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ABSTRACT 

 
              The rapidly decreasing of costs of sequencing is revolutionizing genetics. Two 

applications of next-generation sequencing data are of particular importance in this 

regard. First, high-throughput sequencing now offers a fast and inexpensive means to 

investigate the genomes and genetics of nonmodel organisms. Second, human personal-

genomics data offer a unique opportunity for discovering the genetic basis of human 

traits and diseases.  

              My PhD research has focused on developing computational methods to study 

genetics using next-generation sequencing data. In the first chapter of my thesis, I present 

a series of genome-based studies of the venomous cone snail Conus bullatus, a source of 

pharmaceutically important small cysteine-rich peptides called conopeptides or 

conotoxins. Using high-coverage transcriptome sequence from its venom duct together 

with low-coverage genomic reads, I have developed new methods to characterize key 

genomic traits in the absence of a complete reference genome, including genome size, 

sequence diversity, repeat content and mobile element densities. I have also developed an 

in silico transcriptomics pipeline for conotoxin discovery, and have used it to identify 

novel conotoxins as well as candidate enzymes that are likely to be involved in the post-

translational processing of conotoxins. 

              In the second and the third chapters of my thesis, I describe a probabilistic 

disease-gene search algorithm VAAST (the Variant Annotation, Analysis and Search 
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Tool) for finding damaged genes and their disease-causing variants; I also describe a 

powerful new extension to the original code-base called VAAST 2.0. In these chapters, I 

demonstrate that VAAST is both an accurate rare Mendelian disease-gene finder and a 

powerful means for identifying genes and alleles underlying common diseases. I have 

also carried systematic population-genetic simulations in order to benchmark the 

performance of VAAST and VAAST 2.0 under different genetic scenarios, and these 

demonstrate that VAAST 2.0 is the most robust and broadly applicable method available 

today for identification of genes involved in common genetic diseases such as breast 

cancer,  hypertriglyceridemia and Crohn disease.  
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CHAPTER 1 
 

 
CHARACTERIZATION OF THE CONUS BULLATUS 

 
 GENOME AND ITS VENOM-DUCT  

 
TRANSCRIPTOME 

 
 
           The following chapter is a reprint of an article coauthored by myself, Pradip K 
Bandyopadhyay, Baldomero M Olivera and Mark Yandell. This article is originally 
published in BMC Genomics 2011, 12:60. 
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RESEARCH ARTICLE Open Access

Characterization of the Conus bullatus genome
and its venom-duct transcriptome
Hao Hu1, Pradip K Bandyopadhyay2, Baldomero M Olivera2, Mark Yandell1*

Abstract

Background: The venomous marine gastropods, cone snails (genus Conus), inject prey with a lethal cocktail of
conopeptides, small cysteine-rich peptides, each with a high affinity for its molecular target, generally an ion
channel, receptor or transporter. Over the last decade, conopeptides have proven indispensable reagents for the
study of vertebrate neurotransmission. Conus bullatus belongs to a clade of Conus species called Textilia, whose
pharmacology is still poorly characterized. Thus the genomics analyses presented here provide the first step toward
a better understanding the enigmatic Textilia clade.

Results: We have carried out a sequencing survey of the Conus bullatus genome and venom-duct transcriptome.
We find that conopeptides are highly expressed within the venom-duct, and describe an in silico pipeline for their
discovery and characterization using RNA-seq data. We have also carried out low-coverage shotgun sequencing of
the genome, and have used these data to determine its size, genome-wide base composition, simple repeat, and
mobile element densities.

Conclusions: Our results provide the first global view of venom-duct transcription in any cone snail. A notable
feature of Conus bullatus venoms is the breadth of A-superfamily peptides expressed in the venom duct, which are
unprecedented in their structural diversity. We also find SNP rates within conopeptides are higher compared to the
remainder of C. bullatus transcriptome, consistent with the hypothesis that conopeptides are under diversifying
selection.

Background
Next-generation sequencing techniques have opened up
new opportunities for genomics studies of new model
organisms [1]. Many of these organisms are not amen-
able to classical genetic techniques; thus their sequenced
and annotated genomes are the central resource for
experimental studies. The popularity of the Planarian
Schmidtea mediterranea, which can regenerate complete
animals from fragments of its body, with stem-cell
researchers is one example [2]. The Cone snail is
another.
The cone snails (genus Conus) belong to the super-

family Conoidea which probably includes over 10,000
venomous gastropods [3]. The venom from each of the
species of cone snails includes a mixture of small
cysteine-rich peptides, which are used to immobilize

their prey. These small peptides (~15 to 40 amino acids
in length) have exquisite specificity for different iso-
forms of ion channels, receptors and transporters [4].
Their disulfide scaffold restricts the conformational
space available to a peptide. However, the combination
of variable intervening amino acids and their posttran-
slational modifications enable a spectrum of specific
interactions with their target molecules. A typical cono-
peptide precursor is comprised of three regions: an
N-terminal signal peptide, a pro-region, and a mature
peptide region. The N-terminal sequence is usually
much more conserved than the mature peptide, possibly
due to the diversifying selection on the latter [5]. Cono-
peptides are classified into super-families, mainly based
on the conserved signal peptide and different cysteine
patterns observed within the mature peptide.
Conopeptides serve as specific neurobiological tools

for addressing specific receptors and channels, and are
also valuable lead compounds for therapeutic evaluation.
A conopeptide, ω-MVIIA (commercially known as

* Correspondence: myandell@genetics.utah.edu
1Eccles institute of Human Genetics, University of Utah, and School of
Medicine, Salt Lake City, UT 84112, USA
Full list of author information is available at the end of the article
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© 2011 Hu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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Prialt, ziconotide) isolated from Conus magus, has been
approved by FDA for the treatment of chronic pain
[6,7]. In addition, other conopeptides are also being
evaluated for the treatment of pain and epilepsy [8-11].
It is estimated that the venom of a single species of
Conus may contain as many as 200 different venom
peptides [4,12]. This raises the possibility that the
500-700 species of cone snails may provide upwards of
100,000 compounds of potential pharmacological inter-
est, perhaps more when all the members of superfamily
Conoidea are considered.
We have carried out a sequencing survey of the Conus

bullatus genome and venom-duct transcriptome. Conus
bullatus is a fish-hunting cone snail that together with
C. cervus and C. dusaveli are members of the subgenus
Textilia (Swainson, 1840). This is probably the least
understood group of fish-hunting Conus. All are from
the Indo-Pacific region (Pacific and Indian oceans from
Hawaii through South Africa). Conus bullatus is the
only accessible member of this clade of species; all
others are rare and from deep water. C. bullatus is
found from the intertidal zone to about 240 m, most
commonly from slightly subtidal to 50 m, C. cervus
between 180-400 m and C. dusaveli 50-288 m [13].
The pharmacology of the Textilia is thus still poorly

characterized, and the genomics analyses presented here
provide the first step toward a better understanding the
enigmatic Textilia clade. The biology of the Conus spe-
cies that belong to the Textilia clade is mostly unknown,
but we recently documented the prey capture behavior
of Conus bullatus (Figure 1). The general strategy
appears to be analogous to that first established for
Conus purpurascens [14], with one group of venom pep-
tides causing a rapid tetanic immobilization, and a sec-
ond set eliciting a block of neuromuscular transmission.

Multiple venom peptides that act coordinately to
achieve a particular physiological endpoint are referred
to as “conopeptides cabals” [15]. The fish-hunting cone
snails generally have both a “lightning-strike cabal” and
a “motor cabal” leading to the tetanic immobilization
and neuromuscular block, respectively. A video of
Conus bullatus has documented the most rapid tetanic
immobilization of prey observed for any fish-hunting
cone snail. (http://www.hhmi.org/biointeractive/biodiver-
sity/2009_conus_bullatus.html).
Venom studies in Conus bullatus have already yielded

results of exceptional pharmacological interest. The
best characterized bullatus venom component, alpha-
conotoxin BuIA is a small peptide antagonist of nicotinic
receptors that has become the standard pharmacological
tool for differentiating between nicotinic receptors that
carry two closely related subunits, b2 and b4. These recep-
tors are of considerable interest in Parkinson’s disease [16].
More recently, the μ-conotoxins, peptides with 3 disulfide
bonds that are antagonists of voltage-gated Na channels
have also been characterized from Conus bullatus [17].
These peptides appear to have novel subtype selectivity for
the different molecular isoforms of voltage-gated Na chan-
nels [17]. Thus, they provide a promising neuropharmaco-
logical lead to developing an entirely new pathway to
differentiate between different voltage-gated Na channel
subtypes. Clearly, better cone snail genomics resources
would aid these studies; however, few such resources exist
as yet for Conus studies, and none for C. bullatus.
The cone snails are being extensively investigated as a

source of peptidic pharmacological agents (ligands) with
exquisite specificity for different subtypes of receptors in
the central nervous system. In keeping with this main
goal it is not surprising that most of the available
nucleic acid sequences from Conus are a catalogue of

Figure 1 Conus bullatus and its feeding preference. a. Shell of Conus bullatus; b. Prey capture by Conus bullatus.

Hu et al. BMC Genomics 2011, 12:60
http://www.biomedcentral.com/1471-2164/12/60
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these compounds present in the venom. In addition,
partial sequences of a few mitochondrial (ribosomal
RNA and COI) and nuclear genes [18-23] have also
been determined to ascertain the phylogenetic relation-
ship among cone snails.
Previous work has used traditional molecular biology

approaches to clone genes encoding members of specific
conopeptide super-families [20,24-26], and EST sequen-
cing in another Conus snail has identified conopeptides
[27,28]. However, to date, no high-throughput sequen-
cing approach on the whole mRNA reservoir of a Conus
venom-duct has been attempted.
We have used RNA-seq [29] to identify and profile the

expression of conopeptides and post-translational modi-
fication enzymes implicated in venom production. Our
results provide the first global view of venom-duct tran-
scription. Our shotgun genomic survey complements
our RNA-seq data, and is also the first reported for a
cone snail. Knowledge of several marine gastropod gen-
omes will provide a first step toward the molecular
understanding of numerous traits unique to these spe-
cies. Accordingly, we have used these data to determine
the suitability of the genome for sequencing and assem-
bly with 2nd generation technologies, determining gen-
ome-wide base composition, sequence heterozygosity,
simple repeat, and mobile element densities within the
C. bullatus genome.
As we show, our RNA-seq and genomic datasets can

be combined to enable analyses not possible with either
dataset alone. For example, the transcriptome assembly
has allowed us to explicitly test the hypothesis that con-
opeptides are under diversifying selection [5]. We have
also developed a novel method for estimating genome
size using RNA-seq and genomic shotgun sequences,
which we present here. The approach is accurate, and
should prove useful for any researcher seeking to deter-
mine the size of an emerging model organism [1] gen-
ome using 2nd generation sequencing data.

Results
Sequence datasets
We generated 96,379,716 Illumina paired 59-mers and
55,699,572 paired 60-mers for the genome. The average
insert size of the paired-end library is 200nt. We also
isolated venom-duct poly-A mRNA and sequenced it
using both Illumina and Roche technologies. On the
Illumina platform, we generated 102,278,116 paired 79-
mers with a median insert size of 340bp. The Roche 454
platform generated 848,394 reads with average read
length of 248bp. Many cDNA reads from the Illumina
platform have low-quality 3’ ends, which could be due
to either to the small amounts of mRNA used in our
experiments, or instrument error during sequencing or

processing. We removed 3’end sequences from the reads
with phred quality values of 2.

Genome-wide GC content
We randomly selected 30 million genomic reads using
the process described in the Methods section (see sec-
tion Simulated Read Sets) and determined their GC
content. This procedure gives an estimated GC content
for the C. bullatus genome of 42.88%. To validate this
method, we also simulated 1 million randomly sampled
60-mers from the D. melanogaster genome and per-
formed the same experiment, which gives 41.87%, an
estimate in good agreement with the actual GC content
(41.74%.) of the D. melanogaster genome.

Genome-wide Repeat Content
We took three approaches to characterize the repeat
content of the C. bullatus genome. First, we ran Repeat-
Masker on 1 million randomly selected C. bullatus
genomic reads, comparing the results to a matched
human, Caenorhabditis elegans, Drosophila melanoga-
ster, and Aplysia californica (a mollusk) datasets of
simulated reads, as well as real human genome reads
[30] (see Methods for details); these datasets match the
Conus data precisely as regards number of reads, dis-
tance between pairs, read lengths, and (among the simu-
lated sets) base quality (see Methods for details).
Comparisons of the simulated human reads to real
human reads (purple and grey columns in Figure 2),
indicates that the simulated human reads closely match
the real reads as regards repeat content for all repeat
classes except simple repeats. We speculate that this is
because many simple repeats (e.g., those near telomeres
and centromeres) are designated as “N” in the reference
human genome; hence, a random sampling of segments
of the human reference assembly under represents its
simple repeat content.
RepeatMasker [31] and RepBase [32] lack extensive

libraries of repeats for mollusks, which will compromise
the ability of RepeatMasker to identify interspersed
repeats in the two mollusk datasets. Although, this fact
does not complicate direct comparison of C. bullatus
and Aplysia californica, with regards to the relative
numbers of conserved interspersed repeats, it does com-
plicate absolute measurements and comparisons to the
other genomes (Figure 2). The ability of RepeatMasker
to identify simple repeats, however, is less impacted by
the lack of well-characterized repeat libraries for mol-
lusks. This fact together with comparison with J. Flat-
ley’s genomic reads [30] (Figure 2) suggests that
C. bullatus is significantly enriched for simple repeats
relative to the other invertebrates, and slightly so (1.44
fold) compared to human.

Hu et al. BMC Genomics 2011, 12:60
http://www.biomedcentral.com/1471-2164/12/60
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We also used RECON [33] to identify novel, high-
copy genomic sequences that may be interspersed
repeats in the C. bullatus genome. For this analysis we
used our C. bullatus de novo genomic assembly (see
Methods). In total, we found 115 genomic contigs pre-
sent in 10 or more copies, with an average length of
544bp. Among these genomic sequences, 5 are homolo-
gous with known LINE members that were not detected
by RepeatMasker in first repeat analysis. Of the remain-
ing contigs, 9 have significant homology with G-protein
receptors; 2 have significant homology with lipoprotein
receptors; 1 has a leucine-rich repeat structure. These
are probably high-copy number genomic regions but are
not interspersed repeats. The remaining contigs have lit-
tle homology with known interspersed repeats, however,
a significant fraction of them have either strong homol-
ogy to nuclease proteins or weak homology with rRNA
and tRNA genes-both common motifs in LINE ele-
ments. Running RepClass [33] over these 115 genomic
contigs confirmed that 20 contigs have LINE-like struc-
tures or are significantly homologous to known LINEs.
Including this set would increase the percentage of the

C. bullatus genome with LINE homology from 0.24% to
0.56%.
Because novel forms of retro-transposons might not

have been identified in our RepeatMasker experiment,
or some unknown bias in the ABySS [34] assembler
might have caused us to underestimate the numbers of
novel repeats identified with RECON, we devised a third
experiment, that controls for both of these possibilities.
In this experiment, we took the same read-datasets used
in our RepeatMasker analysis (Figure 2), and performed
an all-against-all BLAST [35] search of the C. bullatus
reads against themselves, and repeated the same experi-
ment for a matched set of simulated reads from
H. sapiens (see Methods for details). For reasons of
computational complexity we choose to limit this analy-
sis to only one target genome: H. sapiens, because it is
the most repeat rich of any in our dataset and its gen-
ome is nearly the same size as the C. bullatus genome.
We then tallied the percentage of reads having one
BLAST hit, two hits and so on. For each read, its num-
ber of hits can be used to obtain an estimate of the
copy-number of its sequence within the genome (see

Figure 2 Comparison of Repetitive element counts in 1 million reads drawn from five different genomes. Repeats in 1 million randomly
sampled C. bullatus Illumina 80-bp reads were characterized using RepeatMasker and compared to matched datasets manufactured from
simulated reads from three other sequenced genomes and real reads from Flatley genome. X-axis: repeat-class. Y-axis: counts.

Hu et al. BMC Genomics 2011, 12:60
http://www.biomedcentral.com/1471-2164/12/60
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Methods). This allows us to estimate the proportion of
high-copy number genomic sequences within the Conus
genome and to make comparisons to the human gen-
ome (Figure 3). This experiment presumes no prior
knowledge of the repeat content of the genome. We
also used the ‘SEG’ option with WU-BLAST [36] to
exclude hits between reads consisting only of low com-
plexity and/or simple sequence repeats. By using BLAST
with the SEG option any reads consisting entirely of low
complexity or simple sequence repeats will have no hits.
This analysis reveals much about the repeat content of

Conus compared to that of the Human genome. First,
the Conus genome has a larger proportion of high copy-
number sequences (presumably interspersed repeats)
compared to human. This is shown by the fact that 23%
of Conus reads (compared to 16% in human) have num-
bers greater than 50. By looking into this group of
human reads, we confirmed that 91% of these are
homologous to known interspersed repeats. Second, the

human dataset (and hence the human genome as com-
pared to the Conus genome) has 3× as many genomic
sequences with a copy number above 10,000 compared
to Conus (6.9% versus 2.4%). These sequences are
mostly non-LTR elements that exists in extremely high
copy number; running Repeatmasker over these human
genome reads showed that 75% of these genomic
regions are SINEs and another 20% are LINEs, support-
ing this hypothesis. Taken together, our results show
that although the Conus genome is enriched for inter-
spersed repeats compared to human, it has far fewer
non-LTR repetitive elements.

A partial genome assembly
A previous estimate based upon cytology, placed the
Conus bullatus genome at around 3 billion base pairs
[37]. If true, our 60 bp paired-end Illumina dataset
would provide 3× coverage. Although this is insufficient
to produce anything near a complete genome assembly,

Figure 3 Profile of proportion of the genomic sequences with each copy number. Generated from all-by-all blast analysis of one million C.
bullatus and H.sapiens reads each against themselves. The number of read partners is converted to copy-number of corresponding genomic
sequence. X-axis: each bin’s label gives the minimum and maximum copy numbers in the genome. Y-axis: fraction of reads falling into that bin.

Hu et al. BMC Genomics 2011, 12:60
http://www.biomedcentral.com/1471-2164/12/60
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a partial genome assembly is still desirable for some
analyses. We used ABySS to produce a partial assembly
201 million base pairs in length with an N50 value of
182 bp (See Methods for details). This accounts for ~7%
of the total length of the C. bullatus genome. To esti-
mate the quality of our genome assembly, we simulated
8.7 million 60bp-long Illumina reads from the D. mela-
nogaster genome (3× coverage), with the same base-call-
ing accuracy distribution as in our Conus genomic
reads. To do so we used the procedure described in the
Methods section. This process gives 3× coverage over
the Drosophila genome with the same error rates as our
C. bullatus reads. Assembling these reads with ABySS
with the same parameters produced a Drosophila assem-
bly with an N50 of 143 bp and total sequence length of
16 MB, which accounts for roughly 10% of the fly gen-
ome. Thus the two assemblies are of comparable quality.

Assembly of the venom-duct transcriptome
We assembled our Illumina RNA-seq reads from the
C. bullatus venom-duct with ABYSS (see methods for
details). This produced 525,537 contigs of 60bp or
greater in length and having a total length of 57 MB.
We chose 60bp as minimum contig size because cono-
peptides can be as short as 20 amino acids. The 454
reads were generated and assembled by Roche.

Annotation of transcriptome
To determine the percentage of the total C. bullatus
proteome sampled one or more times in our Illumina
and Roche transcriptome datasets, we took the core
eukaryotic protein set from CEGMA [38], which is com-
prised of 248 core proteins that generally lack paralogs
in the eukaryotes [38,39], and asked what percentage of
these proteins are found in the combined Illumina or
Roche assemblies. Using BLASTX, 211 out of 248 pro-
teins (85%) are found (E < = 1e-7).
To annotate the transcriptome assembly we ran WU-

BLASTX on the ABySS Illumina assembly against Uni-
ProtKB database [40]. 7,691 unique UniProtKB proteins
have significant homology with one or more transcrip-
tome contigs. We also mapped those contigs no shorter
than 200bp to GO [41] terms for biological process,
molecular function and cellular component. As a control,
we applied the same approach to the annotated C. elegans,
D. melanogaster and H. sapiens transcriptomes and com-
pared the proportion of genes assigned to each GO term
in these organisms to our transcriptome assembly results
(Additional File 1). Note that is not a comparison of
expression levels, but rather a comparison using GO of
which genes were represented in our transcriptome
assembly. In other words, the relative proportions of all
GO gene categories associated with our C. bullatus contigs
was found to be similar to the relative proportions of

genes assigned to the same GO categories for C. elegans,
D. melanogaster and H. sapiens transcriptomes. We found
that the resulting GO profiles are highly similar for all
four organisms. This finding, together with our observa-
tion that 85% of CEGMA proteins are represented in the
assembly, suggests that we have sampled a wide swath of
the C. bullatus transcriptome.

Identification of Conopeptides in RNA-seq data
We searched our combined Illumina and Roche tran-
scriptome assemblies for significant homology to a set
of known conopeptides collected from ConoServer [42],
using the procedure described in the Methods section.
We find that, as might be expected, conopeptides are
transcribed at high levels in the venom duct; the depth
of coverage of the putative conopeptides is 102× versus
33× for the remainder of the transcriptome.
Whenever possible, we assigned each of our putative

conopeptide contigs to a conopeptide superfamily, by sig-
nificant homology to signal sequences that are character-
istic of each superfamily (see Methods for details). In
total, we were able to assign 543 contigs a unique cono-
peptide super-family. We find that, as in most Conus spe-
cies examined so far, the O1, M, A and T superfamilies
were represented by the greatest number of distinct con-
tigs. We also observed that mRNA abundance levels fol-
lowed this same general pattern with respect to
superfamilies (Table 1). Besides these well represented
superfamilies, we also found small number of conopep-
tides belonging to the rarer in I2 and J conopeptide
super-families in Conus bullatus, which account for
~0.4% of total putative-conopeptide transcripts.
In total, we identified 2,410 putative conopeptide con-

tigs. Most of these contigs are short (with the N50 of
69bp), and do not contain the full-length sequence of
the conopeptide precursor. Nevertheless, we were able
to identify a few complete conopeptides (mainly from
the Roche data), and a selection of 30 putative complete
and partial conopeptide sequences are presented in

Table 1 Superfamilies of C. bullatus conopeptides
identified by RNA-seq
Conopeptide Super

Family
C. bullatus RNA-

seq data
Conoserver reference

sequences

T 15% 13%

A 17% 19%

M 20% 9%

O2 4% 5%

O1 44% 40%

Other < 1% 14%

Percentages for C. bullatus refer to percentage of venom-duct RNA-seq reads
belonging to a given superfamily. Globally the distribution parallels that for
reference conopeptide sequences by class available on Conserver, although
rare classes are under-sampled.
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(Table 2). The conopeptides listed belong to the O, M,
A, J, contryphan and conkunitzin super-families with
O- being the most abundant. While conopeptides
belonging to the I2, T, con-ikot-ikot, and conantokin
super-families could be identified in the Blast analysis;
the contig lengths and frameshifts associated these hits
precluded the generation of a high confidence protein
sequence.
A notable feature of the Conus bullatus transcriptome

analysis is the breadth of A-superfamily peptides
expressed in the venom duct, which are unprecedented
in their structural diversity (Table 3). In most Conus
species, the predominant structural classes of A-peptides

is the a4/7 subfamily; in fish-hunting cone snails, addi-
tional subclasses are the a3/5 subfamily and !A cono-
toxins (in species of the Pionoconus clade) and the aA
conotoxins (in species of the Chelyconus clade). The
Conus bullatus transcriptome includes an mRNA encod-
ing a !A conotoxin (Bu27), which is unambiguous in its
identity. There is also a single member of the a4/7 sub-
family (Bu19) of unknown function, which is strikingly
different in sequence from all other Conus venom pep-
tides in this group. Although no member of the aA
family or the a3/5 subfamilies were found, 8 other A
superfamily peptides were identified. Together these
comprise a greater range of structural diversity in the

Table 2 Translated transcripts containing putative toxin sequences
O-superfamily: C-C-CC-C-C

1. MKLTCVAIVAVLLLTACQLITAEDSRGTQLHRALRKTTKLSVSTRCKGPGAKCLKTMYDCCKYSCSRGRC

2. MKLTCVLIIAVLFLTAITADDSRDKQVYRAVGLIDKMRRIRASEGCRKKGDRCGTHLCCPGLRCGSGRAGGACRPPYN

3. MKLMCVLIVSVLVLTACQLSTADDTRDKQKDRLVRLFRKKRDSSDSGLLPRTCVMFGSMCDKEEHSICCYECDYKKGICV

4. MKLTCVVIVAVLLLTACQLIIAEDSRGTQLHRALRKATKLSVSTRTCVMFGSMCDKEEHSICCYECDYKKGICV

5. MKLTCVLIVAVLFLTACQLATAENSREEQGYSAVRSSDQIQDSDLKLTKSCTDDFEPCEAGFENCCSKSCFEFEDVYVC*GVSIDYYDSR

6. MKLICVFIVAVLLLTACQLNAADDSRDTQKHRALRSTTKLSMSKKDSCVPDGDSCLFSRIPCCGTCSSRSKSCV*G

7. MKLTCMMIVTVLFLTAWTFVTADDSTYGLKNLLPKARHEMMNPEAPKLNKKDECSAPGAFCLIRPGLCCSEFCFFACF [67]

8. AEDSRGTQLHRALRKATKLSESTRCKRKGSSCRRTSYDCCTGSCRNGKC*G

9. AVLLLTACQLITAEDSRDTQKHRALRSDTKLSMLTLRCATYGKPCGIQNDCCNICDPARRTCT

10. DSRGTQLHRALRKATILSVSARCKLSGYRCKRPKQCCNLSCGNYMC*G

11. ACQLITAEDSRGTQLHRALRSTSKVSKSTSCVEAGSYCRPNVKLCCGFCSPYSKICMNFPKN

12. TAEDSRGTQLHRALRKATKLPVSTRCITPGTRCKVPSQCCRGPCKNGRCTPSPSEW

13. AEDSRGTQLHRALRKTTKLSLSIRCKGPGASCIRIAYNCCKYSCRNGKCS

14. AACQLGTAASFARDKQDYPAVRSDGRQDSKDSTLDRIAKRCSEGGDFCSKNSECCDKKCQDEGEGRGVCLIVPQNVILLH

M-superfamily: CC-C-C-CC

15. MLKMGVLLFTFLVLFPLATLQLDADQPVERYADNKQDLNPDERMIFLFGGCCRMSSCQPPPVCNCCAKQDLNPDER

16. DQPADRPAERMQDDISSEQNPLLEKRVGERCCKNGKRGCGRWCRDHSRCC*GRR [17]

17. GLYCCQPKPNGQMMCNRWCEINSRCC*GRR

A-superfamily: CC-C-C; CC-C-C-C-C

18. MGMRMMFTVFLLIVLATTVVSFSTDDESDGSNEEPSADQTARSSMNRAPGCCNNPACVKHRC*G [68]

19. MGMRMVFTVFLLVVLATTVVSFTSDRASDGRNAAANDKASDLAALAVRGCCHDIFCKHNNPDIC*G

20. MGMRMRMMFTVFLLVVLANTVVSFPSDRDSDGADAEASDEPVEFERDENGCCWNPSCPRPRCT*GRR [68]

21. DGANAEATDNKPGVFERDEKKCCWNRACTRLVPCSK

22. SDRASDGRNAAANDRASDLVALTVRGCCTYPPCAVLSPLCD

23. MGMRMMVTVFLLGVLATTVVSLRSNRASDGRRGIVNKLNDLVPQYWTECCGRIGPHCSRCICPEVVCPKN*G

24. MGMRMMVTVFLLVVLATTVVSLRSNRASDGRRGIVNKLNDLVPKYWTECCGRIGPHCSRCICPEVACPKN*G

25. MGMRMMVTVFPLVVLATTVVSLRSNRASDGRRGIVNKLNDLVPKYWTECCGRIGPHCSRCICPGVVCPKR*G

26. LVVLATTVVSFRSNRASDGRKIAVNKRRRELVVPPGKLRECCGRVGPMCPKCMCPPRRC

27. ASDGRNAVVHERAPELVVTATTTCCGYDPMTICPPCMCTHSCPPKRKP*GRRND

J-superfamily

28. MTSVQSATCCCLLWLVLCVQLVTPDSPATAQLSRHLTARVPVGPALAYACSVMCAKGYDTVVCTCTRRRG*VVSSSI

Contryphan

29. MGKLTILVLVAAVLLSTQVMGQGDRDQPAARNAVPRDDNPGGASAKLMNLLHRSKCPWSPWC*G

Conkunitzin

30. MEGRRFAAVLILPICMLAPGAVASKRWTRPSVCNLPAESGTGTQSLKRFYYNSDKMQCRTFIYKGNGGNDNNFPRTYDCQKKCLYRP*G

Cysteine motifs are shown next to the superfamilies. The underlined residues indicate presumed propeptide cleavage site ascertained by analogy to previously
isolated toxins; * indicate probable amidation at the C-terminal residue after cleavage of the following G residue. In the case of 23,24,25,26 where the propeptide
cleavage site is uncertain, we have indicated the cleavage site at the basic residues (K) proximal to the presumed toxin sequence. The peptides Bu 7, 16, 18 and
20 have been previously characterized.
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A-superfamily than has been found in any other venom.
Three subclasses of a-conotoxins represented two dif-
ferent a4/4 peptides (Bu18 and 20), one a4/5 peptide
(Bu21) and one a4/6 peptide (Bu22). Unique to
C. bullatus are the four A peptides with 3 disulfide
bonds (Bu 23, 24, 25 and 26) which are divergent from
both !A and aA families. It is notable that although
these comprise a significant fraction of the total comple-
ment of A-superfamily peptides in C. bullatus, similar
peptides have not been reported from any other species
thus far. Thus, it appears that Conus bullatus, and
potentially the Textilia clade of Conus species, has
explored novel evolutionary pathways in generating their
complement of A-gene superfamily peptides.

SNP rates in conopeptides
We also compared the single nucleotide heterozygosity
level within the transcripts encoding conopeptides to
the rest of the transcriptome. To reduce false negative
rates, we restricted our analysis to transcriptome contigs
having coverage depths of 10× or more. Our rationale
being that SNPs within low-coverage contigs might be
missed, leading us to underestimate the actual SNP rate.
For the transcriptome as a whole, the SNP rate is
0.0035 (102,955 SNPs in 29.5 MB of high-coverage

contigs). By contrast, the single nucleotide polymorph-
ism rate within conotoxin contigs is 0.011 (1146 SNPs
in 105,259bp of high-coverage conotoxin contigs; this is
64% of all conotoxin contigs by length). The 3.1-fold
higher SNP rate within conopeptides contigs is consis-
tent with the hypothesis that conopeptides are under
diversifying selection.

Candidate post-translational processing enzymes
Conopeptides contain post-translationally modified
amino acids. These modifications play an important role
in conferring target specificity. The most ubiquitous
modification is the formation of disulfides leading to
proper conotoxin folding; this mediated by disulfide iso-
merases, chaperones and enzymes involved in redox bio-
chemistry. From an examination of transcriptome
sequences we have identified partial and complete
sequences of several chaperones and thiol-disulfide oxi-
doreductases that are likely to be involved in the redox
biochemistry of conotoxin folding (Additional File 2).
We identified some of the enzymes that are presumed

to catalyze correct disulfide connectivity within cono-
peptides [43-46]. These include members of the QSOX
family of sulfhydryl oxidases, Ero oxidases and protein
disulfide isomerases (PDIs). PDIs also have chaperone-
like activity and prevent protein aggregation. We have
identified three isoforms of protein disulfide isomerase
(PDI) and four members belonging to different subfami-
lies of PDIs. Two of these are members of the P5 sub-
family. We also identified a transcript related to human
PDIRs, which carry out oxidation-isomerization func-
tions similar to PDI, but are less active. We also identi-
fied a transcript encoding a second redox inactive TRX
domain b’ belong to Ep72 and Ep57 subfamily. In addi-
tion, transcriptome contigs with homology to several
Chaperones, including 78kDa glucose regulated protein,
Hsp70, Hsp60, Hsp90, glucose regulated protein 94, dif-
ferent subunits of the T-complex protein 1, DNA J
(Hsp40), calnexin, calreticulin, chaperonin 10kDa subu-
nit, prefoldin superfamily and activator of Hsp90
ATPase I were also identified.
The other enzymes we have identified include a pro-

line hydroxylase related to the enzyme involved in col-
lagen biosynthesis. (Unrelated to the posttranslational
modification of peptides, we have also identified the egl
nine homolog-also a prolyl hydroxylase). We have iden-
tified both FK506 binding protein type peptidyl prolyl
cis-trans isomerase and the cyclophilin peptidyl prolyl
cis-trans isomerase. The latter type has been shown to
enhance the rate of correct folding of conopeptides con-
taining proline residues [47]. Other enzymes identified
include lysyl hydroxylase, vitamin K dependent g-gluta-
myl carboxylase [48,49], vitamin K epoxide reductase
and peptidyl glycine alpha amidating monooxygenase.

Table 3 Sequence diversity and classification of
A-superfamily conopeptides from Conus bullatus
Subclasses of A-superfamily peptides (Mature toxin sequences)

a4/4
Bu18 APGCCNNPACVKHRC*
Bu20 DENGCCWNPSCPRPRCT*

a4/5
Bu21 CCWNRACTRLVPCSK

a4/6
Bu22 GCCTYPPCAVLSPLCD

a4/7
Bu19 GCCHDIFCKHNNPDIC*

!A

Bu27 APELVVTATTTCCGYDPMTICPPCMCTHSCPPKRKP*

!A-like

Bu23 LNDLVPQYWTECCGRIGPHCSRCICPEVVCPKN*
Bu24 YWTECCGRIGPHCSRCICPEVACPKN*

Bu25 YWTECCGRIGPHCSRCICPGVVCPKR*

Bu26 LRECCGRVGPMCPKCMCPPRRC

*C-terminal is amidated. We have assumed that the proteolytic cleavage site
is at the basic residue proximal to the presumed toxin sequence.
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A large number of hormones and neuro-active peptides
require C-terminal amidation for full activity [50-52];
conopeptides are no exception. C-terminal amidation is a
two-step process. Peptidylglycine a-hydroxylating mono-
oxygenase (PHM) catalyzes the hydroxylation of the
a-carbon of glycine and a second enzyme, peptidyl-
a-hydroxy glycine a-amidating lyase (PAL) catalyzes the
formation of the amidated product and glyoxylate. In
Drosophila these two activities are carried out by separate
polypeptides, whereas in other organisms (C.elegans,
Xenopus laevis, human and rat) a single polypeptide car-
ries out both activities. We discovered a single transcrip-
tome contig encoding both PHM and PAL domains, thus
C-terminal amidation of conopeptides is likely carried
out by a single enzyme in C. bullatus.
A unique posttranslational modification first identified

in Conus was the presence of 6-Br tryptophan in cono-
peptides, e.g. bromocontryphan [53], bromosleeper [54]
and light sleeper [55]. Subsequently the modification
was also characterized in a peptide isolated from mam-
malian brain [55-57]. The enzyme responsible for this
modification has not been characterized. However, four
different classes of haloperoxidases are known [58],
which are enzymes that use heme iron/H2O2, vana-
dium/H2O2, FADH2/O2, and non-heme iron/O2/a-keto-
glutarate. In the present analyses we have not identified
any of the above classes of enzymes.
Another posttranslational modification is the isomeri-

zation of L-amino acids in peptides to the D-conforma-
tion [59]. The enzyme has been isolated from the funnel
web spider venom [60]. At present we have not identi-
fied any transcript possibly encoding the isomerase.

A novel method for estimating genome size
We have developed a novel method for determining gen-
ome size, using 2nd generation genomic and RNA-Seq
reads (see Methods). For proof of principle, we first esti-
mated the genome size of D. melanogaster. To do so,
we simulated 4,342,253 59bp genomic reads for the fly-
genome, and blasted the annotated fly transcriptome
against the simulated reads (red line in Figure 4). The
depth of coverage peak is at 1.50 (Figure 4). Thus, the esti-
mated genome size for D. melanogaster is 4,342,253*59/
1.50 = 170.8 MB. Compared to the current size of fly gen-
ome (166.6 MB), the error is 2.5%. We also estimated the
genome size of C. elegans. This time we randomly sheared
the annotated transcriptome of C. elegans into short con-
tigs with the same N50 as our C. bullatus transcriptome
assembly, and randomly selected a 57mb subset of these
contigs. We did this to simulate the fragmented nature of
our de novo transcriptome assembly. We also simulated
2,630,408 genomic C. elegans reads, and blasted them to
the subset of simulated C. elegans transcriptome. As
shown in Figure 4 (green line), the peak depth of coverage

for the transcriptome is 1.45×. We repeated this experi-
ment three times; there was no variance in this value. This
gives us an estimate of genome size of 107.0MB, which is
6.7% higher than estimated genome size (100.3MB), again
a good fit to the published genome size. For Conus bulla-
tus, the estimated coverage depth is 1.70× from 4.36GB of
sequence reads, thus the best estimate for the size of the
Conus bullatus genome is 2.56 GB.

Discussion
2nd generation sequencing technologies now make it
possible to probe new and emerging model organism
genomes in a cost effective manner. This means that
genomes and transcriptomes can be rapidly trawled for
specific contents, and at the same time the organism
can be evaluated for suitability of whole-genome
de novo assembly. We have tried to accomplish both
these tasks in the work reported here.
Our transcriptome analyses provide the first global

view of gene expression within a Conus venom-duct.
Several lines of evidence suggest that our dataset pro-
vides a relatively comprehensive view of this pharmaco-
logically important tissue. First, the relative proportion
of C. bullatus genes (as discovered by annotating out
transcriptome data) assigned to different GO terms
resemble those of other well annotated transcriptomes.
Second, 85% of CEGMA’s universally conserved eukar-
yotic genes are represented by one or more contigs,
providing an independent estimate of the degree of
completeness of the assembly. One caveat to this con-
clusion is that highly expressed basic house keeping

Figure 4 C. bullatus genome size estimated using Illumina
reads. Blue-line: C. bullatus; Red-line: D. melanogaster. Green line:
C. elegans. x-axis: depth of coverage of transciptome contigs by
aligned genomic reads. y-axis: frequency. In all cases the best
estimate for genome size is the product of the total length of
genomic reads and the mode of the frequency distribution.
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genes are over represented in the CEGMA set; thus a
more precise statement is that 85% of highly expressed
genes are present in the RNA-seq data.
Our RNA-seq data are highly enriched for reads with

conopeptide homology. The average read depth of con-
tigs homologous to conopeptides is 102× as opposed to
33X for the remaining contigs. Interestingly, their super-
family frequency spectrum roughly approximates that of
the Conoserver reference collection in general [42],
although some rare classes are missing.
Overall, the distribution and frequencies of GO func-

tions, processes and locations of annotated transcrip-
tome data closely parallel those of various carefully
annotated model organism transcriptomes (Additional
File 1); this fact suggests that overall, the venom-duct
transcriptome is diverse, despite the highly specialized
nature of this tissue. Although, as our recovery of
numerous conopeptides and post-translational modifica-
tion (PTM)-enzymes makes clear, its transcription is
also clearly geared toward venom production. Our suc-
cess at characterizing the conopeptide and candidate
PTM-enzymes demonstrates the power of the RNA-Seq
approach for conopeptide discovery. The conopeptide
and PTM-enzymes we have discovered present new ave-
nues for future research, as it is now possible to express
these proteins in heterologous cells in order to explore
interactions PTM-enzymes and their conopeptide tar-
gets [47,48,61,62].
Our genomic shotgun survey data have allowed us to

characterize the C. bullatus genome. Our analyses indi-
cate that it is enriched for simple repeats relative to the
human genome. Characterization of its interspersed
repeat populations is complicated by the lack of an ade-
quate repeat library for RepeatMasker. To circumvent
this obstacle, we developed a novel analysis method,
comparing the inter-read similarity frequency spectrum
of our C. bullatus genome reads to the inter-read simi-
larity frequency spectrum of matched human dataset.
Based upon this analysis we conclude that C. bullatus
has higher repeat content, yet contains fewer extremely
high-copy repeat species. Because this method requires
no assembly or prior knowledge of a genome’s repeat
content, it should prove useful to others seeking to
characterize the repeat contents of new and emerging
model genomes.

Conclusions
We have carried out the first transcriptome and genomic
survey of a Textilian, Conus bullatus. Our RNA-seq ana-
lyses provide the first global view of transcription within
a Conus venom duct, and demonstrate the feasibility of
trawling these data for rapid discovery of new conopep-
tides and PTM-enzymes. We find that numerous
A-superfamily peptides are expressed in the venom duct.

These conopeptides are unprecedented in their structural
diversity, suggesting that Conus bullatus, and potentially
the Textilia clade in general, has explored novel evolu-
tionary pathways in generating its complement of A-gene
super-family peptides. Our data also provide support for
the long-standing hypothesis that conopeptides are under
diversifying selection. Our genomic analyses have
revealed that the C. bullatus genome has higher content
of interspersed repeats, yet fewer extremely high-
copy-number repeats compared to human.

Methods
Preparation of RNA samples
Specimens of Conus bullatus were collected in the Phil-
lippines. Each specimen was dissected to isolate the
venom duct and the duct was immediately suspended in
1.0 mL RNAlater solution (Ambion, Austin, TX) at
ambient temperatures, and then stored at -20 degrees
Centigrade until used. Total RNA was isolated using
mirVana® miRNA isolation kit (Ambion, Applied Bio-
systems CA USA) according to the manufacturer’s
recommendation Tissue homogenization was carried out
using a tissue tearor (Model 985370, Dremel, WI, USA).

Simulated read sets
To produce the matching sets of reads from other gen-
omes with which to compare our C. bullatus reads, we
randomly sampled some number of read pairs from our
Conus dataset. Next we randomly selected substrings
from an assembled target genome (e.g. human, D. mela-
nogaster, etc.) having the same length and pair distances
as our Conus reads. This matched dataset mimics the
Conus data precisely as regards number of reads, dis-
tance between pairs, read lengths, and importantly base
quality. This last feature is accomplished by mutating
the simulated reads from the target genome using the
base quality values of the selected Conus reads. These
matched datasets enable many useful analyses. For
example, a set of 1,000,000 randomly selected Conus
genomic reads can be passed through RepeatMasker
and the results directly compared to that produced from
its matched human counterpart.

Partial genome assembly
We generated a total of 152 million Illumina genomic
reads, with read lengths of either 59bp or 60bp depnd-
ing upon run. The reads are paired-end, and have a
average insertion size of 200bp. We used the ‘quality-
Trimmer’ algorithm in the EULER-SR software package
[63] to remove bad reads and trim low-quality region
from reads. We then used ABySS 1.0.15 [34] for assem-
bly, with the following parameters: c = 0, e = 2, n = 2.
The k-mer size is an important factor for the quality of
assembly, and in order to make an informed decision
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about the k-mer size, we assembled the C. bullatus gen-
ome with k = 25, 30, 35, 40, 45 and 50. The k-mer size
of 25 generate an assembly with the best total length
(201MB) and N50 (182bp). The assembly was filtered so
that contigs/scaffolds with lengths less than 100 bp were
removed. When aligning the genomic reads back to the
de novo assembly, 3.6 million reads aligned.

Assembly of the transcriptome
102 million paired-ended RNA-seq reads were generated
using the Illumina sequencing platform. The read
lengths for these runs were 79bp, with an average inser-
tion size of 340bp. These reads were first filtered with
EULER-SR’s ‘qualityTrimmer’ algorithm as above, then
assembled by ABySS 1.0.15 using the following para-
meters: c = 0, e = 2, E = 0. k-mer size of 25, 30, 35, 40,
45, 50 were tested, and the assembly at k = 35 were
chosen in consideration for the total assembly size as
well as N50. The assembly was filtered so that contigs/
scaffolds with lengths less than 60 bp were removed.
To assess the quality of the transcriptome assembly, we

aligned the RNA-seq reads back to the assembly with
Bowtie. Out of 102 million reads, 31million aligned to
the transcriptome under single-end alignment mode.
A much smaller portion (3.2 million) of reads were
aligned under paired-end mode. This is expected because
our library should be enriched for short conopeptide
sequences, thus many fragments should be shorter than
340bp, which will produce overlapping paired-reads that
won’t align under paired-end mode of Bowtie.

Characterization of repeat content in the genomic
assembly
We randomly selected 1 million Illumina reads for the
genome of Conus bullatus. As a control, we used the
reference genomes of Aplysia californica, Caenorhabditis
elegans, Drosophila melanogaster and Homo sapiens
from NCBI database. For each of the control genomes,
1 million Illumina reads with the same length and base-
calling accuracy distribution were simulated. We also
used a second control consisting of 100,000 real Illu-
mina genomic reads randomly sampled from the Flatley
genome [30]. We ran RepeatMasker with the ‘-species
all’ option in order to characterize all known families of
interspersed repeats. These data are shown in Figure 2.
Novel repeat families with Conus bullatus genome were

identified by running RECON over the longest genomic
contigs with a total length of 30MB (masked by Repeat-
Masker beforehand). We then perfromed an all-by-all
BLASTN of the contigs against themselves, using an
E-value threshold of 1e-8. The blastn reports were con-
verted into MSP files and fed to RECON to identiy geno-
mic sequences present in no less than 10 copies in the
30MB sample sequence. 115 high-copy-number sequences

were identified, and any of them that have significant
homology (1e-5) with a UniprotKB or Repbase entry were
removed from the novel interspersed repeats collection.

Estimation of the proportion of repetitve regions
1 million genomic reads from the conus genome were ran-
domly selected; 1 million human genomic reads were then
simulated with the same length and base-calling accuracy.
We aligned each set of reads to themselves with BLASTN
to look for significant similarity (M = 1 N = -3 Q = 3 R =
3 W = 15 WINK = 5 filter = seg lcmask V = 1000000 B =
1000000 E = 1e-5 Z = 3000000000). The percentage of
reads having each number of BLAST hit were then tallied.
To convert the number of BLAST hits to the copy-

number of their corresponding genomic sequence, we
simulated a genome with the same size as the human
genome and the following features: 38% of this genome
are comprised of unique sequence; 20% are sequences
with 2 copies; 10% of the genome have 5 copies,
10 copies, 100 copies and 1000 copies each; 1% of the
genome have 10,000 and 100,000 copies each. Then we
simulated 1 million reads from this genome with the
same length and base-calling accuracy as the Conus
genomic reads and performed an all-to-all blast
approach as described above. For each read generated,
we tracked the copy number of the genomic region that
it is extracted from. Then we calculated the average
number of read partners for reads from different copy-
number region. As Additional File 3 shows, the average
number of read partners is correlated extremely well
with the copy-number of the genomic region the read
was drawn from. The equation in Additional File 3
allows us to profile the proportion of genomic regions
with different copy-numbers, as shown in Figure 3.

SNP rates
To estimate SNP rates within our transcriptome assem-
bly, Illumina reads were aligned to contigs no shorter
than 60bp in the transcriptome assembly, using Bowtie
[64] with default parameters. With the samtools pack-
age, the resulting Bowtie report was converted into
SAM files [65], then used to estimate the SNP ratio
with samtools. We used stringent criteria to call SNPs,
requiring that: 1) the SNP phred score was higher than
20; and 2) that each SNP variant was supported by at
least two reads. The SNP rates within conopeptides
were estimated using a same approach. We also calcu-
lated the proportion of triallelic SNPs, which is 15%,
indicative of the upper bound of the false-positive rate
due to mis-alignment.

BLAST searches for conopeptides
We ran BLASTX on our transcriptomal assembly
against the combined database of UniProtKB [40] and
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conotoxins from ConoServer [42], using the following
parameters: W = 4 T = 20 filter = seg lcfilter. Contigs
that hit a conopeptide as its best hit were collected as
the low-stringency conopeptide set, and subsequently
translated into peptides according to the reading frame
identified by BLASTX. We then ran BLASTP on the
low-stringency conopeptides against the combined data-
base, using the following parameters: hitdist = 40 word-
mask = seg postsw matrix = BLOSUM80. The results
are filtered with E < = 3e-5.

Assignment of putative conotoxins to superfamilies
We first translated each putative conotoxin conteg into
peptide sequence, using the reading-frame predicted
from BLASTing the RNA-seq assembly to ConoServer’s
collection of conopeptides. Each translated putative-con-
opeptide was then aligned with BLASTP to conotoxin
signal peptides sequences, downloaded from ConoSer-
ver. We required all aligments to have Expect < = 1e-4,
and to have at least 7 identical amino acids aligned. The
best hit for each putative conopeptide is used to predict
its superfamily. Overall, we were able to assign 543
putative conopeptides to a superfamily. As a control, we
downloaded previously reported conopeptides from
ConoServer, and randomly sheared these sequences into
short oligos with the same N50 as our putative cono-
peptide contigs. We applied the same approach to assign
these to superfamiles. Out of 3274 oligos, we were able
to assign 449 to a superfamily, of which 443 (98.7%)
were correct. Thus, we believe our assignment method
is reasonably accurate.

Genome size estimation
We ran WU-BLASTN over all transcriptomal contigs
longer than 300bp against 73,898,732 59-mer genomic
reads, with the following parameters: M = 1 N = -3 Q =
3 R = 1 wordmask seg lcmask. The coverage depth for
each transcript was calculated from dividing total length
of reads mapped to this transcript by its transcript
length. Then the frequency distribution is shown in
Figure 4. The estimated coverage depth for the genome
is determined as the coverage depth with the highest
frequency, which is 1.70×. The estimated genome
size for Conus bullatus is thus 73,898,732*59/1.70 =
2.56×109 bp.

Significance of conopeptide BLAST hits
The short reads and base quality issues combine with
the short lengths of conopeptides to make identification
of conopeptides in RNA-seq data difficult. Because
many conopeptide transcript species are represented by
only one or a few reads, the base-quality of the resulting
contig is often low, especially as regards indels. All of
these facts combine to make the detection of even

highly conserved conopeptides problematic, because
BLASTX is unable to take into account indel induced
frameshifts in the contigs when calculating the signifi-
cance of a hit [35], thus many real hits are not detected.
Also problematic is the cysteine-rich nature of conopep-
tides, leading to spuriously significant hits against other
non-homologous but cysteine-rich proteins, and protein
domains. To control for these issues we performed a
simulation to help us determine the best E-value thresh-
old for a conopeptide hits in RNA-seq data. We first
ran WU-BLASTP [36] on our transcriptome assembly
against the combined database of UniProtKB [40] and
conopeptides from ConoServer [42]. In total, 6,677 pep-
tides were found to have a known conopeptide as its
best hit. We then plotted the E-value distribution of the
BLAST results for the best HSPs (Additional File 4).
Next, we randomly permuted the sequences of each of
our 6,677 C. bullatus contigs with conopeptide hits
using a Fisher-Yates shuffle [66]. We then ran BLASTP
using the permuted peptides against the combined Uni-
ProtKB and conotoxins database, and plotted the
E-value distribution for all hits. Presumably, the latter
plot should represent the background distribution of
insignificant BLAST hits. We found that only 5% of the
hits in the permuted peptide set have an E-value of lower
than 3e-5, while in the putative conopeptide set, the per-
centage is 48%. Thus we used E < = 3e-5 as the E-value
threshold for our BLASTP searches for conopeptides.

Data and software availability
The read-simulation tool and data (transcriptome
assembly, genomic assembly, putative conotoxin
sequences and post-translational modification enzymes)
can be downloaded at http://derringer.genetics.utah.edu/
conus/. The software is open source.

Additional material

Additional File 1: GO analyses. GO term abundance for molecular
function. In each organism (colored as in the legend), each transcript
was assigned applicable high-level generic GO slim terms. The
occurrence of each GO term was counted and converted into frequency
among all GO terms. Similar congruency between transcriptomes was
seen for GO process and location terms.

Additional File 2: Proteins involved in post-translational
modification. Annotated list of proteins that are presumed to participate
in conotoxin synthesis and posttranslational modification. Deduced from
conceptual translation of transcripts (ESTs) present in the venom duct.

Additional File 3: Correlation between Average read partner
number (from all-by-all BLAST) and actual copy number of
corresponding genomic sequence. A human-size genome is simulated
so that certain fractions of the sequence are present in 1 copy, 2 copies,
5 copies, 10 copies, 100 copies, 1000 copies, 10,000 copies and 100,000
copies. The average read partner count for reads simulated from each
group is calculated and used for the plot.

Additional File 4: Determining the appropriate BLAST E-value for
identification of conotopeptides. Red-line: E-value frequencies for all
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contigs with conopeptide homology. Blue-line:E-value frequencies for the
same set of contigs after permutation. X-axis: frequency; y-axis E-value.
5% of the permuted contigs have an E-value of less than 3e-5, compared
to 45% of the native set. Thus, we choose 3e-5 as our cutoff threshold
for a 0.05 confidence level.
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A probabilistic disease-gene finder
for personal genomes
Mark Yandell,1,3,4 Chad Huff,1,3 Hao Hu,1,3 Marc Singleton,1 Barry Moore,1

Jinchuan Xing,1 Lynn B. Jorde,1 and Martin G. Reese2

1Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah and School of Medicine, Salt Lake City,
Utah 84112, USA; 2Omicia, Inc., Emeryville, California 94608, USA

VAAST (the Variant Annotation, Analysis & Search Tool) is a probabilistic search tool for identifying damaged genes
and their disease-causing variants in personal genome sequences. VAAST builds on existing amino acid substitution
(AAS) and aggregative approaches to variant prioritization, combining elements of both into a single unified likelihood
framework that allows users to identify damaged genes and deleterious variants with greater accuracy, and in an easy-to-
use fashion. VAAST can score both coding and noncoding variants, evaluating the cumulative impact of both types of
variants simultaneously. VAAST can identify rare variants causing rare genetic diseases, and it can also use both rare and
common variants to identify genes responsible for common diseases. VAAST thus has a much greater scope of use than
any existing methodology. Here we demonstrate its ability to identify damaged genes using small cohorts (n = 3) of
unrelated individuals, wherein no two share the same deleterious variants, and for common, multigenic diseases using as
few as 150 cases.

[Supplemental material is available for this article.]

The past three decades have witnessed major advances in tech-
nologies for identifying disease-causing genes. As genome-wide
panels of polymorphic marker loci were developed, linkage anal-
ysis of human pedigrees identified the locations of many Mende-
lian disease-causing genes (Altshuler et al. 2008; Lausch et al.
2008).With the advent of SNPmicroarrays, the principle of linkage
disequilibrium was used to identify hundreds of SNPs associated
with susceptibility to common diseases (Wellcome Trust Case Con-
trol Consortium 2007;Manolio 2009). However, the causes ofmany
genetic disorders remain unidentified because of a lack of multi-
plex families, and most of the heritability that underlies common,
complex diseases remains unexplained (Manolio et al. 2009).

Recent developments in whole-genome sequencing technol-
ogy should overcome these problems. Whole-genome (or exome)
sequence data have indeed yielded some successes (Choi et al. 2009;
Lupski et al. 2010; Ng et al. 2010; Roach et al. 2010), but these data
present significant new analytic challenges aswell. As the volumeof
genomic data grows, the goals of genome analysis itself are chang-
ing. Broadly speaking, discovery of sequence dissimilarity (in the
form of sequence variants) rather than similarity has become the
goal of most human genome analyses. In addition, the human ge-
nome is no longer a frontier; sequence variantsmust be evaluated in
the context of preexisting gene annotations. This is not merely
a matter of annotating nonsynonymous variants, nor is it a matter
of predicting the severity of individual variants in isolation. Rather,
the challenge is to determine their aggregative impact on a gene’s
function, a challenge unmet by existing tools for genome-wide as-
sociation studies (GWAS) and linkage analysis.

Much work is currently being done in this area. Recently,
several heuristic search tools have been published for personal

genome data (Pelak et al. 2010; Wang et al. 2010). Useful as these
tools are, the need for users to specify search criteria places hard-to-
quantify limitations on their performance. More broadly, appli-
cable probabilistic approaches are thus desirable. Indeed, the de-
velopment of such methods is currently an active area of research.
Several aggregative approaches such as CAST (Morgenthaler and
Thilly 2007), CMC (Li and Leal 2008),WSS (Madsen and Browning
2009), and KBAC (Liu and Leal 2010) have recently been pub-
lished, and all demonstrate greater statistical power than existing
GWAS approaches. But as promising as these approaches are, to
date they have remained largely theoretical. And understandably
so: creating a tool that can use thesemethods on the very large and
complex data sets associated with personal genome data is a sepa-
rate software engineering challenge. Nevertheless, it is a significant
one. To be truly practical, a disease-gene finder must be able to
rapidly and simultaneously search hundreds of genomes and their
annotations.

Also missing from published aggregative approaches is a
general implementation that can make use of Amino Acid Sub-
stitution (AAS) data. The utility of AAS approaches for variant
prioritization is well established (Ng and Henikoff 2006); com-
bining AAS approaches with aggregative scoring methods thus
seems a logical next step. This is the approach we have taken with
the Variant Annotation, Analysis & Search Tool (VAAST), com-
bining elements of AAS and aggregative approaches into a single,
unified likelihood framework. The result is greater statistical power
and accuracy compared to eithermethod alone. It also significantly
widens the scope of potential applications. As our results demon-
strate, VAAST can assay the impact of rare variants to identify rare
diseases, and it can use both common and rare variants to identify
genes involved in common diseases. No other published tool or
statistical methodology has all of these capabilities.

To be truly effective, a disease-gene finder also needs many
other practical features. Since many disease-associated variants are
located in noncoding regions (Hindorff et al. 2009), a disease-gene
finder must be able to assess the cumulative impact of variants in

3These authors contributed equally to this work.
4Corresponding author.
E-mail myandell@genetics.utah.edu.
Article published online before print. Article, supplemental material, and pub-
lication date are at http://www.genome.org/cgi/doi/10.1101/gr.123158.111.
Freely available online through the Genome Research Open Access option.
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both coding and noncoding regions of the genome. A disease-gene
finder must also be capable of dealing with low-complexity and
repetitive genome sequences. These regions complicate searches of
personal genomes for damaged genes, as they can result in false-
positive predictions. The tool should also be capable of using
pedigree and phased genome data, as these provide powerful addi-
tional sources of information. Finally, a disease-gene finder should
have the same general utility that has made genomic search tools
such as BLAST (Altschul et al. 1990; Korf et al. 2003), GENSCAN
(Burge andKarlin 1997), andGENIE (Reese et al. 2000) so successful:
It must be portable, easily trained, and easy to use; and, ideally, it
should be an ab initio tool, requiring only very limited user-speci-
fied search criteria. Here we show that VAAST is such a tool.

We demonstrate VAAST’s ability to identify both common
and rare disease-causing variants using several recently published
personal genome data sets, benchmarking its performance onmore
than 100 Mendelian conditions including congenital chloride di-
arrhea (Choi et al. 2009) andMiller syndrome (Ng et al. 2010; Roach
et al. 2010).We also show that VAASTcan identify genes responsible
for two common, complex diseases, Crohn disease (Lesage et al.
2002) and hypertriglyceridemia ( Johansen et al. 2010).

Collectively, our results demonstrate that VAAST provides
a highly accurate, statistically robust means to rapidly search per-
sonal genome data for damaged genes and disease-causing variants
in an easy-to-use fashion.

Results

VAAST scores
VAAST combines variant frequency data with AAS effect infor-
mation on a feature-by-feature basis (Fig. 1) using the likelihood
ratio (l) shown in Equations 1 and 2 in Methods. Importantly,
VAASTcanmake use of both coding and noncoding variants when
doing so (see Methods). The numerator and denominator in
Equation 1 give the composite likelihoods of the observed geno-
types for each feature under a healthy and disease model, re-
spectively. For the healthy model, variant frequencies are drawn
from the combined control (background) and case (target) genomes
( pi in Eq. 1); for the disease model, variant frequencies are taken

separately from the control genomes (pi
U in Eq. 2) and the case

genomes file ( pi
A in Eq. 1), respectively. Similarly, genome-wide

Amino Acid Substitution (AAS) frequencies are derived using the
control (background) genome sets for the healthy model; for the
diseasemodel, these are based either on the frequencies of different
AAS observed for OMIM (Yandell et al. 2008) alleles or from the
BLOSUM (Henikoff and Henikoff 1992)matrix, depending on user
preference. Figure 2 shows the degree to which AAS frequencies
among known disease-causing alleles in OMIM and AAS frequen-
cies in healthy personal genomes differ from the BLOSUM model
of amino acid substitution frequencies. As can be seen, the AAS
frequency spectra of these data sets differ markedly from one an-
other. The differences are most notable for stop codons, in part
because stop gains and losses are never observed in the multiple
protein alignments used by AAS methods and LOD-based scoring
schemes such as BLOSUM (Henikoff and Henikoff 1992).

VAASTaggregately scores variantswithin genomic features. In
principle, a feature is simply one or more user-defined regions of
the genome. The analyses reportedhere use protein-coding human
gene models as features. Each feature’s significance level is the
one-tailed probability of observing l, which is estimated from a
randomization test that permutes the case/control status of each
individual. For the analyses reported below, the genome-wide
statistical significance level (assuming 21,000 protein-coding hu-
man genes) is 0.05/21,000 = 2.4 3 10!6.

Comparison to AAS approaches
Our approach to determining a variant’s impact on gene function
allows VAAST to score a wider spectrum of variants than existing
AAS methods (Lausch et al. 2008) (for more details, see Eq. 2. in
Methods). SIFT (Kumar et al. 2009), for example, examines non-
synonymous changes in human proteins in the context of multi-
ple alignments of homologous proteins from other organisms.
Because not every humangene is conserved and because conserved
genes often contain unconserved coding regions, an appreciable
fraction of nonsynonymous variants cannot be scored by this ap-
proach. For example, for the genomes shown in Table 2, ;10%
of nonsynonymous variants are not scored by SIFT due to a lack
of conservation. VAAST, on the other hand, can score all non-
synonymous variants. VAAST can also score synonymous variants
and variants in noncoding regions of genes, which typically ac-
count for the great majority of SNVs (single nucleotide variants)
genome-wide. Because AAS approaches such as SIFT cannot score
these variants, researchers typically either exclude them from the
search entirely or else impose a threshold on the variants’ frequencies
as observed in dbSNP or in the 1000 Genomes Project data set (The
1000 Genomes Project Consortium 2010). VAAST takes a more rig-
orous, computationally tractable approach: TheVAASTscore assigned
to a noncoding variant is not merely the reciprocal of the variant’s
frequency; rather, the noncoding variant’s score is a log-likelihood
ratio that incorporates an estimate of the severity of the substitution
as well as the allele frequencies in the control and case genomes (for
details, see Scoring Noncoding Variants section in Methods).

To illustrate the consequences of VAAST’s novel approach to
nonsynonymous variant scoring, we compared it to two widely
used tools for variant prioritization, SIFT (Kumar et al. 2009) and
ANNOVAR (Wang et al. 2010). Using a previously published data
set of 1454 high-confidence known disease-causing and predis-
posing coding variants from OMIM (Yandell et al. 2008), we asked
what fraction were identified as deleterious by each tool. SIFT
correctly identified 69% of the disease-causing variants (P < 0.05),

Figure 1. VAAST uses a feature-based approach to prioritization. Vari-
ants along with frequency information, e.g., 0.5:A 0.5:T, are grouped into
user-defined features (red boxes). These features can be genes, sliding
windows, conserved sequence regions, etc. Variants within the bounds of
a given feature (shown in red) are then scored to give a composite like-
lihood for the observed genotypes at that feature under a healthy and
disease model by comparing variant frequencies in the cases (target)
compared to control (background) genomes. Variants producing non-
synonymous amino acid changes are simultaneously scored under
a healthy and disease model.
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ANNOVAR (Wang et al. 2010) identified 71%, and VAAST identified
98.0% (Table 1). We then carried out the same analysis using 1454
nonsynonymous variants, randomly drawn from five different Eu-
ropean-American (CEU) genome sequences by the 1000 Genomes
Project (The 1000 Genomes Project Consortium 2010). These vari-
ants are unlikely to be disease-causing given that the individuals are
healthy adults. SIFT incorrectly identified 18% of the ‘‘healthy’’
variants as deleterious (P < 0.05), ANNOVAR (Wang et al. 2010)
identified 1%, andVAAST identified 8%.Under the assumption that
there are 1454 true positives and an equal number of true negatives,
these two analyses indicate that overall the accuracy [(Sensitivity +
Specificity/2)] of SIFT was 75%, ANNOVAR 85%, and VAAST 95%
(Table 1). Figure 5C below provides a comparison of the same three
tools in the context of genome-wide disease-gene hunts.

We also used these data to investigate the relative contribu-
tion of AAS and variant frequency information to VAAST’s allele
prioritization accuracy. Running VAAST without using any AAS
information, its accuracy decreased from 95% to 80%, demon-
strating that the AAS information contributes significantly to
VAAST’s accuracy in identifying deleterious alleles.

Population stratification
The impact of population stratification on VAAST’s false-positive
rate is shown in Figure 3A (red line). In this test we used 30 Euro-
pean-American genomes as a background file and variousmixtures

of 30 European-American and Yoruban (African) genomes as tar-
gets.We then ranVAASTon thesemixed data sets and observed the
number of genes with VAAST scores that reached genome-wide
significance, repeating the process after replacing one of the target
or background genomes with a Yoruban genome from the 1000
Genomes data set (The 1000 Genomes Project Consortium 2010),
until the target contained 30 Yoruban genomes and the back-
ground set contained 30 European-American genomes. The re-
sulting curve shown in red in Figure 3A thus reports the impact of
differences in population stratification in cases and controls on
VAAST’s false-positive prediction rate.With complete stratification
(e.g., all genomes in the target are Yoruban and all background
genomes are CEU), 1087 genes have LD-corrected genome-wide
statistically significant scores (alpha = 2.4 3 10!6).

Platform errors

We also investigated the impact of bias in sequencing platform and
variant-calling procedures on false-positive rates, using a similar
approach to the one we used to investigate population stratifica-
tion effects. Here we varied the number of case genomes drawn
from different sequencing platforms and alignment/variant-call-
ing pipelines. We began with 30 background genomes drawn from
the CEU subset of the 1000 Genomes Project (The 1000 Genomes
Project Consortium 2010) initial release. All of the selected ge-
nomes were sequenced to ;63 and called using the 1000 Ge-
nomes Project variant-calling pipeline. The target file in this case
consisted of 30 similar 1000 Genomes Project CEU genomes that
were not included in the background file. This was the starting
point for these analyses. We then ran VAAST and recorded the
number of genes with LD-corrected genome-wide statistically sig-
nificant scores (alpha = 2.4 3 10!6), repeating the process after
substituting one of the target genomes with a non–1000 Genomes
Project European-American (CEU) genome (Reese et al. 2000; Li et al.
2010). We repeated this process 30 times. These results are shown in
Figure 3B (red line). Taken together, these results (Fig. 3) quantify the
impact of population stratification and the cumulative effects of
platform differences, coverage, and variant-calling procedures
on false-positive rates and allow comparisons of the relative
magnitude of platform-related biases to population stratification
effects. With all background genomes from the subset of the 1000
Genomes Project data (The 1000 Genomes Project Consortium

Table 1. Variant prioritization accuracy comparisons

Percent judged deleterious

SIFT ANNOVAR VAAST

Diseased 69% 71% 98%
Healthy 18% 1% 8%
Accuracy 75% 85% 95%

SIFT, ANNOVAR, and VAAST were run on a collection of 1454 known
disease-causing variants (Diseased) and 1454 presumably healthy variants
randomly chosen from five different CEU genomes (Healthy). The top
portion of the table reports the percentage of variants in both sets judged
deleterious by the three tools. The bottom row reports the accuracy of
each tool. The filtering criteria used in ANNOVAR excluded all variants
present in the 1000 Genomes Project data and dbSNP130 as well as any
variant residing in a segmentally duplicated region of the genome. For the
‘‘Diseased’’ category, the VAAST control data set contained 196 personal
genomes drawn from the 1000 Genomes Project and 10Gen data sets
and dbSNP130. For the ‘‘Healthy’’ category, the VAAST control data set
contained 55 other European-American genomes drawn from the 1000
Genomes Project data set (to match the ethnicity of the 1454 CEU alleles).

Figure 2. Observed amino acid substitution frequencies compared to
BLOSUM62. Amino acid substitution frequencies observed in healthy and
reported for OMIM disease alleles were converted to LOD-based scores
for purposes of comparison to BLOSUM62. The BLOSUM62 scores are
plotted on the y-axis throughout. (Red circles) stops; (blue circles) all other
amino acid changes. The diameter of the circles is proportional to the
number of changes with that score in BLOSUM62. (A) BLOSUM62 scoring
compared to itself. Perfect correspondence would produce the diagonally
arranged circles shown. (B) Frequencies of amino acid substitutions in 10
healthy genomes compared to BLOSUM62. (C ) OMIM nonsynonymous
variant frequencies compared to BLOSUM62.
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2010) described above and all target genomes from data sets other
than the 1000 Genomes data set (Reese et al. 2000; Li et al. 2010),
107 genes have genome-wide LD-corrected statistically significant
scores (alpha = 2.43 10!6), compared to the 1087 observed in our
population stratification experiments (alpha = 2.4 3 10!6).

Variant masking
The limited number of personal genomes available today necessi-
tates comparisons of genomes sequenced ondifferent platforms, to
different depths of coverage, and subjected to different variant-
calling procedures. As shown in Figure 3B, these factors can be
a major source of false positives in disease-gene searches. Based on
an analysis of these data, we found variant-calling errors to be over-
represented in low-complexity and repetitive regions of the ge-
nome, which is not unexpected. We therefore developed a VAAST
runtime option for masking variants within these regions of the
genome. VAAST users specify a read length and paired or unpaired
reads. VAAST then identifies all variants in non-unique regions of
the genome meeting these criteria and excludes them from its cal-
culations. The blue lines in Figure 3 plot the number of genes
attaining LD-corrected genome-wide significance after masking. As
can be seen, whereas masking has negligible impact on false posi-
tives due to population stratification, it has amuch larger impact on
sequencing platform and variant-calling bias. This is a desirable
behavior. Population stratification introduces real, but confound-
ing, signals into disease-gene searches, and these real signals are
unaffected by masking (Fig. 3A). In contrast, masking eliminates
many false positives due to noise introduced by systematic errors in
sequencing platform and variant-calling procedures (Fig. 3B).

Identification of genes and variants that cause rare diseases

Miller syndrome

Our targets in these analyses were the exome sequences of two
siblings affected with Miller syndrome (Ng et al. 2010; Roach et al.

2010). Previouswork (Ng et al. 2010; Roach
et al. 2010) has shown that the phenotypes
of these individuals result from variants in
two different genes. The affected siblings’
craniofacial and limb malformations arise
from compromised copies of DHODH, a
gene involved in pyrimidine metabolism.
Both affected siblings also suffer from pri-
mary ciliary dyskinesia as a result of mu-
tations in another gene, DNAH5, that en-
codes a ciliary dynein motor protein. Both
affected individuals are compound het-
erozygotes at both of these loci. Thus, this
data set allows us to test VAAST’s ability to
identify disease-causing loci when more
than one locus is involved and the muta-
tions at each locus are not identical by
position or descent.

Accuracy on the Miller syndrome data

We carried out a genome-wide search of
21,000 protein-coding genes using the
two affected Miller syndrome exomes as
targets and using two different healthy-
genome background files. The first back-

ground file consists of 65 European-American (CEU) genomes se-
lected from the 1000 Genomes Project data (The 1000 Genomes
Project Consortium 2010) and the 10Gen data set (Reese et al.
2010). The second, larger background file consists of 189 genomes
selected from the same data sources, but, in distinction to the first,
is ethnically heterogeneous and contains a mixture of sequenc-
ing platforms, allowing us to assay the impact of these factors
on VAAST’s performance in disease-gene searches. In these exper-
iments, we ran VAAST using its recessive disease model option (for
a description of VAAST diseasemodels, seeMethods), andwith and
without its variant-masking option. Depending on whether or not
its variant-masking optionwas used, VAAST identified amaximum
of 32, and aminimumof nine, candidate genes. Variantmasking, on
average, halved thenumber of candidates (Table 2). The best accuracy
was obtained using the larger background file together with the
masking option.DHODH ranked fourth andDNAH5 fifth among the
21,000 human genes searched. This result demonstrates that VAAST
can identity bothdisease geneswith great specificity using a cohort of
only two related individuals, both compoundheterozygotes for a rare
recessive disease. Overall, accuracywas better using the second, larger
background file, demonstrating that, for rare diseases, larger back-
ground data sets constructed from a diverse set of populations and
sequencing platforms improve VAAST’s accuracy, despite the
stratification issues these data sets introduce.

We also took advantage of family quartet information (Ng
et al. 2010; Roach et al. 2010) to demonstrate the utility of pedi-
gree information for VAAST searches. When run with its pedigree
and variant-masking options, only two genes are identified as
candidates: DNAH5 is ranked first, and DHODH is ranked second,
demonstrating that VAASTcan achieve perfect accuracy using only
a single family quartet of exomes (Fig. 4). Our previously published
analysis (Roach et al. 2010) identified four candidate genes, and
further, expert post hoc analyses were required to identify the two
actual disease-causing genes. The results shown in Figure 4 thus
demonstrate that VAAST can use pedigree data to improve its ac-
curacy, even in the face of confounding signals due to relatedness

Figure 3. Impact of population stratification and platform bias. Numbers of false positives with and
without masking. (A) Effect of population stratification. (B) Effect of heterogeneous platform and variant
calling procedures. (Red line) Number of false positives withoutmasking; (blue line) after masking. Note
that although masking has little effect on population stratification, it has a much larger impact on
platform bias. This is an important behavior: Population stratification introduces real, but confounding
signals into disease gene searches; these signals are unaffected by masking (A); in contrast, VAAST’s
masking option removes false positives due to noise introduced by systematic errors in platform and
variant calling procedures (B).
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of target exomes, significant population stratification, and plat-
form-specific noise.

Impact of noncoding SNVs

We used these same data sets to investigate the impact of using
both coding and noncoding variants in our searches. To do so, we
extended our search to include all SNVs at synonymous codon
positions and in conserved DNase hypersensitive sites and tran-
scription factor-binding sites (for details, see Methods). Doing so
added an additional 36,883 synonymous and regulatory variants
to the 19,249 nonsynonymous changes we screened in the anal-
yses reported above. Using only the two Utah siblings, 189 can-
didate genes are identified. DHODH is ranked 15th and DNAH5 is
sixth among them. Repeating the analysis using family quartet
information, 23 candidate genes are identified; DHODH is ranked
fourth andDNAH5 is ranked first. Thus, increasing the search space
to include almost 37,000 additional noncoding variants had little
negative impact on accuracy.

Impact of cohort size

We also used the Miller syndrome data to assess the ability of
VAAST to identify disease-causing genes in very small case cohorts
wherein no two individuals in the target data set are related or
share the same disease-causing variants. We also wished to de-
termine the extent to which the relatedness of the two siblings
introduced spurious signals into the analyses reported in Table 2.
We used information from additional Miller syndrome kindreds
(Ng et al. 2010; Roach et al. 2010) to test this scenario. To do so, we
used a publicly available set of Danish exome sequences (Li et al.
2010). We added two different disease-causing variants in DHODH
reported in individuals with Miller syndrome (Ng et al. 2010;
Roach et al. 2010) to six different Danish exomes to produce six
unrelated Danish exomes, each carrying two different Miller
syndrome causative alleles. The background file consisted of the
same 189 genome equivalents of mixed ethnicities and sequencing
platforms used in Table 2. We then used VAAST to carry out a ge-
nome-wide screen using these six exomes as targets. We first used
one exome as a target, then the union of two exomes as a target,
and so on, in order to investigate VAAST’s performance in a series of
case cohorts containing pools of one to six exomes. The results are
shown in Table 3.

DHODH is the highest ranked of two
candidates for a cohort of three unrelated
individuals and the only candidate to
achieve LD-corrected genome-wide statis-
tical significance (Table 3). In this data set
no two individuals share the same vari-
ants, nor are any homozygous for a vari-
ant. This data set thus demonstrates
VAAST’s ability to identify a disease-caus-
ing gene in situations in which the gene is
enriched for rare variants, but no two in-
dividuals in the case data set share the
samevariant, and the cohort size is as small
as three unrelated individuals. VAAST’s
probabilistic framework also makes it pos-
sible to assess the relative contribution of
each variant to the overall VAAST score for
that gene, allowing users to identify and
prioritize for follow-up studies those vari-
ants predicted to have the greatest func-

tional impact on a gene. Table 4 shows these scored variants for the
Miller syndrome alleles of all six affected individuals.

Congenital Chloride Diarrhea (CCD) data set

We tested VAAST’s ability to identify the genetic variant re-
sponsible for a rare recessive disease using the whole-exome se-
quence of a patient diagnosed with congenital chloride diarrhea
(CCD) due to a homozygous D652N mutation in the SLC26A3
gene (Choi et al. 2009). In this analysis the background data set
consisted of 189 European-American genomes (Table 5). Using the
single affected exome as a target, SLC26A3 is ranked 21st genome-
wide. We also evaluated the impact of bias in platform and variant-
calling procedures on this result. To do so, we added the CCD caus-
ative allele as a homozygote to an ethnicallymatchedgenomedrawn
from the 1000 Genomes data set (Table 5; The 1000 Genomes Pro-
ject Consortium 2010), in the same manner that was used to gen-
erate the data in Table 3. Under the assumption that this rare re-
cessive disease is due to variants at the same location in eachaffected
genome (intersection by position), only a single pair of unrelated
exomes is required to identify CCD with perfect specificity. Adding
a third affected exome is sufficient to obtain LD-corrected genome-
wide statistical significance, even when the selection criteria are
relaxed to include the possibility of different disease-causing alleles
at different positions in different individuals (union of variants by
position).

Impact of recessive modeling on accuracy

We also investigated the impact of VAAST’s recessive inheritance
model on our rare disease analyses (Supplemental Tables 2, 3). In
general, running VAAST with this option yielded improved speci-
ficity but had little impact on gene ranks. For a cohort of three
unrelated Miller syndrome individuals, the recessive inheritance
model had no impact on rank or specificity (Supplemental Table 2).
For CCD, using a cohort of three unrelated individuals, SLC26A3
was ranked first in both cases, but the recessivemodel decreased the
number of candidate genes from seven to two (Supplemental Table
3). These results demonstrate VAAST’s ab initio capabilities: It is
capable of identifying disease-causing alleles with great accuracy,
even without making assumptions regarding mode of inheritance.
Our large-scale performance analyses, described below, support and
clarify these conclusions.

Table 2. Effect of background file size and stratification on accuracy

Genome-wide
significant genes

DHODH DNAH5

Rank P-value Rank P-value

Caucasian only (65 genomes)
UMSK 32 25 7.92 3 10!7 32 1.98 3 10!6

MSK 17 14 9.93 3 10!7 19 5.79 3 10!5

Mixed ethnicities (189 genomes)
UMSK 16 9 6.78 3 10!9 5 2.00 3 10!9

MSK 9 4 7.60 3 10!9 5 1.18 3 10!8

Results of searching the intersection of two UtahMiller Syndrome affected genomes against two different
background files, with and without masking. (Caucasians only) 65 Caucasian genomes drawn from six
different sequencing/alignment/variant calling platforms; (mixed ethnicities) 189 genomes (62 YRI, 65
CAUC, 62 ASIAN), from the 1000 Genomes Project and 10Gen data set; (UMSK) unmasked; (MSK):
masked; (genome-wide significant genes) number of genes genome-wide attaining a significant non-LD
corrected P-value; (rank) gene rank of DHODH and DNAH5 among all scored genes; (P-value) non-LD
corrected P-value; genome-wide significant alpha is 2.4310!6. Data were generated using a fully pene-
trant, monogenic recessive model. The causative allele incidence was set to 0.00035.
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Benchmark on 100 different known disease genes

To gain a better understanding of VAAST’s performance charac-
teristics, we also evaluated its ability to identify 100 different
known disease-causing genes in genome-wide searches. For these
analyses, we first randomly selected (without replacement) a
knowndisease-causing gene fromOMIM for which there existed at
least six different published nonsynonymous disease-causing al-
leles. See Supplemental File 2 for a complete listing of diseases,
genes, and alleles. Next we randomly selected known disease-
causing alleles at the selected locus (without replacement) and
inserted them at their reported positions within the gene into
different whole-genome sequences drawn for the Complete
Genomics Diversity Panel (http://www.completegenomics.com/

sequence-data/download-data/).We then
ran VAAST under a variety of scenarios
(e.g., dominant, recessive, and various
case cohort sizes) and recorded the rank
of the disease gene, repeating the analyses
for 100 different knowndisease genes.We
also compared the performance of VAAST
to SIFT and ANNOVAR using these same
data sets. (Details of the experimental de-
sign can be found in theMethods section.)
The results of these analyses are shown in
Figure 5. In this figure the height of each
box is proportional to themean rankof the
disease-causing gene for the 100 trials, and
the number shown above each box is the
mean rank from among 17,293 RefSeq
genes. The error bars delimit the spread of
the ranks, with 95% of the runs encom-
passed within the bars.

Figure 5A summarizes VAAST’s per-
formance on this data set under both
dominant and recessive disease scenarios.
For these experiments, we assayed the av-
erage rank for three different cohort sizes:
two, four, and six individuals for the
dominant scenario, and one, two, and
three individuals for the recessive analyses.
For both scenarios, the mean and variance
rapidly decrease as the cohort size in-
creases. For the dominant scenario, using
a case cohort of six unrelated individuals,
each carrying a different disease-causing
allele, VAAST ranked the disease-causing
gene on average ninth out of 17,293 can-
didates with 95% of the runs having ranks
between5 and40 in 100 different genome-
wide searches. For the recessive scenario,
using a case cohort of three unrelated in-
dividuals each carrying two different dis-
ease-causing variants at different positions
(all compound heterozygotes), VAAST
ranked the disease-causing gene on aver-
age third out of 17,293 candidates, with
95% of the runs having ranks between 2
and 10. None of the individuals had any
disease-causing alleles in common.

Figure 5B summarizes VAAST’s per-
formance when only a subset of the case

cohort contains a disease-causing allele, which could result from
(1) no calls at the disease-causing allele during variant calling; (2)
the presence of phenocopies in the case cohort; and (3) locus
heterogeneity. As can be seen in Figure 5B, averages and variances
decrease monotonically as increasing numbers of individuals in
the case cohort bear disease-causing alleles in the gene of interest.
Moreover, for dominant diseases, evenwhen one-third of the cases
lack disease-causing alleles in the selected OMIM disease gene,
VAASTachieves an average rank of 61 with 95% of the runs having
ranks between 5 and 446. For recessive diseases the average was 21,
with 95% of the disease genes ranking between 7 and 136 out of
17,293 genes, genome-wide.

Figure 5C compares VAAST’s accuracy to that of ANNOVAR
and SIFT. For these analyses, we used the same data used to produce

Figure 4. Genome-wide VAAST analysis of Utah Miller Syndrome Quartet. VAAST was run in its
quartet mode, using the genomes of the two parents to improve specificity when scoring the two
affected siblings. Gray bars along the center of each chromosome show the proportion of unique
sequence along the chromosome arms, with white denoting completely unique sequence; black re-
gions thus outline centromeric regions. Colored bars above and below the chromosomes (mostly
green) represent each annotated gene; plus strand genes are shown above and minus strand genes
below; their width is proportional to their length; height of bar is proportional to their VAAST score.
Genes colored red are candidates identified by VAAST. Only two genes are identified in this case:
DNAH5 and DHODH. Causative allele incidence was set to 0.00035, and amino acid substitution fre-
quency was used along with variant-masking. This view was generated using the VAAST report viewer.
This software tool allows the visualization of a genome-wide search in easily interpretable form,
graphically displaying chromosomes, genes, and their VAAST scores. For comparison, the corre-
sponding figure, without pedigree information, is provided as Supplemental Figure 1.
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Figure 5A, running all three tools on a case cohort of six and three
individuals for the dominant and recessive comparisons, respec-
tively (for details, see Methods). In these analyses, all members
of the case cohort contain disease-causing alleles. For ANNOVAR,
we set the expected combined disease-allele frequency at <5% (see
Methods) as this improved ANNOVAR’s performance (data not
shown), but for VAAST no prior assumptions were made regarding
the disease-causing alleles’ frequencies in the population. VAAST
outperforms both SIFT and ANNOVAR—both as regards to mean
ranks and variances. VAAST, for example, achieves amean rank of 3
for recessive diseases using three com-
pound heterozygous individuals as a case
cohort. SIFT achieves an average rank of
2317, and ANNOVAR an average rank of
529. There is also much less variance in
the VAAST ranks than in those of the
other tools. For example, in the recessive
scenario, using three compound hetero-
zygous individuals as a case cohort, in
95% of the VAAST runs the rank of the
disease-causing gene was between ranks 2
and 10. By comparison, ANNOVAR’s
ranks varied between 67 and 8762 on the
same data sets, and SIFT’s varied between
66 and 9107. See Supplemental Figures 2
and 3 for the complete distributions. We
also investigated the possibility that tak-
ing the intersection of ANNOVAR and
SIFT calls might improve accuracy com-
pared to either of these tools alone. It did
not; see Supplemental Figure 4. Closer
inspection of these data revealed the
reasons for the high variances character-
istic of SIFTand ANNOVAR. In SIFT’s case,
the variance is due to failure to identify
one or more of the disease-causing alleles
as deleterious, a finding consistent with
our accuracy analysis presented in Table

1. This, coupled with its inability to make
use of variant frequencies,means that SIFT
also identifies many very frequent alleles
genome-wide as deleterious, increasing the
rank of the actual disease-causing gene.
ANNOVAR’s performance, because it can
filter candidate variants based on their al-
lele frequencies, is thus better than SIFT’s
(average rank of 529 vs. 2317). However,
its variance from search to search remains
high compared to VAAST, as the OMIM
alleles in the analysis are distributed across
a range of frequencies, and unlike VAAST,
ANNOVAR is unable to leverage this in-
formation for greater accuracy.

Identification of genes and variants
causing common multigenic diseases

Power analyses

Our goal in these analyses was twofold:
first, to benchmark the statistical power
of VAASTcompared to the standard single

nucleotide variation (SNV) GWAS approach; and second, to de-
termine the relative contributions of variant frequencies and amino
acid substitution frequencies to VAAST’s statistical power. We
also compared the statistical power of VAAST’s default scoring al-
gorithm to that of WSS (Madsen and Browning 2009), one of the
most accurate aggregativemethods to date for identifying common
disease genes using rare variants. Figure 6A shows the results for the
NOD2 gene, implicated in Crohn’s disease (CD) (Lesage et al. 2002).
This data set contains both rare (minor allele frequency [MAF] <5%)
and common variants. Figure 6B shows the same power analysis

Table 3. Impact of cohort size on VAAST’s ability to identify a rare disease caused by
compound heterozygous alleles

Target genome(s)

Genome-wide DHODH rank

Genes
scored

Significant genes

Rank

P-value

Non-LD-
corrected

LD-
corrected

Non-LD-
corrected

LD-
corrected

1 Compound heterozygote 92 67 0 86 2.36 3 10!4 5.26 3 10!3

2 Compound heterozygotes 4 3 0 2 2.81 3 10!8 5.51 3 10!5

3 Compound heterozygotes 2 2 1 1 2.61 3 10!11 8.61 3 10!7

4 Compound heterozygotes 1 1 1 1 1.99 3 10!15 1.78 3 10!8

5 Compound heterozygotes 1 1 1 1 6.95 3 10!15 4.60 3 10!10

6 Compound heterozygotes 1 1 1 1 5.79 3 10!17 1.42 3 10!11

The background file consisted of 189 genomes of mixed ethnicity from the 1000 Genomes Project com-
bined with nine additional genomes of mixed ethnicity and sequencing platforms drawn from the 10Gen
genome set (Reese et al. 2010). Causative alleles reported in the six individuals described in Ng et al. (2010)
were added to unrelated exomes from re-sequenced individuals from Denmark reported in Li et al. (2010).
Data were generated using a fully penetrant monogenic recessive model (see Supplemental Table 2).
Causative allele incidence was set to 0.00035 (for details, see Supplemental Table 2), and amino acid sub-
stitution frequencywas used alongwithmasking of repeats. (Genes scored)Number of genes in the genome
with variant distributions consistent with VAAST’s fully penetrant monogenic recessive model and causative
allele incidence threshold. Scoring was evaluated by permutation by gene and permutation by genome.

Table 4. Relative impacts of observed variants in DHODH

The ‘‘score contribution’’ column shows the magnitude of impact of each observed variant in DHODH
to its final score. (Red) Most severe; (green) least severe. For comparison, SIFT values are also shown.
Note that SIFT judges two of the known disease-causing alleles as tolerated and is unable to score the
noncoding SNV. The target file contains six unrelated individuals with the compound heterozygous
variants described in Table 3. The background file consisted of 189 genomes of mixed ethnicity from the
1000 Genomes Project combined with nine additional genomes of mixed ethnicity and sequencing
platforms drawn from the 10Gen set (Reese et al. 2010). Data were generated using VAAST’s fully
penetrant monogenic recessive model and masking. Causative allele incidence was set to 0.00035.
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usingLPL, a gene implicated inhypertriglyceridemia (HTG) ( Johansen
et al. 2010). This analysis uses a data set of 438 re-sequenced subjects
( Johansen et al. 2010). For the LPL gene, only rare variants (MAF <
5%) were available; therefore, this analysis tests VAAST’s ability to
detect disease genes for commondiseases inwhichonly rare variants
contribute to disease risk. To control for Type I error in this analysis,
we applied a Bonferroni correction, with the number of tests ap-
proximately equal to the number of genes that would be included in
a genome-wide analysis (alpha = 0.05/21,000 = 2.4 3 10!6).

VAAST rapidly obtains good statistical power even with mod-
est sample sizes; its estimated power is 89% for NOD2 using as few
as 150 individuals (alpha = 2.43 10!6). By comparison, the power
of GWAS is <4% at the same sample size. Notably, forNOD2, nearly
100% power is obtained with VAAST when a GWAS would still
have <10% power. Also shown is VAAST’s power as a function of
sample size without the use of amino acid substitution data. The
red and blue lines in Figure 6A show the power curves for VAAST
usingOMIMandBLOSUM, respectively, for its AAS diseasemodels.
As can be seen, power is improved when AAS information is used.

In general, the LPL results mirror those of NOD2. Although
VAAST obtained less power using the LPL data set compared to
NOD2, this was true for every approach. Interestingly, for NOD2,
BLOSUM attains higher power using smaller sample sizes com-
pared to OMIM. The fact that the trend is reversed for LPL, how-
ever, suggests that the two AASmodels are roughly equivalent. We
also compared VAAST’s performance to that of WSS (Madsen and
Browning 2009), another aggregative prioritization method.
VAAST achieves greater statistical power than WSS on both data
sets, even when VAAST is run without use of AAS information.

Discussion
VAAST uses a generalized feature-based prioritization approach, ag-
gregating variants to achieve greater statistical search power. VAAST
can score both coding and noncoding variants, evaluating the ag-
gregative impact of both types of SNVs simultaneously. In this first
study, we have focused on genes, but in principle, the tool can be
used to search for disease-causing variants in other classes of features
as well; for example, regulatory elements, sets of genes belonging to
a particular genetic pathway, or genes belonging to a common
functional category, e.g., transcription factors.

In contrast to GWAS approaches,
which evaluate the statistical significance
of frequency differences for individual
variants in cases versus controls, VAAST
evaluates the likelihood of observing the
aggregate genotype of a feature given
a background data set of control ge-
nomes. As our results demonstrate, this
approach greatly improves statistical
power, in part because it bypasses the
need for large statistical corrections for
multiple tests. In this sense, VAAST re-
sembles several other methods that ag-
gregate variants: CAST (Morgenthaler and
Thilly 2007), CMC (Li and Leal 2008),
WSS (Madsen and Browning 2009), and
KBAC (Liu and Leal 2010). However, in
contrast to these methods, VAAST also
uses AAS information. Moreover, it uses
a new approach to do so, one that allows
it to score more SNVs than existing AAS

methods such as SIFT (Kumar et al. 2009) and Polyphen (Sunyaev
et al. 2001).

Much additional statistical power and accuracy are also gained
from other components of the VAAST architecture, such as its ability
to use pedigrees, phased data sets, and disease inheritance models.
No existing AAS (Ng and Henikoff 2006) or aggregating method
(Morgenthaler and Thilly 2007; Li and Leal 2008; Madsen and
Browning 2009; Liu and Leal 2010) has these capabilities. The
power of VAAST’s pedigree approach is made clear in the quartet-
based Miller syndrome analysis shown in Figure 4, where ge-
nome-wide only the two disease-causing genes are identified in
a genome-wide screen of 19,249 nonsynonymous variants.
Another important feature of VAAST is its ability to identify and
mask variants in repetitive regions of the genome. As our results
show, this provides a valuable method for mitigating platform-
specific sequencing errors in situations inwhich it is cost-prohibitive
to obtain a sufficiently large control set of genomes matched with
regard to sequencing and variant calling pipeline. VAAST also dif-
fers in important ways from published heuristic search tools such
as ANNOVAR (Wang et al. 2010). Unlike these tools, VAAST is not
designed specifically to identify rare variants responsible for rare
diseases. Instead, VAAST can search any collection of variants, re-
gardless of their frequency distributions, to identify genes involved
in both rare and common diseases.

Collectively, our results make clear the synergy that exists
between these various components of the VAAST architecture. For
example, they grant VAAST several unique features that distin-
guish it from commonly used AAS methods such as SIFT. Unlike
AAS approaches, VAAST can score all variants, coding and non-
coding, and in nonconserved regions of the genome. In addition,
VAAST can obtain greater accuracy in judging which variants are
deleterious. Comparison of the two UtahMiller syndrome exomes
serves to highlight these differences. The two Miller syndrome
exomes (Ng et al. 2010; Roach et al. 2010), for example, share 337
SNVs that are judged deleterious by SIFT; these 337 shared SNVs are
distributed among 277 different genes. Thus, although AAS tools
such as SIFT are useful for prioritizing the variants within a single
known disease gene for follow-up studies, they are of limited use
when carrying out genome-wide disease-gene searches, especially
when the affected individuals are compound heterozygotes, as in
the Miller syndrome examples.

Table 5. Impact of cohort size on VAAST’s ability to identify a rare recessive disease

Target genome(s)

Genome-wide SLC26A3

Genes
scored

Significant genes

Rank

P-value

Non-LD-
corrected

LD-
corrected

Non-LD-
corrected

LD-
corrected

1 Homozygote 127 69 0 21 1.22 3 10!5 5.26 3 10!3

Union 2 homozygotes 7 7 0 3 4.74 3 10!10 5.51 3 10!5

Intersection 2 homozygotes 3 3 0 1 7.47 3 10!10 5.51 3 10!5

Union 3 homozygotes 2 2 2 1 2.83 3 10!13 8.61 3 10!7

Intersection 3 homozygotes 1 1 1 1 1.29 3 10!13 8.61 3 10!7

The background file consists of 189 genomes of mixed ethnicity from the 1000 Genomes Project com-
bined with nine additional genomes of mixed ethnicity and sequencing platforms drawn from the 10Gen
set (Reese et al. 2010). (Targets) The first homozygote affected is the single CCD affected exome reported
in Choi et al. (2009); (remaining target genomes) unrelated exomes from re-sequenced individuals from
Denmark reported in Li et al. (2010) with the causative allele added. Data were generated on either the
union or intersection of affecteds using VAAST’s fully penetrant monogenic recessive model. Causative
allele incidence was set to 0.013; masking was also used. Scoring was evaluated by non-LD and LD-
corrected permutation. (Genes scored) The number of genes in the genome receiving a score >0.
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In comparison to SIFT, VAAST scores 10% more nonsyn-
onymous SNVs but identifies only nine candidate genes (Table 2),
with the two disease-causing genes ranked fourth and fifth. When
run in its pedigreemode, only the fourdisease-causing variants in the
two disease genes are judged deleterious by VAAST genome-wide.
The original analysis (Roach et al. 2010) of the family of four required
3 mo and identified eight potential disease-causing variants in four
genes. An exome analysis required four affected individuals in three
families to identifyDHODH as the sole candidate forMiller syndrome
(Ng et al. 2010). In contrast, using only the data from the family of
four, VAAST identified the two disease genes in ;11 min using a 24-
CPU compute server, and with perfect accuracy. Even when an ad-
ditional 36,883 synonymous and noncoding regulatory variants are
included in this genome-wide screen, only 23 candidate genes are
identified, withDHODH still ranked fourth andDNAH5 ranked first.

Our benchmark analyses using 100 different known diseases
and 600 different known disease-causing alleles make it clear that
our Miller syndrome and CCD analyses are representative results,
and that VAAST is both a very accurate and a very reliable tool.
VAAST consistently ranked the disease gene in the top three can-
didates genome-wide for recessive diseases and in the top nine gene
candidates for dominant diseases. Equally important is reliability.
VAAST has amuch lower variance than either SIFTor ANNOVAR. In
the recessive scenario, using three compound heterozygous in-
dividuals as a case cohort, for 95% of the VAAST runs, the disease-
causing genewas rankedbetween second and 10th genome-wide; in
comparison, ANNOVAR’s ranks varied between 67 and 8762 on the
same data sets, and SIFT’s varied between 66 and 9107. Thus, VAAST
is not only more accurate, it is also a more reliable tool. These same
analyses also demonstrate that VAAST remains a reliable tool even
when confronted with missing data due to phenomena such as
missed variants, locus heterogeneity, and phenocopies in the case
cohorts. Even when one-third of the cohort lacked disease-causing
alleles at the locus, the average rank was still 61 for dominant dis-
eases and 21 for recessive diseases (Fig. 5B).

VAAST can also be used to search for genes that cause com-
mon diseases and to estimate the impact of common alleles on
gene function, something tools like ANNOVAR are not able to
do. For example, when run over a published collection of 1454

Figure 5. Benchmark analyses using 100 different known disease
genes. In each panel the y-axis denotes the average rank of the disease
gene among 100 searches for 100 different disease genes. Heights of
boxes are proportional to themean rank, with the number above each box
denoting the mean rank of the disease gene among all RefSeq annotated
human genes. Error bars encompass the maximum and minimum ob-
served ranks for 95% of the trials. (A) Average ranks for 100 different
VAAST searches. (Left half of panel) The results for genome-wide searches
for 100 different disease genes assuming dominance using a case cohort of
two (blue box), four (red box), and six (green box) unrelated individuals.
(Right half of panel) The results for genome-wide searches for 100 different
recessive disease genes using a case cohort of 1 (blue box), 2 (red box),
and 3 (green box). (B) Impact ofmissing data on VAAST performance. (Left
and right half of panel) Results for dominant and recessive gene searches as
in panel A, except in this panel the case cohorts contain differing per-
centages of individuals with no disease-causing variants in the disease
gene. (Blue box) Two-thirds of the individuals lack a disease-causing allele;
(red box) one-third lack a disease-causing allele; (green box) all members
of the case cohort contain disease-casing alleles. (C ) Comparison of VAAST
performance to that of ANNOVAR and SIFT. (Left half of panel) The results
for genome-wide searches using VAAST, ANNOVAR, and SIFT to search for
100 different dominant disease genes using a case cohort of six unrelated
individuals. (Right half of panel) The results for genome-wide searches
using VAAST, ANNOVAR, and SIFT to search for 100 different recessive
disease genes using a case cohort of three unrelated individuals.
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high-confidence disease-causing and predisposing SNVs from
OMIM (Yandell et al. 2008), VAAST identifies all but 29 (2%) of
these SNVs as damaging. ANNOVAR (Wang et al. 2010), in com-
parison, excludes 427 (29%) of these SNVs from further analysis
because they are present in the 1000 Genomes Project data (The
1000 Genomes Project Consortium 2010), dbSNP130, or in seg-
mentally duplicated regions. These results underscore the advan-
tages of VAAST’s probabilistic approach. VAAST can assay the im-
pact of rare variants to identify rare diseases and both common and
rare variants to identify the alleles responsible for common dis-
eases, and it operates equallywell on data sets (e.g.,NOD2) wherein
both rare and common variants are contributing to disease. Our
common-disease analyses serve to illustrate these points. These
results demonstrate that VAAST can achieve close to 100% statis-
tical power on common-disease data sets, where a traditional GWAS
test has almost no power. We also demonstrate that VAAST’s own
feature-based scoring significantly outperforms WSS (Madsen and
Browning 2009), which, like all published aggregative scoring
methods, does not use AAS information. These analyses also
demonstrate another key feature of VAAST: While the controls
in the Crohn’s disease data set were fully sequenced at NOD2,
only a small subset of the cases was sequenced, and the rest were
genotyped at sites that were polymorphic in the sample. VAAST
does well with this mixed data set. It is likely that VAASTwould do
even better using a data set of the same size consisting only of se-
quence data, as such a cohort would likely contain additional rare
variants not detectable with chip-based technologies. Consistent
with this hypothesis, VAAST also attains high statistical power
compared to traditional GWASmethods on the LPL data set, which
only contains alleles with a frequency of <5%. This demonstrates
that VAAST can also identify common-disease genes even when
they contain no common variants that contribute to disease risk.

These results suggest that VAAST will prove useful for re-anal-
yses of existing GWAS and linkage studies. Targeted VAASTanalyses
combinedwith region-specific resequencing aroundGWAShits will
allow smaller Bonferroni corrections (Nicodemus et al. 2005) than
the genome-wide analyses presented here, resulting in still greater
statistical power, especially in light of VAAST’s feature-based ap-

proach. The same is true for linkage stud-
ies. In addition, because much of the
power of VAAST is derived from rare vari-
ants and amino acid substitutions, the
likelihood of false positives due to linkage
disequilibrium with causal variants is low.
Thus, it is likely that VAAST will allow
identification of disease genes and causa-
tive variants in GWAS data sets in which
the relationships of hits to actual disease
genes and the causative variants are un-
clear, and for linkage studies, where only
broad spans of statistically significant
linkage peaks have been detected to date.

VAAST is compatible with current
genomic data standards. Given the size
and complexity of personal genome data,
this is not a trivial hurdle for software ap-
plications. VAAST uses GFF3 (http://www.
sequenceontology.org/resources/gff3.
html), and GVF (Reese et al. 2010) and
VCF (http://www.1000genomes.org/wiki/
Analysis/vcf4.0), standardized file formats
for genome annotations and personal

genomes data. The size and heterogeneity of the data sets used in
our analyses make clear VAAST’s ability to mine hundreds of ge-
nomes and their annotations at a time. We also point out that
VAAST has a modular software architecture that makes it easy
to add additional scoring methods. Indeed, we have already
done so for WSS (Madsen and Browning 2009). This is an im-
portant point, as aggregative scoring methods are a rapidly de-
veloping area of personal genomics (Morgenthaler and Thilly
2007; Li and Leal 2008; Madsen and Browning 2009; Liu and Leal
2010). VAAST thus provides an easy means to incorporate and
compare new scoring methods, lending them its many other
functionalities.

Although there exist other tools with some of its features, to
our knowledge, VAAST is the first generalized, probabilistic ab
initio tool for identifying both rare and common disease-causing
variants using personal exomes and genomes. VAAST is a practi-
cal, portable, self-contained piece of software that substantially
improves on existing methods with regard to statistical power,
flexibility, and scope of use. It is resistant to no calls, automated,
and fast; works across all variant frequencies; and deals with
platform-specific noise.

Methods

Inputs and outputs
The VAAST search procedure is shown in Figure 7. VAAST operates
using two input files: a background and a target file. The background
and target files contain the variants observed in control and case
genomes, respectively. Importantly, the same background file can be
used again and again, obviating the need—and expense—of pro-
ducing a new set of control data for each analysis. Background files
prepared from whole-genome data can be used for whole-genome
analyses, exome analyses and for individual gene analyses. These
files can be in either VCF (http://www.1000genomes.org/wiki/
Analysis/vcf4.0) or GVF (Reese et al. 2010) format. VAASTalso comes
with a series of premade and annotated background condenser files
for the 1000 genomes data (The 1000 Genomes Project Consortium
2010) and the 10Gen data set (Reese et al. 2010). Also needed is

Figure 6. Statistical power as a function of number of target genomes for two common disease
genes. (A) NOD2, using a data set containing rare and common nonsynonymous variants. (B) LPL,
using a data set containing only rare nonsynonymous variants. For each data point, power is estimated
from 500 bootstrapped resamples of the original data sets, with a = 2.43 10!6 except where specified.
y-axis: probability of identifying gene as implicated in disease in a genome-wide search; x-axis: number
of cases. The number of controls is equal to the number of cases up to amaximumof 327 for LPL (original
data set) and 163 for NOD2 (original data set + 60 Europeans from 1000 Genomes). (VAAST + OMIM)
VAAST using AAS data fromOMIM as its disease model; (VAAST + BLOSUM) VAAST using BLOSUM62 as
its disease model; (VAAST no AAS) VAAST running on allele frequencies alone; (WSS) weighted sum
score of Madsen and Browning (2009); (GWAS) single variant GWAS analysis. NOD2 and LPL data sets
were taken from Lesage et al. (2002) and Johansen et al. (2010), respectively.
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a third file in GFF3 (http://www.sequenceontology.org/resources/
gff3.html) containing genome features to be searched.

Basic CLR method
The composite likelihood ratio (CLR) test is designed to evaluate
whether a gene or other genomic feature contributes to disease
risk. We first calculate the likelihood of the null and alternative
models assuming independence betweennucleotide sites and then
evaluate the significance of the likelihood ratio by permutation to
control for LD. The basic method is a nested CLR test that depends
only on differences in allele frequencies between affected and
unaffected individuals. In amanner similar to theCMCmethod (Li
and Leal 2008), we collapse sites with rare minor alleles into one or
more categories, but we count the total number of minor allele
copies among all affected and unaffected individuals rather than
just the presence or absence of minor alleles within an individual.
For our analyses, we set the collapsing threshold at fewer than five
copies of the minor allele among all affected individuals, but this
parameter is adjustable. Let k equal the number of uncollapsed
variant sites among ni

U unaffected and ni
A affected individuals,

with ni equal to ni
U + ni

A. Let lk+1 . . . lk+m equal the number of
collapsed variant sites withinm collapsing categories labeled k + 1
tom, and let l1 . . . lk equal 1. LetXi,Xi

U, and Xi
A equal the number

of copies of the minor allele(s) at variant site i or collapsing cat-
egory i among all individuals, unaffected individuals, and af-
fected individuals, respectively. Then the log-likelihood ratio is
equal to:

l= ln
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where pi, pi
U, and pi

A equal themaximum-likelihood estimates for
the frequency of minor allele(s) at variant site i or collapsing
category i among all individuals, unaffected individuals, and af-
fected individuals, respectively. When no constraints are placed
on the frequency of disease-causing variants, the maximum-
likelihood estimates are equal to the observed frequencies of
the minor allele(s). Assuming that variant sites are unlinked, !2l
approximately follows a x2 distribution with k + m degrees of
freedom.We report the non-LD-corrected x2 P-value as the VAAST
score to provide a statistic for rapid prioritization of disease-gene
candidates. To evaluate the statistical significance of a genomic
feature, we perform a randomization test by permuting the af-
fected/unaffected status of each individual (or each individual
chromosome, when phased data are available). Because the de-
grees of freedom can vary between iterations of the permutation
test, we use the x2 P-value as the test statistic for the randomi-
zation test.

Extensions to the basic CLR method
In the basic CLRmethod, the null model is fully nested within the
alternative model. Extensions to this method result in models that
are no longer nested. Because the x2 approximation is only ap-
propriate for likelihood ratio tests of nested models, we apply
Vuong’s closeness test in extended CLR tests using the Akaike In-
formation Criterion correction factor. Thus, the test statistic used
in the permutation tests for these methods is !2l ! 2(k + m). To
efficiently calculate the non-LD-corrected P-value for non-nested
models, we use an importance sampling technique in a randomi-
zation test that assumes independence between sites by permuting
the affected/unaffected status of each allele at each site. To evaluate
the LD-corrected statistical significance of genomic features for
these models, we permute the affected/unaffected status of each
individual (or each individual chromosome).

For rare diseases, we constrain the allele frequency of putative
disease-causing alleles in the population background such that pi

U

cannot exceed a specified threshold, t, based on available in-
formation about the penetrance, inheritance mode, and prevalence
of the disease. With this constraint, the maximum-likelihood esti-
mate for pi

U is equal to the minimum of t and Xi/lini.
The framework can incorporate various categories of indels,

splice-site variants, synonymous variants, and noncoding vari-
ants. Methods incorporating amino acid severity and constraints
on allele frequency can result in situations inwhich the alternative
model is less likely than the null model for a given variant. In these
situations, we exclude the variant from the likelihood calculation,
accounting for the bias introduced from this exclusion in the
permutation test. For variants sufficiently rare to meet the col-
lapsing criteria, we exclude the variant from the collapsing cate-
gory if the alternativemodel is less likely than the null model prior
to variant collapse.

Severity of amino acid changes
To incorporate information about the potential severity of amino
acid changes, we include one additional parameter in the null and
alternative models for each variant site or collapsing category. The

Figure 7. VAAST search procedure. One or more variant files (in VCF or
GVF format) are first annotated using the VAAST annotation tool and
a GFF3 file of genome annotations. Multiple target and background
variant files are then combined by the VAAST annotation tool into a single
condenser file; these two files, one for the background and one for the
target genomes, together with a GFF3 file containing the genomic fea-
tures to be searched are then passed to VAAST. VAAST outputs a simple
text file, which can also be viewed in the VAAST viewer.
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parameter hi in the nullmodel is the likelihood that the amino acid
change does not contribute to disease risk. We estimate hi by set-
ting it equal to the proportion of this type of amino acid change in
the population background. The parameter ai in the alternative
model is the likelihood that the amino acid change contributes to
disease risk. We estimate ai by setting it equal to the proportion of
this type of amino acid change among all disease-causing muta-
tions in OMIM (Yandell et al. 2008). Incorporating information
about amino acid severity, l is equal to:
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To include the severity of amino acid changes for collapsed rare var-
iants, we createm collapsing categories that are divided according to
the severity of potential amino acid changes. To create the collapsing
categories, we first rank all possible amino acid changes according to
their severity. We then assign an equal number of potential changes
to each category, with the first category receiving the least severe
changes and each subsequent category receiving progressively more
severe changes. Each rare variant is then included in the category
with its corresponding amino acid change (Tavtigian 2009). For each
collapsing category i, we set the parameters hi and ai equal to their
average values among all variants present in the category. We first
calculate the likelihood of the null and alternative models assuming
independence between nucleotide sites and then evaluate the sig-
nificance of the likelihood ratio by permutation to control for LD.

Scoring noncoding variants
The VAAST CLR framework can also score noncoding variants and
synonymous variants within coding regions. Because ascertain-
ment bias in OMIM can cause a bias against such variants, we took
an evolutionary approach to estimate the relative impacts of
noncoding and synonymous variants using the vertebrate-to-hu-
man genome multiple alignments downloaded from the UCSC
Genome Browser (http://hgdownload.cse.ucsc.edu/goldenPath/
hg18/multiz44way/maf/). For each codon in the human genome,
we calculated the frequency in which it aligns to other codons in
primate genomes (wherever an open reading frame [ORF] in the
corresponding genomes is available). Then for every codon align-
ment pair involving one or fewer nucleotide changes, we calcu-
lated its Normalized Mutational Proportion (NMP), which is de-
fined as the proportion of occurrences of each such codon pair
among all codon pairs with the identical human codon and with
one or fewer nucleotide changes. For example, suppose the human
codon GCC aligned to codons in primate genomes with the fol-
lowing frequencies: GCC ! GCC: 1000 times; GCC ! GCT: 200
times; GCC! GCG: 250 times; GCC ! GGG: 50 times. The NMP
value of GCC!GCTwould be 0.134 [i.e., 200/(1000 + 200 + 250)].
For every codon pair that involves a nonsynonymous change, we
then calculated its severity parameter from the OMIM database
and 180 healthy genomes from the 1000 Genomes Project (ai/hi in
Eq. 2). Linear regression analysis indicates that log(ai/hi) is signif-
icantly correlated with log(NMP) (R2 = 0.23, p < 0.001). This model
allows us to estimate the severity parameter of synonymous vari-
ants (again by linear regression), which by this approach is 0.01
(100 times less severe than a typical nonsynonymous variant). We
used a similar approach to derive an equivalent value for SNVs in
noncoding regions. To do so, we again used the primate align-
ments from UCSC, but here we restricted our analysis to primate

clustered DNase hypersensitive sites and transcription factor
binding regions as defined by ENCODE regulation tracks, calcu-
lating NMP for every conserved trinucleotide. The resulting se-
verity parameter for these regions of the genome is 0.03.

Inheritance and penetrance patterns
VAAST includes several options to aid in the identification of
disease-causing genes matching specific inheritance and pene-
trance patterns. These models enforce a particular disease model
within a single gene or other genomic feature. Because the disease
models introduce interdependence between sites, VAAST does not
provide a site-based non-LD-corrected P-value for these models.

For recessive diseases, VAAST includes three models: recessive,
recessive with complete penetrance, and recessive with no locus
heterogeneity. In the basic recessive model, the likelihood calcula-
tion is constrained such that nomore than twominor alleles in each
feature of each affected individualwill be scored. The two alleles that
receive a score are the alleles that maximize the likelihood of the
alternative model. The complete penetrancemodel assumes that all
of the individuals in the control data set are unaffected. As the ge-
notypes of each affected individual are evaluated within a genomic
feature, if any individual in the control data set has a genotype ex-
actlymatching an affected individual, the affected individualwill be
excluded from the likelihood calculation for that genomic feature.
This process will frequently remove all affected individuals from the
calculation, resulting in a genomic feature that receives no score. In
the recessive with no locus heterogeneity model, genomic features
are only scored if all affected individuals possess two or moreminor
alleles at sites where the alternative (disease) model is more likely
than the null (healthy) model. The two alleles can be present at
different nucleotide sites in each affected individual (i.e., allelic
heterogeneity is permitted), but locus heterogeneity is excluded.
The models can be combined, for example, in the case of a com-
pletely penetrant disease with no locus heterogeneity.

The three dominant disease models parallel the recessive
models: dominant, dominant with complete penetrance, and
dominant with no locus heterogeneity. For the basic dominant
model, only one minor allele in each feature of each affected in-
dividual will be scored (the allele that maximizes the likelihood of
the alternative model). For the complete penetrance dominant
model, alleles will only be scored if they are absent among all in-
dividuals in the control data set. For the dominant with no locus
heterogeneity model, genomic features are only scored if all af-
fected individuals posses at least one minor allele at variant sites
where the alternative model is more likely than the null model.

Protective alleles
For non-nestedmodels, the default behavior is to only score variants
in which the minor allele is at higher frequency in cases than in
controls, under the assumption that the disease-causing alleles are
relatively rare. This assumption is problematic if protective alleles
are also contributing to the difference between cases and controls.
By enabling the ‘‘protective’’ option, VAAST will also score variants
in which the minor allele frequency is higher in controls than in
cases. This option also adds one additional collapsing category for
rare protective alleles. Because we have no available AAS model for
protective alleles, we set hi and ai equal to 1 for these variants.

Variant masking
The variant-masking option allows the user to exclude a list of
nucleotide sites from the likelihood calculations based on in-
formation obtained prior to the genome analysis. The masking
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files used in these analyses exclude sites where short reads would
map to more than one position in the reference genome. This
proceduremitigates the effects introduced by cross-platform biases
by excluding sites that are likely to produce spurious variant calls
due to improper alignment of short reads to the reference se-
quence. The threemasking schemes we used were (1) 60-bp single-
end reads, (2) 35-bp single-end reads, and (3) 35-bp paired-end
reads separated by 400 bp. These three masking files are included
with the VAAST distribution, although VAAST can mask any user-
specified list of sites. Because variant masking depends only on
information provided prior to the genome analysis, it is compati-
ble with both nested and non-nested models CLR models.

Trio option
By providing the genomes of the parents of one or more affected
individuals, VAASTcan identify and excludeMendelian inheritance
errors for variants that are present in the affected individual but
absent in both parents. Although this procedure will exclude both
de novo mutations and sequencing errors, for genomes with an
error rate of ;1 in 100,000, ;99.9% of all Mendelian inheritance
errors are genotyping errors (Roach et al. 2010). This option is
compatible with both nested and non-nested models.

Minor reference alleles
Most publicly available human genome and exome sequences do
not distinguish between no calls and reference alleles at any partic-
ular nucleotide site. For this reason, VAASTexcludes reference alleles
with frequencies of <50% from the likelihood calculation by default.
This exclusion can be overridden with a command-line parameter.

VAAST options, including command lines used to generate
each table and figure, are provided in the Supplemental Material.

Benchmark analyses
We assayed the ability of VAAST, SIFT, and ANNOVAR to identify
mutated genes and their disease-causing variants in genome-wide
searches. To do so, we randomly selected a set of 100 genes, each
having at least six SNVs that are annotated as deleterious by
OMIM. For each run, theOMIMvariants fromone of the 100 genes
were inserted into the genomes of healthy individuals sampled
from the Complete Genomics Diversity Panel (http://www.
completegenomics.com/sequence-data/download-data/). For the
partial representation panel (Fig. 5B), we inserted theOMIMvariants
into only a partial set of the case genomes. For example, in the panel
of 66%partial representation and dominantmodel, we inserted four
OMIM variants into four of the six case genomes for each gene, so
that 66% of the case genomes have deleterious variants; for 66%
representation under the recessive model, we inserted four OMIM
variants into two of the three case genomes.

We ranVAASTusing 443 background genomes (including 180
genomes from the 1000Genomes Project pilot phase, 63Complete
Genomics Diversity panel genomes, nine published genomes,
and 191 Danish exomes) and with the inheritance model option
(-iht). We ran SIFT using its web service (http://sift.jcvi.org/www/
SIFT_chr_coords_submit.html, as of 5/3/2011). For ANNOVAR, we
used version: 2011-02-11 00:07:48 with the 1000 Genomes Project
2010 July release as the variant database. We used its automatic
annotation pipeline (auto_annovar.pl) and default parameters for
annotation, setting its -maf option to the upper 99% confidence
interval of the expected minor allele frequency (MAF), such that
the combined MAF for inserted alleles did not exceed 5%. The
dbSNP database was not used in this analysis because ANNOVAR’s
dbSNP130 database does not provide MAF information, and

a portion of the disease-causing OMIM alleles are collected by
dbSNP130. We found that setting -maf and excluding dbSNP130
for this analysis greatly improved the accuracy of ANNOVAR in
comparison to its default parameters (data not shown); thus we
used these more favorable parameters for our comparisons.

To compare the performance of the three algorithms with
a sample size of six under a dominant model, for each of the 100
genes, we inserted the six different OMIM variants located in this
gene into six different healthy genomes, making all of them het-
erozygous for a different disease-causing SNV at that locus. Under
the recessive model, with a sample size of two, for example, we
inserted four different OMIM variants located in each gene into
two healthy genomes, so that each case genome carries two dif-
ferent OMIM variants in this gene, i.e., the individuals are com-
pound heterozygotes.

Scalability
VAASTcomputes scale linearly with the number of features (genes)
being evaluated and the number of variants in the targets. The
maximum number of permutations needed is bounded by O(nk),
where n equals the number of background and target genomes,
and k equals the number of target genomes. VAAST is a multi-
threaded, parallelized application designed to scale to cohorts of
thousands of genomes.

Data access
VAAST is available for download at http://www.yandell-lab.org
with an academic user license.
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Abstract 
 
              The need for improved algorithmic support for variant prioritization and disease-

gene identification in personal genomes data is widely acknowledged. The Variant 

Annotation, Analysis, and Search tool (VAAST) employs an aggregative variant 

association test that combines amino acid substitution (AAS) and allele frequencies.  

Here we describe and benchmark VAAST 2.0, which uses a novel conservation-

controlled amino acid substitution matrix (CASM), to incorporate information about 

phylogenetic conservation. We show that the CASM approach improves VAAST’s 
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variant prioritization accuracy compared to its previous implementation, and compared to 

SIFT, PolyPhen-2 and MutationTaster. We also show that VAAST 2.0 outperforms 

KBAC, WSS, SKAT and Variable Threshold (VT) using published case-control datasets 

for Crohn disease (NOD2), hypertriglyceridemia (LPL), and breast cancer (CHEK2). 

Moreover, VAAST 2.0 outperforms these other methods across a wide range of allele 

frequencies, population-attributable disease risks and allelic heterogeneity, factors that 

compromise the accuracies of other aggregative variant association tests.  We also 

demonstrate that, although most aggregative variant association tests are designed for 

common genetic diseases, these tests also perform remarkably well for rare Mendelian 

disease gene identification. In addition to CASM, VAAST 2.0 has other new 

functionalities as well, including native support for additional aggregative association-test 

methods, support for indels, and a new ‘single-case’ mode, designed for maximal 

performance when only a single affected genome is available. VAAST 2.0 thus provides 

a highly accurate, comprehensive and unified framework for identifying disease-causing 

variants in personal genomes.  

 

Introduction 

              Traditionally, genome wide association studies (GWAS) have been used to 

identify disease-associated variants using sets of ‘tagging’ SNPs distributed across the 

genome. GWAS approaches, however, are underpowered to detect the effects of rare 

causal variants because they are usually in poor linkage disequilibrium (LD) with the 

tagging SNPs [1]. New sequencing technologies have significantly reduced the price of 

human genome re-sequencing, and are identifying many novel rare variants. The 
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classification and prioritization of these rare variants for disease gene-studies has thus 

become a significant problem. 

              To date, several variant prioritization tools have been developed to identify 

damaging alleles in personal genomes data. SIFT [2] and AlignGV-GD [3], for example, 

use multiple alignments to assay conservation levels of novel amino-acid changing 

variants with the underlying assumption that sequence variants which alter highly 

conserved positions in protein sequences are a priori more likely to be damaging.  Two 

more recently published algorithms, PolyPhen-2 [4] and MutationTaster [5], improve 

upon this basic approach, integrating other information (e.g., protein structural changes) 

into the calculation, and thus significantly improving their variation prioritization 

accuracies compared to SIFT [2].  

              A major weakness of many variant prioritization tools is that they can only 

prioritize variants within phylogenetically conserved regions and thus have poor coverage 

across the proteome.  For example, SIFT and PolyPhen can score only 60% and 81% of 

the human proteome, respectively [4]. Another weakness of these approaches is that they 

make no use of allele frequency information. It has long been known that minor allele 

frequency (MAF) is negatively correlated with purifying selection pressure (e.g., [6]) . 

Thus, the growing size of publicly-available human-genome databases (e.g., HapMap [7], 

the 1000 genomes project [8] and dbSNP [9]) all provide valuable frequency information 

that could, in principle, be used for variant prioritization. VAAST [10] is a step forward 

in both regards in that it uses an approach to variant classification that combines both 

AAS information with variant frequency information, allowing it to score all variants no 

matter where they lie in the genome and with greater accuracy [10].   
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              The widened scope of the VAAST approach, however, comes at a cost; VAAST, 

in its original form, does not make any use of phylogenetic conservation data. In the 

present study we describe an extension of the VAAST variant prioritization approach that 

makes use of a conservation-controlled amino acid substitution matrix (CASM) to 

overcome this shortcoming. The CASM approach allows VAAST 2.0 to score every 

variant in the genome, and to employ phylogenetic conservation information at the same 

time. Our benchmark analyses (presented here) demonstrate that CASM approach results 

in the highest variant prioritization accuracies yet achieved.  

              Employing rare-variants for disease-gene identification is another challenge. 

One approach is simply to search case genomes for regions having an increased density 

of rare variants. This is the approach taken by ANNOVAR [11], which allows users to 

impose a threshold on variant frequencies as observed in dbSNP or in the 1000 Genomes 

Project [8,9] dataset, excluding from further consideration variants with population 

frequencies above a user defined threshold. A strength of the tool is that it can use third 

party variant prioritization scores such as those produced by SIFT and PolyPhen to 

improve search accuracy; its principle weakness is this approach renders the tool 

ineffective for searching datasets containing disease-causing alleles distributed across a 

range of population frequencies[10]. In response, probabilistic-approaches that overcome 

this limitation have emerged. These tests aggregate prioritization information from each 

variant in a gene to achieve greater statistical power, allowing them to bypass the need 

for large statistical corrections for multiple tests. These tools include CAST[12], 

CMC[13], WSS[14], KBAC[15], VT[16], SKAT [17] and VAAST [10]. Although, the 

different algorithms approach the problem differently, all of these approaches either 
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explicitly or implicitly use the MAF information to weight variants. In addition, a few 

methods, including VT and VAAST 2.0, can also use functional predictions from 3rd 

party variant prioritization tools such as PolyPhen and PhastCons [18] to weight variants 

[16].  We refer to these approaches collectively as aggregative variant association tests. 

               To date, aggregative variant association tests have been seen as a means to 

identify genes and variants associated with common diseases, but recent work has 

demonstrated VAAST’s applicability to rare-disease gene searches as well [19]. 

However, the performance characteristics of different association tests as rare-disease-

gene finders are still largely unknown. Also largely undetermined to date is the impact of 

factors such as Percent Attributable Risk (PAR) and allelic and locus heterogeneity on 

their ability to identify genes and alleles responsible both rare and common disease[14].  

              Here we describe VAAST 2.0 and the CASM approach. We employ a variety of 

datasets to benchmark VAAST 2.0, systematically comparing its performance to the 

original version of VAAST [10] and to other published association tests, including WSS 

[14], KBAC[15], SKAT [17] and VT[16]. Our results demonstrate the improvements to 

VAAST made possible by the CASM approach; they also provide a general framework in 

which to investigate the performance of different aggregative variant association tests 

using published and simulated datasets. These results shed considerable light on the 

complexities involved in searching personal genomes data for disease-causing alleles as 

they reveal unexpected strengths and weaknesses of different approaches under different 

scenarios, providing a roadmap for future improvements to each method. 
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Methods 

The CASM approach 

              VAAST uses an extended composite likelihood ratio (CLR) test method to 

determine a severity score for genomic variants [10]. The null model of the CLR states 

that the frequency of a variant or variant group are the same between control population 

(background genomes) and case population (target genomes), while the alternative model 

allows these two frequencies to differ. Under a binomial distribution, the likelihood for 

both models can be calculated based on observed allele frequencies in the control and 

case datasets. In VAAST 1.0 this likelihood ratio is further updated by the amino acid 

substitution severity parameter (ai/ hi), where hi is the likelihood that an amino acid 

substitution does not contribute to the disease and ai is the likelihood that it does. We 

estimate hi by setting it equal to the frequency of this type of amino acid change in the 

background population, and ai by setting it equal to the frequency of the amino acid 

change among all disease-causing mutations in OMIM. VAAST 1.0 uses (ai/ hi) to model 

the severity of each amino acid change. This approach, however, does not take into 

account phylogenetic conservation at that position of the protein, which can in theory be 

used to improve the accuracy of  (ai/hi). In VAAST 2.0, we have extended this severity 

parameter by using an additional conservation measurement, PhastCons [18] scores; 

these scores estimate the probability that the locus is under negative selection and are 

calculated using multiple species nucleotide alignments. 

              The CASM operates as follows: Consider first, a variant occurring at a position 

in the genome having some PhastCons score, and changing a valine (V) to an alanine (A). 

To calculate the severity parameter, we first calculate the relative frequencies of V to A 
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variants at any conservation level within a disease and a neutral variant database. In 

practice, this approach is hindered by the fact that the number of such variants in the 

disease database may be limited.  To overcome this problem, we start with estimating 

(ai/hi) for each type of amino acid with PhastCons scores of 0 and 1 (the two end points), 

as follows. For any given type of amino acid substitution i (i = 1, 2… m), suppose that 

there are ni variants in the disease database and each variant j (j=1, 2… ni) has a 

PhastCons score of Pij.  Because Pij can be interpreted as the probability that the variant is 

at a conserved locus [18], the likelihood that a variant is disease causing can be estimated 

by: 

ai1 = ( Pij ) / nj ,
j=1

nj

!                                                                                                                 (1)  

for variants with a PhastCons score of 1, and 

ai0 = ( (1! Pij )) / nj
j=1

nj

" ,                                                                                                         (2)  

for variants with a PhastCons score of 0. Similarly using a database of nk neutral variants, 

the likelihood that a variant is not disease causing can be estimated by: 

hi1 = ( Pij ) / nk
j=1

nk

! ,                                                                                                                 (3)  

for variants with a PhastCons score of 1, and 

hi0 = ( (1! Pij )) / nk ,
j=1

nk

"                                                                                                         (4)  

for variants with a PhastCons score of 0. 
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              Thus, the severity parameter for AAS type i with a PhastCons score of 0 and 1 is 

(ai0/hi0) and (ai1/hi1), respectively. For variants with other PhastCons scores (x; 0< x <1), 

the likelihood is estimated by a linear combination of  (ai0/hi0) and (ai1/hi1) terms, namely, 

aix
hix

= ai0
hi0

! (1" x)+ aix
hix

! x,                                                                                                 (5)  

where aix/hix are the terms in the Conservation-controlled Amino Acid Substitution 

Matrix, or CASM. This provides an estimate of likelihood ratio of a given amino acid 

change being disease-causal versus being neutral, controlled for the phylogenetic 

conservation level in the gene context. 

              Unless otherwise noted, we calculated the severity parameter using HGMD [20] 

variants as the disease allele database, and used variants from 1000 genomes project 

phase I data [8] with MAFs >=0.05 as the neutral allele database. Empirically, we found 

the PhastCons scores generated from the UCSC vertebrate genome alignment [21] 

performed best (data not shown). Thus we used these PhastCons scores throughout this 

paper.  

 

Indel support in VAAST 2.0 

              VAAST 2.0 also has support for small insertion and deletion (indel) mutations; 

this is invoked by using the –indel option. The Variant Annotation Tool (VAT) 

component of the VAAST 2.0 package [10,22] now annotates the functional impact of 

indels on protein-coding genes in GVF format [22]. These annotations include: 1) 

determination of whether or not the indel disrupts the reading frame of one or more 

protein-coding genes and if so which ones; and 2) whether the indel causes amino acid 

substitutions, additions and deletions. VAAST 2.0 then scores indels with the same CLR 
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test as SNVs, i.e., it calculates the likelihood ratio (LR) of null model versus alternative 

model for each indel variant based on its observed allele frequencies in background and 

target genomes, and then updates the LR with the severity parameter (ai/ hi), which is 

estimated as following. First, indels are classified into categories based on three 

properties: 1) whether it is an insertion or a deletion, 2) the affected nucleotide length and 

3) whether it disrupts the reading frame of protein translation. For each category of 

indels, we calculate the proportion of HGMD variants falling into this category, which is 

our estimate of disease-causal likelihood. We also use a neutral variant database to 

determine the likelihood of being noncausal for each category. The ratio of these two 

likelihoods is used as (ai/ hi) term to update the original LR. Note that rare indel variants 

are collapsed before being scored, as described in [10]. This is especially important for 

indels, since the boundary calling of indel variants is often imprecise. Collapsing variants 

thus allows VAAST to assess the impact of multiple overlapping indels in the cases. 

 

Comparing VAAST 2.0 to other variant prioritization tools   

              In order to benchmark VAAST 2.0 as a variant prioritization tool, we used 

HGMD disease variants [20] and 800 genomes from [8]. We first randomly selected the 

400 of these genomes for training (training-set 1). Because VAAST 2.0 uses a control 

genome set (which we refer to as the background) as an input to improve its accuracy, the 

remaining 400 genomes not included in training-set 1 were split into two sets comprised 

of 350 genomes (testing-set 1) and 50 genomes (testing-set 2). We randomly selected 

10,000 common SNVs (MAF >=0.05) from training-set 1 as the neutral variant training 

set (described in the section above), and another 2,000 randomly selected SNVs 
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(common and rare) from testing-set 2 for testing. We chose only common SNVs for 

training, because MAF is generally negatively correlated with purifying selection 

strength; thus common SNVs are more likely to be neutral. However, because VAAST 

2.0 uses allele frequency to as part of its variant prioritization process, if we included 

only common variants in testing-set 2 set, the comparison could be biased toward 

VAAST 2.0; thus we also included rare variants in the testing-set 2. The testing and 

training sets did not have any variants in common, and we removed any variants present 

in OMIM or HGMD database from the neutral training set to minimize the chances of 

including deleterious variants. 

              Similarly, disease-causal SNVs from the HGMD database were split into two 

sets with their size ratio being approximately 9:1. The first set (about 44,000 variants) 

was used for training and the second set (about 5,100 variants) was used for testing. 

These two sets also do not have any overlap. 

              We ran VAAST 2.0 over each of the variants in the test set, with “–g 0” and 

otherwise default parameters to calculate its score. “-g 0” disables the variant grouping 

functionality so that the score is an accurate measurement of  each individual variant. To 

benchmark of other three algorithms (SIFT, Polyphen-2 and Mutation-taster), we used 

pre-computed scores downloaded from: 

http://www.openbioinformatics.org/annovar/annovar_download.html. 

              For the evaluation of variants in the BRCA1 and BRCA2 genes, we used set of 

1,433 genetic variants collected by Easton et al[23].  Easton et al. calculated odds ratios 

for breast cancer causality based upon 1) co-occurrence in trans with known deleterious 

mutations; 2) personal/family history of cancer; and 3) co-segregation of disease in 
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pedigrees. In this study, 133 variants were found to have odds of at least 100:1 in favor of 

neutrality and another set of 43 have odds of at least 20:1 in favor of causality (Tables 3 

and 4 in [23]). We used the 143 missense mutations from these two sets for our 

benchmark analysis. 

 

Comparing the power of VAAST 2.0 to other aggregative 

variant association tests   

              To benchmark VAAST 2.0, we compared it with four other recently published 

aggregative variant association test algorithms (WSS, VT, KBAC and SKAT).  WSS has 

been shown to have superior power compared to CMC [13], and CAST [12], so we did 

not include these two tools in our benchmark analyses. We used PolyPhen-2 scores for 

VT throughput these analyses, since this improved performance [16]. The VAAST 2.0 

package provides native support for all of these association tests.  Thus VAAST 2.0 users 

can directly employ WSS, VT, KBAC and SKAT, supplementing them with VAAST 

2.0’s many other features to improve performance.  

              Our benchmark used a previously published simulation framework described in 

[14]. Briefly, we simulated several scenarios, each controlling for 1) genetic model 

(dominant or recessive); 2) number of causal variants; 3) number of cases and controls 

and 4) total population attributable risk (PAR) [14] of the causal variants. All parameters 

used to generate these datasets are described in [14]. For each scenario, we performed 

100 simulations and measured the power of each method according to the proportion of 

trials reaching a significance level of 0.05/21000=2.4x10-6 (assuming approximately 

21,000 genes in the human genome).  
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              For our investigations of the impact of PAR on each test’s performance, we 

assume that each causal variant has the same individual PAR; hence, each deleterious 

variant’s PAR is the total PAR divided by number of causal variants in the dataset. 

Importantly this is not true of real datasets we benchmark here, and likely is responsible 

for some of the performance differences between the simulated and these real datasets.  

             For each causal variant, its PAR value can be converted to odds ratio (r) with the 

following formula [14]: 

r = !
(1"! )qu

+1                                                                                                                (6)  

where as ! is PAR for individual variant and qU is the genotype frequency in the 

unaffected population. With this equation, rare variants tend to have higher odds ratios 

than more common variants at the same PAR. As in [14], we investigated different levels 

of total PAR and numbers of causal variants. 

              For each experiment, we also added an equal number of simulated neutral 

variants to the case datasets, as justified by [14]. The allele frequencies of simulated 

variants are sampled from the probability density function given by Wright’s formula 

[24] using parameters for mildly deleterious mutations [14]. In control genomes, the 

genotypes of simulated variants conform to Hardy-Weinberg Equilibrium. In case 

genomes, the phenotypes of neutral variants have the same probability density 

distribution as in the control genomes, but the causal variants occur more frequently, 

according their respective genetic model and risk ratio (calculated from corresponding 

PAR value; see [14]). 

              Under the dominant model, both heterozygous and homozygous causal alleles 

have the same elevated risk level. For recessive cases, we extended the original 
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simulation pipeline in [14], so that our recessive model comprises both simple recessive 

cases and recessive set cases, i.e., both homozygous and compound heterozygous 

phenotypes. We thus did not constrain pM values (the probability that a haplotype 

contains at least one disease-risk mutation in unaffecteds [14]). Note that the simulation 

procedure assumes no linkage disequilibrium for simulated variants [14]; our benchmarks 

on real data assess the impact of this factor on performance. 

              To simulate the PhastCons scores and amino acid changes, which are inputs to 

VAAST 2.0, we randomly bootstrapped variants from HGMD database (for causal 

variants) and from 1000 genome database (for neutral variants), and used their PhastCons 

scores and amino acid changes for our simulated variants. We removed any variants that 

were included in the training-sets for VAAST 2.0.  The Variable Threshold (VT) method 

can also use external AAS scores (Polyphen-2 scores) to boost its power [16], 

accordingly we also bootstrapped the PolyPhen-2 scores from the HGMD and 1000 

genome variants that we sampled above and used this information for our benchmarks of 

the Variable Threshold method. 

              Benchmark comparisons were preformed using the weighted sum statistics 

(WSS) and Variable Threshold (VT) methods as implemented in VAAST 2.0 package 

according to original publications. The performance of VT is also compared to the 

implementations in plink-seq package [25] and no discrepancies are observed. SKAT and 

KBAC were benchmarked as implemented by the original authors in the R environment: 

(http://code.google.com/p/kbac-statistic-implementation/; 

http://www.hsph.harvard.edu/research/skat/download/).  
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They were run with using a wrapper script available in the VAAST 2.0 package. For 

SKAT, “linear.weighted” kernel is used as we simulated no variant-epistasis effects. 

              Although VAAST 2.0 can employ user-specified genetic inheritance models to 

increase accuracy, most of the other methods have no such functionalities. Thus in this 

simulation study we did not provide genetic model information, even though doing so 

would likely further improve the performance of VAAST 2.0. 

              We also made sure that our simulation pipeline was behaving correctly. We did 

so by checking that the distribution of p-values conformed to a uniform distribution 

supported on [0,1] when the null hypothesis is true [26]. That is, when there is no 

association between disease phenotype and the genotype. We validated this by setting 

PAR value to 0 and calculated p-values from VAAST 2.0 in 10,000 simulations, each 

simulating 1000 cases and 1000 controls and assuming 100 mutation sites exist in the 

simulated gene. Indeed, the distribution of p-values agrees very well with its theoretical 

distribution. 

 

Benchmark VAAST 2.0 as a rare Mendelian disease gene finder  

              For these analyses, we first randomly selected a known disease gene from 

OMIM, together with its published disease-causing alleles. We then inserted these alleles 

at their reported positions into different whole genome sequences drawn from the 

Complete Genomics Diversity Panel [27]. The control (background) genomes dataset 

consisted of a total of 443 genomes, drawn from multiple sources, consisting of (1) low-

coverage exome sequencing data from the 1000 genome project pilot phase [8]; (2) low 

coverage Danish exome data [28]; (3) 10 genomes sequenced with various platforms 
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[29]; and (4) Complete genomics diversity panel genomes [27]. This control dataset thus 

contains a variety of sequencing platforms and ethnicities, and as such presents a realistic 

snap shot of publically-available genomes. We ran VAAST 2.0 and the other tools and 

recorded the rank of the disease gene genomewide, repeating the analyses for 100 

different known disease genes. This process is described in detail in [10].  

              The command line used for VAAST1.0 was: 

 VAAST -k -d 2e6 -o <output ID> -m lrt -iht <dominant/recessive> <feature definition 

file> <control cdr file> <case cdr file>.   

              For VAAST2.0, we used the following command line: 

 VAAST -l <PhastCons score file> -k -d 2e6 -o <output ID> -m lrt -iht 

<dominant/recessive> <feature definition file> <control cdr file> <case cdr file>.   

              We also used VAAST 2.0’s optional single-case mode (sc-mode) to enforce a 

stringent filtering step in some of our analyses, as this improve its power for disease-gene 

hunting using one case genome. The VAAST single-case mode assumes complete 

penetrance of causal variants and no locus heterogeneity. This is achieved by adding “-lh 

no –pnt c” options to the VAAST2.0 command: 

VAAST -lh no –pnt c -l <PhastCons score file> -k -d 2e6 -o <output ID> -m lrt -iht 

<dominant/recessive> <feature definition file> <control cdr file> <case cdr file>.   

 

Results 

Variant prioritization 

              We compared the performance of VAAST 2.0 to other variant classifiers.  

Whereas tools such as SIFT, PolyPhen, and Align-GD [2,3,4] cannot score regions 
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lacking alignment information, VAAST 2.0 suffers from no such limitation. In regions 

where no nucleotide or protein conservation data are available, VAAST 2.0 uses allele 

frequencies and global amino acid substation frequencies as a basis for variant 

prioritization; in regions where conservation information is available, VAAST 2.0 

supplements this information with PhastCons scores [18], which cover 99.9% of the 

human proteome. For this comparison, we limited our benchmark analysis to variants that 

can be scored by all four algorithms (SIFT, PolyPhen-2, MutationTaster and VAAST2.0).  

              To evaluate the prioritization performance of each tool, we plotted the Receiver 

Operator Curve (ROC) for each algorithm using a set of neutral variants (drawn 

randomly from 1000 genome pilot phase [8]) and a set of disease-causal variants (from 

HGMD database). Figure 3.1A demonstrates that the accuracy of VAAST 2.0 and 1.0 is 

considerably better than other algorithms, with the true positive rate (TPR) reaching 76% 

for VAAST 2.0 and 68% for VAAST 1.0 when the false positive rate (FPR) is only 5%. 

The third best tool is Mutation-taster, whose TPR is 23% lower than VAAST 2.0 at the 

same FPR level.  VAAST 2.0 using the CASM method alone without recourse to variant 

frequency information (‘CASM’ in Figure 3.1) is the 4th best performing approach, 

followed by PolyPhen-2 and SIFT. We also calculated the Area Under the Curve (AUC) 

value and the accuracy at FPR = 0.05 for each algorithm, which demonstrates the same 

trends (Table 3.1).  

              For a second variant prioritization benchmark, we compared the performance 

each of these algorithms using a set of 143 rare missense variants in the BRCA1 and 

BRCA2 genes whose clinical significance was assessed by a third party [23]. This variant 

set differs from HGMD/1000 genome variants used to produce Figure 3.1A in that the  
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Table 3.1. Variant prioritization performance benchmarks.  Top half of the table 
reports Area Under the ROC shown in figure 3.1 (AUC); bottom half the Accuracy of 
each tool at a false positive rate (FPR) of 0.05. Benchmarks are reported for both HGMD 
and 1000 genomes data, and for rare BRCA 1 and 2 variants.  
 
 

AUC 

 VAAST1.0 VAAST2.0 CASM SIFT PolyPhen-2 
Mutation 
Taster 

Data Set1 
(HGMD+1kg) 0.95 0.96 0.83 0.76 0.8 0.87 
Data Set2 (rare 
BRCA variants) 0.68 0.87 0.86 0.73 0.76 0.85 
 

Accuracy at FPR of 0.05 

 VAAST1.0 VAAST2.0 CASM SIFT PolyPhen-2 
Mutation 
Taster 

Data Set1 
(HGMD+1kg) 0.81 0.86 0.68 0.57 0.62 0.74 
Data Set2 (rare 
BRCA variants) 0.53 0.72 0.72 0.52 0.62 0.68 
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data set used to produce Figure 3.1A contains both common and rare variants for neutral 

and deleterious alleles, whereas this set only contains very rare variants (MAF<<1%). 

The results of this benchmark analysis are shown in Figure 3.1B and Table 3.1. Since 

majority of the variants in this set are observed only once, VAAST 2.0 cannot use allele 

frequency information to leverage its power, thus the performance of the full VAAST 2.0 

algorithm is only marginally better than the CASM method alone in this case. 

Nevertheless, VAAST 2.0 is still the most accurate classifier. At FPR= 0.05, the accuracy 

of VAAST 2.0 is 4% higher than MutationTaster, the next best classifier. 

              The variant prioritization accuracies of VAAST 1.0 and 2.0 on HGMD/1000 

genomes dataset (Figure 3.1A and Table 3.1) are very similar. This is because, on this 

dataset, both algorithms derive most of their power from variant MAF information in a 

control population. However, in cases where such information is unavailable (e.g., all 

variants are equally rare), the accuracy of VAAST 1.0 drops, while VAAST 2.0 still 

accurately predicts the severity of variants using the CASM. This is illustrated by the 

BRCA variants benchmark dataset in Figure 3.1B and Table 3.1.  

 

Benchmark analyses on multigenic common diseases 

              Next we compared the power of six aggregative variant association tests using 

three different published sequence-based disease-gene datasets. The three datasets used 

are NOD2, implicated in Crohn disease [30]; LPL, implicated in hypertriglyceridemia 

[31]; and CHEK2 a gene involved in breast cancer [32]. In the NOD2 dataset, both rare 

and common variants are present, while only rare variants (MAF<0.05) are present in the 

LPL and CHEK2 dataset.  Summary statistics for each of the three datasets are presented 
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in Table 3.2. We calculated power using a bootstrap approach for varying numbers of 

cases, with a genomewide significance level of 2.4x10-6 for NOD2 and LPL.  For 

CHEK2, we set the significance level to 0.0005 for CHEK2 in concordance with the 

original study [32]. 

              In all three datasets VAAST 2.0 is consistently the most powerful association 

test (Figure 3.2). For LPL, for example, at a sample size of 400, VAAST 2.0 has 10% 

more power than VAAST 1.0 (second) and 25% more power than KBAC (third); For 

CHEK2, VAAST 2.0 has 3% more power than VAAST 1.0 at its maximal sample size 

and 9% more than KBAC (third); for NOD2, the power of VAAST 2.0 is 4% better than 

VAAST 1.0 and 9% better than WSS (third). Each of the other algorithms seems to have 

a niche. KBAC, for example, seems to perform very well on the two datasets (LPL, 

CHEK2) where only rare variants contribute to the disease, but its performance drops 

significantly where both common and rare causal variants are present (NOD2). WSS, on 

the other hand, performs well under both scenarios, and outperforms KBAC, SKAT, and 

VT when common variants are observed (e.g., the NOD2 data).  

              We also benchmarked VAAST 2.0 on the Dallas Heart Study dataset [33], in 

which rare variants in ANGPTL4 gene were found to be associated with low triglyceride 

levels within 3,551 sequenced individuals. For this study, we tested for different 

distributions of rare variants in ANGPTL4 gene between the highest–quartile and lowest 

quartile of triglyceride levels in the 3,551 individuals. Ethnicity and gender status are 

matched, in accordance with the original study [33]. For this benchmark experiment, we 

did not use a bootstrap approach, because the original study did not report the ethnicities 

and gender information for each individual and as a result we cannot re-create a balanced  
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Table 3.2. Characteristics of the NOD2, LPL and CHEK2 datasets. The number of 
unique multisite genotypes is the number of chromosomes with distinct combinations of 
variants. The Population Attributable Risk (PAR) is calculated as the sum of PAR values 
of all susceptibility variants. 
 

 

Average number of 
variants per case 
genome 

Number of variants 
with odds ratio >1 

Number of unique 
multisite 
genotypes PAR 

NOD2 1.19 27 566 44.7% 
LPL 0.10 10 14 8.4% 
CHEK2 0.05 22 30 3.81% 
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experimental sampling design using bootstraps.  The uncorrected significance values for 

each test are reported in Table 3.3. All the tests, obtained a P < 0.05.  Consistent with our 

other benchmarks, VAAST 1.0 and VAAST 2.0 obtained the lowest p-value. 

 

Benchmark analyses on simulated datasets 

              Simulated datasets provide an opportunity to investigate the performance of 

different approaches on datasets presenting specific challenges; for example, under 

various PARS or under different degrees of allelic heterogeneity, and in a controlled 

fashion. For these reasons, we used a previously published simulation framework [14] to 

compare the power of six aggregative variant association tests (see Methods section for 

additional details).  

              We first benchmarked the power of these tests under different aggregated 

Population Attributable Risk (PAR) [14] values, which reflects the aggregated disease 

risk of all simulated mutations. These results are shown in Figure 3.3. Under a dominant 

model, VAAST 2.0 rapidly achieves 80% power with PARs less than 0.04, and achieves 

a power of 100% when PAR=0.05. The power of VAAST 2.0 is followed by VAAST 1.0 

and VT, both of which exhibit 10% to 15% lower power than VAAST 2.0 before 

reaching 80% power. In contrast, SKAT reached 80% power around PAR=0.06 and WSS 

after PAR=0.07. This trend is also seen in the recessive inherence scenario at various 

PARs (Figure 3.3B). Note that in this experiment we assumed equal number of causal 

and noncausal mutation sites, but we also explored other proportions (Figure 3.4). 

              Both VAAST 2.0 and WSS can use user-specified inheritance models (e.g., 

dominant or recessive) to boost power.  However, for the analyses presented in Figure  
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Table 3.3. Significance of associations between low-triglyceride-levels and rare 
variants in the ANGPTL4 gene. Shown are p-values from the dichotomous tests 
conducted by each method. Note that VT is run with PolyPhen-2 scores.  
 
VAAST1.0 VAAST2.0 KBAC SKAT VT WSS 

0.000371 0.000508 0.00402 0.00677 0.00452 0.00402 
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3.3, we did not invoke these options, as 1) the other tests have no such functionalities and 

2) the mode of inheritance model is not always known.  In the published WSS manuscript 

[14] where genetic model information is used, WSS achieves 80% power at PAR=0.05 

under the recessive model; in contrast, even without genetic model information VAAST 

2.0 has a power of 97% at PAR=0.05. 

              We then explored the effect of increasing the number of disease-causal variants 

(ND) while holding PAR constant in order to model the impact of allelic heterogeneity on 

the performance of the different approaches. These results are shown in Figure 3.5. As 

can be seen, as ND increases, each variant’s risk contribution decreases, along with 

power.  For example, under both dominant and recessive inheritance models, when the 

number of deleterious variants is 150, each individual variant will only have a PAR of 

0.07%. Under this model, both VAAST 1.0 and VAAST 2.0 have greater than 80% 

power. VT with PolyPhen2-scores seems robust to increasing ND values until ND is 

greater than 100. For SKAT, the power dropped below 80% between ND of 50 and 100 

under dominant model and around 50 under recessive model. KBAC and WSS are less 

robust to increasing ND than other methods. We summarize the number of cases/controls 

required for each algorithm to achieve 80% power in Table 3.4 for ND=5 and ND=50. 

              WSS generally performed quite well, and in many cases outperformed KBAC. 

We note that the opposite behavior is reported in [15]. We believe differences in allelic 

heterogeneity are responsible for this discrepancy. Because KBAC calculates the sample 

risk for each multisite genotype, in cases where many different causal alleles or common 

causal alleles are present, the number of multisite genotypes grows very rapidly, with a 

concomitant loss in power. This behavior can be seen quite clearly in Figure 3.5.  
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Table 3.4. Numbers of cases and controls required for 80% power. Total  
PAR is set at 10%. 
 

 Dominant  Recessive  
 ND=5 ND=50 ND=5 ND=50 
VAAST1.0 150 300 300 500 
VAAST2.0 150 300 300 400 
KBAC 300         >1000 800         >1000 
SKAT 200 400 300 600 
VT 200 300 400 500 
WSS 300 700 800         >1000 
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Consistent with this hypothesis, KBAC performs well on the CHEK2 and LPL datasets, 

but does much worse on the NOD2 data, likely because NOD2 contains the highest 

number of multisite genotypes (Table 3.2). We tested this hypothesis by comparing the 

power of WSS and KBAC under different numbers of deleterious alleles. When ND=2 

and there are less than 10 multisite genotypes, KBAC has 3%~5% more power than WSS 

before it reaches 80% power. However, as the number of multisite genotypes increases 

with ND, KBAC gradually loses power, and when there are more than 40 multisite 

genotypes, the power of KBAC is severely compromised. This result is consistent with its 

performance on the LPL, NOD2 and CHEK2 datasets, suggesting that KBAC is probably 

best suited for analyses of datasets where the number of distinct multisite genotypes is 

not large, as demonstrated in Figures 3.2 and 3.5.  

 

Benchmark analyses on rare Mendelian diseases 

              VAAST was designed to be a general-purpose disease-gene finder capable of 

identifying both rare and common alleles responsible for both rare and common diseases 

[10,19].  Although the majority of aggregative variant association tests have been 

designed for common genetic-diseases, there is no a priori reason that they cannot be 

applied to rare Mendelian diseases.  To this end, we benchmarked the six aggregative 

variant association tests using the benchmarking pipeline from [10]. Briefly, this pipeline 

was employed to randomly select 100 Mendelian disease causal genes from the OMIM 

database, where each gene has at least six disease-causal variants. For each of these 

genes, we inserted published, disease-causing variants into from one to three healthy 

Caucasian genomes sequenced with Complete Genomics platform [27] in order to 
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simulate diseased individuals. All protein-coding genes are ranked according to the 

significance of associations between genotypes and dichotomous disease phenotypes.  To 

our knowledge this is the first time that a benchmark of aggregative variant association 

tests has been conducted on rare Mendelian diseases. 

              The results are shown in Figure 3.6. Figure 3.6A and 3.6B reports the 

proportion of the 100 OMIM ‘target’ genes falling into 4 bins based upon rank; these are 

bin A: 1 to 10, bin B: 11 to 100, bin C: 101 to 1000, and bin D: greater than 1000 among 

all protein coding genes.  

              For the dominant disease scenario, with only one case genome, VAAST 2.0 

ranked 40% of disease-genes among the top 100 candidates genomewide. Performance 

improved dramatically as the number of case genomes increases. With only two case 

genomes, the mean ranking for the disease-gene is 55, and 67% of disease-genes are 

ranked within top 10, genomewide; with three case genomes, the mean ranking is 10 and 

92% of disease-genes are among top 10. VAAST 2.0’s performance is even better under 

recessive model. For example, with only one case genome 83% of the disease-genes are 

ranked among top 100, and with two cases, the mean ranking was 9, with 95% of the 

disease genes ranked among top 10. We note that in this benchmark analysis, the 

performance of VAAST 2.0 is only slightly better than VAAST 1.0 in most cases, 

suggesting that the CASM approach improves performance primarily on datasets 

containing common causal variants or complex disease cases.  

              One of the most interesting aspects of this analysis is the general finding that all 

of the association tests do relatively well on these datasets. For example, using top 10  
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ranking as an empirical significance level with a sample size of 3, under the dominant 

model, VAAST 2.0 achieves 92% power, WSS 82% and KBAC 74% power. Under 

recessive model, VAAST 2.0, achieves 98% power, WSS 99% and KBAC 75% power. 

These analyses thus make it clear that some aggregative variant association tests are 

excellent rare Mendelian disease-gene finders (e.g., WSS, VT and KBAC), despite 

having been developed for common, multigenetic diseases. For purposes of comparison, 

we also assayed the performance of SIFT and ANNOVAR for rare disease disease-gene 

identification [2,11]. As would be expected, SIFT, does poorly compared to the other 

tests.  Notably, ANNOVAR, a filtering based approach, does very well with a sample 

size of 1 under recessive model, with only VAAST 2.0 run in the ‘single-case’ mode 

outperforming it (see Methods section for the commands). These results also illustrate 

another important difference between aggregative tests and filter-based approaches: 

While ANNOVAR’s performance is generally very good as regards the proportion of 

OMIM genes ranked as top 10, when it fails, it usually fails completely. For examplein 

cases where ANNOVAR fails to rank the gene in the top ten, the disease gene in never 

found among the top 1000 genes (data not shown). 

 

Discussion 

              Phylogenetic conservation is a valuable source of information for distinguishing 

between benign and disease-causing variation. However, how best to make use of this 

information—for purposes of variant prioritization and for association testing—is still an 

open question.  Variant prioritization tools, such as SIFT[2], use multiple alignments of  

homologous proteins and judge a human variant damaging if it alters a highly conserved 
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amino acid.  PolyPhen-2 goes one step further, making use of protein structural 

information where available [4]. VAAST takes a different approach. Rather than looking 

at individual columns of multiple alignments in order to judge the impact of a coding 

variant, VAAST uses the global, genomewide frequency of observing an amino acid 

substitution (AAS) in any gene, anywhere in the genome. This means that VAAST can 

score every coding change, regardless of whether or not a particular gene, or that 

particular region of its protein is conserved. Although it casts a wider net, VAAST 1.0 

was unable to take advantage of position-specific conservation information. Thus, the 

basic motivation of this work has been to develop a method that can make use of the 

detailed information provided by multiple alignments, and at the same time still score 

every coding variant. As Figure 3.1 demonstrates, the CASM approach provides an 

effective solution to this problem, granting VAAST 2.0 a significant advantage in variant 

prioritization compared to other state-of-the-art tools.  

              VAAST 2.0, however, is more than a tool for variant prioritization; it is also a 

genomewide search tool. As such, VAAST is one of several aggregative variant 

association tests published in the last few years [12,13,14,15,16,17]. Although several 

benchmarks have been published [14,15,16,17,34], ours is the first to systematically 

compare of the power of these methods across heterogeneous disease datasets—both real 

and simulated, and for both common and rare diseases. VAAST 2.0 consistently 

outperforms VAAST 1.0, WSS, VT, KBAC and SKAT in these analyses, but 

performance advantages vary across the datasets.  Indeed, an important conclusion of our 

benchmarking analyses is that no single dataset—real or simulated—is sufficient for 

benchmarking aggregative variant association tests because of the complex behaviors 
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exhibited by these tools. Figure 3.2 provides an excellent case in point. Collectively, our 

analyses show how three basic characteristics of case-control datasets impact the 

performance of the different tools. These are (1) the number of disease-causal alleles; (2) 

their frequencies; and (3) their collective attributable risk  (PAR). 

              The performance curves of KBAC and SKAT serve to highlight the general 

sensitivity of all the association tests to these three factors. KBAC, for instance, is clearly 

very sensitive to numbers of deleterious alleles at a given PAR (Figure 3.5). This is 

likely explained by the increasing number of multisite genotypes associated with number 

of causal sites. Since KBAC estimates the sample risk for each unique multisite 

genotype, when the space of multisite genotypes is large and each genotype has relatively 

low risk, the power of KBAC is compromised.  This is consistent with its poor 

performance on the NOD2 dataset, compared to its much better power on the CHEK2 and 

LPL datasets, as the NOD2 dataset contains 566 unique multisite genotypes, including a 

single common variant (MAF 27.7%) that explains 47% of the total PAR of this dataset. 

In contrast, the LPL and CHEK2 case datasets contain only 14 and 30 distinct genotypes, 

respectively (Table 3.2), and all of their deleterious variants are rare.  

              Although SKAT performed well in our simulation studies, it did much less well 

on the three real datasets.  Its performance the LPL and CHEK2 datasets, for example, 

suggest that SKAT is not well suited for analyses of datasets having modest numbers of 

causal variants that contribute to a relatively small total PAR (8.4% for LPL and 3.81% 

for CHEK2).  To test whether SKATs poor performance on these datasets might be due to 

the fact that it does not group low-risk rare variants, we used VAAST to group variants in 

LPL and passed this information to SKAT at run-time.  This approach dramatically 
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improved SKAT’s statistical power, from 31% to 45% at maximal sample size. 

Moreover, SKAT is a supervised method, requiring users to choose kernels and weights, 

as the default parameters can be suboptimal in certain cases. This also presents 

challenges. For example, on the NOD2 dataset, the default weight resulted in low power 

(<40% at sample size of 450) because it severely down-weighted common variants, 

which contribute to a large proportion of disease risk in this dataset. For this reason we 

used a beta weight value of (1,1) for SKAT for the NOD2 data, which greatly improved 

its performance. 

              In contrast to the other tools, VT and VAAST, when run on simulated data, 

exhibited very robust and similar performance across a wide range of PARs and allelic 

heterogeneities at both low and high ratio of disease-causing and neutral alleles in the 

case dataset under both dominant and recessive modes of inheritance (Figures 3.3, 3.4 

and 3.5). These strengths likely result from two features shared by the two approaches.  

First, they directly compare the variant MAF between cases and controls at each site to 

weight variants.  Second, they make use of external predictors of variant function to 

improve the power [16].  

              Despite their similar performance characteristics on simulated data, VAAST and 

VT behave very differently from one another on real datasets. One possible explanation is 

that VAAST 2.0 employs a more flexible variant-weighting method  one that does not 

rely on a priori assumptions about variant severity and MAF.  In contrast, VT assumes 

that for any given disease dataset, a single optimal MAF threshold exists, and less 

frequent variants are more likely to be deleterious. It thus explores all possible thresholds 

to find the MAF that maximizes the contrast between cases and controls [16]. This 
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assumption is generally true for our simulated datasets, and is probably true in 

expectation for most disease-causing loci.  However, because that genetic drift is a 

stochastic process, the distribution of disease-causing variation at any given locus can 

deviate from its theoretical expectation.  In addition, our theoretical understanding of the 

expected distribution of disease-causing variation is also far from complete, given the 

complexities of demographic history, natural selection, and a complex, changing 

environment. Consistent with these observations, VAAST is the best overall performing 

tool on every dataset—simulated and real—demonstrating that VAAST 2.0 can cope 

effectively with the diverse parameter spaces that characterize real case-control datasets.  

              With the exception of VAAST, the aggregative variant association tests 

benchmarked here were developed to identify genes involved in common-disease. Our 

analyses demonstrate that these tests are also applicable to the identification of rare 

Mendelian disease genes. For example, WSS, VAAST 2.0, and KBAC ranked the 

disease-gene in the top 10 genes genomewide 99%, 98%, and 75% of the time, 

respectively, using only three case genomes under a recessive model. ANNOVAR—a 

filtering approach—performed very well, relative to other methods, when only one case 

genome was used.  However, this performance advantage fell off quickly as additional 

case genomes are added, demonstrating that filtering-based approaches scale poorly with 

increasing sample size, whereas the opposite is true for the association tests. VAAST 2.0 

has a unique flexibility in this regard. It can be run in ‘single-case’ mode when only a 

single affected individual is available. When run in this mode it not only outperformed 

the other association-test methods, but ANNOVAR as well.   
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               Collectively, our analyses illustrate the unexpectedly complex performance 

characteristics of aggregative variant association tests. They also demonstrate that 

VAAST 2.0 is a powerful disease-gene finder that performs robustly across a wide 

variety of scenarios from both simulated and observed case/control datasets.!!
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CHAPTER 4 
 
 

CONCLUSIONS AND PERSPECTIVES 
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