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ABSTRACT

Topological phases are new kind of quantum phases of matter with properties robust

against weak disorders and interactions. They occur in two-dimensional electron liquids with

quantized Hall conductance and in topological insulators etc. The description of these phas-

es goes beyond Landau’s theory of symmetry breaking. They are (partially) characterized

by exotic properties, such as topology-dependent ground state degeneracy(GSD), fractional

quantum numbers of anyonic excitations and topology-protected bulk-edge duality etc.

In this dissertation, we systematically examine exactly solvable discrete models, partic-

ularly the so-called Levin-Wen models, for two-dimensional topological phases. They were

expected to describe a large class of nonchiral (or, time reversal invariant) two-dimensional

topological phases and to provide a Hamiltonian approach to some topological quantum field

theories, which are related to topological invariants defined in the mathematical literature.

We first show how to construct concrete models of the Levin-Wen type on a two-dimensional

graph (generalized lattice), associated with the data from representation theory (the 3j- and

6j-symbols) of finite groups or quantum groups. Then an operator approach is developed

to deal with the properties of the models, such as topology-dependent GSD and fractional

quantum numbers for quasiparticle excitations. In this approach we are able to demonstrate

the topological invariance/symmetry of the models under the mutation transformations of

the graph on which the system lives, and explore this invariance to compute the topology-

dependent GSD on a torus. Moreover, we use the operator approach to study the fluxon

excitations, i.e., quasiparticles living on plaquettes, and to exhibit their fractional exchange

(braiding) and exclusion statistics. Also, we explicitly show the correspondence between the

degenerate ground states and the quasiparticle excitations: (1) the GSD on a torus is equal

to the number of quasiparticle species; and (2) the modular matrices S and T obtained

from the modular transformation of the torus for the ground states coincide with those

obtained from the fractional exchange statistics of quasiparticles. In this way the present

study reveals the first time in the literature the Hilbert space structure for the degenerate

ground states as well as that for the excited states, and the interconnection between them

in the Levin-Wen models.
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CHAPTER 1

INTRODUCTION

In recent years topological phases of matter have received growing attention from the

science community. They represent a novel class of quantum matter, with some important

properties discrete and robust against weak disorders and interactions. Experimental ex-

amples include two-dimensional electron liquids with quantum Hall effect [1, 2, 3], certain

phases in quantum spin liquids [4, 5, 6, 7, 8], and topological insulators [9, 10, 11, 12, 13].

Topological phases have potential applications: some of them may be used for fault-tolerant

quantum computation [14, 15, 16, 17].

1.1 Topological phases

Before the discovery of quantum Hall effect, the standard paradigm for phase transition

was Laudau’s theory [18] of symmetry breaking. In Laudau’s theory, the continuous

phase transitions are driven by thermal fluctuations. Typically energy dominates at low

temperature while entropy dominates at high temperature. The phase transitions are

associated with a symmetry breaking, and characterized by one or sevaral local order

parameters that measure the order in the degrees of freedom (d.o.f.) of the system in the

low-temperature phase. Successful examples include crystals, ferromagnetism, superfulids,

superconductivity, etc. For many years, it was thought that Laudau’s theory described

essentially all ordered phases in phase transitions.

The fractional quantum Hall effect (FQHE) phases, however, are new kind of quantum

phases beyond the Landau paradigm. First, purely quantum effects, particularly quantum

entanglement at large distances, play a significant role in the formation of new topological

orders. Thus topological phase transitions can occur at zero temperature. Second, it may

happen that two different topological phases have the same symmetry and no local order

parameters can distinguish between them. Topologically ordered states are known to be

the ground states of a gapful spectrum of certain many-body Hamiltonians, and the ground

states are degenerate on a torus with robust degeneracy. Hence the topological phases
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are believed to be governed by a novel interplay between energy and information at the

quantum level [19].

In many cases, including the FQHE and certain phases in quantum spin liquids, topo-

logical phases can be characterized by the following topological properties that are stable

to local perturbations.

First, ground states are gapped with a robust ground state degeneracy (GSD) on a

torus [20, 21, 22]. But the ground state is nondegenerate on a sphere [23], implying that

the degeneracy is only sensitive to the spatial topology (for a given Hamiltonian). The

topological degeneracy are necessary for explaining the fractional physical quantities. In

FQHE for example, though the degenerate ground states look alike with each other, the

topological degeneracy is needed [20, 21] for the correct Hall conductivity. The topology

dependence goes beyond our conventional intuition and experience with symmetry breaking.

Second, the topological phases support unusual quasiparticles with fractional quantum

numbers [24, 25, 26]. For example, Laughlin’s wavefunction [3] for FQHE at filling factors

ν = 1
2n+1 hosts vortex-like quasiparticle excitations, carrying fractional charges compared

to those of the constituent particles of the system. Moreover, these quasiparticles have

fractional statistics [27, 28, 29, 30]. In general, we expect that quasiaprticles in topological

phases exhibit two types of fractional statistics. One is the fractional exchange statistics: the

wavefunction acquires a U(1) phase under the exchange of abelian anyons, or is transformed

by a unitary matrix under the exchange of nonabelian anyons. They also exhibit the

fractional (mutual) exclusion statistics: the effective number of available single-particle

states, when adding one more quasiparticle into the system, linearly depends on the number

of existing quasiparticles. A typical new feature of the generalized Pauli exclusion principle

is mutual exclusion between different species, resulting in a matrix of statistical parameters,

as well as unusual thermodynamics for ideal gases with only statistical interactions. These

unusual statistics indicate that the d.o.f. in the system are highly entangled with one

another over long range. Experimentally, the nonabelian Ising anyons are believed to be

realized by half quantum vortex in p+ip superfuids [31], and by the charge e/4 quasiparticles

in ν = 5/2 FQH liquids [32, 33].

Third, they have gapless boundary excitations near the edge of the system. The

excitations in the bulk of FQHE have an energy gap, but the gapless “edge waves” appears

[34] on (or near) the boundary. These edge modes are connected [35] to one-dimensional

chiral Luttinger liquids.

These properties are closely related to each other. The GSD is closely related to
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fractionization of quasiparticle quantum numbers, including fractional (braiding) statistics.

The topological degeneracy also occurs in systems with nonabelian anyonic quasiparticles

(the meaning of “nonabelian” will be explained later) on the plane (or, on the sphere). These

robust properties may be summarized by the concept of the so-called “topological orders”

[36] happening in topological phases. These properties may be systematically studied using

effective field theories.

Effective theories for topological phases are Chern-Simons theories or (more generally)

topological quantum field theories [37]. Landau-Ginsburg-Chern-Simons theory [38, 39]

for the FQHE used the Chern-Simons coupling to attach an odd number of flux quanta

to electrons, making them effectively bosons and able to “Bose condensate,” resulting

in an effective scalar field theory plus a Chern-Simons term that takes care of statistical

transmutation. Other effective theories [22, 40, 41, 42] include pure Chern-Simons fields in

an external electromagnetic field.

To see why the FQHE can be effectively described by topological phases, we note that

in TQFT observables (or correlation functions) are invariant under smooth deformation of

space-time. It is this deformation symmetry that relates the fractional quantum numbers

(e.g., GSD) to the topological invariants.

The Chern-Simons theories, which are known to be chiral breaking time reversal and

parity symmetry, are formulated in continuum spacetime and have no lattice counterpart.

Doubled topological phases, which respect these symmetries, on the other hand, do admit

a discrete description. Examples include Kitaev’s toric code model [14].

More recently, Levin and Wen (LW) [43] constructed a discrete model to describe a

large class of doubled phases. Their original motivation was to generate ground states

that exhibit the phenomenon of string-net condensation [44, 45] as a physical mechanism

for topological phases. The LW model is defined on a trivalent lattice (or graph) with

an exactly soluble Hamiltonian. The ground states in this model can be viewed as the

fixed-point states of some renormalization group flow [46]. These fixed-point states look

the same at all length scales and have no local degrees of freedom. Like Kitaev’s toric code

model [14], we expect that the subspace of degenerate ground states in the LW model can

be used as a fault-tolerant code for quantum computation.

The LW model can be viewed as a Hamiltonian version of the Turaev-Viro topological

quantum field theory (TQFT) in three-dimensional spacetime [47, 48, 17] and, in particular

cases, discretized version of doubled Chern-Simons theory [49, 50]. In discrete TQFT, the

topological observables are invariant under topology-preserving mutations of the space-
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time graph. The study of these topological observables provides a systematic approach

to understand those robust properties in topological phases. The mutation symmetry is

important. First, it implies that all local operators have trivial correlation functions in

the ground-state subspace. (The only local operator which has nonvarnishing correlation

functions is the identity transformation.) Hence, we have the superselection rule for any

local operator O: 〈Φa|O|Φb〉 = 0 for any two different degenerate ground states Φi and Φb.

This properties gives rise to the GSD as a topological observable.

For the elementary excitations, the mutation symmetry implies that all nontrivial local

operators only depend on the topology of (evolution of) configuration space of all quasipar-

ticles. This properties gives rise to further topological observables: the fractional exchange

statistics and the fractional exclusion statistics. In the continuum TQFT, quasiparticles can

be understood as punctures in the space manifold. Under deformation symmetry, the only

dynamics in the bulk are the braiding of punctures that transforms between the degenerate

states (with the configuration of the remaining punctures fixed). This braiding gives rise to

braid group representations [29]; and thus quasiparticles obey the fractional statistics. In

the discrete models, the observables are invariant under the mutation of space-time graph.

The quasiparticles can be viewed as the topological defects on the spatial graph, and the

above argument is valid in the discrete case too.

In this dissertation, we consider these exactly solvable models, particularly focusing on

Levin-Wen models, and study the robust emergent properties in the operator approach: the

GSD, and anyonic quasiparticle excitations.

1.2 Levin-Wen models

Let us briefly review the Levin-Wen models. The model is defined on a trivalent graph

embedded to a closed oriented surface. The Hilbert space is spanned by the degrees of

freedom on edges. See Fig. 1.1. For each edge, we assign a label j (called string type),

which runs over a finite set of integers j = 0, 1, ..., N . The Hilbert space is spanned by all

configurations of the labels on edges. Each label j has a “conjugate” j∗, which is also an

integer and satisfies j∗∗ = j. If we reverse the direction of one edge and replace the label

j by j∗ on this edge, we require the state to be the same. See Fig. 1.1. There is unique

“trivial” label j = 0 satisfying 0∗ = 0.

There are two types of local operators, Qv defined at vertices v and Bs
p (indexed by the

label s = 0, 1, ..., N) at plaquettes p. Let us first define the operator Qv. On a trivalent

graph, Qv acts on the labels of three edges incoming to the vertex v. We define the action

of Qv on the basis vector with j1, j2, j3 by
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""
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(b)

Figure 1.1. A configuration of string types on a directed trivalent graph. The configuration
(b) is treated the same as (a), with some of the directions of some edges reversed and the
corresponding labels j conjugated j∗.

Qv

∣∣∣∣∣ ## j1

$$

j2
%%

j3

〉
= δj1j2j3

∣∣∣∣∣ ## j1

$$

j2
%%

j3

〉
(1.1)

where the tensor δj1j2j3 equals either 1 or 0, which determines whether the triple {j1, j2, j3}
is “allowed” to meet at the vertex. Since there is no special ordering in this triple {j1, j2, j3},
we require δj1j2j3 is symmetric under permutations of the three labels: δj1j2j3 = δj2j3j1 =

δj1j3j2 . To be compatible with the conjugation structure of labels, the branching rule satisfy

δ0jj∗ = δ0j∗j = 1, δ0ij∗ = 0 if i �= j, and δj1j2j3 = δj∗3 j∗2 j∗1 .

In the representation language, the label set {0, 1, . . . , N} can be thought as (the

representatives of) all irreducible representations of a finite group or more generally a

quantum group. The trivial label 0 is the trivial representation. The branching rule tells

whether the tensor product j1 ⊗ j2 ⊗ j3 contains the trivial representation or not.

To define the operator Bs
p, we need more data. We associate to each label j a real nonzero

number dj , called the quantum dimension. They are compatible with the branching rule

by the condition:

∑
k

dkδijk∗ = didj . (1.2)

Let αi = sgn(di), and require the trimodality condition:

αiαjαk = 1, if δijk = 1. (1.3)
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We also need a tensor Gijm
kln called the (symmetrized) 6j symbol. They consist of complex

numbers and satisfy

tetrahedral symmetry: Gijm
kln = Gmij

nk∗l∗ = Gklm∗
ijn∗ = αmαnG

j∗i∗m∗
l∗k∗n ,

pentagon id:
∑

n dnG
mlq
kp∗nG

jip
mns∗G

js∗n
lkr∗ = Gjip

q∗kr∗G
riq∗
mls∗ ,

orthogonality:
∑

n dnG
mlq
kp∗nG

l∗m∗i∗
pk∗n =

δiq
di
δmlqδk∗ip,

(1.4)

where the bar means the complex conjugate.

The data {dj , δijk, Gijm
klm} is the basic ingredient of the representation theory of a group,

or more generally a quantum group. For instance, these conditions are satisfied if we take

the labels j to be the irreducible representations of a finite group, αj is the Frobenius-

Schur indicator telling if the representation j is real or pseudoreal, dj = αjdim(j) the

dimension dim(j) of the corresponding representation space multiplied by the Frobenius-

Schur indicator αj , and G
ijm
kln the symmetrized Racah 6j symbol for the group. See Chapter

2. In this example, the LW model is mapped to the Kitaev’s qauntum double model.

The operator Bs
p acts on the boundary edges of the plaquette p, and has the matrix

elements on a triangle plaquette,〈
j5

$$ j6

## j4

&&
j′3
�� j′2''j′1

∣∣∣∣∣Bs
p

∣∣∣∣∣
j5

$$ j6

## j4

&&
j3

�� j2''j1

〉
= vj1vj2vj3vj′1vj′2vj′3G

j5j∗1 j3
sj′3j

′∗
1
G

j4j∗2 j1
sj′1j

′∗
2
G

j6j∗3 j2
sj′2j

′∗
3

(1.5)

where vj ≡
√

dj , where the square root is randomly taken but once for all. The same rule

applies when the plaquette p is a quadrangle, a pentagon, or a hexagon and so on. Note

that the matrix is nondiagonal only on the labels of the boundary edges (i.e., j1, j2, and j3

on the above graph).

The operators Bs
p have the properties

Bs†
p = Bs∗

p (1.6)

Br
pB

s
p =
∑
t

δrst∗B
t
p (1.7)

The first one can be verified by the symmetry condition in (1.4), and the second one can

be verified by the three conditions in (1.4).

The Hamiltonian of the model is (here D =
∑

j d
2
j )

H = −
∑
v

Qv −
∑
p

Bp, Bp =
1

D

∑
s

dsB
s
p (1.8)

where the sum run over vertices v and plaquettes p of the trivalent graph.

The main property of Qv and Bp is that they are mutually-commuting projection

operators: (1) [Qv, Qv′ ] = 0 = [Bp, Bp′ ], [Qv, Bp] = 0; (2) and QvQv′ = δvv′Qv and
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BpBp′ = δpp′Bp. Thus the Hamiltonian is exactly soluble. The elementary energy eigen-

states are given by common eigenvectors of all these projections. The ground states satisfies

Qv = Bp = 1 for all v,p, while the excited states violate these constraints for some plaquettes

or vertices.

In particular, in most cases the data {d, δ, G} are derived from representations of groups

or quantum groups (quasitriangular Hopf algebra), we have δrst∗ = δsrt∗ . Then Bs
p’s

commute with each other,

[Br
p1 , B

s
p2 ] = 0 (1.9)

which can be verified by the conditions in (1.4) when p1 and p2 are the two nearest

neighboring plaquettes, and by eq (1.7) together with δrst∗ = δsrt∗ when p1 = p2.

1.3 Outline of dissertation

This dissertation mainly focuses on three parts.

The first part includes Chapters 2 and 3, presenting the concrete construction of Levin-

Wen models associated with finite groups and quantum groups. In Chapter 2, we start with

irreducible representations of a finite group, and construct the 3j-symbols. By imposing the

proper symmetry on the 3j-symbols, we derive the symmetrized 6j-symbols that are used

to define the Levin-Wen Hamiltonian. The algorithm and examples are discussed. The

construction reveals how Levin-Wen models are treated as topological gauge theories with

finite gauge group, or more generally, a generalized version with “quantum gauge group.”

Gauge filed theories are usually formulated by Lie algebras for Lie groups, or group elements

for finite groups. Levin-Wen models can be viewed as topological gauge field theories in

the dual formulations, using representations of the gauge group. The former formulation

emphasize the role of gauge transformations, while the latter the observables under the

gauge symmetry, which is convenient to systematically study the topological observables

we are interested in. In Chapter 3, we derive the symmetrized 6j-symbols from more

general algebraic structure (unitary spherical fusion categories), and discuss the example of

semion data and Fibonacci data, both of which are related to the quantum group Uq(su(2)).

In the second part, we study the topological properties of the degenerate ground states.

There are two types of topological observables in the ground states: GSD, and modular

matrices S and T , as discussed in Chapters 4 and 5, respectively. In Chapter 4, we introduce

the mutation symmetry and discuss the topological observables invariant under mutations.

The mutation symmetry implies that degenerate ground states look the same everywhere

locally, and we cannot distinguish between them by any local measurement. We show that
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the GSD only depends on the spatial topology of the system. In Chapter 5, we derive

the modular matrices S and T that characterize how different ground states on a torus

are transformed into each other. By these transformations, we prove that the topological

charges of the ground states are classified by the quantum double structure. The topological

numbers, i.e., the GSD, S and T are the characteristics of these topological charges.

In the third part, we study the fractional quantum numbers in elementary excitations.

In Chapter 6, we develop an operator approach to deal with the topological properties in

the fluxon excitations. We explicitly formulate the operators to crate, annihilate and hop

the fluxons. In this operator approach, we show that the topological charges of the fluxon

excitations include two parts: the particle species of the fluxons and the relative d.o.f among

these fluxons. We show that these topological charges are classified by the quantum double

structure.

In Chapters 7 and 8, we discuss the two types of fractional exchange statistics and

fractional exclusion statistics. In Chapter 7, we derive the modular S and T matrices from

the exchange statistics, where T gives the topological spins of quasiparticles while S the

amplitude of exchanging two quasiparticles twice.

S and T can be obtained in two ways, namely from modular transformations of torus on

the degenerate ground states as in Chapter 5, and from fractional statistics of quasiparticles

as in Chapter 7. We show that these two sets of S and T are identical, and hence confirm

the correspondence between the degenerate ground states on a torus and the particle species

of quasiparticles in the bulk.

In Chapter 9, we briefly introduce other discrete exactly solvable models for two-

dimensional topological phases. Kitaev models can be mapped to Levin-Wen models with

finite groups by a Fourier transformation in the ground states and fluxon excitations.

Dijkgraaf-Witten models are discussed by introducing local ordering of the discrete space

graph. The analysis in this dissertation can be adapted in these models. Finally, in the

last chapter, we briefly summarize the above emergent topological properties and future

directions.



CHAPTER 2

CONCRETE CONSTRUCTION OF

LEVIN-WEN MODELS WITH

FINITE GROUPS

In this chapter, we shall [51] concretely construct the Levin-Wen models from finite

group representations.

Many examples of the Levin-Wen model come from representation theory, e.g., of a

finite group, of a quantum double of a finite group, and of the q-deformed Lie groups

at a complex root q of unity. In mathematics, the 6j-symbols used to define Levin-Wen

models can be derived from (unitary spherical) fusion categories, and these fusion categories

are known to be equivalent to category of representations of some weak Hopf algebras (of

which the dual representations and the tensor product representations make sense), see

[52] for instance. Examples include Wigner’s 6j-symbols (or Racah’s coefficients) in group

representation theories. As a consequence, Levin-Wen models are equivalent to generalized

discrete topological gauge theories, where the gauge groups are generalized to weak Hopf

algebras as the gauge algebras. In particular, with the symmetrized 6j-symbols for a finite

group G, the Levin-Wen model is equivalent to a discrete gauge theory with G the gauge

group. However, this interpretation is hidden implicitly in the definition of the model. By

investigating the representation theories, we can better understand this equivalence.

The tensor category theory is a powerful mathematical tool in the study of the Levin-Wen

models. The Levin-Wen models are believed to be the discrete Hamiltonian version of some

TQFTS, which in turn are known to be described by category theories. For example, the

fractional quantum Hall liquids are described by Chern-Simons theories. Chern-Simons

theories satisfy a property called holography, which means that the bulk theory in a finite

region is equivalent to a conformal field theory (CFT) on the boundary (in this case, a

Wess-Zumino-Witten theory (WZW)). The latter is known to be related to a modular

tensor category (MTC).
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However, it is not straightforward to use the concept of tensor categories in the study of

Levin-Wen models. By filling in the necessary mathematical tricks, e.g., expressing a tensor

category in terms of matrices and tensors, we intend to provide more computational tools,

so that physicists can study the Levin-Wen model numerically. We also hope to provide a

more convenient language that would be useful to study the excited states in the Levin-Wen

models.

In this chapter, we shall construct Levin-Wen models from finite group representation

theories. Given any finite group G, the input data {d, δ, G} can be derived. The Levin-Wen

models with these data become the discrete topological gauge field theory, with the finite

gauge group G.

Levin-Wen Hilbert space is spanned by the string types. These string types are the

irreducible representations of G. By a Fourier transformation, i.e., between the irreducible

representations and group elements, the language of string types is mapped to the traditional

language of gauge fields using group elements.

2.1 Symmetrized 6j-symbols from group
representation theory

The physical significance of group representations lies in the conjugate representations

and the tensor product representations. They are the basic ingredients of the mathematical

structure of the Hilbert space of a many-body quantum system with antiparticles. The

6j-symbols provide a tensor description of the group representation theories that conve-

niently deal with the conjugate representations and the tensor product representations.

An important example is the Wigner’s 6j-symbols (or, Racah’s coefficients) in the angular

momentum theory.

Unfortunately, the 6j-symbols are not uniquely defined — they are defined up to some

nontrivial phases. These phases can be fixed by imposing some “simple” symmetry proper-

ties on the 6j-symbols. In this chapter we will impose the tetrahedral symmetry conditions

(1.4) on the 6j-symbols. The 6j-symbols satisfying Eq. (1.4) are symmetrized. In this

section, we start by introducing the intertwining operators (or, G-morphisms, will be defined

later), and construct the symmetrized 3j-symbols and then the symmetrized 6j-symbols.

Let G be a group. A unitary representation of the group G is a pair (ρ, V ), where a

vector space V is equipped with unitary operators

ρ(g) : V → V ; em 	→
∑
n

[ρ(g)]nmen, (2.1)
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one for each g ∈ G, such that

ρ(1) = 1V (2.2)

is the identity map on V for the identity element 1 ∈ G, and

ρ(g)ρ(h) = ρ(gh). (2.3)

Here [ρ(g)]nm is the representation matrix, and en the basis vectors in V .

Given two representations (ρ, V ) and (ρ′, V ′) of G, an intertwining operator is a linear

operator

f : V → V ′; em 	→
∑
m′

fm′mem′ (2.4)

that commutes with the group action, i.e.,

∑
n

[ρ′(g)]n′m′fm′m =
∑
n

fn′n[ρ(g)]nm, (2.5)

for all g ∈ G, where m,n runs in basis of V and m′, n′ of V ′.

It is convenient to introduce the graphical presentation of the equations of intertwining

operators. This technique would help us to read the tensor equations more intuitively. We

draw Eq. (2.5) like

f

##
V ′

g

##
V

##
V

=
g

##
V ′

f

##
V ′

##
V

, (2.6)

where the lines denote the vector spaces V and V ′, the coupon denotes the intertwining

operator f between them, and the circle labeled by g denotes the group action on the

corresponding representation space. The upward direction is the “metaphorical” time arrow

to indicate the order of composition of linear maps between vector spaces. We present the

composition of f and ρ(g) by putting the coupon of f on top of ρ(g), with an internal line to

indicate the contraction that them. The identity map on V will be presented by a vertical

arrow ##
V directed upward.

Now consider the tensor product representations. Given any two representations (ρ, V )

and (ρ′, V ′), the tensor product representation of them is the pair (ρ ⊗ ρ′, V ⊗ V ′) where
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V ⊗ V ′ is the tensor product of vector spaces and the representation operator (ρ⊗ ρ′)(g) is

defined by

(ρ⊗ ρ′)(g) : V ⊗ V ′ → V ⊗ V ′;

(ρ⊗ ρ′)(g)(v ⊗ v′) = ρ(g)v ⊗ ρ′(g)v′, (2.7)

for all elements v ∈ V and v′ ∈ V . The ρ⊗ρ′ is well-defined on V ⊗V ′ because all elements

in V ⊗ V ′ are linear combinations of v ⊗ v′, and (ρ⊗ ρ′)(g) is a linear operator.

The tensor product f1 ⊗ f2 of two intertwining operators f1 : V1 → V ′
1 and f2 : V2 → V ′

2

is defined by (f1 ⊗ f2)(v1 ⊗ v2) = (f1v1)⊗ (f2v2) for all v1 ∈ V1 and v2 ∈ V2. This defining

equation is presented by

f1⊗f2

##
V1⊗V2

##
V ′
1⊗V ′

2

= f1

##
V1

##
V ′
1

f2

##
V2

##
V ′
2

, (2.8)

where on the RHS the two parallel vertical lines labeled by V1 and V2 presents V1 ⊗ V2.

The diagrams satisfy the sliding principle, namely, sliding up or down the coupons does

not affect the final results,e.g.,

f1

##
V1

##
W1

f2
##
V2

##
W2

=
f1
##
V1

##
W1

f2

##
V2

##
W2

= f1

##
V1

##
W1

f2

##
V2

##
W2

, (2.9)

which reads (f1 ⊗ idW2)(idV1 ⊗ f2) = (idW1 ⊗ f2)(f1 ⊗ idV2) = f1 ⊗ f2, with the identity

maps inserted at appropriate positions in the composition.

2.1.1 Dual representations

Let I be a complete set of the inequivalent unitary irreducible representations of a group

G, usually labeled by some numbers. In particular, we label 0 the trivial representation

(ρ0,C) in which ρ0(g) = 1 for all g ∈ G. Though irreducible representations in the set

I are chose quite arbitrarily, we fix one set I once and for all. Different choices differ

by a similarity transformation of each representation. For example, the group SU(2) has

irreducible representations j = 0, 12 , 1,
3
2 , . . . . Take the j = 1/2 representation of the form

exp(iθ · s), where we can choose s = {σx/2, σy/2, σz/2}, or s′ = {−σx/2, σy/2,−σz/2} with

σ the pauli matrices.

Each (unitary) irreducible representation (ρj , Vj) for j ∈ I comes with a conjugate

representation (ρ∗j , V
∗
j ), such that ρ∗j (g) is the complex conjugate of ρj(g) for all g ∈ G.
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The conjugate representation of j in I is also irreducible. In general it does not match any

representation in I, but it must be equivalent to one in I, called the dual of j∗ and denoted

by j∗. If (ρj , Vj) is equivalent to its complex conjugate, we say it is self-dual and have

j = j∗.

For example, each irreducible representation of SU(2) is equivalent to its conjugate. Take

j = 1/2 representation of the form exp(iθ · s) with s = {σx/2, σy/2, σz/2}. Its conjugate

form is exp(iθ · s) = exp(iθ · s′) with s′ = {−σx/2, σy/2,−σz/2}, where the bar means the

complex conjugate.

These two representations are not the same, but equivalent up to a similarity transfor-

mation as follows. There is an intertwining operator called the duality map for j = 1/2

representation,

ω1/2 : 1 	→
∑

m,n=±1/2

Ω1/2
m1m2

|m,n〉

Ω1/2 = ησy (2.10)

where m1,m2 = −1/2, 1/2, and η is an arbitrary complex number. The condition for ω1/2

to be an intertwining operator is given by∑
m′n′

[ρ1/2(g)]mm′ [ρ1/2(g)]nn′(Ω1/2)m′n′ = (Ω1/2)mn. (2.11)

which has only one solution as given by Eq. (2.10). Since the representation is unitary, we

see that the duality map takes the j = 1/2 representation to its complex conjugate, by

Ω1/2ρ1/2(g)(Ω
1/2)−1 = ρ1/2(g) (2.12)

for all g ∈ SU(2). In quantum theory, the duality map ω1/2 is related to the time reversal

symmetry transformation on a spin-1/2 system.

In general, each irreducible representation j ∈ I comes with a dual j∗ ∈ I such that

there exists an invertible intertwining operator called the duality map

ωj : C 	→ Vj ⊗ Vj∗ ; 1 	→
∑
m,n

Ωj
mnem ⊗ en, (2.13)

where em runs in the basis of Vj and en of Vj∗ , and Ωj
mn is a complex matrix that satisfies

the normalization condition

(Ωj)†Ωj = 1. (2.14)

The ωj maps the representation j (or j∗) to its complex conjugate by

(Ωj)−1ρj(g)Ω
j = ρj∗(g) ≡ ρ∗j∗(g),

Ωjρj∗(g)(Ω
j)−1 = ρj(g) ≡ ρ∗j (g) (2.15)
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for all g ∈ G, which can be directly verified by the defining property of the intertwining

operator that ρj(g)Ω
j(ρj∗(g))

T = Ωj for all g ∈ G.

Unless specified, we suppress the coupon to a dot in the graphical presentation by

ωj

##
C

(( Vj ))Vj∗

≡
•

**j∗�� j

, (2.16)

where on the LHS the dashed line denotes V0 = C, and on the RHS we abbreviated Vj by

j, and suppressed the dashed line. The representation j is self-dual iff j∗ = j. For example,

the trivial representation 0 is always self-dual.

The duality map is unique up to a complex factor. In fact, if there are two matrices Ωj

and Λj satisfying the intertwining operator condition, then the matrix Ωj(Λj)−1 commutes

with ρj(g) for all g ∈ G. Schur’s lemma implies that Ωj must be a multiple of Λj .

From the uniqueness of the duality map it follows that Ωj for any self-dual j ∈ I must

be symmetric or antisymmetric. In fact, since (Ωj)T is also an intertwining operator, hence

we have (Ωj)T = αjΩ
j for some complex number αj . Taking the transpose again yields

α2
j = 1.

The αj = ±1 is an intrinsic property of the representation j and is called the Frobenius–

Schur (FS) indicator. For a self-dual j ∈ I, αj is invariant under any rescaling of ωj . In

fact, αj is explicitly determined by
∑

g∈G trj(g
2) = αj

∑
g∈G(tr(g))

2 (the summation occurs

for a finite group G, and is replaced by the haar measure
∫
dg in a Lie group situation).

For example, all representations j = 0, 12 , 1,
3
2 , . . . of SU(2) group are self-dual with

αj = (−1)2j . If j∗ �= j, we define αj = 1 by setting Ωj = (Ωj∗)T .

The inverse duality map ω−1
j : Vj∗ ⊗ Vj → C is presented by

ω−1
j

##
C

))

Vj∗
((

Vj

≡
•

++
j

��
j∗

. (2.17)

and satisfies

•

•
,,
j∗-- j,,

j∗ = ##
j∗ ,

•

•
..
j

��
j∗ ..

j = ##
j (2.18)

where the bare straight lines on both RHS denote the identity maps. Again, ω−1
j is

abbreviated to a dot unless specified.
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According to the normalization condition (2.14), we see that under the complex conju-

gation, the duality map transforms according to the FS indicator

Ωj
mn = αj

[
(Ωj∗)−1

]
mn

Ωj∗
nm = αj

[
(Ωj)−1

]
nm

(2.19)

In our convention (2.14), one allows the freedom of a pure phase to determine the duality

map. For example, for j = 1/2 representation of SU(2), the η in Eq. (2.10) could be an

arbitrary pure phase. In the next subsection, similar phases are dealt with to determine

the 3j-symbols. As we will see in Eq. (2.25) and (2.26), these two kinds of phases are

actually dependent of each other. We have already observed the dependence between them

in quantum theory, where the former is related to the time reversal transformation and the

latter is related to the Clebsch-Gordan coefficient (will be defined in Eq. (2.31)).

2.1.2 3j-symbols

The tensor product i⊗ j of any two (unitary) irreducible representations i, j ∈ I can be

decomposed into a direct sum of irreducible representations. The decomposition properties

are specified by the 3j-symbols. In this following we will discuss decomposition properties in

a more symmetric way, i.e., consider the decomposition of three irreducible representations

instead of two.

In general, in the decomposition of the tensor product j1⊗j2⊗j3 of any three irreducible

representations j1, j2, and j3 of G, the trivial representation 0 may appear more than once.

Throughout this chapter, we assume that the group is multiplicity free, namely, the trivial

representation 0 appears at most once in the decomposition of j1⊗j2⊗j3 for all j1, j2, j3 ∈ I.

However, the generalization of the results in this chapter is straightforward.

A 3j-symbol for any triple (j1, j2, j3) is an intertwining operator

Cj1j2j3 :Vj1 ⊗ Vj2 ⊗ Vj3 → C

|j1m1; j2m2; j3m3〉 	→ Cj1j2j3;m1m2m3 , (2.20)

that satisfies the normalization condition∑
m1m2m3

Cj1j2j3;m1m2m3Cj1j2j3;m1m2m3 = 1. (2.21)

Presented graphically, the normalization condition is

Cj1j2j3

Cj1j2j3

## j1 ## j2 ## j3 = 1, (2.22)
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for all j1, j2, j3 ∈ I, where the Cj1j2j3 denotes the conjugate 3j-symbol as defined by

Cj1j2j3 :C → Vj1 ⊗ Vj2 ⊗ Vj3 ,

1 	→
∑

m1m2m3

Cj1j2j3;m1m2m3 |j1m1; j2m2; j3m3〉, (2.23)

The triple (j1, j2, j3) is called admissible if there exists nonzero 3j-symbol Cj1j2j3 . It

means that the trivial representation 0 appears in the decomposition of the tensor product

j1 ⊗ j2 ⊗ j3. We assign the fusion rules δj1j2j3 = 1 if (j1, j2, j3) is admissible and δj1j2j3 = 0

otherwise.

Similar to the duality map, the phase of the 3j-symbol is not determined by the defining

equation. The undetermined phase may be a function of of j1, j2, and j3 but is independent

ofm1,m2, andm3. The phase may also depend on the order in which j1, j2, and j3 appear in

the 3j-symbol. Thus the 3j-symbols are defined only up to some phases and this freedom can

be exploited to impose some symmetry properties on the 3j-symbols. For example, by an

appropriate choice of these phases, we can make the 3j-symbol symmetric or antisymmetric

under permutations of the j’s and the corresponding m’s.

In this chapter, we will not consider the usual permutations directly applied on the

triple, but those that take any triple (j1j2j3) to

(j1j2j3), (j2j3j1), (j3j1j2), (j3
∗j2∗j1∗), (j2∗j1∗j3∗), (j1∗j3∗j2∗). (2.24)

For odd permutations, we take all representations to their dual in additional to the permu-

tation on the order. Then we will require symmetry conditions under such permutations.

The reason for such permutations is the following. The dual representation of j1 ⊗ j2 ⊗ j3

is (j3
∗j2∗j1∗), and thus we have certain symmetry property induced by this duality map.

We think that this symmetry property (if exists) under our above permutations is more

fundamental, because in the representation theory of more general algebra, the symmetry

induced by the usual odd permutation does not hold, while the symmetry induced by the

above duality map still holds.

We require the cyclic conditions on the 3j-symbols by

Cj1j2j3;m1m2m3 = αj3Cj3j1j2;m3m1m2 , (2.25)

and the dagger condition

Cj1j2j3;m1m2m3 =
∑

n1n2n3

Cj3∗j2∗j1∗;n3n2n1Ω
j3∗
n3m3

Ωj2∗
n2m2

Ωj1∗
n1m1

, (2.26)

for all j1, j2, j3 ∈ I, m1 = 1, 2, . . . , dj1 , m2 = 1, 2, . . . , dj2 andm3 = 1, 2, . . . , dj3 . Graphically

they are presented by
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Cj1j2j3

))

j1
##

j2
((

j3
=

Cj1j2j3

•
))

j3
##

j1
((

j2

•
��

j3∗
��
j3

(2.27)

and

Cj1j2j3

.. j1

## j2
,, j3

=

Cj∗3 j∗2 j∗1
•//

j∗1
��j1

•
00 j∗2

11
j2

•
22 j∗3

��
j3

, (2.28)

where Eq. (2.27) is obtained by using the relation (2.19), which has a slightly different form

from Eq. (2.25), which can be adapted to quantum group case in the next chapter.

By the condition (2.28), the normalization condition (2.22) can be expressed by

Cj1j2j3
Cj∗3 j∗2 j∗1

•		
j3

33
j∗3

•
// j2 

j∗2

•
44
j1

55
j∗1

= 1, (2.29)

for all admissible (j1, j2, j3).

In some literatures (for example, see [53]), 3j-symbols are defined of similar form as

the Clebsch-Gordan coefficient in the angular momentum theory that specifies the rule to

decompose the tensor product of any two irreducible representations of the group SU(2).

Let us define Clebsch-Gordan coefficient in terms of the 3j-symbols as follows. A Clebsch-

Gordan coefficient is G –morphism

C
j∗3
j1j2

: Vj1 ⊗ Vj2 → Vj∗3

|j1m1; j2m2〉 	→
∑
m∗

3

C
j∗3m

∗
3

j1m1;j2m2
|j∗3m∗

3〉 (2.30)

defined by

C
j∗3
j1j2

j∗3

##

j1

��

j2

--

≡ Cj1j3j3

j1

��

j2

##

•

j3
66

j∗3

##

= Cj1j3j3

•
j3

��

j∗3

##

j1

##

j2
66

, (2.31)

where the second equality is due to the symmetry condition (2.25).

Under these the symmetry conditions, it is safe to suppress the coupons of the 3j-

symbols, the duality maps, the inverse duality maps, and their compositions, into a trivalent
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or two-valent vertex. We also suppress the arrows without introducing any confusion. We

enumerate the suppression rules for two-valent vertices as follows

•

j∗j
≡

ωj

(( j ))j∗
,

•
jj∗

≡
ω−1
j

)) j∗ ((j
(2.32)

and for three-valent vertices

•
j1 j2 j3

≡
Cj1j2j3

))

j1
##

j2
((

j3

•

j1 j2 j3 ≡
Cj∗3 j∗2 j∗1

•//
j∗1

��j1

•
00 j∗2

11
j2

•
22 j∗3

��
j3

•
j1 j2

j3

≡
Cj1j2j

∗
3

77

j1
##

j2
88
j∗3

•

##
j3

•
j2

j1

j3

≡
Cj∗1 j2j

∗
3

77
j∗1 ##

j2
88
j∗3

•

##
j1

•

##
j3

(2.33)

For example, an important property of the Clebsch-Gordan coefficient (2.31) is

g

##
j1

##
j1

g

##
j2

##
j2

=
∑
j3

dj3

•

•

j1 j2

g

j3

j1 j2

, (2.34)

for any g ∈ G, where dj3 = αj3dimj3 . The conditions (2.25),(2.26) and the normalization

condition (2.21) are used to derive the coefficients dj3 . More details about dj3 will be

discussed in the next subsection.

Before ending this subsection, we check the self-consistency of the cyclic condition, the

dagger condition, and the normalization condition.

First, applying the cyclic condition (2.25) three times on Cj1j2j3 yields Cj1j2j3 = αj1αj2×
αj3Cj1j2j3 . But the extra phase is eliminated by the property that

αj1αj2αj3 = 1, (2.35)

for all j1, j2, j3 ∈ I if δj1j2j3 = 1.
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Second, we need to verify Cjjj;m1m2m3 =Cjjj;m3m1m2 for any admissible triple (j, j, j).

Assume Cjjj;m1m2m3 = βCjjj;m3m1m2 with β = 1 or exp(±2πi/3). Since the 3j-symbol

Cjjj;m1m2m3 is proportional to
∑

g∈G ρm′
1m1

(g)ρm′
2m2

(g)ρm′
3m3

(g)Tm′
1m

′
2m

′
3
for arbitrary ten-

sor T (the summation occurs for a finite groupG, and is replaced by the haar measure
∫
dg in

a Lie group situation), the symmetry condition (2.25) amounts to
∑

g ρm′
1m1

(g)ρm′
2m2

(g)×
ρm′

3m3
(g) = β

∑
g ρm′

1m3
(g)ρm′

2m1
(g)ρm′

3m2
(g). With the identification m1 = m′

2,m2 = m′
1

and m′
3 = m3, the contraction yields

∑
g tr(g

2)tr(g) = β
∑

g tr(g
2)tr(g). This verifies β = 1.

In the following we show that the symmetry conditions (2.25) and (2.26) can be achieved

by a rescaling of the 3j-symbols. The rescaling is taken as follows.

For each admissible (j1, j2, j3), we start with a set (2.24) of 3j-symbols generated by the

permutations on (j1j2j3). Suppose they satisfy the first symmetry condition (2.25).

We consider two situations. The first situation is when the admissible triple (j1, j2, j3)

satisfies j1 = j∗1 , j2 = j∗3 (or similarly, j2 = j∗2 , j1 = j∗3 or j3 = j∗3 , j1 = j∗2).

By Schur’s lemma, we have

Cj1j2j3

.. j1

## j2
,, j3

= βj1j2j3 ×
Cj∗3 j∗2 j∗1

•�� j∗1

��j1

•
44 j∗2

**
j2

•
88 j∗3

**
j3

(2.36)

for some complex number βj1j2j3 . The β ≡ βj1j2j3 = βj3j1j2 = βj2j3j1 does not depend on

the order of j1j2j3 as required by the first symmetry condition (2.25). Apply the conjugate

transformation (2.58) on both sides of Eq. (2.36), we obtain ββ = 1. On the other hand,

the normalization condition (2.22) implies

Cj1j2j3

Cj1j2j3

,, j1
## j2 .. j3

= β ×

Cj1j2j3
Cj∗3 j∗2 j∗1

•99
j3

::
j∗3

•
44 j2 55j∗2

•
-- j1 ��j∗1

= βidC. (2.37)

Since the LHS is evaluated to
(∑

m1m2m3
|Cj1j2j3;m1m2m3 |2

)
idC and thus β must be positive.

Together with the above result |β| = 1 it implies β = 1. Hence the first symmetry condition

(2.25) automatically implies the second symmetry condition (2.26).

The second situation is when the triple (j1, j2, j3) does not match any cyclic permutation

of (j∗3 , j∗2 , j∗1), Cj1j2j3 and Cj∗3 j
∗
2 j

∗
1
. We assume Eq. (2.36) with β ≡ βj1j2j3 to be determined.

Notice that β must be positive according to Eq. (2.37). The following rescaling cancels β

in Eq. (2.36).

Cj1j2j3 	→ 1√
β
Cj1j2j3 , Cj∗1 j

∗
2 j

∗
3
	→
√
βCj∗1 j

∗
2 j

∗
3
. (2.38)
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2.1.3 Normalized 6j-symbols

There are two equivalent ways to decompose any tensor product i⊗ j ⊗ k for i, j, k ∈ I

through the 3j-symbols, which are related by some global factors. Each way is specified

by an intertwining operator between the tensor product representation and any irreducible

representation. A 6j-symbol F is a complex tensor defined by

j∗ i∗
l∗

k

m =
∑
n

F ijm
kln

j∗
i∗ l∗

k

n . (2.39)

Here the order of the indices in the tensor F is taken to fit the convention as in (1.4).

The F only depends on the representation labels, which has the origin that all unitary

representations are decomposable.

There are two important identities. The first one is the pentagon identity (Biedenharn-

Elliot identity) ∑
n

Fmlq
kp∗nF

jip
mns∗F

js∗n
lkr∗ = F jip

q∗kr∗F
riq∗
mls∗ . (2.40)

which comes from two equivalent ways to express the one of the following morphism as a

linear combination of the other

⇒ (2.41)

Assume the F tensor is defined using the 3j-symbols under the conditions (2.22), (2.25)

and (2.26), then we have the second identity called the orthogonality condition,

∑
n

F ijm
kln Fjkn

∗
lip = δpmδm∗klδjmi (2.42)

To prove it, we start with the RHS of Eq. (2.39) and apply the identity

• = •
•

•
, (2.43)

on both trivalent vertices. Applying the identity (2.39) and (2.43) again takes back the

diagram to the LHS of Eq. (2.39), and proves the orthogonality condition. Notice that

the orthogonality condition depends on the particular symmetry conditions, whereas the

pentagon identity holds in any convention of the 6j.

The tensor F can be explicitly expressed in terms of the 3j-symbols and the duality

maps. Compose the both sides of Eq. (2.39) by the duality maps and the 3j-symbols in
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an appropriate way and use the Schur’s lemma to eliminate the summation over n on the

RHS to a particular n, we obtain

•

•

k

k

k∗

l∗
m

i∗
j∗

n

= F ijm
kln

•

•

k

k

k∗

n

j∗ i∗ l∗

n

. (2.44)

The RHS diagram can be reduced. The bubbles can be removed by the relation

n

i∗ l∗

n

=
1

•
•
n∗n

× i. (2.45)

The RHS is an intertwining operator from the irreducible representations space i to itself,

and thus must be a multiple of the identity map by Schur’s lemma. The coefficient di is

determined by the normalization condition (2.22). Apply this relation to the RHS and use

the normalization condition (2.22), and we have

F ijm
kln =

•

•

k

k

k∗

l∗
m

i∗
j∗

n

×
•

•
n∗n (2.46)

In the evaluation we eliminate all –like diagrams, which evaluate to 1 according to the

normalization condition (2.22).

In the last line above, the diagram •
• evaluates to

dn ≡
•

•
n∗n = αntr(Ω

n†Ωn) = αndimn, (2.47)

where dimn = dim(Vn) is the dimension of the representation space Vn. The dj may be

positive or negative, but it has some similar properties as the dimension dj . For example,

the property didj =
∑

k δijk∗dk implies didj =
∑

k δijk∗dk , because αiαj = αk for any

admissible (i, j, k∗).

We define the symmetrized 6j-symbol in terms of 3j-symbols and duality maps by

Gijm
kln ≡

∑
ai,bi,aj ,bj ,...,an,bn

Ωi
aibi

Ωj
ajbj

Ωm
ambmΩ

k
akbk

Ωl
albl

×

Ωn
anbnClm∗k;albmakCk∗j∗n;bkbjanCn∗i∗l∗;bnbiblCijm;aiajam , (2.48)

where ai, bi = 1, 2, . . . , di. Its diagram presentation is

Gijm
kln ≡

•
k k∗

•
n n∗

•m
m∗

•j
j∗

•
i

i∗

•

l
l∗

(2.49)
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Or equivalently, by the relation (2.31), it can be expressed in terms of Clebsch-Gordan

coefficient by

Gijm
kln =

•

•

k

k

k∗

l∗
m

i∗
j∗

n

(2.50)

The tensor G differs from F by

Gijm
kln = F ijm

kln /dn (2.51)

We emphasize that the definition has good symmetry properties only under the conditions

(2.22), (2.25) and (2.26). If the 3j-symbols follow other conventions, the relationship (2.51)

may need to be modified for G to be symmetrized.

The diagram in (2.50) has the shape of a tetrahedron,

•
•

•

•
(2.52)

and has the corresponding tetrahedral symmetry. The geometric symmetry of a tetrahedron

consists of 24 transformations generated by two rotation generators and one reflection

generator. Correspondingly, we will show that the symmetrized 6j symbols have the tetra-

hedral symmetry in (1.4). The two rotation generators correspond to the conditions (2.25)

and (2.26), and the reflection generator corresponds to unitarity of the representations, as

explained in the following.

First, the diagram in (2.52) allows a rotation by 2π/3. We can apply a corresponding

rotation to the diagram and obtain

•

•

k

k

k∗

l∗
m

i∗
j∗

n

=

i∗ l∗

•
•

m∗

•
•

k

•

•

j

•
•

•

•

n

n

n∗

=

•

•

n

n

n∗

k
j

m∗
i∗

l∗

, (2.53)

where we used the properties (2.18) in the first equality, and the first symmetry condition

(2.25) in the second equality. Hence we obtain the first equality in the tetrahedral symmetry

in Eq. (1.4)

Gijm
kln = Gmij

nk∗l∗ . (2.54)

Second, we can “drag” the line l∗ to the right,

•

•

n

n

n∗

k
j

m∗
i∗

l∗

=

•

•

n

n

n∗

k
j

m∗
i∗

l∗

(2.55)
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where Ωn = αn(Ω
n∗
)T is used at the bottom and the top tips. Using again the first symmetry

condition (2.25) to transform the diagram to the shape as in the definition (2.50), we obtain

the second equality of tetrahedral symmetry in (1.4)

Gmij
nk∗l∗ = Gklm∗

ijn∗ . (2.56)

The last equality of tetrahedral symmetry corresponds to the upsidedown “reflection”

of the diagram. It is related to taking the complex conjugate of the duality map and the

3j-symbols. Let us define the conjugate transformation by

ωj : 0 → j ⊗ j∗; 1 	→
∑

m1,m2

Ωj
m1m2

|m1,m2〉

⇓

ωj : j ⊗ j∗ → 0; |m1,m2〉 	→ Ωj
m1m2 (2.57)

and

Cj1j2j3 :Vj1 ⊗ Vj2 ⊗ Vj3 → C,

|j1m1; j2m2; j3m3〉 	→ Cj1j2j3;m1m2m3 ,

⇓

Cj1j2j3 :C → Vj1 ⊗ Vj2 ⊗ Vj3 ,

1 	→
∑

m1m2m3

Cj1j2j3;m1m2m3 |j1m1; j2m2; j3m3〉, (2.58)

and require c ωj = c ωj and ωj = ωj for any complex number c (and the same rule applies

to Cj1j2j3). By c ωj we mean

c ωj : 0 → j ⊗ j∗; 1 	→
∑

m1,m2

cΩj
m1m2

|m1,m2〉. (2.59)

We show the transformation rule under such transformations in the following.

By the relationship (2.19) we have

•
j j∗ ⇔ αj ×

•
j j∗ (2.60)

The dagger condition (2.26) on the 3j-symbols implies

i kj ⇔ i kj (2.61)

For the compositions of the duality map and the 3j symbols, we have

i j

k
⇔ αk × i j

k

(2.62)
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Now let us apply these complex conjugate transformation rules to the RHS of Eq. (2.50).

One one hand, the transformation takes any complex number to its complex conjugate, i.e.,

Gijm
kln ⇒ Gijm

kln . (2.63)

One the other hand, we apply the above transformation rules to all trivalent and two vertices

in the diagram, and have

•

•

k

k

k∗

l∗
m

i∗
j∗

n

⇒ αmαn ×

•

•

k

k

k∗
l∗

m

i∗
j∗

n

(2.64)

Using the first symmetry condition (2.25) to transform the diagram on the RHS to the

standard shape in the definition (2.50), we obtain the last equality of tetrahedral symmetry

in Eq. (1.4):

Gijm
kln = αmαnG

j∗i∗m∗
l∗k∗n . (2.65)

Therefore we obtain the tetrahedral symmetry

Gijm
kln = Gmij

nk∗l∗ = Gklm∗
ijn∗ = αmαnG

j∗i∗m∗
l∗k∗n , (2.66)

From the relationship (2.51), we also have the pentagon identity

∑
n

dnG
mlq
kp∗nG

jip
mns∗G

js∗n
lkr∗ = Gjip

q∗kr∗G
riq∗
mls∗ , (2.67)

and the orthogonality condition

∑
n

dndnG
ijm
klnG

jkn∗
lip = δpmδm∗klδjmi. (2.68)

The last two identities are directly derived from two identities (2.40).

2.2 Algorithm and examples

The 3j-symbols and 6j-symbols are intertwining operators. The intertwining operator

can be obtained by taking the average of any initial map over all group actions.

Suppose (ρ, V ) and (ρ′, V ′) are irreducible representations of G, and T : V → V ′ is any

linear operator. Then T̃ : V → V ′ is an intertwining operator (an intertwining operator)

where T̃ is an average of T over all group actions given by

T̃ =
1

|G|
∑
g∈G

ρ′(g)Tρ(g−1). (2.69)

if G is a finite group, with |G| the order of the group G. The summation is replaced by the

haar measure
∫
dg for a Lie group.
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The duality maps and the 3j-symbols for an arbitrary group can be constructed in this

way. By Schur’s lemma, all duality maps and the 3j-symbols are unique up to some constant

factors. (We assumed that 0 appears at most once in the decomposition of i⊗ k⊗ k for all

i, j, k ∈ I.) These factors will be fixed by the conditions (2.14), (2.22), (2.25) and (2.26).

The symmetrized 6j-symbols are constructed based on these duality maps and 3j-symbols.

Starting with a set I of irreducible representations [ρj(g)]mn of a finite group G, we

detail the search for the duality maps, the 3j-symbols, and the 6j-symbols by the following

algorithm.

1. Find the dual pairs (j, j∗) for all j ∈ I, such that there exists nonzero matrix

Ωj
mn =

1

|G|
∑
g∈G

[ρj(g)]mm′ [ρj∗(g)]nn′ Tm′n′ (2.70)

where m,n = 1, . . . , dj and Tm′n′ is a nonzero random matrix. (It is possible that Ωj

happens to be zero for some special matrices T while in fact there exists a nonzero

Ωj . Therefore T should be random enough to avoid this possibility.) If j �= j∗, we set

Ωj∗ = (Ωj)T .

2. Renormalize the matrices ωj such that (Ωj)†Ωj = 1.

3. Determine the FS indicator αj for each j ∈ I according to Ωj
mn = αjΩ

j∗
nm.

4. We collect together triples by the cyclic permutations (j1j2j3) 	→ (j2j3j1) and (j1j2j3) 	→
(j3

∗j2∗j1∗). For each set of (j1j2j3), (j2j3j1), (j3j1j2), (j3
∗j2∗j1∗), (j2∗j1∗j3∗), and

(j1
∗j3∗j2∗) generated from one triple (j1j2j3), we pick up an arbitrary representative,

say (j1j2j3), and find the 3j-symbol for (j1j2j3) by

Cj1j2j3;m1m2m3 =
1

|G|
∑
g∈G

[ρj1(g)]m′
1m1

×

[ρj2(g)]m′
2m2

[ρj3(g)]m′
3m3

Tm′
1m

′
2m

′
3
, (2.71)

with m1 = 1, . . . , dj1 ,m2 = 1, . . . , dj2 , and m3 = 1, . . . , dj3 , and T a nonzero random

tensor. We set the 3j-symbols for other triples by

Cj3j1j2;m3m1m2 = αj3Cj1j2j3;m1m2m3 , (2.72)

if (j3j2j1) �= (j1j2j3), and

Cj3∗j2∗j1∗;n3n2n1 =∑
m1m2m3

Cj1j2j3;m1m2m3Ω
j1
m1n1Ω

j2
m2n2Ω

j3
m3n3 , (2.73)
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if (j3
∗j2∗j1∗) differs from any cyclic permutation of (j1j2j3). The other triples are

obtained by the same rule (2.72) under cyclic permutation.

5. Determine the fusion rule δj1j2j3 . We set δj1j2j3 = 1 and say (j1, j2, j3) is admissible,

if the tensor Cj1j2j3;m1m2m3 is nonzero. Otherwise we set δj1j2j3 = 0. (In step 4 and

5 we assume that the fusion rule is multiplicity free, i.e., Cj1j2j3;m1m2m3 is unique up

to a constant factor no matter what the random tensor T is. In a general case, we

may need to find more than one independent tensor Cj1j2j3;m1m2m3 by trying various

random tensors T , which we will not detail in this chapter.)

6. Renormalize the 3j-symbols such that

∑
m1m2m3n1n2n3

Ωj1
m1n1

Ωj2
m2n2

Ωj3
m3n3

×

Cj1j2j3;m1m2m3Cj3∗j2∗j1∗;n3n2n1 = 1. (2.74)

7. The symmetrized 6j-symbol is

Gijm
kln =

∑
ai,bi,aj ,bj ,...,an,bn

Ωi
aibi

Ωj
ajbj

Ωm
ambmΩ

k
akbk

Ωl
albl

×

Ωn
anbnClm∗k;albmakCk∗j∗n;bkbjanCn∗i∗l∗;bnbiblCijm;aiajam . (2.75)

where ai, bi = 1, 2, . . . , di.

2.2.1 Abelian groups

It is known that any abelian group is dual to its representations by a Fourier transfor-

mation.

Consider the abelian group G = ZM1 × ZM2 × . . . . The set of complete irreducible

representations is I = {(m1, n2, . . . ),m1 = 1, 2, . . . ,M1;m2 = 1, 2, . . . ,M2; . . . }. All of

them are one-dimensional. Let us denote each representation by m = (m1,m2, . . . ).

The fusion rules are given by δijk = 1 iff il + jl + kl = 0 mod Ml for all l, and i is dual

to j if il + jl = 0 mod Ml for all l.

The intertwining operators are trivial:

Ωj = 1, for all j,

Cijk = δijk, (2.76)

and the 6j-symbol is given by

Gijm
kln = δijmδklm∗δjkn∗δinl. (2.77)
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2.2.2 G = D3

The Dihedral group D3 (also known as the symmetry or permutation group S3) is the

simplest nonabelian group. The multiplication table is presented in Table 2.1, where 1

denotes the identity element.

All group elements are generated by S and R, where S is a rotation by π radians about

an axis passing the center of a triangle and one of its vertices and R is a rotation by 2π/3

about the center of the triangle. The multiplication table above corresponds to 1 = S0R0,

2 = S0R1,3 = S0R2,4 = S1r1,5 = S1R0,and 6 = S1R2.

There are three inequivalent classes of irreducible representations, with the dimensions

dim0 = dim1 = 1 and dim2 = 2. One set I = {0, 1, 2} of irreducible representations is

presented in Table 2.2.

All representations j = 0, 1, 2 are self-dual, with the duality maps being

Ω0 = 1, Ω1 = 1, Ω2 =

(
1 0
0 1

)
. (2.78)

All of them are symmetric matrices, and hence we have αj = 1 and thus dj = dimj for all

j = 0, 1, 2.

The independent nonzero 3j-symbols are

C000 = C011 = 1,

C022;1m1m2 =

(
1
2 0
0 1

2

)
m1m2

,

C122;1m1m2 =

(
0 i√

2−i√
2

0

)
m1m2

,

C222;m1m2m3 =

( {
0, 12
} {

1
2 , 0
}{

1
2 , 0
} {

0,−1
2

} )
m1m2m3

, (2.79)

where m1,m2,m3 = 1, 2. The representation 0 and 1 are one-dimensional so that the

corresponding m takes on exactly one value denoted by 1. The normalization factors are

Table 2.1. Multiplication table of G = D3 (or S3).
1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 3 1 5 6 4
3 3 1 2 6 4 5
4 4 6 5 1 3 2
5 5 4 6 2 1 3
6 6 5 4 3 2 1
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Table 2.2. Irreducible representations of G = D3 (or S3).

ρ0 ρ1 ρ2

1 1 1

⎛
⎝ 1 0

0 1

⎞
⎠

2 1 1

⎛
⎝ −1

2 −
√
3
2√

3
2 −1

2

⎞
⎠

3 1 1

⎛
⎝ −1

2

√
3
2

−
√
3
2 −1

2

⎞
⎠

4 1 −1

⎛
⎝ 1

2

√
3
2√

3
2 −1

2

⎞
⎠

5 1 −1

⎛
⎝ −1 0

0 1

⎞
⎠

6 1 −1

⎛
⎝ 1

2 −
√
3
2

−
√
3
2 −1

2

⎞
⎠

determined by the conditions (2.22), (2.25) and (2.26). All other nonzero 3j-symbols are

determined through the first symmetry condition Cijj;m1m2m3 = Cjij;m3m1m2 = Cjji;m2m3m1

for triples (i, j, j) = (011), (022) and (122).

The fusion rules are given by δ000 = δ011 = δ022 = δ122 = δ222 = 1, corresponding to the

nonzero 3j-symbols.

The independent nonzero symmetrized 6j-symbols (2.50) are

G000
000 = 1, G000

111 = 1, G000
222 =

1√
2
, G011

011 = 1, G011
222 =

1√
2
,

G022
022 =

1

2
, G022

122 =
1

2
, G022

222 =
1

2
, G122

122 =
1

2
, G122

222 = −1

2
. (2.80)

All other nonzero 6j-symbols are obtained through the tetrahedral symmetry (1.4). One

verifies that they do satisfy all three identities (2.66), (2.67) and (2.68).

2.2.3 G = D4

Consider the Dihedral group D4 of order 8. The multiplication table is presented in

Table 2.3, where 1 denotes the identity element.

All group elements are generated by S and R, where S is a rotation by π radians about

an axis passing the center of a triangle and one of its vertices and R is a rotation by π/2
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Table 2.3. Multiplication table of G = D4.
1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 3 4 1 8 5 6 7
3 3 4 1 2 7 8 5 6
4 4 1 2 3 6 7 8 5
5 5 6 7 8 1 2 3 4
6 6 7 8 5 4 1 2 3
7 7 8 5 6 3 4 1 2
8 8 5 6 7 2 3 4 1

about the center of the triangle. The multiplication table above corresponds to 1 = S0R0,

2 = S0R1,3 = S0R2,4 = S0R3,5 = S1R0,6 = S1R1,7 = S1R2,and 8 = S1R3.

There are five inequivalent classes of irreducible representations. One set I = {0, 1, 2, 3, 4}
of irreducible representations is presented in Table 2.4.

All representations j = 0, 1, 2, 3, 4 are self-dual with the duality maps being

Ω0 = 1, Ω1 = 1, Ω2 = 1,Ω3 = 1, Ω4 =

(
1 0
0 1

)
. (2.81)

which implies αj = 1 and thus dj = dimj for all j = 0, 1, 2, 3, 4.

Table 2.4. Irreducible representations of D4.

ρ0 ρ1 ρ2 ρ3 ρ4

1 1 1 1 1

(
1 0
0 1

)

2 1 1 −1 −1

(
0 −1
1 0

)

3 1 1 1 1

(
−1 0
0 −1

)

4 1 1 −1 −1

(
0 1
−1 0

)

5 1 −1 1 −1

(
1 0
0 −1

)

6 1 −1 −1 1

(
0 −1
−1 0

)

7 1 −1 1 −1

(
−1 0
0 1

)

8 1 −1 −1 1

(
0 1
1 0

)
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The independent nonzero 3j-symbols are

C000 = C011 = C022 = C033 = C044 = C234 = 1,

C044 =

(
1√
2

0

0 1√
2

)
, C144 =

(
0 i√

2

− i√
2

0

)
,

C244 =

(
1√
2

0

0 − 1√
2

)
, C344 =

(
0 1√

2
1√
2

0

)
. (2.82)

The fusion rules are thus obtained by δ111 = δ122 = δ133 = δ144 = δ155 = δ234 = δ255 =

δ355 = δ455 = 1.

The independent nonzero symmetrized 6j-symbols (2.50) are

G000
000 = 1, G000

111 = 1, G000
222 = 1, G000

333 = 1, G000
444 =

1√
2
,

G011
011 = 1, G011

233 = 1, G011
322 = 1, G011

444 =
1√
2
, G022

022 = 1,

G022
133 = 1, G022

444 =
1√
2
, G033

033 = 1, G033
444 =

1√
2
, G044

044 =
1

2
,

G044
144 =

1

2
, G044

244 =
1

2
, G044

344 =
1

2
, G123

123 = 1, G123
444 = − i√

2
,

G144
144 =

1

2
, G144

244 = −1

2
, G144

344 = −1

2
, G244

244 =
1

2
,

G244
344 = −1

2
, G344

344 =
1

2
. (2.83)

All other nonzero 6j-symbols are obtained through the tetrahedral symmetry in Eq. (1.4).

2.2.4 G = Q8

It is interesting to compare the Dihedral group D4 and the quaternion group Q8. Both

have the same order of 8, and share the same character table and thus the same fusion rules.

In fact, their corresponding group algebra C[D4] and C[Q8], which in general contain more

information than the character tables, are isomorphic to each other. To encode the full

information of their representations, we need the intertwining operators. The two groups

can be distinguished by the intertwining operators, or more explicitly, by the complete set

of 3j-symbols.

The multiplication table is presented in Table 2.5, where 1 denotes the identity element.

The group elements are identified with the quaternion numbers by {1, i, j,k,−1,−i,−j,

−k}, where i2 = j2 = 1 and k = ij = −ji.

There are five inequivalent classes of irreducible representations. One set I = {0, 1, 2, 3, 4}
of irreducible representations is presented in Table 2.6.
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Table 2.5. Multiplication table of G = Q8.
1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 5 4 7 6 1 8 3
3 3 8 5 2 7 4 1 6
4 4 3 6 5 8 7 2 1
5 5 6 7 8 1 2 3 4
6 6 1 8 3 2 5 4 7
7 7 4 1 6 3 8 5 2
8 8 7 2 1 4 3 6 5

Table 2.6. Irreducible representations of G = Q8.

ρ0 ρ1 ρ2 ρ3 ρ4

1 1 1 1 1

(
1 0
0 1

)

2 1 1 −1 −1

(
i 0
0 −i

)

3 1 −1 1 −1

(
0 1
−1 0

)

4 1 −1 −1 1

(
0 i
i 0

)

5 1 1 1 1

(
−1 0
0 −1

)

6 1 1 −1 −1

(
−i 0
0 i

)

7 1 −1 1 −1

(
0 −1
1 0

)

8 1 −1 −1 1

(
0 −i
−i 0

)

All representations j = 0, 1, 2, 3, 4 are self-dual, as can be verified by examining the

duality maps, which are computed as

Ω0 = 1, Ω1 = 1, Ω2 = 1, Ω3 = 1, Ω4 =

(
0 −1
1 0

)
, (2.84)

which implies

α0 = α1 = α2 = α3, α4 = −1

d0 = d1 = d2 = d3 = 1, d4 = −2. (2.85)

The independent nonzero 3j-symbols are



32

C000 = C011 = C022 = C033 = C044 = C234 = 1,

C044 =

(
0 − i√

2
i√
2

0

)
, C144 =

(
0 − i√

2

− i√
2

0

)
,

C244 =

(
1√
2

0

0 1√
2

)
, C344 =

(
i√
2

0

0 − i√
2

)
. (2.86)

The fusion rules are thus obtained by δ111 = δ122 = δ133 = δ144 = δ155 = δ234 = δ255 =

δ355 = δ455 = 1.

The independent nonzero symmetrized 6j-symbols (2.50) are

G000
000 = 1, G000

111 = 1, G000
222 = 1, G000

333 = 1, G000
444 = − i√

2
,

G011
011 = 1, G011

233 = 1, G011
322 = 1, G011

444 = − i√
2
, G022

022 = 1,

G022
133 = 1, G022

444 = − i√
2
, G033

033 = 1, G033
444 = − i√

2
,

G044
044 = −1

2
, G044

144 = −1

2
, G044

244 = −1

2
, G044

344 = −1

2
,

G123
123 = 1, G123

444 = − 1√
2
, G144

144 = −1

2
, G144

244 =
1

2
,

G144
344 =

1

2
, G244

244 = −1

2
, G244

344 =
1

2
, G344

344 = −1

2
. (2.87)

All other nonzero 6j-symbols are obtained through the tetrahedral symmetry in Eq. (1.4).

2.3 Levin-Wen models as topological
gauge field theories

Constructed from the data {d, δ, G} derived from finite group representations, Levin-

Wen models can be understood as topological gauge field theories in the dual formulation.

By the Fourier transformation, they can be mapped to Kitaev models [54].

Let us first briefly gauge field theories on a spatial discrete graph. Originally it was

formulated on a regular lattice, but the formulation can be easily adapted to an arbitrary

graph. In this dissertation, we focus on trivalent graphs.

The fundamental concept is the gauge invariance. Let us consider a gauge group G

and a gauge transformation g(x) ∈ G which depends on the space point x. A “charged”

matter field ϕα(x) is transformed under a finite (generally linear) representation of g(x) at

the same space point x by ϕα(x) 	→ Dαβ [g(x)]ϕ
β(x), where Dαβ(g(x)) is the corresponding

matrix representation, and α ranges in the representation space of D.

Now we consider discrete models. If we discretize the space by a graph, with a continuum

space point replaced by a vertex v on the graph, then the derivative terms of the “charged”
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matter field are replaced by finite differences. For example, a local action contains the

nearest neighboring interaction

Smat = βm
∑
(v,v′)

ϕα
vϕ

α
v′ , (2.88)

where the bar denotes the complex conjugate.

The above action has only global gauge invariance. For the local gauge invariance, we

need to introduce a gauge field avv′ ∈ G associated to each oriented link between v and v′.

The use of the elements of the group instead of the Lie algebra will make the local gauge

invariance explicit and simple. It also affords to formulate the models with a discrete gauge

group. The local gauge invariant action is

Smat = βm
∑
(v,v′)

ϕα
v Dαβ(avv′)ϕβ

v′ . (2.89)

The local gauge invariance requires avv′ to transform as

avv′ 	→ gvavv′g−1
v′ , (2.90)

together with the constraint

avv′ = av′v. (2.91)

We also need a gauge invariant term for the gauge fields in the action. Let us consider

the product of the gauge fields along a close curve C = v1v2 . . .vnv1 on the graph, called

the holonomy along C:

aC = av1av2 . . . avnav1 . (2.92)

The gauge transformation

aC 	→ gv1aCgv1 (2.93)

occurs within the same conjugacy class of the group. Then the character of any repre-

sentation will give a gauge invariant function. In fact, from the group theory, any gauge

invariant function can be decomposed into the characters of irreducible representations along

some closed curves. For the matrix group SU(n) or SO(n), if we choose the fundamental

representation U , and the closed curve along the boundary of each plaquette, we arrive at

the Wilson’s action

SJ = βJ
∑
p

1

dimU
ReχU (ap), (2.94)

where ap is the holonomy for the plaquette p, and dimU the dimension of the fundamental

representation U .
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There is a another formulation in terms of the irreducible representations. Suppose G

is Lie group. When βJ is large, the holonomy ap will fluctuate around the unit element

of the group. The Wilson’s action in this case corresponds to the continuum limit of the

Yang-Mills action. Taking account of only quadratic terms in the fluctuating fields leads to

the heat kernel action

exp (−SJ(p)) =
∑
r

dimrχr(ap) exp

(
−dimUCr

βJ

)
, (2.95)

where {r} are the irreducible representations of G and Cr is the values of the Casimir

operator in r.

Gauge theories on a discrete graph also admit a finite gauge group. To compare with

Levin-Wen models later, we take the Hamiltonian approach in the following. The Hilbert

space is spanned by the gauge fields ae assigned to the graph links e. A gauge transformation

gv acting on the Hilbert space as

L(g) :

∣∣∣∣∣
;;

v′
))
• •<<

ae

;;

))

v

〉
→
∣∣∣∣∣

;;

v′
))
• •<<

gvaeg
−1
v′

;;

))

v

〉
. (2.96)

Note that any basis vector with the direction of an edge reversed and corresponding group

element inversed at the same time is treated as the same as the original one.

The action of any gauge transformation can be decomposed into local operators defined

at each vertex. Let L(gv) be the action of the gauge transformation with gv at vertex v

and the gv′ = 1 being the identity element of G at all other vertices v′ �= v:

L(gv) :

∣∣∣∣∣ 


a1

//
a2

== a3

〉
→
∣∣∣∣∣ 


gva1

//
gva2

== gva3

〉
. (2.97)

We define the local gauge invariance projection Av at vertex v

Av =
1

|G|
∑
gv∈G

L(gv), (2.98)

as an average of all local gauge transformations. It projects onto the states that are invariant

under any local gauge transformation L(g′v) because L(g′v)Av = |G|−1
∑

gv∈G L(g
′
vgv) =

|G|−1
∑

gv∈G L(gv) = Av.

The Levin-Wen models derived from finite group representations can be mapped to

gauge theories by a Fourier transformation, and become Kitaev’s quantum double models

(or toric code models).
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The Fourier transformation maps between the group elements and the irreducible rep-

resentations. Take G = U(1) for example, local Hilbert basis {|θ〉} (0 ≤ θ < 2π) is mapped

to {|n〉} by

|n〉 = 1

2π

∫ 2π

0
einθ|θ〉, (2.99)

where einθ is the irreducible representation labeled by integer n. This map can be generalized

to any finite group or Lie group.

Then the first term Qv in Levin-Wen Hamiltonian is mapped to the gauge invariance

projeciton Av in Eq. (2.98). It prefers the conservation law due to the gauge symmetry at

v. For G = U(1), L(θv) is mapped to ei(n1+n2+n3)θv , and Av is mapped to

1

2π

∫ 2π

0
ei(n1+n2+n3)θv = δn1+n2+n3,0. (2.100)

In general, if we apply the gauge invariance projection at v in Levin-Wen Hilbert space,

then any gauge transformation at v will result in a trivial phase 1, as we have seen in the

previous section. This happens only when the tensor product of j1 ⊗ j2 ⊗ j3 around v can

be decomposed into the trivial representation, in which any group element transforms as

the identity map. Hence we arrive at δj1j2j3 , which equals to 1 if j1 ⊗ j2 ⊗ j3 contains the

trivial representation and 0 otherwise.

The second term Bp is mapped to a projection prefers zero flux at plaquette p. In the

group element basis, the projection can be written as the Kronecker delta funciton δa1a2...,1,

which is 1 if the product of all group elements around the plaquett p equals the identity

element 1 of the group, and 0 otherwise. The local operator Bs
p is the Wilson loop operator

associated to the irreducible representation s. Indeed, the Wilson loop operator acting on

a plaquette with a flux a1a2 . . . results in a phase χs(a1a2 . . . ). Then Bp = D−1
∑

s dsB
s
p

is mapped to
1

|G|
∑
s

dim(j)χs(a1a2 . . . ) = δa1a2...,1, (2.101)

where D =
∑

s dim(j)2 equals the group order |G|.
Though the Fourier transformation applies to Lie group, throughout the dissertation we

will focus on the finite group cases since the GSD goes to infinity in the Lie group case.



CHAPTER 3

CONCRETE CONSTRUCTION OF

LEVIN-WEN MODELS WITH

QUANTUM GROUPS

In last chapter, starting with irreducible representations of a finite group G, we have

constructed the symmetrized 3j-symbols, and then the symmetrized 6j-symbols. The con-

struction can be generalized to quantum groups, and more generally, the unitary spherical

tensor categories. For example, the 3j-symbols constructed in the previous chapter describe

the group representation category RepG. In this chapter, we construct the symmetrized

6j-symbol from the unitary spherical fusion categories, in the 3j-symbol approach. “Unitary

spherical” means some extra conditions on the tensor categories that lead to the tetrahedral

symmetry (1.4). See Ref. [47, 17] for the introduction of unitary spherical tensor categories

in mathematical literature. In this chapter, we present the categorical concepts in terms of

tensors, so that they are accessible to physicists and are computational.

3.1 6j-symbols from unitary spherical
tensor categories

We describe the structure of a unitary spherical fusion categories in terms of 3j-symbols.

In the following, we generalize the definition of symmetric 3j-symbols by generalizing the

symmetry conditions. Let I be a set of finitely many labels (e.g., inequivalent classes of

irreducible representations of a finite group G). Throughout this chapter, we assume all

these labels represent some finite-dimensional complex vector spaces. There is a dual map

∧ : I → I; j 	→ j∗ with the double map ∧2 = idI taking any label j ∈ I back to itself. There

is a special label denoted by 0 such that 0∗ = 0, representing one-dimensional complex

vector space (i.e., C, the one-dimensional space of complex numbers), and for each pair of

dual objects j and j∗, there is a map ωj : j∗ ⊗ j → 0 and its inverse ω−1
j : 0 → j ⊗ j∗,

satisfying
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·
·
j

-- j∗

��

j∗

��

= j∗

��

,
·

·
j

��

j∗
��

j

��

= j

��

. (3.1)

where the cup presents the ωj and the cap the ω−1
j , as explained in Eq (2.16) and (2.17).

The composition ωj ◦ω−1
j∗ evaluates to a complex number. If j �= j∗, then we can rescale

ωj to η ωj , where η
2 is determined by

η ×
•

•
j∗j = η−1 ×

•

•
jj∗ , (3.2)

for all j �= j∗ ∈ I. Note that η is determined up to a sign ±1. By this rescaling, we have

sphericity condition:

•

•
j∗j =

•

•
jj∗ , (3.3)

for all j ∈ I.

Let us define the quantum dimension dj for each j by

dj ≡
•

•
j∗j , (3.4)

and require the unitarity condition that dj is real. Throughout this chapter we assume dj is

nonzero, so dj could be either positive or negative. Let us denote the sign by αj = sign(dj),

and call it the Frobenius-Schur indicator. If j �= j∗, we choose the sign in η in Eq (3.2)

such that αj = αj∗ = 1. If j = j∗, αj could be either 1 or −1 which can not be changed by

rescaling ωj .

Now we describe the symmetrized 3j-symbols. There is a function δijk taking values of

either 0 or 1 for any triple of i, j, k ∈ I, satisfying δijk = δjki = δk∗j∗i∗ and δjj∗0 = 1. The

δijk is called the fusion rule and in general could take integers greater than one, which we

will only discuss in Appendix C. If δijk = 1, we say the triple (i, j, k) is admissible.

We require the trimodality condition

αiαjαk = 1 (3.5)

if δijk = 1.

Following the similar procedure as in the previous chapter, for any admissible triple

(j1, j2, j3), we can define the 3j-symbols

Cj1j2j3 : j1 ⊗ j2 ⊗ j3 → 0 (3.6)
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by the resolution of identity:

##
j1

##
j1

##
j2

##
j2

=
∑
j3

dj3

•

•

j1 j2

j3

j1 j2

, (3.7)

where the two trivalent vertices present the composition of 3j-symbols and duality maps as

in Eq. (2.33). They are satisfy the normalization condition

Cj1j2j3 Cj∗3 j
∗
2 j

∗
1

ωj3

j3
��

j∗3
77

ωj2

j2

>>

j∗2

??

ωj1

j1

��

j∗1

**

= 1, (3.8)

and the pivotal condition:

Cj∗3 j∗2 j∗1
• 


j∗3

++ j3

•
@@j∗2

��
j2

•
��j∗1

66
j1

=

Cj∗3 j∗2 j∗1
•//

j∗1
��j1

•
00 j∗2

11
j2

•
22 j∗3

��
j3

, (3.9)

Just as in Section 2.1.2, the 3j-symbols are not independent under cyclic permutations.

We require the cyclic condition

Cj1j2j3

j1

AA

j2

##

j3

BB

=

ω−1
j3

Cj2j3j1

·
j1��

j1∗
CC

j1

��

j2

77

j3

##
. (3.10)

Define the symmetrized 6j-symbol by the evaluation of the diagram in Eq. (2.50). Follow

the same reasoning as in Section 2.1, we have the same transformation rules (2.61), (2.60),

and (2.62) under the complex conjugation. However, to prove the last equality of the

tetrahedral symmetry, we apply the complex conjugation on ωj and Cj1j2j3 by:

ωj 	→ ω†
j ≡ αjω

−1
j∗ (3.11)
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and

Cj1j2j3 	→ C†
j1j2j3

C†
j1j2j3

j1

DD

j2

##

j3

��

≡

Cj3∗j∗2 j1
∗

ωj∗1

j∗1
((

j1

��

ωj∗2

j∗2

++

j2

��

ωj∗3

j∗3

��

j3

EE

, (3.12)

which become Eqs (2.57) and (2.58) for finite group representations. Finally we arrive at

the three identities in Eq (1.4).

3.2 Examples

Quantum groups can be obtained from Lie algebras. Just like that the algebra generated

by sx, sy, and sz of the Lie algebra su(2) is the group algebra of SU(2) (called the universal

enveloping algebra of su(2)), the quantum group Uq (su(2)) is similar but it is an algebra

generated by

sx, sy, q
sz . (3.13)

(called the q-deformed universal enveloping algebra of su(2).) By “generated” we mean that

each element in Uq(su(2)) is a finite sum of products of the above generators. We will get

back (group algebra of) SU(2) in some sense as q → 1.

When q is taken to be a primitive root of unity, Uq(su(2)) has some finitely many

irreducible representations with nonzero quantum dimensions (3.4), by which we can con-

struct the symmetrized 6j-symbols as described in the previous section. An efficient way to

construct these data is through the Jone-Wentzl projectors in Temperley-Lieb algebra (see

ref [17] for example). In this section, we present two simple examples for Uq(su(2)).

3.2.1 Semion theory

Semion theory takes the q-deformation parameter q = exp(πi/3). It has the same fusion

rule as that from the group Z2 representation theory, but can not be obtained from any

group representation theory.

Set I = {C,C2} (or, {0, 1} for short). Denote by {e1, e2} the basis of the vector space

C
2.
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Both 0 and 1 are self-dual. The duality maps are

ω0 = 1, ω1 : 1 	→ −Ae1 ⊗ e2 +A−1e2 ⊗ e1, (3.14)

where A = q1/2 = exp(πi/6). The inverse of ω1 is

ω−1
1 :e1 ⊗ e1 	→ 0, e2 ⊗ e2 	→ 0,

e1 ⊗ e2 	→ A, e2 ⊗ e1 	→ −A−1. (3.15)

The dagger of ω1 is

ω†
1 = −ω−1

1 (3.16)

such that ω†
1 ◦ ω1 > 0.

From the duality maps we obtain Δ0 = 1,Δ1 = ω−1
1 ◦ ω1 = −1 and thus α0 = 1, and

α1 = −1.

The nonzero 3j-symbols are

C000 : 1⊗ 1⊗ 1 	→ 1

C011 : 1⊗ e1 ⊗ e1 	→ 0, 1⊗ e2 ⊗ e2 	→ 0,

1⊗ e1 ⊗ e2 	→ iA, 1⊗ e2 ⊗ e1 	→ −iA−1. (3.17)

where the normalization factors are fixed by the normalization conditions of 3j-symbols.

The other nonzero 3j-symbols C101 and C110 are obtained by the cyclic condition.

The nonzero symmetrized 6j-symbols are

G000
000 = 1, G000

111 = i, G011
011 = −1. (3.18)

The other nonzero symmetrized 6j-symbols are obtained through the tetrahedral symmetry.

3.2.2 Fibonacci theory

Taking q-deformation parameter q = − exp(πi/5), there are four irreducible represen-

tations with nonzero quantum dimensions, denoted by 0,1,2, and 3. The Fibonacci theory

takes only two of them, 0 and 2, which are closed under fusion rule.

Set I = {C,C4} (or, {0, 2} for short). Denote by {e11, e12, e21, e22} the basis of the

vector space C
4.
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Both 0 and 2 are self-dual. The duality maps are

ω0 = 1, ω2 : 1 	→ − 1

A4 + 1
e11 ⊗ e22 +

A4

A4 + 1
e22 ⊗ e11 −

A2

A4 + 1
e12 ⊗ e12

− A2

A4 + 1
e21 ⊗ e21 +A2e12 ⊗ e21 +

1

A2
e21 ⊗ e12, (3.19)

where A = q1/2 = exp(πi/6). The inverse ω−1
2 is given by

e11 ⊗ e11 	→ 0 e11 ⊗ e12 	→ 0 e12 ⊗ e11 	→ 0 e12 ⊗ e12 	→ − 1
A4+1

e11 ⊗ e21 	→ 0 e11 ⊗ e22 	→ A2 e12 ⊗ e21 	→ − A2

A4+1
e12 ⊗ e22 	→ 0

e21 ⊗ e11 	→ 0 e21 ⊗ e12 	→ − A2

A4+1
e22 ⊗ e11 	→ 1

A2 e22 ⊗ e12 	→ 0

e21 ⊗ e21 	→ − A4

A4+1
e21 ⊗ e22 	→ 0 e22 ⊗ e21 	→ 0 e22 ⊗ e22 	→ 0

.

(3.20)

The dagger of ω2 is

ω†
2 = −ω−1

2 (3.21)

such that ω†
1 ◦ ω1 > 0.

From the duality maps we obtain Δ0 = 1,Δ2 = ω−1
2 ◦ ω2 = φ ≡

√
5+1
2 and thus α0 = 1,

and α2 = 1.

The nonzero 3j-symbols are C000 given by

1⊗ 1⊗ 1 	→ 1, (3.22)

C022 given by

1⊗ e11 ⊗ e11 	→ 0 1⊗ e11 ⊗ e12 	→ 0

1⊗ e11 ⊗ e21 	→ 0 1⊗ e11 ⊗ e22 	→ A2√
N1

1⊗ e12 ⊗ e11 	→ 0 1⊗ e12 ⊗ e12 	→ − 1
(A4+1)

√
N1

1⊗ e12 ⊗ e21 	→ − A2

(A4+1)
√
N1

1⊗ e12 ⊗ e22 	→ 0

1⊗ e21 ⊗ e11 	→ 0 1⊗ e21 ⊗ e12 	→ − A2

(A4+1)
√
N1

1⊗ e21 ⊗ e21 	→ − A4

(A4+1)
√
N1

1⊗ e21 ⊗ e22 	→ 0

1⊗ e22 ⊗ e11 	→ 1
A2

√
N1

1⊗ e22 ⊗ e12 	→ 0

1⊗ e22 ⊗ e21 	→ 0 1⊗ e22 ⊗ e22 	→ 0

, (3.23)

and C222 given by
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e11 ⊗ e11 ⊗ e11 	→ 0 e11 ⊗ e11 ⊗ e12 	→ 0
e11 ⊗ e11 ⊗ e21 	→ 0 e11 ⊗ e11 ⊗ e22 	→ 0
e11 ⊗ e12 ⊗ e11 	→ 0 e11 ⊗ e12 ⊗ e12 	→ 0

e11 ⊗ e12 ⊗ e21 	→ 0 e11 ⊗ e12 ⊗ e22 	→ A5

(A4+1)
√
N2

e11 ⊗ e21 ⊗ e11 	→ 0 e11 ⊗ e21 ⊗ e12 	→ 0

e11 ⊗ e21 ⊗ e21 	→ 0 e11 ⊗ e21 ⊗ e22 	→ A7

(A4+1)
√
N2

e11 ⊗ e22 ⊗ e11 	→ 0 e11 ⊗ e22 ⊗ e12 	→ − A
(A4+1)

√
N2

e11 ⊗ e22 ⊗ e21 	→ − A3

(A4+1)
√
N2

e11 ⊗ e22 ⊗ e22 	→ 0

e12 ⊗ e11 ⊗ e11 	→ 0 e12 ⊗ e11 ⊗ e12 	→ 0

e12 ⊗ e11 ⊗ e21 	→ 0 e12 ⊗ e11 ⊗ e22 	→ − A
(A4+1)

√
N2

e12 ⊗ e12 ⊗ e11 	→ 0 e12 ⊗ e12 ⊗ e12 	→ 1−A4

A(A4+1)2
√
N2

e12 ⊗ e12 ⊗ e21 	→ A−A5

(A4+1)2
√
N2

e12 ⊗ e12 ⊗ e22 	→ 0

e12 ⊗ e21 ⊗ e11 	→ 0 e12 ⊗ e21 ⊗ e12 	→ A−A5

(A4+1)2
√
N2

e12 ⊗ e21 ⊗ e21 	→ A3−A7

(A4+1)2
√
N2

e12 ⊗ e21 ⊗ e22 	→ 0

e12 ⊗ e22 ⊗ e11 	→ A
(A4+1)

√
N2

e12 ⊗ e22 ⊗ e12 	→ 0

e12 ⊗ e22 ⊗ e21 	→ 0 e12 ⊗ e22 ⊗ e22 	→ 0
e21 ⊗ e11 ⊗ e11 	→ 0 e21 ⊗ e11 ⊗ e12 	→ 0

e21 ⊗ e11 ⊗ e21 	→ 0 e21 ⊗ e11 ⊗ e22 	→ − A3

(A4+1)
√
N2

e21 ⊗ e12 ⊗ e11 	→ 0 e21 ⊗ e12 ⊗ e12 	→ A−A5

(A4+1)2
√
N2

e21 ⊗ e12 ⊗ e21 	→ A3−A7

(A4+1)2
√
N2

e21 ⊗ e12 ⊗ e22 	→ 0

e21 ⊗ e21 ⊗ e11 	→ 0 e21 ⊗ e21 ⊗ e12 	→ A3−A7

(A4+1)2
√
N2

e21 ⊗ e21 ⊗ e21 	→ A5−A9

(A4+1)2
√
N2

e21 ⊗ e21 ⊗ e22 	→ 0

e21 ⊗ e22 ⊗ e11 	→ A3

(A4+1)
√
N2

e21 ⊗ e22 ⊗ e12 	→ 0

e21 ⊗ e22 ⊗ e21 	→ 0 e21 ⊗ e22 ⊗ e22 	→ 0

e22 ⊗ e11 ⊗ e11 	→ 0 e22 ⊗ e11 ⊗ e12 	→ A
(A4+1)

√
N2

e22 ⊗ e11 ⊗ e21 	→ A3

(A4+1)
√
N2

e22 ⊗ e11 ⊗ e22 	→ 0

e22 ⊗ e12 ⊗ e11 	→ − 1
(A7+A3)

√
N2

e22 ⊗ e12 ⊗ e12 	→ 0

e22 ⊗ e12 ⊗ e21 	→ 0 e22 ⊗ e12 ⊗ e22 	→ 0
e22 ⊗ e21 ⊗ e11 	→ − 1

(A5+A)
√
N2

e22 ⊗ e21 ⊗ e12 	→ 0

e22 ⊗ e21 ⊗ e21 	→ 0 e22 ⊗ e21 ⊗ e22 	→ 0
e22 ⊗ e22 ⊗ e11 	→ 0 e22 ⊗ e22 ⊗ e12 	→ 0
e22 ⊗ e22 ⊗ e21 	→ 0 e22 ⊗ e22 ⊗ e22 	→ 0

. (3.24)

The normalization factors N1 = φ and N2 = 1
2

(
3
√
5− 7

)
are fixed by the normalization

conditions of 3j-symbols. The other nonzero 3j-symbols are obtained by the cyclic condi-

tion.

The fusion rule is

δ000 = δ022 = δ222 = 1, δ002 = 0 (3.25)

(called the Fibonacci fusion rule[17]), and the nonzero 6j-symbols G are given by
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G000
000 = 1, G022

022 = G022
222 = 1/φ,

G000
222 = 1/

√
φ,G222

222 = −1/φ2, (3.26)

The other nonzero symmetrized 6j-symbols are obtained through the tetrahedral sym-

metry.



CHAPTER 4

TOPOLOGICAL OBSERVABLES IN

GROUND STATES: GROUND

STATE DEGENERACY

The GSD is an important topological observable and partially characterizes the topo-

logical phases. Topological observables (correlators) are those invariant under the smooth

deformation of the space-time manifold, or, in discrete case, under mutations of discrete

spatial graph. In this chapter, we study the GSD of Levin-Wen models by mutation

symmetry.

Usually the GSD is examined as a topological invariant [47, 48, 50] of the 3-manifold

S1 ×M . In a Hamiltonian approach accessible to physicists, we will explicitly demonstrate

that the GSD in the Levin-Wen model depends only on the topology of M on which the

system lives and, therefore, is a topological invariant of the surface M . We also show

that the ground state of any Levin-Wen Hamiltonian on a sphere is always nondegenerate.

Moreover, we examine the Levin-Wen model associated with quantum group Uq(su(2)),

which is conjectured to be equivalent to the doubled Chern-Simons theory with gauge

group SU(2) at level k, and compute the GSD on a torus. Indeed, we find an agreement

with that in the corresponding doubled Chern-Simons theory [37, 55]. This supports the

above-mentioned conjectured equivalence between the doubled Chern-Simons theory and

the LW model, at least in this particular case.

4.1 Graph mutations and fixed point states

Any ground state |Φ〉 (there may be many) must be a simultaneous +1 eigenvector for

all projectors Qv and Bp. In this section we demonstrate the topological properties of the

ground states on a closed surface with nontrivial topology.

Let us begin with any two arbitrary trivalent graphs Γ(1) and Γ(2) discretizing the same

surface (e.g., a torus). It is known that they can be mutated to each other by a composition

of the following elementary moves [56] (called the Pachner moves):
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f1 : → , (4.1)

f2 : → , (4.2)

f3 : → . (4.3)

See Fig. 4.1 for instance.

The Hilbert spaces are defined on the two different graphs, respectively, as described in

the previous section. They are quite different from each other, and have different sizes in

general. Correspondingly, Levin-Wen models are defined on these two graphs. Denote by

H(1) the Hilbert space on Γ(1), and H(2) on Γ(2).

To the elementary moves f1, f2, and f3, we associate linear maps between the corre-

sponding Hilbert spaces as follows:

T̂1 :

∣∣∣∣∣ ��j2 ++
j3

&&
j5

''j1 !!j4
〉

→
∑
j′5

vj5vj′5G
j1j2j5
j3j4j′5

∣∣∣∣∣ ��
j2 FF

j3

##j5

GG

j1
��

j4

〉
, (4.4)

T̂2 :

∣∣∣∣∣ ## j2

$$

j3
%%

j1

〉
→
∑
j4j5j6

vj4vj5vj6√
D

Gj2j3j1
j∗6 j4j

∗
5

∣∣∣∣∣
%%j1

$$ j3

## j2

&&
j6

�� j5''j4

〉
, (4.5)

T̂3 :

∣∣∣∣∣|
%%j1

$$ j3

## j2

&&
j6

�� j5''j4

〉
→ vj4vj5vj6√

D
G

j∗3 j
∗
2 j

∗
1

j∗4 j6j
∗
5

∣∣∣∣∣ ## j2

$$

j3
%%

j1

〉
. (4.6)

Note that since we can reverse any edge by conjugating the corresponding label, the above

formulas do not depend on the edge directions.

Between the Hilbert spaces H(1) and H(2) on any two graphs, there is a mutation trans-

formation by a composition of these elementary maps. In particular, Bp = D−1
∑

s dsB
s
p is

a special example. In fact, on the particular triangle plaquette p as in (4.6), we can verify

Bp=� = T̂2T̂3, by using the pentagon identity in (1.4).

The topology-preserving mutation transformations (4.4), (4.5), and (4.6) can be used

to discuss the topological properties of Levin-Wen models, via the observables that persist

under these mutations. In the following, we discuss the behavior the ground states under

mutations. We show the following properties:

1. The mutations are unitary in the ground-state subspace.

2. The ground states are invariant under mutations.

Firstly, mutations are unitary in the ground-state subspace. We emphasize that these

are maps between the Hilbert spaces on two different graphs. It suffices to check that the
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	→ 	→

Figure 4.1. A mutation two graphs that discretize the same manifold. The left one is
mutated to the middle one by a composition of f1 moves, and the middle one is mutated to
the right one by a f3 move.

elementary maps T̂1, T̂2, and T̂3 are unitary. We first show T̂ †
1 = T̂1, T̂

†
2 = T̂3, and T̂

†
3 = T̂2.

In the matrix elements, we have:〈
��
j2

++
j3

&&
j5

''j1 !!j4
∣∣∣∣∣T̂ †

1

∣∣∣∣∣ ��
j2 FF

j3

##j5

GG

j1
��

j4

〉
≡
〈

��
j2 FF

j3

##j5

GG

j1
��

j4

∣∣∣∣∣T̂1
∣∣∣∣∣ ��j2 ++

j3

&&
j5

''j1 !!j4
〉

= vj5vj′5G
j1j2j5
j3j4j′5

= vj′5vj5αj5αj′5G
j4j1j′5
j2j3j∗5

=vj′5vj5G
j4j1j′5
j2j3j∗5

=

〈
��
j2

++
j3

&&
j5

''j1 !!j4
∣∣∣∣∣T̂1
∣∣∣∣∣ ��
j2 FF

j3

##j5

GG

j1
��

j4

〉
, (4.7)

where in the fourth equality we used the symmetry condition in (1.4) and vjαj = vj , and〈
## j2

$$

j3
%%

j1

∣∣∣∣∣T̂ †
2

∣∣∣∣∣
%%j1

$$ j3

## j2

&&
j6

�� j5''j4

〉
≡
〈 %%j1

$$ j3

## j2

&&
j6

�� j5''j4

∣∣∣∣∣T̂2
∣∣∣∣∣ ## j2

$$

j3
%%

j1

〉
=
vj4vj5vj6√

D
Gj2j3j1

j∗6 j4j
∗
5

=
vj4vj5vj6√

D
G

j∗3 j
∗
2 j

∗
1

j∗4 j6j
∗
5
=

〈
## j2

$$

j3
%%

j1

∣∣∣∣∣T̂3
∣∣∣∣∣

%%j1
$$ j3

## j2

&&
j6

�� j5''j4

〉
, (4.8)

where in the third equality we used the symmetry condition in (1.4), Gj2j3j1
j∗6 j4j

∗
5
∝ δj∗4 j1j6 , and

αj1 = αj4αj6 .

Now we verify unitary. T̂ †
1 T̂1 = 1 and T̂ †

2 T̂2 = T̂3T̂2 = 1 are derived from the orthog-

onality condition in (1.4) (note that, since we have not used any information about the

ground states in this argument, T̂1 and T̂2 are unitary on the entire Hilbert space). But

T̂ †
3 T̂3 = T̂2T̂3 = 1 only holds in the ground-state subspace since we have already seen that

T̂2T̂3 = Bp=�, and we always have Bp=� = 1 in the ground states.

As a consequence of the unitarity, the Hamiltonian is hermitian. Indeed, each Bp consists

of elementary T̂1, T̂2, and T̂3 maps. Particularly, on a triangle plaquette, we have B†
p=� =

(T̂2T̂3)
† = T̂ †

3 T̂
†
2 = T̂2T̂3 = Bp=�.

The mutation transformations serve as the symmetry transformations in the ground

states. If |Φ〉 is a ground state then T̂ |Φ〉 is also a ground state, where T̂ is a composition

of T̂i’s associated with elementary f moves from Γ(1) to Γ(2). This is equivalent to the
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condition T̂ (
∏

pBp) = (
∏

p′ Bp′)T̂ , which can be verified by the conditions in (1.4). (Here

p and p′ run over the plaquettes on Γ(1) and Γ(2), respectively. Also note that the Bp’s

are mutually-commuting projectors, i.e., BpBp = Bp, and thus
∏

pBp is the projector that

projects onto the ground states.)

These mutation transformations look a little different from the usual ones since they

may transform between the Hilbert spaces H(1) and H(2) on two different graphs Γ(1) and

Γ(2). In general, Γ(1) and Γ(2) do not have the same number of vertices and edges. Thus

H(1) and H(2) have different sizes. However, if we restrict to the ground-state subspaces

H(1)
0 and H(2)

0 , mutation transformations are invertible. In fact, they are unitary as we have

just shown.

The tensor equations on the 6j symbols in (1.4) give rise to a simple result: each

mutation that preserves the spatial topology of the two graphs induces a unitary symmetry

transformation. During the mutations, local structures of the graphs are destroyed, while

the spatial topology of the graphs is not changed. Correspondingly, the local information

of the ground states may be lost, while the topological feature of the ground states is

preserved. In fact, any topological feature can be specified by a topological observable Ô

that is invariant under all mutation transformations T̂ from H(1) to H(2): Ô′T̂ = T̂ Ô (where

Ô is defined on the graph Γ(1) and Ô′ on Γ(2)). This provides a systematic approach to

study the topological properties in the discrete models.

Lastly, mutation transformations are unique. There may be many ways to mutate Γ(1)

to Γ(2) using f1, f2 and f3 moves. It turns out any two such mutations, say T and T ′, take a

ground |Φ〉 on Γ(1) to the same final state T |Φ〉 = T ′|Φ〉 on Γ(2). All these transformations

are actually the same if the initial and final graphs Γ(1) to Γ(2) are fixed, i.e., independent of

which way we choose to mutate the graph Γ(1) to Γ(2). Each ground state is invariant under

mutations. Therefore the ground state Hilbert spaces on different graphs can be identified

(up to a mutation transformation) and all graphs are equally good.

The invariance of the ground states under mutations implies that the degrees of freedom

in the ground states do not depend on the specific structure of the graph. In this sense, the

Levin-Wen model is the Hamiltonian version of some discrete TQFT (actually, Turaev-Viro

type TQFT, see [48]). The fact that the degrees of freedom of the ground states depend

only on the topology of the closed surfaceM is a typical characteristic of topological phases

[20, 21, 22, 57, 26].
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4.2 Ground state degeneracy

In this section we investigate the simplest nontrivial topological observable, the GSD.

Since
∏

pBp is the projector that projects onto the ground states, taking a trace computes

GSD = tr(
∏

pBp).

We can show that GSD is a topological invariant. Namely, in the previous section

we mentioned that, by using (1.4),
∏

pBp is invariant under any mutation T̂ between the

Hilbert spaces H(1) and H(2) : T̂ †(
∏

p′ Bp′)T̂ =
∏

pBp. Taking a trace of both sides leads

to tr′(
∏

p′ Bp′) = tr(
∏

pBp), where the traces are evaluated on H(2) and H(1), respectively.

The independence of the GSD on the local structure of the graphs provides a practical

algorithm for computing the GSD, since we may always use the simplest graph. see Fig.

4.2.

Expanding the GSD explicitly in terms of 6j symbols using (1.5) we obtain

GSD =
∑

j1j2j3j4j5j6...

〈
��
j2

++
j3

<<
j5

''j1 !!j4
∣∣∣∣∣(
∏
p

Bp)

∣∣∣∣∣ ��j2 ++
j3

<<
j5

''j1 !!j4
〉

= D−P
∑

s1s2s3s4...

ds1ds2ds3ds4 · · ·
∑

j′1j
′
2j

′
3j

′
4j

′
5...

dj′1dj′2dj′3dj′4dj′5 · · · ×

∑
j1j2j3j4j5...

dj1dj2dj3dj4dj5 . . .
(
Gj2j5j1

s∗1j
′
1j

′
5
G

j′1j2j
′
5

s∗2j5j
′
2
G

j5j′1j
′
2

s∗3j2j1

)(
G

j3j4j∗5
s∗1j

′∗
5 j′4

G
j′4j

′∗
5 j3

s∗2j
′
3j

∗
5
G

j∗5 j
′
3j

′
4

s∗4j4j3

)
. . . .

(4.9)

The formula needs some explanation. P is the total number of plaquettes of the graph. Each

plaquette p contributes a summation over sp together with a factor of
dsp
D . In the picture in

(4.9) the top plaquette is being operated on first by Bs1
p1 , next the bottom plaquette by Bs2

p2 ,

third the left plaquette by Bs3
p3 , and finally the right plaquette by Bs4

p4 . Although ordering of

the Bs
p operators is not important (since all Bp’s commute with each other), it is important

to make an ordering choice (for all plaquettes on the graph) once and for all.

Each edge e contributes a summation over je and j′e together with a factor of djedj′e .

Each vertex contributes three 6j symbols.

The indices on the 6j symbols work as follows: since each vertex borders three plaquettes

where Bs
p’s are being applied, we pick up a 6j symbol for each corner. However, ordering is

important: because we have an overall ordering of Bs
p’s, at each vertex we get an induced

ordering for the 6j symbols. Starting with the 6j symbol furthest left we have no primes

on the top row. The bottom two indices pick up primes. All of these variables (primed or

not) are fed into the next 6j symbol and the same rule applies: the bottom two indices pick

up a prime with the convention ()′′ = ().
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(a) (b)

Figure 4.2. All trivalent graphs can be reduced to their simplest structures by compositions
of elementary f moves. (a) On a sphere: 2 vertices, 3 edges, and 3 plaquettes. (b) On a
torus: 2 vertices, 3 edges, and 1 plaquette.

By the calculation of the GSD, we have characterized a topological property of the phase

using local quantities living on a graph discretizing M of nontrivial topology.

4.3 No degeneracy on a sphere

To calculate the GSD, we need to input the data {Gijm
kln , dj , δijm} and evaluate the trace

in (4.9). We start by computing the GSD in the simplest case of a sphere.

Let us consider the simplest graph as in Fig. 4.2(a). In the following we show that the

ground state is nondegenerate on the sphere without referring to any specific structure in

the model: GSDsphere = 1. In fact, for more general graphs one can write down [58] the

ground state as
∏

pBp|0〉 up to a normalization factor, where in |0〉 all edges are labeled by

string type 0.

We notice that the GSD on the open disk (which is topologically the same as the

two-dimensional plane) can be studied using the same technique. This is because the open

disk can be obtained by puncturing the sphere in Fig. 4.2(a) at the bottom. Although

this destroys the bottom plaquette, we notice that the constraint Bp = 1 from the bottom

plaquette is automatically satisfied as a consequence of the same constraint on all other

plaquettes. The fact that GSDsphere(= GSDdisk) = 1 indicates the nonchiral topological

order in the Levin-Wen model.

Below we derive GSD = 1 on a sphere for a general Levin-Wen model, without referring

to any specific structure of the data {d, δ,G}. All we will use in the derivation are the

general properties in Eq. (1.2) and Eq. (1.4).

The simplest trivalent graph on a sphere has three plaquettes and three edges, as

illustrated in Fig. 4.2(a). Following the standard procedure as in (4.9), the GSD is expanded

as
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GSDsphere =
∑
j1j2j3

〈 j1

j2

j3

∣∣∣∣∣Bp2Bp3Bp1

∣∣∣∣∣
j1

j2

j3

〉

=
∑
j1j2j3

〈 j1

j2

j3

∣∣∣∣∣ 1D
∑
t

dtB
t
p2

1

D

∑
s

dsB
s
p3

1

D

∑
r

drB
r
p1

∣∣∣∣∣
j1

j2

j3

〉

=
∑

j1j2j3j′1j
′
2j

′
3

1

D

∑
r

drvj1vj3vj′1vj′3G
j∗2 j3j

∗
1

r∗j′1
∗j′3
G

j2j1j∗3
r∗j′3

∗j′1

1

D

∑
s

dsvj′1vj2vj1vj′2×

G
j′3j

′
1
∗j∗2

s∗j′2
∗j∗1
G

j′3
∗j2j′1

s∗j1j′2

1

D

∑
t

dtvj′2vj′3vj2vj3G
j∗1 j

′
2
∗j′3

t∗j3j∗2
G

j1j′3
∗j′2

t∗j2j∗3
, (4.10)

where Bp1 is acting on the top bubble plaquette, Bp2 on the bottom bubble plaquette, and

Bp3 on the rest plaquette outside the two bubbles.

All 6j symbols can be eliminated by using the orthogonality condition in Eq. (1.4) three

times, ∑
r

drG
j∗2 j3j

∗
1

r∗j′1
∗j′3
G

j2j1j∗3
r∗j′3

∗j′1
=

1

dj2
δj′1j2j′3

∗δj1j2j∗3

∑
s

dsG
j′3j

′
1
∗j∗2

s∗j′2
∗j∗1
G

j′3
∗j2j′1

s∗j1j′2
=

1

dj′3
δj′1j2j′3

∗δj1j′2j′3
∗

∑
t

dtG
j∗1 j

′
2
∗j′3

t∗j3j∗2
G

j1j′3
∗j′2

t∗j2j3 =
1

dj1
δj1j2j∗3 δj1j′2j′3

∗ , (4.11)

and the GSD is a summation in terms of {d, δ}:

GSDsphere =
1

D3

∑
j1j2j3j′1j

′
2j

′
3

dj′1dj′2dj3δj1j2j
∗
3
δj′1j2j′3

∗δj1j′2j′3
∗ . (4.12)

Summing over j′1, j′2, and j3 using (1.2) finally leads to GSDsphere = 1.

4.4 Ground state degeneracy for
finite group theory

We compute the GSD in the Levin-Wen models constructed from finite group representa-

tions. As analyzed in Chapter 2, the ground states is invariant under gauge symmetry, and

has trivial holonomy locally everywhere. On a closed spatial surface, the pure gauge fields

have two types of physical d.o.f.: local holonomy around each plaquette, and the holonomy

along the noncontractible loops of the surface. The former describes the magnetic field

strength and the latter is oberseved in the Aharonov-Bohm effect. Since the ground states

prefer trivial holonomy locally everywhere, the only physical d.o.f. left are the holonomy

along the noncontractible loops.

Take the torus as our spatial surface. There are two noncontractible loops. If the torus

is presented as a periodic square on the xy-plane, these two noncontractible loops are along
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the periodic boundaries. See Fig. 4.3. The holonomies are the group elements a and b

along the two boundary loops.

There are two global constraints on the holonomies: the gauge invariance condition

and the requirement that the holonomy is trivial locally everywhere. The former implies

that {a, b} is equivalent to {gag−1, gbg−1}, as can be obtained by applying the gauge

transformation at the reference point in Fig. 4.3. The latter implies aba−1b−1 = 1.

Therefore the ground states have a basis{
1

|G|
∑
g

|gag−1, gbg−1〉
∣∣∣∣∣aba−1b−1 = 1

}
. (4.13)

The GSD on the torus is then

GSDtorus
QD =

∣∣{(a, b)|a, b ∈ G; aba−1b−1 = e}/ ∼
∣∣ , (4.14)

where ∼ in the quotient is the equivalence by conjugation,

(a, b) ∼ (hah−1, hbh−1) for all h ∈ G.

In general on any surface, the GSD is

GSD =

∣∣∣∣Hom(π1(M), G)

G

∣∣∣∣ , (4.15)

where Hom(π1(M), G) is the space of homomorphisms from the fundamental group π1(M)

to G, and G in the quotient acts on this space by conjugation.

It is worthwhile to note that the number (4.14) is also the total number of irreducible

representations [59] of the quantum double D(G) of the group G. On the other hand, the

quasiparticles in the model are classified [14] by the quantum double D(G). Thus, the GSD

on a torus is equal to the number of particle species in this example. In the next chapter,

we shall prove this statement in generic Levin-Wen models.

4.5 Ground state degeneracy for
quantum group Uq(su(2))

Now let us take the example using the quantum group Uq(su(2)) (with q being primitive

root of unity). Uq(su(2)) has finitely many irreducible representations, and thus the GSD we

calculate is finite. We take the string types to be these representations, denoted by 0, 1, ..., k,

and the data {Gijm
kln , dj , δijm} can be constructed by these representations as described in

Chapter 3.

Below we compute GSD = (k + 1)2, both analytically and numerically.
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Figure 4.3. Holonomies {a, b} along the noncontractible loops. The four corner points are
identified as the same reference point. The two noncontractible loops start and end at this
reference point.

For simplicity, we only consider the cases when the quantum dimensions are positive.

Explicitly, they are

dj =
sin (j+1)π

k+2

sin π
k+2

D =

k∑
j=0

d2j =
k + 2

2 sin2 π
k+2

. (4.16)

The branching rule is δrst = 1 if{ r + s+ t is even
r + s ≥ t, s+ t ≥ r, t+ r ≥ s
r + s+ t ≤ 2k

(4.17)

and δrst = 0 otherwise. The explicit formula for the 6j symbol can be found in [60, 61].

However, we do not need the detailed data of the 6j symbol in the following computation

of the GSD.

On a torus any trivalent graph can be reduced to the simplest one with two vertices and

three edges, as in Fig. 4.2(b). On this graph the GSD consists of six local 6j symbols.

GSD = D−1
∑

sj1j2j3j′1j
′
2j

′
3

dsdj1dj2dj3dj′1dj′2dj′3

(
G

j1j2j∗3
sj′∗3 j′2

G
j′∗3 j1j′2
sj2j′1

G
j2j′∗3 j′1
sj1j∗3

)(
G

j∗2 j3j
∗
1

sj′∗1 j′3
G

j′3j
′∗
1 j∗2

sj′∗2 j∗1
G

j∗1 j
′∗
2 j′3

sj3j∗2

)
. (4.18)

Reordering the 6j symbols yields

GSD =D−1
∑

sj1j2j3j′1j
′
2j

′
3

ds

(
vj1vj3vj′1vj′3G

j∗2 j3j
∗
1

s∗j′∗1 j′3
G

j2j′∗3 j′1
s∗j1j∗3

)
×

(
vj′1vj2vj1vj′2G

j′3j
′∗
1 j∗2

s∗j′∗2 j∗1
G

j′∗3 j1j′2
s∗j2j′1

)(
vj′2vj′3vj2vj3G

j∗1 j
′∗
2 j′3

s∗j3j∗2
G

j1j2j∗3
s∗j′∗3 j′2

)
=D−1

∑
sj1j2j3j′1j

′
2j

′
3

ds

(
vj1vj3vj′1vj′3G

j∗2 j3j
∗
1

s∗j′∗1 j′3
G

j∗2 j
∗
1 j3

sj′3j
′
1
∗
)
×

(
vj′1vj2vj1vj′2G

j′3j
′∗
1 j∗2

s∗j′∗2 j∗1
G

j′3j
∗
2 j

′
1
∗

sj∗1 j
′
2
∗
)(

vj′2vj′3vj2vj3G
j∗1 j

′∗
2 j′3

s∗j3j∗2
G

j∗1 j
′
3j

′
2
∗

sj∗2 j3

)
, (4.19)

where the symmetry condition in (1.4) was used in the second equality.
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Let us compare the formula in (4.19) with that in (4.10). We set j = j∗ for all j and

drop all stars, since all irreducible representations of Uq(su(2)) are self-dual. Then we find

that the summation (4.19) has the same form as the trace of D−1
∑

s dsB
s
p2B

s
p3B

s
p1 on the

graph on a sphere as in (4.10),

trtorus(
1

D

∑
s

dsB
s
p)

=
∑
j1j2j3

〈 j1

j2

j3

∣∣∣∣∣ 1D
∑
s

dsB
s
p2B

s
p3B

s
p1

∣∣∣∣∣
j1

j2

j3

〉

=trsphere(
1

D

∑
s

dsB
s
p2B

s
p3B

s
p1), (4.20)

where Bs
p is defined on the only plaquette p on the torus (see Fig. 4.2(b)), while Bs

p1B
s
p2B

s
p3

is defined on the same graph on a sphere as in (4.10) (see Fig. 4.2(a)).

The GSD on a torus becomes a trace on a sphere. The latter is easer to deal with since

the ground state on a sphere is nondegenerate. The counting of ground states on a torus

turns into a problem dealing with excitations on the sphere.

In the following we evaluate the summation in the representation of elementary excita-

tions. Let us introduce a new set of operators {n̂rp} by a transformation,

nrp =
∑
s

sr0srsB
s
p, Bs

p =
∑
r

srs
sr0

nrp. (4.21)

Here, srs is a symmetric matrix (referred to as the modular S-matrix for Uq(su(2))),

srs =
1√
D

sin (r+1)(s+1)π
k+2

sin π
k+2

, (4.22)

and has the properties

srs = ssr, sr0 = dr/
√
D∑

s

srssst = δrt

∑
w

swrswsswt

sw0
= δrst. (4.23)

Eq. (4.21) can be viewed as a finite discrete Fourier transformation between {n̂rp} and

{Bs
p}. By properties (4.23), we see that {n̂rp} are mutually orthonormal projectors, and

they form a resolution of the identity:

n̂rpn̂
s
p = δrsn̂

r
p,
∑
r

n̂rp = id (4.24)

In particular, n̂0p =
1
D

∑
s dsB

s
p is the operator Bp in the Hamiltonian. The operator n̂rp

projects onto the states with a quasiparticle (labeled by r type) occupying the plaquette p.
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Expressed as common eigenvectors of {n̂rp}, the elementary excitations are classified by the

configuration of these quasiparticles.

Particularly, on the graph on a sphere as in (4.20), the Hilbert space has a basis of

{|r1, r2, r3〉}, where only those r1, r2, and r3 that satisfy δr1r2r3 = 1 are allowed. Each basis

vector |r1, r2, r3〉 is an elementary excitation with the quasiparticles labeled by r1, r2, and

r3 occupying the plaquettes p1, p2, and p3. The configuration of quasiparticles are globally

constrained by δr1r2r3 = 1 (see Section 7.3). Therefore, tracing opertors {n̂rp} leads to

tr(n̂r2p2 n̂
r3
p3 n̂

r1
p1) = δr2r3r1 . (4.25)

Applying this rule reduces the summation (4.20) to

tr(
1

D

∑
s

dsB
s
p2B

s
p3B

s
p1)

=tr(
1

D

∑
s

ds
∑

r1r2r3

ssr1ssr2ssr3
sr10sr20sr30

n̂r2p2 n̂
r3
p3 n̂

r1
p1)

=
∑

r1r2r3

1

D

∑
s

ds
ssr1ssr2ssr3
sr10sr20sr30

δr1r2r3 . (4.26)

Then we substitute (4.16), (4.17) and (4.22) in and obtain

GSDtorus
Uq(su(2))

=

k∑
r1,r2,r3=0

sin π
k+2δr1+r2+r3,2k

sin (r1+1)π
k+2 sin (r2+1)π

k+2 sin (r3+1)π
k+2

=
k∑

r=0

r∑
s=0

sin π
k+2

sin (r+1)π
k+2 sin (s+1)π

k+2 sin (r−s+1)π
k+2

=(k + 1)2. (4.27)

(Here, we omit a rigorous proof of the last equality.)

We can also verify GSD = (k + 1)2 by a direct numerical computation. We take

{ q = exp(2πi/3) at k = 1
q = exp(3πi/4) at k = 2
q = exp(6πi/5) at k = 3

(4.28)

We can construct the data as described in Chapter 3. By this choice, the quantum

dimensions dj take the values as in (4.16), and we compute the summation (4.18) at

{ GSD = 4 at k = 1
GSD = 9 at k = 2
GSD = 16 at k = 3,

(4.29)

which verifies GSD = (k + 1)2 in the particular cases.
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It is widely believed that when the string types in the Levin-Wen model are irreps from

a quantum group at level k, then the associated TQFT is given by doubled Chern-Simons

theory associated with the corresponding Lie group at level ±k [62, 55]. This equivalence

tells us that in this case the Levin-Wen model can be viewed as a Hamiltonian realization

of the doubled Chern-Simons theory on a lattice, and it provides an explicit picture of how

the Levin-Wen model describes doubled topological phases.

Along these lines, our result is consistent [63] with the result GSDCS = k + 1 for

Chern-Simons SU(2) theory at level k on a torus. This can be seen since the Hilbert

space associated to doubled Chern-Simons should be the tensor product of two copies of

Chern-Simons theory at level ±k.



CHAPTER 5

TOPOLOGICAL OBSERVABLES

IN GROUND STATES:

S AND T MATRICES

In the previous chapter, we studied the GSD as the simplest topological observable of

Levin-Wen models, which partially characterize the topological phases. In this chapter,

we study other topological observables: the modular matrices S and T . We may do this,

since so far we have only considered local mutations. On a higher-genus surface, we should

consider the “large transformations” of the surface.

In this chapter, we shall first construct the topological observables under modular

transformations of a torus, then solve their eigen–problems to acquire the expected fractional

topological numbers, i.e., the matrices S and T . See Ref. [64]. These fractional topological

numbers are related to the fractional statistics of quasiparticles in the elementary excita-

tions. Actually, there is believed to exist a correspondence between the topological degrees

of freedom in the ground states of the system on a torus and the local degrees of freedom

of the quasiparticles in the elementary excitations. We shall come back to address this

correspondence in Chapter 7.

5.1 SL(2, Z) transformations of the torus

Consider the graph Γ on which the model is defined. In Section 4.1, we constructed the

mutation transformations that changes the local structure of the graph but preserve the

graph topology. Under such mutations, the topological degrees of freedom of the ground

states are intact. All such transformations are local. The ground–state projector
∏

pBp

can also be constructed from such mutations.

Here, on the other hand, we look into the large transformations that alter the graph

structure globally but still preserve the graph topology and find richer topological observ-

ables invariant under these large transformations.
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Again, since we are not interested in the local transformations of the graph, we need

only to work on the simplest graph of torus as in Fig. 4.2(b).

The transformations that change the topology are the familiar modular transformations,

which form the group SL2(Z) that is generated by

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
, (5.1)

satisfying relations (ST )3 = S2 and S4 = 1. See Fig. 5.1.

To cast the modular transformations in the form of 6j symbols, let us redraw the

torus in Fig. 4.2(b), in the coordinate frame in Fig. 5.1, which illustrates the S and

T transformations on the torus. The S and T transformations on the subspace HBf=1 are

constructed by

S :

∣∣∣∣∣ HH

i
**j

((
k
** j

HH

i

〉
	→
∑
k′
vkvk′G

j∗i∗k
jik′

∣∣∣∣∣ 99i
�� j

))
k′

��j
99

i

〉
Rotation
=⇒

∑
k′
vkvk′G

j∗i∗k
jik′

∣∣∣∣∣ ::

j
**

i

;;k
′

** i

::

j

〉
, (5.2)

and

T :

∣∣∣∣∣ HH

i
**j

((
k
** j

HH

i

〉
	→
∑
k′
vkvk′G

j∗i∗k
jik′

∣∣∣∣∣ 99i
�� j

))
k′

��j
99

i

〉
Twist
=⇒

∑
k′
vkvk′G

j∗i∗k
jik′

∣∣∣∣∣ ::

k′
**j

((
i
** j

::

k′

〉
. (5.3)

In the diagram above, we use the square with periodic boundary conditions to present the

torus, with a simplest graph labeled by i, j, and k.

The operators in Eqs. (5.2) and (5.3) give the representations of the S and T matrices

in Eq. (5.1) in the basis {|i, j, k〉} (with constraint δijk = 1).

We can lay the ground states in the basis composed of the eigenvectors {Φk} of T ,

T |Φα〉 = θα|Φα〉 (5.4)

where θα is a U(1) phase, and α = 1, 2, ...,GSD labels the degenerate ground states. These

eigenvectors will be identified with the quantum double types as will be discussed in the

next section.

T also has other eigenvectors, whose eigenvalues are zero. These zero eigenvectors are

actually the excited states of the model, and we are not going to dwell on them in this

chapter.

Hence, one can regard the eigenvalues θα of T as a set of topological numbers of the

model. Another set of topological numbers are the S–matrix of the topological sectors,

S̃αβ = 〈Φα| S|Φβ〉. (5.5)



58

S :

1

2

3

4

	→
12

34

T :

1

2

3

4

	→
1

2

3

4

Figure 5.1. S and T transformations of a torus. The four corners are identified as the
same point. str rotates the torus by 90◦. T twists the upper boundary 2-4 along the 1-2
axis by one turn.

where α, β = 1, 2, ...,GSD. This matrix is orthonormal:

∑
β

S̃αβS̃βγ = δαγ . (5.6)

Above all, apart from GSD, we obtain two more sets of topological numbers, {θα}, and
{S̃αβ}, to characterize the topological phases in our model.

We remark that those S̃αβ and θα are the topological observables in the ground states,

not excitations.

5.2 Topological charge of ground states:
Quantum double

The eigenstates of T are classified by the quantum double of the input data {d, δ, G},
as given by

|J 〉 = 1√
D

∑
ijk

vivk
vj

zJjijk

∣∣∣∣∣ HH

i
**j

((
k
** j

HH

i

〉
, (5.7)

where J are the quantum double types, and zJ is the half braiding tensor that characterize

each J , as introduced in Appendix A. Note that the coefficients are not symmetric along

the two directions, because the twist T is not. With the normalization factor 1/
√
D, they

form a orthonormal basis 〈J |K〉 = δJ ,K.

Here, we sketch the proof that |J 〉 are eigenvectors of T . Under the twist T , |J 〉
transforms as

T |J 〉 = 1√
D

∑
ijkk′

vivk
vj

zJjijkvkvk′G
j∗i∗k
jik′

∣∣∣∣∣ ::

k′
**j

((
i
** j

::

k′

〉
(5.8)
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By the tetrahedral symmetry we have Gj∗i∗k
jik′ = Gik′j∗

ik∗j . Using the symmetry (A.4), we arrive

at

T |J 〉 =
∑
ijk′

vivk
vj

zJji∗jk′

∣∣∣∣∣ ::

k′
**j

((
i
** j

::

k′

〉

=
1√
D

∑
ijk

vivk
vj

zJjk∗ji∗

∣∣∣∣∣ HH

i
**j

((
k
** j

HH

i

〉

=θJ |J 〉, (5.9)

where in the second equality we relabel k′∗ji to ijk, and in the last equality we use zJjk∗ji∗ =

θJz
J
jijk for δijk = 1. θJ is a U(1) number called the twist of the quantum double type J .

See Appendix A.

Above all, T has eigenvectors |J 〉 labeled by the quantum double types J , with the

eigenvalues being the twist of J .

5.3 S and T matrices

In the basis |J 〉, we obtain the modular matrices:

S̃JK = 〈J |S|K〉 = 1

D

∑
ijkk′

dkdk′G
j∗i∗k
jik′ z

J
ij∗ik′∗z

K
jijk

=
1

D

∑
ijk

dkz
J
ijikz

K
jijk, (5.10)

and

TJK = δJKθJ , (5.11)

where we used Gj∗i∗k
jik′ = Gj∗ik′

ji∗k and the symmetry condition (A.3) in the last equality. This

is exactly the (normalized) modular S matrix defined in Eq. (A.8).

We start with the large modular transformations S and T of torus, and we arrive at the

modular S and T matrices for the quantum double types as defined in Append A.

5.4 Physical meaning of the quantum
double charge

Consider the Levin-Wen models constructed from finite group representations. Let G =

ZN . As discussed in Appendix A, the quantum double types are labeled by pairs (g, j),

where g = 0, 1, . . . , N − 1 is the group elements, and j = 0, 1, . . . , N − 1 are the irreducible

representations and are thus, the string types we use to define the model. The quantum

double charge (g, j) of the ground states can be understood as a charge-flux composite.
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For G = Z2 example, there are four quantum double types, denoted by 1, e,m, and em,

as defined by Eq. (A.10) in Appendix A. The four ground states in the basis

∣∣∣∣∣ HH

i
**j

((
k
** j

HH

i

〉
are

|1〉 = 1√
2
(|i = 0, j = 0, k = 0〉+ |i = 1, j = 0, k = 1〉)

|e〉 = 1√
2
(|i = 0, j = 1, k = 1〉+ |i = 1, j = 1, k = 0〉)

|m〉 = 1√
2
(|i = 0, j = 0, k = 0〉 − |i = 1, j = 0, k = 1〉)

|em〉 = 1√
2
(|i = 0, j = 1, k = 1〉+ |i = 1, j = 1, k = 0〉). (5.12)

If we rewrite the state |ijk〉 by |j〉 ⊗ |i〉 (k depends on i and j by the constraint i+ j + k =

0 mod 2), we see that the four ground states are expressed in terms of the charge-flux

composites:

|1〉 = |0〉 ⊗ |δ1〉

|e〉 = |1〉 ⊗ |δ1〉

|m〉 = |0〉 ⊗ |δ−1〉

|em〉 = |1〉 ⊗ |δ−1〉. (5.13)

where |δg〉 = 1√
N

∑
i exp(2πiig/N)|i〉 is a Fourier transformation of |i〉 and present the

magnetic flux g.

To see the physical meaning the quantum double charge of the ground states, we cut

the torus along one noncontractible loop and get a cylinder. Take the simplest graph as

illustrated in Eq. (5.2), see Fig. 5.2. The quantum double charge J of the ground state

|J 〉 can be understood as the charge flow J through the cylinder.

The twist θJ can be understood as the topological spin of the charge-flux composite.

In fact, T will twist the upper boundary loop of the cylinder in Fig. 5.2 once, and then

identify it with the lower boundary loop again. In the ground state |g, j〉 in the ZN example,

this results in winding the charge j around the flux g and thus, an Aharonov-Bohm phase

exp(2πijg/N).

This understanding establishes the connection between the topological charges of the

ground states and of the excitations. In the following chapters, we will show that the

quasiparticles in excitations carry quantum numbers also classified by the quantum double.

In the ground state |g, j〉 in the ZN example, if we create a pair of fluxons carrying the flux

h and h−1 = N − h, move the fluxon h around the cylinder once, and then annihilate the

fluxon pair, the ground state should acquire an amplitude of exp(2πijh/N).
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Figure 5.2. Cylinder obtained by cutting a torus, with the simplest trivalent graph.



CHAPTER 6

OPERATOR APPROACH TO FLUXON

EXCITATIONS

The Levin-Wen models are exactly solvable because all Qv and Bp are projection oper-

ators and are simultaneously commuting with each other. Therefore, the ground states are

the simultaneous eigenstates of Qv = 1 and Bp = 1 for all v and p. The elementary excited

states are the simultaneous eigenstates of all Qv and Bp, with their eigenvalues either 0 or

1. There are two types of quasiparticles, as identified by the eigenvalues of Qv and Bp. We

say there is a charge at vertex v in a Qv = 0 eigenstate, and a fluxon at p in a Bp = 0

eigenstate. A charge at v and a fluxon at a plaquette p may combine to form a dyon, which

is simply a charge-fluxon composite in abelian case. It is well known that any single charge

(or single fluxon) state on a sphere is excluded by some global constraints on Qv and Bp.

In this chapter, we focus on the subspace with Qv = 1 for all v, and study the fluxons.

We first show how to identify the topological charges in the fluxon excitations and then

construct manipulation operators of the fluxons [65]. These manipulation operators may

be used to simulate the topological quantum computation.

6.1 Particle species of fluxons

Fluxons localized at p are classified by the fusion algebra (1.7) of Bs
p. It is called the

fusion algebra because the multiplication rule is determined by the fusion rule. From this

algebra, we can derive a set of orthonormal projection operators to identify particle species

of the fluxons.

In particular, we are interested in two well known classes of Levin-Wen models, con-

structed from the representations of (1) Finite groups, and (2) Quantum groups (including

the quantum double of finite groups, and q-deformed Lie groups with q parameter being a

primitive root of unity). In both cases, we have an extra condition that δijk = δjik and thus,

the algebra (1.7) is abelian. (More generally, this condition holds for the models constructed
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from braided tensor categories.) In this dissertation we assume δijk = δjik unless specified.

The general situation is discussed in Appendix B.

Let us start with the abelian fusion algebra (1.7). It uniquely determines a N×N matrix

XJ
j , called the fusion characters, satisfying

XJ
j∗ = XJ

j (6.1)

XJ
i X

J
j =
∑
k

δijk∗X
J
kX

J
0 (6.2)

∑
j

XJ
j X

K
j = δJ,K ,

∑
J

XJ
i X

J
j = δi,j . (6.3)

See Appendix B for the proof. XJ
j can be viewed as normalized one-dimensional represen-

tations of the fusion algebra, as observed in Eq (6.2). The factor XJ
0 on the RHS of Eq

(6.2) normalizes XJ
j to satisfy Eq. (6.3).

The matrix XJ
j determines a set of orthonormal projections operators nJp at p:

nJp :=
∑
s

XJ
s X

J
0 B

s
p, (6.4)

satisfying

nJpn
K
p = δJ,Kn

J
p ,
∑
J

nJ = 1. (6.5)

These projection operators measure the particle species J of the fluxons at p. Each nJ

projects onto the states with J-type fluxon at p. There is a special fluxon type, denoted by

J = 0, corresponding to quantum dimensions by X0
j = dj/

√
D. This type is trivial because

n0p = Bp projects onto states without any fluxon at p. Each J comes with a conjugate J∗

such that XJ∗
j = XJ

j , and we say J∗-type fluxon is the antiparticle of J-type fluxon.

6.2 Manipulation of fluxons

How can we create fluxons in a ground state to obtain an elementary fluxon excitations?

How can we manipulate these fluxons? To answer these questions, we introduce the creation,

the annihilation, the hopping, and the braiding operators.

6.2.1 Creation operator

On a ground state, fluxons can not be singly created by a local operator. They must

created in pairs. In the following we show how to create a fluxon pair of the opposite types,

J and J∗.
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We define the creation operator W J
e on an edge e by

W J
e

∣∣∣∣∣ ## je

��JJ

##

�� JJ �� JJ

##

��JJ
〉

:=
XJ

0 X
J
je

X0
0X

0
je

∣∣∣∣∣ ## je

��JJ

##

�� JJ �� JJ

##

��JJ
〉
. (6.6)

It is diagonal in the matrix form. In the diagram above, only two plaquettes are shown,

with the rest part of the graph remained unaffected, and the shape of the plaquettes could

be arbitrary.

By acting W J
e on any ground state |Φ〉, we get a fluxon-pair state with fluxon J∗ on p1

and J on p2, where p1 is plaquette left to the edge e and p2 right to e:

nKp1W
J
e |Φ〉 = δJ∗,KW

J
e |Φ〉

nKp2W
J
e |Φ〉 = δJ,KW

J
e |Φ〉

nKp′W
J
e |Φ〉 = δK,0W

J
e |Φ〉. (6.7)

These properties can be proved using the conditions (1.4) on 6j-symbols.

The definition of W J
e does not depend on the direction of the edge e. In fact, if we

reverse the direction of e, je in Eq. (6.6) is replaced by j∗e . XJ
j∗e = XJ∗

je
implies W J

e =W J∗
e−1 ,

where e and e−1 are the same edge with opposite direction. Both W J
e and W J∗

e−1 create the

same fluxon pairs across the edge, as they should, see Fig. 6.1.

From Eq. (6.6), we see that W 0
e is the identity operator when J = 0, which agrees

with that creating a trivial fluxon pair changes nothing. The hermitian of W J
e creates a

conjugate pair of fluxons because XJ∗
j = XJ

j :

W J∗
e =W J

e
†
. (6.8)

The multiplication of W J
e can be decomposed —

W IW J =
∑
K

ΔIJK∗WK , ΔIJK =
∑
j

XI
0X

J
0

XK
0 X

0
0

XI
jX

J
j X

K
j

X0
j

— (6.9)

by using Eq (6.3). Creating two fluxon pairs across the same edge yields a linear combination

of fluxon-pair states.

The creation operator has a Fourier transformation. By the orthonormal conditions

(6.3), we obtain the projection operator

Ek
e =
∑
J

X0
0X

0
k

XJ
0X

J
k

W J
e (6.10)

that projects onto states with label on the edge e to be k.
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(a) W J
e |Φ〉 (b) W J∗

e−1

Figure 6.1. Fluxon-pair state W J
e |Φ〉 generated from a ground state |Φ〉. The creation

operator does not depend on the edge direction. The fluxon-pair state W J
e |Φ〉 in (a) is the

same as W J∗
e−1 |Φ〉 in (b).

6.2.2 Annihilation and hopping operators

In the following we show how to annihilate and hop fluxons. Again, note that fluxons

are created and annihilated in pairs locally.

Let us start with a ground state |Φ〉, and consider a trivalent vertex and its three

neighboring plaquettes p0, p1 and p2, see Fig. 6.2(a).

In Fig. 6.2(b), W J
2 creates a J∗–J fluxon pair at p0 and p1, while W

J
3 creates a J∗–J

fluxon pair at p1 and p2. Now p1 is occupied by two fluxons, J from W J
2 , and J

∗ from W J
3 .

The resulting state may be no longer an eigenstate of certain nKp1 , because J and J∗ may

couple to more than one types of fluxons. However, since nKp1 are orthonormal projections,

we can decompose the state W J
3 W

J
2 |Φ〉 to

∑
K nKp1W

J
3 W

J
2 |Φ〉. In other words, nKp1 projects

onto the state nKp1W
J
3 W

J
2 |Φ〉 with only K-fluxon at p1. When W J

3 W
J
2 |Φ〉 collapses to an

nKp1 = 1 eigenstate nKp1W
J
3 W

J
2 |Φ〉, we say the two fluxons J and J∗ couple to a new fluxon

K.

Particularly, n0p1 kills any nontrivial fluxon at p1. In the above example, n0p1 projects

onto a fluxon-pair state, with J∗ at p0 and J at p2. In this killing process, n0p1 plays the

role of annihilation operator. The annihilation occurs only if the two fluxons at p1 are

antiparticles of each other.

The above process is also a hopping process, in which the hopping operator n0p1W
J
3

moves the fluxon J from p1 to p2. In this process, a J-fluxon is created at p2 while a

J-fluxon is annihilated at p1.

The hopping operator must satisfy some topological property: hopping along two ho-

motopic paths (without any nontrivial fluxon enclosed by the two paths) leads to the same

final state. Consider again the above example. We apply the hopping operator n0p1W
J
3 to

the fluxon pair stateW J
2 |Φ〉, and obtain a fluxon pair state. The path independence requires

n0p1W
J
3 W

J
2 |Φ〉 =W J

1 |Φ〉, (6.11)
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(a) (b) (c)

(d)

Figure 6.2. (a) Three neighboring plaquettes around a trivalent vertex. (b) Create two
fluxon pairs across the edge 2 and 3. (c) Annihilate fluxons at p1 by n0p1 . (d) The final
fluxon-pair state in (c) is equal to that obtained by directly creating a fluxon pair across
edge 1. This implies n0p1W

J
2 is path independent, and thus is a hopping operator of fluxon

J at p1.

around any trivalent vertex. This property can be verified by using the conditions (1.4) on

6j-symbols.

The hopping operators induce a string operator that creates a pair of fluxons far apart.

We choose a path along plaquettes p1, p2, . . . , and pn+1, going across edges e1, e2, ..., and

en, as illustrated below:

p1
##

e1
p2

##

e2
. . .

##

en
pn+1 (6.12)

This is a string consisting of plaquettes. First we create a fluxon pair on the neighboring

plaquettes across e1, with J
∗-fluxon at p1 and J-fluxon at p2. Then we move the J-fluxon

to pn by a sequence of hopping operators, and the finial state is

n0pnW
J
en . . . n

0
p2W

J
e2W

J
e1 |Φ〉. (6.13)

The two fluxons are at the starting plaquette p1 and the ending plaquette pn+1 of the string.

The string operator in Eq. (6.13) only depends on the two ends of the string because of the

path independence of the hopping operator.

6.2.3 Fluxons as flux tubes

Fluxons can be viewed as Faraday’s “flux tubes” geometrically. As will be shown in

Section 6.3, in the models constructed from finite group representations, the fluxons are

“flux tubes” classified by the conjugacy classes of the finite group.

In Appendix C of Ref. [43], Bs
p can be graphically presented as fusing a loop labeled

by s to the boundary edges of the plaqutte p. This loop has a physical meaning in gauge
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theory language: Bs
p is the Wilson loop operator that creates a Wilson loop labeled by s

around p.

In an excitation |Ψ〉 with a fluxon J at p, Bs
p takes the eigenvalue χs([J ]), with [J ] a

conjugacy class. The J fluxon can be viewed as a flux tube piercing the plaquette p, as

illustrated in Fig. 6.3(a).

Particularlly the fluxon pair state W J
e |Φ〉 is characterized by a flux tube loop piercing

the two occupied plaquettes and going around the edge e, see Fig. 6.3(b).

In general, Levin-Wen models can be viewed as generalized discrete gauge theory where

the gauge group is generalized to some algebra (weak Hopf algebra), each Bs
p is the gen-

eralized Wilson loop operator, and the fluxons are the generalized “flux tubes.” With the

created fluxon pair viewed as the flux tube around the edge, Eqs (6.4) and (6.10) can be

viewed as the electromagnetic duality: Wilson loops generate magnetic flux labeled by J ,

while magnetic flux loops generate electric flux labeled by j. See Fig. 6.3(b).

6.3 Examples

Before discussing the properties of the fluxons, we study two examples: the models

constructed from finite group representations, and from quantum group representations.

We shall examine the fusion characters XJ
j in these two examples.

6.3.1 Finite group theory

In the Levin-Wen models constructed from the representations of a finite groups G,

the string types are taken to be all irreducible representations j of G. For simplicity, we

assume G is multiplicity free. The quantum dimension dj = αjdim(Vj) is the dimension

of the representation space Vj , where the Frobenius-Schur indicator alphaj = −1 if the

representation j is pseudoreal and 1 otherwise. j = 0 is the trivial representation that

maps any g ∈ G to 1. The fusion rule δijk is 1 if the trivial representation 0 appears in the

decomposition of the tensor product representation i⊗ j ⊗ k, and 0 otherwise (assuming G

is multiplicity free). The construction of data {d, δ,G} has been explained in Chapter 2.

Such models using G is the dual formulation of a lattice gauge theory with the finite

gauge group G. We use the irreducible representations of G as the fundamental degrees of

freedom, while the standard formulation use the group elements (i.e., the discrete gauge

fields). The Levin-Wen model constructed from G representations can be mapped to

Kitaev’s quantum double model based on the same G, see [54].

The fluxons are classified by the conjugacy classes. The number of conjugacy classes is

equal to the number of irreducible representations, as expected by the analysis in Section
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(a) flux tubes (b) Single fluxon-pair state (c) Two-fluxon-pair state

=
(d) Annihilation at plaquette 2

Figure 6.3. (color online.) Geometric structure of an elementary excitation |Ψ〉. A fluxon
J is viewed as a flux tube piercing its occupied plaquette and going out of the surface, while
a fluxon J∗ is viewed as a flux tube coming into the surface. (a). Two fluxons I and J
occupy plaquettes 2 and 4, and a fluxon K∗ occupies plaqutte 1. (b). Single fluxon-pair
state W J

e |Φ〉. The fluxon pair created by W J
e on a ground state |Φ〉 is viewed as a flux tube

loop piercing the two occupied plaquettes and going around the edge e. (c) Two fluxon pairs
in W J

e1W
J
e2 |Φ〉. Two fluxon pairs are created on the ground state |Φ〉, presented by two flux

loops labeled by J . (d) Annihilation of fluxons at plaquatte 2. Yellow loop around the
plaquette present the projection operator n02, which annihilate the flux tubes at plaquette
2. After the annihilation, a fluxon pair state remains.

6.1. Denote by CJ the conjugacy classes of G, and by gJ ∈ G a representative of each class

J . The fusion characters XJ
j are normalized characters:

XJ
j =

√
|CJ |
|G| χj(g

J)αj , (6.14)

where |G| is the order of G, and |CJ | the cardinality of CJ . The Frobenius-Schur indicator

αj appears such that X0
0X

0
j = αjdim(j) = dj . The orthogonality relations (6.3) for XJ

j are

thus, those for character functions χj with respect to conjugacy classes CJ .

The operator n0p = Bp in the Hamiltonian prefers zero holonomy around the plaquette

p. In the ground states, zero holonomy everywhere implies a flat connection. Hence, the

ground-state subspace is identified with the module space of flat connections on the spatial

surface.

Denote by J the conjugacy class of the finite group, and gJ the representative element

in the class. Then the creation operator W J
e of a fluxon-pair is

W J
e :

∣∣∣∣∣ ##je

〉
	→ |CJ |

dim(j)
χj(gJ)

∣∣∣∣∣ ##je

〉
, (6.15)
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where |CJ | is the cardinality of the conjugacy class J , and dim(j) the dimension of the

representation space of j.

In the gauge theory language, W J
e changes the holonomies of the two neighboring

plaquettes across the edge e by the conjugacy class J . To see this, consider the Fourier

transformation between the basis of group elements and the representation elements:〈
## ge

∣∣∣∣∣ ## je;αβ

〉
= ρjαβ(ge), (6.16)

where ρj(ge) is the representation matrix and α, β the matrix indexes. The creation operator

W J
e results in a multiple of χj(g

J). Since dim(j)
|G|
∑

h ρ
j
αβ(gehg

Jh−1) = χj(g
J)ρjαβ(ge), we see

that the creation operator in the group element basis is

W J
e :

∣∣∣∣∣ ## ge

〉
	→ |CJ |

|G|
∑
h∈G

∣∣∣∣∣ ##
gehgJh−1

〉

=
∑
h∈J

∣∣∣∣∣ ## geh

〉
. (6.17)

Therefore a fluxon-pair state can be expressed as
∑

h∈J h ⊗ h−1, with h the holonomy

along two plaquettes. If the finite group is nonabelian and the conjugacy class J has more

than one elements, the two fluxons are entangled. See Fig. 6.4.

For example, the cyclic group G = ZN group has N irreducible representations j =

0, 1, . . . , N − 1, with j∗ = N − j and dj = 1 for all j. The fusion rule is

δijk =

{
1 if i+ j + k = 0 mod N
0 otherwise

(6.18)

The 6j symbol is given by

Gj1j2j3
j4j5j6

= δj1j5j6δj2j4j∗6 δj∗3 j4j5δj1j2j3 (6.19)

Since Zn is abelian, each group element itself forms a conjugacy class. Hence, the fluxons

are classified by the group elements. The characters are given by χj(n) = exp(inj/N).

Another example is the simplest nonabelian group, the dihedral group G = D3 (also

known as the symmetry group S3). It has three irreducible representations j = 0, 1, 2.

Since all of them are real representations, the quantum dimension dj is the dimension of

representation space Vj : d0 = d1 = 1 and d2 = 2.

The fusion rules are given by δ000 = δ011 = δ022 = δ122 = δ222 = 1. See Section 2.2.2 for

detailed construction.

The fluxons are classified by the three conjugacy classes, with the character table

presented in Table 6.1.
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∑
h∈J

∣∣∣∣∣
〉 ∑

h∈J

∣∣∣∣∣
〉

(a) (b)

Figure 6.4. Fluxon-pair state labeled by conjugacy class J . (a) A fluxon-pair created
across the middle edge. (b) When two fluxons are separated far apart, the pairing of the
holonomies around the two plaquettes will not be broken.

Table 6.1. Character table of G = D3.
C1 C2 C3

χj=0 1 1 1
χj=1 1 1 −1
χj=2 2 −1 0

6.3.2 Quantum group theory

Consider models constructed from the representations of a q-deformed Lie group Uq(g),

with the parameter q a primitive root of unity. While the usual Lie group has the infinitely

many irreducible representations, the q-deformed Lie group has finitely many (semisimple)

irreducible representations with nonzero quantum dimensions. The states in this class are

also known as the spin-network states, which intends to formulate the metric field of the

2+1D quantum gravity.

The input data of 6j-symbols may be constructed from the irreducible representations

(with nonzero quantum dimensions) of Uq(g). For example, Reshetikhin and Kirillov derived

the 6j-symbol from the representation theory of Uq(sl2). Later, a much simpler approach

through the Kauffman brackets (or, through Temperley-Lieb algebra) was developed. For

detailed construction, see Chapter 3.

For the example of the semion theory, there are two string types denoted by j = 0, 1,

with quantum dimensions d0 = 1, d1 = −1. The fusion rule is the δ000 = δ011 = 1 and

δ001 = δ111 = 0.

The fusion character XJ
j is determined by δijk:

XJ=0
0 = 1, XJ=0

1 = −1, XJ=1
0 = 1, XJ=1

1 = 1. (6.20)

Note that XJ=0
1 = −1 to match d1 = −1.
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6.4 Topological charge in fluxon excitations:
Quantum double

In Section 6.1 we discussed one type of quantum numbers – the orthonormal projections

to identify the particle species of fluxon types. However, to fully characterize many-fluxon

excitations, we need more quantum numbers. Consider the many-fluxon states with N

fluxons occupying N fixed plaquettes, with the fluxons J1, J2, . . . , JN at p1, p2, . . . , pN . Such

states are degenerate, and the fluxon type projection nJp can not distinguish those degenerate

states.

We need more quantum numbers to describe the collective behavior of many fluxons,

i.e., we need to know not only the fluxon type at each plaquette, but also the relative degree

of freedom (d.o.f.) among these fluxons. For this purpose, in the following, we figure out

the quantum number of the subsystem of two fluxons at the neighboring plaquettes.

Consider two neighboring plaquettes p1 and p2. For simplicity, we assume both are

triangle plaquettes. At these two plaquettes, the local operators Bs
1B

t
2 are given by〈

##
j′1

KKj′2
�� j′5

JJ
j′4LLj′3

<<
j6 &&

j7

∣∣∣∣∣Bs
1B

t
2

∣∣∣∣∣ ##
j1

KKj2
�� j5

JJ
j4LLj3

<<
j6 &&

j7

〉

=vj1vj2vj3vj4vj5vj′1vj′2vj′3vj′4vj′5

∑
j′′1

dj′′1

×G
j5j∗2 j1
sj′′1 j

′∗
2
G

j6j∗3 j2
sj′2j

′∗
3
G

j∗4 j
∗
1 j3

sj′3j
′′∗
1
G

j′3j
∗
4 j

′′∗
1

tj′∗1 j′∗4
G

j7j∗5 j4
tj′4j

′∗
5
G

j′′∗2 j′1j5
tj′5j

′∗
1
, (6.21)

from which we obtain the fluxon projection operator nJ1n
K
2 =

∑
rs X

J
s X

J
0X

K
t X

K
0 Bs

1B
t
2,

with nJ1 for fluxon J at the left plaquette, and nK2 for fluxon K at the right one.

In addition to nJ1n
K
2 , it is possible to construct other local observables, say P12, that

measures the total quantum number of the two-plaquette subsystem, which commute with

the Hamiltonian. By “local” we mean that P12 only changes local labels j1, j2, j3, j4, and

j5 around the bounday of the two plaquettes, similar to nJ1n
K
2 . Since the relative d.o.f.

between two fluxons should live on the middle edge, we can start by assuming that P12 has

a general form of 〈
##

j̃1

KKj′2
�� j′5

JJ
j′4LLj′3

<<
j6 &&

j7

∣∣∣∣∣P12

∣∣∣∣∣ ##
j1

KKj2
�� j5

JJ
j4LLj3

<<
j6 &&

j7

〉

=
∑
st

vj2vj3vj4vj5vj′2vj′3vj′4vj′5

∑
j′1j

′′
1

dj′′1 dj′1Zstj1j̃1j′j′′1

×G
j5j∗2 j1
sj′1j

′∗
2
G

j6j∗3 j2
sj′2j

′∗
3
G

j∗4 j
∗
1 j3

sj′3j
′′∗
1
G

j′3j
∗
4 j

′′∗
1

tj̃∗1 j
′∗
4

G
j7j∗5 j4
tj′4j

′∗
5
G

j′′∗2 j′1j5
tj′5j̃

∗
1

, (6.22)

with Zstj1j̃1j′j′′1
to be determined. In fact, P12 becomes Bs′

1 B
t′
2 with the choice Zstj1j̃1j′j′′1

=
vj1vj̃1
dj′1

δj′1,j′′1 δs,s′δt,t′ . In Eq. (6.22), the 6j symbols are assigned as follows: the index j′1 is
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localized near the top trivalent vertex and j′′1 near the bottom trivalent vertex. This is

the most general form for an arbitrary action on the d.o.f. j1 in the middle edge, while

conserving the branching rule at all vertices.

The formula (6.22) of P12 can be simplified for our purpose. If we create a fluxon

pair across the middle edge, the total quantum number should not be affected because no

fluxon will be left if we fuse locally created fluxon pair together. Therefore, we require

P12W
J
1 = W J

1 P12 for all J . By the orthonormal condition (6.3), the above expression is

nonzero only when j̃1 = j1. It means that only the boundary edges 2, 3, 4 and 5 of the

two-plaquette subsystem will be changed, just like that only the boundary edges of the

plaquette p are changed by Bs
p.

Therefore, we arrive at

∑
st

〈
##
j1

KKj′2
�� j′5

JJ
j′4LLj′3

<<
j6 &&

j7

∣∣∣∣∣P12

∣∣∣∣∣ ##
j1

KKj2
�� j5

JJ
j4LLj3

<<
j6 &&

j7

〉

=
∑
st

vj2vj3vj4vj5vj′2vj′3vj′4vj′5

∑
j′1j

′′
1

dj′′1 dj′1Zstj1j′j′′1

×G
j5j∗2 j1
sj′1j

′∗
2
G

j6j∗3 j2
sj′2j

′∗
3
G

j∗4 j
∗
1 j3

sj′3j
′′∗
1
G

j′3j
∗
4 j

′′∗
1

tj∗1 j
′∗
4
G

j7j∗5 j4
tj′4j

′∗
5
G

j′′∗2 j′1j5
tj′5j

∗
1
, (6.23)

with Zstj1j′1j
′′
1
to be determined.

For P12 to be an observable, we require

P12n
J
1 = nJ1P12, P12n

J
2 = nJ2P12. (6.24)

The solutions to Eq (6.24) are given by the quantum double structure. See Appendix A.

Each quantum double type J is characterized by a half braiding tensor zJ
sj1tj′1

, giving rise

to a solution:

Zstj1j′1j′′1 = zJ
sj1tj′1

zJ
sj1tj′′1

. (6.25)

We can diagonalize these solutions and obtain the orthonormal projections PJ
12, with the

choice

ZJ
stj1j′1j′′1

=
∑
K
S̃J 0S̃JK zJsj1tj′1 z

J
sj1tj′′1

, (6.26)

Here, S̃JK is the modular S matrix for the quantum double data as defined in (A.8). These

ZJ defines orthonormal:

PJ
12P

K
12 = δJKPJ

12,
∑
J
PJ
12 = 1. (6.27)

They identify the total topological charge of the wo-fluxon subsystem.
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If PJ = 1 in an elementary excitation, we say the total charge of the two-fluxon

subsystem is J . Any fluxon type J is a quantum double type, and P J
12 can be expressed in

terms of W and nJ :

P J
12 =

∑
KL

nK1 n
K
2 (
∑
I

W I
e )n

0
1n

J
2 (
∑
I

W I
e )n

K
1 n

K
2 . (6.28)

If we have a fluxon J at the left plaquette, but no fluxon at the right one, then the total

charge must be equal to J . But there are more quantum double types than fluxon types:

{J} ⊂ {J }.
From Eq. (6.27), it seems that all possible topological charges are classified by the

quantum double. However, in many cases, PJ may be zero in the entire space. The

quantum double types are more than we can observed in an elementary fluxon excitations.

In particular, if the input quantum dimensions dj = ±1 for all j, then all fluxons are abelian,

and the topological charges are classified by the fluxons, with PJ
12 = 0 if J is not equal to

any of the fluxon types J . In a nonabelian case, the topological charges may be classified

by the entire set of quantum double types. We will discuss these situations in details in the

following two chapters.

Similarly, we can measure the total topological charge of a subsystem containing more

than two fluxons. Consider three neighboring plaquettes as illustrated below. We define

the projection operator PJ
123 by

〈
##
j1

##
j2

&&
j′8

<<
j′5

KKj′3
�� j′7

JJ
j′6LLj′4

<<
j9

&&
j10

∣∣∣∣∣∣∣∣
PJ
123

∣∣∣∣∣ ##
j1

##
j2

&&
j8

<<
j5

KKj3
�� j7

JJ
j6LLj4

<<
j9

&&
j10

〉

=
∑
rst

vj3vj4vj5vj6vj7vj8vj′3vj′4vj′5vj′6vj′7vj′8×∑
j′1j

′′
1 j

′
2j

′′
2

dj′1dj′′1 dj′2dj′′2Z
J
rsj1j′1j

′′
1
ZJ
stj2j′2j

′′
2
(G

j8j∗3 j1
rj′1j

′∗
3
G

j9j∗4 j3
rj′3j

′∗
4
G

j∗5 j
∗
1 j4

rj′4j
′′∗
1
)×

(G
j′4j

∗
5 j

′′∗
1

sj∗1 j
′∗
5
G

j∗6 j
∗
2 j5

sj′5j
′′∗
2
G

j7j∗8 j2
sj′2j

′∗
8
G

j′∗3 j′1j8
sj′8j1

)(G
j′∗8 j′2j7
tj′7j2

G
j′5j

∗
6 j

′′∗
2

tj∗2 j
′∗
6
G

j10j′7j6
tj′6j

′∗
7

), (6.29)

where zJ is as given in Eq. (6.26). PJ
123 measures the total charge of the three-fluxon

subsystem. This definition is valid for any three fluxons on any graph. If the three fluxons

are far apart from each other, we can move them to three neighboring plaquettes by the

unitary hopping operators. If the three neighboring plaquettes have different shapes other

than those in the above equation, PJ
123 is defined in the same way only up to some unitary

mutations T1 in Eq. (4.4).

Following the same rules, the projection operator PJ can be defined in a subsystem

containing an arbitrary finitely number of fluxons.
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These topological charges are topological, because the measurement of the total charge

only depends on the topology of the configuration space of fluxons. It may depend on the

topology of how the subsystem boundary loops enclose the selected fluxons. See Fig. 6.5

for an example. The choice of the subsystems also depends on the topology of the spatial

graph. See Fig. 6.6 for an example. In both examples, the two choices of the subsystem

containing the three same fluxons cannot be smoothly deformed into each other, and thus

the measurement PJ
123 may have different results. Otherwise, the total topological charge

is the same no matter how large the subsystem is, and how far apart the fluxons contained

are.
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(a) (b)

Figure 6.5. Two ways to choose a subsystem containing three fixed fluxons on a sphere.

(a) (b)

Figure 6.6. Two ways to choose a subsystem containing three fixed fluxons on a torus.



CHAPTER 7

FRACTIONAL EXCHANGE STATISTICS

In this chapter we study the fractional exchange statistics in the fluxon excitations [65],

using the hopping operator as developed in Section 6.2.2. In Fig. 7.1, the two fluxons of

types J1 and J2 are exchanged in the counterclockwise direction.

By the path independence of hopping operators, the effect of the exchange of two fluxons

only depends on the topology of the configure space of all fluxons, and hence, the N -fluxon

states form a representation space of the braid group BN .

7.1 Hilbert space structure of many-fluxon states

To describe the Hilbert space of many-fluxon excitations, we determine the full quantum

numbers as follows. We can specify the topological charge of each fluxon, i.e., the fluxon

types. Then we can specify the total topological charge of the subsystems of several fluxons.

But the total topological charges of all subsystems cannot be determined at the same

time. For example, consider excitations with four fluxons, enumerated by 1, 2, 3 and 4.

We can measure the total topological charge of the first two fluxons by PJ
12, or of fluxon

1 and 3 by PJ
13. These two quantum numbers can not be determined at the same time:

PJ
12P

J
13 �= PJ

13P
J
12. Therefore, we need to choose an appropriate set of quantum numbers

without over-counting them.

Consider N -fluxon excitations, with their fluxon types J1, J2, . . . , JN at N fixed plaque-

ttes. The Hilbert space of such N -fluxon states has a basis presented by

• • •&&

J1

##

J2
##

J3
##

JN−1

<<

JN
&&

J1
&&

J2
&&

JN−3
(7.1)

The N external lines are labeled by the fluxon types J1, J2, ..., JN of the N fluxons. There

are also N − 3 internal lines, labeled by the quantum double types J1,J2, . . . ,JN−3. J1

is the total topological charge of the first two fluxons, J2 of the first three, and JN−3 the

first N − 2. The configuration of J ’s are constrained by the quantum double fusion rule:
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(a) (b) (c)

Figure 7.1. Exchange of two fluxons in the counterclockwise direction by hopping
operators.

J1 and J2 couple to J1, J1 and J3 couple to J2, and so on. This fusion rule is determined

by the modular S matrix of the quantum double types:

δJ1J2J3 =
∑
J

S̃J1J S̃J2J S̃J3J
S̃0J

, (7.2)

which takes values of 0 or 1. See Appendix A. Here, 0 in S̃0J is the trivial quantum double

type, which is identical to the trivial fluxon type. δJ1J2J ∗
3
= 0 implies J1 and J2 cannot

couple to J3. For simplicity, here we assume the multiplicity free fusion rules.

Therefore, the basis of N -fluxon Hilbert space on a sphere is

{|J1, J2, . . . , JN ;J1,J2, . . . ,JN−3〉|δJ1J2J ∗
1
= 1, δJ3J1J ∗

2
= 1, . . . , δJN−1JN−3JN = 1} (7.3)

When the topology of the spatial graph is nontrivial (e.g. on a torus), we need to

consider the topological d.o.f., which only depends on the topology. The ground states are

degenerate. This degeneracy survives in the fluxon excitations, but the degeneracy may not

be exactly the same as the GSD.

On a torus, the basis of N -fluxon Hilbert space is presented by

• • •

##

J1
##

J2
##

JN

&&

J2
&&

J3
&&

JN

<<

J1

, (7.4)

in which the N external lines are labeled by the fluxon types J1, J2, . . . , and JN of the N

fluxons, and the N internal lines are labeled by N quantum double types J −1,J2, . . . , and

JN , satisfying the fusion rule at each vertex in the above diagram. The topological d.o.f.

is encoded in the loop formed by internal lines J1,J2, . . . , and JN . Formally, the basis is

{|J1, J2, . . . , JN ;J1,J2, . . . ,JN 〉|δJ1J ∗
2 J1 = 1, δJ2J ∗

3 J2 = 1, . . . , δJNJ ∗
1 JN = 1}. (7.5)
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7.2 Hilbert space structure using finite groups

7.2.1 Full quantum numbers of fluxon excitations

In the Levin-Wen models constructed from finite group representations, the fluxon types

are classified by the conjugacy classes, as we have seen in Section 6.3.1. In general, the full

quantum numbers of fluxon excitations are classified by not only the conjugacy classes,

but the quantum double types. An elementary excitation with more than two fluxons is

described by the fluxon types ar all plaquettes, as well as the relative d.o.f. between these

fluxons. Let us consider two situations with an abelian group and with a nonabelian group.

In a discrete pure gauge theory with an abelian group, the only observables are the

magentic fluxes. In Levin-Wen models (from finite group representations), two fluxons

couple to a new fluxon with the two fluxon types adding up to be the new fluxon type.

On the other hand, in a pure nonabelian gauge theory, the story is different. When

two nonabelian fluxons are put together, an electric charge may be observed as the total

quantum number. Let us consider two fluxons in a N -fluxon excitation, and move a third

fluxon around these two fluxons by one turn, then the total electric charge will contribute

a phase to the wavefunction (or, a unitary braiding matrix in general).

For example, in the Levin-Wen models on a sphere using G = D3, there are 6 elements,

denoted by {1, 2, 3, 4, 5, 6}, and the fluxon types are classified by the three conjugacy classes

as C1 = {1}, C2 = {2, 3}, and C3 = {4, 5, 6}.
As analyzed in the previous section, the fluxon-pair state corresponding to the second

conjugacy class can be presented by |2⊗ 2〉+|3⊗ 3〉, with the two group elements represent-

ing the holonomies on the left and right plaquettes. See Fig. 6.4. Any gauge transformation

at the reference point will result in a conjugation of the left and right holonomies at the

same time, leading to either one of the following transformations:

(1). |2⊗ 2〉 	→ |2⊗ 2〉, |3⊗ 3〉 	→ |3⊗ 3〉,

or (2). |2⊗ 2〉 ↔ |3⊗ 3〉. (7.6)

The fluxon-pair state is invariant under any such gauge transformation. This is what we

expect, since the total charge of all fluxons (on the sphere) must be trivial under the gauge

symmetry.

When there are more than two fluxons in the system, locally in the subsystem, the

state may be presented by |2⊗ 2〉 − |3⊗ 3〉, with the holonomies around the two fluxons in

C2. Now it transforms in the nontrivial Z2 representation under the gauge transformations

(7.6). Such an excitation has the total Z2 charge of the two fluxons.
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In general, the full quantum numbers in many-fluxon states are classified by the quantum

double types (at most), including pure fluxons, electric charges, and dyons (i.e., charge-flux

composites). They are measured by the projection operators PJ defined in (6.23) and

(6.26). In the following section we examine the full quantum numbers in the example using

G = D3.

7.2.2 Example:G = D3

The input data {d, δ, G} defining the Levin-Wen model are constructed in Section 2.2.2.

The fluxon types are classified by the conjugacy classes {1}, {2, 3}, and {4, 5, 6}.
For a nonabelian group, they are the particle species of dyons. They are determined as

follows. Denote by A the conjugacy classes of G, and pick up a representative element Ah

in each class. For each conjugacy class, there is a centralizer ZA = {gAh = Ahg|g ∈ G}.
We can list all irreducible representations μ of ZA. Quantum double type J are given by

the pairs (A, μ), corresponding to all irreducible representations μ of ZA for all conjugacy

classes A. The quantum double types for D3 are presented in Appendix A.

We enumerate these quantum double types by 1, 2, . . . , 8, with the 1 the trivial topolog-

ical charge for the vacuum, 4 and 7 the fluxons types. The the fusion rule for the quantum

double types are given by

δ111 = 1 δ122 = 1 δ133 = 1 δ144 = 1 δ155 = 1 δ166 = 1 δ177 = 1 δ188 = 1
δ233 = 1 δ244 = 1 δ255 = 1 δ266 = 1 δ278 = 1 δ333 = 1 δ345 = 1 δ346 = 1
δ356 = 1 δ377 = 1 δ378 = 1 δ388 = 1 δ444 = 1 δ456 = 1 δ477 = 1 δ478 = 1
δ488 = 1 δ555 = 1 δ577 = 1 δ578 = 1 δ588 = 1 δ666 = 1 δ677 = 1 δ678 = 1
δ688 = 1

(7.7)

In the model defined on a sphere, the lowest excitations are the fluxon-pair states:

|J1 = 4, J2 = 4〉 and |J1 = 7, J2 = 7〉.
The three-fluxon states are |J1, J2, J3〉 that satisfy δJ1J2J3 = 1. There are two kinds of

such states: |J1 = 4, J2 = 4, J3 = 4〉 and |J1 = 4, J2 = 7, J3 = 7〉, up to the permutations on

the free fluxons.

The four-fluxon states are |J1, J2, J3, J4;J 〉 with J the total charge of the first two

fluxons, satisfying δJ1J2J = 1 and δJ3J4J = 1. The results are presented in Table 7.1. We

see that although all fluxons carry no charge, the subsystem of two fluxons takes all possible

charges.

7.3 Quantum group theory

Take the example of the Levin-Wen models constructed from the Fibonacci data de-

scribed in Section 3.2.2.
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Table 7.1. Basis of four-fluxon states for G = D3

states # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

J1 4 4 4 4 4 4 4 7 7 7 7 7 7 7 7 7
J2 4 4 4 7 7 7 7 4 4 4 4 7 7 7 7 7
J3 4 4 7 4 4 7 7 4 4 7 7 4 7 7 7 7
J4 4 4 7 7 7 4 4 7 7 4 4 4 7 7 7 7
J 2 4 4 7 8 7 8 7 8 7 8 4 3 4 5 6

The quantum double types are {0, 2, 2, 22}. 0 denotes the trivial charge meaning no

quasiparticle. 2 denotes the chiral Fibonacci anyon, 2 the anti-chiral Fibonacci anyon, and

22 the doubled Fibonacci anyon, the composite of 2 and 2. The only nontrivial fluxon type

is 22. This is a general feature in models constructed from nontrivial quantum groups (or,

modular tensor category): all fluxons are doubled anyons.

The quantum double types are “direct product” of two copies of Fibonacci anyons with

opposite chiralities, with the fusion rule: δij,kl,mn = δikmδjln. These quantum double types

are also denoted by {1, τ, τ , ττ} in the literature.

On a sphere, the lowest excitations are the fluxon-pair states |J1 = ττ , J2 = ττ〉, and
the second lowest excitations are three fluxon states |J1 = ττ , J2 = ττ , J3 = ττ〉. The four-

fluxon states have the basis with the 4-fold degeneracy:

|J1 = ττ , J2 = ττ , J3 = ττ , J4 = ττ ;J = 1〉,

|J1 = ττ , J2 = ττ , J3 = ττ , J4 = ττ ;J = τ〉,

|J1 = ττ , J2 = ττ , J3 = ττ , J4 = ττ ;J = τ〉,

|J1 = ττ , J2 = ττ , J3 = ττ , J4 = ττ ;J = ττ〉, (7.8)

with J the total charge of the first two fluxons.

The basis of N -fluxon excitations on a sphere are labeled by J1,J2, . . . ,JN−3 on the

internal links among the N fluxons, as in Eq (7.1).

7.4 Fractional exchange statistics of fluxons

The basis (7.1) allows us to calculate the fractional exchange statistics of fluxons. The

transformation of degenerate N -fluxon states under the exchange of any two fluxons can

be computed using the hopping operators we have developed in Chapter 6. They form a

representation of the Braid group BN , because of the path independence of the hopping

operators.
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For example, let us study in the model constructed from Fibonacci data. Consider the

four-fluxon states on a sphere. If we exchange two fluxons in the counterclockwise direction

by the hopping operators, we obtain the braiding matrices in the basis (7.8):

σ1 = σ3 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 e
3iπ
5 0 0

0 0 e−
3iπ
5 0

0 0 0 1

⎞
⎟⎟⎟⎠ ,

σ2 =

⎛
⎜⎜⎜⎝

ϕ2 e−
3iπ
5 ϕ3/2 e

3iπ
5 ϕ3/2 ϕ

e−
3iπ
5 ϕ3/2 e−

iπ
5 ϕ2 ϕ e

2iπ
5 ϕ3/2

e
3iπ
5 ϕ3/2 ϕ e

iπ
5 ϕ2 e−

2iπ
5 ϕ3/2

ϕ e
2iπ
5 ϕ3/2 e−

2iπ
5 ϕ3/2 ϕ2

⎞
⎟⎟⎟⎠ , (7.9)

where ϕ =
√
5−1
2 . σ1 exchanges the fluxon 1 and 2, σ2 exchanges 2 and 3, and σ3 exchanges

3 and 4. They generate the representation of the braid group B4.

We emphasize that the braiding matrices are nontrivial only in the presense of at least

three fluxons on a sphere, because of the global constraint that the total topological charge of

all fluxons (on a sphere) is trivial. In Levin-Wen models, all fluxons have trivial topological

spin, and thus the braiding matrices are nontrivial only for excitations with at least four

fluxons. These braiding matrices are unique up to similar transformations, which are

equivalently basis transformations of the four-fluxon states. On a torus, however, there

could be nontrivial braiding matrices of two-fluxon states, because the topological charge

of the fluxons are coupled to the topological d.o.f., as can be seen in the basis (7.4). The

two-fluxon states on a torus has nine-fold degeneracy. The 9 × 9 braiding matrix has

eigenvalues of

1, 1, 1, 1, 1, e
3iπ
5 , e

3iπ
5 , e

−3iπ
5 , e

−3iπ
5 . (7.10)

The total charge of the two fluxons is τ in the e
3iπ
5 eigenstates, and τ in the e

−3iπ
5 eigenstates.

7.5 The S and T matrices

Fluxon types {J} are parts of topological charges {J } in the fluxon excitations. To

fully understand the topological properties of fluxon excitations, we consider the fractional

exchange statistics that topological charges J obey. We can prepare a four-fluxon excitation

|J1 = ττ , J2 = ττ , J3 = ττ , J4 = ττ ;J 〉 with the fluxons 1 and 2 together at two neighboring

plaquettes, and fluxons 3 and 4 together. Then we can treat the composite of fluxon 1 and 2

as one quasiparticle of type J , and the composite of fluxon 3 and 4 as another quasiparticle

of type J ∗.
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In the first composite quasiparticle J , if we exchange fluxon 1 and 2, the topological

charge J of the composite will not be changed. This enables us to detect the intrinsic

topological property of J . Exchanging fluxon 1 and 2 twice takes the state back to itself,

up to certain U(1) phase. Indeed, both initial and final states are uniquely labeled by the

quantum numbers J1, J2, . . . ;J , . . . . See Fig. 7.2. We define this phase as the topological

spin of J . The topological spin computes to be the twist θJ of quantum double types J ,

as defined in Appendix A.

In the model constructed from the Fibonacci data, we have θ1 = 1, θτ = e3πi/5, θτ =

e−3πi/5, θττ = 1.

We can also compute the S matrix. We start with a ground state (it does not matter

which ground state we choose) and generate four fluxons with two composite quasiparticles

J and J ∗ in the above way, and generate another four fluxons with two composte quasi-

particles K and K∗. We first exchange J and K twice, and then annihilate J with J ∗, and

K with K∗. In the process, the ground state acquires an amplitude, denoted by SJK. See

Fig. 7.3 for the entire process.

If we normalize it by 1
D , we obtain

S̃JK =
1

D
SJK =

1

D

∑
ijk

dkz
J
ijikz

K
jijk. (7.11)

Compare with Eq 5.10, we conclude [64] the correspondence between the generate ground

states on a torus and the quasiparticles in the excitations are as follows: (1) the GSD is

euqal to the number of the particle species of quasiparticles; (2) the modular matrices S and

T that characterize the ground states are identical to those that characterize the fractional

statistics of quasiparticles.
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Figure 7.2. Exchanging fluxon J1 and J2 twice yields a U(1) phase, interpreted as the
topological spin. Practically, we move the fluxon J1 around J2 by one turn. Four fluxons
are shown in the diagram, with the total charge the subsystem of fluxon J1 and J2 is J .

Figure 7.3. The amplitude SJK evaluated in a ground state. Initially we generate eight
fluxons, partitioned into four composites of topological charges J ∗, J , K, and K∗. J ∗

is paired to J , and K is paired to K∗. Then we exchange J and K twice. Finally, we
annihilate J with J ∗, and K with K∗. The entire amplitude is defined as SJK.



CHAPTER 8

FRACTIONAL EXCLUSION STATISTICS

By now it is well-known that (quasi-)particles in strongly entangled many-body systems

may exhibit exotic quantum statistics (see [66] for a review), other than the usual Bose-

Einstein and Fermi-Dirac ones. In addition to the anyonic or braiding exchange statistics

[27, 29] in two-dimensional systems, statistical weight of many-body quantum states may

also obey new combinatoric counting rules [67, 66], in which the number of available single-

particle states, when adding one more quasiparticle into the system, linearly depends on the

number of existing quasiparticles. A typical new feature of the generalized Pauli exclusion

principle is mutual exclusion between different species, resulting in a matrix of statistical

parameters [67], as well as unusual thermodynamics for ideal gases with only statistical

interactions [66].

More precisely, following [66], in the case with only one species of quasiparticles, the

number of N -particle states is assumed to be given by the binomial coefficient:

WG,N =

(
Geff + (N − 1)

N

)
, (8.1)

with Geff = G − α(N − 1) being the number of available single-particle states, while G

is the number of single-particle states when N = 1. Then α = 0 corresponds to bosons

and α = 1 fermions; other values of α gives rise to exotic exclusion statistics. Similarly,

in the multispecies case, the number of many-particle states is assumed to be given by

(a, b = 1, . . . ,m labeling species)

W{Ga,Na} =
∏
a

(
Ga +Na − 1−∑m

b=1 αab (Nb − δab)

Na

)
. (8.2)

Here, coefficients αab form the (mutual) statistics matrix.

It has been shown [68] that the thermodynamic ansatz [69] for one-dimensional solvable

many-particle models is actually a special case of the exotic exclusion statistics. (See also

[70, 71].) It has been also numerically verified that quasiparticle excitations in the fractional

quantum Hall (FQH) systems indeed obey [72] Eq (8.1), or Eq (8.2) allowing mutual
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exclusion between different species [73]. Moreover, either the Haldane or Jain hierarchy in

the FQH effect can be theoretically understood from the exclusion statistics of quasiparticles

[66, 74].

Recently there has been revived interest in the study of quasiparticle statistics in two-

dimensional topological states of matter (including FQH systems), because of the possibility

of using their braiding to do (fault tolerant) topological quantum computation (TQC) [14,

17]. In order to better know the error of TQC at finite temperature, it is necessary to better

understand how exclusion statistics of quasiparticles emerges in two-dimensional topological

matter, which governs the thermodynamics of the system.

In this chapter, we carry out the many-body state counting in an exactly solvable discrete

model, i.e., the Levin-Wen model [43] (with a special set of data), that describes a two-

dimensional topological quantum fluid [75] of Fibonacci anyons [76], with doubled Fibonacci

anyons as fluxon excitations living on plaquettes. The Fibonacci anyons are the simplest

nonabelian anyons. They occur as quasiparticles in the k = 3 Read-Rezayi state [77] in a

FQH state with filling fraction ν = 12
5 , and can be used for universal topological quantum

computation [17]. (Recently, it is proposed [78] that the physics of interacting Fibonacci

anyons may be studied in a Rydberg lattice gas.)

In this chapter, we first construct the number operator for fluxons in the model, which

helps us identify the states with localized excitations. Then we numerically count the

(many-body) states with fluxon-number N fixed, from N = 1 up to N = 7, for the

system on a sphere and torus, respectively. The results exhibit a pattern closely related to

the Fibonacci numbers, which in turn is put in the form of Eq (8.2); thus determining

a topology-dependent statistical parameter matrix. Our work [79] reveals that exotic

exclusion emerges among quasiparticles due to interplay between various “hidden” degrees

of freedom in addition to fluxon locations. Finally, we briefly discuss the thermodynamics

of the system.

8.1 Exclusion statistics on a sphere

Take the example of the Levin-Wen models with the Fibonacci data, as described in

Section 7.3.

Let us count the N -fluxon states in the model with P plaquettes on a sphere. Pick up

a set of N fixed plaquettes and denote it by C = {p1, p2, ..., pN} (N < P ). The states with

exactly N fluxons occupying the selected plaquettes are those |ψ〉 satisfying
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njp|Ψ〉 = δj1|Ψ〉, for p ∈ C,

njp′ |Ψ〉 = δj0|Ψ〉, for p′ /∈ C. (8.3)

Thus
(∏

p∈C n
1
p

∏
p′ /∈C n

0
p′

)
is the projector onto the subspace of such states. Tracing

this projection computes the total number of the N -fluxon states in the configuration C:

wP,N,C = tr(
∏
p∈C

n1p
∏
p′ /∈C

n0p′). (8.4)

We numerically compute Eq (8.4) on random graphs on spheres with P (≥ 7) plaquettes,

with the stable result presented in Table 8.1.

The pattern of the N -dependence is obvious:

wP,N,C = F 2
N−1, (8.5)

where Fn is the Fibonacci number that satisfies the recurrence relation: Fn = Fn−1 + Fn−2

with F1 = F2 = 1. Both numerically and analytically we have checked that Eq (8.5) is

independent of the graph, of the total number P of plaquettes, as well as the locations of

the N fluxons. In fact, the N -fluxon space has a basis (7.1) obeying the fusion rule as

analyzed in Section 7.3. The appearance of the squared in Eq (8.5) is consistent with the

conjecture that the Levin-Wen model describes a doubled topological phases [50, 80].

Summing over configurations C (i.e., over possible distributions of N plaquettes in a

fixed graph), we get the total number of N -fluxon states:

W sphere
P,N =

∑
C
wP,N,C =

(
P

N

)
F 2
N−1. (8.6)

The first factor counts the ways to distribute N fluxons over P plaquettes. The second

factor counts the configurations of the link degrees of freedom, which are not unique, given

N and C. The independence of wP,N,C on P and C implies the degeneracy of the excited

states is topological in the sense that it does not depend on the detailed structure of the

underlying graph, and not on the relative positions between the fluxons either. The origin

of this property lies in the topological symmetry of the model under mutations of the

underlying graph [80].

Table 8.1. State counting on sphere

Fluxon number N 0 1 2 3 4 5 6 7

State Counting wP,N,C 1 0 1 1 4 9 25 64
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To find the exclusion statistics, we rewrite (8.6):

W sphere
P,N =

(
P

N

) [ 1
2
(N−2)]∑

N1,N2=0

(
N −N1 − 2

N1

)(
N −N2 − 2

N2

)
, (8.7)

where [x] is the greatest integer less than or equal to x.

Now Eq (8.2) is in the form of Eq (8.7), by introducing two additional pseudo-species

a = 1, 2, which do not contribute to the total energy but are helpful for state-counting. This

is similar to what was suggested for state counting in some conformal field theories [81].

Including the original fluxon species labeled by a = 0, from Eq (8.7) we read the exclusion

statistics parameters αab (a, b,= 0, 1, 2):

αsphere =

⎛
⎝ 1 0 0

−1 2 0
−1 0 2

⎞
⎠ . (8.8)

The diagonal αaa is the self-exclusion statistics for species a. The α00 = 1 implies the

hard-core boson behavior. This can be understood with Eq (6.5).

The pseudo-species provides a way to count configurations, in the presence of fluxons,

of link degrees of freedom, which are not uniquely determined by the constraints (8.3).

The value α11 = α22 = 2 implies that one pseudo-particle makes two single-particle states

(or “seats”) unavailable to an additional pseudo-particle. The negative mutual statistics

α20 = α30 = −1 tells us that each fluxon present creates one vacant “seat” for each pseudo-

species. So the maximum particle number of each pseudo-species is naturally [(N − 1)/2].

These results help us to understand the structure of the (many-body) Hilbert space for

excited states of the system, and to derive analytically the state counting formula (8.7).

8.2 Exclusion statistics on a torus

We proceed and consider the model on a torus. The ground state degeneracy [80] is 4.

Thus, the system exhibits the global topological degrees of freedom, and we can study their

effects on excited states by counting the pseudo-particle states.

Pick up N plaquettes (N < P ). The number of states with N fluxons on these plaquettes

is computed numerically as in Table 8.2.

Table 8.2. State counting on torus

Fluxon number N 0 1 2 3 4 5 6

State Counting 22 1 32 42 72 112 182
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The pattern of its dependence on N is

W torus
P,N =

(
P

N

)
L2
N , (8.9)

with Ln the Lucas number, a modified version of the Fibonacci number, satisfying the

recurrence relation Ln = Ln−1 + Ln−2 with L1 = 1, L2 = 3.

We rewrite (8.9) in terms of binomial coefficients:

W torus
P,N =

(
P

N

) ∑
N1,N2=0,1

(
1

N1

)(
1

N2

)
×

[ 1
2
(N−2)]∑

N3,N4=0

(
N − 2N1 −N3

N3

)(
N − 2N2 −N4

N4

)
, (8.10)

and get the exclusion statistics parameters αab (a, b = 0, 1, 2, 3, 4):

αtorus =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
−1 2 0 2 0
−1 0 2 0 2

⎞
⎟⎟⎟⎟⎠ , (8.11)

where we denote by a = 0 the fluxon species.

Eq. (8.10) shows that one needs to introduce four pseudo-species a = 1, 2, 3, 4. The

pseudo-species a = 1, 2 are interpreted as the topological degrees of freedom on the torus, for

the following reasons. The allowed “particle number” N1, N2 = 0, 1 of these pseudo-species

are independent of the number N of fluxons. Particularly when there is no fluxon present,

the configurations N1, N2 = 0, 1 characterize the four-degenerate ground states. Then the

pseudo-species a = 3, 4 provide a way to count the configurations of link degrees of freedom

given a ground state and fluxon number.

The state counting of excitations on a torus is shown to be different from that on a

sphere. Indeed, the mutual statistics parameters α31 = α42 = 2 imply that the number

of configurations of link degrees of freedom a = 3 (a = 4) are affected by the topological

degrees of freedom a = 1 (a = 2), respectively. On the other hand, the topological degrees

of freedom are not affected by the fluxons present and the link degrees of freedom. So the

degenerate ground states can be used to label the sectors of excitations. We note that in

the sector with N1 = N2 = 1, the state counting for fluxons is exactly the same as that on

sphere.
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8.3 Statistical thermodynamics

Now we assume that only fluxons can be thermally excited. In the thermodynamic

limit, the Hilbert space dimension of N -fluxon states (occupying N fixed plaquettes) is

asymptotically

on sphere: lim
N→∞

F 2
N−1 ∼ φ2N−2/5,

on torus: lim
N→∞

L2
N ∼ φ2N . (8.12)

(φ2 is called the quantum dimension of the fluxon.) On a torus, for example, the canonical

partition function is

Ztorus =

P∑
N=0

(
P

N

)
L2
Ne

−Nε/kT ∼ (φ2e−ε/kT + 1)P . (8.13)

It can be interpreted as the grand canonical partition function of the many-fluxon

system, which behaves like a fermionic system with a temperature-independent fugacity

z given by the quantum dimension:

z = φ2. (8.14)

The fugacity z counts the effective number of states per fluxon located at a plaquette.

Note that z is irrational rather than integer. This is a manifestation that the many-fluxon

states are highly entangled ones with long-range entanglement. They are superpositions

of highly constrained j-configurations on the links, obviously not of the form of a direct

product of localized fluxon states.

The statistical distribution of the average occupation number of fluxons is obtained from

Eq (8.13):

〈n〉 = 〈N〉/P =
1

eε/kTφ−2 + 1
. (8.15)

Many useful thermodynamic observables are then computable. Though the model is very

simple, we believe that the features revealed in this paper should be quite general for

emergent exotic exclusion statistics and thermodynamics for quasiparticle excitations in a

wide class of two-dimensional topological phases.



CHAPTER 9

OTHER DISCRETE MODELS FOR

TOPOLOGICAL PHASES

9.1 Kitaev model

In this section, we introduce Kitaev’s quantum double (QD) model [14] as a gauge field

theory with finite gauge group G defined on graph in two spatial dimensions. The model is a

Hamiltonian approach to the discrete topological gauge field theory. Two types of operators

play the central role in the model: the gauge invariance constraint operator, and the gauge

invariant operators.

The Hilbert space is spanned by the gauge fields ae assigned to the graph links e. The

gauge transformations are defined at vertices, as discussed in Eqs. (2.96) and (2.97).

The Hamiltonian of Kitaev’s QD model is

H = −
∑
v

Av −
∑
p

Bp, (9.1)

where the gauge invariant operator Av at vertex v is defined by Eq (9.13), and Bp on

plaquette p is defined by a Kronecker delta function:

Bp

∣∣∣∣∣ ??
a3

MM
a2

&&

a1

〉
= δa1a2a3

∣∣∣∣∣ ??
a3

MM
a2

&&

a1

〉
. (9.2)

Here, a1a2a3 is the holonomy around the plaquette p, and the delta function δa = 1 if the

group element a equals the identity element in G and 0 otherwise. Thus, Bp is a projector

that measures whether the holonomy around the plaquette p is trivial or not. Though only

triangle plaquettes and trivalent vertices are shown in Eqs. (2.96), (2.97), and (9.2), those

operators are defined on all other types of vertices and plaquettes.

All Av and Bp are mutually commuting projection operators, and hence, the model is

exactly solvable.

The Av prefers gauge symmetry at vertex v. While the gauge symmetry broken states

are interpreted as a “charged” particle. The energy cost of 1 to break the gauge symmetry
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is interpreted as the on-site energy of the “charge” particle. These “charges” are classified

by the irreducible representations of the gauge group G.

Similarly, Bp prefers zero “magnetic” flux at plaquette p. It costs a energy of 1 to obtain

a nonzero “magnetic” flux, which is classified by the conjugacy classes of the gauge group.

In fact, the “charges” and the “magnetic” fluxes are classified by the orthonormal

projection operators, respectively. Let us define

Aj
v =

dimj

|G|
∑
gv∈G

χj(gv)L(gv) (9.3)

for an irreducible representation j of the group, and

nCp :

∣∣∣∣∣ ??
a3

MM
a2

&&

a1

〉
	→ δ[a1a2a3],C

∣∣∣∣∣ ??
a3

MM
a2

&&

a1

〉
, (9.4)

for a conjugacy class C of the group. Here the delta function δ[a],C = 1 if the group element

a belongs to C and 0 otherwise. These projection operators are orthonormal:

Aj
vA

j′
v = δj,j′A

j
v,
∑
j

Aj
v = 1

nCpn
C′
p = δC,C′nCp ,

∑
C

nCp = 1 (9.5)

An eigenstate with Aj
v = 1 is interpreted as the state with a “charge” j at vertex v, and

with nCp interpreted as a “magnetic” flux at p.

As we have already seen in Section 2.3, Kitaev models are equivalent to Levin-Wen

models with finite groups in the subspace of ground states and fluxon excitations, by a

Fourier transformation [54]. Therefore, all results analyzed in this dissertation are valid in

Kitaev model.

9.2 Dijkgraaf-Witten models

Kitaev models can be generalized.

In this section, we shall construct a twisted version [82] of Kitaev models in (2 + 1)–

dimension, in which the topological charges are classified by the twisted quantum double,

whereas the topological charges in the Kitaev model are classified by the usual quantum

double. These models can be viewed as the Hamiltonian approach to Dijkgraaf-Witten

gauge field theories [83]. They have exactly–soluble Hamiltonians on the Hilbert space

spanned by planar graphs consisting of triangles whose edges are graced with group elements

in a certain finite group.
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9.2.1 Basic ingredients

The model is defined on a two–dimensional graph Γ consisting of triangles only (Fig.

9.1). Such a graph does not have any open edge and may be thought as a simplicial

triangulation of certain two-dimensional Riemannian surface, e.g., a sphere; however, in this

model, we shall take the graph as abstract without referring to its topological background

except when we compare the model with other models, such as Dijkgraaf–Witten discrete

topological gauge theories. Note that Fig. 9.1 is a crop of one such graph, so the open

edges in the figure are not really open. We enumerate the vertices of Γ by any ordered set

of labels. The enumerations of the vertices we choose are irrelevant as long as their relative

order remains consistent during the calculation.

The model is characterized by a triple (H,G, α), which can be denoted by HG,α for

short. The first in the triple is the Hamiltonian H. The second ingredient G is a finite

group. Each edge of Γ is graced with a group element of G. The Hilbert space is spanned

by the configurations of group elements on the edges of Γ. Each edge (see Fig. 9.1) carries

an arrow that goes from the vertex with a larger label to the one with a smaller label. To

each edge e of the graph Γ, we assign a group element ge ∈ G, and all possible assignments

form the basis vectors of the Hilbert space.

{g1, g2, ..., gE} (9.6)

where E is the total number of edges in Γ.

It is convenient to denote both an edge and the group element on the edge by simply

[ab] with a < b as the two boundary vertices of the edge. It is understood that [ba] = [ab]−1.

The inner product of the Hilbert space is the obvious one:

〈
a′ b′

c′

[a′b′]

[b′c′] [a′c′]

∣∣∣∣∣ a b

c

[ab]

[bc] [ac]

〉
= δ[ab][a′b′]δ[bc][b′c′]δ[ac][a′c′] . . . , (9.7)

where only one triangle in Γ is drawn, and the “. . . ” omits the δ–functions on all other

triangles that are not shown. Note that three group elements on the three sides of a

triangle, e.g., the [ab], [bc] and [ac] on the RHS of Eq. (9.7), are independent of each other

in general, i.e., [ab] · [bc] �= [ac]. From now on, we shall neglect the group elements on the

edges but keep only the vertex labels when we draw a basis vector.

The third element is a normalized 3–cocycle α ∈ H3(G,U(1)), i.e., a function α : G3 →
U(1) that satisfies the 3-cocycle condition
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Figure 9.1. A portion of a graph that represent the basis vectors in the Hilbert space.
Each edge carries an arrow and is assigned a group element denoted by [ab] with a < b.

α(g1, g2, g3)α(g0 · g1, g2, g3)−1×

α(g0, g1 · g2, g3)α(g0, g1, g2 · g3)−1α(g0, g1, g2) = 1 (9.8)

for all gi ∈ G, and satisfies the normalization condition

α(1, g, h) = α(g, 1, h) = α(g, h, 1) = 1, (9.9)

whenever g, h ∈ G are arbitrary. We emphasize that this normalization condition is not

an ad hoc condition we imposed as an extra on the 3–cocycles; rather, it is a natural

condition that any group 3–cocycle can satisfy for the following reason. A 3–cocycle α is

in fact an equivalence class of the 3–cocycles that can be scaled into each other by merely

a 3–coboundary δβ, where β is a 2–cochain. It can be shown that for any equivalence class

of 3–cocycles, there always exists a representative that meets the normalization condition

in Eq. (9.9), which is in turn justified.

Note that every group has a trivial 3-cocycle α0 ≡ 1 on the entire G. One can define a

3–cocycle on any subgraph composed of three triangles, which share a vertex and any two of

which share an edge. Consider Fig. 9.2(a) as an example: The four vertices are in the order

v1 < v2 < v3 < v4. We define the 3–cocycle for this subgraph by taking its three variables

from left to right to be the three group elements, [v1v2], [v2v3] and [v3v4], which are along

v1 v3
v2

v4

(a)

v1 v2
v3

v4

(b)

Figure 9.2. (a) The defining graph of the 3–cocycle α([v1v2], [v2v3], [v3v4]). (b) For α([v1v2],
[v2v3], [v3v4])

−1.



94

the path from the least vertex v1 to the greatest vertex v4 passing v2 and v3 in order; hence,

the 3–cocycle reads α([v1v2], [v2v3], [v3v4]). If one lifts the vertex v2 in Fig. 9.2(a) above

the paper plane, the three triangles turn out to be on the surface of a tetrahedron. In this

sense, one can think of the 3–cocycle as associated with a tetrahedron as well, which is

useful when the graph is really interpreted as the triangulation of a Riemannian surface.

On the other hand, if one switches the vertices v2 and v3 in Fig. 9.2(a), one obtains

Fig. 9.2(b), which defines the inverse 3–cocycle α([v1v2], [v2v3], [v3v4])
−1. Whether a graph

defines a 3–cocycle α or the inverse α−1 depends on the orientation of the four vertices in the

graph by the following rule. One first reads off a list of the three vertices counter–clockwise

from any of the three triangles of the defining graph of the 3–cocycle, e.g., (v2, v3, v4) from

Fig. 9.2(a) and (v3, v2, v4) from Fig. 9.2(b). One then appends the remaining vertex to the

beginning of the list, e.g., (v1, v2, v3, v4) from Fig. 9.2(a) and (v1, v3, v2, v4) from Fig. 9.2(b).

If the list can be turned into ascending order by even permutations, such as (v1, v2, v3, v4)

from Fig. 9.2(a), one has an α but an α−1 otherwise, as by (v1, v3, v2, v4) from Fig. 9.2(b).

We would like to warn the reader of some abuse of language in the rest of the chapter.

For example, when we say “a 3–cocycle,” we may refer to a class [α], a representative α,

or the evaluation of α on a tetrahedron. For another example, although there is abstractly

only one 3–cocycle condition as in Eq. (9.8), we may sometimes mean 3–cocycle conditions

by the evaluation of the condition on different tetrahedra. Regardless, such usage should

not cause any confusion contextually.

9.2.2 The Hamiltonian

The 3–cocycles will appear in the matrix elements of the model’s Hamilton defined as

follows.

H = −
∑
v

Av −
∑
f

Bf , (9.10)

where Bf is the face operator defined at each triangular face f , and Av is the vertex operator

defined on each vertex v. We now elaborate more on these operators.

The action of Bf on a basis vector is

Bf

∣∣∣∣∣
v1 v2

v3 〉
= δ[v1v2]·[v2v3]·[v3v1]

∣∣∣∣∣
v1 v2

v3 〉
. (9.11)

The discrete delta function δ[v1v2]·[v2v3]·[v3v1] is unity if [v1v2] · [v2v3] · [v3v1] = 1, where 1 is

the identity element in G, and 0 otherwise. Note again that here, the ordering of v1, v2,

and v3 does not matter because of the identities δ[v1v2]·[v2v3]·[v3v1] = δ[v3v1]·[v1v2]·[v2v3] and
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δ[v1v2]·[v2v3]·[v3v1] = δ{[v1v2]·[v2v3]·[v3v1]}−1 = δ[v3v1]−1·[v2v3]−1·[v1v2]−1 = δ[v1v3]·[v3v2]·[v2v1]. In other

words, in any state on which Bf = 1 on a triangular face f , the three group degrees of

freedom around v are related by a chain rule:

[v1v3] = [v1v2] · [v2v3] (9.12)

for any enumeration v1, v2, v3 of the three vertices of the face f .

The operator Av is a summation

Av =
1

|G|
∑

[vv′]=g∈G
Ag

v, (9.13)

which deserves explanation. The value |G| is the order of the group G. The operator Ag
v

acts on a vertex v with a group element g ∈ G by replacing v by a new enumeration v′ that

is less than v but greater than all the enumerations that are less than v in the original set of

enumerations before the action of the operator, such that [v′v] = g. Ag
v does not affect any

vertex other than v but introduces a U(1) phase, composed of 3–cocycles determined by v′

and all the vertices adjacent to v before the action, to the resulted state. In a dynamical

language, v′ is understood as on the next “time” slice, and there is an edge [v′v] ∈ G in the

(2+1) dimensional “spacetime” picture. Consider a trivalent vertex as an example (see Eq.

(9.14)). Without loss of generality, we assume that the enumerations of the four vertices

are in the order v1 < v2 < v3 < v4. The basis vector on the LHS of (9.14) is specified by

six group elements, [v1v3], [v2v3], [v3v4], [v1v4], [v2v1], and [v2v4]. The action of Ag
v3 on this

state reads

Ag
v3

∣∣∣∣∣
v1 v2

v3

v4 〉

=δ[v′3v3],gα
(
[v1v2], [v2v

′
3], [v

′
3v3]
)
α
(
[v2v

′
3], [v

′
3v3], [v3v4]

)

× α
(
[v1v

′
3], [v

′
3v3], [v3v4]

)−1

∣∣∣∣∣
v1 v2

v′3

v4 〉
, (9.14)

where on the RHS, the new enumerations are in the order v1 < v2 < v′3 < v3 < v4, and the

following chain rule of group elements on the edges holds.

[v1v
′
3] = [v1v3] · [v3v′3],

[v2v
′
3] = [v2v3] · [v3v′3],

[v′3v4] = [v′3v3] · [v3v4].

(9.15)



96

The phase factor consisting of three 3–cocycles on the RHS of Eq. (9.14) encodes the

nonvanishing matrix elements of B
v′3
v3 , namely

(
Ag

v3

)[v1v3][v2v3][v3v4]
[v1v′3][v2v

′
3][v

′
3v4]

([v1v2], [v2v3], [v1v3])

=α
(
[v1v2], [v2v

′
3], [v

′
3v3]
)
α
(
[v2v

′
3], [v

′
3v3], [v3v4]

)
× α
(
[v1v

′
3], [v

′
3v3], [v3v4]

)−1
.

(9.16)

For each vertex on the LHS of Eq. (9.14), we group its three neighboring enumera-

tions together with the new enumeration v′3 in the ascending order. Hence, we have

(v1, v2, v
′
3, v3) for the lower vertex, (v1, v

′
3, v3, v4) for the upper left vertex, and (v2, v

′
3, v3, v4)

for the upper right one, and then assign three 3-cocycles respectively to the three vertices:

α ([v1v2], [v2v
′
3], [v

′
3v3]), α ([v2v

′
3], [v

′
3v3], [v3v4]), and α ([v1v

′
3], [v

′
3v3], [v3v4])

−1. The chirality

of a 3–cocyle, or in other words, whether a vertex contributes a 3–cocycle α or the inverse

α−1, is based on the following criteria. We write down a triple for the three neighboring

enumerations around each vertex in the counterclockwise direction and append v′3 to the

front, namely, (v′3, v1, v2, v3) for the lower vertex, (v′3, v1, v3, v4) for the upper left one, and

(v′3, v2, v4, v3) for the upper right one. If it takes an (odd) even number of steps to permute

a list to the ascending order, the vertex contributes (the inverse of) the corresponding

3-cocycle in the action.

The matrix elements in Eq. (9.16) can be better motivated and understood in the

following way. One may think that the graph evolves in “time” under the driver of the

Hamiltonian. Focusing on the vertex operator only and considering the Ag
v3 in Eq. (9.14),

the action of the operator creates a new “time” slice by replacing the original vertex v3 by

v′3 and connects the two vertices in the “time” direction. This scenario is shown in Fig. 9.3,

which is made three–dimensional (2 + 1) to illustrate the “spacetime” picture and relate

our model to Dijkgraaf–Witten discrete topological gauge theory.

As in Fig. 9.3, we can view the original three triangles on the LHS of Eq. (9.14) as a

tetrahedron v1v2v3v4 and the three new triangles as another tetrahedron v1v2v
′
3v4, of which

the vertex v′3 lies inside v1v2v3v4 because of the ordering v′3 < v3. Since v′3 and v3 are

connected, there are three more tetrahedra effectively generated by the action of the vertex

operator, namely v1v2v
′
3v3, v2v

′
3v3v4, and v1v

′
3v3v4. It looks like that the original tetrahedron

is split into four tetrahedra. This splitting of tetrahedron implies the three chain rules in

Eq. (9.15), which then enables us to endow the three tetrahedra v1v2v
′
3v3, v2v

′
3v3v4, and

v1v
′
3v3v4, respectively, with the three 3–cocycles α ([v1v2], [v2v

′
3], [v

′
3v3]), α ([v2v

′
3], [v

′
3v3], [v3v4]),

and α ([v1v
′
3], [v

′
3v3], [v3v4])

−1, following the rule shown in Fig. 9.2.
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v1

v2

v4

v3

v′3

Figure 9.3. The topology of the action of Ag
v3 .

The operator Ag
v3 in Eq. (9.14) is just an identity operator if [v′3v3] = 1, i.e., the identity

in G. In fact, according to Eq. (9.14), we have the following matrix element

α
(
[v1v2], [v2v

′
3], 1
)
α
(
[v2v

′
3], 1, [v3v4]

)
× α
(
[v1v

′
3], 1, [v3v4]

)−1
, (9.17)

which is unity, by the normalization condition (9.9).

The vertex operator in Eq. (9.14) can naturally extend its definition from a trivalent

vertex to a vertex of any valence higher than three. The number of 3–cocyles in the phase

factor brought by the action of Ag
v on a vertex is equal to the valence of the vertex. The

chirality of each 3–cocycle in the phase factor follows the criteria described in the previous

paragraph. It is clear that Ag=1
v ≡ I by the discussion above.

It can be shown that all Bf and Av are projection operators and commute with each

other (see Appendix A). As a result, the ground states and all elementary excitations

are thus simultaneous eigenvectors of all these local operators. Moreover, the elementary

excitations are identified as local quasiparticles that are classified by the the representations

of the local operators.

9.2.3 Equivalent models

Now that a 3–cocycle defines a twisted quantum double model, one may wonder that

since a 3–cocycle represents a whole equivalence class, whether two equivalent 3–cocycles,

i.e., two representatives of the same equivalent class, define the same model. Let us consider

two Hamiltonians HG,α and HG,α′ , respectively, defined by two equivalent 3–cocycles α and

α′ that are related by the 3–coboundary δβ of a normalized 2–cochain β : G2 	→ U(1) that

satisfy β(x, e) = 1 = β(e, x) for all x ∈ G,

α′(g0, g1, g2) = δβ(g0, g1, g2)α(g0, g1, g2)

=
β(g1, g2)β(g0, g1g2)

β(g0g1, g2)β(g0, g1)
α(g0, g1, g2),

(9.18)

where gi ∈ G, and δ is the coboundary operator. As each 3–cocycle is defined on three

triangles (or equally a tetrahedron) such as in Fig 9.2, each 2–cochain β can be thought as
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defined on a triangle. Hence, Eq. (9.18) can be viewed as a local “gauge” transformation

on α.

We now check the relation between HG,α′ and HG,α. It suffices to check only the vertex

operators Ag
v(α′) and Ag

v(α) because the face operators Bf have merely δ–functions as

matrix elements and are thus inert under the transformation in Eq. (9.18). Without loss

of generality, we consider again the vertex operator on a trivalent vertex, as that in Eq.

(9.14). By Eq. (9.18), We immediately obtain the following.

Ag
3(α

′)

∣∣∣∣∣
1 2

3

4 〉

=α′([12],[23′],[3′3])α′([23′],[3′3],[34])
α′([13′],[3′3],[34])

∣∣∣∣∣
1 2

3′

4 〉

=β([12],[23])β([13],[34])
β([23],[34]) × α([12],[23′],[3′3])α([23′],[3′3],[34])

α([13′],[3′3],[34])

× β([23′],[3′4])
β([12],[23′])β([13′],[3′4])

∣∣∣∣∣
1 2

3′

4 〉
, (9.19)

where the δ–function δ[3′3],g is omitted for simplicity. The second term consisting of three

α’s is precisely the matrix element of Ag
3(α). If we move the first fraction of β in the second

equality of the above equation to the LHS, we readily see that the action of Ag
3(α

′) on the

rescaled state

β([23], [34])

β([12], [23])β([13], [34])

∣∣∣∣∣
1 2

3

4 〉

matches perfectly the action of Ag
3(α) on the original state. The above rescaling is clearly a

local U(1) phase, which can be boiled down to the following local U(1) transformation on

the basis of the states of triangles:∣∣∣∣∣
a b

c 〉
	→ β([ab], [bc])ε(a,b,c)

∣∣∣∣∣
a b

c 〉
, (9.20)

where ε(a, b, c) is a sign, which equals +1 if the enumerations a < b < c are clockwise on

the triangle and −1 otherwise. In this new basis, Ag
v(α′) has the same matrix elements and

thus the same spectrum as those of Ag
v(α) in the old basis.

There is a continuous deformation between any two 3–cocycles related by α′ = αδβ.

Define a 2–cochain β(t)(x, y) = β(x, y)t, with 0 ≤ t ≤ 1, then α(t) = αδβ(t) is equivalent to
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α for all 0 ≤ t ≤ 1, with α(0) = α and α(1) = α′. The corresponding transformation in Eq.

(9.20) with β replaced by β(t) is a continuous local U(1) transformation; hence, there is no

phase transition in the one–parameter family of systems with the the Hamiltonian HG,α(t)

from 0 ≤ t ≤ 1. Thus, we can conclude that the two Hamiltonians HG,α′ and HG,α arising

from two equivalent 3–cocycles α′ and α indeed describe the same topological phase.



CHAPTER 10

SUMMARY AND OUTLOOK

In this dissertation, we have discussed the exactly solvable discrete models for two-

dimensional topological phases, and studied the robust, emergent properties in these models.

We have developed a systematic approach for the concrete construction of Levin-Wen models

based on 3j-symbols, exploring the representation theory of finite groups and quantum

groups. The construction reveals an unknown relationship between the Levin-Wen models

and the discrete topological gauge field theories. We have also provided algorithms and

examples to generate the desired set of data, allowing the numerical computations for

various cases.

To study the topological observables (quantum numbers) of the ground states and exci-

tations in the Levin-Wen models, we have developed an operator approach. In this approach

we have been able to study systematically how exotic robust properties of topological phases

emerge in the exactly solvable models. More concretely, what we have achieved are the

following:

1. We have constructed and calculated two topological observables in the ground states:

the GSD and the modular matrices S and T . We have calculated the topological GSD

on a torus, and have proved that the ground state is nondegenerate on a sphere.

2. We found that the ground states are classified by the quantum double structure. The

topological charges of ground states are determined by the quantum double types.

3. We have developed the operator approach to study the elementary fluxon excitations.

We have seen how to generate a excitation from a ground state, and how to measure

and manipulate the fluxons by operators. The topological charges in the excitations

have been classified by the quantum double structure.

4. We have calculated the fractional exclusion statistics of the quasiparticles. This reveals

the Hilbert space structure of fluxon excitations. We have seen that the excitations
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are highly entangled because of the nonlocal feature of the internal quantum numbers

which characterize the relative d.o.f. between fluxons.

5. We have calculated the fractional exchange statistics of quasiparticles, and have

derived the modular matrices S and T from them.

6. We have shown the interesting correspondence between the quantum numbers of the

degenerate ground states and those of the quasiparticle excitations: (1) the GSD is

euqal to the particle species of quasiparticles; (2) the modular matrices S and T that

characterize the ground states are identical to those that characterize the fractional

statistics of quasiparticles. The ground states and the quasiparticles carry the same

topological charges as classified by the quantum double structure.

Some of the above results have been reported [80, 82, 79]. The others will be published

soon [51, 65, 64]. For simplicity, we have restricted ourselves mainly to the multiplicity-free

cases of the fusion algebra for string types. (Namely the tensor δj1j2j3 takes only a value of

0 or 1.) We expect it will be straightforward to generalize our approach and results to the

nonmultiplicity-free cases.

We have not discussed the holographic edge-bulk duality in this dissertation. Boundaries

for the Kitaev models and Levin-Wen models have been somewhat studied in the literature

[84, 85]. In some cases, the boundary states are gapless [86]. The general theory of the

boundary states is still lacking, which is certainly worthwhile to pursue in the the framework

presented here.

We emphasize that Chern-Simons field theories in continuum spacetime describing the

chiral (time-reversal breaking) topological phases have no lattice counterpart. How to

separate the two chiral and antichiral sectors in the discrete Levin-Wen model, which is

known to be nonchiral, is still a challenge.

Finally, the models we have discussed may be related to (the effective theory of) symme-

try enriched topological phases. Just like the Dijkraff-Witten models, which are known to be

related to symmetry protected topological phases by a nonlocal transformation, we expect a

similar relation could be uncovered between the (generalized) Levin-Wen models that have

some internal gauge group structure and the symmetry enriched topological phases.



APPENDIX A

QUANTUM DOUBLE

Given the data {d, δ, G}, we define the half braiding tensor z by:

∑
lrs

drdszlnqrzpmlsG
m∗sl∗
nr∗t G

s∗pm
jn∗t G

m∗tr∗
q∗n∗k = δjkδmnj∗

1

dj
zpjqt, (A.1)

for all p, q, j, k, t,m, n. zJpjqt is nonzero only if δpjt∗ = 1 = δjqt∗ . This defining equation is

called the naturality condition of the half braiding tensor.

Let us enumerate all nonzero solutions zJpjqt by a label J . If the solution J can not

be decomposed into two nontrivial solutions by zJ = zJ1 + zJ2 , we say the solution J is

elementary. The algebraic theory of all elementary solutions is called the quantum double,

with each elementary solution J called a quantum double type.

The quantum double is a mathematical structure in tensor categories that appears in

mathematical literature [87]. The tensor zJpjqt appears in [43] as the Ω tensor, for the study

of the fractional statistics in excitations of Levin-Wen models.

zJpjqt satisfies the orthonormal relation

∑
l

zJljqt z
J
ljpt = δpqN

J
p δjpt∗ ,

∑
l

zJqjlt z
J
pjlt = δpqN

J
p δpjt∗ , (A.2)

where NJ
p is an integer either 0 or 1.

zJpjqt satisfies the symmetry conditions

zJpjqt =
∑
r

drG
j∗pr∗
jq∗t zJqj∗pr (A.3)

zJqj∗pr =
∑
t

dtG
jrp∗
jt∗q z

J
pjqt, (A.4)

where the second condition is a consequence of the first one together wit the orthogonality

relation (1.4).
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For each elementary solution zJpjqt to Eq. (A.1), zJq∗j∗p∗t∗ is also an elementary solution.

We call the corresponding quantum double type the dual of J and denote it by J ∗:

zJ
∗

pjqt = zJq∗j∗p∗t∗ , (A.5)

by which we see J ∗∗ = J .

For each J , we define the twist by

θJ =
1

dqN
J
q

∑
t

zJqqqtdtδqqt∗ , (A.6)

for any q with NJ
q = 1. The RHS in Eq. (A.6) is independent of q, as long as NJ

q = 1. θJ
is a U(1) number.

A useful property derived from the symmetry conditions (1.4) is

zJjijk = θJ zJjk∗ji∗ . (A.7)

The modular S matrix is

S̃JK =
1

D

∑
ijk

dkz
J
ijikz

K
jijk, (A.8)

with 1/D being the normalization factor. It satisfies:

S̃JK = S̃KJ∑
K
S̃JKS̃KL = δJ ,L∗ . (A.9)

We remark that the modular S matrix and the twist θJ are uniquely determined by

the rank-3 tensor zJpjpt, though the half braiding tensor zJpjqt may have nonzero components

when p �= q.

A.1 Example: quantum double of finite groups
ZN and D3

The quantum double of finite groups G characterizes the particle species of charge-flux

composites, where the fluxes are presented by the conjugacy classes of G, while the charges

are presented by the irreducible representations of (subgroups) of G. For more details about

the quantum double in algebra level, see [87, 88]. In this appendix, the z characterize the

quantum double of G from the perspective of representation theory.

Given the 6j-symbols constructed from finite group representations, the independent

solutions to Eq. (A.1) are denoted by pairs (A, μ). A is a conjugacy class of G, and μ is
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an irreducible representation of the centralizer ZA = {g ∈ G|ghA = hAg} where hA is a

arbitrary representative element in A but fixed once for all.

For abelian groups G, each group element is itself a conjugacy class, so the quantum

double charges are pairs (g, μ) of group elements and irreducible representations of G. For

example, let G = ZN , the quantum double charges are (g, μ) for g, μ = 0, 1, . . . , N − 1 and

the z tensors are

z
(g,μ)
pjqt = δp,μδq,μ exp(2πig/N)δpjt∗δjqt∗ , (A.10)

where δpjt∗ = 1 if p+ j − t = 0 mod N and 0 otherwise.

The quantum double types may be realized as charge-flux composites because there

may exist a braiding operator that winds a particle carrying quantum number (g, j) around

another particle carrying quantum number (h, k) such that the wavefuction of the system

acquires a phase exp(ijh/N) exp(ikg/N). This braiding operator is important to understand

the quantum double types, we will not dwell on them here.

Take another example of G = D3. From Table 2.1, D3 has three conjugacy classes

C1 = {1}, C2 = {2, 3}, and C3 = {4, 5, 6}. We pick up the representative elements 1, 2,

and 4 in these classes, and have the centralizers Z1 = 1, 2, 3, 4, 5, 6, Z2 = 1, 2, 3, and

Z3 = 1, 4. We see that Z1 = D3, Z2
∼= Z3, and Z3

∼= Z2 have one-dimensional irreducible

representations as presented in Table A.1.

Let us relabel the irreducible representations ρ0, ρ1, and ρ2 by [+], [−], and [2], and the

eight quantum double types are presented in Table A.2.

The z tensors for the eight quantum double types are

Table A.1. Irreducible representations of Z2 and Z3 in G = D3, here ω = exp 2πi/3.
Z2 1 2 3 Z3 1 4

[+] 1 1 1 [+] 1 1
[ω] 1 ω ω [−] 1 −1
[ω] 1 ω ω

Table A.2. Eight quantum double types (A, μ) for G = D3

flux A charges μ

C1 = {1} [+] [−] [2]
C2 = {2, 3} [+] [ω] [ω]
C3 = {4, 5, 6} [+] [−]
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z
(C1,[+])
pjqt = δp,0δq,0δj,t

z
(C1,[−])
pjqt = δp,1δq,1

⎛
⎝ 0 1 0

1 0 0
0 0 −1

⎞
⎠

jt

z
(C1,[2])
pjqt = δp,2δq,2

⎛
⎝ 0 0 1

0 0 −1
1 −1 1

⎞
⎠

jt

z
(C2,[+])
pjqt = δp,0δq,0

⎛
⎝ 1 0 0

0 1 0
0 0 −1

2

⎞
⎠

jt

+ δp,1δq,1

⎛
⎝ 0 1 0

1 0 0
0 0 1

2

⎞
⎠

jt

−

√
3

2
iδp,0δq,1δj,3δt,3 +

√
3

2
iδp,1δq,0δj,3δt,3

z
(C2,[ω])
pjqt = δp,2δq,2

⎛
⎝ 0 0 1

0 0 −1

e−
2iπ
3 e

iπ
3 e

2iπ
3

⎞
⎠

jt

z
(C2,[ω])
pjqt = δp,2δq,2

⎛
⎝ 0 0 1

0 0 −1

e
2iπ
3 e−

iπ
3 e−

2iπ
3

⎞
⎠

jt

z
(C3,[+])
pjqt = δp,0δq,0

⎛
⎝ 1 0 0

0 −1 0
0 0 0

⎞
⎠

jt

+ δp,2δq,2

⎛
⎝ 0 0 1

0 0 1
1 1 0

⎞
⎠

jt

+

δp,0δq,2δj,3δt,3 + δp,2δq,0δj,3δt,3

z
(C3,[−])
pjqt = δp,1δq,1

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠

jt

+ δp,2δq,2

⎛
⎝ 0 0 1

0 0 1
−1 −1 0

⎞
⎠

jt

+

iδp,1δq,2δj,3δt,3 + iδp,2δq,1δj,3δt,3 (A.11)



APPENDIX B

REPRESENTATIONS OF THE FUSION

ALGEBRA

The matrix XJ
j is obtained from the irreducible representations of the fluxon algebra

(1.7). Let us denote by {ρ, V } a matrix representation, where ρ(Bs
p) is the representation

matrix, and V the representation space. The irreducible representations have the following

properties.

They satisfy Schur’s lemma. (a). Given an irreducible representation {ρ, V }, if a matrix

T : V → V commutes with ρ(Bi
p) for all i, then T = α1 for some complex number α, where

1 is the identity matrix. (b). Given two inequivalent irreducible representations {ρ, V } and

{ρ′, V ′}, if a matrix T : V → V ′ commutes with Bi
p by ρ′(Bi

p)T = Tρ(Bi
p) for all i, then

T = 0.

Proof: Here, we prove part (a) only. Any eigenspace of T with eigenvalue α

Uα = {v ∈ V |Tv = αv} (B.1)

is a subrepresentation. Indeed, for any v ∈ Uα,

Tρ(Bi
p)v = ρ(Bi

p)Tv = αρ(Bi
p)v (B.2)

implies ρ(Bi
p)v ∈ Uα for all i. Since V is irreducible, Uα must be either {0} or V . Therefore,

T has at most one eigenvalue, i.e., T = α1 for some complex number α.

If δijk = δjik, then all irreducible representations are one-dimensional.

Proof: δijk = δjik implies that the fusion algebra is abelian:

Bi
pB

j
p =
∑
k

δijk∗B
k
p =
∑
k

δjik∗B
k
p = Bj

pB
i
p, (B.3)

and thus each ρ(Bi
p) commutes with ρ(Bj

p) for all j:

ρ(Bi
p)ρ(B

j
p) = ρ(Bj

p)ρ(B
i
p). (B.4)
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Applying Schur’s lemma yields ρ(Bi
p) = αi1 for some complex number αi, where 1 is the

identity matrix. Therefore, V can be decomposed into a direct sum of one-dimensional

subrepresentations. Since {ρ, V } is irreducible, it must be one-dimensional.

They satisfy Peter-Weyl Theorem. Let {ρJ , V J} be all (inequivalent) irreducible repre-

sentations that satisfy ρJαβ(B
i∗
p ) = ρJαβ(B

i
p) (which follows from Bs∗

p = Bs
p
†). The matrix

elements ρJαβ(B
i
p) form a orthonormal basis of functions over Bs

p.

Proof: First we check the orthogonal condition. If (ρJ , VJ) and (ρK , VK) are two irreducible

representations, and T : VK → VJ is a linear operator. Let us average T by

T̃ =
∑
i

ρJ(Bi
p)Tρ

K(Bi∗
p ), (B.5)

such that it commutes with Bj
p for all j:

T̃ ρK(Bj
p) =

∑
i

ρJ(Bi
p)Tρ

K(Bi∗
p )ρK(Bj

p)

=
∑
i

ρJ(Bi
p)Tρ

K(Bi∗
p B

j
p)

=
∑
ik

ρJ(Bi
p)Tρ

K(δi∗jk∗B
k
p )

=
∑
k

ρJ(
∑
i

δjk∗i∗B
i
p)Tρ

K(Bk
p )

=
∑
k

ρJ(Bj
pB

k∗
p )TρK(Bk

p )

= ρJ(Bj
p)T̃ , (B.6)

where in the fourth equality the cyclic condition δi∗jk∗ = δjk∗i∗ was used.

By Schur’s lemma,

T̃ = 0 if J �= K

T̃ = cJK1 if J = K (B.7)

for some complex number cJK . Particularly, we set

T = |eKα 〉〈eJβ |, (B.8)

in the basis |eKα 〉 of VK and |eJβ〉 of VJ , and Eq. (B.7) becomes

〈eJγ |T̃ |eKσ 〉 =
∑
i

〈eJγ |ρJ(Bi
p)|eKα 〉〈eJβ |ρK(Bi∗

p )|eKσ 〉

=
∑
i

ρJγα(B
i
p)ρ

K
βσ(B

i∗
p )

=cJKδJKδγσ. (B.9)
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By relabeling i as j∗, we also have∑
j∗
ρJγα(B

j∗
p )ρKβσ(B

j
p) = cJKδJKδαβ . (B.10)

Combining Eq. (B.9) and (B.10) together with the condition (Bi
p)

† = Bi∗
p , we have∑

i

ρJγα(B
i
p)ρ

K
σβ(B

i
p) = cJδJKδγσδαβ . (B.11)

where cJ is a positive number determined by

cJ =
1

dim(V J)2

∑
i

dim(V J )∑
γ,α=1

∣∣ρJγα(Bi
p)
∣∣2 . (B.12)

Therefore we arrive at the orthonormal condition∑
i

1√
cJ
ρJαβ(B

i
p)

1√
cK
ρKγσ(B

i
p) = δJKδαγδβσ. (B.13)

Now let us check the completeness condition. First, any representation (ρ, V ) can be

made unitary. Indeed, any (positive-definite,hermitian) inner product 〈·, ·〉 of V determines

new one

〈〈v, w〉〉 :=
∑
i

〈
ρ(Bi

p)v, ρ(B
i
p)w
〉
, (B.14)

such that the representation ρ is unitary:

〈〈
ρ(Bj

p)v, w
〉〉

=
∑
i

〈
ρ(Bi

p)ρ(B
j
p)v, ρ(B

i
p)w
〉

=
∑
k,i

δijk∗
〈
ρ(Bk

p )v, ρ(B
i
p)w
〉

=
∑
k

〈
ρ(Bk

p )v, ρ(
∑
i

δkj∗i∗B
i
p)w

〉

=
∑
k

〈
ρ(Bk

p )v, ρ(B
k
p )ρ(B

j∗
p )w
〉

=
〈〈
v, ρ(Bj∗

p )w
〉〉

(B.15)

Second, (ρ, V ) can be decomposed into a direct sum of irreducible representations.

Suppose V is reducible. Any subrepresentation W of V has an orthogonal complement

W⊥ (all vectors in W⊥ are perpendicular to the ones in W ) as another subrepresentation.

Suppose w ∈W⊥, we have 〈〈v, w〉〉 = 0 for all v ∈W . Then ρ(Bi
p)w ∈W⊥ because

〈〈
v, ρ(Bi

p)w
〉〉

=
〈〈
ρ(Bi∗

p )v, w
〉〉

= 0. (B.16)

Hence, we decompose V into two subrepresentations W and W⊥. (ρ, V ) can be further

decomposed until all subrepresentations are irreducible.
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Third, δijk gives a N -dimensional adjoint representation by

ρjk(B
i
p) = 〈Bj

p|Bi
p|Bk

p 〉 = δj∗ik, (B.17)

where Bi
p|Bk

p 〉 =
∑

l δikl∗ |Bl
p〉 and

〈
Bj

p

∣∣∣ Bk
p

〉
= δj,k. By “adjoint” we mean each Bs

p forms a

basis vector in this representation. Particularly, ρj0 forms a basis of functions over {Bi
p},

because ρj0 maps Bi
p to 1 if i = j and 0 if i �= j. Since the natural representation can be

decomposed into a direct sum of irreducible representations, ρj0 can be expressed as linear

combination of ρJαβ . This proves the completeness

∑
J

dim(V J )∑
α,β=1

1

cJ
ρJαβ(B

i
p)ρ

J
αβ(B

j
p) = δi,j . (B.18)

Define [
XJ

j

]
αβ

:=
1√
cJ
ρJαβ(B

j
p). (B.19)

Then irreducible representations {ρJ , VJ} determine the set of orthonormal projections

nJ :=
∑
j

∑
αβ

[
XJ

j

]
αβ

[
XJ

0

]
βα
Bj

p (B.20)

Proof: It follows from Eq. (B.13) and (B.18).

Particularly, when δijk = δjik, then XJ
j := 1√

cJ
ρJ(Bj

p) is the unique solution to Eqs.

(6.1), (6.2), and (6.3).



APPENDIX C

LEVIN-WEN MODELS WITH GENERIC

DATA

We made the multiplicity-free assumption that δijk can be either 0 or 1 throughout

the dissertation. For example, in the tensor product i ⊗ j ⊗ k of any three irreducible

representations of SU(2), the trivial representation appears, at most, once. There can be

more general situations where more than one copy of 0 appears in i⊗ j ⊗ k, e.g., of SU(3)

representations. In general, we do not have the multiplicity-free assumption.

For completeness, we briefly present the definition of Levin-Wen models in this generic

situation.

In general, an extra degree of freedom is put on each vertex. The input data to define

the Levin-Wen model satisfy the following generalized conditions.

First, we fix a set of labels I = 0, 1, ..., N − 1. There is star map ∗ : I → I such

that j∗∗ = j. The fusion rule coefficient Nijk are nonnegative integers, satisfying Nijk =

Njki = Nk∗j∗i∗ , and Ni∗i0 = 1 for all i, j, k. Quantum dimensions dj are required to satisfy∑
k dkNijk∗ = didj .

Denote by max(N) the maximum number of Nijk, and set δαijk to be 1 if α ≤ Nijk and

0 otherwise, where α = 1, 2, ...,max(N).

The 6j symbols Gijm;αβ
klnμν carries 4 extra degrees of freedom, with the self-consistent

conditions:

Gijm;αβ
kln;μν = Gmij;αν

nk∗l∗;βμ = Gklm∗;βα
ijn∗;νμ = αmαnG

j∗i∗m∗;αβ
l∗k∗n;νμ∑

n,εξδ

dnG
mlq;αβ
kp∗n;εξG

jip;γε
mns∗;σηG

js∗n;δξ
lkr∗;νσ =

∑
λ

Gjip;γβ
q∗kr∗;νλG

riq∗;λα
mls∗;ση

∑
n,μν

dnG
mlq;αβ
kp∗n;μνG

l∗m∗i∗ηγ
pk∗n;νμ =

δiq
di
δαηδβγδ

α
mlqδ

β
k∗ip, (C.1)

where αm = sgn(dm) and αn = sgn(dn) and should not be mixed with multiplicity label α

in δαijk.
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The general Levin-Wen model carries an extra degree of freedom α = 1, 2, ...,max(N)

at each vertex. In the Hamiltonian, the operators Q̂v and B̂s
p also carry these extra d.o.f.,

Q̂v

∣∣∣∣∣ α
j1 j2

j3
〉

= δαj1j2j3

∣∣∣∣∣ α
j1 j2

j3
〉

(C.2)

and

〈 ∣∣∣∣∣B̂s
p

∣∣∣∣∣
〉

=vj1vj2vj3vj4vj5vj6vj′1vj′2vj′3vj′4vj′5vj′6

∑
λ1λ2λ3λ4λ5λ6

G
j7j∗1 j6;αλ6

s∗j′6j
′∗
1 ;α′λ1

×

G
j8j∗2 j1;βλ1

s∗j′1j
′∗
2 ;β′λ2

G
j9j∗3 j2;γλ2

s∗j′2j
′∗
3 ;γ′λ3

G
j10j∗4 j3;δλ3

s∗j′3j
′∗
4 ;δ′λ4

G
j11j∗5 j4;ελ4

s∗j′4j
′∗
5 ;ε′λ5

G
j12j∗6 j5;ηλ5

s∗j′5j
′∗
6 ;η′λ6

(C.3)

In general Levin-Wen model in (C.2) and (C.3), these three properties still hold, given

the generalized transformations

T̂1 :

∣∣∣∣∣
〉

→
∑
j′5

vj5vj′5G
j1j2j5;αβ
j3j4j′5;μν

∣∣∣∣∣
〉

T̂2 :

∣∣∣∣∣
〉

→
∑

j4j5j6,αβγ

vj4vj5vj6√
D

Gj2j3j1;μα
j∗6 j4j

∗
5 ;γβ

∣∣∣∣∣
〉

T̂3 :

∣∣∣∣∣
〉

→ vj4vj5vj6√
D

∑
μ

G
j∗3 j

∗
2 j

∗
1 ;μα

j∗4 j6j
∗
5 ;βγ

∣∣∣∣∣
〉

(C.4)

the GSD on a torus is

GSDtorus = D−1
∑

sj1j2j3j′1j
′
2j

′
3

dsdj1dj2dj3dj′1dj′2dj′3

∑
αβγδεζα′β′γ′δ′ε′ζ′(

G
j1j2j∗3 ;αβ
sj′∗3 j′2;γδ

G
j′∗3 j1j′2;γδ

′

sj2j′1;εζ
G

j2j′∗3 j′1;εζ
′

sj1j∗3 ;αβ′

)(
G

j∗2 j3j
∗
1 ;α

′ζ
sj′∗1 j′3;ε′β

G
j′3j

′∗
1 j∗2 ;ε

′δ
sj′∗2 j∗1 ;γ′ζ′G

j∗1 j
′∗
2 j′3;γ

′β′
sj3j∗2 ;α′δ′

)
(C.5)
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