
SEACAT: AN SDN END-TO-END CONTAINMENT

ARCHITECTURE

by

Makito Kano

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computing

School of Computing

The University of Utah

August 2015

Copyright c© Makito Kano 2015

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF THESIS APPROVAL

The thesis of Makito Kano

has been approved by the following supervisory committee members:

Jacobus van der Merwe , Chair May 21, 2015

Date Approved

Sneha Kasera , Member June 12, 2015

Date Approved

Eric Eide , Member June 13, 2015

Date Approved

and by Ross Whitaker , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

Healthcare organizations heavily rely on networked applications. Many applications used

in healthcare settings have different security, privacy, and regulatory requirements. At the

same time, users may use their devices with medical applications for non-medical-related

purposes. Running arbitrary applications on the same device may affect the healthcare

applications in a way that violates their requirements. The ability of using the same device

for multiple purposes in an enterprise network presents a challenge to healthcare IT opera-

tions. To allow the users to use the same device for both medical and non-medical-related

purposes while meeting the set of requirements for medical applications, we present the

design and implementation of the SeaCat, an SDN End-to-end Application Containment

ArchitecTure, and evaluate the system in a testbed environment. SeaCat has two major

components. First is the container technology used in the client device to securely isolate

any application. Second is the software-defined networking (SDN) that provides isolated

secure network resource access for each application.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vi

LIST OF TABLES . xi

ACKNOWLEDGEMENTS . xii

CHAPTERS

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Threat Model . 2

1.2.1 Threats and Assumptions on the Client Device 2
1.2.2 Threats and Assumptions on the Enterprise Network 2

1.3 Thesis Statement and Approach . 3

2. SECURITY IN HEALTHCARE . 4

2.1 Threats and Regulations . 4
2.2 Protecting Security and Privacy . 4
2.3 BYOD Trend . 5

3. SEACAT ARCHITECTURE . 6

3.1 End-to-end Context . 6
3.1.1 Network Context (Forwarding Rules) . 7
3.1.2 Network Context (Resource Prioritization) . 7
3.1.3 Containers on Client Device . 7
3.1.4 802.1X and 802.11i . 7
3.1.5 Virtual AP (VAP) . 8

3.2 Workflow to Create Contexts . 8

4. IMPLEMENTATION . 13

4.1 Container Isolation . 13
4.2 Client Hardware Resource Guarantee . 15
4.3 Window System Isolation . 15
4.4 Networking Configurations . 16
4.5 Network Resource Allocation . 16
4.6 Workflow with Single Sign On . 17
4.7 Securing the Link Between Client and AP . 19

5. SECURITY ANALYSIS . 28

5.1 Attacks . 28
5.2 Solutions . 29

6. EVALUATION . 31

6.1 Network Resource Prioritization . 31
6.1.1 How Queues Work . 31
6.1.2 Solution . 32
6.1.3 Bandwidth Allocation Algorithm . 33
6.1.4 Experiment Setup . 34
6.1.5 Results . 35
6.1.6 Contributions . 39

6.2 Hardware Resource Guarantee . 40
6.2.1 Experiment Setup . 40
6.2.2 CPU Core Allocation . 40
6.2.3 CPU Bandwidth Allocation . 41
6.2.4 Memory Allocation . 42

6.3 Evaluation of Namespace Isolation . 42
6.3.1 IPC Namespace . 43
6.3.2 Network Namespace . 44
6.3.3 Mount Namespace . 44
6.3.4 PID Namespace . 44
6.3.5 User Namespace . 45
6.3.6 UTS Namespace . 46

7. FUTURE WORK . 62

7.1 Trusted Platform Module (TPM) . 62

8. RELATED WORK . 65

8.1 End-Point Isolation . 65
8.2 End-Point SDN . 66
8.3 Resource Allocation . 66
8.4 Remote Attestation . 67

9. CONCLUSION . 68

APPENDIX: PRIORITY FUNCTION ALGORITHM 70

REFERENCES . 73

v

LIST OF FIGURES

3.1 SeaCat architecture. Protected application and default applications (user’s
own and potentially malware) are isolated. SDN-enabled switch sets policies
in a way that extends the enterprise security context into the device. Trusted
Daemon is responsible for managing the isolation. It also communicates with
SeaCat server to tie the two network domains together. The user uses the
default context from the default application to authenticate and create the
secure context. Upon successful authentication, SeaCat server creates the
secure context in the network. Protected data, non-protected data, and a
gateway to the public internet exist in the network. 10

3.2 Example of network context. Policies, or rules, applied to the SDN-enabled
switch create the logical isolation of the two connections. Queuing mechanism
of the switch is used to prioritize the traffic. 10

3.3 Start of the workflow to create the contexts. At the beginning, only the default
context exists in the network. 10

3.4 Client device connects to the network with default context. 11

3.5 Step 1: Client uses the default context to access the authentication system. . . 11

3.6 Step 2: SeaCat server creates the secure context for this client in the network. 11

3.7 Step 3: SeaCat server requests the TD to create the context in the device. . . . 11

3.8 Step 4: TD creates the context in the client device. Step 5: TD starts the
protected application. 12

4.1 Implementation of the client device. There are two containers. One is for
default applications and the other is for each medical application. A separate
context is created for each container and separate VIF is assigned to each
context. In this case, blue represents the context for the default container and
green represents the context for the application container. In addition, TD
manages the containers and the OVS on the device. 21

4.2 SDN enabled Wi-Fi AP is the gateway for the client device to the enterprise
network. Separate contexts are created in the network as well. As in the client
device, blue represents the default context and green represents the secured
context. The user is authenticated with the authentication system. Then the
SeaCat server requests the controller to create the context in the network and
the AP. 21

4.3 Implementation of containers on client device. Separate container is prepared
for each medical application. Other applications and jobs that exist in the
host in default are contained in the default container. TD runs in the root
namespace. Separate set of policies are created in the OVS for each container. 22

4.4 Each container is mounted at different mount point (e.g., /containers/1,
/containers/2). Overlay filesystem is used so that containers can share the
necessary system files from the underline kernel. Although they are shared,
they cannot be modified from inside the container because they are read only.
If they are modified, the changes are kept in the upper directory of each
container. In Linux, jobs are stored in /etc/init. We copy necessary jobs
from /etc/init (root) to each container’s init directory. 22

4.5 Red boxes represents containers. The application container, the default con-
tainer, and the root namespace have different sets of jobs to create the appro-
priate environment. In addition to create/destroy, start/stop the containers,
TD runs the Python program to communicate with SeaCat server and runs
the SDN controller. 23

4.6 Cgroups allocates hardware resources to each container. We have tested that
it can flexibly allocate CPU core, CPU bandwidth, and memory. 23

4.7 Thick black box represents the Xnest isolation of the containers. To display the
image, Xserver of Xnest sends image to the Xserver of the root. Dotted arrows
represent removed socket. In this diagram, the default container initially had
access to the UDS of the application container and the root, which could be
the attack vector. 24

4.8 An example of using queues. Queues configured in client device, AP, and
the enterprise network impose the maximum bandwidth of medical and non-
medical traffic to each direction. 24

4.9 SSO steps that involve client, SP, IdP, and the controller. SP protects the
access to a resource. IdP is responsible for checking the integrity of the client.
Controller creates the policy enforced context upon request from the SP. 25

4.10 SSO steps that shows our contribution. Step 2 to 9 (grayed out) are the
standard Shibboleth procedures. Instead of delivering a webpage, our SeaCat
program requests the controller and the TD to create context. This shows
that Shibboleth can be integrated into SeaCat. Because Shibboleth is widely
used open source software, it proves SeaCat’s feasibility in terms of SSO. 26

4.11 High-level steps that combine 802.1X (authentication), 802.11i (encryption),
and our context. 26

4.12 The architecture that improves the security of the Wi-Fi link. The AP uses
the VLAN tag to differentiate the traffic. OVS checks the tag to send packets
to the appropriate destination. We combine 802.1X and 802.11i to our solution. 27

6.1 Implemented instance of SeaCat. Client laptop has two containers and the
TD. It is connected to the SDN-enabled AP through virtual wireless interfaces.
The emulated network laptop runs Mininet to emulate the enterprise network.
The controller laptop runs the SDN controller for the enterprise network. 47

6.2 Topology with two servers and two clients. Queues are configured in s1-eth1. 47

6.3 Three queues in s1-eth1 are indicated as Class 1, 2, and 3. Width of the
arrow in the bottom of the queue indicates the allocated bandwidth. A
colored marble represents a packet. Flow entries direct incoming packets to
appropriate queue. Packets are sent out at different rates. 47

vii

6.4 Assume that the algorithm favors the application traffic. Initially, larger
traffic is generated from the default hosts; hence, larger number of marbles
(packets) are going through the default queue. When the application traffic
load increases, the allocated bandwidth is transferred to it, indicated by
narrower arrow for the Default queue and wider arrow for the App queue.
If both queues have large traffic load, larger bandwidth is allocated to more
important traffic. 48

6.5 Initially, larger bandwidth is allocated to the App queue. When the default
traffic load starts to catch up, bandwidth is transferred from the App to the
Default queue. Although the application traffic is considered more important,
the algorithm favors the queue with lower traffic load and likely to transfer
available bandwidth to it if it needs more. 48

6.6 Sample priority function for Queue 1 at State 1 (before bandwidth transfer).
Numbers indicate the area under the curve, which are the current priority and
the prospective priority. Arrow indicates the current throughput. 49

6.7 Sample priority function for Queue 2. 49

6.8 Sample priority function for Queue 3 at State 1 (before bandwidth transfer). . 50

6.9 Sample priority function for Queue 1 at State 2 (after bandwidth transfer). . . 50

6.10 Sample priority function for Queue 3 at State 2 (after bandwidth transfer). . . 50

6.11 Enterprise topology created with Mininet for the experiment. Access switches
are connected to the core switches. Edge switch works as the gateway to the
Internet. Each client and server represent a set of hosts. Queues are configured
in access switch and Wi-Fi APs. 51

6.12 Scenario for Experiment 1. Default Client and Medical 1 Client download
at the same time. Default downloads from the server in the Internet while
Medical 1 downloads from Medical 1 server in the network. Queues are
configured in Queues2 port. 51

6.13 Throughput transition for Experiment 1. It shows the equilibrium between
Class 1 and Default. 51

6.14 Priority functions for Default, Class 1, and Class 2 traffic. The ratio of the
priority between the Medical 1 (1500/x) and the Default (750/x) is 2 to 1. . . . 52

6.15 Priority functions for Default, Class 1, and Class 2 traffic. The ratio of the
priority between the Class 1 (1500/x) and the Default (50/log(x)) varies based
on the available bandwidth. 52

6.16 Scenario for Experiment 2 and 5. Default, Class 1, and Class 2 upload at the
same time. Queues are configured in Queues1 and Queues3 port. 53

6.17 Throughput transition for Experiment 2, which achieves the similar result
as WFQ during the equilibrium, or the time when there is no bandwidth
re-allocation or transfer. The Class 1 traffic receives twice more bandwidth
than the Default traffic at all of the three equilibrium. 53

viii

6.18 Throughput transition for Experiment 2, which achieves the variable ratio
between the Class 1 and the Default. During the first two equilibrium period,
the ratio is 2 to 1. However, during the third equilibrium period, the ratio is
5 to 4. 54

6.19 Scenario for Experiment 3. Class 1 and 2 download at the same time. Queues
are configured in Queues4 port. 54

6.20 Throughput transition for Experiment 3. It shows the equilibrium between
Class 1 and Class 2. 55

6.21 Scenario for Experiment 4. Default, Class 1, and Class 2 download at the same
time. Default and Class 1 traffic are managed at Queues2 port. Class 1 and
Class 2 traffic are managed at Queues4 port. Different queue configurations
are applied to the two ports. 55

6.22 Throughput transition for Experiment 4. It shows how Class 1 affects both
Default and Class 2 throughput. Default and Class 1 reach their equilibrium
when Class 2’s throughput goes down. 56

6.23 Throughput transition for Experiment 5. It shows the transition when three
classes share the same port. 56

6.24 Scenario for Experiment 6. DoS attack traffic and Medical 2 traffic from the
valid user arrive to Medical 2 server at the same time. Queues in Queues5
port allocate enough bandwidth to Medical 2 traffic. 57

6.25 Throughput transition for Experiment 6. It shows how queues can be used to
prevent DoS attack. 57

6.26 Throughput transition for Experiment 7, which uses TCP. It shows similar
result as in Experiment 1. There is more fluctuation than UDP, but the
equilibrium is reached on average. 58

6.27 Priority function for 50/x. Use the section area under the curve around the
maximum bandwidth to find the function that achieves the desired equilibrium. 58

6.28 Priority function for 100/x. 59

6.29 Separate cores are allocated to separate containers. Cgroups handles the
allocation. stress spawns threads in the default container to repeatedly call
sqrt() to exhaust the CPU resource. At the same time, sysbench in the
application container measures the speed to calculate the prime numbers. 59

6.30 Containers share the same core. Same experiment as in the case when the
cores are not shared. 59

6.31 Experiment results of CPU core allocation. Blue bars with horizontal stripes
show the calculation time without another container. Orange bars with tilted
grid show the calculation time when separate cores are allocated. Red solid
bars show the time when cores are shared. (e.g., 2 Core N means separate
two cores, with total of four cores, are allocated to each container. 2 Core S
means two containers share the same two cores.) Sharing the cores with other
container significantly impacts the calculation time. 60

ix

6.32 Experiment results of CPU bandwidth allocation. Blue bars with horizontal
stripes show the calculation time without another container. Orange bars with
tilted grid show the calculation time when the two containers are allocated
the same share of bandwidth while stress is running on the default. Red
solid bars show the time when twice more bandwidth is allocated to the
application container. Allocating larger CPU bandwidth significantly reduced
the calculation time. 60

6.33 Memory resource is shared between the containers. In the default container,
stress spawns threads to call malloc() that tries to obtain 2GB of memory.
While it keeps the memory, /proc/meminfo was read from the application
container. 61

6.34 Experiment result of memory allocation. Blue bar with horizontal stripes
shows the default free memory in the application container. Orange bar with
tilted grid shows the free memory when the stress in the default container
tries to obtain 2GB. Red solid bars show the free memory when Cgroups

imposes the maximum bandwidth. For example, the leftmost red bar shows
the case when Cgroups imposed 1.5GB limit on the default container. In this
case, stress can only obtain up to 1.5GB memory. 61

7.1 TPM checks the integrity (i.e., calculates the hash and sign) of BIOS, kernel,
TD, application container, and the application. Client sends the signature to
the SeaCat Server to authenticate. SeaCat server stores the files so it can
check the signature. When the signature is validated, it signals the client to
start the application. Finally, SeaCat server sends the signal to create the
policy enforced context. 64

7.2 TrouSerS is the software stack that communicates with the TPM. It provides
the interface, which can be used by tpm-tools commands and C programs.
tpm-tools commands are used to configure the TPM and C programs are
used to sign and encrypt. 64

x

LIST OF TABLES

6.1 Summary of CP and PP values calculated from the sample functions. 48

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my thesis advisor, Dr. Kobus van der

Merwe; research staff of the Flux research group; David Johnson; and my project partner,

Junguk Cho, for the constant guidance, motivation, and support.

I thank my committee members, Eric Eide and Sneha Kasera, for their suggestions and

feedback, which have helped me to improve this work.

This material is based upon work supported by the National Science Foundation under

Grant No. 1343713.

Any opinions, findings, and conclusions or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect the views of the National Science

Foundation.

CHAPTER 1

INTRODUCTION

1.1 Motivation

Healthcare professionals use many kinds of medical applications including accessing pa-

tient records, remote diagnosis and consultations, in-home patient monitoring, healthcare-

related analytics, and even remote surgical procedures. These applications are often used

from the same device, which could also be used to run non-medical-related applications

such as web browsers and games. This diversity of applications and devices that contain

multiple applications present a particular challenge to healthcare IT operations. Healthcare

organizations face many stringent regulatory, privacy, and security requirements. For exam-

ple, in-home patient monitoring systems have different privacy and security requirements

compared to similar patient monitoring systems that are used within a hospital. Although

a web browser does not have any requirements for accessing non-medical-related websites,

it should not be able to observe or interfere with any privileged application that have more

stringent requirements. In addition, the medical applications in those devices operate on

the networks that are under the organization’s control.

To address these problems, we propose the SeaCat architecture. It ensures both the se-

curity and the resource for healthcare applications in end-to-end fashion. Our approach uses

end-point application containment to securely isolate medical applications. Our approach

also involves creating a network context in an enterprise network with SDN and extending

SDN primitives into end-points. With this approach, we ensure that medical applications

are not affected by other applications in the same device. In addition, the network resources

are properly isolated and the client device’s hardware resources are guaranteed.

2

1.2 Threat Model

In this section, we provide a high-level overview of the threat model.

1.2.1 Threats and Assumptions on the Client Device

Medical applications must operate on somewhat insecure device where malware could

be installed in the same machine. The first threat that SeaCat defends against is malware

that is running on the same device as a medical application. SeaCat prevents malware that

runs on the same device from stealing sensitive data. The second threat is a DoS attack

from the malware in the client device or on the network. Since multiple applications run

simultaneously, the entire network bandwidth of the client device may be consumed by

the malware. SeaCat prevents this attack by allocating enough network resource for the

medical application. The third threat is that non-medical applications (including malware)

exhaust the hardware resources such as memory and CPU bandwidth. SeaCat prevents

this by allocating enough resources to the medical application. The fourth threat is that

the user accidentally copies and pastes sensitive medical data to non-medical applications

or malware obtains access to the image display or key strokes. In a Linux environment,

SeaCat prevents this by isolating the window system of the medical application.

The fifth threat, which the SeaCat architecture can protect against, is that either

hardware, kernel, container, or the medical application is compromised. In this case, nothing

in the client device can be trusted. SeaCat can use remote attestation to check the integrity

of the device. The solution is described in the Future Work chapter.

1.2.2 Threats and Assumptions on the Enterprise Network

All applications on the client device operate in a hospital enterprise network. Although

it is somewhat more secure than the public Internet, we assume the same threat level as

using the public Internet where any user can attempt to access the network to eavesdrop

or cause a DoS attack. We assume that the wired part of the enterprise network, such

as switches and Ethernet links, are better secured than the wireless (Wi-Fi) link. We

assume that the medical application server, authentication system, and SDN controller

are not compromised. The threat that SeaCat defends against is heavy traffic load on

the enterprise network that disrupts the medical application traffic. Such traffic can be

intentionally generated by malware or unintentionally generated by legitimate users who

download a large file. In addition, SeaCat’s authentication system prevents unauthorized

access to the medical application server.

3

1.3 Thesis Statement and Approach

Our thesis is that isolation mechanism on both end-point devices and a software-defined

networking can be combined to isolate and secure sensitive data and applications through

end-to-end containment in an enterprise network.

We demonstrate that SeaCat provides end-to-end application isolation for a client device

and a network that can provide isolation and resource prioritization for the connection.

SeaCat can provide security through container isolation within a single device. On the

end point, we use container technology to isolate medical application from malware and

other non-medical-related applications. SeaCat can prioritize network resources for each

application. We use SDN in both the enterprise network and on the client device to prioritize

network resources for medical application traffic.

To achieve these goals, we developed a system which uses:

• Linux container [28] (LXC) technology to isolate filesystem and processes between

applications.

• LXC and Cgroups [7] to guarantee hardware resources for each container.

• Xnest [32] to isolate X window system between containers.

• OpenvSwitch [37] on client device to enforce policies that are consistent with the

policies on the enterprise network.

• Single Sign On to authenticate users to create policy enforced context.

• OpenFlow [36] to allocate appropriate bandwidth to prioritize network resources.

We evaluated these features by:

• Showing that protected data cannot be stolen by malware.

• Showing that both network and hardware resources for protected applications are

appropriately allocated.

CHAPTER 2

SECURITY IN HEALTHCARE

2.1 Threats and Regulations

Securing healthcare data is critical for both patients and healthcare organizations. In

2014, Chinese hackers broke into one of the largest U.S. hospital operators, Community

Health Systems Inc., to steal the personal information of 4.5 million patients [22]. Stolen

medical information are typically used to purchase drugs and medical equipment. They

are also used to file made-up claims to obtain insurance payment. Protecting medical

information is challenging since stolen medical data are usually not immediately identified

because the criminals do not use them right away like credit card numbers.

HIPAA (Health Insurance Portability and Accountability Act) was endorsed by the

U.S. Congress to protect healthcare data [45]. It regulates the use and disclosure of an

individual’s health information by covered entities. Covered entities include healthcare

providers (e.g., doctors, clinics, psychologists), health insurance companies, and healthcare

clearinghouses. Thus, for healthcare organizations, security of healthcare data is critical

from a legal perspective too.

2.2 Protecting Security and Privacy

Previous work has identified five methods to protect the security and the privacy of

medical records [13].

• Standards and regulations.

• Encryption algorithms.

• Access control or role-based access.

• Recording the communications on EHR (Electronic Healthcare Record) system.

• Human resource security; educating employees to recognize the importance of security

and privacy.

In the scope of healthcare security, there are many ongoing research efforts in the field

of access control [14, 1, 8]. More medical records are handled electronically and shared

5

among entities who need them. Those entities include doctors and healthcare organiza-

tions. Defining the access control policies and designing the infrastructure for EHR-related

communications that abide by those policies are becoming important [5].

The approach of SeaCat to protect the security and the privacy is different from all of the

above five methods. While it is different, it also enhances the effect of each previous method.

Because SeaCat isolates medical application and other non-medical-related applications, it

makes users less prone to leak the secure data. The isolation assists both users and hospital

system administrators to comply with the regulations. It also frees users who are not

security expert from worrying about the security while they use medical applications. In

addition, because SeaCat requires users to authenticate before using a medical application,

it makes access control simpler. Since SeaCat imposes the security to user’s personal device,

it will become even more useful due to the recent BYOD trend.

2.3 BYOD Trend

Bring Your Own Device (BYOD) is the trend that employees use their own personal

device for work. There are two parts that must be improved before incorporating BYOD

in healthcare organizations [34]. The first part is the lack of security in the existing BYOD

system. A survey shows that 81% of healthcare organizations allow their employees to store

patient data on their mobile device, while 49% of the 81% do not provide any security

for those data [30]. Because no security is incorporated to the device, the users are fully

responsible for all of their operations. In other words, users should always be careful not to

breach any security or privacy regulations when they use their personal device. The second

part is the lack of policy for BYOD. The same survey shows that 71% of businesses with

BYOD have no official policies. When medical data are stolen from an employee’s device,

the organization is subject to hefty fines.

In the case of BYOD, the methods listed in the previous section would not protect the

security and privacy effectively. If the client device is compromised, the methods to protect

data such as encryption and access control may not function as intended. Because SeaCat

is the system that runs in the lower level than these methods, it adds security while all the

existing methods can still be implemented and function at a higher layer.

CHAPTER 3

SEACAT ARCHITECTURE

Our assumed environment is an enterprise healthcare network where healthcare pro-

fessionals bring their portable client devices, which uses Wi-Fi to connect to the network.

They use these devices to run medical applications as well as applications for non-medical

purposes. The first goal of SeaCat is to securely incorporate semi-trusted personal (unman-

aged) client devices into a managed enterprise network. SeaCat provides a means for an

enterprise network to ensure that it is safe to allow personal client devices to connect to the

secured resource. The second goal is to provide enough network and hardware resources to

run the medical applications.

Figure 3.1 shows the architecture that achieves these goals. Our system consists of two

major components; client device and enterprise network. The client device is potentially the

user’s personal device, which from an IT perspective cannot be trusted. Therefore, protected

(i.e., medical) and default (i.e., non-medical and potentially malware) applications must be

isolated. The containment technology and the SDN-enabled switch on the client device not

only isolates the traffic for medical and non-medical applications, but also allows separate

policies to be applied to each.

In addition to the two sets of applications, there must be a trusted process, which we call

Trusted Daemon (TD). The first role of TD is to handle the isolation of the applications. It

manages isolation mechanism and medical applications. The second role is to communicate

with the SeaCat server to provide appropriate policies to the client device. Before the client

device connects to the enterprise network, the policies in the network are managed by the

SeaCat server while the policies in the client device are managed by the TD. Thus, after

the client device is connected, it is necessary to manage the policies of the two domains

together so that there are consistent, end-to-end contexts.

3.1 End-to-end Context

Context is our way of representing the isolation and the resource prioritization applied

to secure and default applications as well as the traffic generated from them. We use the

7

following components to create the end-to-end contexts.

3.1.1 Network Context (Forwarding Rules)

Network context provides the isolation of traffic with forwarding rules applied to the

SDN-enabled switches. In an SDN-enabled switch, forwarding rules determine which output

ports the incoming packets are delivered. Figure 3.2 shows a simple example of SDN-based

context. The first forwarding rule in the switch says that packets arriving on port P0 with

source IP address of 10.0.0.1 and the destination IP address of 10.0.0.3 must be sent out to

the port P2. Similarly, packets from Medical Client that are heading to Medical Server will

be sent out to port P3. Default (or non-Medical) Client is not allowed to communicate with

Medical Server (and Medical Client is not allowed to communicate with Default Server)

because there is no rule that realizes such connections. Hence, the rules provide the logical

isolation of connections. The connections are logically isolated in a sense that even though

all hosts are physically connected to all other hosts, the rules in the switch work as if two

logical links exist to isolate the two connections.

3.1.2 Network Context (Resource Prioritization)

The network context also provides the prioritization of traffic on different contexts.

To achieve this, we use the queuing mechanism of SDN-enabled switches. In Figure 3.2,

the box with Q2 and three arrows represents the queue that is applied to the outgoing

port. As in the forwarding rules, we apply bandwidth allocation rules to the switch to

prioritize the traffic. In this example, maximum bandwidth of 10 Mbps is applied to Default

Client-Default Server traffic and 30 Mbps is applied to Medical Client-Medical Server traffic.

We dynamically change the maximum bandwidth to improve the bandwidth utilization. Our

resource prioritization algorithm and the experiment results are described in the Evaluation

chapter.

3.1.3 Containers on Client Device

We use Linux Containers (LXC) to isolate medical applications from other applications

within the client device. LXC is also used to allocate hardware resources to each context.

LXC is described more in detail in Section 4.5.

3.1.4 802.1X and 802.11i

We use 802.1X to authenticate the client when associating to the Wi-Fi AP and 802.11i

to encrypt the Wi-Fi traffic. Detailed description of how these two protocols are used is

8

described in Section 4.7.

3.1.5 Virtual AP (VAP)

VAPs create the isolation of Wi-Fi traffic in the similar way as the Ethernet VLAN over

the air. This is described more in detail in Section 4.4.

There are three major parts that separate the default and the secure context. The

first part is the isolated environment realized by a container on the client device where

applications would run. The main purpose of this environment is to isolate default applica-

tions from the protected application in the same device, and vice versa. Another purpose

is to allow the network administrator to create the custom environment to run default

applications or a protected application.

The second part is the network context, which include the forwarding rules and the

resource prioritization feature, on the switch of the client device and the switches in the

network. The forwarding rules are set so that the traffic for the default applications can only

reach the authentication server, the gateway to the Internet, and the non-healthcare-related

resources. The rules are also enforced for the traffic of the protected application so that

it can only reach the protected data server. The resource prioritization feature prioritizes

the network bandwidth based on the type of application that the traffic is generated from.

Although the specific configurations are up to the network administrator, it generally assigns

higher priority to the protected applications.

The third part is the server or the resources that exist in the network. They are protected

data server, which is in the secure context; authentication server, non-healthcare-related

server, and the gateway to the Internet, which are in the default context.

3.2 Workflow to Create Contexts

Figure 3.3 shows the start of the workflow to create the contexts. The network only

has the default context. Figure 3.4 shows the time when the client device connects to

the network. Before the client can access the medical application data, the client must

authenticate with the authentication system in the network to create the secure context.

Figure 3.5 shows the client using the default context to access the authentication system.

The authentication system allows the SeaCat server to authenticate the client. It also allows

the SeaCat server to obtain detailed information about the client so that more specific

context for a particular client can be created. Once the client is authenticated, SeaCat

server dynamically creates the secure context for this client in the network (Figure 3.6).

Then the SeaCat server requests the TD to create the context in the device in a way that

9

extends the context from the network to the device (Figure 3.7). Finally, Figure 3.8 shows

the time when the TD creates the context in the client device and starts the protected

application that uses the end-to-end secure context.

10

Figure 3.1: SeaCat architecture. Protected application and default applications (user’s
own and potentially malware) are isolated. SDN-enabled switch sets policies in a way that
extends the enterprise security context into the device. Trusted Daemon is responsible for
managing the isolation. It also communicates with SeaCat server to tie the two network
domains together. The user uses the default context from the default application to
authenticate and create the secure context. Upon successful authentication, SeaCat server
creates the secure context in the network. Protected data, non-protected data, and a
gateway to the public internet exist in the network.

Figure 3.2: Example of network context. Policies, or rules, applied to the SDN-enabled
switch create the logical isolation of the two connections. Queuing mechanism of the switch
is used to prioritize the traffic.

Figure 3.3: Start of the workflow to create the contexts. At the beginning, only the default
context exists in the network.

11

Figure 3.4: Client device connects to the network with default context.

Figure 3.5: Step 1: Client uses the default context to access the authentication system.

Figure 3.6: Step 2: SeaCat server creates the secure context for this client in the network.

Figure 3.7: Step 3: SeaCat server requests the TD to create the context in the device.

12

Figure 3.8: Step 4: TD creates the context in the client device. Step 5: TD starts the
protected application.

CHAPTER 4

IMPLEMENTATION

Figure 4.1 shows the implementation of the client device. There are two containers; one

for the medical application and the other for non-medical applications, which may include

malware. It also has TD, which manages the containers and sets policies to the OpenvSwitch

(OVS), which is the SDN-enabled switch on the endpoint (client device). OVS is used to

create a separate context for each container. Green context, which connects the application

container on the bottom, is for medical applications. Blue context, which connects the

default container on the top, is for non-medical applications. Note that we used OVS for

our SDN realization, but another SDN-enabled switch can also be used. Finally, we focus

on the devices that access the enterprise network using Wi-Fi. For this type of device, two

virtual Wi-Fi interfaces (VIF) are used to separate the contexts over the Wi-Fi link.

Figure 4.2 shows the implementation of the enterprise network. It has the Wi-Fi AP for

the client to connect to the network. The AP has an OVS instance so that the policy can be

created. It has multiple virtual APs (VAP) and each VAP can support a separate context.

In this case, two contexts are supported; green is for medical application and blue is for

default as in the client device. Each VAP is associated to the appropriate VIF of the client

device. The contexts extend to the enterprise network where there could be many switches,

application servers, and non-medical resources. The network also has the authentication

system, SeaCat server, and the controller. The controller creates the contexts in the network

and the AP.

The following sections describe the key components in detail.

4.1 Container Isolation

We use Linux Containers (LXC) to isolate medical applications from other applications

within the client device. LXC is the kernel containment technology to create an isolated

environment (container) to run processes. It uses Cgroups and namespace isolation to

achieve this. Cgroups is used to allocate hardware resources such as CPU bandwidth and

memory to each container. A namespace creates an isolated environment for processes

14

running inside. There are six namespaces; IPC (Inter-Process Communication), network,

mount, PID (Process ID), user, and UTS. For example, the processes in different IPC

namespaces cannot communicate through IPC. LXC uses the kernel to enforce these six

types of isolation to create containers. We used Ubuntu OS to implement and evaluate the

containers.

The main advantage of using LXC is that it is light-weight. Creating, destroying,

starting, and stopping the containers are faster and much less resource-intensive than using

virtual machines. Figure 4.3 shows our implementation of a client device. To reduce the

trusted computing base (TCB), our goal is to migrate all the default processes from the

root namespace to the default container so that only the bare minimum set of processes

runs on the root namespace. Namespaces are created in hierarchy. The process that creates

a (child) namespace can see all the processes running there. Thus, the processes in the root

namespace can see all the processes running in the containers. We run the special process

in the root namespace; i.e., Trusted Daemon (TD). The main role of the TD in terms of

application containment is to create the new container where a medical application (e.g.,

OpenMRS [35]) would run.

To achieve the process isolation efficiently, we first mount each container’s filesystem

to a different mount point on top of the overlay filesystem. Then we create the container

at a separate mount point. Figure 4.4 shows how the containers are mounted in terms

of the filesystem structure. First we create /containers directory. In this directory,

we create a directory for each container. In this case, /containers/1 is created for the

default container and /containers/2 for the application container. Under these directo-

ries, there are three directories called overlay, upper, and lower. All the default jobs

and the applications are moved to /containers/1/overlay. The jobs must be stored

in /etc/init to run the container so we copy all the necessary jobs from /etc/init

to /containers/1/overlay/default/etc/init and remove the unnecessary ones from

/etc/init. This method creates separate and custom environments for each container.

To run the operating system inside the container, many other files are necessary. Because

the overlay filesystem is used, the containers can access the necessary files in the root

directory. More precisely, the processes in the container can read the files in the root

directory through lower directory, but cannot write to them. If a process tries to modify

or delete any file in the root, the change is stored in the upper directory. The same

idea applies to mounting the application container at /containers/2. Thus, we use the

overlay filesystem to efficiently copy the configuration files from the root to the containers.

15

Mounting each container at different mount point prevents processes to access directory

higher than overlay. This mechanism provides the filesystem isolation between containers.

Finally, when the container is started, /sbin/init, which is spawned from the root, will

start the jobs that are moved to the container.

Figure 4.5 shows more detailed container isolation structure. The application and the

default containers share the same kernel. TD and SDN controller run in the root namespace.

TD receives the signal from the SeaCat server. It also runs the SDN controller to set the

flow entries on the OpenvSwitch.

In order to realize SeaCat’s isolated containers, we have selected appropriate jobs that are

started by Upstart for each container and for the root namespace to create the appropriate

environment. Upstart is the init daemon that handles starting the jobs during the system

boot [44]. In general, only the minimum jobs must run in the application container to

run the medical application. Because the default container represents the environment

where everything else runs, most of the jobs in the original kernel configuration run in

this container. For example, procps is the utility to browse /proc filesystem. Although

it is helpful to have this job in the default container, it is unnecessary in the application

container. Finally, jobs that relate to system configurations and daemons run in the root

namespace. One example is cgroup-lite, which is the package to set up Cgroups at system

boot. Cgroup is the tool to isolate hardware resources in LXC.

4.2 Client Hardware Resource Guarantee

Two of the most critical hardware resources for any kind of application are CPU and

memory. We use Linux’s Cgroups to allocate these resources to each container to provide

hardware resource guarantees for a medical application. Figure 4.6 shows the role of

Cgroups. Cgroups is one of the main technologies used in LXC to allocate, prioritize, deny,

manage, and monitor such hardware resources. By default, all the hardware resources are

shared among containers. We use Cgroups to allocate CPU cores, CPU bandwidth, and

memory to each container. This adds additional guaranteed resources to the client device

on top of the network bandwidth. We have tested to show that it is possible to allocate

these resources to our containers.

4.3 Window System Isolation

Figure 4.7 shows the Xserver isolation between containers and the root namespace.

Xserver is the X Window System display server used in Linux. It receives images from

the client application (e.g., browser, console) and sends the information to the display. It

16

also handles the input from the user such as keyboard press and mouse movement. We use

Xnest [32] to isolate the containers in terms of their I/O operations.

We run the containers inside their own Xnest so that separate Xserver is used. This con-

struction prevents the ability to copy and paste or keyboard logging between the containers

and the root namespace. Thus, even if the user opens browsers from different containers,

the user will not be able to copy sensitive information from the application container to the

other. In addition, the malware in the default container will not be able to obtain keyboard

logging or display information of the application container. Xnest uses Unix Domain Socket

(UDS) to communicate to the root Xserver. We make sure that the containers do not share

the UDS of other containers or the root. This prevents access to outside of the container

through UDS.

4.4 Networking Configurations

We use OVS on the network, the AP, and the client device to create contexts. The

advantage of OVS is that it has a well-defined API and it is easy to set complex policies

dynamically. We also virtualize the physical Wi-Fi interface of the client device and the

AP to support multiple contexts. The advantage of having virtual interfaces is that they

create the isolation of Wi-Fi traffic in the similar way as the Ethernet VLAN over the air.

4.5 Network Resource Allocation

The main advantage of constructing the SDN context in an enterprise network is its

simplicity. The SDN makes routing packets and allocating bandwidth simple and dynamic.

Hence, it is the perfect tool to isolate the traffic and prioritize the network resource for

different types of applications.

When the medical application traffic needs to share the same switches and links with

other traffic (e.g., non-medical-related traffic such as video streaming), the user may ex-

perience slow connection or it may even be disconnected. SeaCat allocates the network

resource to different types of traffic in a way that does not cause waste. It allows the

network administrator to set the priority on each type of traffic to achieve flexible and

fine-grained resource allocation.

The challenge is that the throughput of various types of traffic keeps changing. It

is not possible to meet this changing throughput demands with the static bandwidth

configurations. In addition, there may be multiple classes of medical traffic. For example,

there may be two levels of priorities, or classes, where one is the medical traffic that does

not require a large bandwidth, such as EHR application traffic. The other class could be

17

a remote diagnosis application traffic that requires larger bandwidth. Finally, there is the

default class that represents the non-medical-related traffic. The problem is to allocate

appropriate amount of bandwidth to each class of traffic dynamically. The solution is to

use the queuing mechanism of the SDN-enabled switches.

SeaCat uses the network queuing of the OVS in the client device and the network.

Figure 4.8 shows an example. The client device, the AP, and the enterprise network have

queues that impose different bandwidth to different type of traffic in both directions. In

this case, a separate set of queues is created for medical and non-medical traffic. Our

solution is to dynamically change the maximum bandwidth of each queue based on the

priority and the throughput of traffic. In our experiments, we were able to show that our

bandwidth allocation algorithm appropriately allocated bandwidth to achieve the desired

level of network resource allocation.

4.6 Workflow with Single Sign On

Shibboleth [41] is the open source single sign on system that allows clients to authenticate

before accessing a protected resource such as a website. It consists of two components;

Service Provider (SP) and Identity Provider (IdP). SP is typically installed on the Apache

server. Its role is to intercept the HTTP request from the client to the protected resource

and redirect it to IdP. The role of IdP is to authenticate the client by providing the login

page. When the username and password are entered, IdP checks them with the information

stored in the database. If those information are valid, IdP redirects back to the Apache

server where SP grants the access to it.

We leverage the authentication mechanism of Shibboleth by allowing it to store policies

associated with each application so that application specific policies are applied to contexts.

When the user finishes using the application, the user can use Shibboleth’s logout feature

to remove the context. Another contribution is that Shibboleth is open source software

that are widely deployed so it is easy to implement and configure to a particular system.

Finally, although we integrated Shibboleth into SeaCat to create the secure context behind

the scene, the authentication steps that a user needs to take is very similar to what they

are used to with other services that use Shibboleth.

Figure 4.9 shows the Shibboleth SSO steps to prepare the policy enforced network

context. Following is the description of each step:

1. TD starts the default container.

18

2. User accesses (i.e., enters URL to the browser) the Service Provider (SP), which

protects the access to the SeaCat server.

3. User is redirected to the Identity Provider (IdP), which shows the page to enter

username and password.

4. User enters the correct username and password.

5. IdP replies SAML assertion to the browser. It contains the authorization decision

that allows the client to access specified resource; SeaCat server in this case.

6. Browser redirects SAML assertion to SP.

7. SP queries IdP for more specific information about the client (optional).

8. IdP replies the stored client information (optional).

9. User is authenticated. SP allows the client to access the webpage, which executes the

SeaCat program. SP sends Session ID to the browser.

10. The program in SP notifies the controller to create a particular context for this client

(medical application). Controller creates policy enforced context in the enterprise

network.

11. SeaCat program signals the TD that the policy enforced context is ready. It tells the

TD to use the set of policies that are consistent with the context that will be created

by the controller at Step 12.

12. Controller creates the context in the network.

13. TD adds flow entries to OVS for policy enforced context.

14. TD starts the application container.

15. User can use the medical application in the application container to connect the server

using the policy enforced context.

Figure 4.10 shows our contribution to the SSO process. Step 2 to 9, which are grayed out,

are the standard Shibboleth procedures. In the standard procedures, the goal of the client

is to view the webpage after authenticating with the SP. Thus, after Step 9, the standard

HTTP communication will begin. Instead of providing the webpage to the client, SeaCat

runs the SeaCat program, which is written in Python, to notify the controller to create

19

the context for this client (Step 10) and notifies the TD to create the same context in the

client device (Step 11). Accomplishing both of these tasks from one program creates the

centralized context management entity that manages the context in the network and all the

client devices.

4.7 Securing the Link Between Client and AP

Potential security hole exists in the place where the two network domains connect; that

is, the link between the client device and the Wi-Fi AP. Suppose a legitimate client follows

our procedure and creates the secure context. Then a malicious client associates to the

same AP as the legitimate client. This malicious client can sniff the packets for secure

context. If the malicious user finds out the policies for the secure context (e.g., IP address

of the medical application server for destination IP), the malicious user can access the secure

context without being authenticated.

Our solution is to use 802.1X [24] and 802.11i [23] in the client-AP link. We use 802.1X

to authenticate the client before allowing the access to the default context. Then 802.11i is

used to encrypt the connection. Figure 4.11 shows the high-level steps. When the client, or

Station (STA), associates with the AP and tries to use the default context, STA is required

to provide the credential, usually the username and the password. This credential is sent to

the authentication server (AS), which is typically implemented with Remote Authentication

Dial In User Service (RADIUS). RADIUS server usually has the database that stores the

credential of the STAs. STA and AS generate Master Key (MK) from the credential. Then

they generate the Pairwise Master Key (PMK) from MK. After successful authentication,

AS sends Success message to the AP, which is forwarded to the STA.

When the authentication is completed, the STA and the AP conduct the 4-way hand-

shake to derive the Pairwise Transient Key (PTK). Part of the PTK are used to encrypt

and decrypt the data sent between the STA and the AP. The encryption method includes

CCM mode Protocol (CCMP), which uses AES. Since the AP knows that the STA is

authenticated (i.e., AP received the Success message from the AS), its data are sent to the

OVS of the edge of the network. At this point, the connection to the default context is

established. After this point, if the client wants to use the secure context, the client follows

our procedure. Authenticating the client prevents the malicious client to send data past the

AP. Encrypting the client-AP connection prevents the malicious client to sniff the packets

for either context.

Figure 4.12 shows the implementation that combines this solution and the rest of

SeaCat’s implementation. As part of 802.1X, the AP uses the VLAN tag to direct packets

20

to the appropriate destination. Initially, packets for the unauthorized traffic are tagged

as unauthorized. These packets are directed to the RADIUS by the OVS using the tag.

After successful authentication, the AP assigns the (Default, Authenticated) tag to the

authenticated packets, which are directed to the default context. At this point, the client

can use the default context. If the client wants to use the secure context, the client proceeds

with the SeaCat’s authentication procedure. Finally, the medical traffic packets are tagged

as (Secure, Authenticated) and forwarded to the secure context. The link between Virtual

Interface (VIF) and Virtual AP (VAP) are encrypted with 802.11i.

This is a feasible solution because 802.1X and 802.11i are widely used in many enterprise

networks. Note that this solution cannot prevent the malicious client that tries to interfere

with the physical wireless link, for example causing a DoS attack. However, this solution

protects against malicious clients that follow the standard protocols.

21

Figure 4.1: Implementation of the client device. There are two containers. One is for
default applications and the other is for each medical application. A separate context is
created for each container and separate VIF is assigned to each context. In this case, blue
represents the context for the default container and green represents the context for the
application container. In addition, TD manages the containers and the OVS on the device.

Figure 4.2: SDN enabled Wi-Fi AP is the gateway for the client device to the enterprise
network. Separate contexts are created in the network as well. As in the client device,
blue represents the default context and green represents the secured context. The user
is authenticated with the authentication system. Then the SeaCat server requests the
controller to create the context in the network and the AP.

22

Figure 4.3: Implementation of containers on client device. Separate container is prepared
for each medical application. Other applications and jobs that exist in the host in default
are contained in the default container. TD runs in the root namespace. Separate set of
policies are created in the OVS for each container.

Figure 4.4: Each container is mounted at different mount point (e.g., /containers/1,
/containers/2). Overlay filesystem is used so that containers can share the necessary
system files from the underline kernel. Although they are shared, they cannot be modified
from inside the container because they are read only. If they are modified, the changes are
kept in the upper directory of each container. In Linux, jobs are stored in /etc/init. We
copy necessary jobs from /etc/init (root) to each container’s init directory.

23

Figure 4.5: Red boxes represents containers. The application container, the default
container, and the root namespace have different sets of jobs to create the appropriate
environment. In addition to create/destroy, start/stop the containers, TD runs the Python
program to communicate with SeaCat server and runs the SDN controller.

Figure 4.6: Cgroups allocates hardware resources to each container. We have tested that
it can flexibly allocate CPU core, CPU bandwidth, and memory.

24

Figure 4.7: Thick black box represents the Xnest isolation of the containers. To display
the image, Xserver of Xnest sends image to the Xserver of the root. Dotted arrows represent
removed socket. In this diagram, the default container initially had access to the UDS of
the application container and the root, which could be the attack vector.

Figure 4.8: An example of using queues. Queues configured in client device, AP, and the
enterprise network impose the maximum bandwidth of medical and non-medical traffic to
each direction.

25

Figure 4.9: SSO steps that involve client, SP, IdP, and the controller. SP protects the
access to a resource. IdP is responsible for checking the integrity of the client. Controller
creates the policy enforced context upon request from the SP.

26

Figure 4.10: SSO steps that shows our contribution. Step 2 to 9 (grayed out) are the
standard Shibboleth procedures. Instead of delivering a webpage, our SeaCat program
requests the controller and the TD to create context. This shows that Shibboleth can be
integrated into SeaCat. Because Shibboleth is widely used open source software, it proves
SeaCat’s feasibility in terms of SSO.

Figure 4.11: High-level steps that combine 802.1X (authentication), 802.11i (encryption),
and our context.

27

Figure 4.12: The architecture that improves the security of the Wi-Fi link. The AP
uses the VLAN tag to differentiate the traffic. OVS checks the tag to send packets to the
appropriate destination. We combine 802.1X and 802.11i to our solution.

CHAPTER 5

SECURITY ANALYSIS

5.1 Attacks

The client devices and enterprise network in a healthcare setting face various attacks.

They include:

• Information leakage from client’s filesystem: The default container has malware

that try to steal sensitive information from the host’s file system.

• Information leakage from client’s display event: Since the display is shared

among containers, when the default and the application container are running si-

multaneously, malware in the default container can try to steal sensitive information

through the X11 window system. The user may accidentally copy and paste sensitive

information from the application container to the default container.

• DoS attack to the client from the default container: Although malware in the

default container cannot obtain secured information, they can generate large traffic

to fill the client-AP link bandwidth to disrupt the medical application traffic that are

sent simultaneously.

• Hardware resource depletion on client device: Since the hardware resources

such as CPU and memory are shared among containers, processes in one container

can use up all of those resources when the medical application needs them. It can

be caused by a malware or some non-medical-related program running in the default

container.

• Unauthorized access to medical application server: A malicious user attaches

the host to the enterprise network trying to access the medical server to steal patient

records. Alternatively, malware on the host of a legitimate user try to access the

medical application server when the host is connected to the network.

• Packet sniffing on policy-enforced context to steal sensitive information:

After the client authenticates with the SeaCat server and the end-to-end connection

29

is established, a malicious user connects its computer to the end-to-end connection

path to obtain sensitive information sent.

• DoS attack on switch or AP on enterprise network to disrupt the con-

nection for medical application: A malicious user attaches hosts to the enterprise

network to conduct a DoS attack to disrupt the medical traffic. Alternatively, malware

or existing devices in the network might launch a DoS attack.

• Unauthorized access to existing secure context: A malicious user associates the

client device to the AP to connect to the default context. Assume another legitimate

user has created the secure context through this AP. Then the malicious user guesses

the policies used for the secure context correctly and uses the secure context without

being authenticated. The same attack can be conducted from the wired switch in the

network. That is, a malicious user may try to use the existing secured context by

directly connecting to a switch with a wire.

• Packet sniffing at the client-AP link: A malicious user sniffs packets sent over

Wi-Fi, especially those for secure context.

5.2 Solutions

Based on the SeaCat architecture and implementation, we propose solutions to the

expected attacks described in 5.1.

We first consider a malicious user connecting to the enterprise network. The user cannot

access the secured resource such as a medical application server because the network context

to access the resource must be created beforehand. Prior to the authentication, every user

can only access the default context. Since a secure context is created only after successful

authentication with the SSO system, SeaCat prevents malicious users from creating a policy-

enforced context to access secured resources.

We also consider the case when malware exists in the default container of a legitimate

user. There are four types of threats in this case. First, suppose some medical application

allows the user to store information (e.g., patient record) on the host. In addition, malware

exists on that host trying to steal this information. In this case, SeaCat’s container structure

prevents malware from accessing the file system of different containers, thereby protecting

the secured data to leak out of the medical application container.

Second, malware tries to obtain secured information through the client’s display. We

prevent this threat by running medical applications and other applications inside Xnest.

Xnest is both an Xserver and a client. Since separate Xservers are used between the

30

containers (and the root), malware in one container cannot access I/O hardware for another

container. For example, a process in one container cannot log the keystrokes for another

container, which is possible if Xnest is not used. In addition, Xnest prevents the user from

copying and pasting between the containers. We confirmed that Xnest uses Unix Domain

Socket (UDS) to communicate to the root Xserver (e.g., to display image, to obtain keyboard

input). To prevent malware in the container to access another container through UDS, we

remove the sockets from the overlay filesystem of each container.

Third, malware tries to disrupt the simultaneous medical application traffic by gener-

ating a large load of traffic from the default container. Our solution is to prioritize the

bandwidth for the application container by using the queuing mechanism of the SDN-

enabled switches in the client and in the network. Since each queue limits the maximum

bandwidth, we can easily allocate enough bandwidth to the traffic for different containers.

This solution also applies to the case when the malware exists in different host to attack

the AP or the enterprise network.

Fourth, malware tries to deplete the CPU and memory resource for medical application.

Our solution is to guarantee enough of those resources to the application container using

Cgroups. Cgroups is the main tool used in LXC to group processes and assign accessible

devices for each container. We allocate appropriate hardware resources (CPU core, CPU

bandwidth, available memory) to each container so that the processes will be guaranteed

to have them and prevent any impact to other containers.

Unauthorized access to the medical application server can be prevented with SDN. Our

system separates the traffic from the default and the application container. Thus, policies on

the OVS in the host and in the enterprise network limit the default container’s accessibility

to the default context. Our system prevents unauthorized access to the secure context from

the end-point. However, a malicious user may try to access the existing secure context

through the AP. This attack can be prevented by making the client to authenticate, with

802.1X, before allowing access to any of the context. Although we do not enforce such

security measure on the enterprise network, it is much easier to restrict a direct physical

access to switches than restring the access to the AP. Even if a malicious user can somehow

access the switches, the medical application traffic is encrypted so the privacy is secured.

Packet sniffing on policy-enforced context can be prevented by encrypting the connection

in the application level. The most effective way is to use existing methods such as SSL or

IPsec. The Wi-Fi link is especially vulnerable against packet sniffing. The link is secured

by encrypting the connection with 802.11i.

CHAPTER 6

EVALUATION

To evaluate our system, we have implemented it in a small testbed, which includes three

laptops and one AP. Figure 6.1 shows the implemented system. The client laptop is the

Linux-based tablet, which has two LXC containers, TD, OVS, and two VIFs. Cgroups is

also configured for the hardware resource guarantee. We use the two VIFs (VIF0 and VIF1)

to separate the traffic between the default and the medical application. On the AP, it has

16 virtual Wi-Fi interfaces so it can support up to 16 different contexts with different VIFs.

In our deployment, we used two VIFs (Policy VAP and Default VAP) to support the default

and the medical application context.

The server laptop runs Mininet to emulate the wired SDN enterprise network. The

emulated enterprise contains a medical application server, the SeaCat server, the Service

Provider(SP) and Identity Provider (IdP) of SSO, and another server that emulates a server

on the default network. We have emulated the enterprise network topology with the Mininet

to evaluate the resource prioritization feature.

The SDN controller for the enterprise network is on the third laptop. There are two

roles for this controller. One is the flow manager, which inserts flow entries to the Mininet

network and to the OVS of the AP upon request from the SeaCat server. Another is the

DHCP, which assigns IP address to the containers of the client laptop. We use Ryu for the

controller.

6.1 Network Resource Prioritization

In the enterprise network, there may be multiple classes of traffic. The problem of

network resource prioritization is to allocate appropriate amount of bandwidth to each

class of traffic dynamically. Our solution is to use the queues in the SDN-enabled switches.

6.1.1 How Queues Work

Figure 6.2 shows a simple topology where queues can be useful. Suppose Class 1

Server and Class 2 Server want to send streaming data to their associated client. Since

32

the computational resource of the switches and the link between Switch 1 and 2 are limited,

it is necessary to allocate existing bandwidth to each traffic. To do so, queues are configured

in the port indicated as s1-eth1.

Figure 6.3 shows the detail of the queue implementation. In this example, there are

three queues indicated as Class 1, 2, and 3. They are implemented as Hierarchy Token

Bucket [12]. The width of the arrow in the bottom of each queue indicates the maximum

bandwidth allocated to the queue. The colored marble represents a packet. In this case,

Class 3 queue has the highest bandwidth and has the largest number of packets waiting.

The registered flow entries, which is represented as the upper trapezoid in the figure, direct

packets to their corresponding queues. Note that the length of each queue is the same in

our implementation as in this example. If a queue is full, the arriving packet to this queue

would be dropped.

6.1.2 Solution

The simple approach is to use the Weighted Fair Queuing (WFQ) algorithm [11, 39]

to realize the network bandwidth isolation. This approach allocates the fixed weight, or

bandwidth ratio, to each queue and allocates the traffic to a queue. Under WFQ, suppose

the weight for queue i is represented as wi; then packets in each queue receive a fraction of

service equal to wi/Σ(wj) where the sum in the denominator is taken over all queues that

have packets. This represents the work-conserving property, which means the scheduler

immediately serves the next queue if the current queue is empty. We have come up with a

unique approach that can provide similar traffic prioritization to WFQ, but can also allow

the weight to fluctuate based on the throughput and the type of traffic.

Our solution is to dynamically adjust the bandwidth of each queue based on the priority

of the ongoing traffic. There are two factors that determine the priority. One is the type of

traffic such as medical or non-medical and the other is the current traffic load.

Figure 6.4 shows the bandwidth transition of the queues based on the type of traffic.

In this case, the algorithm considers the medical traffic to have higher priority than the

default traffic given the similar traffic load. At first, higher traffic load is observed in the

default queue, indicated by larger number of blue marbles, compared to the medical traffic,

indicated by orange marbles. When the traffic load of medical traffic starts to catch up

with the default traffic, the allocated bandwidth of the queue of medical traffic is increased,

indicated by the wider arrow at the bottom of the queue. At the same time, the allocated

bandwidth of the default queue is decreased, which is indicated by the narrower arrow. As

a result, the default traffic throughput is throttled.

33

Figure 6.5 shows the bandwidth transition based on the current traffic load. As the

previous example, medical traffic is considered to have higher priority. At the beginning,

the load of the default traffic is much lower; hence only a small portion of bandwidth is

allocated to it. When the load of the default traffic starts to increase, the bandwidth is

transferred from the medical traffic queue to the default traffic queue because of the policy

that the lower the current traffic load, the higher the priority of that traffic becomes.

Combining these two types allows us to adjust the bandwidth of each queue in dynamic

and fair manner.

6.1.3 Bandwidth Allocation Algorithm

We implemented the algorithm to realize the above solution. Note, the numbers used in

the following explanations are only for the purpose of explaining this algorithm and showing

its validity.

We first divide the overall bandwidth to 10 Mbps chunks. Then we allocate 10 Mbps

to each queue. If the throughput of a queue reaches some upper threshold, say 8 Mbps, we

simply allocate another 10 Mbps so that the bandwidth of this queue becomes 20 Mbps.

On the other hand, if the throughput becomes below the lower threshold, say 8 Mbps while

having 20 Mbps max, we take away the 10 Mbps from this queue and it goes back into the

bandwidth pool. This pattern continues as long as there is available bandwidth left in the

pool.

When all the available bandwidths are allocated, and yet some queues still want more

bandwidth, we transfer the bandwidth among the queues. To decide which queue will receive

or release the bandwidth, we assign a priority function to each queue. Figures 6.6, 6.7, 6.8

show the priority function of three queues. The arrow represents the current through-

put. Priority is represented as the inverse function of the throughput. Intuitively, as the

throughput of a queue goes up, the priority of this queue goes down. As a result, it becomes

more likely that the bandwidth would be taken away from this queue. In addition, given

the same range of throughput, the higher the curve of a function, the more important that

function becomes. Thus, the priority function allows us to use a single line to simultaneously

represent the two types of priority: current throughput and the importance of traffic. The

following steps describe the transfer algorithm:

1. Divide the area under the curve in every 10 Mbps range.

2. Determine the current priority (CP) of each queue from the current throughput by

finding the section area under the curve. For example, suppose the current throughput

34

of Queue 1 in Figure 6.6 is 29 Mbps. Then the current priority of this queue is the

area under the curve in the range of 10 to 20 Mbps, which is 20. Current priority of

each queue is indicated by the area between the blue and the purple line. Note that

the area under the curve in the first range (between 0 to 10 Mbps) would be infinity,

so we instead calculate the area from 1 to 10 Mbps.

3. If the current throughput of a queue is above the threshold, determine the prospective

priority (PP), which is the adjacent section under the curve. For example, suppose

the current throughput of Queue 3 in Figure 6.8 is 29 Mbps. Then the prospective

priority of this queue is the area under the curve in the range of 30 to 40 Mbps, which

is 43. PP of each queue is indicated by the area between the purple and the red line.

4. Sort the CPs in ascending order and the PPs in descending order. Table 6.1 shows

the list of CPs and PPs calculated from the figures.

5. From the top of the CP and PP list, check if PP is larger than CP. If so, the bandwidth

transfer between those two queues occurs. Check the next PP-CP pair and so on. If

the transfer is rejected once (i.e., PP < CP), no more transfer will occur. From the

example of Table 6.1, Queue 3 receives 10 Mbps from Queue 1. The resulting state is

shown in Figure 6.9 and 6.10. With the extra 10 Mbps, Queue 3 can support its 35

Mpbs throughput, while the throughput of Queue 1 is capped to 20 Mbps.

6. Wait for some interval, say 10 seconds, and go back to step 2.

Formal algorithm is shown in the Appendix.

6.1.4 Experiment Setup

The enterprise network topology we used for the experiment is shown in Figure 6.11.

We implemented the queues in the ports indicated by QueuesN. Note that in the actual

deployment, queues should be configured in every switch including the OVS of a host.

However, the setup in Figure 6.11 is simpler and enough to show the effectiveness. Although

there are only two access switches in the figure, there could be more in the actual network.

Default Client represents the set of clients who use the default context. Medical 1 Client

represents the set of clients who use the secure context Class 1. Class 1 represents less

important medical traffic in terms of network bandwidth (e.g., EHR traffic) and Class 2

represents more important traffic (e.g., remote diagnosis). Each class is mapped to each

queue in a port. We believe three is the appropriate number of classes, but the above

algorithm supports arbitrary number of classes.

35

We implemented the above algorithm in the controller. Every 10 sec. of the polling

interval, the controller measures the throughput of each queue. When the algorithm

indicates that the bandwidth increase or decrease to particular queue(s) is necessary, the

controller sends the commands to the switches through their REST API to change the

bandwidth. We used iperf to generate and measure the UDP traffic for experiment 1 to

6; and generated TCP traffic for experiment 7. Experiment 1 and 3 to 7 show the behavior

of the priority function algorithm. Experiment 2 compares the priority function algorithm

with WFQ.

The maximum bandwidth at each port is set to 100 Mbps. The maximum bandwidth

at each queue regardless of other simultaneous traffic is set to 70 Mbps. At the beginning

of each experiment, 10 Mbps is allocated to each queue. The upper threshold to request

10 Mbps bandwidth increase is current max. bandwidth − 2 Mbps. The lower threshold

to release 10 Mbps bandwidth is current max. bandwidth − 12 Mbps. We used the three

priority functions introduced earlier (shown in Figure 6.6, 6.7, 6.8). We have conducted the

experiment with Mininet.

6.1.5 Results

Experiment 1: This experiment shows the behavior of the bandwidth allocation when the

Default Client and Medical 1 Client download at the same time (Figure 6.12). Figure 6.13

shows the throughput transition measured at the two clients. At first, the server generates

the traffic of 5 Mbps and gradually increases it to 75 Mbps (5, 15, 25, and so on). The

graph shows that the controller allocates more bandwidth as the throughput increases. The

spikes are shown when the bandwidth is increased. The reason is that at the moment the

bandwidth is increased, the queue is full and the incoming rate is lower than the outgoing

rate. Thus, the spike appears until the number of packets in the queue decreases and

becomes stable. Note that initially, it takes about 150 seconds for the 70 Mbps bandwidth

to be allocated to the Default traffic. This time can be reduced by decreasing the polling

interval of the controller.

At about 200 sec., Class 1 starts to increase the throughput to 74 Mbps. Soon after

it starts to increase, the controller transfers the bandwidth from Default queue to Class 1

queue at Queues2 port until the equilibrium is reached at 60 Mbps for Class 1 and 30 Mbps

for Default. The other 10 Mbps is allocated to Class 2 queue. At about 500 sec., Default

starts to decrease the throughput back to 6 Mbps. Soon after it starts to decrease, the

controller transfers the unused bandwidth from Default to Class 1.

Experiment 2: The purpose of this experiment is to compare the difference between

36

our priority function algorithm and the Weighted Fair Queuing (WFQ) algorithm. Priority

function can achieve the similar effect as WFQ; that is, the weights of two classes can be

set so that they are consistent regardless of the available bandwidth. In addition, priority

function can also be used so that the weights would differ based on the available bandwidth.

Figure 6.14 shows the functions where the ratio of the priority of the Class 1 function

(f(x) = 1500/x) and the Default function (f(x) = 750/x) is consistent by 2 to 1, regardless

of the throughput. Using this set of functions achieves the similar effect as WFQ where the

ratio of the weight of the Class 1 traffic and the Default traffic is always 2 to 1.

Figure 6.15 shows the functions where the ratio of the Class 1 function (f(x) = 1500/x)

and the Default function (f(x) = 50/log(x)) is not consistent (i.e., as the bandwidth

increases, the ratio reaches approximately 1 to 1). With this log function, when the available

bandwidth is scarce, it prioritizes the Class 1 traffic. However, when the available bandwidth

is plenty, the priority of the two classes would converge. One of the instances this feature

would be useful is when the network administrator wants to enforce a policy so that when

the bandwidth is scarce, they want to allow the medical traffic to have higher precedence;

however, when the bandwidth is plenty, they want to allow the default traffic to have better

bandwidth ratio so that the user experience will improve (e.g., researchers can have faster

access to the Internet to do research). Therefore, priority functions provide the network

administrator more flexibility to prioritize the traffic than using the WFQ. In general, this

flexibility is useful because it can enforce more complex policies and meet more complex

demands than by simply allocating fixed weights.

The setup of this experiment is shown in Figure 6.16 where the Default, Medical 1

(Class 1) Client, and Medical 2 (Class 2) Client upload at the same time. The first part

of this experiment shows the case when the functions are configured so that the bandwidth

allocation follows the similar pattern to WFQ (i.e., It uses the functions in Figure 6.14).

Figure 6.17 shows the throughput transition measured at the three servers. The first

equilibrium is reached around 200 sec to 450 sec when the Class 2 traffic, which has the

highest priority, obtains 70 Mbps. During this time, the throughput ratio between Class 1

and Default is 2 to 1 (20 Mbps to 10 Mbps). The second equilibrium is reached around 500

sec to 700 sec when the Class 2 traffic is reduced to 35 Mbps, which allows the other two

classes to compete for the remaining bandwidth. During this time, the throughput ratio is

still 2 to 1 (40 Mbps to 20 Mbps). The third equilibrium is reached around 750 sec to 900

sec when the Class 2 traffic is reduced close to 0. During this time, the throughput ratio is

still 2 to 1 (60 Mbps to 30 Mbps). Thus, priority functions can achieve the similar effect as

37

WFQ where the relative ratio, or the weights, of two types of traffic is consistent.

In this example, the ratio of the Class 1 and the Default was 2 to 1 for all three

equilibriums. However, note that the ratio cannot be 2 to 1 at other available bandwidth

values. For example, if the available bandwidth is 40 Mbps, then the ratio would be 3 to

1 as shown at time 500 sec in Figure 6.17. However, if the granularity for the bandwidth

transfer unit becomes smaller (it is 10 Mbps in all of our experiments), the ratio would

converge to 2 to 1, or the ratio indicated by the priority functions.

Also note that it takes about 200 sec for the Class 2 traffic to obtain 70 Mbps in this

experiment. This is because we try to show the bandwidth transition; hence, the load is

increased by 10 Mbps in every 30 sec. However, even if the Class 2 traffic immediately

started to generate 70 Mbps load at time 0, it would take 70 sec for it to obtain the 70

Mbps since the polling interval is set to 10 sec (i.e., 10 Mbps is transferred every 10 sec).

This ”warm-up time” does not exist in WFQ. However, in the priority function algorithm,

the warm-up time can be reduced by reducing the polling interval. Although this method

reduces the warm-up time, it would increase the overhead at the controller and every switch.

Thus, the tradeoff must be considered carefully.

Depending on the configurations such as the polling interval, the warm-up time can be

long resulting in a relatively slow transition of bandwidth from one traffic class to another.

However, this slow rate of bandwidth transfer can be beneficial. For example, in Figure 6.17,

it took about two minutes to release the 40 Mbps bandwidth allocated to Class 2 (from

time 400 to 500 sec) and re-allocate it to Class 1 and Default. As with the warm-up time,

this transfer time can be reduced up to certain extent by reducing the polling interval.

However, the slow transfer, or gradual change in the available bandwidth, is helpful for

applications that use streaming. For example, sudden bandwidth drop while downloading

the video streaming may starve the buffer on the client device and pause the video. Since the

bandwidth allocation, or re-allocation, to each queue immediately takes effect with WFQ,

such problem is more likely to occur. On the other hand, the transfer time can be arbitrarily

increased with the priority function algorithm. Thus, the priority function algorithm can

reduce the likelihood of problems caused by sudden change in the available bandwidth.

The second part of this experiment shows the case when the log(x) is used for the

denominator of the Default function instead of x (i.e., it uses the functions in Figure 6.15).

It allows the priority, or the weight, of the Default traffic to converge to that of the Class

1 traffic as the available bandwidth increases. Every other factors are kept the same as the

first part. Figure 6.18 shows the throughput transition measured at the three servers. The

38

first equilibrium is reached around 200 sec to 450 sec. During this time, the throughput

ratio between Class 1 and Default is 2 to 1 (20 Mbps to 10 Mbps). The second equilibrium

is reached around 500 sec to 700 sec when the Class 2 traffic is reduced to 35 Mbps. During

this time, the throughput ratio is still 2 to 1 (40 Mbps to 20 Mbps). The third equilibrium

is reached around 750 sec to 900 sec when the Class 2 traffic is reduced close to 0. During

this time, the throughput ratio is changed to 5 to 4 (50 Mbps to 40 Mbps). This result

shows that the priority functions can allow the weights of the traffic to change based on the

available bandwidth, which is not the case with WFQ.

Experiment 3: This experiment shows the behavior of the bandwidth allocation when the

Medical 1 Client and Medical 2 Client download at the same time (Figure 6.19). Figure 6.20

shows the throughput transition measured at the two clients. The equilibrium is at 50 Mbps

for Class 2 and 40 Mbps for Class 1. In this experiment, Class 2 received more bandwidth

than Class 1 because its priority is defined to be higher with the functions. The gap is

smaller compared to the case of Default and Class 1 because the difference of priority is

smaller.

Experiment 4: This experiment shows the behavior of the bandwidth allocation when the

Default, Medical 1 Client, and Medical 2 Client download at the same time (Figure 6.21).

Figure 6.22 shows the throughput transition measured at the three clients. At first, Default

and Medical 2 client download at over 70 Mbps. Since their traffic do not share the same

port, they both get 70 Mbps. When Medical 1 client starts to download, it takes away

bandwidth from Medical 2 at Queues4 port and from Default at Queues2 port. Eventually,

the equilibrium is reached around 400 sec. Then at about 600 sec., Class 2 traffic starts to

decrease to 4 Mbps. After Class 2 traffic is decreased, the equilibrium is reached at Queues2

port.

Note that between 400 to 600 sec., although 90 Mbps is available at Queues2 port,

Default and Class 1 queues are filled up at only 40 Mbps rate. The algorithm actually

allocates 50 Mbps to Class 1, but since the bottleneck is at Queues4, it can only use 40

Mbps of it. One way to mitigate this bandwidth waste is to decrease the allocating unit, say

to 5 Mbps. This method helps to satisfy demand from every class in finer grained manner.

It does not require any additional implementation because it only takes one parameter to be

changed. However, it only reduces the wasted bandwidth; it does not completely eliminate

the waste. It also increases the overhead of allocation and release. Another way is to add

the monitoring algorithm to check if the allocated bandwidth is actually used. If not, the

algorithm can decide to punish the class by not allocating more bandwidth to it for a certain

39

amount of time. This method solves the problem, but the algorithm becomes more complex.

Experiment 5: This experiment shows the behavior of the bandwidth allocation when

the Default, Medical 1 Client, and Medical 2 Client upload at the same time (Figure 6.16).

Figure 6.23 shows the throughput transition measured at the three servers. At first, Default

uploads to over 70 Mbps. At about 200 sec., Medical 1 starts to upload to over 70 Mbps.

The equilibrium is reached at Queues1 and Queues2 port. Then at about 500 sec., Medical

2 starts to upload, taking away the bandwidth of Default and Class 1 at Queues2 port.

Experiment 6: This experiment simulates the DoS attack to the medical server (Fig-

ure 6.24) while the client is uploading to the same medical server. Figure 6.25 shows the

throughput transition measured at the server. Initially, Class 2 client uploads to the server

at over 70 Mbps. At about 300 sec., traffic is generated from the Internet to the same server

at over 100 Mbps. However, the uploading rate from the attacker is limited to 20 Mbps and

it does not affect the throughput of Class 2 (with chosen priority functions).

Experiment 7: The setup of this experiment is the same as Experiment 1 (Figure 6.12).

We generated TCP traffic from the two clients instead of UDP. Note that unlike the previous

experiments, the TCP algorithm changes the load generated by the clients. Figure 6.26

shows the throughput transition measured at the server. The two clients started to generate

the traffic simultaneously and continued for 700 sec. Before 200 sec, Default traffic obtained

higher bandwidth, but the bandwidth was transferred to Class 1 traffic after 200 sec because

of its higher priority. At about 300 sec, the same equilibrium as Experiment 1 was reached;

Default obtained 30 Mbps and Class 1 obtained 60 Mbps. This result shows that our

transfer algorithm also works with TCP.

6.1.6 Contributions

The main advantage of this algorithm is the flexibility. The network administrator can

adjust the functions to precisely represent the relative priority of traffic. Because flow

entries are used to allocate traffic to the queues, it can be done in a simple and dynamic

manner even when there are many queues. The network administrator can also adjust

the bandwidth section range and polling interval to come up with the most appropriate

configuration to realize the policies. Finally, unlike with WFQ, the priority functions allow

the weights to fluctuate based on the available bandwidth.

Another advantage is that given some available bandwidth, configuring the equilibrium

bandwidth between two classes is as easy as configuring the WFQ. Figure 6.27 and 6.28

show the two priority functions used in experiment 1. In this experiment, we showed that

the equilibrium bandwidth is 60 Mbps for Class 1 traffic and 30 Mbps for Default traffic.

40

We can find the priority functions that achieve this equilibrium with the following method.

First, find the area under the curve adjacent to the maximum bandwidth of the two types

of traffic. They are indicated as a and b in Figure 6.27; indicated as A and B in Figure 6.28.

Use an arbitrary function, say 50/x, for the first queue. Then, adjust the other function so

that b < A and B < a. In this case, 100/x satisfies these conditions.

6.2 Hardware Resource Guarantee

The LXC containers of SeaCat guarantee hardware resources to the applications running

inside. LXC uses Cgroups so that CPU, memory, block I/O, and other hardware resources

are allocated to each container. CPU and memory are two of the most important hardware

resources for any application. Our evaluation shows that it is possible to allocate these

resources to our containers.

6.2.1 Experiment Setup

We used Emulab testbed [46] to take advantage of the architecture with many cores and

large memory. The machine we used has the Intel CPU with eight cores and about 12 GB

of total memory. We have configured our default and application container on this machine.

To generate load from the default container, we used stress, which is the tool used in

Linux to stress test a system mainly regarding the CPU and the memory. We used it to

spawn worker threads that conduct computational intensive calculations (calling sqrt()).

We also used it to allocate and keep certain amount of memory. To measure the effect from

stress, we used another tool called sysbench, which is the tool used in Linux to measure

the system performance. We used it to measure the CPU performance by measuring the

time it took to conduct prime number calculations.

6.2.2 CPU Core Allocation

Allocating separate CPU core to each container is an effective way to guarantee the

CPU resource. Figure 6.29 and 6.30 show the experiment setup. Figure 6.29 shows the case

when two cores are allocated to the default container and the other two are allocated to the

application container. Figure 6.30 shows the case when four cores are shared by the two

containers.

We spawned 10 threads that repeatedly executes CPU intensive calculation (calling

sqrt()) using stress from the default container. At the same time, we ran sysbench

to measure the time it takes to conduct a fixed amount of calculation in the application

container. In this case, sysbench calculated prime numbers up to 20,000 with 10 threads.

41

We spawned 10 threads in both stress and sysbench to keep all cores busy. We have

conducted this experiment by allocating different/same cores to each container.

Figure 6.31 shows the results. Blue bars with horizontal stripes show the average time

it took for sysbench to calculate the prime numbers for 10 times when no other container

is running. This works as the base case. Orange bars with tilted grid show the average time

when the cores are not shared as in Figure 6.29 and the stress threads are running. Red

solid bars show the average time when cores are shared and the stress threads are running.

Thin black bars show the 95th percentile. We tested using 1 to 4 cores. The results show

that the calculation time at least doubled when the cores are shared in all number of cores.

It also shows limited impact from other container when separate cores are allocated. This

means using the separate cores for different containers is an effective way to guarantee the

CPU resource.

6.2.3 CPU Bandwidth Allocation

Mobile devices, especially smartphones, usually do not have many cores. If the device

has only one core, allocating separate core to each container is not possible. CPU bandwidth

allocation provides finer-grained control over the CPU resource even there are only a few

cores in the machine. To do so, Cgroups assigns a relative share of CPU bandwidth to each

container. It can set the priority to a group of processes, in our case containers, so that the

scheduler favors the higher priority processes and they receive more CPU time.

Figure 6.32 shows the results. Blue bars with horizontal stripes indicate the average

prime number calculation time (up to 40,000) in the application container when there is no

stress in the default container. As in the core allocation experiment, the average was taken

over 10 calculations. CPU bandwidth is uniformly allocated, which means the bandwidth

ratio between the default and the application container is 1:1. This works as the base case.

Orange bars with tilted grid show the time when the stress runs in the default container

while maintaining the 1:1 ratio. Red solid bars show the time while the stress is running

and when the ratio is changed to 1:2, which means twice more bandwidth is allocated to

the application container. We tested these experiments in the case of 1, 2, 4, and 8 cores.

The results show that the bandwidth allocation is effective for every scenario. Especially

in 1 core case when the core allocation is not possible, it showed about 24% decrease in

time. The strength of this method is that since the ratio can be changed to any value,

it is possible to allocate the CPU resource with much finer-grained manner than the core

allocation method.

42

6.2.4 Memory Allocation

Figure 6.33 shows the experiment setup to run the memory allocation experiment.

Cgroups can set the memory-use limit by each container. We used stress in default

container which tries to obtain 2GB of memory using malloc() calls. It also keeps the

obtained block in memory by re-dirtying so that the OS does not remove it. We measured

the available memory in the application container with /proc/meminfo, which stores various

memory-related status.

Figure 6.34 shows the results. The blue bar with horizontal stripes indicated by NS, NL

shows the available memory in the application container when there is no stress in the

default container. This is used as the base case. The orange bar with tilted grid indicated

by S, NL shows the available memory when stress obtains 2GB of memory. Since no limit

is imposed for the default container, the available memory for the application container is

reduced by approximately 2GB. The three red solid bars show the available memory when

the Cgroups imposes the memory limit to the default container. The limits are indicated

by the value on the x-axis. They show that Cgroups can accurately impose memory limit

to a container.

These results, combined with the CPU resource guarantee, show that LXC can guarantee

two of the most critical hardware resources to the desired container.

6.3 Evaluation of Namespace Isolation

A namespace is an abstraction of the system resources controlled by the Linux kernel.

There are six namespaces; IPC, network, mount, PID, user, and UTS. Processes that are

in different namespaces do not share the resources; hence, it appears to those processes

that they own the isolated instance of each resource. The changes made to the resources

from one namespace do not appear to the processes in another namespace. LXC uses all

of the six namespaces to create the isolated containers. We will evaluate these namespaces

to show that containers appropriately create isolated environment for the purpose of our

solution.

The easiest way to check the namespace isolation between the root and a container is

to list the symbolic links in /proc/self/ns directory in verbose format. The following

terminal output shows the list of symlinks in root namespace.

kano@appct : ˜ $ l s − l / proc / s e l f /ns
t o t a l 0K
lrwxrwxrwx 1 kano cs6480 0 Mar 20 12 :12 ipc −> i p c : [4 0 2 6 5 3 1 8 3 9]
lrwxrwxrwx 1 kano cs6480 0 Mar 20 12 :12 mnt −> mnt : [4 0 2 6 5 3 1 8 4 0]
lrwxrwxrwx 1 kano cs6480 0 Mar 20 12 :12 net −> net : [4 0 2 6 5 3 1 9 8 0]

43

lrwxrwxrwx 1 kano cs6480 0 Mar 20 12 :12 pid −> pid : [4 0 2 6 5 3 1 8 3 6]
lrwxrwxrwx 1 kano cs6480 0 Mar 20 12 :12 user −> user : [4 0 2 6 5 3 1 8 3 7]
lrwxrwxrwx 1 kano cs6480 0 Mar 20 12 :12 uts −> uts : [4 0 2 6 5 3 1 8 3 8]

The following shows the symlinks in one of our containers.

kano@default : ˜ $ l s − l / proc / s e l f /ns
t o t a l 0
lrwxrwxrwx 1 kano cs6480 0 Mar 28 09 :25 ipc −> i p c : [4 0 2 6 5 3 2 3 1 2]
lrwxrwxrwx 1 kano cs6480 0 Mar 28 09 :25 mnt −> mnt : [4 0 2 6 5 3 2 3 1 0]
lrwxrwxrwx 1 kano cs6480 0 Mar 28 09 :25 net −> net : [4 0 2 6 5 3 2 3 1 5]
lrwxrwxrwx 1 kano cs6480 0 Mar 28 09 :25 pid −> pid : [4 0 2 6 5 3 2 3 1 3]
lrwxrwxrwx 1 kano cs6480 0 Mar 28 09 :25 user −> user : [4 0 2 6 5 3 1 8 3 7]
lrwxrwxrwx 1 kano cs6480 0 Mar 28 09 :25 uts −> uts : [4 0 2 6 5 3 2 3 1 1]

The ten digit numbers towards the right are the inode numbers. An inode number is the

reference to an inode. An inode is the table that stores the metadata and the pointer

to the content of a particular file. The kernel ensures that if the two processes are in

different namespace, their inode numbers in this directory would be different. In this case,

the inode number for every namespace except user namespace is different between the

root and the container. This means all the namespaces except for the user namespace

are properly isolated. We will describe the solution to isolate the user namespace in the

following subsection.

In the remainder of this section, we will describe and evaluate each namespace isolation

to prove the effectiveness of the container isolation.

6.3.1 IPC Namespace

IPC namespace isolates the System V inter-process communication (IPC) mechanisms,

namely, message queues, semaphore sets, and shared memory segments. We performed the

following experiments to show that IPC through all three mechanism is isolated between

containers.

To evaluate the message queue isolation, we wrote the sender-receiver program in C,

which communicates the string messages typed by the user and sends them through a

message queue. In this program, both the sender and the receiver uses the msgget()

method. It uses a key (an integer) to create a message queue. The return value represents

the Queue ID. When two processes in the same namespace use the same key to create a

message queue, they can use this queue to exchange messages. When they are in different

namespace (i.e., different containers), two different queues with different Queue IDs are

created even though the same key is used. As a result, the processes cannot communicate

if they live in different namespace.

44

To evaluate the semaphore sets isolation, we wrote a C program that is similar to the

one described above. One process creates the semaphore with semget() method with a key.

Another process accesses this semaphore with the same key to exchange values. A similar

result was observed as in the experiment of message queue. When the processes are in a

different namespace, they cannot communicate using the semaphore even if they use the

same key.

To evaluate the shared memory isolation, we wrote a C program that is similar to the

one described above. One process allocates the shared memory with shmget() method

with a key. Another process calls shmat() method with the same key to attach to the same

memory to communicate. Similar results were observed as in the experiment of message

queue. When the processes are in different namespace, they cannot communicate using the

shared memory even if they use the same key.

6.3.2 Network Namespace

Network namespace allows each container to have its own virtual network interface.

Those interfaces can be configured independently (e.g., IP address, port number, routing

table) from interfaces in other namespaces. Processes in the same container see the same

network interfaces, but cannot see the interface of other containers. Because of this isolation,

we were able to assign different IP address to each container. We used OVS to map each

container’s virtual interface to the corresponding Wi-Fi virtual interface.

6.3.3 Mount Namespace

Mount namespace isolates file system mount points seen by the processes. Processes in

different mount namespace see a different file system hierarchy. Thus, the main purpose of

using the mount namespace is to separate the file systems. Our containers are mounted to

different mount point (e.g., /containers/1/, /containers/2/) using the mount namespace

feature. In addition, we combined it with overlay file system to efficiently share the necessary

kernel files in copy-on-write manner.

6.3.4 PID Namespace

PID namespace is used so that processes in the container can use the PID range

independently from other containers or the root. For example, the init of a container

and the init of the root can both have PID 1 because their PID namespaces are different.

Note that every process in a container, including init, can be seen from the root namespace.

For example, the default container’s init can be seen from the root namespace running

45

as PID 7726. This is because the PID namespace uses the nested hierarchical structure

where a process can only see other processes running in the same PID namespace and the

namespaces nested below its PID namespace.

6.3.5 User Namespace

A user ID (UID) is a positive integer assigned to each user in Unix OS. Having different

user namespace means assigning nonoverlapping blocks of UIDs to each namespace. In the

root namespace, 232 different UIDs are available, but only a small portion of it is allocated

to each user namespace. For example, suppose five people share one machine. Each person

is allocated to their own user namespace, which typically has the UID range of 65,536. For

example, person A has the range 100,000 to 165,536, person B has the range of 165,537 to

231,073, and so on. Within these ranges, each person can create more users.

Until recently (2014), LXC has not supported the user namespace isolation. In such a

case, the UID block allocated to the container would be the same as the one in the root

namespace. This means that if the process in the container somehow get access to any

host resource through proc, sys, or some system calls, the process may be able to escape

the container [17]. We learned that the entire 32-bit range of UIDs are allocated to our

containers.

One solution is to use the unprivileged container. It allows the container creator to

assign any range of UIDs to the container. Thus, the creator simply needs to allocate

unused range in the root to the new container. That way, the processes in the container are

kept in its own user namespace. We have installed the unprivileged container to our Linux

testbed and allocated unused UID range to it. The following terminal output shows the list

of symlinks in the root namespace.

kano@appct : ˜ $ l s − l / proc / s e l f /ns
t o t a l 0K
lrwxrwxrwx 1 kano cs6480 0 Mar 20 12 :12 ipc −> i p c : [4 0 2 6 5 3 1 8 3 9]
lrwxrwxrwx 1 kano cs6480 0 Mar 20 12 :12 mnt −> mnt : [4 0 2 6 5 3 1 8 4 0]
lrwxrwxrwx 1 kano cs6480 0 Mar 20 12 :12 net −> net : [4 0 2 6 5 3 1 9 8 0]
lrwxrwxrwx 1 kano cs6480 0 Mar 20 12 :12 pid −> pid : [4 0 2 6 5 3 1 8 3 6]
lrwxrwxrwx 1 kano cs6480 0 Mar 20 12 :12 user −> user : [4 0 2 6 5 3 1 8 3 7]
lrwxrwxrwx 1 kano cs6480 0 Mar 20 12 :12 uts −> uts : [4 0 2 6 5 3 1 8 3 8]

The following terminal output shows the list of symlinks in the unprivileged container.

root@ap1 : ˜ $ l s − l / proc / s e l f /ns
t o t a l 0
lrwxrwxrwx 1 root root 0 Mar 20 18 :12 ipc −> i p c : [4 0 2 6 5 3 2 5 9 8]
lrwxrwxrwx 1 root root 0 Mar 20 18 :12 mnt −> mnt : [4 0 2 6 5 3 2 5 8 4]

46

lrwxrwxrwx 1 root root 0 Mar 20 18 :12 net −> net : [4 0 2 6 5 3 2 6 1 9]
lrwxrwxrwx 1 root root 0 Mar 20 18 :12 pid −> pid : [4 0 2 6 5 3 2 6 0 5]
lrwxrwxrwx 1 root root 0 Mar 20 18 :12 user −> user : [4 0 2 6 5 3 2 5 7 7]
lrwxrwxrwx 1 root root 0 Mar 20 18 :12 uts −> uts : [4 0 2 6 5 3 2 5 9 1]

All the inode numbers, including for user namespace, are different between the root names-

pace and the unprivileged container.

The unprivileged container used in this evaluation is installed from the template provided

by the LXC team. Thus, the user namespace isolation feature must be understood and

integrated into our custom container. We leave this effort as future work.

6.3.6 UTS Namespace

UTS namespace is used to isolate the hostname identifier. LXC uses it so that each

container has its own hostname and NIS domain name (although we do not use NIS domain).

Various initialization and configuration scripts use the hostname. With SeaCat, Trusted

Daemon can assign an arbitrary host name to each container.

47

Figure 6.1: Implemented instance of SeaCat. Client laptop has two containers and the TD.
It is connected to the SDN-enabled AP through virtual wireless interfaces. The emulated
network laptop runs Mininet to emulate the enterprise network. The controller laptop runs
the SDN controller for the enterprise network.

Figure 6.2: Topology with two servers and two clients. Queues are configured in s1-eth1.

Figure 6.3: Three queues in s1-eth1 are indicated as Class 1, 2, and 3. Width of the
arrow in the bottom of the queue indicates the allocated bandwidth. A colored marble
represents a packet. Flow entries direct incoming packets to appropriate queue. Packets
are sent out at different rates.

48

Figure 6.4: Assume that the algorithm favors the application traffic. Initially, larger
traffic is generated from the default hosts; hence, larger number of marbles (packets) are
going through the default queue. When the application traffic load increases, the allocated
bandwidth is transferred to it, indicated by narrower arrow for the Default queue and wider
arrow for the App queue. If both queues have large traffic load, larger bandwidth is allocated
to more important traffic.

Figure 6.5: Initially, larger bandwidth is allocated to the App queue. When the default
traffic load starts to catch up, bandwidth is transferred from the App to the Default queue.
Although the application traffic is considered more important, the algorithm favors the
queue with lower traffic load and likely to transfer available bandwidth to it if it needs
more.

Table 6.1: Summary of CP and PP values calculated from the sample functions.

Queue ID CP Queue ID PP

1 20 3 43
2 41 1 14
3 61

49

Figure 6.6: Sample priority function for Queue 1 at State 1 (before bandwidth trans-
fer). Numbers indicate the area under the curve, which are the current priority and the
prospective priority. Arrow indicates the current throughput.

Figure 6.7: Sample priority function for Queue 2.

50

Figure 6.8: Sample priority function for Queue 3 at State 1 (before bandwidth transfer).

Figure 6.9: Sample priority function for Queue 1 at State 2 (after bandwidth transfer).

Figure 6.10: Sample priority function for Queue 3 at State 2 (after bandwidth transfer).

51

Figure 6.11: Enterprise topology created with Mininet for the experiment. Access switches
are connected to the core switches. Edge switch works as the gateway to the Internet. Each
client and server represent a set of hosts. Queues are configured in access switch and Wi-Fi
APs.

Figure 6.12: Scenario for Experiment 1. Default Client and Medical 1 Client download at
the same time. Default downloads from the server in the Internet while Medical 1 downloads
from Medical 1 server in the network. Queues are configured in Queues2 port.

Figure 6.13: Throughput transition for Experiment 1. It shows the equilibrium between
Class 1 and Default.

52

Figure 6.14: Priority functions for Default, Class 1, and Class 2 traffic. The ratio of the
priority between the Medical 1 (1500/x) and the Default (750/x) is 2 to 1.

Figure 6.15: Priority functions for Default, Class 1, and Class 2 traffic. The ratio of
the priority between the Class 1 (1500/x) and the Default (50/log(x)) varies based on the
available bandwidth.

53

Figure 6.16: Scenario for Experiment 2 and 5. Default, Class 1, and Class 2 upload at
the same time. Queues are configured in Queues1 and Queues3 port.

Figure 6.17: Throughput transition for Experiment 2, which achieves the similar result
as WFQ during the equilibrium, or the time when there is no bandwidth re-allocation or
transfer. The Class 1 traffic receives twice more bandwidth than the Default traffic at all
of the three equilibrium.

54

Figure 6.18: Throughput transition for Experiment 2, which achieves the variable ratio
between the Class 1 and the Default. During the first two equilibrium period, the ratio is
2 to 1. However, during the third equilibrium period, the ratio is 5 to 4.

Figure 6.19: Scenario for Experiment 3. Class 1 and 2 download at the same time. Queues
are configured in Queues4 port.

55

Figure 6.20: Throughput transition for Experiment 3. It shows the equilibrium between
Class 1 and Class 2.

Figure 6.21: Scenario for Experiment 4. Default, Class 1, and Class 2 download at the
same time. Default and Class 1 traffic are managed at Queues2 port. Class 1 and Class 2
traffic are managed at Queues4 port. Different queue configurations are applied to the two
ports.

56

Figure 6.22: Throughput transition for Experiment 4. It shows how Class 1 affects both
Default and Class 2 throughput. Default and Class 1 reach their equilibrium when Class
2’s throughput goes down.

Figure 6.23: Throughput transition for Experiment 5. It shows the transition when three
classes share the same port.

57

Figure 6.24: Scenario for Experiment 6. DoS attack traffic and Medical 2 traffic from the
valid user arrive to Medical 2 server at the same time. Queues in Queues5 port allocate
enough bandwidth to Medical 2 traffic.

Figure 6.25: Throughput transition for Experiment 6. It shows how queues can be used
to prevent DoS attack.

58

Figure 6.26: Throughput transition for Experiment 7, which uses TCP. It shows similar
result as in Experiment 1. There is more fluctuation than UDP, but the equilibrium is
reached on average.

Figure 6.27: Priority function for 50/x. Use the section area under the curve around the
maximum bandwidth to find the function that achieves the desired equilibrium.

59

Figure 6.28: Priority function for 100/x.

Figure 6.29: Separate cores are allocated to separate containers. Cgroups handles the
allocation. stress spawns threads in the default container to repeatedly call sqrt()

to exhaust the CPU resource. At the same time, sysbench in the application container
measures the speed to calculate the prime numbers.

Figure 6.30: Containers share the same core. Same experiment as in the case when the
cores are not shared.

60

Figure 6.31: Experiment results of CPU core allocation. Blue bars with horizontal stripes
show the calculation time without another container. Orange bars with tilted grid show the
calculation time when separate cores are allocated. Red solid bars show the time when cores
are shared. (e.g., 2 Core N means separate two cores, with total of four cores, are allocated
to each container. 2 Core S means two containers share the same two cores.) Sharing the
cores with other container significantly impacts the calculation time.

Figure 6.32: Experiment results of CPU bandwidth allocation. Blue bars with horizontal
stripes show the calculation time without another container. Orange bars with tilted grid
show the calculation time when the two containers are allocated the same share of bandwidth
while stress is running on the default. Red solid bars show the time when twice more
bandwidth is allocated to the application container. Allocating larger CPU bandwidth
significantly reduced the calculation time.

61

Figure 6.33: Memory resource is shared between the containers. In the default container,
stress spawns threads to call malloc() that tries to obtain 2GB of memory. While it
keeps the memory, /proc/meminfo was read from the application container.

Figure 6.34: Experiment result of memory allocation. Blue bar with horizontal stripes
shows the default free memory in the application container. Orange bar with tilted grid
shows the free memory when the stress in the default container tries to obtain 2GB. Red
solid bars show the free memory when Cgroups imposes the maximum bandwidth. For
example, the leftmost red bar shows the case when Cgroups imposed 1.5GB limit on the
default container. In this case, stress can only obtain up to 1.5GB memory.

CHAPTER 7

FUTURE WORK

7.1 Trusted Platform Module (TPM)

The most significant security issue with LXC is that containers share the same kernel.

Although the risk is low, if the kernel is compromised, the malware in the default container

can access the application container or the root namespace. TPM [18] technology can be

used to validate the integrity of the kernel, which significantly mitigate this issue. TPM

also allows the SeaCat server to ensure the integrity of the application that is about to be

used through a remote attestation. Since the client device is a personal device, the device

could be tampered in various ways. TPM reduces the risk of allowing a tampered device to

access the secured network by allowing the SeaCat server to notice if the device is tampered

in any way.

TPM is a chip installed on the motherboard; hence, this approach can only be used

with the client device that supports it. The chip stores the private key that is not directly

accessible from other hardware. It uses this private key to check the integrity of BIOS, boot

loader, kernel, and the files specified by the user.

Figure 7.1 shows the preliminary design of how TPM technology can be used in SeaCat

to assure the kernel and medical application. First, the client sends the signed hash of BIOS,

kernel, Application A(medical application), TD, and the application container in addition

to the username and password. The list of medical applications and files that make up the

TD, container, kernel, and BIOS PCR (Platform Configuration Register) are stored in the

SeaCat server. The server compares the hashes to ensure that none of these components

are compromised. Finally, the server signals the controller to create the policy enforced

context.

Figure 7.2 describes how this procedure works in more detail. TrouSerS [43] is the open

source software stack that complies with TSS (TCG Software Stack) 1.2. It is used to send

commands to the TPM. TrouSerS has the interface for userspace commands and the API for

C programs. The userspace commands are limited for configurations (e.g., set ownership),

encryption, decryption, and a few others. C programs are used to send various commands.

63

The TPM is used for two tasks. First is to sign the hash of BIOS, the files for kernel, TD,

application container, and the application. To sign an arbitrary file, a C program must be

written to do the following:

1. Generate the signing key.

2. Load the private portion of the key to the TPM.

3. Using the TrouSerS API, request TPM to hash the data.

4. Sign the digest with the loaded private key.

5. Save the signature to a file, which will be sent to the SeaCat server along with the

public key.

To minimize the risk of leaking medical data from the client device, the medical application

should store all the data to the server. However, if the application requires data to be stored

in the client device, encrypting them when the container is not in use would reduce the risk.

To encrypt data, sealing feature of the TrouSerS must be used. Sealing takes the following

steps:

1. TrouSerS obtains the current value of PCR.

2. TPM seals the data with obtained PCR.

Note that sealing is the type of encryption that involves the PCR (state of the machine).

Unsealing requires the password associated with the key used for the sealing (SRK). In

addition, the current PCR value must match with the one calculated from the PCR used

for the sealing. These procedures are handled with TrouSerS.

64

Figure 7.1: TPM checks the integrity (i.e., calculates the hash and sign) of BIOS, kernel,
TD, application container, and the application. Client sends the signature to the SeaCat
Server to authenticate. SeaCat server stores the files so it can check the signature. When
the signature is validated, it signals the client to start the application. Finally, SeaCat
server sends the signal to create the policy enforced context.

Figure 7.2: TrouSerS is the software stack that communicates with the TPM. It provides
the interface, which can be used by tpm-tools commands and C programs. tpm-tools

commands are used to configure the TPM and C programs are used to sign and encrypt.

CHAPTER 8

RELATED WORK

8.1 End-Point Isolation

There are multiple ways to achieve the end-point isolation. Docker [33] uses LXC for

consistent development and deployment of the containers for specific purposes. Its main

advantage is the container portability. A container can be saved as an image so that it can

be easily shared with different hosts. Containers are lighter-weight than virtual machines

because it does not have a guest OS. Docker runs on top of host OS and the containers

share the kernel with other containers.

Docker uses AuFS (Advanced Multi-Layered Unification Filesystem), which mounts all

the containers to the same mount point. Our system is more secure because containers

are mounted at different mount point. This architecture prevents the containers from

interacting with each other through the filesystem.

Cells [2] achieves end-point isolation in a mobile device. It can create multiple virtual

phones (VPs) to isolate the environment. They use device namespaces to isolate the devices

of the phone (e.g., framebuffer, GPU, power, virtual NIC, binder, sensor) for each VP.

With Cells, users can control which VP to start and stop. They can also control when

to start and stop it. Our system does not merely achieves the isolation. It is more secure

because the user must be authenticated with the external server before using the secured

containers. In addition, SeaCat can provide finer grained security with less effort from the

user. Unlike Cells, the user can simply start the application and SeaCat creates the custom

environment and network context for a specific application.

Qubes OS [40] is the virtualization system that runs multiple VMs on the Xen hypervisor.

Each VM represents a domain such as work or personal. Users create and start new domains

from the trusted domain, dom0. Each domain is represented as a separate window on the

desktop. Although users can simultaneously view the windows, the OS prevents malware on

one domain to collect display event information from other domains. Quebes OS achieves

this by isolating the Xserver for running domains.

66

Qubes OS can achieve similar isolation properties to SeaCat. However, our system uses

containers so it is lighter-weight. Unlike Qubes OS, our system does not require full OS

stack for each container.

Cloud Terminal [31] provides isolated environment to run secure application. One of

the limitations is that since the applications run on the cloud, only the applications that

do not require large network resource (e.g., online banking, email) can be used. Thus, their

use case is more limited. In addition, with Cloud Terminal the application provider needs

to migrate the application to the Cloud Terminals cloud. Our system is more practical

because we do not require any changes to the application servers.

8.2 End-Point SDN

There are some published works of using OVS in a mobile device. One of them showed

that it is possible to use OVS to dynamically control the network interface to use (e.g.,

Wi-Fi, 3G, WiMAX) [47]. OVS can be used to manage handover too [10].

meSDN (Mobile Extension of SDN) [27] uses SDN in similar way with our work. They

implement the OVS in the mobile device to control the uplink traffic. A global controller

located somewhere in the network negotiates with the local controller in the mobile device

about the uplink policy.

meSDN architecture is similar to ours. However, our global controller not only enforces

a policy to the client, but also enforces policies in the network; hospital LAN. Our local

controller (i.e., Trusted Daemon) is more involved because it enforces policies to the client

OVS and also manages containers.

8.3 Resource Allocation

The use of queues in switches have been studied for more than a decade. David Clark

argued that it would be ideal to be able to control the available bandwidth for each user [9].

Weighted Fair Queuing (WFQ) has been shown to be effective [15]. WFQ has been used in

the Wi-Fi link too [3]. CHOKe [38], RED-PD [29], Rainbow Fair Queuing [6], and Dynamic

Token Buckt [26] all try to use queues to divide the flow at a switch and allocate appropriate

bandwidth to each queue.

After OpenFlow has been invented, many studies have been conducted to use the Open-

Flow to satisfy the QoS. The work that tries to maximize the QoE of video streaming [16]

took the similar approach as our work. They use the function similar to our priority function

to efficiently allocate the bandwidth to different types of streaming traffic. However, our

approach is more generic because our priority function can be used for any type of traffic.

67

Falloc [20] uses OpenFlow to dynamically allocate bandwidth in a cloud with the concept

of Nash Bargaining Solution (NBS). In NBS, the users make the sub-optimal decisions to

maximize the group’s total gain. It is different from our concept because our algorithm

allows each user to act selfish to reach the bandwidth equilibrium. Other work such as

PolicyCop [4], QoSFlow [25], and OpenFlow Virtualization Scheme [42] use queuing in

OVS to satisfy QoS.

All the previous works described above prioritizes network resource only for part of the

connection. Our work not only prioritizes the network resource, but also the hardware

resource for the client device. We combine these features to construct the end-to-end

connection so that resources are prioritized for the entire path between the client and the

server.

8.4 Remote Attestation

Remote attestation is used in many platforms such as cloud and mobile devices. One of

the novel approaches is to authenticate the application. The authors of Remote Attestation

on Program Execution [19] developed the prototype to check the secured programs state

whenever the program executes and uses relevant executable or data objects. The idea is

that as the program continues to execute, its state will change so attesting only at the start

of the execution is not enough. The authors of Semantic Remote Atestation [21] tried to

apply the language-based security to the application. The language-based security involves

parsing the code to determine whether the code will run as expected.

Both of these approaches would add security to SeaCat. Our work is different from

these because our goal with remote attestation is to secure the entire client device with

TPM rather than just the application. Even the behavior of the application is verified, a

compromised kernel may leak the secured data from the file system, if the application stores

data on the device. Thus, it is more effective to verify every layer of the system with TPM.

CHAPTER 9

CONCLUSION

SeaCat establishes end-to-end isolation and resource prioritization for connections for a

medical application using end-point isolation and SDN. The solutions SeaCat provide are

not only unique in the field of healthcare security, but also strengthen the effects of existing

solutions. The main contribution of SeaCat is its ability to provide isolation and resource

prioritization at the same time with the end-to-end context. Contexts are created by traffic

forwarding rules, traffic prioritization, end-point isolation with containers, 802.1X, 802.11i,

and VAP that secure the Wi-Fi link. Various features have been implemented and evaluated

over the course of the project.

SeaCat uses LXC to isolate a medical application from others to secure its data and avoid

interference. The advantage of LXC is that creating, deleting, starting, and stopping them

are fast. We have selected the jobs to run in each container to customize the environment

for the applications. LXC also provides hardware resource guarantees for each container.

In addition to the containers, a client device has TD, which manages the containers and

the SDN configurations of the client device. We solved the shared display problem on the

client device by running the containers inside their own Xnest. SeaCat uses virtual interface

on the AP and the client device to support multiple contexts in the air. It also uses the

bandwidth allocation algorithm with queues to allocate network resource dynamically and

efficiently. The link between the client and the AP can be secured by integrating 802.1X

and 802.11i into our system. Finally, it allows the client to authenticate with the SeaCat

server through Shibboleth SSO system.

With these features, SeaCat protects medical applications and their data from various

attacks. LXC prevents secured data to be stolen from the client device. It uses Xnest

to prevent information leakage from client’s display event. It also prevents malware or

other non-medical applications to deplete the hardware resources. SDN not only prioritizes

the network resource, but also prevents DoS attack to medical application traffic. Shibbo-

leth SSO prevents unauthorized access while allowing the network administrator to create

context in the network.

69

One of the weaknesses of LXC is that containers share the same kernel. We believe that

by using the TPM enabled client device, SeaCat server can perform a remote attestation to

check its integrity to make sure that the device with compromised kernel is not using the

medical application and its secured context.

APPENDIX

PRIORITY FUNCTION ALGORITHM

The following is the bandwidth allocation algorithm used in Chapter 6. It consists of

two components; initialization code and event handler method.

priorities[1][0] = 115 . Define priorities (area under the curve) with 2D array. First

index represents a Queue ID and second index represents a range.

priorities[1][1] = 35

priorities[2][0] = 230

priorities[2][1] = 69 . Add more if necessary.

for i = 1 to QUEUECOUNT do . Initialization loop.

maxBW [i] = 10 . maxBW contains the maximum bandwidth for queue i. At the

beginning, max bandwidth for every queue is 10Mbps.

end for

bwToRangeMap.add(10, 0) . Mapping between max bandwidth and range ID in the

priorities array.

bwToRangeMap.add(20, 1)

bwToRangeMap.add(30, 2) . Add more if necessary.

availableBW = 100 − 10 ∗QUEUECOUNT . Total available bandwidth for the port

in Mbps. Every queue tries to get the share from this value.

function QueueStatsReplyHandler . This method is called every time a switch

returns the queue statistics.

for i = 1 to QUEUECOUNT do

pPriorities[i] = 0 . Initialize PP of all queue to 0. In default, no queue wants

more bandwidth.

newMaxBW [i] = maxBW [i] . Save the current max. bandwidth to the

temporary variable. Update maxBW at the very end.

end for

71

for each q in Queues do

Calculate throughput of q.

rangeID = bwToRangeMap[maxBW [q.id]] . Obtain current range ID of this

queue.

if throughput < maxBW [q.id] − 12 then . Current bandwidth is too much for

this queue. It’s okay to reduce it.

newMaxBW [q.id] = maxBW [q.id] − 10

availableBW+ = 10

cPriorities[q.id] = priorities[q.id][rangeID − 1] . Use the reduced range ID

to find the new current priority.

else if throughput > maxBW [q.id]− 2 then . This queue wants more bandwith.

cPriorities[q.id] = priorities[q.id][rangeID]

if rangeID < MAXRANGE then

pPriorities[q.id] = priorities[q.id][rangeID + 1] . Update PP from 0 to

the next priority level of CP.

else . Current bandwidth is just enough for this queue.

cPriorities[q.id] = priorities[q.id][rangeID]

end if

end if

end for

Create the sorted array of Queue ID based on PP in descending order.

Create the sorted array of Queue ID based on CP in ascending order.

for i = 0 to QUEUECOUNT − 1 do . Allocate available bandwidth to those who

want.

if availableBW <= 0 then . If there is no more bandwidth in the free pool,

move onto transfer section.

Break

end if

requestingQID = sortedPPIDs[i]

associatedPP = pPriorities[requestingQID]

if associatedPP > 0 then

72

newMaxBW [requestingQID] = maxBW [requestingQID] + 10

pPriorities[requestingQID] = 0 . Keeping the record that the increase

request from requestingQID has been fulfilled.

availableBW− = 10

end if

end for

for i = 0 to QUEUECOUNT − 1 do . Transfer bandwidth from the queue with

low CP to the queue with high PP.

requestingQID = sortedPPIDs[i]

requesterPP = pPriorities[requestingQID]

targetQID = sortedCPIDs[i]

targetCP = cPriorities[targetQID]

if requesterPP > 0 and requesterPP > targetCP then . Highest PP > Lowest

CP so transfer must occur.

newMaxBW [requestingQID] = maxBW [requestingQID] + 10

newMaxBW [targetQID] = maxBW [targetQID] − 10

end if

end for

for i = 1 to QUEUECOUNT do

if maxBW [i] != newMaxBW [i] then

Set eqch queue’s new max. bandwidth using the controller’s API.

end if

maxBW [i] = newMaxBW [i] . Finally, update the maxBW for the next check

iteration.

end for

end function

REFERENCES

[1] Long-term verifiability of the electronic healthcare records authenticity, International
Journal of Medical Informatics, 76 (2007), pp. 442 – 448.

[2] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh, Cells: A virtual
mobile smartphone architecture, in Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, SOSP ’11, New York, NY, USA, 2011, ACM, pp. 173–
187.

[3] A. Banchs and X. Perez, Distributed weighted fair queuing in 802.11 wireless lan,
in Communications, 2002. ICC 2002. IEEE International Conference on, vol. 5, 2002,
pp. 3121–3127.

[4] M. Bari, S. Chowdhury, R. Ahmed, and R. Boutaba, Policycop: An autonomic
qos policy enforcement framework for software defined networks, in Future Networks
and Services (SDN4FNS), 2013 IEEE SDN for, Nov 2013, pp. 1–7.

[5] B. Blobel, Authorisation and access control for electronic health record systems,
International Journal of Medical Informatics, 73 (2004), pp. 251 – 257. Realizing
Security into the Electronic Health Record.

[6] Z. Cao, Z. Wang, and E. Zegura, Rainbow fair queueing: fair bandwidth sharing
without per-flow state, in INFOCOM 2000. Nineteenth Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 2, 2000,
pp. 922–931.

[7] T. Cgroups, Cgroups - archwiki. https://wiki.archlinux.org/index.php/Cgroups,
2015.

[8] J. Choe and S. K. Yoo, Web-based secure access from multiple patient repositories,
International Journal of Medical Informatics, 77 (2008), pp. 242 – 248.

[9] D. Clark and W. Fang, Explicit allocation of best-effort packet delivery service,
Networking, IEEE/ACM Transactions on, 6 (1998), pp. 362–373.

[10] P. Dely, A. Kassler, L. Chow, N. Bambos, N. Bayer, H. Einsiedler,
C. Peylo, D. Mellado, and M. Sanchez, A software-defined networking approach
for handover management with real-time video in wlans, Journal of Modern Trans-
portation, 21 (2013), pp. 58–65.

[11] A. Demers, S. Keshav, and S. Shenker, Analysis and simulation of a fair queue-
ing algorithm, in Symposium Proceedings on Communications Architectures &Amp;
Protocols, SIGCOMM ’89, New York, NY, USA, 1989, ACM, pp. 1–12.

[12] M. Devera, Hierarchy token bucket home. http://luxik.cdi.cz/˜devik/qos/htb, 2013.

74

[13] J. L. Fernndez-Alemn, I. C. Seor, P. ngel Oliver Lozoya, and A. Toval,
Security and privacy in electronic health records: A systematic literature review, Journal
of Biomedical Informatics, 46 (2013), pp. 541 – 562.

[14] A. Ferreira, R. Cruz-Correia, L. Antunes, P. Farinha, E. Oliveira-
Palhares, D. Chadwick, and A. Costa-Pereira, How to break access control
in a controlled manner, in Computer-Based Medical Systems, 2006. CBMS 2006. 19th
IEEE International Symposium on, 2006, pp. 847–854.

[15] J.-P. Georges, T. Divoux, and E. Rondeau, Strict priority versus weighted fair
queueing in switched ethernet networks for time critical applications, in Parallel and
Distributed Processing Symposium, 2005. Proceedings. 19th IEEE International, April
2005, pp. 141–141.

[16] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race,
Towards network-wide qoe fairness using openflow-assisted adaptive video streaming,
in Proceedings of the 2013 ACM SIGCOMM Workshop on Future Human-centric
Multimedia Networking, FhMN ’13, New York, NY, USA, 2013, ACM, pp. 15–20.

[17] S. Graber, Lxc 1.0: Unprivileged containers [7/10].
https://www.stgraber.org/2014/01/17/lxc-1-0-unprivileged-containers/, 2014.

[18] T. C. Group, Trusted computing group - developers - trusted platform module.
http://www.trustedcomputinggroup.org/developers/trusted platform module.

[19] L. Gu, X. Ding, R. H. Deng, B. Xie, and H. Mei, Remote attestation on program
execution, in Proceedings of the 3rd ACM Workshop on Scalable Trusted Computing,
STC ’08, New York, NY, USA, 2008, ACM, pp. 11–20.

[20] J. Guo, F. Liu, H. Tang, Y. Lian, H. Jin, and J. C. Lui, Falloc: Fair network
bandwidth allocation in iaas datacenters via a bargaining game approach., in ICNP,
2013, pp. 1–10.

[21] V. Haldar, D. Chandra, and M. Franz, Semantic remote attestation: a virtual
machine directed approach to trusted computing, in USENIX Virtual Machine Research
and Technology Symposium, vol. 2004, 2004.

[22] C. Humer and J. Finkle, Your medical record is worth more to hackers than your
credit card. http://www.reuters.com/article/2014/09/24/us-cybersecurity-hospitals-
idUSKCN0HJ21I20140924, September 2014.

[23] IEEE, 802.11i-2004 - ieee standard for information technology-telecommunications and
information exchange between systems-local and metropolitan area networks-specific
requirements-part 11: Wireless lan medium access control (mac) and physical layer
(phy) specifications: Amendment 6: Medium access control (mac) security enhance-
ments. http://standards.ieee.org/findstds/standard/802.11i-2004.html, 2004.

[24] , 802.1x-2010 - ieee standard for local and metropolitan area networks–port-
based network access control. http://standards.ieee.org/findstds/standard/802.1X-
2010.html, 2010.

[25] A. Ishimori, F. Farias, E. Cerqueira, and A. Abelem, Control of multiple
packet schedulers for improving qos on openflow/sdn networking, in Software Defined
Networks (EWSDN), 2013 Second European Workshop on, Oct 2013, pp. 81–86.

75

[26] J. Kidambi, D. Ghosal, and B. Mukherjee, in Journal of High Speed Networks.

[27] J. Lee, M. Uddin, J. Tourrilhes, S. Sen, S. Banerjee, M. Arndt, K.-H. Kim,
and T. Nadeem, mesdn: Mobile extension of sdn, (2014).

[28] LXC, Lxc-linux containers: Userspace tools for the linux kernel containers.
https://linuxcontainers.org/.

[29] R. Mahajan, S. Floyd, and D. Wetherall, Controlling high-bandwidth flows at
the congested router, in Network Protocols, 2001. Ninth International Conference on,
Nov 2001, pp. 192–201.

[30] S. Marshall, It consumerization: A case study of byod in a healthcare setting,
Technology Innovation Management Review, 4 (2014), pp. 14–18.

[31] L. Martignoni, P. Poosankam, M. Zaharia, J. Han, S. McCamant, D. Song,
V. Paxson, A. Perrig, S. Shenker, and I. Stoica, Cloud terminal: Secure
access to sensitive applications from untrusted systems., in USENIX Annual Technical
Conference, 2012, pp. 165–182.

[32] D. Matic, Xnest(1) manual page. http://www.xfree86.org/4.2.0/Xnest.1.html.

[33] D. Merkel, Docker: Lightweight linux containers for consistent development and
deployment, Linux J., 2014 (2014).

[34] J. E. Moyer, Managing mobile devices in hospitals: A literature review of byod policies
and usage, Journal of Hospital Librarianship, 13 (2013), pp. 197–208.

[35] OpenMRS, Openmrs. http://openmrs.org/.

[36] T. OpenNetworkingFoundation, Openflow - open networking foundation.
https://www.opennetworking.org/sdn-resources/openflow, 2015.

[37] T. OpenvSwitch, Open vswitch. http://openvswitch.org/, 2015.

[38] R. Pan, B. Prabhakar, and K. Psounis, Choke - a stateless active queue man-
agement scheme for approximating fair bandwidth allocation, in INFOCOM 2000.
Nineteenth Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, vol. 2, 2000, pp. 942–951.

[39] A. K. Parekh and R. G. Gallager, A generalized processor sharing approach to
flow control in integrated services networks: The single-node case, IEEE/ACM Trans.
Netw., 1 (1993), pp. 344–357.

[40] QubesOS, Qubesos. https://wiki.qubes-os.org/.

[41] Shibboleth, Shibboleth consortium. https://shibboleth.net/about/.

[42] P. Skoldstrom and W. John, Implementation and evaluation of a carrier-grade
openflow virtualization scheme, in Software Defined Networks (EWSDN), 2013 Second
European Workshop on, Oct 2013, pp. 75–80.

[43] T. TrouSerS, Trousers - the open-source tcg software stack.
http://trousers.sourceforge.net/.

[44] T. Upstart, upstart - event based init daemon. http://upstart.ubuntu.com, 2010.

76

[45] USDHHS, Health information privacy. http://www.hhs.gov/ocr/privacy/index.html.

[46] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, An integrated experimental environment
for distributed systems and networks, Boston, MA, Dec. 2002, pp. 255–270.

[47] K.-K. Yap, T.-Y. Huang, M. Kobayashi, Y. Yiakoumis, N. McKeown,
S. Katti, and G. Parulkar, Making use of all the networks around us: A case
study in android, in Proceedings of the 2012 ACM SIGCOMM Workshop on Cellular
Networks: Operations, Challenges, and Future Design, CellNet ’12, New York, NY,
USA, 2012, ACM, pp. 19–24.

