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ABSTRACT

The associated variety is a geometric invariant attached to each Harish-Chandra module

of a real reductive Lie group. The associated cycle is a finer invariant that gives additional

algebraic data for each component of the associated variety. The main result of this thesis

is a set of formulas for associated cycles of a large class of Harish-Chandra modules for

the real Lie group U(p, q). These formulas give the associated cycle polynomials for the

coherent family containing a module X when elements of the dense orbit in the associated

variety of X have a single nontrivial Jordan block or exactly two Jordan blocks.
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CHAPTER 1

INTRODUCTION

In this dissertation, we will consider four closely related questions in the representation

theory of the Lie group U(p, q) and its Weyl group Sn.

Harish-Chandra modules are fundamental objects in the representation theory of real

reductive Lie groups [40]. These modules convert infinite-dimensional representations into

algebraically tractable objects. By appropriate constructions, we can attach geometric

invariants to these modules. For example, Vogan developed a way to construct an associated

variety and associated cycle for each Harish-Chandra module [41].

These invariants have a number of interesting properties. They relate to the Beilinson–

Bernstein geometry of Harish-Chandra modules in striking ways [10, 7] and are connected

to analytic invariants such as wave front cycles [33]. The multiplicities in associated cycles

extend to polynomials when we view Harish-Chandra modules in the context of coherent

families.

The real group U(p, q) is an attractive settings for computing these polynomials as the

relevant geometry is relatively simple. Barchini and Zierau developed methods to compute

associated cycles for discrete series representations of U(p, q) in [3]. In the appendix to [3],

Trapa demonstrates techniques for computing the associated cycle of any Harish-Chandra

module of U(p, q); these latter techniques rely on the computationally intensive Kazhdan–

Lusztig algorithm and must be carried out on a case by case basis.

Question 1 Can we write down closed formulas for associated cycle polynomials in the

setting of U(p, q)?

Fiber polynomials are closely related to associated cycles [10, 37]. Let g be a complex

reductive Lie algebra and h its Cartan subalgebra. Take the Borel–Weil line bundle derived

from a parameter λ in the dual subalgebra h∗. We can restrict this line bundle to a

Springer fiber component and compute the Euler characteristic of the resulting variety.

By allowing λ to vary, we obtain a polynomial function on h∗. These polynomials were
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originally introduced by Joseph in terms of a different construction. Taking the span of

all polynomials for a fixed Springer fiber yields a representation of the Weyl group that

is isomorphic to the representation attached to the fiber by the Springer correspondence.

These polynomials are building blocks for associated cycle polynomials via results of Chang

[10].

Question 2 Can we write down closed formulas for fiber polynomials in the context of

gl(n,C)?

The conjugacy classes in Sn are determined by cycle structure and so the irreducible

representations of Sn stand in correspondence to partitions of n; these in turn correspond

to Young diagrams with n boxes. Young made this correspondence explicit by constructing

representations for each Young diagram [44, 16].

More recently, Kazhdan and Lusztig constructed irreducible symmetric group represen-

tations via a graph theoretic construction that consolidates a number of representation

theoretic ideas in a remarkable unified theory [21]. These so called Kazhdan–Lusztig

representations are isomorphic to Young’s earlier constructions; they come equipped with

canonical bases which are ubiquitous in representations theory. For instance, these bases

control the structure of Harish-Chandra cells for U(p, q) [29].

We can easily construct Young’s irreducible representations in terms of polynomials.

This provides a setting for practical computation. We can then attempt to construct the

isomorphism between a polynomial representation and the corresponding Kazhdan–Lusztig

representation.

Question 3 Can we compute the image of the Kazhdan–Lusztig basis inside an irreducible

polynomial representation of the symmetric group?

As it turns out, the answers to these three questions are the same. In the setting of

U(p, q), experts have known for some time that associated cycle polynomials are equal to

certain fiber polynomials. (This is discussed in the appendix to [3].) Fiber polynomials in

this setting are computed by taking the image of Kazhdan–Lusztig basis elements under

an isomorphism from a Kazhdan–Lusztig left cell representation to a polynomial represen-

tation. The principal difficulty in computing these polynomials is the complexity of the

relevant Kazhdan–Lusztig combinatorics. In certain cases, these combinatorics are well

understood.
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By work of Beilinson and Bernstein [5], the Harish-Chandra modules of U(p, q) at fixed

regular integral infinitesimal character are parameterized by K-orbits on the flag variety.

The main results of this paper give closed formulas for associated cycle polynomials in three

broad cases: Theorem 29 gives a closed formula for the associated cycle polynomial for any

module X whose annihilator is an induced primitive ideal. Theorem 65 gives a closed form

when elements of the dense orbit in the associated variety of X have a single nontrivial

Jordan block. Theorem 70 gives a formula when elements of the dense orbit have exactly

two Jordan blocks. Equivalently, these formulas yield fiber polynomials for all components

of Springer fibers parameterized by hook or two row Young diagrams and for any component

that is isomorphic to a flag variety.

This extends associated cycle polynomial calculations to another large family of Harish-

Chandra modules in addition to the discrete series covered by the work of Barchini and

Zierau [3]. In Section 9.3, we give an example where our methods overlap with theirs; the

same shape pair for the Harish-Chandra module considered is hook shaped and corresponds

to a closed K-orbit. As expected, the results from the two methods agree.

Question 4 Can we construct combinatorial descriptions of Kazhdan–Lusztig representa-

tions?

This last question is a little vague; the Kazhdan–Lusztig algorithm is combinatorial,

though highly recursive. In effect, the questions asks whether we can describe the Kazhdan–

Lusztig representations while bypassing the computational demands of the Kazhdan–Lusztig

algorithm. This has been an important question in combinatorics and representation theory

for roughly the last 30 years, principally because such combinatorial descriptions would have

numerous applications [6, 16, 23, 28]. As mentioned above, the answer is yes thus far only

in certain special cases, such as for tableaux consisting of only two rows. Once we have

the Kazhdan–Lusztig graph for a two row Young diagram, we can construct the associated

Kazhdan–Lusztig representation by working with the presentation of Sn in terms of simple

transpositions.

In the last chapter of this paper, we present a new way of constructing Kazhdan–Lusztig

representations for two row Young diagrams in terms of skein theory. This construction is

originally due to Russell and Tymoczko in a different context [31, 32]; we provide here a

combinatorial proof that the resulting based representation is in fact the Kazhdan–Lusztig

representation. The construction relates in an intriguingly elegant way to the fiber poly-
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nomials for two row cases. In fact, our proofs rely on polynomials. We can speculate that

there is a broader link between Kazhdan–Lusztig and skein theory.



CHAPTER 2

POLYNOMIAL REPRESENTATIONS

The irreducible representations of the symmetric group can be constructed in terms of

polynomials. (Refer to [13, Problem 4.47].) To understand the construction, we will need

the following definition:

Definition 1 A Young diagram is a collection of finitely many boxes organized in left

justified rows such that a row is not longer than any of the rows above it, for example

.

Given a Young diagram Y with n boxes, a standard Young tableau with shape Y is a labeling

of the boxes in Y with the integers {1, 2, . . . , n} in such a way that labels strictly increase

down each column and from left to right in each row. For example,

1 2 4
3 5
6

is a standard tableau. The column superstandard tableau of shape Y is the unique standard

tableau of shape Y where labels are consecutive as one moves down each column, e.g.,

1 4 6
2 5
3

is a column superstandard tableau.

To construct a polynomial representation isomorphic to the irreducible representation

corresponding to the Young shape Y , begin with the column superstandard tableau of shape

Y . (Refer to this tableau by the notation Γ.) Construct a polynomial

pΓ =
∏

(xi − xj)

where the product is over all pairs (i, j) with i and j in the same column of Γ and i < j.

Letting Sn permute variables, define

PY = spanC{σ · pΓ | σ ∈ Sn}. (2.1)
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This space is isomorphic as an Sn representation to other standard constructions of the

irreducible representation for the shape Y , such as the one in terms of Specht modules.

Given a complex finite-dimensional vector space P consisting of polynomials, define

deg(P ) to be the maximal degree of polynomials in P .

Theorem 2 Let Y be a Young diagram and P ′Y a complex vector space of polynomials in

the variables x1, x2, . . . , xn such that P ′Y is an irreducible representation of Sn under the

permutation action on variables and is isomorphic as a representation to PY . Furthermore,

for any other polynomial representation QY of Sn satisfying these conditions, assume that

deg(P ′Y ) ≤ deg(QY ). Then, P ′Y = PY as defined above.

Proof. There is an isomorphism of representations

φ : PY → P ′Y .

Let p′Γ = φ(pΓ), where pΓ is the generating polynomial for PY defined above. For any pair i,

j in the same column of Γ, (i, j)·p′Γ = −p′Γ, so no monomial p′Γ,k in p′Γ is fixed by exchanging

xi and xj . It follows that xi and xj must have different exponents in p′Γ,k. Let `i be the

length of the ith column of Y . The minimum possible degree of p′Γ is∑
i

(`i)(`i − 1)

2
.

(This is obtained by letting the variables corresponding to the labels in a column have

exponents 0, 1, 2, . . .) This minimum degree is the degree of pΓ. Exchanging xi and xj sends

p′Γ to −p′Γ, so p′Γ is 0 when xi = xj . It follows that (xi − xj) divides p′Γ. Considering all

factors (xi − xj) for i and j in the same column of Γ, it is clear that p′Γ equals pΓ up to

scale. It follows that P ′Y = PY .

The work of Kazhdan and Lusztig offers another way to form a basis for the represen-

tation corresponding to Y [21]. The basis vectors for the Kazhdan–Lusztig representation

are parameterized by standard tableaux of shape Y . Unlike some other bases, such as the

Specht module basis, the Kazhdan–Lusztig basis is exceptionally hard to compute.

The Kazhdan–Lusztig basis elements do satisfy certain conditions that can be directly

read off from their corresponding tableaux. Denote by KLY the Kazhdan–Lusztig repre-

sentation corresponding to the Young diagram Y and by wT the Kazhdan–Lusztig basis

element in KLY corresponding to the tableau T . Denote by si the simple transposition

(i, i+ 1) ∈ Sn.
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Definition 3 Given a basis element wT ∈ KLY , the τ -invariant of wT , denoted by τ(wT ),

is the set of simple transpositions si such that

si · wT = −wT .

The τ -invariant of a standard tableau T is the set τ(T ) of simple transpositions si such that

i+ 1 appears in a row below the row of i in T . A fundamental property of Kazhdan–Lusztig

bases specifies that τ(wT ) = τ(T ).

Once again, let Γ be the column superstandard tableau. There are often two or more

tableaux of the same shape that have a common τ -invariant. However, one can show that

Γ is the unique tableau with τ -invariant τ(Γ). In fact, if T is a tableau not equal to Γ, then

τ(Γ) * τ(T ).

Additionally, for any Kazhdan–Lusztig basis element wT with si /∈ τ(wT ), wT appears with

coefficient 1 in si · wT when we express it in terms of the Kazhdan–Lusztig basis. (See

Chapter 8.) Then, we have the following:

Lemma 4 For any vector v in an Sn representation, define τ(v) to be the set of simple

transpositions si such that si · v = −v. If v is a vector in KLY satisfying τ(v) = τ(wΓ),

then v equals wΓ up to scale.

Let

φ : KLY → PY

be an isomorphism. By Schur’s lemma, this isomorphism is unique up to scale. We can

immediately say something else about φ: Note that τ(pΓ) = τ(Γ). Thus, by Lemma 4

φ(wΓ) = CpΓ

where C is a nonzero constant. More generally, we can ask the following question:

Question 5 Given a tableau T , what is φ(wT )?

As we shall see, answering this question is essential if we wish to compute fiber polynomials

and associated cycles in the setting of U(p, q). In certain cases, we will be able to write

down closed forms of the Kazhdan–Lusztig basis inside the polynomial representation PY .



CHAPTER 3

HARISH-CHANDRA MODULES

Let GR be a real semisimple Lie group. We frequently study Lie groups via their

representations.

Definition 5 A finite-dimensional representation of a Lie group GR is a map

π : GR → GL(V )

where V is a finite-dimensional complex vector space, GL(V ) is the group of all invertible

linear transformations of V and π is a continuous group homomorphism. We say that π is

irreducible if V has no proper nontrivial subspaces invariant under the action of GR.

A central problem in understanding representations of GR is to classify all irreducible

representations up to equivalence. For reductive Lie groups, the solution to this problem

is known. (See [26] for an exposition.) To motivate a broader class of representations, we

consider an example.

Let µ be a left GR-invariant measure on GR. Consider the set L2(GR) of all square

integrable complex functions on GR; this is a complex vector space, generally not finite-

dimensional. We can define a group homomorphism

Φ : GR → GL(L2(G))

by

Φ(g)f(x) = f(g−1x).

This is the left regular representation of GR and is an example of a unitary representation

[25].

Definition 6 A unitary representation of GR is a homomorphism Φ from GR to the group

of bounded invertible linear operators on a Hilbert space V such that Φ(g) is a unitary

operator on V for each g ∈ GR and the map g × v 7→ Φ(g) · v from GR × V to V is

continuous.
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By a well known theorem, finite-dimensional representations are smooth, so we can

differentiate them to obtain representations of the Lie algebra gR of GR. Complexifying

gR to g yields a complex Lie algebra representation. Lie algebra representations are an

essential tool in the classification of GR-representations.

In general, we cannot differentiate a representation that is not finite-dimensional. How-

ever, we can convert unitary representations into Harish-Chandra modules. These modules

were introduced by Harish-Chandra to study the unitary dual of a real semisimple Lie group

GR, i.e., the set of all irreducible unitary representations of GR up to equivalence. We give

an abridged description of the construction of Harish-Chandra modules here. See [4] and

[40] for more details.

Let KR be a maximal compact subgroup of GR. All choices for KR are equivalent in the

sense that all maximal compact subgroups are conjugate. Since KR is compact, it is linear

and can be complexified to a complex group K. To construct a Harish-Chandra module,

we take a subspace of the representation space V consisting of K-finite vectors, i.e., the set

of all vectors v ∈ V such that spanC{K · v} is finite-dimensional. Denote this subspace by

X.

Theorem 7 (Harish-Chandra) The K-finite vectors are smooth in that for a fixed v ∈

X, the map from G to X given by

g 7→ Φ(g)v

is smooth. Differentiating this map turns X into a gR-representation and hence by com-

plexification a g-representation. In this way, X is a (g,K)-module.

See [25, Chapter 8] and [42, Chapter 3] for expositions. A (g,K)-module is defined as

follows:

Definition 8 A (g,K)-module is a complex vector space X equipped with representations

of K and g (both denoted by π) satisfying the following properties:

1. Every vector in X is K-finite.

2. Differentiating the K-representation π yields a representation of the Lie algebra k of

K that is the same as the representation obtained by restricting the g-representation

π to k.
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3. If g ∈ g and k ∈ K, then

π(Adk(g)) = π(k)π(g)π(k)−1.

4. As a K-representation, π is algebraic.

Every finite-dimensional GR-representation automatically gives rise to a (g,K)-module

by complexification of gR and KR. In [40], it is shown that if X is constructed from

an irreducible unitary representation, then X is an irreducible (g,K)-module. Irreducible

modules also satisfy the following broader condition:

Definition 9 A (g,K)-module X is said to have finite-length if it admits a chain of

submodules

0 = X0 ⊆ X1 ⊆ · · · ⊆ XN = X

such that Xi/Xi−1 is irreducible for i = 1, . . . , N . Write F(g,K) for the category of (g,K)-

modules of finite-length. By definition, every irreducible module has finite-length. A finite-

length (g,K)-module is referred to as a Harish-Chandra module.

Note that the K-finite construction can be used to build Harish-Chandra modules from a

much larger class of (not necessarily unitary) representations [40]. However, the aims of this

paper are principally algebraic, so we will from now on work directly with Harish-Chandra

modules without reference to the representations from which they were derived.



CHAPTER 4

ASSOCIATED VARIETIES AND CYCLES

In a seminal 1991 paper, David Vogan introduced the notion of associated varieties and

associated cycles for Harish-Chandra modules [41].

4.1 Associated Varieties

Let X0 be a finite-dimensional K-invariant generating subspace of X; Such a subspace

always exists. Let U(g) be the universal enveloping algebra of g and filter X by degree, i.e.,

let Un(g) be the subspace of U(g) obtained by taking the span of all products of at most n

elements in g. Define a filtration on X by

Xn = Un(g) ·X0.

Using the degree filtration on U(g), we obtain an associated graded module grU(g). An

important corollary to the Poincare–Birkoff–Witt theorem states that grU(g) is naturally

isomorphic to S(g), the symmetric algebra constructed by treating g as a vector space; the

symmetric algebra is in turn isomorphic to the ring of polynomial functions on the dual

vector space g∗. This construction hints at the imminent prospect of algebro-geometric

machinery. In fact, the filtration on X is compatible with the degree filtration on U(g) in

that

Up(g) ·Xq ⊂ Xp+q.

Thus, we can construct an associated graded module grX over grU(g) ∼= S(g).

We are now ready to define the associated variety of X. Let Ann(grX) be the annihilator

of grX. The annihilator is an ideal in grU(g) and the associated variety of X is given by

AV(X) = {y ∈ g∗ | p(y) = 0 for all p ∈ Ann(grX)}

where Ann(grX) is identified with polynomial functions on g∗. Equivalently, we can treat

AV(X) as the set of all prime ideals containing Ann(grX).

We gain more insight into the filtration of X, and hence the module grX, by applying the

compatibility properties in Definition 8. In particular, the fact that k ·e ·k−1 ·v = Adk(e) ·v
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for k ∈ K, e ∈ g, v ∈ X implies that each Xn is K-stable. Thus, grX has a K-action

compatible with its S(g)-module structure. By differentiation, we also see that Xn is k

stable so that k annihilates grX. It follows that grX is an S(g/k)-module and AV(X) is a

K-invariant subvariety of (g/k)∗.

If λ ∈ AV(X), then λ is nilpotent, i.e., 0 ∈ G · λ. (The bar indicates Zariski closure.)

We will use the notation N (g/k)∗ to indicate the cone of nilpotent elements in (g/k)∗. A

corollary to a result of Kostant and Rallis [27] tells us that K acts on N (g/k)∗ with finitely

many orbits. Since AV(X) is closed, we may write

AV(X) = OK1 ∪ · · · ∪ OKj

where each OKi is a K-orbit on N (g/k)∗ and the OKi are the components of AV(X).

We will see in the sequel that all modules in a coherent family or cell share a common

associated variety. We need a finer invariant to separate modules in these classifications.

4.2 Associated Cycles

After outlining the construction of associated varieties, [41] introduces an enhancement

known in current parlance as the associated cycle [3]. Each component OKi of the associ-

ated variety corresponds to some minimal prime ideal Pi in the set of primes containing

Ann(grX). The associated cycle is written∑
i

miOKi

where roughly speaking mi is equal to the number of copies of S(g)/Pi that appear in grX.

To be precise, we give a version of Definition 2.4 in [41]:

Definition 10 Let OK1 , . . . ,OKj be the components of AV(X) and P1, . . . , Pj the corre-

sponding prime ideals in S(g) containing Ann(grX). The associated cycle of X is the

formal sum

AC(X) =
∑
i

miOKi

where the multiplicities mi are positive integers determined as follows: choose a finite

filtration of grX so that each subquotient (grX)k/(grX)k−1 is of the form S(g)/Qk for

some prime ideal Qk in grX. Then, mi is the number of times that Qk = Pi.

As required, the associated cycle is well defined regardless of the choices we make in its

computation.



CHAPTER 5

COHERENT FAMILIES AND CELLS

Recall that F(g,K) denotes the category of finite-length (g,K)-modules (or Harish-

Chandra modules) for (g,K).

5.1 Virtual Characters

Definition 11 The Grothendieck group of F(g,K) is the Abelian group generated by finite-

length (g,K)-modules modulo the equivalences

X ∼ Y + Z

whenever there is a short exact sequence

0→ Y → X → Z → 0.

We denote the Grothendieck group by V(g,K); it is also referred to as the group of virtual

(g,K)-modules or virtual characters of GR. Denote by ĜR the set of all irreducible (g,K)-

modules. Then, V(g,K) is a free Z-module with a basis given by ĜR [40]. Note that

V(g,K) contains objects that do not correspond to any legitimate Harish-Chandra module.

For example, if X is an irreducible Harish-Chandra module, V(g,K) contains −3X.

5.2 Infinitesimal Character

Let Z(g) be the center of U(g).

Definition 12 A module X is called quasisimple if Z(g) acts by scalars in X. The

corresponding homomorphism

χ : Z(g)→ C

given by

z · x 7→ χ(z)x

for z ∈ Z(g) and x ∈ X is known as the infinitesimal character of X.
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By a theorem of Dixmier [12], every irreducible (g,K)-module is quasisimple.

The following is a corollary to a theorem of Harish-Chandra [40, Theorem 0.2.8].

Theorem 13 Infinitesimal characters

ξλ : Z(g)→ C

are parameterized by Weyl group orbits of elements λ ∈ h∗.

From now on, we will treat infinitesimal characters as equivalence classes of elements in

h∗. Note that if X is a finite-dimensional irreducible U(g)-module with highest weight λ,

then X has infinitesimal character λ+ ρ [26].

Definition 14 Let ( · , · ) denote the inner product on h∗ derived from the trace form.

Then, given two elements α, β ∈ h∗, define

〈α, β〉 =
2(α, β)

(β, β)
.

Definition 15 Let ∆(g, h) denote the set of roots of g relative to the Cartan subalgebra h.

If a (g,K)-module X has infinitesimal character λ such that

〈λ, α〉 6= 0 for all α ∈ ∆(g, h),

then we say that X has regular infinitesimal character. Otherwise, X has singular infinites-

imal character.

Definition 16 Call λ ∈ h∗ integral if

〈λ, α〉 ∈ Z for all α ∈ ∆(g, h).

We say that a (g,K)-module X has integral infinitesimal character if its infinitesimal

character corresponds to some integral λ ∈ h∗. The set of all integral λ is called the integral

weight lattice.

In what follows, we will principally be interested in modules with regular integral infinites-

imal character.

5.3 Coherent Families

As is well known, modules in the set of irreducible finite-dimensional (g,K)-modules

correspond to a lattice of infinitesimal characters in h∗. Coherent families give an analogue

of this picture for infinite-dimensional modules [1, 40].
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Fix a Cartan subalgebra hR of gR that contains a Cartan subalgebra of kR, the Lie algebra

of KR. (Such a Cartan subalgebra is called fundamental. This technical property will be

important in subsequent machinery.) Assume also that KR is connected. Complexify hR

to a Cartan subalgebra h of g and choose a Borel subalgebra b determined by a system of

positive roots relative to h. Let HR be the centralizer in GR of hR. Since hR is fundamental,

HR is a connected Cartan subgroup of GR. Let Λ ⊂ ĤR be the lattice of weights of

finite-dimensional representations for GR. Because HR is connected, we can identify Λ with

a sublattice of the integral weight lattice in h∗ via differentiation.

Definition 17 Given a finite-dimensional representation F of GR, denote by ∆(F ) the

multiset of weights of F in h∗ counted with multiplicity. (Regard each weight in ĤR as an

element of h∗ by differentiation.)

We need an appropriate means of taking the tensor product of a finite-dimensional

representation and a virtual character.

Definition 18 Each virtual character Θ can be uniquely expressed as a finite integral linear

combination of irreducible characters:

Θ =
∑
X∈ĜR

mXX.

where ĜR is the set of irreducible Harish-Chandra modules of GR. Given a finite-dimensional

representation F of GR, let

Θ⊗ F =
∑
X∈ĜR

mXX ⊗ F.

Definition 19 Let λ be any integral weight in h∗. Define the translate of Λ by λ to be the

sublattice of the integral weight lattice given by

Λ + λ = {µ+ λ | µ ∈ Λ}.

Definition 20 [40, Definition 7.2.5] A coherent family of virtual characters is a map

Φ : (Λ + λ)→ V(g,K)

satisfying the following properties:

1. Φ(ξ) has infinitesimal character ξ.
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2. If ξ is dominant, then Φ(ξ) is either 0 or the character of an irreducible (g,K)-module;

in particular, Φ(ξ) corresponds to an irreducible (g,K)-module whenever ξ is regular

and dominant.

3. For any finite-dimensional representation F

Φ(ξ)⊗ F =
∑

µ∈∆(F )

Φ(ξ + µ)

where the sum counts multiplicity.

Note that this definition depends on a choice of positive roots. Each irreducible (g,K)-

module at regular integral infinitesimal character lies in the dominant chamber of a unique

coherent family [40, Theorem 7.2.7].

5.4 The Coherent Continuation Representation

The coherent family structure allows us to define a representation of the Weyl group.

Denote by V(g,K)λ the formal Z-span of all irreducible Harish-Chandra modules at in-

finitesimal character λ, where λ is regular and integral; V(g,K)λ is naturally viewed as a free

Z-submodule of V(g,K). Let X be any irreducible Harish-Chandra module at infinitesimal

character λ, Φ the coherent family containing X and w an element of the Weyl group W .

Then, we define a representation on V(g,K)λ by

w ·X = w · Φ(λ) = Φ(w−1 · λ).

This is called the coherent continuation representation. Any choice of dominant, regular,

integral λ yields an equivalent construction.

5.5 Associated Varieties and Cycles on the
Level of Coherent Families

As we will now see, the structural relationships between modules in a coherent family

are reflected in associated varieties and cycles. The following is a version of Lemma 4.1 in

[8].

Lemma 21 Suppose that X is a finite-length (g,K)-module and F a finite-dimensional

representation. Then, AV(X) = AV(X ⊗ F ).

Proof. Given an appropriate filtration Xi of X, we can filter X ⊗ F by Xi ⊗ F . As an

S(g)-module, gr (X ⊗ F ) is a sum of copies of grX.
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Lemma 22 If X and Y are irreducible (g,K)-modules in the same coherent family, then

AV(X) = AV(Y ).

Proof. Suppose that the (g,K)-module Z is a subquotient of a module X. If Xi is a good

filtration of X as per the definitions given in Chapter 4, then Z inherits a good filtration

Zi. We have the containment

Ann(grX) ⊆ Ann(grZ).

Hence,

AV(X) ⊇ AV(Z).

If X and Y are irreducible modules in the same coherent family, then there exists a finite-

dimensional representation F such that X is a subquotient of Y ⊗F and Y is a subquotient

of X ⊗ F . Applying the previous lemma, AV(X) ⊆ AV(Y ) and AV(Y ) ⊆ AV(X).

We would like to extend the associated variety and associated cycle construction to

virtual characters that do not correspond to bona fide (g,K)-modules. Observe that if

0→ Y → X → Z → 0

then

Ann(grX) = Ann(grY ) ∩Ann(grZ)

and

AV(X) = AV(Y ) ∪AV(Z).

We extend this additivity to all of V(g,K) by specifying that

AV(−X) = AV(X)

and

AV(X) = AV(Y ) ∪AV(Z)

for any virtual characters X,Y, Z such that

X = Y + Z

in the Grothendieck group.
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There is also a notion of additivity for associated cycles [10, 36]. Once again, let X,Y

and Z satisfy

0→ Y → X → Z → 0.

Then, if C is some component of AV(X), the multiplicity of C in AC(X) is the sum of

multiplicity of C in AC(Y ) and AC(Z). If C is not a component of AV(Y ) then, for the

present purpose, we define the multiplicity of C in AC(Y ) to be 0. In general, AC(X)

loses some information from AC(Y ) and AC(Z): if C ′ is a component of AV(Y ) that

is properly contained in C, then the multiplicity of C ′ in AC(Y ) makes no contribution

to the multiplicity of C in AC(X). If X = −Y in V(g,K) and C is a component of

AV(X) = AV(Y ), let the multiplicity of C in X be the opposite of its multiplicity in Y .

By applying these additivity rules, we can construct a well defined associated cycle for any

virtual character.

Definition 23 Fix a choice of positive roots, an irreducible module X at regular integral

infinitesimal character and some component of AV(X). Let Φ denote the coherent family to

which X belongs. Let p′X(λ) denote the multiplicity of the fixed component in AC(Φ(λ)) as

λ varies over the appropriate sublattice of the integral weight lattice. This function extends

to a unique harmonic homogeneous polynomial on h∗ [38, Lemmas 4.1 and 4.3] which we

denote by pX(λ).

In this notation, nothing indicates which component pX gives the multiplicity for; this is

a practical choice made because AV(X) is irreducible for any Harish-Chandra module of

U(p, q).

5.6 Cells

Cells encode information about the consequences of tensoring an irreducible Harish-

Chandra module X and an irreducible finite-dimensional representation with highest weight

chosen from the root lattice in h∗ [1]; the root lattice is the sublattice of the integral weight

lattice generated by the roots in h∗. Write T (g) for the tensor algebra generated by g. For

irreducible (g,K)-modules X and Y at infinitesimal character λ, write X > Y if Y appears

as a subquotient of X ⊗ F for some finite-dimensional representation appearing in T (g). If

X > Y and Y > X, then write X ∼ Y . In fact, ∼ is an equivalence relation.

Definition 24 The equivalence classes defined by ∼ are called cells [1].
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Now we wish to construct an object called a cell representation. Let λ be dominant,

regular and integral. As discussed in Section 5.4, V(g,K)λ is a W -representation via

coherent continuation. Define

Cell(X) = spanZ{Y | Y < X and X < Y }.

We also introduce the related notion of the cone over X, consisting of those modules Y

such that Y < X. We denote the span as

Cone(X) = spanZ{Y | Y < X}.

We can view Cell(X) in a slightly different way:

Cell(X) ∼= Cone(X)
/

spanZ{Y | Y < X, X ≮ Y }.

Both Cone(X) and spanZ{Y | Y < X, X ≮ Y } are subrepresentations of V(g,K)λ, so

Cell(X) is a subquotient of the full coherent continuation representation.

5.7 W -equivariance

As we saw with coherent families, the structural relationships between modules in cells

are reflected in associated varieties and cycles. First, observe that the proof of Lemma 22

showing that modules in the same coherent family share an associated variety also shows

that modules in a cell have the same associated variety.

Fix a component C of AV(X). We wish to study the relationship between the associated

cycle multiplicity polynomials attached to modules in the cell of X. Define

Poly(X) = spanZ{pY | Y < X and X < Y }

where pY is the associated cycle multiplicity polynomial for Y and the fixed component C

of AV(X) = AV(Y ).

Theorem 25 The map from Cell(X) to Poly(X) induced by

Y 7→ pY

for irreducible modules Y in the cell of X is W -equivariant.

Proof. We will show that irreducible modules Y such that

Y < X, X ≮ Y

satisfy pY = 0 for the fixed component C. Note first that by the proof of Lemma 22,

AV(Y ) ⊂ AV(X). But in fact dim AV(Y ) < dim AV(X), therefore C is not a component of
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AV(Y ) and pY = 0. (This is a corollary to a result of Borho and Kraft [9, Korollar 4.7].

See also the discussion around Proposition 2.2 in [36].)

Now, induce a map from Cone(X) to associated cycle polynomials by taking

Y 7→ pY

for the component C. The map induced by extending linearly is W -equivariant since

pw·Y (α) = pY (w−1 · α)

where w ∈ W and w · Y is given by the coherent continuation action. It is now clear

that the associated cycle map from Cell(X) to polynomials on h∗ is W -equivariant; as

W -representations,

Cell(X) ∼= Cone(X)
/

spanZ{Y | Y < X,X ≮ Y }

but virtual modules in

spanZ{Y | Y < X,X ≮ Y }

effectively have associated cycle multiplicity 0 on any component of AV(X).



CHAPTER 6

SPRINGER FIBERS

Springer fibers play a central role in the computations we wish to carry out. In fact,

we will see that Euler characteristics of certain line bundles over Springer fiber components

are building blocks for all associated cycle polynomials.

6.1 Definition

The definition of Springer fibers in the Lie theoretic context relies on the moment map

from the cotangent bundle of the flag variety to g∗. Define the flag variety B to be the set

of all Borel subalgebras of g. We can view the cotangent bundle to the flag variety as the

set of pairs {(b, ξ) | b ∈ B, ξ ∈ (g/b)∗}. Let N ∗ be the cone of nilpotent elements in g∗.

Then, the moment map µ : T ∗B→ N ∗ carries (b, ξ) to ξ ∈ g∗.

Definition 26 Let ξ be a nilpotent element of g∗. The Springer fiber Fξ over ξ is the

variety µ−1(ξ).

In the specific context of g = gl(n,C), we can identify ξ with a nilpotent element N ∈ g

by using the trace form. The Springer fiber over ξ is then equal to the set of all Borel

subalgebras of g containing N . Fibers over nilpotent elements in the same nilpotent orbit

are isomorphic varieties.

It is computationally useful to view the flag variety in terms of linear algebra. Consider

the Borel subalgebra b consisting of all upper triangular matrices. If {v1, v2, . . . , vn} is the

standard basis of Cn, then b stabilizes

V0 ⊂ V1 ⊂ · · · ⊂ Vn

where each Vk is a k-dimensional subspace of Cn spanned by the first k standard basis

vectors. In general, a complete flag is some sequence of subspaces

V0 ⊂ V1 ⊂ · · · ⊂ Vn
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of Cn such that dimVk = k. The variety consisting of all complete flags in Cn is isomorphic

as a variety to B as defined in terms of Borel subalgebras above. The isomorphism takes

each Borel subalgebra b to the unique complete flag stabilized by b, i.e., some complete flag

V0 ⊂ V1 ⊂ · · · ⊂ Vn

such that b · Vk ⊂ Vk for for each k.

This leads to a natural linear algebraic construction of the Springer fiber over N . The

variety of Borel subalgebras containing N is naturally isomorphic to the variety of complete

flags stabilized by N .

In gl(n,C), the conjugacy classes of nilpotents, and hence the equivalence classes of

Springer fibers, are parameterized by partitions of n or equivalently by Young diagrams

with n boxes. In general, Springer fibers are highly reducible. Let N be a nilpotent element

of gl(n,C). Let f be a flag

V0 ⊂ V1 ⊂ · · · ⊂ Vn

preserved by N . Define a tableau T on the Young diagram for N by requiring that the

diagram obtained from T by restricting to boxes 1 through k has the same shape as the

diagram of the Jordan form for the restriction of N to Vk. The standard tableaux of shape

given by the Jordan form of N then divide FN into subsets. Taking the Zariski closures of

these subsets yields the components of FN [34].

6.2 Component Geometry in a Special Case

Now we wish to work out the geometry of Springer fiber components attached to column

superstandard tableaux. (Recall that these are transposes of reading order tableaux.) This

geometry will be the foundation for computation of general fiber polynomials for gl(n,C).

Let Y be a Young diagram and T the corresponding column superstandard tableau. Let

Ck denote the kth column of T from the left. Define a subspace WCk of Cn by

WCk =
⊕
i∈Ck

〈vi〉

where the vi are the standard basis elements of Cn. Define a nilpotent map ξ : Cn → Cn

by these rules:

1. The kernel of N is WC1 .

2. N ·WCk ⊂WCk−1
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There is significant flexibility in this definition, but the Jordan canonical form of N corre-

sponds to the diagram Y regardless of our choices.

Denote by FNT the component of FN parameterized by the column superstandard

tableau T .

Lemma 27 Let km be the number of boxes in the first m columns of Y . Let f be a flag

V0 ⊂ V1 ⊂ · · · ⊂ Vn

in FNT that yields the tableau T via the restriction process described in Section 6.1. Then

Vkm =
m⊕
i=1

WCi

for each m from 1 up to the number of columns of Y . Conversely, if a flag f satisfies this

condition for any choice of m up to the number of columns in T , then f ∈ FNT

The next theorem essentially completes the geometric description of FNT .

Theorem 28 Let T be the column superstandard tableau. Let f be the standard flag, i.e.,

the flag whose subspaces Vk are spanned by the first k basis vectors of Cn. Let |Ci| be the

number of boxes in the ith column of Y . Then, the Springer fiber component corresponding

to Y is given by

FNY = (SL(|C1|,C)× SL(|C2|,C)× · · · ) f

where SL(|Ci|,C) acts on the space WCi defined above.

Proof. The subset defined in the theorem is the same one established in Lemma 27. It

remains only to prove that FNY is Zariski closed as defined. The set is closed because it is

a flag variety.

Alternatively, define P to be the parabolic subgroup of GL(n,C) consisting of all block

upper triangular invertible matrices with blocks of sizes |C1|, |C2|, . . . Then, FNY = P/B,

where B is the upper triangular Borel subgroup of GL(n,C).

6.3 Fiber Polynomials

Let Z be some component in Irr(FN ), the irreducible components of FN . To compute

fiber polynomials, we construct a line bundle over Z by restricting a Borel–Weil line bundle

from B to Z. Here, we are identifying B with G/B; the base Borel is chosen by fixing a

Cartan subalgebra and choice of positive roots. In our case, G = GL(n,C).
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Let λ be a dominant integral weight. If the base Borel subgroup B has Lie algebra b,

let Cλ be the one-dimensional representation of B induced by λ. Construct the Borel–Weil

line bundle Lλ = G ×B C−λ. We define a function λ 7→ q′Z(λ) by taking q′Z(λ) to be the

Euler characteristic of Lλ restricted to Z. This function extends to a polynomial on h∗; we

define a homogeneous polynomial qZ by taking the top degree part of q′Z . Refer to qZ as

the Joseph polynomial or fiber polynomial of Z [37, 19].

We mention an alternate method of constructing qZ for the sake of completeness.

Frequently, one sees in the literature the notation

qZ(λ) =

∫
Z
eλ,

i.e., the integral over Z of the exponential of the first Chern class of Lλ [3, 10]. For a careful

definition of this integral, see [20] or [33].

In our setting, we want to compute the Euler characteristic of Lλ restricted to P/B

as defined in the previous section. This will give us the fiber polynomial for the column

superstandard tableau. Equivalently, P/B ∼= L/(L ∩B) where

L = GL(|C1|,C)×GL(|C2|,C)× · · ·

is the Levi subgroup of P . The flag variety

L/B ∩ L = GL(|C1|,C)/B1 ×GL(|C2|,C)/B2 × · · ·

for appropriately chosen {B1, B2, . . .} is identified with P/B by the map γ that takes

g1B1 × g2B2 × · · ·

to

(g1B1 × g2B2 × · · · )B.

We can construct a Borel–Weil line bundle L′λ on L/B∩L by inducing from −λ a character

of B ∩L. The map γ allows us to construct a line bundle on L/B ∩L from Lλ; in fact, this

line bundle is isomorphic to L′λ. By the Borel–Weil theorem, the Euler characteristic of L′λ
is simply the dimension of the irreducible representation of L induced from λ. The next

proposition then follows by applying the Weyl dimension formula and taking the highest

degree part of the resulting polynomial.

In the following theorem, take h to be the diagonal Cartan in gl(n,C); each xi lies in

the dual of h∗ and hence may be viewed as an element of h. Let xi = Ei,i. If ei is a basis
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element in h∗ that returns the ith diagonal entry of a matrix in h, each xi effectively returns

the coefficient of ei in an element of h∗. Take the positive system determined by the upper

triangular Borel.

Theorem 29 Let Z be a Springer fiber component corresponding to a column superstandard

tableau Y . Then,

qZ = A
∏

(i,j)∈SY

(xi − xj).

The set SY consists of all pairs i < j such that i and j are in the same column of Y and

A =
∏

A|Ck|−1

where

Am =
1

m!(m− 1)! · · · 1

and the |Ck| are the lengths of the columns of Y . Equivalently, one may choose A so that

qZ(ρ) = 1.

Recall that qZ is, up to scale, the polynomial pΓ corresponding to the column superstandard

tableau in Chapter 2.

Note that these are also associated cycle polynomials: letX be a Harish-Chandra module

of U(p, q) at integral regular infinitesimal character supported on Q ∈ K\B; let T (Q) be the

corresponding standard tableau and suppose that T (Q) is a column superstandard tableau.

Then qZ , the fiber polynomial corresponding to T (Q), is the associated cycle polynomial

for X. See Chapter 7.

6.4 Localization

We now present an alternative means of attaching geometry to a Harish-Chandra mod-

ules X, the well known localization of Beilinson and Bernstein. (A nice exposition in the

setting of Harish-Chandra modules is found in [10].)

Localization was originally developed to prove Kazhdan and Lusztig’s conjecture [21]

that Kazhdan–Lusztig polynomials describe the change of basis from Verma modules to

irreducible modules in the Grothendieck group of category O [5]. It also has direct relevance

to the associated cycle computations we wish to carry out.

Some choices must be made at this point; we wish to view the flag variety B as G/B

and so choose a base Cartan subalgebra h in g, a positive system of roots relative to h and a
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corresponding Borel subalgebra b. For each λ ∈ h∗, Beilinson and Bernstein construct in [5]

a twisted sheaf of differential operators Dλ. The localization construction yields from each

Harish-Chandra module a coherent (Dλ,K)-modules. In particular, let X be an irreducible

Harish-Chandra module with infinitesimal character corresponding to λ dominant. Then,

there exists a unique irreducible (Dλ,K)-module X such that X is equal to the sheaf of

global sections Γ(B,X ).

Each (Dλ,K)-module X has a characteristic variety and characteristic cycle. The

characteristic variety is of the form

T ∗Z1
B ∪ · · · ∪ T ∗ZkB

where each Zi is a K-orbit on B, the notation T ∗ZiB indicates the closure of a conormal

bundle to an orbit and the union is finite; each T ∗ZiB is a component of the characteristic

variety. The characteristic cycle attaches a multiplicity to each component.

The characteristic variety of X is related to AV(X) by a result of Borho and Brylinski

[7, Theorem 1.9(c)]: the image of the characteristic variety of X under the moment map

µ : T ∗B→ g∗

is equal to AV(X).

6.5 Application to Associated Cycles

Via results of Chang [10], fiber polynomials are related to associated cycle polynomials in

a fundamental way. To understand the relationship, we need the notion of the leading term

of a characteristic variety. Given a Harish-Chandra module X, denote the characteristic

variety of its Beilinson–Bernstein localization by CV(X). As discussed above, the moment

map µ carries CV(X) onto AV(X).

Definition 30 Let OK be some component of AV(X). The leading term of CV(X) over

OK , denoted by LT(X,OK), is the set of all components T ∗QB of CV(X) such that OK is

in µ(T ∗QB). The leading term of CV(X), denoted LT(X), is the union of the LT(X,OK)

over all components of AV(X).

Now, we must understand the connection between components of Springer fibers and

components of CV(X). Fix some T ∗QB and let ξ be a generic element in µ(T ∗QB), i.e., an

element of the K-orbit dense in µ(T ∗QB). In general, µ−1(ξ)∪T ∗QB is a union of components
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of the Springer fiber µ−1(ξ), but these components are all equivalent in the sense that they

lie in a single orbit of the component group AK(ξ) of the centralizer in K of ξ and their

fiber polynomials are equal. Denote by Z(Q) the components in Irr(µ−1(ξ)∩ T ∗QB) and by

qZ(Q) the sum of the (equal) fiber polynomials obtained from the components in Z(Q).

Write CC(X) for the characteristic cycle of the localization of X and by

m(CC(X), T ∗QB)

the multiplicity of T ∗QB in CC(X). To make sense of the following theorem, we should note

that CC(Y ) = CC(X) for Y in the coherent family of X [10]. The theorem depends on the

choice of a positive system of roots.

Theorem 31 (Chang’s Theorem [10]) Let OK be some component of AV(X). Then, the

multiplicity polynomial for OK in AC(X) is equal to∑
{Q|T ∗QB∈LT(X,OK)}

m(CC(X), T ∗QB)qZ(Q).

Thus, the problem of computing associated cycles is reduced to the (nontrivial) problems

of computing fiber polynomials and leading terms of characteristic cycles. We will see in

the next chapter that this is tractable in the case of the real group U(p, q).



CHAPTER 7

SPECIALIZATION TO INDEFINITE

UNITARY GROUPS

In this chapter, we specialize to the case of the indefinite unitary groups, i.e., the real

groups U(p, q). We will follow the discussions in the appendix to [3] and in [35]. Recall the

definition of U(p, q):

Definition 32 The real Lie group U(p, q), p+ q = n, consists of all linear transformations

of Cn that preserve a Hermitian form defined by a diagonal matrix where 1 appears p times

and −1 appears q times.

Note that the appendix to [3] mentions that in the case of SU(p, q), the subgroup of

U(p, q) consisting of determinant 1 transforms, there is one block at each regular integral

infinitesimal character if p 6= q, but two blocks appear if p = q. One of these blocks,

the one containing a finite-dimensional representation, has what are for our purposes good

characteristics; the associated cycles for these representations are relatively easy to compute.

By the work of Beilinson and Bernstein applied to Harish-Chandra modules, irreducible

Harish-Chandra modules at a fixed regular integral infinitesimal character correspond to

pairs (O, φ), where O is a K-orbit on the flag variety B and φ is a K-equivariant local

system on O. If O = K · v, then define AK(v) = ZK(v)/Z◦K(v); in other words, AK(v)

is the component group of the centralizer in K of v. We may view φ as the choice of an

irreducible representation of AK(v). The “bad” block of modules for SU(p, p) corresponds

to nontrivial φ; for U(p, q), AK(v) is always trivial, so this bad block does not appear for

U(p, p).

The formula in Theorem 31 simplifies dramatically for U(p, q). As before, let X be the

Beilinson–Bernstein localization of an irreducible Harish-Chandra module X. The support

of X is the closure of a single K-orbit in B. Denote this K-orbit by supp(X). By [7,

Proposition 2.8(a)], T ∗supp(X)B is a component of CV(X) and has multiplicity 1 in CC(X).

The explicit calculations in [35] show that
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µ(T ∗supp(X)B) = AV(X),

so AV(X) is irreducible and T ∗supp(X)B is in LT(X).

Proposition 33 If X is an irreducible Harish-Chandra module of U(p, q) at regular, inte-

gral infinitesimal character, then

LT(X) = T ∗supp(X)B.

Proof. Let λ be the infinitesimal character of X. Consider the set of primitive ideals

Primλ(g,O), as defined in [37]. This is the set of two sided ideals I in U(g) that are

annihilators of simple U(g) modules at infinitesimal character λ and satisfying AV(I) = O.

(The associated variety of I is defined by taking the degree filtration and letting AV(I)

be the zero locus of gr I as an ideal in S(g).) Let IX be the annihilator of X as a U(g)

module and let O = AV(IX). (We want IX to be an element of Primλ(g,O).) Incidentally,

AV(IX) = G ·AV(X).

To each element of Primλ(g,O) is attached a harmonic homogeneous polynomial pI on

h∗, the so-called Goldie rank polynomial [18]. Define

Sp(O) = spanC{pI | I ∈ Primλ(g,O)}.

This space of polynomials is a representation of Sn isomorphic to the representation at-

tached to O by the Springer correspondence. These Goldie rank polynomials are linearly

independent. Taking the span of the fiber polynomials for the components of the Springer

fiber over an element of O also gives Sp(O). Fiber polynomials for the components of a

Springer fiber are linearly independent in the setting of gl(n,C).

In general, relating these bases of Sp(O) is difficult [37]. However, in the setting of

gl(n,C), the bases coincide due to a result of Melnikov [30]. It is also known that the

associated cycle polynomial pX for some component of AV(X) is a multiple of pIX . Each

fiber polynomial is, up to scale, pI for some I ∈ Primλ(g,O). Thus, on the right side of

pX =
∑

{Q|T ∗QB∈LT(X,OK)}

m(CC(X), T ∗QB)qZ(Q)

(Chang’s theorem), the sum consists of only a single term, the one arising from T ∗supp(X)B

with multiplicity 1.

Let AV(X) = OK . Let ξ ∈ OK and

C(X) = µ−1(ξ) ∩ T ∗supp(X)B.
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(In the setting of U(p, q), C(X) is irreducible and so consists of a single Springer fiber

component.) Then, the formula in Theorem 31 reduces to

pX = qC(X)

where pX is the associated cycle polynomial for X and qC(X) is the fiber polynomial for

C(X).

Thus, computation of an associated cycle polynomial for a Harish-Chandra module of

U(p, q) at regular integral infinitesimal character is now reduced to the computation of

C(X) and qC(X). We will parameterize modules for U(p, q) by their supports, i.e., by

orbits in K\B. The parameterization of orbits in K\B is well known [35]. Fix some orbit

Q ∈ K\B. The moment map image T ∗QB is a closed K-invariant subvariety of (g/k)∗ and

contains a unique dense K-orbit, which we refer to as µorb(Q). The K-orbits on (g/k)∗ are

parametrized by signed Young diagrams of signature (p, q) [11].

Definition 34 A signed Young diagram is a Young diagram with a sign in every box such

that signs alternate across rows, but not necessarily down columns. (Diagrams that can be

obtained from one another by exchange of equal length rows are taken to be equivalent.) A

signed Young diagram with signature (p, q) is one with p plus signs and q minus signs.

Given a K-orbit Q on B, fix some element ξ ∈ µorb(Q). Then,

µ−1(ξ) ∩ T ∗QB

is a component of the Springer fiber µ−1(ξ). As discussed in Chapter 6, we assign to this

component a standard Young tableau with shape corresponding to the Jordan form of N ,

the nilpotent map dual to ξ. Label this tableau by T (Q).

The following theorem is discussed extensively in [35]:

Theorem 35 Orbits Q ∈ K\B correspond bijectively with same shape pairs consisting of

a signed Young diagram of signature (p, q) and a standard Young tableau; the bijection is

obtained by taking each Q to the pair (µorb(Q), T (Q)).

Given a Harish-Chandra module X at regular integral infinitesimal character supported

on an orbit Q ∈ K\B, the associated cycle polynomial pX for the corresponding coherent

family is simply the fiber polynomial determined by T (Q). We know this polynomial when

T (Q) is a superstandard tableau. It remains for us to understand how to calculate fiber

polynomials for other tableaux. For this, we return to cell representations.
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The Barbasch–Vogan conjecture [38, 2] relates an invariant known as the wave front

cycle to the associated cycle of a Harish-Chandra module. The conjecture was proven by

Schmid and Vilonen [33]. This result in conjunction with [1] gives us the following:

Theorem 36 Fix regular integral infinitesimal character λ. For U(p, q), cells at λ stand

in correspondence with the K-orbits on (g/k)∗ via the map taking a module X to µorb(QX),

where QX is supp(X).

Once we fix a K-orbits on (g/k)∗ and hence a cell of Harish-Chandra modules, the

elements of the cell are parameterized by all standard tableaux of the Young shape for the

orbit. The following is a significant application of Kazhdan-Lusztig theory, as discussed in

[29].

Theorem 37 As a based Sn-representation, each Harish-Chandra cell for U(p, q) is iso-

morphic to a Kazhdan–Lusztig left cell representation; the isomorphism takes each module

X in a cell to the Kazhdan–Lusztig basis element parameterized by the tableau T (QX), where

QX = supp(X).

Of course, the fiber polynomials attached to a fixed Springer fiber also yield a based

Sn-representation; via the W -equivariance results in Section 5.7, the fiber polynomial repre-

sentation is isomorphic to a Kazhdan–Lusztig left cell representation with the isomorphism

taking the Kazhdan–Lusztig basis element parameterized by T to a fiber polynomial qT .

Given that we know qT when T is a column superstandard tableau, this potentially gives us

a method to compute all fiber polynomials or, equivalently, associated cycle polynomials,

provided that we can carry out the relevant Kazhdan–Lusztig calculations.

Recall the the polynomial representation PY from Chapter 2 and the isomorphism

φ : KLY → PY

from the Kazhdan–Lusztig representation to PY . The fiber polynomial attached to the

column superstandard tableau Γ is equal up scale to pΓ in PY by Theorem 29. Scale φ so that

it maps wΓ, the Kazhdan–Lusztig basis element parameterized by Γ, to the corresponding

fiber polynomial. With the developments in this chapter, the fiber polynomial for the

Springer fiber component parameterized by a tableau T is equal to φ(wT ), where wT is the

Kazhdan–Lusztig basis element parameterized by T . Our goal in what follows will be the

development of closed forms of fiber polynomials, and hence associated cycle polynomials,
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in special cases where this is possible. For this, we will need to understand some of the

combinatorics of Kazhdan–Lusztig representations.



CHAPTER 8

KAZHDAN–LUSZTIG COMBINATORICS

In this chapter, our goal is to develop the exchange rule (Theorem 56) which will be

essential in all subsequent calculations. In fact, this rule will be sufficient to calculate fiber

polynomials for all hook and two row Young diagrams.

We will assume the definition of Kazhdan–Lusztig polynomials and focus our attention

exclusively on the combinatorics of of Kazhdan–Lusztig left cell representations for the

symmetric group. The full machinery for general Coxeter groups is introduced in Kazhdan

and Lusztig’s original paper [21], while [16] and [6] provide thorough expositions of the

combinatorial details for the symmetric group. When not otherwise specified, the defini-

tions, lemmas and theorems in this section are discussed in detail in one of the latter two

references.

The Kazhdan–Lusztig representations of the symmetric group are irreducible repre-

sentations that come equipped with distinguished bases. These based representations are

remarkable for their ubiquity in interesting representation theoretic contexts.

Left cell representations are constructed from Kazhdan–Lusztig graphs, whose nodes are

the elements of the symmetric group. The great combinatorial challenge of this theory is to

determine Kazhdan–Lusztig graphs, which in turn may be derived from Kazhdan–Lusztig

polynomials. These polynomials can be computed by software for small n, but the resource

requirements of the computation grow much faster than n; even a modest calculation can

overwhelm a powerful computer. Alternative direct methods for the computation of Kazh-

dan–Lusztig graphs exist, but these are not known to be less computationally intensive than

direct computation of Kazhdan–Lusztig polynomials [6]. All known computational methods

are highly nonlocal; the problem of determining the graph at an arbitrary vertex is not in

general much simpler than determining the entire graph.
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8.1 Preliminaries

The Bruhat order will be essential in what follows.

Definition 38 The length of a permutation x is the length of a minimal expression for x

in terms of simple transpositions si. We define the Bruhat order on Sn by the rule that

x < y if some (equivalently any) minimal expression for x can be obtained by deleting letters

in some minimal expression for y; `(x, y) = `(y, x) is given by the number of letters that

must be deleted from the expression for y to obtain x.

We will freely use standard results on the Bruhat order. Thorough expositions are found

in [17] and [6]. To construct Kazhdan–Lusztig cell representations we will need, in addition

to Kazhdan–Lusztig cell graphs, certain data attached to each element of the symmetric

group.

Definition 39 The left descent set DL(x) of some x in the symmetric group Sn is the

subset of {1, 2, . . . , n− 1} consisting of all i such that i appears to the right of i+ 1 in the

one-line notation for x. The right descent set DR(x) of x is defined to be the left descent

set of x−1.

The theory we develop here will be specialized to left cells and left cell representations.

This theory relies on attaching left descent sets to each permutation in the symmetric group.

There is an analogous mirror image theory built by using right descent sets. For the sake

of concision, we will assume that a cell is a left cell unless otherwise specified.

Kazhdan–Lusztig theory for the symmetric group stands in a close relationship with the

theory of standard Young tableaux. This relationship begins with the Robinson–Schensted

correspondence.

Definition 40 The Robinson–Schensted correspondence is a bijection between elements of

the symmetric group Sn and all same shape pairs of standard Young tableaux with n boxes

in each tableau.

We now explain the procedure that gives the correspondence. Start with an element

of a symmetric group in one line notation. We read the numbers in this expression from

left to right. The procedure is defined inductively. Suppose that we have the same shape

(nonstandard) tableaux (Pi, Qi) after reading the first i numbers. We compare the next

number k to the first row of Pi; if k is greater than all numbers in the first row, then it
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is added to the end. If on the other hand kj < k < kj+1 for kj and kj+1 in the first row,

then k replaces or “bumps” kj+1 from the first row. (If k is less than every number in the

first row, then k bumps the first number in the row.) We then take kj+1 to the next row

and apply the same process applied with k in the first row. This continues until the process

terminates, possibly with the creation of a new one box row at the bottom of Pi. Once the

shape of Pi+1 has been determined, we append a box with i+ 1 to Qi so that Qi+1 has the

correct shape. The left tableau P is often known as the bumping tableau, while Q is called

the recording tableau. This procedure is best understood by example:

Example 41 We will construct the Robinson–Schensted pair for x = 315264 in S6.

Pi Qi

3 1

1
3

1
2

1 5
3

1 3
2

1 2
3 5

1 3
2 4

1 2 6
3 5

1 3 5
2 4

1 2 4
3 5 6

1 3 5
2 4 6

Definition 42 The descent set of a tableau T with n boxes is the set of all i in {1, 2, . . . , n}

such that i appears in a row above the row of i+ 1 in T .

Lemma 43 The left descent set DL(x) of x ∈ Sn is equal to the descent set of the left

tableau in the Robinson–Schensted pair of x.

Given a pair of elements u, v in the symmetric group, Kazhdan and Lusztig defined a

polynomial Pu,v(q). From these polynomials, we define a multiplicity µ(u, v) which equals

the coefficient of the q
1
2

(`(u,v)−1) term of Pu,v(q) if `(u, v) is defined and odd; and 0 otherwise.

Note that µ(u, v) is always an integer. When µ(u, v) is not zero, the multiplicity comes from

the highest degree term of Pu,v(q). Our goal is to avoid direct reference to Kazhdan–Lusztig

polynomials whenever possible; instead, we wish to extract from the literature standard
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combinatorial results for Kazhdan–Lusztig representations. This will ultimately culminate

in the exchange rule.

Definition 44 The (left) Kazhdan–Lusztig graph of the symmetric group Sn (or K-L

graph, for short) has as nodes the permutations in Sn. If µ(x, y) 6= 0, then the K-L graph

contains an edge {x, y} ∈ E. Each vertex is labeled by the left descent set DL(x). In the

right Kazhdan–Lusztig graph, right descent sets DR(x) replace left descent sets as vertex

labels.

Definition 45 (Left equivalence)

1. Generate a partial order on Sn by specifying that x �L y if an edge connects x and

y and DL(x) does not contain DL(y), i.e., in the full partial order, x �L y if there

is a sequence of edges from x to y with the vertices connected by each edge satisfying

appropriate conditions on left descent sets.

2. Define an equivalence relation ∼L on Sn by x ∼L y if x �L y and y �L x.

3. The equivalence classes under ∼L are called (left) cells.

4. The cell graph for a cell C is the restriction of the full Kazhdan–Lusztig graph on Sn

to the nodes in C.

Proposition 46 [6, Theorem 6.5.1] Each left cell in Sn is of the form {x ∈ Sn | Q(x) = T},

where Q(x) is the right tableau in the Robinson–Schensted pair for x and T is a fixed

standard tableau.

Proposition 47 [6, Theorem 6.5.2] Let C1 and C2 be two left cells in Sn defined by standard

tableaux T1 and T2 with the same shape. Then, the map φ : C1 → C2 defined by taking a

Robinson–Schensted pair (T, T1) to a pair (T, T2) is an isomorphism of cell graphs.

This last proposition tells us specifically that the combinatorics of a cell in Sn are determined

completely by the shape of the tableau that defines it.

Definition 48 The τ -invariant of a permutation x ∈ Sn is the set τ(x) of simple transpo-

sitions si such that i ∈ DL(x). The τ -invariant of a standard tableau T is the set of si such

that i is in the descent set of T .
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This terminology is standard in the context of Lie theory. See for instance [39], which is in

fact a precursor to Kazhdan and Lusztig’s more general developments in [21].

Definition 49 The Kazhdan–Lusztig cell representation of the cell C has a canonical basis

vx, x ∈ C. The representation is defined by the following rules:

1. If si ∈ τ(x), then

si · vx = −vx.

2. If si /∈ τ(x), then

si · vx = vx +

 ∑
{y|si∈τ(y)}

µ(x, y)vy

 .

Note in particular that y can only appear in the sum on the right if x and y are

connected by an edge.

We then have the following remarkable result:

Theorem 50 [6, Theorem 6.5.3] Let C be a Kazhdan–Lusztig left cell whose elements have

Robinson–Schensted pairs with shape T . The cell representation of C is isomorphic to the

representation for T constructed by Young.

Among other things, this means that every cell representation of Sn is irreducible and that

every irreducible representation occurs as a cell representation.

8.2 The Exchange Rule

We will now develop what we refer to as the exchange rule. This will be essential for

all polynomial calculations in this paper and provides a means of bypassing computation of

Kazhdan–Lusztig polynomials in certain cases.

As stated earlier, determination of full Kazhdan–Lusztig graphs is a computationally

difficult problem. However, we can find certain edges easily. The following lemma follows

from the definition of Kazhdan–Lusztig polynomials.

Lemma 51 [6, Lemma 6.2.2] The elements x and six are always connected by a multiplicity

one edge in the Kazhdan–Lusztig graph. Such edges are referred to as weak Bruhat edges.

By standard rules for the Bruhat order, six < x exactly when i + 1 occurs to the left of i

in the one line expression for x. This leads us to an alternate definition for the τ -invariant

of x:
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Definition 52 The τ -invariant of x is the set τ(x) of all simple transpositions si such that

six < x.

Suppose that exactly one of si, si+1 is in τ(x). Then, one of the following four patterns

occurs in the one line notation for x:

· · · i · · · i+ 2 · · · i+ 1 · · ·
· · · i+ 1 · · · i+ 2 · · · i · · ·
· · · i+ 1 · · · i · · · i+ 2 · · ·
· · · i+ 2 · · · i · · · i+ 1 · · ·

By trading the first and last numbers in the pattern, we exchange si and si+1 in τ(x), e.g.,

if x satisfies the first pattern above, then τ(x) contains si+1, but not si, whereas τ(six)

contains si but not si+1.

Definition 53 If τ(x) contains exactly one of si, si+1, define Li(x) to be the permutation

obtained by exchanging the first and last elements of the appropriate pattern above in the

one line notation for x. There is always a weak Bruhat edge connecting x and Li(x). We

also define Li for a tableau: suppose that T is a tableau such that τ(T ) contains exactly one

element of {si, si+1}. We obtain the tableau Li(T ) by exchanging either i, i + 1 or i + 1,

i+ 2 in such a way that τ(Li(T )) is obtained from τ(T ) by trading si with si+1.

A quick check shows that Li(T ) is well defined. The Li operations on permutations and

tableaux are directly related:

Proposition 54 Let x be an element of Sn with corresponding Robinson–Schensted pair

(P (x), Q(x))

such that τ(x) contains exactly one of si, si+1. Then, Li(x) has Robinson–Schensted pair

(Li(P (x)), Q(x)).

Proof. See the discussion around equation (5.9) in [16].

The following lemma will combine with Proposition 54 to yield the exchange rule.

Lemma 55 Suppose that x is some permutation such that τ(x) contains the simple trans-

position s but not the adjacent simple transposition s′. Then, in the left cell of x, there is

a unique y connected to x by an edge such that τ(y) contains s′ but not s; the connecting

edge has multiplicity 1.
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Proof. Observe that if s and s′ are adjacent simple transpositions in Sn, then ss′s = s′ss′.

But, ss′s ·vx = −ss′ ·vx, so s′ss′ ·vx = −ss′ ·vx. This implies that for any Kazhdan–Lusztig

basis element vz appearing in ss′ · vx, s′ ∈ τ(vz). By the formulas for Kazhdan–Lusztig

representations in Definition 49,

s′ · vx = vx +

k∑
i=1

vyi + [other terms with s and s′ in τ ]

where τ(yi) contains s′ but not s and the sum accounts for multiplicity if necessary. Next,

we have

ss′ · vx = −vx + k′vx +

k∑
i=1

vyi

+ [other terms with s and s′ in τ ] + [other terms with s but not s′ in τ ].

Of course, each yi is connected to x by an edge. Because these edges have multiplicity

greater than or equal to 1, k′ ≥ k. We will now use the fact that for any Kazhdan–Lusztig

basis element vz appearing in the expansion of ss′ · vx, s′ ∈ τ(vz); this tells us that

[other terms with s but not s′ in τ ] = 0,

k′ = 1 and k = 1.

Finally, we have:

Theorem 56 (The exchange rule.) For a fixed cell C, denote each Kazhdan–Lusztig basis

element by its tableau T . Suppose that τ(T ) contains a simple transposition s but not the

adjacent simple transposition s′. Then in the Kazhdan–Lusztig representation,

s′ · T = T + Li(T ) +
∑
k

Uk

where τ(Uk) contains s and s′ as well as any sj ∈ τ(T ) that is not adjacent to s′. The sum

accounts for multiplicity. In this context, we will refer to Li(T ) as the exchange tableau

and the other tableaux in the expansion of s′ · T as nonexchange tableaux.

Proof. This is just a combination of previous lemmas except for the requirement that for

each Uk, τ(Uk) contains any simple transposition in τ(T ) that is not adjacent to s′. If r

is a simple transposition in τ(T ) that is not adjacent to s′, then s′ and r commute, so

r · (s′ · T ) = −s′ · T .
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8.3 A Small Example: [3,2,1]

In this section, we will demonstrate application of the exchange rule to computation of

fiber polynomials for a small Young diagram. (This approach to computation works only

in relatively simple cases, such as the present one and in the setting of hook and two row

tableaux which we will discuss later.) Begin with the column superstandard tableau

1 4 6
2 5
3

1

where the superscript 1 indicates that this is T1 and corresponds to a polynomial p1. Integer

labels on tableaux also indicate the order in which we are first able to calculate their

corresponding polynomials. Of course, each calculation depends on previously computed

polynomials.

By Proposition 29, we compute

p1 =
1

2
(x1 − x2)(x1 − x3)(x2 − x3)(x4 − x5).

Notice that (34) /∈ τ(T1) but (23) and (45) are in τ(T1). We thus may apply the exchange

rule to the pair (23), (34) and to the pair (34), (45). In this case, the exchange rule will

yield the same exchange tableau for both pairs:

1 3 6
2 5
4

2

.

(As we will see, this will not always be the case.) To compute (34) · T1, we must rule out

other tableaux that could appear in its expansion. But, the exchange rule tells us that

any nonexchange tableau Tk in the expansion must contain the τ -invariant of T1 and the

transposition (34). A quick check shows that no such Tk exist, so

(34) ·
1 4 6
2 5
3

1

=
1 4 6
2 5
3

1

+
1 3 6
2 5
4

2

.

Similar reasoning now gives us the following:

(56) ·
1 4 6
2 5
3

1

=
1 4 6
2 5
3

1

+
1 4 5
2 6
3

3

.

(34) ·
1 4 5
2 6
3

3

=
1 4 5
2 6
3

3

+
1 3 5
2 6
4

4

.
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Now, we wish to compute

(23) ·
1 3 6
2 5
4

2

.

Again, (23) is not in τ(T2) whereas (12) and (34) are. In this case, the pairs (12), (23) and

(23), (34) yield different exchange tableaux:

1 2 6
3 5
4

5

and
1 4 6
2 5
3

1

respectively. Ruling out nonexchange tableaux in the expansion as before, we have

(23) ·
1 3 6
2 5
4

2

=
1 3 6
2 5
4

2

+
1 2 6
3 5
4

5

+
1 4 6
2 5
3

1

.

Continuing in like manner, we get

(45) ·
1 3 5
2 6
4

4

=
1 3 5
2 6
4

4

+
1 3 4
2 6
5

6

.

(23) ·
1 3 5
2 6
4

4

=
1 3 5
2 6
4

4

+
1 2 5
3 6
4

7

+
1 4 5
2 6
3

3

.

(45) ·
1 2 6
3 5
4

5

=
1 2 6
3 5
4

5

+
1 2 6
3 4
5

8

.

(45) ·
1 2 5
3 6
4

7

=
1 2 5
3 6
4

7

+
1 2 4
3 6
5

9

.

(34) ·
1 2 4
3 6
5

9

=
1 2 4
3 6
5

9

+
1 2 3
4 6
5

10

+
1 2 5
3 6
4

7

.

(56) ·
1 2 3
4 6
5

10

=
1 2 3
4 6
5

10

+
1 2 3
4 5
6

11

.

(45) ·
1 2 3
4 5
6

11

=
1 2 3
4 5
6

11

+
1 2 4
3 5
6

12

+
1 2 3
4 6
5

10

.
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(12) ·
1 2 4
3 5
6

12

=
1 2 4
3 5
6

12

+
1 3 4
2 5
6

13

.

(34) ·
1 3 4
2 5
6

13

=
1 3 4
2 5
6

13

+
1 3 5
2 4
6

14

.

(45) ·
1 3 5
2 4
6

14

=
1 3 5
2 4
6

14

+
1 3 4
2 5
6

13

+
1 3 6
2 4
5

15

.

(23) ·
1 3 5
2 4
6

14

=
1 3 5
2 4
6

14

+
1 2 5
3 4
6

16

.

We then have the following sequence of equations to compute polynomials:

p2 = (34) · p1 − p1.

p3 = (56) · p1 − p1.

p4 = (34) · p3 − p3.

p5 = (23) · p2 − p2 − p1.

p6 = (45) · p4 − p4.

p7 = (23) · p4 − p4 − p3.

p8 = (45) · p5 − p5.

p9 = (45) · p7 − p7.

p10 = (34) · p9 − p9 − p7.

p11 = (56) · p10 − p10.

p12 = (45) · p11 − p11 − p10.

p13 = (12) · p12 − p12.

p14 = (34) · p13 − p13.

p15 = (45) · p14 − p14 − p13.

p16 = (23) · p14 − p14.

This glib recitation of calculations hides the requisite process of trial and error necessary to

arriving at these relations. The principal challenge in relating new tableaux to T1 is that
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it is difficult to rule out the existence of nonexchange tableaux in each expansion. Only

exchange tableaux appear in the expansions above, but this was made possible by careful

searching. As Young diagrams grow larger, this becomes an insurmountable problem and it

is not possible to compute all the polynomials without recourse to computation of the full

Kazhdan–Lusztig graph.

These computations are quite complicated, and it is easy to make mistakes. As such, it

is useful to compute polynomials for each tableau as new relations are constructed and then

check the τ -invariants for these polynomials. This can easily be carried out using computer

algebra software.



CHAPTER 9

FIBER POLYNOMIALS FOR HOOK

SHAPES

As in previous sections, we let h be the diagonal Cartan and b the upper triangular

Borel. The variables xi are functionals on h∗ given by xi = Ei,i in h.

Let H be a hook shape Young diagram with m+1 rows. If T is the column superstandard

tableau of shape H, we know from Theorem 29 that

pT = Am

 ∏
1≤i<j≤m+1

(xi − xj)

 (9.1)

where

Am =
1

m!(m− 1)! · · · 1
.

Thus, the polynomial representation for the cell corresponding to H is

PH = spanC{σ · pT | σ ∈ Sn}.

9.1 Characteristics of the KL-graph

The Kazhdan–Lusztig combinatorics for hook shapes were originally worked out by

Kerov in [23]. These shapes essentially give the simplest possible Kazhdan–Lusztig graphs.

In particular, the relationship between tableaux of shape H and their corresponding τ -

invariants is quite transparent: the τ -invariant of a tableau T is the set of all si such that

i+ 1 appears as a label below the top row of T . The τ -invariants for tableaux of shape H

are the m-element subsets of {s1, s2, . . . sn−1} and the map from tableaux to such sets is a

bijection. For a polynomial p, define τ(p) be the set of all si such that si · p = −p. Then,

we have the following:

Lemma 57 The fiber polynomial for a hook shaped tableau T lies in a one-dimensional

subspace Pτ(T ) of PH consisting of polynomials p satisfying τ(p) = τ(T ). (We include 0 in

Pτ(T ).)
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Proof. One can show that for each m-element set S of simple transpositions, KLH has

a one-dimensional subspace of vectors v satisfying τ(v) = S. (This subspace is the span

of a single Kazhdan–Lusztig basis element.) Since PH is isomorphic to KLH , the theorem

follows.

We are now close to understanding the fiber polynomials, but we still need to compute

their scale factors. To do this, we need to understand the Sn action on PH in terms of

the Kazhdan-Lusztig basis. As mentioned, the Kazhdan–Lusztig graph that defines the

basis is very simple in this case. In particular, given a simple transposition α /∈ τ(T ), any

nonexchange tableau in α · T would need to contain τ(T ) ∪ {α}. The τ -invariants for all

tableaux have the same cardinality so nonexchange tableaux do not exist.

Since tableaux of shape T can be parameterized by their τ -invariants, it will be useful to

represent τ -invariants graphically by showing their simple transpositions as shaded nodes

on a Dynkin diagram. For instance,

α β γ

)(
represents a tableau whose τ -invariant contains α and γ, but not β. (The τ -invariant may

also contain other simple transpositions not shown.)

It is a simple exercise to show that for any tableau with τ -invariant containing α but

not β and γ, we get

α β γ

)
=β·

(
α β γ

)
+

(
α β γ

)
R

(
where the R indicates that this τ -invariant is obtained from the original one by “sliding” an

element to the right. (Naturally, L will indicate sliding to the left.) Elements of τ -invariants

not shown are the same for all diagrams. We also have

α β γ

)
=β·

(
α β γ

)
+

(
α β γ

)
L

(
and

α β γ

)
=β·

(

α β γ

)
+

(
α β γ

)
R

+
(

α β γ

)
L
.

(
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If β /∈ τ , we may say in general that

β · Tτ = Tτ + (Tτ )R + (Tτ )L (9.2)

where for instance (Tτ )R is 0 if α /∈ τ . (We must use the L and R notation carefully since

its meaning is clear only in the context of some simple transposition β.) This leads us to

the definition of a partial order on τ -invariants for a fixed hook shape H:

Definition 58 Given m element sets τ and τ ′ of simple transpositions si, τ ≤ τ ′ if τ ′ can

be obtained from τ by “sliding” elements of τ to the right; that is, generate a partial order

by specifying that τ ≤ τ ′ if there is some i such that si ∈ τ , si+1 /∈ τ and τ ′ can be obtained

from τ by replacing si with si+1. We further say that τ < τ ′ if τ 6= τ ′. Note in particular

that the column superstandard tableau T satisfies τ(T ) ≤ τ ′ if τ ′ is any m element set of

simple transpositions.

Using equation (9.2), we can inductively define polynomials by the equation

pTR = β · pT − pT − pTL (9.3)

when β is not in the τ -invariant of T . (Note that T and TL are less than TR.) We will

induct on < in some of our proofs.

Now, we will present a series of lemmas that will allow us to describe the fiber polyno-

mials in detail. Note that any polynomial in the vector space PH consists of terms of the

form

xmi1x
m−1
i2
· · ·x1

im (9.4)

where {i1, i2, . . . im} is some m element subset of {1, 2, . . . n}. Given σ ∈ Sm, we can act by

σ on the exponents of xmi1x
m−1
i2
· · ·x1

im
:

σ ∗ xmi1x
m−1
i2
· · ·x1

im = x
σ(m)
i1

x
σ(m−1)
i2

· · ·xσ(1)
im

.

For p ∈ PH , σ ∗ p is defined by applying σ term by term.

Lemma 59 Given σ ∈ Sm and p ∈ PH ,

σ ∗ p = sgn(σ)p

Proof. One easily shows that the lemma is true for pT when T is the column superstandard

tableau. It is then also true for θ · pT , θ ∈ Sn. (Here, θ acts by the permutation action on

variables.) Any p ∈ PH is a linear combination of such polynomials and the lemma follows.



47

Definition 60 Given a set τ of simple transpositions si, define Sτ to be the subgroup of

Sn generated by the simple transposition in τ . Let p be some polynomial in PH and let Sτ

act by permuting variables; then, for any σ ∈ Sτ(p),

σ · p = sgn(σ)p.

Definition 61 Given a set τ of simple transpositions si, we define the components of τ to

be the maximal sequences

{sk+1, sk+1, . . . , sk+j}

of adjacent simple transpositions in τ .

Lemma 62 Given a polynomial p ∈ PH with

{sk+1, sk+2, . . . sk+j}

a component of τ(p), each monomial of p contains exactly j of the variables

xi+1, xx+2, . . . , xi+j+1.

Proof. Because any transposition σ ∈ Sτ must send pτ to −pτ , σ cannot fix any mono-

mial term of pτ . Suppose that a term xmk1x
m−1
k2
· · ·x1

km
is missing two variables from

xi+1, xx+2, . . . , xi+j+1. Then, transposition of these variables fixes xmk1x
m−1
k2
· · ·x1

km
, a con-

tradiction. If on the other hand some term of pτ contained all of xi+1, xx+2, . . . , xi+j+1,

then this term would contain more than m variables.

Given σ ∈ Sm × Sτ and p ∈ PH , define σ · p by letting Sm act on exponents and Sτ act

on variables.

Lemma 63 Monomials of all forms allowed by Lemma 62 and expression (9.4) occur in

pτ . For each σ ∈ Sm × Sτ , sgn(σ)σ permutes the monomials of pτ ; Sm × Sτ acts on these

monomials with a single orbit.

9.2 The Main Formula

This leads us to the main theorem for fiber polynomials attached to hook shaped Young

tableaux:

Theorem 64 The fiber polynomial pT attached to the Young tableau T of hook shape H is

the unique polynomial satisfying the following properties:
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1. pT consists of monomial terms of the form xmk1x
m−1
k2
· · ·x1

km
.

2. With Sm acting on exponents and Sτ (T ) acting on variables as explained above, σ·pT =

sgn(σ)pT for all σ ∈ Sm × Sτ(T ).

3. pT has a monomial term

Amx
m
j1x

m−1
j2
· · ·x1

jm

where sj1 , sj2 , . . . sjm are the simple transpositions in τ(T ) ordered so that j1 < j2 <

. . . < jm.

Proof. The first two parts of the theorem are simply restatements of earlier lemmas. It

remains only to prove that the coefficient of the term in part 3 is Am. For this, we apply

induction on <.

Part 3 is obviously true if T is the column superstandard tableau. Otherwise, there

exists some T ′ < T and a simple transposition β so that

pT = β · pT ′ − pT ′ − pT ′L

where pT ′L may be 0. (See equation (9.3); pT equals pT ′R in the context of the simple

transposition β.)

We now work in two cases: near β, τ(T ′) is either

α β γ

)
(Case I)

(
or

α β γ

)
(Case II).

(
We can understand the proof by working out each case in the n = 4 setting.

• Case I:

In the equation

pT = β · pT ′ − pT ′ − pT ′L , (9.5)

pT ′ = Am(x2
1x3 − x1x

2
3 + x1x

2
4 − x2

1x4 + x2
2x4 − x2x

2
4 + x2x

2
3 − x2

2x3),

β = (23),

β · pT ′ = Am(x2
1x2 − x1x

2
2 + x1x

2
4 − x2

1x4 + x2
3x4 − x3x

2
4 + x3x

2
2 − x2

3x2),
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and

pT ′L = Am(x2
1x2 − x1x

2
2 + x1x

2
3 − x2

1x3 + x2
2x3 − x2x

2
3).

Adding up all the terms of form x2
2x3 on the right hand side of equation (9.5) tells us

that Amx
2
2x3 is a term of pT .

• Case II:

In this case, equation (9.5) reduces to

pT = β · pT ′ − pT ′ , (9.6)

and the polynomials on the right-hand side becomes

pT ′ = Am(x1 − x2)

and

β · pT ′ = Am(x1 − x3)

so that Amx2 is a term of pT .

The next theorem is a constructive version of Theorem 64:

Theorem 65 Given a tableau T of some hook shape H, the fiber polynomial for T is given

by

pT =
Am
B

 ∑
σ∈Sm×Sτ(T )

sgn(σ)σ · (xmj1x
m−1
j2
· · ·x1

jm)

 (9.7)

where m+1 is the number of rows in H, sj1 , sj2 , . . . sjm are the simple transpositions in τ(T )

ordered so that j1 < j2 < . . . < jm, Am = 1
m!(m−1)!···1 and B is the number of elements in

the stabilizer of xmj1x
m−1
j2
· · ·x1

jm
in Sm×Sτ . Equivalently, B is a positive coefficient chosen

so that each monomial term has coefficient plus or minus Am.

This of course also gives us the associated cycle polynomial for an irreducible module X

with support Q ∈ K\B and T (Q) = H.

9.3 Comparison with Methods of
Barchini and Zierau

In this section, we will reproduce a calculation from [3] to compare our methods with

those of Barchini and Zierau. Whereas we have obtained closed forms for hook shapes and
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will discuss two row shapes in Chapter 10, their techniques compute associated cycles for

any Harish-Chandra module X that is constructed from a discrete series representation.

Here, we will reproduce the calculation in Example 6.10 of [3] and carry out the same

calculation using the formulas developed in this chapter. Begin with the real form SU(3, 2).

Then, k = gl(3,C) × gl(2,C). Our Cartan subalgebra h consists of the diagonal matrices

in gl(5,C). Our chosen simple system is given by {e1 − e2, e2 − e3, e3 − e4, e4 − e5}, where

ek is the functional that returns the Ek,k entry of a matrix in h. There is a corresponding

simple system {e1− e2, e2− e3, e4− e5} for k. The closed K-orbits on the flag variety stand

in correspondence with choices of positive systems in ∆(g, h) that contain the standard

positive system in ∆(k, h). Such a system is determined by an ordering of the integers 1

through 5 such that 1 occurs before 2 which is chosen before 3; and 4 is chosen before 5.

In this case, we choose the sequence {4, 1, 2, 3, 5}. This corresponds to the simple system

{e4−e1, e1−e2, e2−e3, e3−e5}. Taking the corresponding positive system yields a nilpotent

subalgebra n. Define a Borel subalgebra b = n ⊕ h. The corresponding closed K-orbit is

given by Z = K · b. This orbit determines a discrete series representation of SU(3, 2).

Following a paper of Yamamoto [43], we can obtain the clan parameterization of Z

by assigning a positive sign to {1, 2, 3} and a minus sign to {4, 5}. Then, the sequence

{4, 1, 2, 3, 5} yields the clan {−,+,+,+,−}. The moment map image of K · b contains a

dense orbit µorb(Z) obtained by reading the signs in the clan from right to left and adding

them to a signed tableau. We start with −:

− .

The next sign is added to the end of this row:

− + .

In a signed Young diagram, two plus signs cannot appear next to each other in a row, so +

goes to a new row:

− +
+ .

This happens again with the next +:

− +
+
+ .
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The next − goes next to + on the top row:

− + −
+
+ .

This yields one of the tableaux in the same shape pair parameterization of Z. Following

work of Garfinkle in [15], we obtain the standard tableau for the Springer fiber component

parameterized by T (Z) by numbering boxes in the order in which they appear in the

construction of the signed Young diagram for µorb(Z). This gives us the following sequence

of same shape pairs:

− 1

− + 1 2

− +
+

1 2
3

− +
+
+

1 2
3
4

− + −
+
+

1 2 5
3
4 .

We now use Theorem 64 to compute the associated cycle polynomial. The τ -invariant

for T (Z) is {s2, s3} and the coefficient A2 = 1
2 . This yields the polynomial

p =
1

2
(x2

2x3 − x2x
2
3 + x2x

2
4 − x2

2x4 + x2
3x4 − x3x

2
4). (9.8)

Note that this computation is implicitly carried out with respect to the standard positive

system in ∆(g, h) given by the simple roots {e1 − e2, e2 − e3, e3 − e4, e4 − e5}; while we

choose a nonstandard positive system to determine the K-orbit Z, p gives the associated

cycle multiplicities across a coherent family constructed by taking the standard dominant

chamber in h∗.

Barchini and Zierau in their calculations construct a certain reductive subgroup L =

GL(3) ×GL(1) ×GL(1) of GL(5,C). Note however that L is built using the simple roots

{e4 − e1, e1 − e2, e2 − e3, e3 − e5} with the diagonal Cartan subalgebra. Define

λ = x1e1 + x2e2 + x3e3 + x4e4 + x5e5.



52

Then, the multiplicity polynomial is computed on the (nonstandard) dominant chamber by

p′ = gr dim(L · wλ)

where this again is the highest degree part of the polynomial obtained by computing the

dimension and wλ is a highest weight vector in an irreducible representation with highest

weight λ. (In the original paper, λ is shifted; we can ignore the shift since we are taking

the highest degree part of the dimension polynomial.)

By the Weyl dimension formula, we get

p′(λ) =
1

2
(λ, e4 − e1)(λ, e4 − e2)(λ, e2 − e1)

=
1

2
(x4 − x1)(x4 − x2)(x1 − x2).

This expression does not agree with our earlier calculation. However, this is due to the

nonstandard choice of positive system used in the computation of p′. The Weyl group

element

w =

(
1 2 3 4 5
2 3 4 1 5

)
takes the simple system {e4 − e1, e1 − e2, e2 − e3, e3 − e5} to the standard simple system.

Then, we have

p′(w−1 · λ) =
1

2
(x1 − x2)(x1 − x3)(x2 − x3) = p(λ).



CHAPTER 10

THE TWO ROW CASE

In this chapter, we will use the exchange rule to carry out fiber polynomial calculations

for all two row tableaux.

10.1 Two Row Standard Tableaux and
Crossingless Matchings

Once again, take h to be the diagonal Cartan subalgebra and choose the positive system

of roots that gives the upper triangular Borel subalgebra. The variables xi are functionals

on h∗ specified by letting xi = Ei,i in h.

In [14], Fung establishes a bijective correspondence between [n−p, p] standard tableaux

and cup diagrams with n nodes and p cups. In current parlance, these diagrams are called

crossingless matchings. (See for example [24].)

Definition 66 An [n−p, p] crossingless matching is a diagram with n nodes arranged along

a horizontal line and p arcs above the horizontal line whose ends connect to nodes in such

a way that no two arcs connect to the same node, no unconnected node is under an arc and

arcs do not cross.

Example 67 The diagram

1 2 3 4 5 6

is a [3, 3] crossingless matching, while

1 2 3 4 5 6

is not a crossingless matching.
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Definition 68 Given an [n − p, p] standard tableau T , construct an [n − p, p] crossingless

matching by starting with n nodes labeled left to right 1 to n. Reading the labels in the lower

row of T from left to right, draw an arc from the node specified by the label to the nearest

open node to the left.

Observe that the possible bottom rows of [n − p, p] standard tableaux are exactly the

strictly increasing sequences of p integers such that the kth integer is greater than or equal

to 2k and less than or equal to n. These sequences completely characterize the tableaux.

The procedure clearly gives an injective map; every [n− p, p] crossingless matching can be

constructed in this way, so the map is bijective.

Example 69 The tableau
1 3 4 7 8
2 5 6

corresponds to a [5, 3] crossingless matching

1 2 3 4 5 6 7 8

10.2 Fiber Polynomials

The [n− p, p] column superstandard tableau has corresponding crossingless matching

1 2 3 4 5 6
· · ·

with p arcs in total.

By Proposition 29, the [n− p, p] column superstandard tableau has fiber polynomial

(x1 − x2)(x3 − x4)(x5 − x6) · · ·

where the polynomial has p factors. In other words, there is a bijective correspondence

between arcs in the crossingless matching and factors in the fiber polynomial.

Given a crossingless matching C, denote by Arc(C) the set of pairs (i, j) with i < j such

that there is an arc in C connecting the ith node to the jth node. The following Theorem

gives a complete description of fiber polynomials for two row tableaux.
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Theorem 70 Let T be an [n − p, p] Young tableau and CT its corresponding crossingless

matching. Then, the fiber polynomial pT is given by

pT =
∏

(i,j)∈Arc(CT )

(xi − xj).

This theorem also gives us the associated cycle polynomial of a module X with support

Q ∈ K\B and T (Q) = T a two row tableau.

Proof. Define a partial order on [n− p, p] tableaux by specifying that T ≤ T ′ if each label

in the bottom row of T is less than or equal to the corresponding label in the bottom row

of T ′; T < T ′ if T 6= T ′. The column superstandard tableau is the unique minimum under

this order. We’ll proceed by induction on <.

Given a nonminimal tableau T , let i be the first label in the bottom row read from the

left that differs from the labels in the minimum tableau, i.e., such that i is the kth label

and i > 2k; both i− 1 and i− 2 will be on the top row, so we have something like

T =

(
· · · i− 2 i− 1

i
· · ·
)
.

(Note that τ(T ) contains si−1 but not si−2.) Define a new tableau

T ′ =

(
· · · i− 2 i

i− 1
· · ·
)

by exchanging i and i− 1 in T and note that T ′ < T . Observe that τ(T ′) contains si−2 but

not si−1. Then,

si−1 · T ′ = si−1 ·
(
· · · i− 2 i

i− 1
· · ·
)

=

(
· · · i− 2 i

i− 1
· · ·
)

+

(
· · · i− 2 i− 1

i
· · ·
)

= T ′ + T. (10.1)

No nonexchange tableaux occur on the right of equation (10.1) because the τ -invariant for

a two row tableau never contains two adjacent simple transpositions. If si ∈ τ(T ′), then

the exchange tableau for the pair {si−2, si−1} is also the exchange tableau for {si−1, si}.

The next step in the proof is to translate equation (10.1) into the language of crossingless

matchings and then apply our induction assumption on polynomials. Two cases arise.
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• Case I:

In the matching of T ′, the ith vertex is connected to an arc, i.e., we have

· · · · · ·
i− 2 i− 1 i j
· · ·

Tracing through the description of the map from tableaux to matchings in Definition

66, we get

si−1 ·

(
· · · · · ·

i− 2 i− 1 i j
· · ·

)
T ′

=

(
· · · · · ·

i− 2 i− 1 i j
· · ·

)
T ′

+

(
· · · · · ·

i− 2 i− 1 i j
· · ·

)
T

where the arcs not shown are the same for both tableaux.

By the induction assumption, the polynomial for T ′ is given by

pT ′ = qT ′(xi−2 − xi−1)(xi − xj)

where qT ′ does not involve the variables xi−2, xi−1, xi or xj . Computing the action of

si−1, we get

si−1 · pT ′ = qT ′(xi−2 − xi)(xi−1 − xj)

= qT ′(xi−2 − xi−1)(xi − xj) + qT ′(xi−2 − xj)(xi−1 − xi)

= pT ′ + pT

where pT is the polynomial for T .
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• Case II:

In the matching corresponding to T ′, the ith vertex is not connected to an arc:

· · ·
i− 2 i− 1 i
· · ·

Using equation (10.1) and the mapping from tableaux to matchings, we get

si−1 ·

(
· · ·

i− 2 i− 1 i
· · ·

)
T ′

=

(
· · ·

i− 2 i− 1 i
· · ·

)
T ′

+

(
· · ·

i− 2 i− 1 i
· · ·

)
T

.

The polynomial for T ′ is

pT ′ = qT ′(xi−2 − xi−1)

where qT ′ does not involve the variables xi−2, xi−1 or xi The action of si−1 gives us

si−1 · pT ′ = si−1 · qT ′(xi−2 − xi−1) = qT ′(xi−2 − xi)

= qT ′(xi−2 − xi−1) + qT ′(xi−1 − xi) = pT ′ + pT

where pT is the polynomial corresponding to the matching for T .
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A SKEIN THEORETIC CONSTRUCTION

The combinatorics of Kazhdan–Lusztig graphs for two row Young tableaux first appear

in a paper by Lascoux and Schützenberger [28]. We will now discuss a skein theoretic

picture developed by Russell and Tymoczko in a different context [32, 31].

Russell and Tymoczko’s work is in the context of Springer representations for Springer

fibers over two row nilpotent elements. Kazhdan and Lusztig’s original paper defining Kazh-

dan–Lusztig representations [21] was motivated by earlier work on Springer representations

in [22] and it was believed that the Kazhdan–Lusztig basis coincided with the basis of

fundamental classes of Springer fiber components in top degree cohomology for the Springer

representation in type A. (See for instance [23].) This was later established as a consequence

of a result of Melnikov [30].

Independent of this relationship, [32] uses combinatorial means to establish that the

crossingless matching basis is equivalent to the Kazhdan–Lusztig basis for all two equal row

Young diagrams. We will give a combinatorial proof based on polynomial calculations for

the general two row case.

This skein theoretic construction of Kazhdan–Lusztig representations is remarkable

because previous approaches to these representations framed computations in terms of

the actions of simple transpositions. The skein theoretic picture offers a direct way to

compute the image of a Kazhdan–Lusztig basis element under the action of any element of

the symmetric group.

To build the full skein theoretic structure, we first use the polynomial structure from

the last chapter to make general statements about the actions of simple transpositions on

polynomials, crossingless matchings and, equivalently, Kazhdan–Lusztig basis elements. We

will state these rules in terms of matchings.

Rule 1 If nodes i and i+ 1 are ends of the same arc, then

si ·

(
· · ·

i i+ 1
· · ·

)
= −

(
· · ·

i i+ 1
· · ·

)
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Rule 2 If the i and i+ 1 nodes are the ends of separate arcs, then

si ·

(
· · · · · · · · ·

i i+ 1j k
· · ·

)

=

(
· · · · · · · · ·

i i+ 1j k
· · ·

)

+

(
· · · · · · · · ·

i i+ 1j k
· · ·

)
.

Note that this rule also works when one arc lies over the other; the second matching is

obtained by joining the pairs i, i+ 1 and j, k with arcs.

Rule 3 If i and i+ 1 label the end of an arc and an unconnected vertex, then

si ·

(
· · ·

j
· · ·

i i+ 1
· · ·

)

=

(
· · ·

j
· · ·

i i+ 1
· · ·

)
+

(
· · ·

j
· · ·

i i+ 1
· · ·

)
.

Rule 4 If i and i+ 1 both label unconnected vertices, then

si ·

(
· · ·

i i+ 1
· · ·

)
=

(
· · ·

i i+ 1
· · ·

)
.

The above rules reduce to the following skein theoretic formulation of the Kazhdan–Lusztig

representation in terms of the basis of crossingless matchings:

Theorem 71 Given a crossingless matching M on n nodes and an element σ ∈ Sn, σ ·M

is obtained by gluing a loopless graph corresponding to σ to the bottom of M and reducing

to a sum of crossingless matchings using the following relations:
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1.

( )
=

( )
+

( )

2. X t

( )
= −2X

3. X t

( )
= 0

The segment in (3) connects interior vertices.

We have not yet defined interior vertices. These are most easily understood by looking at

an example:

Example 72 (
1 2 3
2 1 3

)
·

( )

=


 ·( )

=


 =

  .

The points to which lines connect on the bottom of the last picture are referred to as base

vertices. Other vertices, such as the lone vertex at the top of the picture, are referred to as

interior vertices. Of course, the diagram is not yet decomposed into crossingless matchings:  =

( )
+

( )

=

( )
+

( )
.

As seen in the final expression, an interior vertex connected to a base vertex by a line that

does not cross other lines collapses down to a base vertex.

Example 73 (
1 2 3 4
2 1 3 4

)
·

( )



61

=


 ·

( )
=




=


+

( )

=

( )
.

Example 74 (
1 2 3 4 5 6
1 3 2 5 4 6

)
·
( )

=


 · ( )

=

( )
=

( )

=
( )

+

( )

=
( )

+

( )

+

( )
+

( )

Note that in this context, we do not differentiate between over and under crossings. The

next three lemmas will address the applicability of Reidemeister moves in this setting.

Lemma 75 (The first Reidemeister move.)

= −

( )
.

.. (\ Xn 
Xn 0 on 

o 0 n 

Q 
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Proof.

=


 +




= −2

( )
+

( )

= −
( )

.

The statement of Theorem 71 requires that the graph of a symmetric group element

not have loops because, as we have just seen, any loop is equivalent to a −1 in the final

calculation.

Lemma 76 (The second Reidemeister move.)
 =


 .

Proof. In this proof, we will make use of the first Reidemeister move as established in

Lemma 75 
 =


+




=


−




=


+


−




=


 .
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Lemma 77 (The third Reidemeister move.)
 =


 . (11.1)

Proof. In this proof, we will show that the left and right hand sides of equation (11.1)

can be decomposed to the same expressions. We will make use of the second Reidemeister

move. 
 =


 +




=


 +


 .


 =


 +




=


 +


 .

We must also consider lines that terminate on interior vertices. In general,  6=

  .

We can however use allowed Reidemeister moves if we are careful. For example,  =


 .
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Example 78 In this example, we will make extensive use of the Reidemeister moves.

(
1 2 3 4 5 6 7
4 3 5 2 1 7 6

)
·

( )

=


 ·

( )

=





=

 

= −

( )

= −

( )
−

( )

= −
( )

−
( )

−
( )

−
( )

.

One easily checks that(
1 2 3 4 5 6 7
4 3 5 2 1 7 6

)
·
(
(x1 − x6)(x2 − x3)(x4 − x5)

)
= −(x1 − x2)(x3 − x4)(x5 − x6)− (x1 − x2)(x3 − x4)(x6 − x7)

−(x1 − x2)(x3 − x6)(x4 − x5)− (x1 − x2)(x4 − x5)(x6 − x7).
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Proof of theorem 71: First of all, we must prove that σ · C is well defined for σ ∈ Sn
and a crossingless matching C. We must account for the fact that σ can be represented

by infinitely many loopless crossing configurations. However, all the reductions for σ · C

must be equivalent by application of the second and third Reidemeister moves. Given two

elements θ, σ ∈ Sn, applying σ, reducing, applying θ and reducing is equivalent to gluing θ

to the bottom of σ, applying the result to the bottom of the matching and reducing. Thus,

(θσ) · C = θ · (σ · C). This tells us that the construction is a group homomorphism from

Sn to the general linear group of the complex span of [n− p, p] crossingless matchings. One

easily checks that the construction gives the right answer for all simple transpositions. It

follows that the construction yields the Kazhdan–Lusztig representation.
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