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ABSTRACT

A gasifier's temperature is the primary characteristic that must be monitored 

to ensure its performance and the longevity of its refractory. One of the key tech­

nological challenges impacting the reliability and economics of coal and biomass 

gasification is the lack of temperature sensors that are capable of providing accurate, 

reliable, and long-life performance in an extreme gasification environment.

This research has proposed, demonstrated, and validated a novel approach 

that uses a noninvasive ultrasound method that provides real-time temperature 

distribution monitoring across the refractory, especially the hot face temperature 

of the refractory.

The essential idea of the ultrasound measurements of segmental temperature 

distribution is to use an ultrasound propagation waveguide across a refractory 

that has been engineered to contain multiple internal partial reflectors at known 

locations. When an ultrasound excitation pulse is introduced on the cold side of 

the refractory, it will be partially reflected from each scatterer in the US propagation 

path in the refractory wall and returned to the receiver as a train of partial 

echoes. The temperature in the corresponding segment can be determined based 

on recorded ultrasonic waveform and experimentally defined relationship between 

the speed of sound and temperature.

The ultrasound measurement method offers a powerful solution to provide 

continuous real-time temperature monitoring for the occasions that conventional 

thermal, optical, and other sensors are infeasible, such as the impossibility of 

insertion of temperature sensors, harsh environment, unavailable optical path, and 

more. Our developed ultrasound system consists of an ultrasound engineered 

waveguide, ultrasound transducer/receiver, and data acquisition, logging, inter­

pretation, and online display system, which is simple to install on the existing 

units with minimal modification on the gasifier or to use with new units.



This system has been successfully tested with a 100 kW pilot-scale downflow 

oxyfuel combustor, capturing in real-time temperature changes during all rele­

vant combustion process changes. The ultrasound measurements have excellent 

agreement with thermocouple measurements, and appear to be more sensitive 

to temperature changes before the thermocouples response, which is believed to 

be the first demonstration of ultrasound measurements segmental temperature 

distribution across refractories.
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CHAPTER 1

INTRODUCTION 

1.1 Background and Motivation
1.1.1 Gasficiation and Gasifier

Modern day gasification technology was first introduced by the oil industry to 

process low-value petroleum and its by-products. Since the 1970s, the gasification 

process has adapted to a variety of carbon-based feedstocks, such as coals, low-cost, 

widely available petroleum coke, biomass, and agriculture (solid) waste [43].

Gasification technology has been predicted to be a major source of clean-fuel 

technology for the coming future. Gasification involves the thermal beakdown of 

carbon rich materials in a hot, reactive environment to produce synthesis gas, or 

syngas, which is rich in hydrogen (H2) and carbon monoxide (CO). The produced 

syngas can then be used as an alternative feedstock for many chemical processes, 

such as those used in methanol, butanol, dimethyl ether, diesel, and gasoline 

production. When used in power generation, the syngas produced by coal or 

biomass gasifiers is burned as a fuel in carbon neutral or carbon capture-ready 

power generation. Gasification plants tend to use less makeup water and produce 

less solid waste and airborne pollutants than typical coal combustion-based plants. 

Gasifiers mainly consume oxygen (O2), instead of air, which is more efficient and 

economical during the conversion of the carbon feedstock, carbon dioxide (CO2) 

separation, capture, and sequestration [56]. The ability of eliminating most air 

pollutants and potential greenhouse gases makes gasification a more environmen­

tally sustainable technology for the energy plants compared with traditional coal 

combustion. Gasification-based electric power plants are operating commercially 

in many countries.

There are three major types of commercially-available gasifiers based on their
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feedstock and end-product requirements: fixed bed gasifiers, fluidized bed gasi- 

fiers, and entrained bed gasifiers. Gasifiers can also be grouped based on their 

ash treatment: slagging gasifier and nonslagging gasifier. A nonslagging gasifier 

normally operates at temperatures below the ash melting point of the feedstock, 

which is about 500-600 °C. This type of gasifier is much easier to operate, since the 

wall temperature is significantly low so that it does not require a refractory lining. 

However, the transformations of the inorganic to ash form in nonslagging gasifier 

sometimes cause a heavy metal leaching problem [109]. In addition, due to its low 

operating temperature, air-blown gasification is more favorable than oxygen-blown 

gasification, which would cause the low efficiency of carbon capture [77]. A 

slagging gasifier operates at a temperature that is higher than the feedstock ash 

melting point. The ashes are present in a liquid form (molten slags) that can flow 

down and be removed regularly. This type of gasifier offers advantages, such 

as high gas production capacity, lower steam consumption, absence of tars and 

oils in the product steam, and relatively easy disposal of waste during operation. 

Examples of the slagging gasifiers include (1) for the fixed-bed system: Lurgi 

Dry-Ash and British Gas/Lurgi gasifiers; (2) for the fluidized bed system: KBR 

Transpoint, High Temperature Winkler, and ICC/CAS AFB gasifiers; (3) for the 

entrained-bed system: GE Energy (formerly Chevron Texaco), Shell, and CB& I 

E-GasTM gasifiers [25]. However, this high efficient gasification process generally 

involves high temperatures and pressures, and aggressive chemical composites 

which would results in an extraordinarily severe environment for the structural 

components of the slagging gasification system [21].

Typical operating conditions are a temperature of 1300 °C (slurry feed) or 1500­

1800 °C (dry feed) and pressure of 0.15 to 2.45 MPa for fixed bed gasifiers, 900­

1200 °C and up to 2.94 MPa for a fluidized bed, and 1200-1600 °C and 2-8 MPa 

for entrained flow gasifiers [70]. The overall reaction of gasification is shown as 

follows:

C + H2O(steam) + O2(shortage) — > CO + H2 + CO2 + minority gases+ by-products + 

heat.

The minority gases in a slagging gasifier primarily consist of H2O (steam), H2,
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CO, and CO2, and small amounts of methane (CH4), N2, NH3, and H2S may also 

exist. The by-products, in ash or slag form, are basically mixtures of various oxides, 

such as SiO2, Al2O3, FeO, CaO, MgO, Fe2O3, MnO, Na2O3, K2O, TiO3, TiO2, and

P2O5 [9].
The adopted temperatures and pressures in a slagging gasifier generally depend 

on the specific gasification process and the reactivity of the feedstock. Increasing 

gasification temperature and pressure can usually increase operational efficiency 

and reduce the size of gasifier. The high temperatures are not permissible for the 

vessel shell of the gasifier, and thus the shell is generally protected by a refractory 

lining system.

1.1.2 Gasifier Lining Wear and Failure

The refractory lining system provides resistance to extreme operating conditions 

and insulates the gasifier from energy loss. The lining system is composed of 

refractory linings, generally two to six layers of bricks with proper mortar joints 

and cooling systems. The emphasis on liner materials is on the hot-face refractory 

materials, which are exposed to the most aggressive environment. At these elevated 

temperatures and pressures, the processing gases and by-products, especially in 

slag form, attack the refractory lining in various ways.

The steam can oxidize the iron-containing metal shell and cause cracking and 

spalling problems in the shells during heating cycles. Such problems become very 

severe at high temperature levels. At high temperatures, steam can affect refractory 

materials by causing the extraction of soluble oxides or hydroxides, resulting in the 

reduction of refractory strength and erosion resistance.

The feedstock ashes melt into fluid slags in the high temperature and are 

maintained as a liquid state in slagging gasifiers. Slags run down the wall, flow over 

the bed of the gasifier, and pass through a slag tap to a quench tank where slags are 

removed continuously. This concept provides an easy method for waste disposal 

and creates minimal environmental problems. This slag penetrates and reacts with 

the refractory, causing degradation and corossion resulting from a combination 

of mechanical stresses and thermal expansion mismatches. The gasifier operating 

conditions and slag chemistry have a significant impact on the performance of
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refractories.

Refractory linings under slagging coal gasification experience the combination 

of a chemical (reaction and phase change) and physical (erosion) effect, followed 

by a failure in required performance [95]. The molten slag is corrosive to the hot 

face refractory of the gasifier. The corrosion process involves three mechanisms: 

dissolution, penetration, and erosion. Refractories exposed to slag might be 

irregularly dissolved in slag. This causes continuous loss in mass and thickness of 

the refractory linings. Since refractory material is porous, slag may penetrate into 

refractories that reacts and chemically dissolves the refractory material, causing 

degradation and corrosion. The penetration of slags into refractories depends 

on the porosity and the temperature of the refracoties. Chemical erosion creates 

local microcracking, weakens material mechanical properties, and causes cracking 

and spalling problems in the refractories. In addition, the combination of thermal 

expansion mismatch and boundary confinement between the refractory brick and 

the slag causes cracking and joint failure in the lining. This leads to gradual 

development of several microstructural cracks inside the refractory surface, which 

eventually merge together into bulk removal of material of refractory walls.

High-alumina and high-chromia dense refractories are usually used in slagging 

gasifiers. Erosion is not a governing destructive factor for hot face refractories in 

slagging gasifiers. However, the chemical dissolution of refractory walls degrades 

the material mechanical strength and irregular dissolution of the material leads to 

fatigue damage. Fatigue crack growth leads to further slag penetration that, in 

turn, causes more chemical dissolution.

The slag and harsh gasifier environment are core issues challenging the gasifier 

lining's refractory service life and key barriers to generalize commercialization of 

gasification technology. The expected refractory lining should have a reliable life 

of at least 3 years. Current refractories last 4-18 months, which has yet to meet the 

desired service life [27]. The replacement cost of a failed refractory lining is over 

1 million U.S. dollars, both in terms of the material cost (depending on gasifier 

size and rebuild requirements) and also in terms of 2-3 weeks lost production time. 

Research for improving refractory products that can withstand these environments
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for a continuous, efficient, and reliable gasification process has not stopped [9], [68].

The National Energy Technology Laboratory (NETL) has worked with Harbison- 

Walker Refractory Company to develop a new refractory, which was designed 

specifically for longer service life in gasifier. This patented technology has been on 

market as Aurex® 95P. This new refractory has been tested at several commercial 

gasifier sites in the United States and showed significantly improved performance 

relative to other commercially-available materials [8].

Early detection of initial damage in the refractory walls is necessary to prevent 

unscheduled shutdown of a gasification plant. A real-time diagnosis tool with 

capabilities of generating early warnings is critical for extending the refractory's 

service life. The pivotal idea for damage detection and prediction of the refractory 

wall in particular and the entire gasification system in general is built upon the fact 

that a local anomaly is likely to influence the temperature gradient in the refractory 

wall due to changes in the thermal impedance. Current degradation monitoring 

of slagging gasifiers provides a variety of fault diagnostic methodologies that 

are primarily built upon microstructural analytical models of damaged refractory 

bricks. However, lack of real-time sensor-based information is one of the major 

technical challenges for accurate refractory damage diagnosis.

An optimum refractory monitoring system should involve information of ther­

momechanical material and system behavior, corrosion behavior, and their in­

teraction in the gasification environment. Temperature profile is one of most 

important sensor-based parameters required for the refractories over an extended 

period of operation. The mechanical properties of refractories, including com­

pressive strength, tensile strength, Young's modulus, and creep rate, are primarily 

temperature- and load history-dependent. As the critical temperature is reached, 

refractories lose their strength. This critical temperature depends on the melting 

point and refractoriness of the materials. The strength loss results in excessive 

deformation and the loss of load-carrying capability with the consequent loss in 

integrity of the lining system [21].

Both steady state spatial temperature distributions and dynamic temperature 

profiles undergo different types of changes that provide important information
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for detection and identification of an anomalous plant condition. Temperature 

variations across the cross-section of the gasifer lining at different vertical levels 

can be used to predict the slag flow and refractory dissolution, something difficult 

to monitor during the gasification. Using the integrated model of heat transfer, heat 

loss and heat flux can be calculated based on refractory temperature profiles. [19].

Furthermore, since a gasifier reactor uses a multilayered lining, temperature 

profiles are important in understanding the thermal interaction between complex 

layers, choosing proper combinations of materials that will prevent overheating 

of refractories and improve energy conversion efficiency. Temperature along the 

refractory wall is also a key input for the 2D and 3D stress analysis for the gasifier 

support structures, such as the shell and anchors.

1.2 Current Temperature Measurement Techniques
1.2.1 Direct Measurements

The current dominant temperature measurement technology for gasifiers is 

the classic thermocouple (TC) or electrical resistance temperature device (RTD) 

probe. The most common material used in TCs is precious platinum-rhodium that 

can handle the extreme temperature measurement range. However, TCs are very 

susceptible to the harsh operating environment inside the slagging gasifier and 

often fail within hours of gasifier start-up, leaving the operator with no real-time 

means of temperature measurement. The conventional approach is to create a 

more corrosion-resistant thermocouple using a ceramic sheath or an improved filler 

material. An improved filler material has been developed by NETL, along with a 

dry-pressing method of manufacture that can be readily adapted to a commercial 

setting, which has proven to have limited effectiveness in the aggressive gasifier 

environment [27]. However, the heavy sheathing makes such devices less sensitive 

to dynamic changes in temperatures. In addition, protective sheathings degrade 

with time under the attack of the ash and slag, causing erosion damage, which 

would lead to delayed read-out and faulty readings. Metal-based-improved TCs 

have a typical life less than 120 days. Failure rates can be up to 50% within 15 

days, and 75% within 30 days. This is especially true for entrained flow slagging
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gasifiers since even the most hardened sensors are unlikely to survive for more 

than 1 or 2 months as the inner surface of the refractory wall degrades and recesses, 

exposing sensors directly to the corrosive slagging environment. Alkali vapors and 

transition metals attachments, and solid coal slag build-ups affect thermocouple 

measurement and accelerate surface corrosion. Above the material limits, TCs can 

disintegrate completely [7]. The large thermal ramps and mechanical stresses the 

TC probe suffers cause multimaterial probe mechanical failure due to coefficient 

of thermal expansion (CTE) mismatch of probe materials [10]. Although local 

nitrogen or other purge gas may provide protection for TCs, this would result in 

understated temperatures.

In reality, the gasifier operator would sacrifice the temperature measurement 

absolute value for a continuous and steady temperature reading. The approach is 

not to position the TCs' tips flush with the refractory wall, but slightly withdraw 

the TCs into the wall. In this manner, we can protect the TCs from slag or other 

erosion damage [43]. The actual temperature measured is closer to that of the 

refractory than that of the reactor core, and thus is highly dependent on the extent 

of the depth of withdrawal from the reactor space.

1.2.2 Indirect Measurements

Several reports describe how secondary measurements that are relatively easy to 

obtain— such as temperatures, pressures, and compositions of streams into and out 

of a gasifier—can be used in conjunction with empirical or theoretical models and 

correlations to estimate inaccessible operating parameters inside the reaction zone. 

The advantage of indirect measurement is that sensors are usually located at the 

downstream of the gasifier, which would be away from the extreme environment 

of the gasifier. For example, Higman and van der Burgt [43] conclude that the 

temperature of a dry slurry feed gasifier can be monitored by measuring the 

concentration of CH4 or CO2 in the product gas. In fact, it was reported that 

this approach was used to estimate gasification temperature during the Tampa 

Electric Integrated Gasification Combined-Cycle Demonstration Project [6], [44] 

and is believed to be in common use by at least some operators of gasification
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units in the United States. An attempt to correlate a large number of routinely 

measured process variables to the composition of the produced syngas was also 

reported [39]. Texaco Inc. [17] has developed an apparatus that monitors the weight 

of slag as it accumulates and subsequently as it flows form the gasification chamber 

during a deslagging operation. The resulting data were fed into a preprogrammed 

computer to evaluate the gasifier operation conditions, including temperature. 

The evaluation results will cause the fuel composition and its rate of feed to 

be automatically adjusted by the computer program. Computational study by 

Sarigul [90] showed close correlation between CH4 concentration and the adiabatic 

flame temperature of the gasifier. The same approach is used at Eastman; in fact, 

the gasifier operators routinely report temperature inside the reactor in ppm of 

methane. The advantage of this method is that it gives an integral measurement of 

the temperature at the reactor outlet. However, it does not give an indication about 

local hot spots. Moreover, the measurement has a certain time delay for real-time 

monitors.

A heat flux measurement is comprised of an installation of a small piece of 

membrane wall in the wall of the refractory and measurement of the increase in 

water temperature of a known amount of water flowing through the membrane 

wall. Its response time is relatively slow, usually 10-30 seconds, indicating the 

local average temperature [65], [85], [97].

Despite limited current use, the inferential sensors remain a promising approach 

in gasification applications, with further advantages of relatively small invest­

ments and retrofit requirements for their deployment. However, two fundamental 

limitations of inferential measurements must be taken into account. First, the 

quality of inferences critically depends on modeling errors and uncertainties, 

and unmodeled changes to the process itself (e.g., due to ware and aging), its 

feed, and unknown process disturbances. Second, the measurement accuracy, 

sensitivity, and response time of inferential measurement compare poorly with 

the corresponding characteristics of the direct measurements. Therefore, the 

direct measurements in gasification will continue to be desirable despite a long 

development time, high development cost, and technical challenges that must be
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overcome.

1.2.3 Noninvasive Measurements

An alternative technique to obtain direct measurements of gasification temper­

ature is using methods that do not require the direct or partial insertion of a fragile 

sensing element into the harsh environment. The most widely used techniques 

in this category are optical measurements, used for combustion-specific measure­

ments of temperatures and reaction composition [87]. Typical fiber optic sensors 

include those based upon optical reflection, scattering, interference, absorption, 

fluorescence, and thermally generated radiation [26]. Optical pyrometry [72] is a 

practical method for measuring temperatures of flames if the blackbody radiation 

emissitivity factor is constant or calibratable. Texaco Inc. [62] used an optical 

pyrometer in its pilot unit for several years. However, conventional total radiation 

or single-wavelength pyrometers cannot provide accurate measurement of the 

flame temperature because of the unknown or nonuniform emissivity of the flame. 

In addition, the background radiation can interfere the measurement. Two-color 

pyrometry removes the emissivity limitation by using the ratio of irradiances at 

two carefully selected wavelengths, which has been used from flame in utility 

furnaces to various open flames, such as premixed and diffusion flames [66]. The 

multicolour method has also been developed over recent years. Most existing 

optical pyrometries can only provide a measurement of average temperature of 

a single-point or a small area defined by the field of view of the probe. The 3D 

temperature profile can be reconstructed based on a collected 2D flame temperature 

image transformed from the color flame images [113].

Though minimally invasive (requiring a transparent access port), optical tech­

niques are not suitable for temperature and composition measurements when an 

optically transparent line-of-sight is difficult or impossible to maintain, as in the 

case of slagging gasification or when high particle concentration in the reaction 

zone prevents light transmission. The ash and slag would block optical access 

ports. Continuously blow nitrogen gas is required to keep the pores open, which 

make it expensive and results in a loss of reading very frequently. Therefore, any
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commercialization of optical pyrometry is likely to be in addition to rather than as 

a replacement of thermocouples.

Various optical-based methods have also been studied for extreme temperature 

measurements [60], including an optical fiber bragg grating (FBG) sensor, optical 

resonator cavity sensor, optical sapphire fiber-based fluorescence sensor, optical 

single crystal sapphire-based sensor, etc. Photosensitive FBG sensors and optical 

resonator cavity sensors, such as Fabry-Perot cavity-based sensor, are both silica 

fiber based, which cannot survive temperatures over 1000 °C because of material 

limitations.

In long-term thermal tests of FBGs at temperatures close to or above 1000 °C 

in air for hundreds of hours, unpackaged standard silica single mode fibers lost 

almost all of their mechanical strength. It is certain that silica fibers experience 

severe mechanical degradation in the oxidizing atmosphere at high temperature. 

The silica fibers become extremely brittle and any subsequent handling of the fiber 

is not possible after the test [38].

Single crystal sapphire fiber or bulk is a more successful sensing element used 

for extreme temperature sensing applications that have a melting temperature 

~ 2050°C [37]. Most sapphire fiber sensors are based on Fabry-Perot structures 

within the fiber generating broad-band interference fringe pattern that can be 

monitored as a function of temperature [102]. Sapphire-based sensors have been 

fabricated and demonstrated for high-temperature measurements in laboratory 

tests [93], [112]. These sensors will still have to survive the difficult reactor 

environment, and the fundamental uncertainties of temperature measurement in 

a gasifier will remain [78]. A well-controlled dopant density is important for 

accurate measurement performance, which puts strict requirements on its fabri­

cation process and increases the cost. It has been difficult to achieve high-quality 

measurement results, since the interference signal from the fabry-perot cavity are 

degraded by the multimode electromagnetic fields in multimode sapphire fibers. 

These systems during industrial service are prone to mechanical failure due to CTE 

mismatch between optical fibers and sensing elements.
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1.3 Organization
The research of this dissertation illustrates that the development of a novel 

noninvasive technique using ultrasound measurements of segmental temperature 

distribution (US-MSTD) method can potentially offer excellent resolution for solv­

ing challenging direct temperature distribution monitoring problems on coal and 

biomass gasifiers.

Chapter 2 will discuss the fundamental physical basis of temperature mea­

surement based on ultrasound methods, and the essential concept of ultrasound 

measurements of a segmental temperature distribution system. Chapter 3 will 

demonstrate the development of an ultrasound system for low temperature mea­

surements with cementitious waveguide. In Chapter 4 of this dissertation, the 

ultrasound system using engineered alumina waveguide for laboratory-scale high 

temperature tests will be discussed. Chapter 5 will describe a robust signal 

processing method based on the combination of cross-correlation of envelope of 

waveform and anisotropic diffusion methods. The validation of the developed 

US-MSTD system in a pilot-scale downflow oxyfuel combustor will be presented in 

Chapter 6. Chapter 7 provides improvement of the hybrid US system on waveguide 

material selections. Finally, the conclusion of this research and possibly future 

research on this topic will be given in Chapter 8. Chapter 2 and 3 correspond to 

paper [51], Chapter 5 corresponds to paper [52].



CHAPTER 2

NONINVASIVE ULTRASOUND MEASUREMENTS 

OF SEGMENTAL TEMPERATURE 

DISTRIBUTION1 

2.1 Ultrasound
Ultrasound (US), because of its high sensitivity, high penetrating power, fast 

time response, great accuracy, and noninvasive operation, has become a potential 

approach for noninvasive temperature measurement. It became a subject of in­

terest to researchers during World War I, but its use in industry did not grow to 

proportions worthy of note until World War II. Traditional ultrasonic applications 

have been used almost exclusively for nondestructive testing (NDT), such as 

macroscopic flaw detection/evaluation and dimensional measurements; material 

characterization, such as microstructures and associated mechanical properties 

assessment [89]. Development and perfection of ultrasonic nondestructive evalua­

tion techniques are capable of monitoring and controlling the material's production 

process; the material's stability during transport, storage, and fabrication; and the 

rate of degradation during the material's in-service life [36]. The application of 

ultrasound in medicine began in the 1950s, and includes diagnosis, commonly 

called sonography, and therapy [18], [63]. Sonography is used for evaluating the 

condition of internal organs and tissues, commonly for neonatal fetuses, heart 

imaging, and blood flow measurement. Therapy is provided by high intensity 

waves which heat tissues to provide massage treatment or break stones [30], [73].

1This chapter is adapted with permission from (Jia, Yunlu, et al. "Ultrasound Measurements of 
Temperature Profile Across Gasifier Refractories: Method and Initial Validation." Energy & Fuels
27.8 (2013): 4270-4277.). Copyright (2013) American Chemical Society
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Ultrasound works with vibratory waves at frequencies above those within the 

hearing range of the average person at frequencies above 20 kHz. Ultrasonic waves 

are stress waves. Therefore, they can exist only within substance, such as gases, 

liquids, and solids [29]. The behavior of ultrasound propagation is given as [98]

y(x,t) = yocos^cvt-  “ A”) ' (2 .1)

where y is the particle displacement of the propagating sound wave with respect 

to distance, x, and time, t, y0 is the amplitude of the wave, w is the angular wave 

frequency, and A is the wavelength. w and A are constants defined by the medium 

in which the sound is traveling, which are defined as

c = f  • A, (2 .2)

w = 2n f, (2.3)

where c is the ultrasound propagating speed (the speed of sound, SOS) within an 

elastic medium and f  is the frequency.

2.1.1 Basic Instrumentation

Figure 2.1 shows a block diagram of a basic ultrasonic measurement system used 

to generate and detect ultrasonic waves in a solid specimen. The synchronization 

generator gives trigger signals with high repetition rate to the pulser. The pulser 

provides electrical voltage to the transducer so that the transducer excites ultrasonic

Figure 2.1: Block diagram of basic components of an ultrasonic measurement 
system to generate and detect ultrasonic waves.
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waves at the same repetition rate. The reflected ultrasonic waves through the 

specimen are received by the same transducer (called pulser-echo mode) and the 

resulting voltage of the received signal goes to the display through oscilloscope. 

The computer is used to collect and analyze the acquired ultrasonic waveforms.

2.1.2 Ultrasound Propagation Speed

Considering a sample of a solid material with known thickness L maintained 

at a uniform temperature, assuming a pulse-echo method (transducer/receiver is 

the same device), by measuring the time it takes an ultrasonic signal to travel 

the distance L, the so-called the time of flight (TOF), the speed of sound may be 

calculated as
2L

c = — . (2.4)
tof

The speed of sound and its propagation mode are directly dependent on the 

physical composition of the transmitting medium. In solids, the SOS depends 

upon the type of pulse wave, the elastic properties, the density of the medium, 

and the frequency in some cases [23]. The ratio of applied stress (force/area) to 

axial strain (extension/length) is called the elastic modulus, or Young's modulus. A 

piezoelectric transducer can generate both longitudinal/compression, also known 

as primary wave/p-wave, and shear waves (s-wave), but one type of mode will be 

dominant depending on the particular transducer's piezoelectric properties.

The relationship between longitudinal SOS and the elastic modulus in an 

isotropic solid, in which the particle motion is parallel to the axis of the ultrasound 

propagation, is given by

c _  lK + 3 G _  E(1 - v) P 5 )
Clongitudinal _ \ l  p _ y j  p(1 + V)(1 -  2V) . (2.5)

When the particle motion in the wave is normal to the direction of propagation, 

the relationship results in the following equation for shear SOS

G
cshear _  y ~p' (2.6)

where K  and G are the bulk modulus and shear modulus of the elastic materials, 

respectively. E is the Young's modulus, p is the density, and v is the Poisson's
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ratio, while Young's modulus and Poisson's ratio have a relationship of E = 3K(1 -  

2v). The SOS of longitudinal waves depends both on the compression and shear 

resistance properties of the material, while the speed of shear waves depends on 

the shear properties only.

For a long, thin rod, where its diameter is much smaller than its length, the SOS 

of longitudinal waves may be simplified and given by:

Liquids and gases cannot resist shear stresses. The SOS in fluids is expressed as

where /3 = 1/K  is the compressibility of liquid. For an "ideal gas," the SOS can be 

shown to be

where y  is the adiabatic index, which is the ratio of specific heats of a gas at a 

constant-pressure to a gas at a constant-volume(Cp/C v), P is the ambient pressure, 

and R is the molar gas constant.

Young's modulus of elasticity is sensitive to most of the common microstructural 

evolutions and damage (microcracking, densification, phase transition, etc.). The 

quantitative assessment of microstructural changes can be carried out through the 

measurement of ultrasound properties.

2.1.3 Impedance and Attenuation

Acoustic impedance, another major characteristic to describe ultrasonic prop­

erties of material, is the quantification of the resistance of ultrasound propagation 

in a medium [22], [55]

An ultrasound propagating through a material has its acoustic energy loss. 

The reduction in the amplitude of a ultrasonic waveform is attenuation [55], [63],

(2.7)

(2.8)

(2.9)

Z = p • c. (2.10)
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expressed as the logarithm of the ratio of the magnitudes of the original to the 

attenuated pressure amplitudes, a and a0, measured in decibels (dB):

A(dB) = 20log10( - ) .  (2.11)
a0

Two types of process affect the attenuation of ultrasound propagating wave­

form, which involve material responses and wave interaction. Material repose 

processes include geometric attenuation, such as beam spreading or focusing, 

energy absorption, dispersion, and nonlinearity. Transmission across interfaces, 

scattering by material variation, inhomogeneities of grains, grain boundaries, 

pores, and more, and the Doppler effect are three main aspects of wave interaction 

processes that cause acoustic attenuation and defects [14], [74].

Scattering is the primary mechanism by which ultrasonic energy is lost during 

propagation, which also affects the feasibility and effectiveness of engineered 

waveguides used for proposed temperature measurement. Scattering is the redi­

rection of an ultrasonic wave, as a result of the interaction between a primary 

ultrasonic propagating wave and the anisotropic grains (inhomogeneities) inside 

of the medium [58]. If their physical properties such as density or elasticity 

are different from those of the surrounding medium, it causes a discontinuity in 

ultrasound propagating speed at each grain boundary, which leads to the reflection 

at the grain boundaries denoted by scattered wave and energy loss. The magnitude 

of scattering depends on the particles per volume, size, acoustic impedance, and 

frequency [41]. A scattering is created at a single grain if the dimensions of the 

heterogeneities are smaller than the wavelength, as D <= A, where A = c/f ,  f  is 

ultrasound propagating central frequency. This scattering problem of sound was 

first solved by Lord Rayleigh and is therefore called Rayleigh scattering [84]. There 

are a number of causes of ultrasonic energy loss in solids, and Rayleigh scattering 

is one of the main reasons [13]. The process of energy loss usually refers to the 

changes of ultrasonic energy into heat. The presence of microscopic structural 

defects, such as point defects and dislocations and macroscopic defects, affects 

the degree of hardness and the elastic properties of the material and gives rise to 

absorption that occurs in both metals and nonmetals.
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2.1.4 Reflection and Transmission

When an ultrasonic wave encounters an interface, several phenomena may 

occur, including reflection, transmission, refraction, and mode conversion. These 

interactions are the phenomena upon which our proposed ultrasound method 

relies.

Ultrasonic waves are reflected at the interface of two media if there is a difference 

in acoustic impedances (Z) of the materials on each side of the interface. This 

difference in Z is commonly referred to as the impedance mismatch [29]. Assuming 

the incident is normal to the interface, the fraction of the incident wave intensity 

that is reflected can be derived because particle velocity and local particle pressures 

must be continuous across the boundary, which is calculated from the acoustic 

impedances of the materials on both sides of the interface:

Re = ( Z2-Z1 f , (2 .12)
\Z2 + ZlJ

where z1 and z2 are acoustic impedances of media 1 and 2. The value produced 

by Equation 2.12 is known as the reflection coefficient, while the transmission 

coefficient is calculated by

Tr = 4+1Z2 , (2.13)
(Z2 + Z1)2

or from Re + Tr = 1.

The reflection and transmission coefficients represent the percentage of acoustic 

energy which is either reflected or transmitted at a boundary. The greater the 

impedance mismatch, the greater the percentage of energy that will be reflected at 

the interface. In addition, the preceding equations for reflection and transmission 

apply to ideal interfaces that have no thickness.

2.2 Physical Basis of the US-MSTD Method
The physical basis of the proposed noninvasive ultrasound approach for tem­

perature measurement is temperature dependence of the speed of sound in gas, 

liquid, and solid:

c = f(T ). (2.14)
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If relationship 2.14 is known, either from theoretical considerations or empirical 

correlations, the measured tof  can be used to obtain the uniform temperature of 

material of interest as:

T = f-1  ( ,  (215) 

assuming that the inversion of 2.14 is unique. In addition to the TOF measurements 

emphasized in this research, other ultrasonic characteristics, such as a phase change 

of echoes produced by a tone burst excitation, may be used to define temperature- 

dependent variations in the SOS [67].

The application of this idea to measure the temperature in gases is known 

as acoustic pyrometry and is well established [34], [53] and commercially used in 

many high-temperature applications, such as the cement industry, combustion, and 

incineration industries [15], [57], [106]. The advantage of the approach is the ability 

to obtain real-time temperature measurements over an extremely large range of 

temperatures (from 0 to 3500 °F), which makes it applicable to process monitoring 

from a cold start up to normal high-temperature operation. Disadvantages include 

significant measurement uncertainties when temperature along the propagation 

path between the transducer and the receiver varies significantly and unknown 

changes in the adiabatic constant due to variability in the gas composition. The 

utilized acoustic frequency range is low (typically, <3kHz) because higher fre­

quency ultrasound does not propagate well through gases. The consequence of 

low excitation frequencies is interference from combustion instabilities, sounds 

produced by a turbulent flow, and other disturbances, collectively known as a 

passive acoustic signature. Such low frequencies also limit the achievable spatial 

resolution of measurements when multiple transducers-receivers are used in order 

to measure the temperature distribution inside of a containment [48]. In addition, 

acoustic thermometry has been used to detect temperature changes in the ocean 

by receiving low-frequency ultrasound (< 100 kHz) transmitted across an ocean 

basin [31].

Ultrasonic method offers a powerful noninvasive or minimally invasive alter­

native for temperature measurement in solids. However, very little work has been
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done in this area. Techniques like this are particularly useful for applications such 

as when:

a) insertion of temperature probes is undesirable, difficult, or impossible;

b) extreme environments affect longevity of conventional sensors, as is the case 

for many energy conversion processes; and

c) optical line-of-sight measurements are not practical because the medium is 

opaque or optically dissipative.

The dependence of the speed of sound on the temperature, c = f  (T), obtained 

experimentally or theoretically, would then allow us to estimate the temperature 

of the sample. Several notable examples using acoustic thermometry to measure 

temperature have been shown in microelectronic and medical applications. Most 

conventional ultrasonic remote temperature sensing methods rely on an assump­

tion of constant temperature along the propagation path in the solid. Lee et al. [61] 

reported the development of an acoustical temperature measurement system which 

uses the TOF measurements of an acoustic wave introduced into the wafer through 

an excitation quartz rod. The wave, partially reflected from the quartz-silicon 

interface, travels through the wafer until reaching a second quartz rod through 

which the wave reaches the receiver. The difference between an arrival time of 

the reflected wave and the wave reaching the receiver through the second rod 

gives the time of flight through the wafer, which is used to estimate the wafer 

temperature. Lee et al. reported that ± 5 °C accuracy was achieved in the range 

from room temperature to 1000 °C (with a proposed use up to approximately 

1800°C [2]). Arthur et al. [1] investigated the use of backscattered ultrasound 

energy in temperature measurements to monitor and control noninvasive thermal 

therapies of tumors. Using a 7 MHz linear ultrasound phased array transducer, 

they demonstrated temperature measurements in ex vivo phantom tissue from 37 

to 50 °C in 0.5 °C steps. The project did not progress towards in vivo testing because 

the quality of temperature measurements was severely affected by subject motion, 

unavoidable in subjects due to breathing and other disturbance. Simon et al. [94] 

developed a 2D temperature estimation method based on the detection of shifts 

in echo location of the backscattered ultrasound from a tissue undergoing thermal
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therapy. They suggested that 0.5 °C accuracy is possible. Another example of 

high-temperature application of the US method is in metallurgy. Balasubramaniam 

et al. [3] used an ultrasonic sensor to measure viscosity and temperature of molten 

material up to 1000 °C with the temperature resolution of 5 °C.

However, when temperature distribution of the sample T(z) along the propaga­

tion path is nonuniform, the overall TOF depends on the temperature in a complex 

and unknown way

and there are many arbitrary temperature distributions T(z) that will result in the 

estimated TOF matching the measured value.

bution may be resolved by adding constraints on the feasible solution so that an 

estimation of fixed temperature distribution based on TOF measurements in the

regularized by imposing additional constraints on the temperature distribution. 

This has an effect of parameterizing the "admissible" temperature distribution by 

prescribing a functional form that depends on one or more unknown parameters, 

which are then found from ultrasound and, perhaps, other unrelated measure­

ments. Parameterizations may include an assumption that the temperature along 

the US propagation is constant and given by Equation 2.15; the temperature 

distribution is linear with the slope and intercept found from tof  and at least 

one additional independent measurement; and the requirement that T(z) satisfies 

a heat transfer model with appropriately selected parameters (such as thermal 

conductivity) and boundary conditions. In the case of the linear parametrization, 

a slope and intercept are needed to determine the parameterization. However, 

both parameters cannot be determined from a single measurement of tof . At 

least one additional measurement, such as the thermocouple measurement of 

the temperature at the location of the transducer, is required to determine both 

unknowns.

If assumption of a constant temperature Ta is used across the ultrasound 

propagation path, 2.15 calculated from using the measurement of tof  may only

(2.16)

The lack of unique dependence of the measured tof  on the temperature distri

integral form (2.16) becomes possible. The first approach is to have the problem
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the suitable for small temperature gradient cases. The relationship between the 

calculated average Ta and the unknown temperature distribution T(z) is given by 

the following equation:

When strong thermal gradients are present, using Equation 2.17 to approximate 

the temperature distribution across the containment of extreme environments, such 

as refractories of the gasifier and other energy conversion processes, would result 

in less accurate temperature estimation.

The TOF measurements alone are not sufficient to reconstruct the parameterized 

temperature distribution with more than a single unknown. Reducing the number 

of unknowns for temperature distribution determination is to devise an approach 

that provides more data than a single measurement of the TOF. This can be achieved 

by using multiple transducers and receivers to measure transmit and echo delay 

times along different ultrasound propagation paths, followed by the simultaneous 

interpretation of the measurements to reconstruct the temperature distribution 

(e.g., [35], [48], [80]). This approach shares common features with X-ray computer 

tomography, which reconstructs the density (attenuation) distribution inside the 

sample and other noninvasive measurement modalities in which the acquired data 

depend on the spatial integral of the property of interest [111].

Model-based temperature estimation using TOF measurements is another ap­

proach and is found the most in literature. Takahashi and Ihara [47], [96] tested a 

30 mm steel plate, with a single side heated at 300 °C and 700 °C at steady state. 

The temperature at the transducer location was independently measured. A linear 

relationship between SOS and the temperature 2.14 was assumed. In addition, they 

assumed a 1D heat transfer model for temperature estimation along the length of 

ultrasound propagation direction. Thus, the hot face temperature was assumed 

to predict the temperature distribution T(z) along the propagation path and the 

corresponding model prediction of the TOF from the model. The unknown distal 

temperature was then estimated as the value that minimizes the difference between 

the TOF predication given by Equation 2.16 and its measured value. An approach 

developed by Schmidt et al. [91] also uses a 1D heat transport model to obtain

(2.17)
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T(z), but it adjusts a different single parameter, the boundary heat flux at the distal 

end of the ultrasound propagation path, to match the measured and the predicted 

values of tof .

Heyman et al. [42] invented their dynamic acoustic thermometer to measure 

the temperature at a remote location by relating the measured change in inte­

grated acoustic delay to the remote location temperature with a combined 1D 

thermal-acoustic model. The integrated acoustic delay is determined from the 

measurements of phase change between points of interest and reference location, at 

which a constant frequency is applied. The combined model relates temperature to 

acoustic propagation speed of sound along the path. The experiment of measuring 

steel rod temperature using this system in a nonstirring water tank showed a 

temperature resolution of better than 6 at room temperature and a 110 

resolution for a 60 rpm magnetic stirring test. The experiments also showed a 

faster response to the thermal energy change, long before the thermal wave had 

propagated from the heat source to the sensor location. Yuhas et al. [108] designed 

an apparatus for determining local temperatures of inaccessible surface heat fluxes 

based on measured propagation time using ultrasound pulse-echo mode. They 

also used 1D thermal model approach and assumed that the dependence of SOS on 

temperature is linear. The temperature at the point of interest may be not calculated 

to estimate its heat flux as a step-wise constant function of time. The relationship 

between SOS and temperature was calibrated with known constant heat flux. The 

verification experiment was carried with a naval ship gun barrel Mark 45 Navel 

Gun with thickness of 0.0635 m during a firing regimen using three assumed 

heat flux profiles. Their tests showed that the estimated maximum heat flux is 

underestimated by no more than 6%, but the maximum measured temperature has 

an over 150 °C error.

The third distinct approach is to devise ways to extract more information from 

the response of each ultrasound transducer-receiver other than a single time of 

flight measurement. This is possible if the ultrasound pulse produces multiple 

ultrasound reflections, caused by echogenic features encountered as the excitation 

propagates through a waveguide, which has been presented in optical fiber Bragg
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grating to measure temperature [83]. Hanscombe and Richardson in Schlum- 

berger [40] proposed a method in which an ultrasound waveguide is engineered to 

have a number of randomly spaced notches formed by arbitrary grating length. The 

dominant frequency reflected at each notch is different, which is determined by 

grating dimensions, which would change due to temperature changes through 

thermal expansion. Multiple frequency-separated echoes propagate along the 

waveguide; the cross-talk between overlapping echoes is reduced and causes the 

SOS of the waves within the notches to change because the temperature variations 

are encoded by the changes in echoes' frequency content. The described innovative 

approach apparently has not been tested in experiments, leaving many unanswered 

questions. For example, it is not clear how long each grated zone should be 

to ensure narrow frequency content of each echo. The achievable accuracy as 

a function of grating design remains unknown. Furthermore, the accuracy of 

temperature measurements when thermal gradients are present within each grated 

zone, leading to a wider frequency band of each echo, has not been quantified.

2.3 Method
Our proposed ultrasound measurements of the segmental temperature distribu­

tion method are shown in Figure 2.2. The overall system for measuring temperature 

distribution across refractory and other aggressive process containments consists 

of:

(a) the engineered ultrasound propagation path with echogenic features cre­

ating partial reflections from known locations, either embedded as an insert or 

incorporated into the refractory to provide partial ultrasound reflections;

(b) an ultrasound transducer and receiver, which can be implemented as single 

or distinct components ;

(c) the analog and digital ultrasound instrumentation used to generate the 

excitation pulse and then acquire and amplify the return echoes;

(d) the signal processing system that accurately determines the TOF for each 

echo and then uses this information to calculate the SOS or its change in the 

corresponding segment of the refractory;

(e) the relationship between the SOS and the temperature; and
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Figure 2.2: Ultrasound measurements of temperature distribution in the refractory. 
(A) Refractory material contains embedded planes of scattering material. (B) 
Layered refractory. (C) Refractory insert with geometric changes in the ultrasound 
propagation path creates partial back scattering. Left panel shows an ultrasound ex­
citation pulse and the train of partial echoes produced by internal partial ultrasound 
reflectors. Right panel illustrates an engineered ultrasound waveguide/insert — 
with internal back scatterers, layers structure, or geometrical changes — embedded 
into the gasifier refractory.

(f) the method to translate the segmental SOS into the temperature distribution 

such that the predicted TOF, according to Equation 2.16, matches the measurement 

values. Each of the components will be discussed in more detail in the following 

chapters.

In the described approach, the sensitive electronic components are kept away 

from harsh gasification environments and it is only required that the US transducer 

be acoustically coupled to the cold side of the refractory, representing minimal 

modifications to the gasifier.

2.3.1 Structure US Propagation Path

The central idea of the US-MSTD method is to create an ultrasound propaga­

tion path inside the refractory (or material of interest) which incorporates partial 

ultrasound reflectors (back scatters) at known locations that redirect a portion of 

US energy of the excitation pulse back to the transducer as multiple echoes.

Figure 2.2 illustrates three different alternatives to creating such ultrasound 

backscattering. In this illustration, it is assumed that the same element serves as 

a transducer and receiver; modification for the case of a separate transducer and

ress

Reaction i 
Zone -/

US Transducer/ 
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Gasifief
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receiver and an angled US beam are straightforward. In Figure 2.2(A), partial US 

reflections are created by planes of scattering material embedded into the refractory. 

The second option is depicted in Figure 2.2(B), where the refractory material is 

layered, with slightly different acoustical impedance in each layer. Figure 2.2(C) 

shows an embodiment in which partial reflections are created by geometric changes 

in the US propagation path through an embedded refractory insert. Such an insert 

can have a geometry (e.g., as shown in Figure 2.2(C)), designed to produce distinct 

US reflections at predetermined spatial positions, or layered properties, as in the 

case of Figure 2.2(A) and 2.2(B). Separately produced inserts can be introduced into 

the refractory during its replacement, service, or relining, as illustrated in the right 

panel of Figure 2.2.

A measurement of the temperature distribution begins with a US pulse, gener­

ated by an ultrasound transducer. This pulse will be partially reflected from each 

scatterer in the insert and return to the receiver as a train of partial echoes at time 

TOF1, TOF2, TOF3, . . . ,  as shown conceptually in Figure 2.2 (left panel).

The temperature distribution in the i-th segment of the propagation path is 

inferred from the difference in the time of flight, tof i, between consecutive echoes 

produced by echogenic features which bound the segment at locations Z/_1 and Zf.

where (z/ _  Z/_1) is the segment's length. The TOF of the first echo gives an indication 

on the temperatures in the 1st zone of the refractory, between the cold surface and 

the first scatterer based on information specific to the temperature distribution with 

that segment. The next return echo will originate from the second scatterer. By 

subtracting the TOF of the second and the first echoes, the temperatures between 

Scatterers 1 and 2 can be estimated, and so on until the estimate of the temperature

2.3.2 Acquisition of Echo Waveforms

The time of flight f f  of the echo produced by a feature located at z/ is equal to

(2.18)

(2.19)
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distribution throughout the refractory is obtained. With that distribution known, 

the last echo, reflected from the refractory-reactor zone surface, can be used to 

determine the temperature of the refractory's interior hot surface. The first segment 

between the transducer and the first scatterer is often used as a delay line and 

references the time of flight of all subsequent echoes to the arrival time of the first 

echo. Then the difference in the TOF between the second and the first echoes gives 

the information on the temperature distribution in the second segment, and so on.

2.3.3 Signal Processing

Since the speed of sound is calculated as the distance traveled by an ultrasound 

pulse divided by the time of propagation (or time of flight, TOF), a method for 

precise measurements of the time of flight is essential to accurate measurements 

of temperature distribution. The simplest approach to the measurements of the 

TOF and its changes is to use temporal location of a single-point waveform feature, 

such as the first zero crossing or the peak value of the waveform. Though standard, 

these timing techniques are sensitive to measurement noises. Furthermore, when 

broad-band excitations are used, the timing accuracy of single-feature methods de­

teriorates further due to waveform distortions and broadening caused by stronger 

attenuation of higher-frequency content of ultrasound pulses.

More robust and accurate measurements of tof  and tof  may be achieved when 

the entire shape of the waveform is utilized in timing. In this case, both amplitude 

and phase information are taken into account [45], which makes timing results 

less sensitive to measurement noises and shape distortions. Mathematically, the 

cross-correlation between two signal f  (t) and g(t) is represented as:

f *(t) g(t + T)dt/ (2.20)
TO

where f *  is the complex conjugate of f  and t  is the lag time between two signals. 

The temporal shift t  needed to obtain the best match between the waveforms 

may be found by maximizing their cross-correlation <pfg [24], minimizing I1 and I2 

norms of their difference [50], [75], [101], or by maximum likelihood [20]. Figure

2.3 shows that A TOF between two echoes is obtained by finding the best match 

of the entire normalized shape of the two waveforms as based on both phase and
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Figure 2.3: The ATOF between echo waveforms at different temperatures is 
calculated by cross-correlation with a reference waveform acquired at 20 °C.

amplitude information, which makes timing results less sensitive to noises and 

shape distortions.

Though cross-correlation and other shape-matching methods perform better 

than single-point timing, the results may still be unacceptable when significant 

distortion of ultrasound waveforms occurs, as is often the case when the pulse 

propagates through attenuating and dissipative materials. It was suggested by 

Le [59] that for waveform distorting samples, a higher precision can be achieved 

if the envelopes of the waveforms are used in timing. The analytic signal, sa(t), of 

the waveform, s(t), is the following complex function:

Sa (t) = s(t) + js(t), (2.21)

where j 2 = -1  and S(t) is the Hilbert transform of s(t):

lim f
£- 0 J  £

1 ,. f ” s(t + t ) - s (t- t) , 
s(t) = —  lim --------------------- dT. (2.22)

n £-

The envelope of the waveform s(t) is then calculated at the amplitude of its 

analytic signal:

A(t) = |s»(f)| = ^ s 2(t) + s2(t). (2.23)
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We have found [52] that further improvements in timing accuracy can be 

achieved by iteratively applying a nonlinear anisotropic diffusion filter to the 

envelopes of the echo waveforms, which will be discussed in a later chapter.

2.3.4 Temperature Dependence of the Ultrasound TOF

The unknown temperature distribution is estimated from the measurements of 

the time of fight of ultrasound echoes. The SOS and length of the propagation path 

both change with the temperature of the waveguide and thus affect the echoes' TOF. 

It is possible to separate their contributions to the changes in the TOF. However, 

as long as the calibration curve 2.14 is obtained without differentiating between 

the two phenomena, there is no practical need to distinguish the contribution of 

each one. The subsequent discussion assumes that the correlation between the 

SOS vs. temperature, Equation 2.14, was not corrected for the thermal expansion. 

This simplifies the method, as it becomes unnecessary to adjust the length of the 

propagation path in Equations 2.16 and 2.18 for the thermal expansion.

2.3.5 The Temperature Distribution Estimation

The measurements of the segmental time of flight tof i encode the information 

on the temperature distribution within i-th segment. As before, additional as­

sumptions are needed to estimate the segmental temperature distribution from the 

measurement model 2.18. All parametrization options discussed in the context of 

deconvoluting model Equation 2.16 maybe used for this purpose, and are discussed 

below.

2.3.5.1 Piecewise Constant Distribution

This distribution is obtained by assuming constant speed of sound within each 

segment. Using this assumption in Equation 2.18, the constant SOS in the i-th 

segment of the waveguide is obtained as

C = 2(Zi_  Zi-1), (2.24)
tofi

and the corresponding constant temperature is obtained by inverting the correlation 

2.14. After repeating the process for all segments, the entire temperature distribu­

tion along the waveguide is approximated as a piecewise constant function. The
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infeasible temperature discontinuity at the locations of the echogenic features is an 

undesirable feature of such approximation. By using a larger number of echogenic 

features and the correspondently finer segmentation, this approximation can be 

further improved.

2.3.5.2 Piecewise Linear Distribution

Assuming that the temperature changes linearly within each segment signif­

icantly enforce temperature continuity. For a segmental sample with several 

echogenic features, the temperature at the transducer location, z = 0, is measured 

independently and equal to T(0) = n1. By using the measured TOF of the first echo 

and the linear temperature distribution in Equation 2.19, the following equation is 

obtained
r z2 1

t0f = 2 —----------- - dz, (2.25)
0f1 Jz\ f ( m z  + «1)

from which the unknown slope of the distribution, m1, can be found. Similarly 

for the i-th segment, the unknown slope m/ and intercept n  are obtained from the 

solution of the following two equations:

r zi 1

'o f'= 2JL m + n * dz (2.26)

and

n/ = (m'-1 -  mi)zi-1 + n -1 , (2.27)

where t0f  is the difference in the TOF of the i and i - 1  echoes, and Equation 2.27 

enforces the continuity of the temperature at z = z ^ .  The process continues for all 

remaining segments until the piecewise linear approximation of the temperature 

distribution over the entire sample is obtained.

2.3.6 Estimation of Heat Flux

The measurement of conductive heat fluxes through a solid is commonly 

obtained by attaching a flux sensor to the surface to the sample. It is therefore 

capable of estimating only a localized heat flux in the immediate proximity of the 

flux sensor. The approach proposed in this dissertation can be used to profile 

the temperature distribution over a significant distance away form the surface.
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Thus, it can be used to noninvasively profile conductive heat fluxes through the

sample, at a considerable distance from its surface. Specifically, by differentiating 

the estimated temperature distribution T(z), the conductive heat flux, q, across the 

sample is estimated as

The piecewise linear temperature distribution will result in a piecewise constant

ultrasound transducer. An even more detailed estimation is possible when the heat 

flux is calculated based on the temperature profile that satisfies the heat conduction 

model.

The temperature parameterization by a one-dimensional heat conduction mod­

els was usually adapted. When temperature of the distal end Th is to be determined, 

the temperature at the location of the transducer Tc is independently measured, and 

the temperature distribution T(z) can be estimated by adjusting a single boundary

produced by a reflection of the excitation pulse from the distal end of the ultrasound 

propagation path:

where p, C, and k are refractory density, heat capacity, and thermal conductivity, 

respectively.

When a 2D or 3D model is needed to provide an adequately accurate description 

of the temperature distribution in the sample, additional measurements will be 

required to reconstruct the temperature distribution. For example, consider the 

case of a cylindrical waveguide with the transducer, used to launch an excitation 

pulse in the axial direction, coupled to one of its ends. Assuming the radial 

symmetry of the temperature distribution, constant density p , heat conductivity k,

(2.28)

For the case of piecewise constant temperature profile,

dT _ Ti _  Ti_1
dz zi _  z/_1

(2.29)

estimation of the heat flux distribution in the direction normal to the plane of the

2.3.7 Parametrization with Thermal Conductivity Model

condition in order to match the predicted and the measured TOF of an echo

(2.30)
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and capacity Cp, the temperature distribution inside the sample must satisfy the 

following 2D heat transport model in the cylindrical coordinates:

define the problem, three boundary conditions— at the proximal, distal, and cylin-

only a single US echo will be produced by a reflection from a distal end of the 

sample, and measurement of its TOF will allow us to estimate only one of the 

three needed boundary conditions. The other two boundary conditions must be 

obtained from independent measurements. For example, if the temperatures of 

the distal and proximal ends of the waveguide are independently measured, then 

the measured Atof  can be used to estimate the overall heat transfer coefficient h 

and define the remaining boundary condition given as the heat flux through the 

cylindrical boundary of the waveguide:

where Te is the ambient temperature of the environment. The time of flight of 

multiple echoes received when the excitation pulse propagates through a structured 

waveguide provide sufficient data to estimate all required boundary conditions 

without the need for the additional independent measurements. When such 

independent measurements are available, they can still be incorporated into the 

US-MSTD method and may help improve the accuracy and the robustness of the 

estimated temperature distribution.

where r is the radial position relative to the centerline of the sample. To completely

(2.31)

drical surfaces of the waveguide— are required. If the waveguide is unstructured,

q = h(Te -  T), (2.32)



CHAPTER 3

LOW TEMPERATURE LABORATORY 

EXPERIMENTS1

The feasibility of the proposed approach hinges on two questions:

1. Is it possible to create partial internal reflections along the path of the ultra­

sound propagation and what are the methods that can be used to create such 

reflections?

2. Is the speed of ultrasound propagation in the refractory temperature-dependent?

3.1 Cementitious Waveguide Partial Reflector Structures
Creating partial internal ultrasound reflections from known spatial locations 

inside the sample is the key prerequisite for the proposed approach to work. Two 

solutions, illustrated in Figures 2.2(A) and 2.2(B), were investigated. Figure 3.1(A) 

compares the ultrasound echo waveforms from two similar 4 cm long cementitious 

samples, one of which (waveforms in red) contains a few 0.5 mm steel shots placed 

in the middle of the sample during its casting.

The result clearly shows a partial echo from inside of the sample created by 

embedded scatterers, confirming the viability of the concept depicted in Figure 

2.2(A). The range of other material has been investigated in order to find the most 

appropriate selection for internal scatterers. An ideal choice for partial reflectors 

would be a material with identical thermal expansion, and chemical and mechanical 

resistances similar to that of the surrounding refractory material; steel clearly does 

not satisfy these specifications.

1This chapter is adapted with permission from (Jia, Yunlu, et al. "Ultrasound Measurements of 
Temperature Profile Across Gasifier Refractories: Method and Initial Validation." Energy & Fuels
27.8 (2013): 4270-4277.). Copyright (2013) American Chemical Society
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Figure 3.1: Ultrasound pulse-echo response for the samples with internal inter­
faces. (A) The pulse-echo ultrasound response of two samples fabricated from 
the identical cementitious material. One of the samples (Sample B; shown in 
inserted photograph) contains embedded ultrasound scatterers at the midpoint 
of ultrasound propagation path, which produces partial reflection (red line). 
(B) Ultrasound pulse-echo response for the sample with two internal interfaces 
obtained by sequentially casting three layers of identical formulation and allowing 
time for a partial cure to occur prior to pouring the next layer.
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We, therefore, investigated if the concept depicted in Figure 2.2(B) can be imple­

mented by using small variations in the composition of the layered cementitious 

materials, creating partial internal reflections at the interface between the layers. 

This indeed was found to be the case. In fact, it was found that by casting multiple 

layers of the same composition and allowing for a partial curing before casting the 

next layer, enough variation in acoustic impedance is introduced to create partial 

US reflections at the interface. Such implementation of the refractory with an 

embedded partial internal ultrasound reflector is particularly appealing since each 

layer will have essentially identical thermal, chemical and mechanical properties. 

Figure 3.1(B) illustrates this approach. It depicts the results obtained with the 

cementitious sample (shown in the insert) obtained by casting three 1-inch thick 

layers of identical cement mixture and allowing for a partial cure before the next 

layer is cast. Note three distinct echoes, produced at the two internal interfaces 

and the distal end of the sample.

To determine the conditions needed to create detectable partial internal reflec­

tions from the interfaces corresponding to consecutively cast layers, three groups 

of cementitious samples were made by layered casting using Portland type I/II 

cement. Two inches of I.D. PVC tubing was cut in lengths of 2, 3 and 4 inches 

and used as a mold. Water-cement mixture was poured into the vertically oriented 

PVC mold in several layers approximately 1 inch thick, altering the duration (cure 

time) between the previous and the subsequent pours. To help with uniform 

setting of each layer and removing of air bubbles, the mold was vibrated by high 

speed vibrator on the outside surface; alternative vibration methods are currently 

being tried. The curing time for different layers varied from 15 minutes to days. 

Fresh cementitious mixtures of identical composition were prepared right before 

the casting of each new layer. The water-cement ratio by weight also changed 

which was found to have a significant effect on the outcome. All samples were 

cured in air and at least one week was allowed after the casting of the final layer 

before ultrasound testing; this long cure eliminated short-term aging effects. The 

ultrasound tests of cementitious samples were carried out using a Panametrics 

pulser/receiver (model 5072PR) and a Panametrics immersion transducer with a
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central frequency of 1 MHz (model V302), coupled to a sample using ultrasound 

gel. The data were acquired using a Tektronix oscilloscope (model MSO 2024) 

interfaced to a computer.

3.1.1 High Water-Cement Ratio Sample with Various Curing Times

The water-cement ratio used for this group of cementitious samples was 0.5, 

which is the highest water portion from manufacture's recommendation. With 

this ratio, the mix can be easily and uniformly poured into PVC molds. With two 

pours, each 1 inch thick, two layer samples are created that have a single internal 

interface.

To investigate the effect of the cementitious curing time, several samples were 

created in which we varied the time the first layer was allowed to cure prior 

to completing the sample with the second pour. The curing time for the first 

cementitious layer was set to 15, 30,45 minutes or 1 hour for different samples.

The results of ultrasound tests show that the clearest partial internal reflections 

are observed with samples in which the first cementitious layer was allowed to 

cure for 1 hour (Figure 3.2).

The reflections from the internal interface are less clearly defined when the 

curing time was 45 minutes, indicating a smaller change in acoustic impedance 

between the layers that were cast with little delay (Figure 3.3(A)). Further reduction 

in time allowed for the first layer to cure makes the two layers even less distinguish­

able to ultrasound testing, indicating a very small change in ultrasound impedance 

between the layers under these circumstances. For the samples cured for only 15 

minutes, we did notice the change in the ultrasound signature depending on the 

position of the ultrasound transducer relative to the center axis of the mold (Figure 

3.3(B)). The signature is smaller closer to the center of the mold. We speculate that 

this may be due to the difference in temperature with radial position, caused by 

the cementitious curing (which is an exothermic hydration reaction), resulting in 

different curing rates in different spatial position. Apparently, the rate of curing 

is higher close to the mold. Pouring the second layer after 15 minutes of curing 

results in a situation where the center of the first layer is less cured, allowing partial 

mixing with the newly poured second layer, which results in a minimal variation
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Figure 3.2: Ultrasound response for samples with the single internal interface 
obtained by allowing the first cementitious layer to cure for 1 hour. Inserts 
schematically depict the locations creating the acquired echoes: The first echo is 
the partial internal reflection from the interface of the two layers; the second echo 
is from the end of the sample. Round-trip echoes from partial internal reflection 
and the end are also shown.

in the ultrasound impedance of the two layers in the center of the sample.

3.1.2 Low Water-Cement Ratio Sample with Various Curing Times

This group of samples were cast with two internal interfaces obtained by 

sequentially casting three cementitious layers, 1 inch thick, using the water-cement 

ratio of 0.36, which was selected to be as small as possible while still allowing for 

layered casting of the sample with minimal air entrapment. The cure time for the 

first cementitious layer was also set to 15,30,45 or 60 minutes for different samples 

before pouring the second layer. The final, third layer was poured after the sample 

was allowed to dry for one day.

The ultrasound tests showed that all cementitious samples made according to 

this recipe exhibit partial internal reflections from each of two internal interfaces, 

even with short curing time of 15 minutes (Figure 3.4). However, the test also 

showed the signal-to-noise ratio (SNR) in this group (Figures 3.4,3.5) is high, likely
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Figure 3.3: Ultrasound response for samples with the single internal interface 
obtained by allowing the first cementitious layer to cure for 45 minutes (A) and 15 
minutes (B). Inserts schematically depict the locations creating the acquired echoes 
in (A) both the partial internal reflection and the end of the sample. The reflection 
from the interface is not well defined and varies with the change in the transducer 
position in (B).
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Figure 3.4: Ultrasound response for samples with the two internal interfaces 
obtained by allowing the first cementitious layer to cure for 15 minutes, 1 day 
for the second layer, and at least 1 day for the final third layer. Water-cement 
ratio equal to 0.36 was used. Inserts schematically depict the location creating the 
acquired echoes. Three echoes are clearly visible, of which the first two are from 
the internal interfaces created by multiple layers cast sequentially.

due to air entrapment during multiple castings of this mixture with a relatively 

low water content.

3.1.3 Medium Water-Cement Ratio Sample with Long Curing Time

The water-cement ratio equal to 0.44 was used to make the next series of samples. 

This ratio was chosen to be roughly an average of 0.36 and 0.5 values used with 

the already described samples. Our goal is to find the composition that gives 

an optimal trade-off between the ease of casting air free layers, which is easier to 

achieve with large ratios, without sacrificing the hardened strength of cementitious 

after curing, observed with high water content in the mixture.

The maximum of three layers were cast to make samples. Each layer was equal 

to or less than 1 inch in thickness. The purpose of these samples was to obtain initial 

experimental evidence on the shortest spacing between the interfaces, introduced 

to create internal ultrasound reflections, without overlap in consecutive echoes. By
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Figure 3.5: Ultrasound response for samples with the two internal interfaces 
obtained by allowing the first cementitious layer to cure for 45 minutes (A) and 
1 hour (B), both 1 day for the second layer, and at least 1 day for the final third 
layer. Water-cement ratio equal to 0.36 was used. Echoes from the second interface 
and the end of the sample are clearly visible. However, the signal from the first 
interface is rather complex, likely indicating entrapment of air at the interface.
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avoiding such overlap the signal analysis and the measurements of the ultrasound 

TOF are simplified. Each layer of prepared samples in this batch was allowed to 

cure for a long time that varied from one day to several days before the next layer 

was poured.

The ultrasound testing revealed that all samples in this group produce clear 

partial internal reflections from each interface. The reflections are clear without 

waveform overlap for 3-layered samples (Figure 3.6). This suggests that 1 inch or 

better spatial resolution of the ultrasound measurements of temperature distribu­

tion may be achieved with the proposed approach. The signal distortions in this 

and other samples prepared following this recipe (such as the two-layer samples 

for which the results are shown in Figures 3.7) are small, which is important for the 

precise measurements of the ultrasound time of flight.

Figure 3.6: Ultrasound response for samples with the two internal interfaces 
obtained by allowing the two initial cementitious layers to cure for 1 day each. 
The last layer was cured for at least 1 day. Water-cement ratio equal to 0.44 was 
used. Echoes from both interfaces are well defined, with relatively high SNR.
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Figure 3.7: Ultrasound response for a sample with a single internal interface 
obtained by allowing the first cementitious layer to cure for 1 day (A) and 2 days 
(B). Water-cement ratio equal to 0.44 was used. Echoes from the interface and the 
end of the sample are well defined, with a relatively high SNR.



42

3.1.4 Summary of Partial Internal Reflection Structures

3.1.4.1 Composition

It was found that the Portland cement that was used produces samples that 

often cracked at the interface after soaking in water. Two new cement formulations 

were then examined to obtain a more stable model of the refractory.

1. In the first case, a fortifier was added to the Portland cement mixture to 

increase strength of the samples, adhesion between multiple layers and reduce 

permeability to water. In the following, samples prepared with this modifier are 

designated as PF (Portland Fortified samples).

2. Rapid Set® concrete mixture is the second formulation that we tested. It 

produced fast setting, high strength samples, with excellent bond between layers 

and crack resistance. Samples prepared using Rapid Set mix are designated as RS.

Samples prepared according to these two formulations have higher strength 

and less water permeability than samples prepared with the traditional Portland 

cement mix. The Rapid Set concrete samples were found to be much denser than 

other concrete samples. Their ultrasound waveforms are shown in Figure 3.8.

3.1.4.2 Water-Cement Ratio

Higher water-cement ratios, such as samples produced using the ratio equal 

to 0.44 and 0.5, lead to better defined partial internal reflections of the ultrasound 

test pulse and the measurements are characterized by higher SNRs. This is most 

likely due to reduced trapping of air bubbles in samples with higher moisture 

content and more planar interfaces obtained by casting of more "fluid" cementitious 

mixtures. Typically, higher water content is associated with the reduced mechanical 

strength of cementitious samples. For a particular cementitious mix used by us, 

it is recommended that the water-cement ratio should not exceed 0.5. A lower 

water-cement ratio is known to lead to higher strength and durability, but may 

make casting of uniform layers more difficult. For a particular cement mixture 

used by us, a minimum of 0.25 of water-cement ratio is required for cementitious 

mix to harden. A mix with too much water would result in internal cracks and 

fractures which will reduce the final strength. A maximum of 0.5 of water-cement
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Figure 3.8: Ultrasound waveform collected for samples with a single internal 
interface obtained using Portland Fortified (A) and Rapid Set® cast (B). Echoes 
from the interface and the end of the sample are well defined, with a relatively high 
SNR.
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ratio was used for making cementitious samples—the ratio that is still within the 

recommended range.

3.1.4.3 Air Bubbles

Vibration on freshly poured cementitious layers helps to reduce the amount of 

trapped air bubbles significantly. The presence of trapped air has a very significant 

negative influence on the quality of the required echoes. At the same time, vibrating 

samples prior to setting of the previously cast layers (short cure time of 15 minutes 

or less) likely contributes to the lack or poor quality of the measured echo signals. 

To vibrate the samples immediately following the pour of the newly prepared 

cementitious mixtures, we used a Fisher Sonic Dismembrator (Model 300) which 

provides high-frequency vibrations (on the order of 20 kHz).

3.1.4.4 The Partial Curing Time

For samples with water-cement ratio equal to 0.5 (the maximum value in the 

recommended range of the Portland cement mixture used by us), the curing 

time of less than 1 hour produced complex reflection patterns which suggest a 

diffused interface between sequentially cast layers. It was found that better defined 

reflections can only be observed on the edge of a cylindrical sample but not in 

the samples' center. To ensure the reflection can be observed everywhere on the 

sample surface, each layer curing time of at least 1 hour was found to be necessary. 

However, curing interlayers over days significantly reduced the bond effectiveness 

and sample strength at the interfaces.

3.1.4.5 Number and Spacing of Partial Reflections

We have demonstrated the acquisition of partial internal reflections from two 

interfaces inside the samples obtained by a sequential casting of three cement layers, 

allowing some time to cure each layer. At this time, we have shown that with the 

central frequency of 1 MHz, the echoes do not overlap when interfaces are spaced

1 inch apart. The distance between the features (interfaces between layers, in this 

case) that produce partial reflections determines the achievable spatial resolution 

of the temperature distribution measurements. Though a 1 inch spacing was
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demonstrated so far, a closer spacing of partial reflectors may be possible with 

higher frequency of excitation, the sharper defined changes in acoustic impedance 

and the more advanced signal analysis techniques that can handle overlapping 

echoes.

3.1.4.6 Sample Length

We have demonstrated that with the current ultrasound pulser used in the pulse- 

echo mode, it is possible to characterize samples 2-4 inches long and obtain clear 

measurements of partial internal reflections from, at least, two internal interfaces. 

Longer samples (over 4 inches) can be characterized in transmission mode in which 

a separate transducer is used to generate the test pulse and the second transducer 

acquires the ultrasound signature after the excitation has propagated through the 

sample.

3.1.4.7 Consistency of Sample Properties

Consistency of the sample properties prepared following the same recipe was 

tested with RS samples. Three 2-inch samples were obtained in a single casting 

and had no internal ultrasound reflectors. The other three samples in the group 

were 3 inches long and had a single partial internal reflector created by casting 

two cement layers of identical mixture and allowing for a partial cure between 

consecutive layers. All samples were prepared and made at the same condition, 

from the same mixture ratio.

The speed of sound measurements for the two groups of samples were carried 

out, both in the water bath and the air. All samples were tested in the following 

order: (1) in air, (2) fully immerged in water and saturated, (3) in air again, after 

one week drying at room temperature. The time of flight was measured as a 

time delay between two echoes from the distal end of the sample produced by an 

ultrasound pulse acquired after a single or two round trips. SOS was determined 

as: c = 2L/tof , where the length of the sample, L, was measured with a micrometer. 

The results for all six samples are shown in Figure 3.9. The solid and hollow shapes 

represent the SOS results from three 2-inch and three 3-inch samples, respectively, 

presented by the primary y-axis. The secondary y-axis shows the densities of all
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Figure 3.9: Two groups of RS samples tested in the water bath and air show 
great variability in both the SOS versus temperature relationships and density 
measurements.

samples. The results indicate some variability between samples in the same group, 

like significant SOS increments when sample is saturated, and higher variabilities 

between different groups, both in the SOS and the density.

3.2 Experiments of Temperature Measurements
3.2.1 Structured Cementitious Waveguide

In this study, a cementitious sample obtained by casting of Portland Type I/II 

cement was selected as a model of castable refractory. A 2-inch I.D. PVC tubing 

was used as a mold and a 4-inch sample was created by sequentially casting four 

layers (each 1 inch thick) of cement mixture and allowing 30 minutes curing time 

between consecutive layers. The mold was vibrated by an external vibrator after 

each pouring to ensure uniform setting of each layer and to remove air bubbles. 

The samples were cured and aged at ambient temperature until their ultrasound 

properties stabilized.

The ultrasound tests of cementitious samples were carried out using a Panamet- 

rics pulser/receiver (model 5072PR) and a Panametrics immersion transducer with 

a central frequency of 1 MHz (model V302), coupled to a sample using ultrasound
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gel. The data were acquired using a Tektronix oscilloscope (model MSO 2024) 

interfaced to a computer.

3.2.2 TOF Acquisition from Ultrasound Waveform

The other essential prior condition to apply the proposed ultrasound method is 

the SOS dependence on the temperature. Figure 3.10 illustrates typical ultrasound 

waveforms acquired in this configuration from the same sample maintained at 

different uniform temperatures. The echoes are produced at the distal end of the 

sample. The first echo seen in the figure corresponds to the ultrasound pulse that 

traveled the length of the sample and back (a single round trip), while the second 

measured echo corresponds to the same pulse after it made the second round trip 

through the sample. The direct inspection of waveforms in Figure 3.10 indicates 

that the speed of sound in the model refractory indeed depends on temperature, 

decreasing as the temperature goes up, leading to longer time of flight of ultrasound 

pulse at higher temperatures.

To establish the correlation between the speed of sound and temperature, the 4-

■ a
c
o

initial
Pulse Echoes

Time (psec)
Figure 3.10: Ultrasound waveforms acquired at different temperatures illustrate 
the TOF shift with temperature.
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inch sample was placed inside the fabricated heating fixture depicted in Figure 3.11, 

which consisted of a thermally insulated steel container and an internal heating 

blanket (silicon rubber blanket by BriskHeat®) that tightly surrounded the sample. 

The temperature of the blanket was measured by a thermocouple and controlled 

by a PID controller. The surface temperature of the sample was measured by 

four Omega Precision Fine Wire Thermocouples attached with high-temperature 

adhesive tape in the middle of each layer of the model refractory. Two additional 

thermocouples of the same type were used to measure the temperature of the top 

and bottom surfaces of the sample.

The ultrasound transducer was coupled to the surface of the top layer of the 

sample (Layer 1, L1). To prevent damage to the transducer, the top surface of

To Panametrics Pulser/Receiver

Figure 3.11: Experimental setup of 4 inches, 4 segments cementitious sample for 
low temperature measurements.



49

Layer 1 extended above the fixture to allow for partial cooling of the sample; in this 

arrangement, Layer 1 is effectively used as a delay line. The test temperatures were 

changed in 10 °C increments and spanned from 20 to 100 °C in this study. After 

each temperature change, sufficient time was allowed for thermal equilibration 

to occur before attempting the time of flight measurements. The sequence of 

temperatures for which the SOS measurements were conducted was randomized. 

The randomization included all repeat experiments for each temperature. Such 

randomization avoids measurement potential bias introduced when temperatures 

always changed in one direction (either an increasing or decreasing temperature) 

and by a fixed increment of temperatures from one experiment to the next. We 

noticed that the interface between the consecutive layers is not entirely flat or 

smooth (a consequence of coning, partial penetration and/or mixing between 

layers). To account for unevenness of the interfaces, during the repeat experiments 

the positioning of the transducer was slightly shifted relative to the centerline of 

the sample and kept at the same location for all the tests.

3.2.3 Signal Processing

Several methods for determining the TOF from the waveforms typified in 

Figures 3.10 were investigated. Our initial approach was to use a delay line and 

the echo signal from sample-delay interface as a reference "zero time" from which 

the time of flight is calculated. The time of flight is then calculated by matching 

single-point features (e.g., peak value or zero crossing) in the reference waveform 

from the sample-delay interface and the waveform of the reflection produced by 

internal interfaces and the end of the sample. Though this approach is standard, 

we encountered difficulties in its applications. Cementitious refractory materials 

are dissipative and have higher absorption of higher frequency components of the 

ultrasound wave, which leads to distortion and broadening of the echo waveform 

and thus errors in determining the time of flight based on a single-point feature 

matching. We therefore opted to use the cross-correlation between the echo 

waveforms obtained at different temperatures to determine the difference in the 

time of flight at two different temperatures, ATOF.
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For dissipative samples higher accuracy may be obtained if cross-correlation 

is performed between the analytical envelopes of the waveforms, rather than the 

waveforms themselves [59]. To test the potential improvements, we implemented 

the envelope cross-correlation method and compared its performance with the TOF 

measurements based on the waveform cross-correlation. A numerical procedure 

based on the Hilbert Transform is applied to the waveform in the time domain 

to create an envelope of the waveform. This is a representation of the amplitude 

modulation on the carrier wave frequency. The procedure also creates a time- 

domain phase function which has application to interpreting dispersion. Figure 

3.12 shows the comparison of results obtained using the cross-correlation between 

the waveforms (left 2 columns) and the envelopes of the waveforms. The offsets 

(ATOF) between the reference waveform and its envelope (green lines) and the 

waveforms and their envelopes of the echo signals acquired when the sample was 

maintained at different temperatures (blue lines) are listed for each subfigure. The 

two methods give a similar trend of increasing time of flight with temperature but 

differ in values of ATOF. In further analysis, the envelope cross-correlation method 

is used as an approach less sensitive to the waveform distortion.

The envelope of the echo waveforms in Figure 3.13A (collected when the sample 

was maintained at the uniform reference temperature of 20 °C) is shown as the top

offset=9.600000e-008 offset=9.600000e-008

;et=0.000000e+000 offset=3.520000e-007 offset=3.200000e-007

(A) (B)

Figure 3.12: Comparison of the estimated ATOF  (offsets) at different temperatures 
obtained by cross-correlating the waveforms (panel (A)) or envelopes of the 
waveforms (panel (B)).

x 10 x 10 x 10

x 10 x 10
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Figure 3.13: (A) Typical waveforms of ultrasound echoes created by the interface 
between different layers Li of the cementitious sample (insert) and the sample-air 
interface at its distal end. The measurements were acquired at the reference 
temperature of 200C. (B) Envelopes of echo waveforms collected at different 
temperatures.

graph in Figure 3.13B. The remaining graphs in Figure 3.13B show the envelopes 

of the waveforms collected during the calibration experiments when the sample 

was maintained at the elevated uniform temperatures (results for 50, 70 and 100 0C 

are shown). Visual comparison of the envelopes indicates a distinct trend towards 

an increased TOF as the temperature increases, and therefore the reduction in the 

speed of sound c through the sample at elevated temperatures.

The overall procedure for the data analysis using the envelope cross-correlation 

method and the speed of sound calculation is summarized in the following steps:

1. The reference zero time (or trigger) is maintained the same for all measure­

ments.

2. The reference waveforms, which include 4 echoes from the three internal in­

terfaces and the distal end of the sample, are acquired at the reference temperature, 

selected to be 2 0 0C.

3. The temperature tests are conducted in random order, with at least 6 repeats
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for each temperature. During each test, 20 waveform sequences are collected and 

averaged.

4. The envelope cross-correlation between the reference and the averaged 

waveforms is applied to find ATOF  at a given temperature relative to the reference 

temperature of 20 °C.

The change in the time of flight of an echo produced by i-th internal interface 

relative to the TOF at the reference temperature T20 is equal to

z  z
A f f  (T) = (T20) -  S f  (T) = 2

c(T20) c(T)
(3.1)

To quantify A t f  (T) from the ultrasound measurements, we used the cross­

correlation of the waveform envelope, A T, of an echo obtained at the temperature 

T  with the corresponding echo acquired at the reference temperature, T20:

X
+ to

A t 20 (t)AT (t + x)dt. (3.2)
TO

The temperature-induced change in the TOF is then obtained as a delay (shift) 

t  between A t 20 and A t needed to maximize their cross-correlation. Formally, for 

i-th echo we find Atzf  (T) as the solution of the following problem:

z f +“
At* (T) = argmaxT 1 AT20(t)AT (t + T)dt. (3.3)

\J -TO
5. The speed of sound c i,...,c 4 in each layer of the sample is calculated at each 

temperature:

ci = (— 2L1/ L \' (3.4)(tofi(T20)) +(AtL .̂ (T)J

c2 = -------------------------^ ---------------------- \, (3.5)
(to/2 (T20) -  tofi (T20)) + [AtL?f  (T) -  AtLf  (T)

c3 = -------------------------^ ---------------------- \' (3.6)
(tof,(T20) -  to/1(T20)) +[&tL3f  (T) -  A t^  (T)

C4 = -------------------------2Li7---------------------- \' (3.7)
(toA(T20) -  tof3(T20)) +  (AtLf  (T) -  A t f T )

where L i. . . ,L4 are the thicknesses of each layer; tof1(T20) , . . . ,tof4(T20) are the times 

of flight of reference echoes originating from the three internal interfaces and the
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distal end of the sample; At f̂ (T),... ,  ̂ At f̂(T) -  At f̂ (T) j  are the differences between 

time of flights at reference and test temperatures. The overall length of the sample, 

L = Y, 4=1 Li, was measured using a micrometer, and the speed of sound at the 

reference temperature was calculated using Equation 2.4, where TOF  is equal to 

tof4(T20) which is the time of flight of the echo produced at the distal end of the 

sample. With known speed of sound at the reference conditions, the thicknesses of 

each layer Li were calculated using the measurements of tof t(T20) , . . . , tof4(T20).

3.3 Results
3.3.1 The Calibration the SOS and Temperature

The speed of sound versus temperature calibration results for all four layers 

of the sample, obtained using the described procedure, are shown in Figure 3.14. 

The obtained SOS on the vertical axis is plotted as a function of the temperature 

measured by thermocouple attached at the center of each segment's surface of the 

model refractory sample. The data for all four layers were used to obtain a linear 

fit of the speed of sound as a function of temperature, which is expressed as

c = f  (T) = -1.06T + 3240.3, 20 °C < T < 100 °C. (3.8)

The obtained correlation is plotted with the 95% confidence interval, shown as 

the shaded area.

3.3.2 Nonuniform Temperature Distribution

The proposed method for measuring nonuniform temperature distribution in 

the cementitious sample was tested. The sample was placed inside the fixture 

shown in Figure 3.11 and was heated using the base heater only. After the tem­

perature measurements provided by surface thermocouples stabilized at constant 

values, an ultrasound excitation pulse was applied to the sample and the four return 

echoes were acquired. Using the envelope cross-correlation method, the TOF of 

each echo was determined, and the result was used to estimate the apparent speed 

of sound in each layer needed to produce the observed time of flight for each 

echo. Based on the calibration data, thus obtained SOS of each layer provided the 

corresponding temperature of each layer.
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Figure 3.14: The calibration curves for the SOS as a function of temperature for 
all four layers of the sample were obtained using envelope cross-correlation data 
analysis methods. The shown linear fit SO S  = f (T) is based on data for all four 
layers. The shaded areas show the 95% confidence interval for the obtained linear 
fit.

When the temperature in the i-th segment is nonuniform, the obtained values 

of tofi(Tref ) and tofi-1(Tref ) used in Equation 2.19 give the following equation:

tof,(T) = (tof,(Tref) -  f  (Tref)) + ( ^ f  (T) -  Af  (T)) = 2 f  ^  (3.9)

from which an unknown temperature distribution T (z) within the segment must 

be found by using the discussed options for the temperature parametrization.

3.3.2.1 Piecewise Constant Distribution

The assumption of constant temperature in each segment coupled with the 

calibration Equation 3.8 give the piecewise constant estimation of T(z), with the
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temperature in the i-th segment equal to

Ti = 3056.89 -  L89(zi -  zi-1). (3 .10)
tofi

This piecewise constant parametrization was previously used in [51], and is 

included in Figure 3.15(A), for comparison. The thermocouple measurements of 

the surface temperature in the middle of each segment are also shown. Though 

the simplest possible parametrization that leads to a discontinuous change in the 

estimated temperature at the location of echogenic features, it was still able to 

capture the correct trend in the temperature distribution along the sample.

3.3.2.2 Piecewise Linear Distribution

The assumption of temperature in each segment changing linearly parametrizes 

the temperature distribution in the i-th segment as

Ti(z) = m{z + ni, (3.11)

where mi and ni are unknowns. Coupled with the linear relationship in Equation 

3.8 between the speed of sound and the temperature, this parametrization used in

Figure 3.15: Temperature distributions from ultrasound and thermal model 
parameterizations compared with thermocouple measurements. (A) Estimated 
temperature distributions based on piecewise constant and piecewise linear pa- 
rameterizations are compared with the measurements of the surface temperature 
obtained with thermocouples attached in the middle of each segment. (B) The 
parametrization based on 2D thermal conductivity model can be used to estimate 
the temperature distribution along the centerline and the surface of the waveguide.
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Equation 2.19 gives:

a(mjz + Hi) + bdz'
(3.i2)

where a and b are from Equation 3.8. After performing the integration and requiring 

that the temperature remain continuous at the interface of the two segments, the 

following two equations are obtained in an unknown slope and intercept appearing 

in Equation 3.11:

By combining Equation 3.13 and 3.14 for all segments of the waveguide, and H1 = 

T (0) from the first segment by using independent (thermocouple) measurements 

of T(0), which is the temperature at the transducer location, we have a sufficient 

number of conditions to find the piecewise linear temperature distribution across 

the entire waveguide.

For the four segments of the waveguide used in our experiments, the estimated 

piecewise linear temperature distribution is shown in Figure 3.15(A). Though an 

improvement over the piecewise constant distribution, a substantial difference 

(~ 10 °C at z = 10 mm) with the thermocouple measurements is still apparent.

Both ultrasound and thermocouple results show a similar trend in temperature 

distribution. Two factors likely contribute to the observed difference in the mea­

sured temperature. First, it is reasonable to expect that the surface temperatures of 

the sample are indeed lower than the internal temperature measured noninvasively 

by the ultrasound, explaining some of the observed differences. Second, the 

thermocouples provide essentially point-wise measurements of temperature, while 

the ultrasound measurements depend on temperature distribution along the entire 

sample.

A much more accurate estimate of the temperature distribution will be ob­

tained if a more realistic "subgrid" parameterization is used. For example, we 

expect that by requiring that the temperature distribution satisfy the realistic heat 

transport model (e.g., the conduction model of Equation 3.15 supplemented with

(3.13)

miZi- 1  + Hi = mi-1Zi-1 + Hi-1 . (3.14)

3.3.3 Parametrization with 2D Thermal Conductivity Model
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the boundary temperature condition at the transducer's location), the accuracy of 

the temperature distribution based on ultrasound measurement and the estimation 

of the hot boundary temperature will improve.

The heat conduction model was developed in COMSOL Multiphysics. The 

temperature distribution inside the sample must satisfy the following 2D heat 

transport model in the cylindrical coordinates:

„  dT  1 d dT d2T  
pCp dt = ( r d r r d r ) + dz2 ' ( )

Constant values of p, Cp and k were assumed, which were 1200 kg/m3 (from 

lab measurement), 1.55 kJ/kg-K (from dry cement properties) and 26.91 -  0.25T + 

8.61 x 10- 4T2 -  1.00 x 10- 6T3 W/m-K (from Comsol Toolbox), respectively. The 

temperature of the proximal and distal ends of the waveguide and the heat flux 

through its cylindrical surface were used as the three boundary conditions needed 

to completely define the model. Temperature distributions on both end surfaces 

of the waveguide were assumed to decrease linearly from the centerline (r = 0) to 

its cylindrical edge (r = 25.4 mm). The thermal image of the transducer coupled 

with the proximal end of the waveguide (z = 0, Figure 3.16(A)) was acquired with 

an infrared camera (FLIR Model T300). The centerline and the edge temperatures 

of the cold surface were found to be T(0,0) = 40 °C and T(0,25.4) = 38.73 °C based 

on three repeat tests. The thermal image of the hot end (in contact with the based 

heater, Figure 3.11) was taken right after the hot face was quickly removed from 

the test fixture (Figure 3.16(B)). Based on three repeat experiments, it was found 

that T(101.6,0) = 115 °C and T(101.6,25.4) = 109.92 °C. The estimated centerline 

temperature of the hot end was verified by the thermocouple measurements, and 

was found to be in good agreement with the image results.

The heat transfer coefficient h in the third boundary condition, Equation 2.32, 

was selected to match the measured TOFs and the surface temperatures acquired 

by four thermocouples shown in Figure 3.11. Figure 3.16(C) shows the temperature 

distribution in the waveguide obtained with h = 14 W/(m2-K). The centerline 

temperature distribution, T(z, 0), was used in the measurement Equation 3.12 to 

calculate the overall and segmental time of flights of ultrasound echoes. The
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Figure 3.16: Comparison of thermocouple and ultrasound measurements of 
temperature distribution in the sample heated from the bottom.

comparison of the predictions with the measured values shows less than 1% relative 

difference for all TOFs. Figure 3.15(B) compares the centerline and surface tem­

perature distributions, T(z, 0) and T(z, 25.4), with the thermocouple measurements 

of the surface temperatures. The results show that the centerline temperature is 

indeed higher than the surface temperature by as much as 7 °C, and the difference 

between the estimated surface temperature and the TC measurements is less than

2 ° C.

3.4 More Cementitious Samples SOS Measurements
The six cementitious samples that were tested in a temperature controlled water 

bath for relationship between SOS versus temperature from 20 to 50 °C with 5 °C 

increment are summarized in Table 3.1.

During the experiments, all 2-inch samples were fully soaked in water, while
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Table 3.1: Summary of cementitious samples for SOS tests

Sample Height Cement type Numbers of 
interfaces

Curing time for 
interface (mins)

1 2 Portland I/II 1 15
2 2 Portland I/II 1 60

3 2
Portland I/II + 

fortifier 1 60

4 2 Rapid Set 1 60
5 3 Portland I/II 2 30
6 4 Portland I/II 3 60

3-inch and 4-inch samples were protruding above the water surface. Only time 

of flight measurements corresponding to the two sections immersed under water 

were used to obtain the calibration curve. The echoes from the first and second 

partial internal reflectors, respectively, were used as delay line reference to measure 

the time of flight from the immersed sections.

Six sets of randomized tests for samples 1, 2, 5 and 6, and 3 sets for samples 3 

and 4 were obtained for determining SOS versus temperature calibration. Figure 

3.17 summarizes the speed of sound as a function of temperature results for all 

samples obtained using the integrated delay line method. The speed of sound of 

the denser Rapid Set sample is noticeably higher. Overall, as temperature changes 

from 20 to 50 °C, the speed of sound in all samples linearly decreases by less than 

5%, from 2.23% decrease in RS sample to 4.32% decrease in PF sample.
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CHAPTER 4

HIGH-TEMPERATURE LABORATORY 

EXPERIMENTS

4.1 Alumina Refractories
The ultrasound studies with the cementitious sample proved the feasibility of 

the ultrasound measurements of the segmental temperature distribution method. 

However, due to the temperature limitation of cementitious material, advanced 

ceramic that is more resistant to corrosive environment, suitable for elevated 

temperature application, is required.

Alumina (Al2O3) is one of the most widely used general purpose technical 

ceramics. Alumina ceramic is hard, wear resistant, and has high compressive 

strength, even at very high temperatures (up to 1750 °C). Compared to other 

oxide ceramics at high temperatures, alumina (Al2O3) provides better corrosion 

protection. Aluminas are also excellent electrical insulators, and can be fabricated 

with very low porosity and gas tight. Dopants, such as MgO and CaO, may be 

added to improve its performance characteristics. The result is that the combination 

of properties exceeds the toughness of pure alumina and improves hardness, 

strength, and thermal properties that are maintained at high temperatures. These 

added dopants also slow the growth of alumina grains which is desirable in 

ultrasound applications.

4.1.1 Castable Alumina

Several castable alumina candidates were tested. GREENCAST®-94 PLUS is 

a high alumina, low silica castable ceramic, produced by APGreen. Its major 

ingredients are alumina (94.1% Al2O3) and lime (5.1% CaO). This material may 

be used at a temperature up to 1870 °C. We continued to use our vibrating system 

to help the mixture flow and settle in the molds with minimum voids. However,
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the limited liquidity of this mixture caused inevitable air bubbles trapped inside 

and at the surface of the cured sample. Several issues were encountered with 

this ceramic. First, the lime appears as small size gravel, about 2-4 mm diameter. 

These particles scatter and dissipate the ultrasound signal. Second, the ceramic 

contains fibers, often clumped together, which are normally added to increase the 

crack resistance, elongation, and thermal shock resistance in ceramic applications. 

However, clusters of this fibrous material absorb the US energy and limit the 

length of the ultrasound preparation to below 2 inches under the conditions of our 

experiments.

To get a better ultrasound signal for this type of ceramic sample, we sieved the 

large clumps of fiber out of the ceramic mix and crushed down bulky grains. Tests 

showed that ultrasound signal improved for the modified sample. We were able 

to measure reflection (return echoes) from 3-inch long samples. Still, the strength 

of the reflected signal was weak and distorted.

We proceeded to test high-temperature ceramics from Cotronics, Corp. that 

do not contain fibers or large grains, such as zirconium oxide and alumina oxide 

castable ceramics. We tried to use the same method to create partial reflection as 

we used with cementitious materials by cascading ceramic at multiple times with 

a partial cure allowed after each layer was cast. However, a significant number 

of air bubbles left inside after drying distorted and weakened the ultrasound echo 

even after experimenting with different ways of vibrating the mixture.

One example of an ultrasound waveform from 4-inch and 5-inch lab cascade 

alumina ceramic samples tested using a 1 MHz transducer (Panametrics V302) is 

shown as Figures 4.1. Because the length of the refractory inserted into the gasifier 

would be between 4 to 10 inches, we continued to search for the right ceramic 

material and the proper method to create strong and clear partial reflections.

4.1.2 Machinable Alumina

Recognizing the limitations of our casting process likely contribute to poor 

quality of samples, the waveguide material that we finally chose was precast, 

pressure formed, machinable alumina ceramics Rescor 960 with dimensions of 

1 inch in diameter and 12 inches in length from Cotronics, Corp. that can be
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Figure 4.1: The ultrasound waveforms acquired from 4-inch and 5-inch alumina 
samples. Echo signals are seen at approximately 10 and 12 microseconds.
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continuously used at temperatures up to 3000°F (1649°C). This alumina ceramic is 

particularly suited for our high-temperature ultrasound application due to its low 

attenuation.

Figure 4.2 shows the ultrasound waveform of the ceramic rod without internal 

reflectors. The echo from its distal end appears between 140 and 160 ^s, followed 

by multiple echoes. The likely cause of these equally spaced multiple echo signals 

is multiple internal refractions of the ultrasound signal from the cylindrical surface 

of the rod, as illustrated in Figure 4.3. This only happens in a cylindrical rod with 

length significantly larger than its diameter. The reflection at the lateral surface may 

lead to a small percentage of mode conversion from longitudinal waves to shear 

waves [13]. Mode conversion of longitudinal to shear waves holds an advantage 

when the direct introduction of a shear wave is not possible.

Time (s) x  10

Figure 4.2: The ultrasound waveform for 1-inch x 12-inch alumina rod collected 
by transducer with frequency 1 MHz. The distal end echo shows between 140 and 
160 ,us, followed with two more echoes.
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Transducer Alumina rod

Figure 4.3: Possible modes from longitudinal waves at the lateral surface in the 
long cylindrical rod of alumina.

4.2 Experiments
4.2.1 Partial Reflectors Structures

After experimenting with different solutions, we found a simple method to 

create partial ultrasound reflectors from predetermined spatial locations inside the 

ceramic rod by drilling small holes along its length. To balance the strength of the 

return signal, which improves with larger hole size, while maintaining physical 

integrity of the waveguide, three 3/32-inch holes were drilled located 2, 4, and 6 

inches from the distal end of the rod to create four segments on this ultrasound 

waveguide, shown in Figure 4.4.

For high density, high hardness alumina ceramic, ultrasonic testing showed 

that frequencies in the megahertz regime are necessary to generate wavelengths 

as small as the microstructure features [16]. We tested this alumina rod at several 

ultrasound frequencies, including 0.5,1, 5, and 10 MHz. The results are shown in 

Figure 4.5. Since the wavelength of 0.5 MHz transducer is -0.022 m, which is close 

to the diameter of a 3/32” hole, clear partial reflections from hole locations are not 

produced due to ultrasound diffraction. The three echoes in the center in Figure

4.5 (b)-(d) are partial reflections from the three drilled holes. The examination of 

the results of Figure 4.5 indicates that 1 MHz and 5 MHz transducers produced 

acceptable response. A 5 MHz transducer produced the cleanest echo signal with 

the best SNR. A 10 MHz transducer has higher spatial resolution but shows higher 

attenuation of the ultrasound signal.

Figure 4.4: Three 3/32-inch holes were drilled into the precast alumina rod at 2, 4, 
and 6 inches away from the distal end of the rod.



66

5  c

(a) Transducer V601 with frequency 0.5 MHz (b) Transducer V603 with frequency 1 MHz

g  0

(c) Transducer V609 with frequency 5 MHz (d) Transducer V611 with frequency 10 MHz

Figure 4.5: The ultrasound echo waveforms for 1 inch x 12 inches alumina rod 
with drilled holes to produce partial reflections. Plots show the response obtained 
with transducers of different central frequencies.

Our experiments show that alumina provides good ultrasound propagation at 

temperatures up to 800 °C for continuous use. It remains an acceptable ultrasound 

waveguide when temperatures exceed 1000 °C for a short term. However, the 

strength of the ultrasound signal degrades significantly when temperatures exceed 

800 °C for a long time, as occurred during a week-long pilot-scale testing which 

will be discussed in detail later.

-4

4.2.2 Experimental Setup

A Carbolite 1 & 3 Zone Wire-Wound Tube Furnace (model MTF 201) was 

adapted for laboratory-scale ultrasound system high-temperature tests. This fur­

nace is capable of operating at temperatures up to 1200 °C and provides convenient 

observation and access to all power and temperature controls. This tube furnace 

incorporates low thermal mass ceramic fiber insulation for fast response times and 

rapid heat-up to operating temperature. Furnace controls are built into the support
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base, providing convenient observation and access to all power and temperature 

controls. The three independently controlled heating zones of the tube furnace 

improve the uniformity of the maintained temperature. Despite this measure, 

we found that the temperature distribution inside of the heating tube is approxi­

mately parabolic, with the peak value in the center of the furnace and decreasing 

towards the edges. An actual setup of the lab-scale ultrasound high-temperature 

measurement system is shown in Figure 4.6. To improve temperature uniformity, 

the alumina ceramic waveguide was partially inserted into the furnace and held 

in place without surface contact with the heating tube. The part of the refractory 

rod between its distal end and the 2-inch drilled hole/partial reflector was placed 

in the center of the heating zone (colored in red in Figure 4.6).

During the experiments, the ultrasound transducer was attached to the proximal 

end of the alumina rod extending outside the furnace; this ensured that the 

transducer was operating below its Curie point. To reduce radiative heating 

affecting the transducer, an aluminum radiation shield was placed between the 

furnace and transducer. Independent temperature measurements were provided

rod

To Pulser/Receiver 

Transducer

MTF - Wire Wound Single 
Zone Tube Furnace

Figure 4.6: An overview of the actual lab-scale ultrasound high-temperature 
measurement system for SOS versus temperature calibration tests.
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by OMEGA® Nextel ceramic insulated thermocouples attached to the hot distal 

end of the rod glued with ceramic adhesive. Three additional thermocouples were 

attached between the drilled holes to the side surface of the rod. The ultrasound 

tests were implemented using a Panametrics pulser/receiver (model 5072PR) and 

Panametrics transducers (models V609) with a central frequency of 5 MHz. The 

data were acquired using a Tektronix oscilloscope (model MSO 2024) interfaced to 

a computer. A customized Matlab code for data acquisition and data analysis was 

developed and used.

The temperature setpoints were closely spaced in 50 °C increments from 50 °C 

to 1150 °C and room temperature 20 °C, for the accuracy of the calibration curve. 

We randomized the sequence of temperatures for the TOF measurements and 

SOS calculation. The randomization included all 6 repeat experiments for each 

temperature.

After each change of the setpoint temperature, sufficient time was allowed 

for thermal equilibration to occur before the ultrasound measurements were per­

formed. To ensure consistency of the TOF measurements, the experiments were 

repeated with the transducer placed in the same location at the distal end of the 

sample. To reduce the effect of measurement noises, 16 consecutively acquired 

ultrasound waveform traces were averaged using a built-in oscilloscope averaging 

option. The TOF measurements were then used to calculate the SOS for all 

temperatures at which the experiments were carried out and the 95% confidence 

interval was established for each data point.

4.3 Results
4.3.1 Signal Processing

The selected alumina ceramic refractory dissipates very little ultrasound energy 

in the ultrasonic propagation process. Therefore, clear and strong echo signals 

from the engineered partial reflectors allowed for accurate measurements of the 

ultrasound TOF at high temperatures. The collected ultrasound waveform for the 

alumina waveguide is shown in Figure 4.7(A). The echo waveform from the partial 

internal reflectors, labeled as Z1, z2, and z3, and the distal end of the refractory 

sample, z d e , divide this waveguide to 4 segments, L1, L2, L3, and L4. The proximal
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Figure 4.7: The ATOF  as a function of temperature was calculated by envelope 
cross-correlation with the reference waveform acquired at 20 0C.

end of the sample, which is the interface between the transducer and the sample, 

produces the initial bang waveform seen in Figure 4.7 immediately following time 

t = 0. The distance between transducer and partial reflector z1 was treated as the 

delay line. This figure shows echo waveforms acquired at 4 different temperatures. 

The first trace acquired at 20 0C was used as the reference with respect to which the 

change in the time of flight, AT OF, was measured as a function of temperature by 

performing envelope cross-correlation analysis between the reference waveform 

and the waveforms obtained at 450 0C, 700 0C, and 1050 0C in the case, shown in 

Figure 4.7(B). Both cross-correlation and envelope cross-correlation of collected 

alumina waveform provide consistent TOF measurement results.

The SOS as a function of temperature was calculated based on the measured TOF 

at a given temperature and the length of waveguide measured at room temperature,
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c(T) = 2L4 = ---------------------- 2 (z d e  Z3)----------------------  (4.1)
>0f,m  ( f ( T f  -  f T„ f )) + ( A f ( T) -  t f c n )

where L4 is the distance between the interfaces z 3 and the distal end of the sample 

z d e , which was measured by a micrometer.

The temperature significantly affects the ultrasonic attenuation. Ultrasound 

echos' strength at z 3 position degrades when the temperature reaches over 800 °C. 

The high temperature can even make the solid futility for ultrasonic wave propaga­

tion. Intraparticle thermoelastic absorption is the major contributor for ultrasonic 

attenuation in high temperature, which is the combination of the elastic and 

thermal fields created by the propagation ultrasonic wave [11]. Local changes in 

temperature are dependent on the thermal expansion coefficient and the direction of 

the ultrasound propagation. At macroscale range, while regions of the material that 

are in compression heat up, the regions in rarefaction stay cool. This temperature 

difference triggers heat flow between the compressed and rarefacted regions to seek 

thermal equilibrium. This heat flow is irreversible which causes a loss in acoustic 

energy measured as acoustic attenuation. Zener [110] developed an expression 

which relates the frequency of maximum attenuation for a single particle to the 

size of the particle and its thermal properties. This relationship is used as the basis 

in the derivation of how much energy a single particle absorbs.

f = 2^  (4.2) 

where f  is frequency, r is particle diameter, k is the thermal conductivity, p is density, 

and Cv is the specific heat at constant volume.

Because of anisotropic properties of alumina grains, where two grains are 

in contact with each other, there exists a difference in grain orientation, and 

thermal and elastic properties at such interfaces. Temperature difference also exists 

between particles, depending on their orientation and degree of anisotropy, which 

causes another absorption, called interparticle thermoelastic absorption. Portune's 

work [79] showed that thermoelastic absorption is the dominating absorptive 

mechanism active in dense polycrystalline ceramics and the effect of heat flow 

which leads to absorption is irreversible.



71

4.3.2 The SOS versus Temperature Calibration

Figure 4.8(A) shows in the experimentally obtained relationship between speed 

of sound and temperature from 20 °C to 1150 °C that SOS strongly depends on 

temperatures. Most of the experimental points follow the same trend; only one 

test result shows large variance at 1150 °C. The possible cause of this variance 

in measurements is the reduced strength of the return echoes observed at high 

temperatures which is discussed in last section.

The results with and without compensation of the measured SOS for thermal 

expansion of the rod are presented in Figure 4.8(B). About 75% of measured 

temperatures have uncertainties less than 1 °C and others are between 1 and 2 °C 

for the calibrated results.

The red line in Figure 4.8(B) shows the speed of sound compensated for thermal 

expansion of the waveguide calculated as

Lref[1 + a(T -  Tref)]
CTE (T) =

tof (T)
(4.3)

where a  is the coefficient of linear thermal expansion, which is 4.3 x 10(-6)/°C or 

7.74 x 10(-6)/°F for this alumina rod. The length of the ultrasound propagation 

waveguide and the SOS both change with temperature. For example, if the 

waveguide were heated by 1000 °C, its length would only increase by 0.43%.

Figure 4.8: The SOS vs. temperature calibration curve obtained for all tested data 
points using the envelope cross-correlation method is shown in (A). The results in 
(B) are shown with and without corrections for the thermal expansion. The error 
bars indicate the 95% confidence interval for each data point.
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Though small, it clearly shows the SOS difference in Figure 4.8(B), which would 

cause temperature error for over 100 °C. However, as long as the calibration curve 

gives the SOS as a function of the temperature without differentiating the two 

phenomena, there is no practical need to distinguish the degree to which each 

one of them contributed to the measured change in the TOF with temperature. 

Therefore, the subsequent discussion will use the SOS versus temperature data 

without correcting for the thermal expansion.

4.3.3 Elastic Modulus

Moreover, alumina's elastic properties also affect the SOS correlation with 

temperature. Young's modulus E and Poisson's ratio v are both functions of 

temperature. There is research on finding the relationship between Young's mod­

ulus and high temperature for ceramics. Ultrasound characterization studies of 

thermomechanical behavior of refractories [32] and, especially, the measurement of 

Young's modulus of refractories using the ultrasound [5] showed that the Young's 

modulus value varies nonlinearly when temperature changes. In addition, this 

nonlinearity is different for the continuous heating and cooling process [104].

Single grains of alumina exhibit some degree of elastic anisotropy; the ultra­

sound wave interacts with many differently oriented single grains. But overall, 

isotropic conditions can be applied and Poisson's ratio can be used. As mentioned 

before, in long bar mode, the velocity of propagation of the ultrasonic wave through 

the material is related to E by Equation 2.7, which has been used here to estimate the 

elastic property of the alumina waveguide. Though the alumina waveguide does 

not fit the description to apply this equation, in which the waveguide diameter 

is shorter than a propagation wavelength, the approximation of Young's modulus 

for our waveguide shows the feasibility of using the ultrasound method for elastic 

property measurements.

Thus, E may be calculated from measurements of SOS of this long alumina rod 

and density:

E(T) = c(T)2 • p(T) = c(T) • p0(1 + a(T))3, (4.4)

where p0 is the density at the reference temperature, a  is the coefficient of the ther­
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mal expansion, and c as a function of T is given by Equation 4.8. The result of such 

estimate is shown in Figure 4.9(A), where the constant a = 4.3 x 10-6/°F (provided 

by the manufacturer) and the average value of the SOS at each temperature were 

used to estimate the Young's modulus. The other elastic properties including the 

Possion's ratio, shear, and bulk modulus may be obtained from Equations 2.5 and 

2.7.

The study of Gault et al. [32] on Young's modulus of three industrial alumina 

refractories at high temperature shows the similar range of Young's modulus value 

as our experimental results. Their tested refractories include three, Al2O3-MgO 

castable, Al2O3-SiO2-MgO sintered, and Al2O3-ZiO2-SiO2 fused-cast, which were 

performed as the specimen was continuously heated up from room temperature 

at a rate of 5 °C/min. The results of three castable refractories are summarized 

and compared with our experimental results in Figure 4.9(A), showing a signifi­

cant decreasing tendency as temperature increases, especially between 200 °C and 

400 °C.

A number of studies on the dependence of Young's modulus on temperature of 

high purity sintered alumina have been performed and summarized by de Faoite 

et al. [23] and Wolfenden [105]. In their studies, the Young's modulus versus

Figure 4.9: The Young's modulus as a function of temperature calculated based on 
our experimental data is shown in (A) and compared with the data from castable 
alumina refractories from the Gault et al. study [32]. The Young's modulus for 
sintered alumina from literature [23], [105] is shown in (B).
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temperature has been characterized as a 2nd-order polynomial relationship and is 

shown in Figure 4.9(B).

All results present a reduction of Young's modulus when temperature increases. 

A great difference exists between our results and those sintered alumina studies 

from Gault et al. Our machinable alumina rod does not experience a typical 

sintering process like typical alumina ceramic. Without the elastic properties at 

room temperature provided or the information of the manufacturer's procedure, 

material composition, and grain size distribution due to it being proprietary, we 

cannot conclude the causes for this large difference in Young's modulus. It has been 

pointed out that porosity, dopants, composition of ceramic, powder size, and heat 

treatment method all affect the Young's modulus values for A^O3 [23], [54]. Figure 

4.10 reveals the evolution of Young's modulus of elasticity (normalized to room 

temperature value Eo) as a function of the temperature for the sintered alumina 

material from the literature and our experimental results. Our experimental 

result shows an accordant trend with the data of Fukuhara and Yamauchi and 

Wachtman et al., while Wolfenden's study presents a stronger dependence on

Figure 4.10: The Young's modulus of elasticity (normalized to room temperature 
value Eo) as a function of the temperature for our experimental results and the 
sintered alumina material from the literature [23], [105].
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Young's modulus on temperature.

If the Young's modulus, Poisson's ratio, density, and thermal expansion are 

known as a function of temperature, Equation 2.5 would simplify the process of 

obtaining SOS versus temperature. The verification and correction of SOS can be 

done by applying experimental measurements as randomized temperature points.

4.3.4 Scaled Calibration

Heyman et al. [42] indicated that for different steels, it is typical to see a 1 percent 

decrease in the speed of sound for every 100 °C temperature increase. Using this 

observation, we hypothesizes that, perhaps, the equal percentage model may be an 

appropriate expression for the experimentally observed SOS versus temperature 

dependence for the alumina ceramic. Having such a model is beneficial as it would 

allow us to rapidly adjust our calibration results for the variability of waveguides. 

Thus, we selected the following functional form for the SOS versus temperature 

relationship:

F  = a -  R(T-b), (4.5)

where a and b must be found to provide the best agreement with the experimental 

data, and c and T  are normalized to change between 0 and 1:

— c(T) — cmin
cmax -  cmin

and

(4.6)

T T
T Tmin (4.7)

Tmax -  Tmin
It is easy to confirm that the selected functional form indeed gives the constant 

percent change in c for the given change in T. After obvious manipulations, we 

obtain that

c(T) = cmin + (a -  R(T b))(cmax -  cmin)r (4.8)

where cmin and cmax correspond to the speed of sound at the opposite end of 

the experimental conditions for which the data were obtained (Tmax and Tmin,
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respectively). After the unknown coefficients a and b were found by fitting the 

experimental data to the selected functional form, we obtained that

7  = 1.172 -  4.907(T-°'943). (4.9)

Comparison of the obtained model with experimental results, shown in Figure

4.11, indicates an excellent agreement, with the coefficient of determination of 0.999.

We also tested how well the following quadratic model fits the data, seen in 

Figure 4.11

7(T) = OT1 + bT + c. (4.10)

The coefficients of a, b, and c of the polynomial model were found using least 

squares regression, giving the following correlation:

7(T) = 0.807T2 -  0.123T + 0.982, (4.11)

Figure 4.11: Both equal percentage and polynomial fitted results of SOS as a 
function of temperature in high temperature range are compared with experimental 
data. Equal percentage fitting has a better coefficient of determination.
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with the goodness of fit characterized by R2 = 0.97—a somewhat less accurate 

agreement than the equal percentage model. Also note that the equal percentage 

model depends only on two empirical parameters compared to three parameters 

used to fit the polynomial model.

4.3.5 Nonuniform Temperature Experiments

The overall experimental setup used during nonuniform high-temperature 

experiments is adjusted from the uniform temperature setup, shown in Figure

4.12. Only the part of the rod between z 3 and z 4 was placed inside of the heating 

zone (colored in red in Figure 4.12). The part of the ceramic rod outside of the 

furnace was covered with layers of fiberglass insulation to reduce the heat loss; 

others were kept the same as uniform temperature tests.

Thermocouples still provided independent temperature measurements attached 

in the middle of partial reflectors on the surface of the rod and also at the hot distal 

end, as depicted in Figure 4.12. A surface thermocouple was still used to ensure 

the temperature close to the ultrasound transducer was within the limit of its safe 

operation. The data acquisition and analysis system was kept the same as uniform

Figure 4.12: The experimental setup for nonuniform temperature distribution using 
US-MSTD system.
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temperature tests.

Two different temperature sets of experiments were tested, 500 and 1000 °C, in 

randomized order, with three repeats for each set temperature. All measurements 

were performed after the sample reached steady state temperature. The temper­

ature measured by the thermocouple inside the oven deviated substantially from 

the setpoint specified to the furnace controller (~ 400 °C measured versus 500 °C 

setpoint and ~ 880 °C measured versus 1000 °C setpoint). To ensure consistency of 

the TOF measurements, the experiments were repeated with the transducer placed 

in the same location at the proximal end of the sample.

4.3.6 Nonuniform Temperature Results

When temperature along the ultrasound propagation path is nonuniform, the 

TOF in the i-th segment between the consecutive partial reflectors depending on 

the temperature distribution is:

'  1 

^  f  ( m y

The first segment between the Z1 and the proximal end of the waveguide was 

used as the "delay line". Thus, the temperature profile in this segment is not 

calculated. By using the delay line, we avoid difficulties of extracting the reference 

"zero" time from the initial bang waveform seen in Figure 4.13 immediately after 

t = 0.

As an initial attempt for the case of high temperatures and for simplicity of 

calculations, we assumed the piecewise constant temperature distribution for this 

nonuniform temperature test. This simple assumption, followed by a more realistic, 

piecewise linear approach was also used for temperature profile estimation.

4.3.6.1 Piecewise Constant Temperature Distribution

The time of flight of the ultrasound propagation through the i-th segment can 

be calculated as

tof (T) = 2 (ZC- j:),-1), (4.13)

J r zi 1
r/rT1. dz. (4.12)

Zi_. f(T (z))  V '
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Figure 4.13: The illustration of calculation of TOF in the i-th segment for determi­
nation of nonuniform temperature distribution.

where distance between Z{ and zi-1 is the length of the i-th segment. Using 

typical waveforms acquired with the selected waveguide, Figure 4.13 illustrates 

the calculation of the TOF in the i-th segment.

Based on the calibrated relationship between the speed of sound and tempera­

ture, Equation 4.5, we have the following expression for the SOS in the i-th segment 

of the waveguide:
T-T - ( j jmin _b)) ( Tmax—T. )ci(T) — cmin + (a R Tmax Tmtn )(cmax cmin),

or

where

and

Ci(T) — Cn

p  — Tmax Tmm/

a(cmax — cmin) 
cmin

0 _  (cmax — cmin)
( Tmin +b) 

cminR P b

a =

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)
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The relationship between the measured TOF of two consecutive echoes and the 

temperature in the piecewise constant temperature of the corresponding segments 

is then given as

( 2(Zi(T) -  Zi—1 (T))
*ofi (T ) ci(T )

(4.19)

Ci(T)
2Li

cmin 1 + a  -  fiR e

from which, the temperature is the only unknown. Solving this equation, we have 

the "average" temperature at the i-th segment:

ln ( 1 + a - c i f - ^  , ( 
T  -------- mRi ------- . (420)

Therefore, the temperature distribution in each defined segment along the 

ultrasound propagation waveguide can be calculated from Equation 4.20 based 

on its corresponding TOF.

4.3.6.2 Piecewise Linear Temperature Distribution

For the temperature estimation with piecewise linear assumption, temperature 

in the i-th segment is computed as

r Zi 1

fo f(T )= U .  f m dZ (4.21)

In addition, the temperature along the propagation waveguide has to be contin­

uous. Thus, we have the following constraints to express the temperature profile 

in the i-th segment

Ti = miZi + ni. (4.22)

When all three segments from L2 to L4 are considered simultaneously, we have 

a total of 6 unknown coefficients. The interface of the two consecutive segments 

defined by coordinates Z1, Z2, and Z3 introduces the following constraints on the 

values of unknown coefficients:

mi-1Zi-1 + ni-1  = miZi-1  + ni. (4.23)
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Therefore, the TOF in any given i-th segment is calculated as

2J r>zi

Zi-1 Cmin + a — R
-dr (4.24)

(cmax cmin)

/ II (b(Tmin Tmax) Tmin+miz+ni) )\ \ \
2 ((Tmin -  Tmax)ln ( (a -  R Tmax Tmin I (cmax -  cmin) + cmin I + miz ln R I z.

miln R(a(cmax cmin) + cmin) Zi-1
(4.25)

By using these constraints, the TOF measurements for each segment, and the 

thermocouple measurements of the temperature at z1 location of the alumina 

waveguide, we have sufficient conditions to calculate all unknown coefficients 

mi and ni, which determine the piecewise linear temperature distribution in the 

sample. The calculated temperature results are shown in Figure 4.14, which 

provides the comparison with the estimated temperature distributions obtained 

with previously piecewise constant, linear parameterizations, and independent 

thermocouple measurements.

Ultrasound temperature measurements show a similar trend to thermocouple 

results. Our initial assumption that the temperature changes as a piecewise 

constant function, while the simplest possible, is clearly not realistic. A substantial

(A) (B)

Figure 4.14: Nonuniform temperature distribution at steady state. Central temper­
atures from ultrasound measurement compared with thermocouple measurements 
at the refractory surface when furnace temperature is set to 500 °C, (A) and 1000 °C, 
(B).

t
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improvement in the accuracy of ultrasound temperature measurements is shown 

when using a more pragmatic piecewise linear assumption about the temperature 

distribution in the waveguide. Piecewise linear results have a higher error bar than 

piecewise constant results, because the piecewise linear method is more sensitive 

to the variation of TOF values.

Though the alumina rod outside of the furnace was insulated by fiberglass 

insulation, unavoidable strong temperature gradients are shown for all three 

temperature profiles. We also notice that the temperature at segment L3 estimated 

from both piecewise constant and piecewise linear assumption is higher than 

the results from thermocouple measurement, especially for the 1000 °C setting. 

This is because the ultrasound method gives the temperature distribution along 

the centerline of the alumina propagation waveguide, while the thermocouple 

measurements were taken on the waveguide's surface, shown in the thermocouple 

measurement in Figure 4.14.

4.3.7 Real-Time Nonuniform Temperature Distribution

A continuous temperature profile monitoring test has been implemented using 

the US-MSTD system. We added one more hole—the same size as the other three, 

in the middle of Z3 and zde, and made the waveguide with temperature monitored 

into four segments. Four Omega Super OMEGACLAD ® thermocouples were 

bent at 90° and inserted into the holes, and an OMEGA® Nextel ceramic insulated 

thermocouple was still attached at the hot distal end to provide independent 

measurements. The other parts of this experimental setup were kept the same as in 

the previous nonuniform temperature experiment. The furnace temperature was 

set at 1200 °C, heating from room temperature. After the waveguide temperature 

reached steady state, the furnace was set down to 700 °C, then down to room 

temperature after the waveguide temperature reached to steady state at 700 °C 

setting.

We developed a Matlab code for the data collection, storage, interpretation, 

and real-time temperature display. An anisotropic diffusion filter was used with 

envelope cross correlation method to provide de-noised, numerically stable, and 

accurate temperature estimation, which will be covered in the next chapter. To
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ensure a high sample speed (every 5 seconds per data), assumption of a piecewise 

constant temperature distribution was applied for all four zones, which is an 

approximation that simplifies real-time calculations but implies a discontinuous 

change in the temperature at the interface between the zones. An additional 

thermocouple was added for the total of five, and their placement was changed 

to coincide with the location of the four echogenic features, plus a thermocouple 

attached to the distal end of the waveguide. The ultrasound measurements of the 

segmental time of flight were acquired continuously, while the thermocouple data 

were logged only after the setpoint values were reached.

Figure 4.15 shows this real-time nonuniform temperature distribution for all 

four segments between the hot distal end and first partial reflector z\ of the 

alumina waveguide using ultrasound measurements of the segmental temperature 

distribution method. The result is consistent with the independent thermocouple 

measurements of the surface temperature, and demonstrates that the developed 

method can be effectively used to measure temperature distribution in real-time 

during dynamic transitions over a wide range of operating conditions. The

Time (hh:mm)

Figure 4.15: Real-time nonuniform temperature distribution monitored by US- 
MSTD system captured both heating and cooling process tested in lab-scale furnace 
setup to 1200 °C.
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ultrasound measurements are sensitive to the entire temperature distribution; they 

immediately responded to temperature changes like power fluctuations.

4.4 Refractory Degradation Laboratory Tests
We found that thermal cycling did not affect the alumina refractory sample 

appearance. We have not observed significant erosion of the refractory materials 

placed for a short time exposure in chemical baths (both base and acid treatments). 

Longer term refractory testing in a pilot-scale combustor or gasifier would provide 

additional information about refractory degradation and its effect on the ultrasound 

propagation. Briefly, short-term chemical degradation tests for refractory samples 

in laboratory include concentrated alkaline, concentrated acid, and diluted acid 

treatments. The sample testing in a concentrated solution lasted 24 hours and 60 

hours in dilute solutions.

Both GREENCAST®-94 PLUS by APGreen and Rescor 780 by Cotronics castable 

samples were tested. The Contronics ceramic has a high concentration of A^O3 

(about 96%) while APGreen contains some fiber and a fraction of CaO, which 

appeared as gravels in the dry sample.

Concentrated NaOH (pH 14) and NH4OH (pH>11) are used as alkaline solu­

tions. The tested samples remained stable after one-day soaking in these solutions, 

with no surface erosion or reaction observed.

The three concentrated acids used in experiments were H2SO4 (98% concentra­

tion), HCl (34 38%), and HNO3 (65%). All acids had pH less than 1. Reaction on 

the surface of the sample and erosion were observed with samples immersed in 

any of three acids. The reaction with H2SO4 is likely

A^O3 + 3 H2SO4 — » A^(SO4^ + 3 H2O.

At room temperature, this reaction occurred very slowly. Rapid reaction was 

observed when the two samples were exposed to HCl. More than 50% of the 

soaked APGreen sample has reacted and dissolved within a day of exposure. The 

likely reason is the rapid reaction of CaO in the APGreen sample with acids. The 

reaction between Cotronics ceramic and HCl is likely

Al2O3 + 6 HCl — > 2 AlCl3 + 3 H2O, and was not as rapid as in the case of 

APGreen. Reaction between the ceramic samples and HNO3 was not rapid initially
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but eventually consumed more than 30% of soaked samples after a day test. The 

possible reaction is

Al2O3 + 6 HNO3 — > 2 Al(NO3)3 + 3 H2O.

After testing in concentrated acids, the remaining part of the ceramic samples 

were tested in weaker acids. Specifically, H2SO4, HCl, and HNO3 were diluted to a 

pH value of ~4, which is approximately the pH value of the gases inside gasifiers. 

With diluted samples at room temperature, the tested sample remained stable, with 

no erosion or reaction observed in laboratory experiments.

The pressure formed alumina ceramic rod is likely to be more stable than the 

castable sample tested because of its higher density and lower porosity.



CHAPTER 5

ROBUST ULTRASOUND SIGNAL 

PROCESSING1

5.1 The Time of Flight
Accurate measurements of return delays and transmission times are important 

in many ultrasonic applications, including flaw localization [4], structure thickness 

and strength measurements [82], range determination [49], measurements of fluid 

flow rates [69], ultrasound imaging [64], and several biomedical applications [100], 

[81]. For example, the accuracy of ultrasonic temperature measurements depends 

on our ability to precisely measure the speed of sound (SOS) in materials [51,91,96], 

which we usually determine by measuring the time of fight (TOF).

With focus on ultrasound measurements of temperature in this dissertation, 

and the relationship between the time of flight and temperature, expressed as

T = f -1( ̂ ) (5.1)
tof

for a solid with known ultrasound propagation distance, accurate TOF measure­

ments are clearly essential for the accuracy of temperature measurements.

5.1.1 Cross-correlation of Waveform

It has been pointed out in previous chapters that the simplest and standard 

approach to the measurements of the TOF and its changes is to use temporal 

location of a single-point waveform feature, which is sensitive to measurement 

noises from instrumentation, environments, and the specimen itself. Our initial 

approach is by threshold crossing or matching the peak absolute values of the two

1©[2014] IEEE. This chapter is adapted, with permission, from [YunluJia; Skliar, M., "Anisotropic 
diffusion filter for robust timing of ultrasound echoes," Ultrasonics Symposium (IUS), 2014 IEEE 
International, September/2014]
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round-trip echoes. When this method was used to calculate the speed of sound 

in the aluminum sample, we obtained cai = 6481 m/s, which is very close to the 

handbook value. Though this approach is generally successful in low acoustic 

attenuation samples, we have also found that echo waveforms often tend to be 

distorted compared to the reference delay line waveform. These two approaches 

for estimating the ultrasound TOF for its partial reflector and its end of a two-layer 

cementitious waveguide are shown in Figure 5.1(A) and 5.1(B). The errors of TOF 

measurements from real values indicate that when broad-band excitations are used, 

further deterioration in timing accuracy of single-feature methods occurs due to 

waveform distortions and broadening caused by stronger attenuation of higher 

frequency content of ultrasound pulses.

When the entire shape of the waveform is utilized in timing, a more robust

Tim e (|is)

Figure 5.1: TOF estimation for two-layer cementitious sample using threshold 
crossing (A), peak of the signal (B), cross-correlation (C) and envelope cross­
correlation of waveforms (D).
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and accurate measurement of tof  may be achieved, such as cross-correlation, shape 

matching methods. In this case, both amplitude and phase information are taken 

into account [45], which makes timing results less sensitive to measurement noises. 

The temporal shift is obtained when the best match is found between the waveforms 

by maximizing their cross-correlation [24], minimizing 1̂ and 2̂ norms of their 

difference [50], [75], [101], or by maximum likelihood [20].

Mathematically, the cross-correlation between two signals f  (t) and g(t) is repre­

sented as:

n o  g(t+ T)dt (5.2)
to

where f  * is the complex conjugate of f  and t  is the lag time between two signals. 

The shift time t  between two signals is determined by maximizing <pfg.

The cross-correlation method for measuring TOF was initially tested with an 

aluminum standard. The experiments were performed in pulse-echo mode using 

an immersion transducer with 1 MHz central frequency (Panametrics model V302). 

In Figure 5.2, the collected ultrasound waveform of the aluminum sample with 

multiple-trip echoes shows that any round-trip echoes may be used to determine

Figure 5.2: Ultrasound test of the aluminum shows multiple echoes corresponding 
to several round-trip travels of the test pulse through the sample.
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TOF by the cross-correlation method. Figure 5.3 gives the result in which the first 

echo waveform is cross-correlated with the second reflected signal and the two 

waveforms are then aligned. The shift needed for such an alignment is precisely 

the value of the time of flight.

However, the cementitious samples are substantially more dissipative com­

pared to metals, so we usually do not have repeated partial internal reflections 

from the same surface. In this situation, the cross-correlation method as described 

may not be the best option to apply to the measurements of the TOF. Therefore, 

our approach is to use the cross-correlation to, first, determine zero reference point 

correction relative to the trigger time provided by the pulser.

5.1.2 Zero Trigger Reference

Our tests show that the recorded trigger time, which corresponds to the time an 

electrical pulse is sent to the piezoeletric transducer, is not equal to the ultrasound 

zero time, which is the instant when the ultrasound pulse starts its propagation 

through the sample. Our approach is to find the correction to the trigger time in

Figure 5.3: The calculated cross-correlation between the first two echoes gives the 
time shift needed for the best alignment of the two waveforms. This shift is equal 
to the TOF of the test pulse.
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order to obtain a reference time relative to which the TOF will then be determined.

We started by using the cross-correlation method to find the trigger time 

correction (ultrasound signal delay) for the standard material with low ultrasound 

attenuation. Figure 5.4 shows the result obtained with the aluminum standard. The 

red dot on the blue waveform is the starting point of the first echo. By applying 

the TOF value, previously determined using the cross-correlation method (Figure 

5.3), the trigger correction (the signal delay time) is determined to be equal to 91.2 

nanoseconds.

To establish if the obtained correction depends on the sample, the experiments 

were repeated with several other materials, including bronze, stainless steel, steel, 

and plastic. Results for all tested materials are summarized in Table 5.1 and 

show that the trigger correction time, equal to the delay between the electrical 

excitation sent to the transducer and the resulting ultrasound pulse, does not vary 

significantly with the material of the sample.

This suggests that once the signal delay is determined using the cross-correlation 

method, it can then be used to identify the zero reference point, which might not

Figure 5.4: The correction of the electrical trigger time is found using the cross­
correlation method with an aluminum standard.
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Table 5.1: Signal delay after trigger for different materials

Material Aluminum Bronze Stainless steel Steel Plastic
Signal delay after 
transducer trigger 

(ns)
91.2 96 94.4 94.4 94.4

be suitable for a sample with high acoustic attenuation.

While we observed no/little dependence of the trigger correction on the material 

of the sample, it is reasonable to expect that the size and design of the transducer 

may have an effect on the delay in transduction of the electrical pulse into the 

ultrasound signal. To test this hypothesis, we repeated the described experiment 

with a different 1 MHz transducer (Panametrics model A114s with 1 MHz central 

frequency). For the same aluminum sample, the signal delay observed with the 

A114s transducer is only 25.6 nanoseconds, which is substantially shorter than the 

transduction delay for V302 transducer.

The possible reason for two transducers with the same central frequency but 

different trigger delays is its exciting bandwidth. V302 is a vedioscan type trans­

ducer, which has a wide broadband unit to optimize for near surface resolution. 

A114S is an accuscan type transducer with relatively narrow frequency bandwidth 

units designed for penetration.

5.1.3 Cross-correlation of Envelope of Waveform

Though the cross-correlation method performs better with attenuating materials 

than single-point timing, the results may still be unacceptable when significant 

distortion of ultrasound waveforms occurs, as is often the case with dissipative 

materials (e.g., materials with large grain sizes [28]). For waveform distorting 

samples, a higher precision can be achieved if the envelopes of the waveforms are 

used in timing [59], shown in Figure 5.1(C) and 5.1(D) for both cross-correlation 

methods.

The analytic signal, sa(t), of a given waveform, s(t), is defined as the following 

complex function:

sa(t) = s(t) + js(t) (5.3)
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where j2 = -1  and s(t) = H(s)(t) is the Hilbert transform of s(t), which represents the
1

convolution of the original waveform with the function h(t) = — . The envelope of

s(t) is then calculated as an instantaneous amplitude of its analytic signal:

where * is the complex conjugation operator.

Several methods have been proposed to time ultrasound signals (echoes and 

transmission times) using the waveform envelopes. In [59], the transmission time of 

ultrasound pulses was measured by using the peak value of the waveform envelope 

as a reference point. Though this is still a single-point timing method, now based 

on the features of A(t), it improved the accuracy when compared to timing based 

on single features of original waveforms (e.g., the first zero-crossing by s(t)). The 

cross-correlation of the envelope of the acquired echo with the envelope of the 

reference waveform was used in [51]. In the case of dissipative (cementitious) 

samples, a noticeable improvement was observed with this approach over the 

results obtained with waveform cross-correlation. A simplified version of cross­

correlation of envelopes of waveform for TOF determination is shown in Algorithm

Algorithm 5.1 Calculate o ffs e tt = cross(sig1, t1,sig2, t2)
ls1, lt1 ^  findintervals(sig1, t1) 
ls2, lt2 ^  findintervals(sig2, t2) 
env1 ^  abs(hilbert(ls{)) 
env2 ^  abs(hilbert(ls2))
CF, Lags ^  xcorr(env-[, env2)
M , loc ^  max(CF) 
o ffset  ^  Lags(loc) 
if o ffset  > 0 then 

o ffs e tt ^  lt2(1 + o ffset)  -  lt1 (1);

(5.4)

5.1.

else
o ffs e tt ^  lt2(1) -  lt1(1 + offset);

end if

However, in continuous temperature monitoring tests, we observed the un­

stableness of an enveloped waveform due to signal noise. Therefore, using only
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cross-correlation of an enveloped waveform for TOF determination cannot ensure 

the result's accuracy.

5.2 Anisotropic Diffusion Filter
A new method proposed here uses the results of Perona and Malik [76]. They 

developed an anisotropic diffusion algorithm for image processing that smooths 

an image without blurring the edges found within. To achieve this outcome, 

the original image is iteratively subjected to a diffusion operator with a spatially 

dependent diffusion coefficient that becomes small on the edges. As a result, the 

image features away from the edges are smoothed by diffusion, while the diffusion 

is impeded across the edges to prevent their blurring.

The anisotropic diffusion operator used in the Perona-Malik filter has this 

following form:

— u(r, t) = V • [D(r, t) Vu(r, t)], (5.5)
d t

u(r, 0) = I(r), (5.6)

where the initial condition, I(r), that initializes the iterations is the original image, 

r = (x, y) defines spatial position within the image, and t  is the ordering parameter 

that enumerates iteration steps of the discrete implementation of Equations 5.5 and 

5.6. The diffusion coefficient D(r,T) changes with position and is selected by the 

designer to decay at the edges. Two common choices that satisfy this requirement 

include [76]:
' / |VJ(r, t) | V"

Di(r,T) = exp —  ■

\ K
(5.7)

1
D2(r,T) = -----/----------- ^ , a > 0 (5 .8)

1 + / |V1(r,T)|V+“

where k is a selected constant. In both cases, the diffusion is small on the edges 

where the gradient of the grayscale image intensity is high. A proper choice of 

the diffusion function preserves and even enhances edges (see, for example, [103]) 

while ensuring numerical stability [12]. Further discussion of the effect of different 

design parameters on the performance of diffusion filters is found in [99].
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The described filter has been used in several ultrasound imaging applications. 

For example, in reference [46] the anisotropic diffusion was applied to ultrasound 

strain images; the application of this filter to seismic images is found in [99]. To 

the best of our knowledge, this approach has not been previously used in timing 

the arrival of ultrasound waveforms by matching single-point features or shapes 

of their filtered envelopes.

According to the proposed method, a 1D version of the diffusion filter from 

Equations 5.5 and 5.6 is iteratively applied to the envelope of the acquired ultra­

sound waveform:
d d T d 1

(5.9)
dT u(t' T) = dt D(t,T) d u(t' T)

u(t, 0) = A(t). (5.10)

The filtering process is initialized with the original envelope A(t), given by 

Equation 5.4. The discrete approximation of Equation 5.9 is applied iteratively, with 

each new iteration using the results of the previous step as the initial condition.

The specific approximation of Equation 5.9 used by us during the experimental 

testing of the method is the same as the one found in [33]:

d , s d rT̂ . . 1 . . At . At
dTU(t,T) -  dt[D(t,T)At(u(t + T  ,T) -  u(t + T  ,T))]

-  A12 [D(t+ y  /T)(u(t+ At' t) -  u(t' t))

-  D(t -  A ,T)(u(t,T) -  u(t -  At,T))] (5.11)

where At = 1 and u(t -  At,T), u(t,T), and u(t + At,T) are the temporally consecutive 

values of the filtered envelope obtained at the preceding iteration. We elected to 

use the diffusion coefficient, D, given by Equation 5.7 because it tends to better 

preserve high-gradient data segments of the envelopes, which are analogous to 

high contrast edges in images. After approximating the gradient appearing in 

Equation 5.7, the following values of the diffusion coefficient are used in Equation 

5.11:
D t , At , / (u(t + At,T) -  u(t,T))2 \
D (f+ T ' T)= expl ------------^ --------- J ' (512)

D t At / (u(t,T) -  u(t -  At,T))2 \
D ( t - ^ ' t ) = ------------^ --------- j ,  (5.13)
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where the parameter k was set to 20. The updated value of the filtered envelope after 

each iteration is obtained by approximating the derivative on the left-hand side of 

Equation 5.11. For example, by using a simple forward difference approximation, 

the following update equation is obtained:

u(t, t  + Ax) = u(t, t) + At • rhs, (5.14)

where rhs is the right-hand side of Equation 5.11 and At is the "discretization" 

step selected to provide the desired rate of convergence. Algorithm 5.2 performs 

anisotropic diffusion upon a 1D enveloped waveform.

Algorithm 5.2 Calculate sigdif f  = anisodiff(sig, iter,bt,K)

sigdiff ^  sig  
dx ^  1
hW  ^  [1 - 10]' 
hE ^  [0 -1 1 ]' 
for t = 1 to iter do 

VW ^  conv(sigdiff,h W )
VE ^  conv(sigdif f , hE) 
cW  ^  exp(-(V W /K )2) 
cE ^  exp (-(V E /K )2)
sigdif f  ^  sigdif f  + 5t * ((1/dx2) * cW * VW + (1/dx2) * cE * VE) 

end for

The described filtering process uses a diffusion coefficient that takes small values 

when the temporal changes in the envelope are rapid. It acts to sharpen the 

envelope peaks while maintaining their temporal position over many iterations. 

The filter blurs small and slow variations that contribute to inconsistency of timing 

results commonly occurring when dissipative materials are tested. As a result, the 

timing of ultrasound signals based on the filtered envelopes is expected to be more 

robust to the presence of measurement noises and distortions. In the following, we 

put this expectation to the experimental test.

5.3 Experiments and Results
For the two different ultrasound waveguides used in experiments, both ma­

terials were dissipative. One sample was obtained by hot pressing high-purity
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alumina into a 12-inch long rod with a 1 inch diameter. Four 3/32 inch diameter 

holes were drilled radially along its length at 1, 2 ,4, and 6 inches from the distal end, 

in Figure 5 .5A. The other sample was obtained by self-cascade from cementitious 

material mixed with water, which showed strong dissipation and attenuation on 

its ultrasound signal. By casting multiple layers of the same composition and 

allowing for a partial curing before casting the next layer, enough variation in 

acoustic impedance is introduced to create partial US reflections and the interface. 

A two-layer cementitious sample is shown in Figure 5 .5B.

15
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Figure 5.5: Top panel (I) shows echo waveforms produced by four echogenic 
features drilled along the length of the alumina waveguide and the reflection 
from its distal end. The corresponding envelopes are shown in the center panel 
(II). Bottom panel (III) shows echo waveforms and its envelopes produced from 
interface and distal end of cascaded cementitious sample.
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Panametrics pulser/receiver (model 5072PR) and transducer (model V609) were 

used to create a broad-band excitation pulse with 5 MHz central frequency, and 

to receive echoes created by these partial reflectors and the reflection from the 

distal end of the waveguide. The echo waveforms were acquired using a Tektronix 

oscilloscope (model MSO 2024) interfaced to a computer. Custom Matlab code 

was written to control the acquisition, visualize the waveforms, and filter, analyze, 

and interpret the data. Figure 5.5 (top panel) shows typical waveforms collected 

from the alumina waveguide and its envelopes (center panel). Partial ultrasound 

reflections from the drilled holes are marked as PR1,... ,  PR4 echoes; the reflection 

from the distal end of the waveguide is labeled as DE. The waveforms and their 

envelopes in the cementitious sample are also shown in Figure 5.5 (bottom panel).

The importance of accurately measured echoes' time of flight is highlighted by 

the influence the timing errors have on ultrasound measurements of temperature. 

Experimental characterization of c = f  (T) for our alumina waveguide indicated 

that at room temperature of 20 °C, a TOF measurement error that overestimates the 

actual values by 0 .1% implies that the temperature of the waveguide is 61 °C—a 

temperature measurement error of 41 °C! A measurement error corresponding to 

1% overestimation in the TOF at the room temperature will result in the overesti­

mation of the waveguide temperature by over 300 °C.

When the ultrasound propagates through dissipative materials, noticeable vari­

ations in the waveforms taken under apparently identical experimental conditions 

are often present. Figure 5.6II illustrates the variability in the echo waveforms 

(blue traces) produced by an echogenic feature PR1 located in the middle of the 

waveguide. Both waveforms were acquired at identical experimental conditions 

but different times. The envelopes of the two waveform (black lines) are also 

affected by this variability. For instance, note the change in the position of the 

maximum envelope values indicated by green triangles. If the maximum values 

are used to time the arrival of echoes, the observed variability would result in TOF 

measurement errors and inconsistencies. Specifically, a shift in the maximum value 

between the two peaks in Figure 5.6II introduces the variation of 0.4% in the TOF 

measurements, which corresponds to a very significant (on the order of 150 °C)
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Figure 5.6: Examples of waveforms with the anisotropic diffusion filter treatment. 
(I) The original echo waveform, shown in blue, was produced by PR3 echogenic 
feature; its envelope is shown in A. The application of the filter for 100, 500, 1000, 
and 1500 iterations produced filtered envelopes respectively shown as B, C, D, and 
E. Maximum values of filtered envelopes are marked with red triangles. (II) Two 
echoes, shown as blue traces, were produced by PR1 feature, which were acquired 
at the same conditions but different times. Their envelopes show variability of the 
maximum value indicated by green triangles. After applying 3000 iterations, the 
filtered envelopes of both waveforms are shown in the middle of the panel. Red 
arrows show that the peak values coincide after filtering.

error in the estimated waveguide temperature.

Panel IA in Figure 5.6 shows the original echo waveform produced by the third 

echogenic feature of the waveguide (PR3) and its envelope. As in the case of echoes 

produced by PR1, the envelope of the original waveform is characterized by two 

closely separated peaks. Experiments showed that echo waveforms produced by 

PR3 and acquired at different times but identical conditions can also have the
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maximum envelope value at either one of these peaks.

To address the observed inconsistencies and the corresponding timing errors, 

the proposed anisotropic filter was applied to the envelopes. Panels IB through IE 

show the filtered PR3 envelope as the number of iterations in applying anisotropic 

diffusion is increased from 100 to 1500. With more iterations, small variations are 

blurred, the filtered envelope retains a single peak, and its position is stabilized. 

The position of this peak can now be used to consistently time the arrival of 

ultrasound echoes. Once the filtered envelope is obtained, other single-point and 

shape-matching timing techniques may also be used.

Panel II shows that small variations in the envelopes of PR1 echoes acquired at 

identical conditions are filtered out after 3000 iterations and the single peak value 

is stabilized at the same location within both envelopes. If the maximum value 

of the filtered envelope is used to time the echoes, the identical estimation of the 

time of flight will be produced despite the variations in the original waveforms 

and their unfiltered envelopes.

The influence of different timing methods on the variability of the estimated 

TOF was investigated next. Several timing methods were considered: (a) Timing 

based on the maximum of the acquired echo waveform; (b) Timing by threshold 

value, which we selected to be 1/3 of the maximum of the waveform value; (c) 

Cross-correlation between the two waveforms; (d) Cross-correlation between their 

envelopes; (e) Maximum value of the filtered envelope; and (f) Cross-correlation 

between envelopes filtered using the anisotropic diffusion. The comparison was 

performed for the two PR1 echo waveforms shown in Figure 5.6II. For the selected 

methods, the difference in timing results when one or another waveform was used 

is given in Table 5.2, which also lists the corresponding errors in the estimates 

of the waveguide temperature. After applying 3000 iterations of the developed 

anisotropic diffusion filter, the peaks of filtered envelopes were located in the 

identical positions for both waveforms, as illustrated in Figure 5.6II. The cross­

correlation between the two filtered envelopes shows that a zero shift is needed for 

the best match, indicating timing consistency when either one of the waveforms is 

used. For all other methods, the difference in timing based on the two waveforms
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Table 5.2: Timing errors and corresponding temperature differences

Alumina

Method Timing 
difference, s

Difference
in T , °C

Peak of the waveform 3.0 x 10-8 50.47
Threshold of the waveform 2.5 x 10-8 42.30
Waveform cross-correlation 2.6 x 10-8 43.94
Envelope cross-correlation 2.6 x 10-8 43.94
Peak of filtered envelope 0 0
Cross-correlation of filtered envelopes 0 0

Cementitious

Method Timing 
difference, s

Difference
in T , °C

Peak of the waveform 9.0 x 10-8 7.4
Threshold of the waveform 10.0 x 10-8 8.2
Waveform cross-correlation 7.2 x 10-8 5.9
Envelope cross-correlation 5.6 x 10-8 4.6
Peak of filtered envelope 0 0
Cross-correlation of filtered envelopes 0 0

was on the order of 25 nanoseconds. If we assume that this difference is an increase 

in the TOF over the actual value acquired when the waveguide is maintained at 

20 °C, the timing errors would correspond to the overestimation of the waveguide 

temperature by over 40 °C.

These timing methods were also applied for TOF estimation on the cementitious 

sample. The results were summarized in Table 5.2, too. The results clearly show that 

the cementitious sample has stronger dissipation and attenuation on the ultrasound 

collected waveform compared to the alumina waveguide. Both cross-correlation 

methods gave better results than peak and threshold methods, while filtered 

envelope methods are the most stable and consistent on TOF estimation. However, 

the speed of sound dependence of temperature is linear and much smaller for the 

cementitious sample than that of the alumina sample. For reference temperature at 

20 °C, the 1% change of TOF causes a temperature difference of 25.9°C. Therefore, 

in this experimental test, the great inconsistency of TOF leads to much smaller 

temperature fluctuation for the cementitious sample, only less than 10 °C.

Figure 5.7 shows a comparison of real-time monitoring of this 12-inch alumina
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Figure 5.7: Real-time temperature monitoring results comparisons of TOF estima­
tion treated without and with anisotropic diffusion filter.

rod temperature profile with part of the rod inserted into the horizontal electronic 

furnace without and with anistropic diffusion filter treatment. There are peak 

fluctuations found in temperature calculated only using the waveform envelope 

which caused significant temperature fluctuations in the top figure. The bottom 

result with anisotrpic filter computation for temperature showed a stable and 

consistent temperature profile of this alumina rod for a long time. Furnace temper­
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ature setup order is shown as a grey dash line in Figure 5.7. The thermocouples' 

temperature at steady state are also included. Temperatures measured using the 

ultrasound method match with thermocouple results very well. Especially, the 

US method responded to furnace temperature vibration more sensitively than the 

thermocouples.



CHAPTER 6

PILOT-SCALE OXYFUEL COMBUSTOR 

EXPERIMENTS

6.1 Pilot-Scale Oxyfuel Combustor
The 100 kW pilot-scale ultrasound temperature measurement experiments were 

carried out on a downfired oxyfuel combustor (OFC) schematically shown in 

Figure 6.1. This unit was designed to allow for a systematic control of inlet 

gas flow rates and wall temperatures high enough to simulate the self-sustaining 

combustion conditions of full-scale units in terms of the temperatures, coal particle 

concentrations, and mixing.

The OFC has three zones, from top to bottom: ignition (0.61 ID x 0.91 OD x 1.22 

m height), radiation (0.27 x 0.61 x 2.60 m), and convection (0.15 x 0.15 x 3.66 m) 

zone. The combustion products exit the convection zone and pass through eight 

heat exchangers which cool the flue gas prior to discharge. The ignition zone is 

normally surrounded by 3 x 8 x 840 W flanged ceramic-plate electrical heaters 

used to control the wall temperatures of the furnace. However, these heaters fell 

off from the interior surface of the refractory wall during a previous test and our 

experiments proceeded without using them.

Nine pairs of ports (marked as P1-P9 in Figure 6.1) are positioned along the 

vertical section of the unit. They can be used for sampling, instrumentation 

insertion, and observations. Our refractory ultrasound waveguide was mounted 

in the ignition zone inside port P3. The burner for this unit is not equipped with an 

ignition nozzle. As a result, natural gas must first be used to heat up the furnace 

to a temperature high enough to ignite coal particles introduced into the ignition 

zone and to maintain sustained combustion. Natural gas was also used to keep 

furnace temperature high at night.
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Figure 6.1: The 100 kW pilot-scale downfired oxyfuel combustor.

6.2 US-MSTD System Design and Implementation
The overall US-MSTD system that was designed to provide continuous real-time 

temperature measurements consists of an ultrasound waveguide structured to pro­

vide multiple partial reflection from known locations along its propagation length, 

an ultrasound transducer/receiver, and data acquisition, logging, interpretation, 

and real-time display system. The schematic view of the waveguide measurement 

system assembled to the furnace is shown in Figure 6.2.

The fixture for the waveguide insertion part is shown in Figure 6.3. It was 

designed to address several issues targeted for the field test, including confinement 

integrity, ultrasound coupling, and active cooling of the rod to insure that the 

temperature of its cold end is within the allowance temperature of the transducer.

The same alumina refractory rod with five segments was continuously used as 

the ultrasound waveguide for in-situ pilot-scale oxyfuel combustion tests, while
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Figure 6.2: The schematic overview of US-MSTD installation on pilot-scale OFC. A 
1x 12-inch alumina waveguide was engineered at predetermined spatial locations 
along its length located 6, 4, 2, and 1 inches—marked as Z1, z2, z3, and Z4, from 
the hot distal end (DE) of the rod. The data acquisition and interpretation systems 
provide real-time temperature distribution across the refractory and compare with 
thermocouple measurements.

the segment from transducer-waveguide interface to z1 is served as delay line, and 

the temperature in this segment is not estimated. The thickness of the refractory 

and the vessel shell combined is 61/2 inches. The length of the inserted alumina 

waveguide was selected to place the distal end of the waveguide flush with the 

OFC refractory. Port 3 has an opening of 3 inches. The inserted waveguide was 

wrapped with fiberglass insulation to fill the gap between ultrasound waveguide 

and OFC refractory. Omega Super OMEGACLAD® type K thermocouples were 

bent at 90° and inserted into the holes drilled into the waveguide to provide 

ultrasound echoes to provide independent temperature measurements. Since 

there was no thermocouple attached on the hot distal end of the waveguide, one 

more Omega Super OMEGACLAD ® type B thermocouple was inserted in port

2 where the thermocouple's tip is at the edge of the refractory hot face. Cooling 

water was run through the fixture to ensure that the temperature of the rod's
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Figure 6.3: Port-mounted waveguide retention system.

cold side was within operating limits of the ultrasound transducer. A reflective 

shield was placed between the combustor and transducer, to minimize the effect 

of radiative heat transport on the ultrasound transducer. The transducer was 

mounted using a retaining plate with a threaded ring, which provided a secure 

and flexible way for its installation and coupled to the waveguide using silicone 

grease. In this described approach, the sensitive electronic components are kept 

away from harsh gasification environments and it is only required that the US 

transducer be acoustically coupled to the cold side of the refractory, representing 

minimal modifications to the combustor.

The data acquisition system was kept the same as from the high-temperature 

lab-scale test. A custom Matlab software was developed for online data ac­

quisition, storage, interpretation, and temperature profile across the refectory 

visualization from ultrasound TOF measurements that used the combination of 

envelope cross-correlation method and anisotropic diffusion filter discussed in the 

previous chapter. Based on the time of flight results of each segment calculated
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from collected ultrasound waveform, the real-time temperature information can be 

obtained through the calibrated relationship between temperature values and the 

speed of sound found experimentally from the high-temperature lab test. In order 

to process the ultrasound measurements at a high sampling rate (every 5 seconds), 

a simplifying assumption was made. A piecewise constant distribution of temper­

atures in the four segments of the waveguide was applied during the real-time data 

manipulation. The algorithm for online temperature profile determined based on 

piecewise constant assumption is illustrated in Algorithm 6.1 The collected and 

saved waveforms during the experiments have been reinterpreted using a more 

accurate piecewise linear assumption after this campaign.

Algorithm 6.1 Ultrasound Waveform acquisition and temperature interpretation
sig, t — invoke(readwaveform, channel) 
sig — abs(hilbert(sig)) 
sig — anisodif f (s ig , 100,1/3,20,1) 
for l = 1 to n do

Is, It — selectinterval(sig, t) 
m, loc — findpeaks(ls,NPEAKS, 1) 
peaks(l) — lt(loc) 
if l > 1 then

TOF(l - 1 )  — peaks(l) -  peaks(l -1 )  
end if 

end for
X — cmax -  cmin 
^  — Tmax -  Tmin
a  —— X * a / cmin 
P — X * R-Tmin/®-b/cmin
Temp — log((1 + a -  2 * L/(cmin * T0F))/p)0/log(R)

6.3 Experimental Conditions
During this pilot-scale oxyfuel combustion campaign, the following conditions 

were used for fuel fed rate. The flow rate of natural gas was between 6-6.5 lb/hr; 

Utah coal was fed at 8.4 lb/hr; primary O2 maintained the flow at 2.3 lb/hr; primary 

flow of CO2 was 11.9 lb/hr; secondary O2 was fed at 16.5 lb/hr. The internal pressure 

was elevated by ~0 .1" of water.
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The OFC operation processes that the US-MSTD system used to monitor tem­

perature distribution across the refectory include:

(a) steady state combustion of natural gas and coal;

(b) the fuel transition from natural gas to coal; and

(c) combustion at the different fuel flow rates.

6.4 Experiments and Results
6.4.1 Natural Gas Preheating

Figure 6.4 shows the measured temperature change along the waveguide based 

on piecewise constant assumption during initial preheating of the OFC by natural 

gas. About half an hour after the heat start, there was an unaccountable temperature 

drop at zone 4, which is the closest to the flame. Zone 4 reheated up after 15 minutes 

of temperature reduction, and was below the temperature of its adjacent zone 3 

until 40 minutes later. The electrical heaters, normally used at the startup of the unit, 

were not available. We may be seeing a temperature change due to a combination 

of changing flow rates of natural gas and air, controlled manually and without 

the benefit of the electrically controlled refractory temperature. The acquisition 

of the thermocouple measurements did not start until 1 hour after fire start. The 

test for temperature distribution of the natural gas preheating process using the 

ultrasound approach lasts 21/2 hours. The drying of the ultrasound couplant caused 

the deterioration of the strength of the echo emanating from the hole closest to the 

reaction zone. The acquisition of the ultrasound signal was stopped and was not 

restarted until the next experiment.

6.4.2 Steady State Natural Gas Combustion

Temperature measurements based on piecewise constant assumption acquired 

after the unit was heated with natural gas for a long enough time to achieve 

stable conditions are shown in Figure 6.5. Figure 6.6 presents a more realistic and 

dynamic temperature profile that is determined using piecewise linear assumption 

along the ultrasound propagation waveguide. The temperature changes based on 

piecewise constant and piecewise linear assumptions of ultrasound measurements, 

and thermocouple measurements at reflector locations z2, z3, z4, and the hot distal
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Figure 6.4: Ultrasound measurements with piecewise constant assumption and 
thermocouple measurements for temperature distribution across the refractory as 
the OFC is being preheated by the natural gas combustion without the electric 
heaters. Thermocouple measurements were not recorded until 1 hour after the 
campaign started.
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Figure 6.5: Ultrasound measurements with piecewise constant parameterization 
and thermocouple measurements show a same temperature trend during stable 
natural gas combustion.
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Figure 6.6 : Temperature distribution across the refractory based on piecewise linear 
assumption during stable natural gas combustion.

end are shown in Figure 6.7. In Figure 6.7, the piecewise constant estimation 

presents the temperature of zone 4, while the piecewise linear method shows the 

point-wise temperature at this location. Thus, there is a temperature difference 

presented between thess two ultrasound temperature estimations. The tempera­

tures from piecewise constant assumption at reflectors' locations are calculated by 

averaging the adjacent segmental temperatures. For over 3 hours of continuous 

experiments, both ultrasound measurement and thermocouples show the same 

trend on temperature, while ultrasound measurements appear to be more sensitive 

to temperature changes than thermocouples. The results from piecewise linear cal­

culation give more temperature vibration than those from piecewise constant, due 

to the sensitivity of temperature response of the TOF vibration and the temperature 

continuity assumption along the propagation path.

6.4.3 Transition from Natural Gas to Coal

The next combustion process that US-MSTD captured is the fuel transition from 

natural gas to coal. Figures 6.8 and 6.9 show the overall temperature changes 

using piecewise constant and piecewise linear assumption, respectively, compared 

with thermocouple measurements. The transition happened after the natural gas
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Figure 6.7: Temperature distributions obtained from ultrasound measurements 
using two different parameterizations and thermocouple measurements during 
stable natural gas combustion are compared at all echogenic features' locations 
and the hot distal end. A great agreement of temperature change is shown for 
all the methods. In addition, both ultrasound measurements appear to be more 
sensitive to temperature changes than thermocouples.

combustion reached steady state for over 8 hours. A half hour after the start 

of this temperature profile measurement, the flow of natural gas was stopped, 

leading to the decrease of the temperature, first seen in zone 4, then zone 3 with 

descending temperature drop. The US-MSTD system immediately responded 

to the thermal energy changes, even before the thermocouple did. The feeding 

of coal started about 10 minutes later. Again, the ultrasound measurements 

promptly indicated that the change in fuel had occurred by showing the trend 

of rising temperatures. The temperature distribution change along the waveguide 

indicates the heat conduction process from the refractory hot face to the vessel 

shell. The comparisons of temperature results of both ultrasound interpretations
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and thermocouple measurements at the hot distal end and all echogenic features 

are shown in Figure 6.10. Compared to thermocouples, the US measurements give 

both faster and more pronounced indication that the operating conditions have 

changed.

6.4.4 Response to Decreased Flow Rate of Coal

Temperature distributions obtained from the coal combustion process, which 

started right after the transition in fuel from natural gas to coal, tested on another 

day, are shown in Figures 6.11 and 6.12, based on piecewise constant and piecewise 

linear assumption, respectively. Temperature has an initial increase after the fuel 

transition shown in zone 4 and 3, while zone 1 and 2 have not recovered from the 

temperature drop due to a stop of the natural gas feed. After temperature rising and

o

1200

1000

800

600

900

800

700

_____________________________________________________________________ i Distal End

Ultrasound Piecewise constant 
Ultrasound Piecewise linear 

------Thermocouple

co 500CD
O- 700

Z4

I ---------------------------------------- ------------- -------------------------------------- -----------------------------

400

350

Z3

3™

200
Z2

07:30:00 08:00:00 08:30:00 09:00:00
Time (hh:mm:ss)

e  600

Figure 6.10: Temperature profiles obtained from the US-MSTD approaches and 
thermocouples during transition from natural gas to coal combustion show com­
parable temperature results at echogenic features' locations and the hot distal end.
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Figure 6.11: Segmental temperature responses from ultrasound measurements 
based on piecewise constant assumption and thermocouple measurements are 
captured during the process of a change feed rate of coal combustion, followed 
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present the same trend on temperature changes.
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Figure 6.12: Temperature response from ultrasound based on piecewise constant 
assumption and thermocouple measurements for a change feed rate of coal 
combustion.
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then stabilizing, about 1 hour after this experiment started, the temperature started 

to decline in response to the reduced flow rate of coal, beginning from the hot 

distal end. The reduction of coal flow rate has a limited effect on the temperature 

change of zone 2 and 1. The temperature profiles of comparison among ultrasound 

piecewise constant, piecewise linear calculation, and thermocouples at the hot 

distal end and all echogenic features' locations present an excellent agreement, 

shown in Figure 6.13.

6.4.5 Stable Coal Combustion

The last captured process for this campaign shown in Figures 6.14 and 6.15 is 

the temperature profile of a continuous stable coal combustion, estimated by ultra­

sound measurements using piecewise constant and piecewise linear assumption,

Time (hh:mm:ss)

Figure 6.13: Temperature responses from ultrasound and thermocouple measure­
ments for a change feed rate of coal combustion at echogenic features' locations 
and the hot distal end show an excellent agreement of these two approaches, while 
ultrasound responses are more sensitive than thermocouples.
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Figure 6.14: Ultrasound measurements using piecewise constant assumption 
and thermocouple measurements for temperature distributions during stable coal 
combustion. Intervals of ultrasound measurements flat lined correspond to the 
application of fresh ultrasound couplant at the transducer-waveguide interface. 
The vibration of ultrasound measurement is stronger than previous acquired 
processes due to significant reduction of ultrasonic waveform strength.
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Figure 6.15: Ultrasound measurements using piecewise linear assumption and 
thermocouple measurements for temperature distributions during stable coal 
combustion.
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respectively. The comparisons of temperatures of both ultrasound interpretations 

and thermocouple measurements at the hot distal end and all echogenic features are 

shown in Figure 6.16. The overall temperatures of coal combustion are higher than 

the natural gas combustion, especially in zone 3 and 4. The vibration of ultrasound 

measurement is stronger than other acquired processes. Significant reduction of 

ultrasonic waveform strength was observed during the test, especially at interfaces 

1 inch from the distal end. Several intervals when ultrasound measurements flat 

lined correspond to times when the signal had deteriorated enough to motivate the 

application of fresh ultrasound couplant at the transducer-waveguide interface. 

After-test investigation on this alumina waveguide discovers that a more likely 

reason for deterioration of the ultrasound signal is the change in the material
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Figure 6.16: Temperature profile comparisons between ultrasound and thermo­
couple measurements at echogenic features' locations. The overall temperature 
distributions from both measurements are comparable, while stronger vibration in 
ultrasound measurement is observed than in other acquired processes.
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properties, mainly the grain structure.

6.4.6 Temperatures at Distal End

Since there was no thermocouple attached at the hot distal end of the alumina 

waveguide, the temperature profiles at this location were obtained only from 

ultrasound measurements. The verification of the US-MSTD system results at 

the location is performed using the temperatures that were recorded from a type B 

thermocouple at port 2, where the TC's tip was aligned with the distal end of the 

waveguide. The results of the last four processes, including the stable combustion 

of both fuels, the fuel transition, and the flow rate change, are summarized in 

Figure 6.17. The temperature results of the ultrasound method are consistent with 

the independent thermocouple measurements—presenting the same trend on the 

temperature changes. More important, the values obtained from the US-MSTD 

system are in the same temperature range as TC's. This demonstration shows
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Figure 6.17: The temperature profiles obtained from the US-MSTD system at the 
hot distal end are verified with the thermocouple measurements at port 2 .
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that the US-MSTD system is able to monitor the real-time temperature profile for 

industrial-scale facilities.

6.5 Discussion
The US-MSTD system was successfully tested during the pilot-scale OFC oxy- 

fuel campaign. Real-time temperature distributions along the waveguide were 

captured during all relevant process changes. The comparison of temperature 

results based on the US-MSTD method and thermocouple measurements exhibit 

excellent consistency. Several issues were revealed during the test.

6.5.1 Couplant

The continuous real-time temperature monitoring using the US-MSTD method 

requires permanent coupling which is essential for providing the acoustic bond 

between the transducer and the waveguide. Couplants come in different forms, 

gel, oil, grease, pastes, and many more. We chose silicon grease because of its close 

acoustic impedance to alumina, high viscosity, relatively slow drying/evaporation 

rate compared to gel, and low environmental sensitivity. However, we still need to 

change our couplant every 2-3 hours during the experiments. Bonding agents, such 

as silicon rubber compound or rigid bond with an adhesive such as cyanoacrylate, 

may provide good ultrasound transmission (comparable to wet couplants) and 

a relative strong bond if a thin adhesive layer is achieved with no air bubbles. 

However, the ultrasound performance of the bond and the long-term stability 

need to be studied for our application.

6.5.2 Alumina Refractory Waveguide

Unfortunately, the thermocouple on Z4 lost its functionality after this test. Its out 

sheathing was burned, became brittle, and the inner wires were exposed with any 

subsequent handling. The alumina waveguide had no visually detectable changes 

after 5 days, nonstop in a high-temperature environment inside the OFC. Limited 

ash deposit was found on its distal end and no surface corrosion was observed. 

However, significant and irreversible deterioration in ultrasonic signal strength 

was revealed. This indicates that this alumina experienced strong elastic prop­
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erty changes during the high-temperature tests, mainly caused by microstructure 

changes. Grain growth is the major contributor to the microstructure changes, 

which is shown as an increase in size of grains (crystallites) in a material at high 

temperature, commonly seen in metals, minerals, and ceramics. This happens 

when recovery and recrystallization are complete and further reduction in the 

internal energy can only be achieved by reducing the total area of the grain 

boundary [88].

Grain boundaries have associated macroscopic and microscopic degrees of 

freedom, which play the essential role in controlling the dynamic growth/depletion 

of grains under specific thermal conditions. Excess free energy of grain boundaries 

imply a driving force for reduction in total area of grain boundary, as a result of 

grain size growth and number of grains per volume reduction. The characteristics 

of grain growth have been shown by Mullins [71] to be related to the kinetics of 

grain growth. The rate of change of the mean grain size, dr/dt, must be related 

to the migration rate of boundaries in the system. The mechanism for ideal grain 

growth and a quantitative relationship to a single measure of the microstructure 

gives us:
dr

u = dt = MZk, (6 .1)

where u is the velocity of a grain boundary, M is grain boundary mobility, Z is the 

grain boundary energy, and k is the sum of the two principal surface curvatures. 

Integral of Equation 6.1 obtains:

r2 -  r2=0 = MZKt, (6 .2)

where r is the final grain size and rt=0 is the initial grain size. Grain growth is 

irreversible and strongly temperature-dependent. High-temperature environment 

would accelerate the grain growth rate. To mitigate the grain growth problem for 

refractories that are required to process at high temperature, a variety of dopants, 

such as MgO, CaO, and SiO2, are often used to inhibit grain growth.

Figure 6.18 shows the SEM images of grain size distribution changes for alumina 

refractory Rescor 960 with heat treatment, obtained from FEI NovaNano 630 with 

magnification over 13000x. A green alumina rod sample without fire has a relative
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(A) No heat trea tm ent (B) Short term  heat trea tm ent (C) Long term  heat trea tm ent

Figure 6.18: SEM images of alumina grains distribution under over 13000x 
magnification for alumina refractory Rescor 960 sample without heat treatment 
(A) short-term heat treatment (B) and long-term heat treatment (C)—pilot-scale 
tested alumina waveguide.

uniform particle size distribution, between 1 and 5 ^m, in Figure 6.18(A). After 

short-term exposure to high temperature, over 800 0 C for less than 100 hours, the 

grain growth symptom has appeared on the alumina sample where the percentage 

of particles with larger size increases, shown in Figure 6.18(B). Figure 6.18(C) 

revealed the grain growth results for an alumina rod with heat treatment up 

to 13000C, totalling over thousands of hours. One single particle almost has 

consumed its surrounding particles and its size is way over the whole image.

When the mean grain diameter of our alumina ceramic waveguide increases, 

the inhomogeneity causes stronger scattering and absorption of ultrasonic energy 

and increases the attenuation significantly, and the ultrasound reflected echoes 

from internal echogenic features cannot be identified. In addition, this observation 

indicates that we can monitor certain mechanical properties changes of the refrac­

tory material and detect the changes prior to the visible degradation or damage of 

the refractory.
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REFRACTORY WAVEGUIDE SELECTION

7.1 Potential Refractory Waveguide
Ultrasound tests with the alumina refractory rod severed as the propagat­

ing waveguide has shown promising results on temperature measurement over 

1000 °C in lab-scale and pilot-scale OFC experiments. However, the experiments 

also revealed the limitations of alumina under an extreme environment for an 

extended time of operation because grain growth would deteriorate the ultrasound 

waveform for TOF determination. Therefore, the search for potentially the best 

candidates used as an ultrasound propagating waveguide at high temperatures 

continue.

7.1.1 Zirconia

Zirconia (ZrO2) ceramic is a hard, corrosion and erosion resistant material. 

Zirconia-based ceramics are known for their excellent electronic, thermal, and op­

tical properties. The combinations of these properties and the ability to manipulate 

its structure by doping makes zirconia useful in various applications including 

medical implants, catalysis, ionic conductors in solid fuel cells, in toughening 

nanocomposites, and as a refractory. The highest continuous working temperature 

for zirconia can be up to 2400 °C.

Zirconia can exist in three crystalline structures, namely monoclinic (M), tetrag­

onal (T), and cubic (C). At room temperature, zirconia is stable in the monoclinic 

structure and changes to the tetragonal structure at about 1100 °C, transforming 

to cubic structure at about 2300 °C, upon heating. The phase transformations are 

reversible upon cooling with the tetragonal to monoclinic transformation being 

the most studied. The transformation of pure zirconia from the M-phase to the 

T-phase is accompanied by a volume increase of about 4-5% causing cracking and
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structural failure. This volume change makes pure zirconia unsuitable for most 

applications.

7.1.1.1 Cubic Zirconia

This single crystal form of zirconia is optically colorless, transparent, has 

a relatively low fracture toughness and strength, but very high thermal shock 

resistance. This form is often used in jewelry as a diamond substitute.

Although it retains many properties including corrosion resistance at extremely 

high temperatures, zirconia does exhibit structural changes that may limit its use 

to perhaps only 500 °C. It also becomes electrically conductive as that temperature 

is approached.

This phase induces a partial cubic crystal structure instead of fully tetragonal 

during initial firing, which remains metastable during cooling. Upon impact, 

the tetragonal precipitates undergo a stress-induced phase transformation near an 

advancing crack tip. This action expands the structure as it absorbs a great portion 

of energy, and is the cause of the high toughness of this material. Reforming 

also occurs dramatically with elevated temperature and this negatively affects 

strength along with 3-7% dimensional expansion. The amount of tetragonal phase 

can be controlled by additions of the blends to balance toughness against loss 

of strength. To stabilize the high temperature T-phase at room temperature, 

appropriate amounts of divalent, trivalent, or lanthanide oxides such as MgO, 

CaO, CeO2, and Y2O3 can be alloyed to pure zirconia. This was found to give 

zirconia-based ceramics high strength and exceptionally high fracture toughness 

for a ceramic.

7.1.1.2 Zirconia PSZ

Zirconia blends with approximately 10% MgO, called partially stabilized zir­

conia (PSZ), which is cream colored and has high toughness retained at elevated 

temperatures. These blends are lower in cost but also have larger grain structure, 

which is undesirable in our application since larger grains scatter ultrasound 

energy.
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7.1.1.3 Zirconia TZP

Zirconia blends with approximately 3% yttria are called tetragonal zirconia 

polycrystal (TZP) and have the finest grain size with uniform sizes in 0.2-1 ^m 

range. These grades exhibit the highest toughness at room temperature, because 

they are nearly 100% tetragonal, but this degrades severely between 200 and 

500 °C as these irreversible crystal transformations also cause dimensional change. 

Zirconia TZP represents the most important class of zirconia ceramics.

As was previously mentioned, zirconia undergoes phase transformation under 

certain temperature and pressure conditions. The phase equilibrium in zirconia 

systems known to produce stabilized zirconia ceramics is shown in Figure 7.1, 

which is reproduced from the study of Scott [92].

The sample we selected to serve as a refractory waveguide contains 3-5 mol% 

yttria dopant, which was found to be sufficient to stabilize the T-phase at room 

temperature. The T-phase can be retained to room temperature as there is not a 

sufficient amount of energy for the T-M transformation to occur. The transforma-

Temperature (C)

5 10 15
Mol % Yttria

Figure 7.1: Phase diagram for the zirconia rich portion of the zirconia-yttria system 
reproduced from the study of Scott [92].
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tion temperatures fall with yttria concentration and the tetragonal or cubic phase 

may become stable or metastable at room temperature. Doping was found to 

reduce the T-M transformation temperature from 1100 °C to approximately 550 °C. 

Below that temperature, it is in monoclinic and cubic (M+C) phase. Above the 

M+C phase field, there is a small monoclinic and tetragonal (M+T) phase field. At 

higher temperatures, the system has a transformable tetragonal phase field, about 

750 °C. This phase transformation affects the propagation of the ultrasound signal, 

which will be discussed later in this chapter.

7.1.2 Nitrides

Aluminum nitride (AlN) is stable at high temperatures in inert atmospheres 

and melts at 2800 °C. In the air, surface oxidation occurs above 700 °C, and even at 

room temperature, surface oxide layers of 5-10 nm have been detected. This oxide 

layer protects the material up to 1370 °C. Above this temperature, bulk oxidation 

occurs, which becomes the limitation for our ultrasound application. AlN has high 

thermal conductivity, especially in comparison with traditional refractory material 

used in industry.

7.1.3 Carbides

7.1.3.1 Silicon Carbide

Silicon carbide is among the hardest of ceramics, and retains its hardness and 

strength at high temperatures, which translates into some of the best wear resistance 

available. SiC has a high thermal conductivity, especially in the chemical vapor 

deposition grade, which aids in thermal shock resistance. This material is relatively 

light at approximately half the density of steel. Based on the combination of 

hardness, resistance to wear, heat, and corrosion, SiC is often selected for seal faces 

and high performance pump parts.

Reaction bonded SiC has the lowest production cost but is characterized by 

coarse grains, which is undesirable in our application. It provides somewhat 

lower hardness and higher thermal conductivity. Direct sintered SiC is higher 

grade material than the reaction bonded form of silicon carbide and is commonly 

selected for high-temperature applications (e.g., optical temperature sensors [60]).



126

However, the highest working temperature of silicon carbide is approximately 

1500 °C, which is below our desired range.

7.1.3.2 Tungsten Carbide

Tungsten carbide has a high melting point of 2870 °C. In its most basic form, 

tungsten carbide is a fine gray powder, but it can be pressed and formed into 

shapes for use in industrial machinery, cutting tools, abrasives, armor-piercing 

rounds, other tools, instruments, and jewelry.

Tungsten carbide is approximately two times stiffer than steel, with a Young's 

modulus of approximately 550 GPa, and is much denser than steel or titanium. 

Because of its extreme hardness, it can only be polished and finished with abrasives 

of superior hardness such as cubic boron nitride and diamond. We do not have 

capabilities to machine tungsten carbide parts to create echogenic features in 

waveguides. We were also unable to find suppliers willing to fabricate small- 

volume evaluation tungsten carbide parts at a reasonable cost.

7.2 Ultrasound Properties of Zirconia
Following our evaluation, we selected AmZirOx 86 Zirconia from Astro Met, 

Inc.—yttria-stabilized zirconia ceramic (Y-TZP) as our new waveguide which will 

replace the previously used alumina rod. The geometry of the Y-TZP waveguide 

was kept the same as before: a 12-inch rod with 1-inch diameter (Figure 7.2). Four 

small holes, located at 1, 2, 4, and 6 inches from the distal end of the waveguide, 

were introduced into the waveguide during manufacturing to create a train of 

ultrasound echoes. In this new waveguide, we reduced the size of echogenic holes 

to 1/32 inch. The original color of this sample was light caramel. It has precise 

shape, size, and highly polished finish. The material was doped with 5% yttria 

and had a bulk density of 6.01 g/cm3. The maximum working temperature of this

Figure 7.2: Yttria stabilized zirconia rod as received from Astro Met, Inc..
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material is expected to be 2400 °C (4350 °F).

The ultrasound testing at room temperature shows good SNR. The waveforms 

obtained with two different transducers with central frequencies of 5 MHz and 10 

MHz are shown in Figures 7.3. Both waveforms are clear and echoes correctly 

indicate the presence of echogenic features in expected locations. A 5 MHz 

transducer produced a more detailed waveform. In addition to the expected 

echoes from the introduced echogenic features, the response indicated the presence 

of unexpected echoes indicated by red arrows. A 10 MHz transducer produced a 

cleaner echo signal but required a high level of ultrasound excitation, indicating 

an expected increase in ultrasound dissipation at higher frequencies. Unexpected 

echoes were present in this case as well.

In Figure 7.3, echoes marked by red arrows were unexpected. They are equally 

delayed from echoes produced by echogenic holes placed along the length of the 

waveguide. Delayed echoes appearing in alumina waveguide reflected from its 

distal end are due to the ultrasound propagating mode conversion between the 

longitudinal and shear wave. The cause for the delayed echoes in zirconia is 

completely different. Based on the equal delay symptom for every echogenic hole 

and distal end, we conclude that unexpected echoes are produced by the ultrasound

(a) Transducer V609 w ith  frequency o f 5 MHz

4 6
Time (seconds)

(b) Transducer V611 w ith  frequency of 10 MHz

Figure 7.3: The ultrasound echo waveforms obtained with this zirconia rod. The 
response at 9 ^s is produced by the distal end of the sample and is preceded by 
four partial internal echoes produced by the drilled holes. Panels (a) and (b) show 
responses obtained with transducers having 5 and 10 MHz central frequencies.

10
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signal traversing the couplant gel, between the transducer and the proximal end 

twice, as illustrated in Figure 7.4. This gel is water-based, and has much smaller 

density and slower speed of sound than zirconia, causing significant ultrasound 

impedance mismatch, leading to the ultrasound signal bouncing between the 

surface of the transducer and zirconia waveguide. Though the thickness of the 

couplant is only on the order of 1/32 inch, a relatively low density (0.983 g/cm3) and 

slow speed of sound (1516 m/s) in the gel causes a delay of 2.4625 ^s for a single 

pass through the couplant. A round trip through the couplant (excitation path II in 

Figure 7.4) will result in a delay close to 5 ^s —the value consistent with the results 

in Figure 7.3. By carefully adjusting the thickness of the coupling gel, we confirmed 

that unexpected echoes in Figure 7.3 are indeed caused by an ultrasound signal 

partially bouncing between the transducer and the waveguide.

The coupling medium can cause transit time errors on the order of 1 percent 

of the measured values for velocity measurements. Due to partial transmission 

and partial reflections of sound energy in the couplant layer, there may be a 

change of shape of the waveform which can further affect velocity measurement 

accuracy [36]. Thus, a proper couplant should be carefully chosen for accurate 

TOF measurement.

Initial testing of the "as received" waveguide showed significant deterioration

Possible excitation paths 

< Transducer

Figure 7.4: Unexpected echoes in Figure 7.3 are caused by multiple ultrasound 
reflections between the transducer and the zirconia waveguide.
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of the ultrasound signal quality at high temperatures, which we attributed to the 

change in the crystal structure of the material. Signal strength recovered after the 

sample was cooled to the room temperature. We observed that heat treatment also 

changed the color of the sample. Figure 7.5 illustrates the whitening of the sample 

as a result of heating. The original waveguide was hot isostatically pressed into 

the final shape at a slightly reducing atmosphere, thus altering the stoichiometry 

through depletion of oxygen. Thermal treatment on the sample in air reintroduced 

the oxygen and whitened the sample.

Several additional thermal treatments were used to investigate the effect of 

annealing on the strength of the ultrasound signal. The two-stage sintering process 

helped reduce the rate of the grain size growth, concluded from studies from 

Rhodes [86] and Yu et al. [107]. First, the sample was kept at 1400 0C for 2 hours and 

then at 1200 0C for 5 hours. After the sintering, the signal at room temperature did 

not change, but the strength of echo signals from the echogenic features improved 

significantly even as the sample was heated to 10000C. Further sintering of the 

sample for two days did not result in additional significant improvement in the 

quality of the ultrasound waveforms of echo signals.

7.3 Experiments
We obtained the empirical correlation between the speed of sound and the 

temperature using the experimental setup similar to the one used to characterize 

alumina waveguide. The test temperature range was the same as the setup for 

alumina waveguide tests, which is depicted in Figure 4.6. An ultrasound data 

acquisition and analysis system was kept the same as previous calibrating alumina

Figure 7.5: Waveguide color changes after heat treatment. Top: Color gradient 
indicates oxidization of the hottest area. Bottom: The whole sample became white 
after high temperature sintering at a uniform temperature distribution.
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tests. The experimental procedure did not change for zirconia ceramic, all 6 repeats. 

Randomized temperature points from 50 to 11500C with 500C increment and 

room temperature were obtained for calibrating the relationship between SOS 

versus temperature. Independent temperature measurements were provided by 

an OMEGA® Nextel ceramic insulated thermocouple that was attached to the 

distal end of the waveguide. Four 1/32-inch OMEGA Super OMEGACLAD® 

thermocouples were bent and inserted into engineered echogenic features/holes to 

provide independent and more accurate temperature measurements than surface 

attachment, as shown in Figure 7.6. These thermocouples were connected to data 

acquisition system DATAG DI-1000-TC for real-time temperature monitoring.

Figure 7.7 shows that the strength of echoes originating from echogenic features 

placed along the length of the ultrasound propagation path and the SNR change 

with temperature (compare echo waveforms produced by the same echogenic 

feature and acquired at different temperatures and marked with red triangles). 

Below 4000C, the signal to noise ratio is high but then degrades significantly as 

temperature increases to reach the range between 450 and 650 0C. The reduction of 

the signal quality leads to poor SNR and high excitation energy required to obtain 

usable ultrasound echoes. Further temperature increase above 7000C improves 

the quality of the echo waveforms and increases the SNR. At high temperatures, 

strong and clean signals are back. We observe that 450 to 6500C corresponds to 

the temperature range where structural transformations occur in Y-TZP— from 

monoclonal and cubic to tetragonal and cubic. This structural transformation is 

likely the reason the attenuation of ultrasound is higher in this temperature range.

Figure 7.6: The placement of thermocouples used during real-time temperatures 
monitoring.
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Figure 7.7: Echo waveforms collected at different temperatures. The strength of 
the signal changes with temperature as crystal structure changes in the waveguide 
material at different temperatures. Strong temperature dependence of the SOS is 
evident as temperature increases from room temperature to 1150 °C.

7.4 The SOS Dependence on Temperature
Figure 7.8A shows the experimental correlation between the speed of sound 

of the yttria stabilized zirconia and the temperatures. As discussed in Chapter 4, 

compensation for thermal expansion is not essential as long as the same calculations 

for the SOS are used to construct the SOS versus temperature relationship and 

to infer the temperature from the measurements of the change in the TOF of 

ultrasound echoes. The result shown in Figure 7.8 is not compensated for thermal 

expansion.

Figure 7.8A also presents the SOS versus temperature relationship or alumina

20 oC
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150oC
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Figure 7.8: The SOS versus temperature relationship comparison of waveguides 
of alumina (primary y-axis) and zirconia (secondary y-axis) (A). Both piecewise 
linear and polynomial fitting models are used to illustrate the SOS and temperature 
calibration results (B).

waveguide used in previous tests. The slope of SOS curve for zirconia is steeper 

than the alumina. A more complex behavior is also evident from the examination 

of the results. Several temperature ranges are associated with different SOS versus 

temperature slopes. For example, the temperature dependence is the strongest 

when the temperature is between 400 and 600 °C, which is the range where the 

phase transformation from M+C to M+T structure occurs.

Two fitting models were used to describe the correlation between the SOS and 

temperature for the Y-TZP sample, shown in Figure 7.8B. The piecewise linear 

model is expressed as

c(T) -0.66T + 7041.14 
-0.29T + 6819.33

20 °C < T < 599.22 °C 
599.22 °C < T < 1150 °C (7.1)

with the coefficient of determination of 0.995.

The quadratic model fitting gives the following correlation:

c(T) = 2.84e -  4T2 -  0.82T + 7052.55. (7.2)

The coefficient of determination for polynomial model is 0.994, less accurate 

than the piecewise linear model in the 500-700 °C range.

The Young's modulus calculated based on SOS measurement for YSZ is shown 

in Figure 7.9. The calculated Young's modulus based on long rod Equation 2.7
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Temperature fC )

Figure 7.9: The calculated Young's modulus as function of temperature based on 
experimental SOS results.

at room temperature is 303.39 GPa; this value becomes 218.88 GPa if Equation 

2.5—including Poisson's ratio (assuming constant)—is applied with manufacture 

properties. The manufacturer-provided Young's modulus value is 204 GPa, very 

close to our experimental result. Moreover, the great difference between these two 

estimated Young's modulus approaches shows the long, thin rod Young's mod­

ulus approximation indeed is not suitable for our waveguide. The manufacturer 

properties data are listed in Table 7.1, with the comparison of our results from 

ultrasound measurements.

Table 7.1: AmZirOx 86 zirconia properties

Property (20 °C) Manufacturer Experiment
Density (g/m3) 6.01 6.16

Young's modulus (GPa) 204 218.88
Poisson's ratio 0.31 -

Thermal expansion (10-6/ °C) 10.3 -



CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this dissertation, the history and evolution of the ultrasound measurements 

of a segmental temperature distribution system is described. Our conclusion is 

that this noninvasive approach provides a very powerful abstraction for solving 

challenging problems on long-term temperature monitoring for an extreme envi­

ronment such as gasifiers that conventional temperature sensors are incapable to 

use. This US-MSTD system is also a potential alternative for the optical techniques 

when the optical access ports are impractical, a novel approach if point of interest 

is inaccessible, and more comprehensive even if prior heat flow information to 

reconstruct the temperature is not incorporated.

The ultrasound approach for the temperature distribution determination is to 

construct segmented structures or embed a segmented waveguide which requires 

minimal changes on the existing structures and estimate the time of flight for each 

segment based on collected partial ultrasound reflections as the ultrasound excita­

tion pulse propagates through the scattered waveguide. Therefore, the temperature 

distribution along the ultrasonic propagating waveguide can be interpreted based 

on the time of flight and the predetermined correlation between the speed of sound 

and temperature on this particulate waveguide material.

During this research, we solved the challenge of the feasibility of creating partial 

internal reflectors on waveguides from cementitious materials to high-temperature 

advanced ceramics. We introduced a noise-robust reduction method that applies an 

anisotropic diffusion filter to ultrasonic waveform envelopes to achieve a consistent 

and accurate time of flight estimation for dissipative and distortive media. We 

constructed our ultrasound measurement system to determine the speed of sound 

dependence on temperature for refractories such as alumina and yittria-stabilized
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zirconia. We designed and developed a specialized data acquisition and analysis 

system to provide a real-time visualized temperature distribution monitoring and 

heat flux determination.

The ultrasound temperature measurement system was successfully tested dur­

ing a pilot-scale oxyfuel combustor campaign. Real-time temperature distributions 

across the refractory were captured during all relevant process changes. The com­

parison of temperature results based on the US-MSTD method and thermocouple 

measurements exhibits excellent consistency. We are sufficiently encouraged by 

the results based on field tests to proceed with the construction of an automated 

system that incorporates multisensor arrays on the entire combustor to provide a 

3D temperature distribution profile.

In addition to applications involving the internal temperature distribution 

estimation, plans are underway for expanding the method to the characterization 

of the micro- and macromechanical property changes as function of temperature 

for refractory, metals, and other materials. Therefore, significant anomalies and 

discontinuities, such as cracks in bricks or developments of a brittle zone, can be 

immediately identified during the operation, allowing for a better maintenance 

scheduling and safer operations of gasifiers. In addition, detection of refractory 

build-up and estimation of its thickness provides means for the gasifier process 

optimization that can extend the campaign life substantially.

The wide range, fine resolution, fast response to temperature change, rapid 

availability of a large data set, free from temperature drifts, and continuous opera­

tion at elevated temperature environments will permit us to apply this promising 

new technique to research on energy conversion containers, material production, 

casting industrial, food process, and other emerging manufactures.

There are several potential research topics to improve and expend this research 

further. A long-term temperature monitoring can be achieved if a good contact 

between the transducer and its attached waveguide surface is implemented. A 

more accurate temperature distribution performance by the ultrasound approach 

may be achieved if the sizes and spaces of the internal echogenic structures are 

optimized. The temperature resolution can be guaranteed if the data acquisi­
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tion system has a high resolution and high sample rate for the TOF estimations. 

Additionally, a more robust, de-noise, and efficient signal processing technique, 

especially for TOF measurements, would significantly improve the accuracy of 

the temperature implementation. It might be hard to find a universal ultrasonic 

propagating waveguide material to be suitable for use in different temperature 

ranges and under various environmental conditions. These aspects that should 

be evaluated for finding the most suitable waveguide material may include but 

are not limited to the density, elastic properties, chemical composition, porosity, 

grain size distribution, macro- and microstructure homogeneity, and grain structure 

responses to heat treatment, etc.

This research was only focused on using longitudinal waves for the SOS mea­

surement. The shear wave, as well as the surface acoustic wave (SAW), may be 

used for a surface temperature distribution monitoring. This proposed US-MSTD 

system has no limit on the size of the testing object. This system can be used on a 

huge container such as the nucleation reactor vessel, or as a temperature controller 

for a nanostructured semiconducting oxidization process.
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