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ABSTRACT 

 With oil prices high, and energy prices generally increasing, the pursuit of more 

economical and less polluting methods of climate control has led to the development of 

seasonal underground thermal energy storage (UTES) using pump-assisted smart 

thermosiphon arrays (STAs). 

 With sufficient thermal storage capacity, it is feasible to meet all air-conditioning 

and heating requirements with a trivial fuel or electrical input in regions with hot 

summers and cold winters.  In this dissertation, it is described how STAs can provide 

seasonal energy storage to meet all climate control needs.  STAs are analyzed and 

compared with current similar technologies. 

 The objective of this research was to create a methodology to design STA systems 

for any cooling load in any climate.  Full year simulations were performed to model the 

charging and discharging processes to minimize total pipe length.  The modeling results 

were validated with analytical solutions and some experimental data. 

 The model developed was successfully able to simulate the heat transfer in and 

out of the soil through thermosiphon pipes over the course of one year using actual 

weather data and loads.  Based on initial modeling results, a pilot-scale thermosiphon 

system was implemented.  A description of this system and limited temperature data is 

put forth in Chapter 4.   
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 The cooling loads of three buildings in 16 locations were calculated.  Four soil 

types were used in each location, and a STA was modeled and optimized for each.  

Chapter 5 presents the results of these design optimizations.  Optimum pipe spacing was 

found to be proportional to the square root of thermal diffusivity.  This correlation allows 

for the development of an optimization routine that can find the optimized design faster, 

which should lead to further design correlations.  The total pipe length needed was found 

to correlate with the thermal effusivity of the soil. 



 
 

 

CONTENTS 

ABSTRACT ....................................................................................................................... iii 

LIST OF TABLES ............................................................................................................ vii 

LIST OF FIGURES ......................................................................................................... viii 

CHAPTERS 

1. INTRODUCTION ...........................................................................................................1 

Thermal Energy Storage ...................................................................................................3 
Smart Thermosiphons ....................................................................................................12 
Smart Thermosiphon Arrays ..........................................................................................14 
Research Objectives .......................................................................................................15 
References ......................................................................................................................18 

2. COMSOL MODELS .....................................................................................................21 

Methods ..........................................................................................................................22 
Results ............................................................................................................................32 
Discussion ......................................................................................................................34 
Conclusions ....................................................................................................................39 
References ......................................................................................................................40 

3. MODELING FREEZING AND MELTING .................................................................41 

Methods ..........................................................................................................................41 
Results ............................................................................................................................48 
MATLAB Design Methodology ....................................................................................55 
References ......................................................................................................................62 

4. PILOT SCALE...............................................................................................................63 

Methods ..........................................................................................................................63 
Discussion ......................................................................................................................69 
Soil Analysis ..................................................................................................................72 
Power Requirements ......................................................................................................78 
References ......................................................................................................................79 



 
 

vi 
 

5. DESIGN OPTIMIZATION RESULTS .........................................................................81 

Methods ..........................................................................................................................81 
Results ............................................................................................................................91 
Conclusion ......................................................................................................................98 
References ......................................................................................................................98 

6. CONCLUSIONS AND RECOMMENDED WORK ..................................................100 

COMSOL Model ..........................................................................................................100 
Pilot Scale .....................................................................................................................102 
MATLAB Model ..........................................................................................................103 
Design Optimization ....................................................................................................104 
Future Work .................................................................................................................106 
Final Conclusions .........................................................................................................107 

APPENDICES 

A. DESIGN ......................................................................................................................108 

B. ANALYTICAL SOLUTIONS ....................................................................................116 

C. SIMULATION CODE ................................................................................................123 

D. OPTIMIZATION CODE ............................................................................................128 

 



 
 

 

LIST OF TABLES 

Table  Page

2.1. Results of optimization study………………………………………….. 35

3.1. Temperature boundary condition modeled……………………………. 50

3.2. Physical parameters for melting due to a line source………………….. 53

4.1. Density and specific heat of various soil components………………… 74

4.2. Pilot scale soil properties by depth…………………………………….. 78

5.1. ASHRAE 90.1-2007 envelope requirements (U-values in W/m2/K)….. 86

5.2. ASHRAE 90.1-2007 envelope requirements (U-values in 
Btu/h/ft2/°F).…………………………………………………….……... 
 

86

5.3. Weather file locations and climatic data (SI units)……………………. 87

5.4. Climatic data (IP units)………………………………………………... 87

5.5. Building loads (SI units)………………………………………………. 89

5.6. Building loads (IP units)………………………………………………. 90

5.7. Selected soil thermal properties (SI units)…………………………….. 91

5.8. Selected soil thermal properties (IP units)…………………………….. 91

5.9. Optimization results for building 1……………………………………. 92

5.10. Optimization results for building 2……………………………………. 93

5.11. Optimization results for building 3……………………………………. 94

5.12. Thermal effusivities……………………………………………………. 97



 
 

 

LIST OF FIGURES 

Figure  Page

1.1. Heat transfer cancellation at top of U-tube borehole heat exchangers… 5

1.2. The operation of a heat pipe.…………………………………………... 8

1.3. The operation of a thermosiphon, or gravity-assisted heat pipe………. 9

1.4. Thermosiphon operating in pump-assisted mode……………………… 11

2.1. Circular 7-pipe domain.  Dimensions in meters……………………….. 23

2.2. Domain modeled representing infinite square matrix.  Dimensions in 
meters………………………………………………………………….. 
 

23

2.3. Square matrix domain showing thermosiphon pipes and domain 
modeled………………………………………………………………... 
 

24

2.4. Thermal conductivity, k, as a function of temperature, T……………... 26

2.5. Specific heat as a function of temperature indicating the strong spike 
due to the phase change at 273.15 K…………………………………... 
 

27

2.6. Empirical model of annual temperatures……………………………… 31

2.7. Total energy flux out of the ground during winter…………………….. 31

2.8. Results from COMSOL study…………………………………………. 33

2.9. Half-year heat fluxes…………………………………………………... 36

3.1. General model geometry with even node spacing to N nodes………… 44

3.2. Modeled melt radius R(t) and λt compared to closed-form solution…... 55

3.3. Geometry of hexagonal array, showing area not modeled (Alost) by 
chosen method…………………………………………………............. 
 

57



 
 

ix 
 

3.4. Increased node spacing based on consecutive sums…………………... 60

4.1. Arrangement of seven thermosiphon pipes for pilot scale…………… 64

4.2. Direct-push drilling, using a pneumatic hammer and expendable tip…. 65

4.3. Thermosiphon pipes installed………………………………………….. 65

4.4. Thermosiphons with heat exchangers…………………………………. 66

4.5. Float switch and pump assembly……………………………………… 67

4.6. Pipe connectivity at top of thermosiphon pipe………………………… 68

4.7. Underground temperature profile……………………………………… 69

4.8. Infrared image of heat exchanger……………………………………… 70

5.1. Number of pipes associated with 1, 2, and 3 hexagons………………... 95

5.2. Correlation between diffusivity and separation……………………….. 97



 
 

 

CHAPTER 1 

INTRODUCTION 

 Due to increasing energy costs, pollution, awareness of global climate change, 

and concern over the negative geopolitical consequences of reliance on foreign oil, there 

is more focus on energy conservation and sustainability.  Economically, it makes sense to 

have technologies that consume less energy and offset demand for power from daytime 

peak hours.  Environmentally, technologies that pollute less and generate fewer 

greenhouse gases, including carbon dioxide, are gaining favor when costs can be 

controlled. 

 Approximately one quarter of the carbon dioxide the United States produces is 

from burning fossil fuels to meet residential energy needs, mostly for heating and air 

conditioning [1]. It is also known that conservation produces the greatest decrease in 

carbon dioxide production per dollar spent [2].  It follows that the least expensive way to 

reduce residential carbon dioxide emissions is through improved climate control 

efficiencies. 

 According to the latest report of electricity consumption published by the Energy 

Information Administration (EIA), 41% of electricity consumed in commercial buildings 

goes toward space heating, ventilation, cooling, and refrigeration.  Cooling is the second 

largest end-use for electricity in commercial buildings [3]. As more data centers and 

server rooms are built, and temperatures increase from global warming, the cooling load 
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for buildings increases.  The increasing cooling load is partially indicated by the increase 

in residences cooled by air conditioners from 64% in 1993 to 87% in 2009 [4-5].  To 

alleviate the power consumed by air conditioning and other cooling equipment, new 

technologies need to be developed that can handle the load without consuming as much 

power.   

 There are many opportunities for conservation in space cooling.  Some of the 

popular methods in practice include two stage evaporative cooling, ground source heat 

pumps, daily thermal energy storage, hybrid systems, demand control, and better building 

envelopes.  In climates with hot summers and cold winters, it is thermodynamically 

possible to provide all heating and air-conditioning needs, without significant fuel or 

electrical energy input, by storing heat or “cold” for use during the opposite season; this 

is called seasonal thermal energy storage. 

 Seasonal thermal energy storage (STES) has three principal obstacles: 

1. A large amount of storage medium must be available with the heat capacity to 

satisfy the integrated load of an entire season. 

2. An effective method of transferring heat in and out of the storage medium must be 

designed to handle peak loads and charge rapidly when the opportunity arises. 

3. There is potential for large thermal losses due to the inherent temperature 

difference between the storage medium and its surroundings during discharge. 

 If the heat transfer and storage problems can be solved, there is great potential for 

energy savings and CO2 reductions using seasonal thermal energy storage.  As such, 

seasonal thermal energy storage heating and cooling could be able to provide zero-carbon 

heating and air conditioning.  
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 This dissertation details the use of a new technology, smart thermosiphon arrays 

(STAs), to transfer heat to and from soils effectively. Based on preliminary analysis, 

computer models, and experimental data, it is clear that these systems exchange adequate 

thermal energy with the ground to provide all the cooling needs of a typical house or 

business, with minimal electrical or fossil fuel energy input. The goal of this research was 

to understand the parameter effects associated with thermosiphon arrays to further the 

engineering knowledge toward the design of a 100% carbon-free heating and cooling 

system indistinguishable in simplicity and comfort from conventional heating, 

ventilation, and air-conditioning (HVAC) systems. 

 
Thermal Energy Storage 

 Technologies that store thermal energy for future use can be divided into three 

primary categories.  These are sensible heat storage (specific heat), latent energy storage 

(phase change materials), and thermochemical (including nuclear) storage [2].  The most 

common examples of thermal energy storage use geologic materials such as rock, soils, 

or concrete to store sensible energy and water to store latent energy [6].  The amount of 

sensible energy stored in these materials depends on their heat capacity, volume, and 

temperature. The amount of latent energy stored depends on the fraction of phase change 

material and the heat of fusion or vaporization.  Some of the existing thermal energy 

storage systems are reviewed in [7].  

 Geologic material is considered in this research as the heat storage medium 

because of its availability, low cost, lack of size restrictions, adequate thermal capacity, 

and low conductivity.  This solves the first obstacle of STES, providing a relatively semi-
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infinite storage medium.  When using the soil as the storage medium, it is more 

specifically called underground thermal energy storage (UTES).   

 When soil is used as the energy storage medium, there are only a few restrictions 

on storage volume, such as drilling depth, maintenance of surface ecology, and plot size 

[1,8-10]. If heated and cooled in an optimum way, soils not only buffer short-term 

fluctuations in supply and demand, but also can accommodate a complete annual 

heating/cooling load and serve a seasonal balancing function. Energy storage directly in 

the soil also reduces the cost sensitivity of reservoir depth on optimum capacity selection 

since excavation is unnecessary. So, the storage system can be easily sized to maximum 

expected load by a simple increase of depth in most cases. 

 
Ground Source Heat Pumps 

 
 The most widely used method of yearly energy storage currently is ground source 

heat pumps (GSHPs) that use ground loop heat exchangers (GLHEs) to extract or inject 

heat into the ground.  While saving most users significant amount of money in 

operational costs, these systems are not passive and, for small to medium applications, 

usually have a high installation cost compared to conventional systems. These costs for 

GSHPs and GLHEs are associated with a large amount of drilling, the installation of long 

pipes that make up the ground loops and the compressors and pumps that move the 

working fluid.   

 Underground thermal storage requires some kind of heat exchange with the 

ground.  GSHPs are some of the most widely used technologies that have heat exchange 

with the ground.  GLHEs used with GSHPs have been implemented in many ways.  

Some of the more common methods are shown in [8].  These include pipe systems where 
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a working fluid is pumped through the pipes, generally in a closed loop.  These closed 

loops can be installed horizontally in trenches, vertically in boreholes, or submerged in 

water bodies.  Open loops can also be used with production and injection wells.   

 Some of the limitations of these heat exchangers are the space they take up 

(horizontal loops), ineffective heat exchange due to cancellation in closely spaced pipes 

(vertical loops, see Fig. 1.1) [11], or the need for a high water table and associated water 

rights permits (open loops).  Another recently developed method uses a self-propelled 

flexible drill-head, which allows pipe to be separated sufficiently to avoid thermal 

interference.  This method settles the issue of cancellation, but it still requires a vapor-

compression refrigeration cycle and circulation pumps, consuming electricity [12].  All of 

these limitations could be resolved with smart thermosiphons. 

 

Figure 1.1.  Heat transfer cancellation at top of u-tube borehole heat exchangers. 
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 The use of smart thermosiphons is similar to u-tube boreholes, typically installed 

with GSHPs, in that they facilitate heat transfer to and from the soils. Passive 

thermosiphons have been used in various other applications [13]. However, rather than 

heating or cooling the soil for future energy use, ground source heat pumps generally take 

advantage of the earth’s relatively constant temperature [14]. Thus, energy dissipation, 

rather than storage, is desired with GSHPs. In contrast, STAs are being developed to 

concentrate energy for seasonal storage. 

 When plastic pipes are used in heat pump systems to exchange heat with the soil, 

the generally accepted assumption of negligible thermal effects in plastic pipes may not 

be an accurate representation of the thermodynamic coupling with the ground. Plastic 

(PVC and Polyethylene) pipes were introduced for economic reasons, justified by the 

argument that resistance to heat transfer is much greater in the soil than in the pipe. 

However, in [15], it is shown that heat flows are substantially reduced (nearly half) due to 

high thermal resistance of the pipe walls and contact resistance between pipe and soil. 

Also, for vertical boreholes with closed loop tubing, “short circuiting” of heat from the 

hot tube to the adjacent cold tube decreases the amount of heat that can be transferred to 

the soil (see Fig. 1.1) [11,16-17]. This problem worsens as the tube spacing decreases. 

The installation cost for vertical borehole installation is also high, requiring dozens of 

large diameter (>0.2 m, >8 in.) boreholes to be drilled to depth for loop insertions. In 

such commercial installations, an improvement in the heat transfer between the ground 

and the heated space is of great importance and enormous potential economic value. 

Application of smart thermosiphons, as a means of coupling heat pumps with the ground, 

seems to be a simple and effective step forward. 
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 A GSHP system can be replaced with a mostly passive thermosiphon system, 

which uses much more effective phase change phenomena for capturing/releasing heat 

[18].  If plastic u-tube piping in the ground is replaced with an array of thermosiphons 

and connected directly to a heat exchanger in the heated or cooled space, there would be 

no need for intermediary heat transfer fluids and heat exchangers used in GSHP systems. 

Heat in a thermosiphon-based system can be transferred to and from soil to heated or 

cooled medium without a vapor-compression cycle heat pump with its electrical energy 

consuming compressor, intermediary heat exchangers, or liquid pumps to move water-

glycol solution through the plastic piping in the ground. 

 As shown in this study, thermosiphon-assisted UTES promises to meet air-

conditioning loads with under half of the drilling and pipe length used in GSHP systems.  

This technology uses conventional passive thermosiphons to transfer energy out of soil 

and controlled rate transfer of energy into the soil.   

 
Heat Pipes 

 
 Heat pipes are devices that transfer heat efficiently from a region of high 

temperature to a region of relative low temperature.  Thermosiphons are often called 

gravity-assisted heat pipes.  The classical heat pipe is comprised of a closed pipe with a 

wicking material on the inner surface charged with a pure working fluid.  The working 

fluid has to be pure in order to have effective mass transfer.  The working fluid is in two 

phases: vapor and liquid.  The liquid is primarily contained in the wicking material.  

Because of the temperature difference between the two ends of the pipe, the working 

fluid, or refrigerant, evaporates on the hotter end and the vapor travels to the cooler end.  

Thermodynamically, the cooler end has a lower pressure, and the saturation pressure at 
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that temperature and flow in the vapor phase are driven by the pressure difference.  The 

liquid phase has a capillary pressure in the wicking material that pulls it toward the 

warmer end.  As the working fluid condenses on the cooler side and evaporates on the 

hotter side, heat is transferred efficiently from hot to cold [19], as illustrated in Fig. 1.2.  

Heat pipes are primarily used in energy recovery ventilation (ERV) applications when a 

contaminated airstream is exchanging heat with ventilation air, and cross-contamination 

is to be avoided.  Thermosiphons are a particular application of heat pipes to transfer heat 

in only one direction. 

 
 

 
 

Figure 1.2.  The operation of a heat pipe. 
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Thermosiphons 
 
 A thermosiphon functions in the same way as a heat pipe with one important 

difference.  Thermosiphons have the capability of transferring heat in one direction only, 

upward, against gravity.  Instead of having a wicking material that brings the liquid phase 

back to the warm end of the pipe, the liquid returns to the warmer end with the assistance 

of gravity by dripping down the pipe.  Since the liquid can move in only one direction 

(with gravity), heat can only be transferred from the bottom of the thermosiphon to the 

top.  When a thermosiphon pipe is placed below ground, heat is transferred out of the 

ground when the top (exposed to ambient air) sees temperatures lower than the 

subsurface temperatures, as shown in Fig. 1.3. 

 
Figure 1.3.  The operation of a thermosiphon, or gravity-assisted heat pipe. 
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 Conventional thermosiphon technology uses a working fluid at its saturation point 

to transfer thermal energy from one end of a sealed pipe to the other [20].  When oriented 

in a vertical position, the working fluid vapor will condense at the top of the pipe if the 

temperature at the top is lower than the temperature at the bottom of the pipe.  Upon 

condensing, the fluid gives up its latent energy to the surroundings, and, assisted by 

gravity, runs down the inner pipe wall to the bottom.  In order to maintain pressure, more 

of the liquid vaporizes from the bottom, and in doing so, takes its latent energy from the 

surroundings.  The overall net effect is that heat is transferred from the bottom of the pipe 

to the top of the pipe when the temperature is lower at the top.  No heat is transferred 

when the low temperature is at the bottom (Fig. 1.3).  Thermosiphons, or gravity-assisted 

heat pipes, have been implemented in a variety of applications from maintaining the 

permafrost in Alaska to cooling CPUs in computers [21,22].   

 In order to reverse the process, the thermosiphon needs to be pump assisted.  A 

small pump located at the bottom of the pipe moves liquid to a heat exchanger located 

above ground.  The liquid vaporizes there and moves back to the bottom of the well as 

vapor where it condenses again.  This controlled mode of operation uses the ground as a 

thermal sink, shown in Fig. 1.4. 

 During the winter season, a set of thermosiphons can be arranged to passively 

freeze a subsurface section of ground large enough to meet the air conditioning needs of 

the summer.  The depth of these heat pipe wells should nearly equal the horizontal 

distance that they cover in order to maximize the volume to surface area ratio and 

minimize undesired heat losses or gains. 
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Figure 1.4.  Thermosiphon operating in pump-assisted mode. 
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Smart Thermosiphons 

 During the summer, when there is a demand for cooling, the energy storage 

system, i.e., the cold ground, can be discharged by running a thermosiphon in a pump-

assisted mode.  This is a new application of thermosiphons and has not been previously 

reported in the literature.  A small pump placed in the bottom of a thermosiphon with a 

tube attached is activated when cooling is needed (Fig. 1.4).  The pump removes liquid 

refrigerant from the bottom of the thermosiphon pipe and transfers it through tubing to 

the surface where it can be pumped to evaporator coils.  The refrigerant evaporates there 

as it takes heat from its surroundings and returns to the thermosiphon in the vapor phase.  

The vapor will condense on the coldest part of the pipe wall, which will be in the ground 

if the ground is frozen from wintertime operation.  This will drip back to the bottom 

where it can be picked up by the pump again.  Thus, heat is transferred from the load to 

the ground. 

 
Passive Soil-Cooling Mode 

 
 The two-phase thermosiphon considered for system performance improvement 

operates on a simple heat pipe principle. Heat from the soil vaporizes the thermosiphon’s 

working fluid inside of the sealed pipe. The resulting vapor moves up and carries its 

latent heat to the heat exchanger where it condenses as heat is removed. That heat 

exchanger would be placed in the cold winter air if the intent is to cool the soil for future 

use as an air conditioning heat sink, or, if taking energy from hot soils for winter heat, in 

the HVAC ducting to heat air. The condensate liquid then drains back down the 
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thermosiphon and repeats the cycle. Soil and water near the thermosiphon cool down, 

giving up their thermal energy.  

 It should be noted that the above-described passive mode of operation for space 

heating would work satisfactorily only if soil is heated in summer to above 25-28°C (77-

82°F). If soil temperature drops below 24-25°C (75-77°F), there will be a need for a 

small “booster” heat pump in order to supply the room heat exchanger with the working 

fluid saturated vapor at approximately 30-35°C (86-95°F).  

 
Smart Soil-Heating Mode 

 
 Cooling of space can be achieved by reversing the working fluid flow direction in 

the system. In this case, the smart thermosiphon returns liquid from the bottom of each 

thermosiphon to the evaporator heat exchanger. Depending on the application (heat 

rejection to chilled soil in the summer or heating of soil for future winter heating), the 

evaporator would be different. For air-cooling purposes, the evaporator might be identical 

to the heat exchangers found in millions of homes using vapor compression central air 

conditioning.  As in current residential installations, the liquid phase flows to the heat 

exchanger, and the vapor leaves to be re-condensed. With chilled soils and smart 

thermosiphons in place, the outside air-cooled condensing units would be eliminated (as 

would their electrical load and their noise).  Vapor would thus move from the air-

conditioned space to the chilled walls of the thermosiphon, giving up its heat to the 

surrounding soil as it condenses. The smart thermosiphon returns liquid condensate to the 

heat exchanger at a rate determined by the mass flow rate of vapor entering the 

thermosiphon.  
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 In the soil-heating mode, natural convection is expected in permeable soils 

outside of the thermosiphon walls enhancing heat transfer.  In the case of soil heated 

during the summer to be used for heating in the winter, solar thermal collectors or heat 

exchangers collecting process waste heat can be used.  It may be possible to increase the 

thermosiphon wall temperature to over 100°C (212°F), initiating water “boiling” on the 

outside wall of the thermosiphon. If the water vaporized on the wall is replenished by 

capillary action in the soil, an extremely effective heat transfer phenomena called the heat 

pipe effect [23] can be exploited to overcome near-wall heat transfer limits. 

 The cooling load (especially in southern United States) is normally higher than 

the heating load.  If sufficient heat is removed from the soil in winter, then underground 

thermal storage can become an excellent way to create an energy sink for summer. 

 
Smart Thermosiphon Arrays 

 To concentrate energy in the soil for both heating and air conditioning purposes, 

two STAs would be needed: one to create a “cold bank” in the winter for summer air 

conditioning and the other to create a “hot bank” during the summer for winter heating. A 

single array cannot be used for both purposes at the same time because the heating array 

has to maintain temperatures above the conditioned space temperature all year, and the 

cooling array has to maintain temperatures below.  Placing the two arrays in close 

proximity would create high thermal gradients and, in effect, would cancel each other 

out.  Arrays of smart thermosiphons are required to increase the thermal efficiency of 

storage; a single thermosiphon does not allow storage since the gains in one season are 

dissipated before the next season arrives.  An array of thermosiphons increases the 

volume of storage material to surface area of the boundary ratio.  Thermal losses occur at 
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the boundary of the storage media; therefore, the surface area and the thermal gradient of 

the boundary should be minimized for greatest performance.   

 Heating with thermosiphon arrays is not included in this research.  In a well-

insulated building with process loads, plug loads, lights, and people, the internal heat 

gains increase the conditioned space temperature without the assistance of a heating 

system; therefore, heating is not usually required until the outdoor air temperature is 3-

6°C (5-10°F) below the desired indoor air temperature.  Because of this temperature 

difference between outdoor and indoor air temperature, any location with a significant 

heating load has an average annual air temperature below the desired conditioned space 

temperature.  The average subterranean ground temperature, which is equal to the 

average annual air temperature (without any geothermal or other heat sources), is the 

starting point for a thermosiphon array.  To use a thermosiphon array for heating, the 

ground must be heated above the temperature required by the conditioned space; whereas 

for cooling, the ground typically starts at a temperature below conditioned space 

temperatures, making cooling easier to implement with thermosiphon arrays than heating.  

In addition, freezing the soil for a cooling application inhibits fluid flow, making the 

stored temperatures less likely to dissipate due to convection or other transport 

phenomena. 

 
Research Objectives 

 The objective of the research leading to this dissertation was to create a 

methodology to design STA systems, installed in a phase change material (PCM), used 

for satisfying cooling loads.  The methodology is needed because of the complexity of 

the systems and the variability in each application.  Full-year simulations are required to 
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model the charging and discharging process, with the goal to find the minimum amount 

of thermosiphon pipe to be installed that will meet the load satisfactorily.  In developing 

the full-year simulation, it is necessary to validate the results with known analytical 

solutions and experimental data.  Further research may lead to a methodology that will 

approximate optimized solutions without the need to model the system iteratively. 

 In an effort to simulate the system accurately, the development of the theory used 

in the model, including the assumptions, is required.  The problem, with all of its 

complexities, needs to be simplified as much as possible without losing accuracy.  This 

theory and subsequent simplification is presented in Chapter 2.  The equations to be 

solved are shown along with the assumptions and neglected effects. 

 The possibility of using packaged multiphysics software was explored.  The 

results from this research are presented in Chapter 2.  Through an optimization effort in 

COMSOL 3.3, it was found that packaged heat transfer software often lacks the 

capability of seamlessly modeling phase change processes.  Although reasonable results 

were obtained, instabilities from the discontinuities in thermal properties at the phase 

change, the cost of the software, the time-intensive process, the inability to use actual 

weather data, and the difficulty to set up batch processes with an optimization routine 

necessitated abandonment of this method.  The COMSOL optimization did provide 

assistance to the design of an installed pilot scale system, described in Chapter 4. 

 Once packaged heat transfer software was abandoned for the development of 

original code, it became necessary to verify the simulation with known analytical 

solutions.  Few solutions exist for freezing and melting in a radial geometry.  One of 

these solutions is presented, as it is found in literature, along with the Stefan formulation, 
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in Appendix B.  This solution is presented in its entirety because it can be used to predict, 

a priori, how long a sample of phase change material will take to freeze or melt if an 

adequate heat flux can be determined for the thermosiphon pipe wall.  The solution also 

serves as validation for the simulation code developed as part of this research. 

 The equations to be solved need to be formulated for discrete sections, or nodes, 

of the domain to be modeled.  The discretization of those equations and the process by 

which the model calculates the equations is presented in Chapter 3.  This development 

was done to be able to model the heat transfer in and out of the soil over the course of one 

year to determine if a particular design of STAs is adequate for a particular cooling load.  

The model was created in MATLAB and validated through comparisons with three 

analytical solutions.  These comparisons are presented in Chapter 3.  The three analytical 

solutions, in radial coordinates, include the steady-state solution of temperature boundary 

conditions at the inner and outer radii (without phase change), the time to change phases 

with a flux boundary condition at the inner radius, and the flux boundary condition with a 

moving front, which is the solution presented in Appendix B.  All three analytical 

solutions validate the model. 

 In order to use the simulation model for the design and optimization of 

thermosiphon arrays, some constraints, assumptions, and input parameters are necessary.  

Chapter 3 presents the constraints to geometry, the weather files to be used as boundary 

conditions, and the determination of size and spacing of nodes.   

 The assumptions concerning economization, unmet load hours, thermostat 

settings, and return air temperatures for the system are presented in Chapter 5, along with 

the definition of optimized design and the iteration method used to find that optimum.  
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Finally, the results of various design optimizations are presented.  Three buildings, each 

with different cooling loads, were selected and modeled in 16 locations having individual 

climate zones.  An array of thermosiphons was optimized for each of these buildings, in 

each location, for four soil types.  The purpose of having such an extensive matrix of 

optimizations in the study was to establish a correlation between the inputs and the 

results.  This could lead to a more simplified calculation and determination of an 

optimum design. 

 From the results of Chapter 2, a pilot-scale thermosiphon system was 

implemented.  A description of this system and limited temperature data is included in 

Chapter 4.  In addition, an analysis of the soil, from where the pilot-scale system was 

installed, and a general analysis of methods to determine the thermal properties of soils, 

is presented.  The power requirements and possible gains in efficiencies are briefly 

discussed. 

 A conclusion of the research is presented in Chapter 6, along with 

recommendations for future work.  The design of the pilot-scale is further explained in 

Appendix A.  Appendixes C and D include the MATLAB code used to model the yearly 

temperature fluctuations in the phase change material, and the optimization routine for 

designing systems to meet specific loads, respectively. 
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CHAPTER 2 

COMSOL MODELS 

 The purpose of the research presented in this chapter was to explore the 

possibility of using packaged heat transfer software to study parameter effects on, design, 

and optimize smart thermosiphon arrays (STAs).  The STA models were established in 

the commercially available software package COMSOL Multiphysics 3.3 [1].  This 

software uses a finite element method with automatic node meshing to solve multiphysics 

problems. 

 There are two models presented in this chapter.  The first model is used to 

determine how ground temperature reacts to a STA.  The second model is an 

optimization of pipe diameter for a fixed geometry.  Both models are used to prove the 

capabilities of the software and determine the feasibility of using packaged software to 

design STAs.   

 It was found that because of the discontinuities related to the phase change 

process, standard heat transfer software, including COMSOL, lack the capability of 

mitigating the related instabilities that arise.   
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Methods 

Geometry 

 The 2-D models generated used the general heat transfer mode of the software, 

with conduction only.  The two dimensions modeled made a horizontal plane 

perpendicular to the thermosiphon pipes, midway between the surface and the bottom of 

the wells so that end effects are negligible. 

 The soil geometry chosen for the model, playing on the symmetry of the system, 

was a quarter-circle with a 5 m (16 ft.) radius, as shown in Fig. 2.1.  There is further 

symmetry that would allow for a smaller domain to be modeled.  However, one of the 

purposes for this model is to demonstrate ground temperatures between thermosiphons, 

which is easier to see on the larger quarter-circle domain. 

 Three heat pipes were modeled in this domain representing 7 heat pipes total.  

One heat pipe was positioned centrally and the other two were placed 60 degrees apart 

with one of them on the axis of symmetry.  All three heat pipes are 1.5 m (5 feet) apart.  

Only conduction was modeled in this basic rendition. 

 A later model, used for optimization of heat pipe diameter, consisted of an infinite 

domain of heat pipes located on the nodes of a Cartesian grid with a separation of 1 m (3 

ft.).  Due to the symmetry of this model, only an eighth of the surface of a single 

thermosiphon was modeled with a half-meter right triangle extending out, as shown in 

Fig. 2.2 and Fig. 2.3.  Figure 2.3 shows the same geometry as shown in Fig. 2.2 as it fits 

into the larger repeating square matrix domain. 
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Figure 2.1. Circular 7-pipe domain.  Dimensions in meters. 

 

 
Figure 2.2. Domain modeled representing infinite square matrix.  Dimensions in 
meters. 
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Figure 2.3.  Square matrix domain showing thermosiphon pipes and domain modeled. 
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Sub Domain Settings 
 
 The equation solved for the temperatures of the single domain was: 

௣ܿߩ  ݐ߲߲ܶ + ∇ ∙ (−݇∇ܶ) = ܳ (2.1)

where ρ is density, ܿ௣ is heat capacity, T is temperature, t is time, Q is an internal 

volumetric heat source, and ∇ is the del operator.  In this situation, there is no internal 

heat source, so Q=0.    The isotropic thermal conductivity for water, k (in W/m/K), is 

modeled as a function of temperature (in Kelvin, adapted from a COMSOL library 

function for liquid water): 

 ݇ = 0.0015	ܶ + 0.7489 − ߨ1.16 tanିଵ(1000(ܶ − 272.5)) (2.2)

The inverse tangent smoothes the transition that occurs during the phase change of water 

to ice.  The graph of Eq. (2.2) is shown in Fig. 2.4. 

 For other properties, the subdomain was modeled as a saturated soil with 35% 

porosity, which is representative of a sandy soil.  Therefore, the density can be taken as a 

weighted average of the density of water, liquidρ  = 1000 kg/m3 (62.4 lb/ft3), and the 

density of the dry soil, solidρ  = 2650 kg/m3 (165 lb/ft3):  

ߩ  = ௟௜௤௨௜ௗߩ0.35 + ௦௢௟௜ௗ (2.3)ߩ0.65

In addition, the heat capacity can be modeled as a weighted average of the product of 

densities and heat capacities divided by the overall density:  

 ܿ௣ = ௟௜௤௨௜ௗܿ௣,௟௜௤௨௜ௗߩ0.35 + ߩ௦௢௟௜ௗܿ௣,௦௢௟௜ௗߩ0.65  (2.4)

where the specific heat of the soil, cp,solid=1003.2 J/kg/K (0.2396 BTU/lb/°F), is taken to 

be a constant (from COMSOL function and [2]), and the specific heat of the water is a 
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function of temperature that includes the phase change and the heat of fusion of ice 

(spread over ~0.2 K centered at 273.15 K): 

 ܿ௣,௟௜௤௨௜ௗ ൬ Jkg ∙ K൰
= 1.65 × 10଺ expቆ−(ܶ − 273.15)ଶ0.0128 ቇ + 3100
+ 700 tanିଵ(1000(ܶ − 273.15)) 

(2.5)

Equation (2.5) is adapted from tabulated data [3].  The graph of Eq. (2.5) is shown in Fig. 

2.5. 

 The initial temperature of the domain was set at 11.85 °C (53.33 °F).  This initial 

temperature comes from an average of temperature fluctuations in Salt Lake City taken 

from a MesoWest monitoring station during 2006 and 2007[4].   

Figure 2.4.  Thermal conductivity, k, as a function of temperature, T. 
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In every case, the domain was meshed automatically by the software to determine 

nodes. The grid resolution was not adjusted or refined manually from the automatic 

meshing.  The timestep used in COMSOL varies in size and is determined automatically 

by the software. 

 
Boundary Conditions 

 
 The outer edge of the circular domain shown in Fig. 2.1 was set as a convective 

flux boundary.  This outer boundary was modeled with convective flux to allow heat to 

enter from the surrounding soils.  The other two boundaries were symmetric or insulated 

boundaries.  The heat pipes themselves were not modeled but rather simplified as 

convective heat flux boundaries.  The heat pipes were modeled with a radius of 5 cm (2 

in.) in this demonstration model.   

 
Figure 2.5.  Specific heat as a function of temperature indicating the strong spike due to
the phase change at 273.15 K. 
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 For the second model, whose domain is shown in Fig. 2.2, all boundaries except 

the heat pipe wall were modeled as symmetric (i.e., insulated boundaries).  Again, the 

inner workings of the heat pipes were not modeled but were simplified as convective heat 

flux boundaries.  A highly conductive layer of aluminum 5 mm (0.2 in.) thick was set at 

the edge of the heat pipes.  In this model, the radius of the heat pipes was varied.   

 For both models, the themosiphon pipe walls should be modeled as conductive 

boundaries with fixed temperatures equal to the outdoor air temperatures, with the 

exception that heat can only transfer out while in passive mode.  In order to force the 

software to model this conditional boundary, a convective heat flux boundary was chosen 

with the conditional statement built into the heat transfer coefficient.  If the outdoor air 

temperature was greater than the soil temperature next to the thermosiphon pipe wall, the 

convective heat transfer coefficient was set to zero.  Otherwise, the heat transfer 

coefficient was set extraordinarily and unrealistically high to mimic a fixed temperature 

boundary condition.  A fixed temperature boundary condition equal to outdoor air 

temperatures assumes that thermosiphons have a negligible resistance to heat transfer in 

comparison to other resistances [5].  The heat transfer coefficient on the pipe wall 

boundaries was set at 1x108 W/m2/K (2x107 BTU/hr/ft2/°F) when the temperature of the 

soil next to the heat pipe is greater than the outside ambient air temperature, consistent 

with the assumption that heat transfer rates are high due to negligible resistance.   

 The summer season is modeled only for the first model, the seven heat pipes 

represented in Fig. 2.1.  The convective heat flux into the soil through the heat pipes 

during the pump-assisted mode, qsummer, was: 

௦௨௠௠௘௥ݍ  = ℎ( ௢ܶ௨௧ − 295K) (2.6)



29 
 

 
 

with an overall heat transfer coefficient, h, of 28.45 W/(m2K) (5.01 BTU/ft2/hr/°F) and a 

temperature difference based on the living space temperature being cooled to 295 K (71 

°F), and where Tout is the outside temperature modeled by the ambient temperature 

model.  The heat transfer coefficient was determined based on a total heat return equal to 

85% of the heat taken out during the winter season to demonstrate a system oversized for 

the cooling load with a 20% safety factor.  Again, it was assumed the thermosiphons 

provided no resistance to heat transfer.  The summer season was not modeled for the 

optimization study of Fig. 2.2. 

 
Ambient Temperature Model 

 
The external temperatures were represented by a seven-parameter empirical 

formula determined from 2006 hourly weather data taken from the weather station at Salt 

Lake City International Airport [4].  This representation is a superposition of two sine 

curves as follows where A through G are the seven parameters to be adjusted: 

 ܶ = ܣ + ݐܥ)sinܤ + (ܦ + ݐܨ)sinܧ + (2.7) (ܩ

The parameters C and F are the periods of these sine curves and were set to be 

2π/24 to represent daily temperature fluctuations and to 2π/8760 to represent yearly 

seasonal temperature fluctuations, respectively.  Outdoor air temperature is T, and time 

(in hours) is t.  The other parameters were optimized through a least-square difference 

method using the solver add-in in Microsoft Excel with t=0 being October 15.  These 

parameters are A=285.3, B=4.60, D=1.62, E=13.44, G=3.19.  This curve fit is shown in 

Fig. 2.6.  Using Eq. (2.7) to represent the ambient temperatures, instead of actual weather 

data, has the disadvantage of removing all extreme temperature conditions.  
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Air Conditioning Load Determination 
 
 The air conditioning load was only modeled, and therefore determined, for the 

seven heat pipe model represented in Fig. 2.1.  After the winter season was simulated and 

results were obtained, the heat flux was integrated over boundary surfaces and all time 

steps to obtain the total heat transferred from the system per length of heat pipe.  A plot 

of the energy flux across the thermosiphon pipe walls with respect to time is shown in 

Fig. 2.7.  The large peaks that occur in Fig. 2.7 are suspected to come from the instability 

of the model from including heat capacity and thermal conductivity terms containing 

discontinuities at the freezing point.  The first large peak at ~850 hours is when the 

domain first starts to freeze.  The total heat amount of heat removed during the winter 

season per length of pipe was found to be 2.65x105 kJ/m (7.66x104 BTU/ft).  The air 

conditioning load was arbitrarily determined to be 85% of the heat transferred from the 

soil to demonstrate a system oversized by about 20%, which is 2.25x105 kJ/m (6.50x104 

BTU/ft.).  This amount of heat was returned to the ground according to Eq. (2.6) for 

qsummer.  The heat transfer coefficient was calculated by integrating the temperature curve 

for all T greater than 295 K (71°F) over the course of the year and dividing this along 

with the circumference of the heat pipe into the total load of 2.25x105 kJ/m (6.50x104 

BTU/ft.): 

 ℎ = ׬0.85 	ସ଴଴଴଴݈ݐ݀ݍ ׬ ௢ܶ௨௧଼݀ݐ଻଺଴଴ = 2.25 × 10଼ Jm3600 shr ∙ 2πݎ ׬ ௢ܶ௨௧଼݀ݐ଻଺଴଴ = 28.45 WmଶK (2.8)

where q is the total energy flux (W/m) shown in Fig. 2.7, t is time (hr), and l is the length 

of heat transfer surface.  The heat transfer coefficient determined by Eq. (2.8) 
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Figure 2.6. Empirical model of annual temperatures. 

 
Figure 2.7. Total energy flux out of the ground during winter. 
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is not meant to represent a realistic heat transfer coefficient; it is an artificial 

determination used to force the model to behave according to the actual setup and control 

of the system. 
 

 
Pipe Diameter Optimization 

 
 For the geometry represented in Fig. 2.2, the COMSOL simulation was completed 

for varying pipe diameters over 167 days simulation time.  At that point, the heat flux 

across the thermosiphon wall was turned off by setting the boundary to a zero-flux 

boundary.  The simulation was restarted until the entire domain came to thermal 

equilibrium.  The total heat transferred out of the system per unit length of pipe was 

calculated with the integration 

 ܳ = නܣ8 ௣்݀ܶ೑்೔ܿߩ  (2.9)

where A is the area of the domain, and all other variables are as previously defined.  The 

factor of 8 is to compensate for the simulation only covering an eighth of the pipe.  This 

method matches a boundary integration of the heat flux provided by COMSOL but turns 

out to be much quicker and easier. 

 
Results 

 Once the air-conditioning load was determined for the first geometry (Fig. 2.1), 

the model could be run for the full year.  The results are represented in Fig. 2.8.  The 

absolute minimum occurs in January next to the wall of the heat pipe and is -8.22°C 

(17.2°F).   

 The maximum temperature that occurs next to the heat pipe during the summer 

season does not exceed initial conditions.  As can be seen, the ground between the heat 
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Figure 2.8. Results from COMSOL study.  Dimensions can be found in Fig. 2.1. 
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 pipes freezes during the winter and remains frozen throughout the summer and into 

September.  Because the thermal load returned to the ground was only 85% of the heat 

removed during the winter season, the domain after one year (October) is cooler than the 

initial conditions (November), instead of returning to the same state in a cyclical fashion. 

 The results of the optimization study (Fig. 2.2) are shown in Table 2.1.  The final 

temperature shown in the table is the temperature everywhere in the domain when it 

reaches thermal equilibrium.  A 2”-nominal aluminum pipe gives the maximum heat 

transfer for a 1 m (3.3 ft.) separation.  All pipe wall thicknesses were set to the 

corresponding schedule-40 dimensions.  The units shown here for nominal pipe diameters 

are represented in the inch-pound  (IP) unit system, instead of SI, as is the standard 

industrial practice. 

 Figure 2.9 shows the heat flux throughout the season for the various pipe 

diameters.  The function for heat capacity, Eq. (2.5), resembles a delta function, and the 

function for thermal conductivity, Eq. (2.2), is similar to a step function.  Because of the 

near discontinuities associated with these two functions at the freezing temperature, the 

model becomes partially unstable.  This instability is exhibited by the large peaks in heat 

flux at the thermosiphon wall when freezing begins.   

 
Discussion 

 A comparison of the results obtained in this simulation to results obtained for a 

design of a ground loop heat exchanger done by Spitler in his software package 

GLHEPro [6] shows that a common ground loop heat exchanger using common practice 

technology requires 2.5 times the amount of drilling depth that a STA would require.   
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Table 2.1.  Results of optimization study. 
Nominal Pipe 

Diameter Outer Diameter Final Temperature 
at equilibrium 

Total Heat Transferred 
per length 

 (mm) (in.) (°C) (°F) (kJ/m) (Btu/ft.) 
1/2" 21.34 0.840 -0.06 31.9 125,340 36,210 
1" 33.40 1.315 -0.12 31.8 144,778 41,826 

1 1/2" 48.26 1.900 -1.45 29.4 154,604 44,664 
2" 60.33 2.375 -3.42 25.8 158,003 45,646 

2 1/2" 73.03 2.875 -3.58 25.6 156,669 45,261 
3" 88.90 3.500 -4.80 23.4 156,902 45,328 
4" 114.3 4.500 -5.06 22.9 152,098 43,940 
5" 141.3 5.563 -5.37 22.3 145,525 42,041 

 
 
 The example that Spitler uses in GLHEPro has a total cooling load of 95,646 kW-

hr, as shown in his Table 1.  GLHEPro indicates that for this load, 3,796.7 m (12,456 ft.) 

of borehole would be required, corresponding to 25 kWh of load per meter (7.6 kWh/ft.) 

of borehole drilling.  In comparison, the results obtained from this simulation shows a 

load of 62.4 kWh per meter (19.0 kWh/ft.) drilled, meaning the pipe and drilling cost of 

this proposed heat pipe system will be approximately 40% that of a comparable ground 

loop heating and cooling system. 

There are a few reasons for this significant increase in performance.  

Thermosiphons do not have heat transfer interference with a return line running adjacent 

to a supply line (see Fig. 1.1) [7-9].  The thermosiphons modeled use metal tubing with 

higher thermal conductivities than the plastics used in GLHEs.  In addition, less power is 

used by eliminating the compression refrigeration cycle, although the decrease in power 

has no effect on pipe length or drilling depth. 

 As pipe diameter increases, the amount of heat transferred and the final 

temperature of the domain reach asymptotic values that cannot be surpassed, limited by 

winter temperature fluctuations.  Because the total volume of ground between heat pipes 
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a. 

b. 

Figure 2.9.  Half-year heat fluxes.  a. ½” nominal pipe  b. 1” nominal pipe. 
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c. 

d. 

Figure 2.9.  Continued.  c. 2” nominal pipe  d. 3” nominal pipe. 
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e. 

f. 

Figure 2.9.  Continued.  e. 4” nominal pipe  f. 5” nominal pipe. 
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goes down when the separation distance is fixed and the pipe diameter goes up, the total 

heat capacity also goes down, and the total heat transferred drops away from the 

asymptotic value.  These effects indicate an optimum pipe diameter for a given 

separation.  It is assumed, therefore, that there is also an optimum separation for a fixed 

pipe diameter.  In practice, the pipe diameter is constrained by drilling techniques and by 

the size of the equipment that is installed within the pipe.  It is therefore more useful to 

optimize pipe separation than pipe diameter. 

 
Conclusions 

 For large-scale commercial design and optimization, COMSOL proves to be too 

cumbersome, as shown by the difficulty to model actual conditions (artificial heat 

transfer coefficients), too slow, with runtimes exceeding three days, lengthy post-

processing times, manual extraction of certain data, difficult to run batch jobs, and unable 

to represent phase changes adequately (heat capacity and thermal conductivity equations 

with discontinuities).  Another model is necessary that is capable of accurately 

representing phase changes.  The numerical method used and the process of determining 

time steps is unknown, which is another reason COMSOL was abandoned for original 

code. 

 From preliminary simulations, thermosiphon UTES appears to be a viable energy 

savings solution competitive with and comparable to GSHPs.  Although an entire climate 

control system using thermosiphons appears to have an initial installation cost similar to 

GLHEs (thermosiphons have a lower cost for drilling and pipe, but an additional cost for 

heat exchangers; see Appendix A), the operational cost promises to be much lower than 

any widespread technology currently in use. 
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 The design of thermosiphons installed in the ground can be optimized with 

optimum design parameters being found through a straightforward set of simulations.  

For 1-m (3.3 ft.) spacing, the optimum pipe was found to be a 2-inch nominal sch. 40 

aluminum pipe.   
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CHAPTER 3 

MODELING FREEZING AND MELTING 

 Explicit solutions are only available for a few simple phase change problems in 

one dimension.  Most phase change problems are not easily solved, or even 

approximated, by the available explicit solutions.  In order to “solve” a problem of this 

nature, it must be simulated through some numerical method.  Typically, such problems 

have a large number of variables that are changing with time; therefore, a computer code 

is favorable for keeping track of the large amounts of data.  In order to calculate time-

dependent problems with a computer, the problem must be discretized.  Variables that are 

continuous functions of time or space, such as temperature and energy, must be replaced 

with their values at discrete points, and at discrete time steps, small enough that the sense 

of continuity is not lost.  For a computer to solve a problem numerically, derivatives and 

integrals must be replaced by finite-differences and sums. 

 
Methods 

The Enthalpy Method 
 

 Although there are other methods of numerically simulating phase change 

problems such as front-tracking methods, the enthalpy method (as described in [1]) is 

favored because it does not force the Stefan condition on the solution. Rather, the phase 

change interface is a natural boundary condition dependent on the internal energy of the 
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discrete point, allowing multiple phase change boundaries and disappearing phases, 

which is classically observed in heat storage applications where there are charging and 

discharging cycles.  There are shortcomings to the enthalpy method, especially when 

modeling phenomena where there is instability in the phase change interface, such as 

supercooling. 

 The enthalpy method is based on the law of conservation of energy.  The simplest 

way to apply the conservation law is through an integral heat balance over a control 

volume as in Eq. (3.1). 

 න ݐ߲߲ ൬මܸ݀ܧ൰݀ݐ =௧ା∆௧
௧ න ඵ−ݍԦ ∙ ሬ݊Ԧ ௧ା∆௧ݐ݀ܵ݀

௧  (3.1)

Here t is time, E is energy per unit volume, or ܧ =  where ρ is density and e is energy ,݁ߩ

per unit mass.  The heat flux into the volume V across surface S is −ݍԦ ∙ ሬ݊Ԧ.  One of the 

advantages of the integral heat balance is its validity over multiple phases, even with 

discontinuities in energy or heat flux.   

 To complete the enthalpy method, the volume occupied by the phase change 

material is divided into a finite amount of control volumes ௜ܸ, with i ranging from 1 to N, 

with N being the number of control volumes, and energy conservation, Eq. (3.1), is 

applied to each.  From the equation of state described in Eq. (B.1), with ܧ௜ = 0 

representing a solid substance at its melt temperature (Tm), if  ܧ௜ ≤ 0, ௜ܸ is solid, if  ܧ௜ ≥ ௜ܸ is liquid, and if 0 ,ܮߩ < ௜ܧ <  ,then ௜ܸ is part solid and part liquid, or slushy ,ܮߩ

where L is the latent heat of fusion.  The liquid fraction in a slushy control volume is 

defined as: 

௜ߣ  = (3.2) ܮߩ௜ܧ
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Unlike the analytical solution of Appendix B, the exact location of the solid-liquid 

interface is unknown and is not part of the enthalpy method calculation but can be 

recovered afterward. 

 
Enthalpy Method in Cylindrical Coordinates 

 
 Again, since the problem under consideration is simplest in cylindrical 

coordinates, that is how the enthalpy method will be worked in detail, using a similar 

setup to the analytical solution presented in Appendix B.  Consider a hollow cylinder, 

with inner radius ݎଵ/ଶ and outer radius ݎேାଵ/ଶ, as in Fig. 3.1, where N is the number of 

nodes in the domain.  The cylinder being made up of a phase change material that 

changes phase at a melt temperature ௠ܶ, initially solid with the initial condition 

,ݎ)ܶ  0) = ௜ܶ௡௜௧(ݎ) ≤ ௠ܶ,      ݎଵ/ଶ ≤ ݎ ≤ ேାଵ/ଶ (3.3)ݎ

where T is temperature and T(r,0) is the temperature, as a function of radius r, at the 

initial time t=0.   

 Conservation of energy applied to one-dimensional radial control volumes of 

height Δz  

 ௜ܸ = ௜ାଵ/ଶଶݎ൫ߨ − ௜ିଵ/ଶଶݎ ൯∆(3.4) ݖ

where i represents a particular node and ranges from 1 to N, turns into 

 න ݐ߲߲ ቌ2ݖ∆ߨන ,ݎ)ܧ (ݐ ݎ ௥೔శభమ௥೔షభమݎ݀ ቍ ݐ݀ =௧೙శభ௧೙
− න නݖ∆ߨ2 ݎ߲߲ ൫ݍᇱᇱ(௥,௧)ݎ൯݀ݎ	ݐ݀௥೔శభమ௥೔షభమ

௧೙శభ௧೙  

(3.5)

Here, q’’ is the heat flux, or the energy transfer rate per unit area, and n is the time step. 
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Figure 3.1.  General model geometry with even node spacing to N nodes. 
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Integrating the derivatives in Eq. (3.5) leads to 

 ቎2ݖߨන ,ݎ)ܧ ௥೔శభమ௥೔షభమݎ݀	ݎ	(ݐ ቏௧೙
௧೙శభ

= න ௧೙శభ௧೙ݖߨ2 ൬ݍ′′ ൬ݎ௜ିଵଶ, ൰ݐ ௜ିଵଶݎ − ′′ݍ ൬ݎ௜ାଵଶ, ൰ݐ ௜ାଵଶ൰ݎ  ݐ݀
(3.6)

If it is assumed the volumetric energy density ݎ)ܧ,  ,௜, that isݎ∆ does not vary over (ݐ

between ݎ௜ିଵ/ଶ and ݎ௜ାଵ/ଶ, and if the timestep is small enough that the heat flux can be 

assumed constant over ∆ݐ௡, the equation can be fully discretized, as a time-explicit 

scheme, 

,௜ݎ)ܧ]  (௡ାଵݐ − ,௜ݎ)ܧ ௜ାଵଶଶݎ)[(௡ݐ − ௜ିଵଶଶݎ )
= ௡ݐ∆2 ൬ݍ′′ ൬ݎ௜ିଵଶ, ௡൰ݐ ௜ିଵଶݎ − ′′ݍ ൬ݎ௜ାଵଶ, ௡൰ݐ  ௜ାଵଶ൰ݎ

(3.7)

It can be shown that 

௜ାଵଶଶݎ  − ௜ିଵଶଶݎ = ௜ (3.8)ݎ∆௜ݎ2

and therefore, 

,௜ݎ)ܧ  (௡ାଵݐ = ,௜ݎ)ܧ (௡ݐ + ௜ݎ∆௜ݎ௡ݐ∆ ൬ݍ′′ ൬ݎ௜ିଵଶ, ௡൰ݐ ௜ିଵଶݎ − ′′ݍ ൬ݎ௜ାଵଶ, ௡൰ݐ ௜ାଵଶ൰ (3.9)ݎ

From the applicable heat equation and corresponding solution for temperature, it can be 

shown using Fourier’s Law that the heat transfer between node i-1 and i is 

ᇱᇱ௜ିଵଶ௡ݍ  = ( ௜ܶିଵ௡ − ௜ܶ௡)ݎ௜ିଵଶܴ௜ିଵଶ௡  (3.10)
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Here, the notation is continued to show the discrete spatial nodes with a subscript, and a 

superscript is introduced to indicate the discrete time-step.  The resistance to heat transfer 

is 

 ܴ௜ିଵଶ௡ = ێێۏ
lnۍێێ ቆݎ௜ିଵଶݎ௜ିଵቇ݇௜ିଵ௡ + ln ൭ ௜ିଵଶ൱݇௜௡ݎ௜ݎ ۑۑے

(3.11) ېۑۑ

Combining Eq. (3.9) and Eq. (3.10), with the discrete notation, 

௜௡ାଵܧ  = ௜௡ܧ + ௜ݎ∆௜ݎ௡ݐ∆ ቌ( ௜ܶିଵ௡ − ௜ܶ௡)ܴ௜ିଵଶ௡ + ( ௜ܶାଵ௡ − ௜ܶ௡)ܴ௜ାଵଶ௡ ቍ (3.12)

Now, a new heat transfer term, q, that resembles a heat transfer rate per unit length, can 

be introduced to simplify the equations, 

௜ିଵଶ௡ݍ  = ( ௜ܶିଵ௡ − ௜ܶ௡)ܴ௜ିଵଶ௡  (3.13)

 
Model Process 

 
 By discretizing the boundary conditions and initial values, there is enough 

information to numerically model the problem of interest.  Initially, temperatures of all 

the nodes are known. 

Initial values: 

 ௜ܶ଴ = ௜ܶ௡௜௧(ݎ௜) ≤ ௠ܶ, ݅ = 1,… ,ܰ (3.14)

The thermal properties of the phase change material are considered constant within a 

phase, therefore 
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௜଴ܧ  = ቐܿߩௌ[ ௜ܶ଴ − ௠ܶ], ௜ܶ଴ < ௠ܶܿߩ௅[ ௜ܶ଴ − ௠ܶ] + ,ܮߩ ௜ܶ଴ > ௠ܶߣߩ௜଴ܮ ௜ܶ଴ = ௠ܶቑ (3.15)

where cS and cL are the specific heats of the solid and liquid phases, respectively.  With 

all the initial temperatures and internal energies (and subsequently, the phase) of every 

node known, the problem can be solved with a time-explicit scheme by stepping forward 

in time once it is decided how the thermal conductivities of slushy nodes are to be 

determined. 

 
Thermal Conductivity Models 

 If the phase boundary is moving sharply perpendicular to the direction of heat 

transfer, the resistances of the two phases is additive, with the thickness of each phase 

determined through the liquid fraction.  Therefore, the thermal conductivity, k, can be 

determined from 

 1݇௜௡ = )௜௡݇௅ߣ ௠ܶ) + 1 − )௜௡݇ௌߣ ௠ܶ) (3.16)

Alternatively, if the phase change in slushy nodes is occurring in columns parallel to the 

direction of heat transfer, the conductivities are additive, and the overall thermal 

conductivity is 

 ݇௜௡ = )௜௡݇௅ߣ ௠ܶ) + (1 − )௜௡)݇ௌߣ ௠ܶ) (3.17)

When the thermal conductivity is a function of temperature only, the Kirchoff 

temperature, u, can be employed in place of T. 

௜௡ݑ  = ቐ݇ௌ[ ௜ܶ௡ − ௠ܶ], ௜ܶ௡ < ௠ܶ݇௅[ ௜ܶ௡ − ௠ܶ], ௜ܶ௡ > ௠ܶ				 0, ௜ܶ௡ = ௠ܶቑ (3.18)

If the equation for heat flux, Eq. (3.13), is reformulated in terms of u,  
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௜ିଵଶ௡ݍ  = ௜ିଵ௡ݑ − ௜௡lnݑ ቀ ௜ିଵቁݎ௜ݎ  (3.19)

Therefore, using the Kirchoff temperature eliminates the need to calculate a thermal 

conductivity value for slushy nodes, since they are treated as isothermal and do not 

contribute to the heat transfer. 

 Once the boundary conditions are established, the energy density of each node 

can be calculated for the next time step, 

௜௡ାଵܧ  = ௜௡ܧ + ௜ݎ∆௜ݎ௡ݐ∆ ൫ݍ௜ିଵ/ଶ௡ − ௜ାଵ/ଶ௡ݍ ൯, ݅ = 1,… ,ܰ (3.20)

The temperatures at each node can be recalculated, 

 ௜ܶ௡ାଵ = ቐ ௠ܶ + ,ௌܿߩ/௜௡ାଵܧ ௜௡ାଵܧ ≤ 0௠ܶ + ௜௡ାଵܧ) − ,௅ܿߩ/(ܮߩ ௜௡ାଵܧ ≥ 							௠ܶܮߩ 0 < ௜௡ାଵܧ < ቑ (3.21)ܮߩ

as well as the liquid fraction 

௜௡ାଵߣ  = ቐ0, ௜௡ାଵܧ ≤ 01, ௜௡ାଵܧ ≥ ,ܮߩ/௜௡ାଵܧܮߩ 0 < ௜௡ାଵܧ < ቑ (3.22)ܮߩ

 At this point, the time-step can be advanced, and new conductivities, resistances, 

and Kirchoff temperatures can be calculated.  A complete numerical solution is obtained 

through advancing time-steps until the desired time is covered. 

 
Results 

Code Validation 

 In order to model thermosiphons adequately, a computer code has to be developed 

and checked for reliability.  A computer code was written, included as Appendix C, 

capable of modeling a constant temperature boundary condition, a constant flux boundary 
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condition, and the eventual transient ambient temperature boundary condition used to 

model STAs.  The code could easily be modified to accommodate other boundary 

conditions as well, such as a convection or radiation boundary.  The three methods of 

determining thermal conductivity of slushy nodes, presented in the previous section, are 

also represented by the model. 

 
Temperature Boundary Condition 

 
 The first test for a heat transfer model of a hollow cylinder is to verify that it 

matches the known solution for temperature boundary conditions at the inner and outer 

radius.  The known steady-state solution for the temperature profile within the wall of a 

hollow cylinder is [2] 

(ݎ)ܶ  = ଵܶ/ଶ − ேܶାଵ/ଶln ൬ ேାଵ/ଶ൰ݎଵ/ଶݎ ln ቆ ேାଵ/ଶቇݎݎ + ேܶାଵ/ଶ (3.23)

where T1/2 is the temperature at the inner surface, and correspondingly, TN+1/2 is the 

temperature imposed on the outer surface.  Additionally, r1/2 and rN+1/2 are the inner and 

outer radius, respectively.  Here, it can be seen that the units of temperature and radius 

are irrelevant as long as they are consistent.  In addition, the thermal properties of the 

cylinder do not have any effect on the steady-state solution.  As a test to the code, a 

specific scenario is proposed for comparison.  By setting ଵܶ/ଶ = 1℃ (33.8°F) and 

ேܶାଵ/ଶ = ଵ/ଶݎ with ,(ܨ77°)	℃25 = 0.0254	m (1 in.) and ݎேାଵ/ଶ = 0.25	m (9.84 in.), the 

results for various r are shown in Table 3.1.  For information on how to do this 

calculation using the code, see Appendix C. 
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 Long before the simulation time of one year is completed, the temperatures have 

stabilized at their steady-state values.  The time-step for this simulation is irrelevant since 

it is a steady-state solution.  The results for the steady-state temperatures at various 

locations are shown alongside the exact solution, in Table 3.1.  Thermal conductivities 

calculated through the sharp front and columnar freezing formulations yield identical 

steady-state temperature results.  When the thermal conductivity throughout the material 

is a constant (i.e. only one phase exists), the three methods of determining the thermal 

conductivity and subsequent resistances are mathematically identical.  

 The exact solution for the heat transfer rate through the hollow cylinder is 

௥ݍ  = )݈݇ߨ2 ଵܶ/ଶ − ேܶାଵ/ଶ)ln ൬ݎேାଵ/ଶݎଵ/ଶ ൰  (3.24)

where l is the length of the cylinder, and thermal conductivity, k, is 0.00058 W/mK.  

Because the heat transfer rate in the simulation code is per unit length and per radian, the 

Table 3.1. Temperature boundary condition modeled. 

Node 
Radius 
cm (in.)

Temperature 
(Exact solution) 

°C (°F)

Temperature 
(Modeled) 

°C (°F) 
r1/2 2.5400 (1.0000) 1 (33.8) 1 (33.8) 
1 2.7442 (1.0804) 1.8115 (35.2607) 1.8115 (35.2607) 
2 3.3567 (1.3215) 3.9261 (39.0670) 3.9261 (39.0670) 
3 4.3776 (1.7235) 6.7131 (44.0836) 6.7131 (44.0836) 
4 5.8069 (2.2862) 9.6785 (49.4213) 9.6785 (49.4213) 
5 7.6445 (3.0096) 12.5642 (54.6156) 12.5642 (54.6156) 
6 9.8905 (3.8939) 15.2676 (59.4817) 15.2676 (59.4817) 
7 12.5449 (4.93894) 17.7628 (63.9730) 17.7628 (63.9730) 
8 15.6076 (6.14472) 20.0554 (68.0997) 20.0554 (68.0997) 
9 19.0787 (7.51130) 22.1631 (71.8936) 22.1631 (71.8936) 

10 22.9582 (9.03866) 24.1058 (75.3904) 24.1058 (75.3904) 
rN+1/2 25.0000 (9.84252) 25 (77) 25 (77) 
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comparable rate is 

(݊݋݅ݐ݈ܽݑ݉݅ݏ)௥ݍ  = ݈ߨ௥2ݍ = ݇൫ ଵܶ/ଶ − ேܶାଵ/ଶ൯ln ൬ݎேାଵ/ଶݎଵ/ଶ ൰  (3.25)

For the scenario presented, the solution to Eq. (3.25) for this flux is -6.0873 W/m            

(-6.3309 Btu/h/ft.).  To the same number of significant figures, the MATLAB code has an 

identical result. 

 
Flux Boundary Condition with Freezing 

 
 With the initial temperature at the melt temperature (0°C), and the initial phase 

being liquid (with a liquid fraction of 1), the heat transfer rate at the inner boundary 

needed to freeze the domain, in time t, per length, per radian is calculated by 

௥ݍ  = ேାଵ/ଶଶݎ)ܮߣߩ − ଵ/ଶଶݎ ݐ2(  (3.26)

 If t is taken to be one day, or 86,400 seconds, and rN+1/2=0.5, r1/2=0.1, with L=360 

kJ/kg, then qr is -0.5 kW/m.  By setting a flux boundary condition at the inner radius to -

0.5 kW/m, the model should show an entirely frozen domain after one day (simulation 

time).  In reality, the first node will be at a temperature lower than the melt temperature 

before the outer node is frozen, but the total energy necessary to freeze the domain will 

have been removed.  Therefore, as a method of verification, the total energy in each node 

is calculated (e) and summed, Eq. (3.27), and the simulation is stopped when this sum is 

below zero. 

 ݁ =෍݁௜௡ே
௜ୀଵ =෍ܧ௜௡((ݎ௜ + 0.5Δݎ௜)ଶ − ௜ݎ) − 0.5Δݎ௜)ଶ)ே

௜ୀଵ  (3.27)
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With N=10, and any of the thermal conductivity modes employed, ݁ = ݁݉݅ݐ at ݉/ܬ݇	0 = 86,400.04	s.  The error is 0.00005%, most likely resulting from the propagation 

of rounding errors, which is certainly small enough to accept the simulation code as 

having an adequate mathematical formulation of the energy balance during a freezing 

process. 

 
Flux Boundary Condition With Moving Melt Front 

 
 The boundary conditions for the problem are 

,ଵ/ଶݎ൫′′ݍ  ൯ݐ = ଵ/ଶݎߨ2−ܳ , ݐ > 0 (3.28)

,ேାଵ/ଶݎ൫′′ݍ  ൯ݐ = 0, ݐ > 0. (3.29)

where Q is the line heat source (W/m) centered at r=0. 

 Note the necessary differences between the setup of the problem here and in 

Appendix B.  In order to simulate the problem numerically, values must be finite.  The 

two boundary conditions expressed by limits, Eq. (B.14) and Eq. (B.15), have to be 

approximated by making ݎଵ/ଶ/ݎேାଵ/ଶ ≈ 0.  The semi-infinite domain is simulated by not 

allowing time to get significantly large.  That is, the line- source heat flux should have 

little effect on the material near the outer radius.  The phase change interface should be 

maintained closer to the inner radius to make valid comparisons with the analytical 

results. 

 In order to solve the particular problem presented in Appendix B, the boundary 

condition at r=r1/2 is set to 

ଵ/ଶ௡ݍ  = ܳ (3.30)

Additionally, the boundary condition at r=rN+1/2 is 
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ேାଵ/ଶ௡ݍ  = 0 (3.31)

 Finally, the computer model of the freezing process can be compared with the 

explicit closed-form solution for melting due to a line source presented at the end of 

Appendix B.  The problem to be considered is defined by the parameters in Table 3.2, 

where the initial temperature of the solid is represented by TS. 

 The heat flux, Q, is set to 0.2π to provide convenience in solving the 

transcendental equation, Eq. (B.19), 

ߨ4ܳ  ݁ିఒ೟మ + ݇ௌ( ௠ܶ − ௌܶ)ܧଵ ቀߙ௅ߙௌ ௧ଶቁߣ ݁ିఈಽఈೄఒ೟మ = ௧ଶ (B.19)ߣ௅ߙܮߩ

for the parameter λt, not to be confused with the liquid fraction λ.  The thermal 

diffusivities of the liquid and solid phase are represented by αL and αS, respectively. By 

solving for λt, and calculating the same parameter from the position of the melt front in 

Table 3.2. Physical parameters for melting due to a line source. 

Parameter 
Solid Property 

SI units (IP units)
Liquid or melt Property 

SI units (IP units) 

Q 0.2π kWm ൬0.208π Btuhr ft.൰ 

L 334 kJkg ൬144Btulb ൰ 

ρ 1000 kgmଷ ൬62 lbft.ଷ൰ 

Tm = TS 0°C (32°F) 0°C (32°F) 

kS, kL 2.18 WmK൬1.26 Btuhr ft. °F൰ 0.58 WmK൬0.34 Btuhr	ft. °F൰ 

cS, cL 2 kJkgK ൬0.48 Btulb °F൰ 4 kJkgK ൬0.96 Btu	lb	°F൰ 



54 
 

 
 

the simulation using Eq. (B.16) 

(ݐ)ܴ  = ,ݐ௅ߙ௧ඥߣ2 ݐ > 0 (B.16)

the two can easily be compared.  For this particular scenario, the transcendental equation 

for λt , Eq. (B.19), gives ߣ௧ = 0.7608.  

 With a flux boundary condition, ݎଵ/ଶ = 0.001 m (0.039 in.), ݎேାଵ/ଶ = 50	m (164 

ft..), and ܰ = 100, the location of the melt front (Rmelt) is determined by searching for the 

node with a liquid fraction (λ) between 0 and 1, and for that node, calculating 

 ܴ௠௘௟௧௡ = ௜ݎ + ௜௡ߣ)௜ݎ∆ − 0.5) (3.32)

Subsequently, λt can be calculated from Eq. (B.16).  A graph of R(t) and λt for the model 

compared with values calculated from the closed-form solution is shown in Fig. 3.2. 

 Under these conditions, λt, determined from the model, oscillates between 0.432 

and 0.865 initially.  As the model progresses, the oscillations are dampened.  A running 

average of λt steadies at a value of 0.768. 

 The overall melt rate calculated by the model matches the closed-form solution 

well.  However, as the melt front reaches the boundary of a node, the melting rate 

increases, only to subsequently decrease after passing the boundary.  Because the energy 

is balanced, the overall melt rate is equivalent to the closed-form solution.  The 

instantaneous melt rate and the actual position of the melt front does not need to be 

precise; therefore, the model is ready to be used with a transient temperature boundary 

condition to optimize and design underground thermal energy storage systems using 

smart thermosiphons. It should be noted that specific information about instantaneous  
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rates of melting and positions of phase change boundaries should be regarded as 

imprecise values, but the overall energy of the model is balanced. 

 
MATLAB Design Methodology 

 This section describes the incorporation of the freezing and melting model 

developed in the previous section into a more complete, and adaptable, code to be used in 

designing underground smart thermosiphon arrays.  In order to be a viable methodology, 

the program has to be capable of modeling transient seasonal weather effects, and it has 

to be able to do it quickly. 

 
 

 
Figure 3.2.  Modeled melt radius R(t) and λt compared to closed-form solution. 
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Weather Data 
 
 The previous sections described the calculations that are to be performed each 

time-step in the model process, but the peripheral calculations and the setup of the 

problems have not described.  In order to size thermosiphon systems, a full year has to be 

modeled with as many temperature transients modeled as possible.  Published weather 

information, specifically ambient outdoor air temperature, is typically reported for every 

hour of the year [3], but can be found at smaller intervals [4].  It is considered that, for the 

purposes of this analysis, 8,760 outdoor temperature readings per year are sufficient for 

the design of a heating, ventilating, and air-conditioning (HVAC) system.  The 8,760-

hour model is accepted as the standard for energy modeling practice [5], and therefore is 

a common limitation of programs used to model building and HVAC energy.   

 Because the MATLAB design code has the capability of changing the boundary 

temperature at any time interval chosen based on a database, the parametric empirical 

formula for ambient temperature, used in Chapter 2 for the COMSOL modeling, is 

unnecessary. 

 As a robust representation of yearly temperature fluctuations, a typical 

meteorological year (TMY) file is selected as the ambient boundary conditions in the 

model.  The TMY files contain hourly meteorological values that represent conditions at 

a particular location over a long period, such as 30 years [6].  

 
Model Geometry 

 
 Smart thermosiphon arrays (STAs) imply a repeating arrangement of 

thermosiphons.  An irregular arrangement of thermosiphons could be reasonable in 

practice as an attempt to minimize losses from edge thermosiphons or adjust for site-
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specific features, such as a partially shaded area or varied soil compositions.  These 

situations are complicated, difficult to model, requiring 2-D or perhaps 3-D models, and 

are usually particular to single jobs.   

 Multiple options are available for regularly repeating patterns of thermosiphons in 

an STA.  In Chapter 2, a hexagonal unit and a square array were presented.  It is logical, 

in avoiding irregular arrangements, to use repeating patterns of evenly spaced 

thermosiphons.  It is also deemed reasonable to assume, because the influence of any 

single thermosiphon pipe is a cylinder, the tightest arrangement possible is optimal.  

Therefore, the geometry chosen for all design optimizations is a hexagonal array of 

thermosiphons, as is shown in Fig. 3.3.   

 To be entirely consistent with a hexagonal array, the model should be represented 

 
 
Figure 3.3. Geometry of hexagonal array, showing area not modeled (Alost) by chosen method. 
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in a 2-D Cartesian coordinate.  Based on the symmetry of the system, the 30-60-90 

triangle shown to the upper right of the center thermosiphon would be the domain 

modeled.  The base of that triangle is half the distance of separation between 

thermosiphons. 

 In an attempt to simplify, and therefore, speed up the modeling process, a 1-D 

cylindrical system is favored over the 2-D model.  By assuming the domain is contained 

in the circle, with a radius of half the separation, shown in Fig. 3.3, the total area modeled 

is decreased.  In terms of the radius, the area not accounted for (ܣ௟௢௦௧) by going to 

cylindrical geometry is 

௟௢௦௧ܣ  = ଶ൫2√3ݎ − ൯ (3.33)ߨ

The area modeled is 90.7% of the true area and should be accounted for in the design of 

thermosiphon arrays, especially when considering the amount of thermal storage 

available.  In addition, a cylindrical model allows a more accurate representation of heat 

transfer at the circular boundary formed by the thermosiphon pipe.  This heat transfer is 

considered more crucial to the design of a thermosiphon system than the heat storage lost 

by going to a radial system.   

 The models presented in this manuscript do not account for Alost.  The model can 

be corrected by generating a different outer radius for the model that would yield an area 

equal to the hexagon.  This radius (rmodel) would be expressed, in terms of the separation 

between thermosiphons, as 

௠௢ௗ௘௟ݎ  = 3଴.ଶହ√2ߨ (3.34) ݊݋݅ݐܽݎܽ݌݁ݏ

The radius of Eq. (3.35) is a 5% increase in the radius over what is used in the design 

methodology. 
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Nodal Radii 
 

 The enthalpy formulation used to create the melting and freezing model is a finite 

difference method, where the system being modeled is divided into individual segments 

called nodes.  In a one-dimensional radial system, the centers of these nodes have a 

radius (ri), where i is the node number, and a radial dimension (∆ݎ௜). Constant	∆ݎ௜, or 

evenly spaced nodes, is a typical selection for a finite-difference model.  For simplicity, 

evenly spaced nodes was the initial selection for the design methodology. 

 All thermal properties are assumed constant across a node, including the 

temperature and energy.  Therefore, the model becomes more accurate as the number of 

nodes (N) becomes larger.  However, every decrease in the minimum	∆ݎ௜, which comes 

from an increase in the number of nodes, decreases the size of each time-step, to maintain 

stability.  With more time-steps to calculate, and more nodes to calculate, the 

computational time increases significantly with each increase in N. 

 In order to minimize the length of time that it takes to model while still 

maintaining an acceptable accuracy, evenly spaced nodes are not used.   All of the heat 

that is introduced to or removed from the domain modeled comes through the 

thermosiphon wall, which is the inner radius, the boundary of the first node.  Being the 

smallest radius and the source of all heat, the area nearest the thermosiphon will have the 

most variation in thermal properties and largest temperature gradients.  Further from the 

thermosiphon wall, the soil acts as a large thermal mass with little variation in properties.  

Therefore, more nodes are needed near the thermosiphon than far away.  Given 

equivalent minimum node spacing, the time-steps for evenly spaced nodes and the time-

steps for nodes that increase in spacing with larger radius will be equivalent.  However, 
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there is a reduction in computational time because there will be fewer nodes to calculate 

with the uneven spacing. 

 There are many ways to determine the spacing of nodes.  The method used in the 

design methodology is based around the sum of consecutive numbers.  If the domain is 

split into N nodes, it can be further divided into 1+2+…+(N-1)+N equally spaced 

segments (see Fig. 3.4).  Each node takes i segments, where i is the node number starting 

from the inner radius.  That is, the size of the node is 

 

 

 
Figure 3.4.  Increased node spacing based on consecutive sums. 
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௜ݎ∆  = ݅∑ ݅ே௜ୀଵ ேାଵ/ଶݎ) − ଵ/ଶ) (3.35)ݎ

Therefore, the radius of the node is 

 

௜ݎ  = ଵ/ଶݎ + 2݅ + ∑ (݆ − 1௜௝ୀଵ )∑ ݅ே௜ୀଵ ேାଵ/ଶݎ) − ଵ/ଶ) (3.36)ݎ

Although there are other ways to size the nodes after the same fashion, this method is 

used.  Calculating nodes this way accomplishes the two goals of reducing the total 

number of nodes and maintaining a small node near the inner radius.  This pattern also 

allows for a whole number of nodes, which is a necessary criterion for the selection of 

node spacing. 

 The size of each time-step needs to be small enough to maintain stability.  For the 

purposes of the design methodology, the size of the time-step (∆ݐ), in seconds, is 

conservatively determined by 

ݐ∆  = min൮ ݔଶ2.1݉ܽ(௜ݎ∆)݊݅݉ ൬ ݇௅ܿߩ௅ , ݇ௌܿߩௌ൰ , 3600൲ (3.37)

where ݉݅݊(∆ݎ௜) is the minimum node size, and ݉ܽݔ ቀ ௞ಽఘ௖ಽ , ௞ೄఘ௖ೄቁ is the maximum thermal 

diffusivity for either the liquid phase (L) or the solid phase (S).  Equation (3.38) is based 

on the Courant-Friedrichs-Lewy (CFL) condition [7] 

ݐ∆  ≤ ଶ2ݎ∆ (3.38) ܿߩ݇

The boundary conditions change every hour; therefore, the time-step cannot exceed 3600 

seconds. 
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CHAPTER 4 

PILOT SCALE 

 This chapter details the design, installation, and operation of a pilot scale 

implementation of a smart thermosiphon array (STA) on a residential property in 

Midvale, Utah.  The design is based on the results from the computer modeling and 

preliminary optimization performed in COMSOL. 

 
Methods 

 The thermosiphon pipes were constructed using seven galvanized steel pipes with 

a 2 in. nominal pipe diameter and 3 m (10 ft.) in length.  In order to seal the bottom of the 

pipes, circles cut from a galvanized steel plate were welded on to one end.  Neither 

threaded caps nor standard weld-on caps could be used because they would have 

exceeded the inner diameter of the drill sheath using direct-push drilling.  The top, 

uncapped end of the pipe was threaded.   

 Three of the seven pipes were instrumented with 10 thermocouples each, evenly 

spaced at 30 cm (1 ft.) increments, placed on the outside of the pipes.  Attached to the 

other four pipes were five thermocouples each, evenly spaced at 61 cm (2 ft.) increments.   

 Seven boreholes 3 m (10 ft.) deep, located 1.5 m (5 ft.) apart, with six forming a 

hexagon around one in the center (Fig. 4.1), were drilled using a direct-push method of 

drilling (Fig. 4.2).  Instead of using a rotary drill bit, direct-push utilizes an expendable 
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tip that is left at the bottom of each hole.  The drill rotates minimally and has a percussion 

hammer to penetrate denser and harder soils.  Based on commercial bids, GeoProbe 

installation costs are about one-tenth the cost of drilling a 20 cm (8 in.) borehole using 

conventional methods. Direct push installation also eliminated the need for drilling mud 

and handling removed soils.  This drilling and the pipe locations are shown in Fig. 4.2 to 

Fig. 4.4.  The pipes were installed and temporarily capped to prevent contamination.  

 In addition to the seven boreholes for the thermosiphon pipes, three 4.3 m (14 ft.) 

deep temperature monitoring wells were drilled.  One monitoring well was located 15 cm 

(6 in.) from the center thermosiphon, another well was located in the center of the three 

thermosiphons with 10 thermocouples, and the third well was located 1.5 m (5 ft.) outside 

the hexagon array.  

 The inside of the thermosiphon pipes were lined with fiberglass window screen 

and held tight against the surface by shaped welded wire mesh.  The DIN 43650a 

 
Figure 4.1. Arrangement of seven thermosiphon pipes for pilot scale.  Thermosiphons 
are indicated by a “T”, temperature monitoring wells indicated by W1,W2, and W3. 
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Figure 4.2.  Direct-push drilling, using a pneumatic hammer and expendable tip. 
 
 

 
Figure 4.3. Thermosiphon pipes installed.  Pipe locations indicated with red arrows. 
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electrical connectors on Gotec ELS-50 30W electromagnetic pumps were removed so the 

pumps could fit inside the pipes and could have sealed electrical connections.  Hose 

strainers were attached to the bottom of the pumps in order to prevent failure from debris.  

Wired in series with the pumps, and located 15 cm (6 in.) above the pump inlets, were 

stainless steel metal float switches (Fig. 4.5), supplied by APG Sensors, model LFS-V-

5G.  The float switches were attached in shaped metal plates that held the tube, the 

switch, and the wires, so the float could move unimpeded inside the thermosiphon pipes.   

 Individual 1.5 m (5 ft.) square flat panel heat exchangers were constructed for 

each thermosiphon.  Each copper heat exchanger consisted of 40 vertical 1.5 m (5 ft.) 

tubes, 15.9 mm (0.5 in. nominal) diameter, connected by headers.  

 
Figure 4.4.  Thermosiphons with heat exchangers. 
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 In order to connect the heat exchanger, the annular tube, the thermosiphon pipe, 

and the wires from the pump and float switch, a special copper fitting was custom built, 

shown in Fig. 4.6.   

 Two valves at the top of the thermosiphon are the vapor return line, 2.2 cm (0.75 

in.) standard copper tubing , and the liquid supply line, 0.95 cm (0.25 in.) standard copper 

tubing, that service the air conditioning load through the evaporator coil. 

 The system was tested for leaks with positive pressure and under vacuum.  R-

134a was used as the working fluid.  The array was charged in February 2010 and 

experienced almost 2 months of freezing temperatures operating in a passive mode.   

 Data were gathered through a LabJack U6, a USB based measurement and 

automation device which provides analog inputs/outputs and digital inputs/outputs, using 

an experimental breadboard and multiplexer chips to accommodate 112 inputs.  The 

LabJack was controlled through MATLAB, using LabJack functions, connected to a 

 
Figure 4.5. Float switch and pump assembly. 



68 
 

 
 

computer via USB.  The LabJack also has the functionality to control the pump operation 

during heat injection mode. 

 Data from temperature monitoring wells 15 days after the system was charged are 

shown in Fig. 4.7.  Only the quadrant of the array with the monitoring wells is shown, 

symmetry can only be assumed for the other quadrants.  The general temperature profile 

is similar to the first month temperature profile from the calculations shown in Fig. 2.8.  

A quantitative comparison is not practical since the model uses a different soil type and 

saturation than the pilot scale.  Unfortunately, the data acquisition system was irreparably 

Figure 4.6.  Pipe connectivity at top of thermosiphon pipe. 
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damaged shortly after and no more data were gathered.  An infrared image (Fig. 4.8) of 

the center bottom part of the risers in a copper heat exchanger on a cold night shows that 

the copper was about 2°C (3.6°F) warmer than the ambient surroundings indicating heat 

flux from the ground.   

 
Discussion 

 Many lessons were learned in the construction and operation of the pilot scale.  

After the pilot scale was installed, the wetting of R134a on the multiple interior surfaces 

of the thermosiphon was considered.  It is unknown whether the refrigerant wets the pipe 

wall and mesh adequately to allow effective heat transfer out of the ground.  More tests 

are needed to identify the best materials for wetting, heat transfer, and cost. 

 
Figure 4.7.  Underground temperature profile. 
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 It is suspected that the fiberglass mesh acted as insulation and impeded heat 

transfer where it was installed, but there is no conclusive evidence from the data.  The 

effect of the mesh and inner lining should be tested further to determine if heat transfer is 

truly enhanced by having them installed.  The mesh with the lining is difficult to install, 

with the difficulty increasing with the length of the pipe.  Therefore, if the mesh is found 

to negligibly enhance heat transfer, it should be eliminated. 

 The data acquisition system and the attached thermocouples did not function as 

intended.  The LabJack received feedback from an unidentified source.  The noise and 

oscillations in the reference temperature measurement were translated into the data from 

 

Figure 4.8.  Infrared image of heat exchanger. 
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all of the thermocouples.  It was also discovered that the range and precision of 

measurement required is smaller than the tolerances and the reported error on most types 

of thermocouples.  Deformation in the thermocouple wire, among other things, could 

cause enough noise and inconsistencies between thermocouples that the relatively small 

temperature differences in the system would not be noticed.  Resistance based 

temperature measurements are recommended to achieve more precise results. 

 Even with the efforts to prevent contamination, debris made its way into the 

thermosiphon pipes.  This problem was resolved by removing the material with a vacuum 

cleaner, but with the pipes installed in the ground, it was difficult to confirm that all 

contaminants were removed.  Standard threaded caps could not be used during 

installation because they would not have fit inside the drilling sheath.  Better caps should 

have been devised for use. 

 After removing the electrical connections on the pumps, the wires were connected 

with difficulty, and then were covered with liquid electrical tape.  It was discovered later 

that the tape did not adhere to the plastic of the pump and resulted in an electrical short.  

A better design would include liquid tight electrical connections manufactured into the 

pump.  It should be remembered that the pump used was not designed for submersion. 

 The float switches were wired directly in series with the pumps.  The series 

wiring was done to reduce the number of wires that had to exit the pressurized pipe 

through the wire feed-through fitting.  For better control and data measurement, the float 

switch signal should come to the surface independent of the power lines to the pump.  

Control of the pump could then be more easily performed by a programmed control loop.  
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By wiring in series, the amperage limit of the float switch could be exceeded by the 

pump’s electrical demand, requiring the float switch to be replaced. 

 Although the system was pressure tested at both positive and negative pressures, 

five out of seven thermosiphon pipes would not hold their charge.  Specific leak locations 

could not be identified.  The flat panel heat exchangers had 210 soldered joints each.  The 

pipes had two or three threaded joints (depending on the pipe) and one welded joint on 

galvanized steel.  Brazed fittings are the recommended joint type for R134a systems.  The 

heat exchangers should have been brazed together instead of soldered. 

 The heat exchangers were not structurally supported to withstand a high wind 

load.  One of the thermosiphons lost all of its refrigerant charge after being felled by a 

wind storm.  The connection between the thermosiphon pipe and the heat exchanger had 

to be repaired.  The movement on the fittings caused by the wind could possibly have 

caused them to leak during windstorms even though they did not leak during pressure 

tests.  

After encountering enough problems, the pilot scale system was decommissioned.  

There was no experimental control to the design, and the short period the system was in 

operation was used as a brief demonstration of ground freezing using a thermosiphon 

array. 

 
Soil Analysis 

 There are several methods [1-3] of estimating soil thermal properties from their 

composition.   As seen previously, the thermal conductivity and heat capacity of the soil 

is needed to model the heat transfer from the thermosiphon within the soil.  These soil 

properties can be measured in situ [4-7], which is the preferred method, especially in 
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regions where soil types vary drastically within the site.  If an in situ method cannot be 

used, a soil sample should be taken, and the thermal properties can be measured in a lab.  

Lab measurements often lead to inaccurate results, however, due to changes in density 

and water content with handling.  As a less expensive alternative, or to confirm in situ 

testing or laboratory testing, it is possible to use one of various empirical methods to 

estimate the heat capacity and thermal conductivity.  

 
Heat Capacity Approximations 

 
 The volumetric heat capacity of a mixture can be expressed as a weighted sum (or 

average) of the heat capacities of the individual constituents. 

ܥ  =෍߶௜ܥ௜௡
௜ୀଵ  (4.1)

The volumetric heat capacity of each component is represented by ܥ௜, and ߶௜ represents 

the volume fraction of n constituents.  The volumetric heat capacity of each component is 

equal to the specific heat of the component multiplied by the density. 

௜ܥ  = ௜ܿ௜ (4.2)ߩ

Here, the specific heat is represented by ci, and ρi is the density.  Generally, it is easier to 

use mass fractions (w), based on a dry mass, than volume fractions.  The volume fractions 

can be converted to mass fractions by multiplying the volume fraction by the component 

density ratio: 

௜ݓ  = ߶௜ ௕ (4.3)ߩ௜ߩ

Here, ρb is the soil bulk density on a dry-mass basis.  Substitution of Eq. (4.2) and Eq. 

(4.3) into Eq. (4.1) produces  
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ܥ  = ௜ܿ௜௡ݓ௕෍ߩ
௜ୀଵ  (4.4)

In the de Vries approximation [3], it is assumed that dry soil can be broken into two 

constituents, soil minerals and soil organic matter.  Equation (4.4) can be rewritten as 

ܥ  = ௠ܿ௠ݓ)௕ߩ + ௢ܿ௢ݓ + ௪ܿ௪) (4.5)ݑ

In this equation, uw is the gravimetric water content, defined as mw/mb, where mw is the 

mass of the water, and mb is the dry mass of the bulk soil.  The specific heats, cm, co, and 

cw, are those of soil minerals, soil organic matter, and water, respectively.  De Vries 

reported in [3] the density, and specific heat, of common soil constituents at 20°C (68°F) 

and atmospheric (sea level) pressure.  These are shown in Table 4.1. 

 If the temperature varies greatly from 20°C (68°F), these values may require 

adjustments. 

 
Thermal Conductivity Approximations 

 Just as heat capacity can be approximated by knowing soil composition, empirical 

formulas have been developed to estimate the thermal conductivities of the soil in a 

similar manner [1-2, 8].  Unlike heat capacity, however, the thermal conductivity is not a 

simple average of the individual components.  The overall thermal conductivity depends 

 
Table 4.1.  Density and specific heat of various soil components. 

Soil component Density  Specific heat  
kg/m3 lb/ft3 kJ/kgK  Btu/lb°F 

Minerals (average) 2,650 165 0.73 0.29 
Organic matter (average) 1,300  81 1.9 0.45 

Water 1,000  62 4.18 1.00 
Ice 920  57 2.0 0.48 
Air 1.2  0.075 1.0 0.24 
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on the shape, composition, and configuration of individual components.  It also is a 

function of the porosity, water content, bulk density, and temperature. 

 Campbell [9] developed a relatively simple empirical formula to predict the 

thermal conductivity (W/mK) of repacked soils that were measured in the laboratory by 

McInnes [10].   

 ݇ = ܣ + 2.8߶௦ߠ௩ + (0.03 + 0.7߶௦ଶ − exp(ܣ (4.6) [ସ(௩ߠܤ)−]

where θv is the volumetric water content, and ߶௦ is the volume fraction of mineral solids, 

which is the sum of the volume fraction of quartz, ߶௤, and the volume fraction of 

minerals other than quartz, ߶௠. A and B are given by the equations 

ܣ  = 0.57 + 1.73߶௤ + 0.93߶௠1 − 0.74߶௤ − 0.49߶௠ − 2.8߶௦(1 − ߶௦) (4.7)

ܤ  = 1 + ቆ 2.6݉௖଴.ହቇ (4.8)

The density and specific heat of the minerals not quartz are normally taken to be the same 

as clay.  The mass fraction of clay is represented by mc.   

 If the soil is dry, ߠ௩ = 0, and  ݇ = 0.03 + 0.7߶௦ଶ.  The two extremes for thermal 

conductivity in dry soil, therefore, are for ߶௦ = 0, which is no soil, and ߶௦ = 1, 

representing pure solid material with no air, or water.  In the first case, ݇ = 0.03	W/mK 

(0.017 Btu/hr/ft./°F), which is approximately the thermal conductivity of air.  In the 

second case, ݇ = 0.73	W/mK (0.42 Btu/hr/ft./°F), which should be the thermal 

conductivity of nonporous rock.  Solid rock is reported to have a thermal conductivity 

between 2 and 7	W/mK (1.2 to 4 Btu/hr/ft./°F).  While the empirical equation developed 

by Campbell is not intended to predict the thermal conductivity of rock or anything but 

soil, care must be taken in applying the formula to situations with high solids content, 
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with the understanding that the thermal conductivity will most likely be underpredicted if 

the rock is assumed to be dry.  Better predictions are obtained for nonporous rock when 

simplifications are made based on the assumption of saturated soil with a low clay mass 

fraction. 

 In the case where the soil is saturated, or when clay mass fraction is near zero, the 

exponential term becomes zero, and ݇ = ܣ + 2.8߶௦ߠ௩.  This simplification has to happen 

first, otherwise errors are introduced in the exponential term with a low clay mass 

fraction.  The absence of solids constitutes a limiting condition,	߶௦ = ߶௤ = ߶௠ = 0 , or 

for pure water, ݇ = 0.57	W/mK (0.33 Btu/hr/ft./°F). Another limiting condition is when ߶௦ = 1.  In this case,  

 ݇ = 0.57 + 1.73߶௤ + 0.93(1 − ߶௤)1 − 0.74߶௤ − 0.49(1 − ߶௤)  (4.9)

which ranges from 2.94 to 8.85 W/mK (1.70 to 5.11 Btu/hr/ft./°F), for  ߶௤ = 0, and ߶௤ = 1, respectively.  These are better predictions for the thermal conductivity of solid 

rock, with 8.8 W/mK (5.08 Btu/hr/ft./°F) being the reported thermal conductivity for 

quartz [8]. 

 The thermal conductivity predicted by this equation includes both the sensible 

transfer of heat and the latent heat transfer.  Because the latent heat transfer depends 

greatly on temperature, adjustments should be made for varying temperature.  The 

thermal conductivities of water, 0.57 in Eq. (4.7), and air, 0.03 in Eq. (4.6), can be 

adjusted for temperature to predict better overall conductivities from Eq. (4.6). 

 Lacking in the empirical equations of Campbell is the ability to predict the 

thermal conductivity of frozen soils.  Simpler equations that come from Kersten, [1], 
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predict the conductivity of frozen soils and unfrozen soils, for silt and clay soils, and for 

sandy soils.  The four equations for these conditions are: 

1. Unfrozen silt and clay soils (at 4°C) 

 ݇ = [0.13 log(ݑ௪) + 0.231] ∗ 10଴.଺ଶఘ್ (4.10)

2. Unfrozen sandy soils (at 4°C) 

 ݇ = [0.1 log(ݑ௪) + 0.258] ∗ 10଴.଺ଶఘ್ (4.11)

3. Frozen silt and clay soils (at -4°C) 

 ݇ = 0.0014(10)ଵ.ସఘ್ + ௪(10)଴.ହఘ್ (4.12)ݑ1.2

4. Frozen sandy soils (at -4°C) 

 ݇ = 0.011(10)଴.଼ଵఘ್ + ௪(10)଴.ଽଵఘ್ (4.13)ݑ0.46

with the bulk density, ߩ௕, in units of grams per cubic centimeter, and ݑ௪ is the 

gravimetric water content.  Unlike the equations developed by Campbell, Kersten’s 

equations do not function at extrema.  For example, Eq. (4.10) gives negative values for 

conductivity when the gravimetric water content is below 1.7%, and Kersten advises not 

to use this equation when the gravimetric water content is below 7%.  Clay and silt retain 

water well, however, and often have gravimetric water contents above that threshold.   

 
Pilot Scale Soil  

 A core sample was taken with the Geoprobe drill out of one of the boreholes 

when the pilot scale was installed.  Over the 3 m (10 ft.) of depth, there was a great 

variation in soil types.  The top 0.6 m (2 ft.) consisted primarily of topsoil with the 

surface being highest in organic materials.  Between a depth of 0.9 m (3 ft.) and a depth 

of 1.5 m (5 ft.) the soil consisted mostly of sand.  Below 1.5 m (5 ft.) deep and down to 

2.4 m (8 ft.) deep was a layer of clay.  Below 2.4 m (8 ft.), there was almost nothing but 
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gravel.  The gravel varied in size from 6 mm (¼ in.) to 25 mm (1 in.) in diameter.  It is 

probable that there were larger boulders as well, but the sample tube was limited to a 38 

mm (1.5 in.) diameter.  The drill encountered difficulties on several of the holes at the 

depth of the gravel, which is also an indication of larger lithology.   

 Table 4.2 shows the rough composition, the bulk density, gravimetric water 

content, and estimations of thermal conductivity using Kersten’s equations and 

Campbell’s equations. 

 
Power Requirements  

 This section presents an examination of the power requirements for a smart 

Thermosiphon array.  A complete Thermosiphon array system used to cool a building 

would require a storage tank with pumps to circulate the refrigerant liquid through the 

evaporator coils.  In addition, fan energy would be required in a forced air system.  

However, the pumps used to bring the liquid from the bottom of the thermosiphons 

Table 4.2.  Pilot scale soil properties by depth. 

Depth 
(ft.) Composition 

Bulk density Gravimetric 
water 

content 

Thermal Conductivity (W/m/K) 

g/cm3 lb/ft3 Kersten 
(silt and clay)

Kersten 
(sandy) Campbell 

1 organic 1.08 67.4 0.185 0.63 0.86 1.06
2 organic/sand 0.98 61.2 0.161 0.52 0.72 0.91
3 sand 1.20 74.9 0.041 0.28* 0.66 0.60
4 sand 1.17 73.0 0.040 0.26* 0.63 0.59
5 sand/clay 1.18 73.7 0.041 0.27* 0.64 0.59
6 clay 0.66 41.2 0.048 0.15* 0.32 0.55
7 clay 0.97 60.6 0.059 0.28* 0.54 0.60
8 clay/gravel 1.00 62.4 0.060 0.30* 0.56 0.62
9 gravel 1.14 71.2 0.024 0.10* 0.49 0.54

10 gravel 1.09 68.0 0.013 -0.07* 0.33 0.51
*Not valid when gravimetric water content is below 7%
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require little energy.  The power required from the pump to supply the liquid to the 

evaporator coil would be 

 ܲ = ℎ݃ℎ௙௚∆ݍ  (4.14)

where q is the cooling load, or the rate that energy is dumped into the heat sink of the 

ground, ∆h 
 is the head to be overcome by pumping, g is the gravitational constant, and is 

hfg is the enthalpy of vaporization for the refrigerant.  If R-134a is used as the refrigerant 

at 0°C (32°F) for a 4.29 kW cooling load, and the pumps at the bottom of the 

thermosiphons are 12 m (39 ft.) below grade, 2.54 W of pumping power would be 

required, neglecting head loss due to friction and pump inefficiencies.  The coefficient of 

performance (COP) would then be 1690.  A small solar photovoltaic panel could provide 

this power requirement, producing a net-zero air conditioning system.  
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CHAPTER 5 

DESIGN OPTIMIZATION RESULTS 

 In Chapter 3, the design and optimization methodology developed in MATLAB 

was presented.  This chapter presents results from various locations in the United States, 

with various soil properties, for three different buildings. 

 
Methods 

Ambient Temperature Boundary Condition 
 
 In Chapter 3, several boundary conditions were presented.  In order to model the 

thermosiphon array, a variation to those boundary conditions must be introduced.  

Because of the symmetry of the problem (refer to Fig. 3.3), the outer radius of the domain 

modeled is set as a zero flux boundary.   

 A TMY file is read into the simulation code.  As the time-step advances, the 

simulation time is calculated, and the inner boundary condition is taken to be the dry-bulb 

outdoor air temperature from the TMY at that hour.  However, due to thermosiphons 

being gravity-assisted, they only operate in one direction; therefore, the outdoor air dry-

bulb temperature is only set as the boundary condition when the temperature in the first 

node is larger.  This condition limits the system to one-way heat transfer from the ground 

to the outside air. 
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 During hours when a cooling load exists that cannot be economized using outside 

air, heat is transferred through the thermosiphon wall into the soil.  If the ambient 

temperature is greater than the temperature in the first node, and there is a load, a return 

air temperature, ௥ܶ௘௧௨௥௡, is calculated based on the load according to Eq. (5.1) 

 ௥ܶ௘௧௨௥௡ = ௟௢௔ௗܴଵ/ଶ݇ଵ௡ݍ + ଵܶ௡ (5.1)

The maximum return temperature would be a few degrees more than the thermostat 

setting.  Therefore, if the calculated return temperature is larger than the thermostat 

setting, the return temperature is set equal to the thermostat setting, and the time-step is 

counted as unmet cooling time.  After the simulation is finished, the unmet cooling hours 

are totaled. Whether the return temperature is calculated per Eq. (5.1) or is equal to the 

thermostat setting, it is set as the inner boundary condition.   

 Because the return temperature should not greatly exceed the thermostat setting, 

the temperature in the first node is also never larger than the thermostat setting.  So, if 

there is a load and the ambient outdoor temperature is lower than the first node 

temperature, the load is considered to be economized and is not transferred to the ground 

through the thermosiphon. 

 If there is no load, and the outdoor ambient temperature is greater than the first 

node temperature, the thermosiphon wall becomes a zero flux boundary condition. 

 
Design Optimization 

 
 In order to design a system of smart Thermosiphon arrays, a certain number of 

parameters need to be constrained.  The thermal properties of the soil should be measured 

or calculated.  The hourly load to be satisfied needs to be calculated for 8760 hours, and 
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hourly outdoor temperature for the location, spanning the same time, are needed.  The 

radius of the borehole where the thermosiphon is to be installed is affixed a value.  The 

initial temperature of the domain to be modeled is determined as the average temperature 

over the course of the year. 

 The sphere is the optimal geometry for energy storage because it has the smallest 

surface area to volume ratio.  It is not practical to form a sphere of frozen soil under the 

ground through the smart thermosiphon array (STA); therefore, a cylinder with the 

diameter equal to its height is set as the geometrical constraint.  With this constraint, the 

total length of thermosiphon pipe and the distance of separation between thermosiphons 

can be calculated from the number of thermosiphons and the total volume of the system. 

 The design is considered optimized when the length of thermosiphon pipe is 

minimized, with the load being satisfied.  The warm-season temperature conditions 

reported by the American Society of Heating, Refrigeration, and Air conditioning 

Engineers (ASHRAE) are based on annual percentiles of 0.4, 1.0, and 2.0 [1].  It is 

standard practice for designing HVAC systems to size the system based on one of these 

percentiles.  If the smart thermosiphon array is designed around the one percentile 

temperature condition, 1% of the year the ambient outdoor air temperature will exceed 

the design temperature, and the system will be unable to meet the load.  Therefore, the 

load is considered satisfied when the load is unmet less than 87.6 hours. 

 The internal energy for a sample of soil decreases with temperature.  If it is 

assumed the minimum temperature of the soil is the minimum outdoor air temperature, 

the minimum achievable energy of the soil can be determined with Eq. (3.15).  In the 

same way, the maximum temperature leads to the maximum energy.  The difference 
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between the maximum and the minimum energies is the largest amount of energy that can 

potentially be stored in the soil.  The integrated, or total, load for the entire year divided 

by the difference in the maximum and minimum energy yields the smallest volume of 

soil that could possibly satisfy the cooling load.  Using this volume as a starting point, 

with a specified number of thermosiphon pipes, the volume can be increased and the 

simulation run until the unmet load time is below 87.6 hours. 

 The number of thermosiphon pipes in an array is constrained to the series:  

ݏ݁݌݅݌  = 1 +෍6݊ே
௡ୀଵ (ܰ = 1,2,3,… ,∞) (5.2)

This constraint is based on a hexagonal array composed of N concentric hexagons with 

one in the center.  Starting with seven thermosiphon pipes, the volume is found that 

yields less than 87.6 unmet load hours, the number of concentric hexagons is increased 

by one, and the optimal volume for this array is found.  This process is continued until 

the length of pipe in the minimum volume for N+1, is larger than the optimal length of 

pipe just found for N hexagons. 

 
Building Load Calculations 

 The hourly air conditioning load for the three buildings was calculated by Trane 

Trace 700 v6.2.6.5.  Trane Trace 700 is accepted by American Society of Heating, 

Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-Appendix G 

and the United States Green Building Council (USGBC) as approved energy modeling 

software to show compliance with the Energy and Atmosphere prerequisite 2 (EAp2) as 

part of the Leadership in Energy and Environmental Design (LEED) certification [2,3].  

It is also accepted software for the energy modeling required by the Environmental 
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Protection Act (EPACT) under IRS Notice 2006-52, as amplified by IRS Notice 2008-40, 

Section 4. 

 The three buildings included a residential house of 112 m2 (1200 sq. ft.), a mixed-

use facility with offices, classrooms, and retail, of 870 m2 (9400 sq. ft.), and a large office 

building of 16,000 m2 (177,000 sq. ft.).  The construction of each building was changed 

to code minimum requirements for the location where it was modeled as required by 

ASHRAE Standard 90.1 [4].  The U-factors (thermal transmittances) used for building 

envelope construction and the SHGCs for glazing are shown in Tables 5.1 (SI units) and 

5.2 (IP units).    

 ASHRAE has divided the United States into eight climate zones for establishing 

code minimum requirements concerning the construction of the building envelope.  

Within those eight climate zones, there are three sub classifications, A-moist, B-dry, and 

C-marine.  The eight climate zones are based on yearly temperatures [5].  Sixteen cities 

were selected as locations for the three buildings modeled.  These are shown in Tables 

5.3 (SI units) and 5.4 (IP units) with their corresponding climate zone designation and 

climatic data.  The cities were selected based on the availability of TMY weather data 

and highest population density within the climate zone.  The weather monitoring station 

numbers (WMO#) are listed in Table 5.3 for reference.   

 The heating dry bulb (DB) at a 99.6% design condition is a statistical temperature 

used for design of heating systems.  Statistically, 99.6% of all temperatures during any 

given year should be above this temperature.  The temperature only drops below the 

heating DB design condition 0.4% of the year, or 35 hours.  Likewise, the cooling DB is  
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Table 5.1. ASHRAE 90.1-2007 envelope requirements (U-values in W/m2/K) 

Climate Zone 1A
2 

(A,B)
3 

(A,B,C)
4 

(A,B,C)
5 

(A,B)
6 

(A,B) 
7 

(A,B) 8

90.1-07 
Residential 
Envelope 

Requirements 
(wood-framed 

w/ attic) 

Roof U 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.12
Walls U 0.51 0.51 0.51 0.36 0.29 0.29 0.29 0.20
Floor U 1.60 0.19 0.19 0.19 0.19 0.19 0.19 0.19
Slab F 1.26 1.26 1.26 0.93 0.93 0.90 0.90 0.88
Doors U 3.97 3.97 3.97 3.97 2.84 2.84 2.84 2.84
Windows U 6.81 4.26 3.69 2.27 1.99 1.99 1.99 1.99
Windows SHGC 0.25 0.25 0.25 0.4 0.4 0.4 NR1 NR1

90.1-07 
Nonresidential 

Envelope 
Requirements 

(steel 
construction) 

  

Roof U 0.36 0.27 0.27 0.27 0.27 0.27 0.27 0.27
Walls U 0.70 0.70 0.48 0.36 0.36 0.36 0.36 0.36
Floor U 1.99 0.30 0.30 0.22 0.22 0.22 0.22 0.18
Slab F 1.26 1.26 1.26 1.26 1.26 0.93 0.90 0.90
Doors U 3.97 3.97 3.97 3.97 3.97 3.97 2.84 2.84
Windows U 6.81 3.97 3.41 2.84 2.56 2.56 2.27 2.27
Windows SHGC 0.25 0.25 0.25 0.4 0.4 0.4 0.45 0.45
Skylight (5%) U 7.72 7.72 3.92 3.92 3.92 3.92 3.92 3.29
Skylight SHGC 0.19 0.19 0.19 0.39 0.39 0.49 0.64 NR1

1. NR indicates no requirement.  In this case, the value to the left was used. 

 
 
 
Table 5.2. ASHRAE 90.1-2007 envelope requirements (U-values in Btu/h/ft2/°F) 

Climate Zone 1A
2 

(A,B)
3 

(A,B,C)
4 

(A,B,C)
5 

(A,B)
6 

(A,B) 
7 

(A,B) 8

90.1-07 
Residential 
Envelope 

Requirements 
(wood-framed 

w/ attic) 

Roof U 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.021 
Walls U 0.089 0.089 0.089 0.064 0.051 0.051 0.051 0.036 
Floor U 0.282 0.033 0.033 0.033 0.033 0.033 0.033 0.033 
Slab F 0.73 0.73 0.73 0.54 0.54 0.52 0.52 0.51 
Doors U 0.7 0.7 0.7 0.7 0.5 0.5 0.5 0.5 
Windows U 1.2 0.75 0.65 0.4 0.35 0.35 0.35 0.35 
Windows SHGC 0.25 0.25 0.25 0.4 0.4 0.4 NR1 NR1 

90.1-07 
Nonresidential 

Envelope 
Requirements 

(steel 
construction) 

  

Roof U 0.063 0.048 0.048 0.048 0.048 0.048 0.048 0.048 
Walls U 0.124 0.124 0.084 0.064 0.064 0.064 0.064 0.064 
Floor U 0.35 0.052 0.052 0.038 0.038 0.038 0.038 0.032 
Slab F 0.73 0.73 0.73 0.73 0.73 0.54 0.52 0.52 
Doors U 0.7 0.7 0.7 0.7 0.7 0.7 0.5 0.5 
Windows U 1.2 0.7 0.6 0.5 0.45 0.45 0.4 0.4 
Windows SHGC 0.25 0.25 0.25 0.4 0.4 0.4 0.45 0.45 
Skylight (5%) U 1.36 1.36 0.69 0.69 0.69 0.69 0.69 0.58 
Skylight SHGC 0.19 0.19 0.19 0.39 0.39 0.49 0.64 NR1 

1.  NR indicates no requirement.  In this case, the value to the left was used. 
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Table 5.3. Weather file locations and climatic data (SI units) 

Zone City WMO# 
Heating 
DB (°C)

Cooling 
DB / MCWB HDD 

18.3 
CDD 
18.3 

Tavg 
(°C) FDD 

99.60% 1% (°C)
1A Miami, FL 722020 8.7 32.6 25.3 72 2477 24.9 0
2A Houston, TX 722430 -1.6 35.0 24.8 786 1667 20.7 5.6
2B Phoenix, AZ 722780 3.7 42.3 21.0 523 2532 23.8 0
3A Dallas, TX 722590 -6.5 36.9 23.7 1264 1511 19.0 29 
3B Los Angeles, CA 722950 6.9 26.9 18.2 713 343 17.3 0 
3C San Francisco, CA 724940 3.8 25.7 16.7 1504 79 14.4 0 
4A New York City, NY 744860 -10.7 30.3 22.3 2682 543 12.5 128 
4B Albuquerque, NM 723650 -7.9 33.8 15.6 2261 749 14.2 79 
4C Seattle, WA 727930 -4.2 27.4 17.6 2627 98 11.4 9.2 
5A Chicago, IL 725300 -20.0 31.7 23.0 3506 468 10.0 486 
5B Salt Lake City, UT 725720 -12.6 34.9 17.0 3067 663 11.7 164 
6A Minneapolis, MN 726580 -25.2 31.1 22.4 4203 417 7.9 850 
6B Billings, MT 726770 -24.2 33.0 16.7 3766 353 9.0 539 
7A Fargo, ND 727530 -29.1 30.9 21.3 4885 307 5.8 1454
7B Jackson, WY 725776 -26.2 27.4 12.5 5673 12 2.8 949 
8 Fairbanks, AK 702610 -41.8 25.6 15.4 7516 39 -2.2 2660

 

 
Table 5.4.  Climatic data (IP units) 

Zone City 
Heating 
DB (°F)

Cooling 
DB / MCWB HDD 

65 
CDD 
65 

Tavg 
(°F) FDD 

99.60% 1% (°F)
1A Miami, FL 47.7 90.7 77.5 130 4458 76.9 0
2A Houston, TX 29.1 95 76.6 1414 3001 69.3 10
2B Phoenix, AZ 38.6 108.1 69.8 941 4557 74.9 0
3A Dallas, TX 20.3 98.4 74.6 2275 2719 66.2 53
3B Los Angeles, CA 44.4 80.4 64.7 1284 617 63.2 0
3C San Francisco, CA 38.8 78.3 62.1 2708 142 58 0
4A New York City, NY 12.8 86.5 72.2 4828 978 54.5 231
4B Albuquerque, NM 17.7 92.9 60.1 4069 1348 57.5 142
4C Seattle, WA 24.5 81.3 63.6 4729 177 52.5 17
5A Chicago, IL -4 89 73.4 6311 842 50 874
5B Salt Lake City, UT 9.3 94.8 62.6 5521 1193 53.1 295
6A Minneapolis, MN -13.4 87.9 72.3 7565 751 46.3 1530
6B Billings, MT -11.6 91.4 62.1 6779 636 48.2 970
7A Fargo, ND -20.4 87.7 70.3 8793 553 42.4 2617
7B Jackson, WY -15.2 81.4 54.5 10212 21 37.1 1708
8 Fairbanks, AK -43.3 78 59.8 13528 71 28.1 4787
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listed at the 1% design condition, meaning that only during 1% of the year, or 87.6 hours, 

will temperatures exceed this design temperature.  Heating and cooling systems are often 

designed to meet the peak loads at the 99.6% heating DB and the 1% cooling DB, 

respectively [1].    

 The mean coincident wet bulb (MCWB) is the mean of the wet bulb temperatures 

that occur at the same time or coincident with the 1% cooling DB condition.  This gives 

some idea of the latent load, or dehumidification that might be required by a cooling 

system.  

 The heating degree-days (HDD) and cooling degree-days (CDD) are calculated 

from some reference temperature (Tref).  The reference temperature used is 18.3°C (65°F).  

For the HDD, the absolute difference between the dry bulb temperature ( ௛ܶ௢௨௥) and the 

reference temperature is calculated and summed for each hour the dry bulb temperature is 

below the reference temperature, and the sum is divided by 24 hours/day: 

)	ܦܦܪ  ௥ܶ௘௙) = 124 ෍ ห ௛ܶ௢௨௥ − ௥ܶ௘௙ห଼଻଺଴
௛௢௨௥ୀଵ ௛ܶ௢௨௥ < ௥ܶ௘௙ (5.3)

The CDD is calculated in a similar fashion for each hour the DB temperature is above the 

reference temperature, 

ܦܦܥ  ( ௥ܶ௘௙) = 124 ෍ | ௛ܶ௢௨௥ − 65℉|଼଻଺଴
௛௢௨௥ୀଵ ௛ܶ௢௨௥ > ௥ܶ௘௙ (5.4)

 While all the other data in Tables 5.3 and 5.4 are from [1], the freezing degree 

days (FDD) is generated from the TMY files with a reference temperature of 0°C (32°F). 

ܦܦܨ  = 124 ෍ ห ௛ܶ௢௨௥ − ௥ܶ௘௙ห଼଻଺଴
௛௢௨௥ୀଵ ௛ܶ௢௨௥ < ௥ܶ௘௙ (5.5)
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 The resultant cooling loads for each of the three buildings, using a combination of 

building envelope U-values from Table 5.1 (5.2) and weather files, as exhibited in Table 

5.3 (5.4), are shown in Tables 5.5 (SI units) and 5.6 (IP units).  The peak cooling load,  

the summed (or integrated) cooling load, and the hour when the peak load occurs are all 

tabulated. 

 
Soils 

 The thermosiphon arrays were optimized for four different soil types.  The 

properties of these soils are defined in Tables 5.7 (SI units) and 5.8 (IP units).  The soils 

were selected as the four combinations of two extreme conductivity soils and two 

extreme moisture contents.  The gravimetric moisture content, θv, is defined as the mass 

Table 5.5. Building loads (SI units) 

Zone 
Building 1 Building 2 Building 3 

Peak 
load1  

Peak 
Hour2 

Sum 
load3 

Peak 
load1 

Peak 
Hour2 

Sum 
load3 

Peak 
load1 

Peak 
Hour2 

Sum 
load3 

1A 5.9 7/27, 12 14.6 91 6/6, 7 121 1300 10/8, 13 2436 
2A 6.8 8/27, 13 10.1 100 7/31, 6 88.4 1407 5/28, 16 1897 
2B 7.4 7/30, 19 14.7 122 7/31, 7 130 1204 8/8, 16 1866 
3A 6.9 7/26, 19 9.09 121 7/29, 7 85.9 1287 9/6, 16 1595 
3B 3.5 4/27, 13 1.37 31 9/5, 7 33.0 975 9/3, 15 1136 
3C 3.2 6/28, 14 0.372 33 5/31, 15 12.7 800 8/1, 10 569 
4A 5.2 6/17, 11 3.95 129 7/26, 7 48.2 1298 6/11, 14 1048 
4B 4.6 7/19, 19 4.77 94 6/27, 7 59.3 1004 8/21, 16 939 
4C 3.7 8/8, 19 .986 44 8/27, 15 19.6 914 8/27, 15 451 
5A 4.6 7/15, 12 3.30 130 7/17, 7 45.4 1395 7/9, 13 950 
5B 4.3 7/11, 19 3.96 93 7/14, 7 49.2 915 8/27, 16 795 
6A 5.0 7/3, 19 2.97 128 7/17, 7 38.4 1271 7/4, 16 772 
6B 4.3 6/26, 19 2.70 106 7/15, 7 35.5 1017 7/24, 13 630 
7A 4.6 7/30, 19 2.40 160 7/31, 7 36.5 1319 8/19, 12 765 
7B 3.7 7/28, 16 1.31 47 7/29, 15 21.5 838 7/29, 16 350 
8 3.3 7/20, 12 .883 42 7/28, 5 11.0 928 7/1, 15 280 

1. Peak load is expressed in units of kW 
2. Peak hour is month/day, hour 
3. Sum load is the sum of load over all hours of the year, in MWh 
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of water in the soil divided by the mass of dry soil.  The bulk density, ρb, is the density of 

the dry soil.  Frozen soil properties are indicated by a subscript ‘S’, and unfrozen, or 

liquid, soil properties are indicated by a subscript ‘L’.  The volumetric heat capacities, ρcS 

and ρcL, are strong functions of the water content.  They are calculated as a weighted 

average of the heat capacities of the dry bulk soil and the water, or ice, 

ௌܿߩ  = ܿ௜௖௘ߠ௏ߩ௜௖௘ + ܿ௦௢௜௟ߩ௕ (5.6)

௅ܿߩ  = ܿ௪௔௧௘௥ߠ௏ߩ௪௔௧௘௥ + ܿ௦௢௜௟ߩ௕ (5.7)

The density of water and the density of ice were both taken to be 1000 kg/m3 (62.4 lb/ft3).  

The heat capacity of ice is 2 kJ/kg/K (0.5 Btu/lb/°F), and that of water is 4.18 kJ/kg/K (1 

Table 5.6. Building loads (IP units) 

Zone 

Building 1 Building 2 Building 3 

Peak 
load1  

Peak 
Hour2 

Sum 
load3 

Peak 
load1 

Peak 
Hour2 

Sum 
load3 

(x103) 

Peak 
load1 

Peak 
Hour2 

Sum 
load3 
(x103)

1A 1.7 7/27, 12 4140 26 6/6, 7 34.5 370 10/8, 13 692
2A 1.9 8/27, 13 2860 28 7/31, 6 25.1 400 5/28, 16 539
2B 2.1 7/30, 19 4170 35 7/31, 7 36.9 342 8/8, 16 531
3A 2.0 7/26, 19 2580 34 7/29, 7 24.4 366 9/6, 16 453
3B 1.0 4/27, 13 389 8.8 9/5, 7 9.38 277 9/3, 15 323
3C 0.91 6/28, 14 106 9.4 5/31, 15 3.61 227 8/1, 10 162
4A 1.5 6/17, 11 1120 37 7/26, 7 13.7 369 6/11, 14 298
4B 1.3 7/19, 19 1360 27 6/27, 7 16.9 285 8/21, 16 267
4C 1.1 8/8, 19 280 13 8/27, 15 5.56 260 8/27, 15 128
5A 1.3 7/15, 12 937 37 7/17, 7 12.9 396 7/9, 13 270
5B 1.2 7/11, 19 1130 26 7/14, 7 14.0 260 8/27, 16 226
6A 1.4 7/3, 19 844 36 7/17, 7 10.9 361 7/4, 16 220
6B 1.2 6/26, 19 768 30 7/15, 7 10.1 289 7/24, 13 179
7A 1.3 7/30, 19 682 45 7/31, 7 10.4 375 8/19, 12 217
7B 1.1 7/28, 16 372 13 7/29, 15 6.12 238 7/29, 16 99
8 0.94 7/20, 12 251 12 7/28, 5 3.12 264 7/1, 15 80

1. Peak load is expressed in units of tons of refrigeration 
2. Peak hour is month/day, hour 
3. Sum load is the sum of load over all hours of the year, in ton·h 
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Btu/lb/°F).  The heat capacity of the soil is assumed a constant 0.73 kJ/kg/K (0.17 

Btu/lb/°F).  For all models, there was no variation included for the effect of mineral 

content on the liquid water properties or phase change temperature.  The term ρLθv is an 

effective volumetric latent heat of fusion for the bulk soil.  The thermal diffusivities are 

calculated in the normal fashion, α=k/ρc. 

 
Results 

 After the building loads, soil thermal properties, and temperature profiles for 

boundary conditions were determined, the smart thermosiphon arrays for each scenario 

were optimized.  The results of the optimization are shown for each building in Tables 

5.9 through 5.11.  As mentioned earlier, the STAs were optimized by an iterative method 

to reduce the total length of thermosiphon pipe to a minimum.  The separation distances 

between thermosiphons, while being close to optimal, have not been optimized.  The 

number of hexagons refers to the number of concentric hexagons in the array.  One  

Table 5.7. Selected soil thermal properties (SI units) 

Soils θv ρb kS kL ρcS ρcL ρLθv αS (x10-8) αL (x10-8)
- kg/m3 W/mK W/mK kJ/m3K kJ/m3K kJ/m3 m2/s m2/s

1 0.001 1300 0.2 0.2 951 953.18 334 21.03 20.98
2 0.5 1600 0.2 0.2 2168 3258 167000 9.225 6.14
3 0.001 1300 3.7 2.8 951 953.18 334 389.0 293.8
4 0.5 1600 3.7 2.8 2168 3258 167000 170.7 85.9

 
 
Table 5.8. Selected soil thermal properties (IP units) 

Soils θv ρb kS kL ρcS ρcL ρLθv αS (x10-6) αL (x10-6)
- lb/ft3 Btu/(h·ft·°F) Btu/(ft3·°F) Btu/ft3 ft2/s ft2/s

1 0.001 81 0.12 0.12 14.18 14.21 8.96 2.264 2.258 
2 0.5 100 0.12 0.12 32.33 48.58 4480 0.993 0.661 
3 0.001 81 2.1 1.6 14.18 14.21 8.96 41.9 31.62 
4 0.5 100 2.1 1.6 32.33 48.58 4480 18.37 9.25 
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Table 5.9. Optimization results for building 1. 

Climate 
Zone 

Soil 1 Soil 2 

No. of 
pipes 

Total 
Length 

(m) 

Pipe to 
Pipe 
(m) 

Drill 
Depth 

(m) 

Area 
(m2) 

No. of 
pipes 

Total 
Length 

(m) 

Pipe to 
Pipe 
(m) 

Drill 
Depth 

(m) 

Area 
(m2) 

8 19 110 1.4 5.8 26 2 76 1.0 4.0 13 
7B 19 174 2.3 9.2 66 3 115 0.5 3.1 7.6 
7A 19 278 3.7 14.6 168 3 151 0.7 4.1 13 
6B 37 319 1.4 8.6 58 3 187 0.8 5.1 20 
6A 37 316 1.4 8.5 56 3 187 0.8 5.1 20 
5B 37 446 2.0 12.1 114 4 394 0.8 6.5 33 
5A 37 346 1.6 9.4 69 3 265 1.2 7.2 40 
4C 37 261 1.2 7.1 39 3 239 1.1 6.5 33 
4B 37 546 2.5 14.7 171 4 457 0.9 7.5 44 
4A 37 507 2.3 13.7 147 4 423 0.9 6.9 38 
3C 37 144 0.6 3.9 12 3 95 0.4 2.6 5.2 
3B 37 381 1.7 10.3 83 4 287 0.6 4.7 17 
3A 61 1232 2.5 20.2 320  

  Soil 3 Soil 4 
8 1 28 2.0 4.0 12 1 16 1.1 2.3 4.0 

7B 1 32 2.3 4.6 16 1 18 1.3 2.6 5.3 
7A 1 39 2.8 5.6 25 1 22 1.6 3.2 7.9 
6B 1 42 3.0 6.0 28 1 23 1.7 3.3 8.7 
6A 1 46 3.3 6.6 35 1 24 1.7 3.4 8.9 
5B 1 65 4.6 9.2 67 1 41 2.9 5.9 27 
5A 1 50 3.6 7.2 40 1 28 2.0 4.0 12 
4C 1 35 2.5 5.0 20 1 25 1.8 3.6 10 
4B 1 72 5.1 10.3 83 1 47 3.4 6.7 36 
4A 1 65 4.6 9.3 68 1 43 3.1 6.1 29 
3C 1 27 1.9 3.9 12 1 18 1.3 2.6 5.2 
3B 1 50 3.6 7.2 41 1 35 2.5 5.0 20 
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Table 5.10. Optimization results for building 2. 

Climate 
Zone 

Soil 1 Soil 2 

No. of 
pipes 

Total 
Length 

(m) 

Pipe to 
Pipe 
(m) 

Drill 
Depth 

(m) 

Area 
(m2) 

No. of 
pipes 

Total 
Length 

(m) 

Pipe to 
Pipe 
(m) 

Drill 
Depth 

(m) 

Area 
(m2) 

8 91 1175 1.3 13 131 5 841 0.9 9.2 67 
7B 127 2261 1.5 18 249 7 1376 0.6 8.1 52 
7A 127 2793 1.8 22 380 8 1933 0.6 8.9 62 
6B 127 3565 2.3 28 619 9 2306 0.5 8.5 57 
6A 127 3483 2.3 27 591 8 2139 0.6 9.9 76 
5B 169 5352 2.3 32 788 8 4292 1.2 20 307 
5A 169 4527 1.9 27 564 9 3161 0.6 12 107 
4C 127 3555 2.3 28 615 11 2708 0.3 6.8 37 
4B 217 6792 2.0 31 769 10 5921 0.9 18 251 
4A 217 5944 1.7 27 589 8 4620 1.3 21 356 
3C 127 1686 1.1 13 138 7 1413 0.6 8.4 55 
3B 271 5169 1.1 19 286 10 3986 0.6 12 114 

  Soil 3  Soil 4 
8 7 94 6.7 13 140 1 100 7.2 14 162 

7B 19 276 3.6 15 166 2 208 2.7 11 94 
7A 19 327 4.3 17 233 2 257 3.4 14 144 
6B 19 365 4.8 19 290 2 279 3.7 15 170 
6A 19 364 4.8 19 288 2 258 3.4 14 145 
5B 19 567 7.5 30 699 3 528 2.4 14 160 
5A 19 462 6.1 24 465 3 353 1.6 9.5 71 
4C 19 428 5.6 23 399 2 319 4.2 17 222 
4B 19 686 9.0 36 1025 3 729 3.3 20 305 
4A 19 660 8.7 35 949 3 543 2.4 15 169 
3C 19 239 3.1 13 125 2 168 2.2 8.8 61 
3B 19 605 8.0 32 797 3 555 2.5 15 177 
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Table 5.11. Optimization results for building 3. 

Climate 
Zone 

Soil 1 Soil 2 

No. 
of 

pipes 

Total 
Length 

(m) 

Pipe 
to 

Pipe 
(m)

Drill 
Depth 

(m) 

Area 
(m2) 

No. 
of 

pipes 

Total 
Length 

(m) 

Pipe 
to 

Pipe 
(m) 

Drill 
Depth 

(m) 

Area 
(m2) 

8 631 28769 1.6 46 1633 14 20327 1.2 32 815
7B 817 39794 1.5 49 1863 18 25333 0.7 25 478
7A 1027 64197 1.7 63 3069 22 41250 0.6 27 579
6B 919 63018 2.0 69 3693 19 41675 1.0 37 1048
6A 1027 76837 2.1 75 4396 20 47517 0.9 38 1115
5B 1027 89615 2.4 87 5980 21 69048 1.2 50 1946
5A 1141 100560 2.3 88 6101 21 69572 1.2 50 1976
4C 1141 80318 1.9 70 3892 22 72170 1.1 48 1773
4B 1141 104530 2.4 92 6591 21 83233 1.4 60 2828
4A 1519 131450 2.0 87 5881 24 94187 1.1 52 2148
3C 1657 77675 1.0 47 1726 24 53473 0.6 30 692
3B 3571 218870 0.9 61 2950 35 153360 0.6 41 1292

Soil 3 Soil 4 
8 61 2571 5.3 42 1395 61 2104 4.3 34 934

7B 91 4303 4.7 47 1756 169 3296 1.4 20 299
7A 91 6272 6.9 69 3731 169 5236 2.2 31 754
6B 91 6994 7.7 77 4639 169 4676 2.0 28 601
6A 127 8231 5.4 65 3299 169 5586 2.4 33 858
5B 127 9697 6.4 76 4579 169 8185 3.5 48 1842
5A 127 10218 6.7 80 5084 217 7168 2.1 33 857
4C 127 9056 5.9 71 3993 217 9227 2.7 43 1420
4B 127 11140 7.3 88 6043 169 9523 4.0 56 2494
4A 169 14505 6.1 86 5786 217 11338 3.3 52 2144
3C 127 9646 6.3 76 4530 169 7564 3.2 45 1573
3B 271 26871 5.5 99 7721 331 22462 3.4 68 3617
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hexagon refers to seven thermosiphon pipes with six forming a hexagon and one in the 

center.  Two hexagons indicates 19 thermosiphon pipes, three indicates 37 pipes, etc., as 

shown in Fig. 5.1.   

 As to be expected, the number of hexagons, the total length of thermosiphon pipe, 

and therefore the depth and the volume of the system all increase with building load and 

warmer climates.  The separation distance between thermosiphon pipes is primarily a 

 

 

Figure 5.1.  Number of pipes associated with 1, 2, and 3 hexagons. 
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function of soil thermal properties.  In heat transfer applications, it is common for a 

length parameter (l) in the problem to be proportional to the square root of thermal 

diffusivity (α) multiplied by time (t), 

 ݈ ∝ (5.8) ݐߙ√

It was found that the average separation distance for each of the four soils across all three 

buildings and all climate zones correlates to the square root of the thermal diffusivity of 

the soil.  This correlation is shown in Fig. 5.2, where the logarithm of thermal diffusivity 

is plotted against the logarithm of the separation distance,   

 ln(݈) ∝ 12 ln(ߙ) + 12 ln(ݐ) (5.9)

The error bars represent the population standard deviation from the mean.  As long as the 

time remains constant, the slope of the line should be ½ to indicate a correlation; from a 

linear regression, the slope is found to be 0.45. 

 In every climate zone and every building, the total length of thermosiphon pipe 

needed to handle the load decreases from soil 1 to soil 4.  None of the soil thermal 

properties in Table 5.7 (5.8) would indicate such a trend.  However, the thermal 

effusivity, e, which is a measure of a substance’s ability to exchange thermal energy with 

its surroundings,  

 ݁ = ඥ݇ܿߩ௅ (5.10)

was calculated for each of the soils.  It was found that the thermal effusivity inversely 

correlates to the length of pipe required.  That is, as the thermal effusivity increases, the 

ability to exchange heat is greater, and the length of pipe required to cool a load is 

decreased. The thermal effusivities for the four soils are shown in Table 5.12.   
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Figure 5.2. Correlation between diffusivity and separation. 

 

 

 

Table 5.12.  Thermal effusivities. 

Soil Effusivity
1 0.44
2 0.81
3 1.63
4 3.02

 

y = 0.4464x + 7.3217
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Conclusion 

 Based on the validation of the modeling code and the results of the optimization, 

the design methodology and code give a good idea as to the size and configuration of 

smart thermosiphon arrays that are needed for a particular cooling load, in any climate, 

and in any soil type.  The correlation between pipe separation distance and thermal 

diffusivity is robust and as expected from the similarity solutions shown in Appendix B.   

 In combination with the separation scaling to diffusivity, the trend relationship 

between thermal effusivity and total pipe length could give a method to predict, a priori, 

the optimal design of a thermosiphon array.  These correlations also can lead to better 

optimization and design methodologies. 

 In Tables 5.9 through 5.11, all 16 climate zones are not represented.  The 

optimization code was unable to find a viable solution in Dallas, Phoenix, Houston, and 

Miami.  This is a confirmation that smart thermosiphon arrays are difficult to implement 

as standalone systems in locations with extremely hot climates, that rarely, or never, 

experience freezing temperatures. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDED WORK 

COMSOL Model 

 Instabilities in the COMSOL model led to the development of an original code in 

MATLAB.  It is presumed that the instabilities were caused by the discontinuities in the 

thermal conductivity and specific heat at the phase change temperature.  There are large 

disturbances in the heat fluxes across the pipe wall in Fig. 2.9 at the time when freezing 

begins to occur that clearly indicate freezing as a source of instability.  However, there 

are other smaller instabilities indicated by the spikes at other times in Fig. 2.9.  

Instabilities arise in regions where the temperature has not dropped to the phase change 

temperature.  These instabilities could be explored further to understand the sensitivity to 

discontinuities at the phase change. 

 It is possible that some of the instabilities are linked to the conditional statements 

used to turn the boundary condition on and off depending on the outdoor air temperature 

function.  It is not entirely clear that the conditional statement comparing temperature in 

the soil next to the pipe wall with the outdoor air temperature was performing as desired 

and expected.  Caution is advised when using conditional statements in COMSOL.  

Further testing is warranted to confirm boundary condition was cycling as appropriate. 

 The temperature model, Eq. (2.7) removes extremes in the data.  Removing 

extremes causes the temperature difference between the ground and outdoor air 
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temperature to be muted.  To a certain extent, it can be assumed that the amount of extra 

cooling of the soil gained by the extreme cold temperatures would be balanced by the 

heat added back by extreme hot temperatures during the summer season.  However, it is 

best if actual weather data can be modeled. 

 Although COMSOL was used to assist in the design of the pilot scale system, the 

soil data used in the model was assumed without any testing or validation.  The soil 

thermal properties should have been measured beforehand and a model optimized for 

spacing before the system was installed.  Instead, the soil properties were partially 

measured and estimated after gathering samples during the installation of the system.  It 

is highly recommended that soil properties are measured in situ prior to finalizing the 

design.  Because of the variation in soil lithography in the pilot scale and the lack of in 

situ testing, it is unknown how close the pilot scale pipe spacing is to an optimized 

design. 

 A more robust comparison of thermosiphon length with ground loop heat 

exchanger (GLHE) length is needed.  Soil variations can greatly affect the comparison.  

The soil, weather, or building load differences may greatly affect the sizing of the GLHE, 

making the comparison invalid.  The comparison at the end of Chapter 2 is considered an 

approximation only, and was not one of the stated purposes of this research. 

 COMSOL should have been used to optimize spacing in the hexagonal array.  

This optimization would have been beneficial to make comparisons to the MATLAB 

model.  COMSOL was abandoned before the design criteria and constraints that went 

into the MATLAB model were selected.  Overall, COMSOL’s instabilities and 

difficulties in modeling phase change make it impractical to use for the design and 



102 
 

 
 

optimization of thermosiphon arrays.  However, the graphical interface and ability to 

create and mesh 2-D and  3-D models easily give it an advantage over the MATLAB 

code and could make it worthwhile to explore packaged software further. 

 
Pilot Scale 

 The pilot scale was used as a brief demonstration of ground freezing using a 

thermosiphon array.  Before another system can be built of the same materials, the 

wetting of R134a on the multiple interior surfaces of the thermosiphon needs to be tested 

to identify the best materials for wetting, heat transfer, and cost.  The mesh and inner 

lining should be tested further to determine if heat transfer is truly enhanced by having 

them installed.   

 The data acquisition system and the attached thermocouples did not function as 

intended.  Resistance based temperature measurements are recommended to achieve 

results that are more precise. 

 The equipment used to control the thermosiphons should be custom manufactured 

to meet the required specifications for submersion and insertion into a small diameter 

pipe.  The pump and float switch should be combined as one assembly with liquid tight 

electrical connections, with separate power and signal wires. 

 Although the system was pressure tested at both positive and negative pressures, 

five out of seven thermosiphon pipes would not hold their charge.  Brazed fittings are 

recommended for R134a systems.  The heat exchangers should be brazed together instead 

of soldered, and they should be structurally supported to withstand a high wind load.   
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 To be experimentally valid, a control has to be used. It is recommended that a 

thermosiphon array identical to the one tested is installed with no refrigerant, and also 

monitored. 

 
MATLAB Model 

 The thermal conductivity in the MATLAB model can be modeled either as a 

sharp front, columnar, or using Kirchoff temperatures.  That is, within the node where 

phase change is occurring, it is considered to be occurring in series (sharp front), in 

parallel (columnar), or isothermally (Kirchoff).  These methods apply to pure phase 

change materials (PCMs) only.  Thermal conductivities for soils, which are porous 

media, were considered in the model for frozen and unfrozen soils, but the effect porous 

media has on slushy nodes was not examined.  This effect should be studied and 

incorporated into the model. 

 The solution for a moving front with a flux boundary showed a melt radius that 

moves faster with a higher transcendental λt than the closed form solution when the melt 

front is near the end of a node.  This effect should decrease as the number of nodes is 

increased, as was evidenced by the position of the melt front at the beginning of the 

model where there are more nodes.  However, it is unknown what was actually causing 

this discrepancy from the closed form solution as the melt front approaches a nodal 

boundary.  It is suspected that the method of determining the location of the melt front 

was at fault and not the model.  The calculation of the melt front location did not 

compensate for when there are two nodes at the melt temperature, which often happens as 

the melt front is moving from one node to the next. 
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 A hexagonal array was assumed to be the best for heat transfer because of close-

packing.  However, a square array of thermosiphons may be better for ease of 

installation.  As part of a cost optimization and analysis, square arrays, and other more 

readily installed patterns should be modeled. 

 The radius of the model should account for the area of the hexagon, not the area 

of the circle inscribed in the hexagon, as shown in Eq. (3.34). 

 A conservative CFL stability criterion was used in the code to determine the 

timestep, see Eq. (3.38).  The stability criteria should be explored further.  A test could be 

included in the code to insure the freeze or melt front does not skip nodes or disappear 

without meeting another phase change boundary. 

 The pressure and density were considered constant in the model.  In reality, 

pressure changes greatly with depth underground; therefore, so does the melt 

temperature, the latent heat of fusion, and specific heat.  Density changes with a phase 

change and should be accounted for, especially in cases with high water content.   

 The PCM of interest, water, is always assumed to be pure.  In reality, salts and 

other chemicals in the soil will dissolve in the water and change the thermal properties of 

the water, particularly the melt temperature and the heat of fusion.  This should be 

accounted for in the model to make a more robust design. 

 
Design Optimization 

 The thermosiphons were modeled as if there is no thermal resistance from the 

outdoor air to the wall of the thermosiphon pipe underground.  There are thermal 

resistances.  With a good design, the thermal resistances are small.  However, there is 

opportunity to study the thermal losses and the variation of temperature with depth to 
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improve the design of the thermosiphon pipe itself.  The losses for any particular 

thermosiphon design should be quantified and included in the model. 

 Local building codes require economization when the outdoor air temperature is 

below a specified shutoff limit.  The shutoff limits vary between climate zones.  The 

economization was modeled in the optimization routine when the outdoor air temperature 

is lower than the thermostat setting.  The typical thermostat setting is not the code-

specified shutoff limit for all locations.  There will also be times when the outdoor air 

temperature is higher than the first node, but still below the shutoff limit.  The changes in 

the code that are required to model the shutoff temperature for a given location are easy 

to make.  As it is, the economization feature in the model can be improved. 

 There are other possibilities for pipe arrangement that might increase efficiency.  

For example, a ring of thermosiphons without pumps on the outer edge of an array might 

serve to reduce thermal losses to the surroundings, or the spacing might change from the 

outer region to the inner region of the array.  These possibilities cannot be modeled with 

a one dimensional code.  A two-dimensional or three-dimensional code would have to be 

created to accommodate more complicated pipe arrangements. 

 The optimization routine did not find a solution for Dallas, Phoenix, Houston, or 

Miami during the allotted time.  This failure does not mean it cannot be done.  It only 

means the method used to search for a minimum did not converge. 

 A similar algorithm for optimization should be developed for pipe separation 

distances.  An optimization of pipe separation distances may show a better correlation 

with soil thermal diffusivities.  Diffusivity and separation correlate well, and with better 

correlations, a separation could be determined without running a transient model, and 
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then the model could be used to minimize total length from the fixed separation.  The 

number of iterations performed to find an optimum would decrease and the speed of 

optimization would be greatly increased. 

 
Future Work 

 Even though the design discussed here only covers space cooling, a similar 

analysis could be done for space heating, made slightly more complicated by increased 

convection within the soil and solar radiation gains.  The current cooling model could be 

expanded to include three dimensions, including end effects, convection and solar 

radiation surface gains.  In addition, longer simulation times will need to be used to find 

the long-term effects such a system might have on the local ecosystems.  More prototypes 

should be placed in the ground and monitored to gather experimental data.  Work is 

moving quickly toward several full-scale implementations. 

 The design and optimization study should be expanded to include the coupling of 

heat pumps with thermosiphons.  This combination opens the system to various 

operational modes that would have to be modeled.  This also opens the market of 

thermosiphon arrays to hot climates where freezing temperatures do not typically occur. 

 
Consideration of Possible Alternatives 

 Although more heat losses will occur, there is another possibility that would make 

the system completely passive.  The heat pipes can slant through the ground from the 

back fence of the yard to the bottom of the basement where they combine and flow into a 

heat exchanger that is inside a plenum with forced air.  A valve is shut off just outside of 

the foundation during the winter season.  The ground freezes as the thermosiphons 
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operate as described previously.  After the ground is frozen and the weather warms up, 

the valves are opened when cooling is desired.  Air is forced past the exchanger and the 

thermosiphons continue to work in the same manner.  As long as the location of the heat 

sink is physically above the location of the heat source, no pumping is required.  This 

system would be completely passive, excluding the fan, and would be easily adapted to 

existing thermostat control systems.  No tank or flow divider is necessary.  No drilling 

would be necessary, which would bring down the cost.  Further modeling needs to be 

done to determine if the area is adequate, if the heat gains are acceptable, and to see if the 

sprinkler system has a path where it won’t freeze year-round.  This would be much easier 

to implement if there were a naturally occurring slope, hill or mountainside, adjacent to 

the building. 

 
Final Conclusions 

 The design and optimization of smart thermosiphon arrays was a success.  A 

strong correlation was found between thermal diffusivities and thermosiphon pipe 

separation distance.  It was found that the separation is proportional to the square root of 

the soil thermal diffusivity.  An inverse correlation was found between total pipe length 

and thermal effusivity.  Viable design solutions were found through an iterative 

optimization routine for three buildings in twelve locations and four different soil types.  

More research in materials and manufacturing is needed for successful implementation of 

working full-scale smart thermosiphon arrays. 

 
 



 
 

 

APPENDIX A 

DESIGN 

 This appendix describes the design of a sample smart thermosiphon array (STA) 

cooling system for a 2,000 sq. ft. house in Midvale, UT.  The design was partially 

implemented as a pilot scale study described in Chapter 4.  The same residence was used 

as Building 1 in the design optimization software described in Chapter 5. 

 There were three objectives to the design of the cooling system.  The first is rather 

implied, but it is to meet the load requirements of the house in consideration.  The second 

design objective is for the system to consume the least possible amount of energy for 

operation without sacrificing the third objective, which is to make it economically 

attainable for the owner and for homeowners in general. 

 
Load Calculation 

 To size the system, first a load calculation needed to be done for the house. This 

load calculation took into consideration the conduction through the walls, the windows, 

roof and floor. It also took into consideration solar heat gains, heat generation by 

occupants and air infiltration. The load calculation was done to determine the maximum 

load that the home would most likely see. This would be the maximum cooling the 

system would need to provide during the hottest summer months. The load is based on a 

summer temperature of 105ºF and a room temperature of 70ºF.  This peak load, the 
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maximum rate of cooling, is how most air conditioning systems are designed.  However, 

with seasonal thermal energy storage, an integrated load, or the total amount of heat that 

needs to be transferred over the course of the entire year, must be calculated.  Due to the 

lack of tools to perform this calculation, it is not done prior to the pilot scale 

implementation.  It is performed for the later optimization discussed in Chapter 5. 

 
Thermosiphon Sizing and Determination 

 Thermosiphon modeling was completed in COMSOL 3.3, a complete description 

of this can be found in CHAPTER 2.  Several assumptions were made in these models 

that are listed in the assumptions section below.  The models took into consideration 

conduction only.  Heat transfer will be amplified in cases where convection occurs in the 

soils [1].  Total heat flux was calculated for the heat pipes and integrated over the length 

of the year to determine total amount of energy stored (or rather, removed) during the 

winter months per length of heat pipe.  The sizing of this system required a total 

integrated energy load and a peak power load.  Without a method to determine the load 

profile and integrated load, an article by Jeff Spitler was used to correlate monthly peak 

loads with integrated monthly loads [2]. 

 
Constraints of the System 

1.  The system must fit within the backyard of the home, which is approximately 30’x50’. 

2.  The heat exchange panels for the outdoors are designed to replace fencing and 

therefore cannot be taller than 6 feet, or longer than the perimeter of the backyard, which 

is taken to be 110 feet. 
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3.  Any method of installation cannot involve equipment larger than a rig transported by a 

single standard-size vehicle in order to gain access to the yard and cannot have a 

clearance of over 12 feet because of overhead power lines. 

4.  Internal mechanical systems must fit within the infrastructure of the building. 

5.  Pipe diameters are to match nominal pipe sizes to minimize cost.  The pump is sized 

based on the cooling load. 

6.  The drilling method chosen, direct-punch, constrains the thermosiphon pipe diameter 

to a maximum of 3”-nominal piping. 

7.  Availability of pumps that fit inside the thermosiphon pipe limit the internal diameter 

to a minimum of 2”-nominal piping. 

 
Assumptions 

Load Calculation 
 
1.  The peak load to integrated load ratio is a constant.  This implies that an integrated 

load can be calculated by scaling from the known peak load and integrated loads of 

another building.  This is a weak assumption, especially when the building sizes, shapes, 

and materials, are drastically different or when seasonal variations are different. 

2.  The building in Oklahoma and the house in Midvale have comparable seasonal 

variations and are built in similar enough manners to warrant a direct comparison of 

cooling loads.  This is probably the weakest of all assumptions, but proves to be 

adequate. 
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COMSOL Model 

1.  A thermosiphon spacing of 1.5 m is optimum.  This spacing was found to be optimum 

compared to two others: 0.5 m and 5 m.  Further optimization using COMSOL was 

considered to be cumbersome and was discontinued for this design, but subsequent 

COMSOL modeling is included in Chapter 2.  Additional optimization using MATLAB 

code is described in Chapter 5. 

 2.  In general, vapor-liquid equilibrium and all other thermodynamics were ignored.  

Only latent heat and working pressure as a function of temperature were considered. 

3.  The soil modeled had the following characteristics: 

 a. The soil is completely saturated with pure water. 

 b. Soil porosity (φ ) is 35%. 

 c. Initial soil temperature is 285 K (53.3 Farenheit). 

 d. The thermal conductivity of the soil is given by an empirical function of 

temperature (in S.I. units) developed from literature values, as in Eq. (2.2). 

 e.  The density and heat capacity of the soil are given by Eq. (2.3) and Eq. (2.4), 

where the density of water is 1000 kg/m3, and the density of soil is 2650 kg/m3.  The heat 

capacity of water is 4180 and soil is 1003 J/(kg K). 

4.  The thermosiphons only have heat transfer occurring during the winter if the 

temperature of the ground next to the heat pipe is greater than the ambient temperature 

outside. 

5.  The ambient temperature outside is given as a function of time that was fitted using 

two sine curves to SLC International Airport weather station average temperatures.  One 
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sine curve was used for 24-hour daily temperature oscillations and the other for yearly 

seasonal oscillations.   

6.  Heat losses and gains to the surface were neglected, assuming that the thermosiphons 

are deep enough for this to be true.  All other end effects were neglected. 

7.  No convection occurs in the soil. 

8.  Only 85% of the heat transferred out of the soil can be transferred back into the soil 

because the cooling front extends beyond the reach of recoverability for the heat pipes. 

10.  The optimal design for the thermosiphons is for the depth of the pipes to be the same 

as the diameter of the pipe matrix.  This is to reduce the surface area to volume ratio and 

therefore minimize heat gains. 

 
External Heat Exchangers 

1.  The fencing on the perimeter of the yard will be sufficient heat exchange area to 

provide the cooling necessary. 

2.  Labor of installation and cost of fencing is considered as outside the scope of this 

bid/estimate. 

 
Other External Labor 

1.  It is assumed that any removal of old fencing, or trees, bushes, etc. will be done before 

this project is initiated, and cost does not cover the preliminary work to prepare for the 

system.  This includes any light trenching, pole digging, sod and landscape preservation, 

etc. 
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Internal Mechanical Systems 

1.  Ductwork, fans, plenum, and heating systems are all as-is, and any change or 

modification that takes place to these systems is not part of this analysis. 

2.  Any control devices, such as thermostats, flow regulators/distributors, wiring, etc. are 

not included in this design.  The pumps in each of the thermosiphons are considered 

control devices and are therefore not included.  These pumps are small, high head, low 

flow, and relatively inexpensive pumps. 

3.  A storage tank will most likely be needed for such a system, but this also falls outside 

of the scope of this work since thermodynamics are not considered; therefore, volume of 

liquid in a vapor-liquid equilibrium is not calculated. 

4.  The length of piping within the house is not significant to contribute to head loss.  

Head loss is only estimated since it is a two phase system. 

5.  The correction factor for the cross-flow heat exchanger inside the house is 1. 

 
 Heat Load Calculation 

The home was estimated to have an electrical load of approximately 1watt per 

square foot of the home and approximately five occupants each giving off 450 Btu/hr. 

Once all of the heat gains were calculated, the total required cooling load was 

determined.  The calculated max load for the home was 16.2 kW (55,140 BTU/hr, 4.6 

tons of cooling). 

 
Heat Pipe Field Design 

 The COMSOL model was integrated, and it was determined that each heat pipe 

had a potential to remove 68 J/m of heat energy from the ground over the course of the 
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cold season.  Based on the integrated heat load calculated by scaling the Oklahoma case, 

this is equivalent to 120 m of total length.  If the heat pipes are separated by 1.5 m each in 

equilateral triangles, this is equivalent to 19 heat pipes, each 6 m deep. 

 
Refrigerant Selection 

 Since the system operates on the principle of latent heat capture, refrigerants 

releasing latent heat of vaporization at 25°C and those which are not freezing at 0°C are 

employed. Considering the operating temperatures, the choice of refrigerants is narrowed 

to R134a (tetrafluoroethane) and ammonia. The operating pressures for R134a and 

ammonia are 3 bar and 5 bar, respectively. The latent heat of vaporization of R134a is 

200 kJ/kg, and that of ammonia is 1,400 kJ/kg. Although ammonia facilitates better heat 

transfer, R134a is chosen as ammonia is considered toxic and is difficult to manage at 

that pressure.  R-134a also offers the advantage of being commercially available without 

a license requirement. 

 
Cost Estimate 

 Collecting all the individual systems and totaling the cost gives a final result of 

$4400 for drilling costs, $5890 for outdoor systems (excluding the fence), $1100 for 

indoor systems, and an approximated 100 man-hours or $1000 of labor costs.  The fence 

heat exchangers are approximated to cost $5000 but need to be investigated further.  The 

total energy costs are the same as running an air conditioner minus the compressor 

(which is the primary consumer in an A/C system).  That brings the grand total to 

$12,390 without the fence and $17,390 with the fence.     
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APPENDIX B 

ANALYTICAL SOLUTIONS 

 When a thermal energy storage system contains a phase change material (PCM), 

such as water, the latent heat of the material must be taken into consideration.  The 

mathematical modeling of phase change is considerably more complicated than simple 

heat transfer, due to the nonlinearity of the system and the fact that one of the unknowns 

is the location of the phase change boundary.  A few analytical solutions exist, and one is 

presented here as the basis of the simulation and design methodology presented in 

Chapter 3.  

 
Assumptions 

 Before any solutions are presented, a discussion of the assumptions included is 

necessary.  These assumptions are held throughout all methods, including the numerical 

simulations in Chapter 3.  They do not apply to the COMSOL modeling discussed in 

Chapter 2. 

 For simplicity, heat is assumed to be transferred in the soil by isotropic 

conduction only; radiation and convection are considered to have a negligible effect.  All 

other physical effects, such as gravitational, elastic, chemical, electromagnetic, and 

nuclear, are ignored.   
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 All thermal and physical properties are considered constant.  That is, latent heat 

(L) is constant and is released or absorbed at the melt temperature, which is also constant.  

This assumption is probably valid for smaller systems, but pressure increases with depth 

underground, and the melt temperature of water, the PCM of interest, decreases.  

Therefore, this assumption comes in to question for a deeply installed system.   

 The densities of the liquid and solid phase are assumed to be equal (ρL=ρS).  This 

is necessary to avoid movement of the material, which complicates the mathematical 

formulation of the problem.  The heat capacity and thermal conductivity are only 

assumed to be constant within a phase but differ between phases (cL≠cS, kL≠kS).  Because 

the temperature range of interest is relatively small, constant heat capacity and thermal 

conductivity are reasonable.  It is assumed there is no supercooling, and that there is a 

sharp separation, with no thickness, between phases, at the melt temperature (Tm). 

 A pipe installed vertically in the ground is most readily modeled in a one-

dimensional radial geometry.  Therefore, discussion is limited to cylindrical coordinates, 

and the classical Stefan problem of phase change in a slab is not included. 

 
The Stefan Formulation 

 The Stefan formulation [1] is concerned with the total energy (assuming no 

kinetic or potential energy for the system) in a substance.  Barring volume changes, for a 

substance heated under constant pressure, the total energy is the internal energy of the 

substance.  The internal energy per unit mass is denoted by e, in kJ/kg, and the internal 

energy per unit volume is denoted by E, in kJ/m3.  The specific heat under constant 

pressure is defined as the energy that is required to raise the temperature of 1 kg of a 

substance by 1°C.  That energy contained in a material is known as its sensible heat.   
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 If the energy scale is determined by setting e=0 when the substance is a solid at its 

melt temperature (Tm), and e=L when the substance is a liquid at the melt temperature, 

the energy of the substance is given by 

 ݁ = ൜݁௅(ܶ) = ܮ + ܿ௅[ܶ − ௠ܶ], ܶ ≥ ௠ܶௌ݁(ܶ) = ܿௌ[ܶ − ௠ܶ], ܶ ≤ ௠ܶൠ (B.1)

The heat flux (ݍԦ) is defined as the amount of heat energy crossing a unit area per unit 

time.  The heat flux is given by Fourier’s Law:  

Ԧݍ  = −݇∇ܶ (B.2)

In one-dimensional cylindrical coordinates, Eq. (B.2) reduces to  

ݍ  = −݇ ݎ߲߲ܶ  (B.3)

 With thermal diffusivity defined as ߙ =  a heat balance, or energy ,ܿߩ/݇

conservation, with the assumption that thermal conductivity and specific heat are constant 

and no generation, leads to the heat equation: 

ݐ߲߲ܶ  = ଶܶ (B.4)∇ߙ

In one-dimensional cylindrical coordinates, 

ߙ1  ݐ߲߲ܶ = ߲ଶ߲ܶݎଶ + ݎ1 ݎ߲߲ܶ  (B.5)

In order to solve this parabolic differential equation, all boundaries must have a specified 

boundary condition, and an initial temperature must be specified everywhere for t=0.   

 For a two-phase system, there exists an interface, assumed to be of zero thickness, 

which separates the liquid from the solid.  Within each phase, there is a distinct heat 

equation satisfied with boundary conditions specified on the interface.  The applicable 

boundary condition is that of constant temperature.  Where a phase change is occurring, it 



119 
 

 
 

is assumed that the temperature is the melt temperature, which is constant.  The location 

of the phase change boundary is unknown, but if it were known, there would be enough 

information to solve for the temperature at all locations inside the liquid and solid 

regions. 

 In order to locate the interface, a local heat balance can be derived for the 

interface.  The amount of energy released (or absorbed) per unit volume, during a phase 

change, is given by 

ܧ  = ௅݁)ߩ − ௌ݁) (B.6)

At the phase change boundary, ܶ = ௠ܶ, and therefore, ܧ =  If an interface is moving  .ܮߩ

at some velocity (ݒ), the amount of energy released (or absorbed, depending on sign and 

convention) per unit area of the interface will be ݒܮߩ.  Therefore, the sum of the fluxes 

normal to the interface must equal this generation, 

ݒܮߩ  = Ԧݍ) ∙ ሬ݊Ԧ)௟௜௤௨௜ௗ − Ԧݍ) ∙ ሬ݊Ԧ)௦௢௟௜ௗ (B.7)

Equation (B.6) is known as the Stefan Condition. 

 In one-dimensional cylindrical coordinates, the location (radius) of the interface, 

as a function of time, can be denoted as R(t).  Therefore, the interface velocity is 

represented by the derivative with respect to time, R’(t).  The flux normal to the interface 

is given by Fourier’s Law, and the Stefan Condition for cylindrical coordinates in one-

dimension becomes 

ܮߩ  ݐ݀(ݐ)ܴ݀ = −݇௅ ,(ݐ)ܴ)߲ܶ ݎ߲(ݐ + ݇ௌ ,(ݐ)ܴ)߲ܶ ݎ߲(ݐ  (B.8)
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  Applicable Problem 

 With the background of the Stefan Problem set up, it is now possible to show the 

problem applicable to soil freezing, or melting, from an imposed flux at a thermosiphon 

wall.  Relatively few Stefan problems can be solved explicitly.  Only two problems in 

cylindrical coordinates have been found to have practical application.  As with all closed-

form explicit solutions of Stefan problems, these two solutions are for a semi-infinite 

domain, and therefore are similarity solutions [1].  Because of the nonlinearities inherent 

in the problem of phase change, superposition is not a possibility.  One of the solutions is 

for the solidification of a supercooled melt.  The other, shown here, is the solution for the 

melting of an infinite solid from a line heat source of magnitude Q (W/m) at ݎ = 0.  The 

differential equation to be solved, Eq. (4.5), must be solved for both phases, namely  

ݐ߲߲ܶ  = ௅ߙ ቆ߲ଶ߲ܶݎଶ + ݎ1 ቇݎ߲߲ܶ , 0 < ݎ < ,(ݐ)ܴ ݐ > 0 (B.9) (݀݅ݑݍ݈݅)

ݐ߲߲ܶ  = ௌߙ ቆ߲ଶ߲ܶݎଶ + ݎ1 ቇݎ߲߲ܶ , (ݐ)ܴ < ݎ < ∞, ݐ > 0 (B.10) (݈݀݅݋ݏ)

With the interface conditions, 

,(ݐ)ܴ)ܶ  (ݐ = ௠ܶ, ݐ > 0 (B.11)

ܮߩ  ݐ݀(ݐ)ܴ݀ = −݇௅ ,(ݐ)ܴ)߲ܶ ݎ߲(ݐ + ݇ௌ ,(ݐ)ܴ)߲ܶ ݎ߲(ݐ , ݐ > 0 (B.12)

with initial conditions, 

 ܴ(0) = 0, ,ݎ)ܶ 0) = ௦ܶ < ௠ܶ (B.13)

and boundary conditions, 

 lim௥→଴ ൬−2݇ݎߨ௅ ൰ݎ߲߲ܶ = ܳ (B.14)
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 lim௥→ஶܶ(ݎ, (ݐ = ௌܶ (B.15)

where Ts is the initial and far-field temperature of the solid. 

The similarity solution for this problem is [2] 

(ݐ)ܴ  = ,ݐ௅ߙ௧ඥߣ2 ݐ > 0 (B.16)

,ݎ)ܶ  (ݐ = ௠ܶ + ௅݇ߨ4ܳ ቈܧଵ ቆ ቇݐ௅ߙଶ4ݎ − ቉(௧ଶߣ)ଵܧ ,
0 < ݎ ≤ ,(ݐ)ܴ ݐ > 0 

(B.17)

,ݎ)ܶ  (ݐ = ௌܶ + ( ௠ܶ − ௌܶ) ଵܧ ൬ ଵܧ൰ݐௌߙଶ4ݎ ቀߙ௅ߙௌ ௧ଶቁߣ , ݎ ≥ ,(ݐ)ܴ ݐ > 0 (B.18)

The variable ߣ௧ is the root of 

ߨ4ܳ  ݁ିఒ೟మ + ݇ௌ( ௠ܶ − ௌܶ)ܧଵ ቀߙ௅ߙௌ ௧ଶቁߣ ݁ିఈಽఈೄఒ೟మ = ௧ଶ (B.19)ߣ௅ߙܮߩ

where the function ܧଵ is the exponential integral [3] 

(ݔ)ଵܧ  = න ݁ି௦ݏ ஶݏ݀
௫ , ݔ > 0 (B.20)

and s in Eq. (B.20) is a dummy variable for the purpose of integration. 

 Although this is an explicit closed-form solution for the problem as it was stated, 

it is not congruent with real melting processes.  The solution indicates that for any time ݐ > 0, the solid begins to melt, and the position of the interface is proportional to √ݐ.  
However, reality shows that if ௌܶ ≪ ௠ܶ, there is a time elapsed to overcome the heat 

capacity of the solid and increase its temperature at the boundary to ௠ܶ before melting 

occurs.  The fact that line sources have some thickness can compensate for this error in 

the solution but introduces error of its own. 
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APPENDIX C 

SIMULATION CODE 

 As an example, the temperature boundary condition modeled in Chapter 3 is 

performed by calling the code in Appendix B, from the matlab command line, with the 

command: [r, deltat, deltar, T, E, unmet, economized]=cyl_exp_all_all(.0254, 0.25, 10, -

12, 1, 0.00058, 0.00218, 4000, 2000, 334000, 0, 1, 'hourlyload', 25, 31536000, 'Kir', 

'temp'); 

 The inputs, in order, are the inner and outer radius, in m, the number of radial 

nodes (10), the initial temperature of the domain (-12°C), and the initial phase of the 

PCM (1, indicating liquid), which is ignored when the initial temperature is not equal to 

the melt temperature, which in this case is 0°C.  The input parameters that follow are the 

thermal properties of the material, which in this case match the thermal properties of 

water.  The last six inputs are the inner boundary temperature (1°C), a dummy variable 

that does not apply to the ‘temp’ boundary condition, the outer boundary temperature 

(25°C), the total simulation time in seconds (31536000 seconds = 1 year), the method of 

calculating thermal conductivities (Kirchoff temperatures), and the boundary condition 

type (‘temp’). 

 
function [r, deltat, deltar, T, E, unmet, economized] = 
cyl_exp_all_all(Ri,Ro,rnodes,Tinit,lambdainit,kl,ks,rhoCl,rhoCs,rhoL,Tm
,hourlytemps,hourlyload,Tstat,maxtime,con,boco) 
%% AMBI 
unmetcount=0; 
economized=0; 
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Tout=Tstat; 
Tin=hourlytemps; 
  
%% ALL 
time=0;         %actual simulation time 
n=1;            %time-step index 
  
for i=1:rnodes      % Setting up the mesh 
    r(i)=Ri+(sum(1:i-1)+i/2)/sum(1:rnodes)*(Ro-Ri); 
    deltar(i)=i/sum(1:rnodes)*(Ro-Ri); 
end 
r(rnodes+1)=Ro;     % Outer radius, last node 
deltat=min((min(deltar)^2)/(2.1*max(kl/(rhoCl),ks/(rhoCs))),3600);  
%fixes size of time step to deltay^2/(4*max alpha) 
  
twopi=6.28;  % Shouldn't be necessary 
  
%% 
  
for node=1:rnodes 
    T(node,1)=Tinit;                %Initial temperature of domain 
    if con=='Kir' 
        R(node+1)=log(r(node+1)/r(node))/(twopi);   %Resistance of the 
wall between node and node+1, check calculations but twopi should 
cancel out. 
    end 
  
    if T(node,1)<Tm                 %Initial energies and phases based 
on temperature 
        E(node,1)=rhoCs*(T(node,1)-Tm); %frozen, below freezing, solid 
        lambda(node,1)=0; 
    elseif T(node,1)>Tm                 %melted, above freezing, liquid 
        E(node,1)=rhoCl*(T(node,1)-Tm)+rhoL; 
        lambda(node,1)=1; 
    else                                %at freezing, user defined 
phase, slushy 
        lambda(node,1)=lambdainit; 
        E(node,1)=rhoCl*(T(node,1)-Tm)+rhoL*lambda(node,1); 
    end 
end 
  
R(1)=log(r(1)/Ri)/(twopi);              %Resistance from inner radius 
to first node 
R(rnodes+1)=log(Ro/r(rnodes))/(twopi); 
  
%% 
while time<maxtime       %time limit of simulation in seconds 
    %% 
    %% AMBI 
    if boco=='ambi' 
        hour=floor(time/3600)+1; 
        Tamb=hourlytemps(hour); 
        qload=hourlyload(hour);   %needs to be calculated per unit 
length!!!!!! 
    end 
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%% DETERMINATION OF THERMAL CONDUCTIVITIES/KIRCHOFF TEMPERATURES     
    %% ALL, ALL 
    for node=1:rnodes 
        if con=='col' 
            k(node)=lambda(node,n)*kl+(1-lambda(node,n))*ks; 
        else 
            k(node)=1/(lambda(node,n)/kl+(1-lambda(node,n))/ks); 
        end 
  
        if T(node,n) < Tm            %solid 
            u(node)=ks*(T(node,n)-Tm); 
        elseif T(node,n) > Tm    %liquid 
            u(node)=kl*(T(node,n)-Tm); 
        else                        %slushy 
            u(node)=0; 
        end 
    end 
  
  
%% CALCULATION OF FLUXES FOR ALL INTERIOR NODES 
    % KIR 
    if con=='Kir' 
        for wall=2:rnodes       %calc of fluxes 
            q(wall,n)=(u(wall-1)-u(wall))/R(wall); 
        end 
    else        % COL/SHF 
        for wall=2:rnodes       %calc of resistances and fluxes 
            R(wall)=log(1+0.5*deltar(wall-1)/r(wall-1))/(2*pi*k(wall-
1))-log(1-0.5*deltar(wall)/r(wall))/(2*pi*k(wall)); 
            q(wall,n)=(T(wall-1,n)-T(wall,n))/R(wall); 
        end 
    end 
  
  
%% CALCULATION OF FLUXES FOR OUTER BOUNDARY NODE     
    % ALL, TEMP 
    if boco=='temp' 
        q(rnodes+1,n)=k(rnodes)*(T(rnodes,n)-Tout)/R(rnodes+1); 
    else    % ALL, FLUX/AMBI 
        q(rnodes+1,n)=0; 
    end 
  
     
%% CALCULATION OF FLUXES FOR INNER BOUNDARY NODE 
    % ALL, AMBI 
    if boco=='ambi' 
        if Tamb>T(1,n) & qload~=0       %Outside air temperature is 
higher than first node & there is a building load 
            Tret=qload*R(1)/k(1)+T(1,n);   %Tret is the temperature 
that would need to be returned from the conditioned space to satisfy 
the load 
            if Tret>Tstat               %If Tret is greater than the 
thermostat setting, 
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                Tret=Tstat;             %the maximum return would be 
just over Tstat setting. 
                unmetcount=unmetcount+1;%count it as a timestep where 
load was unmet 
            end 
            q(1,n)=k(1)*(Tret-T(1,n))/R(1);    %put load in system 
        elseif Tamb>T(1,n) & qload==0   %Outside air is greater than 
first node, but no building load 
            q(1,n)=0;                   %No cooling or heating of 
system 
        else                            %Otherwise OA temp will be 
lower than first node 
            q(1,n)=k(1)*(Tamb-T(1,n))/R(1);    %In which case, cool the 
system 
            economized=economized+qload*deltat; %And economize any load 
that might exist. 
        end     %This economization is idealized, first node will never 
be above Tstat, but could be close, 
        %so OA temp could be close to Tstat setting, requiring a large 
        %airflow to truly economize. 
    end 
  
    % ALL, FLUX 
    if boco=='flux' 
        q(1,n)=-0.7512;   %Flux needed to freeze pure water with 
Ro=0.25, Ri=0.0254 in ONE HOUR? 
    end 
     
    % ALL, TEMP 
    if boco=='temp' 
        q(1,n)=k(1)*(Tin-T(1,n))/R(1); 
    end 
  
    % ALL, ALL 
    for node=1:rnodes 
        
E(node,n+1)=E(node,n)+deltat/(deltar(node)*twopi*r(node))*(q(node,n)-
q(node+1,n));  %Calculate new energy for all nodes 
        if E(node,n+1)<=0                       %solid 
            T(node,n+1)=Tm+E(node,n+1)/rhoCs;   %new temp 
            lambda(node,n+1)=0;                 %new phase 
        elseif E(node,n+1)>=rhoL                %liquid 
            T(node,n+1)=Tm+(E(node,n+1)-rhoL)/rhoCl; 
            lambda(node,n+1)=1; 
        else                                    %slushy 
            T(node,n+1)=Tm; 
            lambda(node,n+1)=E(node,n+1)/rhoL; 
        end 
    end 
    %% DISPLAY OPTIONS 
    %    q=[q(:,n)] 
        time 
    %      day=hour/24 
          lET=[lambda(:,n),E(:,n)*10^-5,T(:,n)] 
         if sum(E(:,n+1))<0 
             break 
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         end 
    %% 
    %     for node=1:rnodes 
    %         if T(node,n)==Tm 
    %             MeltR(n)=r(node)+(lambda(node,n)-0.5)*deltar; 
    % %            lamb(n)=MeltR(n)/(2*sqrt(kl/(rho*Cl)*time)); 
    % %            [n/1000,MeltR(n),lamb(n)] 
    %         end 
    %     end 
    %% 
    n=n+1;              %Increase time-step 
    time=time+deltat;   %Calculate new actual time 
end 
unmet=unmetcount*deltat/3600;   %Total unmet hours 
 

 
 
 



 
 

 

APPENDIX D 

OPTIMIZATION CODE 

designoptimizer.m 

clear all; 
clc; 
  
dlmwrite('logfile.txt',8.23,'-append'); 
starthour=6900; %hour of the year simulation starts 
maxtime=8760*3600;  %amount of time simulation runs in seconds 
maxhours=ceil(maxtime/3600);   %amount of time simulation runs in hours 
newyears=floor((starthour+maxhours)/8760);  %number of times weather 
file needs to be cycled to the beginning 
TstatF=75; 
Tstat=(TstatF-32)*5/9; 
Tm=0;           %Melt temperature of substance in deg celsius 
L=334;          %Latent heat of fusion (kJ/kg) 
Ri=0.0254;       %radius of thermosiphon pipe 
  
for zone=4 
%%  READ LOAD AND TEMPERATURE DATA 
    zonestr=int2str(zone); 
    tmyfile=strcat('weather',zonestr,'.xls'); 
    tmy=xlsread(tmyfile, 'AF3:AF8762');   %tmy weather file gets read 
in as tmy, 8760 hourly temperature data points 
    loadfile=strcat('load',zonestr,'.xls'); 
    Tinit=mean(tmy);   %initial temperature of domain, should be 
average of yearly temperatures for any location. 
  
    for building=1 
        buildingstr=int2str(building); 
        if building==1 
            range='E4:E8763'; 
        elseif building==2 
            range='F4:F8763'; 
        else 
            range='G4:G8763'; 
        end 
        load=xlsread(loadfile,range)*3.51685;    %hourly load profile 
from trane trace (converted from tons to kilowatts). 
        unmetmax=max(size(nonzeros(load))); 
        count=0;    %variable counting how many years of data have been 
added to the hourly temperature vector 



129 
 

 
 

        hourlytemps=tmy(starthour:8760);  %hourly temperature vector 
starting at start hour and ending at the last hour of tmy file 
        hourlyload=load(starthour:8760); 
        while count<newyears    %loop to add additional years needed to 
cover the simulation length. 
            hourlytemps=[hourlytemps;tmy];  %vertical concatenation of 
additional years to hourly temp vector 
            hourlyload=[hourlyload;load]; 
            count=count+1;  %counter increase 
        end 
  
        for soil=2:4 
            zone,building,soil 
            soilstr=int2str(soil); 
            dlmwrite('logfile.txt',zone, '-append'); 
            dlmwrite('logfile.txt',building, '-append'); 
            dlmwrite('logfile.txt',soil, '-append'); 
%%  ASSIGN THERMAL PROPERTIES OF SYSTEM 
            if soil==1 
                thetav=0.001; 
                rhob=1300; 
                ks=0.0002;           %Conductivity of solid (kW/mK) 
                kl=0.0002;           %conductivity of liquid (kW/mK) 
                rhoCs=2*thetav*1000+0.73*rhob; 
                rhoCl=4.18*thetav*1000+0.73*rhob; 
                rhoL=1000*L*thetav; 
            elseif soil==2 
                thetav=0.5; 
                rhob=1600; 
                ks=0.0002;           %Conductivity of solid (kW/mK) 
                kl=0.0002;           %conductivity of liquid (kW/mK) 
                rhoCs=2*thetav*1000+0.73*rhob; 
                rhoCl=4.18*thetav*1000+0.73*rhob; 
                rhoL=1000*L*thetav; 
            elseif soil==3 
                thetav=0.001; 
                rhob=1300; 
                ks=0.0037;           %Conductivity of solid (kW/mK) 
                kl=0.0028;           %conductivity of liquid (kW/mK) 
                rhoCs=2*thetav*1000+0.73*rhob; 
                rhoCl=4.18*thetav*1000+0.73*rhob; 
                rhoL=1000*L*thetav; 
            elseif soil==4 
                thetav=0.5; 
                rhob=1600; 
                ks=0.0037;           %Conductivity of solid (kW/mK) 
                kl=0.0028;           %conductivity of liquid (kW/mK) 
                rhoCs=2*thetav*1000+0.73*rhob; 
                rhoCl=4.18*thetav*1000+0.73*rhob; 
                rhoL=1000*L*thetav; 
            end 
            alphas=ks/rhoCs; 
            alphal=kl/rhoCl; 
            dlmwrite('logfile.txt', [alphas,alphal], '-append'); 
%%  GEOMETRIC SETUP 
            if min(tmy)<0 
                Emin=rhoCs*(min(tmy)-Tm); 
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            else 
                Emin=rhoCl*(min(tmy)-Tm)+rhoL; 
            end 
            if max(tmy)<0 
                Emax=rhoCs*(max(tmy)-Tm); 
            else 
                Emax=rhoCl*(max(tmy)-Tm)+rhoL; 
            end 
            deltaE=Emax-Emin; 
            clear volume length T E unmetmatrix; 
%%  OPTIMIZATION ENGINE 
            for n=1:30; 
                nstr=int2str(n); 
                volume(n,1)=sum(load)*3600/deltaE; 
                pipes=1+sum(6*(1:n)); 
                count=1; 
                unmet=1; 
                while unmet>0 
                    d=(4/3.14*volume(n,count))^(1/3); 
                    separation=d/(2*n);   %distance between 
thermosiphons in meters 
                    Ro=separation/2; %radius of domain 
                    length(n,count)=(1+sum(6*(1:n)))*d; 
                    lengthstr=int2str(length(n,count)); 
                    loadperlength=hourlyload/length(n,count); 
                    rnodes=3; 
                    [r, deltat, deltar, T, E, unmet, 
economized]=meshtest(Ri,Ro,rnodes,Tinit,kl,ks,rhoCl,rhoCs,rhoL,Tm,hourl
ytemps,loadperlength,Tstat,maxtime); 
                    unmetmatrix(n,count)=unmet; 
                    unmetstr=int2str(unmet); 
                    deltatstr=int2str(deltat); 
                    econstr=int2str(economized); 
                    sepstr=num2str(separation); 
                    
dlmwrite('logfile.txt',[n,length(n,count),separation,unmet,economized,d
eltat], '-append'); 
                     
                    if unmet<88 
                        break; 
                    end 
                    if (count > 2) & ((unmet==unmetmatrix(n,count-2)) | 
((unmet>unmetmatrix(n,count-2)) & (unmet>unmetmatrix(n,count-1)))) 
                        break; 
                    end 
                    if count==2 
                        lengthint=length(n,count-1)-
unmetmatrix(n,count-1)*(length(n,count)-length(n,count-
1))/(unmetmatrix(n,count)-unmetmatrix(n,count-1)); 
                        dint=lengthint/(1+sum(6*(1:n))); 
                        volume(n,count+1)=3.14*dint^3/4; 
                    else 
                        
volume(n,count+1)=volume(n,count)*(1.05+5*unmet/unmetmax); 
                    end 
                    count=count+1; 
                end 
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lengthtest=(1+sum(6*(1:n+1)))*(4/3.14*volume(n,1))^(1/3); 
                if lengthtest>length(n,count) 
                    break; 
                end 
            end 
  
%% OUTPUTS 
%             outfile=strcat('zone',zonestr,'results.xls'); 
%             sheet=strcat('building',buildingstr,'soil',soilstr); 
%             xlswrite(outfile,separation,sheet,'A1'); 
%             xlswrite(outfile,length,sheet,'A2'); 
%             xlswrite(outfile,unmetmatrix,sheet,'A22'); 
%             xlswrite(outfile,r,sheet,'E1'); 
%             xlswrite(outfile,deltat,sheet,'B1'); 
%             xlswrite(outfile,economized,sheet,'C1'); 
%             xlswrite(outfile,T',sheet,'A42'); 
            %d=(4/3.14*volume(n,count))^(1/3); 
            %separation=d/(2*n);   %distance between thermosiphons in 
meters 
            %Ro=separation/2; %radius of domain 
%             disp('Press any key') 
%             pause; 
  
  
        end 
    end 
end 
 

 

meshtest.m 

function [r, deltat, deltar, T, E, unmet, economized] = 
meshtest(Ri,Ro,rnodes,Tinit,kl,ks,rhoCl,rhoCs,rhoL,Tm,hourlytemps,hourl
yload,Tstat,maxtime) 
  
unmetcount=0; 
time=0;         %actual simulation time 
n=1;            %time index 
economized=0; 
  
for i=1:rnodes 
    r(i)=Ri+(sum(1:i-1)+i/2)/sum(1:rnodes)*(Ro-Ri); 
    deltar(i)=i/sum(1:rnodes)*(Ro-Ri); 
end 
r(rnodes+1)=Ro; 
deltat=min((min(deltar)^2)/(2.1*max(kl/(rhoCl),ks/(rhoCs))),3600);  
%fixes size of time step to deltay^2/(4*max alpha) 
twopi=6.28; 
%Evar=deltat/(deltar*twopi); 
%% 
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for node=1:rnodes 
    T(node,1)=Tinit;              %Initial temperature of domain 
    lambda(node,1)=1; 
    R(node+1)=log(r(node+1)/r(node))/(twopi); 
  
    if T(node,1)<Tm 
        E(node,1)=rhoCs*(T(node,1)-Tm); 
    else 
        E(node,1)=rhoCl*(T(node,1)-Tm)+rhoL*lambda(node,1); 
    end 
end 
R(1)=log(r(1)/Ri)/(twopi); 
%% 
while time<maxtime       %time limit of simulation in seconds 
    %% 
    hour=floor(time/3600)+1; 
    Tamb=hourlytemps(hour); 
    qload=hourlyload(hour);   %needs to be calculated per unit 
length!!!!!! 
     
    for node=1:rnodes 
        if T(node,n) < Tm            %solid 
            u(node)=ks*(T(node,n)-Tm); 
        elseif T(node,n) > Tm    %liquid 
            u(node)=kl*(T(node,n)-Tm); 
        else                        %mushy 
            u(node)=0; 
        end 
    end 
    %% 
    for wall=2:rnodes       %calc of fluxes 
        q(wall,n)=(u(wall-1)-u(wall))/R(wall); 
    end 
    %    R(rnodes+1,n)=log(Ro/r(rnodes))/(2*pi*k(rnodes)); 
    %    q(rnodes+1,n)=(T(rnodes,n)-Tout)/R(rnodes+1,n); 
    q(rnodes+1,n)=0; 
     
    k=1/(lambda(1,n)/kl+(1-lambda(1,n))/ks); 
  
    if Tamb>T(1,n) & qload~=0 
        Tret=qload*R(1)/k+T(1,n); 
        if Tret>Tstat 
            Tret=Tstat; 
            unmetcount=unmetcount+1; 
        end 
        q(1,n)=k*(Tret-T(1,n))/R(1); 
    elseif Tamb>T(1,n) & qload==0 
        q(1,n)=0; 
    else 
        q(1,n)=k*(Tamb-T(1,n))/R(1); 
        if Tamb<Tstat 
            economized=economized+1; 
        end 
    end 
    %    q(1,n)=-0.0082967; 
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    %% 
    for node=1:rnodes 
        
E(node,n+1)=E(node,n)+deltat/(deltar(node)*twopi*r(node))*(q(node,n)-
q(node+1,n)); 
        if E(node,n+1)<=0 
            T(node,n+1)=Tm+E(node,n+1)/rhoCs; 
            lambda(node,n+1)=0; 
        elseif E(node,n+1)>=rhoL 
            T(node,n+1)=Tm+(E(node,n+1)-rhoL)/rhoCl; 
            lambda(node,n+1)=1; 
        else 
            T(node,n+1)=Tm; 
            lambda(node,n+1)=E(node,n+1)/rhoL; 
        end 
    end 
    %    q=[q(:,n)] 
    %    time 
%      day=hour/24 
%      lET=[lambda(:,n),E(:,n)*10^-5,T(:,n)] 
    %     if sum(E(:,n+1))<0 
    %         break 
    %     end 
    %% 
    %     for node=1:rnodes 
    %         if T(node,n)==Tm 
    %             MeltR(n)=r(node)+(lambda(node,n)-0.5)*deltar; 
    % %            lamb(n)=MeltR(n)/(2*sqrt(kl/(rho*Cl)*time)); 
    % %            [n/1000,MeltR(n),lamb(n)] 
    %         end 
    %     end 
    %% 
    n=n+1; 
    time=time+deltat; 
end 
unmet=unmetcount*deltat/3600; 
economized=economized*deltat/3600; 
 

 


