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ABSTRACT

A review of traditional mathematics instruction suggests that conventional
methods emphasize student learning of declarative rules about math problem
solving procedures, especially in the early phase of learning. In contrast to the
implicit learning of procedural skills, this approach places heavy demands on
working memory and may be partly responsible for low levels of math
achievement by many students. The present study explored the plausibility of
implicit learning of polynomial problem structure prior to declarative rule
instruction and its impact on subsequent problem solving skill, rule learning, and
perception of difficulty. Participants selected proper factorizations of quadratic
polynomials from two possible answer choices over many blocks in a task that
was structured to achieve errorless learning through a vanishing cues approach.
Measures were administered to assess problem solving skill, rule understanding,
and perception of learning difficulty. Evidence supports the hypothesis that
some mathematics skill can be learned implicitly, but marginal and conflicting

results raise questions about the impact of initial implicit learning on subsequent



rule learning and difficulty perception. Findings are interpreted with respect to

implicit learning and skill acquisition theories.
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CHAPTER 1

INTRODUCTION

Mathematics is a school subject that is highly scrutinized in our society

today. Students' ability to understand and apply mathematical concepts in day-

to-day life and work is considered essential for success in adulthood. Despite

the critical priority often assigned to mathematics teaching, learning, and

research, many students still struggle with basic concepts and problem solving.

There have been a multitude of studies, using both experimental and

action research methods, which have attempted to identify the best way to

teach mathematics to children. Many of these have been successful in that they

identify methods that produce a positive benefit to student learning, but even

the most promising instructional methods yield some students who struggle to

learn. Furthermore, the traditionally used textbooks, lecture, and homework

methods found in most public schools tend to result in many students who

struggle to learn, and later apply, complex mathematical concepts and



problems solving skills.

The National Center for Education Statistics reports the findings of the

National Assessment of Educational Progress, a periodically administered

assessment used to evaluate student proficiency throughout the United States in

mathematics and other content areas. According to the National Center for

Education (2011) only 35% of students in the nation were assessed as proficient

in 8thgrade mathematics (National Center for Education, 2011).

Given that a national assessment suggests approximately two-thirds of

students entering high school in the United States lack proficiency in

mathematics as defined by the National Center for Education, it is vital to

investigate the root of student struggles in this area. In mathematics, it is

traditional protocol to begin by teaching students the rules for a concept or

problem solution and then to have students apply the rules in practice. This

methodology of declarative rule learning preceding practice is common in

mathematics education in the United States, and given the limitations of human

working memory, could possibly contribute to the difficulties many students face

when learning math. In order to acquire math problem-solving skills in this way,

a student needs to learn the rules for solving a problem and then hold those

rules in working memory while trying to apply the rules. Working memory is

limited in its capacity for holding new, unfamiliar information. Given the complex



rule structure of many math skills, and the use of novel symbols to represent

variables and operations, the initial declarative understanding of verbal

descriptions for new math skills can place an enormous strain on students'

working memory. An important goal, then, isto discover if there are methods to

reduce the initial demands on learners' working memory that may be partially

responsible for the frequency of poor math achievement in our schools.

One approach to minimizing the impact of working memory limits on

students' acquisition of new math skills is to initially promote an implicit rather

than explicit understanding of the operations to be learned. A common

example of implicit acquisition of complex rules is the way young children

acquire the ability to comprehend and speak their native language. Infants are

equipped with extremely limited working memory abilities and no declarative

knowledge about the language they will learn. However, by the time an

average child is 5 or 6 years old, they are able to communicate fluently in their

native language. What is more, the grammar rules that govern most languages

are very complex, yet children are typically able to communicate with very few

grammatical errors. Children are not taught, explicitly, the rules that govern

their language or the proper way to apply those rules. Instead, children are

nearly continuously exposed to people speaking their language. Over time, this

exposure results in children learning the rules underlying that language, that is,



the grammar of the language. They are able to initially understand what other

people around them are saying, and eventually are able to speak themselves, all

the time applying the grammar rules they are learning implicitly through

exposure.

The way children learn the grammar and other elements of a language is

an example of implicit learning of procedural knowledge. Itis implicit because it

occurs largely in the absence of conscious, effortful processes and results in a

procedural memory that can be used in practice, even though that information is

not explicitly available as declarative knowledge. This procedural memory is not

only useful in children's language production; it makes it easier for them to learn

the grammar rules declaratively when they are older. They have an implicit

sense as to whether statements and sentences are grammatically correct, which

is invaluable when trying to explicitly understand complex grammatical rule

definitions.

Can this example of implicit grammar learning provide a key to alleviating

the constraint working memory imposes on learning mathematics problem

solving skills? Although it is possible that language acquisition is a special case

in implicit learning, there is evidence suggesting that young children possess

well-developed implicit memory functions in domains other than grammar

(Parkin, 1997). The research reported here investigates the effectiveness of initial



exposure to implicit learning opportunities prior to declarative instruction in the

domain of mathematics. If students initially implicitly learn a "grammar" of

mathematics problems within a domain, they might develop aform of

procedural knowledge for solving that type of problem. Ifthis is possible, the

implicit knowledge might exist and function without the declarative knowledge

that places high demands on working memory in early stages of learning. Just

as implicit knowledge of grammar helps a child later learn the declarative

knowledge of grammatical rules, the implicit procedural knowledge of math

problems could potentially facilitate the subsequent explicit understanding of

procedures for solving those problems.

The present study compares algebraic problem solving skill learning

between two groups that completed Implicit and Declarative Learning Tasks,

but in different orders. Participants completed training in their assigned

condition, implicit-first or declarative-first, during Sessions 1 and 2, and then

completed the other type of training during Session 3. In addition to the

learning tasks, participants completed several tasks over three sessions

designed to measure skill acquisition and transfer, declarative rule learning, and

participant perception of difficulty for both implicit and Declarative Learning

Tasks.



CHAPTER 2

LITERATURE REVIEW

Procedural and declarative memory are viewed by many theorists as
separate systems for learning and retaining skills and knowledge (Anderson,
1993; Cohen & Squire, 1980; Nissen, Knopman, & Schacter, 1987). Each of
these types of memory has been studied extensively over the past several
decades. Inthis chapter | review some of the history of skill acquisition research,
with a focus on implicit procedural learning as well as research about
interactions between procedural and declarative learning, artificial grammar,
working memory, and errorless learning. In addition, | review the literature for
best and current practices in mathematics instruction, including common

mathematics textbooks.

Learning and Skill Acquisition
John R Anderson (1982) introduced the adaptive control of thought

(ACT) theory of cognition, which described learning processes and served as a



model for how skill acquisition occurs. His model described two components to

learning, both a conscious declarative part and an 'unconscious' procedural part.

Anderson's model posited that skill learning is a two-stage process and that

declarative learning must be the first stage. The model required declarative

processes for the interpretation of facts, which were necessary before the mind

could form procedures (if-then production rules) for whatever skill was being

learned. Anderson stated, "In the first stage the learner receives instruction and

information about a skill. The instruction is encoded as a set of facts about the

skill. These facts can be used by general interpretive procedures to generate

behavior" (Anderson, 1982, p. 370). Thus, the relevant information from

Anderson's model is that procedural skill learning must be preceded by an initial

declarative processing phase.

Anderson updated his model of skill acquisition in the theory of cognition

known as ACT-R (1982, 1993). His model maintained the idea that "all

knowledge starts out in declarative form" (Anderson, 1993, p. 69). The ACT-R

model posits that learning of procedural skills is mediated by declarative

knowledge using an analogy mechanism. This mechanism helps form

production rules, from declarative knowledge, which are essentially mental

procedures that will activate given the proper circumstances. In response to

evidence of procedural learning in absence of declarative learning by amnesiacs



(Willingham, Nissen, & Bullemer, 1989), Anderson suggested that declarative

learning does occur first in these impaired individuals, but that it isn't encoded

strongly enough to be remembered. To that end, Anderson stated, "the best

interpretation of amnesia in ACT-R is in terms of weak initial memory traces"

(Anderson, 1993, p. 25).

In a further update to ACT-R, Anderson and colleagues (2004), did not

specifically state that all procedural knowledge must first pass through a

declarative form, but their learning experiments all required participants to read

and memorize instructions for a task, with the intention that those instructions

would become proceduralized with significant practice. His computational

model also indicates that declarative instruction knowledge must be retrieved

from memory early in the skill acquisition process (Anderson et al., 2004). Thus,

Anderson's updated model of skill acquisition continues to promote the

importance of declarative knowledge in the formation of procedural skills.

Implicit Learning in Absence of Explicit Learning

While Anderson's model indicates that learning procedural skills requires

initial declarative processing, research by others in the field suggests that

learning could occur in the absence of declarative memory processes.

Willingham, Nissen and Bullemer (1989) published a study utilizing the serial



response task, or SRT, in order to study this effect. This task measures time to

respond to one of four keys after a display signal indicates which key to press.

In the critical task condition, each block of continuous trials contains a repeating

sequence of 12 key presses. Participants were able to perform with shorter

response times (RT) after practicing when a repeating sequence was present

compared to a random sequence condition (Willingham et al., 1989).

Importantly, participants were not told a sequence existed but were able to

implicitly learn the pattern without declaratively learning the sequence first. In

fact, there are studies that show implicit learning in this task provides for better

performance than explicitly learning the same sequence (Reber & Squire, 1998).

Further evidence of the ability to implicitly learn procedural skills can be

seen through learning studies with amnesic patients and patients with other

memory disorders that degrade declarative learning ability. Such patients were

able to learn procedural sequences despite being unable to learn declaratively

(Willingham et al., 1989). A separate study of amnesic and Korsakoff syndrome

participants showed similar learning of procedural skills in the absence of

declarative learning (Fahle & Daum, 2002). In both studies, participants

provided verbal reports that indicated they had no declarative memories of their

respective tasks. In addition, "amnesiac patients show improvement in problem

solving and learning to operate complex equipment despite no conscious
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memory of the training" (Litman & Reber, 2005, p. 441). These cases support
the idea that individuals can learn procedural skills implicitly, with little or no
access to declarative knowledge of those skills.

Over the course of several studies, Nissen further explored the idea of
implicit learning in order to better understand the role of attention and
conscious awareness in procedural skill learning. In one study, participants
performed the SRT under different conditions. Those participants who were
exposed to a divided attention task did not learn the sequence, as evidenced by
the lack of facilitation in SRT responses when the repeating sequence was
present (Nissen, 1992; Nissen & Bullemer, 1987). Nissen concluded "learning
the sequence required attentional capacity but not awareness" (Nissen, 1992, p.
206). This research suggests a difference between explicit awareness of task
information and attention to the task, and this conclusion has been supported
by others (Corr, 2003; Hartman, Knopman, & Nissen, 1989). The conclusion
suggests that learners must be attending to a procedural learning task in order
to implicitly acquire the intended skills, but that this attention is separate from
declarative knowledge of the skill rules because the latter is not required for skill

learning.
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Interactions between implicit and explicit knowledge

Some evidence suggests there are facilitative interactions between

declarative and procedural memory processes. For example, Willingham,

Nissen, and Bullemer's (1989) SRT study found that a subset of participants

could use the procedural knowledge they had learned to generate a declarative

understanding of the sequences, in complete absence of declarative training.

Those participants who spontaneously acquired a declarative knowledge of the

repeating sequence also showed greater RT facilitation than those who did not.

In order to understand this more fully, the researchers attempted to control for

anticipatory responses (responding prior to stimulus presentation) from

participants with declarative pattern knowledge. They reasoned that correct

responses of less than 100 ms did not allow for processing the stimuli, making a

choice and responding, so they were indicative of participants anticipating the

next stimulus position. The authors posited that those who induced a

declarative understanding of the pattern used that knowledge to anticipate the

next stimulus position. When they removed these anticipatory responses from

the analysis, the facilitation advantage shown by those who acquired declarative

knowledge was eliminated; these participants now showed equivalent facilitation

patterns as those who did not induce a declarative understanding. Itis not

entirely clear when or how declarative learning occurred, but their findings
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suggest that induction of declarative rules is possible under implicit learning

conditions that lack explicit instruction.

Further supporting a positive relationship between implicit and explicit

learning, an electroencephalography (EEG) study showed spontaneous

declarative learning of procedurally learned patterns (Wessel, Haider, & Rose,

2012). In this study, participants performed an SRT in which a pattern was

present in the responses. Some of the participants became declaratively aware

of the pattern during the task and the EEG of those patients showed a

corresponding change that was not present in the participants who reported

being unaware of the pattern. According to the authors, "we found changes in

high-frequency gamma-band EEG coherence in the rPFC to be associated with

the transition between implicit and explicit contingency awareness in explicit

learners in a serial reaction time task" (Wessel et al., 2012, p. 161). This finding

provided biological evidence for the possibility of procedurally learned skills

preceding, and providing the basis for, declarative knowledge of the skill. This

and the work of Willingham are contrary to some current theory on the matter.

Nevertheless, if substantiated with additional research, such findings have

potentially important implications for initial implicit learning of complex skills

with declarative rules that can overload working memory and impede early

phases of skill acquisition.
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Grammar and Artificial Grammar

Implicit learning has been widely studied through the use of the artificial

grammar paradigm. Artificial grammar learning involves participants being

directed to remember strings of letters that were generated by artificial,

grammar-like rules. An early study by Reber (1967) showed that simply studying

these letter strings without exposure to the grammar rules could lead to

recognition of novel strings created with the same rules.

In a later study of artificial grammar, Dienes, Broadbent, and Berry (1991)

also demonstrated that participants can learn artificial rules of grammar for

strings of letters without any direct declarative processing of the rules.

Participants were simply exposed to strings of letters and instructed to

memorize them. In a later task, they were able to accurately identify nearly two-

thirds of new letter strings that followed the grammar rules of the strings they

had memorized. Given that participants could not effectively explain how they

knew test items followed the rules in a free report task, this experiment provided

further evidence that implicit learning of an underlying rule structure does not

require direct declarative processing of those rules. Furthermore, Dienes and

colleagues told some participants that there were grammar rules present in the

letter strings and the participants should attempt to learn them; these

participants showed no advantage in identifying new letter strings that followed
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the grammar rules compared to the group that was only instructed to memorize

the strings (Dienes et al., 1991). In this case, not only was declarative processing

of the underlying rules not required for procedural learning, instructions to focus

on explicit rule learning did not provide any benefit.

Artificial grammar research has provided experimental evidence that

people can learn to use a complex set of rules without learning them

declaratively. This may be similar to what occurs when children learn the

grammar of their native language in speaking, and later writing. They acquire

the ability to apply complex rules of grammar without an explicit, declarative

understanding of those rules. Itis important to consider, however, the

possibility that language acquisition may be unique in the implicit learning

domain, as people may simply be innately equipped to learn a language and its

grammar. |Ifthis is the case, then implicit learning in other domains may be

more difficult to promote; if not, the artificial grammar and other implicit

learning research supports the idea that some forms of pattern learning can be

implicit in nature, and that in some cases, declarative understanding might have

little benefit to performance.
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Working Memory and Individual Differences

Current theory suggests that most forms of declarative learning depend

on working memory resources and many studies have documented decreased

learning, problem solving, and knowledge retrieval when working memory

resources are taxed (Anderson, Reder, & Lebiere, 1996; Ashcraft & Krause,

2007). In contrast, there is evidence suggesting that implicit learning may not

put the same demands on working memory. Research in skill acquisition has

shown that factors such as working memory (Woltz, 1988) and general

intelligence (Ackerman, 1988, 1992) have greater relationships to early skill

learning performance when declarative processes are required and weaker

relationships when skills have approached a level of procedural automaticity.

Measures of general intelligence (e.g., 1Q scores) are often used to

predict the ability of people to learn novel skills, but do they also predict implicit

learning ability? In a study comparing implicit and explicit learning, Reber,

Walkenfeld, and Hernstadt (1991) investigated that question. Participants in the

study performed both an implicit and an explicit learning task and were given a

measure of intelligence. The results showed that while participants'

performance indicated many individual differences on the explicit learning task,

there were very few individual differences on the Implicit Learning Task.

Likewise, 1Q scores correlated highly with the explicit learning task, but not with
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the implicit task (Reber, 1991). The authors interpreted these findings broadly

to suggest "evolutionary and phylogenetically older implicit processes ought to

show atighter distribution of performance than the more recently emergent

explicit processes" (Reber, 1991, p. 894).

The low variability in performance of implicit memory across people

predicted by A. S. Reber and colleagues (1991) would likely also support smaller

effects of working memory limits on the use and formation of memory utilizing

implicit processes. A study by P. J. Reber and Kotovsky (1997) studied the

effect of working memory demands on implicit learning through a problem-

solving task, but their findings contradict this prediction. Participants were

presented the balls and boxes task, a puzzle in which five balls were located in

boxes and had to be removed. A set of rules governed when a ball could be

moved in and out of its box. Their results indicated that additional working

memory demands had a negative effect on implicit problem solving, as

evidenced by increased difficulty when initially solving the balls and boxes task

while under cognitive load (Reber & Kotovsky, 1997).

This finding would seem to indicate that implicit learning isjust as

susceptible to working memory limits as explicit learning. Assuming that the

cognitive load manipulation demanded attentional resources, such a conclusion

would be generally consistent with Nissen's (1992) finding that attention is
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required for implicit learning to occur. However, it is also possible that the task

presented performance goals that engaged both explicit and implicit learning

processes. Participants in this study had an explicit goal of solving the puzzle

and were presumably utilizing explicit hypothesis testing processes in order to

learn the problem solution initially. This alone would explain the effects of

working memory load on the task. Consistent with this, when solving the

problem for the second time, and on subsequent trials, the working memory

load had no effect on the participants solving the problems, as those

participants had equivalent times to those not under a working memory load

(Reber & Kotovsky, 1997).

In sum, there is evidence that suggests working memory limitations may

be detrimental to implicit memory processes in addition to explicit processes.

However, explicit processing demands may confound this evidence, and there is

other evidence that implicit memory processes may be less impacted by the

limits of working memory (Warmington, Hitch, & Gathercole, 2013; Woltz, 1988).

Given the existing evidence, if the goal of implicit learning methods is to reduce

working memory demands, it would be important to structure the learning task

so as to avoid attention being drawn to irrelevant task features and to minimize

conditions likely to engage explicit memory processes.
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Errorless Learning and Vanishing Cues

In a study using motor learning of a golf-putting task, Maxwell, Masters,
Kerr, and Weedon (2001) investigated procedural learning by having
participants practice putting through an errorless learning paradigm. The
purpose of this errorless learning was for participants develop putting skill
without any declarative instructions while making few, if any, mistakes. This was
accomplished by initially positioning participants very near the target hole and
gradually moving them further away over subsequent trials. This allowed
participants to make very few errors while also receiving no instructions. The
study also included a control group that learned to putt in a hypothesis-testing
paradigm that was explicit in nature. The group using the errorless implicit
learning paradigm experienced robust skill performance that did not degrade
under stress or attentional demands. In contrast, the performance of those who
learned using the explicit method was degraded under stress and attentional
demands.

In a study that continued the utilization of the errorless putting paradigm,
Poolton, Masters, and Maxwell (2005) contrasted this form of errorless learning
with a condition that utilized initial explicit instructions. One group began with
the errorless procedural learning of the putting task and only received

declarative instructions later in the task. The other group received the
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declarative instructions before any practice and was then able to practice

putting. The group that began with errorless learning performed significantly

better than the instructions-first group when a secondary task load was

introduced. The errorless learning group also performed significantly better in

transfer compared to the instructions first group and actually showed no

degradation in the transfer task. The authors concluded "the possibility of

retaining the advantages of a consciously accessible knowledge base while

offsetting the negative consequences of explicit learning via the insertion of an

initial period of implicit learning provides a practical alternative to previous

solutions" (Poolton et al., 2005, p. 376). This evidence suggests that the use of

the errorless learning paradigm in place of initial instruction can minimize the

working memory load during initial task learning, apparently allowing for better

skill acquisition and transfer.

There have also been a variety of studies investigating errorless learning

in more academic domains, particularly in various word learning tasks; in general

these tasks have confirmed the benefit of errorless learning (Anderson & Craik,

2006; Baddeley & Wilson, 1994; Hunkin, Squires, Parkin, & Tidy, 1998; Page,

Wilson, Shiel, Carter, & Norris, 2006; Tailby & Haslam, 2003; Warmington et al.,

2013). While the majority of these studies were conducted using adults, both

healthy and impaired, there have also been studies confirming the benefits of
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errorless learning in children (Warmington et al., 2013).

Many of these studies sought to investigate the mechanisms that drive
the benefit found in errorless learning. In their study, Hunkin and colleagues
(1998) reported that the benefits of errorless learning were not the result of
implicit mechanisms of memory, but instead stemmed from error correction
mechanisms in residual explicit memory. There have been several studies since
that provided evidence to the contrary. In fact, according to Anderson and
Craik, (2006) "errorless learning works through implicit means" (p. 2811). They,
like others, found that errorless learning was likely an implicit process.

A recent study of children provided more evidence for this idea; in the
study, children learned to associate nonwords with novel images in either
errorful or errorless learning conditions. The errorless condition consisted of
presenting children with an image and the first letter of its associated word,
closely followed by the word itself; children then recorded the word; in contrast,
children in the errorful condition were given the first letter and required to guess
the word, which was presented if not guessed (Warmington et al., 2013).
Warmington and colleagues (2013) not only found errorless learning to be
beneficial in children, but they also suggested that the "independence of

errorless learning from cognitive skills known to be important in explicit

memory...arises because it relies instead on implicit memory." (p. 462).
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Tailby and Haslam (2003) conducted a study investigating the effects of

self-generation on errorless learning; memory impaired participants learned lists

of words in one of three learning conditions: errorful, standard errorless, or

modified errorless featuring self-generation of responses. The self-generation in

the modified errorless condition consisted of participants being presented with

the first two letters of a word, its length, and many contextual clues as to its

identity; participants were then instructed to generate the target word and

record it once correctly identified. In contrast, those in the standard errorless

condition were presented the first two letters of a word and its length and were

then given the word and instructed to record it. Those in the errorful condition

were presented the first two letters and instructed to generate the word by

guessing. Participants in the modified errorless condition outperformed those in

the standard errorless condition during the target word recall post assessment.

In addition, the standard errorless group outperformed the errorful group by a

similar margin, seemingly indicating a benefit of self-generation nearly equal to

the independent benefit of errorless learning over errorful learning.

The method of vanishing cues is also used in Implicit Learning Tasks when

the goal isto provide relatively error free practice without initial knowledge of

declarative rules. The method of vanishing cues dictates that participants in a

task are given cues for correctly answering a question or problem and that the
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cues are gradually diminished over the course of practice. This method has

been used in learning for individuals with declarative memory impairments

because it relies on implicit rather than explicit learning (Evans, Levine, &

Bateman, 2004; Riley, Sotiriou, & Jaspal, 2004). However, the method of

vanishing cues has had somewhat mixed results, as some research has shown no

learning effects (Kessels & de Haan, 2003). It is suggested that the lack of

significant effects of the vanishing cues in that research may be related to

participants making mistakes. This could potentially be alleviated in a learning

task that combines other errorless learning procedures and vanishing cues.

Worked Examples

The worked examples approach involves showing learners mathematics

problems that have been solved, with all the 'work’ shown along with the

solution in order to improve learning (Atkinson, Derry, Renkl & Wortham, 2000;

Renkl & Atkinson, 2007; Renkl, Atkinson, & Grosse, 2004). The worked

examples approach to math learning is similar to some forms of implicit learning

in that providing worked examples likely provides some form of implicit learning

of solution patterns through exposure to correct answers. In addition, a strand

of this research has found that gradual fading of worked examples steps fosters

increased skill acquisition (Renkl et al., 2004), which is consistent with principles
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of error free learning (Evans et al.,, 2004; Maxwell et al., 2001; Riley et al., 2004)
and suggests increased likelihood that error free learning can be applied in the
context of math learning. Although the worked examples research shares some
elements with the idea of implicit learning, it is important to recognize that in
the worked examples approach "the basic domain principles are typically
introduced by atext" (Renkl & Atkinson, 2007); in this way, the worked examples
approach is consistent with Anderson's (1982, 1993) theories. The worked
examples approach also differs from the implicit methods in that study
participants are expected to explicitly understand the solution steps provided in
the worked examples through self-explanation activities (Renkl, Atkinson &
Grobe, 2007) and making analogies between worked examples and problems to

be solved (Atkinson et. al., 2000, p. 185).

Order of Learning
There have been studies on the order of instructional tasks and its impact
on learning. In a study by Schwartz and Bransford (1998), college students
prepared for a lecture or course reading by analyzing relevant contrasting cases
prior to the learning event. According to the authors, analyzing these
contrasting cases before attending the lecture or reading the text resulted in a

better quality of learning, as evidenced by a prediction task, than those who did
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not contrast cases beforehand (Schwartz & Bransford, 1998). The analysis task

performed before the lecture can be described as exposure to a problem

domain prior to declarative instruction in that domain and the enhanced

learning resulting from it may be applicable to implicit learning of problem

patterns in mathematics.

A study by DeCaro and Rittle-Johnson (2012) investigated the use of

exploration before explicit instruction to increase math learning. Their

experiment centered around elementary aged students solving simple addition

equivalence statements, like 3 + 7 = 4 + [], either before or after explicit

instruction on the concept of mathematical equivalence and the equal sign; in

each case students were given accuracy feedback after solving each statement.

In each condition, some students solved additional problems, and some

students were given self-explanation prompts after each item, but all students

were able to use pencil and paper and were asked to report their solution

strategy after each problem. Procedural and conceptual knowledge were

measured with separate posttests after the interventions. While there were no

effects of condition on procedural knowledge of solving problems, students who

solved problems before instruction performed better on the conceptual

knowledge test. There were also no differences between those who solved

additional problems and those who self-explained (DeCaro & Rittle-Johnson,
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2012, p. 560), suggesting that declarative processing of problem solving

strategies did not enhance the value gained from skill practice.

The results of this study are consistent with the work of Schwartz and

Bransford (1998) and suggest that actively working with information in a domain

supports later learning in that domain. Despite the declarative nature of the

problem-solving task (participants reported their problem solving strategies after

each problem) in DeCaro and Rittle-Johnson's (2012) study, the evidence

supporting the value of exposure to problem structure before knowledge or rule

learning is encouraging. Furthermore, in both of these studies it is feasible that

the participants may have also gained some concurrent implicit understanding

of patterns present in the problems.

Math Instruction

Math Curricula

In a document reflective of current practice in mathematics education, the

National Council of Teachers of Mathematics (2000) published the Principles and

Standards for School Mathematics, which laid out best practices for teaching

mathematics in addition to standards of math concepts to be taught from

kindergarten through 12thgrade. This document described a variety of

mathematic teaching methods including discussions, manipulative work, and



26

thought provoking questions. While varied, these methods share a common
thread in the explicit nature of their instruction for problem solving and
algorithm dependent procedures.

These methods are used to help students make connections with
challenging declarative knowledge for understanding procedural mathematical
skills. Manipulative work, for example, is intended to help students by providing
another way to represent math problems. This representation is intended to be
concrete in nature in order for children to more easily interpret it. The rationale
is that young children can more easily comprehend abstract math concepts, like
numbers, by being able to see a physical representation of the abstract concept,
for instance, using cubes to represent numbers when children are learning to
add. While there certainly may be a perceptual component to working with
manipulatives, the goal is to help children gain a declarative representation of
the given concepts; manipulatives could easily be described as a different
symbol for representing problems. Discussions and questions have similar
goals, in that they are intended to help students think about challenging
mathematics concepts and skills in different, declarative ways. All of these
methods seek to find ways for students to think about math that are easier for
them to understand, but they rely on working memory to comprehend,

remember and apply verbal explanations for solving math problems.
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Math textbooks

A review of many mathematics textbooks for a variety of grade levels and
from various publishers provides more information about common methodology
for teaching mathematics skills and concepts. Saxon math is one such textbook
series that relies heavily on declarative mathematics instruction. A review of the
Algebra 1 (Saxon, 2003) text revealed a typical method for teaching algebra
problem solving skills and concepts; new problem solving skills are initially
introduced through verbal descriptions of rules and methods. Figure 1 shows
the rules presented in this textbook for factoring a trinomial, while Figure 2
shows the related problem solving method of applying the rules in an example
problem. This common method of mathematics instruction relies on students
understanding declarative rules and then applying them to problems.

In addition to the Saxon math book, | also reviewed several textbooks
written for students ranging from 3 grade-high school from a variety of
publishers. While the methods and techniques for teaching math skills vary
among these textbooks, they share a common reliance on the initial use of
declarative instruction to teach, and more specifically introduce, new concepts
and skills (Bell, 1998; Bumby, Klutch, Collins, & Egbers, 1995; Charles, Branch-
Boyd, Illingworth, Mills, & Reeves, 2004a, 2004b; Lappan, Fey, Fitzgerald, Friel,

& Phillips, 1998; Larson, Boswell, Kanold, & Stiff, 2007; Leschensky, Malloy,
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Price, Rath, & Alban, 1999). This is consistent with the Saxon text, and,

moreover, | believe these texts to be representative of the textbooks used in

public and private schools throughout the United States.

Math Achievement

A review of The Nation's Report Card: Mathematics 2011 (National

Center for Education, 2011) presents statistical information that can aide in the

evaluation of current math instruction methods. This document presents

student performance data from the "National Assessment of Educational

Progress (NAEP), a continuing and nationally representative measure of

achievement" (National Center for Education, 2011, p. ii). Measures of

achievement for grades 4 and 8 are reported, and student performance is

reported as having met criteria for three achievement levels of math proficiency:

basic, proficient, and advanced. The basic level "denotes partial mastery of

prerequisite knowledge and skills that are fundamental for proficient work at

each grade" (National Center for Education, 2011, p. 7). The proficient level

indicates a student has mastered the fundamental concepts at grade level and is

the goal level for student achievement. The advanced level indicates superior

math performance. Students who do not meet the criteria for the basic level are

considered to have below a basic level of math skills.
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While trends over the last 10 years have shown slow growth in

achievement levels of 4thand 8th grade student in math achievement, results of

the 2011 assessments indicate there is still much room for improvement. On the

2011 NAEP math assessment, 60% of 4th grade students were below the

proficient level of achievement, and 18% were below the basic level of math

achievement (National Center for Education, 2011, p. 2). Eighth grade students

performed worse, with 65% of student achieving below the proficient level. In

addition, 27% of 8th grade students were below the basic level of achievement.

These results indicate that nearly a fifth of 4th graders and more than a fourth of

8th graders lack even a basic understanding of fundamental math skills for their

respective grades. Beyond this, less than half of the nation's 4thand 8th grade

students are proficient in their use of fundamental math skills.

Given the current standards and curricula in the area of mathematics

instruction, the prevalent methods for teaching math skills and concepts

emphasize the declarative understanding of rules and algorithms. Overall

student achievement levels in mathematics are disappointing from this form of

conventional curriculum, although reasons for the low achievement nationally

certainly go beyond the curriculum and traditional methods of instruction.

Nevertheless, the body of laboratory research in the area of implicit procedural

learning begs the question of whether those ideas and principles can be applied
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in the context of mathematics skill learning. Learning complex algorithms and
problems solving skills in mathematics is often a difficult and frustrating process
for children. Ashcraft and Krause (2007) suggest that, "Math is ... a cognitively
challenging topic. the stage is set early on in math education for students to
be 'stranded’ without a reasonable, instructive explanation for many aspects of
math" (pp. 246-247). Itis feasible that working memory limitations may be part
of what makes the acquisition and application of these complex algorithms so
difficult for many children. In fact, Ashcraft and Krause state, "There is a
pervasive reliance throughout arithmetic and math on the working memory
system, from simple counting and estimation processes up through algebra and
complex problem solving” (Ashcraft & Krause, 2007, p. 246). Given that
emphasis on initial declarative learning of these challenging skills might unduly
tax working memory, it would be of value to explore the initial use of implicit
learning methods to decrease working memory demands in mathematics

instruction.

Research Questions
Question One
Can algebraic problem solving skill be acquired without exposure to the

declarative rules? This research seeks to determine whether it is possible to
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implicitly obtain procedural knowledge of the patterns of solutions for factoring
algebraic polynomials. The implicit training to evaluate this question provides
extensive exposure to problem and solution patterns for factoring algebraic
polynomials with no declarative training. Acquisition of procedural knowledge
through this training will be evaluated with measures of problem solving
administered prior to declarative instruction. | predict participants engaging in
initial implicit training will be able to acquire problem-solving skills in the

absence of declarative training.

Question Two

Does initial exposure to an implicit learning condition for algebraic
problem and solution patterns facilitate the subsequent learning of declarative
rules for solving those problems? | predict that participants engaging in implicit-
first training will perform better on measures of declarative rule learning than
those participants who engaged in initial declarative training based on standard
textbook instruction. This effect is predicted because an implicit recognition of
pattern solutions for various problem types should reduce the working memory
demands associated with encoding and analyzing verbal descriptions of the

problem components.
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Question Three

Does initial exposure to an implicit learning condition for algebraic

problem and solution patterns have an effect on student perceptions of the

difficulty of learning in this domain? It is valuable to know whether students feel

the process is easier as a result of initial implicit training, as mathematics anxiety

can be a major factor in how much mathematics students pursue. It is predicted

that exposure to initial implicit training will result in reduced participant difficulty

perceptions of problem solving and rule learning, as compared to those who

engaged in initial declarative training. Again, this effect is predicted because of

a presumed reduction in working memory demands following the acquisition of

implicit knowledge about problem patterns.

Question Four

Does initial implicit learning prior to declarative instruction of algebraic

problem and solution patterns result in better final problem solving and transfer

performance compared to learning declarative rules prior to the procedural

practice? This question contrasts the effectiveness of a more traditional

sequence of math instruction (learning declarative knowledge about problem

solving before practice) with the reverse order of instruction that is designed to

avoid initially high working memory demands that presumably impede learning



in many students. It is predicted that participants in the reverse ordered,

implicit-first learning condition will outperform those in the declarative-first

training on final measures of problem solving and transfer performance.

33
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* The first term of the trinomial is the product of the
first terms of the binomials

» The last term of the trinomial is the product of the last
terms of the binomials

e The coefficient of the middle term of the trinomial is
the sum of the last terms of the binomials

« Ifall signs in the trinomial are positive, all signs in both
binomials are positive. If a negative sign appears in the
trinomial, at least one of the terms of the binomials is
negative.

Figure 7. An example of rules for factoring a trinomial from Algebra
1.

We use these observations to help us factor trinomials. To factor the trinomial
x2-3x- 18

we first write down two sets of parentheses to form an indicated product.

«c X )

Since the first term in the trinomial is the product of the first terms of the binomials, we enter
x as the first term of each binomial.

x)x)

Now the product of the last terms of the binomials must equal -18, their sum must equal -3,
and at least one of them must be negative. There are six pairs of integral factor of -18:

(-18)(1) = -18 (2)(-9) = -18 (3)(-6) — 18
(18K-1) = -18 (-2)<9) = -18 (-3)(6) = -18
Their sums are
(-18) + (1) = -17 @+9=-7 () +(-6)=-3
(18) + (-1) = 17 (-2)+ (9 =7 (-3)+ (6)= 3

Note that while all six pairs have a product o f-18, only one pair (3 and -6) sums to -3.
Therefore, the last terms of the binomials are 3 and -6, and so (x + 3) and (x - 6) are the factors
of x2- 3x -18 because

(x+ 3)(x-6) =x2-3x-18

Figure 2. The method for teaching polynomial factorization
using an example problem modified from Algebra 1 (Saxon,
2003, p. 281).



CHAPTER 3

METHOD

Participants and Apparatus

Participants were students enrolled in an introductory algebra course

from two different southeastern Minnesota schools in the same school district

and city. The algebra course was intended to be equivalent across schools in

the district and both schools utilized the same textbook; the course was also a

prerequisite for a high school algebra course. The participants were volunteers

who received no compensation or course credit for participation, although

participation did occur during the normal algebra class time. Of the original 188

participants, 17 (9.0%) were eliminated as outliers based on their performance

on daily learning tests (described later). The final sample (N = 171) included 103

females and 68 males all in 8thgrade. An additional 19 participants took part in

training that was a supplemental condition added to evaluate the accuracy of

one of the measures used.

All participants performed both declarative and Implicit Learning Tasks
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and assessments of learning on computers in the school computer lab. The lab

consisted of Windows based computers using a standard display and keyboard.

The tasks were controlled by E-Prime 2.0 runtime software (Schneider, Eschman,

& Zuccolotto, 2002). The program was created using the E-Studio software from

E-Prime 2.0. Participant responses were made using specified keys on the

keyboard corresponding to response alternatives shown on the computer

display. Instructions for all components of the experiment were presented over

headphones or by text on the computer display.

Design and Procedure

The experiment consisted of three sessions over 3 days, with participants

randomly assigned to either the implicit learning first condition or the

declarative learning first condition. Participants from one of the schools (N = 90)

completed the three sessions on three consecutive days, while the participants

from the other school (N = 81) experienced a 4 day gap between Sessions 2 and

3 because of a weather related school closing. Table 1 summarizes the

sequence of tasks in the two experimental conditions. All participants

completed a knowledge pretest at the beginning of Session 1. Students within

each classroom were randomly assigned to one of the two learning conditions.

On both the first and second days of the experiment participants in each group
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were exposed to the initial learning condition to which they were assigned

(implicit or declarative), and they took the learning test at the end of each

session. On the third day, participants completed the learning task they did not

perform on the first 2 days. They finished the session by taking the final learning

test and the transfer tests. An attempt was made to equate the three learning

tests for difficulty, and assignment to session was randomized so that learning

tests administered during each session were assumed to be equivalent on

average. Both groups completed a declarative learning test before and after

the first (or only) session of declarative learning. This occurred during Session 1

for the declarative learning first group and on Session 3 for the implicit learning

first group.

Table 2 summarizes the polynomial forms and sign patterns presented to

participants throughout the study. For each of the two polynomial forms, x2 +

Bx + C and x2+ Bx, there were four different sign patterns that yielded different

solution patterns. For each polynomial form, two sign patterns were used in the

learning tasks and on the learning tests; the other two patterns were reserved

for the near transfer test. These sign patterns are shown in the Learning and

Near Transfer section of Table 2. In order to avoid a potential confound, the

sign patterns for each polynomial form were counterbalanced, such that half of

the participants saw the near transfer patterns of Table 2 in learning and the
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learning patterns on the near transfer test.

Declarative Learning Task

Participants listened to oral directions explaining how to factor

polynomials while viewing cued visual images of polynomials and solutions

relevant to the directions being presented. Participants were instructed in the

rules for factoring polynomials of the forms x2+ Bx + C and x2+ Bx and were

able to progress through the instruction frames self-paced. Table 3 shows the

structure of the Declarative Learning Task. Upon completion of a slide,

participants were able to move on to the next slide, repeat the slide including

the audio component, or go back to the previous slide by using the right, down,

and left arrows, respectively.

The rules and content of this learning task were adapted directly from the

textbook Algebra 1. An Incremental Development (Saxon, 2003). The only

major adaptations to the content were that the textual information was

presented in an audio format alongside the visual elements from the text, and

visual cues (e.g., arrows indicating relevant content) were used to maximize the

connection between visual and aural information. This adaptation was made

based on multimedia learning research that indicates the best learning

outcomes are achieved through aurally presented textual information alongside
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visual elements (Mayer & Moreno, 1998; Moreno & Mayer, 1999). In addition, at

the onset of the first (or only for participants in the implicit-first condition)

session of declarative learning, participants were presented with slides

introducing and defining relevant terms and the parts of a polynomial needed to

learn the declarative rules. The second session for the participants in the

declarative-first condition was identical to the first session, but without the

terminology introduction.

Participants were initially introduced to the rules, aurally and visually, for

factoring a given type of polynomial. These were the rules presented in Figure

1in Chapter 2. After being introduced to the rules for each polynomial type,

participants were exposed to two example problems, in which aural descriptions

explained how to apply the rules to factor the polynomial. Table 2 shows the

exact example problems used; due to the counterbalancing, half of the

participants saw the problems in the Learning column and half saw the problems

in the Near Transfer column. Figure 3 shows the sequence of slides for one

example problem in the Declarative Learning Task. Figure 3 parts a, ¢, €, @, |,

and k (on the left) are the visual slides seen by the participants, while parts b, d,

f, h,j, and | (on the right) are transcripts of the audio that participants heard for

each slide. The arrow cues in these figures were synchronized with the aural

descriptions to connect the aural and visual information.
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Implicit Learning Task

Participants factored polynomials of the same forms present in the

Declarative Learning Task by selecting the correct factorization from two

choices. Figure 4 is an example of the slide format used in the Implicit Learning

Task. They were given no directions about how to solve the problems, only to

select an option by pressing either the C or M key. Participants completed 9

blocks of 24 items of this type per session of implicit learning. Each block

contained 12 polynomials of each of the two forms, further divided into two sets

of six polynomials with the same sign pattern. During Session 1 of this task,

which participants from both conditions completed albeit on different days, the

patterns were presented in a sequential format. All six items of a given sign

pattern and polynomial form were presented in sequence; this was repeated for

each of the other three patterns in each block, but the order of patterns

presented within a block was randomized. Table 2 details the polynomial forms

and sign patterns seen during this task. Session 2 of the Implicit Learning Task

was completed only by the participants in the implicit-first learning condition.

The polynomial patterns in this session were presented in an alternating format,

such that each group of four items included all four polynomial and sign

patterns. Equivalent, randomly assigned sets of numbers were used to create

problems for the two sessions, so the problems were not identical.
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The 9 blocks of a session were separated into sets of three blocks with

different types of foils. The first set of 3 blocks had foils that represented

completely different types of polynomials. The second set of 3 blocks had foils

from polynomials of the same form, but with different patterns of positive and

negative numbers. The third set of 3 blocks had foils from exactly the same

polynomial type, with only the actual numbers distinguishing the foils from the

correct answer. Figure 5 illustrates the types of foils used in each of the 3 sets of

blocks; only 1 foil appeared in any trial slide

Within each set of 3 blocks, the first block had numbers in the foils that

were distant from the numbers in the correct answer, in that they produced

neither the correct product nor sum to accurately factor the polynomial. The

second block contained numbers that either produced the correct sum or the

correct product for an accurate polynomial factorization. The third block

contained the same numbers as the correct solution, except in the third set,

which used the second block number pattern in order to avoid having two

correct answers.

This patterning of foils throughout the implicit learning blocks is built on

the idea of vanishing cues, in that the discriminability of the incorrect and

correct answer choices slowly decreased over the course of the 9 blocks. Stated

otherwise, the foils initially appeared very different from the correct answers and



42

became nearly identical to the correct answers by the final blocks. This format

was intended to minimize mistakes while providing participants with an

opportunity to implicitly learn the correct answer patterns. In addition, it

required finer discriminations between correct answers and foils as the blocks

progressed in order to promote detailed rather than superficial pattern

recognition.

When participants selected an answer choice, they were given feedback

as to the accuracy of their selection. Figures 6 and 7 are examples of implicit

learning slides after correct and incorrect answers are recorded, respectively.

When the correct answer was selected, the word "correct” was displayed in the

center of the screen. When the incorrect answer was selected, a large red "X"

appeared over the incorrect answer, obscuring it, and a green box enclosed the

correct answer. In both cases the feedback was presented for a fixed amount of

time for each block, with the amount of time systematically decreasing from

block one (1500 ms) to block nine (750 ms). In this way, the correct factorization

of a polynomial was highlighted whenever a participant made an error. The

incorrect feedback was presented throughout the nine blocks of items, but the

correct feedback faded from a dark color in the first blocks, to a light color in the

middle blocks, to no correct feedback for the last few blocks. This gradually

fading feedback style was intended to highlight the connection between a
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polynomial and its correct factorization, without giving any explicit explanation.

The Implicit Learning Task described here allowed participants to get

extensive amounts of practice factoring polynomials without being given any

declarative rules or directions about how to do so. The combination of simple,

language free accuracy feedback and vanishing cue style foil pattern was

intended to minimize errors, strengthening the implicit recognition of the

factorization pattern for each type of polynomial.

Learning Tests

A learning test was taken immediately after both the implicit and

Declarative Learning Tasks and was intended as an assessment of students’

understanding of how to factor polynomials. Participants completed 24 items

on each learning test, using the same polynomial forms and sign patterns as in

the learning tasks, but the specific items were different than those seen during

either of the learning tasks. In this task, participants were presented with a

polynomial in the center of the screen as well as a partial factorization that was

missing one of the numbers as shown in Figure 8. Participants entered the

correct number using the numeral keys to complete the factorization. No

feedback was provided. The learning tests were designed with the intent of

assessing knowledge of polynomial factoring without favoring either learning
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condition. The requirement to generate a numeric response presumably
required a different problem solving process than that used in the errorless
learning format of the implicit task. Although the declarative-first condition did
not provide any problem solving practice, determining a missing number from
one binomial in the solution required a straightforward application of a portion
of the rules that had been presented multiple times along with example

problems.

Near and Far Transfer Tests

The transfer tests were formatted identically to the learning tests.
Participants entered numbers to complete a partial factorization, and they
received no feedback. However, the transfer tests' content represented both
near and far transfer of learned skills. Participants completed 24 items on the
near transfer test and 36 items on the far transfer test in separate test sections.
The near transfer items consisted of polynomials of the same two forms
presented in the learning tasks, but with two patterns of negative and positive
numbers that were not presented in learning for each of the two polynomial
forms (see Table 2). The far transfer items consisted of polynomial forms not
seen by the participants in learning: x2- C and Bx- C. The polynomial forms x2

- C and Bx + C are factored similarly to their counterparts in the learning tasks,
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x2+ Bx + C and x2+ Bx, respectively, but have features that make the

application of the factorization different from the polynomials learned earlier

(See Figures 9 and 10).

Declarative Rules Test

The declarative rules test was designed to assess how well participants

learned the verbal rules for solving polynomials. It consisted of an initial section

in which participants generated the rules for each polynomial type, and a

subsequent section in which participants identified the rules that are used to

factor a given type of polynomial. In the first section participants were

presented with each of two polynomial forms, with rectangles in place of

numbers, and instructed to use the keyboard to type the rules for factoring this

polynomial. There were no time or character limits for this section of the test. In

the latter section, participants were presented with an example of a polynomial

and were required to identify which of several presented rules applied to the

given polynomial. Figure 11 is an example of a slide from this section of the

declarative rules test. Participants completed this test as a pretest and a

posttest administered immediately before and after their initial Declarative

Learning Task. There were ten items on the test, five for each polynomial form.

There were three answer options for each item; two options were rules and the
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third indicated that both rules were correct for that polynomial form. The

pretest and posttest presented the same rules for polynomial factorization, but

different items were constructed for each test by pairing different rules for each

item.

There was also a modified version of this pretest administered to a small

independent sample of participants who performed the implicit learning

condition. These participants were asked at the beginning of the pretest to

explain how they would teach this skill to a peer; this condition was otherwise

identical to the condition in which participants generated rules for simplifying

polynomials.

Knowledge Pretest

Participants took a paper pretest before beginning the experiment in

which they attempted to factor polynomials of the types that were present in the

experiment. There were 12 items on the pretest representing the polynomial

forms and sign patterns presented in the learning, near transfer, and far transfer

sections of the study. Polynomials were displayed on a sheet of paper with

directions to factor each polynomial into a product of binomials. The data from

this pretest were desighed to exclude participants who already knew how to

factor polynomials.
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Difficulty Questionnaire

Participants completed a questionnaire consisting of two items at the end

of Session 3. The guestionnaire was intended to assess participants'

perceptions of the difficulty of solving the problems and learning the rules. The

items required participants to respond to statements about learning difficulty

using a 5-point scale. Figures 12 and 13 show the Difficulty Questionnaire items

for rule learning difficulty and problem solving difficulty, respectively.



Table 1 Experimental design.
Implicit Learning First Group

Pre ¢ Knowledge PreTest

Session

¢ Implicit Learning Task

¢  Fill-in-the-Blank Learning Test

Session
1
Session ¢ Implicit Learning Task
2 ¢ Fill-in-the-Blank Learning Test
* Declarative Pretest
e Declarative Learning Task
« Declarative Post-Test
Session * Fill-in-the-Blank Learning Test
3 e Fill-in-the-Blank Near

Transfer Test

e Fill-in-the-Blank Far Transfer
Test

« Difficulty Questionnaire
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Declarative Learning First Group

Knowledge PreTest

Declarative Pretest
Declarative Learning Task
Declarative Post-Test
Fill-in-the-Blank Learning Test

Declarative Learning Task
Fill-in-the-Blank Learning Test

Implicit Learning Task
Fill-in-the-Blank Learning Test
Fill-in-the-Blank Near Transfer Test
Fill-in-the-Blank Far Transfer Test
Difficulty Questionnaire

Table 2. Example of polynomial forms and sign patterns.

Polynomial Form Learning3

x2+ Bx + C X2+ 9x + 18
X2- 6x - 16

X2 + Bx X2- 5X
-X2+ 8x

Near Transferb

Far Transfer

X2- 9x + 18 x2- 16

X2+ 6x - 16

X2+ 5x 4x+ 12

— T18x 4x- 12
-4x+ 12
-4x - 12

aHalf of the participants saw these patterns as near transfer items
bHalf of the participants saw these patterns during learning



Table 3. Declarative Learning Task structure.

14 Session .

2rd Session .

Explanation of Relevant Terminology & Symbols
o Polynomial, binomial, trinomial

o Parts of polynomials
X2+ Bx + C Pattern

o Rule presentation

o Example 1 presentation

o Example 2 presentation
x2 + Bx Pattern

o Rule presentation

o Example 1 presentation

o Example 2 presentation
x2+ Bx + C Pattern

o Rule presentation

o Example 1 presentation

o Example 2 presentation
x2+ Bx Pattern

o Rule presentation

o Example 1 presentation

o Example 2 presentation
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To factor the polynomial we
first write down two sets of
parenthesis to form an indicated
product.

Since the first term in the
polynomial is the product of the
first terms of the binomials, we
enter x as the first term of each

binomial.

d

Now the product of the last
terms of the binomials must
equal 18, their sum must equal
9, and both of them must be
positive. There are six pairs of
factors of 18 that are integers.

f

Their sums are

h

Figure 3. Slides and audio transcript of a worked example in the Declarative
Learning Task.

a, ¢c e g, i and kare visual slides

b, d, f, h,j, and | are audio transcripts heard during slides a, c, e, g, i, and Kk,
respectively.



Note that while all six pairs have a

product of 18, only one pair, 3 & 6,
(x + 3) (x + 6) sums to 9. Therefore, the last
Polynomial Factors

X2+ 9x + 18 =

terms of the binomials are 3 & 6,
and so (x + 3) and (x + 6) are the
factors of x2 + 9x + 18.

The general approach to factoring
a polynomial of this type that has
a leading coefficient of one is to
determine the pairs of factors of
the last term of the polynomial
whose sum equals the coefficient
of the middle term.

Figure 3 continued.

Figure 4. Example slide from the Implicit Learning Task.
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X2+ 9x + 18

Correct Foils
X(x + 4)a
Set |
(x + 3) (x + 6)

(x-3) (x-6)b
Set 2

x+2) (x+9)c
Set 3

Figure 5. Trial slide with examples of foils.

aThis foil is seen in Set 1, blocks 1-3, and is from a
polynomial of the form x2+ Bx.
b This foil is seen in Set 2, blocks 4-6, and is from a

polynomial of the form x2- Bx + C.

¢ This foil is seen in Set 3, blocks 7-9, and is from a
polynomial of the form x2+ Bx + C.
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X2+ 9x + 18

Correct!

(x +3) (x +6) X(x + 4)

Cc m

Figure 6. Correct response feedback.

Figure 7. Incorrect response feedback.
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X2+ 9x + 18

(x+_)(x+6)

Press a number key to choose an answer

Figure 8. Example slide from the learning test.
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X2-9

(x-_)(x+3)

Press a number key to choose an answer

Figure 9. Example far transfer item slide: polynomial
form x2- C.

6X + 12

6(x+_)

Press a number key to choose an answer

Figure 10. Example far transfer item slide: polynomial
form Bx- C.



X2 +Dx +

Select the rule that applies to this polvnomial

The first term of the polynomial is the product of the
first terms of the binomials

b Both rules apply to this polynomial

The first term of the polynomial is the sum of the
first terms of the binomials

Figure 11. Example item from the declarative rules test.
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Rate the difficulty of the following task:

Learning the rules for simplifying
polynomials

1 2 3 4 5

Very Somewhat Nottoo Somewhat Very
Easy Easy easy or hard Hard Hard

Figure 12. Example slide of Difficulty Questionnaire: rule
learning difficulty.

Rate the difficulty of the following task:

Simplifying polynomials by filling
in a missing number

1 2 3 4 5

Very Somewhat Not too Somewhat Very
Easy Easy easy or hard Hard Hard

Figure 13. Example slide of Difficulty Questionnaire:
problem solving difficulty.
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CHAPTER 4

RESULTS

The following measures were obtained from the final sample of 171

participants over 3 days: proportion of errors and response time (RT) for the

implicit learning trials and learning and transfer tests, proportion of errors for the

declarative rules test, coding of participant responses to rule generation

guestions, overall time and slide count for the Declarative Learning Task, and

difficulty ratings for the questionnaire. As noted in the previous chapter,

subjects were randomly assigned to a learning condition within each classroom,

but they were nested within teacher and school. In the analysis, the teacher was

treated as a random factor but due to the potentially important procedural

difference in the two schools, the school was treated as a fixed factor (i.e., the

two schools represented a difference delay between learning events rather than

a sample of schools receiving the same experimental conditions).

As noted previously, the sign patterns used in learning and near transfer,
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respectively, were counterbalanced in an attempt to avoid a confound.

Analyses of the relevant study measures for effects of counterbalance group

membership found no statistically significant differences. Table 4 shows the

statistical test results for the main effect of the counterbalancing factor on each

dependent measure. Given this outcome, this factor was dropped from the

analyses.

Ofthe 188 participants who completed all tasks, 17 were eliminated due

to unrealistically low RT on the three learning tests. The daily learning test was

used to determine outliers because all participants took it on all days of the

experiment, and | determined outlier thresholds using the absolute deviation

around the median (Leys, Ley, Klein, Bernard, & Licata, 2013). Participants with

average response times lower than the outlier threshold on any of the learning

tests were excluded from data analysis. Because the latency data for the three

learning tests were positively skewed, | used the natural log of each participant's

response time in calculating the thresholds. The median absolute deviation, or

MAD, is calculated using the median of the absolute distances of all scores from

the sample median. This MAD is used similarly to a standard deviation to

calculate an outlier threshold; | used an outlier threshold of 2.5 times the MAD

away from the median, as recommended by Leys and colleagues (2013), which is

considered moderately conservative. These values were then converted back



60

from log RTto RTto obtain the appropriate outlier thresholds for each test.

The presentation of results and analyses in the remainder of this chapter
are organized around the four research questions defined at the end of Chapter
2. The critical p value for all statistical tests was set at .05, and all eta squared
values are partial eta squared. Cohen's d is also reported as an effect size
estimate for appropriate analyses. Forthe repeated measures tests in which
Mauchly's test indicated the assumption of sphericity had been violated,
degrees of freedom were corrected using Greenhouse-Geisser estimates of

sphericity.

Question One: Implicit Skill Learning

The hypothesis that participants could acquire polynomial factoring skills
without exposure to the declarative rules was tested in two analyses. First,
performance in the Implicit Learning Task was compared between the
participants who first had 2 days of declarative instruction and those that had
none. Ifthe declarative-first group showed better performance on the implicit
task, this would indicate that declarative knowledge prior to procedural practice
was important. A lack of difference would suggest that a comparable degree of
procedural skill could be acquired from the current method without prior

declarative knowledge. Second, performance on the end-of-session Learning
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tests of the two groups was compared. Equivalent or superior performance by

the implicit-first group would provide support for the implicit acquisition of

procedural skill in the absence of declarative knowledge.

Implicit Learning Task

Errors and RT were analyzed with ANOVA with learning condition,

teacher, and school as between groups factors (teacher as a random factor

nested within school as a fixed factor) and nine blocks on Session 1 of the

Implicit Learning Task as the within-subject factor. Figure 14 (first nine blocks

only) shows mean percentage errors and RT by group. The pattern of decreasing

RT over the first three blocks followed by an increase in the fourth block, with a

similar increase from Blocks 6 to 7, is consistent with the changes of foil structure

in this task. After each set of three blocks, or triad, the foils changed to be more

similar to the correct answer. The increasing error rate within triads is consistent

with the nature of the numerical components of the foils; the numbers in the

foils were identical to the correct answer by the 3 block of each triad. Chance

error percentage on this task was 50%.

No differences between the overall means of declarative-first and implicit-

first groups were found in RT (M = 2200.8 ms, SD = 593.9, and M= 2194.0 ms,
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SD = 539.5, respectively), F (1, 169) < 1,1or in error rate (M = 10.25%, SD = 8.00

and M = 10.98%, SD = 5.72, respectively), F (1, 169) < 1. There was no

interaction between block and learning condition for error rate, F (6.36, 1074.9)

< 1. There was a small but significant interaction for RT, F (3.70, 629.93) = 9.35,

p< .001, n2= .051. As seen in Figure 14, this is likely due to the slightly slower

initial performance of the implicit-first group on Block 1 and slightly faster

performance over the final 6 blocks. Overall, the implicit-first and declarative-

first learning conditions showed equivalent performance across their respective

initial session of the Implicit Learning Task. It did not appear that declarative rule

instruction was necessary for learning to occur in the implicit task. The implicit-

first group performed the various problem types with equivalent speed and

accuracy to those who had two days of declarative instruction beforehand.

Learning Tests: Sessions 1 & 2

Errors and RT were analyzed with ANOVA with learning condition,

teacher and school as between groups factors (teacher as a random factor

nested within school as a fixed factor) and test session as the within-subject

factor. Two orthogonal contrasts, average and difference of the within-subject

1 Mauchly's test indicated that the assumption of sphericity had been violated
x2(35) = 672.87, p < .001); therefore, degrees of freedom were corrected using
Greenhouse-Geisser estimates of sphericity.



63

factor, were tested. Figures 15 and 16 show mean percentage error and RT,

respectively, by session and group; chance performance for errors was 88.9% 2

on this task. There were main effects of learning condition for error rate, F (1, 3)

= 17.52, p = .024, n2= .852, d = 1.108, and response time, F (1, 3) = 80.72, p =

.003, n2= .963, d = 1.86, with the implicit-first learning condition outperforming

the declarative-first learning condition on both measures. There was an

interaction between session and learning condition for error rates, F (1, 3) =

8.42, p = .048, n2= .692, d = .175, which indicated that the error rates

decreased more from Session 1to Session 2 for the declarative-first group than

for the implicit-first group.

There was also an interaction between condition and teacher, F (3, 3) =

2.83, p = .04, n2= .050, which appears to be driven by the participants from a

single teacher; those participants had the highest error percentage in the

declarative-first condition and the lowest error percentage in the implicit-first

condition. There was also an interaction between day and teacher for error

rates, F (3, 3) = 18.30, p = .02, n2= .948, which indicates that the error rate

change from Session 1to 2 differed by teacher, in this case, participants from

two teachers with fewer students participating showed greater gains from

2This was a free response task, but because the correct answer is always a non-
zero single digit, there are 9 possible responses.
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Session 1to 2. There was also a 3-way interaction for RT between day,

condition and teacher, F (3, 161) = 3.12, p = .028, n2= .055. This interaction

appears driven by an increase in average RT for one teacher's declarative-first

learning from Session 1to 2, while all other groups experienced RT decreases.

There were no other interactions. Despite the presence of some teacher

interaction effects, the Session 1 and 2 learning test data show overall lower

error rates and response times for participants in the implicit-first learning

condition than those in the declarative-first learning condition.

Reliability estimates

To estimate split-half reliability for the Session 1 and 2 learning tests, all

participants' error rate scores were calculated separately for even and odd

numbered trials. Using the Spearman-Brown adjustment, internal consistency

reliability estimates for the learning tests were as follows, Session 1 X = .906,

Session 2 X = .904.

Question Two: Rule Learning

The hypothesis that participants who received initial implicit training on

polynomial factorization would more easily learn declarative rules for that skill

compared to those who did not engage in implicit training was tested in two
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analyses. First, performance on two tests of declarative rule learning, a forced

choice and afree response, was compared between those who had implicit

training before learning the rules and those without implicit training beforehand.

If the implicit learning first group performed better on the rule tests it would

suggest that implicit training could benefit acquisition of declarative rules for

that skill. Second, the amount of time spent, and number of slides viewed, on

the declarative rule learning task was compared between those who had implicit

training and those who did not. Ifthe implicit learning first group spent less

time or viewed fewer slides than those without the training, it would support the

hypothesis that implicit training aids later declarative rule learning.

Declarative Rules Test

Error rates for the declarative rules pretest and posttest were analyzed

using Univariate ANOVA analyses. Figure 17 shows pretest and posttest mean

error rates by group; chance performance on this task was 66.6% errors. There

were no learning condition group differences on the declarative rules pretest, F

(1, 3) < 1, which suggests that the two groups had similar levels of explicit

understanding of the rules prior to the Declarative Learning Task. There was,

however, a significant difference between the two learning conditions on the

posttest, F (1, 3) = 12.58, p = .034, n2= .796, d = .339. Participants in the
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implicit-first condition outscored those in the declarative-first condition by about

5 percentage points, (M = 61.53, SD = 14.43 and M = 66.28, SD 13.55,

respectively). Both groups performed very poorly on this task, but those in the

implicit-first group did score slightly better on the posttest, which provides little,

if any, support to the hypothesis that initial implicit skill learning is beneficial to

later rule learning.

Declarative Rule Generation

Participants generated rules for simplifying two types of polynomials

before the declarative rules test. Participant responses were coded to reflect

the total number of idea units each participant recorded, divided into total

correct idea units, total incorrect idea units, and total unrelated idea units.

Table 5 shows common participant examples that were coded as correct,

incorrect, and unrelated idea units. Table 6 displays the means and standard

deviations of the proportion of correct idea units and total idea units for the

pretest and posttest for each group. The coded scores were analyzed by

learning condition with ANOVA. In orderto gauge the effectiveness of the

scoring rubric, a second rater scored 20 participant responses. An intraclass

correlation was calculated between the two raters, ICC = .894, p < .001. There

were no significant differences in the proportion of correct idea units before or
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after the declarative learning, F (1, 3) < 1and F (1, 3) = 1.23, p = .284,

respectively. There were also no significant differences in the total idea units on

the pretest, F (1, 3) < 1, but there was a significant difference on the posttest, F

(1, 3) = 8.25, p = .021, n2= .512, d = .417, with participants in the declarative-

first condition recording more idea units than those in the implicit-first condition.

This evidence does not support the hypothesis that initial implicit training of

problem patterns would facilitate the subsequent acquisition of declarative rules

for problem solving.

Modified rule generation

Nineteen students participated in a modified version of the experiment in

the implicit learning first group. Everything was identical for this group, except

for the rule generation portion of the declarative rules test. Participants

described how to teach another student how to solve two different types of

polynomials. There were no correct idea units recorded by any participant prior

to the Declarative Learning Task. This result suggests that implicit skill learning

does not, in and of itself, result in a declarative understanding of the rules

driving those skills.
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Declarative Learning Time and Slide Count

Time spent on the Declarative Learning Task (recorded in minutes) and
number of slides viewed were analyzed by learning condition with a one-way
ANOVA. Participants in the implicit-first learning condition spent significantly
less time (M = 11.44 minutes, SD = 1.21) than the participants in the declarative-
first learning condition (M = 13.04 minutes, SD = 3.05), F (1, 3) = 48.51, p =
.004, n2= .935, d = .69. As such, those in the declarative-first condition spent
12.8% more time on the Declarative Learning Task than those in the Implicit
Learning Task, but scored slightly worse on the posttest. Participants in the
implicit-first learning condition viewed fewer slides in the Declarative Learning
Task than those in the declarative-first learning condition (M = 38.53, SD = 2.56
and M = 41.31, SD = 4.49, respectively), and the difference was significant, F (1,
3) = 21.15, p = .018, n2= .872, d = .769. Since participants could not skip slides,
this difference indicates that those in the implicit-first learning condition went
back to repeat slides fewer times than those in the declarative-first condition.
The slide count data, along with the overall learning time, support the

hypothesis that initial implicit training will benefit declarative rule learning.



69

Question Three: Perception of Difficulty

The hypothesis that participants who engaged in implicit skill training

prior to declarative rule learning would perceive solving problems and learning

declarative rules as less difficult than participants who learned the declarative

rules first was tested in one analysis. Average responses on the difficulty

perception questionnaire were compared between those who engaged in

implicit learning first and those who learned declarative rules first. If the implicit-

first group indicated they perceived the rule learning and problem solving as

less difficult than those who learned declarative rules first, it would support the

hypothesis that initial implicit training positively impacts students' perceptions of

difficulty.

Difficulty Questionnaire

Participants completed 2 questions, one involving the difficulty of solving

polynomials, and one involving the difficulty of learning the rules for solving the

polynomials. Results were analyzed with ANOVA. Table 7 displays means and

standard deviations for both questions. There were no significant differences

between the learning condition groups for either the problem solving difficulty

or the rule learning difficulty, F (1, 3) < 1 and F (1, 3) = 1.63, respectively, nor

were there any significant teacher effects or interactions. While there were no
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significant differences, the results were trending towards participants in the
implicit-first learning condition perceiving both the problem solving and rule

learning as more difficult than those in the declarative-first condition.

Question Four: Problem Solving and Transfer

The hypothesis that initial implicit skill training before declarative rule
learning will lead to better problem solving and transfer performance was tested
in one analysis. Performance on afinal day Learning Test, Near Transfer Test
and Far Transfer Test was compared between participants who had implicit
learning first and those who had declarative learning first. If the implicit learning
first group showed better performance on these tests it would support the
hypothesis that initial implicit skill learning leads to better acquisition and

transfer of procedural skills as compared with initial declarative rule learning.

Day 3 Tests: Learning and Transfer

Errors and RT were analyzed with ANOVA with learning condition,
teacher and school as between groups factors (teacher as a random factor
nested within school as a fixed factor) and test type (learning, near transfer & far
transfer) as the within-subject factor. Three orthogonal contrasts were tested for

the within-subject factor: average of the 3 tests, the contrast of the learning test



71

and the combined transfer tests, and the contrast of the near and far transfer

tests. Figures 15 and 16 also show error and RT means for the Session 3

learning, near and far transfer tests labeled as 3A, 3B and 3C, respectively.

Chance performance on these tasks was 88.9% errors.

There was a main effect of learning condition on RT across the three

measures, F (1, 3) = 26.36, p = .006, n2= .862, d = .285, and the implicit-first

group had faster response times than those in the declarative-first condition, but

there was no main effect for errors, F (1, 3) < 1. There was also a significant

main effect of teacher on RT, F (3, 3) = 32.06, p = .009, n2= .970, which

indicates that participants with different teachers had different average response

times. There were no significant effects for the learning test versus transfer tests

comparison for RT or errors, F(1, 3) < 1, and F (1, 3) = 1.21, p = .366,

respectively, or for the near transfer test versus far transfer test comparison for

RT or errors, F (1, 3) = 1.64, p = .288 and F (1, 3) < 1, respectively. Overall, the

results of the final learning and transfer tests add little support for the hypothesis

that initial implicit training results in better final problem solving and transfer as

compared to declarative learning first. The only difference between the two

groups was that participants in the implicit-first condition were somewhat faster

than those in the declarative-first condition on the final day tests.
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Reliability estimates

To estimate split-half reliability for the Session 3 learning and transfer

tests, all participants' error rate scores were calculated separately for even and

odd numbered trials. Using the Spearman-Brown adjustment, internal

consistency reliability estimates for the learning and transfer tests were as

follows, Session 3 learning X = .937, near transfer X = .955, and far transfer mx

= .601. The reliability estimates for the learning and near transfer indicate

consistent items, but the estimate for the far transfer test was lower despite

similar levels of accuracy.
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Table 4. Results of tests of statistical significance of counterbalance group
membership.

Measure F Value

Declarative Rule Tests: Error Percentage F(2, 168) = 2.179, p=.116
Session 1 & 2 Learning Tests: RT F (2, 168) = 2.243, p=.109
Session 1 & 2 Learning Tests: Error Percentage F{2 168) = 1.221, p=.297
Session 3 Tests: RT F<1

Session 3 Tests: Error Percentage F<1

Declarative Learning: Overall Time F<1

Declarative Learning: Slide Count F<1

Difficulty Questions F<1

Table 5. Examples of participant responses to declarative rule generation as
coded into correct, incorrect, and unrelated idea units.

Correct Idea Units Incorrect Idea Units Unrelated Idea Units
distributive property To multiply use parentheses? 3x
first write parentheses Multiply the number by the exponent 2x + 0
find the greatest common factor You add the monomials together 2+2
Add the variables 2x
I don't know

Table 6. Means and standard deviations for coded participant responses to
declarative rule generation.

Coded Units Condition Mean SD Mean SD
Pre Pre Post Post
Proportion Correct Declarative First .00 .00 A1 A7
Implicit First 01 .07 A1 19
Total Idea Units Declarative First 1.75 1.33 2.48 1.56

Implicit First 1.69 .92 1.92 1.08



Table 7. Means and standard deviations for Difficulty Questionnaire.

Question
Problem Solving Difficulty

Rule Learning Difficulty

Condition

Declarative First
Implicit First

Declarative First
Implicit First

Mean

2.93
3.20

3.11
3.52

SD

121
1.40

1.23
1.23
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Mean Response Time (ms)

Mean Errors (percentage)

Trial Block

Figure 14. Mean RT and percent error for Implicit Learning
Task trials by group. Note: Blocks 1-9 are included for both
groups with the implicit-first group receiving them on Session
1 and the declarative-first group receiving them on Session 3.
Blocks 10-18 represent the nine blocks on the second training
session for the implicit-first learning group.
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Test Session

Figure 15. Mean percent error for learning tests and transfer tests by group.
Note: 1, 2, and 3A are learning tests from Sessions 1, 2, and 3, respectively.
3B and 3C are the near and far transfer tests, respectively. The error bars
represent 95% confidence intervals.
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Figure 16. Mean RT for learning tests and transfer tests by group. Note: 1, 2,
and 3A are learning tests from Sessions 1, 2, and 3, respectively. 3B and 3C
are the near and far transfer tests, respectively. The error bars represent 95%

confidence intervals.
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Mean Errors (percentage)

Rule Test

Figure 17. Mean percent error for the declarative rules test given
before and after the Declarative Learning Task. Note: The error
bars represent 95% confidence intervals.
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CHAPTER 5

DISCUSSION

The present experiment investigated the possibility of learning algebraic
problem solving skills through initial implicit training, absent of any declarative
training. In the event this implicit training was found to promote skill learning,
the experiment investigated the impact of that training on rule learning,
difficulty perception and final problem solving and transfer. The implicit training
consisted of practice recognizing patterns in both problem structure and
numeric relationships that are associated with correct polynomial factoring
solutions. The practice was designed such that participants' responses to the
pattern matching exercises were relatively error free. Varied skill and rule tests
and other measures were employed to investigate what impact, if any, this
implicit skill training had on the learning of this skill when presented prior to
declarative instruction. The results of analyzing error rates and response times
support the hypothesis that some implicit knowledge of problem patterns in

polynomial factoring can be learned without declarative instruction. Evidence
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for this conclusion and evidence regarding the impact of this learning will be

discussed with respect to the four original research questions.

Question One: Can Algebraic Problem
Solving Skills Be Acquired Implicitly?

The current evidence supports the feasibility of implicitly acquiring some
polynomial factoring skill in the absence of explicit instruction in the declarative
rules. Participants in the implicit-first learning condition performed as well on
the Implicit Learning Task as those in the declarative-first learning condition who
had trained on the rules for solving those problems prior to the learning task. In
this case, there was no benefit to learning the rules prior to implicit skill training.
This could be attributed in part to the design of the Implicit Learning Task that
promoted relatively error-free performance regardless of background
knowledge.

In contrast to equivalent performance by the two groups during implicit
training, participants in the implicit-first learning condition outperformed the
participants in the other group on the first two daily learning tests, which
occurred prior to participants' exposure to the learning task they had previously
not encountered. Implicit-first participants committed fewer errors and

responded more quickly to the items than those in the declarative-first
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condition. The end-of-session learning tests required participants to generate a
numeric response to a missing element in a factored polynomial, something that
neither group had to do during training. The declarative-first group had been
exposed to examples and rule explanations for solving such problems, and the
implicit-first group had practiced selecting pattern solutions to such problems in
a forced choice format. It seems likely that this finding is at least partially due to
the robustness of implicit learning mechanisms to high working memory
demands, such as those required to learn to solve a complex skill as this. In all,
the implicit-first learning group performed equally or better than the declarative
learning first group on all tasks prior to their declarative instruction, suggesting
that the partial acquisition of problem solving skill implicitly without declarative

instruction is possible and has some potential benefit.

Question Two: Does Initial Implicit Learning of
Algebraic Problem Solving Skills Increase the
Ease of Learning the Associated
Declarative Rules?
Analysis of data from the declarative rules test and declarative rule
learning task provided little if any support for the hypothesis that initial implicit

learning of algebraic problem solving skills would improve declarative rule
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learning. Participants in the implicit-first learning condition did not differ from
those in the declarative-first condition on the declarative pretest, even though
they performed it after 2 days of implicit training that exposed them to problem
and solution patterns. This finding suggests that the knowledge gained during
the implicit training, knowledge that was demonstrated in better end-of-session
learning test performance compared to that of declarative-first participants, was
not explicit understanding of polynomial factoring. It appeared to be implicit
understanding of problem structure and solution patterns. On the declarative
knowledge posttest, mean performance of implicit-first participants was
marginally better (fewer errors) than those in the declarative-first learning
condition. This is consistent with the prediction that initial implicit
understanding of problem structure can facilitate the acquisition of declarative
rules for problem solutions. However, the difference was small, and both
groups' response accuracy was close to chance.

Analysis of the number of Declarative Learning Tasks slides viewed and
overall time on that task provided somewhat stronger support for the hypothesis
that implicit training would facilitate subsequent declarative learning.
Participants in the implicit-first learning condition spent significantly less time
and viewed fewer slides than those in the declarative-first learning condition.

Because the implicit-first group experienced their single session of declarative
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instruction after two days of participating in the experiment, and the declarative-

first group experienced their first session of declarative instruction on Session 1,

the time and slide differences could reflect motivational differences associated

with familiarity versus novelty of the context. However, this alternative

explanation is inconsistent with the RT data for the first session of implicit

training. Declarative-first participants were not faster than implicit-first

participants, despite the fact that they performed this task on Session 3

compared to Session 1. It therefore seems more plausible that the reduced

declarative learning time by the implicit-first group reflected facilitation from

prior implicit knowledge of problem structure. Nevertheless, the reduced

learning time and number of slides viewed by the implicit-first group cannot be

viewed as compelling evidence for facilitation from their implicit training in light

of their near chance accuracy on the declarative knowledge posttest.

Analysis of the coded data from the responses participants generated in

response to being asked how to simplify the polynomials yielded less supportive

results, as there were no differences between the two groups. Both groups

generated very low proportions of correct ideas, which may speak to the

difficulty of learning complex rules and the quality of the rule knowledge

participants were able to internalize. In any event, initial implicit skill learning

did not provide any benefit to the generation of problem solving rules.
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Question Three: Does Initial Implicit Learning of

Algebraic Problem Solving Skills Impact

Perceptions of Difficulty in Problem

Solving or Skill Learning?

Student perceptions of difficulty in learning rules and solving problems

were reported on a Likert-like scale and, while indicating no significant

differences, showed trends toward participants in the implicit-first learning

condition finding both the rule learning and problem solving more difficult than

those in the declarative-first condition. This evidence is contrary to what was

hypothesized, as well as to some aspects of the performance data. The difficulty

rating scale was given at the end of Session 3 of the experiment, so it is possible

that these difficulty ratings more accurately reflected the participants'

perceptions of difficulty on that session's tasks rather than perceived difficulty of

the entire learning experience. Ifthat is the case, the participants' reports could

simply indicate that the declarative rule-learning task is perceived as more

difficult than the implicit rule-learning task. This alternative explanation for the

ratings would be consistent with the time participants spent on the Declarative

Learning Task and how many slides they viewed, as the participants in the

implicit-first learning condition spent less time and viewed fewer slides than

those in the declarative-first condition. Given that these participants performed
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slightly better on the rule tests, the decreased time on the learning task and

fewer times repeating slides seems to support the idea that declarative learning

was no more difficult and perhaps easier for them. The implicit-first learning

participants also responded more quickly on the Session 1 and 2 learning tests

and the near transfer test, and trended that way on the Session 3 learning and

far transfer tests. Despite the performance data suggesting ease of learning in

the implicit-first condition, the difficulty rating data cannot be discounted unless

future research provides contrary evidence when ratings are obtained at each

session rather than only on the final session.

Question Four: Does Initial Implicit Learning of

Algebraic Problem Solving Skills Impact

Final Problem Solving and

Transfer Skill?

The analyses of the learning and transfer tests at the end of Session 3 of

the experiment indicated no differences on error rates due to learning condition,

which is inconsistent with the hypothesis that initial implicit training would lead

to better problem solving and transfer the skills. There was a significant

condition effect on RT in Session 3 tests, with the implicit-first group responding

more quickly than the declarative-first group, which supports the hypothesis, as
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speed is one element of effective problem solving skill. Despite this piece of

evidence, the larger body of evidence of Session 3 tests supports the notion that

initial implicit algebraic skill learning has no effect on final problem solving and

transfer outcomes.

Related to the lack of clear performance differences on Session 3, two

observations are worth noting. First, the end-of-session learning test

performance by the declarative-first group was relatively slow and inaccurate on

their first 2 days of instruction. However, a single session of implicit training

resulted in learning test performance equivalent to the implicit-first group. This

presumably attests to the effectiveness of the implicit, error-free exposure to

problem structure in the current test of polynomial factoring. Second, in both

groups there was little performance decline on the transfer tests compared to

the final learning test (refer to performance by both groups on Tests 3B and 3C

relative to 3A in Figures 12 and 13). This is despite the fact that the transfer

tests presented new sign patterns in the case of near transfer and entirely new

types of polynomials in the case of far transfer. Given the relatively poor

performance on the learning tests by the declarative-first group prior to implicit

training, this transfer performance is likely dependent to a large extent on the

implicit exposure to problem and solution patterns. Although procedural

knowledge is often described as hyperspecific and resistant to transfer, this
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evidence suggests substantial transfer of implicit knowledge.

Given the differences between the learning items and the near and far
transfer items, it seems likely that transfer of a generalized rule was required, as
opposed to a superficial transfer. Figure 18 shows a polynomial and
factorization from the learning, near transfer, and far transfer sections. While the
near transfer items are similar to the learning items, the sign patterns of the
solutions are completely different. Thus, a generalized rule must be applied to
solve these problems, as patterns implicitly learned during training would not
specifically apply to these problems. The far transfer items required further rule
generalization; participants needed to realize that factor pairs that sum to zero
would produce the absence of the middle term of the polynomial in order to

simplify the polynomial.

Implications for Skill Acquisition Literature
Declarative Knowledge and Implicit Learning
There are enduring questions in the implicit learning and skill acquisition
literatures pertaining to the role of declarative knowledge in implicit skill
learning. One debate is whether declarative rules for an implicitly learned skill
can become spontaneously acquired through the implicit learning process.

Evidence from Willingham et al. (1999) using the serial response task indicated
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the possibility of such spontaneous rule learning.

Evidence from the present study indicated no such effect in the more
complex domain of polynomial factoring, as virtually no correct idea units were
recorded in a declarative rule generation task for participants in the implicit
learning condition, and on average these participants scored at chance on the
multiple choice declarative rules tests. Chance performance on the multiple
choice measure suggests that even a more sensitive recognition memory
measure cannot produce evidence for an explicit understanding of polynomial
factoring rules in this task, even though participants were clearly able to use an
implicit understanding to solve problems quickly and accurately.

Another debate is whether declarative rule knowledge is necessary for
skill proceduralization. Anderson (1983, 1992) and colleagues (1994, 1997,
2004) have consistently posited that declarative knowledge must precede
proceduralization of skills. Research by others (Nissen & Bullemer, 1987;
Willingham et. al, 1989; Nissen, 1992; Reber & Squire, 1998) suggests that
procedural skills can be learned in absence of declarative knowledge. The
present study provides evidence supporting the latter research, as participants
learned to solve problems with only implicit training and demonstrated little if

any understanding of the declarative following this training.
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Implicit learning domains

Much of the existing research on implicit learning has investigated motor

skill learning (Maxwell et al., 2001; Mary Jo Nissen, 1992; Willingham &

Goedert-Eschmann, 1999) or cognitive skills in the linguistic domain (Hartman et

al., 1989; Kessels & de Haan, 2003; A. S. Reber, 1967; Warmington et al., 2013;

Wessel et al., 2012). Previous research on cognitive implicit learning has

typically been focused on learning novel words or grammars. The literature in

artificial grammar learning and literature on implicit learning of new words or

word associations has provided evidence for the feasibility of language related

patterns and knowledge to be learned in the absence of declarative rules or

training. However, it could be implied that this body of evidence represents a

unique phenomenon that is limited to the domain of language learning.

The present experiment provides evidence to the contrary of that

assertion. Participants in the study were, with no declarative rules or training,

able to implicitly learn the patterns involved in complex polynomial

simplification such that they were able to accurately simplify novel polynomials

guite quickly. This, in and of itself, provides evidence that implicit cognitive

learning may not be a phenomenon limited to natural language processing

abilities. Providing further evidence to that claim is the lack of declarative

understanding shown by participants in the implicit learning condition prior to
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declarative rule learning. Given that participants were unable to identify rules

for simplifying polynomials, provide an explanation for how to simplify

polynomials, or explain how to teach someone how to simplify polynomials, it

suggests that participants had little or no explicit understanding for simplifying

the polynomials they were proficient at solving. If participants had no explicit

understanding of how to solve the polynomials, yet were able to solve them

effectively, it suggests implicit learning of mathematical problem solving skills, a

domain outside of the linguistic domain heavily studied in implicit learning

literature.

Complex skill acquisition

Anderson's work on skill acquisition has explored the processes involved

in the acquisition of more complex cognitive skills such as computer

programming (Anderson, Conrad, & Corbett, 1989) and other complex skills

(Anderson & Fincham, 1994; Anderson, Fincham, & Douglass, 1997). This

research has investigated the use of examples in skill acquisition and concluded

that an analogy mechanism is likely used in addition to direct recall of problems

(Anderson & Fincham, 1994; Anderson, Fincham, & Douglass, 1997). Anderson

and colleagues determined that examples were encoded declaratively and used

to aid early problem solving when applying declarative rules. Schwartz and
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Bransford's (1998) study investigated the principles of problem exposure prior to
instruction in a classroom setting and also found it was beneficial to the quality
of learning. The findings of the present study are consistent with these studies
on skill acquisition, particularly utilizing problem and example exposure prior to
other learning. The present study differs, however, in that it was designed to
explore the plausibility of implicit learning from multiple problem exposures and

its impact on later declarative learning and skill application.

Implications for Mathematics Literature

There are many studies in the mathematics learning literature seeking
means of improving mathematics skill acquisition. Many of these methods even
seek to mitigate the limitations of working memory on complex mathematics
skill learning (Ashcraft & Krause, 2007; Atkinson et al., 2000; Atkinson & Renkl,
2007; DeCaro & Rittle-Johnson, 2012; Renkl et al., 2004; Renkl & Atkinson,
2007). Despite this similarity with the goals of the present study, the referenced
studies relied on explicit, declarative processes for initial learning in the domain.
The present study succeeded in separating implicit and explicit processes and
provided evidence for the possibility of learning mathematics problem solving
skills implicitly. In addition, there was limited support for the hypothesis that

initial implicit skill learning could decrease demands on working memory and
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increase skill and rule learning in the math domain. Given the findings from the

present study that indicate the plausibility of implicitly learning complex

mathematical skills, but marginal and conflicted results in many other areas, a

reasonable course of action would be to investigate how implicit skill learning in

math could be utilized to improve learning. Research in mathematics problem

exploration (DeCaro & Rittle-Johnson, 2012) and worked examples (Renkl et al.,

2004) have shown benefits of exposure to domain problems prior to math

instruction; these methodologies may show increased learning benefits from the

addition of some form of initial implicit training prior to the other forms of

domain exposure, and the combination may provide more information about

the nature, implicit or declarative, of the benefits derived from worked examples

or problem exploration prior to instruction.

Limitations

Although the present investigation yielded findings that extend existing

evidence in the implicit learning literature, it had several important limitations.

First, no claims can be made for the comparative effectiveness of the implicit

and declarative training tasks. Both were designed to promote distinct types of

knowledge and memory representations: procedural and declarative.

Undoubtedly, neither was optimal in achieving this. The implicit training task
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was modeled on the errorless learning paradigms used to train individuals with

declarative learning deficits, and an attempt was made to omit all declarative

expressions of the algebraic rules being taught. The declarative instruction was

designed to reflect the content of a popular algebra textbook, with some use of

multimedia enhancements to facilitate comprehension of the explanations.

Despite efforts to make each instructional condition as effective as possible

given the constraints imposed by their intended promotion of either declarative

or procedural knowledge exclusively, there is no way to judge their relative

effectiveness. The end-of-session learning tests indicated that the implicit

training produced better outcomes. This could reflect the fact that declarative

learning of procedures for polynomial simplification place unmanageable

demands on working memory regardless of the instructional design. Or, this

outcome could reflect instructional methods in the Declarative Learning Task

that were farther from optimal than those in the Implicit Learning Task.

Related to this, another limitation of this experiment is the ambiguity of

whether the end-of-session learning tests and the transfer tests had greater

overall similarity with, and therefore favored, the Implicit Learning Task. If this

were the case, then the observed differences may be more related to atask

familiarity than reduction of working memory demands during learning.

However, the tests were designed to differ from the Implicit Learning Task in
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several ways. First, the learning tests required participants to complete a partial

factorization; this is quite different from the Implicit Learning Task, in which

participants selected the correct answer from two complete factorizations.

Selecting which of two possible factorizations is correct is likely a different

process than completing a factorization; it is not dissimilar from the difference

between recognizing and recalling correct answers. Second, the learning test

was not a forced choice, as participants were required to fill-in-the-blank with a

number, while the Implicit Learning Task only required participants to choose

from among two answers. Presumably, these were large enough differences to

eliminate or minimize any effects of task familiarity on the outcome of the

learning tests. In addition, the Declarative Learning Task presented participants

with the steps to factoring a polynomial using example problems; as such,

participants would have seen how to fill in missing values in a solution.

Ultimately, however, it is still possible that the solving problems in the Implicit

Learning Task provided more familiarity with the learning tests, and that is what

drove the differences in Session 1 and 2 learning test performance.

Another related issue pertains to the comparability of the declarative

instruction condition and typical classroom instruction. The researcher's

observations about common classroom instruction and current algebra

textbooks suggest an emphasis on declarative understanding prior to problem



95

solving practice, and this was a primary motivation for the research questions
pursued here. Although the current experiment's declarative instruction closely
followed a popular textbook's content with attempts to present this material in
an effective manner, this learning task does not represent how instruction occurs
in a typical mathematics classroom. Textbook reading and verbal classroom
instruction would be coupled with skill practice, and teacher clarification
generally would be available during the problem solving practice. In this study,
the declarative rule learning task and the structure of the experiment were
designed to compare the theoretical differences between implicit skill learning
before declarative rule learning versus declarative rule learning before implicit
skill practice. Therefore, no comparisons can be drawn between declarative-first
instruction in this experiment and typical classroom instruction that might place
an initial focus on declarative understanding prior to problem solving practice.
However, the Declarative Learning Task was the same for both the implicit-first
learning group and the declarative-first learning group, and it was a
manipulation of order of learning tasks that was being tested. Given that, the
results can be interpreted from atheoretical perspective, even though the
conditions are not comparable to the classroom setting in which mathematics is
not solely declarative or implicit.

The lack of any measures of delayed retention in the study is also worth
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noting. There are a number of studies that utilize delayed retention tests as a
means of measuring instructional manipulations, presumably because retention
is a different construct than immediate skill acquisition. As such, it is possible
that we could have gained a better understanding of the effects of initial implicit
training on the quality of learning had there been a measure of delayed
retention.

In addition, it is possible that there was increased difficulty during the
Implicit Learning Task related to the strategy utilized in ordering the foils (see
Figure 5). For each group of 3 blocks, 1-3, 4-6, and 7-9, the foil types were
selected to be progressively more similar to the correct response; it is possible
that an alternate order of foils types would have better represented a pattern of
increasing similarity between correct and incorrect answer choices.

Another limitation of the present study relates to the Difficulty
Questionnaire. Because this questionnaire was presented to participants at the
end of the final day, it is unclear what was being rated. During the final session,
participants completed the task that was different from what they performed
during the previous two sessions. Consequently, it is possible they were rating
the difficulty of the final day's task rather than the entire learning experience. In
hindsight, difficulty perception data should have been collected at the end of

each day, or perhaps even after the completion of each task. This would
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provide clearer information about participants' perception of difficulty of each

learning condition.

A final limitation of the task is likely a limitation of many experimental

studies. The present study only investigated the implicit learning paradigm to a

single type of mathematical problem solving skill, and while many math

problem-solving skills may be similar in nature, they are not the same. As such,

it is not possible to generalize to all types of mathematical problem solving skills

without further study.

Future Research

The present study was an initial attempt at understanding the impact of

implicit learning in the mathematics domain. Based on the investigation itself,

and the limitations of the present study, there are several areas in which future

research should focus.

As previously noted, the Difficulty Questionnaire could be redesigned

and more strategically located within the experimental tasks in order to more

effectively understand the participants' perceptions of difficulty throughout the

experiment. This is important given the research on mathematics anxiety

(Ashcraft & Kirk, 2001; Ashcraft & Krause, 2007), in which anxiety can play a role

in diminishing already taxed working memory resources during new math
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learning.

It would also be reasonable to explore the potential implications of initial
implicit mathematics skill learning in real mathematics classrooms. There would
be obvious limitations to such a study, such as the lack of random assignment to
learning condition within a classroom and likely problems of low statistical
power, but there would be clear benefits to the ecological validity of any
findings. If, before a unit of instruction on polynomial simplification,
experimental classes were given implicit training similar to that in the present
study, and control classes were not, it would be possible to explore the impact
of this implicit training on real classroom math teaching and learning. Since the
participants would be receiving legitimate classroom instruction, it would allow
conclusions to be drawn about any effect initial implicit training has on real
world student learning.

There could also be value in exploring the possible impact of initial
implicit skill training on the use of worked examples in mathematics learning.
The worked examples approach to skill learning has been successful in reducing
working memory load and increasing student performance. Could adding
elements of implicit training prior to worked example exposure further reduce
working memory demands and further increase learning benefits? It seems

possible that a student possessing an implicit understanding of problem and
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solution patterns might be able to make greater use of worked examples of

those problem types. This may even provide some bridging to self-generation

of declarative rules that has been described in the implicit learning research

(Willingham, Nissen, & Bullemer, 1989). Ultimately, it seems quite reasonable

that implicit learning of procedural knowledge could dovetail with research on

worked examples in mathematics.

Finally, future pursuit of these questions would need to apply the

principle of initial implicit training to other types of math skills and age levels.

Given the gradual development of working memory ability from childhood to

early adulthood, it is possible that the impact of initial implicit learning would be

greater at lower grade levels. Future research could test these issues at a lower

age level with more basic problem solving skills. Furthermore, as the current

study only utilized a single, albeit somewhat complex math skill, it will be

important to verify that this training can be effective for a variety of types of

math skills. Further research along this line could also move into more complex

math skills, such as solving mathematical word problems.
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Figure 18. Partially worked example problems for learning, near
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