajectories, and 

the reference group is the robust, or group with the lowest number of comorbidities.  All 

models control for early-life conditions and demographic variables and were jointly 

modeled with mortality trajectories.   

We find that for females in the young-old cohort, having one or more high birth 

weight (defined as >4,000 g) children increases the odds of being in the chronic low, 

ailing, and frail versus the robust ceteris paribus by 39%, 60%, and 76%, respectively.   

Females having one or more preterm births (defined as <37 weeks gestation) have a 54% 

increase in the odds of being in the frail group versus the robust group.  We do not find 

an association between ever having a low birth weight (carried to term) baby and later-

life comorbidity trajectories for females.  For males in the birth certificate analysis, we 

find no association between premature offspring and group membership.  We do find that 

males having one or more high birth weight children have a 30% increase in the odds of 

being in the accelerated initiate versus the robust group.  Fathers of low birth weight 

babies are also more likely to be in the chronic low and ailing groups compared to the 

robust group.   

 To account for sample selection bias, the inverse Mills’ ratio (IMR) estimated 

from the probit model predicting selection into the sample was included in the analyses.  

Overall, the sample bias correction term (the IMR) has little effect on probability of 

group membership.  We do find that an increased hazard of nonselection is associated 
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with an increase in likelihood of being in the frail group for females in the young-old 

cohort (OR=1.3, 95% CI= 1.02, 1.67) and the ailing group for males in the old-old cohort 

(OR=1.38, 95% CI=1.07, 1.78).  Simply, individuals not predicted to be in the sample 

had a 30% and 38% increase in the odds of being in the frail and ailing groups for the 

young-old females and old-old males, respectively.  The beauty of the IMR term is that it 

simultaneously tests for and corrects selection bias.  Therefore, the selection bias present 

in models with significant terms has been corrected for by including the IMR in our 

models.  However, this should be interpreted with some caution because selection models 

are sensitive to the choice of covariates in the selection equation (Fu et al., 2004).   

 

The Mediating Effects of Fertility 

Mediation analyses were performed to test the mediating effects of fertility on 

early-life conditions.  Fertility variables were considered as possible intervening variables 

if they were significantly related to comorbidity group membership.  While there were 

few significant differences in coefficients, the percent change in the effects of the ELCs 

was small (ranging from 0.5% to 8%) and inconsistent.  Therefore, we concluded that 

fertility history did not significantly mediate the relationship between early-life 

conditions and later-life health (results not shown here but available upon request). 

 

 

Discussion 

 The purpose of this study was threefold.  First, we sought to identify distinct 

trajectories of comorbidity by sex for individuals in two age categories, the young-old 

and old-old. Second, we tested specific hypotheses relating fertility to trajectory group 
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membership.  Third, we tested the mediating role of fertility on the relationship between 

early-life conditions and comorbidity. We found that there are distinct heterogeneous 

patterns of comorbidity that range from a robust group, escaping major morbid conditions 

for the majority of the observation period, to a frail group characterized by high 

comorbidity throughout the entire period of observation.  Fertility history is associated 

with comorbidity trajectories after the age of 65 for both females and males when 

controlling for early-life circumstances, although it is clear that the fertility history has a 

greater impact on females.  These results provide some evidence that evolutionary “trade-

off” (H1), biological (H2), and social mechanisms (H4b, H4c) may all be associated with 

the observed relationship between fertility and later-life health.  While we found 

independent effects of early-life conditions on later-life comorbidity trajectories, we did 

not find robust evidence that fertility history is on the causal pathway between early-life 

conditions and later-life comorbidity.   

The observed relationships between parity, age at last birth and comorbidity group 

membership present evidence of a “trade-off” between fertility and aging for females in 

the young-old cohort.  Our finding of adverse effects at 9+ births is higher than the 5+ 

births reported in other studies of contemporary populations (Doblhammer, 2000; Grundy 

& Tomassini, 2005).  However, both studies top coded fertility at 5+ births.  Our findings 

support other studies suggesting that high levels of fertility are needed for a trade-off 

mechanism to operate (Gagnon et al., 2009; Kitagawa & Hauser, 1973).  We also find a 

consistent protective relationship between age at last birth and comorbidity group 

membership in the young-old cohort, with females having their last birth after age 35 

more likely to be in the robust group.  This is consistent with the prediction that older 

ages of reproduction are a marker for slowed rates of aging (Perls, Alpert, & Fretts, 
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1997).  However, we do not see the same strong protective effect for females in the old-

old cohort.   

 Related to the evolutionary theories discussed above are the biological 

mechanisms through which fertility is linked to later-life comorbidity for women.  We 

did find some support for biological consequences to childbirth for women (H2), but we 

did not find evidence supporting the maternal depletion hypothesis or the link between 

low birth weight and comorbidity for women (Davey Smith et al., 2004; G. D. Smith et 

al., 1997).  High parity (9+ births) had an adverse effect on later-life health for females 

but not males, suggesting the costs of increased parity are biological.  Having at least one 

long birth interval had a protective effect on comorbidity later in life for females in the 

old-old cohort.  Long birth intervals have been linked to complications during 

reproductive years (Conde-Agudelo et al., 2007).  However, this study suggests that there 

are not long term consequences to widely spaced births for women in the old-old cohort.  

We do not find strong evidence in favor of the robust phenotype hypothesis (H3), 

which argues that fertility success is a marker for female health and vitality.  We find no 

association between short birth intervals and later-life comorbidity.  While the negative 

relationship between late age at last birth and comorbidity may be a marker for 

robustness, the hypothesized negative relationship between increased parity, shorter birth 

intervals, and twinning were not significant across trajectory groups and cohorts.  Other 

studies using this data from the UPDB have found evidence supporting the robust 

phenotype hypothesis (Robson & Smith, 2011, 2012).  However, that study uses a 

historical cohort of women that survive to age 50.  It is possible that twinning served as a 

selection filter, with only the most robust women giving birth to multiples during that 

historical time period surviving to age 50.  The same effect is not observed in a 
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contemporary sample with women giving birth during a period where medical 

intervention could increase the rate of survival for mothers of multiples.  Therefore, we 

are rejecting this hypothesis.  

 We do find evidence that social mechanisms explain some of the relationship 

between fertility and later-life health.  We do not find strong evidence of decreased 

comorbidity for individuals with more children, and therefore reject the social support 

hypothesis (H4a).  We find strong evidence supporting the association between age at 

first birth and comorbidity after age 65.  Young motherhood is related to adverse health 

outcomes for both cohorts in this study, and postponing parenthood is protective for 

males and females when controlling for early-life circumstances including childhood 

socioeconomic status.  This suggests that policy aimed at reducing teenage pregnancy 

may have significant effects on later-life health outcomes.  The adverse effect of low 

birth weight for males but not females and high birth weight of offspring for males and 

females suggests that adverse birth outcomes may be a marker of risky environments 

(Kramer, Séguin, Lydon, & Goulet, 2000).  We did not control for social environment at 

time of birth or current socioeconomic circumstance.  There are large socioeconomic 

disparities in perinatal and infant mortality, low birth weight, and preterm birth and, in 

the United States, these disparities are often related to racial/ethnic disparities (Kramer, 

1987; Kramer et al., 2000).  Future research should not only consider the early-life social 

environment, but the social environment throughout the life course.   

 Fertility decisions and outcomes are heavily influenced by social and historical 

circumstances, making it important to consider the historical context of these individuals’ 

lives.  The oldest members of the old-old cohort would have been born in 1908 and 

entered childbearing age (assuming it is 15) in 1923, with the childbearing years 
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extending to 1965 for the youngest members of the cohort (assuming age at last birth is 

50).  The members of the young-old cohort would have initiated childbearing in 1933 and 

ended in 1974.  Infertility drugs would have been available for some individuals in these 

cohorts.  This means that parity and late age at last birth may not be completely 

biologically determined.  Individuals in both cohorts may have served during WWII, 

which may affect the timing of fertility.  Individuals in both cohorts would have been 

parous during the baby boom, when fertility rates peaked at 3.8 (Westoff, 1986).  

Members of the old-old cohort would also have been children during the 1918 influenza 

pandemic, an exposure that may have left them physiologically scarred, affecting both 

fertility and mortality.  A study by Smith et al. suggests that individuals exposed to 

influenza or pneumonia as children during the pandemic have lower ages at last birth and 

increased mortality (Ken R. Smith, Reed, Hanson, Mineau, & Fraser, 2012).   

 This study has several limitations that should be addressed in future studies of the 

relationship between fertility and later-life health.  First, these results are based on once 

married parous individuals.  Future studies should consider the relationship between 

nulliparity and later-life comorbidity for both men and women.  Second, we were unable 

to consider the role of all early-life and reproductive outcomes (including the number of 

sibling, number of sons and daughters, the proportion of offspring born prematurely, and 

the proportion of offspring born high/low birth weight) and later-life health.  Third, while 

we controlled for childhood SES, we were unable to control for SES at the time of birth 

and baseline.  We are currently in the process of creating files to begin these analyses.  

Fourth, sibling and spouse designs may improve understanding of the mechanisms 

linking reproductive history and health.   
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Conclusion 

 The paths to aging are heterogeneous and more research needs to be done to both 

characterize these different phenotypes and the factors that influence them.  Approaching 

this problem using the life course lens allows us to explore events that can directly or 

indirectly affect later-life health.  Understanding heterogeneity in the patterns of aging 

using a single period is an impossible endeavor because the biological functioning of an 

individual is dependent upon an array of circumstances from birth to death.  While early-

life conditions explain a portion of the heterogeneity in aging, midlife circumstances may 

also alter the trajectories of disease.  Parity, timing of childbearing, and birth outcomes of 

offspring are significantly related to later-life health outcomes.  The differences in risk 

factors between men and women suggest that evolutionary, biological, and social 

mechanisms must all be considered when studying these heterogeneous aging processes.    
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Table 3.3.  Descriptive Statistics by Gender and Age Group 

 

 

Female 66-74 in 

1992 
Female 75 - 84 

in 1992 
Male 66-74 in 

1992 
Male 75 - 84 in 

1992 

 
N=12,190 N=10,099 N=11,349 N=7,520 

Early Life Conditions N(% of total sample) or Mean (SD) 
Father's Nam-Powers SES Score 49.37 (19.54) 47.4 (18.19) 49.0 (19.14) 47.09 (17.96) 

Father Farmer 3556 (29.2%) 3699 (36.6%) 3434 (30.3%) 2786 (37.1%) 
Father Missing SES 2982 (24.5%) 2416 (23.9%) 2620 (23.1%) 1754 (23.3%) 

Active LDS 6452 (52.9%) 5525 (54.7%) 5876 (51.8%) 4219 (56.1%) 
InActive LDS 2886 (23.7%) 2883 (28.6%) 2643 (23.3%) 1843 (24.5%) 

Non-LDS 2852 (23.4%) 1691 (16.7%) 2830 (24.9%) 1458 (19.4%) 
FEL Bottom 25% 2841 (23.3%) 2335 (23.1%) 2693 (23.7%) 1640 (21.8%) 
FEL Middle 50% 5321 (43.7%) 4525 (44.8%) 4869 (42.9%) 3648 (48.5%) 

FEL Top 25% 2662 (21.8%) 2653 (26.3%) 2554 (22.5%) 1757 (23.4%) 
FEL Missing 1366 (11.2%) 586 (5.8%) 1233 (10.9%) 475 (6.3%) 

Mother Died when Ego <18 721 (5.9%) 746 (7.4%) 682 (6.0%) 555 (7.4%) 
Mother Died when Ego 18+ 11379 (93.4%) 9255 (91.6%) 10583 (93.3%) 6906 (91.8%) 
Father Died when Ego <18 1060 (8.7%) 943 (9.3%) 951 (8.4%) 714 (9.5%) 
Father Died when Ego 18+ 11040 (90.6%) 9058 (89.7%) 10314 (90.9%) 6747 (89.7%) 

Both Parents Died Before 18 90 (0.7%) 98 (1%) 84 (0.7%) 59 (0.8%) 
Fertility History         

Children 1-2 3004 (24.6%) 3138 (31.1%) 2533 (22.3%) 2104 (28.0%) 
Children 3-5 6798 (55.8%) 5287 (52.4%) 6605 (58.2%) 4087 (54.4%) 
Children 6-8 2061 (16.9%) 1410 (14.0%) 1934 (17.0%) 1135 (15.1%) 
Children 9+ 327 (2.7%) 264 (2.6%) 277 (2.4%) 194 (2.6%) 

Infant Death (Y/N) 730 (6.0%) 757 (7.5%) 637 (5.6%) 527 (7.0%) 
Short Birth Interval (Y/N) 3380 (27.7%) 2238 (22.2) 3489 (30.7%) 1707 (22.7%) 
Long Birth Interval (Y/N) 5201 (42.7%) 4684 (46.4%) 4568 (40.3%) 3513 (46.7%) 

Mother/Father of Twin 580 (4.8%) 489 (4.8%) 486 (4.3%) 370 (4.9%) 
Age at First Bith Less than 18 391 (3.2%) 316 (3.1%) n/a n/a 

Age at First Birth 18 - 24 8590 (70.5%) 5871 (58.1%) 5815 (51.2%) 2687 (35.7%) 
Age at First Birth 25+ 3209 (26.3%) 3912 (38.7%) 5534 (48.8%) 4833 (34.3%) 

Age at Last Birth 35 - 39 1848 (15.2%) 3105 (30.8%) 2864 (25.2%) 2188 (29.1%) 
Age at Last Birth >=40 3827 (31.4%) 2369 (23.5%) 2864 (25.2%) 2995 (39.8%) 

Age 70.09 (2.57) 79.00 (4.76) 70.0 (2.56) 78.6 (2.78) 
Information from Utah Birth Certificates* 

At least 1 High Birth Weight Baby 668 (16.1%)   1126 (18.8%)   
At least 1 Low Birth Weight Baby 283 (6.8%) 

 
434 (7.0%) 

 At Least One Preterm Birth 572 (13.8%) 
 

942 (15.2%) 
 Adult Measures         

Spouse Alive at Baseline 9523 (78.1%) 5023 (49.7%) 10913 (96.2%) 6662 (88.6%) 
*Female N=4142; Male N=6192 

Note: Age 66-74 in 1992 with birth certificate data on all births, making this a select 

sample. Females are younger (avg age=69, range 66 - 74) and had to have their first birth 

after age 20 (1947 is the first year BC available).  Males are younger and had to have 

their first birth after age 20. 
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Table 3.4.  Sample Selection Means by Gender and Age 

  Mean (StdDev) Mean (StdDev) 

Selection 

Model 

Female  Age 66 - 74 

Excluded 

(N=48,519) 

Included 

(N=12,190) Probit P-value 

Age  in  1992 69.81(2.55) 70.09(70.09) 0.024 <0.001 

Born in Utah 0.39(0.49) 0.85(0.85) 1.186 <0.001 

1990 County Med Family Income 

(Unit=10,000) 3.35(0.53) 3.28(3.28) -0.085 <0.001 

1990 County Population (Unit=100,000) 5.87(12.4) 3.63(3.63) -0.018 <0.001 

Missing 1990 Census Info 1% 0.30% -0.444 <0.001 

Constant 

  

-2.911 <0.001 

Female  Age 75 - 84 

Excluded 

(N=34,225) 

Included 

(N=10,099) Probit P-value 

Age  in  1992 78.95(2.79) 79(2.84) 0.01 0.01 

Born in Utah 0.41(0.49) 0.83(0.38) 1.10 <0.001 

1990 County Med Family Income 

(Unit=10,000) 3.33(0.55) 3.26(0.42) -0.12 <0.001 

1990 County Population (Unit=100,000) 6.07(13.26) 3.65(6.34) -0.01 <0.001 

Missing 1990 Census Info 1% 0.10% -0.81 <0.001 

Constant 

  

-1.48 <0.001 

Male  Age 66 - 74 

Excluded 

(N=48,866) 

Included 

(N=11,349) Probit P-value 

Age  in  1992 69.79(2.56) 69.97(2.56) 0.02 <0.001 

Born in Utah 0.4(0.49) 0.86(0.34) 1.24 <0.001 

1990 County Med Family Income 

(Unit=10,000) 3.34(0.57) 3.28(0.43) -0.10 <0.001 

1990 County Population (Unit=100,000) 6.09(13.52) 3.77(6.56) 0.00 <0.001 

Missing 1990 Census Info 1% 0.30% -0.55 <0.001 

Constant 

  

-2.61 <0.001 

Male  Age 75 - 84 

Excluded 

(N=29,211) Included (N=7,520) Probit P-value 

Age  in  1992 78.67(2.75) 78.63(2.78) 0.00 0.61 

Born in Utah 0.4(0.49) 0.84(0.37) 1.16 <0.001 

1990 County Med Family Income 

(Unit=10,000) 3.28(0.57) 3.26(0.43) -0.08 <0.001 

1990 County Population (Unit=100,000) 5.63(13.1) 3.71(7.08) -0.01 <0.001 

Missing 1990 Census Info 1% 0.30% -0.59 <0.001 

Constant     -1.08 <0.001 
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Table 3.5.  Effects of Early Life Conditions and Fertility on Comorbidity Trajectory 

Group Membership versus Robust Group (19.1%): Women Ages 66 – 74 in 1992 

 

 

Slow Initiates 

Accelerated  

Initiates Chronic Low Ailing Frail 

18.8% 13.3% 19.7% 21.8% 7.3% 

Early Life Conditions Odd Ratio (95% CI) 

Age in 1992  2.47(1.88,3.26) 2.54(1.89,3.41) 3.52(2.71,4.58) 3.01(2.34,3.87) 3.16(2.24,4.45) 

Active Member of LDS Church 0.76(0.61,0.94) 0.55(0.44,0.68) 0.72(0.58,0.88) 0.45(0.37,0.54) 0.47(0.37,0.61) 

Inactive Member of LDS 

Church 0.84(0.66,1.06) 0.57(0.45,0.73) 0.78(0.62,0.98) 0.59(0.48,0.73) 0.56(0.42,0.73) 

Non-Member (reference) 1 1 1 1 1 

Father's NP SES (unit=10) 1.02(0.98,1.05) 0.98(0.94,1.02) 1.01(0.97,1.04) 0.99(0.96,1.03) 0.96(0.91,1) 

Father Farmer 1.01(0.85,1.2) 0.8(0.67,0.96) 1.1(0.93,1.29) 0.79(0.68,0.92) 0.74(0.6,0.93) 

Missing SES 0.91(0.76,1.09) 0.91(0.76,1.1) 1.08(0.91,1.28) 0.85(0.73,1.01) 1.08(0.87,1.34) 

FEL in Bottom Quartile 1.19(0.99,1.44) 1.38(1.14,1.67) 1.24(1.04,1.48) 1.44(1.22,1.69) 1.27(1.02,1.59) 

FEL in Mid 50% (reference) 1 1 1 1 1 

FEL in Top Quartile 0.79(0.67,0.94) 0.75(0.62,0.91) 0.71(0.61,0.84) 0.58(0.49,0.68) 0.7(0.56,0.87) 

FEL Missing 0.97(0.74,1.27) 0.75(0.57,1) 0.84(0.64,1.09) 0.56(0.44,0.72) 0.45(0.32,0.63) 

Orphaned before Age 18 2.39(0.91,6.29) 1.78(0.62,5.14) 1.46(0.53,4.05) 2.62(1.08,6.36) 3.87(1.44,10.4) 

Mother Died before Child 18 1.1(0.82,1.49) 1.28(0.94,1.73) 1.11(0.83,1.48) 1.24(0.95,1.63) 1.48(1.05,2.1) 

Father Died before Child 18 1.12(0.87,1.45) 1.38(1.07,1.78) 1.12(0.88,1.43) 1.24(0.99,1.56) 1.32(0.98,1.78) 

Both Parents Alive at 18 

(reference) 1 1 1 1 1 

Fertility           

1-2 Children 0.87(0.72,1.06) 1.07(0.88,1.31) 0.89(0.74,1.06) 0.95(0.8,1.13) 1.13(0.9,1.42) 

3-5 Children (reference) 1 1 1 1 1 

6-8 Children 1.09(0.87,1.35) 1.04(0.82,1.31) 1.1(0.9,1.36) 1.16(0.95,1.42) 1.1(0.83,1.45) 

9+ Children 0.86(0.52,1.43) 1.06(0.65,1.74) 1.01(0.65,1.58) 1.2(0.79,1.84) 0.96(0.51,1.77) 

Age at First Birth < 18 1.48(0.97,2.25) 1.48(0.96,2.3) 1.33(0.88,2.01) 1.44(0.98,2.12) 1.94(1.2,3.13) 

Age at First Birth 18 - 24 (ref) 1 1 1 1 1 

Age at first Birth >= 25 1.04(0.88,1.24) 0.86(0.71,1.03) 0.93(0.79,1.1) 0.86(0.74,1.02) 1.06(0.86,1.31) 

Age at Last Birth 35 - 39 0.85(0.71,1.02) 0.83(0.68,1.01) 0.81(0.68,0.97) 0.82(0.69,0.97) 0.76(0.61,0.96) 

Age at Last Birth >= 40 0.65(0.5,0.84) 0.8(0.61,1.05) 0.82(0.65,1.04) 0.66(0.52,0.83) 0.75(0.54,1.03) 

Mother of Twins 1.17(0.84,1.62) 0.95(0.66,1.38) 0.96(0.69,1.32) 1.12(0.83,1.51) 1.01(0.67,1.54) 

One or More Short Birth 

Intervals 1.01(0.85,1.19) 1.11(0.93,1.33) 0.92(0.78,1.08) 1.03(0.88,1.21) 1.06(0.85,1.31) 

One or More Long Birth 

Intervals 1.01(0.87,1.19) 1.06(0.9,1.26) 0.93(0.8,1.09) 1.02(0.88,1.17) 0.97(0.79,1.19) 

One or More Infant Deaths 0.93(0.69,1.24) 0.67(0.47,0.95) 0.83(0.62,1.1) 1.02(0.79,1.32) 1.13(0.8,1.6) 

Sample Selection Bias 
     IMR 1.13(0.92,1.39) 1.03(0.82,1.28) 1.06(0.86,1.29) 1.17(0.96,1.41) 1.3(1.02,1.67) 

 

Note: Results shown in Table 3.5 are controlling for widowhood and jointly modeled 

with mortality trajectories.  
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Table 3.6.  Effects of Early Life Conditions and Fertility on Comorbidity Trajectory 

Group Membership versus Robust Group (18.2%): Women Ages 75 – 84 in 1992 

 

 

Initiates Chronic Low Ailing Frail 

21.6% 29.7% 16.9% 13.6% 

Early Life Conditions Odd Ratio (95% CI) 

Age in 1992  1.84(1.38,2.44) 3.89(2.89,5.24) 2.77(2.16,3.55) 2.95(2.21,3.95) 

Active Member of LDS Church 1.05(0.82,1.33) 0.83(0.65,1.07) 0.89(0.72,1.1) 0.93(0.72,1.19) 

Inactive Member of LDS Church 1.12(0.87,1.45) 0.79(0.6,1.03) 0.97(0.78,1.22) 1.05(0.81,1.37) 

Non-Member (reference) 1 1 1 1 

Father's NP SES (unit=10) 1.02(0.98,1.07) 1.02(0.98,1.07) 1.02(0.98,1.06) 1(0.95,1.04) 

Father Farmer 0.93(0.78,1.12) 1.07(0.87,1.31) 1.14(0.96,1.34) 0.93(0.77,1.13) 

Missing SES 1.01(0.82,1.23) 1.07(0.86,1.34) 1.11(0.92,1.33) 1.08(0.87,1.34) 

FEL in Bottom Quartile 1.44(1.17,1.77) 1.41(1.12,1.76) 1.59(1.33,1.91) 1.6(1.3,1.97) 

FEL in Mid 50% (reference) 1 1 1 1 

FEL in Top Quartile 0.77(0.64,0.91) 0.83(0.69,1.01) 0.65(0.56,0.77) 0.61(0.51,0.75) 

FEL Missing 0.91(0.63,1.3) 1.11(0.77,1.6) 0.81(0.58,1.11) 0.78(0.53,1.14) 

Orphaned before Age 18 0.88(0.42,1.85) 0.97(0.42,2.23) 1.29(0.68,2.43) 0.78(0.32,1.91) 

Mother Died before Child 18 1.16(0.86,1.56) 1.31(0.96,1.78) 0.99(0.75,1.3) 1.35(1,1.81) 

Father Died before Child 18 1.19(0.91,1.57) 1.15(0.86,1.54) 1.27(1,1.61) 1.24(0.94,1.63) 

Both Parents Alive at 18 (reference) 1 1 1 1 

Fertility         

1-2 Children 0.98(0.8,1.21) 0.96(0.77,1.2) 0.9(0.75,1.08) 0.89(0.72,1.11) 

3-5 Children (reference) 1 1 1 1 

6-8 Children 1.01(0.79,1.31) 0.93(0.7,1.23) 1.22(0.97,1.53) 1.15(0.88,1.52) 

9+ Children 0.77(0.43,1.38) 0.68(0.36,1.29) 1.17(0.73,1.89) 1.98(1.18,3.32) 

Age at First Birth < 18 1.45(0.84,2.49) 1.85(1.05,3.24) 1.97(1.24,3.13) 2.03(1.23,3.36) 

Age at First Birth 18 - 24 (ref) 1 1 1 1 

Age at first Birth >= 25 0.86(0.72,1.03) 0.77(0.63,0.94) 0.9(0.77,1.06) 0.78(0.64,0.95) 

Age at Last Birth 35 - 39 1.07(0.87,1.31) 1.38(1.11,1.72) 1.01(0.84,1.21) 1.11(0.9,1.37) 

Age at Last Birth >= 40 1.13(0.89,1.45) 1.34(1.03,1.75) 0.89(0.71,1.11) 0.76(0.58,0.99) 

Mother of Twins 1.08(0.76,1.54) 0.96(0.64,1.44) 1.02(0.74,1.4) 1.19(0.83,1.71) 

One or More Short Birth Intervals 1.04(0.85,1.26) 0.83(0.66,1.04) 1.03(0.87,1.23) 0.89(0.72,1.1) 

One or More Long Birth Intervals 0.76(0.63,0.91) 0.66(0.54,0.8) 0.82(0.7,0.96) 0.73(0.61,0.88) 

One or More Infant Deaths 0.78(0.57,1.06) 0.84(0.6,1.17) 1(0.78,1.29) 1.07(0.8,1.44) 

Sample Selection Bias 
    IMR 0.95(0.75,1.21) 1.13(0.87,1.45) 1.12(0.9,1.39) 1.12(0.87,1.44) 

 

Note: Results shown in Table 3.6 are controlling for widowhood and jointly modeled 

with mortality trajectories.  
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Table 3.7.  Effects of Early Life Conditions and Fertility on Comorbidity Trajectory 

Group Membership versus Robust Group (15.7%): Men Ages 66 – 74 in 1992 

 

 

Slow Initiates 

Accelerated  

Initiates Chronic Low Ailing Frail 

16.4% 15.3% 18.5% 26.1% 8% 

Early Life Conditions Odd Ratio (95% CI) 

Age in 1992  1.4(1.01,1.94) 1.64(1.2,2.23) 2.33(1.73,3.15) 3.14(2.39,4.12) 3.41(2.36,4.91) 

Active Member of LDS Church 0.76(0.59,0.98) 0.55(0.44,0.7) 0.82(0.65,1.03) 0.48(0.39,0.59) 0.4(0.31,0.52) 

Inactive Member of LDS Church 0.66(0.5,0.86) 0.7(0.55,0.91) 0.75(0.58,0.97) 0.59(0.47,0.74) 0.45(0.34,0.6) 

Non-Member (reference) 1 1 1 1 1 

Father's NP SES (unit=10) 0.98(0.94,1.02) 1.01(0.97,1.05) 0.99(0.95,1.03) 1.02(0.98,1.05) 1.02(0.97,1.07) 

Father Farmer 0.99(0.81,1.2) 1.05(0.87,1.27) 0.9(0.75,1.07) 1.13(0.96,1.33) 1.06(0.84,1.32) 

Missing SES 1.05(0.85,1.3) 1.1(0.9,1.35) 0.96(0.79,1.18) 1.05(0.88,1.26) 1.14(0.9,1.44) 

FEL in Bottom Quartile 1.2(0.96,1.49) 1.19(0.97,1.47) 1.28(1.05,1.57) 1.37(1.14,1.64) 1.3(1.03,1.65) 

FEL in Mid 50% (reference) 1 1 1 1 1 

FEL in Top Quartile 0.73(0.6,0.88) 0.71(0.59,0.86) 0.68(0.57,0.82) 0.66(0.56,0.78) 0.6(0.48,0.76) 

FEL Missing 0.86(0.63,1.17) 0.88(0.65,1.18) 0.87(0.65,1.17) 0.55(0.42,0.72) 0.5(0.35,0.71) 

Orphaned before Age 18 0.27(0.09,0.79) 0.57(0.24,1.34) 0.58(0.25,1.35) 0.72(0.37,1.41) 0.73(0.29,1.84) 

Mother Died before Child 18 1.21(0.86,1.7) 1.18(0.85,1.64) 1.14(0.82,1.58) 1.21(0.9,1.62) 1.12(0.76,1.65) 

Father Died before Child 18 1.14(0.85,1.54) 1.17(0.88,1.55) 1.08(0.82,1.43) 1.25(0.97,1.6) 1.07(0.77,1.5) 

Both Parents Alive at 18 

(reference) 1 1 1 1 1 

Fertility           

1-2 Children 1.04(0.82,1.3) 1.17(0.94,1.46) 1.14(0.92,1.41) 1.01(0.83,1.23) 1.25(0.96,1.61) 

3-5 Children (reference) 1 1 1 1 1 

6-8 Children 0.84(0.65,1.08) 1.04(0.82,1.32) 0.91(0.72,1.15) 0.91(0.74,1.13) 1.19(0.9,1.58) 

9+ Children 0.63(0.37,1.08) 0.87(0.53,1.42) 0.63(0.37,1.05) 0.71(0.45,1.1) 0.77(0.41,1.47) 

Age at First Birth <25 (ref) 1 1 1 1 1 

Age at first Birth >= 25 0.88(0.74,1.05) 0.79(0.66,0.93) 0.78(0.66,0.92) 0.74(0.63,0.86) 0.78(0.63,0.95) 

Age at Last Birth 35 - 39 0.99(0.8,1.23) 1.15(0.93,1.42) 0.98(0.8,1.2) 1.02(0.85,1.22) 1.12(0.88,1.43) 

Age at Last Birth >= 40 1.04(0.79,1.37) 1.21(0.93,1.57) 0.88(0.68,1.14) 1.09(0.87,1.38) 0.94(0.69,1.29) 

Father of Twins 0.94(0.64,1.4) 0.95(0.65,1.39) 1.2(0.85,1.71) 1.01(0.72,1.4) 1.13(0.73,1.75) 

One or More Short Birth 

Intervals 1.11(0.92,1.33) 0.94(0.78,1.13) 1.17(0.98,1.4) 1.01(0.86,1.18) 1.13(0.91,1.41) 

One or More Long Birth 

Intervals 1.08(0.9,1.29) 0.98(0.82,1.17) 1.17(0.98,1.39) 0.97(0.83,1.13) 1.06(0.86,1.31) 

One or More Infant Deaths 0.83(0.59,1.18) 1.07(0.78,1.47) 0.83(0.6,1.14) 0.85(0.64,1.14) 0.85(0.57,1.25) 

Sample Selection Bias 
     IMR 0.89(0.7,1.14) 0.9(0.71,1.13) 0.91(0.73,1.13) 1.06(0.87,1.29) 0.98(0.75,1.28) 

 

Note: Results shown in Table 3.7 are controlling for widowhood and jointly modeled 

with mortality trajectories.  
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Table 3.8.  Effects of Early Life Conditions and Fertility on Comorbidity Trajectory 

Group Membership versus Robust Group (14.7%): Men Ages 75 – 84 in 1992 

 

 

Initiates Ailing Chronic Low Frail 

17.4% 35.3% 20.2% 12.5% 

Early Life Conditions Odd Ratio (95% CI) 

Age in 1992  1.6(1.09,2.34) 2.24(1.65,3.05) 2.12(1.5,3) 2.82(1.94,4.1) 

Active Member of LDS Church 0.81(0.6,1.07) 0.78(0.62,1) 0.8(0.61,1.05) 0.72(0.53,0.96) 

Inactive Member of LDS Church 1.01(0.73,1.4) 0.98(0.75,1.28) 0.97(0.71,1.31) 0.97(0.7,1.34) 

Non-Member (reference) 1 1 1 1 

Father's NP SES (unit=10) 1(0.94,1.06) 1(0.95,1.04) 1.01(0.95,1.06) 0.96(0.9,1.02) 

Father Farmer 0.95(0.75,1.21) 0.94(0.77,1.14) 0.95(0.76,1.19) 1.09(0.85,1.38) 

Missing SES 1.06(0.81,1.38) 0.85(0.68,1.06) 0.9(0.7,1.16) 0.98(0.74,1.29) 

FEL in Bottom Quartile 1.38(1.06,1.81) 1.7(1.36,2.13) 1.28(0.99,1.66) 1.89(1.46,2.46) 

FEL in Mid 50% (reference) 1 1 1 1 

FEL in Top Quartile 0.8(0.63,1.01) 0.77(0.64,0.94) 0.91(0.73,1.14) 0.67(0.52,0.87) 

FEL Missing 0.71(0.45,1.11) 0.76(0.53,1.1) 0.99(0.66,1.49) 0.84(0.53,1.33) 

Orphaned before Age 18 1.16(0.34,3.94) 1.28(0.5,3.24) 0.67(0.18,2.45) 0.43(0.1,1.84) 

Mother Died before Child 18 1.14(0.78,1.68) 1.36(0.99,1.87) 1.11(0.77,1.61) 1(0.66,1.51) 

Father Died before Child 18 1.01(0.73,1.39) 0.97(0.75,1.27) 0.79(0.57,1.09) 1(0.72,1.39) 

Both Parents Alive at 18 (reference) 1 1 1 1 

Fertility         

1-2 Children 1.01(0.76,1.34) 0.95(0.75,1.2) 1.07(0.82,1.39) 0.97(0.73,1.29) 

3-5 Children (reference) 1 1 1 1 

6-8 Children 0.81(0.59,1.12) 1.14(0.88,1.47) 0.89(0.66,1.19) 0.77(0.55,1.07) 

9+ Children 0.82(0.43,1.57) 0.81(0.47,1.4) 0.76(0.41,1.4) 0.61(0.31,1.2) 

Age at First Birth <25 (ref) 1 1 1 1 

Age at first Birth >= 25 0.97(0.77,1.23) 0.82(0.68,1) 0.86(0.69,1.07) 0.71(0.56,0.9) 

Age at Last Birth 35 - 39 0.96(0.72,1.28) 0.85(0.67,1.08) 0.79(0.6,1.04) 0.73(0.54,0.98) 

Age at Last Birth >= 40 0.94(0.67,1.31) 0.74(0.56,0.97) 0.94(0.69,1.28) 0.81(0.58,1.12) 

Father of Twins 0.86(0.54,1.37) 0.71(0.48,1.05) 1.25(0.84,1.86) 1.12(0.71,1.74) 

One or More Short Birth Intervals 1.16(0.9,1.51) 0.92(0.74,1.14) 0.98(0.76,1.25) 1.15(0.88,1.49) 

One or More Long Birth Intervals 1.11(0.88,1.39) 1.05(0.87,1.26) 1.12(0.9,1.38) 1.1(0.87,1.39) 

One or More Infant Deaths 1.03(0.69,1.55) 1.27(0.92,1.76) 1.01(0.69,1.49) 0.96(0.64,1.46) 

Sample Selection Bias 
    IMR 1.21(0.89,1.64) 1.38(1.07,1.78) 1.15(0.86,1.54) 0.98(0.71,1.36) 

 

Note: Results shown in Table 3.8 are controlling for widowhood and jointly modeled 

with mortality trajectories.  
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Figure 3.1. Comorbidity trajectories for females ages 66 – 74 in 1992. 
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Figure 3.2. Comorbidity trajectories for females ages 75 – 84 in 1992. 
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Figure 3.3. Comorbidity trajectories for males ages 66 – 74 in 1992. 
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Figure 3.4.  Comorbidity trajectories for males ages 75 – 84 in 1992. 
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Figure 3.5.  Morbidity trajectories for females ages 66 – 74 in 1992. 
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Figure 3.6.  Morbidity trajectories for females ages 75 – 84 in 1992.   
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Figure 3.7.  Morbidity trajectories for males ages 66 – 74 in 1992. 
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Figure 3.8.  Morbidity trajectories for males ages 75 – 84 in 1992. 
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Figure 3.9.  Female birth certificate results: Ages 66 – 74 in 1992.  Controlling for early-

life conditions, fertility variables, demographic characteristics, and jointly modeled with 

mortality trajectories.  Birth certificate sample (N=4,214) 
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Figure 3.10.  Male birth certificate results: Ages 66 – 74 in 1992. Controlling for early-

life conditions, fertility variables, demographic characteristics, and jointly modeled with 

mortality trajectories.  Birth certificate sample (N=6,192) 
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CHAPTER 4 

 

HERITABILITY OF LONGEVITY AND THE ROLE OF EARLY  

AND MIDLIFE ENVIRONMENTS
3
 

 

Introduction 

 

Mortality is the quintessential measure of the health of a population, and large 

gains in human life expectancy over the past 150 years are evidence of the important 

relationship between social context and health.  While there is certainly variability in 

longevity between populations, there is also wide variation in longevity within 

populations.  Understanding the determinants of this heterogeneity is essential to 

understanding the processes of aging and health of a population.  But how much of this 

variation is determined by genetic factors and how much is determined by the 

environment?  While the question of heritability of longevity is not new, with heritability 

estimates of longevity ranging from 0 to 0.3 (Kerber, O'Brien, Smith, & Cawthon, 2001), 

we seek to determine if heritability estimates vary between subpopulations and explore 

the possibility of gene-environment interactions (GxE).  By examining sources of 

                                                 
3
 Coauthored by Ken R. Smith and Sandra Hasstedt.  We wish to thank the Pedigree and 

Population Resource of the Huntsman Cancer Institute, University of Utah for providing 

the data and valuable computing support. This work was also supported by NIH grant 

AG022095 (Early-life Conditions, Survival and Health; Smith PI). 
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variation in heritability estimates, we can illuminate factors that modify the expression of 

genetic predisposition in a population.   

We will investigate heterogeneity in the genetic basis of longevity by assessing 

the phenotypic correlation between relatives.  Variance components and heritability 

values will be generated using a large genealogical database with information on family 

structure as well as measures of the broader environment.   This study will examine the 

relationship between social context and the amount of additive genetic variance in adult 

life-span and exceptional longevity using data from the Utah Population Database 

(UPDB), a rich source of linked population-based information for demographic, genetic, 

and epidemiological studies.  The sample used in this study consists of 20,120 individuals 

from 802 three generation pedigrees.  This analysis has two goals: 1) estimate the 

heritability of longevity after age 30 as well as exceptional longevity in a population 

using methods designed for use in multigenerational pedigree information; 2) test for 

differences in heritability estimates of life-span in populations stratified by environmental 

exposure.   

  

Background 

Heritability of Longevity 

Over the past few decades, demographers have broadened the focus of work in the 

demography of aging from a population aging perspective (i.e., measures of change in 

population age structure) to include a perspective that integrates health and biological 

explanations with traditional demographic and social theories of aging to explain 

heterogeneity in health and mortality within and between populations (Olshansky, 

Carnes, & Brody, 2002; Siegel, 2011; Vasunilashorn & Crimmins, 2008).  While it is 
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widely accepted that life-span is determined by a combination of genetic, social and 

physical environment, and stochastic factors, the interdependent and dynamic role of 

genes and environment is still not well understood.  This may be partially due to fears of 

genetic determinism within the field of sociology (Shostak & Freese, 2010), the divergent 

paths of genetics and demography (Adams, 1990), and the difficulty of assessing the role 

of genes and environment biomarker data.    

Longevity is a complex trait, determined by a multiplicity of genetic and 

environmental factors, each of which contributes to a potentially small amount of 

phenotypic variation.  The genetic variation that is the natural background is a shortened 

life-span (relative to exceptional longevity) and exceptional longevity is the result of 

mutations.  Genes affecting longevity have been parsed into two categories described as 

gerontogenes: genes that have a negative effect on longevity and longevity-assurance 

genes that promote longevity (Christensen, Johnson, & Vaupel, 2006).  Findings from the 

New England Centenarian Study (NECS) have suggested that supercentenarians do not 

lack gerontogenes, but have longevity assurance genes that can counter the deleterious 

effects of genes and environment as well as slow the rate of aging and lead to delayed 

onset of age-related disease (Sebastiani et al., 2012).  It is also believed that longevity 

mutations increase the ability to handle stress and robustness (Christensen et al., 2006).  

The proportion of variation in life-span due to genes is moderate, which can be illustrated 

by the fact that there is variation in life-span between monozygotic twins (Herskind et al., 

1996).   

In summary, longevity is determined by a complex relationship between both 

genes and environment.  For a more complete understanding of population heterogeneity 

in life-span and the forces behind it, one must not only understand the average 
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contribution of genes and environment within a population toward explaining variation in 

adult mortality, but uncover the factors that influence patterns of variation within the 

population.   

At the most basic level, phenotypic variation can be partitioned into additive 

genetic variance and general environmental variance.  Additive genetic variance is the 

deviation from the average phenotype that is due to the inheritance of a particular allele 

and that allele’s effect on the phenotype.  General environmental variance can then be 

described as the remaining variance that cannot be attributed to genes.  The proportion of 

variation due to inheritance of a particular allele is not fixed across all environments 

because the relationship between genotype and phenotype may vary by environment, a 

phenomenon known as phenotypic plasticity.  Narrow sense heritability is a population 

level statistic that describes the amount of total phenotypic variation (VT) that can be 

attributed to additive genetic variation (VA) in the population (h
2 

= VA/VT).   The 

polygenic model can be used to partition variation into genetic and residual 

environmental effects.  Because it is a population level statistic, it is important to keep in 

mind that it not a property of individual traits.  When h
2
equals zero, it indicates that all 

phenotypic variation within a population can be explained by individual differences, 

while an h
2 

of 1 indicates that all the phenotypic variation is explained by genetic 

differences.  This is not to say that high heritability suggests little environmental effect on 

the phenotype.  When h
2
 is elevated the environment may uniformly contribute to the 

expression of the trait and therefore contribute little to differences between people.  It has 

been shown that heritability of traits can vary across subpopulations (Boardman, 2009; 

Boardman et al., 2012; Rowe, Almeida, & Jacobson, 1999).  But how much of the 

population heterogeneity in life-span is determined by genetic factors? 



129 

 

 

There is evidence of the presence of familial clustering of longevity over many 

generations and across diverse populations, suggesting that there is a genetic or familial 

component to successful aging and longevity (Christensen et al., 2006; Finch & Tanzi, 

1997; Herskind et al., 1996; Kerber et al., 2001; Perls, Kunkel, & Puca, 2002).  The 

longevity literature has described the genetic and environmental contribution to mortality 

as being divided into one-third and two-third proportions, respectively (C. E. Finch & 

Tanzi, 1997; Siegel, 2011).  It has also been suggested that 50% of the variation in life-

span after age 30 can be ascribed to attributes (genetic and nongenetic) that are fixed 

prior to that age (Yashin & Iachine, 1997), and that genetics plays a stronger role with 

advancing age (Hjelmborg et al., 2006; Montesanto, Dato, Bellizzi, Rose, & Passarino, 

2012; Vaupel et al., 1998; see J. W. Rowe and Kahn (1997) for a dissent from this view).  

If the proportion of variation in life-span that can be explained by genetic factors varies 

by age, is it also conditioned by social context?  And if so, does this conditioning vary by 

age? 

 

Conceptualizing the Relationship between Social Environment 

and Heritability of Longevity 

Attempting to understand the genetic component of longevity without considering 

how it may be modified by specific environmental factors may not be a fruitful approach 

to gaining insights into the heritability of this complex trait (Petronis, 2010).  The 

heritability of certain phenotypes may vary throughout the life course (Turkheimer, 

Haley, Waldron, D'Onofrio, & Gottesman, 2003) and by gender (Visscher, Hill, & Wray, 

2008).  Given that humans are constantly interacting with the environment and the 

environment has the ability to alter gene expression, we must also understand how 
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environmental influences might modify the heritability of longevity.  Accordingly, in this 

analysis, comparisons of heritability will be made between three subgroups of the 

population based on: 1) religious involvement; 2) early disease and nutritional 

environment; and 3) family environment during childhood.   

This study assumes that the same genes affect longevity across environments 

within a population, but certain attributes of the environment serve to moderate the effect 

of genes on phenotypic variation.  Shanahan and Hofer (2005)  have presented a 

framework for gene and social context interactions that has been used to explain the 

relationship between the social environment and health behaviors (Boardman, 2009; 

Boardman et al., 2012).  We present a slightly modified version that also utilizes concepts 

presented by Hoffmann and Merilä (1999) as well as new modifications to help formulate 

our hypotheses.   

Under Shanahan and Hofer’s framework for gene-environment (GxE) 

interactions, the environment is conceptualized as social context (Shanahan & Hofer, 

2005).  Four perspectives, described in detail below, can be used to depict how the social 

environment might affect heritable variation: triggering, compensation, social control, 

and enhancement.  Figures 4.1 – 4.4 show a modified version of a schema presented by 

Sebastiani et al. (2012) describing the genetic components of aging.  Sebastiani et al. 

have hypothesized that individuals living to exceptional ages have gerontogenes, but the 

longevity assurance genes counter the deleterious effects of genetic and environmental 

factors.  Figure 4.1 shows the proportion of total phenotypic variance (VT) that is 

attributable to additive genetic variance (VA) and environmental variance (VE), where the 

phenotype is longevity after age 30.  We show that in a normal environment where there 

is no GxE interaction (panel A), individuals with shorter life-spans have higher 
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heritability of gerontogenes and individuals with exceptional life-spans have higher 

heritability of longevity assurance genes.   

A triggering effect refers to an environment that interacts with personal 

predispositions to a diseased state and shortened life-span through, for example, 

environmental stressors or other factors that induce a biological change.  Figure 4.2 

shows the hypothesized triggering GxE interaction in which an adverse environment 

directly affects the phenotype.  When triggering mechanisms are responsible for 

environmental differences in heritability, we expect to see a decrease in average 

longevity in adverse environments and an increase in additive genetic variance.  This is 

because the environment leads to phenotypic expression that would otherwise be 

dormant.  This relationship may change with exceptional longevity because selection 

mechanisms may change the heritability of a trait over time. If the genetically frail 

individuals are selected out of this population at an earlier age, the surviving population 

may be comprised of more robust individuals with a genetic predisposition for 

exceptional longevity (i.e., longevity assurance genes; Hawkes, Smith, & Blevins, 2012), 

leading to higher levels of heritability of exceptional longevity in environments 

detrimental to health.  Therefore, under this formulation, we expect that individuals 

exposed to an unhealthy environment during childhood will have higher heritability of 

longevity, but a shorter life-span compared to those living in more advantageous 

circumstances.  This may also translate into higher heritability of exceptional longevity in 

unhealthy environments because only the robust in an unhealthy environment survive to 

exceptional ages.   

The second type of GxE interaction is compensation.  According to this 

perspective, in normal and adverse environments the predisposition to a diseased state 
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and shortened life-span is realized but not in enriched settings.  The expected change in 

additive genetic variance in an enriched environment is presented in Figure 4.3.  The 

compensation GxE perspective assumes that the continuous exposure to a healthy 

environment prevents the expression of a genetic diathesis that predisposes an individual 

to premature death.  Unlike the triggering mechanism, the relationship between 

environment and phenotype is not causal, but due to environmental variation.  Therefore, 

we would expect to see an increase in average life expectancy in an enriched environment 

with lower additive genetic variance for the longevity phenotype.   

 Social control is the third GxE model.  This interaction is not presented in Figures 

4.1 – 4.4 because the expected outcomes are similar to those presented in Figure 4.3.  

Heritability of longevity may be attenuated in environments with high social control 

because social norms and structural constraints place limits on choices, and, therefore the 

environment suppresses phenotypic variance.  This is similar to the evolutionary 

argument of canalization, which argues that selection favors suppression of quantitative 

traits in constant and structured environments, but the genotype maintains a potential for 

expressing certain phenotypes under particular environmental conditions (Hoffmann & 

Merilä, 1999).  Thus, involvement with a religious institution that maintains strong social 

norms for health related behaviors such as alcohol consumption, smoking, social support, 

and dietary restrictions may lead to increased longevity and exceptional longevity for all 

members of the group and suppress genetic predispositions for disease.  In this situation, 

we expect to see increased longevity and exceptional longevity for active religious 

participants with lower levels of heritability compared to nonparticipants.     

 The enhancement model of GxE is presented Figure 4.4.  This is similar to the 

social control mechanism, but rather than suppressing a predisposition to a shortened life-
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span, social context can serve to enhance genetic predispositions for longevity.  

Individuals in advantaged and organized social settings may be more apt to realize their 

genetic potential for longevity, while disadvantaged environments lead to unrealized 

potential.  For example, an environment of undernutrition or high levels of exposure to 

infectious agents may lead to physiological changes that alter an individual’s ability to 

reach their genetic potential (Barker, 1995; Barker et al., 1993; Crimmins & Finch, 

2006).  Here, we would expect to see mean differences in survival between environments 

and higher heritability of life-span and exceptional longevity in environments more 

advantageous for health and longevity.   

 In this paper, we build on a body of literature that examines the heritability of 

longevity by comparing heritability of longevity and exceptional longevity between sub-

populations exposed to different environments that are known to affect adult mortality 

risks.  Using the GxE perspectives discussed above, we compare the heterogeneity of 

genetic effects by environment.  We expect to see differences in the heritability of 

longevity between environments characterized as salubrious or unhealthy.  The GxE 

categories of triggering, compensation, and social control predict higher levels of 

heritability of longevity in environments less beneficial to health, while the enhancement 

typology predicts increased heritability of longevity in healthy environments.  We can 

make generalizations about what type of GxE interaction leads to the observed patterns, 

but the exact mechanism is not testable under this formulation.  Comparing the 

components of variance between environments will add to the understanding of the 

relative importance of both genes and environment in determining longevity.   
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Methods 

 

Data 

 The majority of life-span epidemiological studies examine health influences of 

early and adult life conditions with relatively modest sample sizes, particularly given the 

complexity of the phenomena and the manifold exposures and outcomes. This study 

utilizes data drawn from the Utah Population Database (UPDB). The UPDB is one of the 

world’s richest sources of linked population-based information for demographic, genetic, 

and epidemiological studies. UPDB has supported biodemographic studies as well 

numerous important epidemiological and genetic studies in large part because of its size, 

pedigree complexity, and linkages to numerous data sources. In the mid-1970s, over 

185,000 three-generation families were identified on Family Group Sheets from the 

archives at the Utah Family History Library.  These families have been linked into 

multigenerational families and the full UPDB now contains data on nearly 7 million 

individuals due to longstanding and on-going efforts to add new sources of data and 

update records as they become available.   

Mortality data are fundamental to the study of exceptional longevity.  Information 

on deaths prior to 1904 comes from genealogical records obtained from the Utah Family 

History Library and linked to other records within the UPDB.  All Utah death certificates 

are available from 1904 to the present.  The UPDB also links to the U.S. Social Security 

Death Index (SSDI) for the years 1936 – 2011.  The SSDI records provide information on 

deaths based on Social Security records regardless of place of death and are linked to the 

UPDB.  The unique combination of genealogy, death certificates, and SSDI data provide 

wide spatial and temporal coverage for both the fact and date of death.    
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The sample used to construct measures of longevity comprises all individuals in 

the UPDB born between 1850 and 1927.  We selected 1927 as the maximum birth year to 

allow us to observe mortality to at least age 85 for the youngest members of the cohort.  

To minimize variability in survival unrelated to aging and based on other evidence of the 

fixed attributes related to life-span after age 30 (Yashin & Iachine, 1997), we will model 

mortality beginning at age 30 (Hawkes et al., 2012).  We identified 685,949 individuals 

who met the criteria listed above.  Of those, approximately 9% (n=64,258) were right 

censored and 91% (N=621,961) had vital status follow-up information from family 

history group sheets, Utah death certificates, or linked Social Security Death Index 

(SSDI) information.  The gender distribution of the sample was 52.5% male and 47.5% 

female.   

Using individuals from the baseline survival analysis, we selected 111,324 three-

generation families.  Table 4.1 shows the restrictions imposed at the family level.  We 

attempted to select families with the highest data quality and the most complete 

information. As a result, 31,322 families were excluded from the analysis because at least 

one grandparent had no information in the UPDB.  All founding pedigree members were 

required to have a birth year greater than 1850 (Utah was settled in 1847) and all 

members of the family were required to be born before 1928, which allowed us to 

observe the youngest members of the cohort to age 84.  On average, these families had 4 

individuals in the first generation (by definition), 13 individuals in the second generation, 

and 19 individuals in the third generation (range = 1 to 83).  Pedigree size ranged from 7 

to 109 members. The final sample consisted of 802 three-generation families with 20,120 

members with a calculated longevity measure and information on family of origin.  To 

study exceptional longevity, a nearly deceased cohort is needed.  Therefore, individuals 
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born between 1914 and 1927 were excluded from the exceptional longevity sample, 

yielding a sample of 14,618 individuals for these analyses.   

 

Measuring Early and Midlife Environments 

 

Both early and midlife conditions will be considered as possible social context 

that may modify phenotypic expression.  To simplify both the measurement and 

conceptualization of the environment, each environment is treated as a simple dichotomy, 

comparing salubrious environments to those that are less advantageous to health.  We 

will compare the heritability of longevity by religious participation, infant mortality rate 

(IMR) in the family of origin, childhood mortality rate (CMR) of the family of origin, 

and number of siblings.   Justifications for each as the basis for deleterious and beneficial 

environments are described in turn below. 

Religious involvement in general is associated with increased life expectancy 

(Hummer, Rogers, Nam, & Ellison, 1999).  It is not surprising that active affiliation with 

the Church of Jesus Christ of Latter-day Saints (LDS or Mormon) church is also 

associated with increased life expectancy (Enstrom & Breslow, 2008).  Individuals 

actively affiliated with the LDS church are more likely to abstain from alcohol and 

tobacco use, fast once a month, and participate in church related social activities (Mineau, 

Smith, & Bean, 2002).  Therefore, affiliation with the LDS church  will be treated as a 

social environment with defined healthy lifestyle norms for men and women.  The UPDB 

contains information on baptism dates from family history records, which were used to 

classify individuals as followers of the LDS church.  Individuals baptized as members of 

the LDS church before the age of 30 are considered followers of the LDS Church.  
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Individuals will be parsed into two environments: 1) LDS church involvement; and 2) no 

LDS church involvement.     

 Early life health can have long-term consequences on later life health and 

mortality (Elo & Preston, 1992; Smith, Mineau, Garibotti, & Kerber, 2009).  While it is 

difficult to obtain a measure of early life exposure to disease and other adverse 

circumstances, we can use mortality outcomes of siblings as a sentinel for early life 

circumstances.  Postneonatal mortality (the first year of life excluding the first 28 days) 

for our cohorts of study (1850 – 1927) is closely related to viral and bacterial disease, 

malnutrition, and income (B. K. Finch, 2003; McKeown, 1976; Preston & Haines, 1991).  

A similar argument has been made for childhood mortality by Crimmins and Finch 

(2006), who argue that birth cohorts with lower childhood mortality have increased 

longevity.  As such, we use the death of a sibling during the first year of life (IMR in 

family of origin) or between ages 1 and 5 (CMR in family of origin) as indicators of an 

adverse childhood environment.  Neonatal deaths, deaths within the first 28 days, and 

stillbirths are not included in our final measure of IMR because these deaths are likely 

due to endogenous causes and may not represent a family environment marked by 

disease, an assumption most likely to be true for the years considered here.  We consider 

infant and childhood mortality as distinct environments because it has been suggested 

that the determinants of infant and childhood mortality decline over time differed during 

this period (Wolleswinkel-van den Bosch, van Poppel, Looman, & Mackenbach, 2000).  

Individuals with one or more infant or childhood death in their family of origin (i.e., 

death of a sibling) were considered to be in an environment of high infant or childhood 

mortality, respectively.   
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 Sibship size (number of siblings) has been shown to be positively associated with 

lower educational achievement and unhealthy lifestyle choices (Downey, 1995; Hart & 

Davey Smith, 2003).  Sibship size may also be related to exposure to infectious diseases, 

with children from large sibships having a greater risk of contracting an infectious 

disease (Hart & Davey Smith, 2003).  However, a strong association between sibship size 

and adult mortality has not been demonstrated in all studies assessing this relationship 

(Smith et al., 2009).  The definition of large sibship was derived empirically as having 7 

or more siblings (75
th

 percentile for the sample).   

 While sex is inherently a biological trait, sex differences in life expectancy are 

determined by both social and biological factors (Crimmins & Saito, 2001; Lindahl-

Jacobsen et al., 2013; Rieker, Bird, & Lang, 2010).  The effects of early life conditions on 

later life health may differ by sex.  Male fetuses have higher mortality rates than female 

fetuses, a disadvantage that continues throughout the life course (Kraemer, 2000).  Earlier 

studies have found slight differences in the heritability of longevity between males and 

females, with males having higher heritability than females (Herskind et al., 1996).  

Accordingly, we test for environmental differences in the heritability of longevity by sex.   

 

Definition of Longevity 

 

The mortality schedule for individuals born between 1850 and 1927 has changed 

considerably. Longevity, therefore, defined simply as years lived after age 30, is not 

appropriate because it is not directly comparable across birth cohorts.  While much of the 

improvement in life expectancy seen during this period was due to improvements in 

infant and child mortality, there were also gains in adult mortality.  Cohort life tables for 

Utah show that individuals born in 1850 and surviving to age 30 could expect to live an 
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additional 40.5 and 39.5 years for females and males, respectively, compared to 53.1 and 

48.5 years of additional life after 30 for individuals born in 1920 (Lindahl-Jacobsen et al., 

2013).  Therefore, to de-trend the data, we define longevity as the difference between an 

individual’s attained age (y) and the age to which that individual was expected to live 

(median predicted age of death conditioned on surviving to 30,   ̂) according to a model 

that incorporates two basic determinants of life-span: gender and birth year.  Therefore, a 

longevity score (LS) is simply the difference between these two values, y -  ̂.  The 

baseline survival models used to determine  ̂ are described below. This approach is 

similar to one taken by Kerber et al. (2001) in calculating a measure of familial excess 

longevity using Utah genealogies.   

Previous studies have suggested that the heritability of longevity increases with 

age (Hjelmborg et al., 2006; Yashin & Iachine, 1997), and may perhaps be the strongest 

for those surviving to the latest ages (Atzmon et al., 2004; Gudmundsson, Gudbjartsson, 

Frigge, Gulcher, & Stefánsson, 2000; T. T. Perls, Bubrick, Wager, Vijg, & Kruglyak, 

1998).  Exceptional longevity can be defined as an exceptionally long life-span compared 

to other individuals experiencing the same historical influences (birth cohort; Michael 

Anson et al., 2012).  As done in previous studies, we will define the exceptional 

longevity (EL) phenotype as living to exceptional age, and explore differences in 

heritability of survival to the 90
th

 and 95
th

 percentile based on the baseline hazard models 

(Kerber, O'Brien, Boucher, Smith, & Cawthon, 2012).   

 

Constructing Baseline Survival Models 

We assume a parametric form for the survival distribution and a generalized class 

of accelerated failure time (AFT) models, the extended family of generalized gamma 
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models.  Unlike proportional hazard models, AFT models assume that the effect of 

covariates is multiplicative with respect to survival time.  We test the fit of the 

exponential, Weibull , log-normal, log-logistic, and gamma  models.  These models were 

selected because they provide a simple point estimate for duration that generally fits the 

observed data for adult mortality.  While the gompertz model is appropriate for modeling 

human mortality between 30 and 85 (Olshansky & Carnes, 1997), this study is concerned 

with exceptional longevity (past the age of 85) and therefore this model was not 

considered.  The nested structure of the family of generalized gamma models 

(exponential, Weibull, log-logistic, and gamma) allows for use of the likelihood ratio test 

to assess model fit.  The Akaike information criterion, or AIC, can be used to test the fit 

of nonnested models.  Final models were selected for the construction of the longevity 

measures based on model fit. 

The full sample of 685,949 individuals born between 1850 and 1927 meeting the 

sample criteria described in the data section above were used to estimate survival time for 

individuals surviving to age 30.  Models were stratified by gender and included two 

covariates, birth year, and birth year squared.  All models showed a significant positive 

relationship between birth year and survival.  The generalized gamma model proved to be 

the best fit based on likelihood ratio test (p<0.001) and AIC.  The shape and scale 

parameters in the generalized gamma model are also significantly different than “0” and 

“1,” implying that the fitted distribution is different from the Weibull, log-normal, and 

exponential models.  The change in the predicted 50
th

 and 90
th

 percentile by model and 

year is displayed in Figure 4.5.  Panels A and B show the trend in predicted median and 

90
th

 percentile longevity respectively for men and panels C and D display the estimates 

for women.  The exponential model does not fit the data well and therefore the results are 
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not shown.  These figures show that the log-normal and log-logistic models, which 

provided the worst fit based on the AIC statistic, also predict out of range values for the 

90
th

 percentile.  Both the Weibull and generalized gamma model provide sensible 

estimates.  Therefore, the generalized gamma model was used to estimate  ̂ and 

consequently LS.  

 LS was defined as the observed, minus the expected, life-span for all deceased 

individuals.  The UPDB contains multiple sources of linked records that can be used to 

create a last observed date.  Therefore, we know that individuals without a death record 

were alive until their last observed date in UPDB.  The observed life-span for individuals 

born after 1905, not deceased, and with a known follow-up date that exceeded the median 

predicted survival time for their gender and birth cohort is calculated by subtracting the 

birth year from the last observed date in UPBD.  Therefore, censored individuals that are 

likely still living were used in the LS analyses and have a positive LS score by definition.  

To test for biased results created by this specification, we ran sensitivity analysis using 

the nearly deceased cohort (N=14,618).  

 

Heritability Estimates 

Several forms of analysis of variance (ANOVA) are available to measure 

heritability of a phenotypic trait, such as parent-offspring regressions and sibling 

analyses.  While these models have useful features, they are limited because they do not 

use information from multigenerational relationships and they require that sample sizes 

be well-balanced.  Unlike other forms of analysis of variance (ANOVA), maximum 

likelihood (ML) estimators do not place special demands on the design or balance of the 

data, providing a powerful approach to estimating variance components using large 
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pedigrees (Lynch & Walsh, 1998) and minimizing the inflation of estimates of additive 

genetic variance due to shared environments between relatives.  To allow for use of 

information on multigenerational relationships, heritability is estimated with a polygenic 

model using PAP v. 7.1 (Hasstedt, 2005).   

Genotypic variance can be decomposed into additive     , dominance     , and 

epistatic     .     and    are, however, extremely difficult to estimate in non-

experimental settings (Kruuk, 2004).  The polygenic model specifies the expected genetic 

relationship between relatives as a function of the coefficient of relationship, allowing for 

the estimation of variation due to genetic and residual environmental effects.  The 

coefficient of relationship is (1/2)
p
, where p is the degree of relationships (it is also 

commonly described as two times the probability that two individuals will share a 

common gene by descent (IBD)).  For example, for a parent-child relationship the 

coefficient of relationship is 0.5, which equals 2 x 0.25, where 0.25 is the probability that 

parent and child share a common allele.  The polygenic model allows us to partition the 

total phenotypic variance (  
 ) into the following components: 

  
    

     
  (eq. 4.1) 

where   
  is the additive genetic variance and   

  is the residual variance, which includes 

environmental, dominance, and epistatic effects.    These components are used to 

calculate heritability, with narrow sense heritability (h
2
) being defined as the proportion 

of phenotypic variance,   
 

, that can be attributed to the additive genetic effects,   
 : 

        h
2
=  

 /  
   (eq. 4.2) 

   The polygenic model is similar to a mixed model with fixed and random effects. The 

general model in matrix form is: 

          (eq.4.3) 
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where y is a column vector containing the phenotypic values for a trait measured in n 

individuals; β is a vector of fixed effects; u is a vector of random effects; X and Z are 

known incidence matrices; and e is a column vector of random residual effects.  We 

assume that u follows a multivariate normal (MVN) distribution with mean zero and 

variance G, and that e also follows a MVN distribution with mean zero and variance R.  

Note that G =   
 A, where A is an n x n matrix of kinship coefficients describing the 

genetic correlation between all individuals in the sample, and R=  
 I, where I is the 

identity matrix.  This general model can be used to estimate the variance components for 

a single trait (univariate model) and has been extended to allow for joint modeling of 

multiple traits (bivariate for two traits and multivariate for multiple traits).  The univariate 

model was used to estimate the heritability of LS and exceptional longevity in the 

population.  We then use the multivariate model to estimate h
2
 by environment. 

The multivariate model provides a means for estimating covariance and, 

therefore, correlation between traits.  Falconer (1952) suggested that traits measured in 

two environments can be treated as two different traits.  This allows comparisons 

between discrete environments of different types, where the bivariate model defines a 

trait as being expressed in environment one or two.  For example, if individual i is in 

environment one, they have a value for trait one and are missing trait two.  Conversely, if 

individual j is in environment two, they are missing trait one and have a value for trait 

two.  This approach is more appropriate than stratification, because it allows for the joint 

estimation of heritability in two subpopulations.  It is also slightly different than a normal 

bivariate trait model, which jointly models two phenotypes measured on the same 

individual because no individual expresses a trait in both environments.  In this approach, 
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k traits (in our case k=2) are combined to form a vector   [
  

  
]= (y11, … , y1n, …, y2n) 

with mean µz and variance G.   The model in matrix notation is,  

    [
   
   

] [
  

  
]   [

   
   

] [
  

  
]  [

  
  

] (eq. 4.4) 

where y1 and y2 are vectors of phenotypic values in environment one and two, 

respectively; β1 and β2 are the vectors of the fixed effects in environment one and two, 

respectively; a1 and a2 are the vectors of the random additive genetic effects in 

environment one and two, respectively; e1 and e2 are the vectors of random residual 

effects for environment one and two, respectively; X1 and X2 are the known incidence 

matrices relating the observations to the respective fixed effects in environments one and 

two; and W1 and W2 relate the observations to the random effects in environments one 

and two.   

The variance-covariance matrix for Z can be expressed as V = G + R       

     , where G is the Kronecker product of C and A      .  C is the k x k matrix of 

additive genetic covariances, and E is the k x k residual covariance matrix.  A and I are 

respectively the n x n kinship coefficient and identity matrices, with cij=σA(i,j) being the 

additive genetic covariance between characters i and j within an individual and cross-

covariance cijAlm being the additive genetic value of character i in individual l and the 

additive genetic value of character j in individual m (Lynch & Walsh, 1998, p. 777).  In a 

bivariate analysis, C is a 2 x 2 matrix of the form:   

  [
  

           

         
    

] (eq. 4.5) 

where   
     and   

     are the additive genetic variances for traits 1 and 2, respectively, 

and         is the additive genetic cross covariance.   
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Defining the environment at the individual level and estimating heritability using 

the multivariate model without defining the genetic correlation between traits leads to 

biased estimates of heritability because heritability estimates from an environment only 

include information about family members in the same environment.  To correct for this 

problem, we assume perfect genetic correlation between the trait values.  A bivariate 

analysis that explicitly models genetic correlations exploits more information content of 

the data (Amos, de Andrade, & Zhu, 2001).  The genetic correlation between traits can be 

defined as: 

     
       

√   
    

 
 (eq. 4.6) 

where            
   and    

  are all components of variance mentioned above and 

                   .  By constraining      to 1, we are requiring the covariance 

between traits to equal the square-root of the product of the variances and forcing the 

model to include information from both environments.  Constraining the genetic 

correlation to unity allows for heritability and additive genetic variance to vary in both 

environments, but requires them to be dependent.  In a bivariate trait analysis, where both 

phenotypes are measured for an individual, the genetic correlation is often estimated and 

used to describe the pleiotropic nature of the traits.  However, estimating the genetic 

correlation across environments would be erroneous in our situation because when 

    , we are only using partial information from the pedigree because the covariance is 

weighted by the correlation coefficient (          ).  Algebraically, this solves the bias 

problem because it forces the measure of additive genetic variance for each environment 

to include information about family members from both environments.  It is also 
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conceptually plausible because a genetic correlation of 1 indicates the effect of the same 

polygenes on the trait in both environments.    

LS was Box-Cox transformed and standardized (µ=0, σ=1) to improve 

computational performance and abide by distributional assumptions of the variance 

components models. The transformation was performed using Proc transreg in SAS, 

which uses a maximum likelihood approach to find the optimal transformation, which in 

this cases was λ=1.75.  This transformation reduced the skewness coefficient from -0.85 

to -0.26.  The simple correlation between the transformed variable and the original 

measure of LS was 0.98.   

 To test the hypothesis of heterogeneity in heritability, the likelihood ratio statistic 

was used.  Models were estimated, allowing heterogeneity in heritability estimates 

between environments, and compared to models where the heritability estimates were 

constrained to be equal across environments.  Sex and birth year were not considered as 

covariates in the model because they were controlled for when creating the measures of 

longevity.   

 

Results 

 

Descriptive Statistics 

 Figure 4.6 shows the distribution of LS for the baseline survival cohort and the 

sample selected for the heritability estimates.  Both distributions are slightly skewed with 

means of -1.2 and -1.7 for the full cohort and the heritability cohort, respectively.   The 

skewed distribution reflects the change in the rate of mortality between ages 30 and the 

median predicted survival time for an individual’s sex and cohort.  Cohort life tables for 

Utah show that the qx for females at age 30 in the 1900 birth cohort is 0.02, compared to 
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0.05 at age 60 and 0.29 at age 80 (Lindahl-Jacobsen et al., 2013).  Therefore, it is not 

unexpected to see the long left tail in the LS distribution.  The distributional skew is due 

to a combination of factors including model fit (the fit provides a good approximation of 

the survival curve, but does not fit the data exactly) and censoring of the youngest cohort.   

Table 4.2 shows the descriptive statistics for individuals in the heritability 

samples.  The longevity sample includes all 20,120 individuals with calculated longevity, 

LS, from the 802 selected pedigrees.  Individuals in the exceptional longevity sample 

were required to be born before 1914 so that we could observe survival in the UPDB to 

age 99.  Approximately 8% of males and females in this sample survive to the 90
th

 

percentile for their cohort and sex.  This number is slightly smaller than 10% because the 

cut point for the 90
th

 percentile is derived from the baseline survival models.   Forty-eight 

percent of the sample is female and approximately three-fourths of the sample was 

affiliated with the LDS church.  All members of a family with a sibling that died during 

infancy or childhood are counted as having an infant death in their family of origin and in 

historical cohorts.  Children from large families experience excess infant and childhood 

mortality rates (Bean, Mineau, & Anderton, 1990; Knodel & Hermalin, 1984), so this 

percentage is slightly higher than the 17.4% and 18.5% percent of nuclear families with 

an infant or childhood death, respectively.  There is not a substantial amount of overlap in 

these measures, with 6.4% of nuclear families having both an infant and childhood death.   

Figure 4.7 shows the effect of environment on LS without considering family 

structure.  Significant differences in LS exist in all environments.   Panel A shows the 

distribution of LS by religious status, with individuals not affiliated with the LDS church 

on average having a 2 point reduction in longevity score (p<0.001).  The distribution of  

LS by infant and childhood mortality in family of origin is displayed in panels B and C, 
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respectively, with individuals having one or more sibling die during the postneonatal 

period having a 2 point reduction in LS (p<0.001), and individuals with one or more 

sibling deaths during childhood having a 1.5 reduction in LS (p<0.001).  Panel D shows 

the distribution of LS by sibship size and illustrates the nearly 2-point reduction of LS for 

individuals having seven or more siblings.   

 

Heritability Estimates 

 

 The overall heritability of LS in the sample is 0.18, which is within the range of 

previously reported estimates.  We find that in the four environments considered when 

not conditioned on sex, the mean LS is lower in unhealthy environments but there are no 

significant differences in h
2
.   The pattern of heritability of LS by environment is 

somewhat mixed, with higher heritability of LS in environments with low IMR and 

CMR, but lower heritability of LS in the other two healthy environments.   It is important 

to note that heritability is a population statistic, thus we are comparing subpopulations 

defined by an environment and not average individual differences in phenotype.  The 

addition of environment-specific means and variances significantly improve model fit for 

all environments, with lower means and environmental variances in environments that are 

considered beneficial to longevity.   

To further investigate sex differences in heritability and GxE interactions, we 

considered models separately by sex.  In a bivariate model, considering only sex 

differences, we find that heritability of LS is significantly lower for females compared to 

males, h
2

LSf= 0.14 and h
2

LSm=0.22 (LR χ
2
= 9.03, p=0.003), and there is little difference 

between the mean and environmental variances by gender.  The lack of difference in the 

mean LS is by design.  LS was constructed as a gender specific measure (i.e., the baseline 
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survival models were stratified by sex), and therefore one would not expect to see gender 

differences in the average LS. 

Multivariate models were used to calculate the heritability estimates for LS by 

environment and sex (results in Table 4.3).  When considering the differences in 

heritability of LS by sex and environment, the mean differences in LS by environment 

are similar, with lower mean LS in environments considered unhealthy.  We find no 

significant differences in the heritability of LS by environment with the exception of 

female environments classified by CMR, which show a 9 point difference in h
2

LS between 

the healthful and unhealthful environments.  The heritability of LS is lower in female 

environments with high CMR when compared to female environments with low sibling 

CMR (LR χ
2
=5.88, p=0.015).  This is in contrast to the higher heritability of LS clustered 

about a lower mean LS in the male environment with high CMR compared to an 

environment with low CMR, although these differences are not significant.  For females, 

there is little difference in total phenotypic variance between the two CMR 

subpopulations (  
  is approximately 1.30 and 1.29 in high CMR and low CMR 

subpopulations, respectively). This is supportive of the enhancement hypothesis, which 

suggests that individuals are unable to realize there genetic potential in adverse 

environments. 

Sensitivity analyses using the nearly deceased cohort (n=14,618) were run for the 

LS models.  We found that heritability estimates were slightly smaller (0.17 vs. 0.18 in 

the larger sample), but the observed differences by gender and environment were all in 

the same direction.  The differences in heritability by CMR environment remained 

significant.  
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We considered defining EL as survival to the 90
th

 or 95
th

 percentile conditioned 

on birth year and sex.  The sample for these analyses is smaller than the sample used to 

obtain estimates of heritability of LS because observing EL requires a nearly extinct 

cohort (NLS=20,120, NEL= 14,618).   Heritability estimates for the two phenotypes were 

very similar, with h
2

EL=0.352 when EL is defined as survival to the 90
th

 percentile 

(shown in Table 3.4), and h
2

EL=0.345 (95% CI= 0.244, 0.447) when EL is defined as 

survival to the 95
th

 percentile (results not shown).  The small decline in heritability 

between the 90
th

 and 95
th

 percentiles suggests that heritability does not increase linearly 

with age, and that perhaps there is an upper limit to increases in heritability of longevity.  

However, the differences are negligible and not relevant to the main hypotheses of this 

paper.  Therefore, we show results for survival to the 90
th

 percentile conditioned on age 

and sex.   

Table 4.4 shows the heritability estimates for EL by environment and gender.  We 

find that heritability for EL is nearly twice the heritability of LS (0.18 vs. 0.35).  

Bivariate models were used to test for environmental differences in the heritability of EL. 

We find that allowing the prevalence to vary by environment significantly improves 

model fit, with higher prevalence of EL in healthful environments.  We find no difference 

in heritability of EL by environment when not conditioned on gender.  There are also no 

gender differences in the heritability of EL (LR χ
2
= 0.552, p=0.46), which differs from 

the LS findings.  

 When using the multivariate model to test for environmental differences in 

heritability of EL by gender and environment, we do not find evidence of significant 

differences with the exception of the male CMR environment.  The heritability of EL is 

31 points higher in male environments with high CMR compared to male environments 
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with low CMR (LR χ
2
=4.25, p=0.04), and there is no difference in the prevalence of 

exceptional longevity between environments.  This suggests that a triggering GxE 

interaction may be operating through selection mechanisms, where the frail are selected 

out of the adverse populations at faster rates and only the genetically robust individuals 

with longevity assurance genes that are able to thwart the effects of gerontogenes survive 

to exceptional ages.   

 

Discussion 

Our analysis of longevity is based on information from 20,120 individuals from 

802 three-generation families used to examine the heritability of longevity, defined as 

survival after age 30.  We also estimated the heritability of exceptional longevity using 

information from a subset of that sample (n=14,618 ) that is nearly extinct.  Our findings 

support previous studies suggesting a moderate heritable component to longevity that 

increases with age (Herskind et al., 1996; Hjelmborg et al., 2006; Kerber et al., 2001), 

although the adult ages at which this assessment is made varies across analyses.  We find 

little difference between the heritability of survival to the 90
th

 and 95
th

 percentiles, 

suggesting that the increase in proportion of variance due to genetic factors may not be a 

constant linear increase as suggested by other studies (Hjelmborg et al., 2006).  We find 

that sex differences in the heritability of longevity after age 30 support other studies 

showing higher heritability of longevity for males (Herskind et al., 1996), but no sex 

differences in the heritability of exceptional longevity.  We investigated the heterogeneity 

of longevity and exceptional longevity by early and midlife social environments.  We 

find some evidence that the heritability of longevity varies between environments, but 
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overall there is not strong support of a gene-environment interaction for the selected 

environments.   

We find evidence that childhood environments marked by high child mortality, 

indicative of exposure to infectious disease and undernutrition for the surviving members, 

may affect the proportion of phenotypic variation attributable to genetic factors.  The sex 

and age differences of the effects suggest an enhancement GxE interaction because 

adverse childhood circumstances limit the genetic potential of individuals to survive to 

older ages.  Conceptually, CMR is used to identify environments with excess exposure to 

infectious disease and undernutrition.  For females, genetic factors contribute little to the 

total variance in longevity in such environments, which suggests that genetic potential is 

not reached in such environments.  While a similar pattern exists for EL, the difference in 

heritability between environments is not significant.   

We see the opposite effect for male environments, although the observed patterns 

do not necessarily conflict with the female results.  Males have a mortality disadvantage 

relative to females throughout the life course that is partially due to biological factors 

(Kraemer, 2000).  Therefore, they may be more susceptible to environmental conditions 

that trigger genetic predispositions for disease and lead to higher mortality selection 

compared to females reared in the same environment.  The difference in the direction of 

the effect for males suggests that the adverse environment may actually trigger genetic 

diatheses, with higher heritability clustered about a lower mean longevity in deleterious 

environments, but these differences are not significant.  This results in higher heritability 

of exceptional longevity because individuals surviving to this age have some 

predisposition or genetic robustness that prevented them from being selected out of the 

population at earlier ages.  
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 It is interesting that we find heterogeneity in CMR environments, but not in 

environments characterized by IMR.  This may be partially due to differences in specific 

causes of death for the two groups, as suggested by Wolleswinkel-van den Bosch et al. 

(2000).  We did consider variations of our definition of IMR, which included neonatal 

deaths, although this did not change the substantive conclusion that heritability of 

longevity does not vary between subpopulations with different rates of infant mortality.   

While we find some evidence of heterogeneity in the heritability of longevity 

between environments, heritability estimates seem to be fairly impervious to early and 

midlife circumstances.   Herskind et al. (1996) reported stability of heritability estimates 

over sex and cohort during periods of rapid change in living conditions.  However, the 

birth cohorts selected for that study would still be children during periods with higher 

childhood mortality (1870 – 1900) than experienced during modern times.  Our results 

suggest that improvements in social and health conditions that have caused declines in 

childhood mortality may lead to a higher proportion of variability in longevity 

attributable to genetic factors.  More research needs to be done to test for other 

environmental differences in the heritability of longevity, including socioeconomic status 

and fertility history.   

The nearly twofold increase in heritability of exceptional longevity compared to 

the heritability of longevity after age 30 suggests that selection mechanisms may affect 

the heritability of longevity throughout the life course.  Individuals without longevity 

assurance genes may be selected out of the population at early ages, leaving a subset of 

the population that is made up of a higher proportion of robust individuals.  While the 

heritability of longevity increases with age, exceptional longevity is still only moderately 

heritable, and the environment explains the largest amount of phenotypic variation.   It is 
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also remarkable that there are gender differences in heritability of longevity after age 30, 

but not with respect to exceptional survival.  This suggests that individuals surviving to 

exceptional ages have survived mortality selection because they have a genetic variant 

that increases the ability to handle stress and/or counteract deleterious effects of the 

environment or generontogenes.  This is further supported by other research suggesting 

the buffering role of longevity genes (Bergman, Atzmon, Ye, MacCarthy, & Barzilai, 

2007; Sebastiani et al., 2012).  

Epigenetics is one of several possible biological mechanisms that allow social 

circumstances to get “under the skin,” and it recently has been suggested that epigenetic 

changes have the propensity to persist across subsequent generations (Feinberg, 2007).  

This is a provocative idea that lends support to mutligenerational transmission of social 

disparities.  More research needs to be done to uncover the possible mechanisms leading 

to phenotypic variation across social environments and the possibility of transmitting the 

adverse effects to subsequent generations.  We suggest further study into the possibility 

of GxE interactions and health and longevity outcomes.  While we did not find an 

association between all environments, there is a suggestion that the social environment 

may play an important role in modifying the heritability of longevity.   

In this paper, we assessed variation in heritability estimates of longevity after age 

30.  However, other cutoffs, such as postreproductive aging, should also be considered.  

Further modeling of heterogeneity of variance and the variance of longevity across other 

environments could be valuable in understanding how the social environment moderates 

the genetic component to aging.  Care should be taken when interpreting polygenic 

heritability when the genetic correlation has been fixed to unity, because it is assumed 

that the same genes affect longevity across environments.  While we feel this is a valid 
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assumption for subgroups of a single population, the reader should be aware of this 

constraint. 

To our knowledge, this is the first study using multigenerational pedigree 

information to investigate heterogeneity in heritability of longevity across multiple early 

and midlife environments.  Studies in other fields have examined heterogeneity in 

variance components by gender and age using a similar method (Giolo, Pereira, de 

Andrade, Krieger, & Soler, 2010; Pilia et al., 2006), lending validity to this approach. 

   

 

 

   

.    
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Table 4.1.  Pedigree Selection 
 

    3 Generation Families from 

1850 - 1927 Cohort* 
111,324 

    
Exclusions 

     Families missing information 

on at least one grandparent 

(These people have 

placeholder genealogy 

records) 

31,322 

    At least one of the 

grandparents is born before 

1850 

52,780 
  

A member of G3 born after 

1927 
26,420 

    Total Number of 3-

Generation Families for 

Analysis 
802 

    *This is calculated by taking any member of the BC and ascending 3 

generations.  The result is 111,324 distinct treetops (defined by the unique 

combination of maternal and paternal grandparents).  Families that did not 

meet our selection criteria were then excluded. 
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Table 4.2. Descriptive Statistics for Individuals from 802 Utah families 

  

  

Longevity 

(N=20,120)   

Exceptional Longevity 

(N=14,618) 

  

Male  

(N=10,393) 

Female 

(N=9,727)   

Male 

(N=7,532) 

Female 

(N=7,086) 

Birth Year 1897 (21.1) 

1897 

(20.3) 

 

1889 

(18.8) 

1889 

(18.0) 

Longevity Score (LS) -1.7 (15.2) -1.9 (15.5) 

 

-2.3 (15.4) -2.7 (16.5) 

Survived to the 90th Percentile (EL) 

   

8.4% 8.0% 

Survived to the 95th Percentile 

   

4.2% 3.9% 

Baptized Latter-Day Saint 72.5% 74.4% 

 

75.6% 77.7% 

One or more Postneonatal Infant 

Deaths in Family of Origin 19.5% 19.7% 

 

23.9% 23.1% 

One or more Childhood Deaths in 

Family of Origin 19.5% 19.9% 

 

23.1% 24.2% 

Large number of Siblings 29.6% 29.2%   35.6% 35.6% 
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6
2
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Table 4.3.  Summary of the Results Obtained for Polygenic Models of LS (N=20,120) 

1
6
3
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Table 4.4.  Summary of the Results Obtained for Polygenic Models of EL 
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Figure 4.1. Hypotheses for GxE interactions: Expected.  The expected phenotypic 

variation in a normal environment.   
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Figure 4.2. Hypotheses for GxE interactions: Triggering.  A triggering GxE interaction in 

an adverse environment. 
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Figure 4.3. Hypotheses for GxE interactions: Compensation.  A compensation GxE 

interaction in an enriched environment.   
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Figure 4.4. Hypotheses for GxE interactions: Enhancement.  An enhancement interaction 

in an enriched environment. 

 



169 

 

 

 
 

Figure 4.5.  Predicted values of survival to the 50th and 90th percentiles by gender and 

birth year.  Panels A and B show the estimates for male 50
th

 and 90
th

 percentile estimates,  

respectively.  Panels C and D show estimates for female 50
th

 and  

90
th

 percentiles, respectively. 
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Figure 4.6. Distribution of calculated longevity for individuals born between 1850 and 

1927 and surviving to age 30.  Panel A shows the distribution for the cohort used in the  

baseline survival analysis (N=685,949).  Panel B shows the distribution for the  

heritability sample (N=20,120). 
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Figure 4.7.  Distribution of longevity by environment.  Empirical densities of longevity 

are plotted by environment.  Panel A shows the distribution of longevity by LDS status.  

Panel B shows the distribution of longevity by infant mortality in family of origin.  Panel 

C shows the distribution of longevity by childhood mortality in family of origin.  Panel D 

shows the distribution of longevity by number of siblings.   

 

 

 

  



 

 

 

 

 
 
 
 
 

 
 

CHAPTER 5 

 

 

 

CONCLUSION 

 

 

 

This dissertation investigated heterogeneity in patterns of aging and the factors 

throughout the life course that shape them.  By focusing on variability within the 

population we are able to provide a clearer picture of how circumstances throughout the 

life course affect the way individuals age.  We found that the paths to disease and 

longevity are diverse and that early and midlife factors play an important role in 

determining later life health and longevity.  Our results support a wide body of literature 

showing that morbidity is not an inevitable consequence of aging, even in the oldest old 

population, but is shaped by the historical circumstances and social environments that we 

live in.   This study offered innovative and significant contributions to the understanding 

of biological and socioenvironmental determinants of aging.  Our research sought to 

disentangle the biological and temporal sources of trends in cancer incidence, 

investigating the possible social and physiological effects of fertility history on 

comorbidity trajectories after age 65, and studying the heterogeneity in the heritable 

components of the total phenotypic variation in longevity across early life family and 

social environments.    
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Fully understanding the sources of heterogeneity in the patterns of aging and 

longevity using only measures of the early life or proximate environment is an impossible 

endeavor because the biological functioning of an individual is dependent upon a vast 

array of circumstances from birth to death.  Healthy aging and longevity phenotypes 

should be characterized as plastic and not one fixed at or near the time of birth.  Trends in 

cancer incidence in the oldest old are sensitive to period and cohort influences.  Fertility 

history affects disease progression later in life and these effects are independent of early 

life circumstances, including a family history of longevity.  These findings suggest that 

childhood is not the only malleable period in the life course; midlife circumstances may 

also alter the trajectories of age related degeneration.  The moderate heritability of 

exceptional longevity is evidence that genes are not the only factor contributing to this 

phenotype.  There is also some evidence that heritability of longevity is sensitive to 

childhood environments.   Therefore, it is essential to consider how events throughout the 

life course and their interrelationships influence aging and longevity.   

Little is known about age-specific disease incidence and prevalence among the 

oldest old (Boscoe, 2008; Christensen, Johnson, & Vaupel, 2006).  This study highlighted 

the heterogeneity of disease patterns in this population by analyzing age, period, and 

cohort (APC) effects on cancer incidence in the oldest old and individual trajectories of 

disease for two cohorts over an 18 year period.  We found significant evidence of 

variance in disease patterns for this population and evidence that social context and 

events throughout the life course influence patterns of disease even for the exceptionally 

long lived.  The APC analyses provided evidence that the decline in cancer incidence for 

this age group is not strictly related to biological phenomenon.  Characterizing 

trajectories of disease up to age 91 in the young-old cohort and 101 in the old-old cohort 
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provides evidence that even into these advance ages the patterns of disease are diverse.  

We found that there are distinct heterogeneous patterns of comorbidity that range from a 

robust group, escaping major morbid conditions for the majority of the observation 

period, to a frail group characterized by high comorbidity throughout the entire period of 

observation.  These findings underscore the importance of more rigorous and 

interdisciplinary research into the biological and social underpinnings of disease for this 

rapidly increasing segment of the population.   

It is important to consider how mortality selection shapes age-related patterns of 

disease.  While it is clear that longevity is only moderately heritable at extreme ages, 

heritability also increases with age.  This suggests that there may be genetic variants that 

are protective against deleterious genetic and environmental effects.  The buffering 

mechanisms in aging hypothesis suggests that longevity genes buffer against the harmful 

effects of deleterious genotypes (Huffman et al., 2012).  The decline in cancer incidence 

above age 90 also suggests that individuals reaching the extreme ends of longevity may 

be less susceptible to disease.  However, the diverse patterns of comorbidity experience 

provide evidence that longevity is not synonymous with disease free living.  

 

Future Research 

Sociological and demographic studies of aging and longevity should inform and 

be informed by the fields of genetics, epidemiology, and biology.  More attention should 

be given to uncovering genetic and biological pathways to health and their interaction 

with the social environment.  The integration of theories of aging from multiple 

disciplines is essential to unraveling the secrets of this multifactorial process.  It is 

difficult to identify the mechanisms that separate the exceptionally longevous, salubrious 
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individuals from those with multiple morbidities and a shortened life-span; however, it is 

clear that these differences cannot be wholly explained by biological or social 

mechanisms.  Therefore, future demographic work should continue to improve upon the 

specification of biological and social paths to health outcomes.  

 The studies presented in this dissertation utilized a range of tools to describe 

aging and longevity trends in the populations.  Each of these tools has unique aspects that 

can be leveraged to further advance the field of aging and longevity.  Age, period, and 

cohort (APC) analyses can be considered descriptive.  It is not possible to make causal 

statement as to what factors led to the observed trends.  However, this is not sufficient 

reason for demographers to abandon APC analyses.  It is the ability to describe the 

multidimensionality of morbidity and mortality trends that give these analyses so much 

power and point to domains that may hold some of the answers to fundamental questions 

about the origins of longevity.   

Making definitive statements about age-related trends using cross-sectional data 

or longitudinal data from a single cohort is a dangerous practice.  The observed trends in 

cross-sectional data may be confounded by cohort differences in exposure, while 

longitudinal data from a small number of cohorts are not generalizable because the 

observed patterns may be specific to these cohorts.  Therefore, we advocate a 

decomposition approach to understanding the underlying factors of disease by first 

defining age, period, and cohort effects of morbidity and cause-specific mortality.  This 

first step does not provide a complete explanation for the trends, but it helps to elucidate 

what needs to be explained.   The second step then involves further investigating the 

components and interrelationships in order to make more definitive causal statements 

about the disease process.  Investigating population trends using this strategy can shed 
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considerable light on the ways that social environments intersect with biological factors 

determining disease.   

 The use of group-based trajectory modeling to construct heterogeneous patterns of 

aging is extremely informative to the studies of aging and longevity.  It has become clear 

that there is not a linear pattern of decline in physiological function determined by 

chronological age at the population or individual level.  Assessing unique patterns of 

disease and disability experience give us a more realistic picture of how people age.  We 

also have much to learn about which experiences throughout the life course contribute to 

specific patterns of aging.  Other sources of early life information, such as linked 

Decennial Censuses and military service records, will be available as part of the UPDB 

infrastructure in the near future.  This will allow for further investigation into the 

association between early and midlife events and later life morbidity.  We also suggest 

that study is warranted for investigating specific diseases or groups of disease (rather than 

composite measures only) with similar biological underpinnings to further understand the 

association between fertility and later life health.  

 Exploring gene-environment (GxE) interactions using a multigenerational 

database with information on early and midlife conditions is a fruitful approach to 

understanding how the social environment affects later life health.  Not only can the 

study presented here be expanded to include other environments, but it can also be 

expanded to examine variation in heritability of other aging phenotypes.  For example, 

we identified a group of robust individuals that experienced low levels of disease over an 

18 year period in the trajectory analysis.  It would be interesting to see if there is evidence 

of heritability of a “robust” phenotype.  Other ways of investigating GxE interactions 

should also be explored.  There is potential for using biomarker data, including APO-E 
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and telomere length, to investigate the possibility of environmentally altered phenotypic 

expression.     

 Population projections that assume future gains in healthy life expectancy and life 

expectancy in general will remain on a fixed path should be viewed with caution because 

life expectancy is sensitive to both historical and current sociological context.  This is not 

to say that future improvements in healthy life expectancy and life expectancy in general 

are impossible, but they are dependent upon factors that are still not well understood.  

Also, much more research needs to be conducted in order to understand disease 

trajectories specific to the oldest old population.  We cannot plan for proper care of this 

rapidly increasing population when we know so little about their healthcare needs.   

 

Conclusions 

This research contributes to a growing body of literature that draws attention to 

effects of early life circumstances on later life health.  Health policies should be aimed at 

promoting the well-being of individuals throughout the life course.  This research 

specifically highlights the importance of maternal well-being during childbearing years.  

The future health of women is not only affected while they are in their reproductive 

years, but it has been shown to affect the health of her offspring (Gluckman & Hanson, 

2005).  Therefore special attention should be given to this sensitive period that may alter 

the health of multiple generations.  This research also highlights the importance of social 

context throughout the life course in determining later life health.  Health risks are 

created and maintained by social structures and more work must be done to understand 

the social disparities that lead to disparities in health later in life and possibly across 

generations.  As a more individuals advance into the oldest old ages, we will need to 
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review health and cancer screening recommendations of the past.  The view that this age 

group is too frail or has too many comorbid conditions should be reconsidered (Østbye, 

Greenberg, Taylor, & Lee, 2003) based on trends in cancer incidence for this population.    

   Understanding the sources of variation in patterns of aging is important for 

creating accurate population predictions, identifying at risk populations that may benefit 

from public health interventions, and characterizing the process of aging in a diverse 

population.  Rather than focusing on the average life expectancy or healthy life 

expectancy of the population and their trends over time, we should be focusing on the 

variability of these measures within a population and changes in the sources of variation 

over time.  This is a subtle but important difference.  By elucidating mechanisms that 

lead to heterogeneous patterns of aging, we can not only gain more insight into the 

determinants of aging, but focus on the factors that have the largest impact.  Health 

policy should be focused on not only curing ailments once they present themselves, but 

more importantly, preventing them throughout the life course.   
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