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ABSTRACT 

The rotational rheometer (cone-and-plate or parallel plates rheometer) is one of 

the most effective devices for measuring rheological properties of the viscoelastic liquid: 

the viscosity (� ), the first normal stress difference ( 1N ).   However, it has been found 

practically that some errors were potentially associated with this type of rheometer: The 

“axial compliance error” is due to the use of linear-variable-displacement-transducer 

(LVDT) for first normal stress ( 1N ) measurement, and it is potentially significant in the 

time-dependent material response measurement. Secondly, the low natural frequencies of 

sensitive LVDT springs fail in recording the high frequency response of a material. Last-

ly, misalignment of the sample holder (cone and plate) will change the geometry of the 

sample. These errors were quantified by performing rheology studies with the LVDT de-

tached and a novel device fabricated with Micro-Electronic-Machining-System (MEMS) 

technique. The device is a pressure sensor plate of 25mm in diameter. It contains eight 

miniature capacitive pressure sensors, allowing measurements of the radical pressure pro-

file, from which both the first normal stress ( 1N ) and the second normal stress ( 2N ) can 

be calculated. 

The apparent response time of 1N  to start-up of NIST-1490 shear flow was meas-

ured. The apparent response time was longer being measured with the LVDT than being 

measured with the pressure sensor plate, indicating that significant axial compliance er-
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rors were present during LVDT measurements. The natural frequency of the LVDT was 

lower than the high frequency behavior of the tested fluid NIST-1490. 

A slight cone-plate misalignment, smaller than the manufacturer’s suggested lim-

it, developed a sinusoid-shaped radical pressure profile of the Poly(dimethylsiloxane) 

(PDMS), corresponding to the axial plane of the tilt. However, this misalignment error 

can be reduced significantly by averaging the pressure profiles over clockwise and coun-

terclockwise rotation manners.  

With the pressure sensor plate, the normal stress ratio,
1

2

N
N

��� , was measured 

to be 0.189 for PDMS. 
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CHAPTER 1 

INTRODUCTION: RELEVANCE AND SCOPE 

  Polymers are a large class of materials consisting of many small molecules or 

monomers that can be linked together and form long trains. They are known as 

macromolecules. Humans have been taking advantage of the versatility of polymers for 

centuries. Natural and synthetic polymers can be produced with a wide range of stiffness, 

strength, heat resistance, density and price [1]. With continuous research into the science 

and applications of polymers, they are playing an ever increasing role in society.      

The processing behavior of molten thermoplastics depends on their rheological 

properties, which are often measured in cone-and-plate rheometers where shear flow is 

produced [2]. There are three rheological properties in the shear flow field (see Chapter 2 

for definitions): the viscosity � , the first normal stress difference 1N  and the second 

normal stress difference 2N . The cone-and-plate rheometer is one of the most common 

types of commercial rheometers in the world. However, the cone-and-plate rheometer 

will not give the correct values for the three properties if the flow field is disturbed by a 

slight misalignment of the cone and the plate. Other measurement errors associated with 

the rheometer transducer, such as compliance error and response time error, can also 

distort the results. Unfortunately, most rheologists have not developed a method to check 

the magnitude of these errors. In our lab, we use a novel pressure sensor plate recently 
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available to detect all the errors mentioned above. Details of this pressure sensor plate 

and associated method are presented in Chapter 2 and 3. The principle goal of this thesis 

work was to use this novel pressure sensor plate to evaluate potential measurement errors 

of a standard cone-and-plate rheometer.  

During polymer processing, unfavorable flow instabilities may be caused by the 

elastic properties of materials [3-9]. Theoretically, elastic instabilities are often directly 

associated with the ratio of the second and the first normal stress differences,
1

2

N
N

��� , 

which is called the normal stress ratio. For certain type of polymer processing operations, 

e.g., coextrusion and wire coating, the magnitude of �  can be used to predict whether the 

polymer melts operation is stable or not [10-12]. Consequently, accurate measurement of 

first and second normal stress differences is very important regarding industrial polymer 

processing. In this sense, the second goal of this thesis work was to use the novel pressure 

sensor plate to measure an accurate value of �  for the polymer fluids tested.  

This novel pressure sensor plate, called the “Normal Stress Sensor (NSS)” was 

obtained from Rheosense Inc. (San Ramon, CA) and is based on Micro-Electrical-

Machining System (MEMS) technology. This thesis is mainly about the practical 

application of the NSS to obtain the radical pressure distribution in order to explore 

measuring system errors, misalignment error, compliance error and transducer response 

time error and to measure the normal stress differences simultaneously.  

Poly(dimethylsiloxane) (PDMS) was used as a test polymer melt to compare the 

frequency response due to the different natural frequencies of the  conventional normal 

force transducer, i.e., linear variable differential transducer, and the NSS. The first and 
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second normal stress differences of PDMS were also evaluated with the help of the 

pressure sensor plate. Measurements of the apparent response time of N1 to start up of 

flow shear flow were carried out with and without the working Linear Variable 

Displacement Transducer (LVDT) to study the effect of the axial compliance due to the 

finite stiffness of the LVDT transducer system. The apparent response time of 1N  was 

determined directly via the duration of the starting-up behavior and was compared with 

the theoretical value predicted by the equation derived from Hanson et al. [13]. In this 

experiment, a standard NIST (National Institute of Standards and Testing, Gaithersburg, 

MD) viscoelastic fluid SRM (Standard reference material) 1490 was used. 

The definitions of the three shear flow properties of materials will be presented in 

the next section. Possible system errors will be discussed in Section 2.3 after the cone-

and-plate measuring system is introduced.  

 



 
 

 
 

CHAPTER 2 

BACKGROUND AND LITERATURE SURVEY 

2.1 Importance of the Normal Stress Differences, 1N and 2N  

Flow instabilities [2-7] occur in the processing of polymer melts and polymer 

solutions under certain flowing conditions. Figure 2.1 shows the stable and unstable 

flows of the viscoelastic fluid when it was processed in an extruder [6], which is a very 

popular industrial polymer processing method. If the flow instability is developed in an 

industrial polymer processing, it will lead to product defects like surface roughness, 

which is called “shark skin” in industry [2-4], or the interfacial irregularity (Figure 2.2) 

in a multiphase coextrusion [7].     

Numerous methods [8-12] have been developed to predict the velocity field of 

different type processing flows in order to avoid the flow instabilities. It is known that 

this unfavorable flow instability is often caused by the elastic properties of materials. 

Theoretically, elastic instabilities are linked with the values of the normal stress ratio 

1

2

N
N

���  [8-10]. In general, the relationship of the fluid instabilities and the rheological 

properties, i.e. the first and the second normal stress differences ( 21 , NN ) or coefficients 

( 21 ,�� ) can be predicted by following model: large values of the first normal stress 

difference coefficient 1�  tend to destabilize curvilinear shear flows of elastic liquids, 

leading to flow instabilities at low shear rates; on the contrary, large negative values of
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the second normal stress difference coefficient 2� tend to stabilize curvilinear shear 

flows. Therefore, unstable flow behavior can be expected for polymer melts in flow fields 

with curved streamlines when the value of the normal stress ratio 
1

2

N
N

���  is small in 

magnitude [14]. However, for coextrusion of two different immiscible polymer melts 

through a noncircular die (Figure 2.2), unstable behavior is known to occur when 2N  has 

large negative values [7,14].  Based on this theory, measurement of the first and second 

normal stress differences becomes significantly important regarding the industrial 

polymer process. Unfortunately, many constitutive equations or the stress-strain relations, 

which are essential to the validity of the numerical results, are uncertain for commercial 

polymer melts. Numerical technique can be applied to a limited field to simulate some 

elastic fluids like Boger fluid [15] or dilute polymer solutions [16], which are simpler and 

better understood in terms of the constitutive equations.  

Simultaneously, experimental techniques have been used to obtain the three 

rheological properties, i.e., the viscosity and the two normal stress differences, not only 

for simple elastic fluids but also some very important commercial polymer melts, such as 

polyethylene, polystyrene, etc. [7,17]. However, some experimental methods are 

controversial because of their theoretically uncertainty [18]. Some other methods are 

widely accepted in theory, but due to the mechanical and operation difficulties [19,20], 

they may not be accurate. This is especially true for measurements of the second normal 

stress, which is much smaller than the other two properties for the normal shear-thinning 

polymer melts. The cone-and-plate pressure distribution method, which has long 

investigated and developed in our lab [14,21-26], is among these methods. But, due to the
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research work of many rheologists in several decades (from 1964 to present), this method 

has become more and more accurate and reliable. The details introduction of this method 

will be reviewed in the latter sections in this chapter.  

2.2 Ideal Cone-plate Rheometry for Simple Shear Flow 

The state of stress for a non-Newtonian fluid in any arbitrary flow field can be 

described by a second order tensor; the total stress tensor ���  is given as [27]: 

�
�
�

�

�

�
�
�

�

�

�
�

�
����

P
P

P
P

333231

232221

131211

			
			
			

�	 ������          (2. 1) 

In this equation, P is the isotropic thermodynamic pressure; 	��  are components of 

the deviatoric shear stress tensor, and subscripts 1, 2, and 3 denote the three coordinate 

directions. This notation for subscripts will be used throughout this thesis. Components 

on the diagonal of the total stress tensor are called normal stresses, and the off-diagonal 

components are called shear stresses. For an isotropic fluid, the stress tensor is usually 

assumed to be symmetrical, that is, ij���  equals to ji��� . Thus, there are six independent 

stress components in the symmetrical total stress tensor. In real flows, flow kinetics are 

so complicated that all six components of ���  should be assumed to be nonzero. 

Experimentally, it is very difficult to measure all six stress components. Therefore, we 

require a reduction in the number of stress components in order to measure properties.   

Such a reduction can be accomplished by imposing a steady shear flow like planar 

couette flow (Figure 2.3). In a simple shear flow, the velocity field is given by: 
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),(1 yVV �  and  032 �� VV            (2. 2) 

For this type of flow, the rate of strain tensor is given as 

�
�
�

�

�

�
�
�

�

�
�

000
00
00

�
�

�

�

��A , where 
dy
dV1���           (2. 3) 

in this relation, ��  is defined as rate of strain, or a normal definition shear rate. The shear 

rate in a steady shear flow will not change due to the coordinate transformation xx ��' , 

yy ��' , and zz ��' , due to the flow symmetry.  Thus the total stress tensor, a function 

of the shear rate, has the following nonzero stress components: 

�
�
�

�

�

�
�
�

�

�

�
�

�
��

P
P

P

33

2221

1211

00
0
0

	
		

		
��           (2. 4) 

This equation is valid only if the total stress tensor is symmetric. So the three material 

functions for simple shear flow are defined as: 

shear stress  ��		 ��� 2112 , 

the first normal stress difference  22111 		 ��N  or 

the first normal stress difference coefficient 2
1

1 �
�

�

N
� , 

the second normal stress difference 33222 		 ��N  or 

the second normal stress difference coefficient 2
2

2 �
�

�

N
� . 

For the time being, the other definition is usually considered:
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the normal stress ratio 
1

2

1

2

�
�

� �����
N
N . 

The definition of the first and second normal stress differences ( 1N  and 2N ) by 

subtraction of two normal stresses cancels out the thermodynamic pressure, which can 

not be independently measurable from the deviatory normal stresses. The steady shear 

flow can also be categorized as one of the many types of viscometric flows for which the 

rate of strain tensor is equivalent to Equation 2.3 on a local level. As a matter of fact, 

steady shear flow in the ideal cone-and-plate is another type of viscometric flow. In the 

ideal cone-and-plate rheometer, ��  has the same value at all locations within the gap and 

is given by � � � ���
�

coscos



�
�

�

�

r
r

� , where 
  is the angular velocity of rotation and �  is 

the cone angle. As discussed in Section 2.3, misalignment will lead to a violation of the 

uniform shear rate assumption. 

2.3 The Traditional Measuring System for the First Normal 

Stress Difference  

A linear variable differential transducer (LVDT) is presently applied in the most 

traditional rotating cone-and-plate rheometers (Weissenberg Rheometer) in our lab. The 

detailed schematic diagram of the LVDT-cone-and-plate rheometer is shown in Figure 

2.4. The tested sample is held between the cone and plate. During measurement, the 

normal thrust from the static top plate is transmitted along air bearing torsion bar (barely 

no friction) to a cantilever spring. When the cone is rotating, correspondent stresses occur 

throughout the simply sheared sample inside the cone and plate and response in three 

directions: the shear stress in the flow direction, the first normal stress difference in the 
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normal direction and the second normal stress difference in the neutral direction. For an 

ideal cone-and-plate rheometer, the flow field is viscometric with uniform shear rate and 

given by: 

,

2

2


�

��

�

�

�
�
� rV  and  0�� 
VVr                      (2. 5) 

where r is radial position in spherical coordinates; 
  is the angular velocity of the cone; 

�  is the cone angle.  

 The shear stress and the first normal stress differences are related to the measured 

toque M and axial normal thrust F [28]: 

� � � �
32
,3,

R
tMtr �

��	 � � ,                     (2. 6a) 

� � � �
2

,2,
R

tFtN
�

��
 �                      (2. 6b) 

From Equation 2.6b, the first normal stress difference can be determined by 

measuring the total vertical thrust F  on the plate using the deflection of LVDT. As the 

vertical thrust deflects the spring from its null position, the LVDT generates an electronic 

signal (in volts) with intensity proportional to the deflection at the free end of the 

cantilever spring. This voltage value is directly proportional to the thrust developed by 

the test fluid.  

An LVDT (Figure 2.6) is one type of displacement transducer with a high degree 

of robustness. In the Weissenberg Rheometer, LVDT is very sensitive for measuring the 
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normal thrust. According to the tests in our lab, the smallest pressure that could be 

reliably measured by the LVDT in Wessenberg Rheometer is around 15 Pascal [25]. 

However, the LVDT works due to the displacement, which changes the position of the 

top plate in the Rheometer, causing the instrument compliance. This leads to a violation 

of Equation 2.5, which is based on the assumption that the geometric tip of the truncated 

cone just touches the surface of the rheometer plate. Details of how the compliance of the 

LVDT spring changes the sample gap will be discussed in the following section. 

2.4 Potential Errors in the Use of the Cone-and-plate Rheometer  

2.4.1 Misalignment of the Cone-and-plate Rheometer 

Equations 2.5 and 2.6 are based on the assumption that the flow field is 

viscometric with uniform shear rate ��  throughout the cone-and-plate gap. This is not true 

if the cone and plate are misaligned. There are three types of misalignment as 

demonstrated in Figure 2.7: (1). cone and plate are not concentric (Figure 2.7 (a)); (2). 

axis of stationary plate is not perpendicular to the vertical rotation axis ---- the stationary 

plate is tilted (Figure 2.7 (b)); (3). axis of rotation is not perpendicular to the vertical axis 

of the stationary plate ---- the rotating cone is tilted (Figure 2.7 (c)).  

The misalignment of concentricity and flatness of the cone-and-plate Rheometers, 

including the Weissenberg Rheometer in our lab, are unavoidable but could be 

minimized. A dial gauge is used for the adjustment. According to the manual of 

Weissenberg Rheometer, a minor misalighment smaller than 12.7 microns (0.0005 inch) 

reading in dial gauge for the concentricity, and maximum 2.5 microns or 0.0001 inch 

reading in dial gauge for the flatness were negligible misalignment errors. However, 
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these criteria have not been justified; and only sparse research work has been reported 

studying considerable misalignment errors beyond the negligible limit [29].  

One of these misalignments, i.e. tilted cone with respect to the vertical axis of the 

stationary plate, is the only type of misalignment that has been studied and reported by 

rheologists (Greensmith et al., Taylor et al., Adams and Lodge, Dudgeon and Wedwood) 

[30-33]. The phenomenon was first observed by Greensmith et al. (1953) [30]. Taylor et 

al. (1957) [31] investigated it experimentally and theoretically. These two research 

groups both used Newtonian incompressible fluid in parallel plate geometry. For a 

Newtonian liquid, the pressure is expected to be atmospheric at all locations within the 

rheometer in the absence of inertia. They found the ‘wedge effect’, also called ‘Michelle 

bearing effect’. The wedge effect means that the tilted misalignment results in non-

parallelism of the two plates and cause a converging flow in one half of the gap and a 

diverging flow in the other half, the two halves being separated by the vertical plane 

perpendicular to the line of greatest slope of the nonhorizontal plate. When the gap is 

narrow and the liquid is viscous, a very small degree of nonparallelism can lead to a large 

pressure maximum in the converging flow and a large pressure minimum in the 

converging flow. In addition, they also found that the pressure distributions over the two 

halves of either plate were symmetrical apart from the difference of sign so that the 

wedge effect could be eliminated, at least for Newtonian fluid, by averaging the pressures 

measured with two senses of rotation: forward and reverse. Adams et al. (1963) [32] 

continued the previous studies, and extended the investigation into cone-and-plate 

geometry, still employing Newtonian liquids. The pressure distribution measured using 

pressure manometer in both geometries, parallel-plates and cone-and-plate, were now 
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known to be inaccurate due to the “hole pressure error” (Figure 2.8) [34]. Figure 2.9 

shows the qualitative shape of the radial pressure profile measured by Adams and Lodge 

for a Newtonian fluid in a tilted cone-and-plate rheometer.  As shown in the diagram, the 

local pressures were measured along a line perpendicular to the greatest slope of cone tilt. 

The measured pressure profile displays the symmetrically disposed maximum and 

minimum interchange on reversal of the rotation sense in direction. The average of 

pressures recorded at the same position on the plate for the two rotating directions was 

close to zero (dashed line in Figure 2.9). These results were in agreement with Saffman 

and Taylor’s (1963) that zero pressure points are along the line with the greatest slope; 

the distribution of pressure along the line of greatest slope displayed a small but definite 

nonuniformity, which was independent of the rotation direction. Even with the same 

conditions like same rotation speed and rim separation, this phenomenon differed with 

respect to the variable types of geometry, i.e., parallel plates vs. cone-and-plate. For 

example, the greatest pressure occurs near the axis of rotation and is larger in the cone-

and-plate system than that in the parallel plates system [32].  It is worthwhile to notice 

that the unit of pressure was not marked in Figure 2.9 to emphasize the pressure outline 

in the flow field. As a matter of fact, the pressure was small, which would make the result 

questionable. Dudgeon and Wedgewood (1993) theoretically simulated the flow fields of 

various Non-Newtonian elastic fluids in the slightly misaligned cone-and-plate rheometer 

[33]. Their results show: (1). For Newtonian flow, the polar normal stresses were 

symmetric but change in sign on the line at right angle to the line of the greatest slope in 

cone tilt, which was in agreement with earlier pressure profile results for Newtonian 

fluids in tilted cone-and-plate flows. (2). For non-Newtonian flow, the polar normal 
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stresses profile became asymmetric with regard tilt axis line; higher elasticity of the fluid 

is, higher asetricity of the polar normal stresses were expected (Figure 2. 10).  

Dudgeon and Wedgewood theoretically predicted the different misalignment 

effects on fluid with various viscoelasticity properties. Their results await experimental 

verifications. The difficulty of verifying their results lies in the facts that no instruments 

are able to measure the stresses tensors directly. In this thesis, the noval Micro-Electro-

Machining-System (MEMS) pressure sensor plate was used and it solved the technique 

difficulty. This MEMS plate can accurately measure the local pressure distribution of the 

fluid so that the fluid disturbance due to a negletible misalignment (on the dial gauge) 

could be observed directly. Consequently, former studies on the misalignment were 

confirmed. Also a fluid irregularity, the wobble error, was detected for the first time in 

this thesis research. And the most important achievement of this thesis work is a detailed 

study of how the tilt-axis misalignments that cause a nonuniform shear distort the radical 

pressure distribution.  

This thesis research differs in various ways with the previous studies: firstly, it 

focused on cone-and-plate rheometry; secondly, it focused on the unavoidable small 

misalignment; thirdly, it employs a novel pressure sensor plate experimentally with non-

Newtonian fluids. Presently, no literature was reported on the study of the other type of 

misalignment, i.e., the tilted stationary plate with respect to the vertical axis of rotation. 

The effects of the third type of misalignment remain unknown presently. 
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2.4.2 Axial Transducer Compliance Error of the  

Cone-and-plate Rheometer 

This section reviews one of the main equipment defects, instrument compliance. 

Instrument compliance contributes to the inaccuracy of 1N  measurements in the 

traditional rotational rheometers. A precise transient normal force measurement in the 

rotational rheometers requests unchanged gap geometry because a variation of the gap, 

gap opening, will cause undesirable sample flow in the radial direction. With the 

presence of the radial flow, the apparent time-dependent normal stress behavior will not 

correspond to a true material property, but the instrument parameters. Such a “gap 

opening” effect is defined as instrument compliance. Instrument compliance, unless 

properly taken into account, may introduce considerable errors into dynamic rheological 

measurements [35-38]. In traditional rotational rheometer measurements, instrument 

compliance will introduce errors in two ways: (1), change in the original rotation position 

in shear stress transducer; (2), change in the previously set separation of the cone and the 

plate, which can also be called compressive/axial compliance error. This thesis work 

focused on the effects of axial compliance in the measurement of 1N .  

The compliance error arises due to the mobility of the top plate/cone connected to 

armature of the LVDT via a spring (Figure 2. 11). As the test fluid is sheared, a normal 

thrust is generated due to the first normal stress difference, which pushes the top 

plate/cone upward, thus changing the deflection of the measuring spring and the position 

of the top plate/cone and subsequently the gap between the cone and plate. This process 

is sketched in Figure 2.11. Details of the transducer LVDT, which are essential to 

understand the measuring system, are discussed in Chapter 3. According to fluid 
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mechanics analysis of the cone-and-plate rheometry, accurate gap setting of the truncated 

cone and plate is crucial to the accuracy of the measurements.  The departure of the gap 

from its correct value introduces both a steady-state and a transient error:  

1. Steady-state error: the hypothetical tip of the truncated cone will not just touch the top 

surface of the rheometer plate, as required to obtain the correct steady-state velocity field 

within the sample (Equation 2.5).  

2. Transient measurement error: even if the steady-state axial compliance error is small, it 

will be impossible to measure the true material response time. The time it takes the gap to 

change (the “instrument time”) is comparable to the material response time [13,35-36].  

Practically, one can adopt springs that are stiff enough to make the compressive 

compliance error small enough to be neglected. Additionally, the stiff transducer will also 

reduce the response time of the transducer, thus reducing the instrument response time. 

On the other hand, spring with too large constants will fail in detecting a relatively small 

1N  value, resulting in low sensitiveity. One can eliminate by readjusting the rheometer 

gap once steady flow is observed, which is the working principle of the force rebalance 

transducer (FRT) from TA Instruments, Inc. [37]. However, the transient measurement 

error cannot be eliminated unless one dispensed with the LVDT uses and uses an 

alternative measuring method, such as the pressure sensor plate used in this thesis work. 

Further more, the FRT uses an active servo loop to control the rheometer gap that may 

result in thermal expansion of the sample during prolonged test (Figure 2.12) [37]. 

The existence of the instrument compliance and its influence on dynamic 

rheological measurements has been explored previously and the physical definition of 
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instrument complicance in terms of response time of either the instrument or the material 

was developed [13,38-42].  

Stretton’s test (Figure 2.13) successfully demonstrates the instrument compliance 

in traditional thrometers. The constant C in Figure 2.13 corresponds to a dashpot 

parameter created by sandwiching the test fluid between cone and plate, K represents the 

normal force cantilever spring constant and m is the dead weight. With the inertia term, 

damping term, normal force spring term and the force function taken into account, the 

equation of motion based on Stratton’s test can be given as [35]: 

� � � �� � � �� � � �tKx
dt

txdC
dt

txdmthF ��� 2

2

                    (2. 7) 

Among these terms, the dependence of the damping coefficient on the geometrical 

variables of the instrument and on the rheological properties of the test fluids was 

considered. The damping force, FD, corresponding to an infinitesimal change in 

separation between the cone and the plate, with incompressible Newtonian fluid inside, 

was expressed as [35]:  

WRFD 3

6
�
��

��                        (2. 8) 

where W is the separation velocity. The damping force corresponding to the compliance 

force in the cone-and-plate fluid is directly proportional to the viscosity, � , and the plate 

radius, R, but inversely proportional to the third power of the cone angle, 3� . In another 

word, a small cone and plate radius or the relatively large angle of the gap of the cone 

and the plate will help to reduce the compliance error [35]. It should be noted that the 
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separation of the cone and plate is considered infinitesimally ralative to the cone and 

plate radius because the inertia term in Equation 2.7 was neglected. On substituting the 

damping coefficient from Equation 2.8 into Equation 2.7, the solution for the time 

dependent rheometer gap becomes [35]: 

	
t

e
x

xX �
��� 1

max

 ,                      (2. 9) 

And [9, 39] 

3

6
�

��	
K

R
� ,                      (2. 10) 

where maxx  is the maximum deflection of the normal force spring for a given 

experimental condition. The system response time, 	 , in Equation 2.10 is important and 

used as a guide to determine conditions under which the rheometer can reliably measure 

the normal stress growth.  

Meissner et al. (1972) [38] firstly added a closed loop feedback system to a 

classic Weinssenberg rheogoniometer (WRG) with a sufficiently stiff spring and 

minimized the compliance error in the normal force measuring system. They found out 

that the measured onset response of melted polymer was often a combination of material 

and apparatus responses. Hansen et al. (1975) [13] quantitatively determined the 

relationship of the characteristic response time,	 , of the normal force measurement and 

the characteristic time of the test fluid (material): the time for the apparent normal stress 

to reach 63.2% of shear flow steady state should be much greater than the value of 	  

theoretically deduced for a given apparatus configuration and fluid viscosity. In such a 
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way, the value of 	 for the normal force measuring system was deduced theoretically. 

However, Hansen’s result was based on Equation 2.10, which assume a Newtonian 

sample and under the condition of neglecting inertial fluid term in Equation 2.7. It was 

doubtful whether Hansen’s work was feasible for non-Newtonian flow. Zapas et al. 

(1989) [35] developed a more universal relationship to describe the dramatic impact of 

compliance error of constrained geometry regarding to the response time in uniaxial 

extension and compression response, which was in agreement with single-step stress 

relaxation of BKZ-type fluid, to the nonlinear region. All these studies contributed to a 

complete description of the compliance phenomenon in various aspects such as 

compliance time, instrumental accuracy, axial displacement, and so on. 

In this thesis, Hansen’s criterion will apply to test the effectiveness of classic 

Weinssenberg rheogoniometer (WRG) without FRT system in measuring the transient N1 

for two test fluids (non-Newtonian fluid), in terms of instrument axial compliance time, 

	 . In order to measure the longest relaxation time λ of the sample being tested, 

instrument axial compliance time, 	 , should be much less than λ.  The relaxation time λ 

can be independently estimated with the experimentally accessible material properties, 

i.e. the zero-shear-rate values of viscosity and first normal stress difference coefficient, 

0�  and 2
0,1

0,1 ��
N

�� , by the relationship of 
�

�
�

�
�

2
0,1 [9,13].  In the absence of a 

significant instrument axial compliance time, λ should also approximately equal to the 

time it takes N1 to reach 63.2% of its steady state value after onset of shear flow.  
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2.4.3 Effects of Natural Frequency on the Measuring System: 

Transducer Response Time 

Physically, a system tends to oscillate at maximum amplitude at a certain 

frequency. This phenomenon is called resonance, and this frequency is known as the 

system’s resonant frequency, fn. When damping is small, the resonant frequency is 

approximately equal to the natural frequency of the system, which is the frequency of 

free vibrations. Commonly, natural frequency is related to resonant frequency by: 

m
kf n

n ��
�

2
1

2
��                                 (2. 11)  

The dynamic operation of many measuring systems can be adequately represented 

by a second order differential equation. For instance, the elementary galvanometer 

exhibits second-order behavior is expressed by a single differential equation [43]: 

� � � � � �VKS
dt
dS

dt
Sd

nnn
22

2

2

2 ���� ���                              (2. 12) 

Equation 2.12 relates the input signal V (volt) to its output signal S (light-beam 

displacement). Equation 2.12 includes three important instrument constants of a 

galvanometer: K , the sensitivity of the instrument in inV !; 
m
k

n �� , the natural 

circular frequency of the instrument in  !sec
rad , or the natural frequency in cps; and � , 

the damping ratio. The second order system frequency response can be demonstrated by 

Equation 2.13:  
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�                               (2. 13) 

This equation demonstrated the importance of the damping ratio and the natural circular 

frequency. The curves in Figure 2.14 are based on equation 2. 13 and demonstrate the 

frequency response, ω, of the typical second-order instrument:  

(1), for very low input-signal frequencies � �ni �� "" , the instrument responses ideally; 

(2), for very high input-signal frequencies � �ni �� ## , the instrument is completely 

incapable of “following” the input signal; (3), the frequency response is the instrument 

behavior when the input signal frequency i�  happens to be nearly the same as the natural 

circular frequency n� . 

The compliance error of the measuring system of the Weinssenberg 

rheogoniometer displays a typical second-order response (Equation 2.7). Consequently, 

the natural circular frequency, n� , of the LVDT measuring system is critical because the 

system cannot measure the true frequency response of the material at frequencies greater 

than n� . The Weinssenberg rheogoniometer bears LVDT spring with a moderate 

stiffness in order to maintain a fairly high sensitivity for steady-state measurements. On 

the other hand, the natural frequency of noval pressure sensor plate is much higher: 

kHzfn 137$  [44]. So a goal of this thesis was set to compare the apparent frequency 

response of a sample measured with the LVDT and the pressure sensor plate.  
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2.5 Experimental Techniques for Measuring the Second 

Normal Stress Difference 

 The stresses in a simple shear flow can be fully characterized by three 

independent functions: viscosity (� ), the first and second normal stress differences 

( 21 , NN ) and the first and second normal stress difference coefficients ( 21 ,�� ).  Here the 

normal stress differences are relative to the normal stress difference coefficients as [45]: 

2
11 �� ��N  , 2

22 �� ��N                                (2. 18)  

where ��  is the shear rate in the shear flow. The second normal stress difference 

coefficient 2�  is much smaller compared to the first normal stress difference 1N  in 

magnitude and was assumed to be zero by Wessenberg (the ‘Wessenberg hypotheses’). In 

1970’s, it was found that the second normal stress might play an important role on 

rheological fluid instabilities. Consequently, compared to the fully developed commercial 

rheometers for measuring �  and 1� , the techniques for measuring 2�  are limited and 

have not been developed for commercial use. Devices were customized for scientific 

measurements. Early measurements by Lodge et al. (1975) confirmed the presence of N2, 

while their results were distorted to be positive by the “hole pressure error” [34]. Ginn 

and Metzner (1969) [46] compared total thrust measurements in cone-and-plate and 

plate-and-plate rheometers and found that N2 should be negative values. The measured 

normal stress coefficients, 
1

2

N
N

��� , were very small (Table 2.1) [23,26-27,44,46-70]. 

Table 2.1 also shows a summary of the methods applied to determine the normal stress 

coefficient � . 
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The early results of the normal stress ratio �  were mostly small to zero or 

sometimes even negative and were inconsistent, indicating that some methods were not 

appropriate. There has been a steady improvement in methods for measuring �  from the 

radical pressure distribution in cone-and-plate rheometry (methods 14, 16, 17 in Table 

2.1). Among all the methods (Table 2.1), measuring pressure distribution in the fluid 

field using a novel “MEMS” pressure sensor plate is one of the most accurate methods 

[21-25]. MEMS, which stands for Micro-Electric-Machining-Systems, is a semi 

conductor processing technique. This technique makes it possible to fabricate miniature 

pressure sensors with areas less than 1 mm2
, thus allowing considerable decrease in the 

size of rheometer plate. The technical details of the pressure sensor plate will be 

presented in Chapter 3 when the experimental implementation is explained. 

2.5.1 Theory of Pressure Distribution Method for 

2N  Measurement 

The definitions of viscosity, the first and the second normal stress difference have 

been introduced in Section 2.2. A detailed demonstration of their relationship with the 

flow in the rotational rheometer will be presented in this section. The flow behavior of a 

material can be understood by studying the stresses generated in response to a specified 

flow field (stress-strain relationship) or constitutive equation. Typically, some simple 

flow velocity fields of the polymer melts and polymer solutions are made and the stresses 

are measured in experiments.  

Figure 2.15 shows the ideal geometry for a cone-and-plate rheometer and the 

spherical coordinate system adopted. In most cone-and-plate rheometers, tips of the cones 

are truncated to avoid fluid vortex on these tips as indicated in Figure 2.15. It is thought 
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that the cone-and-plate rheometer will produce a simple shear flow in which the shear 

rate is very uniform throughout the flow field, when the cone angle is very small, say 4º 

or less, assuming no misalignment errors (Section 2.1). In the ideal cone-and-plate 

rheometer, the steady velocity field can be approximated in spherical coordinate as: 

�

�

� 2

01

�
� rv , and 032 �� vv  with ��
�

�""
22

     (2. 14) 

Here the subscriptions and notations are listed below: 

1 denotes the flow direction, �  (azimuthal angle); 

2 denotes the velocity gradient direction, 
  (polar angle); 

3 denotes the neutral direction r (radial position); 

0�  denotes the constant angular velocity of the cone (or plate); 

�  denotes the very small cone angle. 

The uniform shear rate in an ideal cone and plate flow field is given as: 

�
�

� 0��                       (2. 15) 

Since the shear rate is homogeneous throughout the velocity field, components of the 

deciatoric stress tensor, 	�� , are also independent of position in the cone-and-plate 

rheometer. 

When the fluid fills the gap out to the radius R0, the moment M exerted on the 

plate or cone surface is [45]: 
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Thus, measurement of the moment required to turn the cone or hold the plate gives a 

direct reading of the shear stress in the simple shear flow: 

3
0

2112 2
3)(

R
M

�
���		 ��� ��   when  

�
�

� 0��       (2. 17) 

)(�� �  is the shear-rate dependent viscosity which can be described when the shear stress 

12	  is divided by shear rate �� [45]: 
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Assuming the velocity field is defined by Equation 2.5, the total stress tensor component, 

22� (r), is derived from the linear momentum balance equation in the radial direction 

[22]: 
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As defined in simple shear flow, components of stress tensor are constant due to the 

homogeneous shear rate�� ,  

0�
(

(

r
ij	

.           (2. 20) 

And  03223 ��		            (2. 21) 
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because of the flow symmetry. 

Thus Equation 2.19 can be simplified as [22]: 

� �
)2(

ln 21
22 NN

r
R

��
(
�(          (2. 22) 

Here it should be noted that an inertial or centrifugal force term is neglected as it is 

relatively small for high viscous polymer in a limited low shear rate range.  

At the free boundary when 0Rr � , approximating the boundary air/liquid 

interface as a partial sphere, the radial pressure exerted by the sample at steady state is 

atmosphere pressure 0P , which is the datum line of zero.  

� � 0033 PR ���           (2. 23) 

A negative sign in Equation 2.23 arises because a compressive force is considered to be 

negative in the definition of the total stress tensor ���  as introduced in Section 2.2. 

From the definition of the second normal stress difference N2, Equation 2.22 can 

be expressed in the other form: 

� �� � 2022 NPR ����� .         (2. 24) 

With this boundary condition, integration of Equation 2.22 gives out the vertical stress 

profile expected to be present in homogeneous velocity field: 

� �� � � � 221022 ln2 N
R
rNNPr ��

�
�

�
�
�������        (2. 25) 



26 
 

 

Here R is the radius of the plate. The left hand side of Equation 2.25 is the net pressure 

acting perpendicular to the rheometer plate at radial position r. This quantity is measured 

with the miniature pressure sensors on the rheometer sketched in Figure 2. 16. Equation 

2.25 is a very important relation that demonstrates the principles of the pressure 

distribution method. From Equation 2.25, the radical normal stress profile is expected to 

be linear in a semi logarithmic plot against a radial position if ��  is homogeneous. The 

local normal stresses at various radial positions, the left side of Equation 2.25, are 

measured by the eight pressure sensors constructed on the rheometer plate. The details on 

the pressure sensor plate are described in Chapter 3 (Material and Equipment). Assuming 

that the measured local normal stress profile obeys the functional form predicted by 

Equation 2.25, both the first and second normal stress differences can be calculated by 

knowing the slope of the measured normal stress profile and the value of the local normal 

stress at the rim. The application of Equation 2.25 is demonstrated in Figure 2.16. The 

local normal stress at the rim can be calculated by extrapolating the local normal stresses 

profile values measured by the eight pressure sensors; thus the second normal stress 2N  

is obtained. From the linear slope � �21 2NN ��  of the measured pressure distribution 

extracted from a semi logarithmic plot, the value of 1N  is obtained. Since the local 

normal stress is the net pressure exerted by the sample vertical to the pressure sensor 

plate, the total normal thrust F, exerted in the perpendicular direction on the plate can be 

calculated by integrating Equation 2.26 over the plate: 

� �� � � � 1
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This is an alternative method to obtain the first normal stress, independent of 1N  

measurement using the deflection of LVDT system.  

It should be noted that, to get this relation several hypotheses were made: 

(1). the shear rate is homogeneous throughout the velocity field of the sample filled 

between the gap; 

(2). the flow field is symmetric, 

(3). an inertial term and a centrifugal force terms is negligible, 

(4). the air/liquid interface is exactly spherical and the flow on the boundary is exactly 

rheometric, and 

(5). the surface tension at the liquid-air interface is negligible. 

Assumptions (1) and (2) can usually be satisfied with sufficiently good alignment. The 

inertial error is negligible for viscous samples in rheometers with shallow cone angles. 

The error due to the centrifugal force can be corrected in an approximate way. The error 

of source (4) is probably less than 5% (Kaye et al.) [54]. 

2.5.2 Development of the Pressure Distribution Method  

Since the 1970s there has been a general agreement on pressure distribution 

theory. When the rotational flow of liquids showing normal stress effects, the tension 

along the circular streamlines is always greater than that of other directions. So that the 

streamlines tend to contract, like stretched rubber bands, unless they are prevented by an 

appropriate pressure distribution.  

Two types of measurement are possible by measuring the pressure distribution: 

(1). determine the total force exerted on the whole plate by the liquid, from which the 

first normal stress difference 1N  is obtained and  
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(2). determine the local pressure distribution from the manometer or pressure transducers 

or pressure sensors reading, from which the second normal stress difference 2N  is 

obtained.  

The striking advantages of this technique are: 

(1). it is theoretically valid for a wide range of shear rates, 

(2). it can measure all three material functions (� , 21 ,�� ) simultaneously, 

(3). it cross-checks the normal thrust data by comparison of the integration of the 

pressure distribution on the entire plate with the total thrust measured by a spring 

transducer,  

(4). it does not require knowledge of the constitutive equation for polymer being tested. 

In early studies of such a pressure distribution technique in polymer solutions, the 

plate of a cone-and-plate viscometer was drilled to provide tapping for manometers. 

Steady rotation of the cone results in the pressure distribution of the form indicated in 

Figure 2.17.  This method might be used over a limited range of pressures at ambient 

temperature.  Adam and Lodge (1964) [32] first used capacitance pressure gauges in 

small chambers linked by short tubes to a hole in the plate of cone-and-plate rheometer. 

Brindley and Broadbent  (1973) [71] fixed ‘Pitran’ semiconductor pressure transducers 

set with their diaphragms in small cavities linked to holes in the plane of the plate of a 

cone-and-plate rheometer to make pressure distribution measurement on polymer 

solutions. Such methods are tedious and unsuitable if the properties vary with time 

because equilibrium is reached slowly. Furthermore, such methods cannot give a true 

pressure measurement because of the hole pressure error indicated in Figure 2.8.  
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Christansen and Miller [67] in 1971 made flush mounted miniature capacitance 

transducers to determine the pressure distribution in a cone-and-plate instrument and 

calculated the total force by integrating this pressure distribution. This was found to be 

equal to the spring measured force, thus obtaining a valuable check of the accuracy of 

this technique for the first time. Later on, Gao, Ramachandra, Magda, Baek and Lee 

[23,26,68-70] further explored this technique to measure the pressure distribution for 

various polymer solutions in cone-and-plate rheometer, as listed in Table 2.1. Although 

this flush mounted transducer plate was proven to be reliable in measuring the pressure 

distribution, other shortcoming came up. The plate needs to be so large (74 mm in 

diameter) because of the size limit of the pressure transducers that edge fracture (Figure 

2.18) often occurs, which restricted the measurable shear rate range of the tested sample 

[72,73]. Consequently, the flush mounted transducer plate can often be used only at low 

shear rate.  

The monolithic MEMS rheometer plate (25 mm in diameter) used in this thesis 

was fabricated with micromachining technology. This novel pressure sensor plate is able 

to not only measure the pressure distribution without hole pressure error, but also enables 

the measurement at higher shear rates up to 150 s-1 for a National Instrument Standard 

Test (NIST) standard fluid SRM-1490. In this thesis, the pressure sensor plate replaced 

the normal top plate and was used to measure the first and second normal stress 

difference of the silicone fluid PDMS. Because this plate can be used to measure the first 

normal stress difference without any LVDT transducers, it was also used to study the 

transient N1 behavior of the standard NIST fluid SRM 1490 with and without presence of 

the LVDT so that the axial compliance error could be studied. The sources of these 
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materials will be presented in Chapter 3, along with the technical details of MEMS 

pressure sensor plate. 
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Figure 2.4. Schematic diagram of LVDT transducer working in the cone-and-plate 
rheometer. 
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Figure 2.5. The spherical coordinates describing the flow field for the ideal cone-and-
plate rheometer. 
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Figure 2.10. Description of the normal stress, Tφφ, distribution in tilted cone-and-plate 

rheometer with simulation. (Adapted and simplied from Dudgeous et al. [33] to show the 

local stress distribution) 

0.1 

e 

O+-~~~--r-~~~~ 

0.1 

e 

o ¢ 2n 
(a) Newtonian Fluid, De = 0 

O~--~~~~----~~~ 

o 2n 
(b, 1) Non-Newtonian Fluid, De = 1, n = 0.3 

o 1 

e 1..--"-;' 

O~~~~~~~~~~ 

o 2n 
(b, 2) Non-newtonian Fluid, De = 4, n = 0.3 

0.1 

e .......",,.., 

o~~~~~~~~--+ 
o ¢ 2n 

(b, 3) Non-Newtonian Fluid, De = 10, n = 0 



41 
 

 

 

 

 

Figure 2.11. Schematic diagram of LVDT transducer working in the cone-and-plate 
rheometer. 
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Figure 2.14. The frequency response of the 2nd order instruments. 

0.3 
M 
K l~ 

1.0 

oL---L---L-~~==-
1.0 1.5 2.0 0.5 
QJi 
W n 

0.5 

<D ~ 1-----------::: .... 

0 I II 

0.5 1.0 1.5 2.0 
OJ i 
(On 



 
 

 
 

45 

T
ab

le
 2

.1
. P

rio
r i

nv
es

tig
at

io
ns

 o
f t

he
 n

or
m

al
 st

re
ss

 d
iff

er
en

ce
 c

oe
ff

ic
ie

nt
 ra

tio
, �

 

 

M
et

ho
d 

# 
D

es
cr

ip
tio

n 
of

 m
et

ho
d 

In
ve

st
ig

at
or

s 
Fl

ui
d 

st
ud

ie
d 

Sh
ea

r r
at

e 
(s

-1
) 

ra
ng

e 
12

NN
�

�
�

 

1 
A

nn
ul

ar
 fl

ow
s 

H
ay

s a
nd

 T
an

ne
r 

[2
7]

 

Po
ly

- 
(m

et
hy

lm
et

ha
cr

yl
at

e)
 

in
 to

lu
en

e 
- 

ve
ry

 sm
al

l 

 
 

H
up

pl
er

 [4
7]

 
aq

ue
ou

s p
ol

ym
er

 
so

lu
tio

n 
15

00
 

(-
0.

20
, -

0.
06

) 

2 
m

ea
su

re
 e

xp
an

si
on

 o
f a

 je
t o

f 
flu

id
 fr

om
 a

 c
ap

ill
ar

y 

J.L
.W

hi
te

 a
nd

 
A

.B
. M

et
zn

er
 

[4
8]

 
 

 
 

3 
fr

ee
 su

rf
ac

e 
m

ea
su

re
m

en
t 

of
 a

 fl
ui

d 
flo

w
in

g 
do

w
n 

an
 o

pe
n 

ch
an

ne
l 

M
. K

ee
nt

ok
 e

t a
l 

[4
9]

 
 

 
 

 
 

K
uo

 a
nd

 T
an

ne
r 

[5
0]

 
5.

4%
 p

ol
y(

is
ob

ul
en

e)
 

in
 c

et
an

e  
75

0 
<0

 

4 
on

se
t o

f T
ay

lo
r i

ns
ta

bi
lit

ie
s 

in
 C

ou
et

te
 fl

ow
 

D
en

 e
t a

l. 
[2

7]
 

va
rio

us
 d

ilu
te

 
po

ly
m

er
 so

lu
tio

n  
- 

>0
 

5 
th

e 
di

ff
er

en
ce

 in
 to

ta
l t

hr
us

t 
m

ea
su

re
m

en
ts

 b
et

w
ee

n 
cp

 
an

d 
pp

 rh
eo

m
et

er
 

G
in

n 
an

d 
M

et
zn

er
 

[4
6]

 

5.
09

%
 

po
ly

(is
ob

ut
yl

en
e)

 
in

 d
ec

al
in

 
50

0 
(0

, 0
.2

6)
 

 



 
 

 
 

46 

Ta
bl

e 
2.

1 
co

nt
in

ue
d 

 
 

B
er

ry
 a

nd
 

B
at

ch
el

or
 [5

1-
52

] 
(a

).D
ep

ol
ym

iz
ed

 
na

tu
ra

l r
ub

be
r 

0.
32

4 
(0

, 0
.1

) 

 
 

 
(b

).b
ul

k 
po

ly
is

ob
ut

yl
en

e 
0.

22
9 

(0
, 0

.1
) 

 
 

K
ay

e,
 L

od
ge

, a
nd

 
V

al
e 

[5
3]

 

2%
 p

ol
y(

is
ob

ut
yl

en
e)

 
in

 a
 lo

w
 m

w
 

Po
ly

(is
ob

ut
yl

en
e)

 
25

 
(0

, 0
.0

7)
 

6 
To

ta
l f

or
ce

 d
iff

er
en

ce
 o

f 
pp

 a
nd

 c
p 

w
ith

 ti
p 

of
 c

on
e 

se
pa

ra
te

d 
fr

om
 p

la
te

 

Ja
ck

so
n 

an
d 

K
ay

e 
[5

4]
 

5.
66

%
 h

ig
h 

m
ol

. W
t. 

po
ly

-(
is

ob
ut

yl
en

e)
 

di
as

ol
ve

d 
in

 lo
w

 m
w

 
po

ly
(is

ob
ut

yl
en

e)
 

3 
0.

5 

7 
to

ta
l t

hr
us

t a
s f

un
ct

io
n 

of
 se

pa
ra

tio
n 

of
 c

on
e  

an
d 

pl
at

e,
 c

p 

M
ar

sh
 a

nd
 

Pe
ar

so
n 

[5
5]

 
(a

). 
0.

9%
 H

EC
 in

 
w

at
er

 
85

0 
(0

.0
7,

0.
15

) 

 
 

 
(b

). 
2.

5%
 p

ol
ys

ty
re

ne
 

in
 a

ro
do

r  
17

0 
0.

2 

 
 

N
.O

hl
 a

nd
 

W
.G

le
is

sl
e 

[5
6]

 
(a

). 
Pu

re
 

po
ly

is
ob

ut
en

e 
0.

5 
(0

.1
, 0

.2
) 

 
 

 
(b

). 
34

.5
%

 li
m

es
to

ne
 

in
 p

ol
yi

so
bu

te
ne

 
 

(1
, 3

) 

8 
th

e 
ca

pi
lla

ry
 a

nd
 sl

it 
di

e 
rh

eo
m

et
er

 
 

 
 

 

 



 
 

 
 

47 

Ta
bl

e 
2.

1 
co

nt
in

ue
d 

9  
op

tic
al

  f
lo

w
 b

ire
fr

in
ge

nc
e 

m
ea

su
re

m
en

t 
E.

 F
. B

ro
w

n 
et

 a
l. 

[5
7]

 

lo
w

 p
ol

yd
is

pe
rs

ity
 

po
ly

- s
ty

re
ne

 in
 

tri
cr

es
yl

 p
ho

sp
ha

te
 

15
 

0.
23

 

10
 

ho
le

 p
re

ss
ur

e 
er

ro
r 

m
ea

su
re

m
en

t i
n 

flo
w

 o
ve

r 
sl

ot
s 

D
.S

.M
al

ku
s e

t a
l. 

[5
8]

 
es

tim
at

io
n 

- 
 

 
 

E.
A

. K
ea

rs
le

y 
et

 
al

. [
59

] 
6%

 p
ol

yi
so

by
ty

le
ne

 
in

 M
en

to
r 2

8 
 

0.
22

 

13
 

m
ea

su
rin

g 
th

e 
no

rm
al

 fo
rc

e 
an

d 
th

e 
ai

r b
ub

bl
e 

pr
es

su
re

 
in

 th
e 

co
ne

-a
nd

-r
in

g 
or

 
pl

at
e-

an
d-

rin
g 

rh
eo

m
et

er
 

 

H
ar

ris
 V

an
 E

s 
[6

0]
 

a 
5%

 so
lu

tio
n 

of
 

po
ly

is
ob

ut
en

e 
in

 
de

ca
lin

 (1
) a

nd
 a

 
si

lic
on

e 
oi

l (
2)

 

 
>0

 

14
 

th
e 

ra
tio

 o
f n

or
m

al
 fo

rc
e 

m
ea

su
re

d 
by

 m
od

ifi
ed

 
co

ne
 a

nd
 p

ar
tit

io
ne

d 
pl

at
e 

J. 
M

ei
ss

ne
r e

t a
l. 

[6
1]

 

lo
w

 d
en

si
ty

 
po

ly
et

hy
le

ne
 

(L
D

PE
) 

0.
5 

0.
24

 

 
 

H
.E

gg
er

 a
nd

 
P.

 S
ch

um
m

er
 [6

2]
 

 
 

 

 
 

T.
Sc

hw
ei

ze
r [

63
] 

Po
ly

st
yr

en
e 

30
 

(0
.0

5,
 0

.2
4)

 

15
 

m
ea

su
re

m
en

t o
f t

he
 fr

ee
 

su
rf

ac
e 

ris
in

g 
he

ig
ht

 n
ea

r 
a 

r o
ta

tin
g 

ro
d 

(r
od

 c
lim

b-
 

in
g 

m
et

ho
d)

 

J.Z
.L

ou
 [2

3]
 

0.
1%

 P
ol

yi
so

bu
ty

le
ne

 
in

 o
lig

om
er

ic
 p

ol
y-

 
bu

te
ne

(B
og

er
 fl

ui
d)

 
V

er
y 

lo
w

 
-0

.0
1 

± 
0.

01
 

  



 
 

 
 

48 

Ta
bl

e 
2.

1 
co

nt
in

ut
ed

 

 
 

G
.S

. R
ib

ei
ro

 e
t a

l. 
[6

4]
 

he
av

y 
cr

ud
e 

oi
ls

 
V

er
y 

lo
w

 
 

 
 

 
(a

). 
La

ke
vi

ew
 

- 
0.

21
 

 
 

 
(b

).C
N

D
 

- 
0.

2 

 
 

 
(c

).Z
ua

ta
 

- 
0.

1 

 
 

L.
 D

i L
an

dr
o 

et
 

al
. [

6 5
] 

Po
ly

(d
im

et
hy

ls
ilo

xa
n

e)
* 

(P
D

M
S)

 
V

er
y 

lo
w

 
(0

.0
56

, 0
.1

89
) 

16
 

fll
us

h 
m

ou
nt

ed
 p

re
ss

ur
e 

tra
nd

uc
er

s (
pr

es
su

re
 

di
st

rib
ut

io
n 

m
et

ho
d)

 

E.
B

.C
hr

is
tia

ns
en

 
an

d  
W

.R
 L

ep
pa

rd
 

[6
6]

 

2.
5%

 p
ol

yc
ry

la
m

id
e 

so
lu

tio
n  

10
0 

(0
.0

5,
 0

.1
) 

 
 

M
.J.

 M
ill

er
 e

t a
l. 

[6
7]

 
 

 
 

 
 

J.J
. M

ag
da

 e
t a

l. 
an

d  
K

.L
.D

eV
rie

s [
68

] 

0.
1%

 P
ol

yi
so

bu
ty

le
ne

 
in

 o
lig

om
er

ic
 p

ol
y-

 
B

ut
an

e 
(B

og
er

 fl
ui

d)
 

 
0.

3 
± 

0.
01

 
fo

r s
ta

r 
po

ly
m

er
 

 
 

 
 

 
0.

21
 ±

 0
.0

1 
fo

r l
in

ea
r 

po
ly

m
er

 
 



 
 

 
 

49 

Ta
bl

e 
2.

1 
co

nt
in

ut
ed

 

 
 

Le
e 

et
 a

l. 
[6

9]
 

21
.5

%
 p

ol
yi

so
pr

en
e 

in
 T

et
ra

nd
ec

an
e 

 
0.

29
 

 
 

J.J
. M

ag
da

 a
nd

 
S.

G
. B

ea
k[

70
] 

8%
 p

ol
ys

ty
re

ne
 in

 
n-

B
ut

yl
be

nz
en

e 
 

0.
27

5 

17
 

M
EM

S 
m

ic
ro

-p
re

ss
ur

e 
se

ns
or

 p
la

te
 (p

re
ss

ur
e 

di
st

rib
ut

io
n 

m
et

ho
d)

 

S.
G

. B
ea

k 
an

d 
J.J

.M
ag

da
 [4

4]
 

N
IS

T 
SR

M
-1

49
0 

15
0 

0.
10

 ±
 0

.0
2 

 
 

M
.B

. L
ee

 e
t a

l. 
[2

6]
 

 

Po
ly

di
m

et
hy

ls
ilo

xa
ne

* 
(P

D
M

S)
 

10
 

 

         



 
 

 
 

50 

  

 

 
Fi

gu
re

 2
.1

5.
 D

ia
gr

am
ed

 d
es

cr
ip

tio
n 

of
 th

e 
id

ea
l g

eo
m

et
ry

 o
f c

on
e-

an
d-

pl
at

e 
rh

eo
m

et
er

. 
   

N
o

rm
a
l 
F
o

rc
e
-F

 

 R
a
d

iu
s-

R
 

T
o

rq
u

e
-M

 

22
�

�
�

/



�
�

Ω



 
 

 
 

51 

    

       

 
   

  
  

 
Fi

gu
re

 2
.1

6.
 D

ia
gr

am
ed

 d
es

cr
ip

tio
ns

 o
f t

he
 te

ns
es

 a
lo

ng
 th

e 
ci

rc
ul

ar
 st

re
am

lin
es

. 

R
 

M
ea

su
re

  
  
 v

s.
 r

 
22

�

Sl
op

e 

Π
22

 =
 - 

(N
1+

2N
2)

 ln
 (r

/R
) –

N
2 

ln
 (r

/R
) 

Π
22

 (P
a)

 

In
te

rc
ep

t 



 
 

 
 

52 

              

Fi
gu

re
 2

.1
7.

 P
ro

to
ty

pe
 o

f m
an

om
et

er
 p

la
te

 u
se

d 
fo

r e
ar

ly
 st

ud
y 

of
 p

re
ss

ur
e 

di
st

rib
ut

io
n.

 

P
la

te
 w

ith
 h

ol
es

 

R
ot

at
in

g 
S

he
ar

ed
 s

am
pl

e 
flu

id
 

M
an

om
et

er



53 
 

 
 

 

 

 

 

 
 
Figure 2.18. Schematic diagram of edge fracture for a cone-and-plate rheometer: (a) 
normal surface and (b) fracture surface (The sample is shear between the cone and the 
plate). 
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CHAPTER 3 
 
 

MATERIALS AND METHODS 

 

3.1 Introduction of the Material Used in This Thesis Work  

Two different polymer materials were used in this research for different purposes. 

This work is more focused on the study of accuracy of the rheological measuring system 

than on the materials. As a matter of fact, both materials are used as testing fluids to 

detect abnormal behavior due to the imperfections of the measuring system. The pure 

polymer melt of PDMS (polydimethylsiloxane) was tested for the start-up behavior of the 

first normal stress differences 1N  in order to detect the effect of the natural frequencies of 

transducers: LVDT and the capacitance pressure sensors. In addition, the first and second 

normal stress differences, N1 and N2, of the PDMS were measured. A standard NIST fluid 

SRM 1490, a polymer solution, was tested separately with and without the LVDT in 

effect in order to study the influence of the axial compliance due to the finite stiffness of 

the LVDT system. 

3.1.1 PDMS 

Silicone fluids PDMS, polydimethylsilaxane, (molecular structure shown in 

Figure 3.1) are commercial polymer melts. They are transparent liquids at ambient 

temperature and have remarkable mechanical, chemical, and thermal stabilities from low 

temperature -70 oC up to as high as 250 oC. Because they can be used without heating, 
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PDMS is easier than other polymer melts for rheology testing at room temperature. 

PDMS fluids are available over a wide molecular weight range from Newtonian fluid to 

elastic Non-Newtonian fluid with viscosities in the range of from 5 cps up to 300,000 cps 

[74]. Non-Newtonian PDMS fluids exhibit shear-thinning (Figure 3.2). Shear thinning is 

defined as the viscosity decreasing with increasing shear rate. The disentangling of the 

linear polymer molecules can be the main cause of this phenomenon.    

PDMS was originally developed to be used as a dielectric coolant and as a 

solution in solar energy installations. In general, PDMS is widely used in coating, seals, 

gaskets, adhesives, and medicine [75]. Its importance arises in medicine because of its 

resistance to blood fluid as described by Allcock et al. (1981) [76]. Due to the versatility 

of the material, PDMS has been widely studied corresponding to different applications 

[77-81]. On the other hand, the studies relevant to the processing of the PDMS product 

are not complete. As a matter of fact, it is essential to know the rheological properties of 

PDMS, i.e., viscosity, the first and the second normal stress differences for the proper 

operation of the industrial processing or other applications that involve this material. 

Studies of the rheometry of similar types of shear-thinning polymer fluids have been 

carried out (see Table 2.1 for reference), and these studies have an important role on the 

developing rheological knowledge of PDMS. For example, the reptation model has been 

developed to predict the first and second normal stress difference for linear polymer 

melts, and has been proven to be quite successful in describing many experimental results 

[23] in the linear viscoelastic or very low shear rate regime. Based on the reptation 

theory, the normal stress ratio of the PDMS is predicted to be between 0.12 and 0.17. The 

only experimental measurement of the second normal stress difference for PDMS was 
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done by Di Landro et al. (2003)[65]. Di Landro’s group measured the low-shear viscosity 

( 0� ) and the first normal stress difference coefficient ( 1� ) of a series of linear PDMS of 

different molecular weights with a rotational rheometer, and they also measured the 

second normal stress difference coefficient with the use of a rotating rod apparatus 

(method listed in Table 2.1). Based on the experimental measurement, the normal stress 

ratio,
1

2

N
N

��� , differed with molecular weight of the PDMS fluid. The measured 

normal stress ratio of non-Newtonian PDMS fluid (PDMS 600) turned out to be between 

0.141 and 0.154 at room temperature, 20 °C. In this thesis work, the pressure distribution 

method was used to measure the second normal stress difference is the non-Newtonian 

linear PDMS fluids, kindly supplied by Rhodosil (FITZ CHEM CORPORATION 

450 E. Devon Suite 175 Itasca, IL 60143). This sample was used as received; its nominal 

viscosity value is 300 Pa-s.  

3.1.2 NIST Fluid SRM-1490 

S.R.M/R.M. stands for standard reference materials/reference materials [82]. 

Standard reference materials and reference materials are issued by NIST (National 

Institute of Standards & Testing, Gaithersburg, MD) to address needs of the producers, 

processors and users of polymers for calibration and for performance evaluation of 

instruments used in the control of the synthesis and processing of polymers as well as 

benchmarks for comparisons of measurement methods and development of new 

materials.  

The polymer solution SRM 1490 is one of the Nonlinear Fluid Standards, which 

is composed of a high-molecular mass poly-isobutylene dissolved in normal hexadecane. 
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Non-Newtonian rheological standards are developed to exhibit the typical polymeric 

behaviors of shear thinning and normal stresses; these standards are also used for 

calibration of rheological instruments and for research into improved measurement 

methods. Polymer fluids, such as polymer melts and solutions, often do not follow the 

simple Newtonian ideal in their flow behavior, demonstrating shear-rate dependent 

viscosities and normal stresses. Such fluids see wide application in everyday life 

(injection molding, paints and coatings, food products, etc.), and the ability to measure 

and characterize their behavior accurately is very important to optimizing their 

processing conditions. Since there are a number of commonly used methods to measure 

the flow behavior of polymers, the Standard Reference Material (SRM 1490) will provide 

a way for comparing the performance of different instruments, as well as providing tools 

for research into better methods of measuring the rheological properties of polymeric 

fluids. SRM 1490 is certified for the shear-rate dependence of viscosity and first normal 

stress difference at temperatures of 0 ºC, 25 ºC and 50 ºC. The linear viscoelastic 

responses are also certified, along with the temperature dependence of the shift factors. 

However, NIST does not certify N2 values for SRM-1490 or any other standard fluid. 

SRM-1490 is no longer available because it has been replaced by SRM-2490 at NIST. 

3.2 Instruments 

3.2.1 Weissenberg R-17 Rheogoniometer 

The Weissenberg R-17 Rheogoniometer is a standard torsional rheometer with 

two LVDT measuring system (Section 2.2), one for the torque and one for the normal 

force. The normal force measuring system uses a light spring with a very sensitive spring 

constant ( 1000 dyne )m). In this thesis, the cone-and-plane geometry of Weissenberg 
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R-17 Rheoginiometer was combined with the pressure sensor plate to explore the 

behavior of the silicone fluid PDMS in the presence of an unavoidable degree of cone 

and plate misalignment. The Rheogomiometer was also used to test the transient start-up 

1N  response of PDMS in the presence of the LVDT axial compliance.  

Three cones with different cone angle were used in this study. The tips of the 

cones were truncated in order to prevent the clustering of the sample at the touching point 

of the cone tip and the plate. Details such as cone diameters, cone angles and the 

truncated distances of the cones are summarized in Table 3.1.  The angular velocity of 

the cone was controlled by a gear-motor system with a 60 variable speed and ranging the 

shear rate from 1918.2948 per second to 0.0242 per second [29].  LVDTs with the normal 

force spring and a torsion bar were used to measure the total normal thrust, F and the 

torque, M, respectively. In this procedure, instrument compliance errors were involved in 

both measurement of normal force thrust and torque (Sec. 2.4.2). Alternatively, the novel 

pressure sensor plate was used to measure the normal thrust. It should be noted that axial 

compliance was still present due to the deflection of normal force spring in the LVDT 

transducer.  

The data acquisition system is sketched in Figure 3.3. Firstly, the LVDT 

transforms the displacement of the torsion bar or normal force spring into electronic 

signals (in volts). These electronic signals were magnified by two transducer-meters 

(Boulton-Paul Aircraft Company, Model EP-597M, S/N 1027&1089). The amplified 

signals were transmitted from the transducer-meters to a data acquisition board (NI 

6023E Multi-function Data Acquisition Board, National Instruments Corporation, Austin, 

Texas). The board has a 12-bit analog-to-digital converter with 16 analog input channels 
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at 200 kS/sec sampling time, and is connected to a personal computer. As the electronic 

signals were detected by the DAB, they were digitized, and then logged by a commercial 

software package Virtual Bench – Logger, Version 2.6 (National Instrument Corporation, 

Austin, Texas), and finally displayed as the analyzable data (in volts).  

The calibration of the signal collecting system is required before every rheology 

experiment in order to assure a normal working condition. The calibration procedure is to 

check the torsion bar constant and spring constant using static weights [29].  

According to the instruction manual of the Weissenberg rheogoniometer, from the 

measured torque, the viscosity of the test fluid can be calculated as: 

���
	

�
�� 2

12

r
M

��                        (3. 1)  

The torque exerted by the sheared sample on the upper plate can be measured by a torsion 

bar which has a spring constant TK . The spring constant of the torsion bar, TK  is 

expressed in the equation as follows: 
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                     (3. 2) 

Here, g is the gravitational constant (980 cm/s2), m is the applied standard mass in gram, 

gR  is the measurement range set on the transducer meter in m) , fV  is the full-scale 

voltage of the transducer meter, and V  is the measured voltage signal by LVDT system 

correspondent to the applied torque, l  is the effective length of the moment arm of the 

calibrating fixture. Ideally, TK is constant; however, due to the different sensitivity of the 

various ranges, signal noise would affect measurements, thus causing a deviation. 
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A special fixture (Figure 3.4) was designed and fabricated for the torque 

calibration. By hanging two standard weights on the end of the monofilaments, and 

simultaneously with the use of the pulleys, part of the air bearing which connect the top 

plate with the torsion bar was twisted and a torque with known value could be detected 

and measured (as V  in eq. 3.2) by the torsion bar. The length of the momentum arms of 

this fixture, l  in eq. 3.2, is fixed as 7.57 cm. The values of the calibration constant of 

torsion bar TK  were calibrated in different voltage ranges ( fV  in Eq. 3.2) and averaged 

throughout all the measuring ranges. The averaged value of the calibrated constant of the 

torsion bar was 14860.5 � 714.3 dyne� cm )m . This value is close, by 2% of deviation, to 

the manufacturer’s reference value.  

The spring constant of the spring in the normal force measuring system, NK , can 

be expressed similarly as Eq 3.2 as: 
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�                       (3. 3) 

m is the applied standard weight in gram, g is the gravitational constant, gR  is the 

measuring range set on the transducer meter in m) , fV  is the full-scale voltage of the 

transducer meter, and V  is the measured voltage signal by LVDT system correspondent 

to the applied normal thrust.  

The normal spring constant was calibrated using standard weights (m in eq. 3.3). 

Total normal trust was applied on the top plate by placing standard weights on the top of 

the tope plate holder. The induced LVDT voltage V  was measured via the transducer 

meter at a certain measuring range fV . The normal spring constants at different 
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measuring ranges of the transducer meter were calculated using Eq. 3.3. The averaged 

value of the normal spring constants was 806.6 � 19.8 dyne )m . The value has a 

apparent discrepancy with the manufacturer’s value, by 20% of deviation. The change in 

KN  value may be caused by the use of a new transducer meter (S/N 1189).  

The cone and plate were aligned to be as concentric and parallel as possible using 

a dial gage indicator (Mitutoyo Truetest Test Indicators - Series 513, Automation & 

Metrology Inc.). The concentricity axis was adjusted to be less than 0.0005 in and the 

flatness less than 0.0001 in, respectively.  

3.2.2 ARES Rheometer 

 In order to test the NSS on a rotational rheometer with almost no axial compliance 

error, N1 start-up measurements were made using the NSS on a stiffened ARES 

(Advanced Rheometric Expansion System) Scientific Rheometer (TA Instruments, 

Newcastle, DE) through the generosity of Professor Greg McKenna, Texas Tech 

University. An ARES rheometer is usually equipped with an FRT transducer as discussed 

in Section 2.4.2. However, in order to avoid potential errors and fragile nature of the FRT 

system, Professor Meckenna’s group redesigned their ARES to avoid axial compliance, 

even transient, and equipped it with a customized Sensotec (Sensotec Inc., now 

Honeywell Sensotec,) semiconductor strain gage based transducer (Sensotec Model 060-

G420-01) [46]. The beauty of using the semiconductor strain gage transducer is the much 

higher stiffness (strain sensitivity low as 0.000005 volts per microstrain) [45]. The ARES 

rheometer thus modified has much less axial compliance than the Weissenberg rheometer 

with the LVDT employed. This is true when either the strain gauge transducer or the NSS 

is used to measure the normal force, the latter being much more sensitive. Cone-and-plate 
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fixtures were used on the ARES with diameter R = 25 mm and cone angle α = 4.55 ºC 

(Table 3.1). 

3.2.3 MEMS Pressure Sensor Plate 

 The pressure sensor plate was kindly supplied by Dr. Seong-Gi Baek, president 

and CEO of Rheosense, Inc. (San Ramon, CA). His company has used silicon 

micromachining technology [83-84] to fabricate this rheometer plate which was named 

the “Normal Stress Sensor” (NSS). The NSS is a monolithic rheometer plates containing 

miniature capacitive pressure sensors at various radical locations. Each sensor has a 

square pressure-sensing membrane (1 mm × 1 mm); the maximum deflection of the 

membrane is of order of microns (µm). This is the basis of the claim that the axial 

compliance of the NSS measuring system is negligible. The silicon-on-insulator (SOI) 

disk can easily meet the required smoothness of the rheometer plate containing pressure 

sensors. The SOI wafer contains three layers: a thick “handle silicon” layer that will be 

ultimately removed, a device silicon layer from which the membrane is fabricated, and an 

intermediate buried oxide layer used as an etch stop layer to allow precise control of the 

membrane thickness. Details of the photolithography and etching are given by Baek and 

Magda [44]. The result was a monolithic, perfectly smooth rheometer plate containing 

eight pressure sensors as sketched in Figure 3.5. As indicated by its name, the capacitive 

pressure sensor works like a capacitor that measures the voltage due to change of the gap 

between the silicon membrane and the conductor deposit in the silica wafer, and 

transferred digitally into specific reading. The baseline reading under the no pressure 

condition depends on the wet etching procedure and differs from each individual sensors; 

the output reading due to the applied external pressure is used to calculate the pressure 
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value using the calibration obtained using the standard pressures. The pressure sensors 

are symmetrically located around the plate center point at radial positions 2.5 mm, 5.0 

mm, 7.5 mm and 10.0 mm, respectively. The NSS was supplied with a signal processing 

circuitry and DAQ software for a personal computer. The sensors were calibrated by 

applying known air pressure to calibration ports fabricated on the NSS. The sensor plate 

used on the prototype NSS Weissenberg rheometer had one of the pressure sensors at a 

radical position 2.5 mm from the plate center not function normally; for the NSS used 

with the ARES rheometer, all eight pressure-sensors were functional.  
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CHAPTER 4 
 
 

RESULTS AND DISCUSSION 

4.1 The Start-up Behavior of N1 for PDMS Measurement 

On start up of steady shear flow, the time tr for 1N  to reach a steady value may be 

large for a viscoelastic liquid due to both the inherent material relaxation time and the 

axial compliance error (Section 2.3). The inherent material relaxation time  can be 

estimated from steady-state properties as
0

0,1

2�
�

� � , where 0� is the zero-shear-rate 

viscosity, and 1,0 is the zero-shear-rate limit of the first normal stress difference 

coefficient [19]. Figure 4.1 and Figure 4.2 show the steady state values of � and 1N , as 

measured for the PDMS sample on the Weissenberg rheometer using the LVDT 

measuring systems, with 25 mm plate and 0.04 rad cone. The measured 0�  values are 

shown in Table 4.1, obviously 294 � 8 Pa�S, as expected from the supplier’s values. 

Using the low-shear-rate values of 1N  in Figure 4.2, 1,0 is estimated as 0.9 Pa, giving 

05.0+� s. Figure 4.3 shows the start-up and flow cessation behavior of 1N  for the same 

PDMS material on the Weissenberg and the response time tr far exceeds  ( 15+rt s). 

Here tr is defined as time required for 1N  to decay to 37% of its steady-state value after 
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flow cessation. This demonstrates that the axial compliance error is substantial, probably 

due to high sample viscosity and the highly sensitive normal force spring on the 

Weissenberg rheometer (
�

�
�

�
�

2
0,1 ). The ARES rheometer modified to reduce axial 

compliance (Section 3.4) was used to obtain 1N  start-up results for NIST fluid SRM-

1490 using the NSS pressure sensor plate (unfortunately PDMS was not available). 

Values for 0� and 1N  supplied by NIST for SRM-1490 (Table 4.1) can be used to 

estimate the relaxation time of SRM-1490 ( s1+� ). Figure 4.4 shows the start-up and 

flow cessation behavior of 1N  for SRM-1490 fluid in the modified cone-and-plate 

ARES, with 0.08 rad cone and plate of 25 mm in diameter, under the shear rates of 20 s-1. 

The relaxation curve is used to estimate the response time of SRM-1490, 3.027.1 �+rt s. 

This is quite close to the inherent relaxation time of the SRM-1490 relaxation time, 

1+� s. The measured 1N  response time, tr, and inherent relaxation time, , of PDMS 

fluid and NIST SRM 1490 are summarized in Table 4.1.  

The measured 1N  response time, tr, is expected to be equivalent to the theoretical 

calculated relaxation time  in the absence of any measurement error. However, as shown 

in Table 4.1, the tr value of PDMS fluid greatly exceeds ; whereas �+rt  for NIST 

SRM-1490 fluid. 

The difference in these results for these two fluids is considered to be due to the 

two different measuring instruments: the Wenssenberg R17 rheometer with a large axial 

compliance and the modified ARES with little axial compliance. The results reveal the 

dramatically delayed response of normal force measurement on the R-17 rheometer due 
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to the instrument compliance. Axial instrument compliance may lead to a misleading 

transient response measurement giving unreliable estimations of the material 

characteristic relaxation time measurement. The results also show that this problem can 

be avoided by using NSS to measure the transient 1N  response on a stiff rheometer. 

4.1.1 Effect of the Natural Frequency of the Measuring System 

Figure 4.5 shows the start-up behavior of the apparent 1N  value of PDMS fluid 

measured in the Weissenberg Rheogoniometer, with 0.038 rad cone and plate of 25 mm 

diameter, at the shear rate of 9.8 s-1. The time-dependent curves shown in Figure 4.5 

were obtained simultaneously by two normal force measuring systems: the LVDT system 

(open circles) and the NSS system (stars). The LVDT provides an analog signal whereas 

the NSS provides the pressure value at the locations of the eight sensors every 0.1 s. 

These local pressure readings were time-average over an interval of 1 second, and the 

result was fit to Equation 2.25 for the radical pressure profile in order to calculate 1N . 

Superficially, the LVDT curve is smoother, but this is only because the LVDT cannot 

detect higher frequency normal force variations.  In the Weissenberg rheometer under the 

conditions of Figure 4.5, the period of cone rotation is 16.7 s. This is almost exactly 

equal to the period of oscillations of the highly regular 1N  curve measured by the NSS. 

Figure 4.5 reveals that each of these two measuring system has its own natural 

frequency: the natural frequency of the NSS is high as 137 kHz as reported by the 

Rheosense Inc. to be, while the natural frequency of LVDT system is apparently too low 

to detect the fluctuations of the normal force signal of high frequency associated with 

imperfections in the motor rotation. As a result, the measurement of the LVDT gives a 

fault impression that the flow field is very uniform and stable. In this manner, the NSS 
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with a high natural frequency is more reliable than the traditional LVDT system in 

detecting high frequency material response. 

4.1.2 Effect of the Tilted Misalignment of Cone and Plate 

on the Radical Pressure Profile 

As discussed in Section 2.3, the typical degree of tilted misalignment may cause 

radical asymmetry in the local pressure distribution and a shift of the maximum local 

pressure position, and the errors may be annihilated by the “averaging effect”.  Figure 

4.6 shows the local time-averaged pressures of the PDMS fluid as measured by the 

pressure sensors located in different positions of the NSS under shear rate of 9.8 s-1 with 

the use of 0.038 rad (2.2º) cone on the Weissenberg rheometer. Prior to measurement, the 

alignment of the cone and plate was adjusted following rheometer manual specifications 

(Chapter 3). The pressure data are shown in Figure 4.6, and the origin point 0 of the 

abscissa represents the center of the plate; the negative and the positive abscissa of the 

coordinates represent the left and the right side of the pressure sensor plate, respectively; 

and values of 5, 7.5, 10 represent the distances of the pressure sensors in mm from the 

centre of the plate. Only six pressure sensors are located 2.5mm from the plate center. On 

both sides of the pressure sensor plate, the pressure sensors closest to the center of the 

plates measured the higher local pressures, as expected from Equation 2.25 when 

1N +2 2N  being positive. Due to the second type of tilted misalignment (Figure 2.7), the 

local pressures measured on the left side and the right side were not equivalent in 

magnitudes, for either clockwise or counter clockwise rotation directions. However, as 

shown in Figure 4.6, the local pressures measured on the left hand side of the plate for 

the clockwise rotation were very close to those measured on the right side of the plate for 
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counter clockwise rotation, and vice versa. Thus the pressure error due to misalignment 

can be removed by averaged over both sides of plate for a given rotation direction, or by 

averaging the pressure on one side of the plate over both rotation directions. These 

observations agree with Adam’s results (Figure 2.9), thus confirming that the pressure 

distribution for Newton liquids applies to the non-Newtonian liquids. According to the 

simulation results of Wedgwood’s group for the shear-thinning materials (Chapter 2), the 

maximum slope of the tilt is between line of 0 to π and line of 
2
�  to 

2
3�  in the top view 

coordinates as shown in Figure 4.6. The exact maximum tilted line can be located if the 

phase shift of the material can be determined. However, this calculation will be defeated 

to the future works. 

4.1.3 Effect of ‘Wobble’ on the Time-dependent Local Pressure 

In addition, a new phenomenon termed the “wobble error” was discovered based 

on the observations shown in Figure 4.7. Figure 4.7 contains the output signals of 

pressure sensors at the same distance from the center of the plate but on the opposite 

sides. Both signals oscillate with a period equal to the period of cone rotation, but the 

oscillations are 180 degrees out of phase. The “wobble error” may be caused by the third 

type of misalignment (see Figure 2.7 (c)). The measurements suggest that the 

misalignment in our Weissenberg R-17 has a combination of the tiled plate and tiled cone 

with a perpendicular rotating axial, as sketched in Figure 4.8. However, the newly 

discovered Wobble error has not yet been systematically investigated. It is interesting to 

note that similar effect is observed with the NSS for cone-plate flows of NIST SRM-2490 
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on an ARES rheometer (University of Minnesota), suggesting this is a universal 

phenomenon in measuring the N2 using the pressure distribution method. 

4.2 Steady-shear Flow Properties of Solvent-free 

Ambiance Temperature PDMS 

Despite of the flow irregularities on the Weissenberg rheometer just discussed, 

with appropriate averaging, it was found to be possible to use the NSS to measure the 

shear properties, i.e. the first and the second normal stress differences and the viscosity of 

the shear pure PDMS melt at room temperature.  

4.2.1 Measurement of the Radial Local Normal Pressure Profile 

Figure 4.9 shows the time-averaged radial pressure profile, and the misalignment 

error leading to radical asymmetry is apparent. However, as discussed in Section 4.1, this 

error can be eliminated by averaging local pressure over both sides of the plate and/or 

over both clockwise and counterclockwise rotations. Figure 4.9 shows the results so 

obtained at various shear rates. Figure 4.9 contains the local pressure function of the 

normalized position, 
R
r , where r is the position of the pressure sensor and R is the 

radium of the pressure sensor plate. Equation 2.25 shows that theoretically the local 

normal pressures (Π22-P0) is a linear function of logarithm of the normalized position, 

�
�
�

�
�
�

R
rln . As discussed in Section 2.4.2.1, 1N  and 2N  can be obtained from the slope and 

intercept of this linear function. Figure 4.9 shows the plots of the measured local normal 

pressure against the normalized radial position under a series of shear rates: 6.19 s-1, 7.80 

s-1, 9.82 s-1, 12.38 s-1 and 15.6 s-1. It was observed that the PDMS sample could be 
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sheared up to the maximum shear rate of 15.6 s-1 before it exhibited edge fracture. The 

local pressures plotted shown in Figure 4.9 were averaged in three manners: with respect 

to time, clockwise and counterclockwise rotations, and left hand and right hand sides of 

the pressure plate. In this way the misalignment error can be eliminated as proved in 

Section 4.1. It should be noted that, while time-averaging is obviously valid in the steady 

state; for the second and the third manners of averaging, an assumption has been made 

about the average effects on the wedge flow as discussed in Section 2.2. This assumption 

is justified by the closeness of the experimental radial pressure profiles in Figure 4.9 

such that expected for an ideal cone-and-plate flow.  

As shown in Figure 4.9, all the averaged pressure distribution functions are linear 

functions of the logarithm of the dimensionless position. The effects of the shear rate are 

also demonstrated: the intercept of linear function of the pressure distribution increases 

with the increasing shear rate; the slope of the local normal pressure function is negative 

and decreases in magnitude with the decreasing shear rates. As discussed in Chapter 2, 

the linear pressure distribution function can be used to determine the properties, 1N  and 

2N , of the test fluid. According to Equation 2.25, 1N  and 2N  are both parameters of the 

pressure distribution function, in which the intercept represents the negative value of 2N  

and the slope indicates the term including 1N  and 2N , that is, -( 1N +2 2N ). The values of 

1N  determined from the averaged pressure distributions in Figure 4.9 are compared to 

the values of 1N  independently measured with the normal force LVDT in Figure 4.10. 

The agreement is excellent, confirming once again that the averaging procedure 
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eliminates the effects of flow irregularities of flow irregularities. Values of the ratio 

1

2

N
N

���  obtained from Figure 4.9 are compared to literature results in the next section. 

4.2.2 Determination of the Normal Stress Ratio, 
1

2

N
N

��� , 

of Solvent-free PDMS at Room Temperature 

The normal stress ratio, 
1

2

N
N

��� , is a frequently reported elastic property 

(Table 2.1) just because it is almost independent of shear rate and its value correlated 

with the flow instability of materials. Figure 4.11 shows the measured normal stress 

difference ratio of pure PDMS melt at room temperature obtained from the averaged 

pressure profiles of Figure 4.9 to facilitate comparison with previously published results 

for polystyrene [69]. The abscissa is the dimensionless shear rate , i , defined as 

, i �
Ý ��� �1,0

2�
. The measured average value of the normal stress ratio for PDMS fluid was 

01.014.0 � . The normal stress ratio reported here is within the range of �  values 

(0.101—0.154) measured by Di Landro et al. (2003) [65] for non-Newtonian PDMS 

melts (Aldrich PDMS 100 and Polymerland PDMS 600) at 20 °C using the rod-climbing 

method. 
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Figure 4.5. Time-dependent apparent N1 value after start-up of flow at shear rate 9.8 s-1 
for PDMS sample in Weissenberg R-17 rheometer as measured simultaneously with two 
different normal force systems at 25 oC: (o) LVDT; (*) pressure sensor plate. Cone angle 
was 0.038 rad, cone radius was 12.5 mm. 
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Figure 4.8. The Combination of the two types of flatness misalignment. 

 

 

Type 2 tilted misalignment 

Type 1 tilted misalignment 

Combination of the 2 



 
  

87 

 

Fi
gu

re
 4

.9
. P

lo
ts

 o
f l

oc
al

 n
or

m
al

 p
re

ss
ur

e 
as

 a
 fu

nc
tio

n 
of

 ln
(r

/R
) a

t t
he

 sh
ea

r r
at

es
 sh

ow
n 

in
 th

e 
le

ge
nd

, a
s m

ea
su

re
d 

fo
r P

D
M

S 
us

in
g 

N
SS

 o
n 

W
ei

ss
en

be
rg

 rh
eo

m
et

er
 o

f r
oo

m
 te

m
pe

ra
tu

re
. C

on
e 

an
gl

e 
w

as
 0

.0
38

 ra
d,

 c
on

e 
ra

di
us

 w
as

 1
2.

5 
m

m
, a

nd
 lo

ca
l p

re
ss

ur
es

 h
av

e 
be

en
 a

ve
ra

ge
d 

ov
er

 b
ot

h 
ha

lv
es

 o
f t

he
 N

SS
 a

nd
 o

ve
r b

ot
h 

cl
oc

kw
is

e 
an

d 
co

un
te

rc
lo

ck
w

is
e 

ro
ta

tio
ns

. 



 
  

88 

 

Fi
gu

re
 4

.1
0.

 C
om

pa
ris

on
 o

f 
1

N
 v

al
ue

s 
ob

ta
in

ed
 b

y 
tw

o 
in

de
pe

nd
en

t m
et

ho
ds

: f
ro

m
 N

SS
 p

re
ss

ur
e 

pr
of

ile
s 

of
 F

ig
ur

e 
4.

9 
(s

qu
ar

e)
 a

nd
 

fr
om

 L
V

D
T 

(tr
ia

ng
le

). 



 
  

89 

 

Fi
gu

re
 4

.1
1.

 D
im

en
si

on
le

ss
 W

ei
ss

en
be

rg
 n

um
be

r 
as

 o
bt

ai
ne

d 
us

in
g 

ra
di

al
 p

re
ss

ur
e 

di
st

rib
ut

io
n 

m
et

ho
d 

fo
r 

po
ly

st
yr

en
e 

so
lu

tio
ns

 
(R

ef
er

en
ce

 [6
9]

), 
an

d 
PD

M
S 

(th
is

 th
es

is
). 



 
 

 

CHAPTER 5 
 
 

CONCLUSIONS 

This work focused on the application of a novel MEMS pressure sensor plate with 

the traditional rotating rheometer to evaluate various error sources, such as misalignment 

of the cone and the plate, and the effects of axial compliance and natural frequency. It 

also focuses on the measurement of the normal rheological functions of a viscoelastic 

material. Comparison was made when possible to normal force measurements made with 

a traditional LVDT/normal force spring system. A sensitive spring must be used with the 

LVDT system, which results in a relatively large axial compliance and relatively low 

natural frequency. 

 The transient apparent first normal stress 1N  value upon startup shear flow 

obtained with the NFS-LVDT and the NSS showed the effects of the natural frequency of 

the measuring system. The LVDT system has a low natural frequency; hence it cannot 

follow the relatively high frequency of the signals associated with motor vibrations.   

Thus, it cannot distinguish between flow is highly smooth and stable and high frequency 

disable. By contrast, with a much higher natural frequency, the NSS is able to detect the 

signal periodic fluctuations associated with the rotations of the rheometer motor. Axial 

compliance may affect the response of the rheometer for the apparent 1N  value upon 

start-up of shear flow.  If axial compliance is negligible, then this response time can be 

used to estimate the average relaxation time of the material. This was found to be the case 
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for the 1N  startup nehavior of NIST fluid SRM-1490 measured with the NSS on an 

ARES theometer modified to increase axial stiffness. This was not the case for LVDT 

measurements of PDMS transient behavior on the Weissenberg rheometer. That is, the 

response time observed for the apparent 1N  value upon startup of shear flow for PDMS 

greatly exceeded the average relaxation time calculated from the steady shear properties. 

 Local pressure measurements made with the NSS were used to study the 

misalignment effect. The results show that with a typical degree of misalignment, in the 

cone-and-plate geometry, the local pressures are not symmetric about the center point of 

the rheometer plate due to the “Wedge effect” first noted by Adams and Lodge [32]. 

However, the misalignment error of the local pressure value is aqntisymmetric about the 

plate center point, and thus can be eliminated by averaging the pressure profile over both 

sides of the rheometer plate, at least for PDMS. It can also be eliminated by averaging 

over both clockwise and ccouterclockwise rotation results. This conclusion agrees with 

the simulation prediction by Wedgewood’s group [33].   

The pressure profiles so averaged agree with fluid mechanics predictions for ideal 

cone-and-plate and were used to calculate N1 and N2 fro PDMS, and the normal stress 

ratio 
1

2

N
N

��� . The value obtained for 
1

2
N

N�  was relatively insensitive to shear rate 

and equal to 01.014.0 � . This is reasonably close to the values reported by Di Landro et 

al. [65], 
1

2
N

N� = 0.105-0.189, as measured for PDMS samples of various molecular 

weights using the rod-climbing method. Lastly, a periodic oscillation in the measured 

local pressure value during steady shear flow of unknown origin was observed. The 
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period of the oscillation equaled that differed by 180 degrees on the opposite sides of the 

rheometer plate. 
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