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ABSTRACT

Recent economic crises have exposed a critical need for appropriate methods to

measure, model, and predict financial volatility. Generalized autoregressive con-

ditional heteroskedastic (GARCH) models have been among the most successful

and widely studied tools for this task due to their ability to capture the stylized

characteristics of financial data.

Extending the original univariate GARCH processes to the multivariate framework

is important because, in many applications, the primary quantity of interest is the

interdependence, or covariance, between different univariate processes. Covariances

are used for calculations of hedge ratios, betas of CAPM (Capital Asset Pricing

Model), portfolio VaR (Value at Risk) estimates, asset weights in portfolios, and to

investigate contagion across financial markets.

In Chapter 1 of this dissertation, we briefly review concepts and terminology

related to stochastic processes and time series analysis. In Chapter 2, we prove

sufficient conditions for existence, uniqueness, and stochastic stability of multivariate

GARCH processes. In Chapter 3, we explore the QMLE and VTE methods for

estimating multivariate GARCH parameters. We prove sufficient conditions for strong

consistency and asymptotic normality of the QMLE and VTE estimators, and we

conduct simulation studies to compare the performance of the VTE and QMLE.



For Dino.
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1 Introduction

In this section, we briefly discuss the importance, and background, of multivariate

GARCH processes.

1.1.1 Motivation

Recent economic crises have exposed a critical need for appropriate methods to

measure, model, and predict financial volatility. Generalized autoregressive con-

ditional heteroskedastic (GARCH) models, pioneered by Engle [20] in 1982 and

generalized by Bollerslev [9] in 1986, have been among the most successful and widely

studied tools for this task due to their ability to capture the stylized characteristics

of financial data.

Many of the stylized characteristics of financial data were first put forward in

a 1963 paper by Mandelbrot [37], and have subsequently been documented with

empirical studies. Some of the most widely observed characteristics include volatility

clustering, volatility mean reversion, leptokurtosis (fat tails), and the leverage effect

(asymmetry) (see [14], [41]). These stylized characteristics have motivated researchers

to abandon the constant variance and normality assumptions imposed by classical

econometric models, in favor of the more flexible and general GARCH models.

Extending the original univariate GARCH processes of Engle [20] and Bollerslev

[9] to the multivariate framework is important because, in many applications, the

primary quantity of interest is the interdependence, or covariance, between different

univariate processes. Covariances are used for calculations of hedge ratios, betas of

CAPM (Capital Asset Pricing Model), portfolio VaR (Value at Risk) estimates, asset

weights in portfolios, and to investigate contagion across financial markets (see [48],

[51], [16]).
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1.1.2 Existence of GARCH

In the univariate case, existence and other statistical and probabilistic properties

of GARCH processes are well-established. These results can be found, for instance,

in the 2004 paper by Berkes, Horváth, and Kokoszka [4], and in the book by Francq

and Zakoian [27].

Although GARCH processes received considerable attention since their introduc-

tion by Engle [20] in 1982, the GARCH specification entails a complex probabilistic

structure, and existence of univariate GARCH was not established until 1992 when

Bougerol and Picard [11] published necessary and sufficient conditions. A brief

description of the technique used by Bougerol and Picard [11] is given in Chapter

2 of this dissertation.

Properties of multivariate GARCH processes are only partially known. In the

existing literature, sufficient but not necessary conditions for the existence of weakly

stationary, strictly stationary, and ergodic solutions have been established in some

special cases. For the general BEKK GARCH process, Boussama [12] made waves

among GARCH researchers by claiming that he could prove sufficient conditions

for existence using Markovian methods combined with recent results in algebraic

geometry, primarily those of Mokkadem [39]. He provided only a brief sketch of a

proof, and many were skeptical of his claim. In Chapter 2 of this dissertation, we

briefly outline the technique suggested by Boussama [12], and we provide a detailed

proof that BEKK GARCH processes exist. We use techniques similar to those

suggested by Boussama [12], but without the elaborate tools of algebraic geometry.

1.1.3 Estimation of GARCH

In the univariate case, many techniques for estimation of GARCH processes have

appeared in the literature. Francq and Zaköıan [26] survey the existing univariate

GARCH parameter estimation methods and their asymptotic properties. Some of the

more popular methods have included least squares estimators, least absolute deviation

estimators and Lp estimators. However, estimation by Gaussian quasi-maximum

likelihood (QMLE) is perhaps the most popular because it is robust to the distribution

of the underlying process, and it is consistent and asymptotically normal without

imposing moment conditions on the observed process.
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In the multivariate case, parameter estimation research has focused primarily on

Gaussian quasi-maximum likelihood estimation (QMLE). Consistency and asymp-

totic normality of the QMLE were established for models admitting a BEKK rep-

resentation by Comte and Liebermann [17] under the assumption of independent

coordinates for the innovations, and a moment of order eight for the process. Recently,

Hafner and Preminger [32] established asymptotic normality of the QMLE under the

weaker assumption of a sixth order moment for the observed process.

Despite favorable asymptotic properties, estimation of multivariate GARCH pa-

rameters by QMLE is problematic. In practice, QMLE is computationally intense

due to the highly nonlinear form of the log-likelihood function, and the large number

of parameters which must be estimated in the multivariate framework.

In Chapter 3 of this dissertation, we prove asymptotic normality of the QMLE

for the BEKK GARCH representation assuming only a fourth order moment for

the process, and we investigate a new variance targeting estimation (VTE) method

that reduces the computational intensity of estimation without sacrificing model

parameters.

1.2 Stochastic Processes

A stochastic process is a collection of random variables, {Xt : t ∈ T}, defined
on some common probability space (Ω,F , P ), and indexed over some T ⊆ R. Given a

stochastic process {Xt : t ∈ T}, denote by T the colection of all vectors (t1, ..., tn)
′ ∈

T n such that t1 < t2 < · · · < tn for n ∈ {1, 2, . . .}. Then the (finite-dimensional)

distribution functions of {Xt : t ∈ T} are the functions Ft(·), defined for all

t = (t1, ..., tn)
′ ∈ T , and all x = (x1, ..., xn)

′ ∈ R
n, by

Ft(x) := P (Xt1 ≤ x1, ..., Xtn ≤ xn).

Stochastic processes can be completely described by their distribution functions,

but we sometimes limit our characterization to some collection of initial moments; of

particular importance are the first and second moments, i.e., the means or expected

values,

E[Xt] := μt,
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and the variances,

V[Xt] := E[(Xt − μt)
2] = E[X2

t ]− μ2
t ,

as well as the covariances,

γ(s, t) := Cov(Xs, Xt) = E[(Xs − μs)(Xt − μt)] = E(XsXt)− μsμt.

The covariances of a stochastic process are often called autocovariances since

they are covariances between random variables of the same stochastic process.

In the special case where all distribution functions of a process are multivariate

normal, the process is completely characterized by its first and second moments.

For nonnormal processes, the means and autocovariances do not give a complete

characterization, but they do give some insight to the temporal dependence structure

of the process.

1.2.1 Estimation of Autocovariances

The moments of a process are typically estimated from a realization of length n,

that is to say X1, . . . , Xn. We estimate the autocovariance function γ(h) with the

empirical autocovariance function, defined for 0 ≤ h < n by

γ̂(h) :=
1

n

n−h∑
j=1

(Xj − X̄)(Xj+h − X̄) = γ̂(−h),

where

X̄ :=
1

n

n∑
j=1

Xj

is the empirical mean. Analogously, we define the empirical autocorrelation

function by

ρ̂(h) :=
γ̂(h)

γ̂(0)

for |h| < n. The empirical autocovariance estimator is biased, but asymptotically

unbiased. It can be made unbiased by replacing n by n− h in the denominator of the

estimator, but γ̂(h) has the desirable property that the covariance matrix with entry

(i, j) = γ̂(i− j) is positive semidefinite, where the unbiased counterpart may not be.
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1.2.2 Stochastic Stability

1.2.2.1 Stationarity

A stochastic process {Xt : t ∈ T} is called mean stationary if

E(Xt) = μt = μ

is constant and finite for all t. It is called variance stationary if

V(Xt) = E[(Xt − μt)
2] = σ2

is constant and finite for all t, and it is called covariance stationary if

Cov(Xt, Xs) = γ(|t− s|)

is a function only of the distance between the two random variables. If {Xt : t ∈ T}
is both mean stationary, and covariance stationary, then we say that it is weakly

stationary. In this case we frequently drop the adjective weak, and refer to weak

stationarity simply as stationarity.

We say that {Xt : t = 0,±1, . . .} is strictly stationary if the joint distributions

of (Xt1 , . . . , Xtk)
′, and (Xt1+h

, . . . , Xtk+h
)′ are the same for all integers t and h, and

all nonnegative integers k, i.e., if

(Xt1 , . . . , Xtk)
′ d
= (Xt1+h

, . . . , Xtk+h
)′.

Strict stationarity immediately implies that eachXt comes from the same distribution,

so if E(Xt) and V(Xt) exist, then strict stationarity implies weak stationarity. The

converse is not generally true, but if the distributions of a weakly stationary process

are multivariate normal, then since the multivariate normal distribution is completely

specified by its first and second moments, it is also strictly stationary.

1.2.2.2 Ergodicity

Much attention has been devoted to characterizing the dependence between terms

of stochastic processes, i.e., the dependence structure of stochastic processes. Do the

past states of a process influence its future states? What about the very distant

past? The elementary tools of autocovariance and autocorrelation, presented above,

are appropriate measures of dependence for many stochastic processes, but when the
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dependence structure is nonlinear, as it is for GARCH, more sophisticated tools are

necessary; to this end, we introduce the concepts of ergodicity and mixing.

The concept of ergodicity is much more general than its limited presentation in

this dissertation, and can be extended to nonstationary sequences (see Billingsley [8]).

Many authors (for instance, Wang [49]) define ergodicity only in terms of strictly

stationary processes, stating that a strictly stationary processes is ergodic if the

sample moments calculated from only finitely many indices of a time series converge

to the corresponding population moments.

A more precise definition, which can be found in Francq and Zaköıan [27], states

that a strictly stationary stochastic process {Xt : t = 0,±1, . . .} is ergodic if and

only if, for any Borel set B and any integer k,

1

n

n∑
t=1

IB(X1, . . . , Xk)
a.s−→ P{(X1, . . . , Xk) ∈ B}. (1.1)

The following theorem is a powerful tool for proving results related to ergodicity;

it states that measurable transformations of strictly stationary and ergodic processes

are again strictly stationary and ergodic.

Theorem 1 If {Xt : t = 0,±1, . . .} is a strictly stationary and ergodic sequence, and

if {Yt : t = 0,±1, . . .} is defined by

Yt := f(. . . , Xt−1, Xt, Xt+1, . . .),

where f is a measurable function from R
∞ into R, then {Yt : t = 0,±1, . . .} is also

strictly stationary and ergodic.

Proof : See Billingsley [8], Theorem 36.4.

�

1.2.2.3 Mixing

The mixing properties of a stochastic process were introduced by Rosenblatt [44],

and are used to characterize different ideas of asymptotic independence between the

past and future of a process. We present here two of the most popular mixing

coefficients.
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The α-mixing coefficient between two σ-fields A and B is defined by

α(A,B) = sup{|P(A ∩B)− P(A)P(B)| : A ∈ A, B ∈ B}.

If Y = {Yt : t = 0,±1,±2, . . .} is a strictly stationary stochastic process, then for

each integer k, denote by Fk the ”future” information set Fk := σ(Yk, Yk+1, . . .), and

denote by Fk the ”past” information set Fk := σ(Yk, Yk−1, . . . , ). Then, the α-mixing

coefficient of Y is defined by

αk = sup{|P(A ∩B)− P(A)P(B)| : A ∈ F0, B ∈ Fk}.

The process Y is said to be α-mixing if αk → 0 as k → ∞. If αk tends to zero at

an exponential rate, then Y is said to be geometrically α-mixing.

The β-mixing coefficient of Y is defined by

βk := E
[
sup{|P(B|F0)− P(B)| : B ∈ Fk}].

The process Y is said to be β-mixing if βk → 0 as k → ∞. If βk tends to zero at

an exponential rate, then Y is said to be geometrically β-mixing. It is easy to see

that

αk ≤ βk,

so that β-mixing implies α-mixing.

1.2.2.4 Martingales

If Y = {Yt : t = 0, 1, . . .} is a sequence of real-valued random variables, and

F = {Ft : t = 0,±1, . . .} is a filtration, then we say that Y is a martingale with

respect to F if, for all t ∈ {0,±1, . . .}, we have

(i) Yt is Ft measurable,

(ii) E|Yt| <∞,

(iii) E(Yt+1|Ft) = Yt.

If we merely say that Y is a martingale, then it is implicitly with respect to the

filtration Ft = σ(Ys : s ≤ t).
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If N = {Nt : t = 0, 1, . . .} is a sequence of real random variables, and F = {Ft :

t = 0, 1, . . .} is a filtration, then we say that N is a martingale difference with

respect to F if, for all t ∈ {0, 1, . . .}, we have

(i) Nt is Ft measurable,

(ii) E|Nt| <∞,

(iii) E(Nt+1|Ft) = 0.

Again, if we merely say that N is a martingale difference, then it is implicitly with

respect to the filtration Ft = σ(Ns : s ≤ t). Note that if {Yt : t ∈ N} is a martingale,

then setting N1 = Y1, and Nt = Yt − Yt−1 for t > 1 gives a martingale difference,

hence the name. Alternatively, if N = {Nt : t ∈ N} is a martingale difference with

respect to F , then setting Yt = N0 + · · · + Nt ensures that Y = {Yt : t ∈ N} is a

martingale with respect to F .

Theorem 2 (The Lindeberg CLT) Suppose that, for each n ∈ {1, 2, . . .}, {Nnk :

k = 1, 2, . . .} is a square integrable martingale difference with respect to {Fnk : k =

1, 2, . . .}. Let σ2
nk = E(N2

nk|Fn(k−1)). Then if

n∑
k=1

σ2
nk

p−→ σ2

as n→∞, where σ2 is a stricly positive constant, and

n∑
k=1

E(N2
nkI{|Nnk|≥ε})→ 0

as n→∞ for every ε > 0, then

n∑
k=1

Nnk
d−→ N (0, σ2)

as n→∞.

Proof : See Billingsley [8], Theorem 35.12.

�
The following corollary applies to GARCH models that can be represented as

stationary and ergodic martingale differences.
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Corollary 1 If {Nk : k = 1, 2, . . .} is a square integrable, stationary and ergodic

martingale difference such that σ2 = V(Nt) �= 0, then

n−1/2
n∑

k=1

Nk
d−→ N (0, σ2)

as n→∞.

1.2.2.5 Deterministic and Nondeterministic Processes

Throughout this dissertation, we will see important relationships between stochas-

tic (nondeterministic) processes, and their deterministic (nonrandom) counterparts.

A process {Xt : t = 0,±1, . . .} is said to be deterministic if, for each j ∈ {1, 2, . . .},
and each n ∈ {0,±1, . . .}, Xn+j can be exactly predicted as a function of elements

of Mn = span{Xt : −∞ < t ≤ n}. If σ2 is the one-step mean squared error σ2 =

E|Xn+1 − PMnXn+1|2, and M−∞ is the closed linear subspace M−∞ =
⋂∞

n=−∞Mn,

then it follows that the process {Xt : t = 0,±1, . . .} is deterministic if and only if

σ2 = 0, or equivalently if and only if Xt ∈M−∞ for each t.

1.3 Time Series

An important class of stochastic processes - random processes that evolve over

time - are referred to as time series. In this section, we introduce the predominant

process models that are used in time series analysis; in particular, we define GARCH

processes, and the closely related ARMA processes. The importance of these types of

processes can be seen from a fundamental result that is due to Wold [50], which can

be summarized as follows: any mean zero, weakly stationary and nondeterministic

process admits a finite moving average (MA) representation.

It follows that the set of all finite order moving average (MA) processes is dense

in the set of nondeterministic and weakly stationary stochastic processes. However,

we often require many parameters in the MA model to obtain a good approximation.

For this reason, ARMA models were developed, and have been shown to extend the

MA models in such a way as to provide good fit with greater parsimony.
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1.3.1 Univariate Time Series Models

1.3.1.1 The Autoregressive Model (AR)

The autoregressive model of order p, denoted AR(p), is a special type of time

series where each observation, Xt, can be expressed as a linear function of finitely

many past observations plus some random element ηt. More formally, we say that

{Xt : t = 0,±1, . . .} is an AR(p) process if, for each t ∈ {0,±1, . . .},

Xt = ηt + ϕ1Xt−1 + ...+ ϕpXt−p,

where ϕ1, ϕ2, ...ϕp are the parameters of the model and {ηt : t = 0,±1, . . .} is a

sequence of independent and identically distributed random variables having mean

zero and unit variance. The random variable ηt is often termed the random shock at

time t. We say that a random process is strong AR if we require that the random

shocks at each point are independent standard normal random variables, and we say

that a random process is weak AR we require only that the shocks form a white noise

sequence - a sequence of uncorrelated random variables with mean zero and common

variance. Note that the autoregressive model is simply a regression of the current

value on past values of the series.

1.3.1.2 Moving Average (MA)

The notation MA(q) refers to the moving average model of order q. We say that

{Xt : t = 0,±1, . . .} is MA(q) if, for each t ∈ {0,±1, . . .},

Xt = ηt + θ1ηt−1 + ...+ θqηt−q,

where θ1, θ2, ...θq are the parameters of the model and the sequence of random shocks,

{ηt : t = 0,±1, . . .}, consists of independent and identically distributed random

variables having mean zero and unit variance. The distinction in the MA model is

that these random shocks are propagated to future values of the time series.

1.3.1.3 Autoregressive Moving Average (ARMA)

The notation ARMA(p, q) refers to the model with p autoregressive terms and q

moving average terms. A generalization of the AR(p) and MA(q) models, the ARMA

model is appropriate when a time series is a function of its own history (the AR
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part), as well as a series of unobserved shocks (the MA part). We say that {Xt} is

ARMA(p, q) if, for each t ∈ {0,±1, . . .},

Xt = ηt + b1Xt−1 + ...+ bpXt−p + a1ηt−1 + ...+ aqηt−q.

Using the lag operator, L, we can write the ARMA(p, q) model more compactly as

b(L)Xt = a(L)ηt

where b(·) and a(·) are polynomials given by

b(z) = 1− b1z − · · · − bpz
p, a(z) = 1 + a1z + · · ·+ aqz

q.

For ARMA models defined as above, most authors assume that the polynomials

b(·) and a(·) have no common factors, since otherwise we could define an equivalent

process with orders smaller than (p, q) by reducing b(·) and a(·).
The ARMA(p, q) process given by b(L)Xt = a(L)ηt is stationary if b(z) �= 0 for

all |z| ≤ 1.

ARMA models are also called Box-Jenkins models due to the iterative, three-stage

Box-Jenkins method for finding the best fit model of this form to a given dataset.

1.3.1.4 Autoregressive Conditional Heteroskedasticity
(ARCH)

Many time series exhibit changes in variance over time. In particular, stock prices,

exchange rates, and other financial phenomena tend to be serially correlated, with

periods of volatility appearing in clusters. The ARCH model was developed by Engle

[20] to model the variance of forecast errors of heteroskedastic time series - often a

sequence of log returns on a stock or asset. We denote observations of these types of

time series by εt, and we say that {εt : t = 0,±1, . . .} follows an ARCH(p) model if,

for each t ∈ {0,±1, . . .},
(i) εt = σtηt,

(ii) σ2
t = ω + α1ε

2
t−1 + · · ·+ αpε

2
t−p,

where σ2
t is the conditional variance of εt given Ft−1, {ηt : t = 0,±1, . . .} is a sequence

of independent, identically distributed random variables with mean zero and unit

variance, ω > 0, and αi ≥ 0 for i = 1, .., p.
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The ARCH model is capable of generating sequences with volatility clustering

and outliers similar to those observed in financial time series. However, to capture

the dynamics of financial time series, ARCH processes of restrictively high orders are

often necessary. For greater parsimony, Bollerslev [9] proposed to extend the ARCH

model in a manner analogous to that in which the ARMA model extends the AR

model; this is the GARCH model described below.

1.3.1.5 Generalized ARCH (GARCH)

The GARCH model is an extension of the ARCH model due to Bollerslev [9]. We

say that {εt : t = 0,±1, . . .} follows a GARCH(p, q) model if, for each t ∈ {0,±1, . . .},

(i) εt = σtηt,

(ii) σ2
t = ω + α1ε

2
t−1 + · · ·+ αpε

2
t−p + β1σ

2
t−1 + · · ·+ βqσ

2
t−q,

where ω > 0, αi > 0 for i = 1, .., p and βi > 0 for i = 1, .., q.

1.3.2 Multivariate Time Series

When interdependence is observed between different univariate time series, it is

useful to consider them as components of a vector-valued, multivariate time series.

The univariate ARMA model extends naturally to the multivariate VARMA (vector

ARMA) model, and the subclass of VAR (vector AR) models have been particularly

popular in the econometric literature. This extension has raised new problems and

new lines of research including cointegration.

1.3.2.1 Multivariate GARCH

In contrast to ARMA models, the GARCH models do not extend so easily to

the multivariate framework. Analogous to the univariate case, we may consider a

conditionally heteroskedastic time series {εt : t = 0,±1, . . .} , of dimension d × 1,

such that, for each t ∈ {0,±1, . . .},

εt = H
1/2
t ηt (1.2)

where the sequence {ηt : t = 0,±1,±2, . . .} consists of independent and identically

distributed (i.i.d.) R
d-valued random variables with mean zero and unit covariance.
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However, the specification of the multivariate GARCH conditional covariance

matrix, Ht, is problematic and has been the subject of extensive research. One

problem is that the conditional expectation of a vector of dimension d is also a vector

of dimension d, but the conditional variance is an d × d matrix, so the number

of parameters that must be estimated explodes as the dimension of the process

increases. Another difficulty is that any valid model must ensure that the conditional

covariance matrix is symmetric and positive definite. Further problems arise if the

matrix representation is not unique. Summaries of the existing model specifications,

their properties, and limitations can be found in Terasvirta and Silvennoinen [45].

We outline below some of the most popular specifications for the multivariate

GARCH conditional covariance matrix.

1.3.2.1.1 The vech GARCH model. The vech GARCH model, due to Boller-

slev [10], is perhaps the most natural multivariate extension of the univariate GARCH

model. This representation makes use of the vech(·) operator, which stacks the

columns in the lower triangular part of a square matrix; if M is a square d × d

matrix, then vech(M) is a d(d + 1)/2 vector, and if M is symmetric, then M can

be recovered from vech(M). In the vech representation, the conditional covariance

matrix is given, for each t ∈ {0,±1, . . .}, by

ht := C +
q∑

i=1

Aist−i +
p∑

j=1

Bjht−j, (1.3)

where st = vech(εtε
′
t), ht = vech(Ht), C0 = vech(C0) for some positive definite d × d

matrix C0, and the coefficients Ai and Bj are positive definite m × m matrices for

m = d(d + 1)/2. The sequence {ηt : t = 0,±1,±2, . . .} consists of independent and

identically distributed (i.i.d.) R
d-valued random variables with mean zero and unit

covariance.

The vech GARCH model has the advantage of being very flexible and general,

but it has the disadvantage that estimation of the parameters is computationally

intense. The number of parameters that must be estimated in the model above is

(p + q)[d(d + 1)/2]2 + d(d + 1)/2. A further disadvantage is that this representation

does not ensure that Ht will be positive definite for all t.
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A simplified diagonal vech model, due to Bollerslev [10], assumes that the matrices

Ai and Bj are diagonal. In this case, conditions exist for Ht to be positive definite,

and the number of parameters that must be estimated is reduced to (p + q)[d(d +

1)/2]. However, this model is considered too restrictive for most applications since

no interaction is allowed between the conditional variances and covariances.

1.3.2.1.2 The BEKK GARCH model. The BEKK GARCH model, named

after Baba, Engle, Kraft and Kroner in a preliminary version of Engle and Kroner

[22], is a restricted version of the vech GARCH model that takes the form

Ht := C +

q∑
i=1

�i∑
k=1

Âikεt−iε′t−iÂ
′
ik +

p∑
j=1

sj∑
r=1

B̂jrHn−jB̂′jr, (1.4)

where the coefficients Aik, and Bjr are d× d parameter matrices, and C is a positive

definite d× d matrix.

The BEKK model has the advantage that the conditional covariance matrices,

Ht, are positive definite by construction. However, problems arise with estimation

and identification. Estimation of the BEKK GARCH model is, like the vech GARCH

model, computationally intensive due to necessary matrix inversions, and (p+q)kd2+

d(d + 1)/2 parameters. For d > 1, additional restrictions must be imposed on the

coefficient matrices to ensure uniqueness of the parameterization.

A diagonal BEKK model has been proposed but, like the diagonal vech model, it

is considered too restrictive for most applications.

Remark 1 Engle and Kroner [22] outline sufficient conditions for equivalence of

the vech and BEKK GARCH models, and they note that if Ht admits a BEKK

representation, then Ht also admits a vech representation. Stelzer [46] proves that

the converse is not generally true; for d = 1 and d = 2 the BEKK and vech

representations are equivalent, but for d ≥ 3 there exist vech representations that

cannot be written in the BEKK form. However, the vech representations that cannot

be written in the BEKK form are necessarily degenerate in the sense that at least one

of the parameter matrices maps the half-vectorized positive semidefinite matrices into

a strict subset of themselves.
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1.3.2.1.3 The factor GARCH models. A number of factor GARCH models

have been proposed with motivation in economic theory where returns on assets are

assumed to be generated by a number of common components, or factors. The first

factor GARCH model was introduced by Engle et al. [21], and can be thought of as an

alternative parametrization of the BEKK GARCH model. This model assumes that

Ht is generated by K (with K < d) not necessarily uncorrelated factors fi,t according

to:

Ht = Ω+
K∑
i=1

ωiω
′
ifi,t,

where the ωi, for i = 1, . . . K, are linearly independent d× 1 vectors of time invariant

factor loadings, or weights, and Ω is a d× d positive semidefinite matrix. The factors

fi,t are assumed to have a first-order GARCH structure.

1.3.2.1.4 The CCC GARCH model. In the CCC GARCH model, of Bollerslev

[10], the time-varying conditional covariances are parametrized to be proportional to

the product of the corresponding conditional standard deviations. More precisely,

this model assumes that the conditional covariance matrix Ht is given by

(i) Ht = DtRDt,

(ii) ht := ω +

q∑
i=1

Ãist−i +
p∑

j=1

B̃jht−j,

where R is a correlation matrix, ω is a d × 1 vector with positive coefficients, st =

vech(εtε
′
t), and the coefficients Ãi and B̃j are m × m matrices with nonnegative

coefficients where m = d(d+ 1)/2.

The conditional covariances are generally nonlinear functions of the components

of st−i, and of past values of the components of Ht. Thus, the CCC GARCH model

is not a restriction of the vech GARCH model, except when R is the identity matrix.

An advantage of the CCC GARCH specification is that positive coefficients for

the matrices Ãi and B̃j, and a positive definite choice for R, ensure that Ht is positive

definite. However, the assumption of constant correlations is arbitrary, and it is not

clear whether this assumption is supported by financial data (see Brooks [14]).



CHAPTER 2

EXISTENCE, UNIQUENESS, AND

STOCHASTIC STABILITY

2.1 Introduction

GARCH models have been extremely popular since their introduction by Engle

[20] in 1982, and generalization by Bollerslev [9] in 1986, but proving that such

processes exist has been a great challenge. Even in the case of univariate GARCH,

a proof that such processes exist waited until 1991 when Bougerol and Picard [11]

published necessary and sufficient conditions.

The idea behind the 1991 proof of Bougerol and Picard [11] is as follows. GARCH

processes may be viewed as special types of Markov processes, i.e., we can group

together terms of a GARCH process to create a new process, {Xt : t = 0, 1, . . .}, such
that the state of the process at time t is conditionally independent of the history of

the process before time s, given the state of the process at time s, for any s < t. If

the Markov process has a stationary solution, then it can be extended to a two-sided

process; this proves existence of the associated GARCH process.

If a Markov process can be written in the form

Xt+1 = F (Xt, ηt+1),

where the sequence {ηt : t = 0, 1, . . .} is independent and identically distributed with

mean zero and unit variance, and if the Lipschitz property

||F (x, ηt)− F (y, ηt)|| ≤ α(ηt)||x− y||

holds for all possible states x and y of the process, and for some positive function α

with E(α(ηt)
m) < 1 and E(||F (0, ηt)||m) <∞ for some real number m ≥ 1, then the

Markov process has a strictly stationary solution.

Bougerol and Picard [11] used this method to show that univariate GARCH

processes exist if and only if γ < 0, where γ is the top Lyapunov exponent
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γ = inf0≤n<∞
1

n+ 1
E log ||A0A1 · · ·An||,

and At is a matrix composed of the coefficients of the process, and the random variable

ηt. However, this method fails in the multivariate case.

Proofs of necessary and sufficient conditions for existence of multivariate GARCH

processes do not currently exist in the literature. Engle and Kroner [22] claimed

to prove necessary and sufficient conditions for existence of general multivariate

GARCH processes, but close inspection reveals that their proof is not correct as

it presupposes finite variance for the process. However, some authors (for instance

[34], p565) continue to cite their result. For some of the simplest multivariate GARCH

specifications, sufficient conditions can be shown using Markovian methods and real

analysis. For example, Francq and Zaköıan [26] give a detailed proof of sufficient

conditions for strict stationarity of the CCC GARCH model specification due to

Bollerslev [10].

Boussama [12] made waves in the econometric community when he published an

announcement that, for general multivariate GARCH processes, sufficient conditions

for strict stationarity follow from Markovian methods combined with recent results

in algebraic geometry, mainly those of Mokkadem [39]. Boussama’s [12] article was

extremely brief and he provided only a sketch of his proof. Researchers doubted

whether Boussama’s claim was true; this is evident in the article by Terasvirta and

Silvennöinen [45] where they summarize the existing body of knowledge surrounding

multivariate GARCH, and they are explicit when mentioning published results that

rely on the work of Boussama [12].

Boussama’s work can be summarized as follows. A method, similar to that used

by Bougerol and Picard [11] in the univariate case, for showing strict stationarity of

an irreducible Markov process was developed by Meyn and Tweedie [38], and is based

on the Foster-Lyapunov condition:

E[V (Xt)|Xt−1 = x] ≤ αV (x) + bIC(x).

Here V ≥ 1 is a Lyapunov function, 0 < α < 1, 0 < b <∞, and C is a so-called small

set on which V is bounded.



18

The Foster-Lyapunov condition requires that the Markov process be irreducible

and, in general, this cannot be shown for multivariate GARCH processes. These

processes are, however, from Boussama [12], irreducible if we can consider the function

F as a composition of a regular map and a diffeomorphism between algebraic varieties,

and if we can restrict the process to the Zariski closure of an orbit of the form

∞⋃
k=0

{F k(T, u1, . . . , uk) : u1, . . . , uk ∈ E},

where T is an attracting point for the process, E is the domain of positivity for the

density of the random variables {ηt : t = 0, 1, . . .}, and the function composition F k

is defined by F k(x, y1, . . . , yk) := F (F k−1(x, y1, . . . , yk−1), yk).

The work presented in this chapter began with a verification, using algebraic

geometry, of the claims of Boussama [12]. Consequently, many of the proofs in this

chapter are similar to those of Boussama [12]. However, the detailed proofs provided

in this chapter eliminate the need for the elaborate machinery of algebraic geometry;

we use only probability (especially Markov theory) and basic real analysis.

2.2 Preliminaries and Notation

In this chapter, we establish existence, uniqueness, and stability properties of an

R
d-valued multivariate GARCH process ε:= {εt : t = 0,±1,±2, . . .}. For each t,

εt := H
1/2
t ηt (2.1)

where Ht := E[εtε
′
t|Ft−1] is the conditional covariance matrix of εt given the sigma

algebra Ft−1 := σ{εt−1, εt−2, ...}, and {ηt : t = 0,±1,±2, . . .} is an independent and

identically distributed sequence of Rd-valued random variables having mean-zero and

unit covariance. We assume that each Ht admits a BEKK representation (see section

1.3 of Chapter 1), given by

Ht := C +

q∑
i=1

�i∑
k=1

Âikεt−iε′t−iÂ
′
ik +

p∑
j=1

sj∑
r=1

B̂jrHn−jB̂′jr, (2.2)

and we denote the corresponding vech representation of Ht by

ht := C +
q∑

i=1

Aist−i +
p∑

j=1

Bjht−j, (2.3)

where ht := vech(Ht), C := vech(C), and st−i := vech(εt−iε′t−i).



19

To estabish existence, uniqueness, and stability properties of the process ε, defined

by (2.1)-(2.3), we make the following assumptions:

A1 : The random variables ηt admit a density that is nonzero in a neigh-

borhood of the origin.

A2 : The spectral radius of
∑q

i=1Ai +
∑p

j=1Bj is less than one.

The aim of this chapter is to prove, in Theorem 7, that under assumptions A1-A2

the process ε exists and is unique. To obtain results for the process ε we will analyze

a Markov chain X:={Xt : t = 0, 1, 2, . . .} defined by

Xt := (h′t, . . . , h
′
t−p+1, ε

′
t, . . . , ε

′
t−q+1)

′. (2.4)

In section 2.3, we recall some important definitions and results from Markov

theory. The results from section 2.3 show that ε exists if the Markov chain X

defined by (2.4) is aperiodic (Definition 2), ψ-irreducible (Definition 1), and satisfies

the Foster-Lyapunov drift criteria (Definition 12). Section 2.3.5 establishes some

necessary notation and results from linear algebra. In section 2.3.6, we show that the

Markov chain X has a representation of the form Xt = F (Xt−1, ηt), and we prove

some smoothness and invertibility properties of the function F . In section 2.3.7 we

construct a state space on which X is ψ-irreducible and aperiodic, and we prove that

it suffices to consider X restricted to this state space. Section 2.4 proves that X

satisfies the Foster-Lyapunov drift criteria, and section 2.5 combines results from all

previous sections to prove that ε exists and is unique. Furthermore, we show that

ε is positive Harris recurrent and geometrically ergodic with a strictly stationary

solution that is geometrically β-mixing.

2.3 Markov Theory

In this section, we review notation and properties of Markov chains which can be

found, for instance, in the book by Meyn and Tweedie [38].

Let Φ := {Φt : t = 0, 1, . . .} denote a Markov chain taking values in a continuous

state space S. Denote the Borel sigma algebra of S by B(S), and denote the transition

probability kernel (sometimes called a Markov transition function) of Φ by P : S ×
B(S)→ R. The kernel P is characterized by the following two properties:
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(i) P(·, A) is measurable and nonnegative for all A ∈ B(S),
(ii) P(x, ·) is a probability measure on (S,B(S)) for all x ∈ S.

The n-step transition probability kernel, Pn, is defined inductively for nonnegative

integers n, x ∈ S, and A ∈ B(S) by
P0(x,A) = Ix(A).

Pn(x,A) =

∫
S

P(x, dy)Pn−1(y, A), n ≥ 1.

The kernel Pn operates on σ-finite measures μ on (S,B(S)) from the right according

to

μPn(A) =

∫
S

μ(dx)Pn(x,A), A ∈ B(S),

and Pn operates on bounded measurable functions f from the left according to

Pnf(x) =

∫
S

f(y)Pn(x, dy), x ∈ S.

Note that Pnf(x) = Ex[f(Φn)] where Ex[·] denotes expectation conditional on the

event {Φ0 = x} for x ∈ S.

2.3.1 Irreducibility, Aperiodicity, and Recurrence

The notions of irreducibility, aperiodicity, and recurrence are closely tied to the

stability of a Markov chain.

Definition 1 A Markov chain Φ is called ψ-irreducible if there exists a nontrivial

measure ψ on (S,B(S)) such that, for all x ∈ S, and all A ∈ B(S), ψ(A) > 0 implies

that there exists some positive integer n, possibly depending on both A and x, such

that Pn(x,A) > 0.

Theorem 3 Suppose that Φ is a ψ-irreducible Markov chain on (S,B(S)). Then

there exists some positive integer d and disjoint sets D1, . . . , Dd ∈ B(S) (a ”d-cycle”)

such that, for each i = 0, . . . , d− 1 (mod d), we have

(i) for x ∈ Di, P(x,Di+1) = 1,

(ii) ψ

([
d⋃

i=1

Di

]c )
= 0.
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Proof : See Meyn and Tweedie [38], Theorem 5.4.4.

�

Definition 2 The largest integer, d, in Theorem 3 is called the period of Φ. When

the period is 1, the chain is said to be aperiodic

Definition 3 Suppose Φ = {Φt : t = 0, 1, . . .} is a Markov chain with state space S.

Then A ∈ B(S) is called recurrent if, for all x ∈ A,

Ex

[ ∞∑
t=1

I{Φt∈A}

]
=∞.

Definition 4 If Φ is a Markov chain with state space S, then we say that A ∈ B(S)
is Harris recurrent if, for every x ∈ A,

P

[ ∞∑
t=1

I{Φt∈A} =∞|Φ0 = x

]
= 1.

The Markov chain Φ is called Harris recurrent if it is ψ-irreducible, and if A is Harris

recurrent for every A ∈ B(S) such that ψ(A) > 0.

2.3.2 Positivity, Ergodicity and Mixing

Definition 5 Suppose Φ is a Markov Chain with transition probability kernel P, and

state space S. We say that a σ-finite measure π on (S,B(S)) is P − invariant if,
for every A ∈ B(S),

π(A) =

∫
S

π(dx)P(x,A).

Definition 6 Suppose a Markov chain Φ is ψ-irreducible, and admits a P-invariant
measure π. Then Φ is called a positive chain.

Remark: If a Markov chain Φ = {Φt : t = 0, 1, . . .} is positive, then Φ with initial

distribution π satisfies

(Φt1 , . . . ,Φtn)
′ d
= (Φt1+h, . . . ,Φtn+h)

′

for all n ∈ {0, 1, . . .}, and all h, t1, . . . , tn ∈ {1, 2, . . .}. In this case, Φ has a

strictly stationary solution, i.e., the one-tailed process Φ can be extended to a strictly
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stationary, two-tailed process Φ̃ = {Φ̃t : t = 0,±1,±2, . . .}. Thus, the multivariate

GARCH(p, q) process ε, defined by (2.1)-(2.3), exists if the Markov chain X, defined

by (2.4), is positive. Furthermore, if X is positive Harris recurrent (Definition 4)

and geometrically ergodic (Definition 7) with a strictly stationary solution that is

geometrically β-mixing (Definition 8), then the same is true of ε.

Definition 7 A Markov chain Φ with transition probability kernel P and state space

S is called ergodic if Φ is positive Harris recurrent with invariant probability measure

π, and for all x ∈ S,

lim
n→∞

||Pn(x, ·)− π||var = 0

where || · ||var denotes the total variation norm, i.e., if μ is a measure on (S,B(S)),
then

||μ||var := sup
A∈B(S)

μ(A)− inf
A∈B(S)

μ(A),

or equivalently,

||μ||var := sup
f :|f |≤1

|μ(f)| = sup
f :|f |≤1

∣∣∣∣
∫
S

f(x)μ(dx)

∣∣∣∣ .
If Φ is ergodic and for all x ∈ S we have

lim
n→∞

||Pn(x, ·)− π||var = o(rn)

for some 0 < r < 1 that is independent of x, then we say that Φ is geometrically

ergodic.

Definition 8 Suppose Y = {Yt : t = 0,±1,±2, . . .} is a strictly stationary stochastic

process. For each integer k, denote by Fk the ”future” information set Fk :=

σ(Yk, Yk+1, . . .), and denote by Fk the ”past” information set Fk := σ(Yk, Yk−1, . . . , ).

Then,

βk := E
[
sup{|P (B|F0)− P (B)| : B ∈ Fk}]

is called the β-mixing coefficient of Y. If

lim
k→∞

βk = 0,
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then Y is called β-mixing. If

lim
k→∞

βk = o(rn)

for some positive number r < 1, then we say that Y is geometrically β-mixing.

2.3.3 Small Sets, Petite Sets, and Feller Chains

Definition 9 Suppose Φ is a Markov Chain with state space S and transition prob-

ability kernel P, and suppose K ∈ B(S). If there exists a positive integer n and a

nontrivial measure vn on (S,B(S)) such that, for all A ∈ B(S) and all x ∈ K,

Pn(x,A) ≥ vn(A),

then K is said to be a small set.

Definition 10 Suppose Φ is a Markov chain with state space S and transition prob-

ability kernel P. A set K ∈ B(S) is is called petite if there exists a sequence

a = {a0, a1, . . .} that sums to 1, and if there exists a nontrivial measure va on B(S)
satisfying

∞∑
n=0

Pn(x,A)an ≥ va(A),

for all x ∈ K, and for all A ∈ B(S).

Remark: It is clear from the definitions above that small sets are petite. There are

some special cases where small sets and petite sets coincide.

Theorem 4 If the Markov chain Φ is ψ-irreducible and aperiodic then every petite

set is small.

Proof : See Meyn and Tweedie [38] Theorem 5.5.7.

�

Definition 11 If P(·, O) is lower semicontinuous for any open set O ∈ B(S), then
the Markov chain Φ having transition probability kernel P is called a Feller chain.

Equivalently, we say that Φ has the Feller property.
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Proposition 1 Suppose that the Markov chain Φ is ψ-irreducible. If Φ has the Feller

property, and the support of ψ has nonempty interior, then every compact subset of

S is petite.

Proof : See Meyn and Tweedie [38], Proposition 6.2.8 (ii).

�

Corollary 2 Suppose that the Markov chain Φ is ψ-irreducible and aperiodic. If

Φ has the Feller property, and the support of ψ has nonempty interior, then every

compact subset of S is small.

2.3.4 The Foster-Lyapunov Drift Criteria

Definition 12 Suppose Φ is a Markov Chain with transition probability kernel P,
and state space S. Then Φ satifies the Foster-Lyapunov drift criteria (or drift

condition) if, for all x ∈ S,

PV (x) ≤ αV (x) + bIK(x), (2.5)

where V ≥ 1 is a so-called Lyapunov function that is finite on S, α and b are real

numbers with 0 < α < 1, 0 < b < ∞ , and K is a small set in S on which V is

bounded. Note that any function V that satisfies (2.5) is called a Lyapunov function.

Theorem 5 Suppose Φ is an aperiodic, ψ-irreducible Markov chain with state space

S and transition probability kernel P. If the Foster-Lyapunov drift criteria is satisfied,

then Φ is geometrically ergodic, positive Harris recurrent, and the strictly stationary

solution {Φt : t = 0,±1,±2, . . .} is geometrically β-mixing.

Proof :

(Geometric ergodicity)

Theorem 19.1.3 of Meyn and Tweedie [38] proves that if Φ is aperiodic, ψ-irreducible,

and satisfies the Foster-Lyapunov drift condition, then Φ is geometrically ergodic.

Moreover, for all x ∈ S and for any positive integer n,

||Pn(x, ·)− π||var ≤ RrnV (x) (2.6)
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for some constants 0 < R <∞, and 0 < r < 1.

(Harris recurrence)

Theorem 14.2.2 (the Comparison Theorem) of Meyn and Tweedie [38], states that if

W , f , and s are nonnegative functions such that

PW (x) ≤ W (x)− f(x) + s(x)

holds for all x ∈ S, then for all x ∈ S, and for any stopping time τ ,

Ex

[
τ−1∑
t=0

f(Φt)

]
≤ W (x) + Ex

[
τ−1∑
t=0

s(Φt)

]
.

We define nonnegative functions W and s on S by W (x) := V (x)− 1, and s(x) :=

bIK(x), and we define f to be the nonnegative constant function f(x) := 1−α. Then,
since (2.5) holds, we have for all x ∈ S

PW (x) = PV (x)− 1

≤ αV (x) + bIK(x)− 1

= αV (x) + s(x)− 1

= αW (x)− f(x) + s(x)

≤ W (x)− f(x) + s(x).

Thus, the Comparison Theorem holds for our particular choices of W , f , and s.

Let τK := inf{t ≥ 1 : Φt ∈ K} denote the hitting time of the set K from (2.5).

Note that τK is a stopping time, and

Ex [τK ] = Ex

[
τK−1∑
t=0

1

]
=

1

1− α
Ex

[
τK−1∑
t=0

f(Φt)

]
,

so the Comparison Theorem implies that, for all x ∈ S,

Ex[τK ] =
1

1− α
Ex

[
τK−1∑
t=0

f(Φt)

]
≤ 1

1− α

(
W (x) + Ex

[
τK−1∑
t=0

s(Φt)

])
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≤ 1

1− α

⎛
⎜⎜⎜⎜⎝V (x) + Ex

[
τK−1∑
t=0

s(Φt)

]
︸ ︷︷ ︸

=bIK(x)

⎞
⎟⎟⎟⎟⎠ <∞.

A nonnegative random variable with finite expectation is finite almost surely, so for

all x ∈ S, P(τK <∞|Φ0 = x) = 1.

Theorem 9.1.7 (ii) of Meyn and Tweedie [38] proves that if for all x ∈ S, and

for some petite set K we have P(τK < ∞|Φ0 = x) = 1, then Φ is Harris recurrent.

From Definitions 9 and 10, small sets are petite, so this proves Harris recurrence of Φ.

(Positivity)

Harris recurrence implies recurrence and, from Theorem 10.0.1 of Meyn and Tweedie

[38], if the chain Φ is recurrent, then it admits a unique invariant probability measure

π. Thus Φ is positive.

(Geometric β-mixing)

Theorem 10.0.1 of Meyn and Tweedie [38] also shows that if supx∈K Ex[τK ] <∞ holds

for some petite set K then π(S) < ∞. By assumption, V is bounded on K and so

our work above implies

sup
x∈K

Ex[τK ] ≤ 1

1− α

(
sup
x∈K

V (x) + b

)
<∞.

Thus π(S) <∞.

According to Proposition 1 of Davydov [18], the coefficient of β-mixing of the

strictly stationary process {Φt : t = 0,±1,±2, . . .} is given by

βk =

∫
S

π(dx)||Pk(x, ·)− π||var.

From (2.6), βk ≤ Rrkπ(S). Since π(S) <∞, 0 < R <∞, and 0 < r < 1, the strictly

stationary process is geometrically β-mixing.

�
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2.3.5 Linear Algebra

In this section, we establish some necessary notation and results from linear

algebra. Unless otherwise noted, matrices and vectors will have real entries. We

denote the set of d×d matrices byMd, the set of symmetric d×d matrices by Sd, the

positive semidefinite d × d matrices by S+
d , and the positive definite d × d matrices

by S++
d .

Lemma 1 Let A, B, and C ∈ Md. Then

(i) vec(ABC) = (C ′ ⊗ A)vec(B),

(ii) (A⊗ B)′ = A′ ⊗ B′,

(iii) there exist unique Kd, Hd ∈Md(d+1)/2×d2 such that vech(D) = Hdvec(D),

vec(D) = K ′
dvech(D), and HdK

′
d is the identity matrix in Md(d+1)/2 for

every D ∈ Sd.

Proof : For a proof of (i), see Lemma 4.3.1 of Johnson and Horn [32]. It is easy to

see that (ii) holds by writing out the associated matrices, and (iii) is clear since the

vec and vech operators are linear.

�
Next we examine properties of a certain class of linear maps. Let n denote a

nonnegative integer, and consider the function ξ : Md → Md defined for all M ∈ Md

by

ξ(M) :=
n∑

i=1

ΥiMΥ′i

where, for each i in {1, . . . , n}, Υi is some fixed d× d matrix.

Using the vec operator, and using Lemma 1, we can consider ξ as a map from R
d2

into R
d2 such that

vec(ξ(M)) =

(
n∑

i=1

Υi ⊗Υi

)
vec(M).

In this context, the map ξ corresponds to left multiplication by the matrix

Υ :=
n∑

i=1

Υi ⊗Υi



28

Note that we have ξ(Sd) ⊆ Sd, i.e. the symmetric d × d matrices are mapped into

themselves by ξ. We denote by ξ̃ the restriction of ξ to the linear subspace Sd. Again

using Lemma 1, we have for all M in Sd,

vech(ξ̃(M)) = vech(ξ(M)) = Hdvec(ξ(M)) = HdΥvec(M) = HdΥK
′
dvech(M).

We can identify Sd with Rd(d+1)/2 using the vech operator, and in this case ξ̃ corre-

sponds to left multiplication by the matrix

Υ̃ := HdΥK
′
d.

Lemma 2 The follwing statements are equivalent:

(i) The spectral radius of ξ is less than one.

(ii) The spectral radius of ξ̃ is less than one.

(iii) For any C ∈ S++
d , there exists some H ∈ S++

d such that H = C +

ξ(H).

Proof : It is clear that (i) implies (ii) since ξ̃ is a restriction of ξ.

To see that (ii) implies (iii), note that if the series
∑∞

n=0 ξ̃
n is convergent with

respect to some operator norm, then we can define

H :=
∞∑
n=0

ξ̃n(C). (2.7)

It is clear that H is symmetric. From the definitions of ξ and ξ̃ we see that for any

M ∈ S+
d , each ξ̃

n(M) is also an element of S+
d . Thus H− ξ̃0(C) = H−C is symmetric

and positive semidefinite. This implies that H is positive definite.

From the Definition (2.7) of H, and since ξ̃ and ξ coincide on Sd, we have

H =
∞∑
n=0

ξn(C) = C + ξ

( ∞∑
n=1

ξn−1(C)

)
= C + ξ(H).

Thus (ii) implies (iii).

Finally, to see that (iii) implies (i), suppose that for any C ∈ S++
d there exists

some H ∈ S++
d such that H = C+ξ(H). Denote the complex d×d matrices byMd(C)

and denote the conjugate transpose of a vector x ∈ C
d by x̄. For every N ∈ Md(C)

we can define
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||N ||H := sup
x∈Cd,x̄Hx=1

|x̄Nx|

which is a norm on Md(C) since H ∈ S++
d . Then for all x ∈ C

d,

|x̄Nx| ≤ ||N ||H(x̄Hx)

Since the unit sphere {x ∈ C
d : x̄Hx = 1} is compact, there exists for eachN ∈Md(C)

some vector xN ∈ C
d such that

||N ||H = |x̄NNxN |, and x̄NHxN = 1.

Now if λξ is an eigenvalue of ξ, then there is some nonzero M ∈Md(C) such that

λξM = ξ(M) =
n∑

i=1

ΥiMΥ′i.

For every x ∈ C
d, it follows that

|λξ||x̄Mx| =
∣∣∣∣∣

n∑
i=1

x̄ΥiMΥ′ix

∣∣∣∣∣
≤

n∑
i=1

∣∣(Υ′ix)M(Υ′ix)
∣∣

≤ ||M ||H
n∑

i=1

x̄ΥiHΥ′ix

= ||M ||H x̄

(
n∑

i=1

ΥiHΥ′i

)
︸ ︷︷ ︸

=ξ(H)=H−C

x.

Now choosing xM such that ||M ||H = |x̄MMxM | and x̄MHxM = 1, we obtain (note

||M ||H �= 0),

|λξ| ≤ 1− x̄MCxM < 1,

as desired.

�

In the following, the matrices Âi,k, B̂j,r, and Ai, Bj are the coefficient matrices

defined by (2.1)-(2.3).
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Lemma 3 The spectral radius of
∑q

i=1Ai +
∑p

j=1Bj is less than one if and only if

there exists some positive definite matrix H such that

H = C +
∑q

i=1

∑�i
k=1 ÂikHÂ

′
ik +

∑p
j=1

∑sj
r=1 B̂jrHB̂

′
jr.

Proof : Consider the map ξ :Md →Md defined for all M ∈Md by

ξ(M) =

q∑
i=1

�i∑
k=1

ÂikMÂ′ik +
p∑

j=1

sj∑
r=1

B̂jrMB̂′jr.

Using the vec operator and Lemma 1, ξ corresponds to multiplication by the matrix

Υ =

q∑
i=1

�i∑
k=1

Âik ⊗ Âik +

p∑
j=1

sj∑
r=1

B̂jr ⊗ B̂jr.

Letting ξ̃ denote the restriction of ξ to Sd and using the vech operator, it follows from

Lemma 1 that ξ̃ corresponds to matrix multiplication by

HdΥK
′
d =

∑q
i=1Ai +

∑p
j=1Bj.

Thus, it follows from Lemma 2 that the spectral radius of
∑q

i=1Ai +
∑p

j=1Bj is less

than one if and only if there exists some H ∈ S++
d such that

H = C + ξ(H) = C +

q∑
i=1

�i∑
k=1

ÂikHÂ
′
ik +

p∑
j=1

sj∑
r=1

B̂jrHB̂
′
jr.

�

Remark : With small changes to the proof above we see that, equivalently, the

spectral radius of
∑q

i=1Ai +
∑p

j=1Bj is less than one if and only if there exists some

positive definite matrix H such that

H = C +

q∑
i=1

�i∑
k=1

Â′ikHÂik +

p∑
j=1

sj∑
r=1

B̂′jrHB̂jr.

Lemma 4 If the spectral radius of
∑q

i=1Ai +
∑p

j=1Bj is less than one, then the

spectral radius of
∑p

j=1Bj is less than one, and the spectral radius of B is less than
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one, where

B :=

⎛
⎜⎜⎜⎜⎜⎝

B1 B2 · · · Bp−1 Bp

I 0 · · · 0 0

0 I
. . .

... 0
...

. . . . . . 0
...

0 · · · 0 I 0

⎞
⎟⎟⎟⎟⎟⎠ , (2.8)

and the sub-matrices I are identity matrices with d(d+ 1)/2 rows and columns.

Proof : Suppose the spectral radius of
∑q

i=1Ai +
∑p

j=1Bj is less than one. Then

there exists, due to Lemma 3, some matrix H ∈ S++
d such that

H = C +

q∑
i=1

�i∑
k=1

ÂikHÂ
′
ik +

p∑
j=1

sj∑
r=1

B̂jrHB̂
′
jr.

Define C̃ := C +
∑q

i=1

∑�i
k=1 ÂikHÂ

′
ik. Then C̃ ∈ S++

d , and

H = C̃ +

p∑
j=1

sj∑
r=1

B̂jrHB̂
′
jr

Using again Lemma 3, it follows that the spectral radius of
∑p

j=1Bj is less than one.

Now from Lemma 3, there exists some H̃ ∈ S++
d such that

H̃ = C +

p∑
j=1

sj∑
r=1

B̂jrH̃B̂
′
jr. (2.9)

Let λB denote an eigenvalue of B with eigenvector h = (h′1, . . . , h
′
p)
′. Then,

λBh1 =

p∑
j=1

Bjhj, and λBhj = hj−1 for 2 ≤ j ≤ p.

Thus hp �= 0 (otherwise h would be zero) and

λpBhp = λB(λ
p−1
B hp) = λBh1 =

p∑
j=1

Bjhj =

p∑
j=1

λp−jB Bjhp.

Let M ∈ Sd such that vech(M) = hp. Then,

λpBM =

p∑
j=1

sj∑
r=1

λp−jB B̂jrMB̂′jr.

Define the norm || · ||H̃ , for any N ∈Md(C), as in the proof of Lemma 2 by
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||N ||H̃ := sup
x∈Cd,x̄H̃x=1

|x̄Nx|.

Then, for all x ∈ C
d,

|λpB||x̄Mx| =
∣∣∣∣∣

p∑
j=1

sj∑
r=1

λp−jB x̄B̂jrMB̂′jrx

∣∣∣∣∣
≤

p∑
j=1

sj∑
r=1

|λB|p−j|x̄B̂jrMB̂′jrx|

≤ ||M ||H̃
p∑

j=1

sj∑
r=1

|λB|p−j|x̄B̂jrH̃B̂
′
jrx|.

If we assume (by way of contradiction) that there is an eigenvalue λB of B with

|λB| ≥ 1, then choosing the vector x such that x̄H̃x = 1, and |x̄Mx| = ||M ||H̃ , and
using (2.9), we have

|λB|p ≤
p∑

j=1

sj∑
r=1

|λB|p−j(x̄B̂jrMB̂′jrx)

≤ |λB|p−1
[
x̄

(
p∑

j=1

sj∑
r=1

B̂jrH̃B̂
′
jr

)
x

]
.

= |λB|p−1[x̄(H̃ − C)x] = |λB|p−1(1− x̄Cx).

Since C ∈ S++
d , we have x̄Cx > 0. Thus |λB|p < |λB|p−1, i.e. |λB| < 1 which is a

contradiction. Thus the spectral radius of B is less than one.

�

2.3.6 Properties of the Markov Chain X

It is clear, from the vech representation (2.3) of a multivariate GARCH(p, q)

process, that the Markov chain X defined by (2.4) will take values in the state space

S := vech(S++
d )× · · · × vech(S++

d )︸ ︷︷ ︸
p factors

×R
d × · · · × R

d︸ ︷︷ ︸
q factors

. (2.10)

However, X is not irreducible on S. In the next section, we will construct a subspace

A+ of S on which X is irreducible, and we will show that it suffices to consider X

restricted to A+. To this end, we note that
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Xt = (h′t, . . . , h
′
t−p+1, ε

′
t, . . . , ε

′
t−q+1)

′

can be written as(
vech(C) +

q∑
i=1

Aivech(εt−iε′t−i) +
p∑

j=1

Bjht−j, h′t−1, . . . , h
′
t−p+1, ε

′
t, . . . , ε

′
t−q+1

)′
,

and since εt = H
1/2
t ηt, we see that

Xt = F (Xt−1, ηt).

More precisely, the function F is defined by

F : (Xt−1, ηt) �→
(
κ(Xt−1), h′t−1, . . . , h

′
t−p+1, g ◦ K(Xt−1)ηt, ε′t−1, . . . , ε

′
t−q+1

)′
, (2.11)

where κ is the polynomial mapping defined by

κ : Xt−1 �→ vech(C) +
∑q

i=1Aivech(εt−iε′t−i) +
∑p

j=1Bjht−j = ht,

and the function K is defined by vech−1(κ), i.e., K is composition of the polynomial κ

with the map that reverses the vech operator. Note that the function F is polynomial

in each coordinate except for the coordinate p+ 1.

2.3.6.1 Properties of the Function F

Here we establish some smoothness and invertibility properties of the function F

defined by (2.11). These properties are necessary for proving irreducibility of X, and

for showing that X satisfies the Foster-Lyapunov drift condition.

Definition 13 A function f : U → R
n (for any positive integer n) is called smooth

if U is an open subset of Rm (for some positive integer m), and if f has continuous

partial derivatives of all orders (see, for instance, Guillemin and Pollack [29] p.1-3).

However, if the domain of f is not open, then partial derivatives may not make sense.

For an arbitrary set X ⊆ R
m, we say that f : X → R

n is smooth if f may be locally

extended to a smooth map on open sets. More specifically, if for each x ∈ X, there

exists an open neighborhood Ux of x, and a smooth map f̃ : Ux → R
n such that f and

f̃ agree on Ux ∩X.

Theorem 6 The map g : S++
d → S++

d defined by g(H) := H1/2 is a diffeomorphism.



34

Proof : First note that a positive definite matrix has a unique positive definite square

root. This result can be found, for instance, in the book by Horn and Johnson [32],

Theorem 7.2.6. Therefore, g is well-defined and bijective.

We can identify the space of symmetric d × d matrices with real entries, Sd,

with R
m, where m := d(d+ 1)/2, via the vech operator. If U and V are two

simply connected open subsets of Rm, then a differentiable map from U to V is a

diffeomorphism if the differential is bijective at each point; we will use this criterion

to show that the function g−1 is a diffeomorphism.

The differential of g−1 is defined, at the point X in S++
d , by

Jg−1X (H) = lim
t→0

g−1(X + tH)− g−1(X)

t

= lim
t→0

(X + tH)(X + tH)−XX

t

= XH +HX.

It follows from Theorem 1 of Potter [42] that, for any fixed X in S++
d ,

XH +HX = 0

impliesH = 0. Thus, the differential Jg−1X is injective. As a linear map between vector

spaces of the same dimension, it follows that Jg−1X is bijective for each X ∈ S++
d .

Finally, S++
d is an open and convex (hence simply connected) subset of Rm from

Proposition 2.7 of Arsigny, Fillard, Pennec, and Ayache [2]. This completes the proof.

�
In assumption A1, we require that the random variables ηt appearing in (2.1)

admit a density that is nonzero in a neighborhood of the origin. We will denote the

cumulative distribution function of the random variables ηt by Γ, and the correspond-

ing density by γ. Assumption A1 implies that γ admits a domain of positivity with

nonempty interior, and we will denote this domain by E, i.e.,

E := {x ∈ R
d : γ(x) > 0}. (2.12)

Recalling Definition (2.10), where we define the state space S, we may now state the

following Corollary to Theorem 6.
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Corollary 3 F : S× E → S is smooth.

Proof : First suppose that S × E, the domain of F , is open. In this case, the proof

follows from combining the definition of F , (2.11), with Theorem 6 above, to see that

F is smooth in each coordinate, hence smooth.

More generally, although S is open as a product of finitely many open sets, we do

not require the set E ⊆ R
d to be open. Thus, the domain S × E of F may not be

open. In this case, we may consider F̃ defined as F but having domain S×R
d. Then

F̃ is smooth, and F may be locally extended to F̃ .

�

Corollary 4 For any fixed x in S, the function Fx : E → S defined by Fx(·) := F (x, ·)
is smooth. Furthermore, the inverse function F−1x (·) : F (S)→ E exists and is smooth.

Proof : It is clear that Fx is smooth, since F is smooth in each coordinate.

Regarding the inverse function, since x is fixed, F−1x (·) simply left multiplies the

p+ 1 coordinate of its argument by the matrix inverse of g ◦ K(x). More precisely, if

Fx(η) = Y , then letting yp+1 denote the p+ 1 coordinate of Y , we have

F−1x (Y ) = [g ◦ K(x)]−1yp+1.

Matrix inversion is a smooth operation on the space of nonsingular d × d matrices,

so it is in particular smooth on S++
d . Thus F−1x (·) is a composition of smooth maps,

hence smooth.

�

Lemma 5 For any fixed x in S, Fx : E → S is an open map.

Proof : To prove this lemma, we refer to the Invariance of Domain Theorem, due to

Brouwer [15]. This theorem states that if U is an open subset of Rn, and if f : U → R
n

is injective and continuous, then f is an open map.

From Corollary 4, the function Fx : E → S is smooth (hence continuous), and

invertible (hence injective), for any fixed x in S.



36

The set E has open subsets since, by assumption A1, zero is an interior point

of E, and for any open subset U ⊆ E, the restriction of Fx to U is continuous and

injective, so Fx(U) is open in S.

�

Lemma 6 For any Borel set A in S, P(·, A) = F (·,Γ)(A)

Proof : This lemma follows from a simple change of variables, and the density

transformation theorem. See, for instance, Theorem 1.2.1 and Theorem 1.2.2 in

Bickel and Doksum [6]. Application of these theorems is justified by Corollary 4. Let

x ∈ S be arbitrary. Then,

P(x,A) = E[IA(Xt+1)|Xt = x]

= E[IA(F (x, ηt+1))]

=

∫
S

IA(F (x, y))dΓ(y)

=

∫
F−1
x (A)

γ(y)dy

=

∫
A

γ(F−1x (u))|JF−1
x
(u)|du

=

∫
A

γ′x(u)du, where γ
′
x is the density of Fx(Γ)

= F (x,Γ)(A).

�

2.3.7 Irreducibility

2.3.7.1 The Set of Attainable States

We define a sequence of maps {F k : k = 1, 2, . . .} inductively for arbitrary x in S,

and arbitrary e1, . . . , ek in E, by F 1(x, e1) = F (x, e1), and for k > 1,

F k(x, e1, . . . , ek) := F (F k−1(x, e1, . . . , ek−1), ek). (2.13)



37

Definition 14 For any initial state x0 in S, we define A+(x0) to be the set of

attainable states that can be reached by the Markov process X given that X0 = x0.

More formally,

A+(x0) :=
∞⋃
k=1

{F k(x1, e1, . . . , ek) : e1, . . . , ek ∈ E}. (2.14)

Meyn and Tweedie [38] explore, in great detail, the relationship between random

processes of the form Xt = F (Xt−1, ηt), where each ηt is a random variable, and

the closely related dynamical system that results if each ηt is nonrandom. Along

these lines, we consider for any fixed a in E, and for any initial value x0 in R
d the

nonrandom sequence Xa(x0) defined by Xa
0 (x0) = x0, and for k > 0,

Xa
k (x0) = F (Xa

k−1(x0), a). (2.15)

2.3.7.2 Globally Attracting Points

Definition 15 A point x∗ in R
d is called a globally attracting point of the Markov

chain X if there exists some a in E such that Xa
k (x)→ x∗ as k →∞ for every x ∈ S,

where Xa
k is defined as in (2.15).

Lemma 7 The Markov chain X defined by (2.4) has a globally attracting point.

Proof : Let x in S be arbitrary, and consider the nonrandom sequence X0(x) defined

by X0
0 (x) = x, and for k > 0,

X0
k(x) = F (X0

k−1(x), 0).

Denote by ε0t , h
0
t , and H

0
t the vectors and covariance matrix analogous to εt, ht and

Ht, respectively, in X. Note that ε0t = 0 for each t. Thus,

h0t = vech(C) +

p∑
j=1

Bjh
0
t−j.

For all k > q, we can write X0
k(x) as X0

k(x) = C + BX0
k−1(x), where C is defined

by C := (vech(C)′, 0, . . . , 0)′ and B is a square matrix with pd(d + 1)/2 rows and

columns, given by

B :=

(
B 0
0 0

)
,
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and the matrix B is defined by (2.8).

Since X0
k(x) = C +BX0

k−1(x), limk→∞X0
k exists if and only if the spectral radius

of B is less than one; the spectral radius of B is less than one from A1 and Lemma

4. Thus limk→∞X0
k = x∗ for some x∗ in S.

�
A few more things can be said about the attracting point x∗. From Lemma 3,

there exists some positive definite matrix H such that

H = C +

p∑
j=1

sj∑
r=1

B̂jrHB̂
′
jr.

With h := vech(H), it follows that

h = vech(C) +

p∑
j=1

Bjh.

Thus, the globally attracting point x∗ is given by

x∗ = (h, · · · , h︸ ︷︷ ︸
p factors

, 0, · · · , 0)︸ ︷︷ ︸
qd factors

. (2.16)

To simplify notation in the following, we will denote A+ by A+(x
∗). We are now

ready to prove that X is ψ-irreducible when restricted to the state space A+.

Proposition 2 X is ψ -irreducible and aperiodic when restricted to the state space

A+ := A+(x
∗).

Proof : Let A denote an arbitrary Borel subset of A+. Then, using Lemma 6 and

Corollary 4, we have for any x in A+,

lim
x→x∗

P(x,A) = lim
x→x∗

F (x,Γ)(A) = F (x∗,Γ)(A) = P(x∗, A).

Define the measure v by v(A) := P(x∗, A). Then if v(A) �= 0, continuity of the first

component of P ensures that there is some neighborhood W of x∗ such that, for all

w in W ,

P(w,A) ≥ v(A)

2
. (2.17)

Choose any subcollection of points K := {x1, . . . , xr} in S, and consider the sequences

X0(x1), . . . ,X
0(xr), defined as in (2.15). Then Lemma 7 implies that X0

k(xi)→ x∗ as
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k →∞ for each i in {1, . . . , r}. Thus, there exists some � > 0 such that each X0
� (xi)

is in the neighborhood W .

Note that X0
� (xi) = F �(xi, 0, . . . , 0), and F � is continuous as a composition of

continuous maps, so there exists, for each i in {1, . . . , r}, some neighborhood Ui of

(xi, 0, . . . , 0) such that F �(Ui) ⊆ W . Thus, for each i in {1, . . . , r}, Ui contains U
′
i×U0

i

where U ′i and U0
i are neighborhoods of xi in W , and (0, . . . , 0) in E�, respectively.

Define

U(0,...,0) :=
r⋂

i=1

U0
i ,

which is also a neighborhood of the origin in E� such that F (xi, U(0,...,0)) ⊆ W . Then

U(0,...,0) necessarily contains a neighborhood U0 × · · · × U0, where U0 is some small

neighborhood of 0 in E, and we have for each i in {1, . . . , r},

P�(xi, A) ≥ P((η1, . . . , η�) ∈ U(0,...,0)) = P(η1 ∈ U0)
� = Γ(U0)

�. (2.18)

Using the Chapman-Kolmogorov equations (see Theorem 3.4.2 of Meyn and Tweedie

[38]), (2.17), and (2.18), we see that, for each i in {1, . . . , r},

P�+1(xi, A) =

∫
S

P�(xi, dy)P(y, A)

≥
∫
W

P�(xi, dy)P(y, A)

≥v(A)
2

∫
W

P�(xi, dy)

=
v(A)

2

∫
S

P�(xi, dy)IW (y)

=
v(A)

2

∫
S

P�(xi, dy)P0(y,W )

=
v(A)

2
P�(xi,W )

≥v(A)
2

Γ(U0)
�.

The origin is an interior point of E by assumption, so U0 contains a nonempty

open subset of E, and thus Γ(U0) > 0. This shows that X is irreducible with respect
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to the measure v, and thus X is irreducible with respect to some maximal measure

ψ such that v is absolutely continuous with respect to ψ.

Finally, to see that X is aperiodic we suppose that X has period d. Then from

Theorem 3, there are disjoint Borel setsD1, . . . , Dd in A+ such that ψ((
⋃d

i=1Di)
c) = 0,

and such that for all i in 1, . . . , d, and for all x in Di, P(x,Di(mod(d))+1) = 1.

Since v is absolutely continuous with respect to ψ, v((
⋃d

i=1Di)
c) = 0. Thus there

is some Di with positive v-measure. Without loss of generality, suppose this is D1.

Let x1 ∈ D1, and xd ∈ Dd. Our work above shows that

P�+1(x1, D1) > 0, and P�+1(xd, D1) > 0.

Thus, the integers �+ 1 and � are both divisible by d. Therefore d = 1.

�

Lemma 8 For all positive integers j, F j(A+, E
j) ⊆ A+. Thus X can be restricted to

the set of attainable states A+.

Proof : Let the positive integer j be arbitrary, and suppose that y ∈ F j(A+, E
j).

Then there exists some x ∈ A+ such that y ∈ F j(x,Ej).

Since x ∈ A+, there is some positive integer m such that x ∈ Fm(x∗, Em). Thus

y ∈ F j(Fm(x∗, Em), Ej) = F j+m(x∗, Ej+m) ⊆ A+.

�

2.4 Checking the Foster-Lyapunov Criteria

In this section, we construct a Lyapunov function V such that X satisfies the

Foster-Lyapunov drift condition. First, we need the following Lemma.

Lemma 9 Any compact subset of A+ is small.

Proof : A Markov chain is said to have the Feller property (Definition 11) if it has

a transition probability kernel P such that P(·, O) is lower semicontinuous for any

open set O in its state space.

From Lemma 6 and Corollary 4, the transition probability kernel P of X is

continuous as a function of its first component. Thus P(·, O) is in particular lower

semicontinuous for any open set O ∈ A+, so X has the Feller property.
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Meyn and Tweedie [38] prove in their Theorem 5.5.7 that if a Markov chain is

ψ-irreducible and aperiodic on some state space, then every petite set in that state

space is small. From Proposition 2, it follows that every petite set in A+ is small.

Meyn and Tweedie [38] show in Theorem their 6.2.8 (ii) that if a Markov chain has

the Feller property, and is ψ-irreducible for some measure ψ with nonempty interior,

then all compact subsets of the state space are petite.

The measure v, defined by v(A) := P(x∗, A) as in the proof of Proposition 2,

is absolutely continuous with respect to the maximal measure ψ such that X is ψ-

irreducible. Thus it suffices to show that the support of v has nonempty interior.

For any Borel set A in A+, v(A) = P(x∗, A) = Fx∗(Γ)(A). Γ has density γ, so

v = Fx∗(Γ) has density γv given by

γv(x) := γ(F−1x∗ (x))|JF−1
x∗
(x)|.

The domain of positivity of v is

{x ∈ R
d : γv(x) > 0} = {x ∈ R

d : γ(F−1x∗ (x)) > 0}
= {x ∈ R

d : F−1x∗ (x) ∈ E}
= Fx∗(E).

E has nonempty interior by assumption A1, and Fx∗ is an open map from Lemma 5,

thus Fx∗(E) has nonempty interior and the proof is complete.

�

Proposition 3 X satisfies the Foster-Lyapunov drift condition.

Proof : For ease of exposition, we focus on the case where p = q = 1 and �1 = s1 = 1

in the BEKK representation (3.2). We will denote the coefficient matrices Â11 and

B̂11 of the BEKK representation simply by Â and B̂.

Define matrices V1 and V2 by

V1 :=
1

2
C + B̂HB̂′, V2 :=

1

2
C + ÂHÂ′.

From Lemma 8, X can be restricted to the state space A+. Thus, if Xk is an arbitrary

term of X, then the realization of Xk is an element of A+, and we define the Lyapunov

function V from A+ to [1,∞) by
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V (Xk) := tr(V1Hk) + ε′kV2εk + 1.

Let x := (h′t−1, ε
′
t−1)

′ denote an arbitrary point in A+. Then,

E[V (Xt)|Xt−1 = x] = E[tr(V1Ht) + ε′tV2εt|Xt−1 = x] + 1.

Using the BEKK representation of Ht, the right-hand side of the expression above

can be written as

E[ε′tV2εt|Xt−1 = x] + tr(V1C) + tr(V1Âεt−1ε′t−1Â
′) + tr(V1B̂Ht−1B̂′) + 1,

or equivalently,

E[ε′tV2εt|Xt−1 = x] + tr(V1C) + ε′t−1Â
′V1Âεt−1 + tr(B̂′V1B̂Ht−1) + 1. (2.19)

Let us now examine the first term of (2.19). We observe that

E[ε′tV2εt|Xt−1 = x] = E[tr(εt(V2εt)
′|Xt−1 = x]

= tr(E[εtε
′
tV2|Xt−1 = x]

= tr(E[εtε
′
t|Xt−1 = x]V2)

= tr(HtV2)

= tr(V2C) + tr(V2Âεt−1ε′t−1Â
′) + tr(V2B̂Ht−1B̂′)

= tr(V2C) + ε′t−1Â
′V2Âεt−1 + tr(B̂′V2B̂Ht−1).

Combining the expression above with (2.19) gives

E[V (Xt)|Xt−1 = x] =

tr((V1 + V2)C) + ε′t−1Â
′(V1 + V2)Âεt−1 + tr(B̂′(V1 + V2)B̂Ht−1) + 1. (2.20)

Note that

B̂′(V1 + V2)B̂ = V1 − 1

2
C,

and

Â′(V1 + V2)Â = V2 − 1

2
C.
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Thus, Vk − (1/2)C is positive semidefinite for k = 1, 2. Define, for k = 1, 2,

αk := max

{
x′
(
Vk − 1

2
C

)
x : x ∈ R

d, x′Vkx = 1

}
.

Since each Vk is positive definite, it follows that x′Vky is a well-defined inner product

of x with y (for k = 1, 2), and thus each αk is the maximum of a continuous function

over a compact set (the unit circle) in R
d. It follows that, (for k = 1, 2), there exists

some xk in R
d such that x′kVkxk = 1 and

αk = x′k

(
Vk − 1

2
C

)
xk = 1− 1

2
x′kCxk.

Let αm = max{α1, α2}, and let Vm, xm denote the matrix and vector (respectively)

such that

αm = x′m

(
Vm − 1

2
C

)
xm.

Then 0 ≤ αm since Vm − (1/2)C is positive semidefinite, and αm < 1 since

αm = 1− 1

2
(x′kCxk),

and C is positive definite. Next we claim, for k in {1, 2}, that

Vk − 1

2
C ≤ αmVk. (2.21)

To see this, note that x′mCxm ≤ y′Cy for all y such that y′Vky := ||y||2k = 1. Thus,

for all nonzero y in R
d,

y′Cy
||y||2k

≥ x′mCxm = x′mCxm
y′Vky
||y||2k

,

and, for all y in R
d,

y′Cy ≥ x′mCxmy
′Vky.

In other words,

C ≥ x′mCxmVk.

Thus, we have

1

2
C ≥ 1

2
x′mCxm = Vk − αmVk,
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and therefore (2.21) holds.

If M and N are positive semidefinite matrices such that the product MN is

defined, and nonzero, then tr(M) ≥ 0, and tr(M)tr(N) ≥ tr(MN) ≥ 0 (see pages

306-307 of Bernstein [5]). Thus,

Vk − 1

2
C ≤ αmVk

implies that, for k in {1, 2}, and for any positive semidefinite matrix M ,

tr

[(
Vk − 1

2
C

)
M

]
≤ αmtr(VkM).

Applying this to (2.20),

E[V (Xt)|Xt−1 = x] = tr((V1 + V2)C) + ε′t−1Â
′(V1 + V2)Âεt−1 + tr(B̂′(V1 + V2)B̂) + 1

= tr((V1 − 1

2
C)Ht−1) + tr[(V2 − 1

2
C)εt−1ε′t−1)] + tr(HC) + 1

≤ αmtr(V1Ht−1) + αmtr(V2εt−1ε′t−1) + tr(HC) + 1

= αmV (x) + tr(HC) + 1− αm.

Defining α := (1/2)αm + (1/2) in [1/2, 1), b := tr(HC) + 1− αm, we have

E[V (Xt)|Xt−1 = x] ≤ αV (x) + bIK(x),

where K is the set

K :=

{
x ∈ A+ : 1 ≤ V (x) ≤ b

α− αm

}
.

It is clear that V is bounded on K, and the proof is finished if we can show that

K is a small set. By Lemma 9 it suffices to show that K is compact. It is clear that

K is closed in A+ as the preimage of a closed interval under a continuous map, and

we claim that K is bounded hence compact by the Heine-Borel theorem.

To show that K is bounded, we will show that the quantities ||h||1, and ||ε||2, are
uniformly bounded for all x := (h′, ε′)′ in K ,where the vector norms || · ||1 and || · ||2
are defined by

||h||1 :=
d(d+1)/2∑

i=1

|hi|,
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and

||ε||2 := (
d∑

j=1

ε2j)
1/2.

Let λmin(A) denote the smallest eigenvalue of a matrix A. Proposition 8.4.13 of

Bernstein [5] shows that, for any positive semidefinite matrices A, and B,

λmin(A)tr(B) ≤ tr(AB). (2.22)

If x := (h′, ε′)′ ∈ K then, from the definition of K,

tr(HV1) + tr(V2εε
′) ≤ b

α− αm

+ 1,

where H is the positive definite matrix such that vech(H) = h. Applying (2.22),

tr(H) + tr(εε′) ≤ 1

λ

(
b

α− αm

+ 1

)
(2.23)

where λ := min{λmin(V1), λmin(V2)}. Note that λ > 0, tr(H) > 0, and tr(εε′) ≥ 0

since V1, V2, and H are positive definite, and εε′ is positive semidefinite.

Consider the matrix norms || · ||m1 and || · ||m2 defined, for any matrix A, by

||A||m1 :=
∑
i,j

|Ai,j|,

and

||A||m2 := (
∑
i,j

A2
i,j)

1/2 = tr(A′A)1/2.

It is clear from the definitions that

||vech(A)||1 ≤ ||A||m1, and ||y||2 ≤ ||yy′||m2, (2.24)

holds for any matrix A, and for any vector y. If A is positive semidefinite, then

||A||m2 ≤ (tr(A′)tr(A))1/2 = tr(A). (2.25)

Due to the equivalence of finite-dimensional norms, there exist positive constants

M1 and M2 such that, for any matrix A,

||A||m1 ≤M1||A||m2, and ||A||m2 ≤M2||A||m1. (2.26)

Thus, applying (respectively) (2.24), (2.26), (2.25), and (2.23), we have
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||h||1 ≤ ||H||m1 ≤M1||H||m2 ≤M1tr(H) ≤ M1

λ

(
b

α− αm

+ 1

)
,

and similarly,

||ε||1 ≤ ||εε′||m2 ≤M2||εε′||m2 ≤ tr(εε′) ≤ M2

λ

(
b

α− αm

+ 1

)
.

�

2.5 Existence of Multivariate GARCH

Theorem 7 Under assumptions A1 and A2, the process ε defined by (2.1) exists

and is unique. Furthermore, ε is positive Harris recurrent, geometrically ergodic, and

the stricly stationary solution {εt : t = 0,±1,±2, . . .} is geometrically β-mixing.

Proof : From the remark following Definition 6, it suffices to show that the Markov

chain X has a strictly stationary solution that is positive Harris recurrent, geometri-

cally ergodic, geometrically β-mixing, and unique.

From Theorem 5, such a solution exists if X is ψ-irreducible, aperiodic, and

satisfies the Foster-Lyapunov condition. From Proposition 2, X is ψ-irreducible and

aperiodic when restricted to the state space A+, and from Lemma 8, it suffices to

consider X restricted to A+. From Proposition 3, X (restricted to A+) satisfies the

Foster-Lyapunov drift condition. Thus, the process ε exists.

The proof is complete upon showing that ε is unique. To simplify notation, we

take p = q = 1 in (2.3). Recursive iteration of (2.3) yields

ht = C + Ast−1 +Bht−1,

= C + Ast−1 +BC +BAst−2 +B2ht−2,

...

=
∞∑
i=1

Bi−1 (C + Ast−i) .

Define, for all integers t, and each integer N > 1,

ht(N) = C +
N∑
i=1

Bi−1 (C + Ast−i) + BN+1ht−N−1.



47

Suppose ε̃t = Σ
1/2
t ηt is a strictly stationary solution to (2.1), and let σt = vech(Σt).

Then σt must satisfy the recursion above, i.e., for all N > 1,

σt = ht(N) + BN+1ht−N−1

=
∞∑
i=1

Bi−1 (C + Ast−i) ,

and

σt − ht = {ht(N)− ht}+BN+1σt−N−1.

The term in braces above converges to zero almost surely as N goes to infinity, and

since the series
∑∞

i=1B
i−1 (C + Ast−i) converges almost surely, BN+1 converges to

zero almost surely as N goes to infinity.

By stationarity, the distribution of σt−N−1 is independent ofN . Thus, BN+1σt−N−1

converges to zero in probability as N goes to infinity, and thus ht − σt converges to

zero in probability as N goes to infinity. Since the terms are independent of N , this

implies σt = ht almost surely.

�



CHAPTER 3

ESTIMATION OF MULTIVARIATE

GARCH

3.1 Introduction

In the univariate case, numerous techniques have been investigated for parameter

estimation of GARCH processes; least squares estimators, least absolute deviation

estimators and Lp estimators have appeared in the literature. However, estimation

by Gaussian quasi-maximum likelihood (QML) is perhaps the most popular, because

it is robust to the distribution of the underlying process, and it is consistent and

asymptotically normal without imposing moment conditions on the observed pro-

cess. Francq and Zaköıan (2009a) survey the existing univariate GARCH parameter

estimation methods and their asymptotic properties.

Multivariate GARCH processes are important because, frequently, interdepen-

dence is observed between different univariate processes. Covariances are used for

calculations of hedge ratios, betas of CAPM (Capital Asset Pricing Model), portfolio

VaR (Value at Risk) estimates, and asset weights in portfolios. Additionally, multi-

variate GARCH models have been used by Carvalho (2007), and Tse and Tsui (2002)

to investigate contagion across financial markets.

In the multivariate case, parameter estimation research has focused primarily on

Gaussian quasi-maximum likelihood estimation (QMLE). Consistency and asymp-

totic normality of the QMLE were established for models admitting a BEKK rep-

resentation by Comte and Liebermann (2003) under the assumption of independent

coordinates for the innovations, and a moment of order eight for the process. Recently,

Hafner and Preminger (2009a) established asymptotic normality of the QMLE un-

der the weaker assumption of a sixth order moment for the observed process. In

this chapter we prove asymptotic normality of QMLE for the BEKK representation

assuming only a fourth order moment for the process.
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Despite favorable asymptotic properties, estimation of multivariate GARCH pa-

rameters by QMLE is problematic. In practice, QMLE is computationally intense

due to the highly nonlinear form of the log-likelihood function, and the large number

of parameters that must be estimated in the multivariate framework. To reduce

the burden of parameter estimation, many authors have proposed restricted versions

of the general BEKK and vech models; for instance, various factor and conditional

correlation models have been proposed. Silvennoinen and Terasv̈ırta (2008) survey

the most popular of these multivariate GARCH model variants. These restricted

models reduce the number of parameters that must be estimated, but parameter

reduction inevitably resuts in information loss. We propose a method for reducing

the computational intensity of multivariate GARCH models, without reducing the

number of model parameters.

Engle and Mezrich [23] proposed a two-step variance targeting estimation (VTE)

method to reduce the computational intensity of parameter estimation in the scalar

BEKK model of Engle and Kroner [22]. This method is based on a reparametrization

of the volatility equation in terms of the long-run variance. A first-step estimate of

the long-run variance is computed and, conditioning on this estimate, the remaining

parameters are estimated by QML in a second step.

Francq, Horváth, and Zaköıan (2009) established asymptotic properties of the

VTE method applied to univariate GARCH models. In this chapter, we establish

strong consistency and asymptotic normality for the VTE method applied to multi-

variate GARCH models. For clarity of exposition, we focus on the GARCH(1,1) case

and we include only the chief results in the main sections of this chapter. Detailed

proofs are placed in section 3.4.

3.2 Notation and Preliminaries

We consider an R
d-valued multivariate GARCH(1,1) process, ε= {εt : t = 0,±1,±2, . . .},

where

εt = H
1/2
t ηt, (3.1)

and we assume that eachHt admits a BEKK representation (see section 1.3 of Chapter

1) given by
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Ht = C + Âεt−1ε′t−1Â
′ + B̂Ht−1B̂′. (3.2)

The corresponding vech representation is denoted by

ht = C0 + A0st−1 +B0ht−1, (3.3)

where st = vech(εtε
′
t), ht = vech(Ht), C0 = vech(C0) ∈ R

m, m = d(d + 1)/2, and the

sequence {ηt : t = 0,±1,±2, . . .} consists of independent and identically distributed

(i.i.d.) R
d-valued random variables with mean zero and unit covariance.

The space of d × d matrices will be denoted by Md, and the space of positive

definite d × d matrices will be denoted by S++
d . We denote that a matrix X is

positive semidefinite (or positive definite) by writing X ≥ 0 (or X > 0), and we

assume, for any positive definite matrix X, that X1/2 is the unique positive definite

matrix whose square is X, i.e. X1/2 > 0 and X1/2X1/2 = X. We note that the vech

operator is linear and invertible, and we denote its inverse simply by vech−1.

Throughout this chapter, ||·|| denotes the Euclidean norm for vectors and matrices,

i.e.,

||X|| := tr(X ′X). (3.4)

The spectral radius of any square matrix X is denoted by ρ(X), and the spectral

norm for vectors and matrices is denoted by N(·), i.e.,

N(X) := ρ(X ′X). (3.5)

Necessary and sufficient conditions for existence of a unique nonanticipative,

weakly stationary, strictly stationary, β-mixing and ergodic solution to the process

ε described by (3.1)-(3.3) are desirable for estimation theory, but are not currently

known.

In the univariate case, Bougerol and Picard [11] extended the results of Nelson [40]

to establish necessary and sufficient conditions for strict stationarity and ergodicity

in terms of the top Lyapunov exponent of a matrix composed of the innovations and

coefficients of the process.

In the multivariate framework, Dennis, Hansen and Rahbek (2002) established

sufficient conditions for geometric ergodicity of ARCH(q) models admitting a BEKK

representation. Francq, and Zaköıan (2009) provide a detailed proof of a result
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due to Ling and McAleer (2003) yielding sufficient conditions for strict stationarity

of the CCC-GARCH model of Bollerslev [10]. Hafner and Preminger [31] provide

sufficient conditions for strict stationarity and ergodicity of a factor GARCH model.

In Chapter 2 of this dissertation, we give a detailed proof, based partly of the work

of Boussama [12], that the process ε described by (3.1)-(3.3) exists and has a unique

nonanticipative, weakly stationary, strictly stationary, β-mixing and ergodic solution

under the following assumptions:

A1 : The matrices A0, B0 and C0 appearing in (3.3) are positive definite.

A2 : The random variables ηt admit a density that is nonzero in a neigh-

borhood of the origin.

A3 : ρ(A0 +B0), the spectral radius of A0 +B0, is less than one.

Remark 2 Condition A2 is a standard condition for proving β-mixing, but is not

generally used for proving stationarity.

Remark 3 In the univariate case, condition A3 is sufficient but not necessary for

strict stationarity. (See Berkes, Horváth and Kokoszka (2004).)

Under assumptions A1−A3, the long-run (unconditional) variance of (εt) is finite

and is given, through recursive iteration of (3.3), by

Γ0 := vech−1(γ0)

where

γ0 := (Im − A0 − B0)
−1C0 := K−1

0 C0.

A reparametrization of the volatility equation (3.3) yields

ht = K0γ0 + A0st−1 + (I −K0 − A0)ht−1, (3.6)

where

K0 + A0 +B0 = Im.



52

This reparametrization shows that the volatility at time t, ht, may be interpreted as

a weighted average of the long-run variance γ0, the square of the last return st−1 =

vech(εt−1ε′t−1), and the previous volatility ht−1.

3.2.1 Gaussian QMLE

In this section, we discuss Gaussian QML estimation for the unknown parameters

of a multivariate GARCH process. Estimation by QML can be recommended for

multivariate GARCH processes because the estimators are consistent under mild

conditions, and we show that they are asymptotically normal under the condition of

a fourth order moment; this is an improvement to the sixth order moment condition

required in the existing literature. Although QMLE would typically be used to

estimate the matrices A0, B0, and C0 in (3.3), we describe here the (equivalent)

QML estimation of the matrices A0, K0, and γ0 in the reparametrized model (3.6).

The vector of true, unknown parameters in (3.3) is denoted by

θ0 := (γ′0, vech(A0)
′, vech(K0)

′)′ := (γ′0, λ0)
′,

and is assumed to exist in some parameter space Θ. Let (ε1, . . . , εn) denote a

realization of size n of the unique, nonanticipative and stationary solution to the

model (3.1), and denote an arbitrary element of Θ by

θ := (γ′, vech(A)′, vech(K)′)′ := (γ′, λ)′.

The Gaussian quasi-likelihood function is given by

L̃n(θ) :=
n∏

t=1

|Σ̃t|−1/2 exp(−1

2
ε′tΣ̃

−1
t εt),

where Σ̃t := Σ̃t(θ) is defined by

vech(Σ̃t) := σ̃2
t := σ̃2

t (θ) := Kγ + Ast−1 + (I −K − A)σ̃2
t−1, (3.7)

given initial values ε0 and σ̃2
0. The Gaussian QMLE of θ0 is the location of the

maximum of L̃n(θ), i.e.,

θ̂∗n := argmax
θ∈Θ

L̃n(θ) = argmin
θ∈Θ

1

n

n∑
t=1

�̃t(θ), (3.8)
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where

�̃t(θ) := log(det Σ̃t) + ε′tΣ̃
−1
t εt. (3.9)

3.2.2 The VTE Method

The VTE method involves (i) reparametrizing the volatility equation (3.3) as

(3.6), (ii) estimating γ0 by the sample covariance, and then (iii) estimating λ0 =

(vech(A0)
′, vech(K0)

′)′ by QMLE. Under assumptions A1 and A3, λ0 is an element

of a parameter space

Λ ⊂ {(vech(A)′, vech(K)′)′ : A > 0, K > 0, ρ(I −K) < 1}. (3.10)

We make the additional assumption

A4 : The unknown parameter λ0 is an interior point of Λ, and Λ is

compact.

The sample covariance matrix yields a consistent estimator of γ0 via

γ̂n := vech(Γ̂n), (3.11)

where

Γ̂n := n−1
n∑

t=1

εtε
′
t.

Since the unknown parameter γ0 is replaced by the half-vectorized sample variance

γ̂n, the variance targeting version of the Gaussian quasi-likelihood function is

Ln(λ) =
n∏

t=1

|Σ̃t,n|−1/2 exp(−1

2
ε′tΣ̃

−1
t,nεt),

where Σ̃t,n := Σ̃t,n(λ) is defined by

vech(Σ̃t,n) := σ̃t,n := σ̃t,n(λ) := Kγ̂n + Ast−1 + (I −K − A)σ̃2
t−1,n, (3.12)

given initial values ε0 and σ̃2
0,n = σ̃2

0. The VTE of λ0 = (vech(A0)
′, vech(K0)

′)′ is

defined by

λ̂n := argmin
λ∈Λ

Ĩn(λ), (3.13)
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where

Ĩn(λ) :=
1

n

n∑
t=1

�̃t,n, (3.14)

and

�̃t,n := �̃t,n(λ) := log(det Σ̃t,n) + ε′tΣ̃
−1
t,nεt. (3.15)

The VTE of θ0 = (γ′0, vech(A0)
′, vech(K0)

′)′ is defined by

θ̂n = (γ̂′n, λ̂
′
n)
′. (3.16)

Comparing (3.16) above with (3.8), we see that Gaussian QML estimation involves

maximizing a function of [d(d + 1)/2]2 + d(d + 1) variables. By reparametrizing the

volatility equation, and estimating the long-run variance with the sample variance,

the VTE method reduces the number of parameters that must be estimated to [d(d+

1)]/2]2 + d(d + 1)/2. In section 3.3 we compare the estimation times of these two

methods.

3.2.3 Asymptotic Properties of the VTE

3.2.3.1 Strong Consistency

The results of Comte and Liebermann (2003) imply the strong consistency of the

QMLE, θ̂∗n, but these results do not directly imply consistency of the VTE, θ̂n, because

the VTE is a two-step estimator and cannot be expressed as a function of the QMLE.

A detailed proof of the following result can be found in section 3.4.

Theorem 8 Under assumptions A1−A4, the VTE satisfies

θ̂n
a.s−→ θ0

as n→∞.

Our proof of strong consistency is analogous to that given by Francq, Horváth, and

Zaköıan (2009) in the univariate case, though the multivariate framework introduces

additional complexity.

3.2.3.2 Asymptotic Normality

From (3.11) and (3.16), we see that the first component of θ̂n is the vech of a sample

covariance matrix. Thus, for any positive integer n, the VTE, θ̂n, is an element of the
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product space of half-vectorized positive definite matrices with the parameter space

Λ defined in (3.10), and so we may consider the VTE as an element of the parameter

space

Θ ⊂ vech(M+
d )× Λ.

In order to establish asymptotic normality of the VTE, we need the additional

assumptions:

A5 : The unknown parameter θ0 is an interior point of Θ, and Θ is

compact.

A6 : E||εt||4 <∞.

Assumption A6 is necessary for asymptotic normality of the sample variance, hence

also for the VTE. Assumption A6 is an improvement to the sixth order moment

assumption in the existing literature for asymptotic normality of the Gaussian QMLE,

and we prove in Theorem 10 that asymptotic normality of the Gaussian QMLE follows

from an argument similar to that which proves asymptotic normality of the VTE. We

now state our main result.

Theorem 9 Under assumptions A1−A6, the VTE satifies

√
n(θ̂n − θ0)

d−→ N(0, RJR)

as n→∞.

The matrix J is given by

J := E

(
∂

∂λ
�̃t(θ0)

∂

∂λ′
�̃t(θ0)

)
.

The matrix R is the left inverse of

R̃0 := E

(
∂2

∂θ∂λ
�̃t(θ0)

)
.

The matrix R̃0 is the lower right k × � block of

R̂ := E

(
∂2

∂θ∂θ′
�̃t(θ0)

)
. (3.17)
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Theorem 10 Under assumptions A1−A6, the Gaussian QMLE satifies

√
n(θ̂∗n − θ0)

d−→ N(0, R̂−1ĴR̂−1)

as n→∞.

The matrix R̂ is defined as in (3.17), and the matrix Ĵ is given by

Ĵ := E

(
∂

∂θ
�̃t(θ0)

∂

∂θ′
�̃t(θ0)

)
.

3.3 Simulation Studies

In this section, we compare the performance, and runtime, of the VTE and QMLE

estimation methods. We simulated bivariate ARCH(1) processes, with ρ(A0) taking

values 0.3, 0.55, and 0.9, using a method outlined in Francq and Zaköıan (2009).

Tables 1-9 detail the sampling distribution of the estimators, based on 100 iterations

of ARCH(1) processes of length n=500, 5,000, and 10,000, and Table 10 gives an

empirical comparison of the runtime of both methods.

Our methods for simulation, estimation by QMLE, and estimation by VTE were

implemented in the R statistical environment, version 2.11. These functions are in

process for submission to CRAN for public distribution.

Simulation studies have found QMLE estimation to outperform other methods,

particularly in the case of normal innovations, see Brooks (2008), Piontek (2004).

For this reason, we compare the performance of the VTE against the QMLE for

ARCH(1) models with normal innovations. As expected, the VTE shows slightly

higher variance, particularly in the terms involving the intercept, since these terms

are influenced by error in the sample variance as well as error on the QMLE. However,

the overall performance of the VTE is very comparable to that of the QMLE, and

the VTE occasionally outperforms the QMLE.
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Table 1: Sampling distribution of the QMLE and VTE for ARCH(1) models with
n=500, ηt standard normal, vech(A0)=(0.3, 0.0, 0.0, 0.3, 0.0, 0.3), C0=(1.0, 0.0, 1.0).

true sample
value estimator mean RMSE min Q1 Q2 Q3 max variance

0.3 QMLE 0.382 0.102 0.166 0.349 0.381 0.409 0.599 0.004
VTE 0.365 0.103 0.131 0.320 0.364 0.424 0.561 0.006

0.0 QMLE 0.003 0.030 -0.073 -0.008 0.002 0.012 0.067 0.000
VTE 0.003 0.028 -0.072 -0.016 0.003 0.021 0.063 0.001

0.0 QMLE 0.001 0.004 0.000 0.000 0.000 0.001 0.012 0.000
VTE 0.002 0.003 0.000 0.000 0.001 0.003 0.012 0.000

0.3 QMLE 0.272 0.039 0.201 0.263 0.273 0.286 0.371 0.001
VTE 0.266 0.054 0.161 0.236 0.267 0.297 0.359 0.002

0.0 QMLE 0.004 0.042 -0.085 -0.010 0.003 0.016 0.092 0.001
VTE 0.005 0.040 -0.087 -0.022 0.005 0.029 0.099 0.002

0.3 QMLE 0.196 0.110 0.102 0.180 0.194 0.211 0.324 0.001
VTE 0.198 0.116 0.082 0.160 0.191 0.228 0.371 0.003

1.0 QMLE 0.996 0.047 0.852 0.984 1.001 1.011 1.102 0.001
VTE 0.982 0.091 0.722 0.916 0.994 1.048 1.206 0.008

0.0 QMLE -0.002 0.032 -0.096 -0.013 -0.001 0.009 0.105 0.001
VTE -0.006 0.064 -0.189 -0.037 -0.010 0.023 0.206 0.004

1.0 QMLE 1.009 0.043 0.908 0.998 1.010 1.025 1.102 0.001
VTE 1.026 0.091 0.818 0.961 1.021 1.080 1.288 0.008
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Table 2: Sampling distribution of the QMLE and VTE for ARCH(1) models with
ηt standard normal, n=500, vech(A0)=(0.55, 0.0, 0.0, 0.55, 0.0, 0.55), C0=(1.0, 0.0, 1.0).

true sample
value estimator mean RMSE min Q1 Q2 Q3 max variance

0.55 QMLE 0.788 0.262 0.492 0.708 0.776 0.870 1.079 0.012
VTE 0.640 0.118 0.427 0.596 0.632 0.681 0.879 0.006

0.0 QMLE 0.002 0.030 -0.102 -0.019 0.003 0.019 0.091 0.001
VTE 0.002 0.025 -0.082 -0.013 -0.001 0.018 0.077 0.001

0.0 QMLE 0.001 0.002 0.000 0.000 0.000 0.001 0.012 0.000
VTE 0.001 0.002 0.000 0.000 0.000 0.001 0.010 0.000

0.55 QMLE 0.431 0.133 0.272 0.395 0.432 0.469 0.582 0.004
VTE 0.390 0.168 0.267 0.356 0.389 0.413 0.544 0.003

0.0 QMLE 0.002 0.032 -0.093 -0.018 0.003 0.023 0.107 0.001
VTE 0.003 0.031 -0.085 -0.015 -0.001 0.022 0.116 0.001

0.55 QMLE 0.239 0.316 0.107 0.204 0.233 0.273 0.356 0.003
VTE 0.241 0.314 0.108 0.202 0.234 0.274 0.370 0.003

1.0 QMLE 0.997 0.058 0.882 0.952 0.992 1.040 1.128 0.003
VTE 1.016 0.112 0.798 0.943 1.003 1.099 1.284 0.012

0.0 QMLE -0.008 0.039 -0.113 -0.038 -0.013 0.018 0.096 0.001
VTE -0.017 0.087 -0.325 -0.073 -0.029 0.039 0.211 0.007

1.0 QMLE 1.041 0.057 0.940 1.017 1.042 1.067 1.164 0.002
VTE 1.137 0.167 0.886 1.072 1.135 1.213 1.393 0.009
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Table 3: Sampling distribution of the QMLE and VTE for ARCH(1) models with
ηt standard normal, n=500, vech(A0)=(0.9, 0.0, 0.0, 0.9, 0.0, 0.9), C0=(1.0, 0.0, 1.0).

true sample
value estimator mean RMSE min Q1 Q2 Q3 max variance

0.9 QMLE 1.342 0.474 0.960 1.213 1.319 1.453 1.868 0.032
VTE 0.857 0.077 0.713 0.817 0.856 0.900 0.993 0.004

0.0 QMLE -0.001 0.027 -0.080 -0.017 0.000 0.015 0.072 0.001
VTE 0.000 0.016 -0.051 -0.010 0.000 0.009 0.050 0.000

0.0 QMLE 0.000 0.001 0.000 0.000 0.000 0.001 0.004 0.000
VTE 0.000 0.001 0.000 0.000 0.000 0.000 0.003 0.000

0.9 QMLE 0.550 0.356 0.338 0.508 0.559 0.583 0.678 0.004
VTE 0.426 0.478 0.244 0.397 0.429 0.466 0.553 0.003

0.0 QMLE 0.000 0.022 -0.066 -0.013 0.000 0.012 0.049 0.000
VTE 0.000 0.016 -0.050 -0.009 0.000 0.010 0.051 0.000

0.9 QMLE 0.229 0.673 0.092 0.199 0.224 0.262 0.337 0.002
VTE 0.215 0.686 0.069 0.182 0.211 0.252 0.345 0.003

1.0 QMLE 1.005 0.064 0.760 0.965 1.000 1.051 1.176 0.004
VTE 1.213 0.253 0.817 1.111 1.199 1.308 1.676 0.022

0.0 QMLE 0.000 0.303 -0.134 -0.024 -0.002 0.023 0.087 0.002
VTE 0.004 0.312 -0.376 -0.056 0.000 0.071 0.289 0.010

1.0 QMLE 1.081 0.783 0.958 1.054 1.083 1.110 1.223 0.002
VTE 1.316 1.028 0.965 1.215 1.293 1.386 2.011 0.026
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Table 4: Sampling distribution of the QMLE and VTE for ARCH(1) models with
ηt standard normal, n=5,000, vech(A0)=(0.3, 0.0, 0.0, 0.3, 0.0, 0.3), C0=(1.0, 0.0, 1.0).

true sample
value estimator mean RMSE min Q1 Q2 Q3 max variance

0.3 QMLE 0.379 0.083 0.316 0.360 0.379 0.397 0.443 0.001
VTE 0.363 0.068 0.300 0.344 0.363 0.379 0.423 0.001

0.0 QMLE -0.002 0.007 -0.018 -0.007 -0.003 0.004 0.017 0.000
VTE -0.002 0.007 -0.017 -0.007 -0.003 0.003 0.015 0.000

0.0 QMLE 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000
VTE 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000

0.3 QMLE 0.274 0.029 0.249 0.266 0.275 0.285 0.307 0.000
VTE 0.271 0.032 0.245 0.262 0.272 0.281 0.302 0.000

0.0 QMLE -0.003 0.010 -0.028 -0.010 -0.005 0.005 0.024 0.000
VTE -0.003 0.010 -0.028 -0.010 -0.004 0.004 0.022 0.000

0.3 QMLE 0.199 0.102 0.163 0.189 0.198 0.211 0.234 0.000
VTE 0.203 0.099 0.165 0.193 0.201 0.216 0.238 0.000

1.0 QMLE 0.997 0.016 0.963 0.983 0.997 1.004 1.033 0.000
VTE 0.987 0.033 0.920 0.961 0.987 1.005 1.059 0.001

0.0 QMLE 0.000 0.009 -0.017 -0.004 0.001 0.006 0.016 0.000
VTE 0.000 0.017 -0.035 -0.012 0.002 0.012 0.032 0.000

1.0 QMLE 1.011 0.017 0.977 1.004 1.012 1.020 1.035 0.000
VTE 1.032 0.042 0.963 1.014 1.037 1.052 1.078 0.001



61

Table 5: Sampling distribution of the QMLE and VTE for ARCH(1) models with
ηt standard normal, n=5,000, vech(A0)=(0.55, 0.0, 0.0, 0.55, 0.0, 0.55), C0=(1.0, 0.0, 1.0).

true sample
value estimator mean RMSE min Q1 Q2 Q3 max variance

0.55 QMLE 0.786 0.239 0.699 0.754 0.784 0.811 0.906 0.002
VTE 0.660 0.115 0.583 0.633 0.658 0.694 0.735 0.001

0.0 QMLE 0.003 0.011 -0.014 -0.006 0.004 0.011 0.025 0.000
VTE 0.002 0.008 -0.015 -0.005 0.004 0.008 0.017 0.000

0.0 QMLE 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000
VTE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.55 QMLE 0.431 0.133 0.272 0.395 0.432 0.469 0.582 0.004
VTE 0.390 0.168 0.267 0.356 0.389 0.413 0.544 0.003

0.0 QMLE 0.003 0.012 -0.017 -0.006 0.004 0.012 0.028 0.000
VTE 0.003 0.010 -0.018 -0.006 0.005 0.010 0.023 0.000

0.55 QMLE 0.235 0.315 0.202 0.222 0.235 0.247 0.273 0.000
VTE 0.242 0.309 0.203 0.228 0.242 0.257 0.276 0.000

1.0 QMLE 0.994 0.019 0.956 0.980 0.994 1.007 1.058 0.000
VTE 1.003 0.035 0.937 0.978 1.005 1.025 1.129 0.001

0.0 QMLE 0.000 0.011 -0.026 -0.008 0.000 0.009 0.030 0.000
VTE -0.001 0.025 -0.057 -0.017 0.001 0.016 0.058 0.001

1.0 QMLE 1.038 0.041 0.990 1.026 1.038 1.048 1.065 0.000
VTE 1.127 0.133 1.012 1.102 1.125 1.151 1.214 0.001
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Table 6: Sampling distribution of the QMLE and VTE for ARCH(1) models with
ηt standard normal, n=5,000, vech(A0)=(0.9, 0.0, 0.0, 0.9, 0.0, 0.9), C0=(1.0, 0.0, 1.0).

true sample
value estimator mean RMSE min Q1 Q2 Q3 max variance

0.9 QMLE 1.337 0.440 1.248 1.300 1.331 1.378 1.486 0.003
VTE 0.907 0.035 0.851 0.880 0.904 0.935 0.986 0.001

0.0 QMLE -0.001 0.008 -0.021 -0.006 0.000 0.004 0.015 0.000
VTE 0.000 0.016 -0.051 -0.010 0.000 0.009 0.050 0.000

0.0 QMLE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
VTE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.9 QMLE 0.549 0.352 0.476 0.532 0.546 0.565 0.607 0.001
VTE 0.448 0.452 0.364 0.433 0.446 0.471 0.496 0.001

0.0 QMLE -0.001 0.007 -0.018 -0.005 0.000 0.004 0.012 0.000
VTE -0.001 0.004 -0.012 -0.004 -0.001 0.001 0.005 0.000

0.9 QMLE 0.226 0.674 0.170 0.216 0.226 0.239 0.266 0.000
VTE 0.222 0.678 0.152 0.209 0.220 0.244 0.256 0.001

1.0 QMLE 1.009 0.024 0.971 0.994 1.008 1.020 1.080 0.001
VTE 1.209 0.216 1.103 1.169 1.200 1.242 1.380 0.003

0.0 QMLE 0.001 0.012 -0.032 -0.008 -0.001 0.011 0.026 0.000
VTE 0.004 0.033 -0.084 -0.017 0.007 0.029 0.058 0.001

1.0 QMLE 1.073 0.075 1.046 1.061 1.072 1.085 1.102 0.000
VTE 1.287 0.291 1.191 1.261 1.287 1.318 1.385 0.002
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Table 7: Sampling distribution of the QMLE and VTE for ARCH(1) models with
ηt standard normal, n=10,000, vech(A0)=(0.3, 0.0, 0.0, 0.3, 0.0, 0.3), C0=(1.0, 0.0, 1.0).

true sample
value estimator mean RMSE min Q1 Q2 Q3 max variance

0.3 QMLE 0.381 0.083 0.340 0.366 0.382 0.395 0.420 0.000
VTE 0.363 0.065 0.326 0.348 0.364 0.375 0.396 0.000

0.0 QMLE 0.000 0.006 -0.017 -0.004 0.000 0.002 0.015 0.000
VTE -0.001 0.006 -0.018 -0.004 0.000 0.003 0.013 0.000

0.0 QMLE 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000
VTE 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000

0.3 QMLE 0.275 0.027 0.250 0.266 0.276 0.283 0.297 0.000
VTE 0.271 0.031 0.247 0.264 0.273 0.279 0.292 0.000

0.0 QMLE -0.001 0.009 -0.025 -0.006 0.000 0.003 0.022 0.000
VTE -0.001 0.009 -0.026 -0.007 0.000 0.004 0.020 0.000

0.3 QMLE 0.200 0.101 0.169 0.192 0.201 0.206 0.224 0.000
VTE 0.203 0.097 0.180 0.195 0.205 0.211 0.229 0.000

1.0 QMLE 0.999 0.010 0.975 0.992 0.999 1.005 1.023 0.000
VTE 0.991 0.022 0.941 0.978 0.992 1.004 1.023 0.000

0.0 QMLE 0.000 0.008 -0.016 -0.005 0.001 0.006 0.019 0.000
VTE 0.001 0.016 -0.031 -0.008 0.003 0.012 0.040 0.000

1.0 QMLE 1.011 0.014 0.983 1.005 1.010 1.017 1.030 0.000
VTE 1.029 0.035 0.970 1.016 1.029 1.046 1.060 0.000
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Table 8: Sampling distribution of the QMLE and VTE for ARCH(1) models with
ηt standard normal, n=10,000, vech(A0)=(0.55, 0.0, 0.0, 0.55, 0.0, 0.55), C0=(1.0, 0.0, 1.0).

true sample
value estimator mean RMSE min Q1 Q2 Q3 max variance

0.55 QMLE 0.729 0.180 0.689 0.711 0.723 0.743 0.780 0.001
VTE 0.631 0.084 0.592 0.617 0.627 0.650 0.666 0.000

0.0 QMLE 0.000 0.007 -0.009 -0.005 0.000 0.005 0.020 0.000
VTE 0.000 0.005 -0.007 -0.004 -0.001 0.003 0.016 0.000

0.0 QMLE 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000
VTE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.55 QMLE 0.480 0.071 0.462 0.470 0.482 0.487 0.495 0.000
VTE 0.390 0.168 0.267 0.356 0.389 0.413 0.544 0.003

0.0 QMLE 0.000 0.007 -0.010 -0.006 0.001 0.005 0.021 0.000
VTE 0.000 0.007 -0.008 -0.005 -0.001 0.004 0.019 0.000

0.55 QMLE 0.287 0.263 0.268 0.280 0.286 0.296 0.309 0.000
VTE 0.294 0.257 0.276 0.286 0.291 0.303 0.323 0.000

1.0 QMLE 0.996 0.009 0.973 0.991 0.996 1.002 1.009 0.000
VTE 1.007 0.018 0.963 0.996 1.010 1.020 1.032 0.000

0.0 QMLE 0.001 0.009 -0.017 -0.003 0.000 0.007 0.021 0.000
VTE 0.002 0.019 -0.038 -0.008 0.000 0.013 0.044 0.000

1.0 QMLE 1.038 0.039 1.023 1.030 1.037 1.043 1.068 0.000
VTE 1.123 0.125 1.090 1.106 1.121 1.132 1.193 0.001
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Table 9: Sampling distribution of the QMLE and VTE for ARCH(1) models with
ηt standard normal, n=10,000, vech(A0)=(0.9, 0.0, 0.0, 0.9, 0.0, 0.9), C0=(1.0, 0.0, 1.0).

true sample
value estimator mean RMSE min Q1 Q2 Q3 max variance

0.9 QMLE 1.241 0.343 1.156 1.215 1.242 1.261 1.313 0.001
VTE 0.903 0.034 0.847 0.879 0.896 0.921 0.991 0.001

0.0 QMLE 0.000 0.004 -0.008 -0.003 -0.001 0.003 0.007 0.000
VTE 0.001 0.004 -0.005 -0.002 0.000 0.002 0.014 0.000

0.0 QMLE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
VTE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.9 QMLE 0.653 0.248 0.628 0.642 0.652 0.658 0.692 0.000
VTE 0.551 0.349 0.514 0.545 0.550 0.556 0.581 0.000

0.0 QMLE 0.000 0.003 -0.007 -0.002 -0.001 0.002 0.006 0.000
VTE 0.001 0.004 -0.005 -0.002 0.000 0.002 0.013 0.000

0.9 QMLE 0.328 0.572 0.308 0.321 0.330 0.333 0.356 0.000
VTE 0.326 0.574 0.295 0.317 0.329 0.334 0.347 0.000

1.0 QMLE 1.009 0.024 0.971 0.994 1.008 1.020 1.080 0.001
VTE 1.209 0.216 1.103 1.169 1.200 1.242 1.380 0.003

0.0 QMLE 0.001 0.012 -0.032 -0.008 -0.001 0.011 0.026 0.000
VTE 0.004 0.033 -0.084 -0.017 0.007 0.029 0.058 0.001

1.0 QMLE 1.006 0.017 0.982 0.994 1.004 1.025 1.031 0.000
VTE 1.196 0.198 1.142 1.177 1.203 1.211 1.278 0.001
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In Table 10 we compare the runtime of the VTE and QMLE estimation methods.

The times shown represent elapsed time (also known as wall time) as measured in

seconds on a 2.66 GHz Intel Core i7 processor. These simulations involved trajectories

of length n=500, 5,000, and 10,000, and 150 iterations of bivariate ARCH(1) models,

with 50 iterations each corresponding to values 0.3, 0.55, and 0.9 for ρ(A0).

Table 10: Runtime of the QMLE and VTE .
VTE QMLE

n mean median mean median
500 11.10 11.61 17.60 17.80
5,000 121.11 122.51 190.53 188.90
10,000 249.37 267.76 365.37 373.45
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3.4 Technical Proofs

3.4.1 Proof of Strong Consistency in Theorem 8

For any λ ∈ Λ, one can define the strictly stationary and ergodic process

σ2
t := σ2

t (λ) := Kγ0 + Ast−1 + (I −K − A)σ2
t−1(λ). (3.18)

Let Σt be defined by vech(Σt) := σ2
t and, analogous to (3.14) and (3.15), define

In(λ) :=
1

n

n∑
t=1

�t, (3.19)

where

�t := �t(λ) := log(detΣt) + ε′tΣ
−1
t εt. (3.20)

It follows from the ergodic theorem that the half-vectorized sample variance γ̂n

converges almost surely to γ0. We will prove that the VTE is strong consistent

by establishing the following intermediate results.

(i) lim
n→∞

sup
λ∈Λ
|In(λ)− Ĩn(λ)| = 0 almost surely,

(ii) if σ2
t (λ) = σ2

t (λ0) almost surely, then λ = λ0,

(iii) if λ �= λ0, then E�t(λ) > E�t(λ0),

(iv) any λ �= λ0 has a neighborhood V (λ) such that

lim inf
n→∞

inf
λ∗∈V (λ)

Ĩn(λ
∗) > E�1(λ0) almost surely.

3.4.1.1 Asymptotic Irrelevance of the Initial Values

Recursive iteration of (3.12) and (3.18) yields, for any positive integer N ,

σ̃2
t,n − σ2

t = K(γ̂n − γ0) + B(σ̃2
t−1,n − σ2

t−1)

= K(γ̂n − γ0) + B

[
N∑
i=1

Bi−1Kγ̂n +BN+1σ̃2
t−N−2,n

]

−B
[

N∑
i=1

Bi−1Kγ0 +BN+1σ2
t−N−2

]
.

Taking N = t− 2, we have
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σ̃2
t,n − σ2

t = K(γ̂n − γ0) + B

[
t−2∑
i=1

Bi−1Kγ̂n +Bt−1σ̃2
0

]
− B

[
t−2∑
i=1

Bi−1Kγ0 +Bt−1σ2
0

]

= K(γ̂n − γ0) +
t−2∑
i=1

BiKγ̂n +Btσ̃2
0 −

[
t−2∑
i=1

BiKγ0 +Btσ2
0

]

=
t−2∑
i=0

BiKγ̂n −
t−2∑
i=0

BiKγ0 +Btσ̃2
0 − Btσ2

0

= (I − B)−1(I − Bt−1)K(γ̂n − γ0) + Bt(σ̃2
0 − σ2

0).

We proved in Lemma 4 of Chapter 2 that ρ(I − K) = ρ(A + B) < 1 implies

ρ(B) < 1. Using this and compactness of Λ, there exists some finite positive random

variable, say M1, such that

||σ̃2
t,n − σ2

t || ≤M1||γ̂n − γ0||+ ||B||t||σ̃2
0 − σ2

0||

holds uniformly for all t > 0.

The initial value σ̃2
0 is a fixed constant, and σ2

0 is a measurable function of

{εu : u ≤ 0}, so σ2
0 depends on neither n nor t and may be considered as a fixed

random variable, say M2. Thus,

||σ̃2
t,n − σ2

t || ≤M1||γ̂n − γ0||+M2||B||t. (3.21)

Furthermore,

||σ̃2
t,n − σ2

t ||2 ≤ ||Σ̃t,n − Σt||2 ≤ 2||σ̃2
t,n − σ2

t ||2. (3.22)

Since ||γ̂n − γ0|| → 0 almost surely as n → ∞ and ||B||t → 0 as t → ∞, it follows

that,

||Σ̃t,n − Σt|| a.s−→ 0 (3.23)

as n, t→∞. Let g denote the matrix inversion function onMd, and let f be defined

by f(·) := log(det(·)) on Md. Then f and g are continuous with respect to the

Euclidean norm when restricted to the subspace of positive definite matrices, and



69

sup
λ∈Λ

∣∣∣In(λ)− Ĩn(λ)
∣∣∣ ≤ 1

n

n∑
t=1

sup
λ∈Λ

{∣∣∣f(Σ̃t,n − f(Σt)
∣∣∣}

+
1

n

n∑
t=1

||εt||2 sup
λ∈Λ

∣∣∣∣∣∣g(Σ̃t,n)− g(Σt)
∣∣∣∣∣∣ . (3.24)

It follows from (3.23) and continuity of the functions f and g that∣∣∣f(Σ̃t,n)− f(Σt)
∣∣∣ a.s−→ 0

and ∣∣∣∣∣∣g(Σ̃t,n)− g(Σt)
∣∣∣∣∣∣ a.s−→ 0

as n, t→∞. The proof is complete by applying the Cesaro mean lemma to (3.24) if

we can show that also

||εt||2
∣∣∣∣∣∣g(Σ̃t,n)− g(Σt)

∣∣∣∣∣∣→ 0

almost surely as n, t→∞.

The space of real positive definite d × d matrices, S++
d , is an open and convex

subset of Md according to Proposition 2.7 of Arsigny, Fillard, Pennec, and Ayache

(2000). It follows from (3.23) that there exist positive integers T and N , and some

open neighborhood VT,N such that the closure of VT,N is contained in S++
d , and such

that Σ̃t,n ∈ VT,N , and Σt ∈ VT,N whenever n > N and t > T . The function g is

smooth on VT,N , and so the Jacobian of g is bounded on VT,N , i.e., for all X ∈ VT,N
we have

||Dg̃(X)|| ≤ C1

for some finite constant C1. The mean value inequality yields

||g(Σ̃t,n)− g(Σt)|| ≤ C1||Σt,n − Σt||.

Combining the line above with (3.21) and (3.22), we have

lim
n→∞

||εt||2
∣∣∣∣∣∣g(Σ̃t,n)− g(Σt)

∣∣∣∣∣∣ ≤ C1M2 ||εt||2 ||B||t,

which converges to zero almost surely as t → ∞ by the Borel-Cantelli lemma, the

Markov inequality, and stationarity of ε because, for any δ > 0,
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∞∑
t=1

P(||εt||2||B||t > δ) ≤
∞∑
t=1

E(||εt||2)||B||t
δ

<∞.

�

3.4.1.2 Identifiability of the Parameter

The idea for this proof is due to Berkes, Horváth, and Kokoszka (2003). We prove

the claim by contradiction. Recursive iteration of (3.18) yields

σ2
t (λ) = (I − B)−1Kγ0 +

∞∑
j=0

BjAst−j−1,

thus σ2
t (λ) = σ2

t (λ0) implies

(I − B)−1Kγ0 +
∞∑
j=0

BjAst−j−1 = (I − B0)
−1K0γ0 +

∞∑
j=0

Bj
0A0st−j−1. (3.25)

Let

D0 := (I − B)−1Kγ0, D∗0 := (I − B0)
−1K0γ0,

and for i ∈ {1, 2, . . .}

Di := Bi−1A, D∗i := Bi−1
0 A0.

Then we can write (3.25) as

D0 +
∞∑
j=1

Djst−j = D∗0 +
∞∑
j=1

D∗jst−j.

If Di = D∗i for all nonnegative integers i, then taking i = 1 gives A = A0, and taking

i = 2 gives BA = B0A. The matrix A is positive-definite hence invertible, so this

implies B = B0 and λ = λ0.

Suppose (by way of contradiction) that m > 0 is the smallest integer such that

Dm �= D∗m (if Dj = D∗j for all j > 0 then D0 = D∗0). Then,

(Dm −D∗m)st−m = (D0 −D∗0) +
∞∑

j=m+1

(D∗j −Dj)st−j. (3.26)

The right-hand side of (3.26) is Ft−m−1 measurable, so (Dm −D∗m)st−m must also be

Ft−m−1 measurable, but we claim that this leads to a contradiction.
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From (3.1), st−m = vech(H
1/2
t−mηt−mη

′
t−mH

1/2
t−m). Denote by hi,j the (i, j)th entry of

H
1/2
t−m, and denote the components of ηt−m by ηt−m = (n1, . . . , nd)

′. The (i, j)th entry

of H
1/2
t−mηt−mη

′
t−mH

1/2
t−m is (

d∑
�=1

n�hi,�

)(
d∑

k=1

nkhk,j

)
.

Ht−m is positive definite under assumption A1, and we take H
1/2
t−m as the unique

positive definite square root of Ht−m, so the diagonal elements of H
1/2
t−m are nonzero.

Thus, each coordinate of st−m is a nontrivial linear combination of the terms n�nk

(1 ≤ �, k ≤ d). Since Dm �= D∗m, the vector (Dm −D∗m)st−m has at least one nonzero

coordinate that is a linear combination of the terms n�nk (1 ≤ �, k ≤ d).

The sequence (ηt) is i.i.d., and (Dm−D∗m)st−m is a measurable and almost surely

nonconstant function of ηt−m, so it is not Ft−m−1 measurable. This completes the

proof of (ii).

�

3.4.1.3 The Limit Criterion is Minimized at the True
Value

Using (3.20), using that Σt(λ0) = Ht, and using that ηt has unit covariance, we

can write

E�t(λ0) = E(log detΣt(λ0)) + E(ε′tΣ
−1
t (λ0)εt)

= E(log detΣt(λ0)) + E(ε′tH
−1/2
t H

−1/2
t εt)

= E(log detΣt(λ0)) + E(η′tηt)

= E(log detΣt(λ0)) + d.

Thus, using that ηt is independent of Ft−1 while Ht and Σt are Ft−1 measurable,

E�t(λ)− E�t(λ0) = E(log detΣt(λ)− log detΣt(λ0)) + E(ε′tΣ
−1
t (λ)εt)− d

= E log(detΣt(λ)/ detΣt(λ0)) + E[tr(εtε
′
tΣ
−1
t (λ))]− d

= E log(detΣt(λ)/ detΣt(λ0)) + E[tr(ηtη
′
tH

1/2
t Σ−1t (λ)H

1/2
t )]− d
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= E log(detΣt(λ)/ detΣt(λ0))

+tr[E(ηtηt)E(
′H1/2

t Σ−1t (λ)H
1/2
t )]− d

= E log(detΣt(λ)/ detΣt(λ0))

+E[tr(H
1/2
t Σ−1t (λ)H

1/2
t )]− d. (3.27)

Abadir and Magnus (2005) prove that if X is a positive definite d× d matrix, then

log detX ≤ tr(X)− d (3.28)

with equality if and only if X = Id. The matrix H
1/2
t Σ−1t (λ)H

1/2
t is positive definite,

so it follows from (3.27) and (3.28) that

E�t(λ)− E�t(λ0) ≥ E log(detΣt(λ)/ detΣt(λ0)) + E log det(H
1/2
t Σ−1t (λ)H

1/2
t )

= E log(detΣt(λ)/ detΣt(λ0)) + E log(detΣt(λ0)/ detΣt(λ))

= 0.

Equality holds above if and only if H
1/2
t Σ−1t (λ)H

1/2
t = Id almost surely, i.e., if and

only if Σt(λ) = Σt(λ0) = Ht almost surely. We proved in part (ii) that Σt(λ) = Σt(λ0)

almost surely implies λ = λ0. Thus λ �= λ0 implies E�t(λ)− E�t(λ0) > 0.

�

3.4.1.4 Compactness of Λ and Ergodicity of �t(λ)

For any λ ∈ Λ, and any positive integer k, let Vk(λ) denote intersection of the

parameter space Λ with the open ball of radius 1/k centered at λ. Then,

lim inf
n→∞

inf
λ∗∈V (λ)

Ĩn(λ
∗) = lim inf

n→∞
inf

λ∗∈V (λ)

(
In(λ

∗) + Ĩn(λ
∗)− In(λ

∗)
)

= lim inf
n→∞

{
inf

λ∗∈V (λ)
In(λ

∗) + inf
λ∗∈V (λ)

(
Ĩn(λ

∗)− In(λ
∗)
)}

= lim inf
n→∞

{
inf

λ∗∈V (λ)
In(λ

∗)− sup
λ∗∈V (λ)

(
In(λ

∗)− Ĩn(λ
∗)
)}

≥ lim inf
n→∞

{
inf

λ∗∈V (λ)
In(λ

∗)
}

−lim sup
n→∞

{
sup

λ∗∈V (λ)

(
In(λ

∗)− Ĩn(λ
∗)
)}
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≥ lim inf
n→∞

inf
λ∗∈V (λ)

In(λ
∗)

−lim sup
n→∞

{
sup

λ∗∈V (λ)

∣∣∣In(λ∗)− Ĩn(λ
∗)
∣∣∣
}
.

The last term above is zero by part (i). Using (3.19), the ergodic theorem, and part

(ii), we have

lim inf
n→∞

inf
λ∗∈V (λ)

Ĩn(λ
∗) ≥ lim inf

n→∞
inf

λ∗∈V (λ)
In(λ

∗)

= lim inf
n→∞

1

n

n∑
t=1

inf
λ∗∈V (λ)

�t(λ
∗)

= E

(
inf

λ∗∈V (λ)
�1(λ

∗)
)

> E (�1(λ0))

for sufficiently large k whenever λ �= λ0. This completes the proof of Theorem 8.

�

3.4.2 Proof of Asymptotic Normality in Theorem 9

Under assumptions A1-A6, and for any θ ∈ Θ, the process defined as in (3.7) by,

vech(Σ̃t) = σ̃2
t = σ̃2

t (θ) := Kγ + Ast−1 + (I −K − A)σ̃2
t−1,

is strictly stationary and ergodic. We consider the function �̃t defined as for the

Gaussian QMLE in (3.9) by

�̃t = �̃t(θ) = log(det Σ̃t) + ε′tΣ̃
−1
t εt,

and we note that

Σ̃t(θ0) = Ht = E(εtε
′
t|Ft−1). (3.29)

Write λ = (λ1, . . . , λk)
′, γ = (γ1, . . . , γm)

′, and θ = (γ′, λ)′ = (θ1, . . . , θ�)
′. Then

�t,n(λ) = �̃t(γ̂n, λ) and a Taylor series expansion of the VTE score vector around θ0

yields
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(0, . . . , 0)′ = n−1/2
n∑

t=1

∂

∂λ
�̃t,n(λ̂n) = n−1/2

n∑
t=1

∂

∂λ
�̃t(θ̂n)

= n−1/2
n∑

t=1

∂

∂λ
�̃t(θ0) +

(
1

n

n∑
t=1

∂2

∂θj∂λi
�̃t(θ

∗
i )

)
√
n(θ̂n − θ0), (3.30)

where the θ∗i are between θ̂n and θ0. We show in Lemma 10 that

n−1/2
n∑

t=1

∂

∂λ
�̃t(θ0)

d−→ N(0, J),

where

J := E

(
∂

∂λ
�̃t(θ0)

∂

∂λ′
�̃t(θ0)

)
,

and we show in Lemma (12) that

1

n

n∑
t=1

(
∂2

∂θj∂λi
�̃t(θ

∗
i )

)
a.s−→ R̃0,

and R̃0 has left inverse R, defined by

R̃0 := E

(
∂2

∂θ∂λ
�̃t(θ0)

)
.

The result follows from solving (3.30) and applying Slutsky’s lemma.

�

3.4.3 Proof of Asymptotic Normality in Theorem 10

In this section we prove that the Gaussian QMLE,

θ̂∗n = argmin
θ∈Θ

1

n

n∑
t=1

�̃t(θ),

is asymptotically normal under assumptionsA1−A6. The proof is analogous to that

given in section 3.4.2 for asymptotic normality of the VTE. A Taylor series expansion

of the Gaussian QMLE score vector around θ0 yields

(0, . . . , 0)′ = n−1/2
n∑

t=1

∂

∂θ
�̃t(θ̂

∗
n)

= n−1/2
n∑

t=1

∂

∂θ
�̃t(θ0) +

(
1

n

n∑
t=1

∂2

∂θj∂θi
�̃t(θ̃

∗
i )

)
√
n(θ̂∗n − θ0), (3.31)

where the θ̃∗i are between θ̂∗n and θ0. The same argument that proves
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n−1/2
n∑

t=1

∂

∂λ
�̃t(θ0)

d−→ N(0, J)

in Lemma 10 also shows that

n−1/2
n∑

t=1

∂

∂θ
�̃t(θ0)

d−→ N(0, Ĵ),

upon replacing each λ with θ, so long as Ĵ is finite. We prove that Ĵ is finite in

Lemma 11. To prove that

1

n

n∑
t=1

(
∂2

∂θj∂θi
�̃t(θ̃∗i )

)
a.s−→ R̂ = E

(
∂2

∂θ∂θ
�̃t(θ0)

)
,

we simply replace each λ with θ in the proof of Lemma 12, and note that R̂ is finite

by Lemma 13 and invertible by Lemma 14. The result follows from solving (3.31)

and applying Slutsky’s lemma.

�

3.4.4 Technical Lemmas

In this section, we will make repeated use of the following matrix inequalities. For

arbitrary matrices X and Y ,

|tr(XY )| ≤ ||X||||Y || (3.32)

(see Zhang [52], p.25,213), and the inequality

0 ≤ tr(XY ) ≤ tr(X)tr(Y ) (3.33)

holds whenever X ≥ 0 and Y ≥ 0 (Abadir and Magnus (2005), p.329-330).

Lemma 10 Under assumptions A1−A6,

n−1/2
n∑

t=1

∂

∂λ
�̃t(θ0)

d−→ N(0, J) as n→∞.

Proof: Under A1−A2, {
∂

∂λ
�̃t(θ0) : t = 0,±1, . . .

}

is a strictly stationary and ergodic sequence. Furthermore, Σ̃t, its inverse, and all of

its derivatives, are Ft−1 measurable, and E(εtε
′
t|Ft−1) = Ht = Σ̃t(θ0). Thus,
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E

(
∂

∂λi
�̃t(θ0)|Ft−1

)
= E

[
∂

∂λi

(
log det Σ̃t(θ0) + ε′tΣ̃

−1
t εt

)
|Ft−1

]

= E

[
tr

(
Σ̃−1t (θ0)

∂

∂λi
Σ̃t(θ0)

)]

−E
[
tr

(
εtε

′
tΣ̃
−1
t (θ0)

∂

∂λi
Σ̃t(θ0)Σ̃

−1
t (θ0)

)
|Ft−1

]

= tr

(
Σ̃−1t (θ0)

∂

∂λi
Σ̃t(θ0)

)

−tr
[
E (εtε

′
t|Ft−1) Σ̃−1t (θ0)

∂

∂λi
Σ̃t(θ0)Σ̃

−1
t (θ0)

]

= tr

(
Σ̃−1t (θ0)

∂

∂λi
Σ̃t(θ0)

)

−tr
[
Σ̃t(θ0)Σ̃

−1
t (θ0)

∂

∂λi
Σ̃t(θ0)Σ̃

−1
t (θ0)

]

= 0,

and so the score is a martingale difference and we may apply the Martingale CLT

(see Billingsley [8], p.788) to obtain

n−1/2
n∑

t=1

∂

∂λ
�̃t(θ0)

d−→ N(0, J),

where

J = E

(
∂

∂λ
�̃t(θ0)

∂

∂λ′
�̃t(θ0)

)
so long as J is finite. The matrix J is a submatrix of

Ĵ = E

(
∂

∂θ
�̃t(θ0)

∂

∂θ′
�̃t(θ0)

)
,

so it suffices to show that the matrix Ĵ is finite, and we prove that Ĵ is finite in

Lemma 11.

�
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Lemma 11 Under assumptions A1−A6, the matrix

Ĵ = E

(
∂

∂θ
�̃t(θ0)

∂

∂θ′
�̃t(θ0)

)
is finite.

Proof: To simplify notation, we denote ∂/∂θi(Σ̃t(θ0)) by Σ̇t,i, and Σ̃−1t (θ0) by Σ̃−1t .

We will use the same notation, in later lemmas, to denote, respectively, ∂/∂θi(Σ̃t(θ))

and Σ̃−1t (θ). An arbitrary element of Ĵ has the form

∂

∂θi
�̃t(θ0)

∂

∂θj
�̃t(θ0) = tr

(
Σ̃−1t Σ̇t,i

)
tr
(
Σ̃−1t Σ̇t,j

)

+tr
(
εtε

′
tΣ̃
−1
t Σ̇t,iΣ̃

−1
t

)
tr
(
εtε

′
tΣ̃
−1
t Σ̇t,jΣ̃

−1
t

)
−tr

(
Σ̃−1t Σ̇t,i

)
tr
(
εtε

′
tΣ̃
−1
t Σ̇t,jΣ̃

−1
t

)
−tr

(
Σ̃−1t Σ̇t,j

)
tr
(
εtε

′
tΣ̃
−1
t Σ̇t,iΣ̃

−1
t

)
.

Using that Σ̃t, its inverse, and all of its derivatives are Ft−1 measurable, and applying

(3.29), we see that the expectations of the first and third terms above cancel each

other, leaving

E

[
∂

∂λi
�̃t(θ0)

∂

∂λj
�̃t(θ0)

]
= E

[
tr
(
εtε

′
tΣ̃
−1
t Σ̇t,iΣ̃

−1
t

)
tr
(
εtε

′
tΣ̃
−1
t Σ̇t,jΣ̃

−1
t

)]

−E
[
tr
(
Σ̃−1t Σ̇t,j

)
tr
(
Σ̇t,iΣ̃

−1
t

)]
. (3.34)

Applying successively (3.32), Lemma 17, and Lemma 16 we see that the second

term of (3.34) is bounded. That is,

E

[
tr
(
Σ̃−1t Σ̇t,j

)
tr
(
Σ̇t,iΣ̃

−1
t

)]
≤ E

(∣∣∣∣∣∣Σ̃−1t

∣∣∣∣∣∣2 ∣∣∣∣∣∣Σ̇t,i

∣∣∣∣∣∣ ∣∣∣∣∣∣Σ̇t,j

∣∣∣∣∣∣)

≤M2
1E

(
max
1≤i≤�

∣∣∣∣∣∣Σ̇t,i

∣∣∣∣∣∣2) <∞. (3.35)

To prove that the first term of (3.34) is bounded we will use repeatedly the linearity

of trace and expectation, and that the trace operator is invariant under cyclic per-

mutations of its argument. Noting that Σ̃t, its inverse, and all of its derivatives are

Ft−1 measurable we have
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E

[
tr
(
εtε

′
tΣ̃
−1
t Σ̇t,iΣ̃

−1
t

)
tr
(
εtε

′
tΣ̃
−1
t Σ̇t,jΣ̃

−1
t

)]

= E

[
tr
(
ε′tΣ̃

−1
t Σ̇t,iΣ̃

−1
t εt

)
tr
(
ε′tΣ̃

−1
t Σ̇t,jΣ̃

−1
t εt

)]

= E

[(
ε′tΣ̃

−1
t Σ̇t,iΣ̃

−1
t εtε

′
tΣ̃
−1
t Σ̇t,jΣ̃

−1
t εt

)]

= E

{
E

[
tr
(
εtε

′
tΣ̃
−1
t Σ̇t,iΣ̃

−1
t εtε

′
tΣ̃
−1
t Σ̇t,jΣ̃

−1
t

)
|Ft−1

]}

= E

{
tr
(
E

[
εtε

′
tΣ̃
−1
t Σ̇t,iΣ̃

−1
t εtε

′
t|Ft−1

]
Σ̃−1t Σ̇t,jΣ̃

−1
t

)}
. (3.36)

Using (3.1), Ht = Σ̃t(θ0) = Σ̃t, and (3.33), we can write (3.36) as

E

{
tr
(
H

1/2
t E

[
ηtη

′
tH

−1/2
t Σ̇t,iH

−1/2
t ηtη

′
t|Ft−1

]
H
−1/2
t Σ̇t,jΣ̃

−1
t

)}
= E

{
tr
(
E

[
ηtη

′
tH

−1/2
t Σ̇t,iH

−1/2
t ηtη

′
t|Ft−1

]
H
−1/2
t Σ̇t,j H

−1/2
t

)}
≤ E

{
tr
(
E

[
ηtη

′
tH

−1/2
t Σ̇t,iH

−1/2
t ηtη

′
t|Ft−1

])
tr
(
H
−1/2
t Σ̇t,j H

−1/2
t

)}
= E

{
E

[
tr
(
ηtη

′
tH

−1/2
t Σ̇t,iH

−1/2
t ηtη

′
t

)
|Ft−1

]
tr
(
H
−1/2
t Σ̇t,j H

−1/2
t

)}
= E

{
E

[
tr
(
ηtη

′
tηtη

′
tH

−1/2
t Σ̇t,iH

−1/2
t

)
|Ft−1

]
tr
(
H
−1/2
t Σ̇t,j H

−1/2
t

)}
= E

{
tr
(
E [ηtη

′
tηtη

′
t|Ft−1]H

−1/2
t Σ̇t,iH

−1/2
t

)
tr
(
H
−1/2
t Σ̇t,j H

−1/2
t

)}

≤ E [η′tηtη
′
tηt]E

[
max
1≤i≤�

(
tr
(
Σ̃−1t Σ̇t,i}

)2
)]

≤ E [η′tηtη
′
tηt]E

[
max
1≤i≤�

(∣∣∣∣∣∣Σ̃−1t

∣∣∣∣∣∣2 ∣∣∣∣∣∣Σ̇t,i}
∣∣∣∣∣∣2)]

≤M2
1E [η′tηtη

′
tηt]E

[
max
1≤i≤�

(∣∣∣∣∣∣Σ̇t,i}
∣∣∣∣∣∣2)]

<∞.

The last three lines follows from (3.32), A6, Lemma 17 and Lemma 16.

�

Lemma 12 Under assumptions A1−A6
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1

n

n∑
t=1

(
∂2

∂θj∂λi
�̃t(θ

∗
i )

)
a.s−→ R̃0 = E

(
∂2

∂θ∂λ
�̃t(θ0)

)

as n→∞, and R̃0 admits a left inverse.

Proof: Following Straumann and Mikosch [47] we use the result of Rao [43], regarding

conditions for uniform convergence in the strong law of large numbers. We will apply

this result as stated in Theorem 2.7 of Straumann and Mikosch ([47], p. 2456), which

we summarize as follows; if {vt : t = 0,±1, . . .} is a stationary and ergodic sequence of

random elements with values in the space of continuous functions, equipped with the

supremum norm, taking values from a compact set K ⊂ R
m into R

n, then uniform

convergence in the strong law of large numbers is implied by

E

(
sup
s∈K

||v0(s)||
)
.

Under assumptions A1−A3, the sequence{
∂2

∂θ∂λ
�̃t(θ) : t = 0,±1, . . .

}
(3.37)

is strictly stationary and ergodic for each θ ∈ Θ . Thus, for any compact set K ⊂ Θ,

lim
n→∞

sup
θ∈K

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
t=1

(
∂2

∂θ∂λ
�̃t(θ)

)
− E

(
∂2

∂θ∂λ
�̃t(θ)

)∣∣∣∣∣
∣∣∣∣∣ a.s−→ 0 (3.38)

is implied by

E

(
sup
θ∈K

∣∣∣∣
∣∣∣∣ ∂2

∂θ∂λ
�̃0(θ)

∣∣∣∣
∣∣∣∣
)
<∞. (3.39)

The first part of the theorem follows if we can show that (3.39) holds for some

compact set K containing θ0, and by noting that the points θ∗i converge almost surely

to θ0 as n→∞. We show that (3.39) holds by proving the stronger statement

E

(
sup
θ∈V0

∣∣∣∣
∣∣∣∣ ∂2

∂θ∂θ
�̃0(θ)

∣∣∣∣
∣∣∣∣
)
<∞, (3.40)

where V0 is the neighborhood of θ0 constructed in Lemma 15. To simplify notation

in the following we denote ∂/∂θi(Σ̃0(θ)) by Σ̇i, ∂
2/∂θj∂θi(Σ̃0(θ)) by Σ̈ij, and Σ̃−10 (θ)

by Σ̃−1. An arbitrary element of the matrix appearing in (3.40) takes the form
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∂2

∂θj∂θi
�̃0(θ) = tr

(
Σ̈ijΣ̃

−1
)
+ tr

(
ε0ε

′
0Σ̃

−1Σ̇jΣ̃
−1Σ̇iΣ̃

−1
)
+ tr

(
ε0ε

′
0Σ̃

−1Σ̇iΣ̃
−1Σ̇jΣ̃

−1
)

−tr
(
Σ̇iΣ̃

−1Σ̇jΣ̃
−1
)
− tr

(
ε0ε

′
0Σ̃

−1Σ̈ijΣ̃
−1
)
. (3.41)

Regarding the first term of (3.41), it follows from (3.32), Lemma 17 and Lemma 16

that

E

(
sup
θ∈Θ

tr
(
Σ̈ijΣ̃

−1
))

≤ E

(
sup
θ∈Θ

∣∣∣∣∣∣Σ̈ij

∣∣∣∣∣∣ ∣∣∣∣∣∣Σ̃−1∣∣∣∣∣∣)

≤M1E

(
sup
θ∈Θ

∣∣∣∣∣∣Σ̈ij

∣∣∣∣∣∣) <∞. (3.42)

To prove that the expectation of the second term of (3.41) is bounded uniformly in

θ over V0 we will use repeatedly the linearity of trace and expectation and that the

trace operator is invariant under cyclic permutations of its argument. Noting that

Ht, Σ̃, its inverse, and all of its derivatives are Ft−1 measurable, and using (3.32), we

can write

E

[
tr
(
ε0ε

′
0Σ̃

−1Σ̇jΣ̃
−1Σ̇iΣ̃

−1
)]

= E

[
tr
(
Σ̃−1ε0ε′0Σ̃

−1Σ̇jΣ̃
−1Σ̇i

)]
= E

[
tr
(
Σ̃−1ε0ε′0Σ̃

−1Σ̇jΣ̃
−1Σ̇i

)]
= tr

[
E

{
E

(
Σ̃−1ε0ε′0Σ̃

−1Σ̇jΣ̃
−1Σ̇i|Ft−1

)}]
= tr

[
E

{
Σ̃−1H1/2

0 E (η0η
′
0|Ft−1)H

1/2
0 Σ̃−1Σ̇jΣ̃

−1Σ̇i

}]
= E

[
tr
(
Σ̃−1H0Σ̃

−1Σ̇jΣ̃
−1Σ̇i

)]
= E

[
tr
(
Σ̃−1/2Σ̇iΣ̃

−1H1/2
0 H

1/2
0 Σ̃−1Σ̇jΣ̃

−1/2
)]

≤ E

(∣∣∣∣∣∣Σ̃−1/2Σ̇iΣ̃
−1H1/2

0

∣∣∣∣∣∣ ∣∣∣∣∣∣H1/2
0 Σ̃−1Σ̇jΣ̃

−1/2
∣∣∣∣∣∣) , (3.43)

where the last line follows from (3.32).

Using that ||X|| = ||X ′|| holds for arbitrary matrices, and noting that every matrix

appearing in (3.43) is symmetric, we can bound (3.43) as
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E

(∣∣∣∣∣∣Σ̃−1/2Σ̇iΣ̃
−1H1/2

0

∣∣∣∣∣∣ ∣∣∣∣∣∣Σ̃−1/2Σ̇jΣ̃
−1H1/2

0

∣∣∣∣∣∣)

≤ E

(
max
1≤i≤�

∣∣∣∣∣∣Σ̃−1/2Σ̇iΣ̃
−1H1/2

0

∣∣∣∣∣∣2)

= E

(
max
1≤i≤�

tr
[
Σ̃−1/2Σ̇iΣ̃

−1H0Σ̃
−1Σ̇iΣ̃

−1/2
])

≤ E

(
max
1≤i≤�

tr
[
Σ̃−1

]
tr
[
Σ̇iΣ̃

−1H0Σ̃
−1Σ̇i

])

≤ √dM1E

(
max
1≤i≤�

tr
[
Σ̃−1/2H0Σ̃

−1/2Σ̃−1/2Σ̇iΣ̇iΣ̃
−1/2

])

≤ √dM1E

(
max
1≤i≤�

tr
[
Σ̃−1H0

]
tr
[
Σ̃−1Σ̇iΣ̇i

])

≤ √dM1(d+ 1)E

(
max
1≤i≤�

∣∣∣∣∣∣Σ̇i

∣∣∣∣∣∣2 ∣∣∣∣∣∣Σ̃−1∣∣∣∣∣∣)

≤ √dM2
1 (d+ 1)E

(
max
1≤i≤�

∣∣∣∣∣∣Σ̇i

∣∣∣∣∣∣2) .
The last five lines follow, successively, from (3.33), (3.32) and Lemma 17, (3.33),

Lemma 15, and Lemma 17. The constants d and M1 do not depend on θ and it

follows from Lemma 15 that

E sup
θ∈Θ

max
1≤i≤�

∣∣∣∣∣∣Σ̇i

∣∣∣∣∣∣2 <∞.

Thus the expectation of the second term of (3.41) is bounded uniformly in θ over V0,

and an identical argument bounds the third term.

The fourth term of (3.41) is bounded by (3.32), Lemma 17, and Lemma 16. That

is,

E

[
sup
θ∈Θ

tr
(
Σ̇iΣ̃

−1
t Σ̇jΣ̃

−1
t

)]
≤ E

(
sup
θ∈Θ

∣∣∣∣∣∣Σ̇i

∣∣∣∣∣∣ ∣∣∣∣∣∣Σ̇j

∣∣∣∣∣∣ ∣∣∣∣∣∣Σ̃−1t

∣∣∣∣∣∣2)

≤M2
1E

(
sup
θ∈Θ

max
1≤i≤�

∣∣∣∣∣∣Σ̇i

∣∣∣∣∣∣2) .
To bound the fifth term of (3.41), we use an argument similar to that which

bounds the second and third terms.
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E

[
tr
(
ε0ε

′
0Σ̃

−1
t Σ̈ijΣ̃

−1
t

)]
= E

{
E

[
tr
(
ε0ε

′
0Σ̃

−1
t Σ̈ijΣ̃

−1
t |F	−∞

)]}
= E

{
E

[
tr
(
ε0ε

′
0Σ̃

−1
t Σ̈ijΣ̃

−1
t |Ft−1

)]}
= E

[
tr
(
Σ̃−1t H0Σ̃

−1
t Σ̈ij

)]
= E

[
tr
(
Σ̃
−1/2
t H0Σ̃

−1/2
t Σ̃

−1/2
t Σ̈ijΣ̃

−1/2
t

)]
≤ E

[
tr
(
Σ̃
−1/2
t H0Σ̃

−1/2
t

)
tr
(
Σ̃
−1/2
t Σ̈ijΣ̃

−1/2
t

)]
= E

[
tr
(
Σ̃−1t H0

)
tr
(
Σ̃−1t Σ̈ij

)]
≤ (d+ 1)E

(∣∣∣∣∣∣Σ̃−1t

∣∣∣∣∣∣ ∣∣∣∣∣∣Σ̈ij

∣∣∣∣∣∣)

≤ (d+ 1)M1E

(
sup
θ∈Θ

∣∣∣∣∣∣Σ̈ij

∣∣∣∣∣∣)

<∞.

The last five lines use (3.33), Lemma 15, Lemma 17, and Lemma 16. This completes

the proof of (3.40).

The matrix R̃0 is the lower right k×� block of the matrix R̂; thus R̃0 admits a left

inverse if R̂ is invertible. Invertibility of R̂ follows from Lemma 14 where we prove

that R̂ is positive definite.

�

Lemma 13 Under assumptions A1−A6, the matrix

R̂ = E

(
∂2

∂θj∂θi
�̃t(θ0)

)
is finite.

Proof: To simplify notation in the following we denote ∂/∂θi(Σ̃t(θ0)) by Σ̇t,i, Σ̃
−1
t (θ0)

by Σ̃−1t , and ∂2/∂θj∂θi(Σ̃t(θ0)) by Σ̈t,ij. The score vector is given by

∂

∂θi
�̃t(θ0) = tr(Σ̇t,iΣ̃

−1
t − εtε

′
tΣ̃
−1
t Σ̇t,iΣ̃

−1
t ),

and the Hessian matrix is given by
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∂2

∂θj∂θi
�̃t(θ0) = tr

(
Σ̈t,ijΣ̃

−1
t − Σ̇t,iΣ̃

−1
t Σ̇t,jΣ̃

−1
t + εtε

′
tΣ̃
−1
t Σ̇t,jΣ̃

−1
t Σ̇t,iΣ̃

−1
t

)

−tr
(
εtε

′
tΣ̃
−1
t Σ̈t,ijΣ̃

−1
t + εtε

′
tΣ̃
−1
t Σ̇t,iΣ̃

−1
t Σ̇t,jΣ̃

−1
t

)
.

Examining the five terms on the right-hand side above, we see that since

E(εtε
′
t|Ft−1) = Ht = Σ̃t(θ0),

and since Σ̃t, its inverse, and all of its derivatives are Ft−1 measurable, the first and

fourth terms above cancel each other as do the second and fifth terms. Thus,

E

(
∂2

∂θj∂θi
�̃t

)
= E

[
E

(
∂2

∂θj∂θi
�̃t|Ft−1

)]
= E

[
tr
(
Σ̇t,jΣ̃

−1
t Σ̇t,iΣ̃

−1
t

)]
.

It follows from (3.32), (3.33), Lemma 17, and Lemma 16 that

E

∣∣∣∣ ∂2

∂θj∂λi
�̃t

∣∣∣∣ = E

∣∣∣tr(Σ̇t,jΣ̃
−1
t Σ̇t,iΣ̃

−1
t

)∣∣∣
≤ E

(
||Σ̇t,iΣ̃

−1
t || ||Σ̇t,jΣ̃

−1
t ||

)
≤ E

(
||Σ̇t,i|| ||Σ̇t,j|| ||Σ̃−1t ||2

)

≤M2
1E

(
sup
θ∈Θ

max
1≤i≤�

||Σ̇t,i||2
)

<∞.

�

Lemma 14 Under assumptions A1−A6, the matrix

R̂ = E

(
∂2

∂θj∂θi
�̃t(θ0)

)
is positive definite.

Proof: We follow the argument of Comte and Lieberman (2003). To simplify notation

we denote ∂/∂θi(Σ̃t(θ0)) by Σ̇t,i, and Σ̃−1t (θ0) by Σ̃−1t . We define Ai := Σ̃
−1/2
t Σ̇t,iΣ̃

−1/2
t

for each 1 ≤ i ≤ �. For arbitrary conformable matrices X and Y ,

tr(XY ) = vec(X ′)′vec(Y ).
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Thus,

R̂ = E

(
∂2

∂θj∂θi
�̃t(θ0)

)
= E

[
tr
(
Σ̇t,iΣ̃

−1
t Σ̇t,jΣ̃

−1
t

)]
= E [tr (AiAj)] = vec(A′i)

′vec(Aj).

Since

vec(XY Z) = (Z ′ ⊗X)vec(Y ),

we have

vec(Ai) =
(
Σ̃
−1/2
t ⊗ Σ̃

−1/2
t

)
vec

(
Σ̇t,i

)
,

and thus

R̂ = E

(
P ′t

(
Σ̃−1t ⊗ Σ̃−1t

)
Pt

)
where the matrix Pt is given by Pt = (vec(Σ̇t,1), . . . , vec(Σ̇t,�)). The matrix (Σ̃−1t ⊗Σ̃−1t )

is positive definite as the Kronecker product of positive definite matrices (see Gross

(2003), p.355), and thus R̂ is positive semidefinite.

Suppose (by way of contradiction) that R̂ is singular. Then there is some vector

x, x �= 0, such that

xE
(
P ′t

(
Σ̃−1t ⊗ Σ̃−1t

)
Pt

)
x = 0.

Thus,

E

[
(Ptx)

′
(
Σ̃−1t ⊗ Σ̃−1t

)
Ptx

]
= 0,

which implies

Ptx = 0

almost surely. From the definition of Pt, if Ptx = 0 almost surely, then there is some

nonzero vector y such that

y′
(
∂

∂θ
(σ̃2

t )

)
= 0 almost surely.

This implies that another representation of σ̃2
t is possible, contradicting part (ii) of

Theorem 8.

�
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Lemma 15 Under assumptionsA1-A6 there exists, for each fixed t ∈ {0,±1,±2, . . .},
some neighborhood Vt of θ0 in Θ such that

sup
θ∈Vt

tr
(
Σ̃t(θ0)Σ̃

−1
t (θ)

)
≤ d+ 1.

Proof: Fix any t ∈ {0,±1,±2, . . .}. The mapping θ �→ tr(Σ̃t(θ0)Σ̃
−1
t (θ)) is smooth,

and

tr
(
Σ̃t(θ0)Σ̃

−1
t (θ0)

)
= tr(Id) = d,

so it is natural to expect that

tr
(
Σ̃t(θ0)Σ̃

−1
t (θ)

)
should take a value close to d whenever ||θ − θ0|| is small. However, the situation is

complicated by the fact that Σ̃t and Σ̃−1t are functions not only of θ, but also of the

i.i.d. sequence {ηt−1, ηt−2, . . .}.
For each k ∈ {1, 2, . . .}, we consider ηt−k as a measurable function from a proba-

bility space (Ωk,Fk, Qk) into R
d. Then, defining Ω by the cartesian product

Ω :=
⊗∞

k=1 Ωk,

it follows that η := (ηt−1, ηt−2, . . .) is a well-defined random variable on the probability

space (Ω,F , Q) where

F :=
⊗∞

k=1Fk,

and Q is defined by

Q(A) =
∏∞

k=1Qk(Ak) for A =
⊗∞

k=1Ak ∈ F

(see Fristedt and Gray [27], p.136-140). The function f : Θ× Ω→ R defined by

f(θ, ω) = tr
(
Σ̃t(θ0)Σ̃

−1
t (θ)

)
is smooth in θ, so for each fixed ω ∈ Ω there exists a neighborhood Vω of θ0 such that

f(Vω, ω) ⊂ (d− 1, d+ 1). Define

V :=
⋃
ω∈Ω

Vω.
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Then f(V ) ⊂ (d− 1, d+1) and, denoting by Vt the projection of V onto Θ, it follows

that V = Vt ×Ω and Vt is an open set containing θ0 in Θ. Now, for every θ ∈ Vt and
for every ω ∈ Ω we have f(θ, ω) ∈ (d− 1, d+ 1). Thus

sup
θ∈Vt

f(θ, ω) ≤ d+ 1

holds for all ω ∈ Ω, and thus

sup
θ∈Vt

tr
(
Σ̃t(θ0)Σ̃

−1
t (θ)

)
≤ d+ 1

holds for every possible realization of the random variable Σ̃t(θ0)Σ̃
−1
t (θ).

�

Lemma 16 Under assumptions A1−A6, the derivatives of σ̃2
t satisfy

(i) Esup
θ∈Θ

∣∣∣∣∣∣Σ̇t,i(θ)
∣∣∣∣∣∣ <∞,

(ii) Esup
θ∈Θ

∣∣∣∣∣∣Σ̇t,i(θ)
∣∣∣∣∣∣2 <∞,

(iii) Esup
θ∈Θ

∣∣∣∣∣∣Σ̈t,ij(θ)
∣∣∣∣∣∣ <∞.

Proof: Recall our definition of the spectral norm in (2.5). The following inequalities

hold for arbitrary conformable matrices X and Y (see Magnus and Neudecker [35]),

||XY || ≤ N(X)||Y ||, ||XY || ≤ ||X||N(Y ), N(XY ) ≤ N(X)N(Y ). (3.44)

Furthermore,

N(X ⊗ Y )2 = ρ((X ⊗ Y )′(X ⊗ Y )) = ρ(X ′X)ρ(Y ′Y ) = N(X)2N(Y )2 (3.45)

To simplify notation, we denote B = I −K − A, and we define

C := Im ⊗Km ⊗ Im, Ai := (Kγ + Ast−i)′, a := vech(A), k := vech(K),

where Km is the commutation matrix. From our assumptions on Θ, ρ(B(θ)) < 1 for

all θ ∈ Θ. The eigenvalues of any square matrix are continuous as functions of the

matrix coordinates (see Horn and Johnson [32] p.539-540). Thus,
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sup
θ∈Θ

ρ(B(θ)) < 1,

and

r := sup
θ∈Θ

N(B(θ)) < 1. (3.46)

The matrix C is bounded in norm, and we have the following bounds

sup
θ∈Θ

||K(θ)|| <∞, sup
θ∈Θ

||γ(θ)|| <∞, sup
θ∈Θ

||A(θ)|| <∞, (3.47)

because each of the matrices above is the supremum of a continuous function over a

compact set. Stationarity of (εt), (3.44) and (3.47) imply

Esup
θ∈Θ

(||Ai(θ)||) = Esup
θ∈Θ

(||A0(θ)||)

≤ sup
θ∈Θ

||K(θ)γ(θ)||+ sup
θ∈Θ

||A(θ)||E ||s0|| <∞. (3.48)

The components of Σ̇t,i are given by

∂σ̃2
t

∂γ′
=

∞∑
i=1

Bi−1K,

∂σ̃2
t

∂k′
=

∞∑
i=1

γ′ ⊗ Bi−1 −
∞∑
i=1

i−1∑
j=1

AiB
i−j−1 ⊗ Bj−1,

and

∂σ̃2
t

∂a′
=

∞∑
i=1

s′t−i ⊗ Bi−1 −
∞∑
i=1

i−1∑
j=1

AiB
i−j−1 ⊗ Bj−1

Examining the components of Σ̇t,i, and applying (3.44)-(3.48) we have

sup
θ∈Θ

∣∣∣∣
∣∣∣∣∂σ̃2

t

∂γ′

∣∣∣∣
∣∣∣∣ ≤ ∞∑

i=1

sup
θ∈Θ

N(B(θ))i−1sup
θ∈Θ

||K(θ)|| ≤ sup
θ∈Θ

||K(θ)||
∞∑
i=1

ri−1 <∞,

Esup
θ∈Θ

∣∣∣∣
∣∣∣∣∂σ̃2

t

∂k′

∣∣∣∣
∣∣∣∣ ≤ ∞∑

i=1

sup
θ∈Θ

||γ(θ)||N(B)i−1

+
∞∑
i=1

i−1∑
j=1

Esup
θ∈Θ

(||Ai(θ)||)N(B)i−j−1N(B)j−1

≤ sup
θ∈Θ

||γ(θ)||
∞∑
i=1

ri−1 + Esup
θ∈Θ

(||A0(θ)||)
∞∑
i=1

i−1∑
j=1

ri−2
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≤ sup
θ∈Θ

||γ(θ)||
∞∑
i=1

N(B)i−1 + Esup
θ∈Θ

(||A0(θ)||)
∞∑
i=1

(i− 1)ri−2

<∞,

and

Esup
θ∈Θ

∣∣∣∣
∣∣∣∣∂σ̃2

t

∂a′

∣∣∣∣
∣∣∣∣ ≤ E ||s0||

∞∑
i=1

ri−1 + Esup
θ∈Θ

||A0(θ)||
∞∑
i=1

(i− 1)ri−2 <∞.

This completes the proof of (i).

To prove (ii), one can bound all products of the terms appearing in the proof of

(i). Instead, we prove the claim by writing

∂

∂θi
(σ̃2

t (θ)) =
∂

∂θi
((I − B)−1)Kγ + (I − B)−1

∂

∂θi
(K)γ

+
∞∑
j=0

∂

∂θi
(Bj)Ast−j−1 +

∞∑
j=0

Bj ∂

∂θi
(A)st−j−1.

Using (3.44) and (3.46),∣∣∣∣
∣∣∣∣ ∂∂θi (σ̃2

t (θ))

∣∣∣∣
∣∣∣∣

≤ sup
θ∈Θ

{∣∣∣∣
∣∣∣∣ ∂∂θi ((I − B(θ))−1

∣∣∣∣
∣∣∣∣ ||K(θ)γ(θ)||+ ||(I − B(θ))−1||

∣∣∣∣
∣∣∣∣ ∂∂θiK(θ)

∣∣∣∣
∣∣∣∣ ||γ(θ)||

}

+C1sup
θ∈Θ

||A(θ)||
∞∑
j=0

jrj−1 ||st−j−1||+ sup
θ∈Θ

∣∣∣∣
∣∣∣∣ ∂∂θi (A(θ))

∣∣∣∣
∣∣∣∣ ∞∑
j=0

N(Bj) ||st−j−1|| .

Each of the supremums above is bounded as the supremum of a function that is

continuous with respect to the Euclidean norm over the compact set Θ. Thus,∣∣∣∣
∣∣∣∣ ∂∂θi (σ̃2

t (θ))

∣∣∣∣
∣∣∣∣ ≤ K1

( ∞∑
j=0

jrj−1 ||st−j−1||+
∞∑
j=0

rj ||st−j−1||
)

(3.49)

for some finite constant K1 that depends on neither θ nor t. Stationarity of (εt)

implies

E

∣∣∣∣
∣∣∣∣ ∂∂θi (σ̃2

t (θ))

∣∣∣∣
∣∣∣∣ ≤ K1E ||s1||

( ∞∑
j=0

jrj−1 +
∞∑
j=0

rj

)
:= K2 <∞. (3.50)

By (3.49) we conclude



89∣∣∣∣
∣∣∣∣ ∂∂θi (σ̃2

t (θ))

∣∣∣∣
∣∣∣∣2

≤ K2
1

⎡
⎣( ∞∑

j=0

jrj−1 ||st−j−1||
)2

+ 2

( ∞∑
j=0

jrj−1 ||st−j−1||
)( ∞∑

j=0

rj ||st−j−1||
)⎤
⎦

+K2
1

⎡
⎣( ∞∑

j=0

rj ||st−j−1||
)2

⎤
⎦.

Thus, using A6, we have that

E

∣∣∣∣
∣∣∣∣ ∂∂θi (σ̃2

t (θ))

∣∣∣∣
∣∣∣∣2

is bounded by

K2
1E ||s1||2

⎡
⎣( ∞∑

j=0

jrj−1
)

+ 2

( ∞∑
j=0

jrj−1
)( ∞∑

j=0

rj ||st−j−1||
)2( ∞∑

j=0

rj

)2
⎤
⎦ <∞.

This completes the proof of (ii).

The components of Σ̈t,ij are given by

∂vec

∂a′

(
∂σ̃2

t

∂γ′

)
= −

∞∑
i=1

i−1∑
j=1

KBi−j−1 ⊗ Bj−1,

∂vec

∂k′

(
∂σ̃2

t

∂γ′

)
=

∞∑
i=1

Im ⊗ Bi−1 −
∞∑
i=1

i−1∑
j=1

KBi−j−1 ⊗ Bj−1,

∂vec

∂k′

(
∂σ̃2

t

∂k′

)
= −

∞∑
i=1

C

[
(γ ⊗ Im2)

(
i−1∑
j=1

Bi−j−1 ⊗ Bj−1
)]

−
∞∑
i=1

i−1∑
j=1

C
(
Im ⊗ vecBj−1)(Bi−j−1 ⊗ γ′ −

i−j−1∑
�=1

Bi−j−�−1 ⊗ AiB
�−1

)

+
∞∑
i=1

i−1∑
j=1

C
(
vec

(
AiB

i−j−1)⊗ Im2

)( j−1∑
�=1

Bj−�−1 ⊗ B�−1
)
,

∂vec

∂a′

(
∂σ̃2

t

∂k′

)
= −

∞∑
i=1

C

[
(γ ⊗ Im2)

(
i−1∑
j=1

Bi−j−1 ⊗ Bj−1
)]
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−
∞∑
i=1

i−1∑
j=1

C
(
Im ⊗ vecBj−1)(Bi−j−1 ⊗ s′t−i −

i−j−1∑
�=1

Bi−j−�−1 ⊗ AiB
�−1

)

+
∞∑
i=1

i−1∑
j=1

C
(
vec

(
AiB

i−j−1)⊗ Im2

)( j−1∑
�=1

Bj−�−1 ⊗ B�−1
)
,

∂vec

∂a′

(
∂σ̃2

t

∂a′

)
= −

∞∑
i=1

C

[
(st−i ⊗ Im2)

(
i−1∑
j=1

Bi−j−1 ⊗ Bj−1
)]

−
∞∑
i=1

i−1∑
j=1

C
(
Im ⊗ vecBj−1)(Bi−j−1 ⊗ s′t−i −

i−j−1∑
�=1

Bi−j−�−1 ⊗ AiB
�−1

)

+
∞∑
i=1

i−1∑
j=1

C
(
vec

(
AiB

i−j−1)⊗ Im2

)( j−1∑
�=1

Bj−�−1 ⊗ B�−1
)
.

Applying (3.44)-(3.48) to the components of Σ̈t,ij we have terms identical to those

appearing in the proof of (i), plus additional terms of the form

Esup
θ∈Θ

(||A0(θ)||)
∞∑
i=1

i−1∑
j=1

i−j−1∑
�=1

ri−3 = Esup
θ∈Θ

(||A0(θ)||)
∞∑
i=1

i−1∑
j=1

(i− j − 1)ri−3

≤ Esup
θ∈Θ

(||A0(θ)||)
∞∑
i=1

i2ri−3 <∞.

�
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Lemma 17 The matrix Σ̃−1t satisfies ||Σ̃−1t || ≤ M1 for some finite constant M1 that

depends on neither θ nor t.

Proof: We follow again the arguments in Comte and Lieberman (2003). Let X and

Y denote arbitrary d× d matrices with X > 0, Y ≥ 0. Then,

0 ≤ tr[(X + Y )−2] = tr[(X + Y )−1(X + Y )−1]

= ||(X + Y )||2

= ||X−1/2(Id +X−1/2Y X−1/2)−1X−1/2||2

= tr(X−2(Id +X−1/2Y X−1/2)−2)

= ||X−2(Id +X−1/2Y X−1/2)−2||2

≤ ||X2||2||(Id +X−1/2Y X−1/2)−2||2

= tr(X−4)tr[(Id +X−1/2Y X−1/2)−4]1/2.

All eigenvalues of Id +X−1/2Y X−1/2 are greater than one, so those of its inverse are

in (0,1] as are those of any power of the inverse. This implies

tr[(Id +X−1/2Y X−1/2)−4] < d,

and thus,

0 ≤ tr[(X + Y )−2] ≤ (
√
d)tr(X−4). (3.51)

From (3.2), each Σ̃t has a representation of the form

Σ̃t(θ) = C(θ) + Y (θ),

where Y (θ) ≥ 0, and C(θ) > 0. Using (3.51), and using that C(θ)−2 is continuous

with respect to the Euclidean norm over the compact set Θ, we have

||Σ̃−1t (θ)||2 ≤ (
√
d)||C(θ)−2|| < M2

1 ,

for some finite constant M1 that depends on neither θ nor t.

�
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