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ABSTRACT

Analysis and visualization of flow is an important part of many scientific endeavors.

Computation of streamlines is fundamental to many of these analysis and visualization

tasks. A streamline is the path a massless particle traces under the instantenous velocities

of a given vector field. Flow data are often stored as a sampled vector field over a mesh.

We propose a new representation of flow defined by such a vector field. Given a

triangulation and a vector field defined over its vertices, we represent flow in the form of its

transversal behavior over the edges of the triangulation. A streamline is represented as a set

of discrete jumps over these edges. Any information about the actual path taken through

the interior of the triangles is discarded. We eliminate the necessity to compute actual

paths of streamlines through the interior of each triangle while maintaining the aggregate

behavior of flow within each of them. We discretize each edge uniformly into a fixed number

of bins and use this discretization to form a combinatorial representation of flow in the form

of a directed graph whose nodes are the set of all bins and its edges represent the discrete

jumps between these bins.

This representation is a combinatorial structure that provides robustness and consistency

in expressing flow features like the critical points, streamlines, separatrices and closed

streamlines which are otherwise hard to compute consistently.
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CHAPTER 1

INTRODUCTION

Study of fluid flow is common in a variety of engineering and scientific endeavors like

combustion simulations, aerodynamics of automobiles and airplanes, study of climate and

oceanic currents, and high energy physics. Analysis and visualization of fluid flow is crucial

for all such investigations.

There are many different techniques for analyzing and understanding fluid flow. For

example, for visualizing behaviors like rotation and stretching, scalar quantities like vorticity

[13, 23] and FTLE fields [12, 22] are computed. The variation in magnitude of these

quantities indicates the distribution of such behavior across the domain. For analyzing

global behavior and structural properties of flow, techniques rely on computing topological

features [7, 17, 24]. This is done by computing streamlines that are paths of massless

particles under instantaneous velocities of flow. If advected for infinite time in forward

and backward direction, streamlines converge to features such as critical points and closed

streamlines which are the limit sets of these streamlines. For obtaining a global structure,

flow is subdivided into regions of uniform flow, such that streamlines within each of these

regions have a common pair of limit sets. Streamlines that bound these regions are called

separatrices.

The above mentioned techniques are based on mathematical concepts that assume

a smooth vector field defined over a smooth domain. They also assume exactness in

computations. However, while representing and analyzing flow in a computer, assumptions

made under this model do not hold. First, flow is traditionally represented in a discrete

manner using a sampled vector field over the vertices of a mesh. The vector field is extended

to the interior of the simplices using interpolation. This is an approximation of the vector

field as well as the underlying domain. Based on the interpolation chosen and whether

the domain is nonplanar, this may violate the assumption that the vector field and its
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domain are smooth. Second, though flow features like streamlines, critical points, etc.

are mathematically well defined, the algorithms to compute them are based on numerical

methods that are approximate. This approximation can cause violations of mathematical

invariants of these features. For example, by definition, streamlines are pairwise disjoint,

i.e., they do not touch or intersect each other. Since, however, the numerical methods used

to compute them are prone to errors, streamlines may cross over each other. Figure 1.1

shows an example of an invalid topological skeleton due to numerical integration errors.

Similarly, due to numerical errors, critical points may go undetected or may get wrongly

classified. Thus, computing these features consistently becomes a difficult task. Third, a

computer can use only a finite set of bits to represent real numbers. Thus, it represents

only a discrete set of values. This causes truncation error in every arithmetic operation,

which may contribute to above mentioned inconsistencies.

Analysis techniques compute results disregarding above mentioned effects of representing

and analyzing vector fields in a computer. Consequently, this prevents reliable interpreta-

tion of data since consistency of computed features cannot be guaranteed. Furthermore,

downstream analysis techniques such as those developed for scalar field analysis [11, 16]

cannot be applied without a valid underlying structure.

To address these issues, a combinatorial representation of flow [21] was recently de-

veloped based on the theory of combinatorial vector fields [6]. This theory defines a

combinatorial equivalent of smooth vector fields. It constructs a vector field as a sim-

plicial graph of the underlying mesh. Under this graph, computations can be performed

consistently and robustly. However, conversion of a vector field into a simplicial graph

causes some coarsification. Finer mesh may be required for complex flow behaviors in such

a representation.

We describe a new representation of flow that avoids above mentioned issues in its

analysis. This representation combines the characteristics of combinatorial and traditional

methods of representing flow. This representation uses a combinatorial structure for robust-

ness and consistency and it can also represent flow at approximation levels equivalent to

that of traditional representation. We establish equivalent definitions of flow features from

smooth vector fields such as critical points, streamlines, separatrices, closed streamlines,

etc. thus forming an analogous representation of flow.

Using a triangulation of the domain, we represent flow in the form of its transversal

behavior over the edges of this triangulation. We only maintain the relation between the



3

Figure 1.1. Inconsistent topology generated by computing separatrices using numerical
integration. Compounding integration error causes two separatrices to intersect, producing
an invalid topological skeleton.

entry and exit points in form of a map through each triangle. Flow is represented as discrete

jumps through the interior of triangles. This notion of capturing boundary behavior of flow

follows from a recently developed representation called edge maps [1, 15]. We handle the

discretization of real numbers explicitly using quantization of each edge into a uniform set of

bins represented by integers. This provides a combinatorial structure to the representation

which we exploit to form graph based algorithms for analysis of flow.

Given a smooth vector field, we can approximate flow to an abitrary accuracy level



4

while converting to our representation. Though approximation errors are incurred during

this conversion, any further computations on the flow can be performed without incurring

additional errors. In other words, by converting flow to our representation, we isolate accu-

racy from consistency. We provide consistent algorithms for computing features like critical

points, streamlines, separatrices and closed streamlines to demonstrate this capability of

the representation.

The goal of this thesis is to provide a solution to inconsistencies in conventional methods

of data analysis for fluid flow data. This thesis argues that use of discrete structures

to approximate flow datasets can be effective for consistent analysis which cannot be

guaranteed by conventional methods that depend on numerical methods and floating point

computations. We describe a new combinatorial representation for two dimensional steady

state vector fields. This representation is analogous to smooth vector fields, that can

represent equivalent structural features like critical points, streamlines, separatrices, closed

streamlines, etc. We provide equivalent definitions of these features in our representation

and provide a method to compute them in a robust and consistent manner.



CHAPTER 2

RELATED WORK

Many analysis and visualization techniques have been developed that use traditional

numerical tools like interpolation and integration. For example, computation of topological

skeleton of vector fields. The idea of using topology for vector field visualization was

introduced by Helman and Hesselink [14]. Helman and Hesselink define a two-dimensional

vector field’s topological skeleton as a graph constructed using a special set of streamlines,

called separatrices, that connect the critical points of the field. Separatrices are the four

streamlines that (asymptotically) travel to and from each saddle point. The majority of

approaches in both two and three dimensions for computation of topological skeleton are

based on numerical streamline computations for separatrices [5, 9, 19, 28, 25]. Similar

techniques have been extended to multiresolution representations as well as time-dependent

flows [8, 27]. However, it is well known that computing the topological skeleton can be

numerically unstable due to errors inherent in the integration of separatrices and inconsis-

tencies among neighboring triangles [4].

Subsequent techniques in two [18, 26, 29] and three [30] dimensions augment even more

sensitive features like closed streamlines to vector field visualization. Closed streamline

detection approaches are perhaps even more sensitive to numeric integration, as the pe-

riodic nature of the flow quickly exposes any inconsistencies in the integration scheme.

Consequently, many of these approaches prefer progressive techniques, where the orbits are

first detected at a combinatorial level (for example, in [29] a sequence of triangles containing

a closed streamline is first identified) and then relying on numeric computations to compute

the exact orbit. To address consistency and robustness issues in the analysis of vector fields,

an approach by Chen et. al. [3] computes a directed graph using triangles of the underlying

mesh as nodes called the Morse Connection Graph (MCG). The construction of this graph

is based on discretization of paths taken by streamlines through these triangles. This
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graph is simplified by colapsing strongly connected components and removing redundant

paths to converge to Morse Sets. These sets together with the graph form a conservative

decomposition of flow and is guaranteed to be consistent. More recently, a combinatorial

representation of flow [21] was recently developed based on the theory of combinatorial

vector fields [6]. This theory defines a combinatorial equivalent of smooth vector fields. It

constructs a vector field as a simplicial graph of the underlying mesh. Under this graph,

computations can be performed consistently and robustly since they avoid numerical com-

putations entirely. While similar approach have been successful for scalar field topology [10],

due to the coarse nature of discrete vector fields, expressing complex flow behaviors like the

one in piecewise linear vector fields may be difficult without drastically increasing the mesh

resolution.



CHAPTER 3

TWO-DIMENSIONAL STEADY STATE

VECTOR FIELDS

In this section, we introduce concepts from smooth vector fields which are crucial for

data analysis and visualization and are important for establishing an equivalent combina-

torial representation (quantized flow). We will revise the definitions of topological features

like critical points, separatrices, limit sets and stable/unstable manifolds which form the

topological skeleton of a two-dimensional vector field. Using these features of a vector field it

is possible to form a topological segmentation of the domain called as Morse decomposition.

Later, we will use such visualizations for demonstrating the capabilities and advantages of

the quantized flow over traditional methods of computation.

A two-dimensional steady state vector field is defined as a map ~V : M→ R2 whereM is

a smooth 2-manifold. ~V defines a velocity (a vector) at every point on M. Each point can

be classified as either a critical point or a regular point. A point c ∈M is a critical point if

~V (c) is a zero vector. All other points that do not satisfy this condition are regular points.

A critical point is classified based on the behavior of vector field in its neighborhood. If

the Jocobian matrix i.e. derivative of the vector field at a critical point is full rank, then

the critical point can be classified as a first order critical point based on the eigen values of

the matrix. First order critical points are broadly classified as sources, sinks, saddles and

centers as shown in Figure 3.1.

More complex classes of critical points can exist if one or more eigen values are zero.

These are referred to as degenerate or higher order critical points. A more general classi-

fication of critical points is given by the Poincaré-Hopf Formula. This formula maps the

classes of critical points to an index number. This number is known as Poincaré index or

winding number. By definition of a manifold, neighborhood of a critical point is locally

Euclidean, such that the vector field in that neighborhood can be represented as
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(a) (b) (c)

Figure 3.1. Types of first order critical points. (a) Sink and attracting focus; (b) source
and repelling focus; (c) saddle and center

(x1, x2) 7→ (v1, v2)

The Poincaré-Hopf formula is then given by:

ic =
1

2π

∮
Γ
dθ

where θ = arctan v2
v1

and Γ is a Jordan curve enclosing the critical point in that neighbor-

hood. It basically computes the number of rotations that the vector makes while sliding

along the curve around that neighborhood.

Starting at any point x ∈M, a path can be traced following the instantaneous velocities

of ~V . In a steady state vector field, this curve is called a streamline. A streamline can be

defined as a solution to the differential equation,

dφ(x, t)

dt
= ~V (x)

with the initial condition φ(x, 0) = x0. A vector field defines a continuum of streamlines.

Asymptotic behavior of these streamlines reveal topological features or invariants of the

vector field. Conventionally, numerical methods are used to compute these streamlines i.e.

solve the differential equation mentioned above. An important invariant of vector field apart
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from critical points are cycles. A cycle is a streamline such that there exists t1 > 0 where

φ(x, t1) = x. If one traces a streamline from a point in a cycle, the streamline will flow back

to that starting point making a closed streamline. Invariants like critical points and cycles

that define the topological structure of a vector field are limit sets of the streamlines in that

vector field. There are two types of limit sets for each streamline in a vector field without

a boundary. An α-limit set (Sα) and ω-limit set (Sω) of a streamline φ(x0, t) is defined as

follows:

Sα = {y ∈M|∃(tn)n∈N ⊂ R, tn → −∞, lim
n→∞

φ(x0, tn)→ y}

Sω = {y ∈M|∃(tn)n∈N ⊂ R, tn →∞, lim
n→∞

φ(x0, tn)→ y}.

Intuitively, α-limit set of a streamline is obtained by advecting the streamline for negative

infinite time and indicates the origin of that streamline. Similarly, ω-limit set is obtained

by advecting a streamline for positive infinite time and it indicates the destination or end

of that streamline. In steady state two-dimensional vector fields, the α- and ω-limit sets

of all streamlines collectively form the set of all critical points and closed streamlines and

describe the topological skeleton.

Each limit set defines a stable and an unstable manifold. Consider a limit set Y . Stable

and unstable manifolds Ws and Wu of Y are defined as follows:

Ws = {p ∈M| lim
t→∞

φ(p, t) = y, y ∈ Y }

Wu = {p ∈M| lim
t→−∞

φ(p, t) = y, y ∈ Y }

The intersections of the (un)stable manifolds of all limit sets describes a topological

segmentation of M called the Morse decomposition. Generating such a segmentation of

the domain provides an insight into the global behaviour of a vector field. Generating a

topological segmentation or detecting flow features like the ones mentioned above requires

streamlines as a fundamental computation. It is very important to compute streamlines

without any inconsistencies for the downstream analyses to be valid. Discrete models of

flow like graph based approaches show promise since the computation of streamlines in such

a representation is analogous to a graph traversal which ensures consistency by eliminating

any kind of numerical computation.



CHAPTER 4

DISCRETE REPRESENTATION

In this chapter we define a discrete representation of vector field which helps guarantee

consistent analysis of flow. To avoid inconsistencies and robustness issues due to numer-

ical errors, we develop a completely combinatorial structure that describes flow over a

triangulation based on its transversal behavior over the edges. Theoretically, conventional

representation of vector field using interpolation represents a continuum of streamlines.

Due to infinite number of streamlines, it is difficult to maintain consistency of computed

streamlines specially due to errors incurred by numerical integration methods and floating

point truncations. Also, it is difficult to compute unstable features like closed streamlines

or periodic cycles.

Our representation consists of a finite number of streamlines that approximate the actual

flow. We refer to these as quantized streamlines. The granularity of this representation is

based on the number of quantized streamlines used. Quantized streamlines are formed by

discretizing each edge of the triangulation in a finite number of bins such that all streamlines

entering a bin merge into a single quantized streamline and are not allowed to diverge. In

this manner, we ensure that streamlines can merge but cannot cross over each other.

We first discuss how we discretize the domain, i.e., the triangulation over which the flow

is defined and how we define a graph called bin-graph, which discretely represents flow. We

also discuss how this conversion impacts accuracy of represented flow as compared to its

interpolated counterpart. We describe a method to represent flow at varying degrees of

accuracy based on user defined error threshold.

4.1 Local Representation

In each triangle, we build a map that connects inflowing and outflowing bins, thereby

maintaining all the quantized streamlines flowing through it. In this section, we describe
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the local construction of this combinatorial representation within each triangle.

4.1.1 Discretizing Edges

Flow through each triangle is represented as a map between its edges. An entry and exit

point on the boundary of a triangle will be mapped if there exists a streamline between them

that is completely contained in the interior of that triangle. We call such a pair of points

an origin-destination pair. If we identify the set of all such origin points and destination

points, then we can define a map from the set of origin points to the set of destination

points which represents all streamlines flowing through the triangle.

We discretize each edge of the triangulation into a set of 2k equal sized bins using a

k−bit integer, such that each bin is either an inflow or an outflow bin. Consider streamlines

of the smooth vector field flowing through these bins as they cross over the edges of the

triangles. Streamlines entering a triangle flow through inflow bins and exit through outflow

bins. In this discrete model, all streamlines entering an inflow bin are considered merged

and are not allowed to diverge again. Thus, each inflow bin maps either to an outflow bin; or

maps to the interior of a triangle in case of a critical point like a sink or a source. Let O be

the set of all inflow bins and D be the union of all outflow bins and the interior of triangle.

Then we can define a map ξ : O → D that we call a Quantized Edge Map. Figure 4.1 shows

an example of a quantized edge map. Quantized edge maps are similar to the Edge Maps

developed by Bhatia, Jadhav et al. in [1, 15]. Edge maps are continuous maps derived to

represent piece-wise linear flow. Edge maps too represent flow in form of boundary map

between edges of triangulation. However, since the maps are continuous, there are infinite

number of streamlines passing through any triangle. Therefore, it is difficult to construct

edge maps without knowning the exact nature of flow within a triangle. Computation of

features like closed streamlines is also difficult. On the other hand, quantized edge maps

represent flow in form of a graph based on discretized edges of triangulation. In concept,

due to finite granularity, it is possible to construct a quantized edge map within a triangle

without knowing the exact nature of flow. We provide a simple and efficient algorithm

to contruct quantized edge maps in the piecewise linear case. Quantized edge maps in

each triangle collectively provide a global combinatorial structure describing flow over a

given triangulation of domain. Varying the size of bins can provide variable granularity

or precision in representing flow. This representation can be considered as a large graph

constructed using the bins (bin-Graph) on each edge as nodes and a map for each triangle
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(a) (b)

Figure 4.1. Construction of quantized edge maps. (a) Formation of links within a triangle.
Each color represents a pair of origin and destination interval creating a link. (b) Mapping
of inflow and outflow bins under such flow.

defining connections between the nodes. In the text to follow, we refer to edges of this

graph as connections to disambiguate it from the edges of triangulation.

4.1.2 Restrictions

Though map within each triangle can be constructed independent from each other, there

are certain requirements that they must satisfy to agree with the maps of their neighboring

triangles as well as represent flow consistently in the interior. There are certain constraints

that we apply on the bins and their mapping. These constraints and the properties thus

implied are enumerated below. Properties 1, 2, and 3 are enforced, while properties 4, 5

and 6 are derived properties.

1. For any triangle T , each bin on ∂T is either an infow or an outflow bin.

2. On an edge, if a bin is an inflow bin for one triangle, then it has to be an outflow bin

for the other triangle.

3. We do not represent separatrices of a saddle as bins. Thus these are implicitly

represented as boundary between two bins.

4. From property 1, a switch from inflow to outflow on ∂T is represented as boundary

between an inflow and an outflow bin.

5. From properties 1 and 2, there cannot exist a streamline flowing along the edge.
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6. From properties 1 and 2, there cannot exist a sink or a source on an edge.

Note that sinks and sources have an explicit existence in quantized flow in the form of

bins mapped to the interoir of T , while saddles and centers exist implicitly and should

be detected by examining the neighborhood behavior. Above mentioned constraints help

enforce consistency of flow.

4.1.3 Feasibility and Accuracy

To efficiently represent flow in each triangle, we approximate the map between inflow and

outflow bins as a linear map between connected subsets of the boundary of a triangle. We

call these linear maps as links. A collection of such links that form a covering of the entire

boundary of a triangle defines a quantized edge map. Links can be identified as continuous

set of streamlines entering and exiting a triangle. Since peicewise linear vector fields are

commonly used, the notion of links and edge maps was used to study all possible structures

in a piecewise linear vector field in [15]. It is a detailed study of local flow behaviors of

such vector fields in the form of links and enumerate different structures that they can

exhibit. Since flow can switch direction only once per edge, there are a limited number of

possibilities. This study helps to establish a bound over the complexity of data structure

required in this representation of flow. To approximate the flow within each link, the map

between inflow and outflow bins can be linearly approximated using rasterization. Due to

the explicit quantization, each link defines a map from m inflow bins to n outflow bins.

We use Bresenham’s algorithm [2] to compute the next point along an integration path, or

more generally, given an inflow bin i < m, we compute its corresponding outflow bin ξ(i)

by rounding equation n∗ i/m to the nearest integer. Clearly, there can be a one-to-many or

a many-to-one mapping of bins. While, we allow streamlines to merge into a bin, we do not

allow bifurcation. This condition is necessary for maintaining consistency of streamlines

.If m < n, then by the rasterization algorithm an ith inflow bin may map to more than

one outflow bins. In such a case we always choose the rightmost bin to make a consistent

choice. This is done for both forward and backward streamline computation. This ensures

that streamlines do not cross over each other once they merge into a bin. Based on whether

we represent forward flow or backward flow, the links remain the same but the direction of

flow is inverted. We designate forward rasterization map as ξ+ and backward rasterization

map as ξ−.
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The linear mapping of bins within each link is an approximation of actual flow. The

actual flow can be more complex than assumed. This is a source of error in our repre-

sentation. We estimate this error by using a regular sampling within each link for tracing

streamlines of the actual flow. We find the maximum offset between the destination of

the actual streamlines and their approximated counterparts. Figure 4.2 illustrates this

estimation process. Consider an inflow bin b and a true streamline φ(x0) sampled at any

point x0 ∈ b. Let x′0 be the point where φ(x0) first exits the triangle. The approximation

error εa can be formulated as follows:

εa = |x′0 − ξ(b)|

In the above expression, ξ(b) is considered to be the midpoint of the destination bin. If

this error is higher than a user provided threshold, we can split the link into smaller links

using the regularly sampled streamlines of actual flow. The mapping of bins within the old

link is now represented by a polygonal curve rather than a single line which increases the

accuracy with which we approximate a given vector field. This process can be repeated

recursively to achieve arbitrary levels of accuracy.

(a) (b)

Figure 4.2. Refinement of quantized edge maps. (a) Estimating error and (b) refinement
procedure. The dashed curve indicates an actual streamline computed from original flow.
The dash-dotted line indicates linear approximation of the streamline within its link. Red
lines in (a) indicate the origin and destination intervals of the initial link, while the red and
green lines in (b) indicate two different links created by splitting the initial link.
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4.2 Topological Features in Descrete Form

Two triangles sharing an edge also share the bins on that edge. The maps of such

triangles represent inflow and outflow consistently across their shared edges. These maps

connect up across the triangle edges to form a large graph which we call the bin-graph.

Based on whether we are considering forward flow or backward flow, two bin-graphs can be

defined. Both, forward and backward bin-graphs have the same nodes (bins) but different

connections (mapping) between them.

Definition 1 (Bin-Graph) Let B be the set of bins on a triangulation. The forward

bin-graph is a directed graph GB
+(B,E+) with E+ = {(b, ξ+(b)) | b ∈ B}. The backward

bin-graph, G−B, is defined symmetrically.

We represent flow as a finite number of streamlines in form of traversals through this

graph starting from any bin. Each bin uniquely represents one forward and one backward

streamline. Together, forward and backward bin-graphs describe the complete flow of a

given vector field in a discrete manner. We will now define quantized streamlines and

structural features in the context of this discrete structure.

4.2.1 Quantized Streamlines

In smooth vector fields, streamlines are computed using numerical integration methods.

In our representation, we compute streamlines as a graph traversal through the bin-graph.

Given the above definition of a bin-graph, it is important to understand the properties of

flow represented by it. To simplify the discussion below, we define a quantized streamline

or a q-streamline represented by a bin-graph as:

Definition 2 (Q-streamline) A forward q-streamline, S+(b0) starting at bin b0 is an or-

dered sequence of bins {b0, b1, b1, . . . , bn} such that ξ+(bi) = bi+1. A backward q-streamline

S−(b0) is defined symmetrically.

Q-streamlines are illustrated in Figure 4.3 and the corresponding forward and backward

Bin-Graph is shown in Figure 4.4. This image shows both a forward and a backward

q-streamline integrated through five triangles. Based on the above definition and the prop-

erties of Bin-Graph, q-streamlines have some interesting properties that we state explicitly

here:



16

• Used as a starting point, each bin b defines, at most, two q-streamlines S+(b) and

S−(b). However, each bin can be part of multiple q-streamlines and different bins

may define the same q-streamline.

• If two forward (or backward) q-streamlines merge, they do not bifurcate again (this

includes self merging). For example, in the red link of the second triangle in Figure 4.3,

three forward q-streamlines merge when entering the cyan link of the third triangle.

Traced forward these lines will never split.

• Q-streamlines do not cross. Clearly, the rasterization procedure preserves the order

of q-streamlines except when two lines merge. However, two merged lines never split

guaranteeing that no two q-streamlines can cross.

• However, if a forward and backward q-streamline merge, they may bifurcate in their

respective directions (as shown by the two q-streamlines in Figure 4.3).

We can exploit the combinatorial structure of this representation to identify important

structural features of the flow like critical points, cycles, separatrices, and stable/unstable

manifolds. Since the underlying structure is discrete we can avoid numerical methods for

computing these features, thereby generating consistent and robust results.

Figure 4.3. Subgraphs shown with colored bins indicating links and grey dashed lines for
each bin-to-bin rasterization. Two q-streamlines are shown, a forward q-streamline with a
solid black line and black triangles and a backward q-streamline is shown with a dashed
black line and white triangles. Triangle direction indicates the direction of vector field, not
the direction of integration. In both cases, the q-streamlines choose the rightmost (with
respect to the integration direction) bin.
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(a) (b)

Figure 4.4. Forward (a) and backward (b) bin-graphs for the links illustrated in Figure 4.3.
For each edge in this sequence, the bins are displayed as a column of circles, colored to
indicate the links they fall in on either side of the edge.

4.2.2 Quantized Critical Points

In smooth vector fields, critical point in a neighborhood can be classified based on the

Poincaré index or the winding number as mentioned in Chapter 3. This index is calculated

as the number of rotations the vector at a point makes as it slides along a Jordan curve

which does not have a zero vector on it. The point is moved in counter clockwise direction.

Counter clockwise rotation of vector is considered positive while clockwise rotation of vector

is considered negative rotation. The number of rotations is always an integer because the

sliding point comes back to its starting position.

Our representation inherently stores behavior of flow on boundary of each triangle,

we use this to detect and classify critical points based on Poincaré Index or the winding

number. The index can be computed using a simple count of transition points. Transition

points on a quantized edge map are the switch points along the boundary of a triangle

where flow switches from the inflow to outflow. If the bins adjacent to a transition point

map to each other, then it is called an external transition point (ETP), else it is called an

internal transition point (ITP). This classification indicates how the vector defining such a

flow would rotate. Since all these points are accounted for, the number of rotations can be

computed independent of how the vectors behave between transition points. By developing

an equivalent formula for computing Poincaré index (ind∂T ) for the discrete representation,

we detect and classify critical points consistently.

ind∂T =
1

2π

∑
‖TI‖

π +
∑
‖TE‖

−π + 2π

 = (‖TI‖ − ‖TE‖)/2 + 1
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TI is the set of ITPs and TE is the set of ETPs. This formula ignores any existence of

a critical point on the edges or vertices of a triangle. Any such point will be treated as a

transition point based on the quantized map thus computing Poincaré index of the interior

of triangles. For detecting and classifying critical points that might lie on an edge, we

compute Poincaré index of the quadrilateral formed by the two triangles sharing the edge

and subtract the indices of the individual triangles. Similarly for a vertex, we compute the

index for the polygon surrounding that vertex and subtract the indices of the surrounding

triangles and edges. This can be done because classification of transition points existing

at the vertices of quadrilaterals and polygons can be performed based on the local map of

bins.

4.2.3 Quantized Cycles

Like critical points, there is another topological feature of vector fields that is important

is a cycle. A cycle is also called as closed streamline or periodic orbit. Such a streamline acts

as a limit set in two-dimensional vector fields, i.e., it can act as a sink, source or a saddle.

If the trajectory of a point on a closed streamline is traced, one returns to the same point

completing a loop. Exact closed streamlines are particularly difficult to compute using

numerical techniques due to the inherent computation errors and inconsistencies caused

due to the same. Since in quantized flow we represent flow discretely as a graph, a closed

streamlines exist explicitly as closed loops of connections (graph-edges) in a bin-graph.

Definition 3 (Quantized Cycle) A closed q-streamline S(b0) is a q-streamline such that

there exists an n > 0 such that b0 = bn.

4.2.3.1 Classification of Quantized Cycles

Since forward and backward maps differ, there exist three primary classes of cycles:

those stable in ξ+; those stable in ξ−; and those stable in both. Also, closed streamlines are

limit sets and can be classified based on whether they are attracting, repelling or neither

on the sides of their trajectories. Based on these possibilities and eliminating symmetrical

cases, we classify cycles in a total of 12 classes. Figure 4.5 shows examples of forward stable

cycles. ξ+.

Consider a forward stable cycle C. A forward stable cycle is defined by As discussed in

section 4.1.3, in case of one to many mapping of bins, we always choose the rightmost bin
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(a) (b) (c) (d)

Figure 4.5. Classification of cycles. Images show different examples of forward stable
cycles with corresponding bin graph. Grey bins refer to the bins in the cycle. Solid arrows
indicate forward q-streamlines; dashed arrows indicate backward q-streamlines. (a) Forward
stable cycle attracting on both sides. (b) Forward stable cycle attracting on one side and
neutral on the other side. (c) Forward stable cycle attracting on right side and repelling on
left. (d) A forward stable cycle cannot repel on its right-hand side.

in both ξ+ and ξ−. Thus, cycle C cannot have a diverging streamline on the right hand

side. i.e. It cannot be repelling on right hand side w.r.t direction of forward flow. It can

either be attracting if there exists at least one forward streamline approaching the cycle

from the right side or neutral (neither attracting nor repelling). On the left side, cycle C

can be either attracting (if there exists at least one streamline that approaches the cycle),

repelling (if there exists at least one streamline that diverges from the cycle), or neutral

(neither). Symmetrically, a backward-stable cycle cannot be attracting on the right hand

side w.r.t direction of backward flow. It can only be repelling or neutral. On its left, it can

be attracting, repelling or neutral. Note that a forward stable cycle which is repelling on

its left is also backward stable. The property of repelling implies that backward streamlines

converge to the cycle making it backward stable. Symmetrically, a backward cycle which is

attracting on its left is also forward stable. Figure 4.6 demonstrates the computation and

classification of exact cycles on the dataset of oceanic currents near Italy.

4.2.4 Separatrices

The traditional approach to compute the topological skeleton is to find all saddles and

trace their four separatrices until they converge towards an orbit or hit another critical point.

Some of the challenges for numerical techniques have been that separatrices by definition are

numerically unstable (they are asymptotic paths) and moreover it can be especially difficult

to determine when a streamline converges towards an orbit. Quantized flow described by
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Figure 4.6. Italy (A tile from climate dataset): Exact cycles with classification. Red cycles
are attracting on both sides; green cycles are repelling on both sides. There are a total of
412 cycles in this dataset.

bin-graph eliminates these issues making separatrix computation straightforward.

An interesting consequence of the discretized flow is that separatrices are represented as

boundaries between bins in stable/unstable manifolds, as opposed to lying on a particular q-

streamline. Specifically, every saddle exists on the interior of a triangle with a link structure

like the one shown in Figure 4.7. Clearly, the separatrices are represented as the boundaries

between the links as shown by the grey dots, as opposed to a specific bin. However, given

that q-streamlines when faced with a one-to-many mapping consistently choose the right

most bin we simply extract the q-streamlines (forward or backward) of the bins just left of

the separatrices. These q-streamlines by definition must be a collection of bins lying on the

boundary of a stable or unstable manifold (as anything to the right of them would have

crossed the separatrix), and thus would include bins in a different manifold. As a result,

we trace a path lying directly adjacent to where the separatrix exists, which is a suitable,

(and more importantly) consistent representation of the separatrices.

4.2.5 (Un)Stable Manifolds

As defined earlier in Chapter 3, every limit set has stable and unstable manifolds. All

streamlines flowing into (or emerging from) a limit set demarcate the stable (or unstable)

manifold of that limit set. We redefine the stable/unstable manifolds in our discrete

representation in terms of bins that belong to the q-streamlines that flow into or emerge

from the limit sets of a vector field.
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Figure 4.7. In triangles with saddles, we grow q-streamlines at the grey dashed bins to
trace separatrices.



CHAPTER 5

IMPLEMENTATION

Conversion of PL vector fields into a quantized form requires construction and efficient

storage of quantized edge maps. We describe an algorithm that can construct quantized

edge maps that are consistent with each other and make minimal assumptions about the

flow in a triangle. We describe a data structure to efficiently store these maps.

5.1 Conversion of Vector Field

In constructing a quantized version of edge map, our objective is to identify contiguous

set of inflow bins (inflow interval) that flow to a contiguous set of outflow bins (outflow

interval). Such pairs then form a link and linearly map to each other. We first identify all

transition points on the edges of a given mesh based on the interpolated vector field in each

triangle. An edge is shared between two triangles. A transition point is classified as internal

or external independently based on the vector field on either side. Since an interpolated

vector field is continuous, we enforce a condition that a transition point cannot be an ITP

on both sides but it can be ETP on both sides. This gives us a total of two states of a

transition point. In the first state it is an ETP on one side and ITP on the other, while in

the second state it is an ETP on both sides. Identification of these transition points also

ensures that edge maps agree with the inflow and outflow intervals across the edges.

In the next step, for each triangle, we identify the intial list of inflow and outflow intervals

based on its edges and the preidentified transition points. We construct a circular linked

list based on the order of the intervals along the triangle boundary. This circular linked list

maintains consistency of the map. It avoids any cross linking and overlapping of intervals.

A streamline is numerically traced from the mid point of the largest interval in the list and

the list is split into two independent lists based on the origin and destination bins identified

by the streamline. This can be done because streamlines are not supposed to cross each
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other. Each time a streamline is traced from an inflow bin to an outflow bin, the triangle

region is divided into two regions such that streamlines from one region cannot flow to the

other without flowing outside the triangle first. Any streamline traced later cannot have a

destination bin outside the list of intervals that it started from. This process is repeated

recursively to identify the set of links that can then be put together to construct a quantized

version of edge map. Every time a streamline is traced from the largest interval in a list,

new links formed are updated into a list using updateLinks() function. We start with a

list of intervals ordered along the boundary of triangle. We call the function Split(I, T )

recursively until all links are formed. Alogrithm 1 depicts the pseudocode. I is the circular

linked list of intervals and T is the set of transition points already identified such that they

are consistent across edges with other triangles. This algorithm assumes that the first order

critical points in each triangle have been computed and are available as zero length intervals

in the list for mapping / forming links. We modify our function for computing numerical

streamline such that if a streamline flows to a bin that is not in the list of intervals, then

we snap the streamline to the nearest available bin within the list.

5.1.1 Consistency

There are two numerical methods involved in the construction of quantized maps. These

are the indentification transition points on edges and computation of streamlines. We

compute transition points by solving a simple linear system of equations and compute

streamlines using the Local Exact Method (LEM) [20] which are highly accurate but can

still cause inconsistencies due to floating point truncations and numerical errors. This is

the primary motivation for constructing the quantized edge maps that enforce consistency

of flow. Consistency is enforced since links are not allowed to overlap or intersect, and

mapping of bins within each link is linear and order preserving.

5.1.2 Map Data Structure

Each map once constructed is converted to a storage efficient data structure. We store

a quantized edge map as an array of intervals. Each interval contains a k-bit integer as the

starting bin number of that interval on an edge. Bins on each edge of the given mesh are

considered to be numbered in an orientation from the lower indexed vertex to the higher

indexed vertex for that edge. The number of bins to be used per edge is a user input

parameter entered before contruction of quantized edge maps. Thus an interval spans from
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Algorithm 1 Quantized Construction

1: procedure Split(I, T )
2: if |T | > 1 then
3: Cast a streamline from largest interval in I.
4: Divide I into I1, I2 and T into T1, T2.
5: Split(I1, T1). Split(I2, T2).
6: else if |T | = 1 then
7: if t ∈ T is ETP and |I| ≤ 2 then
8: updateLinks()
9: else if t ∈ T is ETP and |I| > 2 then

10: Cast a streamline from largest interval in I.
11: Divide I into I1, I2 and T into T1, T2.
12: Split(I1, T1). Split(I2, T2).
13: else if t ∈ T is an ITP then
14: Find ITP images
15: updateLinks()
16: end if
17: else
18: if |I| > 2 then
19: Find SepX points.
20: end if
21: updateLinks()
22: end if
23: end procedure

the begin-bin number that is stored in that interval upto the begin-bin number minus 1 of

the next interval in the array. This data structure is illustrated in Figure 5.1. Two bytes

per interval are bit-packed with following information:

• 2-bits for edge number within the face since bin numbering is only unique per edge;

• a 1-bit flag indicating whether the interval is inflow or outflow;

• 1-bit indicating orientation of the interval relative to the bin numbering;

• and remaining 12-bits for the index of the paired origin/destination interval in the

array.

Typically we use 4 bytes for storing begin-bin number and 2 bytes of other information.

Hence, the size of an interval amounts to 6 bytes.
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(a)

e0

e1

e2 i0

i1

i2

i3

i9

(b)

i0 i1 i2 i3 i9

i0 1 e0 i9 inflow true

i9 8 e2 i0 outflow false

i2 10 e0 null outflow true

.......

start edge link flow orientation

(c)

Figure 5.1. Data structure for quantized edge maps. (a) A piecewise linear flow in a
triangle, (b) corresponding quantized edge map, and (c) storage of quantized edge map as
an array of intervals in a memory efficient data structure.

5.2 Cycle Detection

Quantized cycles can be considered as strongly connected components (SCC) of the

bin-graph. Identification of an SCC is a well known problem in graph theory. However

in practice, bin-graphs can be very large to be process directly. Instead, we use a second

graph, called the link-graph, as a coarser representation of the vector field. To define the

link-graph it is useful to realize that this representation contains two types of mappings: the

mapping within each triangle and the mapping (across edges) between neighbor triangles.

The bin-graphs directly encode the former and the latter is a trivial one-to-one mapping

since neighboring triangles share bins. However, when considering links defined as pairs of

sequences of source and destination bins the intratriangle map becomes implicit, while the

intertriangle map is nontrivial.

Consider the bin-graph of Figure 4.4. The intratriangle mappings are indicated by

the arrows while the intertriangle map is implicit in the ordering of bins. Conversely,

Figure 5.2(a) shows the corresponding link-graph where the nodes (boxes) represent the set

of bins indicated by the color and the edges encode that links have overlapping sequences of

bins across an edge. For example, the red link’s destination bins are split between the blue

and orange link and thus the red node has two directed edges to the blue and orange nodes,

respectively. Thus, the link-graph stores the intertriangle maps explicitly (as edges), while

the intratriangle map is maintained internally within each node as a rasterization between

two sequences of bins. Initially, nodes in the link-graph represent entire links, but as will

be discussed below, our algorithm for cycle detection splits and prunes these sequences,
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(a) (b)

Figure 5.2. Closed streamline detection using graphs. (a) Link-graph corresponding to
the links illustrated in Figure 4.3. (b) Assuming there is a closed q-streamline running from
the green link-node on the left to the blue link-node on the right, the MSCC computation
will remove the orange, purple, and light green nodes in the center. Next, pruning will
reduce the intervals in the green, red, and cyan links as shown by the circled bins since
their q-streamlines leave the MSCC.

maintaining contiguous subsets of links as nodes.

Definition 4 (Link-Graph) A link-graph is a directed graph GL(VL, EL) such that:

• VL = {ηi}, where each node ηi represents a contiguous sequence of bins from a single

link. We call ηi a link-node.

• EL = (η1, η2), such that η1 and η2 share at least one bin.

Since the link-graph by definition ignores the intratriangle mapping it represents paths

between links for which no q-streamline exists. For example, the dark green and light

green link in Figure 5.2(a) are connected even though no q-streamline exists that shares

both light and dark green bins, see Figure 4.3. However, the link-graph is a conservative

representation, meaning that if two links share a q-streamline they are connected in the

link-graph yet the reverse is not necessarily true. More importantly for cycle detection is

the following theorem.

Theorem 5 Consider a link-graph and its forward and backward bin-graphs. If there exists

a closed q-streamline in one of the two bin-graphs, then there exists a corresponding cycle

of edges in the link-graph.
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Proof: By construction, each pair of bins bi, bj with ξ+(bi) = bj is represented by the same

link-node. Thus, if there exists a closed q-streaming (b0, bi, . . . , bn) with ξ+(bi) = bi+1 there

must exists a cycle in the link-graph. The argument for a cycle in the backward bin-graph

is symmetric.

Exploiting the conservative nature of the link-graph we extract closed q-streamlines by

iteratively finding maximal strongly connected components (MSCCs) in the link-graph and

refining the graph through graph-cut and graph-prune operations. Graph-cut operations

cut a strongly connected component of a link-graph by computing q-streamlines starting

at the midpoint of the widest nodes (nodes with widest interval of bins). Since no other

q-streamline can cross over the computed one, we can split the link-graph along this q-

streamline. This operation allows to quickly cut away large parts of the graph before

graph-prune is used. The progressive reduction in link-graphs by the process of graph-

cutting is demonstrated in Figure 5.3. Graph-prune operation refers to reducing the bin

intervals in each node by identifying the bins that flow into an MSCC from outside or flow

outside from it. Graph-prune operation is slower since it requires inspection and possible

update of every node of an MSCC. Graph-prune operation, however, allows to converge to

the closed q-streamlines once the nodes reach smaller widths.

5.2.1 Link-Graph Data Structure

Even though the link-graph is a coarser representation of flow, storing a link graph of

a large dataset can be expensive. We design an efficient data structure to store a link-

graph. This data structure is primarily based on maintaining adjacency list in every node.

But we want to avoid storing a linked list or a variable length array in every node due

to storage costs. Instead, we store only four pointers in every node which accounts for

all the connectivities in the neighbourhood. Every node has a foward, backward, origin-

side and destination-side pointer. Origin-side pointers are used to connect adjacent nodes

inside a face that share the same origin edge in the counter-clockwise direction. Similarly,

destination-side pointers are used to connect adjacent nodes inside a face that share the

same destination edge in the counter-clockwise direction.

Consider observing a node n with the direction of flow being upwards as shown in

Figure 5.4. We know that each node contains an origin interval (On) and a destination

interval (Dn). All outgoing nodes F = {f0, f1, f2, ...} of n are the nodes that belong to

the face across the destination edge of n and share bins with Dn. Forward pointer of n0
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Figure 5.3. Graph-splitting progressively convergence to cycles. Left to right:a gradual
reduction in the size of regions.

points to the first outgoing node (f0), i.e., the first node to the extreme left across the

destination edge such that Dn ∩ Of0 6= φ. Remaining outgoing nodes can be found by

dereferencing the origin-side pointer of f0 and the nodes to follow and then testing for the

condition Dn ∩ Of 6= φ where f ∈ F . Incoming nodes for n are found symmetrically. The

backward pointer of n points to a node b0, which is the first node on the extreme right

across the origin edge of n such that On ∩Db0 6= φ. Remaining incoming nodes are found

using destination-side pointers and testing for the condition On ∩Db 6= φ.

5.3 Complete Topological Segmentation

Computing a complete topological segmentation includes identification of stable and

unstable manifolds of all the limit sets of the vector field. For two-dimensional steady vector

fields, the limit sets are critical points and closed streamlines. We have already defined the

stable and unstable manifolds for these structures in the discrete representation in section

4.2.5. Using this definition we observe that tracing all separatrices and identifying all

cycles (closed q-streamlines) delineates the segmentation, which is referred to as topological

skeleton. Our algorithm to compute this segmentation first computes the topological

skeleton and then uses floodfill approach to identify all regions of segmentation. A region of

this segmentation is stored as indices of completely covered triangles and partially touched

faces in form of quads. As an approximate rendering of these regions for large datasets,

we use only the faces identified to shade these regions. This is a quick way to render the

segmentation to get a high level view of a large dataset. Figure 5.5 demonstrates the floodfill

approach and region growing approach for computing stable and unstable manifolds.
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Figure 5.4. Link-graph data structure. (a) A simple link-graph using a variable sized
array in every node for storing incoming and outgoing nodes. (b) Efficient data structure
for a node. (c) Link-graph stored using the suggested data structure.

Figure 5.5. Topological skeleton / segmentation: Cuba tile from climate dataset on the
left shows its topological skeleton (cycles in yellow and separatrices in black). Image in
the center shows topological segmentation generated using region growing approach for
computing stable/unstable manifolds. Image on the right shows topological segmentation
produced using floodfilling on skeleton.



CHAPTER 6

RESULTS AND DISCUSSION

For demonstrating that our new representation produces consistent results, we show

computation of topological skeleton over a synthetic dataset in Figure 6.1 that is known to

produce inconsitent result in case of numerical integration method. With this guarantee, it

is possible to compute topological skeletons of complex datasets as shown in Figure 6.2.

In Table 6.1 we show the computational performance of our application on all the

datasets used in this document. This includes size of the datasets in terms of number of tri-

angles, memory footprint for representing quantized flow in each dataset and time required

for conversion of vector field to quantized flow as well as time required for approximate and

exact cycle detection.

Cycle detection is the process that requires the most amount of memory given the

comprehensive nature of the algorithm. Depending on the size of the dataset and amount of

refinement done on the quantized maps, the initial construction of link-graph and subsequent

cutting of the graph can increase the number of nodes quickly. To contain the memory

footprint during cycle detection, we use a process to cut the domain into smaller pieces that

can be processed separately. We partition the domain / mesh into subsets by propagating

all separatrices in the quantized flow. We know that quantized streamlines do no intersect

each other and hence any cycle is completely contained within such a subset of the domain.

Processing each subset separately helps to keep the working memory size under control.

Note that this partitioning of domain is flow dependent and the subsets sizes may vary

based on flow. But we observe that for most of the time large datasets will provide sufficient

separatrices to cut the domain into manageable subsets. Approximate cycles have been

detected with an error threshold of 10,000 bins. This threshold indicates that all nodes in

the link-graphs that represent approximate cycles are smaller in width than 10,000 bins.

Time required to compute exact cycles is higher than approximate cycle computation and it
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Figure 6.1. Synthetic dataset (100 x 100): Left: Shown with inconsistent topological
skeleton due to numerical errors. There are two saddles in the dataset. One on the left
(saddle1) and another on the right (saddle2). Middle: Zoomed view of saddles with
unrefined (base) maps. Right: Zoomed view of saddles with refined maps. Saddle1 is
shown as the top zoom window and saddle2 is shown as bottom zoom window. Both,
coarse and refined maps demonstrate consistency. Follow the green (outer) separatrix that
flows downward from saddle1. It remains outside of the curved path, i.e., to the right hand
side of the red separatrix as shown in the zoomed image of saddle2.

is highly flow dependent. The HCCI dataset takes the longest since there are much higher

number of cycles as compared to other datasets and it represents incompressible flow.

For conversion of vector fields into quantized flow, we use multi-threading to process

multiple triangles simultaneously. We maintain consistency of flow by setting global flags

before hand for inflow/outflow consistency between triangles. The numbers reported in

Table 6.1 use 16 threads for quantized flow conversion.

Quantized flow is a discrete representation of two-dimensional steady state vector fields,

that represents flow as a large graph of bins over the edges of a triangulation of domain.

This representation opens a way for using discrete algorithms for processing flow data

with approximation capabilities similar to that of interpolation and numerical integration

techniques. Since quantized flow is essentially a graph, efficient graph based alrogithms can

be used to extract topological structures from the flow. We essentially focus on PL vector

fields over triangle meshes, but the representation itself can be easily extended to quad
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Figure 6.2. Climate dataset (3600 x 2400):Topological skeleton with 54411 cycles. Zoomed
windows at the bottom show a dense network of separatrices that are crucial to be computed
consistently.
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Table 6.1. Performance per dataset:Memory and time are given in MB and Min:Sec,
respectively. The approximate orbits converge to roughly 1 million bins (2e-04 of an edge).
Machine used:2.64 GHz 8 core CPU with 6GB RAM.

Dataset (Figure)
Intervals Maps # Orbits (Time)

Memory Gen. time Approx. Exact

Italy currents (4.6) 56,071 38.9 17:01 200 (0:53) 412 (0:57)

Cuba currents (5.5) 62,882 34.4 14:23 149 (0:32) 299 (0:37)

HCCI (5.3) 816,642 196 70:58 376 (05:38) 5018 (78:12)

Climate (6.2) 10.6M 948 47:30 16818 (78:49) 54411 (86:52)

meshes and larger polygons. By developing a more general algorithm for construction of

quantized maps, we believe that this representation can also be extended for approximating

vector fields with higher interpolation methods. Of course, certain assumptions made for

PL vector fields, like a single transition point per edge and a single critical point per polygon

will not hold. Since, quantized flow represents boundary behaviour of flow, integration of

streamlines within a polygon can be considered a black box. Given such a black box, ideally

it is possible to construct a quantized map for each polygon providing a general construction

process. Quantized flow also represents vector fields with varying degrees of accuracy as

desireable and based on available resources like memory. We provide a method similar

to edge maps for improving the accuracy of quantized flow as compared to its interpolated

counterpart. Also, varying degrees of precision (granularity) can be easily achieved by using

different number of bins per edge. This is particularly useful for faster analysis of data using

lesser memory.

Future development of this work should include investigation for a better form of map-

ping of bins within a link. Currently we use a linear map. Using higher order mapping can

provide higher accuracy with fewer links. This will help in reducing the overall memory

footprint of the representation. Simplifying detected topological features would be of

interest, since the representation is approximate and certain features such as clusters of

cycles or critical points could be refinement artifacts rather than stable features of the flow.

For example, if a dataset has slowly spiraling sinks and sources, these could appear to be

large clusters of cycles under approximation and lesser granularity. Features that appear

and disappear at different refinement levels are sensitive to accuracy and hence can be

considered less important as compared to more stable features that are present even in the

most approximate representation of the flow. Trying for more and more accurate quantized
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flow with respect to a particular interpolation like linear interpolation may become an

overkill given that choosing a different interpolation can give entirely different results.

Extending this representation to three-dimensional vector fields will be challenging. Even

if it is possible to represent a three-dimensional mesh simplex like a tetrahedron as a set

of bins on its boundary, there is no notion of ordering to this set of bins. Constructing

an order preserving map that can consistently map inflow bins to outflow bins may not be

trivial. Perhaps, it will be helpful to start with a discrete represent of higher forms of flow

descriptors like stream surfaces rather than streamlines.
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