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ABSTRACT 

 
 
 

The Oct1/POU2F1 transcription factor was previously thought to constitutively 

occupy its cognate DNA binding sites, and to regulate the expression of housekeeping 

genes. This stereotype led to little attention being paid to Oct1 activity in dynamic 

cellular responses. In 2005, Oct1-/- mouse embryonic fibroblasts were shown to be highly 

sensitive to oxidative and genotoxic stresses, implicating Oct1 as a stress sensor. 

However, the mechanism connecting stress with Oct1 transcription regulation was 

unknown. To identify the mechanism by which Oct1 activity is regulated by post-

translational modifications in response to stress exposure, I used affinity purification and 

mass spectrometry to map specific Oct1 phosphorylation, O-GlcNAc modification and 

ubiquitination sites. 

Serine 385 (Chapter 2): I identified unique mechanisms of Oct1 regulation in 

response to stress and during mitosis, involving two different Oct1 phosphorylation 

events. Following genotoxic and oxidative stress, Oct1 binding specificity is mediated by 

phosphorylation of S385, switching from a monomeric into a dimeric conformation on 

different binding sequences. I confirmed this mechanism by genome wide ChIPseq. The 

homologous protein Oct4, a master regulator of embryonic stem cells, uses a similar 

mode of regulation.  

Serine 335 (Chapter 3): I identified an other phosphorylation event (pS335) as a 

negative regulator of Oct1 binding to DNA. I found that this phosphorylation is induced 
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in mitotic cells as well as in stressed ones. The phosphorylated Oct1 is enriched in the 

mitotic spindle poles and midbody. Phospho-Oct1 is also K11-ubiquitinated. Using 

several different approaches, I showed that Oct1 directly regulates mitosis after being 

displaced from mitotic chromatin.  

Threonine 255 and Serine 728 (Chapter 4): In addition to phosphorylation and 

ubiquitination, I also identified O-GlcNAc modification of Oct1. Using an Oct1 

glycosylation defective mutant, I found that the glycosylated residues of Oct1 regulate its 

DNA binding and transcriptional activity. 

Finally, I confirmed in embryonic stem cells that Oct1 and Oct4 share binding 

specificity for novel multimeric as well as conventional octamer motifs (Chapter 5). 

Further, multimeric binding motifs recruit Oct1 and Oct4 hetero-complexes suggesting 

extensive crosstalk between Oct1 and Oct4 in embryonic stem cells.
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CHAPTER 1 

 

INTRODUCTION 

 

Octamer Transcription Factors 

 The POU (Pit1, Oct1/2 and Unc86) domain transcription factors were first 

classified in 1988, based on the fact that the four factors share a well-conserved bipartite 

DNA binding domain: POU specific (POUS) and POU homeo (POUH) (3). These 

subdomains are associated with a linker domain known to be variable in length and 

amino acid composition. Ensuing studies extensively identified POU family proteins 

through sequence similarity, as well as expression patterns (4-7). These findings allowed 

the classification of POU domain factors into subclass I-VI based on sequence identity of 

POU domains and variable linkers ((8), Figure 1.1a).  

Interestingly, POUS and POUH subdomains recognize distinct DNA sequences, 

‘half site’ (9).  The canonical “octamer” binding site consists of two half sites adjacent to 

each other. The linker domain allows them to bind cooperatively to the combined half 

sites. The POU domain factors also follow unique classification due to their original 

identification (10). The factors that bind preferentially to the “octamer” sequence 

(ATGCAAAT) are further classified as octamer transcription factors (“Oct factors”, 

Figure 1.1b). POU1F1 (Pit1), POU4F1 (Brn3.0) and POU6F1 (Brn5), classified as non - 

octamer transcription factors (“Non-oct factors”), are optimized to recognize  
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Figure 1.1. POU domain transcription factors. (a) POU factors are categorized into 
subclass I-VI according to the degree of identity. (b) DNA binding domains from 
POU factors are divided into two groups: Oct Factors and Non-Oct Factors. This 
grouping well reflects DNA binding specificity. Taken directly from (2)   
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A/TTATT/CCAT, GCATAAATAAT and GCATNN(N)TAAT, respectively (6, 7, 11). This 

empirical classification turns out to be useful (Figure 1.1 and 1.2). Analyzing POU 

domains using identity-based dendrograms largely separates them into two groups: Oct 

and Non-oct factors, and POU domains of Oct factors more closely resemble those of 

Oct1, the prototype of Oct factors, than those of Non-oct factors. Although the optimal 

binding sequences are different between POU domain factors, they do not completely 

lose binding affinity to the others’ high affinity sites. Considering some factors are 

commonly expressed in specific tissues during developmental processes, they are 

speculated to compete with each other for the binding sites. The level of competition can 

be determined by affinity to binding sites and amount of expression, which may fine-tune 

the expression of target genes. 

 

Cellular Functions of Oct1/POU2F1 and Oct4/POU5F1 

Oct4/POU5F1 

Among the Oct factors, research has mainly dealt with Oct1 and Oct4. Whereas 

Oct1 seems to be the initial theme of studies, recent attention has been paid on Oct4, a 

critical pluripotency regulator of stem cells. Oct4 expression was originally identified to 

be limited to germ cells, the blastocyst inner cell mass and its derived embryonic stem 

cells (ESCs) suggesting that it regulates early embryonic development (5).  The essential 

role of Oct4 was discovered in the knockout mouse model where its deletion abrogates 

pluripotency of the inner cell mass (12). Also, when Oct4 expression is doubled, 

pluripotency is lost suggesting that Oct4 expression is tightly regulated between 

maintenance of stemness and differentiation (13). Therefore, the complex regulation of  
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Figure 1.2. Oct and Non-Oct factors and their expression patterns. All POU factors are 
depicted with conserved DNA binding domains (S:POUS and H:POUH) and Linker. 
kDa represents expected molecular weight. Numbers on light blue box indicate position 
of amino acids. Red numbers underneath box indicate % identity compared to each 
domain of Oct1. Black numbers indicate length of linker. Expression patterns are 
summarized on the right of panel. Taken directly from (2).  



    

 

5 
 

5 

Oct4 expression, at multiple levels and by multiple players, is one of the major topics in 

stem cell biology (reviewed in (2)).  

Recently, studies of induced pluripotent stem cells (iPSCs) shed new light on the 

function of Oct4. Strikingly, only four factors (Oct4, Sox2, Klf4 and c-Myc) are requied 

to induce pluripotent stem cells from fibroblasts. To reduce the potential of malignancy in 

iPSCs, the field has focused on discovering the factors absolutely necessary for induction 

(14). Oct4 alone, in combination with small molecule compounds, could generate iPSCs 

(Reviewed in 15, 16). In comparison to its significance in pluripotency regulation and 

iPSC biology, little is known about its detailed molecular mechanisms, such as the 

upstream signal regulator, post-translational modifications and crosstalk with other Oct 

factors (eg. Oct1). The answers to these questions are imperative to understanding key 

features in pluripotency at the molecular level. 

 

Oct1/POU2F1 

Oct1 was first investigated as a housekeeping regulator because octamer sites are 

conserved in the regulatory regions of H2B and U1/U2/U6 snRNA where Oct1 binding 

was confirmed (17, 18).  Immunological targets (IL-2 and immunoglobulin) were also a 

focus for the same reason (19, 20). Surprisingly, the transcription level of these genes is 

not defective in Oct1-/- mouse embryonic fibroblasts (MEFs), although Oct1 knockout 

mice are embryonic lethal during mid-late gestation (E12.5-E18.5, 21). Oct1-/- MEFs are 

also indistinguishable from wild-type littermates in the aspects of gross morphology and 

cell division. However, they are hypersensitive to oxidative and genotoxic stress 

indicating that Oct1 is required for a proper stress response (22). Further, it was shown 
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that DNA-PK phosphorylates multiple sites on the N-terminus of Oct1 in vitro, and point 

mutation of all the serine/threonine indentified in this study abrogated the ability of Oct1 

to promote survival in response to genotoxic stress (23). Research interests on Oct1 are 

now shifting toward a dynamic stress response activity. The focus now is to identify the 

molecular mechanism: What kinds of post-translational modifications regulate Oct1 

activity responding to stress, and what enzymes are responsible for them? What are the 

target genes? How does Oct1 regulate transcription? 

 

Oct1 Interacting Partners 

Oct1 interacting proteins can be classified by the mechanism by which they 

regulate transcription (Table 1.1).  Oct1 was shown to interact with BRCA1, DNA-PK 

and PARP-1, well known DNA damage response factors (23-25). DNA-PK 

phosphorylates N-terminus of Oct1, but further studies need to test whether or not 

BRCA1 (a ubiquitin ligase) and PARP-1 (an ADP-ribosylase) can post-translationally 

modify Oct1. Lamin B is a nuclear matrix protein mostly present at the nuclear envelope 

where it interacts with Oct1. Recently, Lamin B is proposed to spatially sequester Oct1 

from target DNA sites (26). Upon stress exposure, Oct1 is released from Lamin B and 

activates stress response target genes. This interaction network suggests that Oct1 

dependent transcription is subjected to multiple upstream regulations in response to stress 

treatment. 

The coactivators not only regulate Oct1 activity under stress conditions. Other 

coactivators such as OCA-B (OBF-1, Bob.1) and OCA-S are also involved in immune 

cell development or cell cycle (18, 27). Different from general coactivators, OCA-B  
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Table 1.1. Previous known Oct1 interacting factors. All factors are categorized by 
their functional property and by presence or absence of DNA binding activity. * 
Oct1 interacts with p65 by DNA binding independent manner. Modified from (2).  
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recognizes a specific base pair in the octamer as well as Oct1 through protein-protein 

interactions (28). The octamer sequence is usually found as two natural variants, 

‘ATGCAAAT’ or ‘ATGCTAAT’. It was shown that the fifth ‘A’ of octamer is critical 

for OCA-B to associate with the Oct1: DNA complex. Although Oct1 is unable to 

discriminate between them, OCA-B only uses the former one (ATGCAAAT).  This 

allows Oct factors to differently regulate similar binding sites, increasing the variability 

of regulation in comparison to limited binding sequence variation. In Oct1 dimeric 

complexes on alternative binding sequences, OCA-B recognition is through only protein-

protein interaction with Oct1 dimer (29). This will be further discussed in a later section. 

In addition to transcription activation, Oct1 mediates transcription repression by 

recruitment of a corepressor, silencing mediator for retinoid and thyroid hormone 

receptors (SMRT), whose repression is achieved by competition with OCA-B for Oct1 

binding (30). 

 Basal transcription factors, TFIIB and TBP as well as their related kinase CAK, 

interact with Oct1 (31-33). In these contexts, octamer is present near the promoter and 

Oct1 binding facilitates recruitment of the preinitiation complex, leading to active 

transcription. Besides of the basal transcription regulation within the proximal promoter, 

Oct1 also activates transcription together with many other transcription factors by 

binding to the enhancer. DNA binding of Oct1 with other transcription factors is highly 

cooperative, which suggests that target genes are dramatically activated only when both 

factors (Oct1 and partner) reach the threshold in their local concentration.  In some cases, 

two different binding sites for Oct1 and partner are neighboring but, in other cases, they 

are distant requiring DNA looping for cooperativity. For example, snRNA transcription is 
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activated by Oct1-SP1 complex in the former way, while by Oct1-SNAPc complex in the 

latter way (17, 34). The Oct1 and p65 complex is unique in that Oct1 is independent of 

DNA binding for interaction with p65, which may expand the scope of Oct1 activity 

beyond DNA binding motifs (35). Oct1 is also well known for regulating hormone 

receptor dependent transcription (36-38).  This issue is an active area of Oct1 research. 

Another interesting partner is Sox2. Pax6 transcription was shown to be regulated by 

Oct1-Sox2 complex on the Oct-Sox motifs in developmental processes (39). This finding 

raises the question of how the core pluripotent regulators (Oct4, Sox2 and Nanog) 

communicate with Oct1 in ESCs. Core factors are frequently found in the same 

regulatory regions in genome-wide ChIP analysis (40). Because both Oct1 and Oct4 are 

co-expressed in ESCs and share DNA binding sites, they may compete with each other 

on the same sites resulting in two different complexes: Oct1-Sox2-Nanog or Oct4-Sox2-

Nanog. It will be interesting to compare the transcriptional outcomes from these two 

different complexes in terms of regulation of ESC pluripotency. 

 So far, most studies of Oct1 and its interactor complexes have paid little attention 

to various epigenetic modifications such as histone modifications and DNA methylation. 

As a result, Oct1 activities (summarized in Table 1.1) may be only part of the picture, and 

may need to be revisited with consideration to epigenetic regulation. 

 

DNA Bound Oct Factor Structures 

Monomeric binding mode of Oct1 

 The DNA binding domain of Oct1 was co-crystallized with its corresponding 

canonical DNA binding sequence unveiling the structure of Oct1 bound to octamer DNA 
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(9, Figure 1.3). Results from this study found that the POUS domain contains 75 amino  

acids that build up four α-helices, three of which form a helix-turn-helix (HTH) unit. The 

60 amino acid containing POUH is also composed of three α-helices forming HTH that is 

quite similar to previously identified homeodomains.  The flexible 24-amino acid linker 

domain is disordered in the crystal. As shown in Figure 1.3, two different domains, both 

of which recognize DNA using HTH unit, occupy the opposite sides of the DNA double 

helix. The third α-helix from each domain contacts multiple residues within 

corresponding major grooves of the octamer sequence (POUS: ATGC and POUH: 

AAAT). The N-terminal arm of POUH additionally binds in the minor groove.  

 

Dimeric binding mode of Oct1 

 Oct1 can bind to DNA both as a monomer and as a homo/hetero-dimer. The first 

identified dimeric binding was on the heptamer-octamer sequences of the immuno-

globulin heavy chain promoter: CTCATGAATATGCAAAT (41). However, the way in 

which this motif regulates expression of immunoglobulin remains unknown. Next, the 

Palindromic Oct factor Recognition Element (PORE): ATTTGAAATGCAAAT was 

identified to activate Osteopontin transcription in ES cells (42). This sequence is located 

at the first intron of Osteopontin locus where Oct4/Oct4, Oct4/Oct1 or Oct4/Oct6 

dimerization is possible. Interestingly, Oct factors dimerize on both of these DNA motifs, 

although the Oct dimer configuration of these sites turn out to be quite different (43). 

Reminyi et al. characterized PORE- and MORE (more PORE)-type Oct1 dimerization 

using X-ray crystallography. MORE was defined in this study, which is a derivative of 

heptamer-octamer motif: ATGCATATGCAT. Overall, two Oct1 molecules bind  
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Figure 1.3. Structures of the Oct1 DNA binding domain bound to octamer motif. 
Schematic view (Left) and Structure indentified by Klemm et al., 1994 (right). 



    

 

12 
 

12 

palindromically to PORE and MORE along the different axis: the MORE half site 

contains POUS from one molecule and POUH from the other one, while the PORE half 

site contains both domains from a single molecule (Figure 1.4). In detail, POUH and 

POUS bind to AT and ATGC, respectively, on perfect palindromic MORE, while POUS 

recognizes two different sequences (ATGC or TTTC) on semipalindromic PORE. The 

big difference between monomer and dimer configuration is whether or not to form a 

protein-protein interface between domains: Although two subdomains structurally have 

no intramolecular interaction on the octamer, two different Oct1 generate protein-protein 

interfaces through intermolecular interaction between POUS and POUH on the PORE and 

MORE. The interfaces induced from PORE and MORE- type dimerization are also 

distinguished: the docking of C-terminus of POUH in loop between 3rd and 4th helix of 

POUS in the MORE-type vs. the interaction of N-terminus of POUH with residue in 1st 

helix of POUS in the PORE. This structural difference results in selective transcriptional 

activation. OCA-B, a well-known coactivator of Oct1, favors PORE-type dimerization as 

an activation target (29). Structurally, the OCA-B binding area is occupied by the C-

terminus of the POUH that is used for protein-protein interface on the MORE. The same 

space, however, is available in PORE-type dimerization. Therefore, OCA-B introduction 

into several cell lines shows a huge induction of reporter activity only with the PORE 

reporter gene. This novel regulation needs to be further validated. For example, it needs 

to be recapitulated in vivo by assessing whether OCA-B knockout mice would show 

defects in Osteopontin expression but not immunoglobulin or other MORE regulated 

genes. Further studies need to be conducted to identify additional regulatory regions that 

contain MORE and PORE motifs. In the structure study by Reminyi et al., phospho- 
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Figure 1.4. Structures of the Oct1 DNA binding domain bound to MORE and PORE 
motifs. Structures indentified by Remenyi et al., 2001 (top) and schematic view 
(below). 
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mimetic mutation of Oct1 is shown to choose between the PORE and MORE. Therefore, 

how post-translational modification of Oct1 regulates octamer-, MORE-, or PORE-type 

binding needs to be tested, particularly in the context of unique assemblages of cofactors. 

It will be interesting to identify a specific interacting partner on the MORE induced 

interface. 

 

Beyond the PORE and MORE 

Since a dimeric binding of Oct factor was first identified in 1989, only small 

numbers of possible target genes have been examined under the PORE and MORE 

dependent regulation until 2008. It had not been studied whether or not there are 

unidentified multimeric binding motifs. Therefore, it has been thought that Oct factor 

dependent transcription is mostly regulated through a monomeric binding on the octamer. 

This general idea has been challenged by a novel high-throughput study (44). Regular 

genome-wide ChIP analysis cannot address whether Oct factor binding is monomeric or 

multimeric. To make it possible, custom tiling DNA oligonucleotide microarrays were 

designed and synthesized based on genome-wide ChIP analysis for Oct4 occupancy in 

ESCs, and used for analyzing the binding patterns. Surprisingly, multimeric Oct4 binding 

is much more pervasive than had been expected, and is formed on a variety of novel 

mutimeric binding motifs that are formed by combinations of the two basic half sites. The 

other Oct factors are likely to be similar in nature because Oct factors are highly similar 

in the DNA binding domain. However, as a next step it is imperative to validate that 

multimeric binding has distinct functions compared to monomeric binding in target gene 

regulation. Because this novel finding unveils only the tip of the iceberg, it demands us to 
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expand our scope to identify mechanisms by which “single” or “multiple” Oct factors 

bind to DNA and regulate transcription. 

 

Transcription Factors in Mitosis 

Most studies of transcription regulation are focused on interphase cells where 

transcription actively occurs on euchromatin in the nucleus. When cells enter mitosis, 

chromosomal DNA is condensed into mitotic chromatin resulting in repression of most 

transcription (45). However, cyclin B1 transcription is reversely regulated as it is 

maximized at G2/M but repressed at G1 phase (46). The promoter region of cyclin B1 is 

protected from mitotic DNA condensation, demonstrated by DNA endonuclese 

sensitivity, allowing NF-Y transcription factor to bind the promoter for the activation of 

cyclin B1 transcription. This observation suggests that mitotic DNA condensation is not 

enough to block the accessibility of transcription factors. Supporting this idea, live image 

analysis demonstrates that mitotic chromatin is kept accessible to nucleosomes and 

several transcription factors (47). Nevertheless, because repression of transcription is the 

hallmark of mitotic chromatin, several different mechanisms are involved in this 

repression (45). One mechanism is the displacement of transcription factors from mitotic 

chromatin. C2H2 zinc finger DNA binding domain containing transcription factor such as 

SP1 and YY1 are excluded from DNA during mitosis after they are phosphorylated in the 

DNA binding domain (48, 49). Specific phospho-residues have been mapped, and these 

interfere with DNA binding of those factors by negative charge repulsion against the 

DNA backbone. Intriguingly, Pit-1, a POU transcription factor family member, 

undergoes mitotic DNA exclusion via a similar mechanism (50). Its phospho-residue is 
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positioned in the highly conserved region of the POUH domain. The matched residue of 

Oct1 (Ser 385) is also phosphorylated during mitosis (51). Immunofluorescent 

experiments confirm that Oct1 is clearly excluded from mitotic chromatin (52). The 

caveat of the previous study is that phospho-Ser 385 did not completely inhibit Oct1 

binding on the octamer in vitro and it is unclear whether it inhibited multimeric binding 

on different motifs (51). Most of all, the central question is why Oct1 needs to be 

displaced from mitotic chromatin. There are two possibilities. First, during rapid 

reorganization of chromatin structure in mitosis, transcription factors may not be as 

tightly controlled as they are in interphase chromatin. Oct1 is a stress response 

transcription factor that can activate cell-cycle arrest genes (53). Inhibition of Oct1 DNA 

binding may function as a safety system where normal mitotic cells are protected from 

unexpected cell-cycle arrest. Second, Lamin B is an Oct1 interactor and a mitotic 

regulator after breakdown of nuclear envelope (54). Oct1 may move out from DNA to 

perform one or more unknown mitotic activities with Lamin B during mitosis. 

 

O-GlcNAc Modification of Transcription Factors 

Although secretory and cell membrane proteins are subjected to various types of 

glycosylation moving through ER to golgi, cytosolic and nuclear proteins can be mainly 

regulated by O-GlcNAc modification. The chemical reaction is summarized with an 

enzymatic transfer of the N-acetyl glucosamine (GlcNAc) moiety of UDP-GlcNAc onto 

serines or threonines of proteins (55). This is a reversible reaction in which O-linked b-N-

acetylglucosamine transferase (OGT) catalyzes glycosylation but b-D-N 

acetylglucosaminidase (O-GlcNAcase) reverts it (Figure 1.5). Although glycosylation has  
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Figure 1.5. O-GlcNAc modification. Schematic diagram represents the reversible 
reactions catalyzed by O-GlcNAc transferase and O-GlcNAcase. Modified from (1). 
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been poorly studied relative to phosphorylation, recently many transcription factors have 

been found with O-GlcNAc modification, implicating it as a key post-translational 

modification that regulates transcription factor activities in response to upstream signals. 

Two important issues of O-GlcNAc modification in transcription factors have been 

actively studied.  First, many researchers raised the question whether O-GlcNAc 

modification antagonizes phosphorylation by competing for the same Ser/Thr residues. 

Studies of p53 and Snail1 tried to identify this competition (56, 57). Both studies 

identified one glycosylation site each of p53 and Snail1 by mass spectrometry and 

showed that glycosylation inhibits their own phosphoryation and subsequent 

ubiqutination pathway, leading to their stabilization. Different from initial speculation, 

the site of phosphorylation in Snail1 and p53 is not the same as that of glycosylation. 

Instead, O-GlcNAc modification antagonizes phosphorylation via blockade of the 

interaction with a kinase. Therefore, the direct antagonism of these modifications needs 

to be further studied. Second, transcription factors regulated by O-GlcNAc modification 

were speculated to function as a glucose sensor because glucose is required to form UDP-

GlcNAc, the substrate of OGT. NF-kB and Snail1 were tested for activity and stability 

under abnormal levels of glucose (57, 58). In hyperglycaemic conditions, levels of O-

GlcNAc modification are robustly induced on both proteins. As a result, NF-kB is 

released from IkB and translocates into the nucleus for activating downstream genes. 

Snail1 is also more activated for transcription via increased stability. In physiological 

contexts, high glucose in animal models can induce chronic inflammatory genes and 

cancer metastasis (55, 57, 58). 

Comparison between wildtype and Oct1-/- MEFs in gene expression profiles 
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showed that Oct1 is required for the proper regulation of TCA cycle genes (59). 

Consistent with this result, even under high glucose conditions, Oct1-/- MEFs 

preferentially activate the oxidative phosphorylation pathway using different energy 

sources rather than the glycolytic pathway. Depending on glucose availability, a group of 

TCA cycle genes are coordinately regulated in their transcription (60). Taken together, 

one hypothesis consistent with the data is that Oct1 mediates TCA cycle gene 

transcription after sensing the level of glucose. In other words, the level of glucose can 

act as an upstream signal regulator of Oct1. Oct1 is therefore speculated to be regulated 

by O-GlcNAc modification as shown with p53 and Snail1 whose activities are also 

regulated by the level of glucose. To test this hypothesis, it is imperative to identify the 

specific residue(s) of Oct1 modified by O-GlcNAc. 

 

Plan of the Dissertation 

As reviewed so far, Oct1 is a bona fide stress response transcription factor. 

However, it is still unclear how Oct1 regulates downstream target genes in response to 

genotoxic and oxidative stress. In Chapter 2, I examine the mechanism of Oct1 dependent 

transcription. Phosphorylation is a known modification to regulate Oct1 activity 

following genotoxic stress (23). In this study, phosphorylation sites were identified only 

by an in vitro kinase assay that may be artificial. To resolve this problem, I purified 

endogenous Oct1 from stress-treated HeLa cells and identified Oct1 modification, using 

mass spectrometry. As described above, Oct1 binding can be multimeric as well as 

monomeric. I connected Oct1 modification with multimeric binding regulation. Chapter 3 

will discuss how phosphorylated and ubiquitinated Oct1 is displaced from mitotic DNA, 
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and what kind of function Oct1 performs in mitotic cells. This study will expand Oct1 

activity beyond DNA dependent transcription. In Chapter 4, I also identified O-GlcNAc 

modification in Oct1 using mass spectrometry. To understand the roles of O-GlcNAc 

modification in Oct1, I generated and assessed mutant Oct1 by comparison with WT 

Oct1. Finally, I confirmed that Oct1 and Oct4 share binding motifs using ChIP analysis in 

Chapter 2. The ensuing question is whether or not simultaneously occupied Oct1-Oct4 

hetero complex occurs in cells. To address this, I performed sequential ChIPs in Chapter 

5. Using our newly established high-throughput analysis, I tried to discriminate Oct1 

from Oct4 activity in ESCs. This analysis resulted in the identification of genomic sites 

that do or do not discriminate between Oct1 and Oct4, based on neighboring elements. 
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Abstract 

Background: Transcription factor Oct1 regulates multiple cellular processes. It is 

known to be phosphorylated during the cell cycle and by stress. However the upstream 

kinases and downstream consequences are not well understood. One of these modified 
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forms, phosphorylated at S335, lacks the ability to bind DNA. Other modification states 

besides phosphorylation have not been described. 

Methodology/Principle Findings: We show that Oct1 is phosphorylated at S335 

in the Oct1 DNA binding domain during M-phase by the NIMA-related kinase Nek6. 

Phospho-Oct1 is also ubiquitinated. Phosphorylation excludes Oct1 from mitotic 

chromatin. Instead, Oct1pS335 concentrates at centrosomes, mitotic spindle poles, 

kinetochores and the midbody. Oct1 siRNA knockdown diminishes the signal at these 

locations. Both Oct1 ablation and overexpression result in abnormal mitoses. S335 is 

important for the overexpression phenotype, implicating this residue in mitotic 

regulation. Oct1 depletion causes defects in spindle morphogenesis in Xenopus egg 

extracts, establishing a mitosis-specific function of Oct1. Oct1 colocalizes with lamin B1 

at the spindle poles and midbody. At the midbody, both proteins are mutually required to 

correctly localize the other. We show that phospho-Oct1 is modified late in mitosis by 

non-canonical K11-linked polyubiquitin chains. Ubiquitination requires the anaphase-

promoting complex, and we further show that the anaphase-promoting complex large 

subunit APC1 and Oct1pS335 interact. 

Conclusions/Significance: These findings reveal mechanistic coupling between 

Oct1 phosphorylation and ubquitination during mitotic progression, and a role for Oct1 in 

mitosis. 

 

Introduction 

 The Oct1 (POU2F1) transcription factor is a potent regulator of metabolism and 

tumorigenicity (1). It is widely expressed (2, 3) and interacts with a number of proteins 
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including poly (ADP-ribose) polymerase-1 (PARP-1), an enzyme that becomes activated 

by DNA damage and oxidative stress (4), BRCA1, a tumor suppressor protein associated 

with the DNA damage response (5, 6), and lamin B, a component of the nuclear and 

spindle matrices (7-9). Oct1 is also a signal integrator that is phosphorylated at multiple 

residues during the cell cycle and in response to genotoxic and oxidative stress (10, 11). 

Some of these phosphorylation events alter Oct1 DNA binding selectivity, resulting in 

altered target gene occupancy (10). Other phosphorylation events have not been carefully 

studied. 

 One of the aforementioned phosphorylation events occurs at Ser335 within the 

DNA binding domain. Ser335 mutation to aspartic acid blocks Oct1 binding to all tested 

DNA recognition sites (10), and has been associated with mitosis in mass screens (12-

14). Little is otherwise known about the function of this modification. Here, we identify a 

previously unknown role for this form of Oct1. Consistent with the effects of the S335 

phosphorylation on Oct1 ability to bind DNA, we find that phosphorylation excludes 

Oct1 from mitotic chromosomes. Phospho-S335 Oct1 accumulates on centrosomes, 

spindle pole bodies and kinetochores, with enrichment lost at the anaphase-telophase 

transition. Late in mitosis the remaining phosphorylated Oct1 is modified by non-

canonical K11-linked polyubiquitin chains and colocalizes with lamin B at the midbody. 

We show that the phosphorylated form of Oct1 interacts with lamin B, and that RNAi 

knockdown of either Oct1 or lamin B1 in HeLa cells eliminates the midbody localization 

of the other protein. We implicate the anaphase-promoting complex (APC) in Oct1 

ubiquitination. Oct1 RNAi in HeLa cells strongly reduces antibody localization to 

centrosomes, spindle pole bodies and the midbody, and results in mitotic abnormalities. 
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Overexpression of wild type Oct1 also disrupts mitoses, resulting in improper 

chromosome condensation, multinucleated cells and micronuclei. Overexpressed S335A 

mutant Oct1 does not disrupt mitosis to the same extent, implicating this residue in Oct1 

regulation of mitotic functions. 

 

Results 

Phosphorylation of Oct1 at serine 335 during mitosis 

 To study the regulation and function of Oct1 phosphorylation at serine 335 

(Oct1pS335), we generated a phospho-specific polyclonal antibody. The peptide sequence 

used to generate the antibody (EALNLS335FKNMC) aligns perfectly to the POU-specific 

portion of the DNA binding domain of human Oct1, Oct2 and Oct11. This region is less 

conserved in other human POU domain proteins (not shown). Initial characterization of 

the antibody using HeLa whole cell extracts and Western blotting indicated the presence 

of an intense band of high apparent molecular weight (>200 kDa) in cells arrested in 

mitosis by nocodozole (Figure 3.1A, lane 2, asterisk). A band was also present in mitotic 

cells corresponding to the expected unmodified molecular weight of ~90 kDa (black 

arrowhead), as were intermediate forms with apparent molecular weights of ~180 kDa 

and ~130 kDa (black dot and red arrow). A pan-Oct1 antibody (recognizing the C-

terminus) identified the same forms, albeit at different relative intensities, with the two 

largest forms only found in mitotic cells (Figure 3.1A, lane 4). This result suggests that 

the four observed species are different forms of Oct1. No augmentation in Western blot 

signal was observed using HeLa cells arrested in S-phase with hydroxyurea (not shown), 

suggesting that the effects are specific to mitosis. 
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Figure 3.1. Oct1pS335 is enriched in M-phase HeLa cells. (A) Whole cell extracts were 

prepared from normal or nocodozole-arrested HeLa cells. 10% polyacrylamide gels were 

Western blotted using anti-Oct1pS335 or anti-pan-Oct1 (C-terminal) antibodies (Bethyl). 

Anti-GAPDH is shown as a loading control. (B) HeLa cell whole cell extracts were 

immunoprecipitated with anti-Oct1pS335 antibodies and Western blotted using pan-Ub or 

pan-Oct1 antibodies. H.C.=immunoglobulin heavy chain. (C) Whole cell extracts from 

nocodozole-arrested HeLa cells were treated with calf intestinal alkaline phosphatase 

(CIP), or mock-treated. Western blots using anti-Oct1pS335 or anti-pan-Oct1 antibodies are 

shown. 
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 We hypothesized that one or more of the high molecular weight Oct1pS335 bands 

represented ubiquitinated species. To test this possibility, we immunoprecipitated Oct1 

using the phospho-specific antibody and performed Western blots for both ubiquitin (Ub) 

and total Oct1. A band of the same size corresponding to the high molecular weight form 

was observed in both cases (Figure 3.1B, lanes 2 and 5, asterisk). The band was further 

enriched using extracts from nocodozole arrested cells (lanes 3 and 6), indicating the 

presence of an Oct1 population enriched in mitotic cells that is simultaneously 

phosphorylated at S335 and ubiquitinated. A similar result was obtained using denaturing 

conditions, indicating that the phospho-specific antibody is not co-precipitating a 

ubiquitinated protein of precisely the same apparent molecular weight, but rather 

recognizes a phosphorylated, ubiquitinated form of Oct1. These experiments also 

revealed that the high molecular weight form of Oct1 consists of a ladder of bands 

(Figure 3.2A). 

 To demonstrate that the form of Oct1 recognized by the antibody is phosphorylated, 

we treated nocodozole-arrested HeLa cell extracts with calf intestinal alkaline 

phosphatase (CIP), which resulted in the strong diminution of the high molecular weight 

form, as well as other Oct1 forms, but had no effect on total Oct1 (Figure 3.1C). No 

increase in band mobility was observed with the pan-Oct1 antibody following CIP 

treatment, consistent with the finding that that ubiquitination is also present on Oct1pS335. 

Similar loss of phospho-specific antibody signal with CIP treatment was also observed 

using indirect immunofluorescence (IF) assays (Figure 3.2B). 

 We examined phosphorylated Oct1 in HeLa cells using IF and the anti-Oct1pS335 

antibody. HeLa mitoses were staged using DAPI and anti-α-tubulin. Oct1pS335 staining in  
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Figure 3.2. Further characterization of the phospho-specific antibody. (A) The 

phospho-specific antibody immunoprecipitates ubiquitinated Oct1 under denaturing 

conditions. IP was performed as described in the materials and methods, except cells 

were lysed in the identical buffer but with 8 M urea. Upon dilution the resulting bead 

incubation step contained 1.6 M urea in buffer. (B) Immunofluorescence images are 

shown. Left and right panels show early and late mitosis, respectively. NT=no treatment. 

METHODS: samples were prepared as described in the materials and methods, except 

fixed samples were treated with CIP in CSK buffer at 30°C for 30 minutes. 
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interphase cells (white arrows) was largely confined to individual puncta, the most 

intense of which correspond to the site of microtubule nucleation. Increased Oct1pS335 

signal within an intact nuclear envelope was noted in prophase (yellow arrows). Early 

mitotic cells also showed staining at two puncta suggestive of duplicated centrosomes. 

Oct1pS335 was enriched at the prophase nuclear envelope (see prophase detail). Work of 

others has associated Oct1 with the nuclear periphery (7, 8, 15). At metaphase, the 

chromosomes become fully condensed, and Oct1pS335 was largely excluded from DNA, 

except at small puncta consistent with kinetochores. We corroborated spindle pole body 

and centrosome localization in mitotic and interphase cells using γ-tubulin antibodies 

(Figure 3.3B and C), and kinetochore localization using CLASP1 antibodies (Figure 

3.3D). 

 Following chromatid separation, Oct1pS335 becomes concentrated at the developing 

midbody (Figure 3.3A). At the transition from late anaphase to telophase, detectable 

Oct1pS335 was greatly diminished with the exception of the midbody, where a 

concentrated signal was retained throughout cytokinesis. No such change was detected 

using pan-Oct1 antibodies (Figure 3.4), indicating that the diminution of the 

phosphorylated form at the anaphase-telophase transition is not the result of changes in 

total Oct1. IF using pan-Oct1 antibodies showed similar concentrations at spindle pole 

bodies and the midbody (Figure 3.4). Similar mitotic staining patterns were also obtained 

using A549 lung adenocarcinoma cells (Figure 3.5), indicating that the pattern is not 

peculiar to HeLa cells. A comparative analysis of Oct1pS335 and the well-established 

mitotic marker histone H3pS10 (16) indicated that all cells that stained for histone H3p10 

also stained strongly for Oct1pS335 (Figure 3.6). 
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Figure 3.3. Mitotic Oct1pS335 is associated with the spindle pole bodies and midbody. 

(A) IF images of mitotic HeLa cells are shown. Cells were stained with anti-a-tubulin and 

anti-Oct1pS335 antibodies, and with DAPI. Scale bar: 20 mM. White arrows show an 

interphase cell. Yellow arrows show different mitotic stages. (B) Similar images, except 

g-tubulin antibodies, were used. Cropped images of individual mitotic cells are shown. 

(C) Similar images of interphase cells. (D) Detail of a metaphase HeLa cell IF image 

stained with CLASP-1 and Oct1pS335 antibodies. 
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Figure 3.4. Localization of total Oct1 in mitotic HeLa cells. (A) Total Oct1 

concentrates at spindle pole bodies and the midbody, and is excluded from mitotic 

chromosomes. Immunofluorescence images are shown. HeLa cells were fixed and stained 

with antibodies against a-tubulin and pan-Oct1. Arrow indicates position of additional 

puncta not recognized by phospho-Oct1 antibodies. (B) Pan-Oct1 antibodies recognizing 

different epitopes stain different mitotic structures. Cells were fixed and stained as in (A). 

Arrows indicate additional metaphase puncta of unknown etiology not recognized by 

phospho-Oct1 antibodies. 
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Figure 3.5. Localization of Oct1 phosphorylated at S335 to mitotic A549 lung 

adenocarcinoma cells. (A) Immunofluorescence images are shown. Specific mitotic cell 

is highlighted with an arrow. The cells were co-stained with antibodies to alpha-tubulin 

and with DAPI. (B) Similar images using anti-gamma-tubulin antibodies. Protocols were 

identical to those summarized in the methods section. 
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Figure 3.6. Comparison of the properties of anti-Oct1p335 and anti-Histone H3S10 

antibodies. (A) Low-magnification (200X) immunofluorescence images of HeLa cells 

stained with antibodies against phospho-histone H3 and phospho-Oct1.p335 Arrows 

indicate mitotic cells. White arrows show cells in earlier mitotic stages that co-stain with 

both antibodies. Yellow arrows show examples of cells staining only with the phospho-

335 and not phospho-histone antibody. (B) Immunofluorescence images of mitotic HeLa 

cells stained with anti-Oct1p335 and anti-histone H3S10 antibodies. Scale bar: 20 µM. 
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 Oct1 ablation is associated with abnormal mitoses 

 We transiently transfected HeLa cells with Oct1 siRNAs, analyzing cells 48 hr post-

transfection to determine whether the staining patterns were specifically due to Oct1. 

Using Oct1-specific but not control siRNAs , we observed mitotic cells lacking or with 

significantly reduced Oct1pS335 spindle pole body/midbody staining (Figure 3.7A). In 

addition, nearly all (>90%) of the mitotic cells with decreased Oct1 staining lost the 

normal pattern of α-tubulin staining (Figure 3.7A). We confirmed the effect of transiently 

transfected Oct1-specific siRNAs by Western blot (Figure 3.7B). We also noted 

poor/abnormal chromosome segregation and other mitotic irregularities associated with 

partial and complete Oct1 knockdown (Figure 3.7A and Figure 3.8). To quantify these 

irregularities, we analyzed 668 total control siRNA and 164 total Oct1-specific siRNA 

mitoses over three separate experiments. There were fewer mitotic events in the Oct1-

specific siRNA condition and more dead/floating cells, suggesting that following acute 

reductions in Oct1, a higher fraction of mitoses result in apoptosis and/or mitotic 

catastrophe. We scored approximately 10% of live control mitotic events as abnormal, 

based on spindle disorganization and chromosomal abnormalities (e.g., incomplete 

condensation, DNA outside the metaphase plate). Using the same criteria, approximately 

60% of the Oct1 knockdown events were abnormal (Figure 3.7C). These findings 

indicate that Oct1 contributes to accurate mitosis in HeLa cells. 

 We also examined mitoses in Oct1 deficient primary early-passage fibroblasts. Oct1 

protein and activity is undetectable in these cells in Western blotting and gel mobility 

shift assays using nuclear extracts, although a small amount of residual protein is  
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Figure 3.7. Modulation of Oct1 levels results in abnormal mitoses in HeLa cells. (A) 

IF images are shown of HeLa cells transiently transfected with control or Oct1-specific 

siRNAs. Arrows indicate positions of disrupted spindle pole/midbody localization. 

Formaldehyde fixation was used. (B) Western blot showing effect of transfected control 

and Oct1-specific siRNA on total Oct1 expression in cycling cells. Cells were cultured 

for 72 hr prior to analysis. (C) Quantification of abnormal in HeLa cells treated with 

control and Oct1-specific siRNAs. Values represent averages from three independent 

experiments. Error bars depict standard deviations. (D) IF images of HeLa cells 

transiently transfected with FLAG-Oct1. Transfected cells were incubated for 48 hr prior 

to formaldehyde fixation and staining with anti-a-tubulin and anti-FLAG antibodies. 

Single mitotic cell images are shown. (E) IF images are shown of interphase HeLa cells 

transiently transfected with FLAG-tagged wild-type Oct1. Cells were stained with DAPI, 

and anti-FLAG and anti-lamin B (B1+B2) antibodies. Arrows indicate transfected cells. 

Asterisk indicates an area of specific Oct1 and lamin B co-localization. Example cells 

showing multinucleated cells and micronuclei are shown. Scale bars indicate 20 mM. (F) 

Quantification of the frequency of micronuclei and multinucleated cells in mock 

transfected, wild-type Oct1 transfected, and S335A transfected interphase HeLa cells. 

Error bars depict standard deviations. (G) Similar experiment as (E) using cells 

transiently transfected with an Oct1 S335A point mutant made using site-directed 

mutagenesis of the human cDNA. Top panels show mitotic HeLa cells stained with anti-

FLAG and anti-a-tubulin antibodies. Bottom panels substituted lamin B antibodies. 
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Figure 3.8. Additional examples of mitotic abnormalities in HeLa cells treated with 

Oct1-specific siRNAs. Reference Fig. 3.7 for normal mitotic and scrambled siRNA 

controls. 
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observed upon enrichment by affinity purification (17). No IF signal was detected in Oct1 

deficient MEFs using pan-Oct1 antibodies (not shown). Using the phospho-specific 

antibody, wild-type fibroblasts displayed a similar, albeit less uniform, mitotic staining 

pattern as HeLa cells. The signal was diminished but not eliminated in Oct1-/- fibroblasts 

(Figure 3.9). These results suggested the presence of a cross-reacting co-expressed POU 

transcription factor in fibroblasts. Oct1 is the sole detectable octamer DNA binding 

activity in MEFs (17). We therefore focused on nonoctamer binding POU transcription 

factors with capacity to cross-react. One murine protein, Pit-1/POU1F1, contains a 

perfect match to the peptide sequence used to generate the phospho-specific antibody. 

Western blotting using pan-Pit-1 antibodies indicated that Pit-1 was expressed in murine 

fibroblasts but not HeLa cells (Figure 3.9). Either due to redundancy with Pit-1 or other 

differences between HeLa cells and primary murine fibroblasts, we observed more mild 

evidence of abnormal mitoses in Oct1-/- fibroblasts, including occasional abnormal DNA 

condensation and abnormal spindles. Analysis of DNA content also revealed the presence 

of aneuploidy, and an increase in cells with >4N DNA in Oct1-/- fibroblasts (Figure 3.9). 

 

Overexpression of Oct1 results in abnormal mitoses 

 We tested the effect of overexpressed full-length FLAG-tagged wild-type and 

S335A Oct1 in HeLa cells using transient transfection. Overexpression of wild-type 

protein resulted in significantly increased Oct1pS335 staining, in particular the generation 

of interphase Oct1pS335–staining puncta, while little change was observed using the 

S335A mutant (Figure 3.10). In mitotic cells, overexpressed wild-type FLAG-Oct1 was 

also excluded from mitotic chromatin and resulted in disorganized mitotic microtubules  
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Figure 3.9. Phospho-S335 IF staining pattern and cell-cycle phenotype of primary 

MEFs. (A) Immunofluorescence images of mitotic stages from wild-type primary early-

passage MEFs. (B) Mitotic examples of Oct1-/- MEFs. These examples could not be 

easily staged due to abnormalities. Note the reduced pS335 staining. (C) Alignment of 

human Oct1 and mouse Oct1, Oct2 and Pit-1. Alignment was generated using a Clustal 

W-based algorithm within the Vector NTI software package. Lower panel shows a 

Western blot of HeLa cells, wild-type and Oct1 deficient fibroblasts. The Pit-1 antibody 

was obtained from Santa Cruz. (D) Cell cycle profile of primary early passage Oct1 

deficient MEFs and wild-type littermate controls. Inset shows expanded view of cells 

with super-4N DNA content. 
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Figure 3.9 Continued 
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Figure 3.10. Effect of WT and S335A Oct1 overexpression on Oct1pS335 in HeLa 

cells. IF images are shown of interphase and HeLa cells transiently transfected with wild-

type or S335A mutant pCG-Oct1. 
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as compared to adjacent untransfected controls (Figure 3.7D). We also studied interphase 

cells, using lamin B (B1+B2) antibodies to visualize the nuclear envelope. Adjacent 

untransfected (FLAG-negative) HeLa cells served as an internal control. Cells in which 

Oct1 was concentrated in particular areas also displayed lamin B concentrations in the 

same areas (Figure 3.7E, asterisks), consistent with a described interaction between the 

two proteins (7-9). Interphase cells overexpressing FLAG-Oct1 displayed increases in 

multinucleation and micronuclei. The micronuclei contained FLAG-Oct1 (Figure 3.7E, 

and Figure 3.11). S335A Mutant Oct1 was incapable of inducing micronuclei, and 

displayed reduced capacity to induce multinucleated cells (Figure 3.7F). Unlike wild-type 

Oct1, overexpressed S335A mutant Oct1 also could be found at mitotic DNA (Figure 

3.7G). This result indicates that S335 is required for exclusion from mitotic chromatin. 

 

Nek6 phosphorylates Oct1 serine335 during mitosis 

 Computational inspection of Oct1 using the phosphorylation site database 

PHOSIDA (http://www.phosida.com/) identified a consensus Nek6 kinase target site at 

S335. Nek6 is a NIMA-related kinase required for normal mitosis in HeLa cells (18). We 

tested the ability of recombinant purified Nek6 to phosphorylate an Oct1 peptide 

containing S335 fused to recombinant glutathione S-transferase (GST) in vitro. GST-

peptide fusions with a mutated target serine residue and a different kinase (Cdk7) were 

used as controls. Nek6 but not Cdk7 robustly produced a reactive target peptide, but 

generated no signal using mutant GST-fused peptides (Figure 3.12A). We repeated these 

experiments using radiolabeled ATP to demonstrate that Nek6 was not phosphorylating 

the peptide at another position, and to show that full-length recombinant Oct1 was  
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Figure 3.11. Ectopic Oct1 expression in HeLa cells increases alpha-tubulin levels, 

and induces formation of puncta containing alpha-tubulin but lacking DNA. IF 

images are shown of interphase HeLa cells transiently transfected as in Figure S7. Fixed 

cells were stained with DAPI and antibodies against the FLAG epitope and a-tubulin. 

Scale bars indicate 20 µM. 
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Figure 3.12. Nek6 contributes to mitotic Oct1 phosphorylation at S335. (A) In vitro 

kinase assay using purified recombinant Nek6 or Cdk7, and GST fused to wild-type or 

mutant Ser335 target peptide sequences. A Coomassie blue-stained SDS-polyacrylamide 

gel is also shown to confirm presence of the purified peptide. (B) Nek6 knockdown in 

HeLa cells. A Western blot using anti-Nek6-specific antibodies is shown. Extracts were 

prepared 72 hr post-transfection. (C) HeLa cells were transfected with scrambled and 

Nek6-specific siRNAs, incubated for 72 hr, fixed and stained with DAPI, anti-a-tubulin 

and anti-Oct1pS335 antibodies. Examples of early (left) and late (right) mitoses are shown. 

Early mitotic percentages reflect the number of events showing strong Oct1pS335 staining 

(42/48 in the control vs. 21/47 in the Nek6 specific knockdown). Telophase percentages 

reflect the number of events showing strong midbody staining (33/41 vs. 11/39). 

Formaldehyde fixation was used. (D) HeLa cells were transiently transfected with FLAG-

tagged wild-type Nek6 or catalytically inactive mutants (K75M), incubated for 24 hr, and 

prepared as in (B). Examples of interphase cells are shown. Arrows indicated transfected 

(FLAG-positive) cells. Formaldehyde fixation was used. (E) Mitotic examples. 

Formaldehyde fixation was used. 
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phosphorylated by Nek6 (Figure 3.13). The data are consistent with a model in which 

Nek6 phosphorylates Oct1 during mitosis. To test this model, we transiently transfected 

Nek6-specific and scrambled control siRNAs into HeLa cells. At 72 hr post-transfection 

the knockdown was robust (Figure 3.12B). We focused on mitotic events (rounded cells 

with duplicated centrosomes and partially/fully condensed chromosomes). In early 

mitosis, Nek6 knockdown reduced the intensity and uniformity of Oct1pS335 staining and 

disrupted the organization of mitotic spindles (Figure 3.12C, left panels). Later in mitosis, 

Nek6 knockdown also reduced the overall staining intensity, and specifically ablated 

Oct1pS335 detected at the midbody (right panels). We quantified the degree of pan-Oct1 or 

Oct1pS335 signal intensity in all mitotic cells following control or Nek6 siRNA 

transfection, observing an overall two-fold decrease in Oct1pS335 but not pan-Oct1 in 

Nek6 but not control siRNA (Figure 3.13). We overexpressed FLAG-tagged wild-type or 

catalytically inactive mutant Nek6 (18) (plasmids a gift of A. Fry) to determine the effect 

on Oct1 phosphorylation. Overexpression of wild-type but not mutant Nek6 resulted in 

accumulation of diffuse Oct1pS335 and brighter Oct1pS335 puncta localizing to interphase 

centrosomes (Figure 3.12D). Moreover, additional Oct1pS335 puncta in interphase, and 

mis-localization of mitotic spindle poles, were observed. Mitotic HeLa cells also showed 

increased Oct1pS335, although the baseline expression was higher (Figure 3.12E). These 

results indicate that Oct1 S335 is a Nek6 target. 
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Figure 3.13. Further validation of NEK6 (A) Nek6 was knocked down in HeLa cells 

using siRNAs as in Fig.4C, but using rabbit anti-pan-Oct1 antibodies. (B) Pan-Oct1 and 

phospho-Oct1 channel signal intensity was analyzed following Nek6 knockdown using 

ImageJ software (NIH). 6 control and 7 Nek6 siRNA mitotic events were averaged in the 

case of pan-Oct1, and 5 control and 5 Nek6 siRNA mitotic events were averaged in the 

case of phopsho-Oct1. (C) GST-fused to the substrate peptide was tested as an in vitro 

kinase target as in Fig. 12A but using g-32P-ATP. (D) Full-length, His6-tagged 

recombinant Oct1 purified from E. coli was used. Right panel shows a Coomassie-stained 

gel of the same material. “D Oct1” indicates presumptive Oct1 deletion products that are 

also phosphorylated species. METHODS: Recombinant C-terminal His6-tag Oct1 was 

expressed and purified as described (Ström AC, et al., Nucleic Acids Res. 1996 Jun 

1;24(11):1981-6). 
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Oct1 is a component of the spindle matrix and participates in a complex 

 with lamin B1 at the midbody 

 Our results suggested that Oct1 recruitment to mitotic structures is important for 

normal mitoses. We therefore attempted to identify whether other proteins known to 

interact with Oct1 recruit it to these structures. Lamin B has been shown to interact with 

Oct1 and can co-localize with Oct1 at the nuclear envelope (7, 8). Lamin B is also present 

at a structure known as the spindle matrix, and is required for proper spindle organization 

(19). We used antibodies against total lamin B1+B2 to observe localization in HeLa 

mitoses. We observed substantial co-localization between lamin B and Oct1pS335. In 

particular, the spindle poles and midbody were strongly stained with both proteins 

(Figure 3.14A, asterisks). 

 To determine whether phosphorylated Oct1 and lamin B interact, we performed co-

immumoprecipitation experiments using whole cell extracts from untreated or 

nocodozole-arrested HeLa cells. As expected, immunoprecipitation with lamin B 

antibodies enriched total Oct1 in cycling HeLa cells (Figure 3.14B, lane 2, arrow). 

Equivalent enrichment was also observed M-phase arrested cells (lane 3), indicating that 

even after nuclear envelope breakdown the interaction between Oct1 and lamin B is 

preserved. These data indicate that the known interaction between Oct1 and lamin B1 can 

be extended to mitosis. Immunobloting using Oct1pS335 antibodies also uncovered an 

interaction between mitotic phosphorylated Oct1 and lamin B 9 (lane 6, arrow). The high 

molecular weight form of Oct1 enriched in mitosis interacted only poorly with lamin B 

(lane 6, asterisk). 
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Figure 3.14. Oct1 is present in the spindle matrix and forms a complex with lamin 

B1 at the midbody in HeLa cells. (A) Association of phosphorylated Oct1 with lamin B 

at the centrosomes and midbody. HeLa cells were fixed and stained with antibodies 

against lamin B1+B2 and Oct1pS335. Mitotic stage is on the left. Asterisk indicates the 

midbody structure. (B) Whole cell extracts from cycling HeLa cells and cells arrested in 

M-phase using nocodozole were immunoprecipitated using mouse anti-lamin B 

antibodies. Left panel shows a Western blot using pan-Oct1 antibodies. Black arrow 

shows predicted Oct1 molecular weight. Asterisk shows the high molecular weight form 

identified in Fig. 3.1. Right panel: the blot was stripped and re-probed using Oct1pS335 

antibodies. (C) Spindle matrix preparations generated from Xenopus oocyte extracts 

(XEE, lane 1) were Western blotted using pan-Oct1, lamin B3, and a-tubulin antibodies. 

(D) IF images of bead spindown preparation. Pan-Oct1 antibodies, and rhodamine-

conjugated a-tubulin were used. (E) Xenopus Oct1 was immunodepleted using magnetic 

protein A-coupled beads (see methods). Oct1 Western blots are shown of the nonspecific 

and Oct1-specific depletions. a-tubulin is shown as a loading control. (F) Examples of 

spindle structures generated using the depleted extracts. Images of structures conforming 

to the scoring criteria used in (G) are shown. (G) Quantification of spindle structures 

using non-specific of Oct1-specific depletion. Error bars depict standard error of the 

mean. (H) HeLa cells were transiently transfected with Lamin B1-specific siRNAs. Cells 

were incubated for 72 hr, fixed and stained with a-tubulin and pS335 antibodies. Images 

of cells undergoing abcission are shown. Formaldehyde fixation was used. (I) HeLa cells 

transfected with control siRNAs, or siRNAs against Oct1 or lamin B1 were fixed and 

stained with lamin B and Oct1pS335 antibodies. IF images of mitotic HeLa cells 
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undergoing abcission are shown. Detail at right shows isolated midbody structures. 

Formaldehyde fixation was used. 
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 Prior studies in Xenopus have shown that lamin B helps to form a network referred 

to as the spindle matrix during mitosis. This structure associates with the spindle to help 

maintain spindle pole focus and spindle shape. Mass spectrometry analyses revealed that 

a number of transcription factors including Oct2, an Oct1 paralog, are present in isolated 

spindle matrix (19, 20). Spindle matrix components can be isolated from Xenopus egg 

extracts (XEE) using a spindle assembly assay stimulated by magnetic beads coated with 

the mitotic kinase Aurora A (19, 20). The beads function as potent microtubule 

nucleating and organizing centers and efficiently organize spindle poles. We retrieved the 

bead-associated spindles using a magnet (Figure 3.14C, “Spindown”). Buffer containing 

nocodozole was used to depolymerize spindle microtubules. The beads (Figure 3.14C, 

lane 3) and their associated spindle matrix (lane 4) were separated from each other. We 

identified a band corresponding to Oct1 in the spindle, beads, and matrix preparations 

using pan-Oct1 antibodies. As expected, most lamin B3, the major form of lamin B in 

XEE, was present in the spindle matrix (Figure 3.14C, lane 4). The presence of Oct1 in 

the beads and the spindle matrix is consistent with the idea that subsets of Oct1 are 

associated with the spindle poles and surrounding matrix. We visualized the bead 

preparations and the associated matrix using fluorescence microscopy. Robust levels of 

Oct1 associated with the beads themselves as well as the associated matrix (Figure 

3.14D). 

 The above result suggested that loss of Xenopus Oct1 could have functional effects 

in this assay, although there is a distinct possibility of redundancy with the Oct2 protein. 

To test this prediction, we immunodepleted Oct1 from XEE and reconstituted the assay. 

Overall Oct1 immunodepletion was estimated at ~85% based on band intensity, although 
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the antibody showed some variation in the ability to immunodeplete different Oct1 

species (Figure 3.14E). Immunodepleted extracts successfully reconstituted mitotic 

spindle structures. However there was a statistically significant defect in ability to form 

normal bipolar spindle structures relative to mock-depleted extracts, and a corresponding 

increase in aberrant monopolar structures (Figure 3.14F-G). 

 We next silenced lamin B1 using siRNAs and monitored Oct1pS335 localization 

during metaphase and anaphase. Lamin B1 silencing resulted in early mitotic defects 

such as mitotic spindle disruption and unfocused spindle poles (Figure 3.15), as reported 

previously (19). Phospho-Oct1 localization to both kinetochores and spindle poles 

remained intact, suggesting that lamin B1 is not required for Oct1 localization to these 

two structures. However, interestingly in late mitosis Oct1 midbody localization was 

abolished (Figure 3.14H). This result suggested that lamin B1 localizes phosphorylated 

Oct1 to the midbody. To study the interaction of Oct1 and lamin B at the midbody, we 

knocked down Oct1 and lamin B1 in HeLa cells, and stained with lamin B (B1+B2) and 

Oct1pS335 antibodies. Control-siRNA transfected HeLa cells showed expected 

concentrations of lamin B and Oct1pS335 at the midbody (Figure 3.14I, top panel and 

detail at right). Due to the presence of lamin B2, total lamin B staining was minimally 

affected, however lamin B concentration at the midbody was largely eliminated (Figure 

3.14I, middle panels), indicating that midbody lamin B consists mostly of lamin B1 in 

HeLa cells. In the lamin B1 knockdown condition, Oct1pS335 midbody staining was also 

absent in 50% of cells undergoing cytokinesis and significantly depleted in others (detail 

at right), suggesting that lamin B1 recruits phospho-Oct1. Oct1 knockdown (lower 

panels)  
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Figure 3.15. Abnormal localization of Oct1pS335 by lamin B knockdown in early 

mitotic cells (A) HeLa cells were transiently transfected with siRNAs against lamin B1 

(Santa Cruz), incubated for 72 hr and Western blotted with antibodies against lamin B1 

or GAPDH as a loading control. (B) IF images are shown of mitotic HeLa cells 

transiently transfected with control or lamin B1 siRNAs, and stained with antibodies 

against lamin B (B1+B2) and Oct1pS335 antibodies. Arrows highlight elongated/split 

spindle poles.  
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also quantitatively depleted lamin B1+B2 at the midbody. These findings indicate that 

during cytokinesis lamin B1 and Oct1 are mutually required for midbody localization. 

 

Mitotic Oct1pS335 is modified by K11-linked poly-Ub chains 

associated with the midbody 

 Our data suggested that there are qualitative differences between Oct1pS335 midbody 

localization and localization to other mitotic structures: midbody association is 

maintained after most signal is eliminated (Figure 3.3A), and lamin B is required for 

Oct1pS335 midbody localization but not localization to other structures (Figure 3.14F-H). 

We therefore sought biochemical correlates that may underlie these differences. Proteins 

modified by noncanonical K11-linked poly-Ub chains are enriched in the midbody (21). 

We tested whether Oct1 is modified through K11-linked poly-Ub chains (K11-Ub) using 

a specific antibody (21). Although Oct1 is ubiquitinated in cycling or nocodozole-

arrested HeLa cells (Figure 3.1C), immunoprecipitation of phospho-Oct1 from these cells 

and Western blotting using K11-Ub antibodies produced little evidence of Oct1 K11-

linked ubiquitination (not shown). K11 accumulates late in mitosis (21) suggesting that 

Oct1 may be modified by canonical Ub early in mitosis, but switches to a K11-linked 

form at later stages. We therefore arrested cells in G1/S with thymidine, released them 

from the thymidine block and arrested them in mitosis with nocodozole. Following 

release from nocodozole arrest, K11-Ub linkages were detectable after two hours (Figure 

3.16A, upper panels, 21). Under the same conditions, immunoprecipitated Oct1pS335 was 

associated with K11-Ub as assessed by Western blot (Figure 3.16A, lower panels). To 
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Figure 3.16: Dynamic ubiquitination of Oct1 during mitosis. (A) HeLa cells were 

blocked in G1 with thymidine, released and arrested in mitosis using 0.1 mM nocodozole 

as described (21). Top panels show Western blot with K11-Ub and pan-Oct1 antibodies, 

and GAPDH antibodies as a loading control, from cells arrested with nocozole or 

following 2 hr release from nocozole. For the bottom panels, samples were 

immunoprecipitated using anti-Oct1pS335 antibodies, and probed with antibodies against 

pan-Ub, K11-Ub and pan-Oct1. H.C.=immunoglobulin heavy chain. (B) IF images of 

HeLa mitoses stained with Oct1pS335 and K11-Ub antibodies. Two metaphase, telophase 

and late cytokinesis examples are shown. Merged images from the two latter cases also 

show detail of the midbody structure (inset). (C) HeLa cells were arrested with 

nocodozole (0.5 mM) for 18 hr, and then incubated with MG132 for a further 6 hr. Whole 

cell extracts were prepared and subjected to Western blotting using Oct1pS335 and K11-Ub 

antibodies. (D) HeLa cells were treated with MG132, fixed and subjected to IF using 

K11-Ub and Oct1pS335 antibodies. Detail of metaphase cells is shown. (E) Whole cell 

extracts from HeLa cells arrested as above were immunoprecipitated with anti-Oct1pS335 

antibodies and Western blotted using pan-Ub, K11-Ub or pan-Oct1 antibodies. 

H.C.=immunoglobulin heavy chain. (F) Nocodozole-arrested HeLa whole cell extracts 

were immunoprecipitated using Oct1pS335 antibodies and probed using pan-Oct1 or APC1 

(AbCam). (G) HeLa cells were transfected with Cdh1 siRNAs. Twenty-four hr-post 

transfection, cells were treated with 0.5 mM nocodozole. Forty-two hr-post transfection, 

cells were treated with MG132. Whole cell extracts were prepared after forty-eight hr. 

(H) siRNA-transfected HeLa cells as in (G) were immunoprecipitated using Oct1pS335 

antibodies and Western blotted using pan-Ub or K11-Ub antibodies. 
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confirm this finding, we co-stained HeLa cells with the Oct1pS335 and K11-Ub antibodies 

and examined late stage mitoses (Figure 3.16B). In metaphase, both K11-Ub and 

Oct1pS335 were excluded from mitotic chromatin. However the two antibody signals 

displayed little overlap. For example, no K11-Ub was detected in the spindle poles. 

Telophase cells showed co-localization to the developing midbody, however the two 

signals remained spatially distinct, with K11-Ub flanking the more centrally localized 

Oct1pS335 (Figure 3.16B, see inset detail at left). In contrast, cells late in cytokinesis 

showed tight spatial overlap at the midbody. 

 The above results are consistent with models in which Oct1 K11-Ub occurs 

exclusively late in mitosis, or in which Oct1 is continually modified but is rapidly 

degraded, with degradation slowing or ending at late mitosis. To distinguish these two 

possibilities, we treated 24 hr nocodozole-arrested HeLa cells with the proteosome 

inhibitor MG132 during the final 6 hr. Nocodozole-arrested cells showed some evidence 

of Oct1pS335 K11-Ub (Figure 3.16C, lane 1), presumably because the nocodozole arrest 

was less precise than that in Figure 3.16A using a thymidine block. As expected, MG132 

treatment caused total K11-Ub-modified proteins to accumulate (lane 4). In addition, the 

higher molecular weight forms of phosphorylated Oct1 were increased while the lower 

molecular weight forms were unaffected (Figure 3.16C, lane 2). These results indicate 

that Oct1 ubiquitinated species can be enriched by proteasome inhibition. Using IF, we 

found that mitotic HeLa cells treated with MG132 showed K11-Ub colocalization with 

Oct1pS335 at the spindle poles (Figure 3.16D). Mitotic cells treated with MG132 also 

showed larger spindle pole puncta (compare Figure 3.16D with Figure 3.16B). We 

therefore immunoprecipitated Oct1pS335 from extracts of nocodozole/MG132-treated 
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HeLa cells. Treatment with MG132 increased total and K11-specific Oct1pS335 

ubiquitination (Figure 3.16E, lanes 2 and 5). These results are consistent with a model in 

which Oct1pS335 undergoes cycles of K11 ubiquitination and destruction throughout 

mitosis, except at later stages when the protein is stabilized and detectable. 

 One activity known to catalyze K11-linked ubiquitination is the APC (21-23). To 

test whether Oct1 and APC interact, we performed co-immunoprecipitation using anti-

Oct1pS335 and extracts from mitotic HeLa cells. Western blotting revealed the presence of 

not only Oct1 but also the APC large subunit APC1 in the immunoprecipitate (Figure 

3.16F). To demonstrate a causal connection, we knocked down Fzr1, which encodes the 

APC component Cdh1, using siRNAs (21). Specific but not control siRNA transfection 

significantly attenuated the high molecular weight phosphorylated form of Oct1 (Figure 

3.16G). Further, Cdh1 knockdown attenuated several ubiquitinated Oct1pS335 forms, as 

measured by Oct1pS335 immunoprecipitation followed by Western blotting with pan-Ub or 

K11-Ub antibodies (Figure 3.16H, lane 3), including a K11-Ub-modified species (lane 6). 

Lastly, Cdh1 knockdown eliminated the ability of MG132 to redistribute K11-Ub signal 

to sites of Oct1 phosphorylation, implicating the APC in the deposition of K11-Ub at 

phosphorylated Oct1 that can be visualized when proteasome degradation is blocked 

(Figure 3.17). 

 

Discussion 

 Here we show that Oct1 phosphorylated at position S335 by Nek6 is ubiquitinated 

and associates with mitotic structures. Oct1pS335 is displaced from mitotic chromatin and 

concentrated at spindle pole bodies and the midbody during mitosis. Interphase cells 
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Figure 3.17. APC is responsible for the accumulation of K11-Ub signal at sites of 

Oct1 phosphorylation upon proteasome inhibition. HeLa cells were transiently 

transfected with control siRNAs or siRNAs directed against the APC component CDH1 

(gene symbol Fzr1, Dharmacon), incubated for 48 hr. After 42 hr, cells were treated with 

MG132 as described in the materials section. Cells were then fixed and processed for IF. 

For quantification, mitotic events were scored +/- based on concordance between 

Oct1pS335 and K11-Ub staining. 
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show Oct1pS335 staining at centrosomes. The signal detected during mitosis is 

qualitatively different from that observed during interphase, and cannot be explained 

simply by increased total Oct1 levels. With the exception of the midbody, Oct1pS335 

staining is rapidly lost at the anaphase-telophase transition. We identify Nek6 is an 

upstream Oct1pS335 kinase. Previous studies have shown that Nek6 localizes to the 

centrosomes in interphase cells, and to the spindle poles and midbody during mitosis. 

Nek6 loss of function also results in mitotic abnormalities and apoptosis in HeLa cells 

(18). The activities of Oct1-associated proteins are consistent with these findings. For 

example, the DNA damage sensing factor BRCA1 is known to interact with Oct1 (5, 6) 

and is a known mitotic regulator that localizes to centrosomes (24-26). PARP-1 also 

interacts with Oct1 (4) and localizes to centrosomes. PARP-1 is important for 

centrosomal function, including limiting their duplication (27). 

 Oct1 phosphorylation has been investigated previously within the context of the cell 

cycle. Mitotic phosphorylation was described at a different residue, S385 (11). S385 

phosphorylation was found to be cell cycle dependent and mediated by PKA. It was also 

noted that Oct1 purified from M-phase cells did not bind to DNA (28). Later it was 

shown that Oct1 is excluded from mitotic chromatin (29). Recent screens (12-14) 

identified enrichment in both Oct1 S335 and S385 phosphorylation during M-phase. We 

found that phosphorylation at S385 does not block DNA binding but instead alters the 

Oct1 selectivity for different DNA binding configurations (10). We postulate that S385 

phosphorylation correlates with S335 phosphorylation in mitosis, but that it is S335 

phosphorylation that causes Oct1 exclusion from mitotic chromosomes. We substantiated 
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this hypothesis by showing that overexpressed FLAG-tagged Oct1 is excluded from 

mitotic DNA while Oct1 with a S335A mutation is not. 

 Oct1pS335 is also ubiquitinated, including by noncanonical K11-Ub late in mitosis. 

Ubiquitinated proteins have been previously associated with the spindle pole bodies and 

midbody (30, 31). Although we found that K11-Ub-modified Oct1 was detectable only in 

late mitoses in normal HeLa cells, cells treated with the proteasome inhibitor MG132 

accumulated K11-Ub at structures to which Oct1 localizes in early mitotic stages. This 

result suggests a model in which K11-Ub modified Oct1pS335 is formed throughout 

mitosis, but is degraded rapidly prior to telophase, at which time degradation slows or 

stops. A model for Oct1 phosphorylation and ubiquitination through the cell cycle is 

shown in Figure 3.18. APC interacts with Oct1 and is required for Oct1 K11 

ubiquitination, strongly suggesting that APC is the upstream Oct1 Ub ligase. We observe 

these interactions and activities outside of anaphase. However it is widely recognized that 

the APC is active throughout the cell cycle, including in early mitosis (32). 

 Although a simple model is that Oct1 is phosphorylated at S335 and becomes non-

functional, several lines of evidence suggest that Oct1pS335 acquires new functions. In 

Xenopus egg extracts, Oct1 co-purifies with the spindle matrix, which helps maintain 

spindle shape. Oct1 also localizes with lamin B at the midbody. Lamin B1 and Oct1 are 

mutually required to localize each other to the midbody, suggesting that they form a 

complex. Aside from the specific localization to mitotic structures, results from both Oct1 

loss- and gain-of-function experiments implicate Oct1 as a mitotic regulator, at least in 

some cell types. For example, the organization of the mitotic spindle is disrupted upon 

Oct1 siRNA knockdown in HeLa cells. In XEE, Oct1 depletion causes defects in spindle 
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Figure 3.18: Model for Oct1 localization and modification through the cell cycle. 

Oct1 occupies sites in the DNA and regulates gene expression during interphase. 

Oct1pS335 localizes to centrosomes. Early in mitosis Oct1 is phosphorylated by Nek6 and 

localizes to spindle pole bodies and kinetochores. Oct1 is also ubiquitinated. Oct1 

modified through non-canonical K11-linked Ub chains is rapidly degraded by the 

proteasome and is not readily detectable unless degradation by the proteasome is 

inhibited. Late in mitosis the bulk of phosphorylated Oct1 is de-phosphorylated, with the 

remaining phosphorylated Oct1 concentrated at the midbody. K11-Ub is readily 

detectable at the midbody, presumably because degradation has slowed or stopped. 

Following abcission the remaining phosphorylated Oct1 is de-phosphorylated, degraded 

or relocated to the centrosome. 
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morphogenesis, implicating Oct1 in mitosis-specific functions. Based on the observed 

Oct1 localization patterns, it is likely that the mitotic irregularities caused by changes in 

Oct1 levels are directly associated with mitotic regulation. Furthermore, an intact serine 

at position 335 is important for the mitotic phenotype of over-expressed Oct1, 

implicating this residue in mitotic functions. 

 We found that Oct1 is not required for the completion of mitosis in HeLa cells but 

rather appears to play a regulatory role. In other cell types, such as murine fibroblasts and 

A549 cells, the effect of Oct1 is more mild than in HeLa cells. Oct1 deficient embryos 

survive past gastrulation (17, 33) and Oct1 deficient MEFs proliferate normally in culture 

(1, 17). Primary Oct1 deficient MEFs undergo oncogenic transformation poorly relative 

to wild-type controls, but immortalize normally by serial passage (1). In this sense, the 

role of Oct1 in mitosis may be more akin to BRCA1, which appears to act as a mitotic 

regulator rather than a core component of the mitotic machinery (24-26). As a second 

example, lamin-B RNAi results in a delay in prometaphase, following which cells can 

finish mitosis (19).  

 

Methods 

Tissue culture 

 Oct1 deficient MEFs have been described previously (17). HeLa cells (ATCC) were 

arrested in M-phase using 0.5mg/ml nocodozole for 18 hr. Thymidine block and release 

from nocodozole were performed identically to Matsumoto et al. (21). MG132 

(Calbiochem) was applied at 5 mM for 6 hr. For experiments using both nocodozole and 

MG132, cells were treated with nocodozole for 12 hr, following which MG132 was 
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added at 5 mM and cells were incubated with nocodozole and MG132 for a further 6 hr. 

Cells were maintained in a humidified environment at 37º C with 5% CO2. HeLa cells 

were transiently transfected using polyethyleneimine (PEI, Sigma) and pCG-FLAG-Oct1 

(34, 35) or S335 mutant Oct1 generated as described (10). 

 

Antibodies 

 A commercial rabbit phospho-specific antibody (Bethyl) was raised against the 

peptide EALNLS335FKNMC. The antibody was purified in two steps, first by blocking 

with unphosphorylated peptide to remove nonphospho-specific antibodies, then by 

affinity purification using the phosphorylated epitope. Mouse antibodies against a-

tubulin, g-tubulin, CLASP-1, lamin B, and goat anti-Pit-1, were obtained from Santa 

Cruz. Mouse anti-pS10-H3 was obtained from Cell Signaling, and mouse anti-

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) from Chemicon. Human anti-

APC1 antibodies were purchased from Abcam. Mouse anti-FLAG and rabbit anti-Nek6 

antibodies were from Sigma. For pan-Oct1, a rabbit antibody (Bethyl) was used with the 

exception of Figure 3.1D, which used a mouse antibody (Millipore). Rabbit anti-Ub 

antibodies were a gift of M. Rechsteiner. Human anti-K11-Ub antibodies were a gift of 

V. Dixit. 

 

Spindle matrix preparation 

 Assembly of spindles from Xenopus egg extracts using AuroraA-conjugated beads 

was conducted as described (19). For Oct1 immunodepletion, rabbit anti-Oct1 (Bethyl) or 
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nonspecific IgG control (Sigma) antibodies were used similarly to Goodman et al. (36), 

except that 75 ml of magnetic protein A-Dynabead slurry was used per 100 ml of extract. 

 

Immunofluorescence 

 Coverslips were coated with Poly-L-lysine (Sigma) for 30 min and placed into 6 

well dishes where counted cells were plated. Cells were washed with phosphate buffered 

saline (PBS) two times prior to fixation. Methanol fixation was performed as described 

(21). For formaldehyde fixation, cells were incubated in 4% formaldehyde in CSK buffer 

(100mM NaCl, 300mM Sucrose and 10mM PIPES pH6.8) for 30 min at room 

temperature (RT), and washed three times with CSK buffer plus protease inhibitor 

cocktail (PIs, Roche). Permeabilization was achieved by adding CSK buffer (+ 0.5% 

Triton-X-100 and PIs) for 10 min, followed by 3 washes with PBS-T (PBS + 0.05% 

Tween-20). IF images using K11-Ub, pan-Ub, and pan-Oct1 antibodies used methanol 

fixation, while phospho-histone H3 antibodies used formaldehyde. Antibodies against 

CLASP-1, a and g-tubulin, lamin B and phospho-S335 worked efficiently with both 

fixation procedures. Fixed cells were blocked with IF buffer (PBS-T with 1% donkey 

serum) for 1 hr at RT. Primary and secondary antibodies diluted in the IF buffer and were 

incubated sequentially. After each incubation, cells were washed with PBS-T for 10 min. 

Stained coverslips were placed on slides using mounting medium with DAPI (Vector). 

Images were taken using a Zeiss Axioplan 2 imaging microscope with a 100X oil 

immersion objective and a numerical aperture of 1.3. Digital fluorescence and DIC 

images were acquired using an AxioCam MRm monochrome digital camera. Final 

images were processed, given false color and merged using Photoshop CS3 (Adobe 
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Systems). All scale bars conform to 20 mM. Mitotic staging followed established criteria, 

e.g., Maiato et al. (37) and Pereira et al. (38). 

 

In vitro kinase assay 

 Two sets of complimentary oligo DNA (S335 and A335) were anealed and ligated 

into pGEX-4T1 (Promega) using a SmaI restriction site. Expressed proteins in BL21 

Codon-plus (Stratagene) Escherichia coli transformed with each construct were purified 

using glutathione-sepharose resin (GE Healthcare). Sequences were S335: 

5'GCGATTTGAAGCCTTGAACCTCAGCTTTAAGAACATGTGCAAGTGA3', 

5'TCACTTGCACATGTTCTTAAAGCTGAGGTTCAAGGCTTCAAATCGC3'; A335: 

5'GCGATTTGAAGCCTTGAACCTCGCCTTTAAGAACATGTGCAAGTGA3', 

5'TCACTTGCACATGTTCTTAAAGGCGAGGTTCAAGGCTTCAAATCGC3'. The 

GST-fused peptide (WT, RFEALNLS335FKNMCK or S335A) were incubated with 

recombinant Nek6 and CAK complex (cdk7/cyclin H/MAT1, Millipore). Kinase 

activities were assayed with the purified substrate according to a manufacturer's protocol. 

 

RNAi 

 siRNA pools targeting three different regions of Oct1 or Nek6 (Santa Cruz) were 

mixed with lipofectamine RNAi max (Invitrogen) and transiently transfected according to 

manufacturer’s protocol. Control siRNAs were used in parallel and also purchased from 

Santa Cruz. Cells were cultured for 3 days prior to analysis. siRNA knockdown of CDH1 

(gene symbol Fzr1) and control transfections used siRNA pools (Dharmacon). Cells were 

cultured for 48 hr prior to analysis. 
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Immunoprecipitation 

 Cells were lysed with 18mM Hepes pH 7.9, 150mM NaCL, 1mM EDTA, 1mM 

EGTA, 1% Triton-X-100, protease inhibitors (Roche, PIs), and phosphatase inhibitors 

(Roche, PhIs). 500 mg of extract was incubated with 4 mg of antibody in IP buffer 

(50mM Tris pH8.0, 20% glycerol, 0.5mM EDTA, 0.1% NP-40, 1mM DTT, PIs and PhIs) 

overnight at 4ºC. Protein-antibody complexes were precipitated using magnetic beads 

(Activmotif) and washed three times with IP buffer. 
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Abstract 

 The Oct1 transcription factor is a potent regulator of carbon metabolism and 

tumorigenicity. Although Oct1 is dynamically regulated by phosphorylation, the presence 

and importance of other Oct1 modifications is unknown. Here we show that Oct1 is 

modified by small ubiquitin-like modifier (SUMO) and O-linked N-acetylglucosamine 

(O-GlcNAc) moieties. We map two glycosylation events at positions T255 and S728 

within human Oct1. These glycosylated residues are required for anchorage-independent 

growth, for a proper transcriptional and cellular, and for the ability of Oct1 to control cell 
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metabolism. We also, for the first time, identify specific sites of Oct1 ubiquitination. 

These findings suggest that Oct1 acts as a sensor of glucose levels and cellular adhesion. 

 

Introduction 

 Oct1 is one of the archetypal POU (Pit-1, Oct1/2, Unc-86) transcription factors. It 

appears to be expressed in appreciable amounts in all cells and tissues (reviewed in 1), 

though protein levels are dynamically regulated during development and can vary 

between cells within a tissue (2, 3). It is related to Oct4, a master regulator of embryonic 

stem (ES) cell pluripotency, and has similar in vitro DNA binding specificity (reviewed 

in 4). In mouse embryonic fibroblasts (MEFs) and A549 human lung adenocarcinoma 

cells, loss of Oct1 has little impact on cell growth or viability in culture, but strongly 

antagonizes oncogenic transformation in vitro and tumorigenicity in xenograft assays. 

This suppression is at least partially metabolic in nature (5), though additional 

mechanisms are possible. 

Although long considered a static transcription factor, the observation that Oct1 

promotes resistance to genotoxic and oxidative stress suggested that Oct1 is a stress 

response effector (6). More recent findings show that Oct1 is dynamically regulated by 

phosphorylation following stress exposure (7). Some of these phospho-modifications 

alter Oct1 DNA binding selectivity, resulting in the induced occupancy of a different 

subset of target genes (7). Others block DNA binding in biochemical assays and result in 

exclusion from mitotic DNA (8). Proteins reported to interact with Oct1 include DNA-

PK, a kinase that becomes activated in response to double-strand DNA breaks (9, 10), 

and poly (ADP-ribose) polymerase-1 (PARP-1), an enzyme that becomes activated by 
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DNA breaks and oxidative stress (11), the breast cancer associated gene BRCA1 (12, 13) 

and lamin B, a component of the nuclear envelope and various mitotic structures (8, 14, 

15). At a transcriptional level, Oct1 can both repress and activate target gene expression, 

even at the same target, in response to different upstream stimuli (16). 

During our investigations of Oct1 phosphorylation site mutants, we have identified 

O-linked glycosylation, SUMOylation and ubiquitination as other post-translational 

modifications. We map two Oct1 glycosylation sites, at positions T255 and S728, and 

two ubiquitination sites, at positions K9 and K403. We show that these modifications 

regulate Oct1 stability and transcriptional activity. We find that Oct1 dampens the 

induction of Gadd45a gene expression in response to acute glucose starvation. Mutation 

of the Oct1 glycosylation sites to alanine decreases binding to the Gadd45a promoter and 

augments Gadd45a induction.  

 

Results 

Phosphorylated Oct1 serine/threonine residues control protein 

 glycosylation and stability in the nucleus 

 Previous work from our laboratory has established that there are no fewer than 

seven Oct1 Ser/Thr phosphorylation events that occur following exposure to genotoxic 

and oxidative stress agents (7). The functions of these modifications, the upstream 

kinases, the fraction modified and the degree of co-occurrence are largely unknown. To 

simplify the analysis of these residues, we generated a mutant form of Oct1 in which 

these seven amino acids were changed to alanine (“7STA”, Figure 4.1A, see Materials 
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Figure 4.1. The nuclear form of Oct1 is predominantly modified by glycosylation. A) 

Top panel shows schematic of the Oct1 “7STA” mutation. Bottom panel shows Western 

blots of Oct1-deficient 3T3-immortalized MEFs transduced with GFP-tagged Oct1 (wild-

type and 7STA mutant) probed using monoclonal anti-GST (Sigma) or control anti-

PCNA (Santa Cruz) antibodies. Black arrow: predicted molecular weight of GST-Oct1. 

Red carrot: modified form. PP1=protein phosphatase 1; CIP=calf intestinal alkaline 

phosphatase. B) Immunofluorescence images of Oct1 deficient 3T3 cells expressing 

wild-type and 7STA protein. Images were stained with anti-GFP antibodies, 

counterstained with DAPI, and imaged. C) Material from cytosolic and nuclear 

fractionation of MEFs was analyzed by Western blotting using monoclonal GFP and 

rabbit Oct1 (Bethyl) antibodies. Top panels are from cells transduced with a GFP-Oct1 

fusion protein. Bottom panel was from cells transduced with untagged protein. D) Let  

panel: HeLa cell nuclear extracts were immunoprecipitated with anti-Oct1 antibodies or 

IgG isotype control. Following immunprecipitation, the products were Western blotted 

using anti-SUMO antibodies. Right panel: input nuclear extract was Western blotted with 

anti-Oct1 antibodies. E) HeLa cells were transduced with GFP-Oct1 fusion protein and 

either immunoprecipitated using anti-GFP antibodies (using rabbit IgG isotype controls) 

or precipitated using wheat germ agglutinin-agarose (WGA, using glutathione-agarose 

controls). Western blots were probed using anti-O-GlcNAc or anti-GFP antibodies. IP: 

immuneprecipitation, precip: precipitation. 
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 and Methods). We then restored Oct1 function in Oct1 deficient 3T3-immortalized 

MEFs (17) using retroviral expression constructs encoding either wild-type or 7STA 

Oct1. To more easily monitor Oct1 expression and localization, Oct1 was also tagged 

with an N-terminal GFP moiety. 

 Expression of GFP-tagged Oct1 resulted in major and minor bands as determined 

by Western blotting whole cell extracts with GFP antibodies (Figure 4.1A, lane 1). The 

major, faster-migrating form (black arrow) corresponded to the predicted molecular 

weight of GFP-Oct1. The minor, slow-migrating form (red carrot) displayed an apparent 

molecular weight of ~120 kDa and was interpreted to be a modified species. The Oct1 

cDNA encoding the 7STA mutant eliminated the modified form (lane 4). We initially 

favored the idea that the change in migration was due to in vivo phosphorylation events. 

We therefore treated the wild-type extract with two different protein phosphatases 

(protein phosphatase 1 and calf intestinal alkaline phosphatase). Surprisingly, no change 

in migration was observed (lanes 2 and 3), suggesting that the altered migration pattern 

results from some other modification, although one likely dependent on phosphorylation. 

 We also noted that Oct1 protein levels in the extracts from cells infected with the 

7STA virus were reduced relative to wild-type (Figure 4.1A, compare lane 4 with lane 1). 

To confirm this finding, we performed indirect immunofluorescence using the transduced 

Oct1 deficient MEFs and anti-GFP antibodies (Figure 4.1B). Decreased Oct1 protein 

expression was noted, particularly in the nucleus. We therefore generated nuclear and 

cytosolic fractions (Figure 4.1C). No difference between cytosolic wild-type and 7STA 

Oct1 was noted (Figure 4.1C, top panel, lanes 1 and 2). However large changes were 

identified in the nuclear fraction (lanes 3 and 4). All of the modified form identified in 
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Figure 4.1A resided in the nuclear fraction, and correspondingly the nuclear pool of Oct1 

was mostly modified. This form was largely eliminated in the 7STA mutant. Further, the 

7STA form was expressed at lower levels in the nucleus and included degraded species 

(asterisk). We conclude that one or more of the phosphorylation site residues are required 

for nuclear Oct1 modification and stability. To confirm that the observed signals were 

due to tagged Oct1, we stripped the blot and reprobed with an Oct1 antibody (Figure 

4.1C, “a-Oct1”), generating similar results. To confirm that the results were not due to the 

presence of the GFP tag, we repeated the experiment using untagged retroviral constructs 

and anti-Oct1 Western blots (“a-Oct1 (untagged)”). Similar results were observed. These 

findings indicate that one or more of the seven mutated serine/threonine residues regulate 

nuclear protein stability. 

 Given that the slow-migrating form of Oct1 identified above did not appear to result 

directly from phosphorylation, we investigated additional post-translational 

modifications. We found that in HeLa cells, the high molecular weight but not low 

molecular weight form of endogenous Oct1 was SUMOylated (Figure 4.1D). We also 

identified O-linked glycosylation as an additional modification. Nuclear extracts from 

human HeLa cells expressing GFP-tagged versions of Oct1 (wild-type or 7STA) were 

subjected to immunoprecipitation with antibodies directed against GFP, or precipitation 

using wheat germ agglutinin-agarose (WGA, Figure 4.1E). Using HeLa cells infected 

with wild-type Oct1-encoding virus, immunoprecipitation with anti-GFP antibodies and 

Western blotting using anti-O-GlcNAc antibodies, we identified a band whose size 

corresponded to the modified form of Oct1 (Figure 4.1E, lane 2). A fast-migrating 

glycosylated form was identified using the 7STA mutant (lane 3), indicating that 
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glycosylation was not eliminated using the 7STA mutant. Similar results were observed 

7747by precipitation using WGA (lane 6). These findings indicate that Oct1 is both 

SUMOylated and O-glycosylated, and suggest that SUMO is the underlying reason for 

the decreased mobility of wild-type relative to 7STA Oct1. 

 

Mapping of Oct1 glycosylation sites 

 Using latex nanoparticle affinity purification (7), and mass spectrometry 

methodologies established by Hart and colleagues (18), we definitively mapped two Oct1 

glycosylation sites in HeLa cells cultured under normal conditions, at T255 (using 

trypsin) and S728 (using chymotrypsin) (Figure 4.2A). This analysis also identified 

multiple peptides consistent with PARP-1 (not shown), which has previously been 

reported to interact with Oct1 (11), as well as two previously identified Oct1 

phosphorylation sites (7), at T276 and S448 (Figure 4.2A). We also identified two 

ubiquitination sites, at K9 (with >95% confidence), and K403 (with ~75% confidence, 

Figure 4.2A). We engineered point mutations at the two glycosylation sites 

(T255A/S728A, “DM”, Figure 4.2B) in the context of the GFP fusion retroviral vector, 

and expressed this mutant version and wild-type control in Oct1 deficient MEFs. Both 

constructs were expressed equally (Figure 4.2C, bottom panel). There was a significant, 

albeit incomplete, decrease in the ability to enrich Oct1 using WGA. We conclude that 

mutation of T255 and S728 eliminates 66-75% of Oct1 glycosylation. 

 



    

 

110 
 

110 

Figure 4.2. Identification of Oct1 O-linked glycosylated. A) Oct1 (POU2F1) sequence 

and identified trypsin and chymotripsin peptides identified by mass spectroscopy. The 

complete sequence of human Oct1 (NP-002688, UniProtKB/Swiss-Prot: P14859) is 

shown. Peptides obtained using digestion with trypsin are shown in red. Peptides 

obtained using chymotrypsin are shown in purple. Glycosylated serine and threonine 

residues (Sg and Tg) are shown in green. Identified phosphorylation and ubiquitination 

sites are designated Sp, Tp, and Kub. B) Schematic of the known Oct1 modifications. 

Double point mutant eliminating the glycosylation sites (“DM”) is show above. C) HeLa 

cells were transduced with wild-type or DM GFP-Oct1 fusion protein and precipitated 

using WGA or glutathione-agarose controls. Enrichment was detected by Western 

blotting for GFP. Input GFP Western blot control is shown beneath. EV: empty vector. 
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Glycosylated Oct1 serine/threonine residues promote survival in  

anchorage-independent growth conditions 

 We tested primary Oct1 deficient MEFs stably transduced with wild-type or DM 

Oct1 for their effect on cell growth and viability. No gross differences were observed 

between Oct1 deficient or complemented MEFs under standard culture conditions. 

However significant differences were manifested following long-term culture (not 

shown). To study changes resulting from wild-type or mutant GFP-Oct1 in cells that 

could be propagated indefinitely, we used Oct1 deficient MEFs that were additionally 

deficient in p53 (5). Primary early passage MEF isolates from Oct1-/-, p53-/- double-

deficient embryos were transduced with retrovirus, selected with puromycin, and tested 

immediately. As with Oct1 deficient p53 wild-type cells, no gross differences were 

observed under normal culture conditions (Figure 4.3A, left columns). However, 

following 6 days of continuous culture we found that p53 deficient MEFs lacking Oct1 

remained as a confluent monolayer whereas cells complemented with Oct1 became 

overconfluent. Cells complemented with DM Oct1 largely failed to grow to 

overconfluence (Figure 4.3A, right columns). To accurately quantify these data, we 

counted three independently transduced sets of primary MEFs 2, 4, 6, 8 and 10 days 

following seeding. Oct1-/-, p53-/- MEFs transduced with Oct1 reached cell numbers nearly 

double those of cells complemented with empty vector, while those complemented with 

DM showed an intermediate phenotype (Figure 4.3B). 

 The above results could be explained either by a failure to proliferate without 

attachment to the underlying substratum, and/or by the induction of apoptosis upon loss 

of adherence (anoikis), in the absence of functional Oct1. We noticed that many dead and  
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Figure 4.3. Oct1 supports anchorage-independent growth in p53 deficient MEFs. A) 

Brightfield and DAPI fluorescence images are shown of p53-/-,Oct1-/- double-deficient 

MEFs complemented with empty vector, wild-type Oct1, or DM Oct1 with alanine 

substitutions at the two identified glycosylation sites. 2X105 cells were seeded at a 

density of 2X104 cells/cm2, and images taken at days 1 and 6. B) 2X105 cells were seeded 

at a density of 4000 cells/cm2 and collected every other day for 10 days. Cell numbers are 

shown for triplicate transduction experiments. C) The induction of apoptosis was 

measured using whole cell extracts from cells prepared under conditions identical to (B) 

using antibodies reactive against full-length and cleaved PARP-1 (Cell Signaling). 

Murine monoclonal GAPDH antibodies (Millipore) were used as a loading control. EV: 

empty vector. D) Nuclear extracts were prepared from complemented MEFs grown under 

subconfluent (SC) or over-growth (OG, incubated 6 days longer) conditions, and used in 

Western blots with anti-GFP antibodies and anti-GAPDH loading controls. E) 

Quantification from two such experiments. Levels were normalized to GAPDH band 

intensity using Image J software (NIH). 
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floating cells were present in the Oct1 deficient condition specifically in over-growth 

conditions, suggesting that the lack of Oct1 confers a susceptibility to apoptosis in the 

absence of 2D attachment. To test this possibility, we studied apoptosis in these 

conditions using a cleaved PARP-1 assay. Cleaved PARP-1 was not observed in Oct1-/-, 

p53-/- MEFs in sub-confluent conditions (Figure 4.3C, lanes 1-3). In contrast, cleaved 

PARP-1 was detectable in over-growth conditions, and was much more prominent in 

empty vector-transduced cells compared to those transduced with wild-type Oct1 (lanes 

4-5). Cells complemented with DM Oct1 displayed an intermediate phenotype (lane 6). 

These results indicate that Oct1 controls aspects of anchorage-dependent survival, and 

that glycosylated residues within Oct1 are partially responsible for this phenotype. 

 To begin to understand the molecular basis of the above findings, we analyzed Oct1 

levels and activity in complemented MEFs using Western blots and electrophoretic 

mobility shift assays (EMSA). We prepared whole cell extracts from Oct1-/-, p53-/- MEFs 

transduced with empty vector, or wild-type or mutant GFP-Oct1. Cells were harvested 

from subconfluent or over-confluent plates incubated 6 days longer. Oct1 levels were 

assessed using Western blotting with GFP and Oct1 antibodies. Relative to a GAPDH 

loading control, we observed a significant decrease in DM Oct1 protein in over-confluent 

cells relative to wild-type Oct1 and relative to cells grown under subconfluent conditions 

(Figure 4.3D). The effect was relatively small, but consistent across multiple experiments 

(Figure 4.3E). EMSA confirmed the decreased Oct1 activity present in DM cells grown 

in over-confluent conditions (Figure 4.4A) as well as conditions of glucose withdrawal 

(Figure 4.4B). However upon quantification it was apparent that there was no further 
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Figure 4.4. Electrophoretic mobility shift assay comparing WT and DM in binding 

capacity. Cy5 labeled octamer and MORE probes are used. A) Nuclear extracts were 

prepared from MEFs under subconfluent and over-grown conditions. DNA bound GFP-

Oct1 and DM were observed by two different channels, Cy5 and GFP. B) MEFs were 

grown under no glucose condition for 24 hr, and analyzed as experiment (A). 
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decrease in Oct1 DNA binding activity over the decreased Oct1 levels (not shown). 

 

Glycosylated Oct1 residues control transcriptional activity 

 We transiently transfected complemented Oct1-/-, p53-/- MEFs with firefly luciferase 

reporter constructs responsive to Oct1, co-transfecting TK-Renilla luciferase as an 

internal control. The Polr2a upstream regulatory region contains four Oct1 binding sites, 

and the Gadd45a promoter contains two perfect octamers spaced 19 bp apart. In both 

cases, we found that the presence of wild-type Oct1 strongly induced transcription 

activity, while the double mutant was defective (Figure 4.5A). We therefore studied the 

endogenous Gadd45a locus in more detail using complemented Oct1-/-, p53-/- MEFs and 

qRT-PCR. GADD45a is inducible by growth arrest and DNA damage (19). p53 and Oct1 

are thought to be the principal mediators of this induction (12, 19, 20). However 

GADD45a induction during anchorage-independent growth and the role of Oct1 and p53 

were not explored. We found that Gadd45a was strongly induced in over-growth 

conditions in a manner that does not require p53 or Oct1 (Figure 4.5B). Further, 

complementing Oct1-/-, p53-/- cells with a retrovirus containing wild-type Oct1 

significantly blunted the inductions, indicating that under these conditions, Oct1 acts in a 

repressive mode at Gadd45a. Again, the double glycosylation site mutant showed an 

intermediate phenotype (Figure 4.5B). A p53 target gene not thought to be regulated by 

Oct1 (p21/WAF1) and a housekeeping Oct1 target (Ahcy, 16) were not induced under 

any conditions (with Ahcy remaining active and p21 remaining silent), indicating that the 

Gadd54a gene expression changes were relatively specific (Figure 4.6). 
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Figure 4.5. Glycosylated residues control Oct1 transcription activity. A) p53-/-,Oct1-/- 

MEFs were transiently transfected with 1.0 mg Polr2a-TK-pGL2 (7), or 

Gadd45a-pGL3 (see materials and methods), and 100 ng internal control TK-

Renilla plasmid DNA. Firefly luciferase reporter activity was measured relative to 

Renilla control using a dual luciferase assay (Promega). Experiments were performed in 

triplicate and error bars depict standard deviation. B) Gadd54a mRNA levels were 

measured in complemented p53-/-,Oct1-/- MEFs relative to b-actin in normal (SC) and 

overgrowth (OG) conditions using qRT-PCR with intron-spanning primers. Experiments 

were performed in triplicate and error bars depict standard deviation. C) Quantitative 

Oct1 ChIP enrichment in p53-/-,Oct1-/- MEFs complemented with wild-type or DM Oct1. 

Experiments were performed in subconfluent (“SC”) or over-growth (“OG”) conditions 

cultured for an additional 6 days. 
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Figure 4.6. Transcription level of Oct1 control target genes. The level of Ahcy and 

p21 expression is little changed in over-grown MEFs. 
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We have shown that the double point mutation reduces steady-state protein levels 

(Figure 4.3D,E). To determine whether or not the decreased amount of protein translated 

to less bound protein at the Gadd45a promoter, we performed quantitative ChIP assays. 

Bound Oct1 could be detected at Gadd45a under normal growth conditions using Oct1-/-, 

p53-/- cells complemented with wild-type Oct1. In contrast, no bound Oct1 was detected 

using cells complemented with DM Oct1 (Figure 4.5C, “SC”). Plates grown for an 

additional six days (“OG”) displayed a strong induction of Oct1 binding. This binding 

presumably dampens Gadd54a induction. Again, binding was reduced in the DM 

condition. These results indicate that Oct1 behaves dynamically at Gadd54a with binding 

being inducible by over-growth conditions in a manner controlled by glycosylated Oct1 

residues. 

 Recently, Gadd45a was found to be induced by low glucose conditions in a manner 

promoted by Oct1 (21). We have shown that Oct1 is required for the normal sensitivity of 

murine fibroblasts to glucose withdrawal (5). To identify transcriptional effects 

underlying this phenomenon, we tested endogenous Gadd45a induction in conditions of 

low glucose (minus glucose for 24 hr) using uncomplemented primary MEFs prepared 

from mouse embryos with different genotypes: wild-type, Oct1 deficient, p53 deficient 

and double deficient. We found that wild-type MEFs inefficiently induced Gadd45a 

under low-glucose conditions (Figure 4.7A). Cells lacking either Oct1 or p53 showed 

stronger induction, indicating that both proteins can act in a negative capacity at this 

locus. To test the effect of the glycosylated residues on Oct1 repression of endogenous 

Gadd45a induction in response to glucose withdrawal, we complemented p53-/-, Oct1-/- 

double-deficient MEFs with retrovirus encoding wild-type or DM Oct1. In the absence of  
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Figure 4.7. Regulation of Oct1 activity by glucose. A) Induction of Gadd45a was 

measured as in Figure 4.4B, except wild-type, Oct1 deficient, p53 deficient or double 

deficient MEFs were used, and the cells were cultured in normal mediate with 4.5 g/L 

glucose (“+Glc”) or 0 mM glucose for 24 hr (“-Glc”). Experiments were performed in 

triplicate and error bars depict standard deviation. B) p53-/-,Oct1-/- MEFs complemented 

with wild type or DM Oct1 were cultured in 4.5 g/L glucose or no glucose. Endogenous 

Gadd45a induction was measured using qRT-PCR. Experiments were performed in 

triplicate and error bars depict standard deviation. EV: empty vector. C) p53-/-,Oct1-/- 

MEFs complemented with wild-type Oct1 were cultured under normal conditions or in 

media lacking glucose for 24 hr. Input material was Western blotted using GFP and 

GAPDH antibodies to normalize Oct1 levels, following which the same amounts of 

material were precipitated using WGA-agarose. The amount of recovered protein was 

detected using GFP antibodies. 
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either p53 or Oct1, Gadd45a was strongly induced, as expected (Figure 4.7B). Wild-type 

Oct1 blunted the induction, whereas DM Oct1 largely failed to do so. These results 

indicate that the glycosylated residues are required for full Oct1 transcriptional activity. 

 

Oct1 controls aspects of metabolism following glucose withdrawal 

 Previous findings from our laboratory indicate that Oct1 controls metabolic 

parameters in MEFs grown under normal glucose conditions, including a dampening of 

mitochondrial function. Oct1 deficiency induces a series of metabolic alterations that 

include decreases in lactate and NADH (relative to NAD+) and increases in ATP (5). The 

MTS assay provides a colorimetric readout of cell viability and metabolism through the 

conversion of a reactive dye to a colored compound that absorbs at 500 nm. The 

conversion is mediated by mitochondrial reductases (22). Reductase activity, and hence 

the amount of colored product, is directly proportional to the number of viable cells. 

However, on a per cell basis the assay can also be used to detect metabolic alterations 

(23). We plated p53-/-, Oct1-/- double-deficient MEFs complemented with wild-type or 

DM Oct1 in normal media and followed MTS activity over 6 days in culture (Figure 

4.8A). Wild-type complemented cells displayed significantly more MTS activity as 

compared to cells transfected with empty vector (“EV”). DM Oct1 failed to complement, 

behaving identically to the empty vector in terms of ability to augment MTS activity. 

These findings indicate the metabolic differences identified by Shakya et al. (5) are 

extendable p53-/-, Oct1-/- MEFs and to MTS assays. The findings further indicate that  



    

 

126 
 

126 

 

Figure 4.8. Glycosylated Oct1 residues are critical for Oct1-mediated control of 

mitochondrial reducing activity but dispensable for the ability of Oct1 to confer 

sensitivity to long-term glucose withdrawal. A) MTS assay of p53-/-,Oct1-/- MEFs. 

MEFs were plated at 2X104 cells were plated into each well of a 6 well plate and MTS 

readings were taken every for 6 days. B) Similar assay except cells were plated in 

mediate lacking glucose. EV: empty vector 
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glycosylated Oct1 residues are critically important for the ability of Oct1 to modulate 

metabolism. 

 We and others have shown that Oct1 loss of function also results in resistance to 

cell death following persistent glucose withdrawal (5, 21). We recapitulated this finding 

using the MTS assay: in glucose-free media Oct1 complemented cells initially showed 

activity as before, but after two days lost viability (Figure 4.8B). Interestingly, although 

cells complemented with DM Oct1 failed to complement the Oct1-mediated metabolic 

phenotype (DM cells track with empty vector the first few days), they were competent to 

induce sensitivity to glucose withdrawal (DM cells track with wild-type at late 

timepoints). These results show that p53 deficient cells lacking Oct1 are similarly 

resistant to glucose withdrawal, and functionally uncouple enzymatic reduction of the 

MTS target molecule in mitochondria from sensitivity to glucose withdrawal. 

 

Discussion 

 Oct4, a transcription factor closely related to Oct1, was recently found to be 

glycosylated in human ES cells (24), and to interact with O-linked GlcNAc transferase 

(OGT), the enzyme that catalyzes O-linked glycosylation (25, 26). These findings lead us 

to test whether Oct1 is also a glycoprotein. We identify two glycosylated Oct1 residues, 

T255 and S728. The mass spectrometry peptide coverage was relatively low (23%), and 

mutation of these residues results in only an ~2/3 diminution of glycosylation, indicating 

that other residues may also be glycosylated. Nevertheless, we show that T255 and S728 

are required for the normal induction of Gadd45a to glucose starvation and for survival 

anchorage-independent conditions. Multiple transcription factors have been found to be 
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glycosylated, with known examples including p53, NF-kB, and AP-1. In many of these 

cases, intramolecular communication between glycosylation and phosphorylation has  

been reported (27-29), most often taking the form of interference in which the same 

residue is alternatively phosphorylated or glycosylated. The glycosylation sites identified 

here are not known to be phosphorylated, and to date we have not identified 

intramolecular communication between the glycosylation sites and the seven 

phosphorylated Ser/Thr residues. 

 We also show that Oct1 is ubiquitinated (at K9 and K403). Oct1 phosphorylation 

target sites are important for nuclear protein stability, and this dynamic control of protein 

levels may be mediated by the ubiquitination events, both of which are associated with 

PEST motifs: K9 with a weak site and K403 with a stronger site (not shown). The third 

novel Oct1 modification we identify in this study is SUMOylation. SUMO has been 

found to regulate a large set of molecular processes, including transcriptional regulation, 

protein stability, stress response, nuclear-cytosolic transport, apoptosis, and cell cycle 

progression (30). We anticipate that it is the SUMO moiety that causes the shift in 

molecular weight blocked by mutation of the seven phosphorylated serine/threonine 

residues (7STA). We found that relative to the cytoplasmic pool, Oct1 in the nucleus was 

in a predominantly modified form, and that the 7STA mutant results in nuclear protein 

degradation. Oct1 is known to interact with BRCA1 (12, 13). One hypothesis is that the 

associated BRCA1 ubiquitin ligase activity is important for the observed changes in Oct1 

stability. 

 The glycosylated residues regulate the Oct1 transcriptional response to glucose 

withdrawal. Double point mutation to alanine eliminating glycosylation at these two 
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residues blunted Oct1 transcription potential: either positive potential in transient 

transfection assays, or repressive potential of the endogenous Gadd45a gene locus. 

Although others have identified an activation function for Oct1 at Gadd45a (19, 20), our 

findings suggest a repressive function under conditions of glucose withdrawal and 

anchorage-independent growth. Oct1 is known to be capable of repressing and activating 

the same gene target (16). Following glucose withdrawal, we show that O-GlcNAc 

moieties on Oct1 are depleted, and that the protein is less active, similar to the point 

mutant. This model explains why Gadd45a is induced following glucose withdrawal, is 

even more strongly induced in the absence of Oct1, and why the double glycosylation site 

point mutant partially phenocopies the empty vector control for Gadd45a induction in 

response to glucose withdrawal. We also find that the double mutant fails to complement 

the Oct1 metabolic function, but interestingly the mutant is fully competent at restoring 

Oct1-mediated sensitivity to long-term glucose withdrawal. These findings uncover a 

dynamic and complex regulatory circuitry involving Oct1, glucose levels and target genes 

such as Gadd45a. 

 

Materials and Methods 

Cloning: The 7STA mutant was generated by site directed mutatgenesis 

(Stratagene) of the wild-type Oct1 cDNA cloned into the pBabe retroviral vector. The 

same primer sets for S335A and S385A were used (Kang et al. 2009). The other primer 

sets are as follows: T270A, T276A, S278A, S283A, S448A (complementary primers are 

not shown: 5'-TTCCACAGAGCCAGTCAGCACCAAAGCGAATTGAT, 5'-

GTCAACACCAAAGCGAATTGATGCTCCCAGCTTGG, 5'-
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CGAATTGATGCTCCCGCCTTGGAGGAGCCCAG, 5'-

CTTGGAGGAGCCCGCTGACCTTGAGGAGCT, 5'-

TGGTGGGACCAGCAGCGCACCTATTAAAGCAATT). An ~1 kb human Gadd45a 

promoter region was amplified using the following restriction site-containing primer set: 

5’-GGTACCAAGCTTAGGGCATATCGAGAGCATTTT (KpnI), 5’-

GAGCTCGGGCTCCTCCTCCTGTGCCA (SacI). This amplicon was ligated into the 

pGL3 vector (Promega) via the KpnI and SacI sites. The Polr2a-pGL3 reporter construct 

has been described previously (7). 

 Indirect immunofluorescence: Immunofluoresence assays were performed 

identically to Kang et al. (8). 

 Immunoprecipitation and WGA precipitation: For immunoprecipitation, cells were 

lysed with whole cell lysis buffer (18mM Hepes pH 7.9, 150mM NaCL, 1mM EDTA, 

1mM EGTA, 1% Triton-X-100, protease inhibitors (Roche, PIs), and phosphatase 

inhibitors (Roche, PhIs)). 500ug of extracts were incubated with 4ug of antibody in IP 

buffer (50mM Tris pH8.0, 20% glycerol, 0.5mM EDTA, 0.1% NP-40, 1mM DTT, Pis 

and PhIs) for overnight (O/N) at 4º C. Using magnetic beads (Activmotif), protein-

antibody complex was precipitaed and washed three times with IP buffer. 

Immunorecipitated proteins were analyzed by SDS-PAGE and Western Blotting. For 

WGA precipitation, Succinyl WGA Gel was purchased from EY laboratory. 

Experimental steps and buffers were used as IP experiment. 

 MTS assays: were performed using a Kit (Promega) as per the manufacturer’s 

instructions. 
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 Electrophoretic mobility shift assay: Assays were performed identically to Kang et 

al. (7). 
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CHAPTER 6 

 

CONCLUSION 

 

 Oct1 is a prototypic octamer transcription factor. Although its activity was 

initially identified as a regulatr of housekeeping genes, recently the focus has shifted to 

its role in regulating stress response genes. Here I established the mechanism by which 

post-translational modifications regulate Oct1 activities in response to genotoxic and 

oxidative stress (Figure 6.1, Chapter 2). I unexpectedly found that Oct1 has novel mitotic 

activity beyond transcriptional regulation through S335-phosphorylation and 

ubiquitination (Chapter 3). Furthermore, I also showed that O-GlcNAc modifications of 

Oct1 are involved in Oct1 dependent transcription (Chapter 4). These forms of 

regulations seem to be similarly applicable to the Oct1 paralogue, Oct4 from my and 

others’ studies (1-3). Besides the similar post-translational modifications, I also showed 

that Oct1 and Oct4 share multimeric binding motifs in ESCs establishing a form of 

crosstalk between them (Chapter 5). 

Throughout my studies discussed in this dissertation, I also identified novel 

protein interactions and functions. They can be categorized into Oct1 regulators/effectors. 

These are updated in Table 6.1. 
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Figure 6.1. The whole post-translational modifications identified by mass 
spectrometry in the dissertation works. Hela nuclear extracts were used for the 
analysis. Phosphorylation events were identified following stress exposure. 
Ubiquitination and glycosylation events were identified under normal culture 
conditions. 
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Table 6.1. Previous known and newly identified Oct1 interacting factors. Proteins 
with bold characters are novel factors and functions.  Modified from table1 in 
chapter 1. 
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Oct1 as a Stress Sensor 

Stress response transcription factors are often highly post-translationally modified 

following stress exposure. For example, p53 is well studied for dramatic changes in its 

functions depending on different post-translational modifications (4). Interestingly, 

several specific phosphorylation and acetylation events restrict p53 DNA binding to the 

enhancers of apoptotic target genes, although their DNA sequences are not distinct from 

those of the non-apoptotic targets. Oct1 turns out to adopt similar regulation. Phospho-

Ser385 (pS385) converts Oct1 specificity from the octamer to MORE motif (5). Upon 

stress treatment, Oct1-pS385 is increased resulting in preferred binding to the MORE. 

However, the octamer binding is constitutive, suggesting that additional Oct1 binding is 

absent. Genome-wide ChIPseq data showed that inducible MORE-type binding occurs at 

a large group of specific genes in stressed cells. I also showed that stress-mediated Oct4 

binding is also inducible on the MORE and is conserved on the novel MOREs identified 

by Oct1-ChIPseq indicating that Oct factors can be regulated by the same mechanism. 

I also examined Polr2a regulation by Oct1. Two consecutive MOREs 

cooperatively recruit four Oct1 following stress, resulting in stable Polr2a expression. 

Comparing mRNA levels between WT and Oct1-/- MEFs, I found that Oct1 acts through 

an anti-repression mechanism. This mechanism is now elaborated. Stress induces the 

repressive histone modification, H3K9me2 on the Polr2a promoter (6). Oct1 binding to 

the 2XMORE motif recruits a H3K9me2-specific demethylase, Jmjd1a, and efficiently 

removes this negative modification.  

To better understand Oct1 mediated stress responses, we need to identify 

substantial sets of inducible Oct1 targets under different conditions and via more 
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elaborate genome-wide studies.  It is also required to define different types of inducible 

motifs. For example, the MORE is speculated to be just one of a larger set of inducible 

motifs because the novel TMFORE motif was also shown to be in this category. 

Moreover, many binding sites identified by ChIPseq are also inducible motifs that do not 

match either the octamer or the other known motifs. 

 

Oct1 as a Mitotic Regulator 

Previous studies showed that pS385 of Oct1 is responsible for Oct1 displacement 

from mitotic chromatin (7). However, I found that although pS385 has little negative 

effect on the octamer binding, it enhances MORE-type binding of Oct1 (5). I instead 

identified pS335 as the bona-fide negative modification that inhibits both the octamer and 

MORE-type binding. Using a phospho-specific antibody for pS335, I showed that DNA-

released Oct1-pS335 moves to important mitotic structures such as the kinetochore, 

spindle poles and midbody (Chapter 3). I also showed that pS335 is required for Oct1 

displacement from DNA using an Oct1-S335A mutant.  In terms of Oct1 mitotic 

function, Oct1 and Lamin B co-regulate a structure known as the spindle matrix that 

shapes spindle organization. Further, noncanonical ubiquitination (K11-Ub) is 

additionally attached on Oct1-pS335 in the spindle poles and midbody. To simplify the 

findings identified from Chapter 2 and 3, Oct1 has mitotic activity ‘OFF’ the DNA as 

well as transcription factor activity ‘ON’ the DNA. 

To further substantiate Oct1 as a mitotic regulator, we need to identify interacting 

proteins in mitotic structures such as the spindle matrix, spindle poles, and midbody. 

Also, except for the DNA binding domain, the functions of other regions of Oct1 are not 
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well defined. A series of truncated Oct1 mutants will provide important clues to identify 

functional domains in mitotic cells. 

 

Oct1 as a Potential Glucose Sensor 

Based on the hypothesis that Oct1 can be regulated by O-GlcNAc modification 

(details in Chapter 1), I analyzed purified Oct1 by mass spectrometry and mapped two O-

GlcNAc modified residues: T255 and S728 (Chapter 4). They are present outside of the 

DNA binding domain and structure information is not available. Initially, 

phosphorylation defective mutant Oct1 does not have a slow migrating band with strong 

glycosylation in Western Blotting suggesting that three different modifications 

(phosphorylation, glycosylation and sumoylation) may cross talk. This finding should be 

studied further. 

The expression level of T255A/S728A double mutant Oct1 is slightly lower than 

WT Oct1 suggesting that O-GlcNAc modification partially regulates Oct1 stability. 

Moreover, both DNA binding affinity and transactivation of reporter genes associated 

with defined binding sites are much weaker than those of WT Oct1, which is confirmed 

by Oct1 ChIP findings. Surprisingly, although findings of others have identified an 

activation function for Oct1 at Gadd45a (8, 9), our findings indicate a repressive function. 

We already showed that Oct1 can repress and activate the same gene (IL2, 6). In this 

context, Oct1 as a repressor of Gadd45a recruits a co-repressor complex. NuRD complex 

recruitment by Oct1 on the Gadd45a promoter is currently being investigated. 

Glucose withdrawal significantly reduces the level of O-GlcNAc modification of 

Oct1 leading to low Oct1 binding on the octamer, consistent with glycosylation defective 
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mutant Oct1. The data suggest that O-GlcNAc modification of Oct1 is dynamically 

changed depending on environmental glucose levels. Oct1 regulates TCA cycle genes 

(10). It is possible that transcription profiles of TCA cycle genes change upon exposure 

to high and low glucose conditions through O-GlcNAc modification of Oct1. The next 

efforts will focus on identifying this connection, which will confirm Oct1 as a direct 

metabolic regulator.  

 

Oct1 and Oct4 Interaction Network 

Oct4 is an essential factor in pluripotent ESCs (11). Functionally, it is a part of the 

core transcriptional regulatory circuitry with Nanog and Sox2 for maintaining self-

renewal and pluripotency (12, 13). The three factors frequently co-occupy the regulatory 

regions (pluripotency control regions) of many target genes. However, Oct1, an Oct4 

paralogue, has been ignored in this regulatory network, although substantial amounts of 

Oct1 are expressed in ESCs (13). Both proteins share similar DNA binding domains and 

DNA binding specificity (14). Therefore, they are speculated to compete for monomeric 

binding sites as well as cooperate for multimeric binding sites. Here we performed high-

throughput in vitro binding studies and conventional ChIP analysis for Oct1 and Oct4. 

We found that Oct1 can occupy Oct4 binding sites with similar affinity in the 

pluripotency control regions. Interestingly, we also identified sequences with preference 

for Oct4. Oct1 and Oct4 form a hetero-complex on mutimeric binding sites indicating 

that Oct1 is involved in Oct4 dependent transcription. Altogether, I hypothesized that 

Oct1 is required to maintain developmentally-inducible genes in a poised configuration in 

ESCs. 
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Future studies will be dedicated to investigating these phenomena in vivo. For 

example, our lab has generated Oct1-/- ESCs and can be examined for transcription 

profiles compared to WT ESCs. Differentially regulated genes will be further studied for 

Oct1 and Oct4 co-regulated targets. 

 

Future Directions: Oct1 and Somatic Stem Cells 

Oct4 expression is highly limited to pluripotent embryonic SCs. This has been 

controversial because studies reported that multipotent somatic SCs may also express 

Oct4 (15, 16). However, extensive studies using several different tissue specific Oct4 

knockout mice do not identify substantial Oct4 expression and function in somatic SCs 

(17). The hypothesis consistent with this finding is that somatic SCs use a replacement 

for Oct4 for at least some functions to maintain “stemness”. This is speculated to be one 

of Oct factors. Throughout all chapters, we showed that Oct1 and Oct4 share DNA 

binding specificity and upstream modes of regulation. Oct1 is expressed in all types of 

tissues, whereas the other Oct factors are expressed in only limited tissues. Therefore, 

Oct1 is the best candidate to replace Oct4 for the regulation of stemness in somatic SCs, 

which is consistent with some crucial unpublished findings in our laboratory. Further, 

asymmetric centrosomal inheritance in mitosis has been reported as a key feature of 

somatic SCs, which implicates centrosomal Oct1 (Chapter 3) in asymmetric inheritance 

of centrosomes (18, 19). In the future, our laboratory will attempt to substantiate Oct1 

functions in maintaining stemness, which will cover both aspects of transcription 

regulation and centrosomal function.  
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APPENDIX A 

 

MAPPING OF CDK7 DEPENDENT OCT1  

PHOSPHO-RESIDUE(S) 

 
 

The Cyclin-dependent kinase-Activating Kinase (CAK) complex comprises three 

components: cdk7, cyclin H and MAT1.  It interacts with Oct1 through MAT1, and 

phosphorylates Oct1 (1). However, the specific phosphorylated residue is not known. 

CAK is a subcomplex of the general transcription complex TFIIH (1). Interestingly, 

TFIIH plays important roles in repairing damaged DNA as a nucleotide excision repair 

complex as well as in initiating transcription as a basal transcription factor complex (2). 

By analogy, Oct1 can regulate both basal transcription and DNA damage response (3), 

implicating TFIIH as a possible regulator of Oct1 activity.  

To investigate whether or not TFIIH regulates Oct1 activity, here I performed an 

in vitro kinase assay using CAK, a part of TFIIH.  RNA polymerase is a well-known 

substrate for CAK (4). Its CTD region is heavily phosphorylated in repeated motifs 

(YSPT*S5P*S7: *S is phophorylated, 5). Using a single CTD motif sequence, I scanned 

the human Oct1 protein sequence and found two similar sequences covered at positions 

360-373 and 517-530 (Figure A.1A). While the former is conserved between limited 

species, the latter is highly conserved between multiple species including human, mouse 

and chicken. They resemble two tandem CTD motifs. To test whether CAK  
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Figure A.1. Mapping Oct1 residues phosphorylated by CAK. (A) Peptide 
substrates are indicated on human Oct1 diagram (4S and 360-373). (B) 
Comparison between CTD of polymerase and Oct1 peptides in CAK dependent 
phosphorylation in vitro. (C) 521S and 523S are candidate residues for CAK 
dependent phosphorylation. (D) 521S is a bona-fide phospho-residue by CAK.  
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phosphorylates either or both of the two different sequences, I designed and cloned 

double-stranded oligomers into the pGEX vector system. Using purified GST conjugated 

substrates, an in vitro CAK assay was conducted (Figure A.1B). As expected, CAK 

strongly phosphorylates 2XCTD motif but not GST alone (Lanes 1 and 2). In Oct1 

derived sequences, 4S (517-530) is the only substrate of CAK (Lanes 3 and 4). To 

specify the exact residue(s), I introduced alanine mutations into potential serine residues. 

Both 2A and 4A mutants were not phosphorylated, which narrows down possible 

residues to S521 and S523 (Figure A.1C, lanes 3 and 4). The fact that SPA (S521/A523) 

is phosphorylated but not APS (A521/S523) indicates that the S521 is a possible 

physiological phospho-residue (Figure A.1D, lanes 3 and 4). However, the 

phosphorylation level of SPA is much lower than that of WT 4S. There are two 

possibilities. First, S523 could be an interacting site for CAK whose alanine mutation 

could interfere with the CAK interaction. Second, both S521 and S523 could be 

phosphorylated just like CTD (YSPTS5PS7) but S523 phosphorylation could require 

phospho-S521 as a priming phosphorylation.  To test whether both serine residues are 

phosphorylated by CAK, I designed two different phospho-mimetic mutants (Figure 

A.2). If S521 is a priming site, DPS (S523) would be phosphorylated and we could 

conclude that both S521 and S523 are phosphorylated by CAK.  

Although I identified phopho-residues in vitro, I should validate them in vivo. A 

phospho-specific antibody is the best reagent to prove it, but is not available. 

Alternatively, I will complement Oct1-/- MEFs with WT, S521A and S521D Oct1 

expression constructs using a lentiviral transduction system. Those cell lines will be 

assessed in Oct1 dependent basal transcription, DNA damage responses and DNA  
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Figure A.2. Mutant substrate sequences. To make phosho-mimetic mutant, 
serine will be replaced with aspartic acid.   
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binding activity. If I find loss or gain of functions from mutant cell lines, I will take this 

an evidence favoring the idea that phospho-residue is real and functional. Using more 

direct approaches, I will confirm in vivo phosphorylation eventl, e.g., phospho-serine 

antibody blotting after immunoprecipitation of WT and S521A Oct1 and cdk7 

knockdown for the same experiments. 
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APPENDIX B 

 

GENERATION OF iPSCs USING OCT1 AND  

OCT4 CHIMERAS 

 

 The transduction of four factors (Oct4, c-Myc, Klf4 and Sox2) reprograms 

differentiated fibroblasts into induced pluripotent stem cells (iPSCs, 1). In many cases, 

the three factors, except for Oct4, can be replaced by family members (2). This finding is 

surprising if it is considered that Oct1 and Oct4 share DNA binding specificity and 

modes of regulation, as shown throughout my dissertation. Therefore, this Oct4 

specificity raises interesting questions of what differences between Oct1 and Oct4 result 

in distinct outcomes: Oct4 but not Oct1 induces pluripotency in the context of the three 

factors. We hypothesized that regions outside of DNA binding domain determine whether 

pluripotency can be induced. Oct1 and Oct4 have functionally poorly defined N- and C- 

terminal domains. Those domains of Oct1 are much longer than those of Oct4. The first 

possibility is that longer N- or C- domains of Oct1 have a negative effect on induction of 

pluripotency. To test this, we generated a series of Oct1 deletion mutants: ∆N-Oct1, ∆C-

Oct1 and ∆NC-Oct1 (Figure B.1). The second possibility is that N- or C-terminus of Oct4 

may be required to interact with crucial effectors to induce pluripotency. Therefore, we 

replaced N-, C- or N&C- termini of Oct1 with those of Oct4. Lastly, although DNA  



    

 

161 
 

161 

 
 

Figure B.1. Cloning scheme. Upper table summarizes all primers used for all 
cloning procedure. Lower diagram summarizes chimeric constructs and 
corresponding primer sets and restriction enzymes. Blue and yellow box is derived 
from MmOct1 and MmOct4. S and H represent POU specific and homeo domain. 
These constructs will be inserted into pBABE vector using either BamHI/SalI or 
SnaBI site.  
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binding domain of Oct1 and Oct4 is highly similar, they may discriminate between some 

of the crucial pluripotency-related targets. Consistent with this idea, we identified Oct4 

preferential binding sequences (3). In this case, N- and C- termini of Oct4 will be 

replaced by those of Oct1. To maintain the original sequence of each protein, we 

designed multiple primers for the same domain. 

Recent protocol allows us to generate iPSCs using only Oct4 with several small 

molecule inhibitors (4). The previous protocols using 3 or 4 factors may increase 

complexity of data interpretation, considering multiple interactions between factors. The 

novel protocol makes it possible to directly compare Oct4 with Oct1-Oct4 chimeras in 

induction of pluripotency, which more corresponds to our purposes. 

Following the protocol developed by Yuan et al., we transduced the early passage 

of MEFs using Oct4, Oct1 and ∆C Oct1. Beginning 2 days later, we regularly changed 

the ES culture media and observed transduced MEFs. In three weeks, iPSC-like colonies 

were formed and counted. As shown in Figure B.2, colonies from Oct4 expressing MEFs 

have a clear borderline like ESCs, but those from Oct1 and dC-Oct1 fail. Research in 

progress is summarized in Figure B.3.  

Until now, because studies have focused on Oct4 transcription targets, little is 

known about Oct4 activities at the molecular level. The proposed experiments will 

provide directions for studying molecular mechanisms by which Oct4 regulates 

pluripotency. For example, if we identify a critical domain of Oct4 for pluripotency 

induction, we will make attempts to identify interacting proteins using that domain. The 

interaction network through this domain may represent an Oct4-specific pluripotency 
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Figure B.2. The examples of iPSC like colony. Oct4 with compounds (left) and 
Oct1 with compounds (right) are used for iPSC generation. These colonies are 
taken in 3 weeks after transduction.  
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Figure B.3. Research in progress. Diagram in top represents identity between Oct1 and 
Oct4, expression pattern and iPS capability in this assay. Lower diagram is duplicated 
from Fig. 1. The progress of each construct is summarized on the right panel. (Made: 
done in cloning, Exp.: test of protein expression and iPS assay: represented by number 
of colonies.)   
 



    

 

165 
 

165 

activity. Or, if we find that chimera of the Oct4 DNA binding domain on the Oct1 N- and 

C- terminal domains has similar potential in pluripotency compared to WT Oct4, we will  

conclude that Oct4 preferential targets are critical for pluripotency. This research is 

currently ongoing.  
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