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ABSTRACT 
 
 
 

Femoroacetabular impingement (FAI) describes subtle structural abnormalities, 

including femoral asphericity and acetabular overcoverage, which reduce clearance in the 

hip joint. FAI is a common cause of hip pain for young, athletic adults. The first theme of 

this dissertation investigated if FAI morphology is more prevalent in athletes and if 

physical exams could be used to identify individuals with underlying FAI morphology. In 

a cohort of collegiate football players, 95% were found to have radiographic 

abnormalities consistent with those seen in FAI patients. This finding not only suggests 

that athletes, such as football players, may have an increased risk for developing 

symptomatic FAI, but also highlights that FAI morphology may frequently occur in 

asymptomatic subjects. In the same cohort, radiographic measures of femoral asphericity 

and femoral head-neck offset were mildly correlated to maximum internal rotation. As 

such, athletes with diminished internal rotation in whom hip pain develops should be 

evaluated for FAI. 

Altered articulation in FAI hips is believed to cause chondrolabral damage and 

may lead to osteoarthritis, but FAI kinematics have not been accurately quantified. To 

this end, the second theme of this dissertation focused on developing, validating, and 

applying a dual fluoroscopy and model-based tracking protocol to accurately quantify
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three-dimensional in vivo hip kinematics. In a cadaver experiment, model-based tracking 

was compared to the reference standard, dynamic radiostereometric analysis.  Model-

based tracking was found to have a positional error less than 0.48 mm and rotational error 

was less than 0.58°. The methodology was then applied to evaluate a cohort of 

asymptomatic control subjects and three patients with differing FAI morphology. The 

results, which represent the most accurate data collected on hip kinematics to date, 

demonstrate that hip articulation is a highly complex process, including translation, 

pelvic motion, no bone contact, and labrum involvement in large ranges of motion. 

Collected data provide necessary baseline results for future comparison studies and could 

be used to validate computer simulations of impingement, guide pre-operative planning, 

and serve as boundary conditions in finite element models investigating chondrolabral 

mechanics. 
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CHAPTER 1 
 
 
 

BACKGROUND AND INTRODUCTION 
 
 
 

1.1 The Hip Joint 
 

The hip joint, comprised of the pelvis and femur bones, is central to mobility 

(Figure 1.1). It is functionally and anatomically considered to be a ball and socket joint, 

with the acetabulum as the socket and the femoral head as the ball. However, both normal 

hips and hips with structural deformities exhibit some degree of asphericity and possibly, 

a translating center of rotation.  

The hip joint is cushioned by hyaline cartilage, covering both the femoral head 

and acetabulum (Figure 1.1). Cartilage is comprised of chondrocytes, extracellular 

matrix, and water. Chondrocytes are responsible for the creation and maintenance of the 

cartilage matrix, which includes both collagen and proteoglycans.1 Type II collagen is the 

primary type of collagen found in the matrix and contributes to the tensile strength of 

cartilage.2 Compressive strength is provided by proteoglycans, which are also responsible 

for balancing fluid and electrolytes within cartilage.3 Water, which makes up 65-80% of 

the wet weight of cartilage, is responsible for the viscoelastic properties of cartilage, 

including time-dependent deformation and load dissipation.4 Instantaneous compressive 

loads are supported primarily by the interstitial fluid pressure. When cartilage undergoes 
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constant loading, fluid exudes from the tissue and the load is transferred to 

proteoglycans.5 

The cartilage constituents are arranged in four zones.2,4 The thin superficial zone 

has the highest collagen and water content and exhibits high tensile and shear strength 

due to collagen fibrils arranged parallel to the surface. The superficial zone is covered by 

synovial fluid which substantially decreases friction between cartilage layers. The 

transitional zone is the largest zone by volume (40-60%) and contains collagen fibrils 

scattered obliquely to the surface and has more proteoglycans than the superficial zone.  

The deep zone has the greatest compressive strength, the highest proteoglycan content, 

and largest diameter collagen fibrils, arranged perpendicular to the surface. Finally, the 

calcified cartilage zone contains chondrocytes amidst a calcified matrix that attaches to 

subchondral bone.  

The acetabular labrum, a fibrocartilagenous structure, lines the acetabular rim 

(Figure 1.1). Its triangular shape is attached to the bone through calcified cartilage.6 

Morphologically, it deepens and stabilizes the hip socket, increasing the acetabular 

surface area and volume by 60 and 120%, respectively.7 The labrum may seal the joint, 

retaining the synovial fluid for lubrication and load distribution.8 Three layers to the 

labrum have been identified.9 The most superficial layer is a thin membrane of woven 

collagen fibrils. It covers a second stratiform layer, 20-100 μm think. The third layer is 

the bulk of the labrum, and is comprised of thick Type 1 collagen fiber bundles. The 

majority of these fibers run parallel to the acetabular rim, but some bundles run obliquely 

to this principle direction to tie the larger fibers together. This third inner layer facilitates 
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the physiological function of the tissue, resisting compression and circumferential 

stretching and compression, but potentially vulnerable to shearing. 

The hip joint is enclosed by the joint capsule and capsular ligaments and is 

surrounded by musculature. The joint capsule is comprised of longitudinal fibers running 

from the outer edge of the acetabulum to the femoral head, circumferential fibers 

surrounding the femoral neck known as the zona orbicularis and four ligaments 

(iliofemoral, ischiofemoral, quadrupedal, and posterior).10,11 The capsular structures 

contribute to hip stability and limit hip distraction.11 Dynamic stability and motion of the 

hip are enabled by numerous hip muscles.12 The primary hip flexors are psoas major, 

illiacus, rectus femoris, and sartorius; the extensors include gluteus maximus and most of 

the hamstrings.  Internal rotation is facilitated by the anterior part of gluteus medius and 

minimus as well as the tensor fascia lata, while gluteus maximus, sartorius, piriformis, 

quadratus femoris, and pectineus externally rotate the hip. Abduction in enabled 

primarily by gluteus medius and minimus while the adductor muscles (longus, brevis, 

magnus, and minimus) act to adduct the hip.  

 

1.2 Overview of Hip Osteoarthritis 

Osteoarthritis (OA) is the painful degradation of the articular cartilage and 

subchondral bone. One in four adults will develop symptomatic OA of the hip joint 

before the age of 85.13 The pain and stiffness resulting from hip OA can substantially 

limit range of motion, and therefore decrease activity and quality of life. In mild cases, 

pain is intermittent. Low impact exercise and physical therapy may be recommended to 

reduce pain and improve function while acetaminophen and nonsteroidal anti-
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inflammatory drugs are used for pain management. In cases of advanced OA, chronic 

pain and severely limited function motivates the need for total hip arthroplasty. Hip OA 

results in at least 200,000 total hip replacements each year.14 

Classic radiographic signs of hip osteoarthritis include joint space narrowing, 

subchondral cysts, and osteophytes.15 Disease severity on x-ray is often ranked according 

to the Tonnis grade.16 Grade 1 hips have slight narrowing of the joint space. Small cysts, 

increased narrowing, and moderate loss of femoral head sphericity indicate Grade 2. Hips 

with Grade 3 have severe narrowing or no joint space, large cysts, severe femoral head 

deformity, and possibly avascular necrosis. Total hip arthroplasty is often required when 

radiographic degeneration is advanced, but may be indicated in less severe cases, 

depending on symptoms and quality of life.17  

There are many known causes and possible risk factors for the development of 

osteoarthritis. Generally, osteoarthritis occurs in hips with compromised cartilage, which 

can result from normal stresses on cartilage with abnormal physiology or abnormal 

stresses on normal cartilage.18 The normal physiology of cartilage may be altered by 

aging, genetic predisposition, genetic/metabolic disease, or inflammation.14,18 Cartilage 

can experience abnormal stresses as a result of obesity, structural deformities, trauma, 

joint instability, or intense physical demand from sport or occupation.14 

In healthy cartilage, the extracellular matrix is maintained through a balance of 

matrix degredative enzymes, matrix synthetic enzymes and inhibitors.18 In osteoarthritic 

cartilage, this balance is lost. The collagen network fractures and proteoglycans unravel 

as chondrocytes increase synthesis of matrix degredative enzymes. In addition, nitric 

oxide is released, which inhibits collagen and proteoglycan synthesis.18 Normal matrix 
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protein synthesis is further limited as chondrocytes undergo apoptosis or phenotypic 

modulation such that they express different genes and start producing different types of 

collagen/proteoglycans.19 As the proteoglycan and collagen content of cartilage is 

reduced, the tissue material properties change. The permeability increases, so fluid flows 

out of the tissue faster under sustained load.5 The equilibrium and dynamic mechanical 

stiffness decreases.5 

 

1.3 Femoroacetabular Impingement (FAI) 

While the possible causes of hip osteoarthritis are numerous, this dissertation 

focuses on a recently described structural deformity, femoroacetabular impingement. 

Femoroacetabular impingement, or FAI, is a reduction in clearance in the hip joint as a 

result of subtle abnormalities of the femur and/or acetabulum.20 Hips with FAI are 

categorized into three subtypes, cam, pincer, and mixed. Cam FAI presents as femoral 

head asphericity or decreased offset between the femoral head and neck (Figure 1.2). 

Pincer FAI describes hips with excessive acetabular coverage of the femoral head (Figure 

1.3). This overcoverage may exist for the entire acetabulum, appearing as a deep socket, 

or only the anterior rim of the acetabulum may be involved, giving the hip a backward 

facing, or retroverted, appearance. Finally, hips with mixed FAI exhibit some aspects of 

both cam and pincer morphology. Approximately 50-75% of patients exhibit evidence of 

both classifications.21 
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1.3.1 History of FAI 

Subtle structural deformities of femur, distinct from Perthe’s disease and slipped 

capital femoral epiphysis, have been linked to OA as early as 1965. Murray hypothesized 

that slight abnormalities causing incongruity between the femoral head and acetabulum 

may increase the risk for development of osteoarthritis.22 He reported a femoral tilt 

deformity, believed to be the result of mild epiphysiolysis and similar to modern cam 

FAI, was present in 39.5% of hips with osteoarthritis with no previously attributed cause. 

He later suggested that this deformity could result from increased athleticism during 

adolescence.23 His hypothesis was supported over the next three decades by reports from 

Solomon, Harris, and colleagues.24-28 It was not until 2001 that the modern term, 

definition, and hypothesized damage mechanism of cam FAI was officially described by 

Ganz and colleagues.29 

The understanding of acetabular overcoverage as a cause of impingement and 

osteoarthritis is more recent. Acetabular retroversion was first identified as a subtype of 

acetabular dysplasia in 1987.30 As a variant of dysplasia, retroversion was understood to 

be the result of posterior acetabular wall deficiency. Over a decade later, in 1999,  the 

damage observed in hips with acetabular retroversion was attributed less to posterior 

deficiency and more to impingement between the femoral neck and anterior acetabular 

rim.31 The name pincer FAI, describing both retroverted and generally deep sockets, was 

coined in 2003 by Ganz and colleagues.20 
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1.3.2 Clinical Presentation of FAI  

FAI is a common cause of hip pain in young adults. Cam FAI occurs 

predominantly in young males, while pincer impingement is more common in middle-

aged females.32 Patients often report groin pain during or after athletic activity or 

prolonged sitting or walking.20 Painful locking or catching sensations can occur during 

motion. Sports requiring extensive hip range of motion or quick pivoting (e.g. hockey, 

football, golf, soccer, and dance) are known to cause hip pain in the presence of a 

radiographic diagnosis of FAI.33  

Clinical exams are commonly used to evaluate hip range of motion and reproduce 

pain. Symptomatic FAI patients often have limited range of motion, with decreases noted 

in flexion, abduction, adduction, and internal and external rotation.34 The impingement 

test has a high sensitivity for reproducing hip pain in symptomatic FAI patients.20,35,36 In 

this exam, the supine subject’s hip is flexed to approximately 90 degrees then 

manipulated through adduction and internal rotation simultaneously (Figure 1.4).20,37 The 

presence of pain constitutes a positive exam finding. Another common physical exam 

used in the diagnosis of FAI is the flexion-abduction-external rotation (FABER) test, in 

which the hip is positioned in a figure four position with the lateral ankle resting on the 

contralateral knee (Figure 1.4). The distance between the lateral border of the patella and 

the exam table is measured and compared between the involved and contralateral hips. A 

positive exam occurs if the distance is less on the involved hip. In a study of 301 patients 

with FAI, 99% had positive impingement tests and 97% had positive FABER tests.36 
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1.3.3 Diagnosis of FAI via Imaging 

A diagnosis of FAI relies on positive imaging findings in the presence of hip pain 

and characteristic exam findings. Radiographs are the primary imaging modality in the 

clinic due to their availability and affordability. However, both computed tomography 

(CT) and magnetic resonance (MR) scanners, and the three-dimensional (3D) images 

they provide, are becoming more popular to diagnose the complex 3D deformities of 

FAI. While the trained clinician can make a diagnosis of FAI with a cursory overview of 

images, especially in severe cases, numerous 2D and 3D measurements have been 

proposed to quantify the type, degree, and severity of the deformities.  

2D measurements of cam FAI attempt to quantify the degree of femoral head 

asphericity and offset between the femoral head and neck (Figure 1.5). The alpha angle is 

drawn on both anteroposterior (AP) and lateral views of the femur as the angle between 

the longitudinal axis of the femoral neck and a line connecting the femoral head center 

and the point where the head deviates from a best fit circle.38 The alpha angle can also 

often be measured on single CT or MR image slices. Head-neck offset, also drawn on 

both anteroposterior and lateral views, measures the difference in radius between the 

femoral head and neck.39 While the best radiographic projection to complete these 

measurements has yet to be firmly established, lateral views seem to be more descriptive 

than anterior views. Most cam lesions are found in the anterior and anterosuperior region 

of the femoral head-neck junction. Thus, the lateral views capture these regions better 

than the AP view. In contrast, the AP view better highlights the superior head-neck 

junction.34,40 
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Measures of pincer FAI are completed on AP radiographs. The lateral center edge 

angle measures the coverage of the femoral head by the acetabulum and is defined by the 

angle formed by a vertical line and a line connecting the femoral head center with the 

lateral edge of the acetabulum.39 Finally, the acetabular index, which describes the slope 

of the acetabular roof, is measured as the angle formed by a horizontal line and a line 

connecting the medial point of the sclerotic zone with the lateral center of the 

acetabulum.39 Finally, the crossover sign, an indicator of retroversion, is positive if the 

posterior wall of the acetabulum crosses the anterior wall, making projected lines of the 

acetabular walls appear as a figure eight.39  

There is limited consensus on the cutoff values for the above measurements that 

should be used to delineate FAI hips from normal hips. For example, the cutoff for a 

normal alpha angle can range from 42 to 68 degrees and the lateral center edge angle 

cutoff from 35 to 45 degrees.39,41-49 One of the more commonly used set of criteria to 

diagnose FAI is:  alpha angle greater than 50 degrees,  head-neck offset less than eight 

millimeters, acetabular index greater than zero degrees, and lateral center edge angle 

greater than 40 degrees, and presence of the crossover sign.34,39,43,50 However, numerous 

studies have reported that asymptomatic hips often meet one or more of these 

criteria.41,42,51-53 Thus, a diagnosis of FAI must be made through the combination of 

clinical exam findings and measurements of images.  

 While heavily relied upon in the clinic, radiographs and their associated 2D 

measures do not fully capture the 3D geometry of the pelvis and femur. Further, hips with 

FAI do not necessarily show the classic signs of OA; radiographs of hips with FAI may 

show normal joint space. To this end, researchers have developed objective measures 
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based on 3D reconstructions of the pelvis and femur from CT and MR data. For example, 

femoral head asphericity can be assessed throughout the head by measuring deviation 

from a best fit sphere.54 3D acetabular coverage of the femoral head can also be 

quantified by projecting the rim of the acetabulum to the femoral head and analyzing the 

percent coverage globally, or by regions.55 The addition of arthrography (i.e. contrast 

agent) to a MR or CT scan provides the ability to evaluate the labrum and femoral and 

acetabular cartilage. MR arthrography is commonly used to assess the hip for 

chondrolabral tears and cartilage delamination.50,56 Finally, recent developments in 

biochemical quantitative MR sequences, such as T2* mapping, show promise for 

assessing the integrity and health of articular cartilage.57  

 

1.3.4 Damage Patterns in FAI Hips 

Damage observed in hips with FAI and may be considered the start of 

osteoarthritic degeneration. Common findings include cartilage delamination, labral tears, 

fibrocystic changes, and labral ossification. The presence of cartilage delamination and 

labral tears is typically confirmed with CT and MRI. Cartilage damage has been reported 

in 44% to 79% of hips undergoing surgery for the treatment of FAI.48,49 In addition, one 

study identified an odds ratio of 4.0 for delamination in hips with an alpha angle greater 

than or equal to 65 degrees.58 FAI is considered the primary cause of labral tears, with 

87% of labral tears occurring in hips with bony abnormalities seen on x-ray.59 Comparing 

hips undergoing arthroscopic surgery for FAI, hips with labral tears had significantly 

higher alpha angles than those without labral tears.49 Labral ossification and fibrocystic 

changes can be identified on x-ray. Labral ossification can be found in 7.5-56% of 
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symptomatic FAI patients.60,61 Fibrocystic changes, rare in dysplastic hips (0/132 

dysplastic patients in one study), are often found at the femoral head-neck junction in 

FAI patients (39/117 FAI patients in same study).62 

Patterns of damage are different between cam and pincer FAI hips. Chondrolabral 

damage is most often localized anterosuperiorly in cam hips, while damage is observed 

more circumferentially in pincer hips.21 Cartilage lesions are largest in the superior and 

anterosuperior region in cam hips and largest in the posteroinferior region in pincer 

hips.63 Histologically, two distinct types of labral tears are observed.6,21,58 The first type 

of tear, which is predominately found in pincer FAI hips, occurs perpendicular to the 

labrum surface, extending in severe cases to the subchondral bone.64 The second type of 

tear, which is predominately associated with cam FAI, occurs at the chondrolabral 

junction. Here, the structure of the labrum is left generally intact, but separated from its 

cartilage attachment at the base.58,64 

The varying damage patterns observed in cam and pincer hips have led some to 

hypothesize that mechanisms of impingement also differ.21,58 In pincer FAI, it is believed 

that the labrum acts as a bumper between the femoral neck and overcovering acetabulum. 

The labrum is compressed at the limits of femoral head rotation, and compressive forces 

are transmitted to the cartilage adjacent to the chondrolabral junction. In cam FAI, it is 

believed that compressive and shear stresses are elevated at the chondrolabral junction as 

the anterior femoral head rotates into the anterosuperior acetabulum in flexion, internal 

rotation, and/or adduction. Separation between cartilage and labrum occurs as the femoral 

head compresses the cartilage medially and stretches the labrum laterally.21 Chondral 

lesions and labral ossification at the posteroinferior region of the acetabulum are thought 
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to occur by the “counter-coup effect.” Specifically, for overcovered hips, the femur 

reaches its range of motion limit anteriorly, rocks on the pivot point, slightly subluxates, 

and abuts the posterioinferior acetabular wall.21,65,66 While supported by observed 

damage patterns, the aforementioned mechanisms have not been directly observed in 

vivo.  

 

1.3.5 Risk Factors for FAI 

Heredity, ethnicity, aging, gender, and deleterious joint mechanics at the 

development stage have all been proposed as possible risk factors of FAI morphology. 

Compared to a control population, siblings of patients with symptomatic FAI had a 

significantly greater prevalence of cam and pincer morphology, supporting a hereditary 

link.67 Preliminary investigations have identified a few genes influencing both general hip 

shape and osteoarthritic changes, but work specific to FAI is needed.68,69 FAI is more 

prevalent in individuals of white European descent than Asian descent, demonstrating 

that ethnicity may influence risk of FAI.70,71 Finally, FAI abnormalities may become 

more prevalent with age, as offset between the femoral head and neck has been shown to 

decrease with age, but only in males.72 

The prevalence of pincer and cam deformities may vary between gender, with 

cam deformities anecdotally accepted to be more common in males and pincer 

deformities in females.73 Interestingly, a recent multicenter study has of over 1000 

symptomatic patients demonstrated that cam FAI was slightly more common in females, 

while mixed FAI was slightly more common in males.60 Pincer FAI was very rare in both 

genders (8% of all patients), but occurred more often in females.60 
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Elevated joint loading may increase the risk of FAI morphology. Athletes who 

participate in high impact sports during adolescence may be susceptible to insidious 

development of cam deformities. Specifically, subclinical physeal injury and subsequent 

femoral remodeling may occur if the epiphyseal plate is overloaded as it is closing during 

puberty.74-77 For example, one study of 44 adolescents demonstrated that cam 

morphology does not occur prior to physeal closure, and that after closure, subjects with 

cam morphology had higher activity levels than those without.75 An elevated body mass 

index, which also increases joint loading, may increase the risk of slipped capital femoral 

epiphysis, and may similarly increase the risk of cam FAI.78 Abnormalities to the 

acetabulum may develop in response to femoral head remodeling, with cam deformities 

promoting the formation of pincer deformities. Specifically, cam lesions may cause 

repeated microtrauma to the labrum, which can subsequently ossify, extending the 

acetabular rim, increasing coverage, and leading to mixed FAI.67,79 

Despite the evidence linking FAI to OA, there are still many individuals 

(including those with elevated activity levels) who have morphologic abnormalities 

consistent with FAI but do not develop symptoms, chondrolabral damage, or early OA.80-

82 For example, in one study of 96 asymptomatic hips with FAI, 79 did not have signs of 

OA at mean max follow-up 18.5 years.81  Progression of FAI to a symptomatic and/or 

degenerative condition may therefore be dependent on additional factors. For example, 

the ability of cartilage to sustain elevated or abnormal loading without substantial damage 

may vary between hips. Thus, in the presence of FAI morphology, individuals that do not 

develop OA may have more resilient cartilage than those that do develop OA.71 While 

cartilage resilience may prevent daily, repeated impingement from causing degeneration, 
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hips with FAI morphology may still be susceptible to acute injuries. For example, the 

pivoting and twisting motions often required in sports like soccer have been proposed as 

an mechanism for acute labral tears.33 Nonetheless, more research is needed to improve 

the sensitivity and specificity of identifying who is at risk for developing symptomatic 

FAI and which hips with FAI may progress to OA if left untreated.  

 

1.3.6 Treatment of FAI 

Conservative treatments such as anti-inflammatory drugs, physical therapy, and 

the avoidance of activities that generate impingement may reduce symptoms associated 

with FAI, but clinical evidence is weak.83 As such, surgery is the primary approach to 

treat symptomatic FAI. The goals of surgical treatment of FAI are to alleviate symptoms, 

restore function, preserve the native hip, and reduce the risk of developing end-stage OA. 

To address these goals, open and arthroscopic surgical strategies have been designed to 

correct the bony abnormalities and address chondrolabral damage. Several strategies are 

available to correct isolated cam and pincer deformities and can be combined to address 

mixed FAI hips. When multiple options are available, the selected approach ultimately 

depends on the surgeon. 

Cam FAI patients are treated with femoral debridement to increase femoral head 

sphericity and head-neck offset. This can be completed through open surgical dislocation, 

a mini-open approach, or arthroscopic surgery.84,85 Cam deformities located anteriorly are 

relatively easy to access athroscopically, while superior and posterior lesions are more 

challenging. As such, superior and posterior deformities are often addressed through open 

procedures, but they can be successfully corrected by experienced arthroscopists.86 Mini-
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open procedures have been designed to bridge the less invasive nature of arthroscopy and 

increased visualization of fully open approaches.84,87 Regardless of approach, the biggest 

challenge in cam FAI surgery is determining the optimal amount of bone to resect. 

Multiple strategies exist to correct pincer FAI hips, due to the range of 

presentations. For example, the crossover sign indicative of retroversion may be present 

in hips with normal/increased anterior coverage and deficient posterior coverage, or hips 

with increased anterior coverage and normal posterior coverage. In the former case, a 

periacetabular osteotomy (PAO) may be recommended to rotate the acetabulum into a 

position that simultaneously eliminates anterior impingement and improves posterior 

coverage.88,89 In the latter case, an “acetabular rim trim” may be used to eliminate 

anterior impingement while preserving normal posterior coverage.89,90 This rim trim may 

also be employed to treat globally overcovered sockets or posteriorly deficient hips 

contraindicated for PAO due to cartilage damage.89,90 

If present, chondrolabral damage is also addressed at the time of surgery. 

Depending on severity, labral tears can be excised or repaired. Labral repair/preservation 

is associated with better outcomes.91,92 Delaminated cartilage is addressed through 

chondroplasty and/or microfracture.93 Microfracture, employed after osteochondroplasty 

of the offending bone or chondroplasty of unstable flaps, facilitates fibrocartilage 

regrowth, with an average of 93% of the microfracture area filled at short-term follow-

up.94 

Short- to mid-term follow-up data generally demonstrate that surgical treatment of 

FAI can reduce symptoms, improve range of motion, and return patients to previous 

activity levels, including professional sports.84,95 However, long-term outcomes are not 
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yet available and therefore, it is unknown if joint preserving surgery will reduce the risk 

for future development of OA. Further, surgeries performed on patients with 

osteoarthritic changes and/or severe pain commonly result in poor outcomes and/or early 

conversion to a total hip replacement.93,96 Therefore, timely diagnosis and treatment is 

essential to avoid total hip arthroplasty and optimize clinical outcomes. Unfortunately, 

prior to being diagnosed with FAI, many patients consult multiple healthcare providers 

and even undergo unnecessary surgical procedures.20,97-99 Even professional athletes are 

not treated immediately, with the average time from onset of symptoms to treatment 

reported to be 29.6 months.35  

 

1.4 Methods to Investigate FAI Kinematics 

In the context of OA, joint kinematics (i.e. rotations, translations) have been 

shown to contribute to cartilage maintenance and repair.100-103 In the context of FAI, 

abnormal articulation between the femoral head and the acetabulum may play a pivotal 

role in damage to the cartilage and labrum, thereby initiating OA. Specifically, damage is 

believed to result from the nonspherical head forcing itself into the acetabulum in cam 

hips64,104 and from premature contact between the femoral head-neck junction and the 

protruding rim of the acetabulum in pincer hips.20,21,64 However, these hypothesized 

mechanisms of impingement have not yet been accurately quantified in vivo. An accurate 

assessment of in vivo hip joint kinematics could confirm or refute the current 

understanding of FAI damage mechanisms and provide evidence to support or refine 

current diagnostic and treatment strategies. 
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Numerous techniques have been employed to quantify FAI kinematics. In the 

clinic, a goniometer can detect hip range of motion limitations in FAI patients.49,105 The 

accuracy of the measurements are limited as goniometer arm alignment is subjective. 

Also, the measurement is completed in a static position. Further, angular measurements 

obtained on the surface of the skin cannot provide insight into how motion is restricted 

within the joint.  Skin marker motion analysis enables dynamic assessment of activities. 

Research has shown that FAI patients have reduced range of motion during walking or 

squatting when compared to normal subjects.106-108 Such differences may be due to 

compensatory changes in muscle recruitment/activation; limits in range of motion 

quantified dynamically are submaximal compared to those measured passively.106 Skin 

marker analysis requires that joint centers and axes of rotation be estimated from 

anthropometric measurements or calculated as the sphere fit of skin markers during hip 

circumduction. Soft tissue artifact degrades the accuracy substantially; errors in the 

estimation of the hip joint center can be greater than 20 mm, or roughly, the radius of the 

femoral head.109,110 Therefore, while skin motion analysis can be used to detect gross 

differences in hip kinematics, it cannot be used to quantify what may be subtle 

differences in the manner in which the hip articulates.  

Numerous studies have attempted to investigate the interaction of the femur and 

pelvis using computer simulations.65,111-113 In these studies, 3D surfaces of the bones from 

MRI or CT are prescribed motions to simulate clinical ROM exams. In a program 

developed by Tannast et al., ROM limits are calculated based on collision between the 

bone surfaces.112 This program has been used to investigate ROM before and after 

virtual113 and actual65 surgery to correct FAI abnormalities. While this software may be 
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useful to demonstrate that surgical removal of bone increases clearance in the joint, it has 

substantial limitations. Compared to ROM measured with a navigation system in 

cadavers, the software overestimates ROM by an average of 5° (range 19° to -7°).112 

Further, the software assumes the joint is concentric and the femur has a fixed center of 

rotation. In FAI patients, this is likely not the case because the femoral head is not 

spherical and has a center of rotation that may translate relative to the pelvis following 

collision and subluxation.  

In a similar study, Audenaert et al. prescribed clinical ROM measurements to 

surfaces of cam FAI patients.111 The software enabled them to identify the location of 

apparent intrusion of cam lesions to the acetabulum. In flexion, abduction, and internal 

rotation, cam lesions were found to abut against the anterosuperior quadrant of the 

acetabular cartilage. The model is limited by prescribed motions captured with a 

magnetic-based kinematic system, which is subject to the same skin motion error and 

center of rotation limitations as traditional skin motion capture. Finally, soft-tissue (i.e. 

cartilage, labrum, musculature, adipose tissue) was not included in both Tannast’s and 

Audenaert’s software. Thus, motion predicted in these studies is likely overestimated as 

soft-tissue (i.e. capsule, labrum) may prevent direct bone-bone contact.  

Both single plane fluoroscopy and dynamic CT have been used to visualize hip 

joint articulation. Single plane fluoroscopy has visualized subluxation of the femur and 

led to conclusions that bone-to-bone impingement does not occur unless the labrum is 

fully ossified.114 The technique only provides a 2D analysis, which severely limits its 

applicability to understanding FAI as a 3D pathology. Dynamic CT provides a 3D 

assessment and has been used to classify posterior and anterior impingement and 
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visualize subluxation, but is subject to substantial motion blur (due to a limited 

acquisition rate) prohibiting accurate measurements.115  

In conclusion, the aforementioned techniques and related studies have advanced 

the understanding of FAI. However, more accurate, 3D methods are needed to better 

understand and quantify how the hip articulates and how 3D pathology influences bone 

motion.   

 

1.5 Dual Fluoroscopy and Model-Based Tracking 

A technique known as dual x-ray and model-based tracking can quantify in vivo 

joint kinematics with submillimeter accuracy. This technique is based on image 

registration, requires no assumptions regarding joint axes or centers of rotations, and is 

not subject to skin marker error. This technique captures 3D joint kinematics through 

registration of volumetric CT data with video images acquired in vivo by two 

fluoroscopes or two pulsed x-rays systems.116,117 The following subsections outline the 

components and function of standard fluoroscopes, the modifications required to convert 

standard fluoroscopes to a high-speed dual fluoroscopy system, the tracking 

methodology, and the validation and application of the technique. 

 

1.5.1 Standard Fluoroscopes: Components and X-ray Generation 

Fluoroscopes have a number of clinical applications. For example, they allow 

surgeons to visualize their instrumentation relative to patient anatomy during surgical 

navigation for stent, metalwork, and pacemaker placement. Modern fluoroscopes are 

user-friendly, allowing operation without an intimate working knowledge of the system. 
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However, a deeper understanding is necessary to utilize them for nontraditional 

applications such as the quantification of in vivo joint kinematics.  

The main components of the fluoroscopic imaging chain include the generator, x-

ray tube, and image intensifier. The generator is a high voltage transformer circuit. It 

converts the available standard electrical AC voltage, which is limited to 480 V and 

oscillates at 60 Hz, to the DC voltage required by the x-ray tube, a constant 20-150 kV.118 

The constant power delivered to the x-ray tube enables x-rays of consistent strength, 

essential for safe operation of the machine. 

The x-ray tube converts the electrical energy from the generator into x-ray 

photons. The tube houses a cathode and anode in a vacuum envelope. At the cathode, a 

low voltage circuit from the generator provides current to heat the tube filament (a helical 

tungsten wire).119 As the filament is heated, it releases electrons via thermionic emission. 

The generator also establishes a large potential voltage difference between the cathode 

and anode, which accelerate the electrons towards a tungsten target. X-rays are generated 

as the electrons hit the target. The number of photons in the resulting x-ray beam is 

proportional to the tube current (mA), while the beam energy is proportional to the 

voltage difference (kVp).  

The majority of the x-rays are produced via the Bremsstrahlung process and are 

called “breaking radiation,” while approximately 20% of x-rays originate from 

characteristic x-ray production.119 In the Bremsstrahlung process, x-rays are produced 

when an electron passes close to a nucleus of the target material. The positively charged 

nucleus decelerates the electron and changes its direction. The lost kinetic energy of the 

electron is converted into an x-ray. Characteristic x-ray production occurs when the 
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accelerated electrons interact with inner shell electrons in the target material. Orbital 

electrons are bound to the nucleus at discrete binding energies. If the energy of the 

accelerating electron is greater than the binding energy, the inner shell electron is ejected, 

leaving an empty spot in the shell. An outer shell electron will move to fill this spot and 

emit an x-ray equivalent to the energy difference in binding energies between its original 

and new shells.  

X-ray production is a very inefficient process. Less than 1% of the accelerated 

electrons’ kinetic energy is converted to radiation, and the rest is lost to heat.119 While the 

target material, tungsten, is chosen for its high melting point, there is substantial heat 

load. To limit damage to the material, the target is designed as a rotating disk.120 This 

allows for greater x-ray intensity as the heat load is distributed over a larger surface area.  

X-rays are also emitted in all directions from the target, so the tube housing contains a 

lead layer to shield users and patients from this unnecessary radiation. Lead collimators 

limit the x-rays to a single beam; the size can be adjusted depending on the application. 

The beam is also filtered to remove low energy rays that would otherwise increase dosage 

without contributing to image formation.  

Incident x-rays are converted into an image in the image intensifier. The x-rays 

pass a convex input window made of aluminum and hit the input screen made of 

phosphor crystals, usually cesium iodide. Its convex shape provides better mechanical 

strength and maximizes the useful entrance field size, but does introduce some 

distortion.121 Through fluorescence, the phosphor crystals convert the x-ray photons to 

light photons. A photocathode layer made of antimony-cesium then absorbs these light 

photons and emits photoelectrons. The image intensifier anode and focusing electrodes 
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accelerate and condense the electrons to the output phosphor screen, which is much 

smaller in diameter than the original input window. The screen fluoresces with a 

maximum emission of 530 nm, or visible green light.121 The output from the phosphor 

screen is coupled to a video camera to record the image.  

In a C-arm fluoroscope, the image intensifier is rigidly mounted across from the 

x-ray emitter on a mobile half-circle (“C”) frame. This provides substantial flexibility to 

alter to the angulation and position of the imaging chain components. C-arms have been 

designed for use in surgery, where there is need for x-rays in a variety of positions.  

 

1.5.2 Application of Standard Fluoroscopes to Dual Fluoroscopy 

There are a number of limitations associated with the use of standard clinical c-

arm fluoroscopes for three-dimensional motion tracking. Although correctable, most 

fluoroscopes come standard with an eight inch diameter image intensifier. This size may 

be large enough to view a single joint on its own, but when the fluoroscopes must be 

positioned so that the joint of interest can be viewed throughout a range of motion in both 

machines, the overlapping field of view is often much smaller. Increasing the diameter to 

12 or more inches is common, and will increase the combined FOV.  

Another limitation is that a standard clinical fluoroscope will have a video camera 

coupled to the image intensifier that can only capture images up to 30 frames per second. 

Most joint motion analysis systems sample at a rate of at least 100 Hz.122 Thus, for the 

purpose of dual fluoroscopy, the original camera must be removed and replaced with a 

high speed camera. These digital cameras also provide the essential synchronization of 

the video collected by both machines.    



23 
 

Also, if a fixed arm is used to mount both the x-ray source and image intensifier, 

vibrations caused by the rotating anode can propagate along the metal c-arm. As a result, 

the image intensifier vibrates, causing motion artifact in the final video. Even minor 

vibrations can be problematic as they become exacerbated at the end of the cantilevered 

camera housing. The vibration in the resulting images prohibits accurate measurement of 

joint kinematics using dual fluoroscopy. To eliminate vibrations, the fluoroscopes can be 

modified by removing the metal c-arm, and mounting the image intensifier and x-ray 

emitter on separate bases. An additional benefit of the separation is the increased 

flexibility to position the system; in the absence of the c-arm, it becomes possible to 

position the system around objects such as a table or treadmill.  

 

1.5.3 Image Distortion Correction 

One of the limitations of x-ray fluoroscopes for motion analysis applications is 

image distortion, which can originate from four sources (Figure 1.6). Local distortions 

can occur from poor assembly or small magnetic device interactions. The video camera 

and its lenses also introduce optical distortion. Pincushion distortion occurs when the x-

ray beam is projected on the curved input phosphor, introducing nonlinear magnification 

of the image (with magnification greatest at the periphery). Finally, sigmoidal distortion 

occurs when external electromagnetic fields (including the earth’s magnetic field) affect 

the photoelectron path when traveling from the photocathode to the output phosphor, 

curving the image into an “S” shape.  

The distortion is insignificant in the clinical or surgical setting, but distortion 

reduces the accuracy of direct measurements made from the images. State-of-the-art flat-
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panel detectors have begun to replace the image intensifier and are not subject to 

pincushion distortion as the x-rays are mapped to a flat input screen.123,124 Unfortunately, 

these detectors are not widely available and are extremely expensive; standard image 

intensifiers are often used in dual fluoroscopy and must be corrected after acquisition.  

Image distortion correction software employs a variety of global and local 

mapping techniques.125-128 Fluoroscopic images of some type of grid, such as a perforated 

steel sheet or acrylic plate with implanted radiopaque beads, can be used to correct 

distortion. Software can identify a transformation that maps the distorted pattern to a 

target configuration (Figure 1.6). Global methods correct the image with a single pair of 

equations, while local techniques divide the image into small areas and correct each 

section separately.125,126,129,130 Global corrections may not detect and correct local 

distortions, but local techniques can introduce discontinuities in the corrected image as 

each section is corrected independently. The optimal algorithm may apply a combination 

of these approaches.131 

 

1.5.4 Motion Analysis with Dual Fluoroscopy 

Dynamic radiostereometric analysis (DRSA) and model-based tracking are two 

techniques used to extract bone motion from dual fluoroscopy images. In both 

approaches, a calibration cube is first placed in the combined field of view to establish 

the relative configuration of the two focal spots (x-ray emitters) and imaging planes 

(image intensifiers). DRSA is an extension of direct linear transformation theory to the 

tracking of small radiopaque spheres implanted into the bone of interest.132-134 DRSA is 

the reference standard method and is suitable for cadaveric, animal, and some post-
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operative human studies. However, the surgical implantation of radiopaque beads into 

bone is unethical for research involving normal or pre-operative subjects. To this end, 

model-based tracking techniques have been developed. 

Model-based tracking can be completed via intensity-based registration or shape-

based registration. In intensity-based registration, CT images are segmented to delineate 

the bone of interest. The bone model contains all voxels enclosed within the boundary of 

the bone and their associated intensities, representing bone density. The registration 

software generates a digitally reconstructed radiograph (DRR), or fake x-ray, via ray 

tracing through the bone model (Figure 1.7).117,135 Two DRRs are created and overlaid on 

the respective fluoroscopy images. The software then iterates the pose of the bone until 

the correlation of pixel intensities between the DRRs and the fluoroscopy images is 

optimized (Figure 1.8).135 This process is repeated for all frames of the fluoroscopy 

video.  

The process is similar for shape-based registration, except the bone model 

represents only the surface of the bone.136,137 As such, CT or MR imaging can be used to 

obtain the 3D bone geometry. Additionally, the technique can be applied to orthopaedic 

implants using the computer-aided design (CAD) surfaces from the manufacturer. In 

shape-based registration, ray casting (not ray tracing) generates a silhouette of the bone 

which is then matched to corresponding edges in the fluoroscopy video. The optimal pose 

of the bone is determined by minimizing the distance between the fluoroscopic edges and 

points on the silhouette edges. 

Prior to employing dual fluoroscopy and model-based tracking to answer research 

questions, the accuracy of the methodology must be determined. The accuracy varies for 
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each bone, depending on factors including the geometric complexity, soft-tissue x-ray 

attenuation, and overlap with other bones. Bey et al. recommend validation studies 

should be completed for each joint and motion of interest.116 The accuracy of model-

based tracking is assessed by comparing bone kinematics obtained from model-based 

methods to those quantified using DRSA. As the more accurate tracking method, DRSA 

serves as the reference standard to quantify errors in model-based tracking.117 The 

validation is completed with cadavers to avoid implantation into human subjects.  

Dual fluoroscopy and model-based tracking have been applied to investigate the 

kinematics of a number of joints, including the ankle, shoulder, spine, and knee.117,138-148 

Joint angles and translations are the most common outcome measure and are calculated 

directly from the bony landmarks without the interference of soft-tissue.116,117,134,142,148-151 

Some model-tracking studies have extended the quantification of bony movement to the 

evaluation of joint articulation and soft-tissue behavior. Bone-to-bone distance has been 

calculated in studies of the knee and hip.150,152-154 Cartilage deformation has been inferred 

in both the ankle and knee from the overlap of cartilage in joint models prescribed motion 

from dual fluoroscopy.139,147,153-155 While the applications have been numerous, the 

methodology has not yet been extended to answer clinically relevant questions regarding 

the hip. 

 

1.6 Overall Motivation and Summary of Chapters 

The body of this dissertation is composed of research that can be divided into two 

themes, both aimed at expanding the understanding of FAI. While the number of research 

studies on FAI has increased exponentially since its original description in 2001, many 
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questions surrounding the disease remain. For example, we knew very little about who is 

at risk for FAI, why damage is seen in some hips with structural deformities but not 

others, and how chondrolabral damage actually occurs.29 Research in these areas has the 

potential to improve the sensitivity and specificity of the diagnosis process and refine 

treatment strategies.  

The first theme of this dissertation investigates athleticism as a risk factor for FAI 

and explores methods to noninvasively identify athletes who are at risk. While certainly 

not the only persons affected by FAI, athletes do comprise a predominant portion of the 

patient population. One possible explanation for this observation is that athletic activity, 

especially during adolescence, may increase the risk of developing underlying FAI 

deformities, as described in Section 1.3.5. A second possible explanation is that athletic 

activity, especially activities that incorporate extreme range of motion or repeated impact 

loading, forces the abnormalities into repeated impingement and causes otherwise 

asymptomatic deformities to become symptomatic. In Chapter 2 of this dissertation, the 

former hypothesis is evaluated. The study is the first to quantify the prevalence of FAI in 

an asymptomatic athletic population, specifically collegiate football players, following 

modern radiographic definitions. 

As mentioned in Section 1.3.6, timely diagnosis and treatment of FAI may be 

essential to optimize clinical outcomes, yet misdiagnosis that delays treatment is 

common, even in professional athletes.  Further, many community physicians are 

unaware of FAI as a cause for hip pain. A screening protocol to identify those persons 

who are at-risk for the development of symptomatic FAI would likely reduce the time 

between onset of symptoms and diagnosis/treatment. That is, assuming symptoms 
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developed, the subject could communicate knowledge of being at risk for FAI to their 

physician immediately.   

The ideal screening protocol would be sensitive, inexpensive, and noninvasive. 

Radiographic imaging provides a convenient and relatively inexpensive evaluation of the 

abnormalities associated with impingement. However, the radiation exposure would not 

be appropriate for large-scale screening in asymptomatic subjects, especially adolescents. 

In Chapter 3, clinical exams, such as those outlined in Section 1.3.2, are evaluated as a 

noninvasive tool to screen for asymptomatic FAI abnormalities. While the exams have a 

high sensitivity in symptomatic FAI patients, it is unknown if they could be used to 

screen for FAI in subjects who do not currently have hip pain but may have underlying 

FAI abnormalities.36 Measuring ROM during rotational exams may also be useful as a 

screening tool, but the correlation between ROM and underlying FAI morphology has not 

yet been described in asymptomatic subjects.  

Regression analysis completed in Chapter 3 between radiographic measures of 

FAI and range of motion identified a significant but weak correlation between cam FAI 

and internal rotation. In addition, the impingement exam, which has a high reported 

sensitivity in FAI patients, was not positive in the majority of subjects with underlying 

but asymptomatic FAI abnormalities. These results, quantified by a goniometer and a 

subjective report of pain, provide an abstracted understanding of FAI kinematics. To fully 

understand how FAI morphology restricts ROM and the mechanism behind pain 

generation in symptomatic subjects, accurate quantification, and visualization of detailed 

hip kinematics are needed. Further, a three-dimensional in vivo assessment of 
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impingement could confirm or refute the hypothesized mechanisms of chondrolabral 

damage described in Section 1.3.4.  

As such, the second theme of this dissertation is the pursuit of accurate hip 

kinematics during clinical exams via dual-fluoroscopy and model-based tracking. While a 

number of other methods have previously been employed to quantify or simulate the 

impingement process, each has had its limitations, as described in Section 1.4. Dual 

fluoroscopy and model-based tracking can accurately quantify joint motion to 

submillimeter accuracy without assumptions of joint centers, axes of rotation, or bony 

collision and is not subject to error due to skin motion artifact or a limited frame rate.   

Dual fluoroscopy and model-based tracking methods have been validated for the 

native hip during simulated walking and rising from a chair.156,157 In addition, the shape-

based tracking of total hip arthroplasty implants has been validated during simulated 

walking.158 The reported bias and precision of joint angles and translations in these 

studies have been less than one millimeter and one degree, respectively. Since only 

motions occurring primarily in the sagittal plane were validated, there is limited 

applicability to the study of FAI. Specifically, impingement is hypothesized to occur at 

terminal range of motion or complicated motions which also incorporate rotation in the 

coronal and axial planes. Supine clinical exams, such as the impingement and FABER 

test, which combine rotation, flexion and ab/adduction may be more relevant to the study 

of FAI. 

In Chapter 4, dual fluoroscopy and model-based tracking of the hip joint are 

validated for supine clinical exams. In this chapter, model-based tracking results are 

compared to the reference standard, dynamic radiostereometric analysis, in a cadaveric 
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experiment to quantify the bias and precision of outcome measures derived from this 

technique. In addition, the methodology is extended to one normal subject to demonstrate 

the feasibility of the translating this technique to the study of live subjects. 

In Chapter 5, dual fluoroscopy and model-based tracking methodology are 

extended to a cohort of asymptomatic subjects with normal hip morphology and three 

subjects with differing FAI morphology. This chapter establishes baseline joint angles, 

translations and bone-bone distances during clinical exams for the normal population. 

Kinematics of the three patients are then compared to the mean results of the normal 

subjects and discussed in the context of each patient’s clinical presentation and surgical 

treatment. Quantifying what may be subtle differences in joint kinematics due to FAI will 

be the first step in understanding the relationship between altered kinematics, soft-tissue 

damage, and OA. The results presented in this chapter can be used for future comparisons 

to additional patients with FAI or patients with other hip pathologies.  

Finally, Chapter 6 is a summary of this dissertation. It summarizes the 

conclusions of this dissertation as a body of work, and interprets key findings of the 

earlier research (Chapter 2 and 3) in the context of studies published since the completion 

of this work. Finally, it discusses suggestions for future directions.  
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Figure 1.1. Schematic of a normal right hip joint. a) Anterior view of proximal femur 
with femoral cartilage (dark grey). b) Medial view of hemipelvis with acetabular cartilage 
on the lunate surface (dark grey) and acetabular labrum with transverse acetabular 
ligament attached to the acetabular rim (light grey). c) Anterior view of pelvis and femur 
in neutral position (midstance of walking). 
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Figure 1.2. Schematic of cam femoroacetabular impingement. Frog-leg lateral view of the 
femur. Arrow points to highlighted section of excess bone on the femoral neck.  
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Figure 1.3. Schematic of pincer femoroacetabular impingement. Anteroposterior view of 
the pelvis. Arrow points to highlighted section of excess bone on the superior acetabular 
rim.  
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Figure 1.4. Photographs of patient and examiner during clinical exams commonly used to 
assess FAI patients. Top: Terminal position of impingement exam, in which the hip is 
flexed and then internally rotated and adducted. Bottom: Terminal position of the 
Flexion-Abduction-External Rotation (FABER) Test, in which the subject’s leg is in a 
figure-four position, with hip external rotation and abduction.  



 

 

48 

 
 
 
 
 
 

 
 

Figure 1.5. Radiographic measures commonly used in the diagnosis of FAI. a) Alpha angle - the angle between the longitudinal axis of 
the femoral neck and a line connecting the femoral head center and the point where the head deviates from a best fit circle. b) Head-
neck offset - the difference in radius between the femoral head and neck. c) Lateral center edge angle - angle formed by a vertical line 
and a line connecting the femoral head center with the lateral edge of the acetabulum. d) Crossover sign - the posterior wall of the 
acetabulum (dashed line) crosses the anterior wall (solid line) on anteroposterior radiographs. e) Acetabular index - angle formed by a 
horizontal line and a line connecting the medial point of the sclerotic zone with the lateral center of the acetabulum. 
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Figure 1.6. Example of distorted fluoroscope images and corrected images. a) Distorted 
image of grid of radioopaque beads spaced one millimeter apart. Note pincushion 
distortion. This image is used in image processing software to establish the 
transformation required to correct distortion. b) Corrected grid, note regular spacing. 
After the image processing software established the require transformation for the grid, 
the transformation can be applied to correct all images collected from the same 
fluoroscope. c) Distorted image of calibration frame. d) Corrected image of calibration 
frame. On all images, note reference line highlighting curvature in distorted images and 
corrected geometry in processed images.  
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Figure 1.7. Generation of digitally reconstructed radiographs (DRRs). CT images are acquired of the joint of interest. Each bone is 
segmented semi-automatically. A Boolean operation applied the CT data set and segmented image labels generates an image stack 
containing the pixels of a single bone.  Ray trace projection through this isolated image stack generates a digitally reconstructed 
radiograph of the bone of interest. 
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Figure 1.8. Model-based tracking. Images of the same joint are acquired by two synced fluoroscopes (top and bottom rows) and 
loaded into model-based tracking software. Previous calibration steps established the relative configuration and perspective of the two 
fluoroscopes, and the user interface is initialized with digitally reconstructed radiographs (DRRs) of the bone of interest overlaid on 
the fluoroscopy images in an unaligned position. The model-based tracking software then optimizes the pixel intensity agreement 
between the DRR and the original video to align the bone to its in vivo position. The process is repeated for all frames of the video. 
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CHAPTER 4 
 
 
 

ACCURACY AND FEASIBILITY OF DUAL FLUOROSCOPY 
 

AND MODEL-BASED TRACKING TO QUANTIFY 
 

IN VIVO HIP KINEMATICS DURING  
 

CLINICAL EXAMS 
 
 
 

4.1 Abstract 
 

Accurate measurements of in vivo hip kinematics may elucidate the mechanisms 

responsible for impaired function and chondrolabral damage in hips with 

femoroacetabular impingement (FAI). The objectives of this study were to quantify the 

accuracy and demonstrate the feasibility of using dual fluoroscopy to measure in vivo hip 

kinematics during clinical exams used in the assessment of FAI. Steel beads were 

implanted into the pelvis and femur of two cadavers. Specimens were imaged under dual 

fluoroscopy during the impingement exam, FABER test, and rotational profile. Bead 

locations measured with model-based tracking were compared to those measured using 

dynamic radiostereometric analysis. Error was quantified by bias and precision, defined 

as the average and standard deviation of the differences between tracking methods, 

respectively. A normal male volunteer was also imaged during clinical exams. Bias and 

precision along a single axis did not exceed 0.17 and 0.21 mm, respectively. Comparing  
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kinematics, positional error was less than 0.48 mm and rotational error was less than 

0.58°.  For the volunteer, in vivo kinematics were successfully quantified and  reported as 

joint angles and bone-to-bone distance. These results demonstrate that dual fluoroscopy 

and model-based tracking can accurately measure hip kinematics in living subjects during 

clinical exams of the hip. 

 

4.2 Introduction 

Chondrolabral damage in hips with femoroacetabular impingement (FAI) may 

result from motion conflict due to acetabular overcoverage, femoral head asphericity, or 

both. Three physical exams are used to evaluate FAI patients: 1) internal/external 

rotational profile, 2) impingement exam, and 3) flexion abduction external rotation 

(FABER) test.1 These clinical exams place the hip into the limits of motion to initiate 

impingement. Range of motion during the exams is then quantified with a goniometer or 

estimated visually.  However, without accurate measurements of hip kinematics for those 

motions believed to induce impingement, it remains unknown how, exactly, the altered 

anatomy in patients with FAI causes motion conflict. A more accurate methodology to 

measure and visualize hip kinematics in a research setting could confirm or refute the 

hypothesized mechanism of impingement, and provide data that could improve the 

diagnosis and treatment of FAI. 

Researchers have employed skin marker motion analysis,2-4 computer 

simulations,5-8 dynamic CT9, and single plane fluoroscopy10 in the study of FAI. 

However, skin marker motion analysis assumes joint centers and axes, and markers are 

subject to substantial motion artifact. Computer simulations assume kinematics and 
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neglect bulk soft tissue restraints. Dynamic CT exhibits motion blur, and single plane 

fluoroscopy has poor out-of-plane accuracy.   

Dual radiography and model-based tracking software could accurately quantify 

hip kinematics without the limitations of the aforementioned techniques.11 However, 

previous applications of dual radiography to the native hip have investigated motions 

occurring primarily in the sagittal plane (walking, rising from a chair).12,13  Quantifying 

motion during clinical exams that incorporate hip rotation and ab/adduction at extreme 

ranges of motion may be more applicable to the study of FAI. The objectives of this 

study were to quantify the accuracy and demonstrate the feasibility of using dual 

fluoroscopy to measure in vivo hip kinematics during clinical exams used in the 

assessment of FAI. 

 

4.3 Methods 

4.3.1 Dual Fluoroscopy System (DFS) 

 A custom DFS (Radiological Imaging Services, Hamburg, PA) was developed, 

which consisted of two x-ray emitters (Housing B-100/ Tube A-142, Varian, Salt Lake 

City, UT) and two 12” image intensifiers (T12964-P/S, Dunlee Inc., Aurora, IL), each 

mounted to a dedicated base.  The DFS was positioned around a radiolucent table to 

image hips in the supine position (Figure 4.1). The fluoroscopy configuration was 

determined in preliminary cadaveric testing. The configuration enabled the clinician and 

subject to complete the exam without contact to the system, and minimized bone and soft 

tissue overlap in the images during all three exams. The source-to-image intensifier 



77 
 

 

distances of fluoroscopes 1 and 2 were 1100 and 1145 mm, respectively. The interbeam 

angle was 46° and the approximate imaging volume was 8500 cm3.  

All images in this study were acquired during continuous fluoroscopy using high-

speed digital cameras (Phantom Miro 3, Vision Research, Wayne, NJ) at 100 Hz with 

608x600 resolution and 3000 μs camera exposure. Images of a grid of steel beads 

corrected distortion.14 An acrylic calibration frame housing 36 steel beads (3 mm 

diameter, spacing 6.35 cm, uncertainty 0.0036 mm) was used to define the position and 

orientation of the DFS in a laboratory coordinate system. 

 

4.3.2 Validation of Dynamic Radiostereometric  

Analysis: Optimal Conditions 

This study represented the first use of the described dual fluoroscopy system. 

Thus, a simple test was performed to quantify the accuracy of dynamic radiostereometric 

analysis (DRSA) under optimal conditions. An acrylic plate with steel beads spaced 30 

mm (2 mm diameter, positional uncertainty 0.0013mm) was imaged during random 

motion.15 3D positions of the beads in laboratory coordinates were calculated using direct 

linear transform theory.15 The bead intercentroid distances from DRSA were compared to 

known distances to quantify accuracy. Bias and precision was defined by the average and 

standard deviation of the differences for 400 frames, respectively.  

 

4.3.3 Validation of Model-Based Tracking 

Two pelvis-to-toe cadaveric specimens were acquired (Specimen 1: male, 57 

years old, 170 cm, 70 kg, BMI 24.2;  Specimen 2: female, 59 years old, 168 cm, 50 kg, 
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BMI 17.7). Steel beads (2 mm diameter) were implanted into the left hemipelvis and 

femur with a minimally invasive approach preserving all soft tissue (Figure 4.2). At least 

five beads were implanted into each bone. Bead locations were chosen so as to minimize 

disruption of soft tissue.  Incisions were closed with suture. CT images of the entire 

pelvis, proximal femurs, and knees were acquired with a Siemens Somatom CT Scanner 

(0.7 mm slice thickness, Specimen 1/Specimen 2: 405/424 mm FOV, 512 x 512 matrix). 

Data were upsampled to 3x resolution to reduce staircase artifact.16 Bones were 

segmented semi-automatically using Amira (5.4.1, Visage Imaging, San Diego, CA). 

Pixels representing the implanted beads were automatically segmented and fit to a sphere 

to define bead centroids in CT coordinates.  

The pelvis was secured to the radiolucent table with VelcroTM straps. Fluoroscopy 

video was acquired for the impingement exam, FABER test, and supine straight legged 

int/external rotational profile. Three trials were collected per exam. Specimen 1 was 

imaged at 83 kVp/3.1 mA (fluoroscope 1) and 85 kVp/3.2 mA (fluoroscope 2). Specimen 

2 was imaged at 73 kVp/ 2.9 mA (fluoroscope 1) and 74 kVp/2.5 mA (fluoroscope 2). 

The total number of frames for each exam was 331 ± 60.7 (average, standard deviation). 

Using 3D bone reconstructions from the CT data, a pair of digitally reconstructed 

radiographs (DRRs) was generated using model-based tracking software.11 CT pixels 

representing the beads and associated metal artifact (that was confined to immediate 

region of the bead only) were assigned intensities of surrounding bone. The position and 

orientation of the bones were calculated by optimizing agreement between the two DRRs 

and the fluoroscope images.11 With the position of each bone and the relative location of 

each bead centroid known, the Cartesian coordinates of each bead centroid in laboratory 
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coordinates were calculated for each video frame. A custom PC with four graphics 

processing cards (Tesla C1060, Nvidia, Santa Clara, CA) completed the optimization for 

each frame in 0.1-1.0 s.  

DRSA of the implanted beads served as the reference standard. There were a few 

frames in each exam for which all five beads were not clearly visible. Thus, the three 

most visible beads in each bone for each trial were tracked. Standard deviations of the 

interbead distances defined the in vitro precision of DRSA. Precision results were 

averaged across trials. For comparison to model-based tracking, the coordinates of the 

beads relative to the laboratory system were smoothed with a 4th-order lowpass 

Butterworth filter with a cutoff frequency of 6 Hz.17 Model-based tracking and filtered 

DRSA bead locations were compared for each trial.  Bias and precision of the Euclidian 

distance between bead locations and the distance along each of the laboratory axes were 

calculated. Results were averaged across trials and specimens.  

 

4.3.4 Anatomical Coordinate System Definition 

Anatomical coordinate systems for the pelvis and femur were defined according 

to Wu et al.18 Bony landmarks were selected automatically or semi-automatically using 

PreView and PostView.19,20 Specifically, principal curvature automatically defined the 

lunate surface of the acetabulum, iliac crest and superior border of the sacroiliac joint on 

the pelvis and the femoral head, articulating surface of the femoral condyles, and ridges 

on the medial and lateral femoral epicondyles. The pelvic and femoral joint centers 

(PJCCT, FJCCT) were calculated as the center of the best fit sphere of the lunate surface of 

the acetabulum and femoral head, respectively (Figure 4.3). For the mediolateral axis of 



80 
 

 

the femur and midpoint of the knee, a plane was fit to the medial and lateral epicondyle 

ridges to isolate the posterior region of the condyles, which was then automatically fit to 

a cylinder (Figure 4.4). The center of the cylinder defined the midpoint of the knee.  

The posterior superior iliac spine (PSIS) was defined as the posterior intersection 

of the superior border of the sacroiliac joint and the medial border of the iliac crest 

(Figure 4.5). The anterior superior iliac spine (ASIS) was defined as the anterior 

intersection between the medial and lateral borders of the iliac crest (Figure 4.5). While 

each of these of these borders was defined automatically by curvature, their intersections 

included a small number of nodes. The user selected a single node to represent the 

landmark. As the process was not fully automatic, a repeatability study was completed 

for the ASIS and PSIS. Specifically, three observers selected the landmarks three times to 

calculate inter- and intraobserver precision following the definition used by Victor et al.21 

The average position of each landmark across all nine selection trials was used in 

subsequent analyses. To evaluate the influence of landmark selection inconsistencies, the 

pelvic coordinate system was calculated using the average landmark positions and the 

positions from each selection trial. For each axis of the coordinate system, the angle 

between the average and trial configurations was calculated.  

 

4.3.5 Validation of Joint Angles and Translations 

Raw model-based tracking and DRSA results were converted into clinical joint 

angles and translations. The transformation matrix relating the pelvis and femur 

anatomical coordinate systems to the CT coordinate system (Panat/CT and Fanat/CT) was 

defined using the landmarks described above.  Not all bony landmarks required to define 
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the anatomical coordinate systems were visible in the dual fluoroscopy field of view. As 

such, a technical coordinate system was required for both the pelvis and femur, and 

established relative to the CT coordinate system using the three most visible beads 

(Ptech/CT and Ftech/CT). These technical coordinate systems were then tracked relative to 

laboratory coordinates (Ptech/Lab and Ftech/Lab) for each fluoroscopy frame for both 

model-based tracking and DRSA. The combination of these matrices provided the overall 

transformation from pelvis to femur anatomical coordinate systems for each frame, 

calculated as: 

 

 Panat/CT × CT/Ptech × Ptech/Lab × Lab/Ftech × Ftech/CT × CT/Fanat [4.1] 

 

The three joint angles (flexion/extension, abduction/adduction, internal/external 

rotation) were calculated from the resulting transformation matrix using a Grood and 

Suntay convention.22  

To define translations, the position of the PJC and FJC was calculated in 

laboratory coordinates for each frame as follows (example for the PJC): 

 

 PJCLab=Lab/ Ptech × Ptech/CT × PJCCT [4.2] 

 

The vector from PJC to FJC was computed and then projected onto each of the 

pelvic coordinate axes (also recalculated for the current frame) to obtain medial/lateral, 

anterior/posterior, superior/inferior translations. Joint angles and translations derived 

from raw DRSA bead coordinates were filtered with a 6 Hz Butterworth filter. Bias and 
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precision were calculated between the filtered DRSA kinematics and raw model-based 

tracking kinematics.   

Repeatability of the clinical exams was assessed at max external rotation 

(FABER), max internal rotation (Rotational Profile), and max internal rotation in flexion 

(for the Impingement Exam). Each time point was identified in the trial and the three 

joint angles were recorded. Exam repeatability was calculated as the standard deviation 

of each angle over the three trials.  

 

4.3.6 Validation of Bone-to-Bone Distance 

A custom tool was created in PostView20 to visualize bone motion and bone-to-

bone distance. For bone motion, the tool applied transformations from CT to laboratory 

coordinates for both the femur and pelvis for each time point to nodal coordinates 

defining the bone surfaces. For bone-to-bone distance, the user selected the faces 

representing the articulating regions of the acetabulum and femur. For each face, the tool 

calculated the nearest distance to the opposing surface (displayed as a fringe plot).  

Bone-to-bone distance results were compared between DRSA and model-based 

tracking. For every 10th frame of each exam, the root mean square (RMS) error was 

calculated between all nodes in the articulating region of the pelvis and femur (defined as 

nodes with a distance less than 10 mm measured by either tracking method). An average 

RMS error was calculated for each trial and then results were averaged across all 

specimens and exams.  
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4.3.7 Application to Live Human Subject 

 With IRB approval (#51053) and informed consent, one male with no history of 

hip pain or pathology was imaged (32 years old, 177 cm, 73 kg). An orthopaedic surgeon 

performed the three exams (Figure 4.6). 280 ± 5 frames were collected per exam. 

Radiation settings were 87 kVp/3.3 mA (fluoro 1) and 88 kVp/3.4 mA (fluoro 2). CT 

images of the entire pelvis, proximal femur, and knee were acquired with a Siemens 

SOMATOM Definition CT Scanner (0.7 mm slice thickness, 355 mm FOV, 512 x 512 

matrix) and bones were segmented with Amira. Model-based tracking and filtering of 

results was completed as described above. Outcome measures included joint angles, 

translations, bone-to-bone distance, and videos of bone motion.  

 

4.4 Results 

Bias and precision of DRSA for the optimal conditions (beads in acrylic) were 

0.017 and 0.113 mm, respectively. In vitro precision (± standard deviation across all trials 

and specimens) of DRSA was 0.159 ± 0.072 mm. 

Average Euclidian bias of model-based tracking (± standard deviation across all 

trials and specimens) was 0.32 ± 0.08 mm for the pelvis and 0.30 ± 0.06 mm for the 

femur. Average Euclidian precision for the pelvis and femur were 0.13 ± 0.03 mm and 

0.14 ± 0.04, respectively. Across exams, bias and precision of the distance difference 

along any one of the laboratory axes did not exceed 0.17 mm and 0.23 mm, respectively 

(Table 4.1).   

For Specimen 1, Euclidian bias and precision across all trials were 0.35 ± 0.05 

and 0.13 ± 0.02 for the pelvis, respectively, and 0.29 ± 0.04 mm and 0.13 ± 0.03 for the 
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femur, respectively. For Specimen 2, the Euclidian bias and precision across all trials 

were 0.30 ± 0.11 and 0.13 ± 0.04 for the pelvis, respectively, and 0.31 ± 0.09 mm and 

0.15 ± 0.05 for the femur, respectively.  

Intraobserver precision in landmark selection (± standard deviation across all 

observer trials) for the ASIS and PSIS were 0.18 ± 0.44 mm and 0.12 ± 0.37 mm, 

respectively. Interobserver precision was 0.18 ± 0.21 mm for the ASIS and 0.24 ± 0.38 

mm for the PSIS. Comparing pelvic coordinate systems established using landmarks from 

each selection trial to the coordinate system established from the average position of each 

landmark, the average angle between respective axes was 0.07 ± 0.10°. 

Comparing model-based tracking kinematics to DRSA kinematics, translation 

bias did not exceed 0.48 mm and angular bias did not exceed 0.58° (Table 4.2). 

Qualitatively, kinematics were nearly identical between DRSA and model-based tracking 

(visualized for the impingement exam on Specimen 1 in Figure 4.7). Exam repeatability 

ranged from 0.1° (for ab/adduction angle at the point of max internal rotation during the 

rotational profile) to 4.1° (for ab/adduction angle at the point of max external rotation 

during the FABER test). The average RMS error of bone-to-bone measurements (± 

standard deviation across all trials and specimens) was 0.52 ± 0.15 mm.  

The total time used to position the live subject and image all exams was 21 

seconds, resulting in an estimated dose exposure (EDE) from dual fluoroscopy of 0.32 

mSv. Adding the CT scan, the total EDE was 9.74 mSv, or 19% of the annual exposure 

for research subjects stipulated by the Food and Drug Administration. For the three 

exams, joint angles were calculated and bone-to-bone distance was displayed in the 

articulating region (Figure 4.8). Greater external rotation than internal rotation was 
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achieved during the rotational profile. At maximum adduction during the impingement 

exam, the anterior femoral neck approximated the anterosuperior acetabular rim (shortest 

bone-to-bone distance was approximately 2 mm, Figure 4.8). For the FABER test, the 

femur achieved 65° of external rotation in the figure-four position.  

Videos of bone motion and dynamic bone-to-bone distance fringe plots for all 

three exams were studied. During the impingement exam, the pelvis remained relatively 

stationary until the range of motion was reached, after which the force applied by the 

examiner caused posterior pelvic tilt and pelvic obliquity.  During the FABER test, subtle 

subluxation occurred as the posterior femoral neck articulated against the posterior 

acetabular wall. For the rotational profile, internal rotation did not appear to be limited by 

articulation of the femoral head or neck with the acetabular rim.  

 

4.5 Discussion 

In this study, dual fluoroscopy and model-based tracking could measure hip 

kinematics during clinical exams to a bias and precision less than one millimeter and one 

degree, similar to other hip validation studies (Table 4.3). There were no substantial 

differences in tracking accuracy between exams.  Exam repeatability for the cadavers was 

very good. The semi-automatic approach described for landmark selection had excellent 

repeatability; minor inconsistencies in landmark selection only slightly altered coordinate 

axes. A live subject was also successfully imaged. Joint angles, translations, and bone-to-

bone distance results as well as videos of bone motion for the volunteer demonstrated the 

feasibility of using dual radiography and model-based tracking for future research.  
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The bias and precision of model-based tracking presented herein represent the 

upper bounds of error. Specifically, bead locations quantified by DRSA served as the 

reference standard, but beads implanted in bone are more difficult to visualize than those 

in a radiolucent material, like acrylic. As a result, the precision of DRSA was slightly 

worse in vitro than in the optimal conditions. In the past, inaccuracies in in vitro DRSA 

have been addressed by excluding those image frames with poor DRSA precision.13. By 

excluding frames, the accuracy of model-based tracking may be artificially improved. 

Rather than excluding frames in the present study, we chose to filter the in vitro DRSA 

data. We chose to filter the experimental data and retain the raw model-based tracking 

data as we believe this represents a worst case scenario.  

There were a few limitations. First, while the study objective was to evaluate 

clinical exams utilized in the assessment of FAI, the live subject evaluated herein did not 

have FAI. However, normal subjects likely have a larger range of motion than FAI 

patients, which provides confidence that our DFS could quantify kinematics of FAI 

patients. The BMI of the cadaver specimens and volunteer were less than the United 

States average (28.7 kg/m2).23 However, Harris et al. reported a BMI of 24.5±2.6 kg/m2 

in a review of more than 2,000 FAI patients, making the results of this study relevant to 

the future study of FAI with dual fluoroscopy and model-based tracking.24 Still, the 

radiation and imaging settings used in our study may not be applicable to persons with a 

BMI greater than ~25 kg/m2.  We chose to reduce radiation exposure to the human 

volunteer by performing a single trial. Therefore, a final limitation was that exam 

repeatability was accessed using the cadaveric specimens only. 
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In conclusion, by combining dual fluoroscopy with model-based tracking, we 

have shown that hip kinematics can be accurately quantified during clinical exams in 

vivo.  The ability to accurately quantify joint angles, visualize bone motion and distance 

between bones could provide insight into how FAI alters hip kinematics and elucidate the 

mechanisms responsible for chondrolabral damage. 
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Table 4.1 
 
 
 

Model-Based Tracking Bias and Precision of Sphere Centroid Locations 
 
 

 

Bone 
  FABER Test Impingement Exam Rotational Profile 
  Bias Precision Bias Precision Bias Precision 

Pelvis 

3D 0.35 (0.09) 0.15 (0.03) 0.35 (0.07) 0.14 (0.03) 0.26 (0.07) 0.11 (0.03) 
X -0.14 (0.10) 0.14 (0.04) -0.16 (0.13) 0.16 (0.04) -0.06 (0.06) 0.14 (0.05) 
Y 0.03 (0.04) 0.09 (0.02) 0.04 (0.05) 0.09 (0.02) 0.07 (0.07) 0.08 (0.03) 
Z 0.12 (0.23) 0.17 (0.04) 0.09 (0.18) 0.17 (0.03) 0.06 (0.12) 0.15 (0.05) 

Femur 

3D 0.30 (0.06) 0.15 (0.04) 0.26 (0.05) 0.13 (0.05) 0.34 (0.07) 0.14 (0.03) 
X 0.07 (0.06) 0.13 (0.02) 0.11 (0.07) 0.11 (0.03) 0.03 (0.13) 0.13 (0.03) 
Y -0.05 (0.09) 0.13 (0.04) 0.01 (0.05) 0.10 (0.02) 0.03 (0.06) 0.13 (0.03) 
Z -0.04 (0.09) 0.23 (0.04) 0.04 (0.12) 0.17 (0.05) 0.17 (0.08) 0.21 (0.04) 

All results in mm. Results are listed at average (standard deviation) for three beads tracked in two 
specimens for three trials per exam. 3D represents Euclidian distance between sphere centroids. X, Y, Z 
represent the difference along each of the laboratory axes. 
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Table 4.2 
 
 
 

Model-based Tracking Bias and Precision of Joint Angles and Translations 
 
 
 

Kinematic Parameter 
FABER Test Impingement Exam Rotational Profile 

Bias Precision Bias Precision Bias Precision 
Mediolateral Translation (mm) 0.35 (0.10) 0.32 (0.10) 0.36 (0.26) 0.48 (0.65) 0.23 (0.28) 0.42 (0.05) 

Anteroposterior Translation (mm) 0.10 (0.27) 0.41 (0.11) 0.06 (0.31) 0.38 (0.07) -0.22 (0.22) 0.51 (0.16) 
Superoinferior Translation (mm) 0.27 (0.20) 0.47 (0.15) 0.48 (0.65) 0.59 (0.22) 0.03 (0.21) 0.25 (0.04) 

Flexion-Extension (°) 0.28 (0.22) 0.78 (0.31) 0.26 (0.44) 0.54 (0.08) 0.49 (0.16) 0.57 (0.14) 
Abduction-Adduction (°) 0.03 (0.32) 0.36 (0.12) -0.06 (0.29) 0.44 (0.13) 0.55 (0.18) 0.38 (0.06) 

Internal-External Rotation (°) -0.14 (0.20) 0.71 (0.13) -0.58 (0.66) 0.74 (0.23) -0.21 (0.57) 0.76 (0.20) 
Results are listed at average (standard deviation) of three trials for each exam completed for two specimens. 
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Table 4.3 
 
 
 

Maximum Bias and Precision Comparison Between Studies 
 
 
 

Maximum Reported Value Present 
Study 

Martin et 
al., 2011 

Lin et al., 
2012 

Bias along a single laboratory axis (mm) 0.17 0.21 * 
Precision along a single laboratory axis (mm) 0.21 0.24 * 
Joint Angle Bias (°) 0.61 0.43 0.59 
Joint Angle Precision (°) 0.81 1.27 0.82 
Translation Bias (mm) 0.48 0.4 0.93 
Translation Precision (mm) 0.59 0.45 1.13 
* Lin et al. reported error along anatomical axes, not laboratory axes.  
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Figure 4.1. Dual fluoroscopy system configured to image the left hip during supine clinical exams. Dashed lines represent x-ray beam. 
E = emitter, II= image intensifier. 



94 

 

94 

 
 
 
 
 

 
 
Figure 4.2. Fluoroscopy images from specimen 2 during the impingement exam. Point of 
max internal rotation at ~90° flexion is shown. Top: Fluoroscopy images with circles 
highlighting the beads implanted in pelvis and proximal femur. Bottom: Fluoroscopy 
images with digitally reconstructed radiographs of the pelvis and femur overlaid. 
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Figure 4.3. Methods to find pelvic and femoral joint centers. Second principal curvature 
automatically isolates femoral head (top) and lunate surface of the acetabulum (bottom). 
The pelvic and femoral joint centers were calculated as the center of the best fit sphere of 
the lunate surface of the acetabulum and femoral head, respectively.  
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Figure 4.4. Methods to establish the mediolateral axis of the femur and midpoint of the knee. First principal curvature automatically 
defined the ridges on the medial and lateral femoral epicondyles [yellow selection in (a), (b)]. The articulating surface of the condyles 
was automatically defined using second principal curvature [red selection in (c), (e)]. A plane was fit to the medial and lateral 
epicondyle ridges [blue in (d)] to isolate the posterior condyles [green in (f)]. The isolated posterior condyles were fit to a cylinder 
[red in (g)] to define the mediolateral axis of the femur [blue in (g)]. The center of the cylinder defined the midpoint (g). 
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Figure 4.5. Methods to identify the anterior superior iliac spines (ASIS) and posterior 
superior iliac spines (PSIS). First principal curvature automatically defined the iliac crest 
and superior border of the sacroiliac joint. The ASIS was identified as a user-selected 
point at the anterior intersection between the medial and lateral borders of the iliac crest 
(arrow, left panel). The PSIS was identified as a user-selected point at the posterior 
intersection of the superior border of the sacroiliac joint and the medial border of the iliac 
crest (arrow, right panel).  
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Figure 4.6. Live subject positioned in the dual fluoroscopy system with left hip flexed 
during impingement exam. Dashed arrows indicate the direction of motion during the 
impingement exam, specifically flexion to ~90° followed by internal rotation and 
adduction.
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Figure 4.7. Results for specimen 1 during the impingement exam. Joint angles calculated 
via model-based tracking (lines) are compared to DRSA (shapes, plotted every 10th 
frame for clarity). 
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Figure 4.8. Joint angles calculated using model-based tracking during clinical exams on 
live subject (left column). Bone-to-bone distance (mm) is displayed on pelvis (middle 
column) and femur (right column) at time points indicated in joint angle plots by vertical 
grey line. Included time points are: max external rotation for the FABER test, max 
internal rotation for the rotational profile, and max internal rotation in flexion for the 
impingement exam. 



 

CHAPTER 5 

 
 
 

QUANTIFICATION OF IN VIVO HIP KINEMATICS DURING  
 

CLINICAL EXAMS USING DUAL FLUOROSCOPY AND 
 

MODEL-BASED TRACKING: APPLICATION TO THE  
 

STUDY OF FEMORACETABULAR IMPINGEMENT 
 
 
 

5.1 Abstract 
 

Abnormal articulation in hips with femoroacetabular impingement (FAI) may 

cause chondrolabral damage, but has not been accurately quantified. Dual fluoroscopy 

and model-based tracking can quantify 3D in vivo hip kinematics with errors less than 

one millimeter and one degree. The purpose of this study was to quantify and compare 

hip kinematics of a cohort of asymptomatic controls and patients with FAI during supine 

clinical exams. Dual fluoroscopy video was collected of six asymptomatic subjects and 

three patients with FAI during the impingement exam, rotational profile, and FABER 

test. Surfaces for the femur, pelvis, and labrum were segmented from CT arthrogram 

images. In vivo kinematics of the pelvis and femur were obtained from model-based 

tracking. Joint angles, joint translations, and relative pelvic angles were calculated. At the 

terminal position of the impingement exam, regions of minimum bone-to-bone distance 

and labrum-femur contact were identified. For the normal subjects, internal rotation 

averaged 9.1±4.4° (impingement exam) and 32±6.4° (rotational profile). External rotation
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averaged 48±7.4° (FABER) and 36±8.2° (rotational profile). Comparatively, FAI patients 

demonstrated decreased range of motion. During all exams, hip articulation involved 

pelvic motion, and joint translation and no bone-to-bone contact. The region of minimum 

bone-to-bone distance coincided with the actual location of labrum-femur contact in only 

half the subjects. Results demonstrated joint articulation to be a highly complex process. 

Using dual fluoroscopy and model-based tracking, limitations in range of motion and the 

locations of impingement during clinical exams can be identified in FAI patients relative 

to normal subjects.  

 

5.2 Introduction 

Femoroacetabular impingement (FAI), a reduction in clearance between the 

femoral head and acetabulum, causes hip pain and damage to chondrolabral tissue and 

may initiate osteoarthritis (OA).1 Morphologically, FAI presents as asphericity of the 

femoral head or neck (cam), acetabular overcoverage (pincer), or a combination of the 

two (mixed).  Functionally, FAI presents as restricted and painful hip motion, which 

occurs in one or more anatomical planes.1,2 Differing patterns of chondrolabral damage 

have led to separate hypothesized mechanisms of impingement for each subtype of FAI.3-

7 For example, in pincer FAI patients, labral tears perpendicular to the surface are 

suggested to originate as the labrum is compressed between the femoral neck and 

overcovered acetabulum. Cam FAI is predominately associated with labral tears and 

cartilage delamination at the chondrolabral boundary in the anterosuperior acetabulum, 

thought to originate as the aspherical head is forced into the acetabulum.  
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Clinical exams range the hip through motions thought to induce impingement, and 

are central to confirming functional impairments in patients with radiographic signs of 

FAI. In the impingement exam, the hip is flexed and then internally rotated and adducted. 

Patients with suspected FAI almost always report pain during the exam, which could be 

the result of contact to damaged tissue.1,8,9 The flexion-abduction-external rotation 

(FABER) test, designed to test for posterior impingement, is also frequently positive in 

FAI patients.9 Finally, range of motion is quantified during the rotational profile to 

identify possible restrictions in hip internal and external rotation.10 

While valuable to the diagnosis of FAI, there is limited functional understanding 

of how hip pathoanatomy influences clinical exam findings. First, hip kinematics are 

measured with a goniometer or estimated visually.11,12 Second, reports of pain are 

subjective. It is therefore difficult to objectively define an abnormal from normal exam 

finding. A detailed and accurate assessment of hip kinematics during clinical exams 

could serve several purposes. First, it could provide objective diagnostic criterion for 

these exams. Second, quantification of hip kinematics relative to the underlying 3D 

anatomy could be used for pre-operative planning. Finally, kinematic measurements 

during exams could lend valuable quantitative data to support hypothesized mechanisms 

of impingement and damage patterns observed clinically. 

Previous kinematic studies have provided insights into altered function in FAI 

patients, but limitations in the chosen techniques have prohibited an accurate assessment 

of joint articulation. Skin marker motion analysis has identified gross reductions in range 

of motion during walking, squatting, and stair-climbing.13-16 However, soft tissue artifact 

and inaccuracies in estimating the hip joint center limit the applicability of standard skin 
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marker tracking to identify subtle differences in joint articulation. Computer simulations 

have been used to predict the location of impingement and evaluate the effects of virtual 

surgery.17-20 These models incorporate the true anatomy of the joint, derived from CT or 

MRI images. However, they assume a fixed center or axis of rotation for the femur. 

Further, range of motion is either estimated from the limits of bone-to-bone collision in 

the simulation, ignoring the contributions of surrounding soft tissue, or from magnetic-

based tracking systems that are subject to the same limitations of skin marker motion 

analysis. 

As shown in Chapter 4, dual fluoroscopy and model-based tracking can directly 

quantify hip kinematics during clinical exams with an error less than 0.48 mm and 

rotational error less than 0.58°. Prior to using this technique to ascertain hip kinematics of 

FAI patients during clinical exams, it is necessary to establish the same data in subjects 

who are asymptomatic for hip pain and have normal hip anatomy. Therefore, the first 

objective of this study was to use dual fluoroscopy to quantify hip kinematics of a cohort 

of asymptomatic controls during supine clinical exams (impingement exam, FABER test 

and neutral flexion rotational profile). The second objective was to demonstrate the utility 

of dual fluoroscopy and model-based tracking to study FAI by quantifying and 

comparing the kinematics of three patients with differing FAI morphology to results from 

the normal subjects.   
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5.3 Methods 

5.3.1 Subjects 

With IRB approval (#51053), eight asymptomatic subjects without a history of 

hip pain or pathology were screened for grossly abnormal morphology and signs of 

osteoarthritis with an anteroposterior (AP) radiograph. Six subjects passed the screening 

and were enrolled in the study as part of a normal cohort (2 females, age 25.5 ± 3.7 years, 

height: 177 ± 11.9 cm, weight: 64.9 ± 9.00 kg, BMI: 20.6 ± 1.18 kg/m2, anteroposterior 

alpha angle 45 ± 2.6°, lateral center edge angle 34 ± 5.8°).  

Three patients with symptomatic FAI were also enrolled in this study. The 

patients presented to the coauthor’s (SKA) clinic with a history of left hip pain greater 

than two years, limiting exercise and activities of daily living. Attempts at nonoperative 

management, including physical therapy, non-steroidal anti-inflammatory medication, 

and cessation of activity had failed. As part of the diagnostic work-up, acetabular 

overcoverage was assessed with the lateral center edge angle (LCEA) on AP radiographs. 

Femoral asphericity was assessed with the alpha angle measured on frog-leg lateral 

radiographs. All patients reported pain during the impingement and FABER exams and 

exhibited grossly restricted range of motion. All three patients were treated with 

arthroscopic femoral osteochondroplasty, acetabuloplasty, and labral repair. 

Patient 1 (male, 25 years, 180 cm, 85.3 kg, BMI 26.2 kg/m2) presented with a 

pistol-grip cam deformity and low hanging anterior inferior iliac spine. Radiographic 

findings included an LCEA of 20° and alpha angle of 80° (Figure 5.1). Intraoperative 

findings included a labral tear at the chondrolabral junction from 12-2 o’clock (Figure 

5.1).  
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Patient 2 (female, 23 years, 168 cm, 63.5 kg, BMI 22.6 kg/m2) presented with 

protrusio, a downward sloping sourcil, a large pincer groove, and a large bony 

prominence located on the anterolateral femoral neck (Figure 5.2). LCEA was 42° and 

alpha angle was 71°. Upon intraoperative inspection, the labrum was separated from 

cartilage in the anterosuperior region of the acetabulum (Figure 5.2). Surface changes to 

cartilage were present on the posterosuperior femoral head and posterior acetabulum.  

Patient 3 (female, 26 years, 173 cm, 56.7 kg, BMI 19.0 kg/m2) presented with 

mixed FAI, including acetabular overcoverage (LCEA 45°), and femoral head asphericity 

(alpha angle 70°), and a pincer groove on the anterolateral femoral neck (Figure 5.3). 

Intraoperatively, surface changes were observed at anterosuperior chondrolabral junction 

and posterior acetabulum. Mechanical wear was present at the pincer groove (Figure 5.3).  

 

5.3.2 CT Arthrogram Image Acquisition and Segmentation 

CT arthrogram images were acquired of each subject with a Siemens SOMATOM 

Definition CT Scanner.21 Images of the pelvis and proximal femurs were acquired at 1 

mm slice thickness, 342 ± 19.7 mm FOV, 512 x 512 matrix. To establish the femoral 

anatomical coordinate system, CT images of the knees were also acquired with the same 

FOV and matrix but with a 3 mm slices thickness. Images of the hip were upsampled to 

3x resolution to reduce staircase artifact21 and then segmented semi-automatically in 

Amira (5.4.1, Visage Imaging, San Diego, CA) to delineate the bones of interest and the 

acetabular labrum. 3D surface reconstructions of each bone were generated from the 

segmentations to define the anatomical coordinate systems, to visualize bone motion, and 

to calculate bone-to-bone distance. Individual image stacks were created for the affected 
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hemipelvis and femur for model-based tracking (left side on all subjects). These stacks 

contained all pixels and associated intensities representing each bone. Finally, 3D 

reconstructions of the labrum were created to visualize motion and to calculate overlap 

with the femur. 

5.3.3 Dual Fluoroscopy 

The dual fluoroscopy protocol validated in Chapter 4 was used in the present 

study. Briefly, dual fluoroscopy video was acquired at 100 Hz during the three physical 

exams. Each subject was positioned supine on a radiolucent table such that the left hip 

was centered in the combined field of view of both fluoroscopes. A wide seatbelt-like 

strap was secured over the anterior superior iliac spines to ensure that the pelvis remained 

in the FOV during each exam. An orthopaedic surgeon manipulated the subject’s hip 

through three exams: impingement exam, FABER exam, and rotational profile in neutral 

flexion. Two trials were completed for each exam. The total fluoroscopy time required 

for each subject, including initial positioning and all exam trials, averaged 28.4 ± 3.88 s. 

The fluoroscopy energy settings were manually adjusted for each subject. Average tube 

voltage and current were 79 ± 7.0 kVp, 3.0 ± 0.37 mA, respectively. 

 

5.3.4 Model-Based Tracking 

Model-based tracking was used to determine the position and orientation of the 

pelvis and femur.22 This previously validated technique can quantify hip joint kinematics 

with a positional error less than 0.48 mm and rotational error less than 0.58° (Chapter 4). 

Briefly, images of a calibration cube established the relative position and perspective of 

the two fluoroscopes. Knowing this geometry, digitally reconstructed radiographs 
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(DRRs) of the bone of interest relative to the two imaging planes were created via ray 

trace projection through the isolated bone image stacks. The user then manually moved 

the bone in six degrees of freedom (3 translations, 3 rotations) to roughly match the 

DRRs to the fluoroscope images for the first time point. The model-based tracking 

software then determined the optimal pose and orientation of the bone for each video 

frame by iteratively changing the six degrees of freedom to maximize the normalized 

cross-correlation between pixel intensities in the DRRs and the fluoroscope images.  

 

5.3.5 Anatomical Coordinate Systems 

Anatomical coordinate systems representing the pelvis and femur were 

established following the International Society of Biomechanics (ISB) 

recommendations.23 The femoral and pelvic joint centers, mediolateral axis of the femur, 

and midpoint of the knee were calculated automatically. Specifically, principal curvature 

of the 3D bone reconstructions, calculated in PostView,24 isolated the lunate surface of 

the acetabulum, femoral head, articulating surface of the femoral condyles and ridges on 

the medial and lateral femoral epicondyles. The center of the best fit sphere to the 

femoral head and lunate surface of the acetabulum, calculated in PreView,25 defined the 

femoral and pelvic joint centers, respectively. In Matlab (R2009a, The MathWorks, Inc., 

Natick, MA), a plane was fit to the medial and lateral epicondyle ridges to isolate the 

posterior region of the femoral condyles, which was subsequently fit to a cylinder. The 

cylinder’s axis and midpoint represented the mediolateral axis of the femur and midpoint 

of the knee, respectively. 
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The posterior superior iliac spine (PSIS) and anterior superior iliac spine (ASIS) 

were found semiautomatically. Principal curvature isolated the iliac crest and superior 

border of the sacroiliac joint. The PSIS was represented by the intersection of the 

superior border of the sacroiliac joint and medial border of the iliac crest, while the ASIS 

was represented as the intersection of the medial and lateral borders of the iliac crest. 

From the small region of nodes at each intersection, one observer selected a single node 

to represent each landmark. Node selection for the ASIS and PSIS has been shown to 

have minimal effect on the axes of the pelvic coordinate system (average variation was 

0.07 ± 0.10°, Chapter 4).   

 

5.3.6 Joint Angles and Translations 

Joint angles were calculated using the Grood-Suntay convention.26 Rotation about 

the mediolateral axis of the pelvis represented flexion and extension. Internal and 

external rotation was defined about the inferosuperior axis of the femur. Finally, rotation 

about the floating anteroposterior axis represented adduction and abduction. 

For each trial, the position and orientation of the pelvic anatomical coordinate 

system in the first and last frames were averaged to define neutral. The transformation 

between this neutral coordinate system and the pelvic anatomical coordinate system in 

each frame was calculated to study relative pelvic angles. Angles were derived from the 

transformation matrix following the Grood-Suntay convention, with the proximal 

segment represented by the neutral coordinate system and the distal segment represented 

by the pelvic anatomical coordinate system of each frame.26 Rotation about the 
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mediolateral axis represented pelvic tilt, rotation about the inferosuperior axis represented 

pelvic rotation, and rotation about the anteroposterior axis represented pelvic obliquity.  

To facilitate comparisons between subjects, joint and pelvic angles were linearly 

interpolated between time points of interest. For the impingement exam, these time points 

included the first peak in flexion and the point of maximum internal rotation in flexion 

(terminal position). For the FABER exam, the first peak of flexion and the saddle point in 

flexion (representing the terminal figure-four position) were used. The terminal positions 

at maximum internal and maximum external rotation were selected for the rotational 

profile.   

Angular repeatability between the two trials of each subject was calculated at the 

terminal points of each exam. Specifically, the difference in the three joint angles 

between the two trials was found for each individual and the differences were averaged 

for each terminal position across all nine subjects. 

Joint translation was defined as the vector from the pelvic joint center to the 

femoral joint center. This vector was projected onto each of the pelvic coordinate axes 

(recalculated for the current frame) to obtain medial/lateral, anterior/posterior, 

superior/inferior translations. The minimum and maximum values along each axis were 

quantified to calculate the range of translation for each subject. 

For all kinematic outcome measures, results were averaged between the two trials 

of each exam for each patient or normal subject. Data were presented as the average and 

standard deviation of the six normal subjects, while patient data were presented 

individually. 
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5.3.7 Evaluating Probable Regions of Impingement 

A custom tool in PostView24 was used to visualize bone motion and calculate the 

distance between surfaces. For the terminal point of the impingement exam (maximum 

internal rotation in flexion), the minimum bone-to-bone distance was found between the 

acetabular rim and femoral neck. The results were averaged between the two trials for 

each subject and then reported as the average and standard deviation of all subjects. Any 

nodes falling between the minimum distance and the minimum distance plus 0.5 mm 

were highlighted as the probable location of impingement. During each exam, the labrum 

surface was assumed to transform rigidly with the pelvis. At the same time point used to 

plot bone-to-bone distance, any overlap between the femoral neck and rigid labrum 

surface was highlighted and considered to be the actual region of contact. Finally, for 

each trial of the impingement exam, the frame of initial contact between the labrum and 

anterosuperior femoral head or neck was identified on the joint angles plot.  

 

5.3.8 Measures of Anatomy and Regression Analysis 

The association between radiographic measurements of anatomy and maximum 

range of motion at the terminal position of each exam was assessed. Measurements 

included the lateral center edge angle (anteroposterior view) and alpha angle 

(anteroposterior and frog-leg lateral views). Anteroposterior radiographs were available 

for both groups.  However, frog-leg radiographs were only available for patients. 

Therefore, digitally reconstructed radiographs (DRRs) representing the frog-leg lateral 

radiographs were created for the normal subjects using their CT data and a previously 

reported methodology.27 Alpha angles were then measured from the DRRs in the same 
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manner as patients. Finally, alpha angles and the lateral center edge angle were correlated 

to maximum range of motion at the terminal position of each exam using linear 

regression. 

 

5.4 Results 

The normal subjects achieved 19.1 ± 4.4° of internal rotation at the terminal 

position of the impingement exam. All patients exhibited decreased adduction and 

internal rotation in flexion when compared to the normal subjects (Figure 5.4, Table 5.1). 

As the hip was flexed, the pelvis tilted posteriorly. However, pelvic rotation and obliquity 

did not change substantially until initial contact was made between the labrum and 

anterosuperior femoral head-neck junction (Figure 5.4). For one normal subject, the 

femur did not contact the labrum during either trial of the impingement exam, and for a 

different normal subject, it there was no contact in one of the two trials. Patient 2 had the 

largest range of motion deficits, and exhibited less pelvic motion and increased flexion 

compared to the other subjects during the impingement exam.  

The normal subjects experienced greater internal rotation during the rotational 

profile than the impingement exam (Table 5.1). For the rotational profile, Patients 1 and 3 

demonstrated little difference in internal rotation when compared to the normal subjects 

(Figure 5.5). In contrast, patient 2 achieved 21° less internal rotation than the mean of the 

normal subjects (Table 5.1). In all subjects, maximum internal rotation did not appear to 

be limited by contact between the labrum/acetabulum and femur (Figure 5.6). In general, 

less pelvic motion was observed during the rotational profile compared to the 

impingement and FABER test.  
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Greater external rotation was achieved in the terminal, figure-four position of the 

FABER test compared to the rotational profile with minimal abduction and neutral 

flexion (Table 5.1). In the figure-four position, patients were in greater flexion, and less 

adducted and externally rotated compared to the average of the normal subjects (Figure 

5.7).  

Exam repeatability was very good between the two trials of each subject at the 

terminal position of each exam (Table 5.2). Internal/external rotation and 

abduction/adduction were noted to be slightly more repeatable than flexion/extension. 

For all exams and subjects, the range of translation of the femoral joint center 

along any given anatomical direction was between 0.69-4.1 mm. Translations were 

greater during the FABER test and impingement exam than the rotational profile (Figure 

5.8). Patient 1 exhibited greater translation in the anterior-posterior and inferior-superior 

directions than the other subjects during the FABER test. Patient 3 exhibited less 

translation than the average of the normal subjects for all exams.  

In the terminal position of the impingement exam, minimum bone-to-bone 

distance between the acetabular rim and femoral head or neck was 3.0 ± 0.53 mm for all 

subjects. The region of minimum bone-to-bone distance was generally observed at the 

head-neck junction and at 1-2 o’clock of the acetabulum (3 o’clock representing anterior 

as a left hip) (Figures 5.9 and 5.10). However, for patient 2, the location of impingement 

was more distal on the femoral neck than the other subjects.  

The location of minimum bone-to-bone distance coincided with the region of 

actual labral contact in only approximately half of all subjects. One normal subject did 

not contact the labrum during either trial. In the cases of disagreement, the region of 
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labral contact was observed more superior to that of minimum bone-to-bone distance on 

both the femur and acetabulum. With respect to the femur, the location of contact with 

the labrum varied between the three patients (Figure 5.11): on the cam lesion of patient 1, 

on the bony prominence lateral to the pincer groove on patient 2, and directly along the 

pincer groove on patient 3. 

The alpha angle measured on both frog-leg lateral and anteroposterior radiographs 

was significantly correlated to maximum external rotation in the terminal positions of the 

FABER test and rotational profile (Table 5.3). The alpha angle measured on the 

anteroposterior radiographs was also significantly correlated to internal rotation during 

the impingement exam (Table 5.3). No significant correlations were observed for 

maximum internal rotation during the rotational profile or the lateral center edge angle. 

 

5.5 Discussion 

In this study, dual fluoroscopy and model-based tracking were employed to 

accurately quantify and visualize the 3D in vivo hip kinematics of a cohort of normal 

subjects and three FAI patients during clinical hip exams. As the first application of this 

methodology to study the hip joint in a cohort of live subjects, our data collectively 

demonstrate hip joint articulation and impingement to be highly complex processes, not 

only in FAI patients, but also in asymptomatic control subjects. Key findings were that 

the femur translates substantially, the labrum is contacted by the femur (often early 

during the impingement exam), and the pelvis moves. The location of impingement, as 

estimated by the region of minimum distance between bone surfaces, was coincident with 

the true location of contact between the femur and labrum in only half of the subjects 
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analyzed. Finally, statistically significant correlations were observed between hip 

anatomy and range of motion.  

Results for the normal subjects provide an essential database for studying motion 

conflict and abnormal hip articulation in a larger cohort of FAI patients. Joint kinematics 

were found to be largely similar within the normal group (Table 5.1). However, the 

pattern of labrum contact and minimum bone-to-bone distance during the impingement 

exam varied substantially (Figures 5.9 and 5.10). This conclusion is analogous to that 

made in a recent subject-specific finite element (FE) study where cartilage contact 

stresses varied substantially between normal subjects of similar age and stature to the 

present study.21 The authors of the FE study concluded that subtle differences in hip 

anatomy were responsible for the variation in cartilage stresses at the articulating surface.  

Overall, the patients demonstrated decreased range of motion when individually 

compared to the normal group results. Patient 2 had an extremely deep acetabulum and 

the greatest limitations of motion during all exams, including obvious restrictions in 

internal rotation during the rotational profile. The effects of protrusio in Patient 2 were 

especially apparent when the location of minimum bone-to-bone distance and labral 

contact were visualized; both were well lateral to the femoral head and head-neck 

junction compared to all other subjects. Patient 1 had a relatively shallow socket, but still 

exhibited decreased range of motion. This finding suggests that cam-type deformities 

cause motion restrictions that may be independent from the morphology of the 

acetabulum. Out of the three patients, Patient 3 demonstrated the least deficits in each 

terminal position except for the impingement exam, which could be the result of less 

severe FAI-related deformities. 
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As this is the first study to use dual fluoroscopy and model-based-tracking to 

measure in vivo hip joint angles, it is difficult to directly compare the findings of this 

study with prior work. During a simulated impingement exam, maximum internal 

rotation was estimated at 27.9 ± 7.4° in normal subjects and 12.3 ± 6.5° in cam FAI 

patients.28 These estimates are greater than the rotation measured in the present study 

(Table 5.1), possibly due to different flexion and adduction angles (not reported in28) and 

the absence of soft tissue restraints. In another simulation of 18 patients with cam FAI, 

maximum internal rotation in 85° flexion and 20° adduction was 5.7 ±15.7°. Despite less 

flexion and more adduction, this estimate of internal rotation is similar to the  restrictions 

identified in the three patients in the present study.29 However, in the same study, 

maximum external rotation in neutral flexion was 52.7 ± 15.9°, almost 20° greater than 

that reported in the present study for not only the FAI patients but also the normal 

subjects.29 In the simulation, maximum range of motion was estimated from bone on 

bone collision; in external rotation, this resulted in direct collision between greater 

trochanter and ischium, which we believe is unrealistic. Finally, one previous study 

evaluated maximum rotation in neutral flexion with an electromagnetic tracking system. 

For normal subjects, mean internal and external rotation in a cohort of normal subjects 

were 34.1° and 38.4°, respectively, similar to that reported in the present study.10  

In our study, the femoral head translated 0.7-0.4 mm relative to the acetabulum 

along each anatomical direction in all subjects. Compared to the rotational profile, 

translations were greater during the FABER test and impingement exam. This difference 

was possibly due to subtle hinging or subluxation observed at the terminal position of the 

FABER and impingement exams. This was not apparent in the rotational profile, where 
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the labrum was not contacted (Figure 5.6). Coupled with the finding that the femoral head 

of the patients generally translated more than normal subjects, our translation data 

support the hypothesis that subluxation occurs in FAI patients during the impingement 

and FABER exams as a result of contact to the labrum.   

In skin marker motion analysis13-16 and existing simulations of 

impingement,17,20,28 the center of rotation (COR) is assumed to be fixed. However, using 

our technique, it was not necessary to assume a static COR when calculating joint angles. 

Given the magnitude of femoral head translations in normal subjects and patients 

observed in our study, it is possible that use of a static COR leads to erroneous 

measurements of hip joint angles and unrealistic visualization of hip joint articulation.  

Except for one normal subject, internal rotation during the impingement exam 

was limited by contact between the femur and labrum. While contact was observed as 

overlap between the rigid femur and the rigid labrum (assumed to undergo the same 

motion of the pelvis), in reality the labrum would be compressed, stretched or pushed 

aside. Nonetheless, the region of overlap likely coincides with the region of labrum that 

would be strained. Our results corroborate those of a cadaver experiment, where strain in 

the anterosuperior labrum was significantly increased during the impingement exam 

compared to neutral.30 In this study, maximum internal rotation in neutral flexion 

occurred without contact to the labrum, even in FAI patients, suggesting that other soft 

tissue restraints (i.e. capsular ligaments, surrounding musculature) may dictate the limits 

of this motion. For example, the ischiofemoral ligament has been reported to restrict 

internal rotation.31,32  
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During the impingement exam, contact generally occurred between the 

anterolateral femoral head-neck junction and anterosuperior labrum. Both the labral tear 

and cartilage delamination observed in Patients 1 and 2, respectively, occurred in the 

anterosuperior region. Indeed, this region has previously been reported to be a common 

location of chondrolabral damage observed in FAI patients.33 On the femoral side, the 

morphology of the anterolateral femoral head and neck in contact with the labrum varied 

between patients. In patient 1, contact occurred in the middle of the cam deformity, 

possibly explaining the restricted motion observed in this patient. For patient 3, labral 

contact occurred directly within the pincer groove. While this finding is only for a single 

patient, it suggests that the groove may have formed during activities that incorporate 

similar motions to the impingement exam. In contrast, for patient 2, labrum contact 

occurred at the bony prominence immediately lateral to the pincer groove. For this 

patient, it is possible that the impingement exam did not replicate the same activities that 

were responsible for forming the pincer groove.  

In this study, no direct bone-to-bone contact was observed. In fact, the minimum 

distance between the femoral neck and acetabular rim averaged three millimeters. Still, 

we choose to highlight the area of minimum bone to bone distance in the anterior femoral 

head and acetabulum as a means to compare that to the location of labrum contact in the 

same region. The minimum bone-to-bone distance only matched the location of contact 

with the labrum in approximately half of the subjects imaged (Figures 5.9 and 5.10). As 

such, we can confidently conclude that minimum bone-to-bone distance is not 

recommended as the only outcome measure to evaluate impingement. In fact, simulations 

that rely on direct bone-to-bone contact between the femur and acetabulum likely 
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overestimate range of motion and do not provide an accurate description of how the hip 

actually articulates in-vivo.   

In this study, the pelvis was secured to the exam table to ensure that the hip joint 

remained in the field of view of both fluoroscopes. However, the pelvis moved during all 

clinical exams. As the hip was flexed during the impingement exam, the pelvis tilted 

posteriorly, while pelvic motion in the other planes remained relatively unchanged. It was 

not until the femoral head-neck junction made direct contact with the labrum that pelvic 

obliquity and rotation changed substantially. This observation provides evidence that the 

impingement exam indeed places the hip into terminal range of motion. In contrast, there 

was no contact between the labrum and femur during internal rotation in neutral flexion. 

Accordingly, pelvic motion was minimal in this particular terminal position (Figure 5.5).  

Even with a limited sample size, significant correlations were observed between 

maximum external rotation and measures of cam morphology. Maximum internal 

rotation during the impingement exam (but not the rotational profile) was correlated to 

the alpha angle measured on the AP radiograph, but not the frog-leg lateral radiograph. 

This result was surprising as the morphology of the anterosuperior femoral head and 

neck, better visualized on lateral films,34,35 has previously been correlated to internal 

rotation measured with a goniometer.36,37 With nine subjects, a p < 0.05 can only occur 

with an r > 0.67, as the p value for simple linear regression is a direct function of r and 

the sample size.38 Thus, it is possible that our correlations could change with a larger 

sample size. A larger sample size could be used to develop predictive models of 

impingement via multivariate regression. Such a model could be used to study the effects 

of femoral head and acetabular morphology, as well as extra-articular morphology such 
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as femoral version. However, multivariate analysis was not possible with nine subjects 

due to over-fitting (~10 subjects required per covariate).39 

This study has limitations that warrant discussion. Only three FAI patients were 

included, prohibiting statistical comparisons between groups. The primary objective of 

this study was to establish a database of hip kinematics for normal subjects. Even with 

three patients, our study provides new information on how different presentations of FAI 

alter hip motion during clinical exams. Next, no specific radiographic cutoff values were 

employed to screen the normal subjects. Normal subjects were enrolled based on an 

absence of grossly abnormal deformities and osteoarthritic changes and no history of hip 

pain. As there is little consensus regarding which cutoffs should be used, we believe our 

selection criterion were reasonable. Finally, while the thickness of cartilage on the femur 

would certainly contribute the location of contact between the femur and labrum, 

cartilage was not included in this study. Cartilage is thin or nonexistent in the femoral 

neck region and therefore, it is expected that the region of contact would not change 

substantially by the inclusion of the cartilage.  

In summary, our technique to measure hip motion provides the most accurate data 

collected on hip articulation to date. Data for the normal subjects provide the necessary 

baseline results for future studies, and the patient data show promise for using this 

technique to improve our understanding of FAI. Collectively, our results demonstrate that 

hip articulation is a highly complex process including translation, pelvic motion, no bone 

contact, and labrum involvement in large ranges of motion. Our data call into question 

the validity of prior simulations used to predict impingement that rely on the assumption 

of direct bone contact, a stationary pelvis, and a constant COR.17-20 Data collected in this 
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study could validate computer simulations of impingement, guide pre-operative planning, 

and serve as boundary conditions in finite element models investigating labrum and 

cartilage mechanics.  
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Table 5.1 
 
 
 

Joint Angles of Normal Subjects and FAI Patients at the Terminal 
 

Position of Each Exam 
 
 
 

Exam Angle 
 

Normal Patient 1 Patient 2 Patient 3 

Impingement 
Exam 

Flexion (+) 93.0 ± 6.4 94.7 107.0 97.1 
Adduction (+) 10.5 ± 3.7 5.7 2.2 3.2 
Internal Rotation (+) 19.1 ± 4.4 11.6 7.8 9.7 

Internal Rotation 
Flexion (+) 14.0 ± 8.4 22.1 17.4 18.2 
Adduction (+) 2.0 ± 3.3 5.1 4.2 -2.2 
Internal Rotation (+) 34.7 ± 6.4 38.3 13.4 38.4 

External Rotation 
Flexion (+) 14.4 ± 10.2 18.2 19.2 16.3 
Adduction (+) -7.2 ± 2.3 -10.2 -3.1 -7.0 
Internal Rotation (+) -36.4 ± 8.2 -27.6 -7.9 -29.4 

FABER Test 
Flexion (+) 38.6 ± 8.5 48.1 74.5 58.0 
Adduction (+) -36.6 ± 4.0 -34.7 -26.7 -27.3 
Internal Rotation (+) -48.3 ± 7.4 -36.5 -23.2 -41.6 

All values in degrees. 
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Table 5.2 
 
 
 

Repeatability of the Clinical Exams: Difference in Joint Angles  
 

at the Terminal Exam Position between the Two Trials  
 
 
 

Exam Flexion/Extension Abduction/Adduction Internal/External Rotation 
Impingement Exam 2.2 ± 2.2° 2.0 ± 1.6° 2.4 ± 1.7° 
Internal Rotation 1.6 ± 1.6° 1.4 ± 1.5° 0.6 ± 0.48° 
External Rotation 1.4 ± 1.7° 1.0 ± 0.89° 1.3 ± 0.85° 
FABER  3.9 ± 1.9° 3.2 ± 3.8° 0.96 ± 1.1° 

 



 

 

128 

Table 5.3 
 
 
 

Correlation between Maximum Hip Rotation during Clinical Exams 
 

and Radiographic Measures of Femoroacetabular Impingement 
 

 
 
 

Independent Variable Dependent Variable  
Regression 
Coefficient 

(Slope) 

Correlation 
Coefficient 

(r) 

Significance  
(p)  

Frog-leg Lateral 
Alpha Angle  

IR (Impingement) -0.226 -0.45 0.224 
IR (Rotational Profile) -0.412 -0.53 0.139 
ER (Rotational Profile) -0.689 -0.71 0.033* 
ER (FABER) -0.718 -0.81 0.008* 

Anteroposterior 
Alpha Angle 

IR (Impingement) -0.256 -0.75 0.019* 
IR (Rotational Profile) -0.228 -0.44 0.239 
ER (Rotational Profile) -0.451 -0.69 0.041* 
ER (FABER) -0.407 -0.68 0.044* 

Lateral Center Edge 
Angle 

IR (Impingement) -0.299 -0.42 0.262 
IR (Rotational Profile) -0.185 -0.17 0.665 
ER (Rotational Profile) -0.232 -0.17 0.667 
ER (FABER) 0.033 0.03 0.947 

IR = Internal Rotation, ER =  External Rotation, * denotes significance at p < 0.05 
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Figure 5.1. Radiographic and intraoperative imaging of the left hip of Patient 1. a) 
Anteroposterior radiograph showing a slightly shallow acetabulum and low-hanging 
AIIS. b) Frog-leg lateral radiograph highlighting decreased offset between the femoral 
head and neck. c) Arthroscopic view through the anterolateral portal (70 degree scope) 
showing a labral tear and bruising at the anterosuperior chondrolabral junction. 
F=Femoral head, L=Labral tear and bruising (red), C=Acetabular Cartilage. 
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Figure 5.2 Radiographic and intraoperative imaging of the left hip of Patient 2. a) 
Anteroposterior radiograph showing protrusio. b) Frog-leg lateral radiograph showing 
pincer groove (*) and femoral neck prominence (▲). c) Arthroscopic view through the 
anterolateral portal (70 degree scope) of anterosuperior chondrolabral junction showing 
cartilage delamination.  L=Labrum, F=Femoral Head, C=Cartilage Delamination d) 
Arthroscopic view of bony anatomy after soft tissue removal demonstrating large pincer 
groove and bony prominence on anterolateral femoral neck.  
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Figure 5.3. Radiographic and intraoperative imaging of the left hip of Patient 3. a) 
Anteroposterior radiograph showing acetabular overcoverage b) Frog-leg lateral 
radiograph showing pincer groove (*). c) Arthroscopic view through the anterolateral 
portal (70 degree scope) of mechanical wear at the location of the pincer groove on the 
anterolateral femoral neck. L= Labrum, C= Femoral Cartilage. 
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Figure 5.4. Joint angles (left column) and pelvic angles (middle column) of normal 
subjects and FAI patients during the impingement exam. Angles presented as mean ± one 
standard deviation for normal subjects. Vertical grey bar represents frame of initial 
contact between labrum and femoral head or neck, average ± 1 standard deviation for all 
subjects. Right column: schematic of normal subject at time points of interest: a) neutral; 
start of the exam, b) approximate midpoint of flexion, c) maximum flexion, d) maximum 
internal rotation in flexion (terminal position). 
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Figure 5.5. Joint angles (left column) and pelvic angles (middle column) of normal 
subjects and FAI patients during the rotational profile. Angles presented as mean ± one 
standard deviation for normal subjects. Right column: schematic of normal subject at 
time points of interest: a) neutral; start of the exam, b) maximum internal rotation 
(terminal position), c) neutral, d) maximum external rotation (terminal position). 
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Figure 5.6. Maximum internal rotation in neutral flexion did not appear to be limited by 
contact to bone or the labrum. Similar internal rotation, without contact was achieved by 
normal male subject (top, 37.7°) and Patient 1 with cam FAI (middle, 38.3°). Even 
Patient 2, with severe restriction in internal rotation (bottom, 13.4°) was not limited by 
contact between bone or the labrum.  
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Figure 5.7. Joint angles (left column) and pelvic angles (middle column) of normal 
subjects and FAI patients during the FABER test. Angles presented as mean ± one 
standard deviation for normal subjects. Right column: schematic of normal subject at 
time points of interest: a) neutral (start of the exam), b) maximum flexion, c) approximate 
maximum adduction, d) terminal figure-four position.                                           . 
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Figure 5.8. Range of femoral head translation in the three anatomical directions for each clinical exam. Bars represent mean plus and 
minus one standard deviation for normal subjects. Patient results plotted individually. Med-Lat: Medial-Lateral. Post-Ant=Posterior-
Anterior. Inf-Sup=Inferior-Superior.   
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Figure 5.9. Location of minimum bone-to-bone distance and labral contact at the terminal 
position of the impingement exam (maximum internal rotation in flexion), displayed on 
the femur. The region of minimum bone-to-bone distance represents the region of the 
anterosuperior femoral head and neck closest to the acetabular rim. The region of labrum 
contact was defined as the region of overlap between the anterior/superior femoral head 
or neck and rigid labrum surface. Top and middle rows: normal subjects. Bottom row: 
Patients 1-3. *Note: No contact between the labrum and anterosuperior femoral head or 
neck was detected for normal subject 5. 
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Figure 5.10 Location of minimum bone-to-bone distance and labral contact at the 
terminal position of the impingement exam (maximum internal rotation in flexion), 
displayed on the pelvis and labrum. The region of minimum bone-to-bone distance 
represents the region of the acetabular rim closest to the anterior/superior femoral head or 
neck. The region of labrum contact was defined as the region of overlap between the 
anterosuperior femoral head or neck and rigid labrum surface. Top and middle rows: 
normal subjects. Bottom row: Patients 1-3. *Note: No contact between the labrum and 
anterosuperior femoral head or neck was detected for normal subject 5. For normal 
subject 3, the location of labral contact was directly above the region of minimum bone-
to-bone distance. 
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Figure 5.11. Position of the pelvis, femur, and labrum for the patients at the terminal 
position of the impingement exam, maximum internal rotation in flexion (left column). 
Black box highlights enlarged region shown in right column. Contact between femur and 
labrum (*) occurs on cam lesion (patient 1, top row), on bony prominence (patient 2, 
middle row), and on pincer groove (patient 3, Bottom row).  
 



 

 

CHAPTER 6 
 
 
 

CONCLUSIONS AND FUTURE DIRECTIONS 
 
 
 

6.1 Summary 

This dissertation applied clinical and basic science methodology to improve our 

understanding of femoroacetabular impingement. The research presented in Chapter 2 

elucidated the association between athleticism and FAI. More specifically, it investigated 

the hypothesis that, compared to the incidence in the general population, athletes are at 

higher risk for symptomatic FAI because of an increased incidence of underlying 

structural deformities. Indeed, using current radiographic parameters and associated 

cutoff values, 95% of the male football players evaluated in the study had at least one 

abnormality consistent with those seen in FAI patients. Thus, it is likely that some of the 

players with radiographic findings of FAI will develop symptomatic FAI. In fact, at the 

time of the study, one subject reported limitations in activities of daily living and sports 

due to his hips, as quantified by the Hip Outcome Score. Nevertheless, it is unlikely that 

all or even the majority of players with radiographic FAI in this study will develop hip 

pain, chondrolabral damage, and/or early onset osteoarthritis. As such, this study 

highlights the fact that the current radiographic cutoff criterion may be too liberal to 

diagnose FAI. 
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The same football players were evaluated in Chapter 3 to determine if physical 

exams could be used to screen for radiographic FAI deformities in an asymptomatic 

population. The impingement exam, which has a high sensitivity in symptomatic FAI 

patients, was positive in only three of the 67 players. Regression analysis was completed 

between radiographic measures of FAI and range of motion (measured using a 

goniometer) to identify possible relationships between form and function. It was found 

that supine and sitting internal rotation was significantly but only mildly correlated to the 

degree of cam-type morphology, quantified by the alpha angle and head-neck offset. As 

such, it is possible that anatomy is not strongly associated with range of motion, 

especially in asymptomatic subjects with radiographic signs of FAI. However, 

goniometers have obvious limitations in their ability to accurately measure range of 

motion. Thus, a more accurate methodology to quantify hip range of motion could 

identify stronger correlations between anatomy and range of motion.  

The need to implement a more accurate methodology to measure hip range of 

motion motivated the body of work performed in Chapter 4: validation of dual 

fluoroscopy and model-based tracking of the hip joint during supine clinical exams. In 

this chapter, model-based tracking results were compared to a reference standard 

(dynamic radiostereometric analysis) using two cadavers as a means to quantify the bias 

and precision of outcome measures derived from this technique. The bias of joint angles 

and joint translations were less than 0.58° and 0.48 mm, respectively, using dual 

fluoroscopy and model-based tracking. The average RMS error of bone-to-bone distance 

measurements was 0.52 mm. Chapter 4 also demonstrated the feasibility of using dual 

fluoroscopy and model-based tracking on live subjects. Specifically, one subject, with 
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normal hip geometry and no history of hip pain was imaged. Overall, the work completed 

for this chapter established the foundation not only for future comparisons between FAI 

patients and normal controls, as implemented in Chapter 5, but also other applications of 

dual fluoroscopy and model-based tracking.  

In Chapter 5, the dual fluoroscopy and model-based tracking methodology 

validated in Chapter 4 was applied to study the hip kinematics of asymptomatic subjects 

with normal hip morphology and three FAI patients. The study represents the first 

application of dual fluoroscopy to evaluate hip articulation in a cohort of live subjects. 

This chapter established the baseline joint angles, translations, and bone-to-bone 

distances during clinical exams for a normal population. The patient results were 

compared to the normal results to identify range of motion limitations and understand 

how hip joint articulation differs in pathologic hips. The chapter demonstrated that hip 

joint articulation is a complex process, not only in FAI patients. In all subjects, the pelvis 

moved, the femur translated relative to the pelvis, and there was no contact between bone 

surfaces. Contact between the labrum and femoral head or neck was observed during the 

impingement exam and the location of contact was similar to the region of minimum 

distance between bone surfaces in half the cases. Results presented in this chapter can be 

used for future comparisons to additional patients with FAI or other hip pathologies.  

 

6.2 FAI and Athletes: Recent Developments,  

Conclusions and Future Directions 

Chapter 2 was the first report of FAI morphology in a cohort of asymptomatic 

athletes following modern radiographic parameters. Of the 67 collegiate football players 
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(134 hips) evaluated in the study, 78% had at least one finding of cam FAI and 66% had 

at least one finding of pincer FAI. In the discussion, it was noted that this prevalence was 

much higher than that reported in previous studies of asymptomatic members of the 

general population, suggesting that athleticism increases the risk of these deformities. 

While athleticism certainly is one explanation for the increased incidence of FAI in 

football players, these subjects do have additional possible risk factors for FAI, including 

male gender and an increased BMI. Further, football is arguably one of the most intense 

sports in terms of impact and loading. It is not possible, with this cohort alone, to 

differentiate the possible contributions of each risk factor. The results of the study must 

therefore be extended with caution to female athletes, male athletes from lower impact 

sports (swimming/cycling), or male athletes with smaller BMI (basketball, soccer).  

Since the publication of the work in 2011 in The Journal of Bone and Joint 

Surgery, additional research has been completed by other groups investigating the 

relationship between athletic activity and FAI. The majority of these studies have focused 

on cam FAI, evaluating other sports including hockey, soccer, basketball, and skiing 

(Table 6.1).1-8 Direct comparisons between studies are difficult due to varying imaging 

modalities (i.e. MRI vs. radiograph) and cutoff values (i.e., alpha angle cutoffs 50 to 60 

degrees). This will continue to be a problem until diagnostic criterion are standardized 

and accepted by all. Nonetheless, comparing prevalence and mean alpha angles, male 

soccer and hockey player appear to have a greater prevalence of cam FAI deformities 

than the football players evaluated herein (Table 6.1).  

Four of these athlete prevalence studies have included a control group of age-

matched nonathletes for comparison (Table 6.2).2,4,7,8 For the most part, athletes had a 
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higher prevalence of cam morphology than their nonathlete counterparts, supporting the 

relationship between athleticism and FAI. However, Johnson et al. reported no significant 

difference in alpha angle measured on frog-lateral radiographs in young adults who 

played high level soccer during adolescence and age-matched nonathletes.4 In this study, 

the distinction between the athlete and control groups may not have been stringent 

enough. Specifically, the athlete group was comprised of individuals currently involved 

in “high-level soccer” (including high-level recreational), who participated in youth 

soccer at least three times a week, 36 weeks per year. The control group was limited to 

individuals who participated in youth sports (including soccer) less than two times week 

and less than 26 weeks a year. The difference between sports involvement two or three 

times a week during development may be insufficient in terms of its impact on the 

development of cam deformities. 

To investigate when cam deformities may develop, Siebenrock et al. evaluated 37 

male basketball players aged 9-25 from an elite club and 38 age matched nonathletes.7 

The distinction between athletes and nonathletes in this study was more stringent, with 

the athletes participating in 3-8 training sessions or games per week since the age of 8, 

and the controls’ past or present athletic involvement limited to 2 hours a week. Alpha 

angles, measured in the anterosuperior quadrant of the femur on MR images, were 

significantly higher in the athletic group than the controls (61 ± 9.1° vs. 47 ± 4.3°, p = 

0.001). The two subject groups were then subdivided based on an open or closed physis. 

Interesting, the athletes with a closed physis had a significantly higher alpha angle than 

the athletes with an open physis, but there was no significant difference between the 

control subgroups. A similar methodology was applied in a second study of 77 elite-level 
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hockey players, with comparable results (open physis alpha angle  58° vs closed physis 

49°, p < 0 .001).6 These studies support the hypothesis that FAI deformities may develop 

during adolescence due to increased or altered loading associated with athletic activity. 

However, they did not compare the anatomy of the same individuals before and after 

phyeal closure. A longitudinal study following children through adolescence could lend 

more specific insights into when cam-like deformities develop and to what degree sports 

activity influences the process.  

There are relatively few studies that have quantified and compared prevalence of 

FAI in female athletes. Two studies on soccer players have reported prevalence by 

gender, with females demonstrating decreased alpha angles compared to their male 

counterparts (Table 6.1).3,4 Of these two studies, only one compared the alpha angles of 

the athletes to nonathlete control females.4 They found no significant difference between 

groups, but this was the same study discussed above that may not have had stringent 

enough distinctions between the athlete and control groups. Accordingly, there is a need 

for additional prevalence studies on females. The authors of Chapters 2 are currently 

applying the methodology presented in this chapter to study female collegiate athletes 

from volleyball, soccer, and track and field.  

Pincer FAI has also been overlooked in the prevalence studies. Besides the work 

presented in Chapter 2, only one study has investigated pincer FAI. In this recent study, 

only the crossover sign was used to diagnose pincer FAI. They found a positive crossover 

sign in 27% of male and 10% of female soccer players and prevalence studies.3 

Unfortunately, the crossover sign is not the only indicator of pincer FAI. Specifically, the 

crossover sign is used to diagnose acetabular retroversion, which is considered only a 
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subtype of pincer FAI. Also, the ability to diagnose a crossover sign is highly subject to 

pelvic tilt; even in well-positioned radiographs, the crossover sign has been shown to 

overestimate the presence of pincer FAI due to acetabular retroversion.9,10 Further, as the 

crossover sign only is a binary outcome, it may miss global overcoverage. Acetabular 

overcoverage, which is the general definition of pincer FAI, could be quantified with 

other measures such as the center edge angle. Therefore, use of the crossover sign alone 

may not provide a reliable estimate of the prevalence of pincer FAI. It is possible that 

there are not a large number of reports on pincer FAI because the incidence is too low. 

Overall, if radiographic or 3D data are collected in athletic populations, attempts should 

be made to use the available measures of pincer FAI to quantify the prevalence of this 

subtype of FAI, even if the incidence is low. 

Ultimately, while prevalence studies provide better insights into which groups are 

more at risk for underlying FAI deformities, they do not answer the question of who is at 

risk for developing symptomatic FAI. A prospective, longitudinal study following 

athletes and controls over decades of life that encompass prepubescent, puberty, and 

adulthood is needed to fully understand who is at risk for development of symptomatic 

FAI. Such data could then be used to redefine morphologic criterion to make them more 

sensitive and specific for delineating normal from abnormal. Another approach to 

quantify morphologic criterion could be to use statistical shape modeling to objectively 

quantify three-dimensional differences in morphology between populations. Shape data 

could then relate the modes of variation to clinical images as a means to objectively 

define diagnostic criterion for each radiographic measurement currently in use. Shape 
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modeling could also be used to develop novel measurements that are perhaps even more 

sensitive and specific than those currently in use. 

 

6.3 FAI, Physical Exams, and Screening: Recent Developments,  

Conclusions, and Future Directions 

If a higher risk of FAI morphology is definitively identified for athletes or other 

populations, the next logical step is to establish the relevance of such findings. As 

suggested in Chapter 3, a method to identify those individuals at-risk for underlying 

deformities could improve the timeliness of diagnosis and treatment of FAI. While CT, 

MR, and clinical x-ray provide direct visualization of anatomy, the associated costs 

and/or radiation exposure preclude the use of medical imaging as a screening tool. In 

Chapter 3, clinical exams were evaluated as a tool to indirectly identify those with 

underlying FAI morphology. Symptomatic FAI patients often present with range of 

motion deficits and report pain during specific manipulations. It was therefore 

hypothesized that similar findings may be present in athletes who have FAI morphology, 

but no history of prolonged hip pain.  

In Chapter 3, a significant, mild correlation was identified between measures of 

cam FAI and internal rotation. This relationship has been confirmed in a few studies 

since Chapter 3 was published in 2012 in Arthroscopy: The Journal of Arthroscopic and 

Related Surgery. For example, in a study by Siebenrock et al., supine internal rotation in 

a population of elite hockey players was significantly correlated to the alpha angle (r= -

0.274, p=0.008).6 In a related study of 89 elite adolescent soccer players, hips with an 

alpha angle greater than 60° exhibited significantly decreased internal rotation compared 
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to hips without (19.7° vs. 26.2°, p=0.002).8  Finally, elite basketball players aged 9-25 

demonstrated decreased range of motion compared to nonathlete controls (18.9 ± 11° vs, 

30.1  ±  6.9°, p = 0.001).7 However, a regression analysis was not completed to determine 

if the relationship between alpha angle and range of motion was significant.7   

In Chapter 3, the impingement exam, which is almost always positive in 

symptomatic FAI patients,11 had poor sensitivity in football players who had 

morphological findings consistent with FAI but no hip pain. In fact, while 95% had 

radiographic evidence of FAI, the impingement exam was positive in only three of the 67 

players (4%). Recent findings by Laborie et al. corroborate those reported in Chapter 3. 

Specifically, in their study only 7.3% male and 4.8 % female subjects of a cohort of 1,170 

asymptomatic young adults reported pain during the exam. Similarly, Yuan at al. found 

positive exam findings in only 3% of 226 asymptomatic adolescent athletes from a 

variety of sports.12  

Though the impingement exam may have poor sensitivity, evidence suggests that 

it has high specificity for detecting FAI or associated damage. The high sensitivity of the 

impingement exam is likely the result of mechanical conflict between the femur and 

injured and/or irritated chondrolabral tissue. Though the players presented in Chapter 3 

were not screened for damage using advanced imaging, each of the 3 players from this 

study who reported pain during the impingement exam had at least one radiographic 

abnormality consistent with FAI. Similarly, Yuan et al. found that 77% of the adolescent 

athletes with a positive impingement exam had an alpha angle greater than 50° and/or 

chondrolabral damage on MRI.12   
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In light of the research presented in Chapter 3 and recent findings, the future of 

physical exams in screening largely depends on the objective. If the goal is simply to 

spread awareness amongst individuals within an at-risk population, then an exam with a 

relatively high sensitivity and low specificity, such as internal rotation and associated 

cutoffs presented in Chapter 3 (Table 3.4), may be appropriate. In this case, the cutoffs 

were selected to identify at least 80% of the subjects with underlying cam-like anatomy. 

While false positives would occur (in ~49-66%, depending on the exam, Table 3.4), there 

would be minimal consequences to simply informing the individual that FAI is common 

amongst athletes (or other identified groups) and to be aware that persistent hip pain may 

be the result of abnormal hip morphology associated with this disease. In such a case, it is 

not unreasonable to assume that a screening protocol could reduce the time between onset 

of symptoms and treatment. Nevertheless, internal range of motion cutoff values would 

first need to be defined for a general population of athletes (or other groups) in addition 

to football players for this screening protocol to be a versatile tool.  

If the goal is to identify those who may benefit from further evaluation or 

proactive monitoring, the impingement exam, which has a high specificity to detect labral 

tears and FAI morphology, may be more suitable. While the exam has a relatively low 

sensitivity, and may miss individuals with deformities, those that do test positive may 

have existing chondrolabral damage and/or be more likely to develop symptoms in daily 

or athletic activities. More work is still needed to elucidate those mechanisms responsible 

for a positive exam finding, to confirm the sensitivity to detect chondrolabral damage in a 

large cohort, and to follow individuals with positive exam findings to quantify the 

prevalence of who becomes symptomatic in daily life.  
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Biomarkers represent another area of future research that could be used to identify 

individuals with possible degenerative changes to chondrolabral tissue. Recently, blood 

screening of symptomatic FAI patients and controls have identified two biomarkers that 

occur at elevated levels in FAI patients, cartilage oligomeric matrix protein (COMP) and 

C-reactive protein (CRP).13 COMP and CRP are associated with cartilage turnover and 

joint inflammation, respectively, and both are associated with OA.14-17 More research is 

necessary to determine if these and other biomarkers associated with degenerative joint 

disease are elevated in individuals with underlying but asymptomatic FAI deformities.  It 

is also important to understand if specific biomarkers decrease after surgical intervention 

and recovery. If such associations were found, blood biomarker screening could provide a 

more definitive approach to identify who could benefit from surgical intervention for 

FAI.  Still, a substantial limitation of biomarkers extracted from blood is that they are not 

specific to a single joint such as the hip; false positives can result from tissue 

degeneration in any of the other diarthrodial joints. 

 

6.4 Dual Fluoroscopy and Model-Based Tracking 

6.4.1 The Foundation for Future Work 

A great deal of time was spent developing, troubleshooting, modifying, and 

optimizing the dual fluoroscopy system to give it the functionality required to complete 

the research presented in Chapters 4 and 5. The final dual fluoroscopy system is very 

versatile. Specifically, with separate bases supporting the image intensifiers and emitters, 

it can be positioned around a radiolucent table, instrument treadmill, chair, or in-ground 
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force plates. Recently, the dual fluoroscopy system successfully imaged the shoulder, 

ankle, and the hip during weight-bearing activities; all with minimal modifications.  

Standard Operating Procedures (SOPs) were developed for each step of data 

collection and processing. These include separate SOPs to align the image intensifier and 

emitter, calibrate the field of view, acquire images, preprocess CT data, perform marker 

and model-based tracking, and postprocess the data. The model-based tracking software 

only provides the position of the bones relative to the laboratory coordinate system. Thus, 

additional postprocessing was necessary to derive clinically relevant outcome measures, 

such as joint angles. To this end, custom code was written to calculate joint angles and 

translations and create transformation matrix input files. These transformations were then 

input into the PostView software18 for the purpose of animating hip joint motion.  

A large effort was also required to obtain institutional review board (IRB) 

approval to use the dual fluoroscopy system on live human subjects. First, it was 

necessary to document each modification made to the dual fluoroscopy system and 

submit a general proposal to the University and State of Utah to consider the device for 

research purposes only (the required modifications voided the system’s status as an FDA 

approved device). Next, with the assistance of a radiation physicist, it was necessary to 

calibrate the device. These calibration data suggested additional modifications were 

necessary to limit the output from the system. Finally, pilot studies were conducted using 

cadaveric tissue to determine the energy settings and imaging configuration necessary to 

obtain images of sufficient quality to track the hip joint with the model-based tracking 

software. Collectively, this information was included in the proposal to the University, 

State of Utah, and first IRB application. Approval was obtained by each with minimal 
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revisions. The approved IRB application has already served as the template for future 

research studies (i.e. ankle) that propose to use the dual fluoroscopy system.  

Owing to the large amount of soft-tissue surrounding the joint, the hip is arguably 

the most difficult diarthrodial joint to image with the dual fluoroscopy system. While 

surrounded by less soft tissue than the hip, imaging the other joints with dual fluoroscopy 

will certainly pose unique challenges. Still, the work completed in this dissertation 

provides confidence to execute future studies that aim to quantify joint kinematics. In 

fact, following the methodology outlined in Chapter 4, validation studies of ankle and 

shoulder motion, which began less than one year ago, are already near completion.    

 

6.4.2 Suggested Directions for Software Development 

As the first applications of model-based tracking to the native hip joint in a cohort 

of subjects, several challenges were encountered; each deserves discussion as they are 

likely to be present in future studies that utilize the equipment. The main challenge was 

noise in the fluoroscopic images. A short camera exposure of 3000 μs was selected to 

prevent motion blur in the images. With such a short exposure, a limited number of x-ray 

photons hit the image intensifier. This is the primary reason why fluoroscopic images 

acquired at a high frame rate are noisy compared to standard fluoroscope images, which 

are acquired at a much longer exposure. This noise is emphasized when Sobel edge 

detection is applied in the preprocessing steps of model-based tracking. The user has the 

option to apply a simple 3x3 smoothing kernel to the images prior to this step, but doing 

so provides little improvement. A number of advanced denoising algorithms have been 

developed for medical imaging and other applications.19-21 It is possible that these 
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algorithms could substantially improve the correlation between digitally reconstructed 

radiographs and fluoroscopic images of the hip. Unfortunately, denoising is 

computationally expensive. As such, working with the large datasets inherent in high-

speed dual fluoroscopy makes it difficult to envision widespread use of denoising for this 

particular application.  

Another area where model-based tracking software could be improved would be 

to add an option for the user to emphasize specific regions of the image to guide the 

optimization. With the hip joint, there are times when the optimization algorithm fails to 

match the bone to the true boundary, which is likely due to noise in the image as 

described above. While the correct alignment can be manually obtained in these 

situations, it may be more accurate and repeatable if the user were given the ability to 

highlight or trace boundaries of confidence. Specifically, a weighting factor could be 

applied to these regions so that the optimization algorithm is biased to align or “snap” the 

bone to these borders. Currently, the user can only select regions in the fluoroscope 

image to be excluded from the optimization (e.g., metal objects, such as a button on the 

pants).   

Postprocessing could also benefit from software development. In Chapter 5, 

regions of contact between the labrum and femur were manually identified by selecting 

those faces that protruded through the opposing surface. The magnitude of overlap could 

then be calculated with the same tool used to calculate the distance between bones. 

However, the tool reports an absolute distance, and currently does not distinguish 

between, for example, 1 mm of overlap or 1 mm of space between bones. An automatic 
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way to measure overlap could streamline the process and facilitate visualization of the 

magnitude of overlap during a video. 

It is challenging to present and compare subject-specific results relative to 

anatomy. In Chapter 5, each subject’s location of minimum bone-to-bone distance and 

labrum contact was displayed on their femur and acetabulum. With nine subjects, this 

resulted in two large figures. If additional patients and/or controls are collected in the 

future, a more efficient method is needed to compare regions of interest and spatially 

average results so as to be space-conserving. Ideally, results from each group could be 

averaged on a representative bone for that group. At present, the bone and labrum 

surfaces cannot be compared node to node as there is no guarantee that a node represents 

the same feature on each subject. As a precursor to statistical shape modeling, researchers 

have developed a method to automatically define equivalent points, or correspondence 

particles, on surfaces from multiple subjects.22-24 This objective method could be used to 

create equivalently meshed surfaces between subjects. This was actually explored as an 

option for Chapter 5, but a method was not in place to create a geometrically realistic 

tessellation from the correspondence points. If a solution was found, the method could be 

used not only to average results from dual fluoroscopy but also fringe plot results from 

subject-specific finite element models.  

 

6.4.3 Future Directions 

The research completed in this dissertation has opened the door to a wealth of 

possible future research directions on the hip. As Chapter 5 included a limited number of 

normal subjects and FAI patients, more research is needed to identify significant 
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differences in motion between FAI and normal hips. Data from additional cam, pincer, 

and mixed FAI patients could elucidate the mechanisms behind different patterns of 

damage observed in each subtype and identify stronger correlations between 3D 

morphology and kinematics.  

While the study of hip kinematics during clinical exams has and will continue to 

provide valuable insights, hip articulation may vary between passive and active motions. 

Future research should also incorporate weight bearing exercises, such as squatting, 

pivoting, walking, or stair-climbing. Chapter 4 has established that the hip can be imaged 

during a large range of motion. Accordingly, it should be relatively straightforward to 

image the hip during walking on a treadmill. Squatting and stair-climbing may be more 

challenging as they require a larger range of motion, but the fluoroscopes have a small 

field of view that cannot capture the entire activity. In these cases, it may be beneficial to 

have a larger image intensifier to effectively increase the combined field of view of the 

fluoroscopes. 

When imaging the hip with dual fluoroscopy, especially during activities where 

the hip remains relatively stationary with respect to the combined field of view (i.e. 

treadmill gait), it will be possible to collect other sources of data simultaneously. For 

example, ground reaction forces could be measured with an instrumented treadmill or 

ground force plates. Also, the motion of the remainder of the body could be captured with 

skin marker motion analysis. Additionally, electromyography data could identify any 

differences in muscle activation at very specific time points. Overall, collecting multiple 

sources of data during a single session or activity could provide important inputs for 

finite element and muscle models. For example, research is underway to determine if the 
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subject-specific kinematics, kinetics, and muscle forces are needed to predict cartilage 

contact stress in the hip joint .  

In Chapter 5, the femoral head contacted the labrum during motion. This was 

observed as overlap between the rigid femur and the rigid labrum (which was assumed to 

undergo the same motion of the pelvis). In reality, the labrum would be compressed, 

stretched or pushed aside. Finite element models, driven using joint kinematics quantified 

by the dual fluoroscopy system, could possibly be used to predict strains in the labrum in-

vivo. However, even small displacements of the femur can lead to substantial changes in 

force transmission across the hip joint. For example, a displacement of the femur into the 

acetabulum of only 2-4 mm is sufficient to create a physiological joint reaction force of 

2-3 times bodyweight.25,26 To this end, a cadaveric validation study could be completed 

in which small radiopaque beads are implanted into the labrum and tracked in the dual 

fluoroscopy system. The measured interbead strains could be compared to the finite 

element predictions for validation. Once validated, patient- and subject-specific FE 

models could provide valuable insight into the origins of labral tears and the variety of 

tears observed. Pre- and postoperative models could be used to predict the success of 

surgery based on the reduction in labral strains and/or load transfer. Overall, the 

incorporation of accurate joint kinematics into FE and musculoskeletal models is quite 

compelling as they could offer estimates of parameters that cannot be directly measured 

in vivo. 

To fully understand the relationship between form and function in hip pathology, 

accurate measurements of both kinematics and anatomy are needed. 3D statistical shape 

analysis could classify the true variation between normal and FAI hips, as was done 
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recently in the laboratory.24 Correlating modes of variation with accurate kinematic 

measures from dual fluoroscopy could objectively identify the morphologic abnormalities 

that have the largest effect on motion. Taking this one step further, recent developments 

in statistical shape modeling have enabled “4D” analyses of the lungs and wrist in which 

principal component analysis was used to simultaneously describe variation of 

morphology and motion. 19,20 Applying a similar methodology to the hip may be the 

optimal approach to classify the variation of normal and pathological hips and the 

expected motion of each group. This approach could be enable predictions of an 

individual’s motion based on their anatomy.  

Finally, impingement between the acetabular rim and femoral head or neck may 

not be the only impingement occurring between the femur and pelvis. The concept of 

extra-articular impingement is gaining traction. Specifically, impingement may occur 

between low-hanging anterior inferior iliac spines and the femoral neck, the trochanter 

and the pelvis, and the ischium and the femur.27 The dual fluoroscopy methodology 

described herein could provide 3D information in support or refute of these possible 

mechanisms of pain and restricted motion. The same could apply to other joints where 

impingement may be occurring, such as the shoulder28,29 and ankle.30,31 
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Table 6.1  
 
 
 

Prevalence of Cam Femoroacetabular Impingement in Athletes from Different Sports 
 
 
 

Author Year Gender N Sport Age Imaging Modality 
Alpha 
Angle 

Cutoff (°) 

Prevalence 
Cam FAI 

(%) 

Mean Alpha 
Angle (°) 

Kapron 2011 Male 78 Football  17 - 26 Frog-lateral 50 54 52 ± 10 
Silvis 2011 Male 39 Hockey - MRI 50 38 -     
Ayeni 2013 Both 20 Hockey 16-30 MRI 50 55 54 ± 12 

Kapron 2011 Male 78 Football  17 - 26 Frog-lateral 55 36 52 ± 10 
Gerhardt 2012 Male 75 Soccer 25.8 ± 4.4 Frog-lateral 55 68* 66     
Gerhardt 2012 Female 20 Soccer 23.8 ± 2.3 Frog-lateral 55 50* 53     
Johnson 2012 Male 25 Soccer 18-30 Frog-lateral 55 60 56 **   
Johnson 2012 Female 27 Soccer 18-30 Frog-lateral 55 36 50 **   

Philippon 2013 Male 61 Hockey 10-18 MRI 55 75 60 ± 7 
Philippon 2013 Male 27 Skiing 10-18 MRI 55 42 55 ± 7 

Siebenrock 2013 Male 77 Hockey 9-36 MRI  55 56† 54 ± 10 
Siebenrock 2011 Male 37 Basketball 9-25 MRI 55 89† 61 ± 9 

Kapron 2011 Male 78 Football  17 - 26 Frog-lateral 60 20 52 ± 10 
Agricola 2012 Male 89 Soccer 12-19 Frog-lateral 60 26 -     

*Gerhardt et al. reported a positive finding of cam FAI if any of the following criterion were met: excessive bone at the head-
neck junction, loss of head asphericity, flattening of offset between the femoral head and neck, or alpha angle > 55°. **Average 
values reported separately for Right and Left Hips. Values averaged for this table. †A positive finding of cam FAI included an 
alpha angle > 55° in any MRI slice.   
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Table 6.2  
 
 
 

Prevalence of Cam Femoroacetabular Impingement in Athletes Compared to Nonathlete Controls 
 
 
 

Author Year 
Age 

Range 
Imaging 
Modality 

Alpha Angle 
Cutoff (°) N Gender Group 

Prevalence  
(%) 

Mean Alpha 
Angle (°) 

Ayeni 2013 16-30 MRI 50 20 Both Hockey 55 54 ± 12 
20 Both Control 25 43 ± 10 

Johnson 2012 18-30 Frog-
lateral 55 

25 Male Soccer 60 56* 
 

  
25 Male Control 56 55* 

 
  

27 Female Soccer 36 50* 
 

  
25 Female Control 32 49* 

 
  

Siebenrock 2011 9-25 MRI 55 37 Male Basketball 89** 61 ± 9 
38 Male Control 9** 47 ± 4 

Agricola 2012 12-19 Frog-
lateral 60 89 Male Soccer 26 -     

92 Male Control 17 -     
*Average values reported separately for Right and Left Hips. Values averaged for this table.  **A positive 
finding of cam FAI included an alpha angle > 55° in any MRI slice.   
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