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ABSTRACT 

 

 The synthesis, characterization, and nonclassical optical properties of photonic 

crystals (PCs) created from naturally occurring biological templates was studied.  

Biotemplated PCs were created from several different natural structures using sol-gel 

chemistry methods.  PCs were characterized using a combination of reflection 

spectroscopy, SEM image analysis, three-dimensional structure modeling, photonic band 

structure calculations, and density of optical states calculations.  The effect our PCs had 

on the density of optical states (DOS) was probed using time correlated single photon 

counting spectroscopy. 

 By carefully controlling the sol-gel chemistry used in the templating process, it is 

possible to synthesize hollow silica inverse, solid silica inverse, hollow titania inverse, 

solid titania inverse, and solid titania replicate structures.  The inverse-type structures 

have the advantage of being accessible through a single templating step, while the titania 

replica is capable of a predicted full photonic band gap.  Each structure was investigated 

using methods mentioned above. 

 The reliability of reflectance spectroscopy was investigated.  It was found that in 

certain cases, a continuum of structural parameters yield reflections that match photonic 

band structure calculations.  Methods to improve this situation are discussed.  When 

applied to titania inverse opals, it was found that the refractive index could be determined 

to ±0.05 and the volume fraction to ±0.5%.  Accurately determining  the refractive index 
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of inverse opals is useful in estimating the refractive index of other PCs made from the 

same sol-gel. 

 Calculation of the DOS using a combination of MIT’s photonic bands package 

and house-written software was applied to biotemplated photonic crystals.  It was found 

that even partial band gap photonic crystals can greatly modify the DOS. 

 Finally, the rate of spontaneous emission of quantum dots embedded in photonic 

crystals was measured to indirectly probe the DOS.  Three different models were used to 

extract the lifetime from radiative decay curves.  It was found that a log-normal 

distribution of lifetimes was the most meaningful model.  The radiative lifetime of 

quantum dots embedded in titania photonic crystals replicated from Lamprocyphus 

augustus was modified by up to a factor of ten, an amount unprecedented in the photonic 

crystal literature. 
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CHAPTER 1 

 

INTRODUCTION 

 

Photonic Crystals 

Many of the most important technologies of the 20
th

 century, from lasers to fiber 

optics and solar cells, rely on control over light.  Using what is now considered 

conventional optical ideas – a resonant cavity, total internal reflection, and antireflective 

coatings – these technologies have impacted all of our lives.  While improvements are 

still being made in laser technology, optical communication, solar cells, and information 

processing, the limit of what is possible using 20
th

 century technology appears to be 

rapidly approaching. 

Looking forward to the future, methods to exercise a greater control over light are 

necessary.  The ability to slow light could revolutionize solar technology
1-4

 and 

photocatalysis.
5
  Being able to trap a photon with an emitter, creating a photon-emitter 

bound state, is the foundation for quantum computing, the qubit.
6-7

 Of course, if qubits 

are to be used light needs to be routed to and from the bound states in an optical circuit.  

Control over spontaneous emission would dramatically lower the threshold energy for 

lasers and allow cavity-less lasing.
8-10

  Motivated by these challenges, and the potential 

impact of overcoming them, researchers have sought materials that can control light in 

revolutionary ways similar to the control semiconductors allow over electrons.  
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Originally proposed in the late 1980s photonic crystals are a promising new 

concept predicted to allow control over the propagation of light as well as spontaneous 

emission.
11-12

  Only in the past decade have many of these predictions been 

experimentally verified in the microwave and infrared.
13-14

  Very recently, researchers in 

the Bartl group have been taking inspiration from nature to create and test photonic 

crystals that control visible light to an unprecedented degree.
15-19

 

 

Biomimetic Photonics – the Intersection of Chemistry,  

Physics, and Biology 

Photonic crystals are optical nanostructured materials with a refractive index 

periodic on the order of the wavelength of light they interact with.  Within a photonic 

crystal, Bragg scattering events lead to direction and frequency dependent dispersion 

relations.  Borrowing terminology familiar to semiconductor physics, these special 

materials have directional photonic bands and stop gaps, as well as (under certain 

conditions) full photonic band gaps.
4, 11-12

 Photonic band gaps offer an unrivaled control 

over light, and are the foundation of several new optical concepts such as low-threshold 

light amplification through control of spontaneous emission, slow-light enhanced 

photochemistry and catalysis, and quantum computing.
9, 20-22

 

Studied independently of each other, great progress has been made in the study of 

photonic band gap crystals, materials chemistry, and structural coloration in nature.  Only 

recently, however, a true cooperation between these disciplines has blossomed into the 

new field of biomimetic and biotemplated photonic crystals – the study of which exists at 

the intersection of biology, physics, and chemistry.  As a result of this cooperation, great 
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progress has been made towards the creation and integration of next-generation 

technologies relying on an enhanced control over light. 

This thesis focuses on this new field of biomimicry in photonic materials design 

and characterization. In the remainder of this chapter, an overview of photonic structure 

engineering in biology will be given, followed by an introduction on the physics of 

photonic band gap materials, recent progresses in man-made photonic crystals (and 

current limitations), and the potential of bioreplication for creating novel photonic 

structures, inaccessible by purely synthetic engineering routes. Finally, the contributions 

from different disciplines will be woven together into a unified picture of photonic 

crystals inspired by – or derived from – biology. 

The second chapter will provide details on the conversion of organic photonic 

crystals into a variety of inorganic structures, addressing various challenges to the 

replication process.  Chapter 3 will describe the characterization processes used to better 

understand both natural and synthetic photonic crystals.  Density of optical states, that 

critical property that connects emission behavior of a photon emitter with its 

environment, will be discussed in Chapter 4 in connection with theoretical studies on 

several photonic crystals.  In Chapter 5, modification of the rate of spontaneous emission 

by photonic crystal samples will be demonstrated to an unprecedented degree.  Finally, 

experiments currently underway and ideas for the future will be reviewed along with 

concluding remarks in Chapter 6. 
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Structured Materials in Biology 

 Nature has developed interesting ways to overcome material challenges.  Unlike 

lab conditions, where extremes in temperature, pressure, and pH are possible to achieve a 

synthetic goal, living systems produce a remarkable diversity of structural materials 

under ambient conditions.
23-25

 Examples of such structure-function relations are found 

throughout the world of biology from those giving stature and motion, like bones and 

muscles, to those with special sensory functions like the human eye.  The unsurpassed 

elegance of evolutionary engineering in nature is found only if examined close enough.  

For example, in the sponge Euplectella sp. silica nanometer-scale spheres are packed into 

sheets that are laminated together by organic material into cylindrical spicules.  The 

cylinders are arranged in a square lattice, cemented together at the nodes with silica, 

complete with struts.  The design overcomes the inherent brittleness of the material, 

glass, while avoiding ―over engineering‖ the structure with redundant features.
24

 Figure 

1.1 shows the beautiful hierarchal structure employed by Euplectella to overcome a 

complex structural problem.  Nature produces a variety of mineralized materials, some 

multifunctional and others specifically tailored to a purpose.  The structure-function 

relationship of many of these has been explored, and certain structures like the crossed 

lamellar of highly twined aragonite have been observed widespread in phylum of 

invertebrates.
23

  Mechanical stability in spite of unique challenges is not the only triumph 

of structural materials in biology. 

Nanostructured materials have also been used by biology to produce a vast palette 

of structural colors using interference, scattering, and diffraction effects.
26

  Structural 

colors have been found across the spectrum of biology in plants, marine life, birds, 



5 
 

 
 

insects, and some mammals.
15, 27-38

  Figure 1.2 shows four examples of structural color 

across biology.  In the marine world, octopus, squid, and cuttlefish (cephalopods) have an 

impressive ability to camouflage and signal using body pattern and skin color, which can 

change almost instantaneously.  The patterning results from pigmented cells, structural 

reflectors, or any combination of both and it is the physiological ability to change these 

cells that allows such a wide variety of dynamic optical effects, as illustrated in Figure 

1.3.  It is speculated that the colors produced by multilayer reflector cells, which change 

with viewing angle, are used to guide schools of cephalopods and frighten predators.  At 

oblique angles, the reflector cells also polarize light, which may be further useful in 

specialized communication because cephalopods have a keen ability to detect polarized 

light.  The exact method by which the reflector cells change their color is yet unknown, 

however it is hypothesized that a change in protein state (with accompanying change in 

refractive index) and interlayer spacing could cause the effect.
27

  

Biological structural colors have been developed for a variety of reasons, 

ranging from camouflaging to frightening predators and attracting mates.39 This 

requires an array of optical effects: From strongly iridescent to near angle-

independent coloration, from shimmering bright to matte hues, from vivid to pastel-

like colors and various combinations thereof. Moreover, biological photonic 

structures were optimized to operate under various illumination conditions; while 

many species create their optical effects in bright sunlight, others operate under 

highly scattering conditions produced by water-droplets and wet leaves in 

rainforests. Others have to function under dim illumination at the forest floor or 

within dense vegetation. These different applications, optical effects, and 
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environmental conditions have led to a diversity of photonic structures in biology 

that is virtually limitless. The structures range from simple one-dimensional 

multilayers of biopolymeric layers with slightly different refractive indices,40-41 to 

two-dimensional lattices composing the internal structure of skeletons and hairs of 

sea animals42-43 and feathers of several species of birds,37, 44-45 and to various three-

dimensional architectures.15, 36, 46-51 The latter can be found within colored cuticle 

scales of many species of beetles (Coleoptera) and butterflies (Lepidoptera) in form 

of quasi-periodic arrangements, chiral, honeycomb and nonclose-packed ball-stick 

structures, as well as various cubic lattices, including gyroid and diamond-based 

geometries (Figures 1.4 and 1.5). 

This large variation in crystal structure symmetries, lattice constants and 

dielectric volume fractions dramatically extends the currently available “synthetic” 

photonic crystal structures.  While the direct use of biological structures for optical 

applications is limited since they are composed of biopolymeric compounds with 

rather poor mechanical, heat and photo stability, they provide intriguing templates. 

From a materials viewpoint, biological structures are therefore similar to synthetic 

polymeric photonic crystal templates created by direct ink writing, laser writing, 

holography, or colloidal self-assembly, as discussed in Chapter 1. Also in these 

examples, the fabricated polymeric structures have to be converted into inorganic 

replicas by infiltration with various precursor compounds. Consequently, 

infiltration methods successfully used to produce replicas of synthetic templates 

such as atomic layer deposition, low-temperature evaporation techniques and sol-

gel chemistry-based routes can also be applied to replicate biotemplates. 
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Since biological photonic structures are integrated into larger body parts 

(feathers, wings, hair, exoskeleton) they often require preinfiltration processing 

steps. For example, in contrast to the free-standing, open and easily accessible 

lattice frameworks of most synthetic template structures, biological photonic 

structures are often buried, hidden, or embedded within a structure-less matrix. 

This is particularly true for photonic structures of most butterflies and beetles, 

which are contained in wing and exoskeleton scales and are thus partially or 

completely surrounded by an impermeable biopolymeric shell (see also Figure 

1.4).16, 35-36 For successful infiltration/replication it is therefore important to provide 

access to the interior photonic structures by cutting or microtoming part of the 

shell-like biopolymer. In addition, many biopolymeric scales and hairs are covered 

with a hydrophobic, wax-like film. Since this layer can prevent wetting of the 

photonic structure, in some templating methods it has to be removed by treatment 

with organic solvents or acids. 

One specific example of structural color in nature is of particular relevance to this 

thesis: coloration in cuticular scales of certain beetles and weevils, especially 

Lamprocyphus Augustus which has been studied by the Bartl group in detail.
35, 49

  L. 

Augustus lives in the rainforests of Brazil, and is bright, shimmery, iridescent green in 

color.  Its coloration likely had the evolutionary advantage of camouflaging it among the 

wet undergrowth, while simultaneously keeping it cool by reflecting the most intense part 

of the solar spectrum.
39

  Looking closer, it is found that the insect’s color comes from 

epidermal scales attached to its exoskeleton, and within these scales an elegant three 

dimensional patterning.  Figure 1.4 shows L. Augustus, and ―zooms in‖ to show that the 
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coloration comes from exoskeletal scales, and that the scales contain patterning.  By 

taking 30 nm thick slices of the scales using a focused ion beam and imaging each slice, 

Galusha et al. were able to digitally reconstruct a portion of the scale, finding the pattern 

to be a face centered cubic lattice with intersecting cylinders oriented in the [1,1,1] 

crystal direction, a so-called diamond-based lattice.
49

  They found that the lattice constant 

was such that Bragg diffraction from the myriad interfaces resulted in green light being 

constructively reflected from the scale, while destructively interfering inside, in other 

words it was shown to be a prime example of a natural photonic crystal. 

 

Theoretical Background of Photonic Crystals 

Light traveling through a nonhomogeneous transparent dielectric medium has 

partial reflections at each of the interfaces of differing refractive index components.  If 

the arrangement of these interfaces is periodic, these multiple reflections can 

constructively or destructively interfere with each other leading to frequency ranges, 

which are absent within the material and other ranges that are enhanced.
4, 11-12

  The 

frequencies of light sustainable in photonic crystals are called photonic bands, and can be 

found from the macroscopic Maxwell equations (cast as an eigenvalue problem) using 

methods analogous to the variational principle of quantum mechanics.
52

  Using a plane 

wave expansion approach and the variational principle, Johnson and Joannopolous 

developed a method to calculate the allowed frequencies in a photonic crystal.
53-54

   

Briefly, if it is assumed that the field strengths are small enough that second order 

optical effects are negligible, the material is isotropic, that the dielectric constant is 

independent of the frequency in the region of interest, and that the material is transparent 
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(the dielectric constant is real and positive) then Maxwell’s equations expressed in the 

magnetic field, H(r), can be cast as an eigenvalue problem (equation 1.1) where ε(r) is 

the spatially dependant dielectric constant, ω is the frequency, and c is the speed of light. 

(1.1)    (
 

    
      )  (

 

 
)
 

     

 Once equation 1.1, is used with the variational method to find the magnetic 

component, the electric field is easily found through equation 1.2 where   √   and ε0 

is the vacuum permittivity. 

(1.2)       
 

       
       

Similar to the operators familiar in quantum mechanics, the operator in equation 

1.1,  ̂, is linear and Hermitian.  As a result, the solutions are orthogonal.  The smallest 

eigenvalue   
     is the minimum of equation 3 over all conceivable field patterns (given 

by H0), the next smallest eigenvalue minimizes equations 3 over the subset of fields 

orthogonal H0 and so on. 

(1.3)        
    ̂  

     
 

 By solving equation 1 for the first few eigenvalues over the principle directions in 

the photonic crystal, the allowed frequencies within the crystal are collected and can be 

summarized in a photonic band diagram.  The bulk of the work in calculating photonic 

bands has been written into MIT’s Photonic Bands software package (MPB)
53

 by the 

aforementioned Johnson and Joannopolus.  MPB was used extensively in this work, in 

investigating and characterizing photonic crystals as well as in conjunction with house-

written software for the calculation of the density of optical states.
19
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 The physical origin of photonic band gaps can be understood by making analogies 

to concepts familiar to solid state physics.  Since light inside a photonic crystal is 

considered as a plane wave interacting with a periodic dielectric, the electric/magnetic 

fields can be thought of as Bloch states having a wavevector k.  In this case, wavevectors 

(and their associated frequencies) that differ only by a multiple of 2π/a are identical.  It 

follows that only wavevectors over a limited range need to be considered – called the 

Brillouin zone.  In a one-dimensional photonic crystal (or Bragg stack), the Brillouin 

zone spans –π/a to π/a and photonic band gaps occur at the edge of the Brillouin zone, 

where |k| = ±π/a. 

In general, for each allowed value of k, there are two equally valid wave functions 

for the light given by a sine and a cosine function.  For most values of k, these solutions 

are degenerate because the energy density of the light in both solutions is equally 

distributed in both high and low dielectric parts.  However when |k| = ±π/a, the 

wavelength of light is equal to 2a, and the sine and cosine solutions are no longer 

degenerate.  In one case, the electric field maxima are located in the high dielectric, with 

nodes in the low, a situation that is energetically favorable – this is called the dielectric 

band.  In the other case, field maxima are located in the low dielectric regions (typically 

air), a situation that is energetically unfavorable compared to the previous – this is called 

the air band.  Figure 1.6 illustrates both of these situations.  The difference between the 

energy/frequency of the dielectric band and the air band is the photonic band gap.
54

  

There is no value of k that leads to a frequency within a band gap.  To extend this idea 

into three dimensions, each direction is considered as a one-dimensional problem and all 

the important directions in the crystal can be spanned by following the edges of the three-
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dimensional Brillouin zone.  Since the origin of the photonic band gap arises from the 

difference in energy imposed by the concentration of field energy in high and low 

dielectric parts, it follows that the dielectric contrast of the two parts is of critical 

importance in photonic crystal problems.  For a photonic crystal to operate in the visible, 

if follows that it is required that the dielectric constant of the material be as high as 

possible, while still remaining transparent.  This final requirement, as well as crystal 

characterization is a challenge well addressed by physical chemistry. 

 

Materials Chemistry Aspect of Photonic Crystals 

 To date, tremendous progress in photonic structure engineering has been made in 

the microwave and infrared regimes. Using top-down microfabrication and bottom-up 

colloidal self-assembly techniques, various three-dimensional photonic crystal structures 

have been synthesized with complete band gaps at infrared frequencies.
14, 55-62

 In contrast 

to the successes in the infrared regime, complete photonic band gaps at visible 

frequencies have proven elusive due mainly to difficulties in creating efficient three-

dimensional photonic lattices with feature sizes in the hundred-nanometer range. In the 

following section the fabrication strategies for photonic crystals operating in the infrared 

and visible regimes will be reviewed. Then, the advantages and limitations of different 

top-down and bottom-up fabrication techniques focusing on attainable feature sizes, 

crystal lattices, and high-dielectric compounds will be discussed. 

The fabrication of photonic band gap crystals operating at infrared frequencies 

has benefited tremendously from powerful microprocessing techniques that have been 

optimized in the semiconductor industry during the last 50 years. These techniques can 
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generally be classified into direct and indirect methods. In the former, a desired photonic 

crystal structure is formed directly out of a high-dielectric semiconductor compound. For 

example, Lin and coworkers used a comprehensive multilevel stacking process consisting 

of a repeated deposition, lithographic patterning, and etching to successfully fabricate 

dielectric woodpile (a diamond-based lattice structure) photonic crystals with band gaps 

in the infrared regime.
55

 Subsequently, Noda et al. developed a wafer-fusion-based 

method to create woodpile structures made out of GaAs with a complete band gap at near 

infrared wavelengths,
56

 whereas Johnson, Joannopoulos and coworkers designed and 

fabricated a nine-layer photonic crystal with a wide (up to 25% gap-to-mid-gap ratio) 

band gap out of silicon by sequential layer-by-layer scanning-electron-beam 

lithography.
59

  

A common disadvantage of these direct methods is that fabrication of high-quality 

three-dimensional photonic crystals is very time consuming, expensive, and is generally 

limited to only a few layers. Indirect methods, on the other hand, use a template structure 

created out of inexpensive polymers. This structure serves as a sacrificial mold for 

templating high-index compounds such as silicon or germanium. Successfully applied 

methods to create such polymeric photonic crystal template structures, including the 

highly efficient diamond-based woodpile lattices, are multibeam holography, multiphoton 

lithography, and direct laser writing methods.
62-64

 An interesting alternative to these light-

patterning routes is the direct ink writing method originally developed by Lewis and 

coworkers.
65-66

 In this technique, a cylindrical filament approximately 1 mm in diameter 

is formed by the deposition of a fluidic polyelectrolyte/water ink into an alcohol-rich 

reservoir. Braun, Lewis and coworkers demonstrated that this filament can then be 
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patterned in a layer-by-layer sequence to build a woodpile structure with photonic crystal 

feature sizes in the near infrared region.
61, 67

   

All of these polymeric templates can then be converted into high-dielectric 

photonic crystals made out of silicon or germanium. Since the polymeric templates would 

not withstand the high deposition temperatures required for typical semiconductor 

deposition techniques such as chemical vapor deposition, they are first protected by a 

metal oxide (silica or alumina) coating formed by atomic layer deposition. For example, 

Ozin and coworkers showed that depending on the amount of metal oxide deposition 

(complete backfilling or deposition of a thin coating) it is possible to create high-

dielectric photonic crystals in the form of a positive replica or an inverse of the original 

template structure [64, 70].
62, 68

 While a silicon double inversion procedure produced a 

woodpile photonic crystal with a complete (up to 9% wide) band gap in the infrared,
68

 

region Hermatschweiler et al. showed that silicon inverse woodpile photonic crystals with 

more than a 14% wide complete band gap centered at a wavelength of around 2.5 mm 

can be fabricated by a silicon single inversion method.
62

 Braun, Lewis and coworkers 

used a similar – although independently developed – technique to convert direct ink-

writing-created woodpile templates into germanium photonic crystals with wide (up to 

25%) complete band gaps centered at a wavelength of around 6 mm.
61

  

An interesting – fast, simple, and low-cost – alternative to these rather labor-

intensive routes is colloidal self-assembly.
69-71

 In this bottom-up photonic crystal 

fabrication technique, monodisperse microspheres are deposited onto planar substrates by 

self- or directed assembly in close-packed face-centered cubic or hexagonally close-

packed colloidal crystals (also called artificial opals, since these colloidal crystals closely 
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resemble the microstructure of natural opal gemstones).  Figure 1.7 shows an example of 

synthetic opal where the number of deposited layers of spheres was carefully controlled.  

Similar to the indirect methods described above, these colloidal crystals are then used as 

templates and are infiltrated with an infrared-transparent high-dielectric component. After 

selective removal of the opal template a so-called inverse opal photonic crystal (a close-

packed face-centered-cubic lattice of air spheres in a high dielectric material) is 

obtained.
72

 While inverse opal photonic crystals are less effective (i.e., less efficient in 

affecting and controlling the propagation of light) than diamond-based lattices, it was 

shown that the formation of a complete photonic band gap is possible provided the high-

dielectric material has a refractive index of 3 or higher versus air as the low-dielectric 

component.
73

 Using polycrystalline silicon as the high-dielectric component (with a 

refractive index of 3.2–3.4), John and coworkers
14

 and Norris and coworkers
57

 

successfully fabricated inverse opal photonic crystals with a complete band gap in the 

near infrared region. 

 Compared to the enormous progress achieved in fabricating photonic crystals 

operating in the infrared region, photonic structure engineering in the visible region is far 

less advanced – due mainly to the difficulties in shaping visible light-transparent, high-

dielectric materials into efficient morphologies with periodicities at visible wavelengths. 

Unlike infrared photonic crystals with complete band gaps of up to 20–30% gap-to-mid-

gap ratios,
55-61

 enabled by infrared-transparent materials with refractive indices of 3.2 and 

higher, the lack of visible light-transparent dielectrics with comparable refractive indices 

embosses an enormous challenge for achieving complete band gaps at visible 

wavelengths. 
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 In spite of these challenges, recent technological advances and discoveries have 

provided promising steps forward toward the goal of a synthetic full band gap photonic 

crystal operating in the visible.  While not yet reaching the visible, top-down techniques 

continue to improve.  New self-assembly techniques add variety and control over the 

structures available.
74-76

  Looking for an alternative to very expensive and time 

consuming top-down methods, and seeking to be free from the limits of colloidal self-

assembly, researchers have looked for inspiration from nature.  Biotemplated and 

bioinspired photonics represent two focuses in this effort.  First, natural photonic crystals 

and samples templated from them are being studied to assess their potential usefulness 

and provide insight into experimental structure/photonic property relationships.
15-19, 35

  

Second, the self-assembly of biomolecules in nature is being studied in hopes that once 

understood, they may be mimicked.  Both focuses present significant material chemistry 

and analytical challenges. 

 Many biological photonic structures, including those found on the exoskeleton of 

beetles, are made of chitin
36, 47

 (a biopolymer mixed with a cocktail of proteins) and are 

enclosed in a cuticular scale that is on the order of tens of micrometers in diameter.
34, 77

  

Since chitin has a relatively low refractive index and is autofluorescent, it is not amiable 

to spectroscopic study.  To have experimental access to their otherwise unobtainable 

structures, inorganic oxide materials have been patterned with biological photonic 

crystals as templates using atomic layer deposition,
78-80

 low temperature evaporation 

techniques,
81-83

 and sol-gel chemistry.
84-87

  Atomic layer deposition and evaporation 

techniques produce well-controlled shell-like copies, but require an open structure (such 

as those found on butterflies) and produce mainly shell-like replicas.  Sol-gel chemistry is 
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a flexible alternative, shown to fill structures with even just a small opening.
15-17

  By 

modifying the types of sol-gel compounds used along with their processing parameters, a 

variety of hollow and solid structures may be made.
88

  This flexibility, taken with the 

abundance of natural photonic structures available, has allowed researchers to 

experimentally probe a wide variety of photonic structures that are otherwise unavailable, 

gaining knowledge useful in the future design of photonic crystal systems.  While 

parameters must be optimized for biological photonic crystals coming from different 

species, there is a general sol-gel processing method that is discussed in detail in Chapter 

2.  The biotemplating method consists of removing the scale from the insect’s 

exoskeleton by scraping them along the edge of a glass substrate or razor blade (a process 

that usually breaks them open), pretreating the scales with acid, and sol-gel infiltration 

between two slides.  The biological template can be removed using acid digestion or 

thermal degradation in a muffle furnace.  Depending on the desired outcome, the negative 

copy may be used in the same process again. 

 

Deposition and Evaporation-Based  

Biotemplating Methods 

Low-temperature atomic layer deposition is an excellent method for creating 

inorganic shell-like replica of biological photonic structures.78-80 It combines a 

noncorrosive reaction environment and mild pH conditions with relatively low 

deposition temperatures of around 100-200 °C. Furthermore, since the infiltrated 

compound is formed by a layer-by-layer atomic deposition process, the degree of 

infiltration can easily be tuned by controlling deposition cycles. The precursors used 
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are in general gaseous compounds and therefore readily infiltrate even complex 

three-dimensional frameworks as long as the internal structure is fully accessible. 

Since the majority of photonic structures found in the wings of butterflies are open 

frameworks and require no or very little preinfiltration cutting, they are the 

templates of choice for most successful atomic layer deposition-based bioreplication 

attempts. 

For example, Wang and co-workers created alumina replicas of the photonic 

structure of wing scales from the butterfly Morpho peleides by atomic layer 

deposition.78 Using a low-temperature atomic layer deposition process at 100 °C and 

trimethyl aluminum (Al(CH3)3) and water as precursor sources, the biopolymeric 

photonic structure of M. peleides was coated with a layer of amorphous alumina. The 

thickness of the alumina coating was gradually increased by about 10 nanometer 

steps until a final thickness of 40 nanometers was achieved. Characteristic of 

photonic crystal structures, the infiltration process can be monitored and precisely 

controlled by analyzing the color of the reflected light. As shown in Figure 1.8a, a 

red-shift (from blue to pink) of the reflected light was observed due to a change in 

periodicity and effective refractive index of the composite as the thickness of the 

coating increased. When a desired layer thickness was obtained, the 

biopolymeric/alumina composite was heated to 800 °C in air. Under these 

conditions, the butterfly template completely decomposes by pyrolysis and the 

resulting structure is a shell-like copy of the original M. peleides photonic lattice 

made out of polycrystalline alumina. Scanning electron microscopy images are given 

in Figure 1.8 and show that even nanoscale structural features of the original 
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biotemplate were preserved by this process. Furthermore, optical reflectance 

spectroscopy studies revealed alumina replica features very similar to that of the 

original butterfly scales in terms of reflection peak wavelength position and shape. 

Gaillot et al. developed a similar atomic layer deposition route to fabricate 

biotemplated organic-inorganic composite photonic crystal structures.79 In their 

approach, the photonic scales covering the wings of the green swallowtail butterfly 

Papilio blumei were used as biological templates. The scale’s exterior and the 

interior photonic structure were covered with titania via low-temperature atomic 

layer deposition. The intra-scale deposition of titania was enabled by diffusion and 

subsequent deposition of the gaseous titania precursors through surface cracks 

created by razor blades or sharp tips. Gaillot et al. also conducted detailed structural 

and optical studies on these organic-inorganic replica types.79 Experimental results 

were compared to theoretical modeling and band structure calculations and 

provided valuable insights regarding the ability to tune the optical properties of 

these photonic crystals through slight variations of the deposited high-dielectric 

compound. In addition, analyses of the properties of these oxide-replica butterfly 

wings indirectly provided new insights into their structural complexity; with 

various intersecting nano-channels and connected chambers in addition to the 

photonic crystal structure. 

A successfully applied evaporation-based biotemplating method is the so-

called conformal-evaporated-film-by-rotation technique developed by Lakhtakia 

and co-workers.81-83 This method, which evolved from the oblique angle deposition 

technique, combines thermal evaporation with simultaneous substrate tilting and 
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rotation in a low-pressure chamber. Since the reaction chamber pressure is in the 

microtorr regime, the evaporation/deposition process can be performed at low 

temperatures and under a noncorrosive environment, providing excellent 

conditions for replicating sensitive biological structures. Additionally, the high-

speed rotation of the biological templates during the evaporation process facilitates 

formation of a homogeneous and dense inorganic film, even on highly curved and 

structured surfaces. Using this technique, the structures found in the wings of 

various butterflies were successfully replicated, including micro- and nanometer 

features of the photonic framework.81, 83 

 

Sol-Gel Chemistry-Based Biotemplating Methods 

Sol-gel chemistry is an interesting alternative to deposition and evaporation 

methods. While the latter allow to precisely control the degree of infiltration on an 

atomic scale, sol-gel methods are attractive for their simplicity enabled by flexible 

processing parameters.89 In addition to being simple, fast and inexpensive, sol-gel 

methods extend the variety of accessible templated structures from shell-like 

positive replicas usually obtained by deposition methods to solid negative copies 

(inverse replicas) and further to solid positive copies (true replicas). However, to 

produce bioreplicas of high quality, some inherent problems of sol-gel chemistry 

have to be overcome. The most important of which are structural shrinkage, crack-

formation and introduction of nanoporosity during the various sol-gel process steps, 

such as solvent evaporation, framework solidification and heat-induced 

crystallization. Moreover, since these steps depend also on the nature of the 
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biological template (e.g., geometry and accessibility of the photonic structure, 

mechanical stability of the framework, hydrophilicity of the biopolymeric 

compounds), the sol-gel parameters often have to be fine-tuned and optimized on a 

case-by-case basis. As will be discussed in the following, among sol-gel reactions 

certain infiltration and processing conditions are of particular importance: the 

precursor components and solvents, the sol composition and concentration, the post 

infiltration conditions such as drying time and humidity during the gelation process, 

and temperature and time of heat treatment.  

Similar to evaporation and deposition approaches, the majority of sol-gel 

biotemplation attempts have focused on replicating the open-framework photonic 

structures found in the wing scales of various colored butterflies. For example, 

Zhang and co-workers created titanium and zinc oxide replicas from the wing scale’s 

of the butterflies Papilio paris and Thaumantis diores.84-85 The scales were infiltrated 

with ethanol solutions of titanium or zinc salts followed by heat treatment at 500 °C 

in air to induce crystallization of the oxide framework and removal of the 

biopolymeric template. Despite structural shrinkage during the heat-based 

framework densification-crystallization treatment, the replicated materials 

displayed optical band structure features in the blue-green region and could be used 

for solar cell and light emission applications. For example, titania replica were used 

as photoanodes with enhanced light harvesting efficiencies under visible-light 

illumination.84 On the other hand, the patchy blue and black colored wing scales of P. 

paris replicated into zinc oxide have interesting room-temperature 

cathodoluminescence properties.85 The same group also synthesized copper-doped 
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tungsten oxide replica of the wing scales of the butterfly Euploea mulciber by a 

similar sol-gel method (Figure 1.9). These replica showed enhanced gas sensing 

ability with a high selectivity for trimethylamine at concentrations as low as 0.5 

ppm at 290 °C.87 

An interesting variation of sol-gel biotemplating is the incorporation of 

sonochemistry reported by Zhu et al.86 In this method, the internal biopolymeric 

nanostructure of blue-colored wings from Morpho butterflies was impregnated with 

an ethanol-water-based metal precursor solution followed by high-intensity ultra-

sonication for several hours at room temperature. After sonication, the composites 

were heat-treated to remove the biopolymeric template, leaving behind replicas 

made from silica, titania and tin dioxide. All of the replicated samples possessed 

photonic nanostructures, which highly preserved the original butterfly wing 

structures and displayed optical reflectance features in the visible. Also in this work, 

it was found the nanocrystalline replica could be used as a gas sensor. For example, 

tin dioxide replicas displayed high sensitivity for ethanol vapor with a fast response 

time (8 seconds) and a short recovery time (15 seconds). 

In addition to replicating the open-scale structures of butterfly wings, Bartl 

and co-workers showed sol-gel chemistry is also very effective for templating 

photonic lattices enclosed in the biopolymeric shells typically found in beetle 

exoskeletons.15-16 Two fabrication steps were found to be critically important: 

precursor infiltration and complete removal of the entire biopolymeric template 

(interior photonic structure and surrounding shell). For the infiltration step, the 

liquid nature of sol-gel precursor has proven very useful. Small openings of the 
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scale, which can be created by cutting with a razor blade, are sufficient to infiltrate 

the entire internal photonic framework with a liquid silica-based precursor by 

capillary forces. Regarding the template removal, the commonly used pyrolysis 

method (heat treatment under oxidative conditions at temperatures between 300 

and 500 °C) failed to produce high-fidelity replica. While this method is very 

effective in complete removal of the biopolymeric template, it also causes significant 

structural damage and depending on the thickness of the surrounding shell can lead 

to the complete destruction of the interior photonic framework. 

To overcome this obstacle, Galusha et al. developed a low-temperature 

biopolymer acid-etching technique.16 Treating the infiltrated composite with a 

mixture of concentrated nitric and perchloric acid led to the complete removal of 

the biological template while greatly reducing cracking and structural damage of the 

silica-based replica framework. Furthermore, since the acid treatment does not 

require high temperatures, shrinkage of the replicated framework is greatly 

reduced as compared to pyrolysis methods and can be as low as 5%. The same 

authors also showed the structural stability of the replica is further improved by 

using a hybrid organic/inorganic silica sol-gel precursor. The organic component of 

this SBA-type hybrid material, originally developed by the Stucky group,90 provides 

some structural flexibility and aids in releasing structural stresses during the 

drying/gelation process. These refined sol-gel biotemplating conditions with 

reduced cracking and lattice shrinkage are promising steps towards photonic 

crystals with finely tuned band structure properties. In particular, keeping lattice 

shrinkage (which is accompanied by a frequency-blue-shift of the photonic band 
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structure features) to a minimum is important for applications that require band 

gaps at particular frequency ranges in the visible.  

The final part of this chapter will discuss how such optimized sol-gel 

methods can be applied towards the fabrication of photonic crystals with a complete 

band gap at visible frequencies—a type of optical material that is still not achievable 

by any other engineering technique. 

 Experimentally evaluating the quality of biologically derived photonic crystals is 

a challenge due to their strong deviations from the idealities of photonic crystal theory 

which assume an infinite, defect free, surface free, and isotropic structure.  Due to their 

small size, surfaces are a significant part of biological photonic crystals.  Focused ion 

beam analysis has revealed that within a given scale, pixilated crystal domains exist 

oriented in different directions,
35

 and the interfaces between these domains are defect 

planes.  Quantifying the effect these nonidealities have on photonic crystal properties is 

currently being researched.  However, even with the described defects, unprecedented 

photonic effects have been measured in biotemplated samples,
18

 an encouraging result 

that has provided motivation and insight into future photonic crystal work. 

 Four techniques are typically used to characterize biotemplated photonic crystals.  

Microreflectance spectroscopy provides a first qualitative look at photonic crystal quality.  

Since photonic band gaps prevent frequency ranges of light from propagating within a 

photonic crystal in one or more directions, incident light within the band gap range is 

reflected.  Scanning electron microscopy (SEM) of crushed samples provides the most 

direct measurement.  From SEM images, the lattice constant, structural feature sizes, and 

approximate filling fraction are determined.  Using SEM measurements, a three-
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dimensional computer model of the structure is created that can be used with MPB 

software to calculate the photonic bands of an idealized version of the structure.  The 

same computer model is used with house-written software in conjunction with MPB to 

calculate the density of optical states.  The density of optical states is essentially a relative 

count of the number of optical modes available within a photonic crystal as a function of 

frequency.
73, 91

  An example of calculated density of optical states using our method is 

included as Figure 1.10. For comparison, an approximation of the quadratic density of 

optical states behavior for a homogenous material with comparable effective dielectric is 

also included.  Since the rate of spontaneous emission is proportional to the density of 

optical states according to Fermi’s Golden Rule,
92

 light sources embedded within 

photonic crystals emitting with a frequency in the range of reduced density of optical 

states exhibit an inhibition of spontaneous emission.  The effect density of optical states 

has on spontaneous emission was experimentally verified to an unprecedented magnitude 

using quantum dots as the light source, a key result of this thesis that highlights the 

quality, flexibility, and future utility of diamond based photonic crystal structures.  While 

researchers have yet been able to produce a fully synthetic diamond-lattice photonic 

crystal in the visible, the Bartl group has had access materials derived from biological 

systems that enabled these experiments thanks to the progress made in biotemplating 

methods. 
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Figure 1.1. The mineralized skeleton of Euplectella sp. shown at larger 

magnifications from a to i. (a) Photograph of the entire skeleton, scale bar 1 cm. (b) 

Fragment of the cage showing the square grid lattice with cross beams, scale bar 5 

mm. (c) SEM showing that each beam is composed of bundled spicules, scale bar 

100 μm. (d) SEM of broken individual spicule revealing its internal structure, scale 

bar 20 μm. (e) Partially HF etched junction area showing that the lattice is cemented 

with silica, scale bar 25 μm. (f) Contrast enhanced SEM revealing the internal 

organization of the spicules, scale bar 10 μm. (g) SEM of individual fiber in spicule, 

scale bar 5 μm. (h)  SEM of a fractured fiber layer showing organic interlayer glue, 

scale bar 1 μm. (i) High resolution SEM of the biosilica surface revealing its 

consolidated nanoparticle nature, scale bar 500 nm. Adapted from Ref. 24, reprinted 

with permission from AAAS. 
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Figure 1.2 Photographs of structural colors in (a) the wings of the butterfly Papilio 

ulysses (adapted from ref. 38—reproduced by permission of The Royal Society of 

Chemistry http://dx.doi.org/10.1098/rsif.2008.0353.focus), (b) the skin of the cuttlefish 

Sepia apama (adapted from ref. 27—reproduced by permission of The Royal Society of 

Chemistry http://dx.doi.org/10.1098/rsif.2008.0366.focus), (c) the feathers of the yellow-

breasted chat Icteria virens (adapted from ref. 38—reproduced by permission of The 

Royal Society of Chemistry http://dx.doi.org/10.1098/rsif.2008.0353.focus), and (d) the 

exoskeleton of the beetle Pachyrhynchus moniliferus (adapted from ref. 16—reproduced 

by permission of The Royal Society of Chemistry http://dx.doi.org/0.1039/B913217A). 
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Figure 1.3 Structural coloration in cephalopod skin. (a) Skin in cross section showing the 

location of chromatophores (ch.) and structural reflectors (ir., iridophores; leuc., 

leucophores) in cephalopods. (b) Close-up of cuttlefish skin (Sepia officinalis) showing 

chromatophores (yellow, expanded; dark brown, partially retracted; orange, retracted) 

and white leucophores. Scale bar, 1 mm. (c) Brown, red and yellow chromatophores of 

squid (L. pealeii). Scale bar, 1 mm. (d) Combination of chromatophores and iridophores 

to illustrate the range of colours. Scale bar, 1 mm. (e) Electron micrograph showing 

iridophore plates (ir.) and spherical leucophores (leuc.) of cuttlefish (S. officinalis) skin. 

Scale bar, 1 mm.  Reproduced with permission from reference 27. 
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Figure 1.4 Images of structural color in the weevil L. Augustus. (a) Photograph of the 

entire insect. (b) Optical microscope image of individual scales found on the insects 

exoskeleton. (c) SEM image showing the cut edge of a single scale. (d) Detailed SEM of 

a cross-sectional region of a scale. Reprinted from ref 35 with permission from the 

American Physical Society. 



29 
 

 
 

  

Figure 1.5 Examples of various structures found in insects.  a, b) Transmission 

electron microscopy images of the photonic wing scale structure from the 

butterflies Parides sesostris (a) and Teinopalpus imperialis (b). Adapted from 

reference 51 – reproduced by permission of The Royal Society of Chemistry 

http://dx.doi.org/10.1098/rsif.2008.0353.focus. c, d, e) Scanning electron 

microscopy images of the photonic exoskeleton structure of the weevils Eupholus 

schoenherri, Pachyrhynchus moniliferus, and Eudiagogus pulcher, respectively. f) 

Calculated dielectric function of a diamond-based lattice (showing three orthogonal 

planes) isomorphous with that found in the weevil scales (air: dark; biopolymer: 

light). Adapted from reference 16 – reproduced by permission of The Royal 

Society of Chemistry http://dx.doi.org/10.1039/B913217A. 
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Figure 1.6 The modes associated with the photonic band gap in a one 

dimensional photonic crystal consisting of alternating layers of high and low 

dielectric, at k = π/a.  The band gap arises due to the energy difference between 

the case where the electric field is concentrated in the high dielectric and the 

case where the electric field is concentrated in the low dielectric. Reprinted 

from ref 54 with permission from Princeton University Press. 
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Figure 1.7 Synthetic opal photonic crystal and accompanying reflections.  (a) IR 

reflection spectra from 3 colloidal photonic crystals prepared with varying 

numbers of layers from a 0.8% vol solution of spheres. (b) SEM of the top surface 

of the 71 layer crystal, having 73% reflection. Reprinted with permission from ref 

71. Copyright (2006) American Chemical Society. 
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Figure 1.8 Example of carefully controlled bioreplication. a) Optical microscope 

image of the alumina coated M. peleides butterfly wing scales; color changes 

from original blue to pink. b) Scanning electron microscopy image of alumina 

replicas of butterfly wing scales. (c) Energy dispersive X-ray spectrum of alumina 

replicas shown in part b. d) Higher magnification scanning electron microscopy 

image of alumina replicas of butterfly wing scales and two broken rib tips (e). 

Reproduced with permission from reference 78. Copyright 2006 American 

Chemical Society. 
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Figure 1.9 Top-view (a, b) and cross-view (c-e) scanning electron 

microscopy images of copper-doped tungsten oxide replicas of wing scales 

of the butterfly E. mulciber. f) Energy dispersive X-ray spectrum of the 

samples, revealing the presence of tungsten, oxygen and copper within the 

structure. Adapted from reference 87 – reproduced by permission of The 

Royal Society of Chemistry http://dx.doi.org/10.1039/C0JM02113J. 



34 
 

 
 

 

  

Figure 1.10 Example of calculated density of optical states for a FCC lattice of air 

cylinders surrounded by a material with dielectric of 2.4.  The dashed line showing 

quadratic behavior represents the density of optical states in a homogenous medium 

having a dielectric equal to the effective dielectric of the structure as a whole. 
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CHAPTER 2 

 

BIOTEMPLATING ROUTES TO THREE-DIMENSIONAL  

PHOTONIC CRYSTALS 

 

Introduction 

Nature produces many interesting examples of biological photonic crystals 

operating in the visible region. These intricate structures are responsible for many optical 

effects and colors of marine animals, birds and insects, and offer a palette of lattice 

structures to choose from,
1-13

 including the most sought-after diamond-based lattices that 

were recently discovered by the Bartl group in exoskeleton scales of certain weevils.
14-15

 

Unfortunately, these biopolymeric photonic crystal structures have limited value for 

direct experimental use because they autofluoresce, are mechanically unstable and have a 

relatively low refractive index. However, they are valuable templates and can be used to 

create replicas out of inorganic compounds.
10, 12

 

With the discovery of diamond-based photonic crystal lattices in certain 

weevils,
14-15

 a door to exciting new possibilities in photonic band gap research was 

opened. For example, digital modeling and band structure calculations showed the 

diamond-based lattice found in the weevil Lamprocyphus augustus possesses a complete 

photonic band gap in the green region of the electromagnetic spectrum when fabricated 

out of a dielectric compound with a refractive index of 2.1 or higher.
16

  These 
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calculations also revealed that a complete band gap only opens for a positive replica of 

the beetle’s lattice, eliminating conventional single-infiltration sol-gel processes that only 

result in the formation of inverse copies of the original template. 

These calculations by a graduate student in the Bartl group (Jeremy Galusha) 

were very promising. In response to these calculations, I assisted him in the development 

of a double-imprint sol-gel biotemplation method to convert the bio-structures into high-

dielectric replicas (Figure 2.1).
16

 After Jeremy left, I took over the project and searched 

for ways to expand the range of possible inorganic replicas that can be fabricated from 

one type of biotemplate. These studies were supported by the fact that even certain partial 

band gaps in photonic crystals are still capable of controlling light in important ways. In 

the following, it will be shown how sol-gel bioreplication can be tuned to yield several 

different inorganic replicas from one particular biological photonic crystal structure. For 

example, by modifying the sol-gel precursor composition and/or the processing 

parameters used, four different types of replica photonic crystals can be created from one 

type of biotemplate with a diamond-based lattice. These replicas include negative solid 

replicas (solid inverse structures) made out of silica and titania, and negative hollow 

replicas (hollow inverse structures) made out of silica and titania; an additional fifth 

structure, a positive solid replica made out of titania can be made by using the solid 

inverse silica structure as a sacrificial template.
17

 All these structures were experimentally 

investigated by optical spectroscopy and scanning electron microscopy (SEM). Figure 2.2 

outlines the general biotemplating method used for inverse-type structures. 
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Bioreplication Processes 

The insects used in this study as biotemplates were the weevils Lamprocyphus 

augustus, Eupholus schoenherri and Pachyrhynchus moniliferus, and were obtained from 

―Bugmaniac,‖ Diepenbeek, Belgium (www.thebugmaniac.be). While each of these 

weevils has scales containing isomorphic diamond-based photonic lattice structures of air 

cylinders surrounded by the biopolymer chitin, their crystal lattice constants differ, 

resulting in photonic stop gaps and thus optical reflection peaks at various wavelength 

positions between 500 and 700 nm.
15

  

For replication, weevil scales were scraped off the exoskeleton of the insect and 

sandwiched between two clean glass slides. In all procedures, except the silica solid 

inverse replicas used in the double-imprint, the scales were pretreated with 3:1 

HNO3/HClO4 to remove the thin waxy layer coating the biopolymer structure, followed 

by soaking in water and then ethanol for at least 1 h at each stage as shown in Figure 2.2. 

The pretreated samples were thoroughly dried at 50 °C prior to sol–gel infiltration.  

Following pretreatment the processing parameters were varied to produce different 

structures (see Figures 2.2 and 2.3).
16-18

 

Below, a detailed description of the sol-gel solution parameters and processing 

conditions are presented for the fabrication of five different inorganic replicas from one 

biological template. 

 

Silica Negative Solid Replica  

A single scale was removed from L. augustus  and infiltrated by capillary forces 

with an SBA-type
19

 hybrid organic/inorganic precursor solution. SBA-type hybrid silica 
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was used as the sol compound due to its superior structural properties (i.e., minimized 

crack-formation and framework collapse) upon drying compared to pure silica.
20

  The 

silica sol was prepared by hydrolyzing tetraethylorthosilicate (5.6 mL, Aldrich) in 0.1 M 

HCl (1.9 mL) followed by the addition of the block-copolymer Pluronic® F127 (1.0 g) 

dissolved in ethanol (10 mL). After a short drying-period the biopolymeric template was 

removed by HNO3/HClO4 acid-etching. The silica based imprint was rinsed with DI 

water and placed onto a glass slide. 

 

Silica Negative Hollow Replica 

Hollow silica shell structures (hollow positive silica replicas) were made in a 

similar manner to silica inverse structures.  Sol-gel solution was made using the 

procedure above, except that Pluronic F127 was omitted.  The pretreated scales were 

infiltrated with sol-gel solution and allowed to dry for 3 h before being placed in a 100 C 

oven for 1 h, after which the slides were separated.  The chitin template was removed by 

thermal degradation in air by heating the sample slowly at 2 °C/min to 400 °C where it 

was held for 3 h. 

 

Titania Negative Solid Replica 

Solid titania inverse structures (negative titania replicas) were prepared by 

infiltrating pretreated scales with titania solution (2 mL TEOT, 1.4 mL conc. HCl, and 2 

mL ethanol).  After a 24 h drying period, the slides were separated and the chitin template 

was removed by slowly heating the samples at 2 C/min in a muffle furnace to 450 C, 

and holding the samples at that temperature for 3 h. 
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Titania Negative Hollow Replica 

Hollow titania shell structures (hollow positive titania replicas) were prepared by 

slightly modifying the titania sol-gel solution (2 mL TEOT, 0.4 mL conc. HCl, 1.6 mL 

TFA).  The same infiltration, drying, and template remove procedure was used as in the 

fabrication procedure of negative titania replicas. 

 

Titania Positive Solid Replica.  

To produce positive replica, a double-imprint biotemplating route was used.
16

   In 

the first step of this route an inverse of the original biopolymeric beetle photonic structure 

was created via the silica-based sol-gel chemistry route explained above. This inverse 

was subsequently used as an intermediary template for creating a titania replica of the 

original diamond-based structure. Here, the silica framework was infiltrated with an acid-

stabilized liquid titania sol-gel precursor by capillary forces.  The titania sol was prepared 

by hydrolyzing titanium ethoxide (2 mL, Aldrich) in a mixture of concentrated 

trifluoroacetic acid (1.6 mL) and concentrated HCl (0.4 mL) for 20 min after which 

ethanol (2 mL) was added.  Infiltration was followed by heating of the silica/titania 

composite at 500 C for 2 h to induce titania nano-crystallization. To ensure a highly 

crystalline, dense titania framework, the infiltration-crystallization cycle was repeated. In 

this way, possible cavities and cracks formed due to shrinkage in the initial heat-

treatment were filled with titania.  Repeated infiltration-crystallization was also useful to 

tune the volume fraction of infiltrated titania and we found that between one and three 

successive cycles gave the best results. Finally, the intermediary silica-based template 
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was removed by HF acid-etching, producing a structurally fine-tuned titania replica of the 

beetle’s diamond-based photonic crystal with lattice periodicities at visible wavelengths. 

 

Characterization Studies 

Optical microreflectance data were collected from each of the structures using a 

Nikon ME600 light microscope equipped with a 20× objective (N.A. 0.45), which was 

fiber-coupled to an Ocean Optics USB4000 vis/NIR spectrometer.  The lattice structures 

of each of the replicas were determined by SEM imaging using an FEI NovaNano 

microscope.  For SEM imaging, inorganic biotemplated structures were moved to a clean 

substrate using a statically charged razor blade.  The scales were removed from the blade 

by touching it to a small droplet of ethanol on the substrate.  After transfer, the structures 

were crushed to reveal the interior structure.  The pieces were collected on a piece of 

conductive tape, mounted to an SEM stub, and coated with a thin layer of gold for 

imaging.  

 

Results and Discussion 

Using biological scales as templates was a unique materials challenge for two 

reasons: the natural variation in surface chemistry and the physical size of the scales.  It 

was found that while the key structural features were isomorphic across several species of 

weevils, the interaction of titania and silica sol-gels with the biopolymeric frameworks 

varied.  We speculate that this is due to a variation in surface chemistry within the scales.  

Due to these differences across species, sol-gel parameters had to be optimized for each 

insect.  The small physical size of the scales (~30×30 μm) presented difficulties in the 
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handling of the samples.  Work removing, opening, and infiltrating many 100s of scales 

was delicately done with the tip of a razor blade and the help of an optical microscope. 

Some example optical reflectance spectra and SEM images are shown in Figure 

2.4.   Each of the samples has a well-defined reflection peak centered in the wavelength 

range between 500 and 550 nm. While this might seem surprising, given how different 

the structures are, one has to consider that optical reflectance measurements of photonic 

crystals reveal only the existence of at least one photonic stop gap normal to the probe 

direction.  The case of natural photonic crystals is further complicated by the fact that the 

structure contains a pixelated arrangement of crystal directions, meaning that several 

directions are measured at a given time.  Since the crystal directions are pixelated, there 

is no way to experimentally tell if a peak is due to a single stop gap, multiple overlapping 

gaps, or a full photonic band gap.  Additionally, as I will show in the next chapter, in 

inverse opals, a continuum of structural parameters can lead to identical peak positions.  

The issue of characterization of the structural and photonic properties is addressed in 

detail in the following chapter.  The most concrete experimental measurement of 

photonic crystal quality comes from SEM images. 

Hollow silica structures, for example Figure 2.4a, were found in general to be 

thin-walled with excellent uniformity of shell thickness.  It was possible to vary the shell 

thickness to produce structures with walls almost transparent in SEM to thick-walled 

structures by using silica-sol solutions with varying viscosity by adding various amounts 

of ethanol (from 2 to 10 mL).  The assessment of wall thickness is qualitative however, 

because accurate measurements of wall thickness were not possible from SEM images.  
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In spite of their thin wall, silica inverse structures were structurally robust enough to be 

moved using a razor blade without breaking. 

Solid silica structures, for example Figure 2.1 and Figure 2.4b, had a grainier 

texture as was revealed by SEM imaging.  With the inclusion of the polymer F127 into 

the silica precursor sol, the sol-gel recipe above resulted in solid structures even when the 

amount of ethanol ranged from 4 mL to 12 mL.  Using this approach, robust 

mesostructured hybrid silica inverse imprints of the beetle photonic crystal were 

fabricated. The inverse structures have a highly accessible framework with an overall 

shrinkage of the lattice constant of less than 5%.  When less than 4 mL of ethanol was 

added, the silica-sol did not appear to infiltrate the scales completely; possibly due to the 

increased viscosity. 

In comparison to the hollow silica structures, uniform hollow titania structures 

(Figure 2.4c) were considerably more difficult to make.  These structures seemed 

particularly sensitive to the type of scale used and the way the scales were pretreated.  In 

general the experimental parameters were found to vary significantly between scales 

coming from different species (the recipe given above applies to the weevil P. 

moniliferus).  Failed experiments typically resulted in scales with nonuniform hollow 

areas mixed with solid areas, see for example Figure 2.5.  Interestingly, these materials 

exhibited remarkable structural stability.  While the other structures would crack along 

lattice planes when disturbed with a razor, these required much more effort to break open 

so that SEM images could be obtained. 

The solid titania inverse structures (Figure 2.4d) were obtained when TFA was 

omitted from the sol-gel recipe, and occurred over a broader range of parameters 
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compared to the hollow titania inverse structures.  The lattice constant was reduced by 

about 20% in these samples due to shrinkage, however the volume fraction of the solid 

remained about the same as the air fraction in the original scale 40±5%.  These samples 

are the most promising for future spectroscopic studies because their relatively high 

refractive index, estimated from band structure calculations as 2.1±0.1, and low filling 

fraction result in photonic stop gaps that overlap in all but one crystal direction. 

The experimental procedure used in the synthesis of the titania positive replica 

induced titania nano-crystallization, producing a dense polycrystalline anatase titania 

framework with a refractive index of 2.3  0.1.
16

  Jeremy Galusha conducted a range of 

structural and optical characterization studies on the double-imprint titania replica with 

my assistance.
16

 Structural studies were performed by focused ion beam milling and 

scanning electron microscopy imaging, revealing the diamond-based photonic lattice with 

ABC stacked layers of hexagonally ordered air cylinders in a surrounding high-dielectric 

matrix was excellently preserved after the double-templating procedure (Figure 2.6a,b). 

Moreover, shrinkage of the structure was kept below 15%, giving a final lattice constant 

of 366  24 nm and high-dielectric volume fractions between 30% and 40%. The 

corresponding calculated band structure diagram is shown in Figure 2.6c and revealed a 

5% wide (gap-to-mid-gap ratio) complete band gap. The optical properties of the 

diamond-structured titania replica were examined by multidirectional reflectance 

microspectroscopy measurements. Reflectance spectra were recorded normal or slightly 

off-normal to particular crystal axes of the diamond-based lattice. In addition, to cover an 

even larger range of directions, a series of angle-dependent reflectance spectra covering a 

30° range were collected, as shown in Figure 2.7. The obtained series of intensity-
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normalized spectra displayed no significant dependence of the reflectance peak position 

on the recording-angle in accordance with calculations.
16

 

While the structural and optical results of the positive titania replica are extremely 

promising, it was found that synthesis of this structure was challenging having a yield of 

only a few percent.  This yield is perhaps due to the apparent sensitivity of the interaction 

of titania sol with the silica inverse framework.  The second step in the synthesis was 

highly tuned and worked only for a very narrow set of parameters that seem to change 

with seasonal variations in the lab environment, where the indoor humidity in Utah varies 

from ~10% in the winter to up to 50% in the summer.  Although the calculated 5% 

complete photonic band gap for an ideal—surface and defect-free—lattice is most likely 

too narrow to stay open in a real sample.  It was in response to these challenges that I 

explored the other four replica structures described above, which are all accessible 

through a single templating step. 

 

Conclusion 

The simplicity of sol–gel templating and the readily available biological templates 

with lattices not available by current engineering methods make bioreplication the 

method of choice for the fabrication of new photonic crystals operating at visible 

frequencies. We demonstrated the versatility of sol–gel chemistry as a useful tool for 

tuning the lattice type and parameter of replicas obtained from a single biotemplate.  

Hollow and solid inverse silica, hollow and solid inverse titania, and solid titania replica 

structures were made for biological photonic structures taken from a variety of insects.  

While optical reflectance is a useful tool to qualitatively understand a photonic crystal’s 
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properties, a deeper understanding of photonic effects requires a more detailed 

investigation.  Characterization by modeling photonic crystal structures – using structural 

parameters measured from SEM images – in conjunction with photonic band structure 

and density of optical states calculations will provide important insight into the potential 

of these structures. These types of modeling and characterization studies will be 

described in detail in the following chapter.  
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Figure 2.1 Illustration of the double-imprint sol-gel biotemplating route for 

converting photonic scales of the weevil L. augustus into high-dielectric titania 

replica. a) Weevil L. augustus and its green colored photonic scales (inset). b, c, 

d) Scanning electron microscopy images of a cross-sectional views of b) the 

original biopolymeric photonic structure, c) the inverse structure made of hybrid 

silica and d) the titania replica templated from the intermediary hybrid silica 

structure. Scale bars are 200 μm (a) and 1 μm (b, c, d). Adapted from 16, 

Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission. 

a b 

d

c
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Figure 2.2 Schematic of sol-gel biotemplating process.  Exoskeletal scales are 

scraped onto a slide, breaking them open.  The scales are sandwiched between 

another slide while they are treated with acid, cleaned, and infiltrated with sol-

gel.  The cuticular scale is removed from the chitin/sol-gel composite by acid 

etching or thermal degradation.  Inset SEM images are of silica shell structure 

(top) and silica inverse structure (bottom). 
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Figure 2.3 Illustration of the variety of structures available from a single template.  

(Left) SEM image of the biopolymeric photonic crystal found in the weevil 

Lamprocyphus augustus (inset). (Right) Schematic showing the variety of replica 

structures accessible from a single biotemplate via sol–gel infiltration chemistry.  

Reprinted from reference 17, with permission from Elsevier. 
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Figure 2.4 Example SEM images and reflections from a variety of structures produced.  

Optical reflection spectra of (a) a silica hollow inverse replica, (b) a silica solid inverse 

replica, (c) a titania hollow inverse replica and (d) a titania solid inverse replica. Insets 

show the corresponding SEM images. Scale bars in (a), (b) and (d) are 500 nm, the scale 

bar in (c) is 2 μm, and the base of the inset in (c) is 750 nm.  Reprinted from reference 17, 

with permission from Elsevier. 
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Figure 2.5  Hollow/solid composite titania inverse structure.  This type of structure, 

with some areas clearly hollow and others clearly solid was found over a broad range 

of bioreplication parameters. 
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Figure 2.6 a) Scanning electron microscopy cross-sectional view of a 

biotemplated diamond-based titania photonic crystal lattice. b) Tilted view 

of the same titania structure. c) Corresponding calculated band-structure 

diagram. The complete photonic band gap between the second and third 

band is indicated by a gray rectangle. Scale bars in (a) and (b) are 1 μm. 

Adapted from 16, Copyright Wiley-VCH Verlag GmbH & Co. KGaA. 

Reproduced with permission. 
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Figure 2.7 Reflection measurements spanning a 30° range of angles collected from a 

diamond structured titania replica.  The black line is normal incidence, the blue is 

−15° off normal, and the red line is +15° off normal.  Normalized plots are shown in 

the inset, highlighting their almost identical reflection peak positions.  Adapted from 

16, Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with 

permission. 
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CHAPTER 3 

 

METHODS FOR THE CHARACTERIZATION OF PHOTONIC CRYSTALS 

 

Introduction 

The idea of photonic crystals was initially developed purely as a theoretical 

concept.
1-2

 Therefore, predicted properties of photonic crystals were based on ideal 

structures of infinite size, with no defects, and homogeneous composition.
3-7

 These 

models, however, are in stark contrast to real photonic crystal samples.
8-19

 Naturally, real 

photonic crystals are of finite size and thus are characterized by bulk and surface 

properties. Furthermore, no real photonic crystal possesses a perfect lattice (i.e., point, 

line and plane lattice defects need to be considered) or is built up by a framework with 

perfectly homogeneous composition and interface. Unfortunately, these differences 

between ideal and real photonic crystal structures were not always taken into 

consideration in early experimental characterization studies of real samples.
20-21

 This led 

to several unfortunate misconceptions and incorrect claims of complete and partial 

photonic band gaps. 

Even today, some 25 years after the first conceptualization of photonic crystals, 

researchers are still adapting to new findings and challenges dealing with the correct 

characterization of photonic crystals.
22-24

  Questions regarding what makes a ―good‖ 

photonic crystal are still debated in the literature.  The role of nonidealities in photonic 
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crystal structures is not completely resolved, though the issue has grown more important 

as creative new ways to produce nonideal photonic crystals are being discovered in 

contrast to the highly controlled photonic crystals produced using top-down synthetic 

methods.
25-27

 Initially, a lot of weight was placed on a photonic crystal’s reflection 

properties.  However, as understanding of photonic crystals has matured, it has become 

clear that these measurements have serious limitations. Many of these will be discussed 

below in the context of a photonic crystal model system, inverse opals.  The most 

meaningful characterizations of photonic crystals rely on a combination of measurements 

from scanning electron microscopy (SEM) images, optical reflection spectroscopy, and 

various modeling and theoretical studies.  In this chapter, I will explain how optical 

reflection spectroscopy measurements are made, and how some of the limitations of these 

measurements are addressed.  The process of modeling a photonic crystal from SEM 

images, calculating its photonic band structure diagram, and using this information in 

connection with reflection measurements will be described.  Finally the limitations of the 

band structure diagrams will be discussed.  

 

Optical Reflection Measurements and  

Photonic Crystal Properties 

One of the core ideas of photonic band structure theory is that within a photonic 

crystal there can exist certain frequency ranges for which light is classically forbidden to 

propagate in specific directions. These frequency ranges are called stop gaps, a one-

directional band gap.  If there exists a range of frequencies for which light propagation is 

forbidden over all directions, the crystal is said to have a full (or complete) photonic band 
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gap.  A full photonic band gap is a cumulative effect, resulting from stop gaps in all 

directions where the frequency ranges overlap.  An important consequence of optical stop 

gaps is that if broadband light is incident on a photonic crystal in the direction of a 

photonic stop gap, then the frequency range of light forbidden by the gap will be reflected 

from the crystal, due to constructive interference.  In the case of a full photonic band gap, 

light would be reflected over this frequency range regardless of the angle of incidence.
28

  

Optical reflection spectroscopy is therefore a valuable technique to study photonic 

crystals: In theory, it can give information about the frequency ranges in which stop gaps 

are present and, if the crystal orientation is known, also about the directional position of 

these stop gaps. 

Optical reflection measurements are typically conducted by measuring the 

intensity of reflected light from the sample in reference to an efficient broadband 

reflector.  Since the samples are often very small and are not completely homogeneous 

over large areas, reflection measurements are generally done using a microscope. In 

addition, a pinhole can be placed at the position of the image plane to isolate small areas 

of the sample and study defects and irregularities by scanning the sample surface.  A 

schematic diagram of the reflectance measurement setup used in this thesis is shown in 

Figure 3.1.  White light was focused onto the sample surface or into the sample using a 

20× objective (N.A. 0.45). the same objective was also used to collect the reflected light.  

The area of image measured from the objective was narrowed using a pinhole or an 

adjustable aperture positioned in the image plane. Light passing the pinhole/aperture is 

then fiber-coupled into an Ocean Optics USB4000 vis/NIR spectrometer and analyzed. A 
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high-reflectance broadband mirror is used as standard. Using this set-up, the probed area 

of the photonic crystal samples was around 10 μm
2
. 

As mentioned, early characterization studies of photonic crystals relied heavily on 

optical reflectance measurements as an indirect measurement of photonic band gaps. The 

idea was very simple: By measuring reflections over a range of angles, various stop gaps 

can be probed. If stop gaps in all directions overlap in a certain frequency range, a 

complete band gap must be present in the photonic crystal. However, the complications 

in real samples arise from surface effects (surface-guided modes and random light 

scattering at the photonic crystal surface), exact sample positioning to ensure that ALL 

directions are probed, and the fact that light focused by a lens/objective is not a perfect 

plane wave but has a certain diffraction cone.
29-31

  The interpretation of experimentally 

obtained optical reflection bands is further complicated by the fact that detailed structural 

parameters of a given real photonic crystal sample are often unknown; for example, exact 

refractive index of the high-dielectric framework, filling fractions of the dielectrics, 

crystal lattice constants and shape of the lattice objects (i.e., spherical, cylindrical, oblong 

etc.). If more than one structural parameter of a photonic crystal is unknown or known 

only within a certain range, then there exist many possible combinations of lattice types 

and dielectric properties that can give rise to an observed reflection peak. In the following 

section the limitations of optical reflection measurements to determine the band structure 

properties of a photonic crystal will be discussed in the context of a well know photonic 

crystal example: inverse opals—a face centered cubic lattice of closed-packed air spheres 

in a high-dielectric matrix. 
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Challenges and Limitations of Optical Reflection Measurements 

According to Bragg’s law applied to inverse opal photonic crystals, three 

structural properties determine the peak wavelength of light reflected by a photonic 

crystal: the distance between repeating units in the probed direction, the refractive indices 

of the dielectric compounds building up the photonic crystals, and their respective filling 

fractions. The lattice structure of most photonic crystals is composed of only two 

different dielectrics: a framework of a high-dielectric compound surrounded by air (the 

low-dielectric compound). In this case, Bragg’s law is given as:  

(3.1)         √      (   )    
          

Here, λmax is the wavelength position of the optical reflection peak, d is the interlayer 

spacing in the probed direction, f is the high-dielectric filling fraction, ns is the high-

dielectric refractive index, nair is the refractive index of air (nair = 1), and neff is the 

effective refractive index of the composite structure. 

 When inverse opals are made from a synthetic opal template using sol-gel 

chemistry, two of these parameters (the refractive index and filling fraction) are known 

only within a relatively broad range.  This is because when sol-gel chemistry is used to 

make an inverse opal photonic crystal there are generally voids that can introduce 

significant uncertainty in the structure’s filling fraction.  Figure 3.2 shows an SEM image 

of an example titania inverse opal.  While geometric arguments would make the solid 

volume fraction of an inverse-opal 26%, it is apparent that the volume fraction is reduced 

by holes connecting the air-spheres and voids (see the contrast enhanced inset of Figure 

3.2).  While the contribution that interconnecting holes have to the volume fraction is 

easily approximated in calculations, the contribution of the voids is more difficult.  The 
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volume occupied by the voids in between spheres can be found if the structure is modeled 

as if the air spheres are coated with an interconnected shell of a solid, but the void 

volume is highly sensitive to the thickness of the solid shell and the shell thickness can 

only be approximated from SEM images. 

The refractive index also has a degree of uncertainty because the inherent porosity 

of solids produced by sol-gel chemistry is often known to only a certain degree. Since the 

refractive index of three-dimensional frameworks such as those in photonic crystals 

cannot be measured directly, one relies on ellipsometry measurements on thin films; 

however, it is not established that the refractive index of a sol-gel compound is 

independent of its processing method (thin film dip-coating vs. templating/casting). The 

combined uncertainty of these two parameters, the filling fraction and refractive index, 

leads to a situation where there are many combinations that agree with reflection 

measurements. 

 

Photonic Band Structure Diagrams 

The limitations of reflection measurements are partially addressed by going 

beyond Bragg’s law to a higher level of theory in understanding a photonic crystal’s 

properties.  As described in Chapter 1, the directionally dependent optical modes inside a 

photonic crystal may be found by casting Maxwell’s equations as an eigenvalue 

problem.
28

  These calculations can be executed for a digitally modeled structure in three 

dimensions using MIT’s photonic bands software package (MPB).
32

  MPB was written 

by Joannopoulos and coworkers and is offered as open source to the photonic crystal 

community (http://ab-initio.mit.edu/mpb).  It is a powerful tool for the theoretical 
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analysis of photonic crystal structures with the built in capability to incorporate complex 

geometric structures, calculate three dimensional electronic energy density plots, and 

maximize photonic band gaps over a set of parameters.  It is easy to interface with MPB 

using scripts, so that MPB processes can be used in connection with other programs as 

was done to calculate the density of optical states, which is described in the following 

chapter. 

The digital model of the photonic crystal lattice is defined by the symmetry of the 

crystal and the geometry of the objects occupying the lattice points, which are built from 

a set of overlapping simple shapes.  For example, in an inverse opal the symmetry of the 

lattice is specified using the primitive lattice vectors for the face centered cubic crystal 

lattice.  To account for the interconnecting holes and voids in a real inverse opal, the 

geometry at the lattice points is specified by sequentially writing a series of objects.  

First, the entire space is defined as air to give a uniform clean slate, and then a solid 

titania sphere is written with its center at the lattice point origin.  At this point, the 

structure would look like an FCC arrangement of solid intersecting spheres with small 

triangular vacancies where the spheres do not quite overlap.  To make the structure 

hollow, air spheres are written into the solid spheres, but with a slightly smaller radius to 

give a shell-like structure.  Finally, the holes that interconnect the air spheres are added.  

A lattice structure modeled in this way is shown in Figure 3.3, along with the SEM image 

it was based on, and the resulting photonic band structure diagram. 

The inverse opal sample shown in Figures 3.2 and 3.3 was created from an 

artificial opal made using vertical deposition techniques. This deposition technique 

results in films of opal crystals with their 111 lattice direction normal to the film surface, 
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corresponding to the Γ-L stop gap of the photonic crystal band structure pointing normal 

to the film surface.
33-36

  Therefore, it is this stop gap that leads to the inverse opal’s 

measured reflection.  If either the refractive index or volume fraction of the solid phase of 

the structure is known, the other parameter can be found by varying it to bring the 

reflection band position and calculated stop gap into agreement with each other.  

However, if both parameters have uncertainty, as they generally do in real samples, then 

correlation between the reflection measurement and band diagram becomes ambiguous. 

Figure 3.3 shows the predicted reflection peak from the Γ-L stop gap for a range of 

framework refractive indices and volume fractions of the dielectric components.  The 

narrow line through the middle of the graph shows the range in which the predicted 

reflection agrees with the measured peak at 450 nm, verifying that there is a continuum of 

parameters that yield a photonic crystal agreeing with experiment. This problem could be 

overcome in samples where multiple stop gaps are available to probe, because each stop 

gap varies differently with refractive index and volume fraction, narrowing the range of 

parameters possible that allow all the different stop gaps to agree with measurements.  

However, this comes back to the problem of exactly orienting small samples to 

experimentally measure reflection properties in predetermined directions and also does 

not take into consideration uncertainties due to surface effects.  

 

The Combination of Electron Microscopy, Optical Reflection  

Studies, and Calculations 

The degree of accuracy in determining photonic crystal properties can be 

significantly enhanced through a coordinated combination of calculated photonic band 
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diagrams, multidirectional electron microscopy imaging, and optical reflection 

measurements on samples submersed in different solvents. For example, using 

measurements of structural parameters accessible through SEM images, the volume 

fraction of the inverse opal shown in Figure 3.3 is found to be between 14% and 19%. 

Figure 3.4 reveals that within this range, the refractive index of the solid can only be 

between 1.8 and 2.1 to give agreement with optical reflection measurements.  Since the 

refractive index and volume fraction of the solid framework remain fixed regardless of 

the surrounding environment, but the wavelength position of the reflection band depends 

strongly on the refractive index contrast between the framework and surrounding phase, a 

variation of the surrounding’s refractive index gives direct information regarding the 

framework refractive index and volume fraction. This can be seen by measuring the 

optical reflection properties of an inverse opal sample submersed in solvents with 

different, but well-known, refractive indices. Figure 3.5 shows the calculated reflectance 

due to the Γ-L stop gap for the inverse opal shown in Figure 3.3 in air, ethanol, and 

carbon disulfide as the low-dielectric component (surrounding phase).  The colored lines 

show where calculations agree with the experimentally measured reflection.  It is found 

that calculations and measurements over different low-dielectric components agree only 

for a narrow range of parameters with a filling fraction of 15.5±0.5% and a refractive 

index of 2.05±0.05. The developed method of combining different characterization tools 

thus significantly narrows the degree of uncertainty and gives valuable insights into 

photonic crystal properties. 

However, it should be emphasized that the basis of this method is the calculated 

band structure diagram of a photonic crystal. This method thus relies on knowing the 
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structural parameters of photonic crystals to a high degree of accuracy. In cases in which 

this information is only limited available, such as in biological and biotemplated samples 

the uncertainty of the determined values can be significantly larger. Moreover, one of the 

original motivating properties of photonic crystals is their ability to inhibit or enhance 

spontaneous emission by controlling vacuum fluctuations, an effect that photonic band 

diagrams address in only a qualitative way.  For example, the band diagram in Figure 3.3 

shows that for the system studied there exists a stop gap in the Γ-L direction, a situation 

that clearly reduces the number of optical states in the crystal overall, but by how much?  

Other photonic systems we have studied include overlapping stop gaps in all directions 

except the Γ-L.  The effect of a single nonoverlapping stop gap is not addressed in a 

photonic band structure diagram.  To address this issue, the characterization of photonic 

crystals must be taken one theoretical step further to include the calculated density of 

optical states in addition to the other methods discussed previously. 

 

Conclusion 

The characterization of photonic crystals has been discussed in order from the 

most qualitative method, optical reflection spectroscopy, to a combination of multiple 

reflection spectra, SEM measurements, and photonic band structure calculations.  It was 

shown that reflectance measurements do not adequately describe photonic crystal 

behavior, due to the many structural parameters that can yield similar reflections.  This 

problem can be largely addressed by taking reflection measurements in various solvents, 

and correlating them with band structure calculations based on SEM images. While these 

characterization methods are useful in understanding many photonic crystal properties, 
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they neglect the control of vacuum fluctuations (or modification of the density of optical 

states), a critical property.  A method for calculating the density of optical states within a 

photonic crystal will be described in the following chapter, the inclusion of which along 

with the other properties discussed provides the most complete characterization of 

photonic crystals currently available. 
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Figure 3.1 Schematic diagram of the reflection measurement experiemental 

setup.  A broadband light source is directed through a mircroscope objective and 

focused onto the sample.  An image of the reflected light is collected through the 

same objective, and narrowed by a pinhole.  The area to be measured is positioned 

over the pinhole by oserving the image with an index card, or an optional camera 

and beam splitter.  The area of the image narrowed by the pinhole is directed to a 

spectrometer for analysis. 
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Figure 3.2 SEM image of titania inverse opal prepared using a polystyrene 

synthetic opal as a template.  The small circular holes connecting air spheres are 

where the original polystyrene spheres touched eachother.  The triangular shaped 

vacancies (highlighted in the contrast enhanced inset), are due to the way titania 

sol-gel coats the polystyrene spheres.  The triangular vacancies cause an 

uncertainty of about ±5% in the volume fraction. 
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Figure 3.3 SEM image of titania inverse opal (a) and three dimensional model 

based on SEM measurements (b).  The calculated band diagram (c) using the 

model includes a directional stop gap in the Γ-L direction. 

a b

c
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Figure 3.4 Plot of the predicted peak reflection of an inverse opal as a function of 

refractive index and filling fraction.  In general, the peak reflection increases 

linearly with refractive index as predicted by Bragg’s law.  The narrow red band 

shows where the calculated reflection agrees with the experimental value of 

450±1 nm, for this sample in air. 
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Figure 3.5  Overlapping plots showing the correlation between the calculated 

reflection peak and experimentally observed reflection for a titania inverse opal in 

air, submersed in ethanol, and submersed in carbon disulfide.  The curves intersect 

at the refractive index and filling fraction corresponding to the sample, greatly 

narrowing the uncertainty in these properties. 
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CHAPTER 4 

 

CALCULATION AND INTERPRETATION OF DENSITY OF OPTICAL  

STATES IN PHOTONIC CRYSTALS 

 

Introduction 

Control over excited state dynamics is of paramount importance for the next 

generation of photonic technologies such as solar cells, microlasers, and optical 

information processing.
1-4

  Due to the potential impact of these technologies, focus on 

materials capable of controlling spontaneous emission has steadily increased.  The 

discussion so far of biotemplated photonic crystals in this thesis was focused on the 

discovery, creation, and structural characterization of these materials.  In this chapter, 

calculation will be presented of how the nonclassical properties of photonic crystals can 

affect the overall optical density of states and thus the excited state dynamics of light 

sources placed inside of them.   

The concept that periodically organized dielectric materials could be capable of 

altering the density of optical states was first introduced in the early 1980s by 

Yablanovich and John.
5-6

 Fermi’s Golden Rule states that the rate of spontaneous 

emission is proportional to the density of optical states experienced by the emitter,
7
 and 

therefore, elegantly bridges the connection between photonic crystals and control of 

spontaneous emission.  The density of optical states is essentially a count of the optical 
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modes available to an emitter at a particular frequency, so structures that have several 

overlapping photonic stop gaps also have frequency ranges with strongly modified 

density of optical states.
8
  In the most ideal case, a structure would have overlapping 

photonic stop gaps in all directions (a complete or full photonic band gap), resulting in a 

range of frequencies where the density of optical states drops to zero in the band gap 

while being greatly enhanced at the band edge.  Both the crystal lattice and the geometry 

of the objects at the lattice points impact the photonic band structure of a photonic 

crystal.  One system in particular, a diamond lattice connected by dielectric rods, has 

been proven to be the best at altering the density of optical states over the broadest range 

of refractive index and filling fraction.
9
  Several other photonic crystal designs that are 

based on the dielectric rod diamond structure, but are more synthetically amenable, have 

also been theoretically investigated and have been shown to be almost as effective as the 

original champion diamond structure.
10

 

Due to the recent discovery of naturally occurring photonic crystals with diamond 

based lattices
11-12

 and their conversion into high refractive index materials,
13-15

 to the 

author’s knowledge this is the first work investigating the density of optical states in 

structured materials derived from nature.  The uniqueness of these new materials has led 

to interesting theoretical results regarding the relationship between structures, photonic 

band structure diagrams, and their density of optical states.  Based on our recent 

structural analysis of the naturally occurring diamond based structure in Lamprocyphus 

augustus scales,
11

 we have calculated the corresponding density of optical states along 

with several other structures derivable from it.  We have found that diamond based 

photonic crystals need not possess a full photonic band gap to show strong alteration of 
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the density of optical states—a finding of enormous importance regarding application of 

photonic crystals. This will be further discussed in Chapter five, along with a description 

of experimental measurements of modified spontaneous emission, an direct consequence 

of a modified density of optical states. 

 

Density of Optical States Theory 

It has long been realized since E. M. Purcell’s first report
16

 of modified 

spontaneous emission in 1942 that the irradiative dynamics of emitters are connected to 

the optical mode structure surrounding the emitter.  An emitter will only decay from an 

excited state by emitting a photon if there is an optical state for the photon to couple to, 

having a frequency so that energy is conserved.  Therefore, it may be expected that the 

rate of spontaneous emission is proportional to the density of optical modes available at 

the appropriate frequency to an emitter, in accordance with Fermi’s Golden Rule
7
, 

equation 4.1. 

 

(4.1)        
  

  
|   |

 
     

 

In equation 4.1 Γrad is the rate of spontaneous emission, |   | is the transition 

dipole moment of the emitter between an initial (i) and a final (f) state, and ρrad is the sum 

of all the local density of optical states available to emitters over the unit cell.  The details 

of local density of optical states have been discussed in detail elsewhere.
17

  In cases 

where the system of interest involves ensembles of emitters located randomly throughout 

a photonic crystal, as is the case here, the total density of states corresponds to the 
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ensemble average rate of spontaneous emission.
18-22

  The density of optical states is given 

by equation 4.2, where N(ω) is the frequency dependent density of optical states (the k-

space volume yielding a particular frequency; with k being the wave vector) obtained by 

integrating k over the first Brillouin zone (B.Z.) and summing over n photonic bands, 

counting only k that yield the frequency of interest (using the Kronecker delta). 

   

(4.2)    ( )  ∑ ∫    
      (    ( ))   

 

In this thesis, density of optical states calculations were based on the method 

outlined by Busch and John,
8
 using a combination of MIT photonic bands package 

(MPB) and house-written software.  The density of optical states plot resulting from 

equation 4.2 provides important information regarding photonic crystal properties that are 

not included in photonic band diagrams.  This is because the density of optical states 

includes information about the entire Brillouin zone, while photonic band diagrams 

contain information only from certain high-symmetry lines and points.  While photonic 

band diagrams and density of optical states plots do mirror each other, we have found that 

certain crystal directions contribute to the density of optical states with differing weights, 

a finding important to photonic crystal design because it shows that achieving band gaps 

in some directions is more important than others. 

 

Calculation of Density of Optical States 

Solving of equation 4.2 is executed numerically in the same general manner for 

one-, two-, and three-dimensional photonic crystal examples by breaking the first 
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Brillouin zone into an array of k-points, so that each k-point corresponds to an equally 

sized piece of the Brillouin zone.  When divided this way, a count of the number of k-

points yielding a frequency between ω and ω+Δω is proportional to N(ω).  

For the three-dimensional cases discussed in this thesis, a grid of up to 269,001 

equally spaced k-points spanning the first Brillouin zone was calculated using house-

made software written in c++.  This was done by dividing the irreducible Brillouin zone 

into three pyramids with bases corresponding to the three faces of the zone, the apex of 

each being the origin.  Each pyramid was then divided into an array of equally sized 

volumes. This was done by dividing each edge of the pyramids into an integral number of 

segments, which then become the primitive lattice vectors for the points filling each sub-

space of the Brillouin zone.  The points inside each pyramid were populated by iterating 

the lattice vectors over the entire pyramid volume as shown in Figure 4.1, which has a 

reduced number of points for clarity (see c++ source code in Appendix for details on 

calculation of array).  Care was taken to avoid duplicate points, and each point included 

was weighted to account for the relative volume between the different sections of the 

Brillouin zone.  The points along lines of high symmetry were weighted to account for 

their overall contribution to the volume of the Brillouin zone. 

Using the list of 269,001 k-points generated as input, MPB was used to calculate the 

frequencies at each k-point for bands that yield a frequency result in between zero and 

one (in units of c/2πa).  Typically, each calculation involved up to sixteen photonic bands 

resulting in 16×269,001 frequency computations that were each numerically solved.  

Calculations were performed in parallel at University of Utah’s Center for High 

Performance Computing, an average run requiring 128 2.4 GHz processors about 24 
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hours.  Finally, the density of optical states was calculated by sorting the frequencies into 

about 200 bins spanning the reduced frequency range from zero to one. 

 

Results and Discussion 

Figure 4.2 shows a comparison of the calculated density of optical states for a 

relatively simple structure, a two-dimensional lattice of air cylinders etched into silicon.  

The results of our calculations (using a Brillouin zone divided into 3321 equal parts) are 

shown to be in agreement with previous work published in the literature.
8
  In this 

particular example, a very large photonic band gap is present in the structure resulting in 

a broad range of frequencies for which the density of optical states drops to zero. 

Figure 4.3 shows the density of optical states for a face centered cubic lattice of 

air spheres (inverse opal), comparing the situations where the refractive index contrast is 

very low (0.1) and high (2.4).  In the case of low refractive index contrast, the density of 

optical states exhibits quadratic behavior as expected (because the number of optical 

modes that can fit in an arbitrary volume is inversely proportional to the wavelength 

squared).  The high refractive index contrast example, air spheres surrounded by silicon, 

shows modest modification of the density of optical states at low frequencies then drops 

to zero at a frequency of 0.8 c/(2πa) corresponding to a full photonic band gap between 

the 8
th

 and 9
th

 bands.  Calculation of the high-contrast inverse opal was executed on an 

office PC prior to access to the University of Utah’s Center for High Performance 

Computing, so was calculated with a reduced number of k-points (4,851 compared to 

269,001) resulting in a rougher appearance. 
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Our previous work has shown that the structure contained within the scales of L. 

augustus and other similar weevils is a diamond-based lattice of air cylinders.
11

  Photonic 

band calculations using spatial parameters collected from focused ion beam (FIB) and 

SEM studies have shown that while these chitin structures do not possess a full photonic 

band gap, they do have multiple overlapping stop gaps that correspond to the scale’s 

reflections.
11

  The calculated density of optical states for the photonic crystal structure 

contained in L. augustus scales is given in Figure 4.4 and shows that the density of 

optical states is dramatically reduced over two reduced frequency ranges dropping by 

20% at 0.7 and 40% at 0.8 corresponding to the Γ-L gaps and overlapping Γ-U, Γ-W, and 

Γ-K directions, respectively.  Such a large modification of density of optical states is 

surprising for a structure made from the biopolymer chitin—a material with a relatively 

low refractive index of 1.54.
23

  Interestingly, the Γ-L stop gap reduces the overall density 

of optical states by 20% while the three overlapping Γ-U, Γ-W, and Γ-K directions reduce 

it by only 36%, a finding that applies directly to photonic crystal design. 

Motivated by the strong effect chitin scales have on density of optical states, we 

have theoretically investigated all the replica structures that are accessible to us by sol-gel 

chemistry methods (as described in Chapter 2), including silica inverse, silica positive 

shell, titania inverse, titania positive shell, and titania replica structures. For each of these 

structures photonic band diagrams and density of optical states were calculated to assess 

their potential usefulness. As shown in Figure 4.5, we found that structures based on the 

diamond-based lattice are capable of dramatically altering the density of optical states, 

even in the absence of a complete photonic band gap.  Silica shell and silica inverse 

structures modify the density of optical states at a magnitude similar to the original chitin 
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template, but have the distinct advantages of being nonfluorescent, mechanically stable, 

and photo-stable.  The titania shell structures offer a degree of control over the magnitude 

of density of optical states inhibition through the shell thickness.  Titania inverse 

structures show strong modification of density of optical states, reducing it by ± 80%.  

Titania replicas of the original chitin scale, produced using a two-step templating 

procedure,
13

 show the greatest effect on density of optical states reducing it more than 

80% over a broad range, even narrowly dropping to zero, as shown in Figure 4.6.  

Density of optical states calculations provided strong motivation for exploring the effect 

that titania replica photonic crystals have on the spontaneous emission.  In contrast to the 

band structure diagram for the titania replica, which would predict inhibition of 

spontaneous emission over only a very small frequency range, the density of optical 

states show a broadband effect more amiable to experimental measurement. 

 

Conclusion 

We have introduced the density of optical states as a useful computational tool to 

understand the effect of photonic crystals on integrated light sources.  The density of 

optical states has been calculated for several simple systems, including two dimensional 

lattices and inverse opals, to validate the computational method used.  By using house-

written software in conjunction with MPB software, the density of optical states for 

several biologically derived structures has been calculated.  We have highlighted the 

potential of these structures by showing their ability to alter the density of optical states 

within them.  It was found that the diamond lattice produces strong modification of the 

density of optical states, even when the refractive index contrast is relatively low.  At 
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refractive index contrasts provided by titania, modest in comparison to materials 

available in the infrared, broadband reduction and even complete inhibition of optical 

states is possible providing motivation for additional experiments.  These experiments 

will be addressed in the following chapter. 
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Figure 4.1 Plot of the 1st irreducible Brillouin zones of a two-dimensional lattice 

(a), and three-dimensional face centered cubic lattice (b).  To produce the array of 

points shown in (b), the Brillouin zone was divided up into three pyramids having 

bases XUW, LUW, and LKW, with Γ being the apex of each. 
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Figure 4.2 A comparison of calculated density of optical states for a triangular lattice 

of air cylinders etched into silicon, with a solid filling fraction of 33%. (a) Calculated 

density of states using a combination of MPB and house-written software, based on a 

two dimensional irreducible Brillouin zone divided into 3321 k-points. (b) Calculated 

density of states for the same structure, calculated using a similar method, reproduced 

with permission from reference 8, copyright 1998 The American Physical Society. 
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Figure 4.3 Density of optical states for two inverse opals, one with low refractive 

index contrast (a) and one with high refractive index contrast (b).  a) A face centered 

cubic lattice of air spheres (refractive index of 1) surrounded by a matrix with 

refractive index of 1.1.  b) An inverse opal identical to the one yielding (a), except 

the surrounding refractive index is 3.4.  The drop to zero density of optical states in 

(b) corresponds to a full photonic band gap between the 8
th

 and 9
th

 photonic bands.   
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Figure 4.4 Calculated density of optical states and band diagram (inset) for an 

FCC lattice of air cylinders surrounded by a biopolymer matrix, the diamond-

based structure found within the scales of L. Augustus.  The red dashed line is a 

quadratic fit to the curve meant to reflect the density of optical states in a 

homogeneous medium having the same effective refractive index. 
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Figure 4.5 Calculated DOS for several structures possible using a diamond-based 

chitin structure as a template. See Figure 2.4 for examples of corresponding SEM and 

reflection measurements.  For comparison purposes each calculation is based on the 

same structural parameters, which is an FCC lattice of air cylinders oriented in the 

[1,1,1] direction (diamond-based) with a radius of 0.22a and height of 0.81a. a) DOS 

from titania shell structure showing a 65% reduction in DOS at a red. freq. of 0.62. b) 

DOS from titania inverse structure showing a 80% reduction in DOS at a red. freq. of 

0.61. c) DOS from silica shell structure showing a 20% reduction of DOS at red. freqs. 

0.75 and 0.85. d) DOS from silica inverse structure showing a 22% reduction of DOS 

at red. freqs. of 0.74 and 0.84. 
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Figure 4.6 Example of a titania photonic crystal and its accompanying calculated DOS.  

a) SEM image of a titania replica of Lamprocyphus Augustus exoskeletal scale. b) 

Calculated DOS (solid line) from structure shown in (a) showing strong deviation from 

homogeneous space behavior, including a frequency range where optical states are 

completely inhibited. 
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Appendix Code in C++ to Break FCC 

Brillouin Zone into Discrete Points 

 

In C++, text after // and between /* and */ is ignored, allowing for comments on the code 

and for certain sections to be commented out.  This code was compiled using g++ in 

Ubuntu.  The code outputs the list of kpoints to the screen, which can then be redirected 

to a file using >& in Linux or >> in windows terminal. 

 

The Brillouin zone is broken up into pieces: lines, planes, and solids.  Each piece is 

labeled by the points at its vertex: Gamma (G), X, U, W, and K.  Each line is broken up 

into D number of pieces. 

 
#include<iostream> 
#include<fstream> 
#include<stdlib.h> 
using namespace std; 
 
int main(int argc, char *argv[]){ 
//The Reciprocal Space Basis Vecotrs 
 double *b1, *b2, *b3; 
   b1 = new double[3], b2 = new double[3], b3 = new double[3];  
 int D=atoi(argv[1]); int kcount=0;  
 
 b1[0] = -1, b1[1] = 1, b1[2] =1; b2[0] = 1, b2[1] = -1, b2[2] =1; 
 b3[0] = 1, b3[1] = 1, b3[2] =-1; 
/*   
   cout << "\nb1 = (" << b1[0] << ", " << b1[1] << ", " << b1[2] << ")\n"; 
 cout << "b2 = (" << b2[0] << ", " << b2[1] << ", " << b2[2] << ")\n"; 
 cout << "b3 = (" << b3[0] << ", " << b3[1] << ", " << b3[2] << ")\n\n"; 
*/ 
//Key directions in the FCC Brillouin zone 
 double *X, *U, *W, *K, *L, *G; 
 X = new double[3], U = new double[3], W = new double[3]; 
   K = new double[3], L = new double[3], G = new double[3]; 
 
//Definition of key directions in the reciprocal basis 
 G[0] = 0.000, G[1] = 0.000, G[2] = 0.000; 
 U[0] = 0.000, U[1] = 0.625, U[2] = 0.375; 
 W[0] = 0.250, W[1] = 0.750, W[2] = 0.500; 
 K[0] = 0.375, K[1] = 0.750, K[2] = 0.375; 
 L[0] = 0.000, L[1] = 0.500, L[2] = 0.000; 
 X[0] = 0.000, X[1] = 0.500, X[2] = 0.500; 
 
//Checking input of key directions/* 
cout << "G(basis) = (" << G[0] << ", " << G[1] << ", " << G[2] << ")\n"; 
cout << "X(basis) = (" << X[0] << ", " << X[1] << ", " << X[2] << ")\n"; 
cout << "U(basis) = (" << U[0] << ", " << U[1] << ", " << U[2] << ")\n"; 
cout << "W(basis) = (" << W[0] << ", " << W[1] << ", " << W[2] << ")\n"; 
cout << "K(basis) = (" << K[0] << ", " << K[1] << ", " << K[2] << ")\n"; 
cout << "L(basis) = (" << L[0] << ", " << L[1] << ", " << L[2] << ")\n\n"; 
*/ 
//Key directions in cartesian coordinates 
 double *Xc, *Uc, *Wc, *Kc, *Lc; 
 Xc = new double[3], Uc = new double[3], Wc = new double[3]; 
   Kc = new double[3], Lc = new double[3]; 
 
//Converting from reciprocal lattice basis to cartesian 
 for(int i =0; i < 3; i++){ 
 Xc[i] = X[0]*b1[i]+X[1]*b2[i]+X[2]*b3[i];   

Lc[i] = L[0]*b1[i]+L[1]*b2[i]+L[2]*b3[i]; 
 Kc[i] = K[0]*b1[i]+K[1]*b2[i]+K[2]*b3[i]; 
 Wc[i] = W[0]*b1[i]+W[1]*b2[i]+W[2]*b3[i]; 
 Uc[i] = U[0]*b1[i]+U[1]*b2[i]+U[2]*b3[i]; 
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} 
/* 
cout << "X(cart.) = (" << Xc[0] << ", " << Xc[1] << ", " << Xc[2] << ")\n"; 
cout << "U(cart.) = (" << Uc[0] << ", " << Uc[1] << ", " << Uc[2] << ")\n"; 
cout << "W(cart.) = (" << Wc[0] << ", " << Wc[1] << ", " << Wc[2] << ")\n"; 
cout << "K(cart.) = (" << Kc[0] << ", " << Kc[1] << ", " << Kc[2] << ")\n"; 
cout << "L(cart.) = (" << Lc[0] << ", " << Lc[1] << ", " << Lc[2] << ")\n"; 
*/ 
 double *dXc = new double[3];  double *dLc = new double[3]; 
   double *dKc = new double[3];  double *dWc = new double[3]; 
   double *dUc = new double[3]; 
   
  for(int i = 0; i < 3; i++){ 
 dXc[i] = Xc[i]/D; 
 dLc[i] = Lc[i]/D; 
 dKc[i] = Kc[i]/D; 
 dWc[i] = Wc[i]/D; 
 dUc[i] = Uc[i]/D; 
} 
 
//Points along line GL, excluding origin 
  for(int i = 1; i <= D; i++){ kcount++; 
    cout << "Weight: " << "0.166667 " << kcount << " " << "GL " << i*dLc[0] << " " <<  
i*dLc[1] << " " << i*dLc[2] << "\n"; 
  } 
//Points along line GX, excluding origin 
  for(int i = 1; i <= D; i++){ kcount++; 
    cout << "Weight: " << "0.25 " << kcount << " " << "GX " << i*dXc[0] << " " <<  
i*dXc[1] << " " << i*dXc[2] << "\n"; 
  } 
//Points along line GK, excluding origin 
  for(int i = 1; i <= D; i++){ kcount++; 
    cout << "Weight: " << "0.25 " << kcount << " " << "GK " << i*dKc[0] << " " <<  
i*dKc[1] << " " << i*dKc[2] << "\n"; 
} 
//points along line GU, including the origin 
  for(int i = 0; i <= D; i++){ kcount++; 
    cout << "Weight: " << "0.5 " << kcount << " " << "GU " << i*dUc[0] << " " << i*dUc[1] 
<< " " << i*dUc[2] << "\n"; 
  } 
//Points along the line GW, excluding origin 
for(int i = 1; i <= D; i++){ kcount++; 
    cout << "Weight: " << "0.5 " << kcount << " " << "GW " << i*dWc[0] << " " << i*dWc[1] 
<< " " << i*dWc[2] << "\n"; 
} 
//Points in plane GXU, exlcuding origin and lines GU and GX 
  for(int i = 2; i <= D; i++){ 
    for(int j = 1; j <= i-1; j++){ kcount++; 
      cout << "Weight: " << "0.5 " << kcount << " " << "GXU " << (i-j)*dXc[0]+j*dUc[0] << 
" " << (i-j)*dXc[1]+j*dUc[1] << " " << (i-j)*dXc[2]+j*dUc[2] << "\n"; 
    } 
  } 
//Points in plane GXW, excluding origin and lines GX and GW 
  for(int i = 2; i <= D; i++){ 
    for(int j = 1; j <= i-1; j++){ kcount++; 
      cout << "Weight: " << "0.5 " << kcount << " " << "GXW " << (i-j)*dXc[0]+j*dWc[0] << 
" " << (i-j)*dXc[1]+j*dWc[1] << " " << (i-j)*dXc[2]+j*dWc[2] << "\n"; 
    } 
  } 
//Points in plane GLU, exlcuding origin and lines GL and GU 
  for(int i = 2; i <= D; i++){ 
    for(int j = 1; j <= i-1; j++){ kcount++; 
      cout << "Weight: " << "0.5 " << kcount << " " << "GLU " << (i-j)*dLc[0]+j*dUc[0] << 
" " << (i-j)*dLc[1]+j*dUc[1] << " " << (i-j)*dLc[2]+j*dUc[2] << "\n"; 
    } 
  } 
//Points in plane GKL, excluding origin and lines GW and GU 
for(int i = 2; i <= D; i++){ 
    for(int j = 1; j <= i-1; j++){ kcount++; 
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      cout << "Weight: " << "0.5 " << kcount << " " << "GKL " << (i-j)*dKc[0]+j*dLc[0] << 
" " << (i-j)*dKc[1]+j*dLc[1] << " " << (i-j)*dKc[2]+j*dLc[2] << "\n"; 
    } 
  } 
//Points in plane GWK, excluding origin and lines GW and GU 
for(int i = 2; i <= D; i++){ 
    for(int j = 1; j <= i-1; j++){ kcount++; 
      cout << "Weight: " << "0.5 " << kcount << " " << "GWK " << (i-j)*dKc[0]+j*dWc[0] << 
" " << (i-j)*dKc[1]+j*dWc[1] << " " << (i-j)*dKc[2]+j*dWc[2] << "\n"; 
    } 
  } 
//Points in internal plane GWU, excluding origin and lines GW and GU 
for(int i = 2; i <= D; i++){ 
    for(int j = 1; j <= i-1; j++){ kcount++; 
      cout << "Weight: " << "1.0 " << kcount << " " << "GWU " << (i-j)*dUc[0]+j*dWc[0] << 
" " << (i-j)*dUc[1]+j*dWc[1] << " " << (i-j)*dUc[2]+j*dWc[2] << "\n"; 
    } 
  } 
//Points in internal plane GLW, exlcuding origin and lines GL and GW 
  for(int i = 2; i <= D; i++){ 
    for(int j = 1; j <= i-1; j++){ kcount++; 
      cout << "Weight: " << "1.0 " << kcount << " " << "GLW " << (i-j)*dLc[0]+j*dWc[0] << 
" " << (i-j)*dLc[1]+j*dWc[1] << " " << (i-j)*dLc[2]+j*dWc[2] << "\n"; 
    } 
  } 
//Points inside, excluding internal planes and lines 
  for(int i = 1; i <= D; i++){ 
    for(int j = 2; j <= D-i; j++){ 
      for(int k = 1; k <= j-1; k++){ kcount++; 
 cout << "Weight: " << "1.0 " << kcount << " " << "GXUW " << (j-
k)*dXc[0]+(k)*dWc[0]+i*dWc[0] << " " << (j-k)*dXc[1]+(k)*dUc[1]+i*dWc[1] << " " << (j-
k)*dXc[2]+(k)*dUc[2]+i*dWc[2] << "\n"; 
      } 
    } 
  } 
 
//Points inside, excluding internal planes and lines 
  for(int i = 1; i <= D; i++){ 
    for(int j = 2; j <= D-i; j++){ 
      for(int k = 1; k <= j-1; k++){ kcount++; 
 cout << "Weight: " << "1.0 " << kcount << " " << "GLUW " << (j-
k)*dLc[0]+(k)*dUc[0]+i*dWc[0] << " " << (j-k)*dLc[1]+(k)*dUc[1]+i*dWc[1] << " " << (j-
k)*dLc[2]+(k)*dUc[2]+i*dWc[2] << "\n"; 
      } 
    } 
  } 
//Points inside, excluding internal planes and lines 
  for(int i = 1; i <= D; i++){ 
    for(int j = 2; j <= D-i; j++){ 
      for(int k = 1; k <= j-1; k++){ kcount++; 
 cout << "Weight: " << "1.0 " << kcount << " " << "GLKW " << (j-
k)*dLc[0]+(k)*dKc[0]+i*dWc[0] << " " << (j-k)*dLc[1]+(k)*dKc[1]+i*dWc[1] << " " << (j-
k)*dLc[2]+(k)*dKc[2]+i*dWc[2] << "\n"; 
      } 
    } 
  } 
} 
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CHAPTER 5 

 

STRONGLY MODIFIED SPONTANEOUS EMISSION RATES  

IN DIAMOND-STRUCTURED PHOTONIC CRYSTALS 

 

Introduction 

The dynamics of radiative transitions is directly proportional to the density of 

optical states, according to Fermi’s golden rule.
1
 Given the pivotal role of radiative 

processes in solar energy conversion, solid-state lighting and lasing, along with quantum 

information processing, strategies to manipulate the radiative density of optical states 

over broad frequency ranges are of paramount technological importance. A central tenet 

in quantum electrodynamics is that the density of optical states and thus the dynamics of 

spontaneous emission can be manipulated in the presence of specifically engineered 

environments.
1-7

 Prime examples of such environments are three-dimensional (3D) 

periodically ordered crystal structures with lattice parameters comparable to the photon 

wavelength of interest. Because of this periodic variation of the refractive index, these 

materials, termed photonic crystals, possess direction-dependent energy dispersion of 

photonic states (band structures) with directional photonic stop gaps and, under certain 

circumstances, overlap of all directional photonic stop gaps into a complete band gap.
8-15

 

The band structure properties of these materials cause significant modifications in the 

density of optical states distribution,
16

 and importantly, compared to other density of 
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optical states-modifying media such as optical microcavities,
6-7

 modifications occur over 

large bandwidths (Δω/ω of up to tens of percent) and are a bulk effect and thus not 

limited to small cavity volumes.  

While such broadband modification of spontaneous emission has been 

demonstrated at infrared wavelengths in 2D
17

 and 3D
14-15

 photonic crystals, experimental 

studies at visible frequencies have been limited by the difficulty of fabricating photonic 

crystal structures that strongly modify the density of optical states distribution.  Photonic 

crystals mainly used at visible frequencies are so-called inverse opals.
18-21

 While inverse-

opal photonic crystals operating at visible frequencies have a 3D periodic lattice, 

unfortunately, they possess only nonoverlapping single-directional photonic stop gaps 

and therefore cause only modest density of optical states modification.
22-23

 Photonic 

crystal structures with much stronger impact on the photonic density of optical states 

distribution would be those with diamond-based lattices.
24-26

 In these lattices overlap of 

multiple photonic stop gaps occurs in the low-frequency range (between the second and 

third optical band) for dielectric lattices with even only modest refractive indices.
26

 

However, in contrast to infrared photonic crystals, difficulties of fabricating diamond-

based photonic crystals with lattice constants at visible wavelengths have kept them out 

of reach—until recently, when the Bartl group discovered that the striking coloration of 

various weevils is the result of light reflecting from biopolymeric chitin photonic crystals 

with a diamond-based lattice structure.
27-28

 Moreover, these biopolymeric structures can 

be used as molds for creating high-dielectric replicas, including the first photonic crystal 

with structural and dielectric properties for which calculations revealed a complete band 

gap in the visible.
29
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In this chapter, the experimental aspects of studying excited state dynamics of 

photon sources placed inside photonic crystals will be discussed.  First, a few of the 

different models used to understand the radiative lifetime of emitters will be examined. 

Then, these models will be applied to several photonic crystal systems.  The central part 

of this chapter will be a description of radiative lifetime measurements in several systems 

and a discussion of the measured decay dynamics in connection with the characterization 

and theoretical treatments discussed previously. The chapter will conclude with a brief 

outlook on the impact of controlling excited state dynamics in photonic crystals on 

various optical applications. 

 

Experimental Aspects of Radiative Lifetime Measurement 

To study the impact of the density of optical states variations within photonic 

crystals on excited state dynamics, we analyzed the spontaneous emission decay rates of 

embedded CdSe/ZnS core-shell quantum dot (QD) light sources (‘‘eviDots’’ purchased 

from Evident Technologies). QDs with photoluminescence emission band positions 

overlapping with different parts of the photonic band structure were infiltrated into the 

photonic crystal samples by drop-casting from a 9:1 hexane/octane solution (9×10
-9

 M).
22

 

The functionalized photonic crystal samples were then placed in a quartz cell under argon 

atmosphere to avoid photo-oxidation and mounted on a computer-controlled 3D 

nanomotion stage for optical microreflectance and time-correlated single photon counting 

(TCSPC) emission measurements.  

Because of the inherent local inhomogeneity of biological or biotemplated 

structures,
27-28

 it is of great importance to inspect the sample quality by optical 
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microscopy and microreflectance spectroscopy prior to determining the spontaneous 

emission decay rates of QDs at various locations inside the photonic crystals. This was 

done by an optical setup, shown schematically in Figure 5.1 with a beam splitter/dichroic 

mirror combination to overlay a collimated white light source and the 405 nm line of a 

picosecond diode laser (Becker & Hickle BDL-405, 20 MHz repetition rate). Both beams 

were focused onto the sample with a 50× extra-long working distance objective (N.A. 

0.55). The reflectance properties of each photonic crystal sample were first mapped out 

under white light illumination and at least ten spots per sample were chosen for 

spontaneous emission decay rate investigation. For this, the white light was blocked and 

the QDs were excited by the 405 nm line of the diode laser. The light emitted from the 

QDs was collected by the same microscope objective, directed into a spectrometer 

(Princeton Instruments SpectraPro 2300i), dispersed by a grating (600 grooves/mm) and 

detected by a thermoelectrically cooled single photon counting detector (Hamamatsu 

Photosensor, H7422p). Spontaneous emission decay curves were collected over a 50 ns 

time window at a 12 ps time resolution.  

 

Analysis of Decay Curves 

The first order rate of decay of an emitter from an initial excited state to a final 

state is given as the sum of the radiative and all the different nonradiative decay pathways 

possible as shown in equation 5.1 where Γtot is the total rate of decay, Γrad is the radiative 

rate, and Γnrad stands for the various nonradiative rates of decay. 

(5.1)            ∑      

(5.2)   ( )     
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Under the assumption that there is only one radiative pathway, equation 5.1 may 

be integrated to yield the monoexponential normalized intensity of light as a function of 

time as shown in equation 5.2, where I(t) is the time-dependent intensity, a1 is a 

normalization constant, and τ is the radiative lifetime defined as 1/Γtot. If more than one 

radiative pathway is possible, then a sum of exponential decays, typically two or three, 

may be used with each lifetime corresponding to a different radiative pathway, as shown 

in equation 5.3, where the sum of the coefficients an must equal one, if the decay curve is 

normalized. 

(5.3)   ( )  ∑    
     

  

When emitters are embedded within photonic crystals, the radiative rates of decay 

depend strongly on the frequency of emission and the physical location within the crystal 

due to the coupling that must take place between the emitter and the optical modes in its 

local environment.  As was described in Chapter 4, photonic crystals can alter the local 

density of optical states significantly.  Ensemble emission of randomly located light 

sources results in nonexponential decay behavior that significantly complicates 

interpretation of decay curves from emitters embedded inside photonic crystals.
23, 30-32

 

While multiexponential decay models with four or more free parameters can 

numerically fit data, the result is flawed by the fact that it is known that there exists a 

continuous distribution of radiative lifetimes from ensembles of emitters in environments 

with nonhomogeneous local density of optical states.  Choosing a physically meaningful 

model describing the local photonic density of optical states distribution is therefore of 

great importance for extracting relevant spontaneous emission rates from QD ensemble 

decay curves from within photonic crystals. 
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The problem of analyzing ensemble spontaneous emission from within photonic 

crystals has been treated previously in the context of inverse opals by Nikolaev et al.,
23

 

who recommended a log-normal distribution of decay rates as shown in equations 5.4, 

5.5, and graphically in Figure 5.2. 

(5.4)   ( )       [ 
   (    ⁄ )

  
] 

(5.5)   ( )   ( ) ∫  ( )    (    )  
 

   
 

 Equation 5.4 creates a distribution of radiative rates of decay, φ(Γ), centered at 

the most probable decay rate ΓMF, with a distribution width of w.  The factor A in 

equation 5.4 is a normalization constant that insures integration of φ(Γ) equals one.  Since 

there is a continuum of decay rates, they are integrated rather than summed in equation 

5.5.  This distribution accounts for the variable local density of optical states experienced 

by the emitters while limiting free fitting parameters to ΓMF and w, if the decay curve is 

normalized so that  ( )   . The maximum of the log-normal distribution represents the 

most probable rate of decay, while the distribution width relates to the variability of the 

local density of optical states over the entire photonic crystal unit cell. Here, a broad 

distribution width indicates that emitters experience a strong variation of local density of 

optical states.   

The log-normal fit was used in this thesis to analyze radiative decay data so that 

our results could be compared with results in the literature that also use this method.  

However, in spite of the log-normal distribution’s strong advantages of providing a 

reasonable model for the physical interpretation of decay in photonic crystals while 

limiting free fitting parameters, it still has challenges.  Equation 5.5 contains an integral 

that must be solved numerically for each data point in the fitted curve, and since the 
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fitting process involves many steps this integral is solved numerically thousands of times 

in a single fit.  To overcome this, the number of data points was limited by preprocessing 

the decay curves by smoothing them using a one nanosecond wide boxcar average, 

normalizing, and interpolating 100 points over the curve using a house-written c++ 

program.  Numerical evaluation of the integral was incorporated using scripts into the 

function-fitting suite built into OriginLab® software.  Another challenge presented by 

fitting with a log-normal distribution is the relatively shallow minimum in χ
2
 (the square 

of the difference between the fitting curve and the data).  Figure 5.3 plots χ
2
 versus the 

free fitting parameters for four points along a sample decay curve, showing the broad 

range in which the fitting curve and data agree very closely.  There is a minimum, 

however, and the shallowness of the minimum decreases as more data points are 

included.  Qualitative analysis of the shape of the residual plots provides immediate 

feedback on the quality of the fit during the fitting process that can distinguish between a 

correct and incorrect fit.  In the following section monoexponential, biexponential, and 

log-normal distribution models will be discussed in reference to the radiative decay of 

several different QD systems.   

 

Radiative Decay Measurements in Simple  

Dielectric Environments 

To place lifetime measurements in context and explore competing effects, the 

radiative lifetime of the QDs used to probe the photonic structure was measured in a 

hexane solution, and drop-cast onto quartz slides and titania thin films.  Sample decay 

curves from each of these systems overlaid with monoexponential and biexponential 
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decay fits are shown in Figure 5.4.  It was found that QDs in hexane were the most ideal 

system, fitting the monoexponential decay model with a lifetime of 20 ns very closely 

with little dependence on the solution concentration. 

To test the effect that deposition on a substrate has on the lifetime, QDs solutions 

with varying concentrations were deposited on quartz substrates.  We speculate that an 

inhomogeneity in local environments creates a distribution of lifetimes less dramatic than 

what is caused by the variability of local density of states in a photonic crystal, but still 

significant enough to result in observed nonexponential behavior.  As the concentration 

of QDs on quartz was increased from 1×10
-7

 M to 1×10
-5

 M, the radiative lifetime found 

by fitting the decay curves to a log-normal distribution decreased from 24 ns to 13 ns as 

shown in Figure 5.5 indicating possible energy transfer between emitters.  For 

comparison, the solution of QDs in hexane was also fit with a log-normal distribution.  

Although this fit is not the most appropriate because the QDs are in a homogenous 

environment, it provides useful context for the other measurements.  It was found that 

1×10
-6

 M solutions of QDs in hexane have a most probable rate of decay corresponding 

to a lifetime of 36 ns.  In general it was found that the log-normal distribution yielded 

different results than the monoexponential decay because the most probable lifetime in a 

distribution doesn’t necessarily correspond to the average lifetime that matches the 

monoexponential.  However, this discrepancy is accepted so that the same method may 

be used for purposes of comparison across several different systems.   

The same 1×10
-6

 M QD solution was drop-cast onto a titania thin film, resulting 

in a strongly nonexponential radiative decay, the most probable lifetime dropping to 13 

ns (Figure 5.4).  This reduction in lifetime is attributed to a combination of energy 
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transfer between QDs and electron transfer from QDs to titania, a well-documented effect 

that is part of the motivation for QD sensitized titania solar cells.
33

  We also observed that 

at higher QD emission energies, photoluminescence on titania became quenched, due to 

the increased likelihood of QD-titania electron transfer as the lowest excitonic state of the 

QDs approached the titania conduction band.
34

 

 

Radiative Decay in Photonic Crystals 

The radiative lifetime/rate of decay was measured from QDs embedded in inverse 

opal, diamond-based chitin, and diamond-based titania photonic crystals.  Since there are 

several factors capable of altering rate of excited state decay, such as energy or electron 

transfer between the QDs and the substrate/host, finding an appropriate reference material 

was critical. At each frequency probed in the chitin photonic crystals, we therefore 

measured the emission from identical QDs from within a chitin scale that has the same 

diamond-based structure but with a lattice constant that placed the photonic stop gaps 

outside of the emission of the QDs.  For the L. augustus scales (which have photonic stop 

gaps in the green), we chose the scales from the red form of P. moniliferus (which has 

photonic stop gaps in the red). 

To provide a baseline for the titania replica photonic crystals, we fabricated 

inverse opal samples consisting of the same nanocrystalline titania framework as the 

bioreplicas. For this, polystyrene opal templates were fabricated by self-assembly
35

 and 

converted into inverse opals using the same titania sol infiltration and processing method 

as for the bioreplicas.
29

  Radiative lifetime measurements of QDs embedded within 

inverse opals having different lattice constants were also measured to assess the impact 



111 

 

the single Γ-L stop gap experimentally has on the density of optical states.  Figure 5.6 

shows two representative decay curves of QDs embedded in inverse opal photonic 

crystals.  We found that when QD emission overlapped with the prominent Γ-L stop gap 

the radiative lifetime was about 1.5 times longer than at frequencies outside of the stop 

gap, a finding consistent with the literature.
22-23

 

After finding appropriate baseline systems, the properties of the biopolymeric 

photonic crystal structures, consisting of the rather low refractive index compound chitin 

(about 1.5),
36

 were studied. Because of this low refractive index of the diamond-based 

lattice, this biological photonic crystal is far from opening a complete band gap. 

Nevertheless, our photonic band structure calculations revealed overlap of multiple low-

frequency stop gaps with a combined reduction of the density of optical states of up to 

40% (Figure 5.7). The effect of these overlapping stop gaps on the spontaneous emission 

decay behavior was significant and we found strong inhibition of spontaneous emission. 

In detail, the decay rate increased by a factor of two for emission inside the predicted 

zone of greatest density of optical states inhibition (Figure 5.7) with averaged inhibited 

radiative lifetimes as high as 39±6 ns. Given the low refractive index of the biopolymeric 

photonic crystal structure the observed inhibition of spontaneous emission is remarkable, 

rivaling that of the best inverse opal photonic crystals made from high-dielectric titania. 

The high-dielectric titania photonic crystals with a diamond-based lattice used in 

this study were replicated from biopolymeric chitin scales of the beetle L. augustus,
27

 

using the double-imprint sol-gel chemistry-based biotemplation method described in 

Chapter 3.
29

 A typical scanning electron microscopy (SEM) image and the reconstructed 

3D model of the ABC-stacked air-cylinder lattice in a nanocrystalline titania matrix 
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(refractive index of 2.2–2.3) is shown in Figure 5.8(b). The corresponding photonic band 

structures and density of optical states distribution are shown in Figure 5.8, and were 

calculated using the MIT photonic bands package
37

 and our own program
38

 as described 

in Chapter 4 based on the work by Busch and John.
16

 The defining feature is strong 

overlap of multiple low-frequency photonic stop gaps, including the formation of a 

narrow complete band gap of about 2.5% gap-width-to-mid-gap ratio.
39

 This results in a 

significant modification of the density of optical states distribution with strong depression 

in the overlap region and enhancement at the edges (Figure 5.8).  

 Typical spontaneous emission decay curves for QDs located within the high-

dielectric titania photonic crystals with a diamond-based lattice are given in Figure 5.9. 

Even a merely qualitative comparison of the decay curves for emission frequencies inside 

and outside of overlapping photonic stop gaps shows the strong impact of the photonic 

crystal. Not only does the photonic crystal band structure significantly alter the QD 

emission decay behavior, but it also results in strongly nonexponential decay behavior. 

The latter is the direct result of ensemble emission of randomly located light sources 

within the photonic crystal and displays the strong variation of the local density of optical 

states.
16, 23

  

Quantitative QD emission decay curve analysis using the log-normal distribution 

fitting procedure revealed the immense impact of the photonic crystal. Average QD 

emission decay rates were obtained by measuring several different local positions inside 

the photonic crystal at a particular frequency. Within the predicted frequency zone of 

greatest inhibition (the simultaneous overlap of different photonic stop gaps) the QD 

emission decay rate was reduced by factors of more than six, resulting in a dramatic 
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increase in the radiative lifetime to values reaching 100 ns inside the band gap (Figure 

5.10). In detail, while average QD emission decay rates were found to be 0.068±0.009 ns
-

1
 (corresponding to a lifetime range of 13–18 ns) at frequencies far outside the inhibition 

zone, inside the band gap zone the decay rate of the same QDs decreased to values of 

0.012±0.002 ns
-1

 (lifetime range of 71–100 ns). In addition, the decay rate log-normal 

distribution width narrowed from 0.19–0.21 ns
-1

 to 0.064–0.076 ns
-1

. This is indicative of 

a reduced overall density of optical states, since contribution to the local density of 

optical states from several directions is eliminated, as was suggested by Nikolaev and co-

workers.
23

   

These inhibition results obtained from diamond-based photonic crystal structures 

were placed in perspective by comparing with the previously mentioned studies on 

inverse opals.  Two important results were obtained from the inverse-opal study. First, 

using the same QDs as for the diamond-based photonic crystal studies, we found an 

inhibition of their emission by a factor of only about 1.5 inside the inverse opal Γ-L PSG 

(Figures 5.7(a) and 5.6) and a reduction in the distribution width. The inhibition findings 

in titania inverse opals agree very well with previously reported results.
22-23

 This 

comparison—using the same light sources in both photonic crystal lattice types—

provides clear evidence of the superiority of the diamond-based structure over inverse-

opal structures and points out the importance of several overlapping photonic stop gaps. 

Secondly, the decay rates of QD emission occurring outside any stop gap of the titania 

inverse-opal photonic crystal gave values in the same range (13–17 ns) as we found for 

the titania bioreplica samples outside stop gap regions. This finding is of great 

importance, since the framework of both photonic crystals consists of the same sol-gel 
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derived titania material, and thus provides a valuable baseline as outlined above. For the 

following analysis we therefore used titania inverse-opal samples with stop gap positions 

far away from the QD emission as an important additional control system for evaluating a 

baseline of QD radiative decay behavior that is not directly influenced by the photonic 

crystal-induced density of optical states variations.  

To map the density of optical states variation of the diamond-based titania 

photonic crystal over a broad frequency range we systematically analyzed QD decay rate 

behavior over a large portion of the band structure, from 16,000 to 20,000 cm
-1

.  Decay 

rate measurements in the high frequency regime (at and above the photonic stop gap/edge 

range) were also attempted. However, for CdSe/ZnS QDs with emission frequencies 

above 20,000 cm
-1

 the emitting 1Se electronic energy level moves above the titania 

conduction band (located at −3.9 eV below vacuum).
34

 This leads to strong QD-to-titania 

charge transfer.
33-34

 In fact, the QD emission intensity decreased rapidly as we 

approached frequencies exceeding 19,000 cm
-1

 and QD emission completely disappeared 

beyond 20,000 cm
-1

. Interestingly, the onset of charge transfer also seems to compensate 

the calculated increase in density of optical states in this regime, resulting in lower decay 

rates than predicted. Nevertheless, reference baseline-normalized decay rate averages of 

QD emission within the 16,000 to 20,000 cm
-1

 frequency range (Figure 5.10) give some 

important insights into the emission decay control by a real photonic crystal. Both strong 

inhibition over a broad frequency range (larger than ten percent bandwidth) and 

enhancement within the narrow range of predicted density of optical states increase at the 

low-frequency band edge were experimentally observed. Radiative lifetimes from 8 ns 

(enhancement region) to up to 100 ns (inhibition region) were obtained, spanning an 
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unprecedented decay variation by a factor larger than ten. The strong modification of 

spontaneous emission dynamics in diamond-based photonic crystals highlights the 

superiority of photonic crystal lattices with strong overlap of multiple photonic stop 

gaps—in contrast to only a single stop gap in inverse opals. 

Interestingly, we found that the decay rates stayed at very constant values within 

the entire region of overlap of multiple stop gaps, including the narrow range of the 

calculated complete band gap. Since the calculated complete band gap is most likely too 

narrow to stay open in a real photonic crystal sample, we conclude that overlap of 

multiple stop gaps, but not necessarily the complete band gap, is responsible for the 

observed strong inhibition of excited state dynamics. The larger decay rate variations 

across different sampling spots (hence larger standard deviations) at the low-frequency 

range of the inhibition region are most likely caused by the presence of photonic stop 

gap/edge combinations.  

 

Conclusion 

We experimentally demonstrated the strong impact of diamond-based photonic 

crystal lattices on spontaneous emission decay rates. The overlap of multiple photonic 

stop gaps in these structures efficiently modifies spontaneous emission dynamics of 

embedded light sources. Both inhibition and enhancement was observed with decay rate 

variations by a factor larger than ten, greatly exceeding previously used titania inverse-

opal photonic crystals.  

In addition, we showed even when made from compounds with refractive indices 

of only around 1.5, diamond-based lattices possess multiple overlapping stop gaps and 
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strongly affect spontaneous emission dynamics—a finding that further emphasizes the 

superiority of diamond-based lattices.
24-26

 A multitude of functional dielectrics, including 

optoelectronically and piezoelectrically active polymeric materials, fall in this range, 

paving the ground for externally tunable broadband control of excited state dynamics in 

bulk materials. Our findings should therefore be of high relevance for future photonic 

crystal design—particularly for light-localization and quantum coherence based 

applications that require strongly inhibited radiative decay.   
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Figure 5.1 Experimental setup used to measure radiative decay with time 

correlated single photon counting.  Pulsed laser light is directed through a 

microscope objective onto the sample.  Fluorescence is collected by the same 

objective and directed to a spectrometer where a frequency range is selected and 

measured by a TCSPC crystal detector. 
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Figure 5.2 Most of the decay curves used in this study were fit with a log-normal 

distribution (a) that has the form of a Gaussian distribution when plotted on the log-

scale, but is asymmetric on a linear scale (b).  The distribution is integrated to yield a 

complex decay curve (c).  All the curves shown here correspond to a lifetime of 20 

ns (ΓMF = 0.05 ns
-1

) and width, w, of 1.2 (equivalent to ΔΓ = 0.15 ns
-1

). 
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Figure 5.3 χ
2
 (the squared difference between the fitting curve and data) versus the 

free parameters in the log-normal fit.  In this case, a minimum exists in χ
2
 at a 

lifetime of 72 ns and a distribution width of 1.68, but the minimum is in a shallow 

trough that makes fitting difficult. 
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Figure 5.4 Radiative decay curves from CdSe/ZnS quantum dots in solution 

(top), deposited on quartz (middle), and deposited on a titania thin film 

(bottom) plotted on a log scale.  Solid red trend lines correspond to a 

monoexponential decay model fit to the data.  Light blue dashed lines 

correspond to a biexponential fit.  The red monoexponential line in the top 

curve lies on top of the blue dashed line.  It can be seen that the best 

monoexponential fits for the bottom two curves were inadequate. 
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Figure 5.5 The average radiative lifetime over 10 measurements of quantum 

dots deposited on quartz slides at three different concentrations. As the 

concentration was reduced, the decay became closer to a monoexponential 

curve and the lifetime approached that of the quantum dots in hexane. 
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Figure 5.6 Representative decay curves from red colored quantum dots embedded in a 

two titania inverse opals.  Quantum dots emitting at a frequency overlapping with the 

Γ-L stop gap (top) have a lifetime about 1.5 longer than quantum dots emitting outside 

the gap (bottom). 
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Figure 5.7 Example of the correlation between band gaps, DOS, and spontaneous 

emission in a chitin structure.  (a) Calculated density of optical states for the 

biopolymeric (chitin) photonic crystal, with vertical bars indicating the frequency regions 

probed. (b) PL emission decay curves plotted on a normalized log scale for QDs in the 

region of overlapping stop gaps (top) and far away from any stop gaps (bottom).  Both 

decay curves were measured at 18,350 cm
-1

 in two different isomorphic structures with 

different lattice constants. The reduced frequency positions are indicated by the vertical 

bars and the width of the bars resembles the lattice constant uncertainty of these 

biological photonic structures. 
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Figure 5.8 The band structure and calculated DOS corresponding to the titania replicate 

structure, as shown in the SEM image.  (a) Calculated photonic band structure for a 

diamond-based lattice of air cylinders surrounded by dielectric with refractive index of 

2.2; shown is the low-frequency region around the overlapping PSGs. Calculations are 

based on scanning electron microscopy images of the titania photonic crystal lattice (a = 

354±9 nm) used in this study (b). Inset in (b) shows the dielectric model for the band 

structure calculations. (c) Corresponding calculated density of optical states of photonic 

crystal lattice described in (a).  Reprinted with permission from reference 39, copyright 

2011 The American Physical Society. 
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Figure 5.9 Plot of the processed decay curves used in the log-normal fitting 

procedure.  The different groups of decay curves came from different samples, 

with each line in the group coming from a different spatial location, and the bold 

lines indicate which curves were used in Figure 5.10. The top plots showing 

inhibition were measured at 19,800 cm
-1

 and the bottom plots showing 

enhancement were measured at 16,950 cm
-1

.  Reprinted with permission from 

reference 39, copyright 2011 The American Physical Society. 
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Figure 5.10 Emission decay curves and relative rates of decay for several titania 

measurements.   (a) Selected PL emission decay curves plotted on a normalized log 

scale of QDs embedded into various titania photonic crystals. QD emission in the 

region of strong stop gap overlap (solid line; calculated lifetime of 99±2 ns) and at 

the low-frequency band edge (dotted; calculated lifetime 8±1 ns) of the titania 

photonic crystal with a diamond-based lattice (for a full range of decay curves, see 

Figure 5.9). QD emission inside the titania inverse opal Γ-L stop gap (dashed; 

calculated lifetime 20±1 ns) and in the titania reference sample outside of any stop 

gaps (dashed-dotted; calculated lifetime 14±0.5 ns). Reported lifetimes reflect the 

peak of the log-normal distribution of the decay curve fitting. (b) Decay rates of QD 

spontaneous emission over a broad frequency range of the band structure of the 

titania photonic crystal with a diamond-based lattice, including regions of normal, 

enhanced and emission. All decay rates are given relative to the decay rates of the 

same QDs in a titania reference sample outside any stop gaps. Vertical error bars 

indicate the variation of the measured lifetime over several spatial positions in the 

sample.  Horizontal bars represent the spectral width over which the measurements 

were made.  Reprinted with permission from reference 39, copyright 2011 The 

American Physical Society. 
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CHAPTER 6 

 

CONCLUDING REMARKS AND OUTLOOK 

 

Summary 

 The primary focus of this thesis has been the creation of photonic crystals from 

biological templates, the details of their characterization, and the measurement of 

photonic crystals’ nonclassical effects towards an understanding of the relationships 

between material, structure, and properties of these new types of electromagnetic 

environments.  We began in Chapter 1 with a discussion of how the three underlying 

disciplines, photonics, biology, and physical chemistry, are being woven together into the 

field encompassing bioreplicated or biomimetic photonics.  Background in structural 

coloration in nature, photonic crystal theory, and materials chemistry has been given.  

New biotemplated photonic crystal structures that address some of the challenges of 

previous examples were described in Chapter 2.  In Chapters 3 and 4 we have provided 

insight into the characterization of photonic crystals using a combination of reflection 

measurements, SEM images, photonic bands, and calculated density of optical states. 

Particular focus has been given with respect to the volume fraction and refractive index 

of photonic crystals.  Finally, the unprecedented effect diamond-based photonic crystals 

can have on spontaneous emission has been demonstrated in Chapter 5. 
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 The field of photonic crystal research has significantly evolved since its sudden 

beginning just 30 years ago.  Photonic crystals started purely as a theoretical concept in a 

pair of articles published in Physical Review Letters.
1-2

  For years, a robust theory of 

photonic crystals was developed computationally before
1-7

 it was even know if a full 

photonic band gap was physically possible.
8
  This birth in theory—before any 

experimental observation—has led to some problems as researchers initially tried to fit 

experiments to the existing theory rather than modifying/adapting strict theoretical 

predictions to explain observations on real systems. For example, theoretical treatments 

do not take into account (or only very limited) nonidealities such as finite sample size, 

crystal lattice defects, and surface/interface effects—all of which are of great importance 

in real photonic crystal samples, affecting their properties. This thesis focused on 

adapting photonic crystal theory to observations obtained from real samples, admitting 

limitations in the application of the highly idealized theoretical concepts to our finite and 

nonideal photonic crystal samples derived from nature.  In the process, a deeper insight 

into the connection between real photonic crystals and their properties in the context of 

theory was developed, helping to better understand the properties of nonideal photonic 

crystals, correctly interpret experimental results, and obtain a more meaningful 

appreciation about the potential and limitations of real photonic crystal samples. 

 Perhaps the most significant achievement of the research behind this thesis is that, 

even while admitting nonidealities, we have demonstrated an unsurpassed ability to 

control the spontaneous emission of light sources in a bulk material.
9-10

  By accepting the 

limits of our system, we have been open to the exploration of other nonideal photonic 

systems, producing interesting results on the uneven contribution of photonic crystal 
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directions to the overall density of optical states.  Because we have noticed the value of 

naturally occurring photonic crystals, and have observed that imperfect crystals can still 

be useful, a whole range of new experiments are possible. 

 

Future Experiments and Applications of the Current Work 

 The work represented here, along with the foundational work of Jeremy Galusha 

and others in the Bartl group,
11-16

 has paved the ground for a multitude of new 

investigations and applications of photonic crystal based systems. The experimental 

expertise and theoretical framework are in place for many interesting studies.  As was 

mentioned in Chapter 2, four ―inverse type‖ structures can be created from an individual 

biological template.
16

  The benefit of these inverse structures is that they can be created in 

a single templating step, greatly increasing yield.  The ease in making these structures 

makes them amiable to further experimental investigation of modified density of optical 

states geared towards particular applications in solar energy conversion and light 

amplification.  By making a series of photonic crystals with varying lattice parameters, 

the density of optical states could be explored nearly continuously over a large portion of 

the band structure. In addition, as was briefly mentioned in Chapter 5, such a detailed 

study of the relationship between structure, predicted density of optical states, and 

observation could yield important insight into the details of electron transfer between 

quantum dots and titania, a process of utmost importance in photocatalysis and 

photovoltaics.
17-18

 

 Very recently, experiments in biotemplating photonic crystals using functional 

polymer materials have shown promising preliminary results.  Use of the already mature 
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field of polymer materials in biotemplated photonics allows for the creation and 

investigation of many interesting systems.  For example, polymers with a refractive index 

responsive to their chemical environments could be used to make highly sensitive 

nonlinear optical sensors.  Piezoelectric polymers
19-21

 could be used to create a photonic 

crystal with a lattice constant modulated by external electric field, resulting in highly 

dynamic optical effects useful for optical filters and switches.  The strong modification of 

density of optical states within diamond-based photonic crystals provides the opportunity 

for cavity-less lasing.
22-24

  This might be accomplished if photonic crystals are templated 

using a polymer impregnated with highly dyes of high photoluminescence quantum 

efficiency.
25-27

  Future work will include trying to induce lasing in dye-doped 

biotemplated photonic crystals. 

 In spite of the robust theoretical backbone of photonic crystals currently available, 

there is still work that needs to be done to bridge the gap between the highly idealized 

computational models used and real samples with surfaces and defects.  One way this 

might be addressed is by comparing electronic density plots of photonic modes calculated 

using idealized methods, like MPB, with those calculated using finite element analysis.  

Finite element analysis has only recently been applied to photonic crystal problems, 

mainly fibers,
28-29

 due to the number of elements (and time) required by the complexity 

of the structure.  However, with advancements in computational capability a rigorous 

treatment of photonics using finite element analysis is possible. 

 Through the work of this thesis, we have matured from showing how a structure 

found in the scales of a destructive insect fit a highly sought after and idealized 

theoretical model to gaining understanding from that same structure’s nonidealities.  
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Learning along the way with the rest of the photonic crystal community, I have cut a 

jagged path.  While there have been many hundreds of failed samples, there have been a 

few successes along the way.  We have gained powerful insight into the 

structure/property relationships of real photonic crystal systems.  We demonstrated that a 

structure naïvely pursued by a graduate student, in pursuit of a full photonic band gap 

does in fact control visible light in three dimensions better than any other real material in 

the literature, a finding that we profoundly enjoy.  
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