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ABSTRACT

The rotational rheometer (cone-and-plate or parallel plates rheometer) is one of
the most effective devices for measuring rheological properties of the viscoelastic liquid:
the viscosity (77), the first normal stress difference (N,). However, it has been found
practically that some errors were potentially associated with this type of rheometer: The
“axial compliance error” is due to the use of linear-variable-displacement-transducer
(LVDT) for first normal stress ( NV, ) measurement, and it is potentially significant in the
time-dependent material response measurement. Secondly, the low natural frequencies of
sensitive LVDT springs fail in recording the high frequency response of a material. Last-
ly, misalignment of the sample holder (cone and plate) will change the geometry of the
sample. These errors were quantified by performing rheology studies with the LVDT de-
tached and a novel device fabricated with Micro-Electronic-Machining-System (MEMS)
technique. The device is a pressure sensor plate of 25mm in diameter. It contains eight
miniature capacitive pressure sensors, allowing measurements of the radical pressure pro-

file, from which both the first normal stress (N, ) and the second normal stress ( N, ) can
be calculated.
The apparent response time of N, to start-up of NIST-1490 shear flow was meas-

ured. The apparent response time was longer being measured with the LVDT than being

measured with the pressure sensor plate, indicating that significant axial compliance er-



rors were present during LVDT measurements. The natural frequency of the LVDT was
lower than the high frequency behavior of the tested fluid NIST-1490.

A slight cone-plate misalignment, smaller than the manufacturer’s suggested lim-
it, developed a sinusoid-shaped radical pressure profile of the Poly(dimethylsiloxane)
(PDMS), corresponding to the axial plane of the tilt. However, this misalignment error
can be reduced significantly by averaging the pressure profiles over clockwise and coun-

terclockwise rotation manners.

. . N
With the pressure sensor plate, the normal stress ratio, ¥ = ——= , was measured
1

to be 0.189 for PDMS.

v
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CHAPTER 1

INTRODUCTION: RELEVANCE AND SCOPE

Polymers are a large class of materials consisting of many small molecules or
monomers that can be linked together and form long trains. They are known as
macromolecules. Humans have been taking advantage of the versatility of polymers for
centuries. Natural and synthetic polymers can be produced with a wide range of stiffness,
strength, heat resistance, density and price [1]. With continuous research into the science

and applications of polymers, they are playing an ever increasing role in society.

The processing behavior of molten thermoplastics depends on their rheological
properties, which are often measured in cone-and-plate rheometers where shear flow is
produced [2]. There are three rheological properties in the shear flow field (see Chapter 2

for definitions): the viscosity 77, the first normal stress difference N, and the second
normal stress difference N,. The cone-and-plate rheometer is one of the most common

types of commercial rheometers in the world. However, the cone-and-plate rheometer
will not give the correct values for the three properties if the flow field is disturbed by a
slight misalignment of the cone and the plate. Other measurement errors associated with
the rheometer transducer, such as compliance error and response time error, can also
distort the results. Unfortunately, most rheologists have not developed a method to check

the magnitude of these errors. In our lab, we use a novel pressure sensor plate recently



available to detect all the errors mentioned above. Details of this pressure sensor plate
and associated method are presented in Chapter 2 and 3. The principle goal of this thesis
work was to use this novel pressure sensor plate to evaluate potential measurement errors
of a standard cone-and-plate rheometer.

During polymer processing, unfavorable flow instabilities may be caused by the
elastic properties of materials [3-9]. Theoretically, elastic instabilities are often directly

) ) ) . N
associated with the ratio of the second and the first normal stress differences, y = _Vz’
1

which is called the normal stress ratio. For certain type of polymer processing operations,

e.g., coextrusion and wire coating, the magnitude of y can be used to predict whether the

polymer melts operation is stable or not [10-12]. Consequently, accurate measurement of
first and second normal stress differences is very important regarding industrial polymer
processing. In this sense, the second goal of this thesis work was to use the novel pressure

sensor plate to measure an accurate value of y for the polymer fluids tested.

This novel pressure sensor plate, called the “Normal Stress Sensor (NSS)” was
obtained from Rheosense Inc. (San Ramon, CA) and is based on Micro-Electrical-
Machining System (MEMS) technology. This thesis is mainly about the practical
application of the NSS to obtain the radical pressure distribution in order to explore
measuring system errors, misalignment error, compliance error and transducer response
time error and to measure the normal stress differences simultaneously.
Poly(dimethylsiloxane) (PDMS) was used as a test polymer melt to compare the
frequency response due to the different natural frequencies of the conventional normal

force transducer, i.e., linear variable differential transducer, and the NSS. The first and



second normal stress differences of PDMS were also evaluated with the help of the
pressure sensor plate. Measurements of the apparent response time of N; to start up of
flow shear flow were carried out with and without the working Linear Variable
Displacement Transducer (LVDT) to study the effect of the axial compliance due to the

finite stiffness of the LVDT transducer system. The apparent response time of N, was

determined directly via the duration of the starting-up behavior and was compared with
the theoretical value predicted by the equation derived from Hanson ez al. [13]. In this
experiment, a standard NIST (National Institute of Standards and Testing, Gaithersburg,
MD) viscoelastic fluid SRM (Standard reference material) 1490 was used.

The definitions of the three shear flow properties of materials will be presented in
the next section. Possible system errors will be discussed in Section 2.3 after the cone-

and-plate measuring system is introduced.



CHAPTER 2
BACKGROUND AND LITERATURE SURVEY

2.1 Importance of the Normal Stress Differences, N, and N,

Flow instabilities [2-7] occur in the processing of polymer melts and polymer
solutions under certain flowing conditions. Figure 2.1 shows the stable and unstable
flows of the viscoelastic fluid when it was processed in an extruder [6], which is a very
popular industrial polymer processing method. If the flow instability is developed in an
industrial polymer processing, it will lead to product defects like surface roughness,
which is called “shark skin” in industry [2-4], or the interfacial irregularity (Figure 2.2)
in a multiphase coextrusion [7].

Numerous methods [8-12] have been developed to predict the velocity field of
different type processing flows in order to avoid the flow instabilities. It is known that
this unfavorable flow instability is often caused by the elastic properties of materials.

Theoretically, elastic instabilities are linked with the values of the normal stress ratio

N
v = _Vz [8-10]. In general, the relationship of the fluid instabilities and the rheological
1

properties, i.e. the first and the second normal stress differences (N,, N,) or coefficients
(yv,,¥,) can be predicted by following model: large values of the first normal stress

difference coefficient y, tend to destabilize curvilinear shear flows of elastic liquids,

leading to flow instabilities at low shear rates; on the contrary, large negative values of



the second normal stress difference coefficient y, tend to stabilize curvilinear shear

flows. Therefore, unstable flow behavior can be expected for polymer melts in flow fields

. : . N, . .
with curved streamlines when the value of the normal stress ratio 7 = ——2= is small in
1

magnitude [14]. However, for coextrusion of two different immiscible polymer melts
through a noncircular die (Figure 2.2), unstable behavior is known to occur when N, has

large negative values [7,14]. Based on this theory, measurement of the first and second
normal stress differences becomes significantly important regarding the industrial
polymer process. Unfortunately, many constitutive equations or the stress-strain relations,
which are essential to the validity of the numerical results, are uncertain for commercial
polymer melts. Numerical technique can be applied to a limited field to simulate some
elastic fluids like Boger fluid [15] or dilute polymer solutions [16], which are simpler and
better understood in terms of the constitutive equations.

Simultaneously, experimental techniques have been used to obtain the three
rheological properties, i.e., the viscosity and the two normal stress differences, not only
for simple elastic fluids but also some very important commercial polymer melts, such as
polyethylene, polystyrene, etc. [7,17]. However, some experimental methods are
controversial because of their theoretically uncertainty [18]. Some other methods are
widely accepted in theory, but due to the mechanical and operation difficulties [19,20],
they may not be accurate. This is especially true for measurements of the second normal
stress, which is much smaller than the other two properties for the normal shear-thinning
polymer melts. The cone-and-plate pressure distribution method, which has long

investigated and developed in our lab [14,21-26], is among these methods. But, due to the



research work of many rheologists in several decades (from 1964 to present), this method
has become more and more accurate and reliable. The details introduction of this method

will be reviewed in the latter sections in this chapter.

2.2 Ideal Cone-plate Rheometry for Simple Shear Flow

The state of stress for a non-Newtonian fluid in any arbitrary flow field can be

described by a second order tensor; the total stress tensor L1 is given as [27]:

T, —P Ty T3
[I=7-Po=| 1, 7,, — P Ty 2. 1)
T3 T3 Ty —P

In this equation, P is the isotropic thermodynamic pressure; 7 are components of
the deviatoric shear stress tensor, and subscripts 1, 2, and 3 denote the three coordinate
directions. This notation for subscripts will be used throughout this thesis. Components
on the diagonal of the total stress tensor are called normal stresses, and the oft-diagonal

components are called shear stresses. For an isotropic fluid, the stress tensor is usually

assumed to be symmetrical, that is, HU equals toIl ;i - Thus, there are six independent

stress components in the symmetrical total stress tensor. In real flows, flow kinetics are

so complicated that all six components of IT should be assumed to be nonzero.

Experimentally, it is very difficult to measure all six stress components. Therefore, we

require a reduction in the number of stress components in order to measure properties.
Such a reduction can be accomplished by imposing a steady shear flow like planar

couette flow (Figure 2.3). In a simple shear flow, the velocity field is given by:



V,=V(y), and V, =V, =0 (2.2)

For this type of flow, the rate of strain tensor is given as

” (2. 3)

'
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in this relation, y is defined as rate of strain, or a normal definition shear rate. The shear
rate in a steady shear flow will not change due to the coordinate transformation x =—x,
y =-y,and z =—z, due to the flow symmetry. Thus the total stress tensor, a function

of the shear rate, has the following nonzero stress components:

= 7, 7,-P 0 (2. 4)

This equation is valid only if the total stress tensor is symmetric. So the three material
functions for simple shear flow are defined as:

shear stress 7, =7, =1y,

the first normal stress difference N, =7, —7,, or

Nl
.0 0

/4

the first normal stress difference coefficient y, =

the second normal stress difference N, =7, —7;; or

2

) ) N.
the second normal stress difference coefficient y, = —-.

For the time being, the other definition is usually considered:



: N
the normal stress ratio y = N =———

The definition of the first and second normal stress differences (N, and N,) by

subtraction of two normal stresses cancels out the thermodynamic pressure, which can
not be independently measurable from the deviatory normal stresses. The steady shear
flow can also be categorized as one of the many types of viscometric flows for which the
rate of strain tensor is equivalent to Equation 2.3 on a local level. As a matter of fact,
steady shear flow in the ideal cone-and-plate is another type of viscometric flow. In the

ideal cone-and-plate rheometer, y has the same value at all locations within the gap and

. . Q- Q : : . )
is given by y = U , where Q is the angular velocity of rotation and « is
cos a)- r cos(a)

the cone angle. As discussed in Section 2.3, misalignment will lead to a violation of the

uniform shear rate assumption.

2.3 The Traditional Measuring System for the First Normal
Stress Difference

A linear variable differential transducer (LVDT) is presently applied in the most
traditional rotating cone-and-plate rheometers (Weissenberg Rheometer) in our lab. The
detailed schematic diagram of the LVDT-cone-and-plate rheometer is shown in Figure
2.4. The tested sample is held between the cone and plate. During measurement, the
normal thrust from the static top plate is transmitted along air bearing torsion bar (barely
no friction) to a cantilever spring. When the cone is rotating, correspondent stresses occur
throughout the simply sheared sample inside the cone and plate and response in three

directions: the shear stress in the flow direction, the first normal stress difference in the



normal direction and the second normal stress difference in the neutral direction. For an

ideal cone-and-plate rheometer, the flow field is viscometric with uniform shear rate and

given by:
T
——a
V¢:rQ-72T ,and V. =V, =0 (2.5)
T 0
2

where r is radial position in spherical coordinates; € is the angular velocity of the cone;
a is the cone angle.
The shear stress and the first normal stress differences are related to the measured

toque M and axial normal thrust F [28]:

7,4 (}/,Z) = % , (2. 6a)
N,(7.1)= 2Z§52’t) (2. 6b)

From Equation 2.6b, the first normal stress difference can be determined by
measuring the total vertical thrust ' on the plate using the deflection of LVDT. As the
vertical thrust deflects the spring from its null position, the LVDT generates an electronic
signal (in volts) with intensity proportional to the deflection at the free end of the
cantilever spring. This voltage value is directly proportional to the thrust developed by
the test fluid.

An LVDT (Figure 2.6) is one type of displacement transducer with a high degree

of robustness. In the Weissenberg Rheometer, LVDT is very sensitive for measuring the



10

normal thrust. According to the tests in our lab, the smallest pressure that could be
reliably measured by the LVDT in Wessenberg Rheometer is around 15 Pascal [25].
However, the LVDT works due to the displacement, which changes the position of the
top plate in the Rheometer, causing the instrument compliance. This leads to a violation
of Equation 2.5, which is based on the assumption that the geometric tip of the truncated
cone just touches the surface of the rheometer plate. Details of how the compliance of the

LVDT spring changes the sample gap will be discussed in the following section.

2.4 Potential Errors in the Use of the Cone-and-plate Rheometer
2.4.1 Misalignment of the Cone-and-plate Rheometer
Equations 2.5 and 2.6 are based on the assumption that the flow field is

viscometric with uniform shear rate y throughout the cone-and-plate gap. This is not true

if the cone and plate are misaligned. There are three types of misalignment as
demonstrated in Figure 2.7: (1). cone and plate are not concentric (Figure 2.7 (a)); (2).
axis of stationary plate is not perpendicular to the vertical rotation axis ---- the stationary
plate is tilted (Figure 2.7 (b)); (3). axis of rotation is not perpendicular to the vertical axis
of the stationary plate ---- the rotating cone is tilted (Figure 2.7 (c)).

The misalignment of concentricity and flatness of the cone-and-plate Rheometers,
including the Weissenberg Rheometer in our lab, are unavoidable but could be
minimized. A dial gauge is used for the adjustment. According to the manual of
Weissenberg Rheometer, a minor misalighment smaller than 12.7 microns (0.0005 inch)
reading in dial gauge for the concentricity, and maximum 2.5 microns or 0.0001 inch

reading in dial gauge for the flatness were negligible misalignment errors. However,
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these criteria have not been justified; and only sparse research work has been reported
studying considerable misalignment errors beyond the negligible limit [29].

One of these misalignments, i.e. tilted cone with respect to the vertical axis of the
stationary plate, is the only type of misalignment that has been studied and reported by
rheologists (Greensmith et al., Taylor et al., Adams and Lodge, Dudgeon and Wedwood)
[30-33]. The phenomenon was first observed by Greensmith ez al. (1953) [30]. Taylor et
al. (1957) [31] investigated it experimentally and theoretically. These two research
groups both used Newtonian incompressible fluid in parallel plate geometry. For a
Newtonian liquid, the pressure is expected to be atmospheric at all locations within the
rheometer in the absence of inertia. They found the ‘wedge effect’, also called ‘Michelle
bearing effect’. The wedge effect means that the tilted misalignment results in non-
parallelism of the two plates and cause a converging flow in one half of the gap and a
diverging flow in the other half, the two halves being separated by the vertical plane
perpendicular to the line of greatest slope of the nonhorizontal plate. When the gap is
narrow and the liquid is viscous, a very small degree of nonparallelism can lead to a large
pressure maximum in the converging flow and a large pressure minimum in the
converging flow. In addition, they also found that the pressure distributions over the two
halves of either plate were symmetrical apart from the difference of sign so that the
wedge effect could be eliminated, at least for Newtonian fluid, by averaging the pressures
measured with two senses of rotation: forward and reverse. Adams et al. (1963) [32]
continued the previous studies, and extended the investigation into cone-and-plate
geometry, still employing Newtonian liquids. The pressure distribution measured using

pressure manometer in both geometries, parallel-plates and cone-and-plate, were now
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known to be inaccurate due to the “hole pressure error” (Figure 2.8) [34]. Figure 2.9
shows the qualitative shape of the radial pressure profile measured by Adams and Lodge
for a Newtonian fluid in a tilted cone-and-plate rheometer. As shown in the diagram, the
local pressures were measured along a line perpendicular to the greatest slope of cone tilt.
The measured pressure profile displays the symmetrically disposed maximum and
minimum interchange on reversal of the rotation sense in direction. The average of
pressures recorded at the same position on the plate for the two rotating directions was
close to zero (dashed line in Figure 2.9). These results were in agreement with Saffman
and Taylor’s (1963) that zero pressure points are along the line with the greatest slope;
the distribution of pressure along the line of greatest slope displayed a small but definite
nonuniformity, which was independent of the rotation direction. Even with the same
conditions like same rotation speed and rim separation, this phenomenon differed with
respect to the variable types of geometry, i.e., parallel plates vs. cone-and-plate. For
example, the greatest pressure occurs near the axis of rotation and is larger in the cone-
and-plate system than that in the parallel plates system [32]. It is worthwhile to notice
that the unit of pressure was not marked in Figure 2.9 to emphasize the pressure outline
in the flow field. As a matter of fact, the pressure was small, which would make the result
questionable. Dudgeon and Wedgewood (1993) theoretically simulated the flow fields of
various Non-Newtonian elastic fluids in the slightly misaligned cone-and-plate rheometer
[33]. Their results show: (1). For Newtonian flow, the polar normal stresses were
symmetric but change in sign on the line at right angle to the line of the greatest slope in
cone tilt, which was in agreement with earlier pressure profile results for Newtonian

fluids in tilted cone-and-plate flows. (2). For non-Newtonian flow, the polar normal
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stresses profile became asymmetric with regard tilt axis line; higher elasticity of the fluid
is, higher asetricity of the polar normal stresses were expected (Figure 2. 10).

Dudgeon and Wedgewood theoretically predicted the different misalignment
effects on fluid with various viscoelasticity properties. Their results await experimental
verifications. The difficulty of verifying their results lies in the facts that no instruments
are able to measure the stresses tensors directly. In this thesis, the noval Micro-Electro-
Machining-System (MEMS) pressure sensor plate was used and it solved the technique
difficulty. This MEMS plate can accurately measure the local pressure distribution of the
fluid so that the fluid disturbance due to a negletible misalignment (on the dial gauge)
could be observed directly. Consequently, former studies on the misalignment were
confirmed. Also a fluid irregularity, the wobble error, was detected for the first time in
this thesis research. And the most important achievement of this thesis work is a detailed
study of how the tilt-axis misalignments that cause a nonuniform shear distort the radical
pressure distribution.

This thesis research differs in various ways with the previous studies: firstly, it
focused on cone-and-plate rheometry; secondly, it focused on the unavoidable small
misalignment; thirdly, it employs a novel pressure sensor plate experimentally with non-
Newtonian fluids. Presently, no literature was reported on the study of the other type of
misalignment, i.e., the tilted stationary plate with respect to the vertical axis of rotation.

The effects of the third type of misalignment remain unknown presently.
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2.4.2 Axial Transducer Compliance Error of the
Cone-and-plate Rheometer
This section reviews one of the main equipment defects, instrument compliance.

Instrument compliance contributes to the inaccuracy of N, measurements in the

traditional rotational rheometers. A precise transient normal force measurement in the
rotational rheometers requests unchanged gap geometry because a variation of the gap,
gap opening, will cause undesirable sample flow in the radial direction. With the
presence of the radial flow, the apparent time-dependent normal stress behavior will not
correspond to a true material property, but the instrument parameters. Such a “gap
opening” effect is defined as instrument compliance. Instrument compliance, unless
properly taken into account, may introduce considerable errors into dynamic rheological
measurements [35-38]. In traditional rotational rheometer measurements, instrument
compliance will introduce errors in two ways: (1), change in the original rotation position
in shear stress transducer; (2), change in the previously set separation of the cone and the
plate, which can also be called compressive/axial compliance error. This thesis work

focused on the effects of axial compliance in the measurement of N, .

The compliance error arises due to the mobility of the top plate/cone connected to
armature of the LVDT via a spring (Figure 2. 11). As the test fluid is sheared, a normal
thrust is generated due to the first normal stress difference, which pushes the top
plate/cone upward, thus changing the deflection of the measuring spring and the position
of the top plate/cone and subsequently the gap between the cone and plate. This process
is sketched in Figure 2.11. Details of the transducer LVDT, which are essential to

understand the measuring system, are discussed in Chapter 3. According to fluid
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mechanics analysis of the cone-and-plate rheometry, accurate gap setting of the truncated
cone and plate is crucial to the accuracy of the measurements. The departure of the gap
from its correct value introduces both a steady-state and a transient error:
1. Steady-state error: the hypothetical tip of the truncated cone will not just touch the top
surface of the rheometer plate, as required to obtain the correct steady-state velocity field
within the sample (Equation 2.5).
2. Transient measurement error: even if the steady-state axial compliance error is small, it
will be impossible to measure the true material response time. The time it takes the gap to
change (the “instrument time”) is comparable to the material response time [13,35-36].
Practically, one can adopt springs that are stiff enough to make the compressive
compliance error small enough to be neglected. Additionally, the stiff transducer will also
reduce the response time of the transducer, thus reducing the instrument response time.
On the other hand, spring with too large constants will fail in detecting a relatively small

N, value, resulting in low sensitiveity. One can eliminate by readjusting the rheometer

gap once steady flow is observed, which is the working principle of the force rebalance
transducer (FRT) from TA Instruments, Inc. [37]. However, the transient measurement
error cannot be eliminated unless one dispensed with the LVDT uses and uses an
alternative measuring method, such as the pressure sensor plate used in this thesis work.
Further more, the FRT uses an active servo loop to control the rheometer gap that may
result in thermal expansion of the sample during prolonged test (Figure 2.12) [37].

The existence of the instrument compliance and its influence on dynamic

rheological measurements has been explored previously and the physical definition of
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instrument complicance in terms of response time of either the instrument or the material
was developed [13,38-42].

Stretton’s test (Figure 2.13) successfully demonstrates the instrument compliance
in traditional thrometers. The constant C in Figure 2.13 corresponds to a dashpot
parameter created by sandwiching the test fluid between cone and plate, K represents the
normal force cantilever spring constant and m is the dead weight. With the inertia term,
damping term, normal force spring term and the force function taken into account, the

equation of motion based on Stratton’s test can be given as [35]:

)= m D) cdlO) g 2.7)

Among these terms, the dependence of the damping coefficient on the geometrical
variables of the instrument and on the rheological properties of the test fluids was
considered. The damping force, Fp, corresponding to an infinitesimal change in
separation between the cone and the plate, with incompressible Newtonian fluid inside,

was expressed as [35]:

_ 67nR

3
(24

F, = w (2.8)

where W is the separation velocity. The damping force corresponding to the compliance

force in the cone-and-plate fluid is directly proportional to the viscosity, 77, and the plate

radius, R, but inversely proportional to the third power of the cone angle, &’ . In another
word, a small cone and plate radius or the relatively large angle of the gap of the cone

and the plate will help to reduce the compliance error [35]. It should be noted that the
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separation of the cone and plate is considered infinitesimally ralative to the cone and
plate radius because the inertia term in Equation 2.7 was neglected. On substituting the
damping coefficient from Equation 2.8 into Equation 2.7, the solution for the time

dependent rheometer gap becomes [35]:

Xx=""_—1-¢c" | 2.9)
xmax

And [9, 39]
671R

r= , 2.10
K (2.10)

where x,_  is the maximum deflection of the normal force spring for a given

experimental condition. The system response time, 7, in Equation 2.10 is important and
used as a guide to determine conditions under which the rheometer can reliably measure
the normal stress growth.

Meissner et al. (1972) [38] firstly added a closed loop feedback system to a
classic Weinssenberg rheogoniometer (WRG) with a sufficiently stiff spring and
minimized the compliance error in the normal force measuring system. They found out
that the measured onset response of melted polymer was often a combination of material
and apparatus responses. Hansen er al. (1975) [13] quantitatively determined the
relationship of the characteristic response time, 7 , of the normal force measurement and
the characteristic time of the test fluid (material): the time for the apparent normal stress
to reach 63.2% of shear flow steady state should be much greater than the value of 7

theoretically deduced for a given apparatus configuration and fluid viscosity. In such a
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way, the value of 7 for the normal force measuring system was deduced theoretically.
However, Hansen’s result was based on Equation 2.10, which assume a Newtonian
sample and under the condition of neglecting inertial fluid term in Equation 2.7. It was
doubtful whether Hansen’s work was feasible for non-Newtonian flow. Zapas et al.
(1989) [35] developed a more universal relationship to describe the dramatic impact of
compliance error of constrained geometry regarding to the response time in uniaxial
extension and compression response, which was in agreement with single-step stress
relaxation of BKZ-type fluid, to the nonlinear region. All these studies contributed to a
complete description of the compliance phenomenon in various aspects such as
compliance time, instrumental accuracy, axial displacement, and so on.

In this thesis, Hansen’s criterion will apply to test the effectiveness of classic
Weinssenberg rheogoniometer (WRG) without FRT system in measuring the transient N,
for two test fluids (non-Newtonian fluid), in terms of instrument axial compliance time,
7 . In order to measure the longest relaxation time A of the sample being tested,
instrument axial compliance time, 7, should be much less than A. The relaxation time A
can be independently estimated with the experimentally accessible material properties,

i.e. the zero-shear-rate values of viscosity and first normal stress difference coefficient,

_ N],O . . _ \PI,O
n, and ¥, —7, by the relationship of /1—2 [9,13]. In the absence of a

significant instrument axial compliance time, A should also approximately equal to the

time it takes V) to reach 63.2% of its steady state value after onset of shear flow.
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2.4.3 Effects of Natural Frequency on the Measuring System:
Transducer Response Time

Physically, a system tends to oscillate at maximum amplitude at a certain
frequency. This phenomenon is called resonance, and this frequency is known as the
system’s resonant frequency, f,. When damping is small, the resonant frequency is
approximately equal to the natural frequency of the system, which is the frequency of

free vibrations. Commonly, natural frequency is related to resonant frequency by:

g=lo Lk @.11)

=27Z'_Z m

The dynamic operation of many measuring systems can be adequately represented
by a second order differential equation. For instance, the elementary galvanometer

exhibits second-order behavior is expressed by a single differential equation [43]:

i’;f (28w, )% +o,2)s = (o, k) 2. 12)

Equation 2.12 relates the input signal V (volt) to its output signal S (light-beam

displacement). Equation 2.12 includes three important instrument constants of a
. . . k

galvanometer: K , the sensitivity of the instrument in En V:I; o, =.|— , the natural
m

circular frequency of the instrument in l’" a% ecJ’ or the natural frequency in cps; and &,

the damping ratio. The second order system frequency response can be demonstrated by

Equation 2.13:
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2
- Dn 2. 13)

Vo, =0 + (20,0

~I=

This equation demonstrated the importance of the damping ratio and the natural circular
frequency. The curves in Figure 2.14 are based on equation 2. 13 and demonstrate the
frequency response, m, of the typical second-order instrument:

(1), for very low input-signal frequencies (a)l. << a)n) , the instrument responses ideally;
(2), for very high input-signal frequencies (a)l. >> a)n) , the instrument is completely
incapable of “following” the input signal; (3), the frequency response is the instrument
behavior when the input signal frequency @, happens to be nearly the same as the natural
circular frequency o, .

The compliance error of the measuring system of the Weinssenberg
rheogoniometer displays a typical second-order response (Equation 2.7). Consequently,
the natural circular frequency, ®,, of the LVDT measuring system is critical because the
system cannot measure the true frequency response of the material at frequencies greater
than @, . The Weinssenberg rheogoniometer bears LVDT spring with a moderate
stiffness in order to maintain a fairly high sensitivity for steady-state measurements. On
the other hand, the natural frequency of noval pressure sensor plate is much higher:

f, =137kHz [44]. So a goal of this thesis was set to compare the apparent frequency

response of a sample measured with the LVDT and the pressure sensor plate.
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2.5 Experimental Techniques for Measuring the Second
Normal Stress Difference
The stresses in a simple shear flow can be fully characterized by three

independent functions: viscosity (77 ), the first and second normal stress differences

(N,,N,) and the first and second normal stress difference coefficients (y,,y, ). Here the

normal stress differences are relative to the normal stress difference coefficients as [45]:
N =y 7", Ny=yp,p° (2.18)

where y is the shear rate in the shear flow. The second normal stress difference
coefficient y, is much smaller compared to the first normal stress difference N, in

magnitude and was assumed to be zero by Wessenberg (the “Wessenberg hypotheses’). In
1970’s, it was found that the second normal stress might play an important role on
rheological fluid instabilities. Consequently, compared to the fully developed commercial

rheometers for measuring 7 and y,, the techniques for measuring v, are limited and

have not been developed for commercial use. Devices were customized for scientific
measurements. Early measurements by Lodge et al. (1975) confirmed the presence of N,,
while their results were distorted to be positive by the “hole pressure error” [34]. Ginn
and Metzner (1969) [46] compared total thrust measurements in cone-and-plate and

plate-and-plate rheometers and found that N, should be negative values. The measured

N
normal stress coefficients, y = —72, were very small (Table 2.1) [23,26-27,44,46-70].

1
Table 2.1 also shows a summary of the methods applied to determine the normal stress

coefficient y .
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The early results of the normal stress ratio y were mostly small to zero or

sometimes even negative and were inconsistent, indicating that some methods were not
appropriate. There has been a steady improvement in methods for measuring y from the
radical pressure distribution in cone-and-plate rheometry (methods 14, 16, 17 in Table
2.1). Among all the methods (Table 2.1), measuring pressure distribution in the fluid
field using a novel “MEMS” pressure sensor plate is one of the most accurate methods
[21-25]. MEMS, which stands for Micro-Electric-Machining-Systems, is a semi
conductor processing technique. This technique makes it possible to fabricate miniature
pressure sensors with areas less than 1 mm?® thus allowing considerable decrease in the
size of rheometer plate. The technical details of the pressure sensor plate will be

presented in Chapter 3 when the experimental implementation is explained.

2.5.1 Theory of Pressure Distribution Method for
N, Measurement

The definitions of viscosity, the first and the second normal stress difference have
been introduced in Section 2.2. A detailed demonstration of their relationship with the
flow in the rotational rheometer will be presented in this section. The flow behavior of a
material can be understood by studying the stresses generated in response to a specified
flow field (stress-strain relationship) or constitutive equation. Typically, some simple
flow velocity fields of the polymer melts and polymer solutions are made and the stresses
are measured in experiments.

Figure 2.15 shows the ideal geometry for a cone-and-plate rheometer and the
spherical coordinate system adopted. In most cone-and-plate rheometers, tips of the cones

are truncated to avoid fluid vortex on these tips as indicated in Figure 2.15. It is thought
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that the cone-and-plate rtheometer will produce a simple shear flow in which the shear
rate is very uniform throughout the flow field, when the cone angle is very small, say 4°
or less, assuming no misalignment errors (Section 2.1). In the ideal cone-and-plate

rheometer, the steady velocity field can be approximated in spherical coordinate as:

P
v, =w0r—2,and v, =v; =0 with 2co<Zia (2. 14)
a 2 2

Here the subscriptions and notations are listed below:

1 denotes the flow direction, ¢ (azimuthal angle);

2 denotes the velocity gradient direction, @ (polar angle);
3 denotes the neutral direction r (radial position);

o, denotes the constant angular velocity of the cone (or plate);

a denotes the very small cone angle.

The uniform shear rate in an ideal cone and plate flow field is given as:
y=— (2. 15)

Since the shear rate is homogeneous throughout the velocity field, components of the
deciatoric stress tensor, 7 , are also independent of position in the cone-and-plate
rheometer.

When the fluid fills the gap out to the radius Ry, the moment M exerted on the

plate or cone surface is [45]:
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2

M =27 [jn(Reosa) dR - (2{)1%037'77(7')[1 +0(a, )] (2. 16)

Thus, measurement of the moment required to turn the cone or hold the plate gives a

direct reading of the shear stress in the simple shear flow:

oy 3IM )
T, =Ty =y(y) = when y = ;‘) (2.17)

27R,’

n(y) is the shear-rate dependent viscosity which can be described when the shear stress

7,, 1s divided by shear rate y [45]:

T 3IM
ny)=—>+= , (2. 18)
4 27ZR037

Assuming the velocity field is defined by Equation 2.5, the total stress tensor component,
IT,, (1), is derived from the linear momentum balance equation in the radial direction

[22]:

v’ oP 2 1, +7y, N 075, +16723 N cos@ 1 Oty

— T, +— (2.19)
r or r r or r Or rsin@ rsin@ 060

As defined in simple shear flow, components of stress tensor are constant due to the

homogeneous shear rate y,

7-0. (2. 20)

And 7, =17, =0 (2.21)
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because of the flow symmetry.

Thus Equation 2.19 can be simplified as [22]:

AMy(R) _ (N, +2N,) (2.22)
Olnr

Here it should be noted that an inertial or centrifugal force term is neglected as it is
relatively small for high viscous polymer in a limited low shear rate range.

At the free boundary when r =R, , approximating the boundary air/liquid
interface as a partial sphere, the radial pressure exerted by the sample at steady state is

atmosphere pressure P, , which is the datum line of zero.
I (RO):_PO (2.23)

A negative sign in Equation 2.23 arises because a compressive force is considered to be

negative in the definition of the total stress tensor I1 as introduced in Section 2.2.
From the definition of the second normal stress difference N,, Equation 2.22 can

be expressed in the other form:

—(I1,(R)+P)=—N,. (2.24)

With this boundary condition, integration of Equation 2.22 gives out the vertical stress

profile expected to be present in homogeneous velocity field:

(a0 R)= (3, 2, 7 ), (2.25)
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Here R is the radius of the plate. The left hand side of Equation 2.25 is the net pressure
acting perpendicular to the rheometer plate at radial position r. This quantity is measured
with the miniature pressure sensors on the rheometer sketched in Figure 2. 16. Equation
2.25 is a very important relation that demonstrates the principles of the pressure
distribution method. From Equation 2.25, the radical normal stress profile is expected to

be linear in a semi logarithmic plot against a radial position if y is homogeneous. The

local normal stresses at various radial positions, the left side of Equation 2.25, are
measured by the eight pressure sensors constructed on the rheometer plate. The details on
the pressure sensor plate are described in Chapter 3 (Material and Equipment). Assuming
that the measured local normal stress profile obeys the functional form predicted by
Equation 2.25, both the first and second normal stress differences can be calculated by
knowing the slope of the measured normal stress profile and the value of the local normal
stress at the rim. The application of Equation 2.25 is demonstrated in Figure 2.16. The
local normal stress at the rim can be calculated by extrapolating the local normal stresses

profile values measured by the eight pressure sensors; thus the second normal stress N,
is obtained. From the linear slope —(N, +2N2) of the measured pressure distribution
extracted from a semi logarithmic plot, the value of N, is obtained. Since the local

normal stress is the net pressure exerted by the sample vertical to the pressure sensor
plate, the total normal thrust F, exerted in the perpendicular direction on the plate can be

calculated by integrating Equation 2.26 over the plate:

R, Ry
F =27 [~(TT,, (r)+ P, Jdr = 27 [-(N, + 2N2)ln[RL - N, err - %EROZNI (2. 26)
0

0 0
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This is an alternative method to obtain the first normal stress, independent of N,

measurement using the deflection of LVDT system.

It should be noted that, to get this relation several hypotheses were made:
(1). the shear rate is homogeneous throughout the velocity field of the sample filled
between the gap;
(2). the flow field is symmetric,
(3). an inertial term and a centrifugal force terms is negligible,
(4). the air/liquid interface is exactly spherical and the flow on the boundary is exactly
rheometric, and
(5). the surface tension at the liquid-air interface is negligible.
Assumptions (1) and (2) can usually be satisfied with sufficiently good alignment. The
inertial error is negligible for viscous samples in rheometers with shallow cone angles.
The error due to the centrifugal force can be corrected in an approximate way. The error

of source (4) is probably less than 5% (Kaye ef al.) [54].

2.5.2 Development of the Pressure Distribution Method

Since the 1970s there has been a general agreement on pressure distribution
theory. When the rotational flow of liquids showing normal stress effects, the tension
along the circular streamlines is always greater than that of other directions. So that the
streamlines tend to contract, like stretched rubber bands, unless they are prevented by an
appropriate pressure distribution.

Two types of measurement are possible by measuring the pressure distribution:
(1). determine the total force exerted on the whole plate by the liquid, from which the

first normal stress difference N, is obtained and
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(2). determine the local pressure distribution from the manometer or pressure transducers

or pressure sensors reading, from which the second normal stress difference N, is

obtained.
The striking advantages of this technique are:
(1). it is theoretically valid for a wide range of shear rates,
(2). it can measure all three material functions (77,y,,y, ) simultaneously,
(3). it cross-checks the normal thrust data by comparison of the integration of the
pressure distribution on the entire plate with the total thrust measured by a spring
transducer,
(4). it does not require knowledge of the constitutive equation for polymer being tested.
In early studies of such a pressure distribution technique in polymer solutions, the
plate of a cone-and-plate viscometer was drilled to provide tapping for manometers.
Steady rotation of the cone results in the pressure distribution of the form indicated in
Figure 2.17. This method might be used over a limited range of pressures at ambient
temperature. Adam and Lodge (1964) [32] first used capacitance pressure gauges in
small chambers linked by short tubes to a hole in the plate of cone-and-plate rheometer.
Brindley and Broadbent (1973) [71] fixed ‘Pitran’ semiconductor pressure transducers
set with their diaphragms in small cavities linked to holes in the plane of the plate of a
cone-and-plate rheometer to make pressure distribution measurement on polymer
solutions. Such methods are tedious and unsuitable if the properties vary with time
because equilibrium is reached slowly. Furthermore, such methods cannot give a true

pressure measurement because of the hole pressure error indicated in Figure 2.8.
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Christansen and Miller [67] in 1971 made flush mounted miniature capacitance
transducers to determine the pressure distribution in a cone-and-plate instrument and
calculated the total force by integrating this pressure distribution. This was found to be
equal to the spring measured force, thus obtaining a valuable check of the accuracy of
this technique for the first time. Later on, Gao, Ramachandra, Magda, Baek and Lee
[23,26,68-70] further explored this technique to measure the pressure distribution for
various polymer solutions in cone-and-plate rheometer, as listed in Table 2.1. Although
this flush mounted transducer plate was proven to be reliable in measuring the pressure
distribution, other shortcoming came up. The plate needs to be so large (74 mm in
diameter) because of the size limit of the pressure transducers that edge fracture (Figure
2.18) often occurs, which restricted the measurable shear rate range of the tested sample
[72,73]. Consequently, the flush mounted transducer plate can often be used only at low
shear rate.

The monolithic MEMS rheometer plate (25 mm in diameter) used in this thesis
was fabricated with micromachining technology. This novel pressure sensor plate is able
to not only measure the pressure distribution without hole pressure error, but also enables
the measurement at higher shear rates up to 150 s for a National Instrument Standard
Test (NIST) standard fluid SRM-1490. In this thesis, the pressure sensor plate replaced
the normal top plate and was used to measure the first and second normal stress
difference of the silicone fluid PDMS. Because this plate can be used to measure the first
normal stress difference without any LVDT transducers, it was also used to study the
transient V) behavior of the standard NIST fluid SRM 1490 with and without presence of

the LVDT so that the axial compliance error could be studied. The sources of these
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materials will be presented in Chapter 3, along with the technical details of MEMS

pressure sensor plate.
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; +«— VDT with working spring
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Figure 2.4. Schematic diagram of LVDT transducer working in the cone-and-plate
rheometer.
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Figure 2.5. The spherical coordinates describing the flow field for the ideal cone-and-
plate rheometer.
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Figure 2.10. Description of the normal stress, T, distribution in tilted cone-and-plate
rheometer with simulation. (Adapted and simplied from Dudgeous ef al. [33] to show the

local stress distribution)
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Figure 2.11. Schematic diagram of LVDT transducer working in the cone-and-plate
rheometer.
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Figure 2.14. The frequency response of the 2™ order instruments.
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Figure 2.18. Schematic diagram of edge fracture for a cone-and-plate rheometer: (a)
normal surface and (b) fracture surface (The sample is shear between the cone and the
plate).



CHAPTER 3

MATERIALS AND METHODS

3.1 Introduction of the Material Used in This Thesis Work

Two different polymer materials were used in this research for different purposes.
This work is more focused on the study of accuracy of the rheological measuring system
than on the materials. As a matter of fact, both materials are used as testing fluids to
detect abnormal behavior due to the imperfections of the measuring system. The pure
polymer melt of PDMS (polydimethylsiloxane) was tested for the start-up behavior of the

first normal stress differences N, in order to detect the effect of the natural frequencies of

transducers: LVDT and the capacitance pressure sensors. In addition, the first and second
normal stress differences, N, and N, of the PDMS were measured. A standard NIST fluid
SRM 1490, a polymer solution, was tested separately with and without the LVDT in
effect in order to study the influence of the axial compliance due to the finite stiffness of

the LVDT system.

3.1.1 PDMS

Silicone fluids PDMS, polydimethylsilaxane, (molecular structure shown in
Figure 3.1) are commercial polymer melts. They are transparent liquids at ambient
temperature and have remarkable mechanical, chemical, and thermal stabilities from low

temperature -70 °C up to as high as 250 °C. Because they can be used without heating,
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PDMS is easier than other polymer melts for rheology testing at room temperature.
PDMS fluids are available over a wide molecular weight range from Newtonian fluid to
elastic Non-Newtonian fluid with viscosities in the range of from 5 cps up to 300,000 cps
[74]. Non-Newtonian PDMS fluids exhibit shear-thinning (Figure 3.2). Shear thinning is
defined as the viscosity decreasing with increasing shear rate. The disentangling of the
linear polymer molecules can be the main cause of this phenomenon.

PDMS was originally developed to be used as a dielectric coolant and as a
solution in solar energy installations. In general, PDMS is widely used in coating, seals,
gaskets, adhesives, and medicine [75]. Its importance arises in medicine because of its
resistance to blood fluid as described by Allcock et al. (1981) [76]. Due to the versatility
of the material, PDMS has been widely studied corresponding to different applications
[77-81]. On the other hand, the studies relevant to the processing of the PDMS product
are not complete. As a matter of fact, it is essential to know the rheological properties of
PDMS, i.e., viscosity, the first and the second normal stress differences for the proper
operation of the industrial processing or other applications that involve this material.
Studies of the rheometry of similar types of shear-thinning polymer fluids have been
carried out (see Table 2.1 for reference), and these studies have an important role on the
developing rheological knowledge of PDMS. For example, the reptation model has been
developed to predict the first and second normal stress difference for linear polymer
melts, and has been proven to be quite successful in describing many experimental results
[23] in the linear viscoelastic or very low shear rate regime. Based on the reptation
theory, the normal stress ratio of the PDMS is predicted to be between 0.12 and 0.17. The

only experimental measurement of the second normal stress difference for PDMS was



56

done by Di Landro ez al. (2003)[65]. Di Landro’s group measured the low-shear viscosity

(n,) and the first normal stress difference coefficient (y, ) of a series of linear PDMS of

different molecular weights with a rotational rheometer, and they also measured the
second normal stress difference coefficient with the use of a rotating rod apparatus

(method listed in Table 2.1). Based on the experimental measurement, the normal stress

ratio, i =—% , differed with molecular weight of the PDMS fluid. The measured
1

normal stress ratio of non-Newtonian PDMS fluid (PDMS 600) turned out to be between
0.141 and 0.154 at room temperature, 20 °C. In this thesis work, the pressure distribution
method was used to measure the second normal stress difference is the non-Newtonian
linear PDMS fluids, kindly supplied by Rhodosil (FITZ CHEM CORPORATION
450 E. Devon Suite 175 Itasca, IL 60143). This sample was used as received; its nominal

viscosity value is 300 Pa-s.

3.1.2 NIST Fluid SRM-1490

S.R.M/R.M. stands for standard reference materials/reference materials [82].
Standard reference materials and reference materials are issued by NIST (National
Institute of Standards & Testing, Gaithersburg, MD) to address needs of the producers,
processors and users of polymers for calibration and for performance evaluation of
instruments used in the control of the synthesis and processing of polymers as well as
benchmarks for comparisons of measurement methods and development of new
materials.

The polymer solution SRM 1490 is one of the Nonlinear Fluid Standards, which

is composed of a high-molecular mass poly-isobutylene dissolved in normal hexadecane.
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Non-Newtonian rheological standards are developed to exhibit the typical polymeric
behaviors of shear thinning and normal stresses; these standards are also used for
calibration of rheological instruments and for research into improved measurement
methods. Polymer fluids, such as polymer melts and solutions, often do not follow the
simple Newtonian ideal in their flow behavior, demonstrating shear-rate dependent
viscosities and normal stresses. Such fluids see wide application in everyday life
(injection molding, paints and coatings, food products, etc.), and the ability to measure
and characterize their behavior accurately is very important to optimizing their
processing conditions. Since there are a number of commonly used methods to measure
the flow behavior of polymers, the Standard Reference Material (SRM 1490) will provide
a way for comparing the performance of different instruments, as well as providing tools
for research into better methods of measuring the rheological properties of polymeric
fluids. SRM 1490 is certified for the shear-rate dependence of viscosity and first normal
stress difference at temperatures of 0 °C, 25 °C and 50 °C. The linear viscoelastic
responses are also certified, along with the temperature dependence of the shift factors.
However, NIST does not certify N, values for SRM-1490 or any other standard fluid.

SRM-1490 is no longer available because it has been replaced by SRM-2490 at NIST.

3.2 Instruments
3.2.1 Weissenberg R-17 Rheogoniometer

The Weissenberg R-17 Rheogoniometer is a standard torsional rheometer with
two LVDT measuring system (Section 2.2), one for the torque and one for the normal

force. The normal force measuring system uses a light spring with a very sensitive spring

constant (<1000 dyne/m). In this thesis, the cone-and-plane geometry of Weissenberg
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R-17 Rheoginiometer was combined with the pressure sensor plate to explore the
behavior of the silicone fluid PDMS in the presence of an unavoidable degree of cone
and plate misalignment. The Rheogomiometer was also used to test the transient start-up

N, response of PDMS in the presence of the LVDT axial compliance.

Three cones with different cone angle were used in this study. The tips of the
cones were truncated in order to prevent the clustering of the sample at the touching point
of the cone tip and the plate. Details such as cone diameters, cone angles and the
truncated distances of the cones are summarized in Table 3.1. The angular velocity of
the cone was controlled by a gear-motor system with a 60 variable speed and ranging the
shear rate from 1918.2948 per second to 0.0242 per second [29]. LVDTs with the normal
force spring and a torsion bar were used to measure the total normal thrust, F and the
torque, M, respectively. In this procedure, instrument compliance errors were involved in
both measurement of normal force thrust and torque (Sec. 2.4.2). Alternatively, the novel
pressure sensor plate was used to measure the normal thrust. It should be noted that axial
compliance was still present due to the deflection of normal force spring in the LVDT
transducer.

The data acquisition system is sketched in Figure 3.3. Firstly, the LVDT
transforms the displacement of the torsion bar or normal force spring into electronic
signals (in volts). These electronic signals were magnified by two transducer-meters
(Boulton-Paul Aircraft Company, Model EP-597M, S/N 1027&1089). The amplified
signals were transmitted from the transducer-meters to a data acquisition board (NI
6023E Multi-function Data Acquisition Board, National Instruments Corporation, Austin,

Texas). The board has a 12-bit analog-to-digital converter with 16 analog input channels
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at 200 kS/sec sampling time, and is connected to a personal computer. As the electronic
signals were detected by the DAB, they were digitized, and then logged by a commercial
software package Virtual Bench — Logger, Version 2.6 (National Instrument Corporation,
Austin, Texas), and finally displayed as the analyzable data (in volts).

The calibration of the signal collecting system is required before every rheology
experiment in order to assure a normal working condition. The calibration procedure is to
check the torsion bar constant and spring constant using static weights [29].

According to the instruction manual of the Weissenberg rheogoniometer, from the

measured torque, the viscosity of the test fluid can be calculated as:

n=-—"=—> (3.1

The torque exerted by the sheared sample on the upper plate can be measured by a torsion
bar which has a spring constant K. . The spring constant of the torsion bar, K, is
expressed in the equation as follows:

:Mfo :2><l><g><m><Vf
R, xV R, xV

(3.2)

T

Here, g is the gravitational constant (980 cm/s?), m is the applied standard mass in gram,
R, is the measurement range set on the transducer meter in um,V, is the full-scale
voltage of the transducer meter, and V' is the measured voltage signal by LVDT system
correspondent to the applied torque, / is the effective length of the moment arm of the
calibrating fixture. Ideally, K, is constant; however, due to the different sensitivity of the

various ranges, signal noise would affect measurements, thus causing a deviation.
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A special fixture (Figure 3.4) was designed and fabricated for the torque
calibration. By hanging two standard weights on the end of the monofilaments, and
simultaneously with the use of the pulleys, part of the air bearing which connect the top
plate with the torsion bar was twisted and a torque with known value could be detected
and measured (as V' in eq. 3.2) by the torsion bar. The length of the momentum arms of
this fixture, / in eq. 3.2, is fixed as 7.57 cm. The values of the calibration constant of

torsion bar K, were calibrated in different voltage ranges (7, in Eq. 3.2) and averaged
throughout all the measuring ranges. The averaged value of the calibrated constant of the
torsion bar was 14860.5 + 714.3 dyne- cm [ pm . This value is close, by 2% of deviation, to
the manufacturer’s reference value.

The spring constant of the spring in the normal force measuring system, K ,,, can
be expressed similarly as Eq 3.2 as:

:Ffo :mxngf
R, xV R, xV

(3. 3)

N

m is the applied standard weight in gram, g is the gravitational constant, R, is the
measuring range set on the transducer meter in wm, V', is the full-scale voltage of the

transducer meter, and V' is the measured voltage signal by LVDT system correspondent
to the applied normal thrust.

The normal spring constant was calibrated using standard weights (m in eq. 3.3).
Total normal trust was applied on the top plate by placing standard weights on the top of
the tope plate holder. The induced LVDT voltage V' was measured via the transducer

meter at a certain measuring range V.. The normal spring constants at different
g ge v, pring
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measuring ranges of the transducer meter were calculated using Eq. 3.3. The averaged
value of the normal spring constants was 806.6 + 19.8 dyne/um. The value has a
apparent discrepancy with the manufacturer’s value, by 20% of deviation. The change in
K, value may be caused by the use of a new transducer meter (S/N 1189).

The cone and plate were aligned to be as concentric and parallel as possible using
a dial gage indicator (Mitutoyo Truetest Test Indicators - Series 513, Automation &
Metrology Inc.). The concentricity axis was adjusted to be less than 0.0005 in and the

flatness less than 0.0001 in, respectively.

3.2.2 ARES Rheometer

In order to test the NSS on a rotational rheometer with almost no axial compliance
error, N; start-up measurements were made using the NSS on a stiffened ARES
(Advanced Rheometric Expansion System) Scientific Rheometer (TA Instruments,
Newcastle, DE) through the generosity of Professor Greg McKenna, Texas Tech
University. An ARES rheometer is usually equipped with an FRT transducer as discussed
in Section 2.4.2. However, in order to avoid potential errors and fragile nature of the FRT
system, Professor Meckenna’s group redesigned their ARES to avoid axial compliance,
even transient, and equipped it with a customized Sensotec (Sensotec Inc., now
Honeywell Sensotec,) semiconductor strain gage based transducer (Sensotec Model 060-
G420-01) [46]. The beauty of using the semiconductor strain gage transducer is the much
higher stiffness (strain sensitivity low as 0.000005 volts per microstrain) [45]. The ARES
rheometer thus modified has much less axial compliance than the Weissenberg rheometer
with the LVDT employed. This is true when either the strain gauge transducer or the NSS

is used to measure the normal force, the latter being much more sensitive. Cone-and-plate
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fixtures were used on the ARES with diameter R = 25 mm and cone angle a = 4.55 °C

(Table 3.1).

3.2.3 MEMS Pressure Sensor Plate

The pressure sensor plate was kindly supplied by Dr. Seong-Gi Baek, president
and CEO of Rheosense, Inc. (San Ramon, CA). His company has used silicon
micromachining technology [83-84] to fabricate this rheometer plate which was named
the “Normal Stress Sensor” (NSS). The NSS is a monolithic rheometer plates containing
miniature capacitive pressure sensors at various radical locations. Each sensor has a
square pressure-sensing membrane (1 mm x 1 mm); the maximum deflection of the
membrane is of order of microns (um). This is the basis of the claim that the axial
compliance of the NSS measuring system is negligible. The silicon-on-insulator (SOI)
disk can easily meet the required smoothness of the rheometer plate containing pressure
sensors. The SOI wafer contains three layers: a thick “handle silicon” layer that will be
ultimately removed, a device silicon layer from which the membrane is fabricated, and an
intermediate buried oxide layer used as an etch stop layer to allow precise control of the
membrane thickness. Details of the photolithography and etching are given by Baek and
Magda [44]. The result was a monolithic, perfectly smooth rheometer plate containing
eight pressure sensors as sketched in Figure 3.5. As indicated by its name, the capacitive
pressure sensor works like a capacitor that measures the voltage due to change of the gap
between the silicon membrane and the conductor deposit in the silica wafer, and
transferred digitally into specific reading. The baseline reading under the no pressure
condition depends on the wet etching procedure and differs from each individual sensors;

the output reading due to the applied external pressure is used to calculate the pressure
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value using the calibration obtained using the standard pressures. The pressure sensors
are symmetrically located around the plate center point at radial positions 2.5 mm, 5.0
mm, 7.5 mm and 10.0 mm, respectively. The NSS was supplied with a signal processing
circuitry and DAQ software for a personal computer. The sensors were calibrated by
applying known air pressure to calibration ports fabricated on the NSS. The sensor plate
used on the prototype NSS Weissenberg rheometer had one of the pressure sensors at a
radical position 2.5 mm from the plate center not function normally; for the NSS used

with the ARES rheometer, all eight pressure-sensors were functional.
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CHAPTER 4
RESULTS AND DISCUSSION

4.1 The Start-up Behavior of N; for PDMS Measurement
On start up of steady shear flow, the time t; for N, to reach a steady value may be

large for a viscoelastic liquid due to both the inherent material relaxation time and the

axial compliance error (Section 2.3). The inherent material relaxation time A can be

estimated from steady-state properties as 7z :? , where 7, is the zero-shear-rate
o

viscosity, and W, is the zero-shear-rate limit of the first normal stress difference
coefficient [19]. Figure 4.1 and Figure 4.2 show the steady state values of 7and N,, as

measured for the PDMS sample on the Weissenberg rheometer using the LVDT

measuring systems, with 25 mm plate and 0.04 rad cone. The measured 7, values are
shown in Table 4.1, obviously 294 £ 8 Pa-S, as expected from the supplier’s values.

Using the low-shear-rate values of N, in Figure 4.2, W, is estimated as 0.9 Pa, giving

A ~0.05s. Figure 4.3 shows the start-up and flow cessation behavior of N, for the same

PDMS material on the Weissenberg and the response time t. far exceedsA (7, =15s5).

Here t, is defined as time required for N, to decay to 37% of its steady-state value after
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flow cessation. This demonstrates that the axial compliance error is substantial, probably

due to high sample viscosity and the highly sensitive normal force spring on the

1,0

Weissenberg rheometer (A = ). The ARES rheometer modified to reduce axial

compliance (Section 3.4) was used to obtain N, start-up results for NIST fluid SRM-
1490 using the NSS pressure sensor plate (unfortunately PDMS was not available).
Values for n,and N, supplied by NIST for SRM-1490 (Table 4.1) can be used to
estimate the relaxation time of SRM-1490 (A = 1s). Figure 4.4 shows the start-up and
flow cessation behavior of N, for SRM-1490 fluid in the modified cone-and-plate
ARES, with 0.08 rad cone and plate of 25 mm in diameter, under the shear rates of 20 s™".

The relaxation curve is used to estimate the response time of SRM-1490, 7, ~1.27+0.3s.

This is quite close to the inherent relaxation time of the SRM-1490 relaxation time,

A ~1s. The measured N, response time, t;, and inherent relaxation time, A, of PDMS

fluid and NIST SRM 1490 are summarized in Table 4.1.

The measured N, response time, t;, is expected to be equivalent to the theoretical

calculated relaxation time A in the absence of any measurement error. However, as shown

in Table 4.1, the t, value of PDMS fluid greatly exceeds A; whereas ¢, = 4 for NIST

SRM-1490 fluid.

The difference in these results for these two fluids is considered to be due to the
two different measuring instruments: the Wenssenberg R17 rheometer with a large axial
compliance and the modified ARES with little axial compliance. The results reveal the

dramatically delayed response of normal force measurement on the R-17 rheometer due
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to the instrument compliance. Axial instrument compliance may lead to a misleading
transient response measurement giving unreliable estimations of the material
characteristic relaxation time measurement. The results also show that this problem can

be avoided by using NSS to measure the transient N, response on a stiff rheometer.

4.1.1 Effect of the Natural Frequency of the Measuring System

Figure 4.5 shows the start-up behavior of the apparent N, value of PDMS fluid
measured in the Weissenberg Rheogoniometer, with 0.038 rad cone and plate of 25 mm
diameter, at the shear rate of 9.8 s”'. The time-dependent curves shown in Figure 4.5
were obtained simultaneously by two normal force measuring systems: the LVDT system
(open circles) and the NSS system (stars). The LVDT provides an analog signal whereas
the NSS provides the pressure value at the locations of the eight sensors every 0.1 s.
These local pressure readings were time-average over an interval of 1 second, and the

result was fit to Equation 2.25 for the radical pressure profile in order to calculate N, .

Superficially, the LVDT curve is smoother, but this is only because the LVDT cannot
detect higher frequency normal force variations. In the Weissenberg rheometer under the
conditions of Figure 4.5, the period of cone rotation is 16.7 s. This is almost exactly

equal to the period of oscillations of the highly regular N, curve measured by the NSS.

Figure 4.5 reveals that each of these two measuring system has its own natural
frequency: the natural frequency of the NSS is high as 137 kHz as reported by the
Rheosense Inc. to be, while the natural frequency of LVDT system is apparently too low
to detect the fluctuations of the normal force signal of high frequency associated with
imperfections in the motor rotation. As a result, the measurement of the LVDT gives a

fault impression that the flow field is very uniform and stable. In this manner, the NSS
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with a high natural frequency is more reliable than the traditional LVDT system in

detecting high frequency material response.

4.1.2 Effect of the Tilted Misalignment of Cone and Plate
on the Radical Pressure Profile

As discussed in Section 2.3, the typical degree of tilted misalignment may cause
radical asymmetry in the local pressure distribution and a shift of the maximum local
pressure position, and the errors may be annihilated by the “averaging effect”. Figure
4.6 shows the local time-averaged pressures of the PDMS fluid as measured by the
pressure sensors located in different positions of the NSS under shear rate of 9.8 s with
the use of 0.038 rad (2.2°) cone on the Weissenberg rheometer. Prior to measurement, the
alignment of the cone and plate was adjusted following rheometer manual specifications
(Chapter 3). The pressure data are shown in Figure 4.6, and the origin point 0 of the
abscissa represents the center of the plate; the negative and the positive abscissa of the
coordinates represent the left and the right side of the pressure sensor plate, respectively;
and values of 5, 7.5, 10 represent the distances of the pressure sensors in mm from the
centre of the plate. Only six pressure sensors are located 2.5mm from the plate center. On
both sides of the pressure sensor plate, the pressure sensors closest to the center of the
plates measured the higher local pressures, as expected from Equation 2.25 when

N,+2 N, being positive. Due to the second type of tilted misalignment (Figure 2.7), the

local pressures measured on the left side and the right side were not equivalent in
magnitudes, for either clockwise or counter clockwise rotation directions. However, as
shown in Figure 4.6, the local pressures measured on the left hand side of the plate for

the clockwise rotation were very close to those measured on the right side of the plate for
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counter clockwise rotation, and vice versa. Thus the pressure error due to misalignment
can be removed by averaged over both sides of plate for a given rotation direction, or by
averaging the pressure on one side of the plate over both rotation directions. These
observations agree with Adam’s results (Figure 2.9), thus confirming that the pressure
distribution for Newton liquids applies to the non-Newtonian liquids. According to the

simulation results of Wedgwood’s group for the shear-thinning materials (Chapter 2), the
. - . . T, 37w . :
maximum slope of the tilt is between line of 0 to © and line of 5 to EY in the top view

coordinates as shown in Figure 4.6. The exact maximum tilted line can be located if the
phase shift of the material can be determined. However, this calculation will be defeated

to the future works.

4.1.3 Effect of “Wobble’ on the Time-dependent Local Pressure

In addition, a new phenomenon termed the “wobble error” was discovered based
on the observations shown in Figure 4.7. Figure 4.7 contains the output signals of
pressure sensors at the same distance from the center of the plate but on the opposite
sides. Both signals oscillate with a period equal to the period of cone rotation, but the
oscillations are 180 degrees out of phase. The “wobble error” may be caused by the third
type of misalignment (see Figure 2.7 (c)). The measurements suggest that the
misalignment in our Weissenberg R-17 has a combination of the tiled plate and tiled cone
with a perpendicular rotating axial, as sketched in Figure 4.8. However, the newly
discovered Wobble error has not yet been systematically investigated. It is interesting to

note that similar effect is observed with the NSS for cone-plate flows of NIST SRM-2490
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on an ARES rheometer (University of Minnesota), suggesting this is a universal

phenomenon in measuring the N, using the pressure distribution method.

4.2 Steady-shear Flow Properties of Solvent-free
Ambiance Temperature PDMS

Despite of the flow irregularities on the Weissenberg rheometer just discussed,
with appropriate averaging, it was found to be possible to use the NSS to measure the
shear properties, i.e. the first and the second normal stress differences and the viscosity of

the shear pure PDMS melt at room temperature.

4.2.1 Measurement of the Radial Local Normal Pressure Profile

Figure 4.9 shows the time-averaged radial pressure profile, and the misalignment
error leading to radical asymmetry is apparent. However, as discussed in Section 4.1, this
error can be eliminated by averaging local pressure over both sides of the plate and/or
over both clockwise and counterclockwise rotations. Figure 4.9 shows the results so

obtained at various shear rates. Figure 4.9 contains the local pressure function of the
normalized position, rE where r is the position of the pressure sensor and R is the

radium of the pressure sensor plate. Equation 2.25 shows that theoretically the local

normal pressures (I1»-Pg) is a linear function of logarithm of the normalized position,

ln(%). As discussed in Section 2.4.2.1, N, and N, can be obtained from the slope and

intercept of this linear function. Figure 4.9 shows the plots of the measured local normal
pressure against the normalized radial position under a series of shear rates: 6.19 s, 7.80

s'l, 9.82 s'l, 12.38 s and 15.6 s'. It was observed that the PDMS sample could be
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sheared up to the maximum shear rate of 15.6 s before it exhibited edge fracture. The
local pressures plotted shown in Figure 4.9 were averaged in three manners: with respect
to time, clockwise and counterclockwise rotations, and left hand and right hand sides of
the pressure plate. In this way the misalignment error can be eliminated as proved in
Section 4.1. It should be noted that, while time-averaging is obviously valid in the steady
state; for the second and the third manners of averaging, an assumption has been made
about the average effects on the wedge flow as discussed in Section 2.2. This assumption
is justified by the closeness of the experimental radial pressure profiles in Figure 4.9
such that expected for an ideal cone-and-plate flow.

As shown in Figure 4.9, all the averaged pressure distribution functions are linear
functions of the logarithm of the dimensionless position. The effects of the shear rate are
also demonstrated: the intercept of linear function of the pressure distribution increases
with the increasing shear rate; the slope of the local normal pressure function is negative
and decreases in magnitude with the decreasing shear rates. As discussed in Chapter 2,

the linear pressure distribution function can be used to determine the properties, N, and
N, , of the test fluid According to Equation 2.25, N, and N, are both parameters of the
pressure distribution function, in which the intercept represents the negative value of N,
and the slope indicates the term including N, and N,, that is, -(N,+2 N, ). The values of
N, determined from the averaged pressure distributions in Figure 4.9 are compared to
the values of N, independently measured with the normal force LVDT in Figure 4.10.

The agreement is excellent, confirming once again that the averaging procedure
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eliminates the effects of flow irregularities of flow irregularities. Values of the ratio

N . . . : .
w = ——= obtained from Figure 4.9 are compared to literature results in the next section.
1

4.2.2 Determination of the Normal Stress Ratio, y = —%,

1

of Solvent-free PDMS at Room Temperature

. N, . .
The normal stress ratio, y = _Vz , 1s a frequently reported elastic property
1

(Table 2.1) just because it is almost independent of shear rate and its value correlated
with the flow instability of materials. Figure 4.11 shows the measured normal stress
difference ratio of pure PDMS melt at room temperature obtained from the averaged
pressure profiles of Figure 4.9 to facilitate comparison with previously published results

for polystyrene [69]. The abscissa is the dimensionless shear rate @,, defined as

@, = @ The measured average value of the normal stress ratio for PDMS fluid was
n

0.14+£0.01. The normal stress ratio reported here is within the range of y values
(0.101—0.154) measured by Di Landro et al. (2003) [65] for non-Newtonian PDMS
melts (Aldrich PDMS 100 and Polymerland PDMS 600) at 20 °C using the rod-climbing

method.
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Figure 4.5. Time-dependent apparent N, value after start-up of flow at shear rate 9.8 s~
for PDMS sample in Weissenberg R-17 rheometer as measured simultaneously with two
different normal force systems at 25 °C: (o) LVDT; (*) pressure sensor plate. Cone angle
was 0.038 rad, cone radius was 12.5 mm.
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Figure 4.8. The Combination of the two types of flatness misalignment.
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CHAPTER 5

CONCLUSIONS

This work focused on the application of a novel MEMS pressure sensor plate with
the traditional rotating rheometer to evaluate various error sources, such as misalignment
of the cone and the plate, and the effects of axial compliance and natural frequency. It
also focuses on the measurement of the normal rheological functions of a viscoelastic
material. Comparison was made when possible to normal force measurements made with
a traditional LVDT/normal force spring system. A sensitive spring must be used with the
LVDT system, which results in a relatively large axial compliance and relatively low
natural frequency.

The transient apparent first normal stress N, value upon startup shear flow

obtained with the NFS-LVDT and the NSS showed the effects of the natural frequency of
the measuring system. The LVDT system has a low natural frequency; hence it cannot
follow the relatively high frequency of the signals associated with motor vibrations.
Thus, it cannot distinguish between flow is highly smooth and stable and high frequency
disable. By contrast, with a much higher natural frequency, the NSS is able to detect the
signal periodic fluctuations associated with the rotations of the rheometer motor. Axial

compliance may affect the response of the rheometer for the apparent N, value upon

start-up of shear flow. If axial compliance is negligible, then this response time can be

used to estimate the average relaxation time of the material. This was found to be the case
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for the N, startup nehavior of NIST fluid SRM-1490 measured with the NSS on an
ARES theometer modified to increase axial stiffness. This was not the case for LVDT
measurements of PDMS transient behavior on the Weissenberg rheometer. That is, the

response time observed for the apparent N, value upon startup of shear flow for PDMS

greatly exceeded the average relaxation time calculated from the steady shear properties.

Local pressure measurements made with the NSS were used to study the
misalignment effect. The results show that with a typical degree of misalignment, in the
cone-and-plate geometry, the local pressures are not symmetric about the center point of
the rheometer plate due to the “Wedge effect” first noted by Adams and Lodge [32].
However, the misalignment error of the local pressure value is aqntisymmetric about the
plate center point, and thus can be eliminated by averaging the pressure profile over both
sides of the rheometer plate, at least for PDMS. It can also be eliminated by averaging
over both clockwise and ccouterclockwise rotation results. This conclusion agrees with
the simulation prediction by Wedgewood’s group [33].

The pressure profiles so averaged agree with fluid mechanics predictions for ideal

cone-and-plate and were used to calculate N; and N, fro PDMS, and the normal stress

. N . . . .
ratio y = _Vz' The value obtained for — N%V was relatively insensitive to shear rate
1 1

and equal t00.14 £ 0.01. This is reasonably close to the values reported by Di Landro ef

al. [65], —N%\, = 0.105-0.189, as measured for PDMS samples of various molecular
1

weights using the rod-climbing method. Lastly, a periodic oscillation in the measured

local pressure value during steady shear flow of unknown origin was observed. The
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period of the oscillation equaled that differed by 180 degrees on the opposite sides of the

rheometer plate.
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