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ABSTRACT

The goal of this dissertation is to improve flood risk managememnbgancing
the computational capability of two-dimensional models and incorporakatg and
parameter uncertainty to more accurately represent flood riskroltrement of
computational performance is accomplished by using the GraphicssEracdJnit
(GPU) approach, programmed in NVIDIA’s Compute Unified DevelapmAechitecture
(CUDA), to create a new two-dimensional hydrodynamic model, Flod@dRPD- The
model, based on the shallow water equations, is designed to exiecul&tions faster
than the same code programmed using a serial approach (i.e., @amgyal Processing
Unit (CPU)). Testing the code against an identical CPU-basatbredemonstrated the
improved computational efficiency of the GPU-based version (appabaispeedup of
more than 80 times).

Given the substantial computational efficiency of Flood2D-GPU, a Mewte
Carlo based flood risk modeling framework was created. The frarkedeveloped
operates by performing many Flood2D-GPU simulations using randsantypled model
parameters and input variables. The Monte Carlo flood risk modé&amgework is
demonstrated in this dissertation by simulating the flood riskcasted with a 1% annual
probability flood event occurring in the Swannanoa River in Buncombe Couaty ne
Asheville, North Carolina. The Monte Carlo approach is able to regraseide range of

possible scenarios, thus leading to the identification of areasl®atsingle simulation



inundation extent that are susceptible to flood hazards. Further, the singllation
results underestimated the degree of flood hazard for the case regioy when
compared to the flood hazard map produced by the Monte Carlo approach.

The Monte Carlo flood risk modeling framework is also used to deterthe
relative benefits of flood management alternatives for flood ridikateon. The objective
of the analysis is to investigate the possibility of identifyapgcific annual exceedance
probability flood events that will have greater benefits in tesimgnnualized flood risk
reduction compared to an arbitrarily-selected discrete arprodhbility event. To test
the hypothesis, a study was conducted on the Swannanoa River to wcetéhai
distribution of annualized risk as a function of average annual prdigaBilimulations of
samples of flow rate from a continuous flow distribution provided thgeaf annual
probability events necessary. The results showed a variati@mrinalized risk as a
function of annual probability. And as hypothesized, a maximum anndiahiz&
reduction could be identified for a specified annual probability.tRerSwannanoa case
study, the continuous flow distribution suggested targeting flood protdiegntrol the
12% exceedance probability event to maximize the reduction of anedhaisk. This
suggests that the arbitrary use of a specified risk of 1ééesbance may not in some

cases be the most efficient allocation of resources to reduce annualized risk.



TABLE OF CONTENTS

LIST OF TABLES. ... e e e e e Vi
ACKNOWLEDGEMENTS. ...t it e ie e e VA
Chapter

1. INTRODUCTION ..t et e e L

1.1 Background...........ooi i 1
1.1.1 Flood IMpPactS......ccveviiicie i e e e e 1
1.1.2 Flood Modeling........co oo 4
1.1.3 Uncertainty in Flood Modeling............cccooevvvii i, 9
1.2 Problem Statement.............cooo i 11
1.3 Research Objectives..........ccocvveiiii i 13
14 Overview of Dissertation ...........ccocieiiiiieiin i, 13

2. GRAPHICS PROCESSING UNIT-BASED TWO-DIMENSIONAL
FLOOD MODEL.....ciii e, 15

2.1 INtrodUCtioN......o i e ee e en. 1D
2.2 Methodology.......co oo 21
2.2.1 Model Description... e Za I
2.2.2 Model Validation.. .. L ¢}
2.2.2.1 Laboratory Scale Dam Break ....................... 26
2.2.2.2 Taum Sauk Dam Break.. P24 o
2.2.3 ModelSpeedup...................................................30
2.3 Results and DISCUSSION........ooviri it e e e, 31
2.3.1 Model Validation.. . ... 31
2.3.11 LaboratoryScaIe Dam BreakSrmuIatron ...... 31
2.3.1.2 Taum Sauk Dam Break Simulation.. N
2.3.2 ModelSpeedupCalculation.................................... 39
2.3.3 Effect of Domain Minimization...................c.ccceeeee. 41
2.3.4 Effect of Spatial Resolution... Y Y24
2.3.5 Speedup Comparlson to Other Studles el A4,
2.3.6 Limitations of GPUs.. 45



3. MONTE CARLO BASED FLOOD MODELING FRAMEWORK FOR
ESTIMATING PROBABILITY WEIGHTED FLOOD RISK.............. 49
3.1 INTrOAUCTION. ... e e e 49
3.2 Methodology... . PP o X
3.2.1 Monte Carlo AnaIyS|s N X<
3.2.2 Geospatial OutputAnaIyS|s PPN | o
3.2.3 Risk Map Development......................................... 57
3.3 CaSE STUAY ... ettt e 60
3.4 RESUITS ... . 63
3.5 SUMMAIY ...t e e et ie e aeeeeeeee e 09
4. ANNUALIZED RISK ANALYSIS APPROACH TO RECOMMEND
APPROPRIATE LEVEL OF FLOOD CONTROL.......ccuvvvvt e 71
4.1 INtrodUCHION. ...t e e e e 1
4.2 Methodology .. e 7
4.2.1 General FIood Damage AnaIyS|s Approach .................. 77
4.2.2 Flood Damage Approach in This Study...................... 79
4.2.2.1 Input Flow Estimation..........................c.o.. 79
4.2.2.2 Hydraulic Modeling.........cccoooiiiiinninn . 82
4.2.2.3 Damage Modeling..........cccovvvviiiiiniiiiniennn, 84
4.3 CASE STUAY ... ettt e e e 87
4.4  Results and DiSCUSSION.........ooiiuiiiriieiie e e e aen 91
4.4.1 No Flood Proofing Alternative................oo v i, 91
4.4.2 Flood Proofing Alternatives................cccocevvvvvveee. 94
4.4.3 Capital Cost EStimates..........coviiiiiiiiiiiiiiie e 97
4.5  SUMMAIY...coiiiitiiiin e eien e nnienaneneiennaenenenneeeneenenen. 100
5. CONCLUSIONS . ... ot e e e e e e e 102
APPENDICES
A. FIRST-ORDER UPWIND NUMERICAL DISCRETIZATION OF THE
ST.VENANT EQUATIONS . ...t e e e e 107
B. IMPLEMENTATION STEPS FOR CPU AND GPU FLOOD MODEL
FRAMEWORKS ... o e e e e e e 115
REFERENCES. .. ... e e e e e e e 121

2.4 CONCIUSIONS . .. 47

Vi



Table

2.1
2.2

2.3

2.4

2.5

3.1

4.1

4.2

LIST OF TABLES

Page
Comparison of the configuration of the GPU machines................. 26
Quantified statistics for laboratory scale dam simulation..................

GPU speedup results for Taum Sauk dam break simulations for three
sets of model iterations...........ccooeii i 39

Execution times before and after domain optimization....................
Comparative summary of recent model speeds in the literature for
storage cell (SC), dynamic wave (DYN), and diffusive wave (DIF)

MNOAEIS . .o i, 4B

Error matrix comparing the flood risk maps using deterministic
approach (Map A) and deterministic approach (Map B)............. 65

Estimated annual damages calculated for the three cases..................

Calculation of cost estimates for implementing flood proofing..........

42



ACKNOWLEDGEMENTS

| would like to express my gratitude to my research advisor, Dr. Steven Burian,
for all his invaluable guidance, patience and continued support throughout my graduate
study. | also sincerely thank him for giving me many opportunities that help mewo gr
professionally.

| would also like to thank all my committee members, Dr. Timothy McPherson,
Dr. Brian McPherson, Dr. Christine Pomeroy and Dr. Eric Pardyjak, for imgetteir
time, effort and support. | would also like to thank all the fellow students and ressarche
past and present, that | have interacted with and befriended here at theityrobters
Utah. Especially, | would like to thank Siddharth Shankar for his valuable colleforat
in developing the GPU model, and Dr. Dave Judi for his expert suggestions during the
dissertation.

| would also like to thank my parents, my two sisters, my brother-in-laws, my
brother and my sister-in-law for their support, thoughts and love throughout myatgadu
studies. | extend a special thanks to my cute nephews and two nieces for thandove
affection.

Finally, 1 would like to thank Tania, whose influence on me | cannot quantify,
who was my inspiration to pursue my doctoral degree, who stood by me during the thick

and thin, and believed in me even when | did not believe in myself.



CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Flood Impacts

Knowing that more than 2.8 billion of the world’s population lives withirkdb
of rivers (Small and Cohen, 2004), it is no surprise that floodomeeof the more
frequently occurring and higher impact natural disasters. Eyesy, on average, 196
million people in more than 90 countries experience to some degrastrephic
flooding. From 1980 to 2000, floods resulted in more than 170,000 deaths worldwide,
an average of nearly 9,000 deaths per year (UNDP, 2004). Althougls dféwe been
directed towards flood management and control, the problem continues enveas's
populations in riparian and coastal areas grow, as more people maparianrand
coastal areas, and as climate patterns change (Burby, 2001; tMc@aral., 2001;
Montz and Gruntfest, 2002). Flood risk mitigation is a major chadleflaging local,
regional and global disaster management agencies (Levy et al., 2005).

Mitigating flood risk can be achieved in today’s heavily urbanizeddvby
appropriately using the floodplains through floodplain management pra¢fibesad
and Simonovic, 2006; Bedient et al., 2008). In the United States (US), flood

management practices have been directed towards flood control, rtfamigh the



construction of levees by the US Army Corps of Engineers, esiyewitth the passage

of the Flood Control Acts of 1917 and 1936 (Wright, 2000). This has evolved
significantly over the last 75 years with the inclusion of variaugtiral flood control
measures like detention basins, levees, dams and nonstructural esdédsurflood
proofing, permanent evacuation and relocation, land use managementhépad
maps, hydrologic/hydraulic models, early warning systems, etranugrocedures,
building codes and National Flood Insurance Program (NFIP) (Levsl.et2005;
Ahmad and Simonovic, 2006).

However, achieving complete protection from extreme flood eventsot
technically feasible or economically viable, because one canrditiptiee exact flood
magnitude and frequency to be able to design flood control with appeopriat
specifications, because flood events are inherently random and vargce and time
and also with changing climate. For example, during the great USA flood of 1988 in t
upper Mississippi River basin which was protected by at least #&d&ral and
nonfederal levees along the river, 40 levees under federal opeatidn1043
nonfederally operated levees failed or overtopped across the efatdsnesota,
lllinois, Missouri and Nebraska, resulting in total estimated d@sap to $20 billion
and destroying more than 50,000 homes (Johnson et al., 2004). Thus, in the recent
years, there is shift in the perspective of flood policy from ¢bacept of “flood
protection” to “flood risk management” (Schanze, 2006).

Flood protection aims at preventing flood hazards up to a certain flood
magnitude by providing a certain protection level (e.g., proteetyainst floods with a

magnitude equivalent to a 1% exceedance probability). Flood risk maeagem the



other hand focuses on avoiding flood risk or minimizing the impactsooti$l where
flood damages cannot be avoided, by using a combination of floodplain enagaiy
practices. In the US, with this goal in mind, the US Army Cor@sngfineers (USACE)
established the National Flood Risk Management Program (NFRMP).gddleof
NFRMP is to create a collaborative platform for all the fatjestate and local agencies
to develop strategies using a combination of floodplain managemericgsam
reducing flood risk. One of the examples of flood risk managemmggiementation in
the US is the Swannanoa Flood Risk Management Project (SFRMRg Swannanoa
watershed in the state of North Carolina. Established in 2005, itstigbjés to reduce
the flood damages and risk of economic losses related to flooding Bwaenanoa
valley area. Based on the preliminary engineering studies@anchenity outreach, 50
potential flood risk management projects were identified, including fladching
stations, dam rehabilitation, emergency spillway reconstruction @irehidischarge
capacity, improvements to river approach and exit of bridges, and fladd w
construction. More information about this project can be found at thelpage,
http://www.swannanoafloods.org.

Continued improvement in floodplain management practices and managing
flood risk requires effective public education of risk, careful plannaged on
estimates of flood extent and reliable fast information exchange with the dublng a
flood event emergency (FEMA, 2002). The success of these actionsead ba
accurate and rapid prediction of flood inundation, which is achieved by fwabkls
(Bates et al., 2004; Bates et al., 2005). By improving the predictidload depths,

velocities and flood inundation extent, one can apply these results omtidlence in



the design of flood management alternatives like dams, storagesbfood walls,
levees, enhance the performance of early flood warning systemsistande the

impacts of urbanization and climate change on the increase in floods, and much more.

1.1.2 Flood Modeling

The advancement of computer models to simulate floods has hafticaigni
impact on the ability to plan, forecast and respond to flood eventsgiHeirdl., 2007).
In the US, hydrologic and hydraulic models were first appleesimulate floods in the
1960s (Crawford and Linsley, 1966), and have since been used to enhancergmngine
design, planning, floodplain delineation and emergency response. Thess nandgel
from simple mathematical equations (e.g., rational method) to camatel
computationally challenging numerical solutions of partial difieed equations, also
varying in predictive capacity. The current state of flood modeilmglves using
computer-based flood models that are freely available like theokbgic Engineering
Center's River Analysis System (HEC-RAS), the Nationaht€efor Computational
Hydroscience and Engineering’s (NCCHE) CCHELD, and the USoGieal Survey’s
(USGS) Multi-Dimensional Surface-Water Modeling System (NBMS). There are
also commercially available flood models like MIKE1l, MIKE-FLOOL DHI
Group, FLO-2D by FLO-2D Software, Inc., etc., that are used in floodetng
practice. Most of these models have the capability to integuitte Geographic
Information Systems (GIS) and storing and managing spatial reddted to floods,

using software packages like ArcGl9vapWindow and MapInfd,



Flood models typically simulate floods as free surface flowsgusne-
dimensional (1D) dynamic wave simulations, also known as SaintnVeugations.
The 1D representation assumes that flow is parallel to viee channel or floodplain,
i.e., flow lateral to the main channel or perpendicular to the main channel flatiahre
does not occur. It represents the river channel and the floodplairseses of cross-
sections perpendicular to the flow direction. 1D models have been a comusead
class of flood models as they are relatively simple to buildeasg to operate (Fread,
1985). They are also computationally efficient and many enginsmrsider their use
acceptable to produce reasonably accurate surface wateep(&filchele et al., 2006).
Examples of 1D flood models include the US Environmental Protectiomcdise
Storm Water Management Model (SWMM), the US Army Corps ofiiteeg’'s HEC-
RAS, MIKE11 by DHI Group, FLDWAYV model by the US National W Service
and, WSPRO developed by the USGS. Solving these models for a flood event on a river
reach results in flood depths and velocities at all the crosisise@long the river. The
flood depths can be interpolated to a water surface elevation, wanchecoverlaid on
a digital surface of ground elevations (e.qg., a digital elevatiodel in an ESFI grid
format, a triangular irregular network). Total flood inundation extsnt be derived
from all locations with water depths above the ground surface, as shdwgure 1.1
(Merwade et al., 2008).

Even though 1D models are commonly used, the approach of 1D models is not
always appropriate, especially when applied to floodplain flows. Taiéyof simulate
the lateral diffusion of the flood wave. And the discretization oftdpography as

cross-sections, instead of a continuous surface, is responsible for model uncetaintie
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Figure 1.1: Flood inundation mapping process for 1D flood models

sinuous channels. The location of cross-sections is also subjectiveagrbtantially
affect the simulated extent of floods (Samuels, 1990). Flood inundaktente
extraction through 1D models: 1) is not a seamless process ancesqopstprocessing
and 2) is subjective because water surface elevations are gdnatabugh
interpolations (Bates and De Roo, 2000).

Two-dimensional (2D) flood models eliminate these limitations, andws 2D
numerical schemes have been developed in response (Zhang and 0&%y,amb et
al.,, 2009; Judi 2009). Applying 2D models enables higher order topographic
representation in the simulations. A postprocessing step is not kdoiirealculating

flood inundation extent because all the locations with flood depths cedlgctorm the



flood inundation extent (Bates et al., 1995). Moreover, with the increasatability

of high resolution and high accuracy Digital Elevation Models (D& floodplains
areas, 2D models can be readily integrated with such data s¢iMads and Bates,
2000). Most researchers agree that, because flows in the floodydgificantly
increase in complexity, models based on higher-order equations, si&ih ais 3D
equations, should be used (Knight and Shiono, 1996; Bates et al., 1998). The
recommendation of NRC (2009) towards Federal Emergency Managemtrurigy
(FEMA) was to promote “greater use of 2D hydraulic modeddiere needed by the
floodplain topography, including preferential flood pathways and egisthd planned
structures.

A major limiting factor for applying 2D numerical flood modeks their
computational intensity (Lamb et al., 2009; Judi, 2009). Despite the advances
computer hardware and technology, it can still take a long timent@D models. For
example, a Central Processing Unit (CPU) based 2D dynamic wave flootlusodea
first-order upwind finite difference numerical scheme was tisatmulate a dam break
event for a 62 kiarea (624 x 1136 grid cell domain at 9.36 m spatial resolution), on a
2.33 GHz Intel™ Core2Duo® desktop with 2 GB RAM and Windows XP Professional
Operating System (basic system characteristics expectedstmmodelers). The model
took 9.1 h to simulate approximately 15 min of flood wave. This limitsthaber of
scenarios, spatial extent and/or level of detail that is exgppdotea particular flood
problem, especially in the development of Monte Carlo based risksassgismethods
for flood modeling (Sayers et al., 2000; Buijs et al., 2003; Lamhb.,e2@09; NRC,

2009). They require multiple scenario simulations that tremendouslgaserthe



computational intensity in generating flood depths, velocities, extetds For
discussion’s sake, let us consider a flood emergency and evacuatignfatiitie
above-mentioned dam break simulation. The lead time for flood wawayy small,
maybe around 2 — 3 hours, but it takes 10 hours to run the numerical modebdg&b, m
application would not be sufficient for emergency and evacuation study.

Computational intensity is further affected by using higher resoludigital
topographic data, and by applying models at regional scales. &adede Roo (2000)
found that performance of models with a 100 m grid deterioratedfisagrily when
compared to a 25 m grid, and this was much less for a 50 m griche®®,is a difficult
choice for the modeler, whether to use a lower spatial repgeggs and not take
advantage of enhanced topographic data or to use a higher resolutiarffé@utvith
computational intensity. In addition to computational intensity, flood esitms from
models that can be run quickly, while maintaining accuracy, can blemusemore “near
or better” than real-time fashion to include dynamic conditions amthree the
emergency management and decision-making capability.

2D flood models have been implemented in a high-performance parallel
computing architecture including Flo2DH by Hluchy et al., (2002), RdyARao (2005),
CalTWIMS by Pau and Sanders (2006), TRENT by Villanueva and RtV@2006),
FloodMap-Parallel by Yu (2010) and LISFLOOD-FP by Neal et(2009). However,
converting existing codes to execute on a parallel programming cemgluster is a
complex process requiring significant programming effort (Tenach Hluchy, 2004), and

high-performance computing infrastructure is typically limitéel academic and



government institutions, limiting their availability to private cotisgl and engineering

firms. There is a need for a simpler and a cost effective way to build 2D floodsnode

1.1.3 Uncertainty in Flood Modeling

Numerical models are but conceptualizations of reality and heedece
physical complexity by simplifications through the systemsqofa¢ions (Wagener and
Gupta, 2005). The model parameters, input data and model structuralaetedhivith
observed data, and when needed, the parameters are alterededr (feithin their
acceptable ranges) to fit the model simulations to the obseatadahd the validated
model is used for prediction, as illustrated in Figure 1.2.

However, prior estimation of feasible ranges of parameters ramieguarantee
the model prediction within a close range of observations, espegvalgn it is
extrapolated to other problem locations, like in the case of theevdots outside the
observation data in Figure 1.2. The lack of correlation between modeh@@rs and
physical floodplain characteristics results in significant waggty in prediction,
especially if the model is extrapolated to predict the sysiehavior at a different
location and/or flood event.

Flood model uncertainty is thus of critical concern when modelingtseare
used to set policy, decision making and emergency planning. Fail@aekbhowledge
uncertainty could result in wasteful overdesign of flood protectidigation systems,
or could lead to inadequate preparation for potential situations and dues & these

systems.
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Figure 1.2. Typical approach for model calibration, validation and predicitapted
from Smith, 2007)

Thus, a careful and detailed calibration and uncertainty anakysisquired for a
successful application of flood inundation models (Duan et al., 1992; Beven and Binley,
1992; Yang et al., 2008). For the past two decades, several studies otainityce
analysis of models have been conducted, including Aronica et al. (AR} et al.
(2004), Werner et al. (2005), Pappenberger et al. (2005), studying tbedfsrface
roughness coefficient, Aronica et al. (1998), the grid cell sizePamds et al. (2008)
for flow characteristics etc.

However, the common representation of flood model simulation resoitsne
a deterministic flood inundation map based on a single simulation, rsgta few
scenarios (Apel et al., 2006). These limitations in the andigsie been due to the lack
of data, and lack of higher dimensional modeling capabilities. Unfodiynahese
deterministic approaches rely on the use of a single or tnpidgameter sets and does

not account for the uncertainties in the modeling process (Batds 2004) and may
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lead to an inaccurate hazard assessment (Di Baldassatre 2010). To remedy the
shortcomings of a single deterministic simulation of a floodplaimbailistic
modeling approaches are emerging. Probabilistic flood mapping, Maomge Carlo
framework, is designed to incorporate uncertainty from input data raodel
parameters, represent spatial and temporal risk, and present fagmsl imterms of
probabilities and percentages (Aronica et al., 2002; Romanowicz and B@3,
Bates et al., 2004; Hall et al., 2005; Pappenberger et al., 2006; asBalde et al.,
2010). However, these approaches are mainly based on simple plarzdibydodels
and model implementation using the full shallow water wave equatiesdtabeen
found in the literature. Incorporating a physically-based 2D hwidranodel would
improve the model evaluations because of the improved spatial reptesersgnd
accuracy of flood depths and velocities compared to 1D and simpifeglanar
models (Bates et al., 2004). This would also aid in better undersgatidirsources of

flood risk that is essential for flood risk management.

1.2 Problem Statement
Advancement of computer models to simulate floods has significg&cis on
the ability to plan, forecast and respond to flood events. 1D flood moéet®eamonly
used in flood modeling applications; some of them, like HEC-RAS, R{5Rtc., are
even available for free. However, they are prone to limitationdyuding simplified
topographic representation through cross-sections, interpolation inr \gatéace
elevation generation and problems simulating complex lateral floodjdais, etc. 2D

flood models alleviate these limitations with their ability tmgate complex flows and
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with higher order topographic representation. However, a major limftetpr for
applying 2D numerical flood models is their computational intensitghderformance
computing facilities are available to only a few acadenmseaech institutes and a few
consulting firms because of tremendous financial costs relaiednstalling and
maintaining these computing facilities. There is a need tlsdar simpler and more
cost-effective alternatives.

Another critical challenge facing flood modeling is the uncetyainvolved in
modeling floods. It is a significant challenge, especiallyemvimodels are used in
determining policy, decision making and emergency planning. Failuractopiorate
uncertainty could potentially result in wasteful overdesign of floodeptmin/mitigation
measures, or even worse, lead to inadequate preparation for floodipnatetigation.
Incorporating uncertainty is imperative for successful use ofdhygic and hydraulic
models. However, flood models are being operated in a detenmirf@t single
simulation) fashion relying on the use of a single or limited patansets and they in
general do not account for the uncertainties in the modeling pro€&esbabilistic
modeling approaches are emerging to reduce this limitation bug¢ #ygsroaches are
mainly based on simple planar hydraulic models (Di Baldassarat,e2010). Flood
models using the full shallow water wave equations have not been fotimel literature.
Thus, there is a need to use physically-based 2D flood models imbabgistic

framework and demonstrate the usefulness in flood risk management.
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1.3 Resear ch Objectives

The goal of the proposed research is to improve flood risk managdient
enhancing flood model computational capability and incorporating flood mgdel
uncertainty and demonstrating the importance of acknowledging umtgitaflood risk
applications. This is accomplished by (1) developing a computatioredflgient
Graphics Processing Unit (GPU) based 2D flood model by usindfieierg and robust
upwind numerical scheme to solve the complete 2D Saint Venant equat®)ns
developing a Monte Carlo based probabilistic flood modeling framewonkctorporate
data and parameter uncertainties and generate probability acifibbd risk, and (3)
applying the Monte Carlo based framework to study the benefimpémenting flood

risk management alternatives.

1.4 Overview of Dissertation

The proposed goals of the research and the details of the methodsatslare
presented in the following chapters. The research included thelogevent of a
computationally efficient GPU-based 2D flood model. It is explaimethe Chapter 2
and information is provided on the GPU framework, the developmentloba@ model
and the optimization of the model for computational performance. The faa! is
validated by comparing results from a laboratory exercis@aw its ability to accurately
estimate flood depths and velocities. The model is then furthefated with a case
study using high water mark data collected for the Taum Saukbdeak event. The
computational improvement of the GPU-based flood model is observed, and the

performance of GPU as a function of domain size and spatial resolution is explored.
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Chapter 3 focuses on development of a new Monte Carlo based probabilistic flood
modeling framework. The framework is used to incorporate data arameser
uncertainty and estimate probability weighted flood risk. The chapigdudes a
description of the framework and an application to determine the flisadof the
Swannanoa River in North Carolina. The ability of the framework avidng detailed
flood risk compared to a deterministic flood modeling approach is deratetstChapter
4 focuses on the application of the probabilistic flood modeling framework to ahesisn
of flood risk management alternatives. The financial impact mgef reduction in flood
damages by implementing flood proofing for different design flooatsvis studied. The
annualized risk concept is used in the formulation of design altessatChapter 5

summarizes the results of the dissertation and presents the conclusions.



CHAPTER 2

GRAPHICS PROCESSING UNIT-BASED TWO-DIMENSIONAL

FLOOD MODEL

2.1 Introduction

With more than 21% of the world’s population living within 30 km of the toas
(Gommes et al., 1997), catastrophic flood events continue to causereasing amount
of casualties, economic impact and infrastructure damage. Ongayet@6 million
people in more than 90 countries are exposed to flooding each yeaP(l2004), while
in the United States (US), by 2005, flood damages increased to ilo6 per year
(FEMA, 2002; Levy et al., 2005). While already significant, Piedkeal. (2002) have
analyzed US flood damage statistics between 1934 and 2000, found themdeasing
and projected them to continue to increase because of population growthigaation
patterns and changing storm event patterns.

Floodplain management actions are implemented to prevent and mftogzde
impacts on humans, ecology and the economy (Ahmad and Simonovic, 2006). Flood
management has evolved over the last 50 years with key areas ot@admeluding
development of flood hazard maps, hydrologic/hydraulic models, flood ngasystems,
evacuation procedures, and flood insurance programs (Levy et al., Zif§)nued

improvement requires effective public education of flood risk, carefuinphg based on
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estimates of flood inundation extent and reliable and fast infamatichange with the

public during an emergency (FEMA, 2002). The success of these actiaornsaid based

on accurate and rapid flood modeling. Flood modeling can be used in various flood

management activities, including engineering design, planning, flaodgdelineation
and emergency response. Complete flood inundation analysis requiestithation of
flood flows (e.g., rainfall-runoff generated, dam break, etc.),dujdr modeling to route
the flow and compute water surface elevations and flow velocares analysis tools to
delineate the flood inundation extent and assess impacts (Knehl20G8; Merwade et
al., 2008).

Computer models have been applied to simulate floods for more than
decades (Crawford and Linsley, 1966). Because of the ease aidiséfiaiency, floods
are typically modeled using a one-dimensional (1D) dynamic way@oach (e.g.,
Hydrologic Engineering Center River Analysis System or HEGGRMIKE 11, etc.).
However, 1D models are not always appropriate because of thitynbsimulate the
lateral diffusion and inaccuracies due to cross-section disatietiz(Samuels, 1990;
Bates and De Roo, 2000). Two-dimensional (2D) models (Zhang and Ci98%,
Tayfur et al., 1993; Lamb et al., 2009) eliminate the primary dtioibs of 1D models
(Samuels, 1990; Bates and De Roo, 2000; Marks and Bates, 2000; Ghavarro et
al., 2008; Judi et al.,, 2010) by enabling higher order topographic retatse and
preferential flood pathways in the simulations (Bates et al., 1B8f&s et al., 1995;
NRC, 2009). Therefore, the National Research Council (NRC, 2009) hasmecaoi@d

that the Federal Emergency Management Agency (FEMA) pefigoeater use of 2D

four
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hydraulic models” where warranted by the floodplain topography, ingugdreferential
flood pathways and existing and planned structures.

Although the advantages of 2D models are well known in the research
community, their computational intensity and complexity remain nlajating factors
for modeling practitioners (Lamb et al., 2009; Judi et al., 2010). Indesgijtelgast
advances in computer hardware and technology, 2D simulations stiltereystantial
time to complete, potentially preventing their application to meetelng time
constraints. Different flood management objectives require diffdesdt times (time
period between initiation and termination of the flood management gragscshown in
Figure 2.1. In general, the necessary computational intensity obéa fhodel increases
with the level of detail and turnaround time needed for a partifiokad management
activity. It is apparent from Figure 2.1 that for flood risk andniey applications, the
average modeling time must be less than a few hours, which naghe possible for 2D
models. Recent advances in model speed and computational power male pghavi
ability to run a single flood simulation using a 2D model for smadieeas within
designated time constraints. However, the current trend towardsé¢hef Monte Carlo
methods that involve many simulations for generating flood risk nmdition mandates
the need for even faster models (Sayers et al., 2000; Buljs 20@3; Lamb et al., 2009;
NRC, 2009).

One approach to improve the computational performance of 2D flood medels
simplifying the numerical code, such as using the horizontal piajeof water levels
that depart significantly from the physical basis of a hydnadyic model. Another

method eliminates the convective terms in the momentum equation (Lamb et al., 2009).
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Figure 2.1. Activity duration and modeling time scale for diffefesdd modeling tasks
(adapted from Hall et al., 2003).

However, it has been found that the dynamic terms in the govergiragions are critical
to solve the complex flow patterns that arise with irregupography (Leopardi et al.,
2002). Another approach typically adopted is to use a coarser spatdlitian to
decrease the number of computations, but Ferziger and Peric (2008)this generally
results in an increase in discretization error and may resudiduced accuracy (Yu and
Lane, 2006; Merwade et al., 2008).

A recent approach to improving computation speed of flood models is
parallelizing the source code. Two-dimensional flood models have been implemented in a

high-performance parallel computing architecture including Flo2DH by Wlathl.
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(2002), RMA by Rao (2005), CalTWIMS by Pau and Sanders (2006), TRENT by
Villanueva and Wright (2006), and LISFLOOD-FP by Neal et al. (2009). However,
converting existing codes to execute on a parallel programming computer daster
complex process requiring significant programming effort (Tran and H|&f64), and
high-performance computing infrastructure is typically limited talaoac and
government institutions, limiting their availability to private consulting engineering
firms. But recent developments in technology have produced computers with multiple
microprocessors capable of being executed in a parallel fashion and flood henaels
been developed to take advantage of this capability (e.g., FIT2D by Judi et al., 2010).
Another flood model parallelization approach has emerged recently. The eslvanc
in integrated circuit technology and graphics hardware, in thedpaatie, brought about
an evolution of graphics hardware, commonly called “graphics candsiei video game
industry (Sony Play Stati6n3, etc.). The graphics card, also called Graphics Processing
Unit (GPU), possesses microcomputer-like programmability sinidaa CPU. It is a
specialized processor that performs 3D graphics rendering tihemmicroprocessor,
typically used in embedded systems, personal computers, workstatongame
consoles. GPUs are attractive because they offer extensive etiomait capabilities
including massive parallelism, high memory/data transfer éxtwhe motherboard and
the GPU, and not just graphics applications but also nongraphics applicitien&PU
architecture provides large memory bandwidth and floating point opesgter seconds
or FLOPS (measure of scientific calculations involving floapogt calculations), when

compared to conventional CPU. For example, NVIDIA GeForce 6800 dttheeves
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35.2 GB/s of memory bandwidth, compared to a 3.7 GHz Intel Pentium4 SiSkhose
theoretical peak memory bandwidth is 14.8 GB/s (Owens et al., 2005).

GPU development has enabled parallel computational capability of Ps G
through graphics application programming interfaces (API) like Opesm@l Direct3D
(Nguyen, 2007; GPGPU, 2010). This has created a proliferation of &dperpose
computation on Graphics Processing Units (GPGPU) approaches fgrapbits
applications and scientific computing research (GPGPU, 2010). \Weghatlvent of
programmable GPUs, legacy scientific computing codes are h&pggrammed
following the GPGPU approach using the conventional graphics pipeding graphics
APIs like OpenGL, Cg and Direct3D (Kruger and Westermann, 2003;tVal, €004).
Although GPU computing has been incorporated into a wide range of citropat and
modeling applications with success (Hagen et al., 2005; Andersdn 20@9), it has
found limited application in computational fluid dynamics and flood modeHarris et
al. (2002) presented a real-time visual simulation of diversendignghenomena using
GPU, and presented a speedup of 25x on a NVIDIA® GeForce 4, compahedsinie
simulation run on a Pentium CPU. Hagen et al., (2005) presentesia simulation
study of shallow water waves using GPU and reported 15x tog@@dap compared to a
CPU simulation. Lamb et al. (2009) presented a speed up of 112x ifigsave wave
flood modeling approach compared to a CPU model.

GPU applications in flood modeling remain an area of emergirggarels (Lamb
et al., 2009; Neal et al., 2009). They have been limited to usingatthiéional graphics
pipeline (using shader programming) or specialized hardware Splead™) in which

the programmer transforms a computational algorithm into afsgtaphics operations.
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The drawback of these approaches is the significant compleixitye source code for
executing programs, leading to a steep learning curve. A reckrin@gement that
addresses this issue is the introduction of Compute Unified Data ArchiteCtuiBsd) by
the NVIDIA® Corporation. CUDA is a parallel programming model ando&ware
environment for parallel computing aimed at engineering and gmeapplications.
While graphics pipeline-based GPU computing requires prior graphics anguter
science background, using the newer and specialized nongraphics pipdliGd) D
offers is straightforward. It is designed to develop apptioagoftware that transparently
scales its parallelism to leverage the increasing numbepraxcessor cores, while
maintaining a low learning curve (NVIDIA, 2009). CUDA also provides a
straightforward means of describing inherently parallel contiputa and is specifically
relevant to data parallel algorithms (Garland et al., 2008). Thapter addresses this
emerging research area by describing a new GPU impletioente# the full dynamic
wave equations in a CUDA framework. The objectives of the chapteto present the
new GPU-based 2D flood model, demonstrate its computational improvecoemsred
to its CPU counterpart and explore the GPU performance as dofuieétdomain size

and spatial resolution.

2.2 Methodology

2.2.1 Model Description

The numerical algorithm used in the GPU 2D flood model developed isttlig
(Flood2D-GPU) is a first-order accurate upwind difference sehétrat solves the non-

linear hyperbolic shallow water equations. These equations aedoged from the
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Navier-Stokes equations by integrating the horizontal momentum andnuity
equations over depth often referred to as the depth averaged or deptitadteshallow
water equations (i.e, Saint Venant equations). The nonconservativeofdira partial

differential equations is (Tingsanchali and Rattanapitikon, 1999; Judi et al.; 2010)

ah, ah, avh_

+—+ 0 ContinuityEquation(2 -1
a ax ay yEquation(2-1)

8_u+ u@+va—u+ ga—H+ 0S,, =0 MomentumEquationin x - direction(2- 2)

ot ox oy OX

@+ u@+v@+ g%—H+ gS, =0 MomentumEquationin y - direction(2 - 3)
X

ot ox oy

where,h is the water deptHl is the water surface elevatiamjs the velocity in thec-
direction, v is the velocity in the/-direction,t is the time,g is the acceleration due to
gravity, Sx is the friction slope in th&-direction andSy is the friction slope in thg-
direction. The upwind finite difference numerical scheme is uselistretize governing
equations 2-1 — 2-3, as it yields nonoscillatory solutions, through nuindifftesion
(Patankar, 1980; Ferziger and Peric, 2002). A staggered grid stenséd to define the
computational domain with the water deptt) {n the center of the cell and andv
velocities on the cell edges. The future model time step is eomedrusing the Courant
condition. Appendix A presents the numerical solution of the equations.

The principal dataset for Flood2D-GPU is topographic data (i.etab@jevation
model (DEM)), which is a uniform grid structure. The numericaltsmh is calculated on
a uniform grid to take advantage of the use of downloadable DEM ¥4tile using an

irregular mesh is efficient for model computing, the advantagesiofy the DEM is that
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its extent is the entire computational domain, and no preprocessmgssrequired to
generate a computational mesh, permitting flood model applicatmnseet time
constraints.

Additional data needed for the model include a surface roughnedwieoef
(Manning’s n value) and source boundary information. The roughness of the entire
domain is typically represented using a single Manning'salue in 2D modeling
applications (Hunter et al., 2007; Judi et al., 2010). The flow hydpbgis an input
dataset that can be developed from a hydrologic model, dam breakl mode
observations. The source location of the input hydrograph must be defined.oflbé m
does not account for evapotranspiration, infiltration and erosion proctésgesould
affect the surface runoff, especially for long-term flood sahahs in the floodplain.
Incorporating these physical processes would enable influence orflotidplain
simulations in terms of flood velocities, depths and also the duration of flooding.

The Flood2D-GPU model was programmed following the traditionBUC
approach in C programming language on an AMPhenom Il X4, 3.04 GHz desktop
with 4GB RAM in the Linux 64-bit programming environment. After sssful testing
and validation, the program was converted in collaboration with the Wriwef Utah
Scientific Computing and Imaging (SCI) Institute to the GPdmework using
NVIDIA’'s CUDA. Figure 2.2 illustrates the process flow imet GPU framework with
functions color coded according to their implementation. CUDA progragnis
designed in such a way that the process control algorithm masalith the CPU
inputting the required data and transforming it into appropriate @G&b format. Then,

data and process control are transferred to the GPU and the computations areg@erform
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Figure 2.2. Schematic of CUDA GPU computing approach followed by the Flood2D-
GPU model (GPU elements shown in red).

The output is transferred back to the CPU for additional computatioegessary) and
storage. GPU programming also has the capability to visu@ateed line in Figure 2.2)
model/program results (e.g., video games, graphic visualizationsy asifront-end
visualization.

In the CUDA environment, the GPU functions are called kernels. Theslker
generate a large number of threads to exploit data parallelieen model domain is
divided into a set of blocks, which are groups of computational eleméigizg 2.3).
Threads are assigned to the blocks, and the blocks are scheduled potatam in the
GPU Symmetric Multi-Processing (SMP) cores. Each blockasaed a shared memory

for computation and storage. The advantage of shared memory allocation is faster
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Figure 2.3. The inner cells, bounded by blocks in red (left), are scheduled onto the SMP
cores of the GPU (right).

implementation, and memory interaction between the threads withatla lhat reduces
memory latency, thus increasing computational performance. ighseF2.3 illustrates,
only the inner cells (red boxes) of the computational domain are devedi when
generating the blocks. Cells on the domain boundary are updated slgpayadpplying

appropriate boundary conditions.

The Saint Venant equations (2-1 — 2-3) are used to compute the updatediv
values. To find the maximum, v, and the correspondingvalues, a parallel reduction
kernel is implemented. For the boundary update, the boundary cefilsakated using
the ‘stencil’ method from Micikevicius (2009). For efficient thotemanagement, the
boundary update function was divided into two different kernels, one fotingdae
boundary rows, and the other for updating the boundary columns.

The many-core simulation of Flood2D-GPU is benchmarked againstrftue

based version of the model executed on a 3.2 GHz AMD desktop with 4GB of RAM. The
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GPU model is tested on two different NVIDIA graphics cards, Ge¢orce 8400 GS
(GPU 1) and the Tesla C1060 (GPU 2). The former, a low-end aaddthe latter, a
high-end card, are used to investigate the impact of graphicshaestdiare on model
performance. Table 2.1 lists the characteristics of the tw&J @Pplications. All

computers use the Linux 64-bit operating system.

2.2.2 Model Validation

Two case studies were selected to verify the ability oFtbed2D-GPU model to
reproduce accurate results. The following section presents theatcases that were used

in the model validation and verification.

2.2.2.1 Laboratory Scale Dam Break

Tinsanchali and Rattanapitikon (1999) created a physical dam break amatle
studied their model performance. In their study, they performeeraleexperiments in
order to gather data to be compared to their 2D shallow water rasdpért of the
validation process. The data provided in their paper, however, weamah and it is
thought that some of the techniques used to gather data from the ocoodiel be

improved. A similar step was accomplished in the laboratory and the saméudysis s

Table 2.1. Comparison of the configuration of the GPU machines

GPU 1 GPU 2
CPU Frequency 2.33 GHz 2.67 GHz
RAM 2GB 24 GB
NVIDIA Graphics Card GeForce 8400 GSTesla C1060
GPU Frequency 459 MHz 1.30 GHz

CUDA Cores 16 240
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used in this research. Here are the details of the experitagatsfrom Judi (2009). The
structure consists of a reservoir and a floodplain, separatedvhil with a 0.1m slot at
the centerline that is controlled by a gate. The dam breakmaslated by the near
instantaneous lifting of the gate and the immediate uncontrolleabeetd water from the
reservoir. The instantaneous reservoir outflow is measured froah#mge in the storage
of the reservoir. A 0.5m outlet was placed at the end of the floodplagnréBervoir and
floodplain are constructed using plywood with the exception of one wallhen t
floodplain that is plexiglass to enhance visibility of the flood wav@lan and a profile
view of the physical model are shown in Figures 2.4 and 2.5. Thaun-8rel TROLL
500 pressure transducers are placed at a distance of 0.7m, 1.4m andoBilthefr
reservoir along the centerline to measure the water depths in the floodplain.

The dam break was simulated for an initial reservoir he&b aim several times
for consistency. A range of expected values was identifieédoh sensor. A 2D flow
was observed in the floodplain. There was also some flow thateflasted from the

walls to the center of the floodplain, forming a hydraulic jump.

40m |

| 28m

Reservoir Floodplain

Qutlet (.5m) \

1.7m / ® ]  J 1.9m
Deam Break Slot (. 1m)

@ [n-Situ Level TROLL® 500 Pressure Transducer
Figure 2.4. Plan view of Laboratory Physical Model (Judi, 2009)
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m 7
Reservoir Floodplain

Figure 2.5. Profile view of Laboratory Physical Model (Judi, 2009)

A supercritical regime (Froude Number > 1.0) was observed distance from the gate.
Some flow drained through the outlet and some flow reflected foackthe end walls,
and it stalled near the second sensor. It was also found thatetb@ @pd depth of the
flood wave was dependent on the initial reservoir head.

A digital elevation model (DEM) representation of the physicaldeh was
created with a 0.02 m resolution uniform numerical grid of approxlyn&&000 grid
cells. The boundary conditions used were “walled” boundaries and atutks. The
walled boundaries are represented by ‘no-slip’ condition where tilldluxes (along
the width of the floodplain) are set to zero. The free outlet wasrged by the minimum

of normal and critical depths (Sturm, 2001).

2.2.2.2 Taum Sauk Dam Break

The validation of the CPU and GPU models is also conducted using ardakn
event that occurred at the Taum Sauk pump storage hydroelectric Ipzated in
Reynolds County, Missouri. It is a twin reservoir system, desigm@doduce electricity
during peak periods by discharging water from the upper res¢ovtiie lower reservoir
during peak electricity rate periods and pumping water back topgher reservoir during
off-peak rate periods. The upper reservoir, built on the Proffit Mountain, is apptekima

232 m above the floodplain of the East Fork Black River, with a stogugecity of 5.7
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M m°. It failed on December 14, 2005, at a 207 m wide section on the nortidesif
the Proffit Mountain, releasing the entire storage into Eadt Blaick River floodplain,
through Johnson’s Shut-Ins State Park and into a lower storage resdthoir25 min
(Rydlund Jr., 2006).

The topography for this study is a 1/3 arc second (9.36 m) UnitagsSta
Geological Survey (USGS) DEM covering the 62%kextent of the flood event with
708,864 model grid cells (624 x 1136 grid mesh). The hydrograph in tiag st from
the USGS analysis of the event (Rydlund Jr., 2006), in which the discisatigveloped
from a volume analysis of the reservoir and knowledge of the embankailarg. The
peak discharge is 8,100 cubic meters per second (cms), which occusirappely six
min after the breach. The simulation uses a Manning'’s rougtvadge of 0.035, which
Judi et al. (2010) found to be reasonable for 2D models at the Tauno8atien. The
model comparison with observed high water mark data is performedhdochannel
section between the upstream and downstream reservoirs of thesprage system
because of the lack of observed high water mark data at and below the lowerreservoi

To quantify the deviation of simulated results from observationse ttmetrics are
used. The first metric is a measure of fit, Bf€ statistic presented by Bates and De Roo

(2000):

Aobs A Amod
2 : ;
F< / = Aobs U Amod (2-4)

where, A and A™ represent the inundation extent of the observelinaodeled data,

respectively. The other two metric are statisticamparisons of the two datasets to
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measure the over-estimation (Commission) and uesimation (Omission) of the

simulated maximum flood extent (i.e., high-waterkyaelative to observations:

C:(:L—ijloo 2-5)
R

P
oz(1—§jxloo 2-6)

where,Pe is the number of common flooded cells,is the total number of model wet

cells, andP, is the total number of observed wet cells, alligh-water mark conditions.

2.2.3 Model Speedup

The model speedup from CPU to GPU is calculateth@satio of the execution

times of CPU to GPU:

Speedup= 1M (57
Timegy,

The computational enhancement of using GPU vermi€PU model is analyzed
for three cases. The first case is the speedupgPdf fBom CPU for the Taum Sauk case
study. Second, the GPU to CPU speedup is analymetthd Taum Sauk case study after
the computational domain is reduced to the minindmmain size encompassing the
maximum flood extent. The third case investigates effect of spatial resolution on

model speedup. Resampling from a finer to a coaesalution reduces the size of the
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computational domain and reduces the execution. fithes method studies the variation
in the GPU speedup from finer to coarser resolutiamachieve this, a subwatershed in
the Greens Bayou watershed near Houston, Texaseds 0The subwatershed is a small
urban area (42 kfjy about 126 km upstream of Galveston Bay and thié & Mexico.
The subwatershed feeds into Greens Bayou, whi¢bwislthe topography flowing into
the Houston Ship Channel before draining into thef Gf Mexico at Galveston Bay. A
flow hydrograph is produced by a distributed hydgit¢ model (Kalyanapu et al., 2009)

for a rainfall event that occurred on February@91l

2.3 Results and Discussion

2.3.1 Model Validation

2.3.1.1 Laboratory Scale Dam Break Simulation

Based on the tests conducted by Judi (2009), ahrmssg value of 0.0115 was
found to produce closer results to the measuremé&his roughness value was used to
simulate the dam break. Figures 2.6 — 2.8 presentrteasured depths for the sensors
(error bars representing the range of values, maxirand minimum, obtained from the
laboratory scale model) and the simulated depthsroinitial head of 25 cm using the
above-mentioned roughness value. The flood wavrliges from the dam break source
and flows through the floodplain. As it advanceghe floodplain, it expands laterally
and reaches the side walls at about 2 secondsediedts back into the center of the
floodplain. The flood wave proceeds and reachesottéet and while some flow is
drained at the outlet, a reflected wave returnk lnato the center of the floodplain. The

initial spike in the depths is because the wetlingt that is simulated is deeper than that
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Figure 2.6. Sensor 1 (0.7 m downstream of the damjparison of measured and
simulated depths.
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Figure 2.7. Sensor 2 (1.4 m downstream of the dammjparison of measured and
simulated depths.
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Figure 2.8. Sensor 3 (3.1 m downstream of the dammjparison of measured and
simulated depths.

of the measurements at the first and second sendorgever, it evens out with the
measured data near the third sensor.

These plots show that the flood depths simulateceeagyith the range of
measured values, even though the model was nottabtepresent the wave pattern
displayed in the measurements. This can be attxibiat the diffusive nature of the first-
order upwinding scheme used in the model. While #rtificial diffusion results in the
loss of accuracy, as noted in Figures 2.6, 2.72a8gdthis diffusion is also responsible for
the stability of the numerical scheme (Patanka801%erziger and Peric, 2002). This is
because the artificial diffusion damps any err¢vat tmight arise during the course of
numerical iterations and prevents these errors fjoswing. This dampening is observed
in this experiment as the initially dry floodplais flooded with a sudden increase in

flood depths by the propagating flood wave. Théudit/ity of upwind numerical scheme
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stabilized the solution by capturing the shock ifesat as the change from dry to wet
condition in a cell), which prevents increaseshia érrors. However, the disadvantage of
the first-order upwind scheme is also due to th#i@al diffusion. During the “shock”
(change of a dry cell to a wet cell), this diffusicauses a smearing effect of the
propagating wave front, thus simulating differdobtl depths along the wave front than
the observed flood depths. This diffusive affectuldotake a few more numerical
iterations to dissipate and for the simulated flat®pths to be closer to the observed
results. To solve the accuracy issue, second-oadeurate upwinding schemes are
needed (Garcia-Navarro et al., 2008). But oveth#, model was able to recreate the
temporal variation of the flood depths, which preves validity in simulating this dam
break. A similar performance may be expected whegplied for other events. The
statistics including the Root Mean Square Error (RMSEumulative Relative Error
(CRE), and Bias are calculated at the sensor mtatising Equations 2-8 — 2-10 and are

presented in Table 2.2.

Z(hisim _ hobs )2
RMSE = |2 (2-8)
i hsim _ hiObS
CRE==2% (2-9)
; hiObS
Z(his'm _ hiObS)
Bias=-% (2-10)

n



Table 2.2. Quantified statistics for laboratoryleaam simulation

RMSE (mm) CRE (mm) Bias (mm)
Sensor | 4.8 0.1 -0.2
Sensor Il 7.6 0.2 -1.3
Sensor Il 6.3 0.2 -4.4

35

At the first sensor, most of this deviation in slated depths with the observed

readings can be attributed to the initial spikéhie depths at 0.8 seconds, which is due to

the flood wave (Figure 2.9). This depth increasenfthis wetting front is again observed

at the second sensor at 2.1 seconds, as showrgumeF2.10. The reason behind this

depth increase is the initial conditions used i todel. The dam outlet is assigned an

initial depth of 0.25 m at the beginning of the siation. This depth is used in the

velocity calculation by solving the momentum andatoauity equations. Since the initial

velocity is considered to be zero at the resemotlet, it would take a few iterations for

the model to generate the velocities comparabilee¢@xperiment.

Flood wave near Sensor I

Time= 0.8 seconds
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Figure 2.9. Flood wave near the first sensor as@dnds of simulation
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Flood wave near Sensor II
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Figure 2.10. Flood wave near the second sensof &e2onds of simulation

Thus, this slower development of velocity leadkitgher water depths for the flood wave
than the observed sensor readings, causing thé deptase in the model simulations.
This spike at the first sensor lasts for anothér €econds and diminishes after 1.5
seconds. At the second sensor, it lasts for 0.drgiscand diminishes after 2.5 seconds, as
seen in Figures 2.6 and 2.7. However, the RMSE satuwe within range of width of
error bars presented for the three sensors, andsatn in the CRE. The RMSE is also
around 10% of the maximum depths that were obseatethe three sensors, which
represents a better prediction. The bias indicttas the simulated depth values are
consistently smaller than the observed averagehdeptspite of the initial spikes at the
first and second sensors. Overall, the model sidlthe lab scale dam break event, in
spite of model disturbances in the initial 2 secwd the simulations. In real-world
events, it will be difficult to compare the templovariation of water surface elevations at
gage stations, especially for large flood eventsgne the stations would be ineffective if

they are inundated or a threshold water depthashed. Thus, flood inundation extents
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for significant events are derived either using aensensing techniques or by field

survey of high water marks.

2.3.1.2 Taum Sauk Dam Break Simulation

Figure 2.11 presents the flood inundation extenthef event simulated by the
GPU model 20 min after the dam breach, the timeesponding to the maximum
simulated flood extent. The*¥ statistic and the commission and omission errees a
also presented in Figure 2.11. The Flood2D-GPU kiimin had excellent agreement
with the observed data: 75% overBi* statistic value with 15% of the flood extent
being overpredicted (commission) and 13% of the@dl@xtent being underpredicted
(omission). The model underestimated near the fobomaof the break and near the
western end of the confluence with the East FodcBIRiver while its overestimation
was significant at the location upstream of the flc@mce. This model validation
demonstrated model performance similar to thateaed by Judi et al. (2010) for the
FIT2D model for the same Taum Sauk dam break event simple way to check the
reasonableness of the simulated water depths, proxamated approach was used.
Simulated water depths are compared with the estnsof the observed water depths
found by subtracting land surface elevations frobsesved high water marks. The
relative percent difference ranging between -5.8% 42% were found. This provides
an approximate check to the water depth calculatalthough this approach does not
account for the physical effects of overland flow.

The timing of the maximum flood inundation is naidated because the time of

maximum inundation was not observed. However, Rydilir. (2006) did conduct a post-
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Figure 2.11. Comparison of Flood2D-GPU flood inummtaextent with observations for
the Taum Sauk Dam Break event at 20 min after #me lreach.

event modeling study of the dam break, which inetbdlood wave routing from the
upper reservoir embankment failure to the spillvedythe lower reservoir using the
dynamic wave unsteady flow models Dam Break (DAMBRIY Unsteady NETwork
(UNET). From these simulations, the flood wave #imeated to have entered the
floodplain of East Fork Black River at approximgtéd.5 to 6 min after the breach
occurred. Additionally, the wave front was simuthtey Rydlund Jr. (2006) to have
entered the lower reservoir at 29 min after theatine The Flood2D-GPU model
simulated the flood wave entering the East ForlkcBIRiver at 6 min after breach and

entering the lower reservoir at 31 min after breaBhased on this comparison of
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simulated results from two modeling efforts, it che concluded that Flood2D-GPU

reasonably simulates the flood inundation extedttaning.

2.3.2 Model Speedup Calculation

The Taum Sauk dam break flood event was reprodiore80 min of simulation
(the reservoir emptied in 25 min) which requiredk S@merical iterations. The speedups
for Flood2D-GPU against the CPU benchmark aredistelable 2.3. The execution time
reduced from 173 min using a CPU to 50 min usingJ@P(GeForce 8400 GS) and 2
min using GPU 2 (Tesla C1060). The significant exien time reductions for the GPU-
enabled flood model (especially for the higher &Rl 2) is attributed to their parallel
processing capability and computing power provibgdhe multicore processors. It is
observed that implementing the GPU version incetadbe model performance with
speedups of 3.5x on GPU 1 (16 cores) and 84x on &40 cores). It is important to
note the speedups obtained by switching from GRt GPU 2 are in the range of 24x.
However, the increase in the number of cores betwee two graphics cards is 15,
showing the model speedup is greater than theaseran number of cores. The reason is
the difference in the hardware compute capabiliteshe two GPUs. GPU 2 supports

compute capability 1.3 (compute capability des@itiee features supported

Table 2.3. GPU speedup results for Taum Sauk daaklsimulations for three sets of
model iterations

Taum Sauk Execution time (min) Speedup
(708K cells) CPU GPU1 GPU2 CPUtoGPU1lto CPUto
GPU1 GPU2 GPU 2
50k 173.2 50.5 2.1 3.4x 24.0x 82.5x
100k 345.3 97.4 4.1 3.5x 23.8x 84.2x

150k 545.9 146.1 6.2 3.7X 23.6X 88.0x
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by CUDA hardware; a higher compute capability wals recommended for enhanced
performance) which decreases the number of menumgsaes by the threads, compared
to GPU 1 with compute capability 1.1 (NVIDIA, 2009}he models were also executed
for 100k and 150k numerical iterations to obsenaeleh scalability. As expected, as the
numerical iterations increased, the execution tais® increased proportionally (Table
2.3, Figure 2.12). The increased number of procesaaailable in GPUs is primarily
responsible for its better computational perforneanihe speedups experienced in these
three different hardware (one CPU and two diffel@RiUs) are not directly proportional
to this increase in processors (i.e., CPU (1 car&PU 1 (16 cores) and CPU to GPU 2

(240 cores) do not result in 16x and 240X speedUps$ is mostly caused by the cores
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Figure 2.12. Execution times of GPU and CPU mofiglthe Taum Sauk case study
simulation.
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not being completely parallelized. The major comafiohs have been parallelized in

GPU, but a small amount of overhead is not parafid| as shown in Figure 2.2.

2.3.3 Effect of Domain Minimization

Using a uniform computational grid for flood modhgjicauses certain areas of the
model domain to be unused in flood calculationsabee the simulated flood extent will
not extend to those areas. Figure 2.13 illustrates problem for the Taum Sauk
simulation. The waste is unavoidable because ttenerf the flood is not known until a

simulation is executed. Iteration permits the med& minimize the model domain to

Taum Sauk Dam Break Simulation
December 14, 2005

Full Domain /
Minimized Domain/

Kilometers

Figure 2.13. Domain minimization for Taum Sauk dam@ak flood simulation.
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the irreducible minimum. However, this practicegsladditional time and effort that may
be costly in terms of having to run multiple sintidas and still meet specific time
constraints for flood modeling (see Figure 2.1)r Bre Taum Sauk simulation, the
original computational domain extent was 62%kand a minimization step following an
initial set of simulations reduced the domain tck®¥, as shown in Figure 2.13.
Table 2.4 presents the execution times before &ed @omain minimization for

CPU and GPU 2 only. As expected, the execution githecrease due to the reduced
modeling domain. The domain reduction increasedaR& speedup slightly (2.3x), but
the 84x speedup achieved by GPU 2 for the originaiputational domain is much more
significant. In effect, GPU without domain minimiza has a much greater speedup
potential compared to the CPU with the domain mingd (37x for this case study). This
is important to note because it suggests evenagreatue for GPU-based flood models
being able to provide a reduction in effort in thedeling because an additional step to

minimize the domain may be avoided to save time.

2.3.4 Effect of Spatial Resolution

The study of the effect of spatial resolution oa gerformance of Flood2D-GPU
versus its CPU counterpart is analyzed using alskbwatershed of the Greens Bayou

watershed in the Houston, Texas, USA metropolitea.alThe DEM for the subwatershed

Table 2.4. Execution times before and after doma@mmization
Iterations (min)

Domain 50k 100k 150k
CPU GPU2 CPU GPU2 CPU GPU2
Full Extent (62 krﬁ) 1732 21 3453 4.1 5459 6.1

Minimized Domain (27 kif)  74.5 1.0 1475 20 221.0 3.1
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from the USGS has a spatial resolution of 25.3nemttng 65.5k grid cells (256 x 256) in
the computational domain. For the study, the DEMesampled to a higher spatial
resolution of 6.3 m, producing 1.05 M grid cells 240« 1024). Simulations are executed
for both resolutions and model speedups determifigdre 2.14 presents the speedup for
50k iterations for CPU to GPU 1, GPU 1 to GPU 2 @Rl to GPU 2. With higher
spatial resolution, more grid cells are requiredrépresent a location compared to a
coarser resolution, making the former computatignadtensive. It is observed from
Figure 2.14 that as the spatial resolution increa&gid cells get smaller), the
computational performance of GPU 2 significanthcreases, nearly two orders of
magnitude compared to CPU. Higher resolution degaganerally considered to produce
more accurate results in flood modeling due to iketaopographic representation and
more accurate depiction of flow direction and chteastics (Sanders, 2007; Bales and
Wagner, 2009). The results therefore suggest thmontance of parallel processing
computations for flood modeling at higher spatiedalutions. Counterintuitively, it is
important to not that the rate of increase of sppad higher for GPU 1 to GPU 2 than
that of CPU to GPU 2. This could be due to the fiaat the differences in GPU hardware
are more significant that the differences betweenaks CPU and parallel GPU
frameworks. The potential for GPU performance tarbproved as a function of spatial
resolution is critical to not only meet time comastts, but to also more accurately
represent complex topography and flow charactesigilarks and Bates, 2000; Sanders,

2007).
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Figure 2.14. GPU 2 speedups of Greens Bayou floodlation at different spatial
resolutions for 50k numerical iterations.

2.3.5 Speedup Comparison to Other Studies

Table 2.5 compares the GPU speedups from CPU hatlpérformance of other
flood models documented in the recent literaturshbuld be noted that these results are
only relative as the models and the hardware dferent, with different flood events,
input parameters, and computational domains. Theypeesented here to showcase the
potential performance enhancement of a variety aralfelization approaches for 2D
flood models. It is clear from the recent resulissented in Table 2.5 that speedups from
parallelization are substantial. The models impleting simplified approaches (e.g.,
diffusive wave approximation and storage cell) Eigp excellent computational
enhancement. The approach described in this dasieertuses the full Saint Venant

equations, which are more computationally intensive accurate. However, it also
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Table 2.5. Comparative summary of recent modeldspaethe literature for storage cell
(SC), dynamic wave (DYN), and diffusive wave (DHapdels

Description This paper Lamb et Judietal., Nealetal,
al., 2009 2009 2009
Processor Type GPU GPU GPU CPU CPU
Processor NVIDIA 1.30 NVIDIA 459 NVIDIA AMD AMD 2.59
Information GHz Tesla MHz 575 MHz 2.21GHz GHz
C1060 GeForce GeForce  Opteron Opteron
8400 GS  8800GTX 8354 2218
Processor 240 16 112 16 4-8
cores
Model name Flood2D- Flood2D- JFLOW- FIT2D LISFLOOD-
GPU GPU GPU FP
Additional N/A N/A N/A Domain N/A
Optimization tracking
Dimension 2D 2D 2D 2D 1D-2D
Approximation DYN DYN DIF DYN SC
Parallelization CUDA CUDA DirectX 9 Java multi- OpenMP
method threading
Domain size 1.05M 1.05M 96k 999k 3k-3M
(cells)
CPU run time 13.0h 13.0h 18h 0.83h* 0.01-360h
Max speedups 88x 3.5x 114x 240x* 5.8x

* run time and speedup reported by Judi et al. (2@icluded domain optimization
algorithm which is independent of the computerfplat.

provided excellent speedup. This suggests the poivéhe GPU may provide more
complete numerical approaches to be implemented stifidachieve the necessary
speedup to meet modeling time constraints. Witrctrginued development of new GPU
hardware, the emergence of high-level programmanguiages, and the increasing trend
of CPU-GPU interoperability (Owens et al., 2006g future of GPU for flood modeling

as well as other scientific applications seemshbrig

2.3.6 Limitations of GPUs

It is to be noted that while GPU applications presegnificant benefits in terms

of speed up and low cost, they also have some \diséages currently. Firstly, the key
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limitation of GPU is that it is applicable only tpplications that can be inherently
parallelizable, like numerical solutions with exulitemporal discretization and solutions
where each grid cell in the domain can be process#pendently of the neighboring
grid cells (Hagen et al., 2005). The GPU paralelis exploited in this dissertation
because of the highly parallelizable nature of m@ar hyperbolic Saint Venant
equations. Secondly, the numerical precision offéngthe graphics cards manufacturers
like NVIDIA® and AMD® is restricted to single-presibn, which is below par compared
to the IEEE-754 standard for reasons of numeriffediency (Menon, 2008). However,
double-precision capabilities in the GPUs have ngestarted being implemented on
newer GPU hardware architecture (e.g., NVIDIA dffelouble-precision for compute
capability 1.3 and above, NVIDIA, 2009). Thirdly,PG@s experience reduction in
performance when executing logical conditions wattihe GPU kernels (Richardson,
2009). For example, “if’ conditions are used indtd@D-GPU to implement upwinding
for the convective terms of equations 2-1 — 2.3sTesults in requiring a higher number
of threads to process the subsequent velocity apthdcalculations from the equations
than it would without the “if” condition. FinallyGPUs are generally made with a fixed
memory capacity and do not allow an easy increroémbemory because the processor
and memory physically reside on the same hardvwidres, these limitations need to be
taken into consideration by the analyst or flooddeler in the selection of GPU-based

flood modeling applications at a wide-area scale.
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2.4 Conclusions
In this chapter, the NVIDIA CUDA GPU-based 2D dynanflood model

Flood2D-GPU is introduced. The model is tested aadlated using a laboratory scale
dam break experiment and Taum Sauk dam break dadwent in Missouri. The
computational advantage of using GPU versus arvalguit CPU model is presented in
three different ways. First, the computational ewmesment of using this parallel
programming technique is presented with computatispeedups ranging between 82x
and 88x compared to a CPU model implementing theesaumerical algorithms. For this
dam break flood scenario, the GPU-enabled 2D mexrletuted on the Tesla C1060 is
able to simulate 30 min of the flood event in 2 pwinich is better than real time and
able to meet the time constraints for most emengeasponse and flood evacuation
situations. The speedups experienced from CPU D@88 to Tesla C1060 are not
directly proportional to the increase in numbempabcessors present in these hardware.
Second, the computational domain is minimized tolude only the flood extent,
reducing the computational intensity of the modklss observed that while the domain
reduction increased the CPU speedup, it is lesgaoed to the speedup from GPU. The
GPU model presents modelers with more flexibilibylte less precise with modeling
domain extent, thus reducing additional time inppoeessing flood models, which is
significant for emergency operations. Third, theeetfof spatial resolution on speedups is
studied. It is observed that the parallel procesgower of GPU is more evident at
higher spatial resolution with a larger number atl gcells, which better incorporates
complex topography and flow characteristics andreferred for flood studies. Overall,

the Flood2D-GPU flood model provides a useful pgalizhtion approach implementing
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the full dynamic wave permitting more accurate and faster flood simulation results to be
obtained. The future of GPU implementation in flood modeling has great potential with

developments in GPU hardware, software and ever increasing availability expected.



CHAPTER 3

MONTE CARLO BASED FLOOD MODELING FRAMEWORK

FOR ESTIMATING PROBABILITY WEIGHTED FLOOD RISK

3.1 Introduction

Floods have disastrous effects in terms of cassalteconomic impacts, and
infrastructure damage (Morss et al., 2005; Europeariiament, 2007; Carter, 2009).
Arguably, the advancement of computer models hak dre of the more significant
impacts on the ability to plan, forecast and resptm flood events. In the US, flood
models were first applied to simulate floods in A®§Crawford and Linsley, 1966), and
have since been used to enhance engineering detagnjng, floodplain delineation and
emergency response.

However, flood models are but conceptualizationseafity and hence, reduce
physical complexity through simplifications of sgsts of equations (Wagener and
Gupta, 2005). The model parameters and other irgretgalibrated with observed data,
and when needed, the parameters are altered edf@néthin their acceptable ranges) to
fit the model predictions to the observed data, #r validated model is used for
prediction. However, prior estimation of feasibdmges of parameters does not guarantee
the model prediction within a close range of obatons, especially when it is

extrapolated to other problem locations. The latkcarrelation between conceptual
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model parameters and physical watershed chardatgniesults in significant uncertainty
in prediction, especially if the model is extragethto predict the system behavior at a
different location and/or flood event. Advances damputer technology, including
geographic information systems (GIS) and remotesiagntechniques, have enabled
modelers to incorporate the spatial variabilitypafameters representing hydrologic and
hydraulic characteristics at different locations ithe system. Nevertheless,
comprehensive representation of natural processreg tlood models will remain for the
foreseeable future macroscopic in comparison tityea

Flood model uncertainty is of critical concern, @splly when modeling results
are used to set policy, decision making and emesg@tanning. Not acknowledging
uncertainty could result in wasteful overdesigmuofigation measures, or could lead to
inadequate preparation for potential situations, ewen worse, failure of hydraulic
systems. Thus, a careful and detailed calibratimh @rediction uncertainty analysis is
required for successful application of hydrologntidnydraulic models in water resources
studies (Duan et al., 1992; Beven and Binley, 1888pt et al., 2003; Yang et al., 2008;
Van Griensven et al., 2008).

The common approach in flood modeling still remaapplying one-dimensional
(1D) deterministic hydraulic models that generédedplain boundaries depicted using a
single boundary of inundation. Recently, the adzges of two-dimensional (2D)
hydraulic models have been documented (Zhang anwlyul989; Samuels, 1990;
Tayfur et al., 1993; Knight and Shiono, 1996; Bagesal., 1998; Lamb et al., 2009; Judi
et al.,, 2010) and recommended for application byergency management agencies

(NRC, 2009). This has led to the development ofaded 2D hydraulic models. Despite
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these developments in modeling floods, the mostncomrepresentation of simulation
results remains a deterministic flood inundationpnimsed on a single simulation.
Unfortunately, this relies on the use of a singleameter set and does not account for the
uncertainties in the modeling process (Bates e2804) and may lead to an inaccurate
hazard assessment (Di Baldassarre et al., 2010).

To remedy the shortcomings of a single determmisitnulation of a floodplain,
probabilistic modeling approaches are emergingb&bibistic flood mapping is designed
to incorporate uncertainty from input data and nhqgueameters, represent spatial and
temporal risk, and present flood maps in terms afbabilities and percentages
(Romanowicz and Beven, 2003; Aronica et al., 2@#es et al., 2004; Hall et al., 2005;
Pappenberger et al., 2006; Di Baldassarre et@LQ)R

Smemoe et al. (2007) present a probabilistic floa@ghping approach using Monte
Carlo analysis and the 1D HEC-RAS model from theAd®y Corps of Engineers. The
methodology generates a spatially continuous flpodbability map using random
samples of flood flows, rainfall, the Curve Numi@&@N) and Manning’s roughness
coefficient (n). Aronica et al. (2002) present @pr@ach applying a 2D hydraulic model
to generate a flood probability map. Their approasés LISFLOOD-FP, a simplified 2D
raster-based flood inundation model, and randomémmes from probability
distributions of model parameters and represemdlttoded and nonflooded areas in a
binary pattern for each of these stochastic samplesse areas are weighted using the
difference in simulation and observed flood datdnilé/this approach takes into account
the incorporated uncertainty in model parametérssquires vast amounts of observed

flood data to compare with all the simulations.aimother study, Di Baldassarri et al.
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(2010) present a comparative analysis of a phygibalsed 2D flood model

(TELEMAC-2D) in a deterministic single simulation@pach and LISFLOOD-FP in a
probabilistic framework. They show that using a @enplanar model (LISFLOOD-FP)
in a probabilistic framework results in a more dgdve flood hazard map. They
conclude that visualizing flood hazards as a proityalis superior to a delineated map
based on a single simulation. Apel et al. (2008&cdbe a flood risk analysis framework
that includes hydrological input, flood routing acmhsequent failure of flood protection
structures, inundation and property damage. Thfieapthe framework to study the
flood risk of the Rhine River in Germany using siempepresentations of complex
deterministic models.

Although simplified 2D planar hydraulic models appl in a probabilistic
framework have been shown to be superior to a matestic approach, needed
improvements remain. A key advancement is to ino@ie the use of a physically-based
2D hydraulic model because of the improved spagijatesentation and accuracy of flood
depths and velocities compared to 1D and simpli2g€d planar models (Bates et al.,
2004). The constraint to using physically-based B@raulic models in probabilistic
frameworks has been the simulation time requirenfenteach simulation, let alone
numerous simulations in a Monte Carlo analysis. Tipusbabilistic analyses with 2D
hydraulic models have been limited to a smaller Inenof scenarios or smaller spatial
domains (Sayers et al.,, 2000; Buijs et al., 2008mh et al., 2009; NRC, 2009;).
Recently, one solution to the simulation time caoast of 2D hydraulic models has been
programming using Graphics Processing Unit (GPWragches (Lamb et al., 2009;

Kalyanapu et al., 2011). Extending this computatioadvance, the objective of this
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chapter is to present a Monte Carlo based flooddation simulation framework that
generates probability weighted flood risk by applyia GPU-enhanced 2D hydraulic
model. The analysis framework produces a flood @bdlty map, intersects it with the
spatially-distributed depths and velocities, antedeines the flood risk using a depth-
velocity-risk relationship. The chapter includedescription of the framework, methods
and a demonstration to determine the flood riskafd% flood event (meaning a flood
event with a 1% chance of occurring every yearfhe Swannanoa River in North

Carolina.

3.2 Methodology
The Monte Carlo flood risk modeling framework preasenhere has three
modules, as shown in Figure 3.1: Monte Carlo AnalyGieospatial Output Analysis and

Risk Map Development. The details of these threeutesdollow.

3.2.1 Monte Carlo Analysis

The Monte Carlo Analysis module executes a proaesartdomly sample flood
model parameter or input variables (e.g., surfacghness, peak flow discharge, etc.) to
incorporate uncertainty into the flood inundatioralysis. In this chapter, the framework
is demonstrated using the peak flow as the randamahle. A random number generator
is used to select values from a user-specified gimtiby distribution function or PDF
(e.g., Uniform, Normal and Log-Normal). The UnifofdDF is the default distribution
because it does not assume prior knowledge of peardistribution, it is appropriate in

the absence of verifiable data, and it providesakprobability throughout the specific
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Figure 3.1. Monte Carlo Flood Risk Modeling Framework

parameter range (Beven and Binley, 1992; Fredr,et996).

The randomly generated input parameter sets ane tised to drive a 2D
hydraulic model. In this study, a new GPU flood mlo(Flood2D-GPU) developed in
NVIDIA's CUDA programming environment is used (Kahapu et al., 2011). The
modeling framework uses a 2D unsteady numericadflmodel (Flood2D-GPU) that
solves the nonlinear hyperbolic shallow water eiguat using a first-order accurate
upwind difference scheme. These equations are alee@l from the Navier-Stokes
equations by integrating the horizontal momenturd eontinuity equations over depth

often referred to as the depth averaged or depéigrated shallow water equations (i.e.,
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Saint Venant equations). The nonconservative fdrthe partial differential equations is

(Tingsanchali and Rattanapitikon, 1999; Judi et2410; Kalyanapu et al., 2011):

6_h+6_uh+6_vh =0 ContinuityEquation(3-1)

ot ox oy

8_u+ ua—u+va—u+ ga—H+ 09S,, =0 MomentumEquationin x - direction(3- 2)

ot ox oy 0

%\tl+ u?+v@+ g%—HJr gSy, = MomentumEquationin y - direction(3-3)
X

where,h is the water deptHl is the water surface elevatiam|s the velocity in thec-
direction, v is the velocity in the/-direction,t is the time,g is the acceleration due to
gravity, Sx is the friction slope in th&-direction andSy is the friction slope in thg-
direction. The upwind finite difference numericaheme is used to discretize governing
equations (3-1 — 3-3), as it yields nonoscillategjutions, through numerical diffusion
(Patankar, 1980; Ferziger and Peric, 2002). A syt grid computational stencil is
used to define the computational domain with theewdepth If) in the centre of the cell
andu andv velocities on the cell edges. The model requirdgyaal elevation model to
represent topography, Manning’s n for surface roeghnrepresentation and a flow
hydrograph. A 2D model was chosen because of iterbeepresentation of flood flow
(especially in floodplains), simultaneous floodemttdelineation and instantaneous flood
velocities at all nodes in the computational dom&lood2D-GPU was validated for
accuracy and found to provide significantly reducethputational time (up to two orders

of magnitude) compared to the same flood model emphted serially in a CPU-based
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environment (Kalyanapu et al., 2011). More detaisw Flood2D-GPU can be found in

Chapter 2 of this dissertation.

3.2.2 Geospatial Output Analysis

A flood model realization is generated for evermdamly sampled parameter
value and the model output is stored in GIS-rea@CA format. Using the framework’s
GIS-based postprocessing environment, these ASIEE are converted into ESRI
GRID raster format, and the flood inundation deditnen process is performed by
computing the water depth at each model grid catl mlentifying cells with a flood
depth more than zero (or a user-specified threskalde) as inundated. The flood
probability is calculated for each grid cell in tbemputational domain, as shown in the
equation 3-4 below. It is calculated as the nundbdimes a grid cell is flooded divided

by the total number of flood simulations (Smemoalgt2007).

N
2%
P, = i:1N , X, = 1,for floodedcell (3-4)

X, = 0,for non-floodedcell

where, Ry = calculated flood probability at each grid cell= assigned weight based on
whether the cell is flooded or nonflooded &he total number of flood simulations.
These probabilities at all the locations in the patational domain can be
represented as continuous maps (Aronica et al2;2@@ppenberger et al., 2005; Werner
et al., 2005) or as contour maps of probabilit®mémoe et al., 2007). The probability

map or contours, calculated using equation 3-4esapts the chance that a flood extent
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will be bigger than the one shown in a flood inum@a map. These data can be

transformed into GIS raster datasets for furthetyams.

3.2.3 Risk Map Development

The term ‘Flood Risk’ is commonly considered as twmmbination of the
probability of a flood event and its impacts (Ewap Parliament, 2007). It can be
guantified using Helm’s equation (Helm, 1996), eanted by the product of probability
of an event occurring and its consequences. Insthidy, the flood risk is calculated by a
modified version of Helm’s equation by replacinghsequences with flood magnitude
(depths and velocities), as shown in equation BHe flood depths and flood velocities
simulated from Flood2D-GPU are used along withvite the flood probability. A flood
risk map is created using a continuous flood intindaprobability map, where the
probability weight included in flood risk is based the number of simulations (equation

3-4) and not on the probability of flood event (h@ars = 1% exceedence probability):

Flood Risk = Event probability x Flood Magnitude (3-5)

where, probability is the probability of flood ind&tion (equation 3-4), and flood
magnitude is represented by flood depths, floodbaiBés, flood duration, rate of
inundation extent increase, etc.

While 1D flood models can also be implemented food risk, this would be
limited to an average representation of the floetbeities and depths as they are only

simulated at limited locations. It is suggested th@ing a complex representation of the
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flow phenomena results in a detailed flood simolat{Hunter et al., 2007). Using 2D
flood models would result in a detailed spatialiatgon of flood risk, which can be used
in flood damage assessment, flood mitigation aadmphg, floodplain management, etc.

From equation 3-5, probability weighted flood risks terms of maximum
velocity and maximum flood depths are computed ftben model results. Based on the
depth-velocity curves (shown in Figure 3.2) fromB Technical Memorandum No. 11
(ACER, 1988), the spatial flood risk map is creatétiis technical document was
published by the US Bureau of Reclamation to pregdidelines for dam safety hazard
classification. They compiled various curves of thepersus velocity that are related to
potential lives-in-jeopardy. From this collectiohaurves, a depth-velocity danger level
relationship corresponding to permanent residercm@amercial and public buildings is
employed. The flood danger level is classified @s-tlanger zone, judgment zone and
high-danger zones. For each grid cell in the lowgdas zone, the possible lives-in-
jeopardy is assumed to be zero. In the high-dangee, lives-in-jeopardy is assumed to
be 100% of the total population in the grid celheTjudgment zone represents a zone
where the lives-in-jeopardy is considered to beatde between zero to 100% and it is
up to the analyst to use engineering judgment (ACERS8). For this study, the loss of
life in a judgment zone is assumed to be 50% ofpyeulation in a grid cell. Even
though these guidelines are developed for estigatownstream hazards for dam break
events, it is applied here to demonstrate the digerababilistic flood approaches for
flood risk/hazard assessment.

To quantify the impact of using the probabilistippeoach compared to the

deterministic approach, the loss of life resultiram flooding is calculated. To quantify
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Figure 3.2. Water depth - flow velocity hazard slisation diagram for flood risk
classification (Source: ACER Technical Memorandum Ny 1988)

the loss of life, two factors are identified to ibgportant (Graham, 1999): the population
at risk (PAR), which is the number of people ocadogythe floodplain and, the danger
level of flooding. This study takes the spatialiability of these two factors into account
for each location in the area of interest. The R&\Betermined by using the census block
data, in a vector polygon shapefile format, frore thorth Carolina OneMap program
which is directed by the North Carolina Geographiormation Coordinating Council
(GICC) (NCONEMAP, 2011). The shapefile layer consatensus blocks along with the
population in each block. After importing this layieto GIS, the population density is
calculated by using the total population in eadahsos block and its area. This shapefile
is then converted to a raster layer with the sgmaéia resolution as the rasters developed

from Flood2D-GPU simulations. This population dénsis converted to PAR by
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multiplying the population density with the gridllcarea, resulting in distributed PAR
layer. This approach has also been applied inesudvolved in calculating the lives-in-
jeopardy due to flooding and the population affédig flooding (Frey et al., 2010; Qi
and Altinakar, 2011). The lives-in-jeopardy for kagid cell is calculated by multiplying
the PAR with the percent loss-of-life values asat@d with the low, judgment and high
danger zones of the spatially varied flood risk maggregating the lives-in-jeopardy

values for all the grid cells results in the tdkaks-in-jeopardy for the floodplain.

3.3 Case Study

To demonstrate the framework, a spatially disteduood risk map is generated
for a 1% river flood event in the Upper SwannandaeR The Swannanoa River
watershed is located in the mountains of westerrtiNGarolina in Buncombe County
(Figure 3.3) from Asheville to Montreat in the stateNorth Carolina. It is part of the
larger French Broad River Basin. This area isctetebecause of its proximity to the
southeastern coast of the US, exposing it to thenpial path of flood-causing hurricanes
and tropical storms. Communities in the SwannangarRvatershed have been severely
affected through flooding by Hurricanes Francis &rah in 2004, including Montreat,
Black Mountain, Swannanoa and Asheville. For thiglgt the 32 km Swannanoa River
reach is selected with a drainage area of 133.kmqupstream of the confluence of the
Swannanoa River and French Broad River, includihg tities Black Mountain,
Swannanoa, Asheville and part of the town of Waandfi

As stated earlier, Flood2D-GPU in the Monte Carbfework operates with an

input hydrograph. The input flow hydrograph is stdd as the random variable for this



61

i i
, g

i

% |:|M0el Extent }
~ Spatial Reference: UTM Zone 17

Nk v :

SN atum: NAD '83

%

Figure 3.3. Swannanoa River flood study area

study. The 1% peak flow for the river reach is detaed using US Geological Survey
(USGS) flood frequency regression estimates. Taterthe hydrograph corresponding to
this flow, we chose to use a generic hydrograpipetaeated for the watershed using
HEC-HMS and the 100-year, 24-hr SCS type |l des@nfall event with a depth of
155.7 mm selected from the National Oceanographit Atmospheric Administration,
Atlas 14 Precipitation—Frequency Atlas of the Uditetates (Bonnin et al., 2004). The
general hydrograph shape is scaled proportionalyatnew hydrograph using the
randomly sampled 1% peak discharge value drawn &amiform distribution having a
central value of 270 cubic meters per second (ciit®).270 cms value is the 1% annual
peak discharge determined using the regressiontiegsafrom the USGS Scientific
Investigations Report (Weaver et al., 2009). Thegeaof the uniform distribution is set

to be within the standard error of prediction oé tfegression estimates found in the
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USGS study (peak discharge range is from 180.7tor94.6 cms), as shown in Figure
3.4.

It should be noted that a different range of pdakvd could be used with a
different probability distribution, but the objeati of this study is to incorporate the
uncertainty introduced by varying the flood pealsctiarges. To demonstrate the
probabilistic approach, a total of 50 samples dséh flows are extracted and flow
hydrograph is proportionally adjusted for the néowfvalue. The sample size of 50 is a
lower sample size for Monte Carlo simulations, whighically range about 10,000
samples or more. However, the model outputs froood2D-GPU were very data-
intensive (50 random samples resulted in 10.8 Gugasbof data). Thus, this arbitrary

lower sample size of 50 was chosen in this stulbod-simulation is performed on each

Upper Swannanoa River
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Figure 3.4. Flood Frequency characteristics cuovaipper Swannanoa River. (1% event
is highlighted in black)
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of these samples using the Flood2D-GPU model. Téadfmodel outputs including
flood depths and flood velocities are compiled egular intervals to capture the flow
development and to use for probability weighteddaisk calculations. A flood depth

threshold of 10 cm was used to identify whetheriaé cgll is flooded or not.

3.4 Results

The time required to simulate a single flood hydapd realization is 12.3 min,
which is much faster than the 15.5 hours requioedie same model to be executed in a
CPU framework. For the 50 simulations, the Flood2ZBU framework requires 10.2
hours of execution time, while the same framewanplementing a CPU-based code
requires 32.3 days.

Figure 3.5 shows the 1% varying flood risk neartrBdre Village. It shows a
spatially varying flood risk map near the conflueradf Sweeten Creek and Swannanoa
River. Along the Swannanoa River, the risk extegdimo the floodplain for at least 150
m is classified as high danger, which means sicpifi risk for damage to buildings.
Flood risk is clearly conveyed in this probabilistmap. Although flood risk maps
produced with a deterministic approach can comnateidsk, it will not cover a range of
possible scenarios. For floodplain management @@gqoincluding various possible
scenarios in consideration of flood risk providesrendetail and a greater confidence in
risk.

To demonstrate the improvement of using a prolslaliapproach to estimate
flood risk over a deterministic approach, floodkrimaps are generated using a single

flood simulation (deterministic map) with the 1%dHd hydrograph and using 50 flood
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Figure 3.5. Spatially varied 1% Flood Risk map$avannanoa River, North Carolina

simulations with randomly sampled flood hydrographkihin the standard error of
prediction of the peak flood discharge.

Figure 3.6 presents the spatially varied flood rigk 1% flood event at a
residential area near Asheville, with potentialilpod risk, along the Swannanoa River
and its urban floodplain. The top half of the figutisplays the flood risk map based on a
single simulation (Map A). The bottom half of theyure, presents the probability
weighted flood risk map (Map B) at the same locabbthe river reach estimated using
50 different random samples. To quantify the valiighin the flood risk maps, an error
matrix is presented in Table 3.1. This table siangbusly presents the distribution of
cells that are classified at a certain hazard levbbth the probabilistic and deterministic
maps. For example, 1892 cells are classified asHipard” in Map A while these cells

are classified as “Low Hazard” in Map B. Of all setlhat are classified with a certain
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mﬂoma
Flgure 3.6. 1% event Flood RISk map near Ashevfrlie Swannanoa River, North
Carolina; Map A — single simulation; Map B — 50 siatidns.

Table 3.1. Error matrix comparing the flood riskpraising deterministic approach (Map
A) and probability weighted approach (Map B)

Map B (no. of grid cells)

Map A Low  Judgment  High
(no. of grid cells) No Hazard Hazard Z?)ne Haz%rd
No Hazard 360,079 1892 88 37
Low Hazard 0 2207 1639 97
Judgment Zone 0 0 2348 1685

High Hazard 0 0 0 6760
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hazard (i.e., 16753 cells as Low to High hazardither maps), 67.5% of these cells are
identified with the same hazard in Map A and Map Bgdnal values in Table 3.1).
Map B has 32.5% of the cells that are classifiedigtier risk than those in Map A (i.e.,
when flood risk in Map A is Low, flood risk in Map B in Judgment zone or in High
hazard level). In other words, Map A underestimaiedfiood risk in Map B.

One may observe that areas in the urban floodplesmpecially located in
residential and commercial regions, that are detexthas low or medium (judgment
zone) in the deterministic map, have been modiftechedium or high hazard zones in
the probabilistic map. Map B is built taking variopsssible flows into consideration.
Simulating many different flooding scenarios witlifetent flow hydrographs enables
accounting for many equally possible flooding scmsawith varying flood depths and
velocities that could cause significantly differdittod risk compared to a single flood
simulation. This has significant implications inettestimation of flood damage and
potentially on the floodplain management.

To further investigate the reason behind the urgdienation observed in Map A,
the topographic slope of the area is derived. [EQu7 presents the spatial distribution of
the relative underestimation by Map A overlaid wiile topographic slope of the region.
The Swannanoa River runs through the areas widp sti®pes (Fox et al., 2008). Most of
this underestimation is observed upstream of thepsand narrow section (slope > 10%)
of the river. The main channel of the river narrawghis section, making it a channel
dominant flow. This narrowing of the channel cores$rthe flows upstream causing back
water effect resulting in significant flooding affidod risk. Map B is based on 50

different flood hydrographs, of which some simuwas have hydrographs with more than
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270 cms peak discharge. Thus, during those high fdonditions, the area upstream of
the steep section is flooded, which is observeilap B. But, Map A is based on only
one flow condition (peak discharge = 270 cms) dngs trepresents only one of many
possible flooding situations. Thus it is evidenattta probabilistic flood risk map
incorporates flow conditions of a statistical desayent with its potential variability due
to its inherent uncertainties.

The improvement in the flood risk estimation usangrobabilistic framework is
also quantified in the histogram plot of the numbgcells in each flood risk category
shown in Figure 3.8. This histogram was createdyappthe framework using 1, 5, 10,
25, 40 and 50 samples. It is important to note #sathe number of random samples
increase, more locations are classified to a higtsér level. With increasing random

samples, the cells with low hazard designationaased by 3.8%, cells within the
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Figure 3.8. Flood Zone Variation with sample size

judgment zone almost remained constant and the eumb high danger zone cells
increased by 21.2% between using 1 sample (detstmimpproach) and 50 samples
(probability weighted approach).

To quantify the improvement of using the probabdisapproach versus the
deterministic approach, the lives-in-jeopardy valueom the two approaches are
estimated as explained in the methodology. Ford&terministic approach, the lives-in-
jeopardy is estimated to be 925 persons while thbabilistic approach resulted in 1105
persons. The deterministic approach underestinhiedoss by 15.98%. The ‘lives-in-
jeopardy’ estimates are not realistic, because dhalysis does not reflect the human
response to disasters. It is natural for peoplgeapardy to evade danger. So, when a

building is being flooded by an overflowing rivéhere usually is enough time for the
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people within the building to evade because flocatew spreads gradually over into

floodplains. This is not accounted in the calcolasi presented here.

3.5 Summary

This study presents a computationally efficient Moi@arlo based 2D flood
inundation framework for determining probability igfeted flood risk. The framework
consists of three modules. The first module impletsi@ Monte Carlo Analysis based on
user-defined random sampling of flood model paransetand input variables. Each
sample of parameters and variables is used to exec@PU-enhanced 2D hydraulic
model to compute spatially distributed and timeiavatr output of flood depths and
velocities and inundation extent, which are padeetthe next step of the process. In the
Geospatial Output Analysis module, the outputs ftbensimulations are compiled. Each
grid cell in the model domain is analyzed to guarttie probability of being inundated.
In the Risk Map Development module, a flood risk neyproduced by weighting the
spatial maps of depths and velocities by the flioothdation probability and determining
risk from a Water Depth-Velocity Hazard ClassifioatDiagram.

A 1% design flood event for Swannanoa River in Nd@arolina is used and
flood risk maps were developed using single sinmai{deterministic) and multiple
simulation (probabilistic) approaches. The deterstim approach underestimated the
flood risk by 32.5% relative to the probabilistippgoach. As the number of samples
increased, compared to the deterministic apprgaciabilistic approach estimated areas
with low hazard and high hazard increased by 3.8% 21.2%, respectively. This

difference in flood risk translates into signifitamderestimation of lives in jeopardy in
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populated areas. This is quantified by calculatthg lives-in-jeopardy, where the
probabilistic approach simulated 1105 lives aré \@iile deterministic simulated 925.
While these numbers are not realistic, they deecefan underestimation of 16%, which
can be very significant if the floodplain is hightppulated. The outcome of this study
shows the improvement of the probabilistic floodp@ach compared to the single
simulation approach. The new Monte Carlo flood makdeling framework has the
ability to provide improved accuracy of flood rigkformation and in general greater
insight into the spatial distribution of flood riglseful in making decisions. By using a
single case study area, it was observed that simgldifferent flooding scenarios with
different flow hydrographs enables accounting fanmpossible flooding scenarios with
varying flood depths and velocities that could hesusignificantly different flood risk
compared to a single flood simulation. This hasificant implications in the estimation

of flood damage and potentially on the emergencyagament.



CHAPTER 4

ANNUALIZED RISK ANALYSIS APPROACH TO
RECOMMEND APPROPRIATE LEVEL

OF FLOOD CONTROL

4.1 Introduction
With more than 2.8 billion of the world’s populatidiving within 15 km of
rivers, flood risk is a major challenge facing naipal and government planning and
development agencies (Small and Cohen, 2004) elfutiire, flood risk and damages are
expected to continue to increase as population grpeople move into at-risk locations,
and climate changes (McCarthy et al., 2001; Momid &runtfest, 2002). To mitigate
flood risk, a variety of best management practaresavailable, including structural flood
control measures like detention basins, levees,sdand nonstructural measures like
flood proofing, permanent evacuation and relocatimmd use management, flood
insurance, building codes, flood warning and edanatn the United States (US), flood
risk management has primarily focused on structfload control programs since the
passage of the Flood Control Act of 1936 (IFMRC94P0 In the 1960s, nonstructural
alternatives were encouraged and eventually betiaengreferred approach in most cases
because of their cost effectiveness. Recently,giated approaches to flood risk

management, which acknowledge the interrelatiosshigetween structural and
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nonstructural measures, have emerged as the gefpath forward in managing flood
risk (Hall and Solomatine, 2008). Widespread immatation of integrated flood risk
management still lags, but is gradually evolvingri®do and Engelen, 2010).

Design of any flood risk management system is basethe concept of return
period or exceedance probability (Tung, 1996). Ugua 100-year (1% exceedance
probability) flood event is used as a standardgtestriterion for flood control, protection
and mitigation systems such that the system pedomithout failure for flood
magnitudes up to or less than magnitude of thegdesrent.

While evaluating design alternatives for flood riskanagement, reduction in
potential flood damage indicates the effectiveneks design alternative. Economic
analysis plays a significant role in this procassi(bs, 1996). One of the commonly used
hydro-economic models is the U.S. Army Corps of ikegrs’ (USACE) Hydrologic
Engineering Center (HEC) Flood Damage Analysis (HHIA) framework for
determining the Expected Annual Damage (EAD). EA® the average damage
determined from floods of different annual exceedgaprobabilities over a long period
(NRC, 2000). Details on this approach, which i®akferred to as “frequency method,”
is widely available in the literature (e.g., Tunt96; USACE, 1996; NRC, 2000;
Hardmeyer and Spencer, 2007; Xu et al., 2007). porapriate alternative for flood
damage reduction is selected based on certainialecisteria after comparing the EADs
for the various alternatives and their correspogdiapital costs.

As a standard practice in flood damage estimafiond events at various return
periods (e.g., 2 yr, 5 yr, 10 yr, 25 yr, 50 yr, 10 250 yr and 500 yr) are selected

(Ahmad and Simonovic, 2001; Qi and Altinakar, 201These discrete return periods
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represent the flood damages distribution that temohssumed to be a continuous curve
for determining the EAD. The effect of this assuimpton the EAD needs to be verified.
A better representation would be to directly use kistorical stream flow data and
designate these flows with their annual exceedanalabilities. This would result in a
continuous flow distribution instead of being regeted by discrete return periods and
enable historical peak flow conditions to be explicconsidered in flood damage
estimation. If the length of historical flow recaris large enough to capture a wide range
of possible flows at a certain river reach, a deticontinuous flow distribution can be
derived by sampling from the range of flows, uditgnte Carlo sampling.

While EAD is not used for formulating design aliatimes, the annualized risk
concept can be applied to analyze and comparerdak&rnatives. Annualized risk is the

product of the flood damage and the probabilita dibod event:

Rannua = Dricod X Pr (4-1)

where Rnnuar is the annualized risk ($/year)r B the exceedance probability of a flood
event for a return period T and4Rq is the flood damage associated with a flood event
for the corresponding exceedance probability. eptvords, it is the instantaneous EAD
from the flood damage frequency curve. Using thetrim in a flood damage reduction
project, preliminary flood damages B3¢ can be calculated and annualized risk can be
determined using equation 4-1. An annualized nisgidency curve can be plotted using
exceedance probability, a sample of which is shawfRigure 4.1. Generally, smaller

magnitude events (represented by exceedance plibfaleisult in smaller damages and
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Figure 4.1. An example of annualized risk curve

thus have smaller annualized risk. As the flood mitage increases, the annualized risk
also increases, but it reaches a threshold valwrenhis maximized and then it starts to
decline. In the declining trend of the curve, ewbough the flood damage is much
higher, calculated annualized risk is smaller beeanf its associated smaller exceedance
probability.

From this annualized risk curve, the design evesbeated with the maximum
annualized risk could be considered as an altemdt an arbitrarily selected design
event that is suspected to maximize flood contmekestment benefits. Generally, a 1%
flood event is arbitrarily selected as the desigeneé (Williams and Swanson, 1989;
Marco 1994; Watt 2000, Petrow et al., 2006). Howgiwemany situations, reasons such
as financial limitations of the project, low prityrifor risk, etc., may encourage the use of
design event lesser than standard design evers.sidnificantly reduces the capital costs

involved in implementing the project. As an examppligiure 4.2 presents a sample of the
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annual cost estimates considered for improvingraarudrainage system in Hong Kong,
mentioned in Tung (2002). Almost 50% reduction otat cost was observed for
improving the system for a 5% protection levelieulof a standard 1% flood protection
level. Thus, the design standards used in floodag@ment significantly influence the
project costs.

An integrated approach to flood risk managemenhaakedges that completely
eliminating flood risk and flood damage is not fbls and it aims to apply multiple
solutions like the combination of structural anchstouctural management practices, to
cumulatively reduce the risk. In this context, iaynnot always be necessary to use a
standard design flood event for all flood risk ngeraent alternatives for a floodplain.

For example, let us consider that an integrateatfiisk management study for a

Annual Cost (Million $)

4 | 1 1 1
1 2 5 10 20 50 100 200

Return Period (yr)

Figure 4.2. Annual Cost estimation for urban drgeaystem
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floodplain recommends implementing a combinatiomegtes, dams, urban storm water
drainage and flood proofing, using the standard désign conditions, to reduce the
resultant flood risk to an acceptable risk levehtthvas determined by floodplain
managers and decision makers. Now, if implemensihghe above solutions except
flood proofing brings down the total flood risk the floodplain to just above the
acceptable risk level, then there are two optidite first option is to implement flood
proofing using the standard 1% design condition @etlice the resultant risk to much
lower than the floodplain’s acceptable risk levBhe second option is to use a lower
magnitude design flood event such that the redultesk is less than or equal to
acceptable risk level. Here, significant finanalvings could be achieved by using a
lower design event for flood proofing.

It is financially prudent to consider various desi@lternatives, including
designing the systems for higher exceedance prayalfiood events. This study
addresses the question: Is it beneficial to implenfleod risk management alternatives
using an alternate design event other than thelatdril% flood event? To answer this,
the following evaluations are performed for the 8manoa River using flood proofing as
the flood risk management alternative:

1. Comparison of a continuous flow distribution wittretstandard discrete return
period approach

2. Analysis of benefits in terms of flood damage rdotucusing annualized flood
risk

3. Evaluation of reduction in flood damages by impletmeg flood proofing at a

lower magnitude event compared to the standardidéd event
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4.2 M ethodology

4.2.1 General Flood Damage Analysis Approach

Figure 4.3 presents the process flow of the genmethodology used in the
estimation of flood damages to compare flood miitga alternatives. The process
requires estimation of input flood flows which daa performed using techniques like at-
site frequency analysis, regionalized flood fregquyeanalysis and hydrologic modeling
(Merwade et al., 2008). In flood frequency analyaiwmual peak flow discharge data are
observed, preferably over a long range of histbdeda, and statistical information such
as mean, standard deviation and skew are calculdtesy are used to estimate the
magnitude and frequency of peak flows and presentéeims of frequency distribution
curves. For ungaged basins with less or no historstream flow data, regional
regression equations that relate flows with watenstirainage area, slope, storage and
routing characteristics are used to estimate ddkigrs (Ries and Crouse, 2002). There
are also software packages available like PeakFQ®¥eological Survey (USGS) and
HEC-SSP by HEC that can be used to perform floeguency analysis. Flood frequency
analysis is well established and abundant liteeatisr found in standard manuals,
publications and textbooks (IACWD, 1982; McCuen, 89Blazkova and Beven, 2002).
Rainfall runoff models (e.g., HEC-HMS, TOPMODEL) malgo be used to determine
the design flood events and their magnitudes. Wasld require using design storms
from an intensity-duration frequency relationshipa ayenerating design hyetographs and
runoff is simulated using a calibrated rainfall-offnmodel to determine discharge

hydrograph for a design flood event.
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Figure 4.3. General flood damage assessment frarkewo

The resultant flows may be in the form of discregpresentation of flows or a
continuous flow distribution curve. As mentionec\iously, the standard practice is to
perform flood modeling and flood damage calculatfon flows with discrete return
periods (e.g., 2 yr, 5 yr, 10 yr, 25 yr, 50 yr, 190 250 yr and 500 yr) or their
corresponding discrete exceedance probabilities.

The estimated flows serve as inputs to 1D hydramkdels such as HEC-RAS,

MIKE 11; 2D hydraulic models like RMA, Flo2DH, FIT2ODDELEMAC-2D, Flood2D-
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GPU; integrated 1D-2D hydraulic models like LISFLD®P and MIKE FLOOD, to
estimate flood inundation extent, flood depths aeldcities. Hydraulic modeling can be
performed using either the steady flow assumptionummsteady flow analysis. The
simulated flood extent, depths and velocities ammlined with primary or secondary
flood damage data and flood damage, flood riskopugation at risk are derived.

Many computer programs and techniques, including +iB@ (USACE, 1996),
ANUFLOOD (Smith and Greenaway, 1988), the Blue Manienning-Rowsell and
Chatterton, 1977) and HOWAD (Neubert et al., 2088 available to estimate these
damages in terms of direct flood damages (Viljoeale 2001; Hardmeyer and Spencer,
2007). To select appropriate flood risk managenaéietnatives, this damage calculation

process is repeated for different alternatives.

4.2.2 Flood Damage Approach in This Study

The following section presents the specific apphnofatiowed in this study for

flood damage calculation and Figure 4.4 graphicddlgicts the process.

4.2.2.1 Input Flow Estimation

In this study, the input flows are estimated usiaegional regression equations
developed by flood frequency analysis technique ungaged basins (Weaver et al.,
2009). The peak flows are generally consideredaaious discrete return periods or
recurrence intervals as a standard way of desigg inydraulic models (e.g., Ahmad and
Simonovic, 2001; Morita, 2008; Qi and Altinakar, 201A continuous flow distribution

is used in this study to show the impact of thisicé.
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Figure 4.4. Methodology adopted in this study

The continuous flow distribution is synthesized &orungaged basin by assuming
that the regression flow estimates represent tlak flews experienced in the basin.
Exceedance probabilities are identified rangingmfr®9.99% to 0.1% and their
corresponding flows are calculated using the US€&gession equations for selected
probabilities (Weaver et al., 2009). These caledgteak flows and their probabilities,
which are estimated using log-Pearson Type llIrithgtion, are plotted on a probability
paper and a straight line is fit to the data. Ftbis fitted straight line, numerous data
points are extracted throughout the range of pridibab. These data points are redrawn
on a plot with linear x and y axes and a synthetictinuous flow distribution curve is
derived as presented in Figure 4.5. This curveesaprts all the possible peak flows at the

location with their associated probabilities.
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Figure 4.5. Flow distribution curve

Since a continuous flow distribution curve represdnfinite flows, a sampling
strategy is needed to sample from the distributiorthis study, a Monte Carlo sampling
strategy is adopted to randomly sample flows. Bammpling strategy is implemented by
a Monte Carlo based flood risk modeling framewoik thas presented in Chapter 3.

From the flow distribution curve, the required nwenkof peak flows, each
representing flood events with certain exceedamobgbilities, are selected. The peak
flows derived from the curve can be used in steldw modeling based on the
assumption that the flood flow has been constana feufficiently long period so that all
the area that could be flooded at that flow hatat been flooded (Bales and Wagner,
2009). In this study, unsteady flow modeling is djsevhich requires the temporal
variation of flow in terms of a hydrograph. Thuse fpeak flow needs to be represented as
a hydrograph. To do this, a generic hydrograph slam be created using hydrologic
models such as HEC-HMS and TOPMODEL and the peak flowadjusted into a

synthetic hydrograph, as depicted in Figure 4.6.every random sample of peak flow
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Figure 4.6. Conversion of peak flow dischargesiscltarge hydrograph

(Qp) at an exceedance probability P, a scaled hydpbgshape is created using the
generic hydrograph. It is to be noted that the dgdaph flood volume is not conserved
through this process. The objective of this coneerss to recreate flow condition with

peak flow from the probability curve and correctegbrograph shape to simulate the

hydrological response in terms of the time to paadk recession.

4.2.2.2 Hydraulic Modeling

The hydraulic model used in this study is a 2D Iskalwater wave-based flood
model called Flood2D-GPU. A 2D flood model is se&delcin this study due to the
advantages compared to 1D flood models, includetteb representation in flood flows
(especially in floodplains), simultaneous floodexxtdelineation and instantaneous flood
velocities and depths at all grid cells in the catagional domain (Judi et al., 2010).
Flood2D-GPU is a GPU flood model developed in N\ABI CUDA programming
environment (Kalyanapu et al., 2011). Flood2D-GRUan unsteady flow model that

solves the nonlinear hyperbolic shallow water eignatusing a first-order accurate finite
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difference scheme. These equations are develomed Navier-Stokes equations by
integrating the horizontal momentum and contineigations over depth, often referred
to as the “depth averaged” shallow water equatarfSaint Venant equations. Equations

4-2 — 4-4 below present the nonconservative formefpartial differential equations:
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0 Continuity Equation(4 - 2)

where,h is the water deptHl is the water surface elevatiam,s the velocity in the x-
direction,v is the velocity in y-directiort, is the timeg is the acceleration due to gravity,
Sx is the friction slope in the x-direction aig is the friction slope in the y-direction.
The model uses an upwind finite difference numéscaeme for discretizing governing
equations (4-2 — 4-4), as it yields nonoscillatespjutions through numerical diffusion
(Patankar 1980; Ferziger and Peric, 2002). Floo@&HD requires a digital elevation
model (DEM) representing topography, Manning’s n $arface roughness and a flow
hydrograph. The model has been validated and obdety be very fast (designed
specifically for Monte Carlo analysis), with comptitaal speedups between 80x — 88x
compared to a regular CPU model (Kalyanapu etall1). The flood depths and flood
inundation extent simulated by Flood2D-GPU for ea€tithe randomly sampled flow

events is used in the damage modeling step.
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4.2.2.3 Damage Modeling

The calculation of total flood damage (in $) andwadized flood risk (in $/year)
is performed in a geographic information systemS)Génvironment using ESRI®
ArcGIS software. All the spatial data is represdntea raster grid cell format with the
same spatial resolution as the input DEM. The fldegths simulated from hydraulic
models, building data containing information abthé property values of flood-prone
buildings, and depth-damage relationship relatirgdamage and flood depths, are used
in calculating flood damage. Figure 4.7 illustrates process.

To estimate flood damages, the building data coimtgibuilding footprints and
their property value are required. In the abserfdeudding footprints, land parcel data
with building values may be used and the footpahthe land parcel is assumed to
approximate the building(s). Based on the valueghm building footprints or land
parcels, a building damage density is calculateditgling the value with the area of the
grid cell. As a result, a damage density layeréated in which each grid cell represents
the potential flood damage per area. In this layeme of grid cells which do not contain
buildings or which are a part of empty land aregues] a zero value.

To estimate flood damages from flood depths, déptinage functions are used.
These functions are derived through systematiagiylied survey procedures, and they
can also be generated from insurance claims daadysa& or historical flood data
analysis, considering the possible damage raticedoasn the given flood depths
(Middleman-Fernandes, 2010). Generic depth-damagetifuns are developed by
USACE relating flood depth (or stage height) to dlaenage or loss to building structures

for nationwide use in flood damage reduction stsidiethe US (USACE, 2000). This
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Figure 4.7. Estimation of flood damages and anmadlrisk

damage is expressed in terms of the percentadpe dfuilding value.

For every model realization corresponding to thedoan flood event from the
flow distribution curve, maximum depths at all gadell locations in the river reach and
floodplain are derived. Total flood damage in algrell is estimated by multiplying the
flood damage density, percent flood damage forcthreesponding flood depth and the
area of the grid cell. It is assumed that the DEBVailion in a grid cell represents the
elevation of the lowest floor of the building.

Annualized risk is calculated by multiplying thedld damage with exceedance
probability, as mentioned in equation 4-1. Thisimeasure of flood risk from a flood
event with certain recurrence interval. The flo@indge frequency curve and annualized
risk frequency curve are generated by plotting ftbed damage and annualized risk
respectively, with their corresponding flood evemnépresented by their exceedance

probabilities. The area under the flood damageukaqy curve is the EAD. The
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annualized risk frequency curve is used to seleetfiood event with maximum flood
risk as an alternate design event.

The flood risk management alternative used inghusly is Flood Proofing. In the
US, it is one of the nonstructural flood risk retioic measures that is applied to
frequently flooded properties and is generally lesruptive to the environment
(USACE, 1995). According to Federal Emergency Mamagnt Authority (FEMA),
flood proofing is “any structural or nonstructunaplementation, changes or adjustments
to structures which reduce or eliminate the floathdges to real estate or improved real
property, water and sanitary facilities, structumad their contents” (FEMA, 2002). It has
been incorporated into several regional flood adnplans (SCS, 1987, 1990, 1992,
1994) and is specifically mentioned in the Wates®gces Development Act of 1996.
The advantage of flood proofing is that it can belertaken by individual property
owners without waiting for government action anccdén provide protection in areas
where large structural projects, such as constmctf dams or major waterway
improvements, are not warranted (NFPC, 2011). Flaasbfing can be classified into
three categories: a) raising or moving the str@gtun) constructing barriers to stop
floodwater, and c) wet flood proofing. This studyfocused on the flood proofing by
raising the structure, commonly referred to as VEt®n” where the structure is raised in
place so that its lowest floor is above the expkdteel of floodwaters, thus reducing
frequency and/or depth of flooding.

To assess the reduction in flood damages, the fttamdage frequency curve and
annualized risk frequency curve are estimated withmplementing flood proofing. Let

us call this the ‘No flood proofing’ alternativehé&n, these curves are generated after
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implementing flood proofing for the standard 1%ofloevent. Let us call this the ‘1%
flood proofing’ alternative. To select the lower gn&ude flood event as an alternative to
1% flood proofing the annualized risk curve fromo‘ood proofing’ is used. The flood
event with the maximum annualized risk from thisveuis selected as the alternative.
Using this alternative, flood proofing is implemedtand flood damage and annualized
risk curves are generated. Let us call this the %6d proofing’ alternative, where X is
its exceedance probability of the identified deseyent. Comparing the flood damage
frequency curves, the calculated EADs and the drmagbrisk curves of the three cases
show the reduction in flood damages and the effentiss of the two flood proofing

alternatives.

4.3 Case Study

The Swannanoa River watershed is located in thentams of western North
Carolina in Buncombe County (Figure 4.8). It istpairthe larger French Broad River
Basin. These two rivers are essential to the cifzend economy of Buncombe County
and the entire Western North Carolina region. Comities in the Swannanoa River
watershed have been severely affected by floodimopg Hurricanes Francis and Ivan in
2004, including cities of Montreat, Black Mountainw&nanoa and Asheville.
Consequently, the General Assembly of North Caaoénacted the Hurricane Recovery
Act of 2005, also known as Senate Bill 7 (SB 7) jnanpstarted recovery activities for
the affected communities and funds to examine ampdleément measures to reduce flood

risk and loss of life, resulting in forming the Swanoa Flood Risk Management Project
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e
#l Datum: NAD '83

Figure 4.8. Swannanoa River flood study area

(SFRMP). More information can be foundrtp://www.swannanoafloods.ordDetailed

information, including the topographic data and remuoic data, are available for the
watershed, making it a unique case study.

The 32 km Swannanoa River is used in this studis fdach is bounded by 133.1
sqg. km upper Swannanoa watershed. The USGS haseamstflow gage (USGS
03449500) in this area. However, no historical datavailable since 1931; hence, it is
treated as an ungaged basin. Based on the regegraksion equations developed for the
study area (Weaver et al.,, 2009), the continuowasv fdistribution curve for the
Swannanoa River reach is generated as explaing ikethods section. From this flow
distribution curve, 50 flow samples are randomljested with different exceedance

probabilities through the Monte Carlo sampling fraragk. To convert the peak flow
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values of the continuous flow distribution curvegemeric flow hydrograph is created for
the watershed using HEC-HMS and the 100-year, 238 type Il design rainfall event
with a depth of 155.7 mm from the National Oceaapfic and Atmospheric
Administration, Atlas 14 Precipitation—Frequencyaatof the United States (Bonnin et
al., 2004). As a result, 50 different flow hydrogina are generated to be used in
Flood2D-GPU.

The Flood2D-GPU is applied using a USGS DEM at 2Gpatial resolution

(obtained fromhttp://seamless.usgs.goand a Manning’'s roughness value of 0.11

(McCuen, 1998) is used to represent the vegetationlight turf along the floodplain,
consistent with the roughness values used in hlidranodel development by the North
Carolina Floodplain Mapping Program (NCFMP, 2011)il@ng footprint data for the
floodplain was unavailable so the Buncombe Couayparcel data (Buncombe County,
2011) is used as the starting GIS dataset. Theselpdata contain the land use in each
parcel along with its land value and the value of huildings it contains. Based on the
building values, damage density ($/area) is caledléor every grid cell. Generic depth-
damage relationships from Economic Guidance MemamanUSACE, 2000), are used
in this study. The generic depth-damage curve sparding to two or more stories with
no basement is used to relate the flood depthstagercent damage to the structure.
Thus, to estimate the flood damage due to inundati@a grid cell, the percent damage is
multiplied with damage density and grid cell afl®g.aggregating the damages for all the
grid cells, the total flood damage for a flood evén calculated. From this value,
annualized risk is derived. Damage to public irtfiature, including pipelines, roads,

bridges, etc., and damage to vehicles are not deresi in this study as their information
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is not available. This is a simple flood damagenesion at a river scale. A detailed
estimation would involve incorporating individualuiling details, which is very
cumbersome, data intensive and would require viglly $patial resolution (at least 5 m).
The flood damage to contents within the structgr@at considered here, as this study
implements a coarser approach of flood damage ledilou.

To implement flood proofing using the elevation m@eh for a certain design
event, the floodplain corresponding to that desgent is considered. All the grid cells
within the design floodplain that are prone to lodamage (i.e., damage density > $0
/area) are considered to be flood proofed. For @kanif the flood proofing is designed
for a 1% flood event, then the 1% floodplain isesétd and all the grid cells within that
floodplain prone to flood damage are identifiecotflood proofed. The height of flood
proofing for these cells is selected as the maxinsumulated flood depth for the design
event plus an additional 1ft of freeboard, such tha resultant elevation of these cells
would be above the flood level of the design evpat,FEMA guidelines (FEMA, 2002).

The maximum flood depths corresponding to the Hi@rént flood events that are
used in estimating damages from the depth-damagesare reduced by the height of
flood proofing for these cells. For instance, i theight of flood proofing for a cell is 3
ft, and the maximum flood depth at that cell fditcad event is determined to be 10 ft,
then the resultant flood depth used in flood danwdeulation is 7 ft. Depending on the
flood event that is used as the design conditionflead proofing, the height of flood
proofing for cells vary, with typically larger maigpnde events requiring higher flood

proofing heights.
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4.4 Results and Discussion

This section presents the results of flood damadgulations for the Swannanoa
River in terms of flood damage frequency and anpedlrisk curves generated for three
alternatives: No flood proofing, 1% flood proofirmnd X% flood proofing. The ‘No
flood proofing’ alternative does not include floptbofing. The 1% flood proofing is the
alternative where flood proofing is designed fag % flood event. From the annualized
risk curve of the No flood proofing alternative etiX% flood proofing alternative is
identified to be 12% (see below), thus it is callled 12% flood proofing alternative and

flood proofing is designed for the maximum floogttes simulated for that event.

4.4.1 No Flood Proofing Alternative

Figure 4.9 presents the flood damage calculatedgusd various flood events
represented by their exceedance probabilities Ha alternative. It also presents the
discrete return periods for comparison.

For the Swannanoa River reach, flood damage ineseadth decrease in the
probability of the event. They range between $7i% and $21.3 million for exceedance
probabilities ranging from 99.9% (peak flow ~33%)dio 0.1 % (peak flow ~14,289 cfs).
While there is a significant increase in flood dgmait should be noted that there is a
higher chance of lower magnitude events occurrirgenfrequently than the higher
magnitude events. The discrete points in Figure shOw the standard approach of
depicting flood damages in terms of discrete refpgriod compared to the continuous
flood damage frequency curve. Here, the discretermeperiod approach shows the

general trend in the increase of flood damages.d&¥ew flood damages are quantified
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Figure 4.9. Total flood damage frequency curveNorflood proofing alternative

using EAD for both the discrete return period appto and the continuous curve
approach. The EAD for the continuous approach lsutated to be $811,000 while EAD
for the discrete approach is calculated as $619,08@8erestimating by 23.6%. This
shows that using the continuous curve represerffiiiagl damages gives detailed flood
damage quantification compared to the standardoapprusing discrete return periods.
Figure 4.10 presents the annualized risk calcultdethe Swannanoa River. An
increasing trend is observed for higher probabéngnts and then a decreasing trend for
lower probability events. Few outliers are noticetthin these general trends of
annualized risk which are affected by the magnitaotiehe probability of event. For
example, in the increasing trend region, consider ¢vents A and B from Figure 4.10
corresponding to 84.9% and 76.1% exceedance piales)irespectively. The flood
damages for events A and B are $ 127,000 and $038respectively (Figure 4.9), as

expected. However the annualized risks calculaiethese two events are $108,000/yr
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Figure 4.10. Annualized flood risk frequency cufeeNo flood proofing alternative

and $105,000/yr, respectively (Figure 4.10). Thihg, increase in flood damage (and
flood magnitude) from event A to event B has adessfect on the annualized risk than
the decrease in the exceedance probability frormte&eto B. Conversely, few outliers
with increasing trend are also noticed in the loweawbability region. Discrete return
period events are also plotted in Figure 4.10. Bhenigh discrete return period events
present the general trend of the variation of alhrech risk, they do not capture the
maximum annualized risk corresponding to the 12%nev Thus, a continuous
distribution of annualized risk would be neededckearly pinpoint the event with the
maximum risk in addition to the underestimatiorcdssed above.

The annualized risk is estimated to be about $72/yer a 99.99% event. It
increases to about $206,000/year for the 12% emedithas a decreasing trend towards
lower probability events with about $ 21,00/yeardd®.099% flood event. It is partly due

to the various definitions of flood risk that arged (Simonovic and Ahmad, 2007). It is
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also due to the fact that flood risk is inversetppgmrtional to exceedance probability.
Counterintuitive to the notion of “higher flood nratude yields higher risk,” it could

also cause situations where lower magnitude eveduaés to their high frequency of
occurrence result in significant annualized flomds. This has financial implications for
implementing flood proofing, in terms of the sigo#nt difference of capital costs
involved between designing for a larger magnituelesws a lower magnitude flood event.

To assess the impact of selecting the design fevaaht for flood proofing on the
reduction of flood damage and annualized risk, tases are considered based on Figure
4.10. The 1% flood proofing alternative is selectebe the standard 1% flood event
with a peak discharge of 9,550 cfs. The 12% floombfing alternative is selected to be
the 12% exceedance probability event corresponinige highest annualized risk, with
a peak discharge of 4,934 cfs.

The 1% flood proofing alternative includes locasiowithin the 1% floodplain
that experienced flood damage and is subjectelddd fproofing (raising the elevation of
the structure, such that its elevation is at ledstabove the flood depth of the 1%
floodplain). The 12% flood proofing alternative indes the locations identified within
the 12% floodplain and subjected to flood proofifidne reasoning behind using this
scenario is that the annualized risk can be redbgeselecting the level of protection

from floods to a higher exceedance probability évath a lower flood magnitude.

4.4.2 Flood Proofing Alternatives

To simulate flood proofing by elevation, all theidgicells within the design

floodplain are identified, and their flood depth® adjusted by the design event flood
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depth at those grid cells. For the 1% flood pragpfatternative, there were 4000 grid cells
within the 1% floodplain that experienced flood daya and flood proofing by elevation
is performed on them. Similarly, for the 12% flopiofing alternative, there were 1381
grid cells within the 12% floodplain experiencirgetflood damage and flood proofing is
performed on them. Both of the scenarios are sitedlavith the flood model using the
same 50 flow hydrographs. The simulated flood deptte used to calculate the flood
damages and annualized risk. Figure 4.11 plotgitebution of the flood damage for
various probabilities for the three cases.

A significant reduction in flood damage is obsenfedthe 1% flood proofing
alternative across the range of exceedance prdaiegicompared to the No flood
proofing alternative. Implementing flood proofingded on the 1% design event not only
reduced flood damage for events equal to or smétlen the 1% event, but it also

reduced the damages for larger events significaRtly example, the flood damage

25 T T T
-e-No flood proofing

—-1% flood proofing
——12% flood proofing [

—_ [\
9] (=)
I I

Flood Damage (in Million $)
=

z o
e A,

) A Y A

& ®

o)

& &

2 p
Q e L o M

6050 40 30 20 10 54 3 2 1 0.504 03 0.2 0.1
Exceedance Probability (%)

Figure 4.11. Total Flood Damage frequency curverdtood Proofing

(94
T

9 80



96

corresponding to the 2% probability event reducechf$6.02 million to $ 70,000, from
No flood proofing to 1% flood proofing. The maximuotal flood damage reduced from
$21.3 million to $3.48 million for the 0.1% probhtyi event.

Significant flood damage reduction is also obserethe 12% flood proofing
alternative, comparable to the 1% flood proofintgralative. For the 0.1% probability
event, the maximum flood damage reduced from $@ili®n to $14.9 million.

It is seen that there is a significant decreaséhen annualized flood risks by
incorporating flood proofing versus the No floodbpfing alternative (Figure 4.12) for
both the design alternatives. The damages argédhibr "attenuated” towards the lower
probability events. By implementing the 1% floo@gifing alternative, it is observed that
the annualized flood risk has a continuous increpgrend until 0.102% probability

(equivalent to peak flow of 14,235 cfs).
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Figure 4.12. Annualized flood risk frequency cuafter Flood Proofing



97

Compared to the No flood proofing alternative, #mualized risk has reduced
significantly for the 1% flood proofing alternatifeom about $206,000 to $ 3,500, a
decrease of 98.3%. For the 12% flood proofing a#teve, the annualized risk starts to
increase significantly at about 7.88% (peak flow 684 cfs) and the maximum
annualized risk is observed at 1.6% (peak flow @78 cfs) and then follows a
decreasing trend for the lower probability everBy. implementing the 12% flood
proofing alternative, maximum annualized risk resticfrom $206,000/year to
$61,000/year, a decrease of 70.3%.

To quantify flood risk in terms of an annual expecdamage, EAD (in $ per
year) for the three cases is also estimated asrée under the flood damage curve
(Figure 4.11). This is presented in Table 4.1. Ti®% flood proofing alternative
significantly reduced the EAD by 95.2% comparedNtoflood proofing while the 12%

flood proofing alternative reduced EAD by 75.3%.

4.4.3 Capital Cost Estimates

The capital cost involved in implementing flood gfiag for the two scenarios

are estimated. Based on the unit costs cited iV8®&CE (2004) report on nonstructural

Table 4.1. Estimated annual damages calculatetthéathree cases

Benefits
Alternative EAD (%) EAD Reduction % Reduction
No flood proofing $811,000 - -
1% flood proofing $39,000 $771,000 95.2

12% flood proofing $200,000 $610,000 75.3
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flood damage reduction assessment, the cost tateldvsq. ft of area is considered to be
$26.60 including foundation, extending utilitiesnda miscellaneous items such as
sidewalks and driveways. Table 4.2 presents theestsnates for implementing the 1%
flood proofing and 12% flood proofing alternativéisis observed that the total estimated
cost for the 1% flood proofing alternative is ab8607.9 million, which is almost three
times the total cost for the 12% flood proofing eafative. To quantify the
implementation costs on an annual basis, an expestaual cost (EAC) is estimated,

calculated using the following equation (Sullivdarak, 2003):

A= P[(i(“—i)N} (4-5)

1+i)" -1

where, A is the EAC or it is a uniform series ohaal costs occurring at the end of each
year in ($/year), P is the total cost (or preseatthy of installation in ($), N is the total

number of interest periods in years and i is therest rate in %. The quantity in the
brackets is called the capital recovery factor, owhbrings the present worth of the

installation costs to an annual basis. EAC is estith using an interest rate of 5% and an

Table 4.2. Calculation of cost estimates for impdatng flood proofing

. Total EAC
Elevat
Uni evation Temporary  Estimated ($ per year)
Alternative nit - Housing Cost
Final Cost
Cost %) %) $)
($/sq.ft)
0,
éé’;'f?nogd $26.60 $599,160, $8,800,000 $607,960,0833,302,000
12% flood

proofing $26.60 $206,860,000$3,038,200 $209,898,000511,498,000
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estimated life time period of 50 years.

It is observed that EAC is high for the 1% floo@gfing, $33.3 million per year,
and implementing 12% flood proofing reduced the B&065.5%. This shows that even
though the 1% flood proofing alternative reduces thaximum annualized risk by
98.3%, it comes at a high price. However, signiftc@duction in maximum annualized
risk, about 70.3% from the No flood proofing altatime, can be obtained by using 12%
flood proofing. This shows that implementing 1%oflioproofing significantly reduces
the flood damage and risk. But, it also shows évan 12% flood proofing significantly
increased the benefits from flood proofing by 7%#terms of EAD.

For every dollar spent on implementing flood pragffor the 1% flood proofing,
there is a reduction of 2.32 cents in flood damagesry year. For the 12% flood
proofing, there is a 5.31 cents reduction of floadnages every year, more than twice the
reduction from the 1% flood proofing. While implentiag flood proofing is a costly
affair and depends on the availability of finanagesources and many other factors, this
study intends to show that designing a flood risknagement alternative for a smaller
magnitude but more frequent flood event could redihe financial costs compared to a
standard design flood event.

The results from this single case study raise itgpmbrquestions to the decision
makers: Would you be willing to take a risk by dgsng one of many integrated flood
risk management solutions at a high frequency (fanagnitude) flood event? Or would
you rather stay with the standard design. Thissigrsficant implications on the decision
makers and floodplain managers to carefully talse@nd look at the “acceptable” risk

when designing flood protection.
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4.5 Summary

This paper presents an analysis approach using &eNGarlo flood risk modeling
framework to compare annualized risk reductionsmfrflood control alternatives
targeting different average recurrence intervalnésieThe benefits for implementing
flood proofing is assessed for the Swannanoa Rieedplain located in Buncombe
County, North Carolina, in terms of reduction imaalized risk and flood damage. Fifty
different flood model simulations were performed ndomly sampling from the
continuous flow distribution curve developed for &wanoa River reach. For every
model simulation, flood damage and annualized &sk calculated, resulting in two
continuous curves: a flood damage frequency cundeasm annualized risk curve. Firstly,
this study found that the general approach of uslisgrete return periods to calculate
EAD underestimated by 23.6% compared to EAD catedlaising a continuous flood
damage frequency curve. Secondly, from the anredilaurve, it is found that there is
higher annualized risk at a probability of 12% @39 cfs) and then the annualized risk
decreases with the probability of event. Along with flood proofing alternative, two
flood proofing alternatives are also compared: I86d proofing and 12% flood proofing
alternative. There was 95.2% reduction in EAD fidmflood proofing alternative to 1%
flood proofing alternative. Using the 12% flood pfing alternative, there was 75.3%
reduction from No flood proofing alternative. Evidmough 1% flood proofing reduces the
maximum annualized risk by 98.3%, it comes at & Ipigce, while significant reduction
in maximum annualized risk, about 70.3%, can beaiobtl by using the cheaper 12%
flood proofing. Annually, for every dollar spent amplementing flood proofing, 12%

flood proofing alternative resulted in twice theluetion in flood damages compared to
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the 1% flood proofing alternative. Finally, the wufean annualized risk curve approach in
selection of flood risk management design altewestiis demonstrated. Thus, this
preliminary study shows that significant reduction flood damage is possible by
designing flood proofing, one of the many floodkrimanagement alternatives, for a
lower magnitude and more frequent design flood ewempared to the standard 1%

flood event.



CHAPTER 5

CONCLUSIONS

The objectives of this dissertation research wave imhprove flood risk
management by enhancing model computational catyadiid incorporating uncertainty
in better representing flood risk. This is accosipid by (1) developing a
computationally efficient GPU-based 2D flood modgl using an efficient and robust
upwind numerical scheme to solve the complete 2[ntS¥enant equations, (2)
developing a Monte Carlo based probabilistic franwto incorporate data and
parameter uncertainties and generate probabilitghted flood risk, and (3) applying the
Monte Carlo based framework to study the benefiisnplementing flood proofing.

The first objective resulted in developing a newJabased dynamic flood model
Flood2D-GPU in the NVIDIA CUDA framework. The mode validated using a lab
scale dam experiment and a flood event resultiogp fthe Taum Sauk dam break failure
in Missouri. The computational advantage of usinguGRersus an equivalent CPU
model is presented in three different ways. First,computational enhancement of using
this parallel programming technique is presentetth womputational speedups ranging
between 82x and 88x compared to a CPU model implenge the same numerical
algorithms. Second, the computational domain isirmized to include only the flood

extent, further reducing the computational intgnditis observed that while the domain
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reduction increased the CPU speedup, it is lesgpaoed to the speedup from GPU. The
GPU model presents modelers with more flexibilibylte less precise with modeling

domain extent, thus reducing additional time inppoeessing flood models, which is

significant for emergency operations. Third, theeetf of spatial resolution on speedups is
studied. It is observed that the parallel procesgpower of GPU is more evident at

higher spatial resolution with a larger number atl gcells, which better incorporates

complex topography and flow characteristics andreferred for flood studies. Overall,

the Flood2D-GPU flood model provides a useful pgalizhtion approach implementing

the full dynamic wave, permitting more accurate &asler flood simulation results to be

obtained. The future of GPU implementation in flamddeling has great potential with

developments in GPU hardware, software and eveeasing availability expected.

The significant performance boost by Flood2D-GPlapplied in developing a
Monte Carlo based probabilistic flood inundatiomieawvork. The framework consists of
three modules: (i) User-defined random sampling umeébr flood model parameters and
input variables, (ii) Geospatial Output Analysis dute, to quantify the inundation
probability and flood model statistics, and (ii)isRk Map Development module to
develop a probability weighted flood risk map us@mgNater Depth-Velocity Hazard
Classification Diagram. The importance of incorpimig uncertainty in flood models is
demonstrated by applying this framework to a 1%dlevent in Swannanoa River, North
Carolina. Flood risk maps were developed usinghglsisimulation (deterministic) and a
multiple simulation (probabilistic) approaches. Tpmbabilistic flood risk map was
developed from simulating 50 random flow hydrogspim Flood2D-GPU. The

deterministic approach underestimated the flook s/ 32.5% relative to the
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probabilistic approach. As the number of samplesremsed, compared to the
deterministic approach, probabilistic approachnested areas with low hazard and high
hazard increased by 3.8% and 21.2%, respectiveig. difference in flood risk translates
into significant underestimation of lives-in-jeogdgrin populated areas. This is quantified
by calculating the lives-in-jeopardy, where the qabilistic approach simulated 1101
lives are lost while deterministic simulated 925 umderestimation of 16%, which can be
very significant if the floodplain is highly popuéal. Application of this framework on a
single case study demonstrates the improvemenhefptobabilistic flood modeling
approach compared to the deterministic approachs,Tithe framework has the ability to
provide improved accuracy of flood risk informatiand in general greater insight into
the spatial distribution of flood risk useful in kmag decisions. This has significant
implications in the estimation of flood damage aod the floodplain emergency
management.

Finally, Monte Carlo based framework was also appleeassess the benefits of
flood risk management. Selecting flood proofing e flood risk management
alternative, this study focused on determining effect of using different design flood
events to implement flood proofing on its assodaanualized risk, compared to using
the standard 1% flood event. Using the annualilmmbifrisk concept, this study assesses
benefits for implementing flood proofing in SwanoanRiver floodplain in terms of
reduction in annualized risk and flood damage. Hmebabilistic flood modeling
framework is used to simulate floods at variouseexiance probabilities. Fifty different
flood model simulations were performed by randosaynpling from the continuous flow

distribution curve developed for Swannanoa Rivache(Base Case). These simulations
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are used in calculating flood damage annualizédausves. Firstly, this study found that
the general approach of using discrete return gerio calculate EAD underestimated by
23.6% compared to EAD calculated using a contindtmesl damage frequency curve.
From the annualized curve, it is found that thesehigher annualized risk at an
exceedance probability of 12%. It was hypothesthed designing flood proofing using
12% probability event may not only yield signifi¢aaduction in annualized risk but also
significantly reduces the implementation costs, pgarad to a 1% flood event. To study
this, two cases are tested where flood proofinginsulated by designing at two flood
events, 1% flood event (Standard Design) and 12%dflevent (Alternate Design),
respectively. The results from the Standard Deslgywed significant reduction in flood
damage with the maximum flood damage reducing f@®.7 million to $8.11 million.
The EAD calculated show 95.2% reduction from impating the Standard Design. It is
also observed that designing flood proofing for thkernate Design significantly
reduced the maximum flood damage from $20.7 million$15.5 million. The EAD
reduced by 75.3% when implementing the Alternateside It is observed that even
though the Standard Design reduces the maximumadined risk by 98.3%, it comes at
a high capital cost of $33.3 million annually, vehileduction in maximum annualized
risk, about 70.3%, can be obtained by using therA#tive Design that only costs $11.5
million annually. Also, this shows the use of thenaalized risk curve approach in
selecting design alternatives. In terms of impletagon costs, every dollar spent on
flood proofing annually in the Alternate Designuked in twice the reduction in flood
damages compared to the Standard Design. Thusptéisninary study shows that

significant reduction in flood damage is possibjedesigning flood proofing for a lower
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magnitude and more frequent design flood event emetpto the standard 1% flood

event.

The outcomes of the research are improved flood etmggl and simulation

capability by providing increased speed, improverrdgification of flood inundation

uncertainty, and a newer understanding of flookl m&nagement and decision making.

Future work extending this study should include:

Developing a second-order accurate upwinding nwaksolution on the
GPU framework including its validation and verificen to flood modeling
applications.

Incorporate  physical process components includingpfiltration,
evapotranspiration, and erosion mechanics, especilahg-term flood
simulations.

Study the feasibility of the Flood2D-GPU to ememgenmanagement
operations including flood warning and flood figigioperations.

Extend the application of the Monte Carlo flood riekdeling framework to
various applications including the impacts on clenehange and urbanization

on increasing flood risk.
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108

A.1 Numerical Flood Model

The following section gives a description of the 2iddel that is developed in
this study. The numerical algorithm used is a4inster accurate upwind difference
scheme that solves the nonlinear hyperbolic shaater equations. The model is based
on the flood inundation model developed by JudD@0These equations are developed
from the Navier-Stokes equations by integratinghtbezontal momentum and continuity
equations over depth. Thus, these equations ae mterred to as the depth-averaged or
depth-integrated shallow water equations. The foripartial differential equations

shown here is the nonconservative form of the eosit

oh ouh ovh
—+—F—=
ot ox oy
a_u+ ua—u+va—u+ gﬁ+ gS;, = MomentumEquationin X - direction(A - 2)
ot ox oy OX

@4- u@+vﬂ+ gﬁjt 9S, =0 MomentumEquationin y - direction(A -3)
ot ox oy oy

0 Continuity Equation(A -1)

where, h is the water depth, H is the water suréeeation, u is the velocity in the x-
direction, v is the velocity in the y-directionistthe time, g is the acceleration due to
gravity, Sy is the friction slope in the x-direction ang B the friction slope in the y-
direction.

The friction slope terms are estimated based oiidrening’s formula as follows:

—2 5, 2
NxUy/\U”~ +V
o, -t )
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S. = nyv (A -5)

where R and_lg are the average Manning’s roughness values &b¢hé&on of the

velocity vector in x and y direction, respectivedyd i and Ky are the average depths at
the location of the velocity vector in x and y ditien, respectively.

Boundary conditions are treated by creating calkhé computational domain.
Zero gradients (free boundary) are specified bigassy these ghost cells to mirror the

values of depth and velocities of the boundaryscell

A.1.1 Spatial Discretization

The first-order upwind finite difference numericgheme was used for
discretizing the governing equations because ltlgironoscillatory solutions through
numerical diffusion (Patankar, 1980; Ferziger ardd? 2002; Judi, 2009). A staggered
grid stencil is used to define the computationahdm with the water depth (h) in the
center of the cell and u and v velocities on tHeemges, as shown in Figure A.1.

Let us look at the continuity equation first toel®ine the updated h values by

rearranging equation A-1 as follows:

ot

o ool
oX oy
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uij  higg Ui+

Y

AX

X, i

Figure A.1 Computational stencil used for the model

The convective terms are discretized using an ugiwinscheme. This

discretization scheme is slightly different from shapwinding schemes (Judi 2009).

ouh _ ui,jhE _ui—l,jhlv

(A-7)
OX AX
ﬁhzvi,th _Vi,j—lhs (A -8)
oy Ay
where,
h, if(u, >0
= (A -9)
g o If(ui,j <0)
hoy, f (ui—lj >0)
= ’ A-1
W h, if (ui_]qj <0 ( 0)
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_h, if (v, >0)
M _h+1,j if (Vi,j <0) (A-1D)
h, if(v, >0
hszh,j if(vi,j—1<0) (A-12)

The momentum equation in x-direction is rearrange@ for determining the

updated u velocities as follows:

ou ou - ou oH
—=—U. . —+Vij—+0g—+0gS A-13
ot |: i, OX J 9 g P% g f)ﬁ,ji| ( )

The convective terms are discretized using eitfervaard or backward finite

difference depending on the direction of the laedbcity.

U — Uy,
o JAX J (ui,j >O)
&z (A-14)

Y =Ui (o)

AX "

—ui'j _ui'j_l (\_/i,j >0)
ou Ay
—= (A-15)
oy

st f, <o)

where, v ij IS the local velocity in the y-direction takenrin the average of the

surrounding cells.
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- VitV VgtV
Vij = 4

(A-16)

The nonconvective term representing the water senf@adient is resolved as a

second-order accurate central-difference scheme:

H . —H. .
@: i+1,] i,j (A _17)
OX AX

The friction term is discretized in the x-directjausing Manning’s equation as:

ﬁxzi,juij Uizj +\_/i,2j
= ’ V[ ’ ] (A-18)

" (o h)®

Similarly, discretization is carried out for the mentum equation in the y-

direction.

A.1.1.2 Temporal Discretization

The continuity and momentum equations are disaétexplicitly to march

forward in time as follows:

t
N ouh ovh
t’jl =h', _A{_JFE} _(A—19)

OX
L]
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t
Ul =u — At a—u+\_/i,j @+ ga—H+ 0S| (A-20)
’ ‘ " OX oy OX 'y
— v ov _oH T
Vil =V At UL —+V —+9—+0S,; | (A-2))
’ ’ ox oy oy 'y

The explicit finite difference approach solves uokmn values sequentially at a
time step from one grid location to the next, aad be unstable for larger increments of
At for the numerical procedure to converge. The mehmay be stable if the errors
generated from discretization are not propagatededuture time steps. A necessary but
insufficient condition for stability of the explicscheme, called Courant condition, is
applied for stability and numerical convergencey@dtt and Woolhiser, 1967) as

follows:

at=c 20 (a-22)

max

where, G is the Courant numbergk is the maximum velocity in both x and y directions
andAn is the smallest spatial dimension for a cell ory direction.

The unaxis maximum velocity (both x and y directions) myacell including the
wave celerity ‘c’, thax = max (u) + c. The Courant condition needs the tatep to be less
than the time for a wave (diffusive) to travel thstanceAn. If At is large enough that the
condition is not satisfied, then there is in effegt accumulation or piling up of water,
causing instability. In our studt is determined at each time step that meets theado

condition computed at all grid cells and the snsal@lue (which means highest
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velocity) is taken and reduced by 90 % (becauge;, €1 is adapted). It should be noted
that Courant condition does not confirm stability but is just a guideline (Chow et al.,

1988).



APPENDIX B

IMPLEMENTATION STEPS FOR CPU AND GPU FLOOD MODEL

FRAMEWORKS
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B. 1 Implementation of CPU and GPU Flood M odels

B.1.1 CPU Computation

1. The input DEM and a flow hydrograph are providBde DEM array is padded
with an extra layer of cells on all four sides.

2. Based on the DEM size, the h, u and v arrayslfoeated and initialized. As
with the DEM array, these three arrays are alsal@acccordingly.

3. Based on the source coordinates (user inp@t);diresponding source row and
column values are calculated.

4. The program iterates over the interior cell8rtd the updated h, u and v
values. These are calculated, based on solvingathgnuity and momentum
equations. The maximum u, v and the correspondiveajues are updated for
every iteration.

5. The extra cells are populated with the updateddnd v values.

6. Using the Courant condition, the natwalue is obtained.

7. The source location is updated with the newdmadiv values, using the
hydrograph.

8. Steps 4 to 6 are iterated through a certain eamitimes, till the desired

simulation time is achieved.

B.1.2 GPU Computation

The GPU model has been implemented in CUDA. Inrttoslel, steps 1 to 3

remain the same, and are executed on the CPU4S¢egxecuted as a kernel (function
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executed on the GPU). The computational domaiividetl into a set of blocks, and the
blocks are scheduled onto the Symmetric Multi Pssitey (SMP) cores. Only the inner
cells are considered when generating the blocksgatation done only for interior cells,
extra cell values are copied from the interiorg)elCorresponding to every block in the
domain, a 2D shared memory array is allocatedaie stell values. The array dimensions
are two more than the block size in both directigmsccount for extra cells required
during computation. The interior cells in the areag populated using corresponding
threads, and the extra cells are populated usmgthod by Micikevicius (2009). This
method does not populate the four extra cellsenctirners. This issue is addressed by
directly reading from the global memory, therebgueing any further divergence. After
computing the updated h, u and v values, they @pelpted back into the shared
memory, and one thread writes into the global mgmbnread synchronization calls
ensure that all threads write to the shared merinsty before the global memory is
updated.

Step 5 involves updating the extra cells. To enswaethreads do not go idle by
creating extra blocks, two kernel calls are made, for updating the extra rows, and the
other for updating the extra columns. The bloclk $or the kernel calls is equal to the
extra row and extra column size, respectively. Thillustrated in Figure B.1. To find
the maximum u, v and the corresponding h valu&sy@el has been implemented which
performs parallel reduction. Similar to Step 4, tbenputational domain (corresponding
to the interior cells) is divided into blocks. THata corresponding to a block is copied to
a shared memory array. Within a block, a methocbafiparison by Harris (2007) is used

to find the column maximum. The method ensuresdessgence, and a faster execution
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Figure B.1: A layer of extra rows and columns, skthed as a single block on to the
CUDA cores.

time. The column maximums are written at index ¢heir corresponding rows, and
index O locations of the corresponding rows are ttempared to find the maximum
value in the block.

The maximum value in a block is stored at the alwagtion, corresponding to
the thread id 0.The 0 thread then writes backeatbbal memory, at the location
corresponding to the block id. This ensures allimaxn values are written into a
subarray, within the larger global memory blockisTis illustrated in Figure B.2.

Once the values are written, the procedure of temlucs repeated, until it is
reduced to an array of size 1x1, which happenisgartaximum values in the

computational domain. The reason behind writingkl@subarray into the global
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v

12 | 13 | 14 | 15

12 13 14 15

Figure B.2: An example of the recursive parallelueion technique, with a block size of
2X2.

memory block is that it reduces the size of the patational domain (for the next
iteration), and also the number of thread/blockse amount of time to perform
comparison, and to find out the maximum value, cedisignificantly with each

successive call. Steps 6, 7 and 8 remain the sasrnie,the CPU implementation.

B.1.2 GPU Enhancements

Within the GPU model, &6 cell padding scheme has been implemented.
The computational domain is padded with a layek@eéxtra cells, which ensures
memory alignment, and coalesced memory calls attg in a half warp (32 threads
make a warp; 16 are executed as a unit). Thisssyoificance especially on devices with

a lower compute capability (NVIDIA, 2009). The otlemhancement comes into play
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during the execution of the parallel reduction roethn order to ensure that the block
size does not exceed the new subarray size, tok bipe is altered dynamically. The
following two equations involve calculating the neubarray and the block size,

(arrW +blkw —1)
blkw

arrw = (B-1)

The second equation is solved, only if the subaniaiyh is lesser than the block width,

blkVV — 2logz(arrW%bIkW) (B _ 2)

where, arrW and blkW are the subarray and the otk at any given iteration and ‘%’

sign indicates the reminder of the fraction. Thmaaet of equations is used for

calculating the new height.
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