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ABSTRACT 

 

Drug-free macromolecular therapeutics are a new paradigm in polymer-based 

nanomedicines. Instead of carrying cytotoxic small molecular weight drugs, drug-free 

macromolecular therapeutics crosslink proteins in the cell membrane through 

hybridization of oligonucleotides to initiate apoptosis signaling. However, the mechanism 

of the nanomedicines was not fully understood. To study the mechanism and to better 

understand the interactions between the therapeutics and the cell membrane, super-

resolution optical microscopy was used. Super-resolution imaging was performed on Raji 

B cells treated with the drug-free conjugates. The clustering of CD20 and lipid rafts was 

quantified. Lipid raft cluster size increased after treatment with drug-free conjugates. 

Drug-free conjugates induced apoptosis in a lipid raft-dependent mechanism where stable 

lipid rafts are needed for proper initiation of apoptosis. Direct stochastic optical 

reconstruction microscopy revealed nanoscale differences in membrane distribution of 

CD20 and lipid rafts. Pair-correlation analysis of super-resolution images showed lipid 

raft sizes of ~200 nm in cells treated with drug-free conjugates. 

 General applicability of direct stochastic optical reconstruction microscopy to 

studying drug-delivery systems was also demonstrated. Two conceptually different 

polymer-based therapeutics were labeled with 4 different synthetic fluorophores, and 

three-dimensional (3D) direct stochastic optical reconstruction microscopy was 

conducted at different time points to track localization of the therapeutic components. An 

 

 



iv 
 

internalized polymer conjugate was localized in clusters at 4 h, but after 24 h, the 

polymer released into the cytosol a fluorophore attached via an enzymatically degradable 

peptide. Pair-correlation functions of the dye attached to the polymer and the released dye 

showed changes in their decay lengths between 4 h and 24 h. The pair-correlation 

function of the released dye showed random distribution after 24 h. 

 Using reversible addition−fragmentation chain-transfer (RAFT) polymerization, 

branched and star polymers were synthesized to study the effect of architecture on 

apoptosis induction in Raji B cells. A new chain transfer monomer was synthesized in 

order to produce controlled branched polymers in RAFT polymerization. A degradable 

tetra-functional chain transfer agent was also synthesized. The star chain transfer agent 

produced degradable star polymers of high molecular weight (~170 kDa). Drug-free 

conjugates were synthesized to produce linear, branched, and star polymer-MORF2 

conjugates. Apoptosis in Raji B cells was measured but the three different architectures 

induced the same levels of apoptosis as measure by annexin V and caspase 3. 
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CHAPTER 1 
 
 
 

INTRODUCTION 
 
 
 
1.1 Non-Hodgkin’s Lymphoma 
 

In the United States, there were an estimated 71,850 new cases of Non-Hodgkin 

lymphoma and 19,790 deaths in both males and females in 2015 [1]. Between 1992 and 

2007, there was a worldwide yearly increase in NHL incidence of 0.3% [2]. The most 

prominent risk factor in contracting NHL is immunosuppression, which is commonly 

seen in organ transplant recipients, patients with human immunodeficiency virus (HIV), 

or those treated with chemotherapy. The majority of NHLs (85-90%) derive from B 

lymphocytes and the remaining develop from T lymphocytes or natural killer cells 

(Figure 1.1) [2]. Current treatment for NHLs depends upon the lymphoma subtype but 

often includes multi-agent chemotherapy regimens; for example, Burkitt’s lymphoma 

may be treated with CODOX-M (cyclophosphamide, vincristine, doxorubicin, and high-

dose methotrexate) and IVAC (ifosfamide, etoposide, and high-dose cytarabine) [3]. 

Immunotherapies directed toward NHL have been effective in treating subtypes of NHL. 

Addition of anti-CD20 antibody rituximab in combination with chemotherapy (R-CHOP; 

rituximab-cyclophosphamide, doxorubicin, vincristine, prednisone) can further improve  
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Figure 1.1. Pie chart showing the cellular origin and heterogeneity of non-Hodgkin’s 
lymphoma. 
 

 

response rates in some CD20+ lymphomas [3]. Anti-CD20 therapy using monoclonal 

antibodies is growing and may be critical in addressing the growing incidence rates and 

improving long-term survival 

 

1.2 CD20  

The B lymphocyte expresses a noninternalizing and nonshedding integral 

membrane protein called CD20 [4, 5]. CD20 is a 33-35 kDa nonglycosylated 

phosphoprotein with 297 amino acid residues and 3 hydrophobic domains that span the 

cell membrane four times [6].  Two sections of the protein extend into the extracellular 

space creating two loops (Figure 1.2): a small loop extending from amino acid position 

72 to 80 and a larger loop extending from amino acid 142 to 182. Expression of CD20 is  
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Figure 1.2. Schematic drawing of transmembrane protein CD20 in the cell membrane. 
Monoclonal antibodies (mAb) bind different regions of CD20’s extracellular loops. 
Antibodies bound to CD20 induce receptor crosslinking and initiate Src-family tyrosine 
kinase activation leading to phospholipase C phosphorylation, calcium influx, caspase 3 
activation, and finally apoptosis. 
 

 

found in pre-B and mature B lymphocytes, but not on stem cells or plasma cells [7]. 

CD20 is expressed on 95% of malignant B-cells, and since CD20 is not expressed on 

stem cells, the B-cell population can be regenerated after treatment, which makes CD20 

an ideal target [4, 8, 9]. In fact, CD20 is not expressed on plasma cells, and it has been 

found that serum IgG and IgA levels are relatively unchanged after anti-B cell therapy 

[10]. However, numerous courses of B cell depletion therapies using rituximab resulted 

in lower IgM and IgG levels [11]. Bingham et al. found after significant B cell depletion 
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therapy that antibody memory responses to tetanus toxoid were left intact, suggesting that 

B memory cells escape anti-CD20 antibody therapy [10].  After B cell depletion 

therapies, repopulation of B cells can take 6-9 months [12]. Resting B cells in lymphoid 

organs and blood express ~1.5 x 105 molecules/cell; however, CD20 expression is four-

fold greater in germinal centers [13]. The expression of CD20 varies between NHL 

subtypes. The CD20 content in chronic lymphocytic leukemia (CLL) was found to be 

approximately 10 times less than in normal B cells [14]. Although CD20 expression can 

vary between cancers, the expression level is stable over time in individual patients, 

whereas expression of antigens CD21, CD22, CD23, and CD25 were found to vary from 

specimen to specimen [15]. The binding of monoclonal antibodies to CD20 influences 

cell-cycle progression, cell differentiation, and plays a role in Ca2+ conductance [16].  In 

addition to localized CD20 expression on B cells, the receptor is not found in human 

serum and slowly internalizes anti-CD20 mAbs [17, 18]. 

 

1.3 Anti-CD20 Monoclonal Antibodies 

Anti-CD20 monoclonal antibody therapies, specifically rituximab, have been 

successful in treating some types of NHL, especially in combination with traditional 

chemotherapies [19]. Anti-CD20 mAbs eliminate B cells through several different 

mechanisms: antibody-dependent cellular cytotoxicity (ADCC), complement-dependent 

cytotoxicity (CDC), direct apoptosis induction, and programmed cell death (PCD) 

(mediated through actin signaling) [20]. The first clinically tested anti-CD20 mAb was 

the murine anti-human CD20 1F5 antibody, but failed to progress to the clinic due to 

immunogenicity concerns [4]. Rituximab, an anti-CD20 mAb, is chimeric so it does not 
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have the immunogenicity problems of 1F5, and it binds the Ala-N-Pro (ANP; amino 

acids 170-172) epitope on the large loop of extracellular region of CD20 [21]. Rituximab 

was derived from the murine 2B8 monoclonal antibody, and genetically engineered to 

contain a human constant region to enhance complement activity in vivo and ADCC in 

vivo [22]. The 1F5 binds the same region, but proper epitope conformation in the large 

loop is needed [23]. More recently, the antibodies ofatumumab, obinutuzumab, and 

tositumumab have been approved by the FDA. Ofatumumab has been approved for 

treating CLL and was found to induce higher levels of CDC than rituximab, which is 

likely a result ofatumumab’s slow off-rate and its novel binding epitope [24, 25]. 

Obinutuzumab and tositumumab bind the C-terminal side of the ANP epitope (172-178) 

but induce cell death via a different mechanism compared to rituximab, 1F5, and 

ofatumumab [26]. The binding affinity (KD) of mAb 1F5 for CD20 is ~19 nM whereas 

the KD for the 1F5 fragment is ~58 nM [27]. Rituximab has a CD20 binding affinity of 5 

nM [28]. Hyper crosslinking of 1F5 and rituximab has been found to increase apoptosis 

compared to uncrosslinked monoclonal 1F5 and rituximab [29, 30]. Figure 1.2 shows an 

artist’s depiction of CD20, the approximate regions of binding for various anti-CD20 

antibodies, and the signaling mechanism for Type I antibodies. Table 1.1 is a list of 

clinically approved anti-CD20 antibodies and includes several that are in clinical trials. 

 

1.3.1 Type I and Type II anti-CD20 antibodies 

The differences in inducing cell death led to the classification of anti-CD20 mAbs 

into two types: Type I and Type II. Type I antibodies crosslink CD20 and induce 

redistribution of CD20 into lipid rafts, which initiates src kinase activity, activation of  
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Table 1.1 Anti-CD20 monoclonal antibodies. 
Antibody Trade name/Company Antibody Type Mechanism 

type 
Indication Reference 

Rituximab Rituxan®/ Biogen and 
Genentech  

Chimeric 
(mouse/human 
IgG1) 

Type I Low grade or follicular 
NHL 

[37, 38] 

Ofatumumab Arzerra®/Novartis Human Type I CLL [20] 
Obinutuzumab Gazyva®*/Genentech Human/glycoeng

ineered 
Type II CLL [39, 40] 

Ibritumomab 
tiuxetan 

Zevalin®/ Biogen 
Idec, Inc 

Mouse IgG1 Type I low‑grade or follicular 
NHL 

[41] 

Tositumomab Bexxar® 
/GlaxoSmithKline 

Mouse IgG2a Type II Chemo/Rituxan refractory 
NHL 

[42] 

1F5 N/A Mouse IgG2a Type I N/A [4] 
Veltuzumab Immunomedics  Humanized IgG1   Orphan status to treat 

immune thrombocytopenia 
and in trials to treat NHL 

[43] 

Ocaratuzumab Mentrik Biotech Humanized, Fc 
engineered IgG1 

 In clinical trials for 
follicular lymphoma 

[44] 

Ocrelizumab Biogen and Genentech  Humanized Type I In clinical trials for 
multiple sclerosis 

[45] 

*Trade name in the US

6 
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phospholipase C, calcium release, caspase 3 activation, and finally apoptosis. Disruption 

of lipid rafts led to inhibition of apoptosis in cells treated with Type I mAbs. 

Additionally, redistribution of CD20 into lipid rafts may provide more efficient activation 

of complement factors [31]. Type II mAbs function independently of lipid rafts by 

initiating PCD pathways via actin signaling and are less active at initiating CDC. During 

PCD, lysosomes release their contents into the cytosol, producing toxic effects that lead 

to cell death. The molecular basis for the distinction between Type I and Type II mAbs is 

that Type II mAbs preferentially bind CD20 populations at cell-cell contact sites, leading 

to homotypic cell aggregation [26]. Furthermore, Type II mAbs restrict CD20 tetramer 

formations to a closed orientation as opposed to an open orientation for Type I mAbs, 

which may result in activation of alternative signaling pathways. The wider elbow angle 

in Type II mAbs could be a reason for the distinct tetramer formation and cell death 

mechanisms of Type I and Type II mAbs [26]. 

 

1.4 Anti-CD20 Therapy Adverse Effects and Current Treatments for NHL 

Rituximab—the first clinically approved anti-CD20 mAb—has revolutionized 

treatment for non-Hodgkin’s lymphoma [32]. However, the response rate to rituximab 

treatment is less than 50%, and adverse side effects have been reported, such as 

progressive multifocal leukoencephalopathy (PML) and rituximab-associated lung injury 

(RALI) [33-35]. Variable responses to rituximab have been linked to the saturation of its 

effector mechanisms, such as complement-dependent cytotoxicity where the serum 

components are depleted before all the tumor cells are eradicated [36]. In clinical trials 

for treating NHL, ofatumumab had an overall response rate of 11% in rituximab-
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refractory patients [37]. Lack of efficacy was attributed to possible downregulation of 

CD20, depleted complement levels, and compromised cellular effector mechanisms due 

to prior treatments [37]. To improve treatment using antibodies, radionucleotides are 

attached to the antibodies or combination chemotherapy using cyclophosphamide, 

doxorubicin, vincristine, and prednisone (CHOP) [7, 38]. These low molecular weight 

drugs are toxic and cause adverse side effects. Other researchers generated polymers of 

rituximab, which induced higher levels of apoptosis compared to rituximab monomers 

[39]. New therapeutic approaches are needed to increase response rates, and decrease side 

effects associated with the mAb and low Mw drugs [40].   

 

1.5 Polymer-Based Therapeutics 

Polymer therapeutics have shown considerable promise in reaching the clinic, as 

many polymer therapeutics have already been tested in clinical trials and over a dozen 

protein polymer conjugates have been approved. Work on polymer–drug conjugates 

commenced with work by Jatzkewitz (enzyme degradable linkers), Ushakov (water 

soluble polymer–drug conjugates), and Mathé (drug conjugated to immunoglobulin) [50-

54]. Almost 40 years have passed since Ringsdorf proposed a new model for delivering 

drugs using a polymer carrier [55]. He proposed that multiple functionalities, such as 

drugs, solubilizing groups, and targeting moieties, could be incorporated into the polymer 

backbone (Figure 1.3).  The drug could be attached to the polymer with a cleavable 

spacer that would release the drug in a specific location. Targeting moieties could also be 

incorporated to direct the polymer therapeutic to the desired location. Kopeček and 

coworkers have studied polymer therapeutics based on N-(2-hydroxypropyl)  
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Figure 1.3. Representation of the drug delivery concept presented by Ringsdorf and the 
clinically tested HPMA copolymer-doxorubicin conjugate PK2 comprising a drug (Dox) 
tethered to a polymer backbone via the enzyme degradable sequence GFLG and a liver-
targeting moiety, N-acylated galactosamine. HPMA = N-(2-
hydroxypropyl)methacrylamide. 
 

 

methacrylamide (HPMA) extensively, inspired by Ringsdorf’s model [56]. The monomer 

HPMA was designed and synthesized in the early 1970s for use in drug delivery [56-60]. 

Early work on macromolecular therapeutics has been reviewed [61, 62]. 

Based on a stringent biological rationale, new polymer-based nanomedicine 

designs have emerged: polymeric drugs, polymer–drug conjugates, polymer–protein 

conjugates, polymeric micelles, and polyplexes (Figure 1.4) [63]. Recently, other 

polymer-based nanomedicines have appeared, such as polymersomes and nanogels [64-

66]. Polymersomes are vesicle-like structures comprising an aqueous core for loading 

hydrophilic drugs, a hydrophobic shell for loading hydrophobic molecules, and  
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Figure 1.4. Representation of polymer-based nanomedicines being investigated for 
treatment of cancer and other diseases. a) synthetic polymers such as polyethylene glycol 
(PEG) are attached to proteins to make a polymer–protein conjugate; b) polymer–drug 
conjugates comprise a hydrophilic polymer backbone with active agents conjugated via 
degradable linkers to the backbone; c) micelles self-assemble from diblock or triblock 
copolymers comprising hydrophilic and hydrophobic polymer blocks; d) nanogels are 
core crosslinked micelles where the core can swell or contract depending on the polymer 
used; e) polymersomes comprise diblock or triblock polymers that form vesicle-like 
structures; f) dendrimers can sequester drugs in the core or the drugs can be covalently 
attached; g) polyplexes comprise a cationic block (for deoxyribonucleic acid, DNA, short 
interfering ribonucleic acid, siRNA, micro ribonucleic acid, miRNA, complexation) and 
hydrophilic block. 
 
 
 
hydrophilic corona for prolonging circulation and/or attachment of targeting moieties 

(Figure 1.4). Nanogels are essentially micelles with a crosslinked core to enhance 

stability and control size. 

 

1.5.1 Polymer synthesis techniques 

The development of controlled/living radical polymerization (CRP) techniques 

expanded the available design possibilities of smart polymer therapeutics. Additionally, 

CRP techniques produce polymers with low polydispersities, which is critical for proper 

preclinical characterization and evaluation, as the molecular weight (Mw) determines the 

route of elimination and the in vivo half-life of the polymer [67]. These new 
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polymerization techniques make it technologically possible to blend polymers that have 

different stimuli-sensitive properties to produce or tune new functionalities [68]. 

Bioresponsive functionality and biodegradability can be incorporated into polymers by 

incorporating natural polymer grafts or blocks into the polymer. 

 

1.5.2 Atom transfer radical polymerization (ATRP) 

In ATRP, a transition metal catalyst reacts with a halogen atom on an organic 

halide initiator to produce an oxidized metal–halide and a carbon-centered radical (Figure 

1.5). Alkene monomers react with the carbon-centered radical to produce carbon–carbon 

bonds. The metal–halide complex can react with the propagating chain and suppress 

bimolecular termination [69]. In this way, polymer molecular weights can be highly 

controlled with a low degree of polydispersity. Matyjaszewski’s group has synthesized 

biodegradable nanogels and miktoarm (or heteroarm) star polymers using ATRP [70, 71]. 

 

1.5.3 Reversible addition−fragmentation chain-transfer (RAFT) 

RAFT polymerization produces polymers of low polydispersity and can facilitate 

the production of complex polymer architectures [74]. A chain transfer agent (CTA) 

reversibly deactivates propagating polymer radicals so that the majority of living chains 

are in a dormant form. The capping reactions are rapid and equilibrium is quickly 

reached, which allows all chains to grow at essentially the same rate, producing narrow 

molecular weight distributions [74, 75]. RAFT polymerization allows for a large degree 

of freedom in architectural design and the incorporation of appropriate functionalities. 

For applications in drug delivery, RAFT polymerization is more versatile in that a greater  
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Figure 1.5. Reaction schemes for the ATRP synthesis of a folic acid functionalized 
diblock copolymer and the RAFT synthesis of polyHPMA [65, 66]. In the ATRP 
synthesis, the monomers add between the bromine and the tertiary carbon. The scheme 
depicts the synthesis of a diblock copolymer of 2-(methacryloyloxy)ethyl 
phosphorylcholine (MPC) and the pH sensitive 2-(diisopropylamino)ethyl methacrylate 
(DPA). In RAFT synthesis, the monomers add between the sulfur and tertiary carbon. 
The chain transfer agent (CTA) in this RAFT synthesis is 4-cyanopentanoic acid 
dithiobenzoate (CPDB); the initiator is 4,4´-azobis(4-cyanopentanoic acid) (V-501). 
ATRP = Atom Transfer Radical Polymerization, RAFT = Reversible 
Addition−Fragmentation Chain-Transfer. 
 
 
 
variety of vinyl monomers are available for reaction in water and functionality can be 

easily incorporated into the α and ω ends of the polymer for later bioconjugation [76]. 

Chain transfer agents can be designed with enzyme-degradable or pH-sensitive structures 

for smart delivery of therapeutics. RAFT polymerization allows for the creative design of 

nanopolymers with multiple blocks of differing properties or functional groups.  

RAFT polymerization holds several advantages over ATRP, namely the absence 

of toxic metal species in polymerization, versatility in CTA or macroCTA use for 

incorporating biopolymers and functional groups, and the availability of a wide range of 

monomers for RAFT polymerization [76]. While the thiocarbonylthio moiety of the CTA 

in RAFT has been found to be toxic, the group can be easily removed by post-

polymerization chain end modification [77, 78]. RAFT polymerization has led to further 
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development of poly(N-(2-hydroxypropyl)methacrylamide) (pHPMA). In 2005, pHPMA 

was successfully synthesized using RAFT polymerization [72].  

 

1.5.4 Stimuli-sensitive polymers 

The emergence of stimuli-sensitive polymers resulted from efforts to mimic 

biological materials. Biological materials are possibly immunogenic, difficult to 

synthesize, and unstable in biological environments. Synthetic materials have enhanced 

stability or controllable degradability, are usually immunocompatible, and can be 

reproducibly synthesized. However, synthetic materials still have limitations compared to 

biological materials. Some of these limitations can be overcome by combining synthetic 

and biological materials to produce hybrid constructs with the specificity and nano-scale 

organization of biology and the immunocompatibility of synthetic polymers. 

 

1.6 Drug-Free Macromolecular Therapeutics 

 To address the limitations of whole mAb immunotherapy and to induce apoptosis 

independent of immune effector cells, a new class of therapeutics was developed—Drug-

free macromolecular therapeutics. The system is “drug-free” because macromolecular 

therapeutics, as developed in the Kopeček laboratory, has traditionally employed 

cytotoxic small molecule drugs conjugated to polyHPMA. PolyHPMA is an ideal choice 

due to its biocompatibility and translational potential [79]. Polymer-drug conjugates of 

polyHPMA and doxorubicin (PK1 and PK2) have already been tested in clinical trials 

and were found to significantly reduce the adverse effects of the free doxorubicin [80]. In 

contrast to traditional polymer-drug conjugates, drug-free conjugates do not carry 
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cytotoxic small molecules. The polyHPMA functions as a cell receptor crosslinker 

instead of as a carrier for cytotoxic drugs [81].  

 

1.6.1 Multivalent polymer-Fab’ conjugates 

Targeting of CD20 began in the Kopeček lab using multivalent branched 

polyHPMA copolymer−Fab′ conjugates [27]. A series of copolymer-Fab’ conjugates 

were synthesized with Fab’ valencies ranging from 1.4 to 32 Fab’ per polymer backbone. 

A general increase in binding affinity was observed as Fab’ valence increased. Apoptosis 

induction correlated with Fab’ valence and CD20 expression in the cells tested [82]. At 

optimal valence and concentration, the conjugates induced apoptosis to a greater extent 

than the positive control (whole anti-CD20 mAb hyper crosslinked by a secondary Ab) 

[82]. Unbranched copolymer-Fab’ conjugates were synthesized using reversible 

addition−fragmentation chain-transfer (RAFT) polymerization [83]. Fab’ was attached 

via a thiol-ene reaction to form a thioether bond. At longer incubation times with Raji 

cells in vitro, the copolymer-Fab’ conjugates induced higher levels of apoptosis than 

hyper-crosslinked 1F5 Ab. Even though copolymer-Fab’ conjugates induced high levels 

of apoptosis, significant synthesis and purification is required and the number of Fab’ 

covalently attached to the polymer backbone is limited in part due to the hydrodynamic 

size of Fab’.    

 

1.6.2 Biorecognition and coiled-coil peptides 

Instead of covalently attaching Fab’ to the polymer, a pair of coiled-coil peptides 

were used—one attached to the polymer and one to Fab’—so that through biorecognition, 
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the two conjugates would self-assemble and crosslink CD20. The specificity and 

stabilization of the antiparallel coiled-coil (CC) CCE and CCK arise from hydrophobic 

interactions at positions a and d, electrostatic interactions at positions e and g, and helical 

propensity of the peptides (Figure 1.6) [84]. The hydrophobic residues valine and leucine 

were placed in the a and d positions. The a and d positions form the hydrophobic face 

between the peptides. The charged residues lysine and glutamic acid were placed at the e 

and g positions to form favorable electrostatic interactions between the peptides. A buried 

polar residue was placed in the sequence to favor the antiparallel orientation. The CCE 

peptide was modified with a maleimide functional group for covalent attachment to 

partially reduced Fab’ (Fab’-CCE). Multiple copies of the CCK peptide were covalently 

attached to a poly(HPMA-co-APMA) copolymer (P-CCK) [85].  

 

 

Figure 1.6. Helical wheel diagram of the coiled coil peptides CCE and CCK. 
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The mixture of the two conjugates with Raji B cells resulted in a significant 

increase in apoptosis via detection using annexin V, caspase 3, and tunnel assays [85]. 

The fluorescently labeled Fab’-CCE and P-CCK conjugates colocalized at the cell 

membrane as detected by confocal microscopy. Furthermore, the recognition between the 

CCE and CCK peptides was specific and not related to peptide aggregation.  

Peptide aggregation was ruled out as a possible mechanism for self-assembly 

when we observed no colocalization of a CCE peptide missing a critical amino acid and 

CCK at the cell surface [81]. Not only did treating cells with Fab’-CCE and P-CCK 

induce apoptosis in vitro, the conjugates also showed efficacy in a mouse model [86]. 

With all protein or peptide therapeutics, the potential for immunogenicity problems is 

high, so Fab’-peptide and HPMA-peptide conjugates were tested in vitro and in vivo 

[87]. Furthermore, the impact of peptide chirality was also investigated by using L and D 

versions of CCK and CCE. The P-CCK (L and D) and P-CCE (L and D) conjugates 

showed low stimulation in a mouse macrophage cell line RAW264.7 and low antibody 

production in vivo. However, Fab’-CCK and Fab’-CCE stimulated macrophages in vitro 

and stimulated the production of IgM and IgG antibodies in vivo [87]. It was found that 

there was no significant difference in the antibody response between a mixture of the D 

conjugates (Fab’-D-CCE and P-D-CCK) and the mixture of L conjugates (Fab’-D-CCE 

and P-D-CCK) administered intravenously. 

 

1.6.3 Biorecognition through oligonucleotide hybridization 

The biomolecules used for biorecognition were expanded to include the 25 base-

pair oligonucleotides MORF1 and MORF2 [88]. The oligos provided several advantages 
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over coiled-coil peptides: 1) neutral charge; 2) higher binding affinity; 3) faster self-

assembly of Fab’-MORF1 and P-MORF2 conjugates; 4) higher apoptosis induction in 

vitro of Raji B cells [89]. The Fab’-MORF1 and P-MORF2 conjugates efficiently 

induced apoptosis in Raji B cells, and higher levels of cell death were observed in cells 

treated with polymer conjugates bearing 10 MORF2 per polymer compared to polymers 

bearing 3 MORF2 [88]. The conjugates also proved effective against CLL cells obtained 

from patients [90]. Apoptosis was observed in patient cells with the 17p13 deletion, 

suggesting that p53 is not involved in the apoptosis mechanism [90]. Not only does the 

therapeutic system effectively eliminate cells in vitro, but also in vivo [86, 88, 91, 92]. 

Figure 1.7 shows the proposed mechanism of the hybrid nanoconjugates. 

 

 

Figure 1.7. Scheme for the therapeutic mechanism of drug-free macromolecular 
therapeutics. Fab’-MORF1 binds CD20 on the surface of B cells. A multivalent polymer 
bearing multiple copies of a complementary oligonucleotide (MORF2) binds MORF1 on 
the cell surface, leading to CD20 crosslinking and apoptosis initiation. 
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1.6.4 Advantages of drug-free macromolecular therapeutics 

The therapeutic system has at least four main advantages over current treatments. 

The therapeutic system is 1) functionally specific without relying on other cells or serum 

components (immune-independent), 2) absent of toxic components such as 

radionucleotides and small molecule chemotherapeutics, 3) contains biocompatible 

components, and 4) has a versatile design that provides options for tailoring the system. 

 

1.7 Breaking the Diffraction Barrier  

The diffraction barrier is the resolution limit of far-field conventional optical 

microscopy due to the diffraction of light and the finite numerical aperture of objective 

lenses. In practice, single molecule fluorescent emitters cannot be distinguished if 

separated by less than ~200 nm. There are two general strategies for overcoming the 

diffraction barrier: 1) Through structured illumination, reduce the size of the point spread 

function [93]; 2) Single molecule detection that relies on photoswitching of fluorescent 

molecules [94-98]. Discoveries related to controlling fluorescence of proteins and 

synthetic dyes fueled advances in optical imaging, so that individual fluorescent 

molecules can be localized. These advances in super-resolution methods resulted in the 

Nobel prize in chemistry being awarded to William E. Moerner, Eric Betzig, and Stefan 

Hell.  

Advances in single molecule detection have spawned different strategies for 

achieving super-resolution images. Some single molecule localization approaches include 

photoactivated localization microscopy (PALM) [94], stochastic optical reconstruction 

microscopy (STORM) [95], direct stochastic optical reconstruction microscopy 
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(dSTORM) [98], fluorescence PALM [96], bleaching/blinking-assisted localization 

microscopy (BaLM) [99], ground-state depletion microscopy followed by individual 

molecule return (GDSDIM) [100], and generalized single-molecule high-resolution 

imaging with photobleaching (gSHRiMP) [101]. As single molecules are localized, an 

image can be reconstructed that has resolutions as high as 10 nm. These super-resolution 

methods have resulted in elucidation of cellular structures such as Tar clustering 

in Escherichia coli [102], MreB helical organization, an actin analog [103], and the 

hemispherical clathrin coat [104].   

 

1.7.1 Direct stochastic optical reconstruction microscopy (dSTORM) 

In dSTORM, a single fluorescent dye is used along with an appropriate imaging 

buffer that has thiol-containing compounds (such as mercaptoethylamine) in 

solution [98]. The thiol groups react with the dye upon laser irradiation to put the dye into 

a metastable dark state, thereby controlling its fluorescence [105]. Controlling dye 

fluorescence enables the activation of sparse subsets of fluorophores that can be 

individually localized because the fluorescence signal from each molecule is spaced far 

enough apart that signals do not overlap. Since the fluorescent signals do not overlap, the 

centroid of the fluorescent spot can be precisely localized by fitting the signal to a 

Gaussian point spread function. Each localized molecule is fit to the point spread function 

and a centroid of the signal is easily obtained. The uncertainty of the centroid depends 

upon the number of photons collected and how well the signal fits the point spread 

function. The process of activating and localizing sparse subsets of molecules in 

individual frames is repeated thousands of times, after which a super-resolution image is 
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constructed from the fitted localizations of all the molecules in every frame. A good fit 

and a sufficient number of photons can result in images with resolutions as high as 

10 nm. Image resolution is enhanced by an order of magnitude over traditional optical 

microscopy methods such as confocal microscopy and total internal reflection 

fluorescence microscopy (TIRFM). Many commercially available fluorescent probes can 

be used in dSTORM [106]. Because dSTORM localizes individual molecules, the 

resulting image contains coordinate data, photon count, and single molecule resolution 

precision. 

 

1.8 Pair-Correlation Analysis 

The coordinate data can then be used to quantitatively study drug delivery 

mechanisms using spatial descriptive statistical techniques such as pair-correlation 

analysis [107, 108]. Spatial descriptive statistical techniques allow researchers to quantify 

the distribution of drugs, delivery vehicles, or proteins (i.e. cluster size, packing density) 

[107, 109]. For example pair-correlation functions can be determined from an image and 

give rise to correlation lengths, which are related to the size of structures in the image 

[110]. Correlation functions can also be used to determine other important biophysical 

parameters in complex systems [110]. Recently, pair-correlation analysis was used to 

calculate CD20 protein cluster size and estimate the density of CD20 in the clusters from 

2D dSTORM images [111]. Traditional optical imaging techniques (confocal, TIRFM) 

cannot produce the resolution needed to observe and calculate the size of nanoscale 

clusters, nor can they provide individual coordinate data for each molecule, thereby 

precluding use of statistical methods to extract valuable biophysical data. 



21 
 

 

1.9 Summary and Specific Aims 

 Drug-free macromolecular therapeutics have shown exciting and promising 

results as a treatment for non-Hodgkin’s lymphoma; however, the mechanism of action 

of the Fab’-MORF1 and P-MORF2 conjugates is not well understood. To better 

understand the mechanism and optimize conjugate design, three specific aims were 

proposed:  

1. Design and synthesize two fluorescently labeled conjugates: Fab’-MORF1 and P-

MORF2. 

2. Characterize CD20 and lipid raft distribution on the surface of B cells after 

treatment with drug-free macromolecular therapeutics using super-resolution 

optical imaging. 

3. Design and synthesize new polymer architectures to investigate the effects of 

different P-MORF2 architectures on apoptosis induction. 

Chapters 2 and 3 jointly describe work accomplished in pursuit of the first two 

aims. Chapter 2 includes a detailed mechanistic study of drug-free macromolecular 

therapeutics where dSTORM and pair-correlation analysis were used to study changes in 

lipid raft cluster size. Lipid rafts are a collection of membrane components that can be 

stabilized into nanoscale clusters to initiate signaling or internalization [112]. Super-

resolution microscopy uncovered specific interactions between cells and drug-free 

macromolecular therapeutics that spawned new ideas for therapeutic design [113]. 

In Chapter 2, I synthesized fluorescently labeled Fab’-MORF1 and performed all 

dSTORM imaging and apoptosis experiments. Dr. Eric Peterson wrote Matlab code to 

render the dSTORM image data in Matlab. I used open access Matlab code to perform 
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pair-correlation analysis on the rendered images and I processed all pair-correlation 

function data. 

In Chapter 3, I synthesized fluorescently labeled Fab’-MORF1 and fluorescently 

labeled P-MORF2. Dr. Jiyuan Yang and Dr. Rui Zhang synthesized the P-Cy3-Cy5 

conjugate and Dr. Rui Zhang conducted the cell experiments. All 3D dSTORM imaging 

was conducted by myself with the assistance of Dr. Manasa Gudheti. Image analysis was 

conducted using code from Bruker engineers John Schreiner and Steve Callahan.  

The mechanistic studies of Chapter 2 informed the work of Chapter 4 where 

different architectures of P-MORF2 conjugates were tested in an effort to increase 

apoptosis in B cells. Two RAFT chain transfer agents were synthesized that produce 

branched and 4-arm star polymers. 

In Chapter 4, I synthesized the chain transfer monomer and star chain transfer 

agent. I prepared all P-MORF2 conjugates and Dr. Libin Zhang synthesized Fab’-

MORF1 from rituximab. 

 

1.10 Future Work 

Future work should focus on in vivo application of different architectures, as it is 

known that star HPMA drug conjugates have a different biodistribution than linear 

HPMA drug conjugates. A more detailed study is needed of the polymerization kinetics 

using the two newly synthesized chain transfer agents to increase polymerization yield 

and predictability.  

Super-resolution techniques continue to improve as means are discovered to more 

efficiently control fluorescence and capture photons emitted from single molecules. A 
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limitation of dSTORM is the uncertainty in counting single molecules due to 

photoblinking of synthetic fluorophores during imaging, which can lead to overcounting 

of single molecules in clusters. Although overcounting can be addressed using pair-

correlation analysis, means need to be developed for dSTORM to more reliably count 

single molecules. 
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CHAPTER 2 
 
 
 

SUPER-RESOLUTION IMAGING AND QUANTITATIVE 

ANALYSIS OF MEMBRANE PROTEIN/LIPID RAFT 

CLUSTERING MEDIATED BY CELL SURFACE  

SELF-ASSEMBLY OF HYBRID  

NANOCONJUGATES 
 
 
 
2.1 Introduction 
 

Synthetic polymers bound to drugs or proteins provide advantages over small 

molecule therapeutics, such as improved biodistribution and lower toxicity [1]. For 

example, polyethylene glycol has been attached to therapeutic proteins to increase blood 

circulation time and decrease immunogenicity. The monomer N-(2-

hydroxypropyl)methacrylamide (HPMA) can be polymerized using reversible addition-

fragmentation chain transfer (RAFT), atom transfer radical polymerization (ATRP), and 

conventional radical polymerization into a hydrophilic biocompatible polymer [2]. 

Polymeric nanomedicines have progressed from simply altering biodistribution to 

performing complex biological functions in vivo such as self-assembly to induce 

apoptosis in cancer cells [3-7]. Rational nanomedicine design can be facilitated by 
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improved characterization of molecular-level interactions between cellular membranes 

and nanoconstructs [8]. 

Traditional tools for studying molecular-level interactions between cell membrane 

components (proteins, lipids, cholesterol) and polymer therapeutics are limited. Confocal 

microscopy is limited by optical diffraction, which prevents characterization of structures 

below ~200 nm; however, new optical imaging techniques can reach resolutions of 10 nm 

by controlling fluorophore activation and emission [9]. These super resolution imaging 

techniques—photoactivatable localization microscopy (PALM), stochastic optical 

reconstruction microscopy (STORM), and direct STORM (dSTORM)—are broadly 

categorized as localization microscopy techniques [10-12]. These techniques control the 

activation and emission of fluorophores so that sparse subsets of molecules are activated 

and precisely localized in an individual frame. Localization microscopy provides the 

spatial coordinates for all localized molecules in the image, which can then be analyzed 

using biophysical analysis tools such as pair-correlation analysis to extract quantitative 

physical characteristics in the image, like size and cluster spacing [13-15]. 

In 2012, non-Hodgkin’s lymphoma (NHL) resulted in ~400,000 new cases and 

~200,000 deaths worldwide [16]. The majority (85%) of NHL cancers are of B cell 

origin. B cells express the nonshedding and noninternalizing membrane protein CD20—a 

33 kDa protein that is associated with lipid rafts [17]. Crosslinking of CD20 results in 

activation of tyrosine kinases, release of intracellular stores of calcium ion, activation of 

caspase signaling, and initiation of apoptosis [18]. Monoclonal antibodies directed toward 

CD20 (e.g. Rituximab) have proven effective in treating NHL, but half of treated patients 

do not respond to treatment; therefore improved medicines are needed. 
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To address the limitations of current treatments for NHL, we developed a new 

therapeutic paradigm utilizing hybrid nanomaterials. Our therapeutic employs two 

complementary hybrid nanoconjugates that bind to CD20 and self-assemble causing 

CD20 crosslinking (Figure 2.1) [5]. The two nanoconjugates are comprised of three main 

components: 1) The complementary morpholino oligonucleotide analogs MORF1 and 

MORF2, which hybridize with picomolar affinity; 2) An anti-CD20 Fab’ fragment from 

the mAb 1F5, which is bound to MORF1; and 3) A linear polyHPMA bearing multiple 

copies of MORF2 for hyper-crosslinking of the Fab’-MORF1 conjugates bound to CD20. 

In this study, we sought to clarify the effects of nanoconjugate self-assembly on protein 

distribution in the plasma membrane using super resolution microscopy and pair-

correlation analysis. Our therapeutic system can be administered in two different ways: 1) 

Consecutive, where Fab’-MORF1 is added to the cells or injected into mice first then, an 

hour later (or other optimized time), the P-MORF2 is added; or 2) Premixed, where the 

conjugates are mixed together prior to addition to cells or injection into mice. 

Rituximab is known to be dependent on lipid raft integrity to activate calcium 

entry into the cell and caspase activation [19]. Lipid rafts play a vital role in cell 

signaling, especially in apoptosis [20]. It is still unknown whether the nanoconjugates 

require lipid raft platforms to induce apoptosis and how the conjugates alter the lateral 

organizing of proteins in the membrane. We used methyl-β-cyclodextrin (MβCD) to 

extract cholesterol, a component of lipid rafts, from the cell membrane and Latrunculin B 

(LatB) to disassemble cortical actin [21, 22]. 
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Figure 2.1. Nanoconjugates hybridize on the cell surface stimulating lipid raft clustering 
thereby inducing apoptosis. 1) The anti-CD20 conjugate Fab’-MORF1 binds to CD20 
and decorates the surface with MORF1 oligonucleotide; 2) The second nanoconjugate P-
MORF2 hybridizes with MORF1; 3) Lipid rafts cluster in proximity to crosslinked CD20 
proteins, thereby inducing apoptosis. 
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2.2 Materials and Methods 

2.2.1 Synthesis and characterization of conjugates 

The conjugates Fab’-MORF1 (MORF1 = 5'-

GAGTAAGCCAAGGAGAATCAATATA-3') and P-MORF2 (MORF2 =5'-

TATATTGATTCTCCTTGGCTTACTC-3') were prepared as previously described [5]. 

The 25-mer morpholino oligomers were purchased from Gene Tools, LLC (Philomath, 

OR).  

The Fab’ fragment was derived from the mAb 1F5 that was produced in a 

CellMax bioreactor (Spectrum Laboratories, Rancho Dominguez, CA). After antibody 

purification the whole antibody was digested into F(ab')2 with pepsin (10% w/w) at pH 4. 

Before conjugation of Fab' to MORF1, the F(ab')2 was reduced using 10 mM tris(2-

carboxyethyl)-phosphine (Thermo Scientific, Waltham, MA). The MORF1 was 

conjugated to the Fab' via a thioether linkage by modifying the 3'-amine with the 

heterobifunctional linker succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-

carboxylate (SMCC) (Highfine Biotech, Suzhou, China). Rituximab was generously 

provided by Dr. Paul Shami of the Huntsman Cancer Institute. 

Fluorescently labeled Fab’-MORF1 was prepared by reacting NHS functionalized 

Alexa Fluor 647 or Rhodamine Red-X with Nε-amino groups of lysine on the protein. 

Unreacted dye was removed using a PD-10 desaltling column (GE Healthcare Life 

Sciences, Pittsburgh, PA). An average number of 3 dye molecules (AF 647) per Fab’-

MORF1 was determined using the ratio of the UV absorbance spectroscopy at 651 and 

280. 

The conjugate P-MORF2 was prepared as previously described [5]. The polymer 
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backbone was synthesized using RAFT polymerization and the co-monomers HPMA and 

MA-GG-TT. The initiator 2,2'-azobis[2-(2-imidazolin-2-yl)-propane]dihydrochloride 

(VA-044;Wako Chemicals, Richmond, VA) and chain transfer agent 4-cyanopentanoic 

acid dithiobenzoate (CPADB) were used for RAFT polymerization. Fluorescently 

labelled P-MORF2 was prepared by copolymerizing a polymerizable FITC derivative (N-

methacryloylaminopropyl fluorescein thiourea) with HPMA as previously described [5]. 

An average of 9 MORF2 oligos were conjugated to the HPMA polymer backbone as 

determined by UV absorption spectroscopy. 

Conjugation of MORF1 to Fab’ was confirmed using SDS-PAGE and fast protein 

liquid chromatography (FPLC). P-MORF2 was characterized using UV 

spectrophotometry to determine MORF2 content and dynamic light scattering to 

investigate the hydrodynamic radius. Hybridization between Fab’-MORF1 and P-

MORF2 was confirmed using circular dichroism and dynamic light scattering. 

 

2.2.2 Flow cytometry and apoptosis 

Human Burkitt’s B-cell non-Hodgkin’s lymphoma Raji cell line (ATCC, 

Bethesda, MD) was cultured at 37°C with 5% CO2 atmosphere in RPMI-1640 medium 

(Sigma, St. Louis, MO) supplemented with 10% FBS (Hyclone, Logan, UT). All in vitro 

tests were carried out in 0.5 ml aliquots with a cell concentration of 5x105 cells/ml. 

The pretreatment of cells with 10 mM methyl-β-cyclodextrin (MβCD) (Sigma, St. 

Louis, MO)  for 15 min was done using RPMI 1640 media without added FBS. After 

treatment the cells were washed to remove MβCD prior to adding the nanoconjugates. 

Pretreatment using 10 µM Latrunculin B (LatB) (Enzo Life Sciences, Farmingdale, NY) 
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was conducted at room temperature for 45 min. After incubation the cells were washed to 

remove LatB before adding the conjugates. 

The cells were treated for 1 h with whole 1F5 mAb, Rituximab, or Fab’-MORF1 

after which all the groups were washed and resuspended in culture media. A secondary 

crosslinking antibody was added to the mAb+2°Ab group and P-MORF2 was added to 

the Fab’-MORF1 consecutive group after washing and incubated with the cells for 5 

hours. Apoptotic cells were counted using an annexin V labeling assay and flow 

cytometry. 

Raji cells were incubated with 1F5 for 1 h then washed. Goat anti-mouse Ab 

(GAM) was then added and incubated for the remaining 5 h. Rituximab was incubated 

with the cells for 1 h then the cells were washed to remove unbound mAb and re-

suspended in culture media to incubate at 37 °C for the remaining 5 h. Fab’-MORF1 was 

incubated with the cells for 1 hour, the cells were washed, then P-MORF2 was added and 

incubated with the cells for 5 h. After a total of 6 h incubation at 37 °C, the cells were 

prepared for staining with annexin V according to company instructions. Immediately 

after the staining procedure the cells were analyzed on a DxP Analyzer (Cytek, Fremont, 

CA) equipped with 3 Lasers (488, 405, 640) for 8 color detection. The filter 530/30 was 

used to detect the labeled cells. All conditions were repeated independently at least three 

times for statistical purposes. A students t-test was performed using two-tailed ANOVA. 

 

2.2.3 dSTORM  

Raji cells were incubated with Fab’-MORF1-AF647 (1 µM) for 1 h. The cells 

were then washed to remove unbound conjugate then P-MORF2 (1 µM) was added and 
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incubated for 1 h. The cells were then washed with cold PBS to remove unbound 

conjugates and then stained for 20 min at 4 °C using cholera toxin B AF555 conjugate. 

After staining the cells were washed to remove unbound conjugate and then fixed using a 

4% paraformaldehyde PBS solution. The cells were then washed and suspended in DPBS 

prior to imaging. The cells were placed on glass bottom microwell dishes (MatTek, 

Ashland, MA), and the DPBS buffer was exchanged for imaging buffer. The imaging 

buffer consisted of 50 mM cysteamine (Sigma, St. Louis, MO), 10 mM NaCl, catalase 

from bovine liver (1,404 AU/ml), glucose oxidase type seven from Aspergillius niger 

(168 AU/ml) (Sigma, St. Louis, MO), and 1% (w/v) glucose in a 1 M Tris buffer pH 8.0 

(USP, Cleveland, OH). Fresh buffer was prepared before imaging.  

A Zeiss Elyra P.1 microscope in TIRF mode equipped with an oil-immersion 

100x objective and an Andor iXon 897 EMCCD camera were used along with the Zen 

10D software for image acquistion and analysis. For each acquisition 5000 frames were 

collected each frame had an exposure time of 40 ms. The Alexa Fluor 647 dye was 

excited at a wavelength of 642 nm and Alexa Fluor 555 was excited at a wavelength of 

561 nm. The localizations were grouped to prevent overcounting of localizations due to 

photoblinking of the synthetic dyes or repeated activation of the same dye. Drift 

correction was performed by the software by locating fiducials that had been activated for 

at least 75% of the acquired frames. Localization coordinates were then exported in Excel 

files for rendering in Matlab.   
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2.2.4 dSTORM image rendering 

Spatial coordinates of all localization events obtained from the Zen 10D software 

were used to generate localization density maps via custom programs written in the 

Matlab (Mathworks) software environment.  Localization density maps are two-

dimensional histograms indicating the number of localization events within defined 

spatial regions designated as individual pixels.  For each localization coordinate falling 

within the bounds of an individual 25 nm pixel bin, that bin’s value was increased by one 

visitation unit, generating a quantitative density map of all localization events.  These 

localization density maps were then cropped to exclude extracellular regions, and then 

exported as .tif image files for viewing and evaluation in ImageJ (NIH) and for pair-

correlation analysis.  The quantitative nature of the density maps, i.e. pixel values 

correspond to the number of localizations at that coordinate is necessary to extract 

quantitative information about the number of localizations per cluster determined from 

the pair autocorrelation analysis. 

We used ImageJ to perform some simple particle analysis on the dSTORM 

images. The analyze particles tool in ImageJ provided cluster area, particle number, 

cluster shape descriptors, and other metrics. 

 

2.2.5 Pair-correlation analysis 

Localization coordinates were exported from the microscope software and 

rendered using Matlab. The images were rendered at 25 nm per pixel, which is 

approximately the mean of the localization precision of the images. A section of the 

plasma membrane was selected for pair-correlation analysis. The Matlab code published 
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by Veatch et al. was used to generate the pair-correlation function (pacf) for all the 

images [14, 15]. At a radial offset far away (2500 nm) the average pacf was calculated 

and used to normalize all the values so that the function decays to a value of 1.  

In equation 1, 𝑔𝑔(𝑟𝑟) is the theoretical pair auto-correlation function, 𝜌𝜌�𝑅𝑅�⃗ � is the 

density function over all positions of a two dimensional surface, and 𝜌𝜌 is the average of 

the density function (Figure 2.2). In equation 2, 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟) is the measured auto-

correlation function, 𝛿𝛿(𝑟𝑟) is the delta function with magnitude 1/ 𝜌𝜌, 𝑔𝑔(𝑟𝑟 > 0) is the 

correlation function for the distribution of labeled molecules at r > 0, ∗ represents a two 

dimensional convolution, and 𝑔𝑔𝑝𝑝𝑚𝑚𝑝𝑝(𝑟𝑟) is the correlation function of the average PSF. In 

equation 3, 𝜎𝜎 is the standard deviation of the PSF. In equation 5, 𝐴𝐴 is the amplitude and 𝜉𝜉 

indicates the size of the structures in the image. For random distributions of molecules, 

the equations 2 and 4 simplify to equations 6 and 7, respectively.  

 

 

Figure 2.2. Pair-correlation function equations. 
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Quantification of proteins in super-resolution images is hindered by the 

photoblinking of individual fluorophores, which leads to overcounting of molecules. 

Photoblinking of fluorophores are recorded as distinct localization events even though the 

signal originated from a single fluorophore. Overcounting results in the appearance of 

protein clustering during image analysis. Veatch et al. used pair-correlation functions to 

demonstrate how the functions can overcome the problem of overcounting in estimating 

the number of proteins in clusters [15]. In this work, we use the same pair-correlation 

functions described by Veatch et al. to account for photoblinking of synthetic dyes during 

dSTORM. 

 

2.3 Results and Discussion 

The P-MORF2 conjugate was prepared using RAFT copolymerization of HPMA 

with an amine reactive comonomer (MA-GG-TT) (Figure 2.3). The thiazolidine-2-thione 

(TT) groups were incorporated into the HPMA backbone to make P-TT with a Mw of 

136 kDa and a PDI of 1.15. The P-TT polymer was then conjugated to MORF2-NH2. 

The conjugates were characterized as described previously [5]. 

 

2.3.2 Lipid raft role in apoptosis 

The role of cholesterol and actin were investigated by pretreating the cells with 

MβCD and LatB respectively. As a positive control, the 1F5 mAb was used along with a 

secondary goat anti-mouse antibody to hypercrosslink the bound 1F5 (mAb +2°Ab). The 

mAb+2°Ab (p = 0.01), Rituximab (p = 0.00007) and consecutive (p = 0.00002) groups 

significantly induced apoptosis above the untreated control (Figure 2.4A). The  
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Figure 2.3. Synthesis of the nanoconjugates Fab’-MORF1, Fab’-MORF1-RHO/AF647, 
and P-MORF2. (A) Scheme of Fab’-MORF1 synthesis where MORF1-NH2 is reacted 
with succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) then 
reacted with Fab’-SH. (B) RAFT polymerization of the P-TT polymer and conjugation to 
MORF2-NH2. 
 

nanoconjugates (consecutive group) induced significantly greater levels of apoptosis than 

the clinically used antibody Rituximab (Figure 2.4A). In all cases, with the exception of 

the mAb+2°Ab group pretreated with MβCD, apoptosis was significantly inhibited 

(Figure 2.4A and 2.4B). 

All treatments showed significant apoptosis inhibition when pretreated with LatB 

(Figure 2.4B). Therefore, cortical actin stability enhanced the efficacy of Rituximab and  
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Figure 2.4. Apoptosis induction and inhibition of Raji B-cells. The percentage of 
apoptotic cells was determined using an annexin V assay and quantified by flow 
cytometry. Cells were incubated for 6 h at 37 °C. Rituximab, mAb (1F5), and Fab’-
MORF1 (consecutive) were administered at 1 µM concentrations based off molar 
concentration of Fab’. (A) Effects of pretreatment with 10 mM MβCD for 15 min before 
incubation for 6 h. Untreated cells without therapeutic; mAb + 2°Ab, 1F5 mAb (1 µM) 
for 1 h followed by goat anti-mouse secondary Ab (0.5 µM); Rituximab (1 µM) for 1 h 
then washed; Consecutive, Fab’-MORF1 (1 µM) for 1 h followed by P-MORF2 (1 µM). 
The ratio of MORF1:MORF2 was 1:1. (B) Effect of pretreatment with 10 µM latrunculin 
B for 45 min on apoptosis. Significance was determined by comparing groups with 
untreated unless otherwise indicated (*p < 0.05, **p < 0.005, ***p < 0.0001, and n.s. 
indicates no significant difference). 
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the hybrid nanoconjugates. The prominent role that lipid rafts play in the induction of 

apoptosis by the nanoconjugates supports the model proposed by Deans et al., where lipid 

raft clustering allows transactivation of src-family kinases [17]. Nanoconjugate self-

assembly and hypercrosslinking of CD20 appears to indirectly induce apoptosis through a 

similar lipid raft clustering mechanism. The cytoskeleton plays a critical role in plasma 

membrane organization through interactions with transmembrane proteins [23], so 

destabilization of cortical actin by LatB results in randomization of lipid raft components 

in the plasma membrane. The nanoconjugates showed similar decreases in apoptosis to 

Rituximab after actin destabilization and cholesterol depletion indicating that the 

conjugates exhibit mechanistic behavior similar to rituximab in vitro. 

In order to validate the lipid raft-clustering hypothesis, we imaged CD20 and lipid 

raft clusters after nanoconjugate treatment. We used dSTORM to provide super 

resolution images of Raji cellular membranes subjected to various treatments. Lipid rafts 

were tracked using Alexa Fluor 555 conjugated to cholera toxin B. CD20 distribution was 

tracked using fluorescently labeled Fab’-MORF1-AF647. Pretreatments with MβCD and 

LatB were performed to determine if there were structural changes in the membrane 

organization and if they correlated with apoptosis induction.  

 

2.3.3 dSTORM and image analysis 

The TIRF microscope we used for dSTORM imaging provided low background 

high-resolution images of the cell membrane in contact with the glass slide (Figure 2.1). 

The Zen software has many rendering options for the localization data, and below are 

some rendered images for the different treatments (Figure 2.5). The column labeled  
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Figure 2.5. dSTORM renderings of Raji plasma membranes generated using the Zeiss 
Zen 10D software. The CD20 column shows localizations of Fab’-MORF1-AF647 bound 
to CD20. The lipid raft column shows localizations of CTB-AF555. All scale bars are 5 
µm.  
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CD20 shows localizations of the Alexa Fluor 647 dye conjugated to Fab’-MORF1 (Red). 

Lipid rafts were stained with Alexa Fluor 555 conjugated to cholera toxin B (Green). The 

cells were fixed and placed on the coverslip after treating with the conjugates and 

fluorescently stained so that the coverslip did not sterically hinder staining of the 

membrane in contact with the coverslip.   

We found that the results (area, particle number, shape) are very sensitive to the 

resolution at which the image was initially rendered in the software or using our own 

code (Figure 2.6). Also, the algorithm used to threshold the image produced varying 

  

 

Figure 2.6. ImageJ analysis of dSTORM images using the analyze particle plugin. A) 
dSTORM images of lipid rafts; B) dSTORM images were subjected to a thresholding 
algorithim in ImageJ then the clusters were analyzed; C) Area and circularity values for 
images of CD20 clusters; D) Area and circularity values for lipid rafts. Cicularity = 
4πArea/Perimeter2. The scale bars are 1 µm. The data are presented as mean ± standard 
error (n = 3-5). 
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cluster sizes. Therefore a pair-correlation analysis was more appropriate to analyze 

cluster size as it was not as sensitive to the initial image resolution. 

Single molecules are identified in super resolution imaging by only activating a 

sparse subset of fluorophores at a given time. The image is then fit to a point spread 

function (PSF) to determine the centroid position [24]. The resolution is only limited by 

the precision of each localization, which is calculated from the number of photons 

collected, pixel size, background fluorescence, and standard deviation of the PSF [25]. 

Many sparse subsets are activated and localized until a complete image is generated. This 

technique allows the visualization and quantification of biological structures with a size 

below the diffraction limit (~250 nm). 

dSTORM imaging provides super-resolution images with localization precision as 

low as 10 nm for individual molecules. During image acquisition thousands of frames are 

collected and the individual fluorescent spots are fit to a Gaussian function from which 

the centroid of the fluorescent spot can be determined. The localization precision is 

shown for a select number of images in Figure 2.7. The mean localization precision for 

all images was 24 nm. 

 

 
Figure 2.7. Graph of localization precision distribution. a) Precision values of lipid raft 
dye from a cell treated with nanoconjugates; b) Precision values of Fab’-MORF1-AF647 
localizations from a cell treated with nanoconjugates; c) Precision values of lipid raft dye 
from a cell treated with Fab’-MORF1 only; d) Precision values of Fab’-MORF1-AF647 
localizations from a cell treated with Fab’-MORF1 only. 
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The localization density was calculated for each image using ImageJ. Average 

densities were calculated for patches of plasma membrane of independent cells. The 

number of localizations per µm2 is shown in Figure 2.8. The legend shows lipid rafts and 

CD20 which are the CTB-Alexa Fluor 555 and Fab’-MORF1-Alexa Fluor 647 conjugate 

respectively, and do not reflect actual densities of lipid rafts and CD20. Counting 

molecules in dSTORM images is not as reliable as counting molecules in PALM images 

where the fluorescent proteins can be reliably photobleached to prevent reactivation and 

overcounting. The measured density of Fab’-MORF1 bound to the plasma membrane was 

1/5 the approximate CD20 density on the cell surface. 

 

 

Figure 2.8. Localization density of fluorophores from the dSTORM images. Lipid rafts 
represents the images of CTB-AF555 conjugate, which labels lipid rafts. CD20 represents 
the images acquired from localizations of the Fab’-MORF1-AF647 bound to CD20. The 
data are presented as mean ± standard error (n = 3-5). 
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Cell membranes treated with the nanoconjugates (Figure 2.9A) showed increased 

clustering of CD20 over cells treated with Fab’-MORF1 only (Figure 2.9C). Cells 

pretreated with LatB (Figure 2.9E) and MβCD (Figure 2.9G) and then with the Fab’-

MORF1-AF647 (1 h) followed by P-MORF2 (1 h) showed similar clustering as cells 

treated with Fab’-MORF1 only. 

To determine the average cluster size and number of localizations per cluster we 

used pair-correlation analysis. Sections of the 2D images were selected for pair-

correlation analysis in Matlab (Figure 2.9). Measured pair-correlation functions (g(r)peaks) 

were fit to the theoretical function 

 

where r is the radial offset in nm, σ is the standard deviation of the localization precision 

(Figure 2.7), ρ is the average density of localizations in the image, and ξ is the 

characteristic decay, which is approximately the average cluster radius. Values of ξ were 

determined for images of the lipid rafts and CD20 by fitting the pair-correlation function 

to Equation 1 (Figure 2.9). 

The shape of the pair-correlation curves of the lipid rafts revealed differences in 

cluster size. Figures 2.10A and 2.10B contain pair-correlation functions that were 

normalized in order to compare the shape of the curves. Consecutive treated cells showed 

slower decaying pair-correlation functions as compared to nontreated cells and cells that 

were pretreated with MβCD and LatB (Figure 2.10A). However, the difference between 

consecutive-treated cells and other treatments is less pronounced in the pair-correlation  
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Figure 2.9. dSTORM images and pair-correlation analysis. (A) CD20 distribution on the 
cell surface after 2 h consecutive treatment (Fab’-MORF1 and P-MORF2); (B, D, F, H) 
Pair-correlation function from images a, c, e, and g respectively fit to Equation 1; (D) 
Treatment with Fab’-MORF1; (E) LatB pretreatment then consecutive treatment; (G) 
MβCD pretreatment then consecutive treatment. 
 
 
 
functions of CD20 (Figure 2.10B). Lipid raft cluster size was significantly larger than 

nontreated (p = 0.02), Fab’-MORF1 (p = 0.01), and MβCD (p = 0.01) and LatB (p = 

0.03) pretreated cells (Figure 2.10C).  

The average density of Fab’-MORF1 bound to the surface in all the various 

treatments was ρ = 170 molecules/µm2, assuming a cell diameter of 10 µm that gives 

approximately 50,000 molecules of Fab’-MORF1 bound to the surface of each B cell.  
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Figure 2.10. Pair-correlation and cluster analysis. (A) Normalized pair-correlation 
functions of lipid raft distribution for different conditions, multiple images were acquired 
for each condition; (B) Normalized pair-correlation functions of CD20 distribution for 
different conditions; (C) Cluster radius values obtained from fitting data to equation 1; 
(D) Estimated number of localizations per cluster for the different conditions. 
 
 
 
This number is a lower estimate as it is possible that only a fraction of the bound dye was 

imaged. However, the calculated number of bound Fab’-MORF1 is reasonable given that 

CD20 resides as dimers and tetramers in the plasma membrane so due to steric hindrance 

not all CD20 will bind to Fab’-MORF1. The average number of CD20 on a B cell is 

250,000 per cell [26]. 

The CD20 cluster sizes were not significantly different (Figure 2.10C). The 

number of localizations per cluster can be approximated using the equation Ncluster = 

2Aπξ2ρ. The mean number of molecules in the lipid raft clusters of nanoconjugate-
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treated cells was approximately 5 times greater than the controls, but due to high 

variability and small sample size the difference cannot be confirmed as significant. Table 

2.1 includes the average density, precision, precision variance (σ2), cluster radius, and 

molecules per cluster. Standard deviation is reported for each value. 

 

2.4 Conclusions 

There was not a significant increase in CD20 cluster size or number of 

localizations per cluster in those cells treated with the nanoconjugates. This result was 

unexpected in that we expected to see differences in CD20 cluster sizes between the 

Fab’-MORF1 and consecutive treated groups because the P-MORF2 hypercrosslinks the 

proteins on the cell membrane. The CD20 cluster size of the consecutive group is double 

the cluster size of the cells treated with Fab’-MORF1 only; however it was not 

statistically significant. Previously, Chan et al. reported that CD20 migrates to lipid rafts 

after crosslinking [18]. We showed that using small molecules to prevent aggregation of 

lipid raft-associated molecules reduces apoptosis induction. Cholesterol serves as a 

spacer between sphingolipids and hydrocarbon chains, acting as glue for the lipid raft 

cluster. Without cholesterol, large lipid clusters did not form. Therefore, kinases 

associated with lipid rafts may be prevented from interaction with CD20 proteins. The 

use of MβCD and LatB decreased CD20 cluster size from a radius of 200 nm to 100 nm 

and 150 nm, respectively (Figure 2.10C). 

We found that lipid raft cluster size correlated with apoptotic efficiency; however, 

CD20 cluster radii were not significantly greater than negative controls. Lipid raft 

clusters had radii ~200 nm in cells treated with the nanoconjugates, but when treated with
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Table 2.1. dSTORM image data and calculated values from pair-correlation analysis. 

Treatment Density [mol/µm2] Precision [nm] σ2 [nm] Cluster Radius 
[nm] 

Number/Cluster 

 Lipid 
raft 

CD20 Lipid 
raft 

CD20 Lipid 
raft 

CD20 Lipid 
raft 

CD20 Lipid raft CD20 

Nontreated 14.4 ± 2 N/A 24 ± 1 N/A 158 ± 15 N/A 97 ± 16 N/A 14 ± 4 N/A 

Fab'-MORF1 147 ± 18 125 ± 23 23 ± 2 22 ± 2 129 ± 28 121 ± 16 72 ± 7 87 ± 13 22 ± 6 18 ± 7 

MbCD + Mix 123 ± 68 128 ± 67 24 ± 0.2 24 ± 1.6 131 ± 6 189 ± 68 77 ± 11 83 ± 7 16 ± 6 15 ± 5 

LatB + Mix 224 ± 35 166 ± 45 22 ± 1 19 ± 1 95 ± 4 134 ± 12 110 ± 18 138 ± 22 26 ± 11 22 ± 6 

Mix 241 ± 40 218 ± 41 30 ± 1 27 ± 1 172 ± 11 165 ± 15 242 ± 50 235 ± 59 167 ± 100 67 ± 23 
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 lipid raft disrupting molecules the cluster radii decreased to below 100 nm. Due to the 

resolution limit of ~25 nm, any nanoscale fluctuations of lipid rafts around or below this 

size limit went undetected. Higher resolution likely would uncover differences in CD20 

cluster radii between treatment groups and also distinguish Fab’-MORF1 treated cells 

from other control groups. 
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CHAPTER 3 
 
 
 

TRACKING AND QUANTIFYING POLYMER THERAPEUTIC 
 

DISTRIBUTION ON A CELLULAR LEVEL USING 3D 
 

dSTORM 
 
 
 
3.1 Introduction 
 

Nano drug delivery systems often involve complex assemblies of various 

materials including drugs, synthetic polymers [1] and [2], lipids [3], peptides [4], 

carbohydrates [5] or oligonucleotides [6]. The system complexity is required to overcome 

barriers between the point of injection and the target site [7]. Therapeutics must evade 

immunogenic triggers, cross cellular membranes, cross nuclear pore complex, etc. to 

reach their target. Often nano drug delivery systems need to undergo chemical reactions 

or assembly steps to properly cross a barrier or exert their therapeutic effect [8]. To 

properly study the mechanisms of nano drug delivery systems, new tools are needed to 

visualize and quantify their effects on individual cells and track their distribution at a 

cellular level [9]. We used a single-molecule point localization technique called direct 

stochastic optical reconstruction microscopy (dSTORM) to visualize and quantify 

cellular distribution of two conceptually different HPMA copolymer therapeutic systems  
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to demonstrate the tool's general applicability in drug delivery. 

The two N-(2-hydroxypropyl)methacrylamide (HPMA) therapeutic systems we 

imaged differ in the function of the HPMA copolymer and in the cellular target. The 

drug-free macromolecular therapeutic system relies on the biorecognition at the cell 

surface of oligonucleotides or coiled-coil peptides conjugated to a HPMA polymer and an 

anti-CD20 Fab′ fragment to physically crosslink CD20 and induce apoptosis  [6, 10, 11]. 

In the drug-free system, the HPMA copolymer acts as a physical crosslinker between 

hybridized pairs of complementary oligonucleotides or peptides and CD20 on the cell 

surface rather than a carrier of a cytotoxic drug. The biorecognition of the 

oligonucleotides or coiled-coil peptides resulted in crosslinked CD20 on the surface of 

the cell, thereby initiating apoptosis. One of the nanoconjugates is an anti-CD20 Fab′ 

fragment from the monoclonal antibody 1F5 covalently attached to a 25 base pair 

oligonucleotide (Figure 3.1). Multiple copies of the complementary morpholino are 

covalently attached to a HPMA copolymer, forming a hybrid graft copolymer (Figure 

3.1). This conjugate system has shown efficacy in Burkitt's lymphoma mouse models and 

has recently shown promising results in vitro against patient cells of mantle cell 

lymphoma [12] and chronic lymphocytic leukemia (CLL) [13] patient samples. 

Currently, the oligonucleotides (MORF1/MORF2) are used in our lab due to their 

superior binding affinity and apoptosis inducting in vitro and in vivo compared to coiled-

coil peptides (CCE/CCK) [6] and [14]. 

The principal aims of this paper were to quantify nanoconjugate localization and 

to show that dSTORM is versatile in that it can be applied to functionally different 

therapeutic systems. We synthesized drug-free nanoconjugates representing both  

http://www.sciencedirect.com/science/article/pii/S016836591630058X#f0005
http://www.sciencedirect.com/science/article/pii/S016836591630058X#f0005
http://www.sciencedirect.com/science/article/pii/S016836591630058X#f0005
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Figure 3.1. Schematic illustration of the polymer and Fab′ conjugate synthesis. A) RAFT 
polymerization of HPMA and APMA followed by end group modification and finally 
bioconjugation to either MORF2-SH or CCE-SH; B) morpholino structure and base 
sequence for MORF1 and MORF2; C) helical wheel diagram of the coiled-coil peptides 
CCE and CCK; D) 1F5 mAb digestion, reduction and conjugation to MORF1-mal or 
CCK-mal. 
 

biorecognition strategies of hybridization and coiled-coil formation, and we also 

synthesized a conjugate for ovarian cancer with a cleavable diblock copolymer backbone. 

Components of the conjugates were labeled with one of five different fluorophores (Cy5, 

Alexa Fluor 647, Cy3B, Cy3, and FITC) four of which are dSTORM compatible. We 

used 3D dSTORM to track the labeled drug-free nanoconjugates and diblock conjugate in 

human Burkitt's lymphoma cells and human ovarian cancer cells respectively. The 
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localization of the drug-free conjugates was imaged at 2 h and 6 h while the distribution 

of the diblock components in ovarian cancer cells was imaged at 4 h and 24 h. 

The HPMA conjugate designed to treat ovarian cancer is a diblock copolymer 

with a GFLG peptide sequence linking the two blocks, and the model drug (Cy3) was 

tethered to the polymer via an enzyme degradable peptide sequence, GFLG (Figure 

3.2) [15]. The GFLG peptide sequence was introduced into the copolymer backbone so 

that higher molecular weight polymer conjugates (~ 80–100 kDa) could be 

synthesized [16, 17], otherwise only lower molecular weight polymers (~ 40–50 kDa), 

which have lower circulation times and therefore lower accumulation in solid tumors, 

could be used to ensure excretion by the kidneys. For the conjugate to deliver the model 

drug the cell must internalize it, and then the “drug” (Cy3) is cleaved enzymatically from 

the polymer. The polymer functions as a carrier for the cytotoxic drug or agent to prevent 

its release while in circulation to prevent adverse effects from the drug cytotoxicity and to 

increase circulation time of the polymer drug conjugate to enhance accumulation inside 

the tumor. 

 

 
Fig. 3.2. Schematic illustration of synthetic steps to construct the backbone degradable 
conjugate 2P-Cy3–Cy5. 

http://www.sciencedirect.com/science/article/pii/S016836591630058X#f0010
http://www.sciencedirect.com/science/article/pii/S016836591630058X#f0010
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The principal aims of this paper were to quantify nanoconjugate localization and 

to show that dSTORM is versatile in that it can be applied to functionally different 

therapeutic systems. We synthesized drug-free nanoconjugates representing both 

biorecognition strategies of hybridization and coiled-coil formation, and we also 

synthesized a conjugate for ovarian cancer with a cleavable diblock copolymer backbone. 

Components of the conjugates were labeled with one of five different fluorophores (Cy5, 

Alexa Fluor 647, Cy3B, Cy3, and FITC) four of which are dSTORM compatible. We 

used 3D dSTORM to track the labeled drug-free nanoconjugates and diblock conjugate in 

human Burkitt's lymphoma cells and human ovarian cancer cells respectively. The 

localization of the drug-free conjugates was imaged at 2 h and 6 h while the distribution 

of the diblock components in ovarian cancer cells was imaged at 4 h and 24 h. 

 

3.2 Materials and Methods 

3.2.1 Materials 

The solvents dichloromethane (DCM), methanol, diethyl ether, acetone and 

dimethylformamide (DMF) were purchased from Fisher Scientific (Pittsburgh, PA). 

Cysteamine, glucose oxidase type seven from Aspergillusniger, catalase from bovine 

liver, piperidine, trifluoroacetic acid (TFA), triisopropylsilane (TIS), and 

diisopropylethylamine (DIPEA) were purchased from Sigma-Aldrich (St. Louis, MO). 

Amino acids and 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 

3-oxid hexafluorophosphate (HATU) were purchased from AAPPTEC (Louisville, KY). 

The fluorescent probes Cy3-NHS ester, Cy5-amine, and Cy5-NHS ester were purchased 

from Lumiprobe (Hallandale Beach, FL). Alexa Fluor 647 NHS ester was purchased 
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from Life Technologies (Carlsbad, CA). The Cy3B-NHS ester was purchased from GE 

Healthcare Life Sciences (Pittsburgh, PA). The heterobifunctional linker succinimidyl-4-

(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) was purchased from Highfine 

Biotech (Suzhou, China). The initiators 2,2′-azobis[2-(2-imidazolin-2-yl)-

propane]dihydrochloride (VA-044), 2,2-azobis(2,4-dimethyl valeronitrile) (V-65), and 

4,4′-azobis(4-cyanopentanoic acid) (V-501) were purchased from Wako Chemicals 

(Richmond, VA). The monomer N-(3-aminopropyl)methacrylamide hydrochloride 

(APMA) was purchased from Polysciences, Inc. (Warrington, PA). Other monomers and 

chain transfer agents were synthesized as described previously: HPMA [18], 3-(N-

methacryloylglycylglycyl) thiazolidine-2-thione (MA-GG-TT) [19], 2-(N-

methacryloylglycylphenylalanylleucylglycine)-N′-Boc-ethylenediamine (MA-GFLG-

NH-Boc) [20], methacryloylated fluorescein (MA-FITC), and RAFT chain transfer 

agents, 4-cyanopentanoic acid dithiobenzoate (CPADB) [21], and peptide2CTA [17]. 

Tris/HCL, 1 M solution, pH 8.0 ultrapure was purchased from USB Corporation 

(Cleveland, OH). Glass bottom microwell dishes used for dSTORM imaging were 

purchased from MatTek (Ashland, MA). The reducing agent tris(2-

carboxyethyl)phosphine hydrochloride (TCEP) was purchased from Gold Biotechnology 

(St. Louis, MO). Oligonucleotides (MORF1-NH2 and MORF2-SH) were purchased from 

Gene Tools (Philomath, OR). 

 

3.2.2 Coiled-coil peptide synthesis 

The peptides, CCE and CCK, [22] were synthesized using solid-phase peptide 

synthesis with an Fmoc/tBu strategy on 2-chlorotrityl chloride resin. A spacer consisting 
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of tyrosine and two glycines was added to the N terminus, and then the peptide was 

finally modified with either Cys (for conjugation to HPMA) or SMCC. The peptides were 

cleaved from the resin using 95% TFA, 2.5% TIS, and 2.5% H2O (EDT was added for 

the peptide modified with Cys). The beads were removed and the solution condensed 

before precipitating the peptides in cold diethyl ether. Peptide purification was performed 

using reverse-phase high pressure liquid chromatography (RP-HPLC) on a semi-

preparative Zorbax 300SB-C18 column (Agilent, Santa Clara, CA). The peptide purity 

was confirmed using analytical HPLC and MALDI-TOF mass spectrometry (Voyager-

DE STR Biospectrometry Workstation, Perseptive Biosystems, Framingham, MA). The 

amino acid sequences of the peptides are shown in Figure 3.1. 

 

3.2.3 HPMA copolymer conjugates synthesis and characterization 

RAFT polymerization was used to synthesize polyHPMA copolymers as 

described previously [23, 24]. The molar ratios in the polymerization of HPMA, APMA, 

and MA-FITC were 94.5%, 5% and 0.5% respectively. The initiator V-501 was used, and 

the polymerization was carried out at 70 °C in a mixture of water and methanol (~ 3:1 by 

volume). The polymers were precipitated in acetone/ether. The copolymer was analyzed 

on an ÄKTA FPLC system (Amersham Pharmacia Biotech) equipped with miniDAWN 

and OptilabREX detectors with a Superose 6 HR10/30 column. The mobile phase was 

sodium acetate buffer and 30% acetonitrile (v/v) (pH = 6.5). Amine content was analyzed 

using a ninhydrin assay. The amino groups were converted to maleimide groups using 

SMCC, the polymer (P-NH2) and SMCC were dissolved in DMF and allowed to react for 

24 h. The final maleimide content on the polymer was analyzed using a modified 

http://www.sciencedirect.com/science/article/pii/S016836591630058X#f0005
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Ellman's assay. The polymer weight average molecular weight (Mw), number average 

molecular weight (Mn), and polydispersity index (PDI) were determined using the RI 

signal of the elution from the Superose 6 column. The peptide CCE-SH was conjugated 

to P-FITC-mal in 0.1 M PBS, pH 7.2, with 10 mM TCEP for 24 h. Unreacted CCE-SH 

was removed using dialysis. Conjugation of the CCE-SH peptide to the polymer was 

confirmed using RP-HPLC. Peptide content in the purified P-CCE-FITC conjugate was 

determined using UV absorbance of tyrosine. 

Conjugates for dSTORM imaging were prepared similarly as described above. 

Instead of copolymerizing a Cy3B monomer, we conjugated a small amount of Cy3B-

NHS with P-NH2 prior to converting the amino groups to maleimide. The Cy3B-labeled 

P-mal conjugate was then conjugated to MORF2-SH in the presence of 10 mM TCEP in 

PBS, pH 7.2, for 24 h. The MORF2 content was determined using UV absorbance at 

268 nm. 

 

3.2.4 Synthesis of Fab′-MORF2-AF647 and Fab′-CCK-Cy5 

The 1F5 monoclonal antibody was produced using a hybridoma cell line cultured 

in a Fibercell systems bioreactor, and purified on a protein G column [24]. The purified 

antibody was then digested to produce F(ab′)2. The F(ab′)2 was then labeled with Cy5-

NHS by reaction with side-chain lysines. The degree of labeling was determined using 

UV–vis spectroscopy. The F(ab′)2-Cy5 was reduced using the reducing agent TCEP, and 

then conjugated to a maleimide-functionalized CCE to produce the Fab′-CCE-Cy5 

conjugate (Figure 3.1). Maleimide-functionalized MORF1 was synthesized by reacting 

SMCC with the amino group on the 3′ end of MORF1. 

http://www.sciencedirect.com/science/article/pii/S016836591630058X#f0005
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3.2.5 Synthesis and characterization of backbone degradable 2P-Cy3–Cy5 

The synthesis of the diblock copolymer 2P-Cy3–Cy5 is described previously [15]. 

The 2P in the name of the conjugate represents that the conjugate is composed of two 

polymer blocks linked by the enzyme-degradable peptide sequence, GFLG. The 

monomers HPMA, MA-GG-TT, and MA-GFLG-NH-Boc were copolymerized in 

methanol at 40 °C using peptide2CTA as a RAFT agent (Figure 3.2). The active CTA 

ends of the polymer were removed using V-65 (Figure 3.2 and Figure 3.1b) in excess as 

the CTA may be toxic to cells. The polymer was then dissolved in DMSO and Cy5-

NH2 was attached to the polymer backbone by aminolysis of the thiazolidine-2-thione 

(TT) groups. Unreacted dye was removed using a PD10 column. The Boc protecting 

group was then removed and Cy3-NHS ester was attached to the enzyme degradable 

linker. The Cy3 and Cy5 content was determined using UV–vis spectroscopy. 

 

3.2.6 Cell culture and treatment conditions 

Human Burkitt's B cell non-Hodgkin's lymphoma Raji cells (European Collection 

of Cell Cultures, UK and ATCC) and A2780 human ovarian cancer cells (ATCC) were 

cultured in RPMI 1640 with 10% FBS at 37 °C in a humidified atmosphere with 5% 

CO2 (v/v). Media was supplemented with a mixture of antibiotics (100 units/mL 

penicillin, 0.1 mg/mL streptomycin). Cells with a passage number between 5 and 12 were 

used for experiments. 

 

 

 

http://www.sciencedirect.com/science/article/pii/S016836591630058X#f0010
http://www.sciencedirect.com/science/article/pii/S016836591630058X#f0010
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3.2.7 3D dSTORM imaging and image analysis 

For each test, 2.5 × 105 Raji cells were treated with 1 μM Fab′-MORF1-AF647 in 

0.5 mL of culture media. The conjugate was incubated for 1 h, and then the cells were 

washed to remove unbound Fab′-MORF1-AF647. The cells were re-suspended in media, 

and the P-MORF2-Cy3B conjugate was added and incubated for either 1 h or 5 h 

(concentration = 2 μM). After incubation the cells were washed and fixed using 4 wt.% 

paraformaldehyde (PFA) in PBS pH 7.0. 

The A2780 cells were seeded in a 6-well plate at a concentration of 104 cells/mL 

(3 mL/well) for 24 h prior to adding the 2P-Cy3–Cy5. The conjugate 2P-Cy3–Cy5 was 

dissolved in PBS and added to the cells at a concentration of 25 μg/mL. The cells were 

incubated with the conjugate for 4 h or 24 h after which the cells were washed and fixed 

using 4% PFA in PBS. 

The cells were imaged immediately after fixing. Imaging buffer was prepared as 

previously described [25]. Briefly, the buffer was prepared using a 1 M Tris–HCL 

solution (pH 8), and had to following contents: 10 mM NaCl, 10 w/v.% glucose, 50 mM 

2-mercaptoethylamine (MEA), 169 AU glucose oxidase and 1404 AU catalase. Imaging 

was done using a Vutara 200 microscope equipped with a Photometrics EMCCD camera 

(512 × 512 pixel, 16 μm pixel size for super-resolution imaging), a CCD camera 

(1392 × 1040 for wide field imaging) and a 60 × water objective with numerical aperture 

1.2. Two color channels (z-stacks) were detected sequentially at 50 frames/s. A depth of 

100 nm was analyzed in each z step, and 100 frames were collected at each step. Laser 

powers were adjusted to provide sufficient fluorophore switching for localization and to 

minimize photobleaching. Data analysis was performed using the Vutara SRX software 
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(ver. 5.21). Single molecules were identified by their brightness frame by frame after 

removing the background. Identified molecules were then localized in three dimensions 

by fitting the raw data in a customizable region of interest (typically 16 × 16 pixels) 

centered on each particle in each plane with a 3D model function that was obtained from 

recorded bead data sets. Fit results were stored as data lists for further analysis. The 

image resolution capable of experimentally being achieved is 20 nm laterally (x and y) 

and 50 nm axially (in z). Pair-correlation analysis in 2D was conducted to generate the 

pair-correlation functions for the cells treated with drug-free conjugates. The cells that 

were treated with 2P-Cy3-Cy5 were analyzed using 3D pair-correlation analysis. 

 

3.2.8 Confocal microscopy 

Cells were suspended in wells at a concentration of 1.5 × 106 cells/mL. A total of 

290 μL of the cell suspension was placed in wells of a 48-well plate. Fab′-CCK-Cy5 was 

added to a final concentration of 1 μM, and P-(CCE)7-FITC was added to a final peptide 

concentration of 20 μM. An excess of 20 × CCE was added based on preliminary work in 

the lab showing this ratio yielded maximum apoptosis induction [10]. After treatment, 

cells were washed with PBS to remove unbound conjugate and re-suspended in PBS for 

imaging. Confocal images were acquired using a Leica TCS-SP2-AOBS, equipped with 9 

excitation lasers from 405 nm to 633 nm. The 488 and 633 lasers were used to detect 

FITC and Cy5 respectively. Cells were placed on a glass microscopy slide and covered 

with a glass coverslip. 
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3.3 Results and Discussion 

3.3.1 Synthesis and characterization of Fab’-MORF1 and P-MORF2 conjugates 

We synthesized HPMA copolymers by RAFT polymerization with low 

polydispersity (Figure 3.3). The pendant amino groups in the backbone were converted to 

maleimide groups for conjugation to thiol-functional MORF2 or CCE. Previously, 

MORF2 was conjugated to HPMA copolymer by reaction of a primary amino group on 

the 3′ end of MORF2 with a TT moiety on the polymer backbone. However, the TT 

group is easily hydrolyzed and not easily accessible on the polymer, which then required 

TT groups in the backbone (~ 20) to graft three MORF2s to the polymer. Additionally, 

RAFT polymerization of the MA-GG-TT monomer required acidic conditions to prevent  

 

 
Figure 3.3. Characterization of polymer and protein conjugates. A) SEC chromatograph 
of P-NH2 used to construct P-MORF2-Cy3B; B) SEC chromatograph of Fab′-MORF1-
AF647; C) SEC chromatograph of FITC-P-NH2used to construct P-(CCE)7-FITC; D) 
UV spectra for pure P-(MORF2)3-Cy3B; E) UV spectra for pure Fab′-MORF1-AF647; 
F) SEC chromatograph of 2P-NH2; G) UV spectra of F(ab′)2-Cy5; H) circular dichroism 
measurements confirming coiled-coil formation. 

http://www.sciencedirect.com/science/article/pii/S016836591630058X#f0015
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hydrolysis and the PDI of the polymer was 1.16. Instead of using aminolysis as a 

bioconjugation strategy we used a thiol–ene bioconjugation, which resulted in polymers 

with more narrow polydispersity and higher bioconjugation efficiency. The RAFT 

polymerization was conducted in water/methanol (80/20) with HPMA and APMA as 

comonomers and yielded polymers with PDI = 1.04. Thiol-functional MORF2 was 

conjugated to produce a P-MORF2 conjugate with a valence of three per polymer 

backbone. Additionally this synthetic group accommodates facile attachment of NHS 

ester-functional synthetic dyes to amino side groups. Hybridization of MORF1 and 

MORF2 morpholinos was demonstrated by UV–vis and CD measurements [6]. 

 
 
3.3.2 Backbone degradable HPMA copolymer conjugates 

We also synthesized a 2nd generation backbone-degradable polymer conjugate 

bearing a model drug, Cy3, tethered via an enzyme degradable linker. The backbone of 

the polymer was synthesized using Peptide2CTA—a di-functional chain transfer agent 

(Figure 3.2) [17]. Peptide2CTA includes the peptide sequence GFLG flanked by two 

phenylcarbonothioylthio groups for RAFT polymerization. During polymerization two 

copolymer blocks grow to equal molecular weights joined by the lysosomally degradable 

peptide sequence GFLG. This design renders HPMA copolymers with Mw between 50 

and 100 kDa biocompatible, as the backbone can be cleaved and the polymer blocks 

excreted by the kidneys. Degradation of the 2P-Cy3–Cy5 conjugate by papain was 

reported previously [15]. 

The polymer conjugate P-CCE and CCK formed a coiled-coil as evidenced by the 

characteristic minima at 222 nm and 208 nm of the ellipticity signal (Figure 3.3). Peptide, 

http://www.sciencedirect.com/science/article/pii/S016836591630058X#f0010
http://www.sciencedirect.com/science/article/pii/S016836591630058X#f0015
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oligonucleotide and fluorescent label content in each synthesized conjugate are listed in 

Table 3.1. 

 

3.3.3 dSTORM imaging and analysis of CD20 organization  

We showed how dSTORM imaging could be used to evaluate release of a drug 

from a carrier, but dSTORM can also be used to investigate changes in membrane 

organization after exposure to a therapeutic. The Fab′-MORF1-AF647 binds to CD20 on 

the surface of B cells. The CD20 membrane protein is considered noninternalizing [26], 

however some internalization occurs in the Raji cell line. If P-(MORF2)3-Cy3B is added, 

the morpholinos oligomerize and crosslink CD20 in the membrane. 

Previously we showed that lipid raft distribution correlated with apoptosis induction, and 

that raft sizes greater than 100 nm resulted in effective apoptosis induction [25]. Here we 

 

Table 3.1. HPMA polymer conjugate and protein conjugate characteristics. 
Conjugate Mw PDI 

(Mw/Mn
) 

Dye content MORF or peptide 
content 

Fab’-MORF1-
AF647 

~60 kDa N/A ~3/Fab’-MORF1 1/Fab’ 

P-(MORF2)3-Cy3B 180 kDa 1.04 23 nmol/mg 3/macromolecule 

P-(CCE)7-FITC 71 kDa 1.04 ~2/polymer chain 7 /macromolecule 

Fab’-CCK-Cy5 ~55 kDa N/A 0.35/Fab’ 1/Fab’ 

2P-Cy3-Cy5 86 kDa 1.27 Cy3: 112 
nmol/mg 
Cy5: 143 
nmol/mg 

N/A 

 

http://www.sciencedirect.com/science/article/pii/S016836591630058X#t0005
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investigated how the whole cell distribution of CD20 changes with time by imaging the 

cells after 2 h incubation (Figure 3.4A) and 6 h incubation (Figure 3.4B) with the 

conjugates. Little to no internalization of Fab′-MORF1-AF647 was observed at 2 h or 

6 h, however more internalization may be seen at longer incubation times. It is known 

that receptor crosslinking can lead to internalization and localization to lysosomes in 

some cases such as when the anti-Her2 antibody trastuzumab is hyper-crosslinked [27]. 

Iron oxide nanoparticles targeted to CD20 have shown internalization in undifferentiated 

lymphoma B lymphocytes (MC116 cells) [28]. The pair-correlation function at 6 h 

(Figure 3.4C), the histogram of localizations per cluster (Figure 3.4E), and the cluster 

area (Figure 3.4G) showed changes in protein distribution. It is possible that the 

difference would disappear if the whole population of cells were imaged and quantified. 

Previously, we showed that CD20 cluster size did not correlate strongly with apoptosis at 

6 h [25]. 

Interestingly, the total number and size of P-(MORF2)3-Cy3B clusters decreased 

at 6 h compared to the 2 h time point. For example, the number of clusters with ~ 100 

localizations was 15 at 2 h but only 2 at 6 h. An explanation could be that not all MORF2 

on the P-(MORF2)3-Cy3B conjugate bind MORF1 on the surface of the cell, which 

results in some conjugates being tightly bound (3 crosslinks) and some with a single 

crosslink. Overtime, the bound conjugates more easily dissociated, which would account 

for the decrease in number and area of the clusters. Alternatively, the decrease could be 

attributed to cell to cell variation. 

There are two main advantages of dSTORM over diffraction limited optical 

imaging techniques: 1) resolution is increased by an order of magnitude [29]; and 2) 

http://www.sciencedirect.com/science/article/pii/S016836591630058X#f0020
http://www.sciencedirect.com/science/article/pii/S016836591630058X#f0020
http://www.sciencedirect.com/science/article/pii/S016836591630058X#f0020
http://www.sciencedirect.com/science/article/pii/S016836591630058X#f0020
http://www.sciencedirect.com/science/article/pii/S016836591630058X#f0020
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Fig. 3.4. dSTORM images and quantitative analysis of Raji cells treated with Fab′-
MORF1-AF647 and P-(MORF2)3-Cy3B. A) and B) dSTORM image of single Raji cell 
after 2 h and 6 h, respectively (magenta = P-(MORF2)3-Cy3B; teal/green = Fab′-
MORF1-AF647); C) pair-correlation function (2 h); D) pair-correlation function (6 h); E) 
histogram of the number of localizations per cluster of Fab′-MORF1-AF647; F) 
histogram of the number of localizations per cluster of P-(MORF2)3-Cy3B; G) histogram 
of Fab′-MORF1-AF647 cluster areas; H) histogram of P-MORF2-Cy3B cluster areas. In 
graphs E and G there are several clusters above 400 localizations/cluster and several 
above 100 μm3 × 103 that are not shown in the graph.  
 
 

single molecule coordinate information makes it possible to use biophysical mathematical 

tools to determine valuable information [30]. The enhanced image resolution obtained 

using dSTORM as compared to TIRFM is shown in Figure 3.5. dSTORM images 

revealed nanoscale organization on the cell membrane that was previously obscured in 

diffraction limited optical imaging techniques. Furthermore, dSTORM provides 

information on single molecules that were activated and localized during imaging, which 

is not possible in traditional optical imaging techniques (Table 3.2). The data in Table 3.2  
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Figure 3.5. TIRF (left panel) and dSTORM (right panel) image of the surface of a Raji B 
cell marked with Cy5-labeled anti-CD20 monoclonal antibody. 
 

 

 

 

 

Table 3.2. Raw data from 3D dSTORM image 
z-step frame photon-count x y z chi2 

1 47 851.9 5060.8 1813.2 949.5 15.6 
1 47 755.2 1786.0 6968.1 1318.8 10.8 
1 47 701.8 16061.8 16760.8 -411.3 22.7 
1 47 639.7 18578.9 742.6 934.0 21.4 
1 47 706.6 14750.5 1723.6 6.0 19.9 
1 47 1089.0 17423.6 15732.9 157.6 30.5 
1 47 820.2 1593.2 19530.9 1163.1 28.2 
1 47 786.7 2914.0 10766.9 95.3 23.4 
1 47 877.2 15702.6 10681.7 -91.9 18.0 
1 47 979.0 1949.9 580.0 299.9 29.9 
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is from 3D dSTORM so coordinate positions in x, y, and z are tabulated. 

 

3.3.4 Confocal and dSTORM imaging of cell crosslinking 

An advantage of using the Vutara 3D microscope is that it can produce high 

resolution images of interactions between cells. Research groups are using super-

resolution microscopy techniques to study T cell receptor (TCR)–peptide–MHC 

interactions at the immunological synapse [31]. An exciting application of nanomedicine 

is in immunoengineering where drugs, peptides, or proteins are delivered to immune cells 

to activate a particular kind of immune response [32]. In immunoengineering, drug 

delivery systems not only act on individual cells but also rely on other cells to deliver 

cargo or activate a particular kind of immune response. A better understanding gained 

through super-resolution imaging of the localization of nanomedicines in immune cells 

would aid in improving nanocarrier designs. 

The original design of drug-free macromolecular therapeutics included the pair of 

oppositely charged peptides CCE/CCK that form an antiparallel coiled-coil heterodimer 

[10]. Recent studies have shown that the pair of oligonucleotides MORF1 and MORF2 

self-assemble more quickly in vitro, have higher binding affinity, and induce apoptosis to 

higher levels in CD20 + B cells [6]. Early confocal microscopy studies in the lab hinted 

at cell–cell crosslinking so we further studied that possibility using CCE/CCK and 

MORF1/MORF2 using confocal imaging and dSTORM. Confocal imaging of P-(CCE)7-

FITC and Fab′-CCK-Cy5 co-localization revealed large clusters at the interface between 

two cells (Figure 3.6A-C). The Fab′-CCK-Cy5 binds to the surface of CD20 + cells, and 

then the P-(CCE)7-FITC conjugate with multiple copies of CCE form coiled-coils with  
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Fig. 3.6. Confocal microscopy (A–C) (red = Fab′-CCK-Cy5; Green = P-(CCE)7-FITC) 
and dSTORM images (D–E) of crosslinked cells (magenta = P-(MORF2)3-Cy3B; 
Teal/green = Fab′-MORF1-AF647). Panels A, B, and C contain confocal images of Raji 
cells treated with Fab′-CCK-Cy5 and P-(CCE)7-FITC for 6 h (A = Cy5 channel; 
B = FITC channel; C = Overlay); D) dSTORM image of interface between cells where 
the arrow indicates point of contact between cells; E) cropped dSTORM image from D of 
only the interface; F) alternate view of image E.  
 

surface CCK. It is supposed that when the density of CCE is higher than the polymers’ 

ability to accommodate more Fab′-CCK conjugates, CCE can then form coiled-coils with 

CCK bound to other cells. We used dSTORM to investigate the interface between cells 

crosslinked with the self-assembling nanoconjugates Fab′-MORF1-AF647 and P-

(MORF2)3-Cy3B (Figure 3.6 D–F). The contact area between the cells was 

approximately 200 nm where high levels of Fab′-MORF1-AF647 and P-(MORF2)3-

Cy3B were detected. 

http://www.sciencedirect.com/science/article/pii/S016836591630058X#f0025
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We also showed that the interaction between CCK and CCE was specific coiled-

coil formation rather than peptide aggregation at the cell surface (Figure 3.7). The 

original design of drug-free macromolecular therapeutics utilized a pair of oppositely 

charged heterodimers, CCE/CCK. The CCK peptide was conjugated to the polymer while 

the CCE peptide was conjugated to the Fab’ fragment. We synthesized conjugates with 

the opposite orientation where CCE was conjugated to the polymer and CCK was 

conjugated to the Fab’ fragment. We studied colocalization and internalization in vitro 

using confocal microscopy. 

We conducted colocalization studies with a polymer conjugate with grafts of a 

CCE peptide missing a critical amino acid (CCE-L). The Leu deleted from the sequence 

was in position 19 (See helical wheel diagram in Figure 3.1). We then used the control 

conjugate bearing grafts of the peptide missing a Leu. Cells were first treated with Fab’- 

 

 

Figure 3.7. Confocal images of cells treated with premixed Fab-CCK-Cy5 and P-CCE-L-
FITC at 37 ºC. The top and bottom rows were treated for 2 and 6 hours respectively. 
Scale bar represents 5 µm. 
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CCK-Cy5 for 1 h then P-CCE-L-FITC was added. The P-CCE-L-FITC did not colocalize 

on the surface of Raji B cells (Figure 3.7). 

 

3.3.5 dSTORM imaging and analysis of A2780 cells treated with 2P-Cy3–Cy5 

High resolution images were acquired of A2780 ovarian cancer cells treated with 

2P-Cy3–Cy5 for 4 h (Figure 3.8A) and 24 h (Figure 3.8B). Significant colocalization of 

Cy3 and Cy5 is observed at the 4 h time point giving a Pearson correlation coefficient of 

0.58 and Manders' overlap coefficient (MOC) of 0.59. At 24 h, the Pearson correlation 

coefficient and MOC decreased to 0.005 and 0.02, respectively. The pair-correlation 

functions for Cy3 and Cy5 show similar shape and characteristic decay lengths, which 

indicated that cluster sizes are similar (Figure 3.8C). A histogram of cluster volumes for 

Cy3 (model drug) and Cy5 (polymer label) at 4 h had similar cluster distribution (Figure 

3.8G). At 24 h, the pair-correlation function for Cy3 approached a random distribution of 

molecules in the image whereas the Cy5 pair-correlation function showed the presence of 

clusters. Figures 3.8E and 3.8F show estimates of the number of molecules per cluster at 

4 h and 24 h respectively. At 24 h there was only a single cluster of Cy3 molecules with 

greater than 70 localizations per cluster, but at 4 h there were nearly 20 clusters of Cy3 

molecules with greater than 70 localizations. The relative cluster volumes between Cy3 

and Cy5 changed after 24 h incubation. As expected, the size and number of Cy3 clusters 

decreased relative to Cy5 clusters. In the lysosomes the enzyme cathepsin B cleaves the 

GFLG sequence linking Cy3 to the polymer allowing the model drug to be released from 

the polymer and to freely diffuse through the lysosomal membrane and into the 

cytoplasm. The Cy5 appeared to remain localized in clusters inside the cell as expected  

http://www.sciencedirect.com/science/article/pii/S016836591630058X#f0030
http://www.sciencedirect.com/science/article/pii/S016836591630058X#f0030
http://www.sciencedirect.com/science/article/pii/S016836591630058X#f0030
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Figure 3.8. dSTORM images and quantitative analysis of A2780 cells treated with 2P-
Cy3–Cy5. A) and B) dSTORM images of single A2780 cells after 4 h and 24 h, 
respectively (blue = Cy3 (model drug), red = Cy5 (polymer)); C) pair-correlation 
function (4 h); D) pair-correlation function (24 h); E) histogram of the number of 
localizations per cluster (4 h); F) histogram of the number of localizations per cluster 
(24 h); G) histogram of cluster volumes (4 h); H) histogram of cluster volumes (24 h).  
 
 
 
since the polymer cannot escape from the lysosomal compartment. 

In addition to determining the sizes of clusters and the spatial relationship 

between two different fluorescent probes, localization microscopy provides estimates of 

molecule density by computing the 3D pair-correlation function. At 4 h, the concentration 

of Cy3 inside the cell estimated from density calculations was approximately 

13 molecules/μm3. The intracellular concentration at 24 h was 2.77 molecules/μm3 for 

Cy3 and 2.9 molecules/μm3 for Cy5. Since these measurements were performed for a 

single cell it is possible that the cells measured took up different amounts of polymer; 

however we should be able to compare the ratio of Cy5 and Cy3 in each cell to 
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understand how the cell processes the individual components. The ratio of Cy5/Cy3 in 

the conjugate was 1.3. At 4 h, the ratio of Cy5/Cy3 was 1.5 indicating little release of 

Cy3. At 24 h, the ratio of Cy5/Cy3 was 1.04, which suggests that the model drug Cy3 

remained preferentially inside the cell while the polymer bound to Cy5 was trafficked out 

of the cell. 

 

3.4 Conclusions 

HPMA is a versatile monomer that can be polymerized into biocompatible 

polymers for crosslinking proteins on the cell surface or for conjugation of cytotoxic 

drugs to decrease systemic adverse effects and trigger release in a specific organelle. The 

P-MORF2 conjugate was prepared effectively by grafting the oligonucleotides to the 

polymer via thiol–ene coupling rather than aminolysis of TT groups. The thiol–ene 

coupling strategy allowed for mild polymerization conditions, produced polymers with 

lower polydispersity, and achieved better bioconjugation efficiency. 

Super resolution localization microscopy is a powerful new tool to quantitatively 

evaluate the localization and mechanism of nano drug delivery systems. dSTORM 

provided images revealing nanoscale organization of proteins and therapeutics bound to 

the surface of B cells. The increase in nanocluster size of Fab′-MORF1-AF647 and P-

MORF2-Cy3B bound to the surface of the cell supports the designed functional intent of 

drug-free macromolecular therapeutics to crosslink cells in the membrane. However, in 

previous studies we have shown that apoptosis induction relied predominantly on lipid 

raft cluster formation rather than on nanoclusters of Fab′-MORF1-AF647 bound to CD20 

[25]. dSTORM imaging and analysis of drug-free macromolecular therapeutics showed 
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that protein distribution in the membrane changed over the course of incubation, and the 

distribution of the therapeutic components changed with time as well. The quantitative 

information inherent in dSTORM images provided useful information for understanding 

the mechanism of therapeutics, which could potentially aid in the design of improved 

nano drug delivery systems. 

Evidence of cell crosslinking in confocal images of cells treated with Fab′-

CCK/P-CCE and in dSTORM images of cells treated with Fab′-MORF1-AF647/P-

MORF2-Cy3B indicated that cell–cell adhesion mediated through biorecognition may be 

a general phenomenon of drug-free macromolecular therapeutics. dSTORM provided 

further insight into the nanoscale organization of the therapeutics at the cell–cell contact 

point. 

The spatial randomization after 24 h incubation with ovarian cancer cells 

indicated that Cy3 was released from the 2nd generation HPMA diblock copolymer, 2P-

Cy3–Cy5. The Cy5 conjugated to the polymer via a stable non-degradable linker was 

spatially distributed as clusters inside the cell, presumably localized in lysosomes. 

Previous studies showed colocalization of the conjugate in lysosomes [20]. However, at 

24 h the Cy5/Cy3 ratio inside the cell decreased, which could be explained by some Cy5 

polymer being trafficked outside the cell. 
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CHAPTER 4 
 
 
 

BRANCHED AND STAR POLY(N-(2-HYDROXYPROPYL) 
 

METHACRYLAMIDE) NANOCONJUGATES FOR  
 

DRUG-FREE MACROMOLECULAR  
 

THERAPEUTICS 
 
 
 
4.1 Introduction 
 
4.1.1 Drug-free macromolecular therapeutics 
 

Drug-free macromolecular therapeutics is a new class of polymer-based 

nanomedicines that do not carry small molecule cytotoxic drugs [1]. Drug-free 

macromolecular therapeutics uses two conjugates each presenting a complementary 

oligonucleotide (MORF1 and MORF2). An anti-CD20 Fab’-MORF1 binds the surface of 

B cells, and a second conjugate bearing multiple copies of MORF2 conjugated to a 

poly(N-(2-hydroxypropyl) methacrylamide) backbone hybridizes with MORF1 and 

induces CD20 clustering leading to apoptosis [2]. These conjugates induce apoptosis 

directly and do not rely on the immune system as other clinically used monoclonal 

antibodies such as rituximab. A mechanistic study found that lipid raft clustering is 

needed to induce maximal levels of apoptosis [3]. 

 Monoclonal antibodies have proven effective against some types of non-

Hodgkin’s lymphoma, a cancer of B cells predominantly [4]. The approval of rituximab 
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began an age of monoclonal antibody therapies for cancer. Other anti-CD20 mAbs have 

reached the market including the glycoengineered obinutuzumab, which has been 

approved for use against chronic lymphocytic leukemia (CLL) in combination with 

chemotherapy [5]. Rituximab and obinutuzumab have been found to induce cell death via 

different mechanisms [6]. Both antibodies bind different regions of the extracellular loop 

of CD20, but it is thought that obinutuzumab sterically constrains the manner in which 

CD20 can crosslink, thereby initiating different signaling pathways [6, 7].  

We hypothesized that different polymer architectures may be able to constrain 

CD20 clustering similarly to Type II antibodies. Branched and star polymers were chosen 

as architectures to synthesize for use as polymer-MORF2 conjugates. Synthesizing 

complex polymer architectures has been made possible by controlled living radical 

techniques such as reversible addition-fragmentation chain transfer (RAFT) 

polymerization [8]. 

 

4.1.2 Reversible addition-fragmentation chain transfer (RAFT) polymerization 

RAFT polymerization has made it possible to synthesize complex and diverse 

polymer macromolecules. RAFT has provided versatility in designing polymers 

especially for drug-delivery applications and biomaterials. Delivering drug to a target cell 

or recognizing specific biomarkers in vivo requires multifunctional constructs. 

Furthermore, RAFT allows for more precise control of molecular weight and molecular 

weight distribution, which is critical for later clinical translation. RAFT can be used to 

construct polymers of various architectures such as star, branched, multiblock, and graft 

to name a few.  
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The architecture of polymers impacts biological effects in vivo. Polymer 

architecture influences biorecognition of biomolecules attached to the polymer. Peng et 

al. showed that spacer length between the polymer and the biological ligand impacted 

polymer-drug conjugate penetration [9].  

Traditionally, branched polymers were synthesized by adding in certain amounts 

of diacrylates. Adding too much diacrylate resulted in polymer crosslinking leading to 

gelling. RAFT inimers or chain transfer monomers (CTM) have been developed to better 

control polymer branching and avoid gelling of the reaction mixture [10]. Recently, 

Alfurhood et al. synthesized a CTM and copolymerized HPMA to produce branched 

poly(HPMA) [11].  

Star poly(HPMA) polymers have been synthesized using a graft-to-core approach 

[12-14]. Semitelechelic poly(HPMA) was conjugated to a polyamidoamine (PAMAM) 

dendrimer core to produce narrow polydispersity star polymers. In our lab, star-like 

polymer-doxorubicin conjugates were synthesized and compared to linear polymer-

doxorubicin conjugates. In vitro results showed that star-like polymers had lower 

cytotoxicity toward human ovarian carcinoma A2780 cells, which was possibly due to 

different rates of cellular uptake [14]. 

 

4.2 Materials and Methods 

4.2.1 Materials 

All solvents used for chemical synthesis were purchased from Fisher Scientific 

(Pittsburgh, PA). From Sigma-Aldrich (St. Louis, MO), we purchased piperidine, 

trifluoroacetic acid (TFA), and diisopropylethylamine (DIPEA) . The chemical 2,2,2-
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Trifluoroethanol (TFE) was purchased from Alfa Aesar (Ward Hill, MA). Amino acids, 

N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC), and 1-

hydroxybenzotriazole (HOBt) were purchased from AAPPTEC (Louisville, KY) and 1-

[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid 

hexafluorophosphate (HATU) was purchased from P3Biosystems (Louisville, KY). The 

heterobifunctional linker succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-

carboxylate (SMCC) was purchased from Highfine Biotech (Suzhou, China). The 

initiators 2,2-azobis(2,4-dimethyl valeronitrile) (V-65), and 4,4′-azobis(4-cyanopentanoic 

acid) (V-501) were purchased from Wako Chemicals (Richmond, VA). The monomer N-

(3-aminopropyl)methacrylamide hydrochloride (APMA) was purchased from 

Polysciences  (Warrington, PA). The monomer N-(2-hydroxypropyl)methacrylamide 

(HPMA) was synthesized as previously described [15]. The RAFT chain transfer agent  

4-cyanopentanoic acid dithiobenzoate (CPADB) was synthesized as previously 

described [16]. The reducing agent tris(2-carboxyethyl)phosphine hydrochloride (TCEP) 

was purchased from Gold Biotechnology (St. Louis, MO). The 25 base-pair 

oligonucleotides (MORF1-NH2 and MORF2-SH) were purchased from Gene Tools 

(Philomath, OR). 

 

4.2.2 Chain transfer monomer (CTM) synthesis and characterization 

 The chain transfer monomer ((R)-2-cyano-5-((3-methacrylamidopropyl)amino)-5-

oxopentan-2-yl benzodithioate) was synthesized by first dissolving 27.9 mg of CPDB in 

DMF. Equimolar quantities of HOBt (13.5 mg) and EDC (19.17 mg) were added to the 

DMF reaction mixture. Approximately 0.95 equivalents of APMA (17 mg) and DIPEA 
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(17 µL) were finally added to the reaction mixture. The reaction proceeded for 1 h on ice.  

 The CTM was purified by solvent extraction. Ethyl acetate was added to the DMF 

reaction mixture and then washed three times with 0.1 N HCl to remove unreacted 

APMA in the aqueous fraction. The organic fraction was then washed three times with 

saturated H2O/NaCl to remove unreacted CPADB in the aqueous fraction. The solution 

was then washed three times with 5% NaHCO3, then finally three times with H2O. 

Magnesium sulfate (MgSO4) was added to organic solution and the supernatant was 

removed and dried under vacuum. The purity of the CTM was confirmed using reverse-

phase HPLC and the structure was confirmed using  1H NMR (400 MHz) recorded on a 

Mercury-400 spectrometer. 

 

4.2.3 Peptide4CTA synthesis 

 The solid-phase synthesis of peptide4CTA is similar to the previously described 

synthesis of peptide2CTA (Nα,Nε-bis(4-cyano-4-

(phenylcarbonothioylthio)pentanoylglycylphenylalanylleucylglycyl)lysine) [17]. The 

amino acid Fmoc-Lys(Fmoc)-OH was coupled to 2-chlorotrityl chloride resin with a 

target loading of 30%. After coupling, the resin was washed with DCM and a mixture of 

DCM/MeOH/DIPEA (17:2:1). The Fmoc protecting groups were removed using 20% 

piperidine in DMF for 5-10 min. Another Fmoc-Lys(Fmoc)-OH was coupled by first 

dissolving the Fmoc-Lys(Fmoc)-OH in DMF along with HATU. Three molar equivalents 

of DIPEA was added. Each amino acid was allowed to react for 2 h at room temperature. 

Amino acids were added sequentially: Fmoc-Lys(Fmoc)-OH, Fmoc-Lys(Fmoc)-OH, 

Fmoc-NH-PEG2-CH2COOH, Fmoc-Gly-OH, Fmoc-Leu-OH, Fmoc-Phe-OH, Fmoc-Gly-
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OH. Finally, CPADB was coupled to the peptide. The peptide4CTA was cleaved from 

the resin using 10 mL of TFE/DCM (1:3) for 2 h at room temperature.  The TFE/DCM 

solution containing the cleaved peptide4CTA was placed under vacuum to reduce the 

volume, and then the solution was added to cold ether to precipitate peptide4CTA. After 

precipitation, the ether was removed and the peptide4CTA was dried under an N2 stream. 

 The crude peptide4CTA was purified using RP-HPLC with H2O and ACN as 

solvents. The purity of the peptide4CTA was checked using analytical RP-HPLC and 

electrospray ionization mass spectrometry (ESI-MS) using a quadrupole/Time-of-Flight 

hybrid mass spectrometer with electrospray (ESI) ionization and MS/MS capabilities 

(Waters).  

 

4.2.4 Linear, star, and branched polymer synthesis and characterization 

 Linear poly(HPMA-co-APMA) was synthesized using RAFT polymerization as 

previously described [18]. Briefly, HPMA (269 mg), APMA (21 mg), and a stir bar were 

added to a glass vial and connected to a Schlenk line. Molar content of APMA was kept 

constant at 6% for linear, star, and hyperbranched polymers. The monomers were 

dissolved in 600 µL of 18 MΩ H2O that was bubbled with N2 for 20 min prior to adding 

to vial. The initiator, V-501 (0.12 mg) and chain transfer agent, CPDB (0.49 mg) were 

dissolved in methanol that was bubbled with N2 for 20 min. Prior to sealing the vial, V-

501 and CPDB were added to the vial (100 µL of methanol), and the reaction mixture 

was bubbled with N2 for 5 min. The sealed vial was placed in an oil bath at 70 °C for 18 

h. After polymerization, the polymer was precipitated in acetone/ether (50/50). 

Branched poly(HPMA-co-APMA) was prepared as described above but with 
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different chain transfer agent and initiator amounts. Chain transfer monomer (0.93 mg) 

was first dissolved in methanol (93 µL) then added to HPMA (134 mg) and APMA (10.7 

mg) dissolved in the H2O. V-501 (0.22 mg) was dissolved in methanol (50 µL) and then 

added to the reaction vial. The final H2O/methanol ratio was 80/20 by volume. The vial 

was sealed and placed in an oil bath at 70 °C for 24 h, and then the polymer was 

precipitated in acetone/ether. 

 Star poly(HPMA-co-APMA) was synthesized similarly to the linear polymer 

above. The monomers HPMA (134 mg) and APMA (10.7 mg) were added to a glass vial 

and connected to a Schlenk line. The monomers were dissolved in 500 µL of 18 MΩ H2O 

that was bubbled with N2. The initiator, V-501 (0.027 mg) and peptide4CTA (1.02 mg) 

were dissolved in methanol that was bubbled with N2 for 20 min. The final 

H2O/methanol ratio was 50/50 by volume. The vial was sealed and placed in an oil bath 

at 70 °C for 24 h. The resulting polymer was precipitated in acetone/ether (50/50). 

 Dithiobenzoate end groups were removed from all the polymers by reacting 40x 

V-65 with each polymer in methanol at 50 °C for 2 h. After end group modification, the 

characteristic pink hue on the polymer had disappeared. The polymers were precipitated 

in acetone/ether (50/50), and then washed with acetone to remove excess initiator. 

 Amino side chains were converted to maleimide groups as previously described 

[19]. The polymer was dissolved in DMF to a concentration of approximately 10 wt%, 

and SMCC was dissolved separately in 100 µL of DMF. An excess of 3x SMCC to 

amino groups was added. An equimolar amount of DIPEA to SMCC was finally added. 

The reaction proceeded at r.t. for 2 h, after which the polymer was precipitated in ether 

and washed with acetone. Amino and maleimide content (nmol/mg) in each polymer was 
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determined using ninhydrin and modified ellman’s assay, respectively. 

 The molecular weight of the polymers was estimated using an ÄKTA FPLC 

system (Amersham Pharmacia Biotech) and with a Superose 6 HR10/30 column. The 

system was further equipped with miniDAWN and OptilabREX detectors. The weight 

average and number average molecular weights were calculated using a calibration curve 

where the standards were HPMA polymers of known molecular weights. Branching was 

determined by calculating the content of dithiobenzoate groups per polymer using UV 

absorbance at 300 nm and an extinction coefficient of 12,500 M-1cm-1. 

 

4.2.5 Bioconjugation and characterization of P-MORF2 conjugates 

 The oligonucleotide MORF2 can be purchased from GeneTools with a variety of 

functional end groups, one of which is a disulfide on the 3’ end of the oligonucleotide. 

The MORF2-disulfide was incubated in PBS with 10 mM TCEP for 30 min to reduce the 

disulfide bond. MORF2-SH was isolated using ultrafiltration tubes (EMD Millipore) with 

molecular weight cut-off (MWCO) of 4,000 Da. The maleimide-functionalized polymer 

was dissolved in PBS pH 7.2 with 10 mM TCEP before adding MORF2-SH. The ratio of 

maleimide groups to MORF2-SH was 1:1. The reaction proceeded at r.t. for 18 h. After 

conjugation, the P-MORF2 conjugate was purified using ultrafiltration tubes with 

MWCO of 30,000 to remove unreacted MORF2-SH. The content of MORF2 in each 

conjugate was measured using UV absorbance at 265 nm and an extinction coefficient of 

252,000 M-1cm-1. 
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4.2.6 Synthesis and characterization of Fab’-MORF1 conjugate 

 Rituximab was digested to F(ab’)2 using 10 wt% pepsin in citric buffer pH 4.0 for 

90 min. After digestion, the pH was adjusted to pH 7, and F(ab’)2 was isolated using 

ultrafiltration. The F(ab’)2 was reduced to Fab’ using 10 mM TCEP in PBS for 1.5 h at 

37 °C. After reduction, the Fab’ was purified using ultrafiltration. Fab’-SH was then 

reacted with a 3x molar excess of maleimide-functional MORF2 that was prepared as 

described previously [2]. The conjugate purity was confirmed using the HPLC size 

exclusion column Bio SEC-3 4.6 x 150 mm (Agilent, CA). The running buffer was 150 

mM PBS pH 7.0. 

 

4.2.7 Characterization of P-MORF2 and Fab’-MORF1 hybridization 

 Hybridization was confirmed between star conjugate sP-MORF2 and Fab’-

MORF1 using UV spectroscopy. Different ratios of the conjugates were mixed and then 

the absorbance was detected at 260 nm. A minimum absorbance at a ratio of 50/50 

indicates hybridization of MORF1 and MORF2. 

 

4.2.8 Cell culture and in vitro apoptosis assays 

 Human Burkitt’s lymphoma B cells (Raji) were cultured in RPMI 1640 media 

supplemented with 10 % fetal bovine serum and 1% penicillin/streptomycin.  Cells were 

passaged every 2 days. Before treating cells with the conjugates, the cells were counted 

and re-suspended in fresh media at a concentration of 400,000 cells/mL.  

 The concentration of mAb added to the cells was so that Fab’ content was equal 

across all treatments where each whole antibody has 2 Fab’ and the Fab’-MORF1 
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conjugates have a single Fab’. The Fab’-MORF1 and P-MORF2 conjugates were mixed 

at a 1:1 ratio (MORF1:MORF2) 30 min prior to incubation with the cells. The cells were 

incubated with the different conjugates and antibodies for 48 h at 37 °C. 

 

4.2.9 Statistical analysis 

 The t-statistics for apoptosis data were obtained using a two-tail t-test assuming 

unequal variances. Statistical significance was ascribed to tests that returned a p < 0.05. 

 

4.3 Results and Discussion 

4.3.1 Chain transfer monomer synthesis and characterization 

The coupling of APMA with CPADB (Figure 4.1A) was simple in that the 

reaction proceeded for 2 h and pure CTM (Figure 4.1C) was isolated using a series of 

organic extraction steps. A yield of 92% was obtained. The correct structure was 

confirmed using 1H-NMR (Figure 4.1D). The CTM (APMA-CPADB) dissolves readily 

in methanol and mixtures of H2O and methanol, making it a suitable agent for RAFT 

polymerization.  

Alfurhood et al. synthesized a similar CTM, but used butyl 2-cyanopropan-2-yl-

carbonotrithioate as the CTA and coupled it the free hydroxyl on HPMA [11]. They 

found that the number of branches could be determined by taking the total molecular 

weight and dividing by the theoretical molecular weight for a single branch since each 

branch has a chain transfer agent. 
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Figure 4.1. Synthetic scheme and characterization of the chain transfer monomer (CTM). 
A) Synthetic reaction scheme. B) Analytical HPLC profile of the reaction mixture after 2 
h. C) Analytical HPLC profile of the purified CTM. D) 1HNMR spectra for the CTM in 
CDCl3. 
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4.3.2 Peptide4CTA synthesis and characterization 

A Z-type tetra-functional chain transfer agent (peptide4CTA) was synthesized 

using solid-phase synthesis. Peptide4CTA was purified using RP-HPLC and the correct 

mass was confirmed using ESI mass spectrometry (Figure 4.2). The yield of this 

chemical synthesis was low ~10%. 

Mori et al. has synthesized two R-type tetra-functional CTAs: a xanthate-type 

CTA and a dithiocarbamate-type CTA. They synthesized star copolymers with inner 

thermoresponsive cores and thermoresponsive outer segments. The conversions achieved 

were above 70% and the polydispersity was as low as 1.11 [20]. 

 

4.3.3 Branched polymer synthesis and characterization 

 Branched poly(HPMA-co-APMA) was synthesized using RAFT 

polymerization. A theoretical molecular weight of 50 kDa for each branch was the design 

goal. Branching showed similar results as report by Arfurhood et al. in that branching 

could be determined by dividing the molecular weight by the theoretical of the design for 

each branch. In Figure 4.3B, the major peak around 55 min corresponds to unbranched 

polymer and smaller peaks correspond to incorporation of 1 to 3 branches. UV-

spectrometry was used to detect the concentration of dithiobenzoate groups and confirm 

the branch number. 

The branched polymer was fractionated and a branched polymer was isolated with 

a Mw of 118 kDa, so the polymer had on average one branch. A lower ratio of HPMA 

monomer to CTM would result in a higher degree of branching. 
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Figure 4.2. Synthesis scheme and characterization of peptide4CTA. A) Solid phase 
synthesis of the tetra-functional enzyme degradable CTA. B) Analytical HPLC profile of 
pure peptide4CTA. C) ESI mass spectra confirming the Mw of 3526 Da. 
 

 

 

Figure 4.3. Polymerization scheme of branched poly(HPMA-co-APMA) and SEC profile. 
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4.3.4 Star polymer synthesis and characterization 
 
 Copolymerization of HPMA and APMA using peptide4CTA resulted in 4-arm 

star polymers that were degradable to lower molecular weights (Figure 4.4). However, 

polymerization yield was relatively low at ~30% compared with routine polymerizations 

of HPMA in the lab. Figure 4.4B shows the profile of a star polymer after incubation with 

papain for 1 h at 37 °C. The profile shows the original polymer eluting at ~35 min and 

the degraded polymer eluting ~50 min.  

 

4.3.5 P-MORF2 synthesis 

 Amine functional polymers were converted into maleimide functional polymers 

by reaction with SMCC in DMF. The polymers were precipitated in ether after 2 h and 

dried under N2 stream. Equimolar quantities of MORF2-SH and maleimide were 

incubated together in PBS pH 7.0 for 18 h. The purified P-MORF2 conjugates showed 

broader molecular weight distributions after reaction with SMCC and MORF2 compared 

to the P-NH2 profiles (Figure 4.5).   

The amine, maleimide, and MORF2 content were calculated for each conjugate. 

The maleimide content for each polymer was within 15% of each other, and the MORF2 

content in each polymer 5/polymer for LP-MORF2 and bP-MORF2 and 5/polymer for 

the sP-MORF2 (Table 4.1). Achieving high valence is not the goal of the P-MORF2 

conjugates; the goal was to produce conjugates of similar MORF2 valence and molecular 

weight so as to test the influence of polymer architecture on treatment efficacy in vitro. 

 



102 
 

 

 
 
Figure 4.4. Polymerization scheme of 4-arm star poly(HPMA-co-APMA) , SEC profile 
for intact polymer and degraded polymer (B). 
 

 

 

 

 
 

Figure 4.5. Bioconjugation of MORF2-SH to linear, branched, and star polymers. 
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Table 4.1. Physical characteristics of the polymers and polymer-MORF2 conjugates. 
Polymer Mw (P-

NH2) 
PDI (P-
NH2) 

Amine 
content 
(nmol/mg) 

Maleimide 
content 
(nmol/mg) 

MORF2 
content 
(#/polymer) 

Linear  170 kDa 1.03 392 248 5 

Branched* 118 kDa 1.08 313 225 5 

Star 170 kDa 1.1 424 259 5 

*The values for the branched polymer are for the fractionated polymer. 

  

4.3.6 Rituximab Fab’-MORF1 synthesis and characterization 

In the first reports of drug-free macromolecular therapeutics, the Fab’ of the 1F5 

mAb was used for the anti-CD20 conjugate. For the first time, Fab’ from rituximab is 

used to synthesize drug-free conjugates. Rituximab Fab’ was isolated using the same 

general strategy (Figure 4.6A). SEC profiles showed pure Fab’-MORF1 was synthesized 

(Figure 4.6B).  

Hybridization was tested between Fab’-MORF1 and sP-MORF2 in PBS pH 7.4 

(Figure 4.6A). At equimolar concentrations of MORF1 and MORF2, UV absorbance at 

260 nm reached a minimum indicating hybridization between the star polymer conjugate 

and Fab’-MORF1. However, at 75% MORF2 and 25% MORF1, the absorbance value is 

near the minimum, which may indicate that there may be some un-hybridized MORF2 in 

the 50:50 mixture. Melting curves for this oligonucleotide pair were previously reported 

[2]. 
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Figure 4.6. Synthesis of Fab’-MORF1 from whole rituximab mAb. B) SEC profiles for 
rituximab and Fab’-MORF1. C) Hypochromic effect after mixing different ratios of Fab’-
MORF1 with sP-MORF2. 
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4.3.7 Apoptosis in Raji B cells 

 The drug-free conjugates were compared to Type I (rituximab and 1F5) and Type 

II (obinutuzumab) mAbs in treating Raji B cells for 48 h. Linear, branched, and star P-

MORF2 conjugates were premixed with an equimolar amount of Fab’-MORF1 30 min 

prior to adding to the cells. Obinutuzumab induced cell death in 55% of B cells as 

measured by annexin V (Figure 4.7A) and was higher than the premixed sP-MORF2 + 

Fab’-MORF1. Type I antibodies induced modest levels of apoptosis directly (19% for 

1F5 and 25% for rituximab) without secondary crosslinking Abs (goat anti-mouse mAb) 

(Figure 4.7A). All three conjugate architectures were able to induce higher apoptosis 

compared to rituximab. Cells were also incubated with each conjugate individually and 

detected apoptosis levels were not significantly higher than the negative control (Figure 

4.7A). The individual components by themselves are not toxic to cells at these 

concentrations, but the mixture of P-MORF2 and Fab’-MORF1 results in cell toxicity. 

Caspase analysis of apoptosis showed similar trends to annexin V apoptosis 

results (Figure 4.7B). Caspase and annexin V apoptosis assays detect apoptosis in 

different stages to the absolute levels of apoptotic cells do not match; however, the trend 

is the same for both. Obinutuzumab induced cell death in 35% of cells while all three 

drug-free conjugate mixtures only reached 20% apoptotic. 

A consecutive treatment of the cells was also tested where the cells were first 

incubated with Fab’-MORF1, then 1 h later washed, resuspended in media, and P-

MORF2 added in a 1:1 mole ratio of MORF1:MORF2 (Figure 4.8). 
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Figure 4.7. Apoptosis induction of Raji B cells using Obinutumuzab, Rituximab, 1F5, 
premixture of LP-MORF2 and Fab’-MORF1, premixture of bP-MORF2 and Fab’-
MORF1, and premixture of sP-MORF2 and Fab’-MORF1. A) Annexin V+PI staining 
assay; B) Caspase 3 assay. Cells were incubated for 48 h with each treatment. Fab’ 
concentration was 1 µM and whole antibody concentration was 0.5 µM. 
 

 

 

Figure 4.8. Apoptosis induction of Raji B cells using consecutive treatment using Fab’-
MORF1 and LP-MORF2, and consecutive treatment using Fab’-MORF1 and sP-
MORF2.  
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4.4 Conclusions 

Drug-free macromolecular therapeutics directly induced apoptosis in Raji B cells 

and significantly greater than rituximab. The individual components were non-toxic. A 

branched P-MORF2 conjugate was synthesized using a chain transfer monomer to 

control polymer branching in RAFT polymerization. The chain transfer monomer was 

simple to synthesize and purify.  

A degradable star polymer was synthesized from a tetra-functional chain transfer 

agent peptide4CTA. Upon incubation, the polymer arms were cleaved. Peptide4CTA 

may also be used as a chain transfer agent to synthesize high molecular weight polymer 

drug conjugates. Molecular weights near 200 kDa are possible so that the degraded 

polymer can be excreted by the kidneys. A star P-MORF2 conjugate was synthesized. 

The star P-MORF2 and Fab’-MORF1 showed hybridization at different ratios. 

No statistical difference was found between the conjugate architectures in their 

ability to induce apoptosis in Raji cells in vitro. The effect of conjugate architecture may 

be more pronounced in vivo as there is evidence that star polymers circulate longer than 

linear polymers. Future experiments will test in vivo efficacy of star and branched P- 

MORF2. 
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CHAPTER 5 
 
 
 

SUMMARY AND FUTURE WORK 
 
 
 
5.1 Introduction 

5.1.1 Summary 

The overall goal of this research was to better understand the mechanism of drug-

free macromolecular therapeutics to inform future design modifications. To achieve this 

aim, two general goals were proposed: 1) Design experiments and select new imaging 

techniques to interrogate the cell surface; 2) Design new polymer architectures using 

RAFT polymerization. 

dSTORM was used to investigate the effects of drug-free macromolecular 

therapeutics on surface proteins and dSTORM was also used to elucidate the role of lipid 

rafts in apoptosis induction.  

 In Chapter 2, dSTORM and pair-correlation analysis was used to study the B cell 

membrane after exposure to different treatments to better understand the mechanism of 

the conjugates. The different treatments resulted in different membrane distribution of 

CD20 and lipid rafts, which correlated with apoptosis efficacy as measureed by annexin 

V and flow cytometry.  In order to obtain high-resolution images, we used fluorescent 

dyes Alexa Fluor 647 to stain Fab’-MORF1 conjugates and Alexa Fluor 555 to stain 

cholera toxin—a component of lipid rafts. These two dyes produced images with 
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resolutions as high as 25 nm using dSTORM imaging techniques. In dSTORM, synthetic 

dye fluorescence is controlled using thiol-containing compounds in solution and light. 

The small molecules methyl-β-cylcodextrin (MβCD) and latrunculin B (LatB) are known 

to destabilize formation of lipid rafts. The Raji cells were pretreated with these molecules 

and then imaged using dSTORM to see the clusters of CD20 and lipid rafts. MβCD and 

LatB prevented the formation of lipid raft clusters greater than 100 nm even when the 

cells were treated with the nanoconjugates. CD20 cluster size did not significantly vary 

between cells with destabilized lipid rafts and those cells with intact lipid rafts. Finally, 

apoptosis was found to increase in those cells where the lipid raft size was greater than 

200 nm. In cells pretreated with MβCD and LatB, apoptosis was significantly diminished. 

 The focus of Chapter 3 was demonstrating the general applicability of 3D 

dSTORM for evaluating nanomedicines. Drug-free macromolecular therapeutics were 

synthesized with Cy3B attached to P-MORF2 and Alexa Fluor attached to Fab’-MORF1. 

The two components were imaged using a Vutara 3D dSTORM microscope. Another 

degradable polymer-drug conjugate was synthesized such that upon degradation, the two 

attached fluorophores separate spatially. The conjugates were imaged at two time points 

to show how the therapeutic components changed their distribution on the surface of the 

cell and within the cell. Pair-correlation analysis showed that the model drug released 

from the degradable polymer distributed randomly after 24 h whereas at 4 h, the model 

drug remained in clusters near the polymer-bound fluorophore. 

 Previous confocal studies showed colocalization of drug-free conjugates at the 

interface between two cells. The interface of crosslinked cells were imaged using 

dSTORM, and both Fab’-MORF1 and P-MORF2 colocalized at the interface. 
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Additionally, an alternative bioconjugation scheme was presented in Chapter 3 for 

attaching MORF2 to poly(HPMA).  

 It was found that Type II antibodies induce an alternative cell-signaling pathway 

compared to Type I antibodies. The difference may be due to how the mAbs crosslink 

CD20 in the cell membrane [1]. In light of the differences between Type II and Type I 

mAbs and the results presented in Chapter 2, the hypothesis was developed that polymer 

architecture could influence how CD20 crosslinks, and therefore could shift the 

mechanism from Type I to Type II. Chapter 4 presented the synthesis of two RAFT chain 

transfer agents for the synthesis of hyperbranched and star poly(HPMA-co-APMA). It 

was found that the conjugates induced apoptosis in 50% more cells than rituximab alone; 

however, Type II antibody obinutuzumab induced significantly apoptosis in 50% of cells 

as measured by annexin V assay compared to only 30% apoptosis in cells treated with 

drug-free conjugates. The architecture did not significantly influence apoptosis induction. 

The star P-MORF2 conjugate induced apoptosis in 5% more cells than the linear and 

hyperbranched polymers, but it was not statistically significant. 

 

5.1.2 Significance and impact 

 This dissertation represents the first attempts in using dSTORM in evaluating 

nanomedicines. Not only can dSTORM provide unprecedented optical resolution but also 

it localizes individual molecules, and that data can be analyzed using spatial descriptive 

statistics to quantify cluster size and count single molecules. Super-resolution techniques 

will certainly reach widespread use and continue to reveal intricate cellular structures and 

interactions between engineering materials and cellular components. 
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 Even though different conjugate architectures had little difference, the chain 

transfer monomer and peptide4CTA can be applied in synthesizing polymer-drug 

conjugates where higher polymer molecular weights are needed to take advantage of the 

enhanced permeation and retention effect. For example, peptide4CTA can be used to 

synthesize 200 kDa polymer-drug conjugates that can be enzymatically degraded to 

excretable single linear chains of 50 kDa.  

 

5.2 Future Work 

 Continued research of the current drug-free conjugates (MORF1 and MORF2 

functional) are needed to improve clinical translation and optimization of the structure. 

Some further research of the different architectures is recommended along with the 

exploration of alternative conjugate designs to simplify the chemical synthesis. A more 

simple synthesis would make scale-up less problematic and improve clinical translation 

potential. 

 

5.2.1 In vivo studies of star polymer-MORF2 

 Further in vivo studies of the different architectures would be needed as the 

architecture could impact circulation time in the blood stream. Longer circulating 

conjugates would be more likely to extravasate into the bone marrow and lymph nodes 

where NHL tumors reside in mice models. Etrych et al. discovered that star HPMA 

doxorubicin conjugates with a poly(amidoamine) (PAMAM) dendrimer core 

“prominently higher in vivo anti-tumor activities” than linear HPMA-doxorubicin 

conjugates [2]. The higher efficacy is likely due to the longer circulation time of the star 
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conjugates compared to linear conjugates of the same molecular weight. It is unknown 

why the star conjugates exhibit higher circulation times. 

 An initial study would investigate the circulation times of radiolabeled P-MORF2 

conjugates of varying architecture.  Blood samples can be collected as different time 

points over 48 h. This study needs to be performed as biodistribution of the standard 

linear P-MORF2 conjugate has not yet been studied in vivo. The biodistribution of Fab’-

MORF2 has been studied to determine the optimum time to inject P-MORF2 [3]. 

 

5.2.3 Explore alternatives to oligonucleotides and peptides 

A challenge of synthesizing drug-free macromolecular therapeutics is the 

complexity of the synthesis and the cost of certain components for example MORF2/1 

cost thousands of dollars for a few milligrams. The complexity of the synthesis can be 

especially problematic during scale-up for testing the therapeutic in clinical trials. An 

especially problematic component is the Fab’-MORF1 conjugate. Producing Fab’-

MORF1 requires successful production of 1F5 antibody or other anti-CD20 antibody, and 

then digesting the antibody in carefully controlled conditions so as to avoid denaturation 

or protein aggregation. Finally, disulfide reduction is necessitated to reveal a free thiol 

group for reaction with MORF1-mal. During reduction, other disulfide bonds between 

the heavy and light chains may be reduced leading to destabilization of the construct. 

Bioorthogonal chemistry could be used to replace the use of oligonucleotides. 

Instead of biorecognition between biomolecules driving CD20 crosslinking, chemical 

conjugation could crosslink CD20 on the surface of cells. A significant limitation is the 

rate of reaction between bioorthogonal reagents. An approach could employ copper-free 
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click chemistry where the Huisgen cycloaddition is driven by the ring strain in 

cyclooctyne [4, 5]. Baskin et al. successfully synthesized an Alexa Fluor 555 cyclooctyne 

conjugate that successfully labeled biomolecules in vivo [6]. 

A polymer could be synthesized with pendant azide groups, and a N-

hydroxysuccinimide (NHS) functional cyclooctyne can be attached to pendant lysines on 

Fab’ or F(ab’)2. Upon mixing, the pendant azide groups undergoe a [3 + 2] dipolar 

cycloaddition with cyclooctyne. Other chemistries could be used that are more rapid. 

 A recently discovered biorthogonal reaction that is 1000 times faster than copper-

free click reactions is the tetrazine ligation [7]. Tetrazine ligation is an inverse electron 

demand Diels-Alder reaction. Fast reaction rates were observed between trans-

cyclooctene and tetrazine. Tetrazine or trans-cyclooctene could be incorporated into a 

polymer backbone and the reactive partner attached to an anti-CD20 Fab’.   

 To decrease the time and expense of synthesizing multicomponent conjugates, 

bioorthogonal chemistry could simplify conjugate synthesis and improve potential 

clinical translation. 

 

5.2.4 Alternatives to mammalian production of mAbs  

As mentioned earlier, the Fab’-MORF1 conjugate is difficult to synthesize. In 

addition to its difficult synthesis, the size of the Fab’-MORF1 is nearly 60 kDa, so the 

hydrodynamic size of the protein conjugate may limit the extent of crosslinking 

performed by the complementary oligonucleotide MORF2 attached to polymer. Overall, 

the synthesis may lead to significant batch to batch variability and the size of the 

conjugate may inhibit multivalence effects.  
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Recently, Crosby et al. synthesized an anti-CD20 single chain variable antibody 

fragment (scFv) [8]. They found that the scFv against CD20 bound to the surface of 

CD20+ B cells, but not to cells missing the CD20 receptor. A fusion between the scFv 

and human apolipoprotein (apo) A-I was constructed and expressed in Escherichia coli. 

ApoA-1 interacts with lipid membranes so they formulated the protein with lipids into 

high-density lipoprotein particles. The size of the entire fusion protein was ~60 kDa.  

Unfortunately, they did not measure binding affinity of their anti-CD20 scFv so it is 

unclear whether this particular molecule could out-perform rituximab or even 1F5. An 

scFv would be more easily produced and characterized compared to Fab’ from whole 

antibody, as the scFv can be produced in Escherichia coli as opposed to mammalian cell 

culture. Tags can be easily incorporated into the protein for quick purification and 

isolation of the desired protein. 

Phage-displayed scFv have several advantages over monoclonal antibodies, one 

of which is that higher affinity mutants can be discovered through site-directed 

mutagenesis [9]. High affinity scFv can be mass produced and tailored using genetic 

engineering in a bottom-up approach rather than a top-down as previously done in the 

lab; however, it is difficult to produce scFv with affinities comparable to the 

corresponding Fab’ fragments. 

Single chain Fab’ fragments (scFab) have been developed where the entire Fab’ 

fragment can be expressed in Escherichia coli [10]. Similar to scFv, scFabs include a 

linker peptide between the heavy and light chains. An scFab would have higher affinity 

than an scFv and would be easier to produce than Fab’ from whole antibodies produced 

in mammalian cell culture; however, the size of scFab would be similar to Fab’ so there 
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would be a similar limit to the number of scFab associated with the polymer. 
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