AREA, POWER AND PERFORMANCE OPTIMIZATION ALGORITHMS FOR ELASTIC CIRCUIT CONTROL NETWORKS

by
Eliyah Wadie Ragi Kilada

A dissertation submitted to the faculty of The University of Utah
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering
The University of Utah
May 2012

Copyright © Eliyah Wadie Ragi Kilada 2012
All Rights Reserved

The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

$$
\text { The dissertation of } \quad \text { Eliyah Wadie Ragi Kilada }
$$

has been approved by the following supervisory committee members:

Kenneth S. Stevens \qquad , Chair

Chris J. Myers \qquad , Member

01/04/2012
Date Approved

Erik Brunvand , Member

Priyank Kalla

Michael Kishinevsky
\qquad , Member
01/12/2012
Date Approved
and by \qquad Gianluca Lazzi
, Member
01/12/2012
Date Approved
the Department of \qquad Electrical and Computer Engineering \qquad
and by Charles A. Wight, Dean of The Graduate School.

Abstract

Elasticity is a design paradigm in which circuits can tolerate arbitrary latency/delay variations in their computation units as well as communication channels. Creating elastic (both synchronous and asynchronous) designs from clocked designs has potential benefits of increased modularity and robustness to variations. Several transformations have been suggested in the literature and each of these require a handshake control network (examples include synchronous elasticization and desynchronization). Elastic control network area and power overheads may become prohibitive. This dissertation investigates different optimization avenues to reduce these overheads without sacrificing the control network performance. First, an algorithm and a tool, CNG, is introduced that generates a control network with minimal total number of join and fork control steering units.

Synchronous Elastic FLow (SELF) is a handshake protocol used over synchronous elastic designs. Comparing to its standard eager implementation (that uses eager forks - EForks), lazy SELF can consume less power and area. However, it typically suffers from combinational cycles and can have inferior performance in some systems. Hence, lazy SELF has been rarely studied in the literature. This work formally and exhaustively investigates the specifications, different implementations, and verification of the lazy SELF protocol. Furthermore, several new and existing lazy designs are mapped to hybrid eager/lazy implementations that retain the performance advantage of the eager design but have power and area advantages of lazy implementations, and are combinational-cycle free.

This work also introduces a novel ultra simple fork (USFork) design. The USFork has two advantages over lazy forks: it is composed of simpler logic (just wires) and does not form combinational cycles. The conditions under which an EFork can be replaced by a USFork without any performance loss are formally derived.

The last optimization avenue discussed in this dissertation is Elastic Buffer Controller $(E B C)$ merging. In a typical synchronous elastic control network, some $E B C$ s may activate their corresponding latches at similar schedules. This work provides a framework for finding and merging such controllers in any control network; including open networks (i.e., when the environment abstract is not available or required to be flexible) as well

as networks incorporating variable latency units. Replacing EForks with USForks under some equivalence conditions as well as $E B C$ merging have been fully automated in a tool, HGEN.

The impact of this work will help achieve elasticity at a reduced cost. It will broaden the class of circuits that can be elasticized with acceptable overhead (circuits that designers would otherwise find it too expensive to elasticize). In a MiniMIPS processor case study, comparing to a basic control network implementation, the optimization techniques of this dissertation accumulatively achieve reductions in the control network area, dynamic, and leakage power of $73.2 \%, 68.6 \%$, and 69.1%, respectively.

CONTENTS

ABSTRACT iii
LIST OF FIGURES viii
LIST OF TABLES x
LIST OF ACRONYMS xi
ACKNOWLEDGEMENTS xii
CHAPTERS

1. INTRODUCTION 1
1.1 Background And Motivations 1
1.1.1 What Is Elasticity? 1
1.1.2 Why Elasticity? 1
1.1.3 Elasticization: Converting a Normally Clocked System into Elastic 4
1.2 Elasticity Overhead 8
1.3 List of Contributions 9
1.4 This Dissertation Structure 12
2. SYNCHRONOUS ELASTICIZATION AND THE MINIMIPS CASE STUDY 13
2.1 Synchronous Elastic Architectures 13
2.2 MiniMIPS Case Study and Results 15
2.2.1 Elasticizing the MiniMIPS 15
2.2.2 Case Study Evaluation 18
2.2.3 Optimization Avenues 20
3. CONTROL NETWORK GENERATOR FOR ELASTIC CIRCUITS 21
3.1 Problem Definition 22
3.2 The Algorithm 30
3.2.1 Algorithm Overview 31
3.2.2 Step I: Construct the Potential Terms 32
3.2.3 Step II: Construct the Partial Solutions 36
3.2.4 Step III: Collect Space Metrics and Remove Higher $n A J$ Partial Solution 47
3.2.5 Step IV: Divide, Refine the Search Space and Find an Optimum Solution 55
3.2.6 OptSoln Check 58
3.3 Results 62
3.3.1 CNG Tool 62
3.3.2 Case Study: The MiniMIPS 63
3.3.3 Different PTermS Construction Methods 64
3.3.4 CNG vs. Other Synthesis Tools/Flows 64
4. LAZY AND HYBRID SELF PROTOCOL IMPLEMENTATIONS 71
4.1 SELF Channel Protocol Verification 72
4.2 SELF Control Network Design 73
4.3 Fork Components 73
4.3.1 Lazy Fork 73
4.3.2 Eager Fork 78
4.4 Lazy Join 79
4.4.1 Lazy Join Synthesis 79
4.4.2 Lazy Join Verification 79
4.4.3 Lazy Join Characterization 79
4.5 Lazy SELF Networks 81
4.5.1 Deadlock - D 81
4.5.2 Oscillation Due to Logical Instability - LI 82
4.5.3 Oscillation Due to Transient Instability - TI 83
4.6 Hybrid SELF Protocol 84
4.6.1 Cycle Cutting 84
4.6.2 Runtime Boosting 85
4.6.3 Eager to Hybrid Conversion Flow 87
4.7 MiniMIPS Case Study and Results 88
4.7.1 Eager Versus Lazy SELF Implementations 88
4.7.2 Eager Versus Hybrid SELF Implementations 90
5. UTILIZING THE ULTRA SIMPLE FORK AND CONTROLLER MERGING 95
5.1 Eager to Ultra Simple Fork Transformation 96
5.1.1 Eager SELF Protocol 96
5.1.2 Eager Fork State Diagram 97
5.1.3 Input Behavior Constraints 97
5.1.4 Verification 102
5.1.5 Multi-output-channel EForks 105
5.2 Elastic Buffer Controller Merging 106
5.3 Verification Models of Different Control Network Components 106
5.3.1 n-Input Join 108
5.3.2 n-Output Fork 108
5.3.3 Elastic Buffer Controller 108
5.3.4 SELF Input Channel 109
5.3.5 SELF Output Channel 109
5.3.6 Variable Latency Unit 110
5.4 HGEN Tool 110
5.5 Results 111
5.5.1 The MiniMIPS Processor 111
5.5.2 S382 116
6. CONCLUSION AND FUTURE WORK 118
6.1 Future Work 122
6.1.1 CNG 123
6.1.2 HGEN 123
APPENDICES
A. HEURISTICS TO CUT CNG RUNTIME FOR BIG PROBLEMS 125
B. ELIMINATING NEGATIVE SLACK IN SYNCHRONOUS ELASTIC CONTROL NETWORKS 128
REFERENCES 142

LIST OF FIGURES

1.1 Sample read-modify-write memory structure. 3
1.2 Converting a clocked system into elastic. 6
2.1 An $E B$ implementation. 14
2.2 SELF channel protocol. 14
2.3 An n-to-1 lazy join. 15
2.4 A 1-to-n EFork. 15
2.5 Block diagram of the ordinary clocked MiniMIPS. 16
2.6 Hand-optimized control network of the elastic clocked MiniMIPS. 17
2.7 Fabricated chips schmoo plots. 19
3.1 Two possible implementations of Example 3.1. 22
3.2 A sample control network of Example 3.2. 25
3.3 A Solution graph for Example 3.2 Solution of Eq. 3.2. 26
3.4 Rule I. 38
3.5 Rule II. 41
3.6 Rule V. 52
3.7 First and second iterations for Example 3.30 using Method IV 61
3.8 First and second iterations for Example 3.31 using Method IV 63
3.9 CNG-optimized control network of the elastic clocked MiniMIPS. 64
3.10 ProOverlap_5_1 example: CNG vs. DC. 69
3.11 ProOverlap_9_1 example: CNG vs. DC. 70
4.1 $V_{r 1}$ of $L F 01$. 73
4.2 A 1-to-n lazy fork (maps to $L F 00$). 74
4.3 Lazy fork specifications $\left(V_{r 1}\right)$. 74
4.4 Lazy fork verification setup. 75
4.5 A 2-output LF01 implementation. 77
4.6 Lazy join specifications $\left(S_{l 1}\right)$. 79
4.7 Lazy join verification setup. 79
4.8 A 2-input LJ1111 implementation. 80
4.9 A 2-input LJ1011 implementation. 80
4.10 Sample fork join combinations. 81
4.11 LF00 and LJ1111 combination. 82
4.12 LF00 and LJ0000 combination. 83
4.13 $V_{r 1}$ (or $V_{r 2}$) of the EFork and LFork under some constrained input behavior. 85
4.14 EFork-LFork performance equivalence verification setup 86
4.15 A sample structure where eager protocol will have runtime advantage over lazy. 89
4.16 Stall patterns at the branches of $F C$ in the presence of bubbles 91
4.17 Hybrid implementation of $F C$. 91
5.1 A 2-output-channel EFork 97
5.2 The EFork state diagram. 99
5.3 A 2-output-channel USFork. 100
5.4 $V_{r 1}$ (same for $V_{r 2}$) in states s_{0} to s_{2} 100
$5.5 S_{l}$ in states s_{0} to s_{2} 100
5.6 EFork-USFork equivalence verification setup 103
5.7 Eager to hybrid transformation of multi-output forks. 105
5.8 EBC merging 107
5.9 Illustration of elastic control network input and output channels. 109
5.10 A variable latency unit and a controller. 110
5.11 Control network of the elastic clocked MiniMIPS with register file bubbles. 112
5.12 S382. 116
6.1 A chart of the MiniMIPS control network area in different synchronous elastic implementations. 120
6.2 A chart of the MiniMIPS control network dynamic power in different syn- chronous elastic implementations 121
B. 1 Combining concatenated n-input and m-input joins. 129
B. 2 Steps of rolling back fork $F A B$. 131
B. 3 Rolling back an n-output fork through an m-input join 132
B. 4 The proposed flow 135
B. 5 Control network of Example B.2. 137
B. 6 Verification setup for rolling back a fork. 139
B. 7 Control network of the synchronous elastic version of s298. 141

LIST OF TABLES

2.1 Clocked and eager elastic MiniMIPS chip results. 17
3.1 Terms and PSs of Example 3.2. 24
$3.2\left|P T e r m S^{i}\right|$ of different PTermS Construction Methods. 65
3.3 Search Space reduction (in terms of number of Solns) for different methods. 65
3.4 CNG Cost vs. other synthesis tools/flows. 68
4.1 Mapping between published and this work lazy forks and joins 74
4.2 $C_{F r}$ computation of $L F 00$. 78
4.3 $C_{F t}$ computation of $L F 00$. 78
4.4 Lazy fork-join combination characterization 84
4.5 Time required (in terms of \#cycles) by lazy and eager protocols to finish the testbench program in [1]. 89
4.6 Area, power, and runtime of the MiniMIPS control network using different hybrid (eager/lazy) SELF implementations. 92
4.7 Elasticity area and power overheads of an all eager and a hybrid (eager/lazy) SELF implementations of the MiniMIP processor. 94
5.1 The EFork state table. 98
5.2 Area, power, and runtime of the MiniMIPS control network using different hybrid (eager/ultra-simple) SELF implementations with and without EBC merging. 113
5.3 HGEN results for the elastic MiniMIPS control network. 115
5.4 HGEN results for s382 benchmark. 116
5.5 HGEN results for other ISCAS benchmarks - in open network settings. 117
6.1 Summary of results for some of the different MiniMIPS control network im- plementations introduced in this dissertation. 119
6.2 Elasticity area and power overheads of different hybrid SELF implementations of the MiniMIP processor. 122
A. 1 CNG Cost vs. other synthesis tools/flows using heuristics. 127
B. 1 Iteration 1 for Example B.2. 137
B. 2 Example B. 2 results 138
B. 3 MiniMIPS results. 140
B. 4 S298 results. 141

LIST OF ACRONYMS

DI Delay Insensitive design
LI Latency Insensitive design
SELF Synchronous ELastic Flow protocol
MIPS Microprocessor without Interlocked Pipeline Stages
EFork Eager Fork
LFork Lazy Fork
USFork Ultra Simple Fork
HFork Hybrid Fork
LJoin Lazy Join
EB Elastic Buffer
EBC Elastic Buffer Controller
CNG Control Network Generator tool
HGEN Hybrid GENerator tool

ACKNOWLEDGEMENTS

I am grateful to have the chance to do research in the University of Utah. Special thanks go to my advisor and mentor, Ken Stevens, for providing confidence, experience, directions, and funding throughout this past three years. Thanks to all my committee members for the fruitful discussions and technical inputs. Thanks to Chris Myers and Priyank Kalla for the classes they taught me and to Erik Brunvand for his continuous support for the 0.5μ UoU library and the tool flow. Thanks to Michael Kishinevsky for sharing his expertise in synchronous elastic architectures, and for providing a verilog generic model for variable latency unit modules. Thanks to Alan Mishchenko for his support with the ABC tool, to Ganesh Gopalakrishnan for his help with the 6thSense tool license, and to Suresh Venkatasubramanian for his insights on the CNG complexity. Bennion Redd has been so helpful to me while working on the Verigy's V93000 SoC tester. I also like to thank Shomit Das for his help in the place, route, and layout of the $0.5 \mu \mathrm{~m}$ chips. Thanks to the stackoverflow.com community for the valuable help on $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$. Thanks to Lori Sather for her administrative help. This material is part of work supported by the National Science Foundation under Grant No. 0810408. Finally, I am thankful for my friends and relatives who made my time in Utah and Canada most fruitful and enjoyable, and for my parents who sowed the seeds of faith, discipline, and love of knowledge in my life.

CHAPTER 1

INTRODUCTION

The dissertation problem statement is to reduce the power and area overheads of elastic system control networks without compromising performance.

1.1 Background And Motivations

1.1.1 What Is Elasticity?

Elasticity is a design paradigm in which circuits can tolerate arbitrary latency/delay variations in their computation units as well as communication channels [2, 3]. Different levels of elasticity exist. Delay-Insensitive (DI) designs function correctly whatever the delay of their gates or wires [4]. Thus, DI designs provide the highest degree of elasticity. However, the number of circuits that can be implemented using DI methodology is limited [5].

This dissertation will focus on the synchronous implementation of elasticity (also known as latency insensitive (LI) design) $[8,9,10,11]$. Some of the algorithms introduced in the work can also be extended to asynchronous elasticity with bundled data (and, for short, may be referred to later as just asynchronous elasticity or desynchronization) [4, 6, 7]. LI designs can tolerate discrete number (of clock cycles) of computation and communication latency variations, while asynchronous elasticity can tolerate finer delays.

1.1.2 Why Elasticity?

Elastic design provides advantages much needed in the nanometer era. Without loss of generality, and for the ease of explanation, most of the following advantages will be illustrated through synchronous elasticity. Since LI design provides discrete elasticity of the finer asynchronous elasticity [3], these advantages naturally extend to the asynchronous implementation as well.

1. Provides tolerance for long interconnect latency variations and easier technology migration. The International Technology Roadmap for Semiconductor (ITRS) reported in 2009 that chip-long communication cannot be done in a single clock cycle any more
[12]. Hence, interconnect pipelining is becoming a necessity. Interconnect delays are affected by many factors that may not be accurately estimated before the final layout (e.g., physical distance, metal layer used, crosstalk, etc.) [13, 14]. They also do not scale as well as logic gates $[15,16,17]$. Hence, due to technology migration or place and route extra delays, it is very likely to have interconnects that suffer different latencies than estimated at earlier stages of the design. Hence, unless the design implements some kind of latency insensitive technique, severe changes may be required in the system to accommodate the new latencies and, possibly, a number of iterations $[9,17,12]$. This increases the time-to-market of a product. On the other hand, LI designs tolerate the variations of interconnect latencies by inserting any required number of empty pipeline stages (called bubbles). This essentially cuts an interconnect into segments that meet the target timing constraints. By the definition of LI design, inserting empty pipeline stages does not affect the system functionality.
2. Provides easier latency/throughput tradeoff exploration. For either ordinary clocked designs or LI, architectural analysis is required to compute and optimize the impact of inserting pipeline stages on the overall system performance $[18,19,20,21]$. Nonetheless, the LI methodology allows for an easier exploration of latency/throughput tradeoffs, since the computational blocks can be left untouched while inserting interconnect pipelines [22]. This also allows for easier exploration of new architectures [23, 24, 25].
3. Provides more modular design and easier IP reuse. IP reuse is a key consideration for increased productivity in the current technology [12]. LI methodology facilitates IP assembly and reuse in complex SoCs. It can tolerate variable interconnect latencies among IPs without need of changing them.
4. Is a natural fit for variable latency designs/interfaces - increasing performance by targeting the more frequent faster cases rather than the worst case. Some applications require flexible interfaces that can tolerate variable latencies. Examples include interfaces to variable latency ALUs, memories or network on chip [26, 27, 28, 29]. By its definition, LI methodology naturally fits in these applications. In fact, it has been reported that applying flexible latency design to the critical block of one of Intel ${ }^{\circledR}$ SOC (H. 264 CABAC) can achieve 35% performance advantage [30]. Variable latency design aims at targeting an average performance rather than the worst case. In particular, instead of optimizing a circuit for all corner cases, variable latency design optimizes the fast paths in l_{1} clock cycles, and the slow paths in l_{2} cycles (with
$\left.l_{2}>l_{1}\right)$. The average throughput increases as the probability of the input patterns that require longer latency decreases [31]. Though variable latency design comes at an area overhead, however, trying to achieve the same performance with static latency may lead to an even bigger design to meet the tight timing target.
5. Enables pipelining cyclic systems - a goal that cannot be achieved by the standard bypass and retiming of regular clocked systems [23]. To illustrate, consider the Read-Modify-Write (RMW) memory structure of Fig. 1.1. The memory structure supports three different operations (ops): read (rd), write (wr) and read-modify-write ($r m w$). An example of a $r m w$ operation is updating a specific memory location through a modify function f_{M} (e.g., $\left.f_{M}(\operatorname{mem}[a d r 1])=m e m[a d r 1]+1\right)$. For simplicity, assume the ops arrive to the memory interface with a maximum rate of 1 operation per clock. Bypass logic is designed around the memory to guarantee that every read operation from a memory location gets the most recent data written to that location (also referred to as memory access coherency). With regular bypass design, and if back-toback $r m w$ operations (of the same memory address) are allowed, the modify function f_{M} cannot have a latency of more than 1 clock cycle (i.e., cannot be pipelined), otherwise the output of f_{M} may be required for a following operation while f_{M} is still being executed. Thus, the standard bypass and retiming of regular clocked designs cannot pipeline f_{M} in this cyclic system. This is a typical observation that I also noticed while designing and verifying memory bypass logic during my internship at Cisco Systems ${ }^{\circledR}$, Canada (Jan - Jul, 2011). On the other hand, LI design is able to pipeline cyclic systems through its natural capability to tolerate variable latency and to stall. For example, in LI design f_{M} can be pipelined to take any number of clock

Figure 1.1: Sample read-modify-write memory structure.
cycle latencies (to decrease the clock period for example). Whenever the output of f_{M} is required while it is still executing, LI designs provide the natural ability to propagate back a stall signal through the system until f_{M} finishes execution. Moreover, whenever f_{M} is not required, LI design (with an early evaluation join [32], for example) provides the ability to ignore f_{M} output such that the system will operate unstalled (i.e., with its normal latencies). Solving this design problem with synchronous elasticity using an early evaluation join is illustrated in [23].
6. Saves dynamic power by activating stages only when necessary. LI design provides a fine-grained (per pipeline stage) clock gating based on dynamic data flow [8]. In LI designs, a stage is only activated when it is processing valid data and its downstream is not stalled. This can reduce the system dynamic power consumption. However, an offset to this power saving is the power overhead of the hand-shake control network.
7. Avoids distribution of long stall signals that can be on critical paths. LI design also provides an upstream stage-based stall propagation mechanism with no overhead on the clock frequency. This avoids distribution of long global stall signals that can be on critical paths and can limit scalability [8, 23].
8. Asynchronous elastic designs provide low electro-magnetic interference (EMI) [6].
9. Asynchronous elastic designs provide finer and dynamic tracking of Process, Voltage, and Temperature (PVT) variations - allowing for better typical case performance rather than worst case. Asynchronous elastic circuits synchronize through hand-shake signals (request/acknowledge) rather than a global clock. Hence, while the clock period of synchronous designs (and, in turn, their performance) is limited by the worst case conditions (of process, voltage, and temperature variations), asynchronous designs dynamically track the PVT variations providing better typical performance. Authors of [7] reported that a desynchronized DLX processor in 90 nm process has a performance degradation of 20% compared to a clocked one when both operate under worst case conditions. However, the desynchronized processor runs faster than the synchronous one in 90% of the time. They also reported 13.44% area overhead.

1.1.3 Elasticization: Converting a Normally Clocked System into Elastic

Because of the above advantages, converting an ordinary clocked system into elastic (also referred to as elasticization) has been frequently studied in literature. Carloni et al. [2] introduced the concept of patient processes as a theoretical model for latency insensitive
design (aka synchronous elastic design). Informally, a module is a patient process if its behavior is defined based on signal events order rather than their exact latencies [2]. Since then, several approaches were proposed to convert a clocked circuit into elastic (in both its synchronous and asynchronous flavors). In all these approaches the resultant elastic and the ordinary clocked systems are flow equivalent. Two signals are flow equivalent if they exhibit the same sequence of informative events (i.e., after dropping all the empty events). Similarly, two systems are flow equivalent if, given flow equivalent input sequences, their outputs are flow equivalent $[2,33,34]$.

Before going further through the different elasticization schemes, it is useful to consider the elasticization example shown in Fig. 1.2. Fig. 1.2a shows a synchronous circuit composed of registers A, E, G, and F connected through combinational logic (CL). A typical first step in an elasticization scheme is to replace each flip-flop (or possibly a group of them) in the original clocked system with a synchronization element (possibly double latches) enabled through a corresponding controller ${ }^{1}$. Following this step, data communications among registers are analyzed. For each register-to-register data communication there must be a corresponding elastic control channel (shown in dotted lines in Fig. 1.2b) to control the data flow between these two registers. A control channel is usually composed of two signals, one in the forward direction indicating the data validity and the other in the backward direction carrying the stall information. These two signals are typically referred to as Valid/Stall and Req/Ack in synchronous and asynchronous elasticity, respectively. A network of control channels is formed where channels are connected through join and fork components. A join component (shown in Fig. 1.2b as \otimes) is used to join two or more input channels into one output channel. Similarly, a fork component (shown in Fig. 1.2b as \odot) is used to fork one input channel into two or more output channels. Implementations of the latch controllers, joins, forks, and channel protocol depend on the elasticization method.

On the asynchronous side, desynchronization was proposed to convert a normally clocked circuit into an asynchronous one [6, 7]. Desynchronized designs are synchronized through the regular asynchronous $R e q$ and $A c k$ hand-shake signals rather than a universal clock. Bundled data protocols are normally used; examples include 4-phase, 2-phase, or single rail $[4,35]$. For each register-to-register communication, delay elements are inserted in the control path to match the critical data path delay between these two registers. Thus, the

[^0]

Figure 1.2: Converting a clocked system into elastic.
request signals are delayed long enough for the data signals to arrive. This guarantees each receiving latch is not activated before the data is ready at its input. Latch controller protocol design and implementation are crucial to achieve maximum concurrency among latch controllers, otherwise performance penalty can occur. Hence, different hand-shake protocols and latch controllers have been studied in the literature [36, 34, 37, 6, 35]. The matched delay elements keep track of their corresponding data path delays under different process, voltage and temperature variations. Thus, the desynchronized designs operate at a typical performance rather than the worst case (as in their clocked counterparts).

Algorithms have been developed for testing desynchronized circuits [38, 39, 40].
In the synchronous domain, an initial implementation for the latency insensitive design theorem was published in [22, 17, 41]. The initial implementation wraps normally clocked sequential modules inside latency insensitive wrappers (called pearls and shells, respectively). Channel latencies can be adjusted through what is called relay stations. The
protocol requires a receiver to keep the Stall (also referred to as Stop) signal asserted for two consecutive clock cycles to stall the sender. Hence, the implementation was later referred to as Latency Insensitive Design with two-stop-to-stall (LID-2ss) [42]. To avoid data overflow, each shell contains (bypassable) input queues for each input of the corresponding pearl. The queues buffer the data tokens during stall conditions and are implemented by standard edge-triggered FIFOs [42].

Synchronous Interlocked Pipeline (SIP) technique was introduced with two major differences comparing to LID-2ss [8]. A stall condition is simpler and indicated by asserting the Stall signal for only one clock cycle. Second, instead of implementing external queues, SIP splits the same flip-flops used in the original clocked system into master-slave latches of opposite polarity and with separate enables. Under normal operation, the two latches will have one clock cycle forward latency (same as an edge triggered flip-flop). Under stall conditions, the two latches has the capacity (together) to carry two different data tokens while the stall signal is being propagated upstream if necessary. Thus, the SIP controllers consume less area than their LID-2ss counterparts [42].

The protocol used in SIP can, in principle, be used for arbitrary pipeline structures including joins, forks, branches, and selects. However, the proposed implementation in [8] of the aligned (also referred to later as lazy) fork component can easily form combinational cycles when connected to join components in an arbitrary control network. The concept of state-machine based nonaligned (also referred to later as eager) fork was introduced in [8] but not implemented. Because of its eagerness eager forks can allow for shorter runtime comparing to lazy forks. Authors of $[9,10]$, based on a similar implementation to [8], proposed an automatic procedure to convert an arbitrary clocked circuit into LI, namely, synchronous elasticization. The protocol name was coined as Synchronous ELastic Flow (SELF). They also implemented the eager fork. Eager forks constitute no combinational cycles when connected to joins, allowing synchronous elasticization for arbitrary clocked designs. Also, support for synchronous variable latency controllers was included in [9, 10].

Other significant latency insensitive protocols include Phased SELF (or pSELF) and LID-1ss. pSELF is a modified version of SELF that maps easier to and from the asynchronous $R e q / A c k$ hand-shake protocol [26, 27]. LID-1ss was proposed as a modified version of LID-2ss with stall condition indicated by asserting the Stall signal for only one clock cycle [42]. A frame work for validating latency insensitive protocol families is given in [33].

Several enhancements to the original synchronous elasticity (with the SELF protocol)
have then been reported. The regular join component waits for all its input channels to carry valid data before it passes the data token to the output. Early evaluation joins wait only for a required subset of inputs to be valid to start execution [32]. For correct operation, the early evaluation join must keep track of the inputs that were not required when they arrive later. This is done by sending anti-token on the opposite direction of their control channels. When an anti-token meets a token on a control channel they annihilate [32]. An example for that is a multiplexor where both the selection line and the selected input are valid while the nonselected input has not arrived yet. In such a case an early evaluation join will process the valid input, pass the data token to the output, and pass an anti-token to the nonrequired input. Early evaluation achieves performance advantage over lazy evaluation when join inputs have different arrival latencies [43].

Several transformations that are well-known in the synchronous design to improve performance have been carried over to synchronous elastic circuits in correct-by-construction fashion. These include retiming, recycling and speculation [44]. Nonetheless, other transformations that can also enhance performance are available only to elastic circuits. Examples include empty-FIFO (bubble) insertion, FIFO-capacity increase, anti-token insertion, and early evaluation [23].

1.2 Elasticity Overhead

Generating a control network is a necessary step in any of the elasticization approaches. The elastic control network area and power overheads may become prohibitive in some cases [3].

A desynchronized DLX processor in 90 nm process is reported to have a 13.44% area overhead (over the normally clocked one), and noticeable power overhead [7].

Authors of [42] show that elasticizing a 32×326-stage-pipelined multiplier with three different synchronous elasticization techniques results in an area overhead ranging from 10% to 19%.

Our measurements of a MiniMIPS processor fabricated in a $0.5 \mu \mathrm{~m}$ node show that synchronous elasticization with an eager SELF implementation results in area and dynamic power penalties of 29% and 13%, respectively [45].

Adding advanced features to synchronous elastic circuits (e.g., early evaluation and anti-token propagation) can pose an area versus controller performance tradeoff [32].

Elastic control networks reflect the register-to-register communications in the original clocked system. The network overhead may decrease with wider data paths. Nonetheless,
the overhead is remarkable when a design has a communication complexity comparable to its computation complexity.

Furthermore, elasticity can be applied at different levels of granularity [3]. A design may be divided into very few register groups, with every group enabled by only one elastic controller. However, finer granularity typically results in more robustness to variations, better performance, and is sometimes required to enjoy some of the elasticity advantages mentioned in Sec. 1.1.2 [7]. On the other hand, finer granularity typically comes at a higher elasticity cost in terms of area and power consumption.

For all these reasons, this dissertation aims at achieving elasticity at a minimized cost. This will be done through minimizing the control network area and power overheads without sacrificing performance. The impact of this work will broaden the class of circuits that can be elasticized with acceptable overhead (circuits that designers would otherwise find it too expensive to elasticize). The impact will also enable designers to deepen the level of elastic granularity in their designs to enjoy the full benefit of elasticity at a reasonable cost. Furthermore, all the algorithms in this dissertation (except CNGT flow presented in Appendix B) have been automated and applied to various benchmarks ensuring their suitability for tight time-to-market constraints.

1.3 List of Contributions

1. Elasticization and fabrication of a MiniMIPS processor case study in $0.5 \mu \mathrm{~m}$ technology. The MiniMIPS processor is an 8-bit subset of the MIPS (Microprocessor without Interlocked Pipeline Stages) designed by Hennessy [1, 46]. It has been elasticized using an all eager implementation of the SELF protocol. No bubbles or variable latency units were used. The control network has been hand optimized. The $0.5 \mu \mathrm{~m}$ MiniMIPS represents a class of circuits in which the register-to-register communication complexity is comparable to the computation complexity. It, thus, provides a basic starting point to run the optimization algorithms introduced in this dissertation. The elasticization case study and results have been published in [45].
2. The Control Network Generator (CNG) algorithm and tool. The elastic control network can be constructed in many different ways. A direct approach is provided in $[9,3]$. In that approach, for each register that is receiving data communications from multiple registers, one multi-input join is connected to this register controller input. Similarly, for each register that is sending data communications to multiple registers,
one multi-output fork is connected to this register controller output. This approach, however, could be inefficient in terms of the total number of joins and forks used. Hence, this dissertation introduces CNG. CNG is an algorithm (and a CAD tool) that generates a control network with minimum total number of 2-input joins and 2-output forks. This can substantially reduce the power and area of the control network. CNG automatically generates the optimal network for both synchronous elasticization or desynchronization. Comparing to the approach of [9], a MiniMIPS case study shows that synchronous elastic implementation of the network generated by CNG will save $27.9 \%, 31.4 \%$, and 28.5% of the control network area, dynamic, and leakage power, respectively. CNG is published in [47] and an extended version in [48]. PreCNG tool is also introduced. PreCNG takes an ISCAS benchmark and automatically finds and expresses the register-to-register communications in eqn and verilog formats as well as another format that CNG accepts. The work also formalizes the problem of control network generation in a form that can be optimized by commercial synthesis tools. Results are compared.
3. Formal investigation of the specifications, different implementations, and verification of the lazy SELF protocol. The Synchronous Elastic Flow (SELF) protocol is a communication protocol in synchronous elastic designs [9]. Eager implementation of this protocol was reported in [9]. This implementation uses eager forks (EForks) that try to optimize the control network runtime on the expense of more area and power consumption. A lazy SELF implementation (i.e., that uses normal or, so called, lazy forks (LForks)) consumes less area and power. However, the latter suffers from combinational cycles and inferior runtime in some systems. Therefore, lazy SELF has been rarely studied in the literature. To exploit its area and power advantages, this work formally and exhaustively investigates the specifications, different implementations, and verification of the lazy SELF protocol.
4. Hybrid (EFork-LFork) SELF implementation. To make use of the eager SELF runtime advantage and the lazy logic simplicity, this work introduces a novel hybrid implementation of the SELF protocol, where both eager and lazy forks are incorporated. The hybrid SELF implementation proposed in this dissertation uses eager forks only when needed for runtime optimization and combinational cycle cutting, and lazy forks otherwise. Conditions for replacing eager with lazy forks without runtime loss are formally derived. A MiniMIPS case study shows that, comparing to an all eager
implementation, a hybrid SELF (EFork-LFork) will save $31.8 \%, 26.0 \%$, and 30.8% in the control network area, dynamic, and leakage power, respectively, without any performance loss. This and the previous contribution have been published in [49].
5. Introducing an Ultra Simple Fork (USFork) design and the hybrid (EFork-USFork) SELF implementation. To further extend the concept of hybrid network, this work introduces a novel fork structure called the Ultra Simple Fork (USFork). The USFork has two advantages over the lazy fork: it has even simpler logic (just wires) and it forms no combinational cycles. This allows for even more area and power reduction in the control network. The conditions under which an EFork will be protocol equivalent to a USFork (and thus can be replaced) are formally derived. Comparing to an all eager implementation of the elastic MiniMIPS processor, hybrid (EFork-USFork) implementation shows $36.9 \%, 31.3 \%$, and 32.0% savings in the control network area, dynamic, and leakage power, respectively.
6. Merging Elastic Buffer Controllers (EBCs) under some equivalence conditions verifiable in any synchronous elastic control network. In a typical synchronous elastic control network, some Elastic Buffer Controllers ($E B C$ s) may activate their corresponding latches at similar schedules. This can allow for possible merging of these controllers into one controller that feeds them all (as much as the physical placement permits). Similar observation has been made by the authors of [50]. However, their algorithm requires both the control network and its environment to have static latencies. Hence, this dissertation introduces a framework for merging such controllers in any control network. That includes open networks (i.e., when the environment abstract is not available or required to be flexible) as well as networks incorporating variable latency units. Comparing to an all eager implementation of the elastic MiniMIPS processor, hybrid (EFork-USFork) implementation with merged EBCs shows $62.8 \%, 54.1 \%$, and 56.9% savings in the control network area, dynamic, and leakage power, respectively.
7. The Hybrid Network GENerator (HGEN) tool. HGEN incorporates the above two contributions. It takes an input verilog description of a control network. It runs IBM^{\circledR} 6thSense [51] as an embedded verification engine. HGEN produces a verilog description of a minimized version of the control network (i.e., EForks that are protocol equivalent to USForks are replaced, and optionally, equivalent $E B C$ s are merged). Though HGEN has been used in this dissertation to do the EFork to

USFork conversion and EBC merging, its value is more than that. HGEN provides a framework where any type of synchronous elastic network can be formally verified. Any future verification-based research or optimization can be readily integrated in the tool. HGEN and the above two contributions have been published in [52].
8. The CNGT transformation flow. CNG does not guarantee providing the minimum possible critical path delay in a control network. Normally this is not a problem since the critical delay of the datapath is usually larger than that of the control network. Nonetheless, this work introduces a systematic flow (referred to as CNGT) of structural transformations of the synchronous elastic control network that reduces the network delay to meet tight timing constraints. CNGT is verified that the two versions of the control network (i.e., before and after the transformations) are functionally equivalent. The flow, in its current state, does not take into account wire delays.

1.4 This Dissertation Structure

Chapter 2 gives an overview of synchronous elasticity and the SELF protocol. It also introduces the MiniMIPS elasticization as a case study.

Chapter 3 formalizes the problem of minimizing the total number of 2-input joins and 2-output forks in an elastic control network. It introduces the CNG theory, algorithm, and tool. Chapter 3 also compares the results of CNG to other possible flows using Synopsys ${ }^{\circledR}$ Design Compiler ${ }^{\circledR}$ (DC) [53] or Berkeley ABC [54] over ISCAS benchmarks and other case studies.

Chapter 4 formally and exhaustively investigates the specifications and different implementations of the lazy SELF protocol. It also introduces a hybrid implementation of the SELF protocol where both eager and lazy forks are used.

Chapter 5 introduces two techniques for further reducing the area and power overheads of synchronous elastic control networks, namely, utilizing the Ultra Simple Fork (USFork) and $E B C$ merging. The two techniques have been integrated in an automatic tool, HGEN, based on 6thSense as an embedded verification engine.

Chapter 6 concludes the dissertation.
Appendix A shows some preliminary heuristics for running CNG on big problems. Appendix B introduces CNGT flow and transformations. CNGT aims at transforming a given synchronous elastic control network such that it meets tight timing constraints.

CHAPTER 2

SYNCHRONOUS ELASTICIZATION AND THE MINIMIPS CASE STUDY

Synchronous elasticization converts an ordinary clocked circuit into Latency-Insensitive (LI) design [8, 9, 10]. The Synchronous Elastic Flow (SELF) is an LI protocol that can be used over synchronous elastic control network channels. This chapter gives an overview of the synchronous elastic architectures, SELF protocol and the process of synchronous elasticization. MiniMIPS elasticization is used as a case study. The chapter is concluded with investigation of the possible control network optimization avenues.

2.1 Synchronous Elastic Architectures ${ }^{1}$

A synchronous elastic system replaces the flip-flops used as pipeline latches in a clocked system with Elastic Buffers ($E B \mathrm{~s}$). $E B \mathrm{~s}$ serve the purpose of pipelining a design as well as synchronization points that implement an LI protocol, also allowing the clocked pipeline to be stalled.

Fig. 2.1 [9] shows a block diagram implementation of an $E B$. An $E B$ consists of a data-plane (double latches) and a controller. It can be in the Empty (bubble), Half or Full states depending on the number of data tokens its two latches are holding. A sample implementation of the $E B$ controller can be found in [9]. $E B$ controllers communicate through control channels. Each channel contains two control signals. Valid (V) travels in the same direction as the data and indicates the validity of the data coming from the transmitter. Stall (S) travels in the opposite direction and indicates that the receiver cannot store the current data.

The SELF channel protocol is shown in Fig. 2.2. It defines three channel states:

1. Transfer $(T): V \&!S$. The transmitter provides valid data and the receiver can accept it.

[^1]

Figure 2.1: An $E B$ implementation.
2. Idle $(I):!V$. The transmitter does not provide valid data. This dissertation identifies two Idle conditions: $I 0(!V \&!S)$ where the receiver can accept data and $I 1(!V \& S)$ where the receiver cannot accept data.
3. Retry $(R): V \& S$. The transmitter provides valid data, but the receiver cannot accept it. In the Retry state, the valid data must be maintained on the channel until it is stored by the receiver.

When the connection between $E B$ s is not point-to-point, a control network is required to reflect the register-to-register communication in the original clocked circuit. The control network is composed of control channels connected through control steering units, namely, join and fork components. A join element combines two or more incoming control channels into one output control channel. A sample join design is shown in Fig. 2.3 [8, 9]. A fork element copies one incoming control channel into two or more output control channels. An n branch extension of the eager fork proposed in [9] is shown in Fig. 2.4. Fork and join components will be represented by \odot and \otimes, respectively. Hereafter the term control network is used to aggregately refer to the joins, forks, and $E B$ controllers in an elastic system.

Figure 2.2: SELF channel protocol.

Figure 2.3: An n-to-1 lazy join.

Figure 2.4: A 1-to-n EFork.

2.2 MiniMIPS Case Study and Results

MIPS (Microprocessor without Interlocked Pipeline Stages) is a 32 -bit architecture with 32 registers, first designed by Hennessey [46]. The MiniMIPS is an 8 -bit subset of MIPS, fully described in [1].

2.2.1 Elasticizing the MiniMIPS ${ }^{2}$

The MiniMIPS is used as a case study of elasticization. Fig. 2.5 shows a block diagram of the ordinary clocked MiniMIPS [55, 1]. The MiniMIPS has a total of 12 synchronization points (i.e., registers), shown as rectangles in Fig. 2.5: P (program counter), C (controller), $I 1, I 2, I 3, I 4$ (four instruction registers), A, B and L (ALU two input and one output registers, respectively), M (memory data register), R (register file) and Mem (memory).

To perform elasticization, each register is replaced by an elastic buffer ($E B$). Then, the register to register data communications in the MiniMIPS are analyzed. The following registers pass data to both $A, B: R$, to $R: C, I 2, I 3, L, M$, to $C: C, I 1$, to $I 1, I 2$, I3, I4:C,Mem, to $L: A, B, C, I 4, P$, to $M: M e m$, to Mem : B, C, L, P, and to $P: A, B, C, I 4, L, P$. For each register to register data communication there must be a corresponding control channel to control the data flow of this communication. The resultant

[^2]

Figure 2.5: Block diagram of the ordinary clocked MiniMIPS.
control network can be implemented in different ways. Fig. 2.6 shows a control network that has been hand-optimized to minimize the number of joins and forks used in the control network (to reduce area and power consumption). From the control point of view, the register file (R) and memory (Mem) in a microprocessor can be treated as combinational units [9]. Hence, a separate $E B$ for the register file (R) was not incorporated in Fig. 2.6. For the purpose of this case study, the memory (Mem) is off-chip.

From the elastic control point of view, the MiniMIPS control signals (e.g., RegWrite, IRWrite, etc. - see Fig. 2.5) are considered part of the data plane and they need their own corresponding control channels. Mapping between datapath signals in the clocked MiniMIPS (of Fig. 2.5) and the control channels in the elastic MiniMIPS (of Fig. 2.6) should be self explanatory for most signals. RFWrite in Fig. 2.6 is the RegWrite control channel. RFWrite_valid must be active if data is going to be written in the register file. Therefore, RFWrite_valid has been ANDed with RegWrite inside the register file.

Both the clocked and the elastic MiniMIPS have been synthesized, placed, routed and fabricated in a $0.5 \mu \mathrm{~m}$ technology. The functionality of the fabricated processors have been

Figure 2.6: Hand-optimized control network of the elastic clocked MiniMIPS.
verified on Verigy's V93000 SoC tester using the testbench in [1]. An eager implementation of the SELF protocol has been used with the EFork and lazy join of Figures 2.4 and 2.3, respectively. Table 2.1 summarizes the chip measurements. It shows that elasticizing the MiniMIPS has area, dynamic and leakage power penalties of $29 \%, 13 \%$ and 58.3%, respectively. For accurate leakage power comparison, both designs have been set to the same state (through a test vector) before measuring the average leakage supply current.

Both MiniMIPS have been fabricated without the memory block. Memory values have been programmed inside the tester. An assumption about the memory access time was made. Since it affects the maximum operating frequency of both MiniMIPS designs in the same way, therefore, an arbitrary memory access time of zero was assumed. Schmoo plots

Table 2.1: Clocked and eager elastic MiniMIPS chip results. Measurements are done at 5 V and 30°.

	Clocked MiniMIPS	Eager Elastic MiniMIPS	Penalty
Area $(\mu \mathrm{m} \mathrm{X} \mu \mathrm{m})$	1246.765 X 615.91	1284.1 X 771.54	29%
$P_{\text {dyn }} @ 80 \mathrm{MHz}(\mathrm{mW})$	330	373	13%
$P_{\text {leak }}(\mu \mathrm{W})$	16.3	25.8	58.3%
$f_{\max }(\mathrm{MHz})$	91.7	92.2	-0.5%

for both clocked and elastic MiniMIPS are shown in Fig. 2.7.

2.2.2 Case Study Evaluation

It should be noted that the elastic MiniMIPS has functional features that the clocked design does not have. The clocked design cannot support flexible interface latencies nor the addition of extra pipeline stages between registers. The fabricated MiniMIPS case study did not take advantage of these functional features. For example:

- The fabricated MiniMIPS (clocked and elastic) used an off-chip memory with static latency. If the memory latency is not static, the clocked design will have to implement some kind of latency insensitivity in the data path to accommodate for latency variations (e.g., cache miss). A sample approach could be a finite state machine waiting for the memory data valid signal to assert, while stalling the processor or running no-operation (NOP) tasks. This, on the other hand, is handled naturally in the elastic MiniMIPS by the means of the Valid and Stall control signals, without need for additional logic in the datapath. The overhead of adding some sort of latency insensitivity to the data path of the normally clocked MiniMIPS should be taken into account in the comparison. The power saving due to stalling the processor (in the elastic version) rather than running NOPs tasks (in the ordinary clocked one) should also be considered.
- The fabricated MiniMIPS (clocked and elastic) used fixed latency ALU. Similar argument applies as the above.
- The fabricated MiniMIPS (clocked and elastic) did not have long interconnects that had to be pipelined (i.e., no bubble insertion was needed). The synchronous elastic design naturally handles long interconnect latencies by inserting any number of empty pipeline stages (i.e., bubbles) to meet the target timing constraints. On the other hand, to handle the problem in the ordinary clocked version, severe changes in the design may be required and/or the system frequency may need to slow down.

Would elasticity be required (e.g., to accommodate variable latency interfaces, long interconnects, etc.), the presented MiniMIPS case study shows the cost of achieving this elasticity using the SELF protocol. The MiniMIPS is a relatively small design (8-bit datapath). The overhead of elasticization may decrease with increasing the word width. Nonetheless, the MiniMIPS represents a class of circuits in which the register-to-register communication complexity is comparable to the computation complexity. Thus, the control

(a) Schmoo plot for clocked MiniMIPS.

(b) Schmoo plot for elastic MiniMIPS.

Figure 2.7: Fabricated chips schmoo plots. Red boxes are for failed tests, while green are for passed ones.
network area and power overheads are remarkable. Other examples from the literature include:

- A desynchronized DLX processor in 90 nm process is reported to have a 13.44% area overhead (over the normally clocked one), and noticeable power overhead [7].
- Elasticizing a 32×32 pipelined multiplier for a pipeline depth ranging from 2 to 6 with three different synchronous elasticization techniques is reported to result in an area overhead ranging from as low as 5% to as much as 23% [42].

2.2.3 Optimization Avenues

1. Can the required register-to-register communication be achieved by using fewer number of joins and forks? What is the minimum? - Chapter 3.
2. Eager forks incorporate one flip-flop for each branch that is clocked every clock cycle. Thus, they are area and power expensive. Can the eager forks be replaced by lazy without sacrificing performance? - Chapter 4.
3. Are there any other fork structures that are cheaper in area and power than even lazy forks, do not form combinational cycles, and can substitute EForks without any performance loss? What are the replacement conditions? - Chapter 5.
4. Elastic buffer controllers are area and power expensive. Is it possible to merge some of the $E B C$ s without any performance loss? - Chapter 5.

CHAPTER 3

CONTROL NETWORK GENERATOR FOR ELASTIC CIRCUITS ${ }^{1}$

Creating latency insensitive or asynchronous designs from clocked designs has potential benefits of increased modularity and robustness to variations. Several transformations have been suggested in the literature and each of these require a handshake control network (examples include synchronous elasticization and desynchronization). Numerous implementations of the control network are possible. This chapter reports on an algorithm that generates an optimum control network consisting of the minimum total number of 2-input join and 2-output fork control components. This can substantially reduce the area and power consumption of the control network. The algorithm has been implemented in a CAD tool, CNG. It has been applied to the MiniMIPS processor showing a 14% reduction in the number of control steering units over the hand optimized version of Fig. 2.6, and a 42.9% reduction over a network that would be implemented using a basic approach introduced in [9]. CNG is also compared with control network synthesis approaches using industrial strength synthesis tools, e.g., Design Compiler ${ }^{\circledR}$ (DC) [53] from Synopsys ${ }^{\circledR}$ and ABC [54] from Berkeley. The tools were compared over many ISCAS-89 benchmarks as well as locally developed examples. In all complete benchmark runs in this chapter, DC and ABC produce a network with the same or more number of join (and fork) components than CNG. In s614, for example, ABC produces a network with 11.3% more joins than CNG (69 vs. 62). In s1238, DC produces a network with 10.9% more joins than CNG (51 vs. 46). Locally developed examples (in part based on observations seen in ISCAS benchmarks) show even more favor toward CNG. In one of the developed examples, DC produces a network with up to 50% more join components than CNG, and ABC with 57% more joins than CNG.

[^3]
3.1 Problem Definition

Example 3.1. Let $I_{1}, I_{2}, X_{1}, X_{2}$ be four registers in the original ordinary clocked design. Both registers I_{1} and I_{2} pass data to both registers X_{1} and X_{2}. Find a control network implementation for the elastic version of this design.

Figures 3.1a and 3.1b are two example implementations for such a control network. The control network in Fig. 3.1b has one fewer join and one fewer fork components than the network of Fig. 3.1a. Things get more complicated when the number of registers and their corresponding communications increase. Hence, the purpose of the proposed algorithm is, given a set of required register-to-register communications, the algorithm should automatically generate a control network with minimum total number of 2-input join and 2-output fork components.

This section lists a number of definitions required to formalize the problem. Example 3.2 will be used as a running example throughout the chapter.

Example 3.2. Let $A, B, C, D, E, F, G, X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$ be twelve registers in the original ordinary clocked design. The following registers pass data to $X_{1}: B, C, G$, and to $X_{2}: A, B, C, G$, and to $X_{3}: A, B, C, D, E$, and to $X_{4}: A, B, D, E, F$, and to $X_{5}: A, B, E, F$. Find a control network implementation for the elastic version of this design, that incorporates minimum number of join and fork components.

A data transmitting register as well as a primary input will be referred to as an input node (or INode). Similarly, a data receiving register as well as a primary output will be referred to as an output node (or ONode).

The set of all INodes and the set of all ONodes in the network are designated as INode S and O Node S, respectively. In Example 3.2, INode $S=\{A, B, C, D, E, F, G\}$, and ONode $S=\left\{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right\}$. Note that, in a typical system, a register is both receiving

Figure 3.1: Two possible implementations of Example 3.1.
and transmitting data. Hence, from the data communication perspective, its data-input interface and data-output interface are ONode and INode, respectively.

Definition 3.3. Term A set of one or more INodes.
Constructing a Term typically means joining the control channels coming from its constituent INodes into one control channel. Each Term has a unique identifier, TermID. As an example, a Term that joins the control channels coming from: B, D, E, is $\{B, D, E\}$ and, for simplicity, will be referred to as $B D E .\left|T e r m_{1}\right|$ designates the cardinality of Term. m_{1}. A Term that is associated with an input node (i.e., composed of only one INode) is called a Source. The set of all Source Terms is designated as SourceS. Note that \mid Source $S|=|I N o d e S|$.

Definition 3.4. Target A Term that is associated with an output node. A Target of a certain ONode is a Term composed of all INodes that send data to that ONode.

In Example 3.2, BCG is the Target Term associated with ONode X_{1}. The set of all Target Terms is designated as TargetS. Note that \mid Target $S|=|O N o d e S|$. The set of all Terms relevant to the problem is designated as TermS. Formally,

$$
\begin{equation*}
\text { Term } S=\left\{\text { Term }_{i} \mid \text { Term }_{i} \subseteq \text { Target }_{j} \quad \forall \text { Target }_{j} \in \text { Target } S\right\} \tag{3.1}
\end{equation*}
$$

Terms in TermS or in any other Term set introduced later are identified by their unique TermID rather than their INode set contents (see Term definition in Def. 3.3). In general, every INode set will map to at most one TermID. However, an exception for this rule, and without loss of generality, are the INode sets of Target Terms. This work assumes that Target Terms are terminal in the sense that they cannot be used inside the control network to construct other Terms. If needed to be shared by other Terms, internal images that have the same INode set are used inside the network instead. Hence, TermS set of Eq. 3.1 can contain both a Target as well as its internal image. An example in the Terms listed in Table 3.1 is the Target whose INode set is $\{B, C, G\}$ and $\operatorname{TermID}=1$. It has an internal image (i.e., with the same INode set) which is the Term whose TermID $=8$.

Definition 3.5. Partial Solution or PS A set of Terms that could be used to implement another Term. Formally, $P S_{t}$ (set) is a partial solution of Termt, iff $\bigcup_{i=1}^{\left|P S_{t}\right|}$ Term $_{i}=$ $\operatorname{Term}_{t} \wedge \forall \operatorname{Term}_{i} \in P S_{t}: \operatorname{Term}_{i} I D \neq \operatorname{Term}_{t} I D$, where $\operatorname{Term}_{i} I D$ and $\operatorname{Term}_{t} I D$ are the TermIDs of Term $_{i}$ and Term $_{t}$, respectively.

Table 3.1: Terms and PS of Example 3.2. Term types are: Target (T), PTerm (P) and Source (S).

TermID	Term	Type	PSID	$P S$	Initial nU sed	
					Max	Min
1	$B C G$	T	1	\{BCG\}	0	0
2	ABCG	T	1	$\{B C G, A\}$	0	0
			2	$\{A B C, G\}$		
3	$A B C D E$	T	1	$\{A B D E, C\}$	0	0
			2	$\{A B C, D, E\}$		
4	$A B D E F$	T	1	$\{A B D E, F\}$	0	0
			2	$\{A B E F, D\}$		
5	ABEF	T	1	\{ABEF\}	0	0
6	ABDE	P	1	$\{A B E, D\}$	2	0
7	$A B E F$	P	1	$\{A B E, F\}$	2	1
8	$B C G$	P	1	$\{B C, G\}$	2	1
9	$A B C$	P	1	$\{B C, A\}$	2	0
			2	$\{A B, C\}$		
10	ABE	P	1	$\{A B, E\}$	2	1
11	$B C$	P	1	$\{B, C\}$	2	1
12	$A B$	P	1	$\{A, B\}$	2	1
13-19	$A-G$	S, P	1			

$P S_{t}$ represents one way of constructing Term $_{t}$. One Term could be constructed in multiple ways, and thus has more than one $P S$. In Example 3.2, to construct Term $=A B C D E$, one possible $P S$ is $\{A B C, D, E\}$. Another is $\{A B D E, C\}$. Note that, by definition, a Term cannot be used to implement itself. Also, Sources do not have PSs.

Definition 3.6. Solution or Soln A vector of $P S \mathrm{~s}$, where TermIDs are used as indices (first index is 1). If Soln_{1} is a Solution, and $\operatorname{Term}_{t} I D$ is the TermID of Term${ }_{t}$, then $\operatorname{Soln}_{1}\left[\operatorname{Term}_{t} I D\right]$ (or, for short, $\operatorname{Soln}_{1}\left[\operatorname{Term}_{t}\right]$) is the chosen PS to construct Term Th $_{t}$ Soln $_{1}$. Soln $_{1}\left[\right.$ Term $\left._{i}\right]=\emptyset \Rightarrow$ Term $_{i} \in$ SourceS. 2

In Example 3.2, the following is a possible Solution (Terms are sorted by their TermIDs of Table 3.1, and Source PS s are ignored):

$$
\begin{align*}
\text { Soln }_{1}= & <\{B C G\},\{B C G, A\},\{A B D E, C\},\{A B D E, F\}, \\
& \{A B E F\},\{A B E, D\},\{A B E, F\},\{B C, G\}, \\
& \{A B, C\},\{A B, E\},\{B, C\},\{A, B\}> \tag{3.2}
\end{align*}
$$

[^4]Hence, a Solution can be seen as a vector of $P S$ choices of different Terms. For example, $\operatorname{Soln}_{1}[2]=\{B C G, A\}$. This means the $P S=\{B C G, A\}$ is used in Soln So $_{1}$ to construct Term $A B C G$ (whose TermID is 2). Soln n_{1} is depicted in Fig. 3.2. The set of all Solutions is designated as SolnS.

Definition 3.7. nUsed $n U$ sed $\left.\left[\right.$ Term $\left._{i}\right]\right|_{\text {Soln }_{1}}$ defines how many times Term $_{i}$ is used to construct other useful Terms in Solution, Soln. ${ }_{1}$. Formally, $\left.n U \operatorname{sed}\left[\right.$ Term $\left._{i}\right]\right|_{\text {Soln }_{1}}$ is defined recursively to be the number of $\operatorname{Terms}, \operatorname{Term}_{t}$, that satisfy the following two conditions:

1. Term $_{i} \in \operatorname{Soln}_{1}\left[\right.$ Term $\left._{t}\right]$.
2. $\left.n U \operatorname{sed}\left[\right.$ Term $\left._{t}\right]\right|_{\text {Soln }_{1}}>0 \vee$ Term $_{t} \in$ Target S.

By definition, \forall Term $_{i} \in$ Target $S: n U \operatorname{sed}[$ Termi $]=0$.
Definition 3.8. Useful Term Term ${ }_{i}$ is said to be useful in Soln_{1} (or Soln $_{1}$ uses Term $_{i}$), if any of the following two conditions hold:

- Term $_{i} \in$ TaregtS.
- $\left.n U \operatorname{sed}\left[\right.$ Term $\left._{i}\right]\right|_{S_{\text {oln }}^{1}}>0$.

Figure 3.2: A sample control network of Example 3.2.

The function UsefulTermS $\left(\operatorname{Soln}_{1}\right): \operatorname{Soln} S \rightarrow 2^{\text {TermS }}$ is defined to return the useful Terms in a given Solution. Formally, UsefulTermS $\left(\right.$ Soln $\left._{1}\right)=U T e r m S$, where UTermS $=$ $\left\{\right.$ Term $_{i} \in$ TermS \mid Term $_{i}$ is useful in Soln $\left._{1}\right\}$.

The suffix $\left.\right|_{\text {Soln }_{1}}$ may be omitted from $n U$ sed and other data structures and functions when the context is clear. For Example 3.2 and Soln $_{1}$ of Eq. 3.2: Term ABE (with TermID of 10) is used to construct both Terms $A B D E$ (with TermID of 6) and $A B E F$ (with TermID of 7). Hence, $\left.n U \operatorname{sed}[A B E]\right|_{\text {Soln }_{1}}=2$. Also, Term ABC (with TermID of 9) is not useful in Soln. Term $A B$ (with TermID of 12) is used to construct both Terms $A B C$ (with TermID of 9) and $A B E$ (with TermID of 10). However, since Term ABC is not useful in Soln_{1}, therefore, $\left.n U \operatorname{sed}[A B]\right|_{\text {Soln }_{1}}$ is only 1 .

Definition 3.9. Solution Graph or SG $S G$ is a Directed Acyclic Graph (DAG) composed of the ordered pair $(V, A) . V$ is the set of vertices and $A \subset V \times V$, the set of directed arcs. Any $\operatorname{Soln}, S o l n_{1}$, can be represented by an $S G, S G_{1}$, such that:

- $V=\{$ TargetS, SourceS, ITermS $\}$. And, for short, $V=\{T, S, I\}$. ITermS $=$ $\left\{\right.$ Term $_{i} \in$ TermS $^{\prime} \mid$ Term $_{i} \notin($ Source \cup Target $S) \wedge$ Term $_{i}$ is useful in Soln $\left.{ }_{1}\right\}$.
- $A=\left\{\left(v_{i}, v_{j}\right) \mid v_{i}, v_{j} \in V \wedge v_{i} \in \operatorname{Soln}_{1}\left[v_{j}\right]\right\}$.

For Example 3.2 and Soln $_{1}$ of Eq. 3.2, $S G_{1}$ is shown in Fig. 3.3.
Note that from the A definition above and $P S$ and $S o l n$ definitions (Definitions 3.5 and 3.6, respectively), $S G_{1}$ is acyclic (i.e., no possible sequence of arcs can start from and end at the same vertex). The following functions are defined for each vertex, $v_{i} \in V$:

Figure 3.3: A Solution graph for Example 3.2 Solution of Eq. 3.2.

- $A_{\text {in }}\left(v_{i}\right): V \rightarrow 2^{A}$. For each $v_{i}, A_{\text {in }}\left(v_{i}\right)$ returns the set of arcs that end at v_{i}. Formally: $A_{\text {in }}\left(v_{i}\right)=\left\{a_{j}=\left(v_{j}, v_{i}\right) \mid a_{j} \in A\right\}$.
- Similarly, $A_{\text {out }}\left(v_{i}\right): V \rightarrow 2^{A}$. For each $v_{i}, A_{\text {out }}\left(v_{i}\right)$ returns the set of arcs that start at v_{i}. Formally: $A_{\text {out }}\left(v_{i}\right)=\left\{a_{j}=\left(v_{i}, v_{j}\right) \mid a_{j} \in A\right\}$.
- $n J_{2}\left(v_{i}\right): V \rightarrow \mathbb{N}$. A function that returns the number of 2 -input joins constructing the Term represented by vertex v_{i} in the Solution represented by the graph. It is assumed in this work that an n-input join is implemented using $(n-1) J_{2}$ s. Formally,

$$
n J_{2}\left(v_{i}\right)= \begin{cases}\left|A_{\text {in }}\left(v_{i}\right)\right|-1 & \left|A_{\text {in }}\left(v_{i}\right)\right| \geq 1 \tag{3.3}\\ 0 & \left|A_{\text {in }}\left(v_{i}\right)\right|=0\end{cases}
$$

- Similarly, $n F_{2}\left(v_{i}\right): V \rightarrow \mathbb{N}$. A function that returns the number of 2-output forks immediately branching from the Term represented by v_{i}. It is assumed in this work that an n-output fork is implemented using $(n-1) F_{2}$ s. Formally,

$$
n F_{2}\left(v_{i}\right)= \begin{cases}\left|A_{\text {out }}\left(v_{i}\right)\right|-1 & \left|A_{\text {out }}\left(v_{i}\right)\right| \geq 1 \tag{3.4}\\ 0 & \left|A_{\text {out }}\left(v_{i}\right)\right|=0\end{cases}
$$

Definition 3.10. Cost A function that returns the number of 2-input joins (J_{2} s) required to implement a $P S$, a Term, or a Soln.

Formally, let $P S_{t}$ be the $P S$ of Term, Term $_{t}$, in Soln, Soln_{1} (i.e., $\operatorname{Soln}_{1}\left[\operatorname{Term}_{t}\right]=P S_{t}$), then $\operatorname{Cost}\left(\operatorname{Term}_{t}\right)$ in $\operatorname{Soln}_{1},\left.\operatorname{Cost}\left(\operatorname{Term}_{t}\right)\right|_{\text {Soln }_{1}}: \operatorname{Term} S \times \operatorname{Soln} S \rightarrow \mathbb{N}$, is defined as follows:

$$
\begin{equation*}
\left.\operatorname{Cost}\left(\operatorname{Term}_{t}\right)\right|_{\text {Soln}_{1}}=\left|P S_{t}\right|-1+\sum_{i=1}^{\left|P S_{t}\right|} \frac{\left.\operatorname{Cost}\left(\operatorname{Term}_{i}\right)\right|_{\text {Soln }_{1}}}{\left.n U \operatorname{sed}\left[\operatorname{Term}_{i}\right]\right|_{\text {Soln }_{1}}} \tag{3.5}
\end{equation*}
$$

where $\operatorname{Term}_{i} \in P S_{t} \quad \forall i=1,2, \ldots\left|P S_{t}\right| .\left.\operatorname{Cost}\left(\operatorname{Term}_{t}\right)\right|_{\text {Soln }_{1}}$ and $\left.\operatorname{Cost}\left(P S_{t}\right)\right|_{\text {Soln }_{1}}$ will be used interchangeably (since $\operatorname{Soln}_{1}\left[\operatorname{Term}_{t}\right]=P S_{t}$). Two factors contribute to $\operatorname{Cost}\left(\operatorname{Term}_{t}\right)$ in a Solution. First is the number of $J_{2} \mathrm{~S}$ used to join the $P S_{t}$ constituent terms. It is assumed in Eq. 3.5 that to implement an n-input join, $(n-1) J_{2}$ s are required. The other factor is the Cost of the constituent Terms themselves, taking into account how much these Terms are shared among other Terms in that Solution. The Term sharing information is provided by the $n U$ sed vector. By definition, $\forall \operatorname{Term}_{i} \in \operatorname{Source} S: \operatorname{Cost}\left(\operatorname{Term}_{i}\right)=0$.

For Example 3.2 and $S G_{1}$ of Fig. 3.3, the chosen $P S$ to construct Term $A B E$ is $\{A B, E\}$. $n U \operatorname{sed}[A B]=1$. Hence, $\operatorname{Cost}(A B E)=1+\operatorname{Cost}(A B)$. The chosen $P S$ to construct Term $A B$ is $\{A, B\}$, and hence, $\operatorname{Cost}(A B)=1$. Therefore, $\operatorname{Cost}(A B E)$ in Soln_{1} is 2 . Similarly, $\operatorname{Cost}(A B D E)=2$.

Similarly, the function $\operatorname{Cost}\left(\operatorname{Soln}_{1}\right): \operatorname{Soln} S \rightarrow \mathbb{N}$ is defined to return the total number of J_{2} s used to construct all Target S in Soln_{1}. Formally,

$$
\begin{equation*}
\operatorname{Cost}\left(\text { Soln }_{1}\right)=\sum_{i=1}^{\mid \text {Target } S \mid} \operatorname{Cost}\left(\text { Target }_{i}\right) \tag{3.6}
\end{equation*}
$$

where Target $_{i} \in$ Target $S \quad \forall i=1,2, \ldots \mid$ Target $S \mid$. For Example 3.2 and Soln n_{1} of Eq. 3.2 (or $S G_{1}$ of Fig. 3.3), five Targets exist, namely, $B C G, A B C G, A B C D E, A B D E F, A B E F$. The summation of the Costs of these Targets in Soln_{1} (i.e., $\left.\operatorname{Cost}\left(\operatorname{Soln}_{1}\right)\right)$ is 9 .

Definition 3.11. OptCost The minimum Cost among all Solution Costs. Formally, OptCost $=\min _{i=1}^{\mid \text {SolnS| }} \operatorname{Cost}\left(\operatorname{Soln}_{i}\right)$.

The Optimum Solution or OptSoln is defined to be a Solution such that Cost $($ OptSoln $)=$ OptCost. An OptSoln may not be unique for a given problem, since multiple Solutions can have the same minimum Cost among all Solutions. Hence, OptSolnS is defined to be the set of all optimum Solutions.

Definition 3.12. Search Space or Space A Space (designated as S_{k}) is a set of Solutions.
The (whole) search Space (designated as S_{o}) is initialized with $\operatorname{Soln} S$, and then refined throughout the algorithm until an OptSoln is found.

Definition 3.13. Cone(Term) $\left.\operatorname{Cone}\left(\right.$ Term $\left._{t}\right)\right|_{\text {Soln }_{1}}: T e r m S \times \operatorname{Soln} S \rightarrow 2^{\text {TermS }}$, a function that returns the set of all Terms (down to SourceS) used in implementing Term $_{t}$ in Soln_{1}. Formally, let $\operatorname{Soln}_{1}\left[\operatorname{Term}_{t}\right]=P S_{t}$, then:

$$
\begin{equation*}
\left.\operatorname{Cone}\left(\operatorname{Term}_{t}\right)\right|_{\text {Soln}_{1}}=\left.P S_{t} \bigcup_{i=1}^{\left|P S_{t}\right|} \operatorname{Cone}\left(\operatorname{Term}_{i}\right)\right|_{{S o l n_{1}}} \tag{3.7}
\end{equation*}
$$

where $\operatorname{Term}_{i} \in P S_{t} \quad \forall i=1,2, \ldots\left|P S_{t}\right|$.
By definition, \forall Term $_{i} \in \operatorname{Source} S: \operatorname{Cone}\left(\right.$ Term $\left._{i}\right)=\emptyset$. For Example 3.2 and $S G_{1}$ of Fig. 3.3: Cone $(B C G)=\{B C, G, B, C\}$. Similarly, let $P S^{\prime}$ be a set of Terms (not necessarily a $P S$ of any Term), then define $\left.\operatorname{Cone}\left(P S^{\prime}\right)\right|_{\text {Soln }_{1}}: 2^{\text {TermS }} \times \operatorname{SolnS} \rightarrow 2^{\text {TermS }}$ as follows:

$$
\begin{equation*}
\left.\operatorname{Cone}\left(P S^{\prime}\right)\right|_{\text {Soln }_{1}}=\left.P S^{\prime} \bigcup_{i=1}^{\left|P S^{\prime}\right|} \operatorname{Cone}\left(\operatorname{Term}_{i}\right)\right|_{S o l n_{1}} \tag{3.8}
\end{equation*}
$$

where $\operatorname{Term}_{i} \in P S^{\prime} \quad \forall i=1,2, \ldots\left|P S^{\prime}\right|$. Hence, if $\operatorname{Soln}_{1}\left[\right.$ Term $\left._{t}\right]=P S_{t}$, then $\left.\operatorname{Cone}\left(\right.$ Term $\left._{t}\right)\right|_{\text {Soln }_{1}}$ and $\left.\operatorname{Cone}\left(P S_{t}\right)\right|_{\text {Soln }_{1}}$ will be used interchangeably.

Definition 3.14. Del operator - $\operatorname{Soln}_{1} / \mathbf{D}$ The Del operator (/) accompanied by a Del set $D \subseteq T e r m S$ are applied to a Solution. Applied to $S o l n_{1}$, it effectively removes all the Terms in D from Soln $_{1}$. Formally,

$$
\text { Soln }_{1} / D\left[\text { Term }_{i}\right]= \begin{cases}\text { Soln }_{1}\left[\text { Term }_{i}\right] & \text { Term }_{i} \notin D \tag{3.9}\\ \emptyset & \text { Term }_{i} \in D\end{cases}
$$

Applying / D on $S_{o l n_{1}}$ vector will also affect its associated data structures and functions (e.g., $n U$ sed, Cost and Cone). This will be denoted as, for example, $\left.n U \operatorname{sed}\left[T e r m_{i}\right]\right|_{\text {Soln }_{1} / D}$. Some of the useful Terms in $S o l n_{1}$ can become unused (i.e., their $n U$ sed $\left.\right|_{\text {Soln }_{1} / D}=0$) as so some of the Terms in their respective Cones. For Example 3.2 and $S G_{1}$ of Fig. 3.3, deleting Term $B C G$, will decrease $n U$ sed of the following Terms by 1: $B C$ (will become unused), G (will become unused), B, and C.

Definition 3.15. nAddedJoins or nAJ(Term) $\left.n A J\left(\right.$ Term $\left._{i}\right)\right|_{\text {Soln }_{1}}: T e r m S \times S o l n S \rightarrow$ \mathbb{N}, a function that returns the number of J_{2} s that exist in Soln_{1} just to construct Termi (i.e., the J_{2} s that, otherwise, would not be used if Term_{i} was deleted from Soln_{1}). Formally, let $\operatorname{Soln}_{1}\left[\right.$ Term $\left._{t}\right]=P S_{t}$, then:
$\left.n A J\left(\right.$ Term $\left._{t}\right)\right|_{\text {Soln }_{1}}=\left.u_{t}\right|_{\text {Soln }_{1}} \times\left(\left|P S_{t}\right|-1+\left.\sum_{i=1}^{\mid \text {Cone }\left(\text { Term }_{t}\right) \mid} s_{i}\right|_{\text {Soln }_{1} /\left\{\text { Term }_{t}\right\}} \times n A J_{o}\left(\right.\right.$ Term $\left.\left._{i}\right)\right)$
where $\forall i=1,2, \ldots \mid \operatorname{Cone}\left(\right.$ Term $\left._{t}\right) \mid: \operatorname{Term}_{i} \in \operatorname{Cone}\left(\right.$ Term $\left._{t}\right)$, and:

$$
\begin{align*}
& \left.n A J_{o}\left(\text { Term }_{i}\right)\right|_{\text {Soln }_{1}}= \begin{cases}\mid \text { Soln }_{1}\left[\text { Term }_{i}\right] \mid-1 & \text { Term }_{i} \notin \text { SourceS } \\
0 & \text { Term }_{i} \in \text { SourceS }\end{cases} \tag{3.11}\\
& \left.u_{t}\right|_{\text {Soln }_{1}}\left(\text { or }\left.u\left[\text { Term }_{t}\right]\right|_{\text {Soln }_{1}}\right)= \begin{cases}1 & \text { Term }_{t} \text { is useful in } \text { Soln }_{1} \\
0 & \text { Term }_{t} \text { is not useful in Soln }\end{cases} \tag{3.12}\\
& \left.s_{i}\right|_{\text {Soln }_{1} /\left\{\text { Term }_{t}\right\}}\left(\text { or }\left.s\left[\text { Term }_{i}\right]\right|_{\text {Soln }_{1} /\left\{\text { Term }_{t}\right\}}\right)=\left\{\begin{array}{cc}
1 & \left.n U \operatorname{sed}\left[\text { Term }_{i}\right]\right|_{\text {Soln }_{1} /\left\{\text { Term }_{t}\right\}}=0 \\
0 & \left.n U \operatorname{sed}\left[\text { Term }_{i}\right]\right|_{\text {Soln }_{1} /\left\{\text { Term }_{t}\right\}}>0
\end{array}\right. \tag{3.13}
\end{align*}
$$

Unless otherwise specified, $n A J$ will be calculated for usefulTerms only. Hence, $u\left[\right.$ Term $\left._{t}\right]$ (or interchangeably u_{t}) in Eq. 3.10 will be frequently omitted. Note the analogy between $n A J_{o}$ of Eq. 3.11 and $n J_{2}\left(v_{i}\right)$ of Eq. 3.3. If $\left.\operatorname{Term}_{i} \in \operatorname{Cone}\left(\operatorname{Term}_{t}\right)\right|_{\text {Soln }_{1}}$, then $\left.n A J_{o}\left(\operatorname{Term}_{i}\right)\right|_{\text {Soln }_{1}}$ contributes to $\left.n A J\left(\operatorname{Term}_{t}\right)\right|_{\text {Soln }_{1}}$ only if Term_{i} is constructed in Soln_{1}
for the sole purpose of constructing Term_{t} in Soln_{1} (in other words, only if Term_{i} would not be useful in Soln $_{1}$ if Term $_{t}$ was deleted from Soln $_{1}$). This information is provided through $s\left[\right.$ Term $\left._{i}\right]$ (or interchangeably s_{i}) defined in Eq. 3.13. $\left.n A J\left(\right.$ Term $\left._{t}\right)\right|_{\text {Soln }_{1}}$ and $\left.n A J\left(P S_{t}\right)\right|_{\text {Soln }_{1}}$ will be used interchangeably (since $\operatorname{Soln}_{1}\left[\operatorname{Term}_{t}\right]=P S_{t}$). As an example, let all the Terms used by $P S_{t}$ be already shared by other Terms in $S o l n_{1}$. In this case, all that is added to the network to construct $P S_{t}$ are the $J_{2} \mathrm{~s}$ required to join its constituent Terms (i.e., $\left.\left|P S_{t}\right|-1\right)$.

For Example 3.2 and $S G_{1}$ of Fig. 3.3, $\left.n A J_{o}(A B)\right|_{\text {Soln }_{1}}=1$ and $\left.n U \operatorname{sed}[A B]\right|_{\text {Soln }_{1} /\{A B E\}}$ $=0$, therefore, $\left.n A J(A B E)\right|_{S o l n_{1}}=2$. Although the Cost of $A B D E$ is two, its $n A J$ is only one. The reason is, Term $A B E$ which is used to construct $A B D E$ in $S_{0} n_{1}$ is also used in the Solution to construct another Term (i.e., Term ABEF). Hence, to construct Term $A B D E$, the only added J_{2} to $S o l n_{1}$ is the join required to join $A B E$ with D.

3.2 The Algorithm

Lemma 3.1. Let $n J_{2}$ and $n F_{2}$ be the total number of $J_{2} s$ and $F_{2} s$ in a network, respectively. Then, the following equality holds for any Solution \in SolnS (i.e., whatever the PS choices of the different Terms):

$$
\begin{equation*}
n J_{2}-n F_{2}=\mid \text { Source } S|-| \text { Target } S \mid \tag{3.14}
\end{equation*}
$$

Proof. Construct a Solution graph, $S G_{1}$, of a Solution, $S o l n_{1}$ (see Fig. 3.3, for example). Following Def. 3.9 of the $S G$, each arc starts at a vertex (i.e., a Term) and ends at a vertex (i.e., another term), therefore, the following equation holds:

$$
\begin{equation*}
\sum_{i=1}^{|V|}\left|A_{\text {in }}\left(v_{i}\right)\right|=\sum_{i=1}^{|V|}\left|A_{\text {out }}\left(v_{i}\right)\right| \tag{3.15}
\end{equation*}
$$

By definition, $\forall v_{i} \in \operatorname{Source} S:\left|A_{\text {in }}\left(v_{i}\right)\right|=0$, and $\forall v_{i} \in \operatorname{Target} S:\left|A_{\text {out }}\left(v_{i}\right)\right|=0$. Hence, Eq. 3.15 is reduced to:

$$
\begin{equation*}
\sum_{j=1}^{|I|+|T|}\left|A_{\text {in }}\left(v_{j}\right)\right|=\sum_{j=1}^{|I|+|S|}\left|A_{\text {out }}\left(v_{j}\right)\right| \tag{3.16}
\end{equation*}
$$

Since all $S G_{1}$ vertices represent useful Terms in Soln_{1} (see Def. 3.8), and since by the definition of Solution (Def. 3.6) all useful Terms must be implemented using other Terms (except SourceS), therefore, the following holds:

$$
\begin{align*}
& \forall v_{i} \in(\text { ITerm } S \cup \text { Target } S):\left|A_{\text {in }}\left(v_{i}\right)\right| \geq 1 \tag{3.17}\\
& \forall v_{i} \in(\text { ITerm } S \cup \text { SourceS }):\left|A_{\text {out }}\left(v_{i}\right)\right| \geq 1 \tag{3.18}
\end{align*}
$$

Hence, from Equations 3.3 and 3.4, Eq. 3.16 can be rewritten in terms of $n J_{2}\left(v_{j}\right)$ and $n F_{2}\left(v_{j}\right)$, as follows:

$$
\begin{equation*}
\sum_{j=1}^{|I|+|T|}\left(n J_{2}\left(v_{j}\right)+1\right)=\sum_{j=1}^{|I|+|S|}\left(n F_{2}\left(v_{j}\right)+1\right) \tag{3.19}
\end{equation*}
$$

The total number of 2-input joins and 2-output forks in Soln_{1} (i.e., $n J_{2}$ and $n F_{2}$, respectively) can be computed as follows:

$$
\begin{align*}
& n J_{2}=\sum_{j=1}^{|I|+|T|} n J_{2}\left(v_{j}\right) \tag{3.20}\\
& n F_{2}=\sum_{j=1}^{|I|+|S|} n F_{2}\left(v_{j}\right) \tag{3.21}
\end{align*}
$$

Substituting Equations 3.20 and 3.21 in Eq. 3.19 concludes the proof.
Theorem 3.2. An algorithm that minimizes $n J_{2}$ will also minimize $n F_{2}$ and also $n J_{2}+n F_{2}$.

Proof. The theorem follows directly from Lemma 3.1.
In other words, for some required communications in a control network, since an OptSoln (Def. 3.11) utilizes the minimum number of $J_{2} \mathrm{~s}$, therefore, it will also incorporate the minimum total number of $J_{2} \mathrm{~S}$ and $F_{2} \mathrm{~S}$.

3.2.1 Algorithm Overview

Theorem 3.2 narrows down the problem to: Construct the TargetS from the SourceS using a minimum total number of J_{2} (i.e., find an $O p t S o l n$). The proposed algorithm consists of four main steps, covered in the following four subsections. Step I finds the candidate Terms that can be used in an OptSoln. Then, for each of the candidate Terms, Step II finds the candidate $P S$ s that may be used by an OptSoln. Step II uses a set of proven rules to identify (and exclude) $P S$ s that are not needed to find an $O p t S o l n$. At this point, the search Space of the problem consists of all the remaining possible $P S$ choices of all the candidate Terms. Step III collects statistics about the search Space. Metrics computed include the max/min possible usage (or sharing) of the remaining Terms in the search Space, from which the max/min possible $n A J$ value of each remaining $P S$ can be computed. Based on these metrics, Step III eliminates expensive $P S \mathrm{~s}$ from the search Space. The latter Space reduction does in turn affect the Space metrics, which in turn can lead to
removing further expensive $P S$ s. Hence, Step III through a number of iterations prune out the search Space until no further reduction is possible, at which point the algorithm moves to Step IV. Choosing a certain $P S$ for a Term (and omitting the other $P S$ s from the search Space) does affect the max/min possible usage of the constituent Terms of these $P S \mathrm{~s}$. This in turn can affect the max/min possible $n A J$ value of other $P S \mathrm{~s}$ which use these Terms, providing opportunity for removing expensive $P S$ s. Hence, Step IV makes use of this fact in case there are more than one Solution still left in the search Space after Step III. Step IV splits the remaining search Space into multiple Spaces, each with mutually exclusive $P S$ choices for some Terms (called STermS). It then updates each sub-Space metrics based on the specific $P S$ choices made for that sub-Space, allowing for further reduction. The splitting continues until there is only one Solution left in each sub-Space. The Cost of each Solution of each sub-Space is calculated and compared. An OptSoln is returned.

3.2.2 Step I: Construct the Potential Terms

The first step in the algorithm is to determine which Terms could be used to construct the TargetS Terms and eliminate the rest.

Definition 3.16. Potential Terms or PTermS A set of Terms from which an OptSoln can be constructed. Formally,

$$
\begin{align*}
& \text { PTermS } \cap \text { Target } S=\phi \wedge \\
& \exists \text { OptSoln }_{i} \in \text { OptSolnS }:(\text { PTerm } S \cup \text { Target } S) \supseteq \text { UsefulTermS }\left(\text { OptSoln }{ }_{i}\right) \tag{3.22}
\end{align*}
$$

where UsefulTermS function is defined in Def. 3.8.

Definition 3.17. Common Terms or CTermS

$$
\begin{align*}
C \text { Term } S= & \left\{\text { Term }_{c} \in(\text { TermS }- \text { Target } S) \mid \text { Term }_{c}=\text { Target }_{i} \cap \text { Target }_{j}\right. \\
& \left.\forall \text { Target }_{i}, \text { Target }_{j} \in \text { Target } S, \text { Target }_{i} \neq \text { Target }_{j}\right\} \tag{3.23}
\end{align*}
$$

Following are the different methods used to construct the potential Terms (PTermS):

3.2.2.1 Method I: All Subsets of All CTermS Terms

Define

$$
\begin{align*}
& \text { PTerm } S_{o}^{1}=\left\{\text { Term }_{p} \mid \text { Term }_{p} \subseteq \text { Term }_{c i} \quad \forall \text { Term }_{c i} \in \text { CTermS }\right\} \tag{3.24}\\
& \text { PTerm } S^{1}=P \text { Term }_{o}^{1} \cup \text { SourceS } \tag{3.25}
\end{align*}
$$

Theorem 3.3. Potential Terms of Method I PTermS ${ }^{1}$ satisfies Def. 3.16 of the potential Terms (i.e., \exists OptSoln $n_{i} \in$ OptSolnS : $\left(P T e r m S^{1} \cup\right.$ TargetS $) \supseteq$ UsefulTermS $\left(O_{\text {ptSoln }}^{i}\right.$)). Hence, an optimum Solution can be constructed by using only Terms from PTermS ${ }^{1}$.

Proof. The proof relies on other theorems to be stated later in the text. The reader is advised to read the proof after finishing Sec. 3.2.4.

Define the function FTargetS(read Father-TargetS): (TermS - TargetS $) \rightarrow 2^{\text {TargetS }}$, as follows:

$$
\operatorname{FTargetS}^{\left(\text {Term }_{i}\right)}=\left\{\text { Target }_{j} \in \text { TargetS } \mid \text { Term }_{i} \subseteq \text { Target }_{j}\right\}
$$

FTargetS $\left(\right.$ Term $\left._{i}\right)$ returns the set of Targets that Term $_{i}$ can be used in their construction. Also, define the following Term set:

$$
\begin{gather*}
\text { UnSharedTermS }=\left\{\text { Term }_{i} \in(\text { TermS }-(\text { Target } S \cup \text { SourceS })) \mid\right. \\
\left.\mid F \operatorname{TargetS}\left(\text { Term }_{i}\right) \mid=1\right\} \tag{3.26}
\end{gather*}
$$

From TermS definition in Eq. 3.1, PTerm S^{1} can be redefined as follows: PTerm ${ }^{1}=$ TermS - TargetS - UnSharedTermS, and Theorem 3.3 can be rewritten as follows: An optimum Solution can be found without using the Terms in UnSharedTermS.

The proof will be done by iteratively using Theorem 3.15 Rule V. It is easy to show that each Term in UnSharedTermS can maximally be used by only one Target and zero or more other terms from UnSharedTermS. Define UnSharedTerm S_{1} to be the Terms in UnSharedTermS which are maximally used once (i.e., by one Target and zero other Terms from UnSharedTermS). Formally,

$$
\begin{align*}
& \text { UnSharedTerm }_{1}=\left\{\text { Term }_{i} \in \text { UnSharedTerm } S \mid\right. \\
& \tag{3.27}\\
& \text { Term } \left._{i} \subseteq \text { Term }_{t} \in \text { Term } \Rightarrow \text { Term }_{t} \in \text { TargetS }\right\}
\end{align*}
$$

Obviously, \forall Term $_{i} \in U n S h a r e d T e r m S_{1}: n U s e d M a x\left[\right.$ Term $\left._{i}\right]=1$. Hence, by Theorem 3.15 Rule V, all Terms in UnSharedTermS S_{1} can be omitted from the search Space (i.e., an $O p t S o l n$ can be found without using them).

Similarly, define UnSharedTerm S_{2} to be the Terms in UnSharedTermS which are maximally used by only one Target and one or more Terms from UnSharedTerm S_{1} :

$$
\left.\begin{array}{l}
\text { UnSharedTerm }_{2}=\left\{\text { Term }_{i} \in U n S h a r e d T e r m S\right.
\end{array}\right]
$$

Since the Terms in UnSharedTermS S_{1} are omitted from the search Space, therefore, \forall Term $_{i} \in U n S h a r e d T e r m S_{2}: n U \operatorname{sedMax}\left[\right.$ Term $\left._{i}\right]=1$. Hence, by Theorem 3.15 Rule V, all Terms in UnSharedTermS S_{2} can also be omitted from the search Space. The above iterations can be repeated until all Terms in UnSharedTermS are omitted from the search Space. Hence, an optimum Solution can be found without using any Term from UnSharedTermS. That concludes the proof.

Method I includes in PTerm S^{1} all C TermS Terms as well as all their subsets. The number of potential Terms will thus quickly increase as the number and sizes of CTerms increase. This adversely affects the algorithm runtime. Hence, following are some methods that try to minimize the number of PTerms.

3.2.2.2 Method II: All Intersections and Differences of CTermS Terms

This method initially populates PTermS (will be referred to, in this method, as $P T e r m S^{2}$) with $C T e r m S$. It then considers the intersection of and the difference between any two PTerms to be another PTerm. Formally, define PTerm S_{o}^{2} to be the smallest set (in cardinality) that satisfies the following two conditions:

1. PTerm $S_{o}^{2} \supseteq C$ TermS .
2. \forall Term $_{p i}$, Term $_{p j} \in$ PTerm $_{o}^{2}:$ Term $_{p i}-$ Term $_{p j} \in P T e r m S_{o}^{2} \wedge$ Term $_{p i} \cap$ Term $_{p j} \in$ PTermS ${ }_{o}^{2}$.

$$
\begin{equation*}
P T e r m S^{2}=P T e r m S_{o}^{2} \cup S o u r c e S \tag{3.29}
\end{equation*}
$$

It is easy to show that $P T e r m S^{2} \subseteq P T e r m S^{1}$. A proof (or counter proof) that $P T e r m S^{2}$ satisfies the definition of PTermS (Def. 3.16) could not be found. Hence, using Method II to construct PTermS, while typically incorporates less number of Terms, is not proved (or disproved) to result in an optimum Solution for all problems. Nonetheless, for all the examples where Method I and Method II ran to completion, Method II provided optimum Solutions.

3.2.2.3 Method III: Target Division

This method gives a label to each Term \in TermS. The label reflects whether, for each Target, all the INodes (or Sources) joined by this Term belong to that Target, or only part of them, or none of them. It then groups Terms with similar label together. The biggest Term (in cardinality) in each group is then included in PTermS ${ }^{3}$. Non-Source Terms that
cannot be used for constructing more than one Target are excluded from PTermS ${ }^{3}$ (since an OptSoln can be found without using them according to the proof of Theorem 3.3). Formally, the Label function $\left(L:(\right.$ Term $S-$ Target $\left.S) \rightarrow\{0,1,-\}^{\mid \text {Target } S \mid}\right)$ is defined as follows:

$$
L\left(\text { Term }_{t}\right)=V_{t} \text { such that } V_{t}[i]= \begin{cases}1 & \text { Term }_{t} \cap \text { Target }_{i}=\text { Term }_{t} \tag{3.30}\\ 0 & \text { Term }_{t} \cap \operatorname{Target}_{i}=\emptyset \\ - & \emptyset \subset \text { Term }_{t} \cap \text { Target }_{i} \subset \text { Term }_{t}\end{cases}
$$

$\forall i=1,2, \ldots \mid$ Target $S \mid$.
Also define $n L\left(\right.$ Term $\left._{t}\right):($ Term $S-\operatorname{TargetS}) \rightarrow \mathbb{N}$ to be the number of $V_{t}[i]=1, \forall i=$ $\left\{1, \ldots,\left|V_{t}\right|\right\}$ where $V_{t}=L\left(\right.$ Term $\left._{t}\right)$. Define:

$$
\begin{align*}
\text { PTerm }_{o}^{3}= & \left\{\text { Term }_{p} \in(\text { Term } S-\text { Target } S) \mid n L\left(\text { Term }_{p}\right)>1 \wedge\right. \\
& \forall \text { Term }_{i} \in(\text { Term }- \text { Target } S), \text { Term }_{i} \neq \text { Term }_{p}: \\
& \left.L\left(\text { Term }_{i}\right)=L\left(\text { Term }_{p}\right) \Rightarrow \text { Term }_{i} \subset \text { Term }_{p}\right\} \tag{3.31}\\
\text { PTerm }_{3}^{3}= & \text { PTerm }_{o}^{3} \cup \text { SourceS } \tag{3.32}
\end{align*}
$$

It is easy to show that $P T e r m S^{3} \subseteq P T e r m S^{2}$. However, similar to $P T e r m S^{2}$, a proof (or counter proof) that $P T e r m S^{3}$ satisfies the definition of PTermS (Def. 3.16) could not be found. Hence, using Method III to construct PTermS, while typically incorporates less number of Terms, is not proved (or disproved) to result in an optimum Solution for all problems. Nonetheless, in all the examples where Method I and Method III ran to completion, Method III provided optimum Solutions.

3.2.2.4 Method IV: All CTermS Intersections

This method initially populates $P T e r m S^{4}$ with $C T e r m S$. It then considers only the intersection between any two PTerms to be another PTerm. Formally, define PTerm S_{o}^{4} to be the smallest set (in cardinality) that satisfies the following two conditions:

1. PTerm $S_{o}^{4} \supseteq C T e r m S$.
2. \forall Term $_{p i}$, Term $_{p j} \in$ PTerm $S_{o}^{4}: \operatorname{Term}_{p i} \cap$ Term $_{p j} \in$ PTerm S_{o}^{4}.

$$
\begin{equation*}
P T e r m S^{4}=P T e r m S_{o}^{4} \cup S o u r c e S \tag{3.33}
\end{equation*}
$$

It is easy to show that $P T e r m S^{4} \subseteq P T e r m S^{3}$ and thus Method IV exhibits the shortest algorithm runtime among all the four methods. Nonetheless, counter examples showing that P Term S^{4} may not satisfy the definition of PTermS (Def. 3.16) in some cases do
exist. Examples are explained in Sec. 3.2.6. Sec. 3.2.6 also provides some techniques to help check whether a Solution returned by the algorithm when using Method IV is indeed optimum. Possible correction techniques are explained as well.

The number of potential Terms provided by Step I is, at worst, exponential. In particular,

$$
\begin{align*}
& \text { PTerm } S^{i} \leq 2^{\mid \text {Source } S \mid}-1 \quad \forall i \in\{1,2,3,4\} \\
& P T e r m S_{o}^{4} \leq \min \left(\left(2^{\mid \text {SourceS } \mid}-1\right),\left(2^{\mid \text {Target } S \mid}-\mid \text { Target } S \mid-1\right)\right) \tag{3.34}
\end{align*}
$$

Nonetheless, in practice, the size of $P T e r m S$ is much smaller (see Table 3.2). The actual size depends on the overlapping between the different Target set contents.

3.2.3 Step II: Construct the Partial Solutions

The search Space (i.e., the possible Solutions), at this point, consists of all combinations of all possible $P S$ choices of all $P T e r m S$. This step aims at excluding $P S \mathrm{~s}$ that are not needed in an OptSoln. A cost metric is thus needed to differentiate between several $P S \mathrm{~s}$ of the same Term and to eliminate expensive $P S$ s from the search Space. nAJ provides such a metric as shown in the following theorems:

Theorem 3.4. Let Soln n_{1} and Soln n_{2} be two Solutions. Let also, $\operatorname{Soln}_{1} /\left\{\operatorname{Term}_{t}\right\}=$ $\operatorname{Soln}_{2} /\left\{\right.$ Term $\left._{t}\right\} \quad$ (i.e., $\forall i=1,2, \ldots \mid$ TermS $\mid \wedge i \quad \neq \quad t \quad: \quad \operatorname{Soln}_{1}\left[\right.$ Term $\left._{i}\right]=$ $\operatorname{Soln}_{2}\left[\right.$ Term $\left.\left._{i}\right]\right)$, Soln 1 [Term $\left.{ }_{t}\right]=P S_{t 1}$, and Soln $_{2}\left[\right.$ Term $\left._{t}\right]=P S_{t 2}$. Then, if $\left(\left.n A J\left(P S_{t 1}\right)\right|_{\text {Soln }_{1}} \geq\left. n A J\left(P S_{t 2}\right)\right|_{\text {Soln }_{2}}\right)$, then $\operatorname{Cost}\left(\operatorname{Soln}_{1}\right) \geq \operatorname{Cost}\left(\operatorname{Soln}_{2}\right)$. Greater and equal operators are ordered respectively.

Proof. It follows from Def. 3.15 of $n A J$ that:

$$
\begin{align*}
& \operatorname{Cost}\left(\operatorname{Soln}_{1}\right)=\operatorname{Cost}\left(\operatorname{Soln}_{1} /\left\{\text { Term }_{t}\right\}\right)+\left.n A J\left(\text { Term }_{t}\right)\right|_{\text {Soln }_{1}} \tag{3.35}\\
& \operatorname{Cost}\left(\operatorname{Soln}_{2}\right)=\operatorname{Cost}\left(\operatorname{Soln}_{2} /\left\{\text { Term }_{t}\right\}\right)+\left.n A J\left(\text { Term }_{t}\right)\right|_{\text {Soln }_{2}} \tag{3.36}
\end{align*}
$$

Since $\operatorname{Soln}_{1} /$ Term $_{t}=\operatorname{Soln}_{2} /$ Term $_{t}, \quad$ therefore, $\quad \operatorname{Cost}\left(\operatorname{Soln}_{1} /\right.$ Term $\left._{t}\right)=$ $\operatorname{Cost}\left(\operatorname{Soln}_{2} /\right.$ Term $\left._{t}\right)$. This concludes the proof.

Corollary 3.5. Let $P S_{1}$ and $P S_{2}$ be two PSs of Termt. Then, if for all possible combinations of other Term PS choices $n A J\left(P S_{1}\right)>n A J\left(P S_{2}\right)$, then any OptSoln will not use $P S_{1}$.

Corollary 3.6. Let $P S_{1}$ and $P S_{2}$ be two $P S s$ of Term. Then, if for all possible combinations of other Term PS choices, $n A J\left(P S_{1}\right) \geq n A J\left(P S_{2}\right)$, then an OptSoln can be found that does not use $P S_{1}$.

Proof of both Corollaries 3.5 and 3.6 follows from Theorem 3.4 as well as Def. 3.11 of OptSoln.

It is easy to show that the Cost function (Def. 3.10) cannot be used instead of $n A J$ in Theorem 3.4 to identify expensive PSs. In other words, let $\operatorname{Soln}_{1} /\left\{\right.$ Term $\left._{t}\right\}=$ Soln $_{2} /\left\{\right.$ Term $\left._{t}\right\}$, Soln $_{1}\left[\right.$ Term $\left._{t}\right]=P S_{t 1}$, and Soln $_{2}\left[\right.$ Term $\left._{t}\right]=P S_{t 2}$. Then, if $\left(\left.\operatorname{Cost}\left(P S_{t 1}\right)\right|_{S_{S o l n_{1}}} \geq\left.\operatorname{Cost}\left(P S_{t 2}\right)\right|_{\text {Soln }_{2}}\right)$, then the following inequality does not necessarily hold: $\operatorname{Cost}\left(\operatorname{Soln}_{1}\right) \geq \operatorname{Cost}\left(\operatorname{Soln}_{2}\right)$.

Following is a list of proven rules to be considered while constructing the PTermS PSs. The rules help identify and exclude $P S$ s that are not needed while searching for an $O p t S o l n$. Lemma 3.7 will be useful to prove the rules.

Lemma 3.7. Use $\left.s_{i}\right|_{\text {Soln }_{1}}$ as in Eq. 3.13. Let Term $\left.{ }_{1} \in \operatorname{Cone}\left(\right.$ Term $\left._{t}\right)\right|_{\text {Soln }_{1}}$. Then, if $\left.s\left[\right.$ Term $\left._{1}\right]\right|_{\text {Soln }_{1} /\left\{\text { Term }_{t}\right\}}=0$, then, $\left.s\left[\right.$ Term $\left._{i}\right]\right|_{\text {Soln }_{1} /\left\{\text { Term }_{t}\right\}}=0 \quad \forall$ Term $_{i} \in$ Cone $\left.\left(\right.$ Term $\left._{1}\right)\right|_{\text {Soln }_{1}}$.

Proof. By s_{i} definition in Eq. 3.13, $\left.s\left[\right.$ Term $\left._{1}\right]\right|_{\text {Soln }_{1} /\left\{\text { Term }_{t}\right\}}=0 \quad$ if $\left.n U \operatorname{sed}\left[\operatorname{Term}_{1}\right]\right|_{\text {Soln }_{1} /\left\{\text { Term }_{t}\right\}}>0$. Hence, in the absence of Term_{t} (i.e., $\operatorname{Soln}_{1} /\left\{\operatorname{Term}_{t}\right\}$) Term $_{1}$ is still used at least once. From Def. 3.7 of $n U$ sed and Def. 3.13 of Cone, it follows that all Terms $\left.\in \operatorname{Cone}\left(\operatorname{Term}_{1}\right)\right|_{\text {Soln }_{1}}$ will also still be used at least once in the absence of Term_{t} (i.e., through Term_{1}). That concludes the proof.

Theorem 3.8. Rule I Adding a whole redundant Term to a PS always causes it to be more expensive (in terms of $n A J$). Formally, let Term ${ }_{t}$, Term $_{1}$, Term $_{2} \in$ TermS, Term ${ }_{2} \subset$ Term $1 \subseteq$ Term $_{t}$. Let $P S_{t 1}$ and $P S_{t 2}$ be two PSs of Term ${ }_{t}$. Let both $P S_{1}$ and $P S_{2}$ be the same except that $P S_{1}$ contains Term , while $P S_{2}$ contains Term ${ }_{1}$ and Term ${ }_{2}$. Then, an optimum Solution will not use $P S_{t 2}$.

Proof. Let Soln $_{1}$ and Soln_{2} be two Solutions such that: $\operatorname{Soln}_{1} /\left\{\right.$ Term $\left._{t}\right\}=$ $\operatorname{Soln}_{2} /\left\{\right.$ Term $\left._{t}\right\}, \operatorname{Soln}_{1}\left[\right.$ Term $\left._{t}\right]=P S_{t 1}$, and $\operatorname{Soln}_{2}\left[\right.$ Term $\left._{t}\right]=P S_{t 2}$. Let $P S^{\prime}$ be the maximal common subset of $P S_{t 1}$ and $P S_{t 2}$. Let also $\left|P S^{\prime}\right|=n^{\prime} \geq 0$. Following the theorem text (see Fig. 3.4):

Figure 3.4: Rule I.

$$
\begin{align*}
& P S_{t 1}=P S^{\prime} \cup\left\{\text { Term }_{1}\right\} \\
& P S_{t 2}=P S^{\prime} \cup\left\{\text { Term }_{1}, \text { Term }_{2}\right\} \tag{3.37}
\end{align*}
$$

From Def. 3.15 of $n A J$:

$$
\begin{align*}
& \left.n A J\left(P S_{t 1}\right)\right|_{\text {Soln }_{1}}=C_{1} \\
& +\left.s_{1}\right|_{\text {Soln }_{1} /\left\{\text { Term }_{t}\right\}} \times\left. n A J_{o}\left(\text { Term }_{1}\right)\right|_{\text {Soln }_{1}} \\
& +\left.\sum_{i=1}^{\mid \operatorname{Cone}\left(\text { Term }_{1}\right)-\operatorname{Cone}\left(P S^{\prime}\right) \mid} s_{i}\right|_{\text {Soln }_{1} /\left\{\text { Term }_{t}\right\}} \times\left. n A J_{o}\left(\text { Term }_{i}\right)\right|_{\text {Soln }_{1}} \tag{3.38}\\
& \left.n A J\left(P S_{t 2}\right)\right|_{\text {Soln }_{2}}=C_{2}+1 \\
& +\left.s_{1}\right|_{\text {Soln }_{2} /\left\{\text { Term }_{t}\right\}} \times\left. n A J_{o}\left(\text { Term }_{1}\right)\right|_{\text {Soln }_{2}} \\
& +\left.s_{2}\right|_{\text {Soln }_{2} /\left\{\text { Term }_{t}\right\}} \times\left. n A J_{o}\left(\text { Term }_{2}\right)\right|_{\text {Soln }_{2}} \\
& \mid\left(\operatorname{Cone}\left(\text { Term }_{1}\right) \cup C o n e\left(\text { Term }_{2}\right)\right)-\operatorname{Cone}\left(P S^{\prime}\right) \mid \\
& +\left.\sum_{i=1}^{\mid\left(\text {Cone }^{\left.\left(\text {Term }_{1}\right) \text { Cone }\left(\text { Term }_{2}\right)\right)- \text { Cone }(P S}\right) \mid} s_{i}\right|_{\text {Soln }_{2} /\left\{\text { Term }_{t}\right\}} \times\left. n A J_{o}\left(\text { Term }_{i}\right)\right|_{\text {Soln }_{2}} \tag{3.39}
\end{align*}
$$

where C_{l} accounts for $P S^{\prime}$ contribution to $\left.n A J\left(P S_{t l}\right)\right|_{S o l n_{l}}(l \in\{1,2\})$, as follows:

$$
\begin{equation*}
C_{l}=n^{\prime}+\left.\sum_{i=1}^{\left|\operatorname{Cone}\left(P S^{\prime}\right)\right|} s_{i}\right|_{\text {Soln }_{l} /\left\{\text { Term }_{t}\right\}} \times\left. n A J_{o}\left(\text { Term }_{i}\right)\right|_{\text {Soln }_{l}} \tag{3.40}
\end{equation*}
$$

Since $\operatorname{Soln}_{1} /\left\{\right.$ Term $\left._{t}\right\}=\operatorname{Soln}_{2} /\left\{\right.$ Term $\left._{t}\right\}$, it follows that $C_{1}=C_{2}$. Therefore, $\left.n A J\left(P S_{t 2}\right)\right|_{\text {Soln }_{2}}-\left.n A J\left(P S_{t 1}\right)\right|_{\text {Soln }_{1}} \geq 1$. The proof then follows from Corollary 3.5.

Consider Term ABCG. $P S_{1}=\{A, B C G\}$ is always cheaper than $P S_{2}=$ $\{A, B C G, B C\}$. Hence, $P S_{2}$ should be excluded from the search Space.

Theorem 3.9. Rule II Using a Term in a PS is always the same or cheaper (in terms of $n A J$) than using all its constituent Terms. Formally, let Term $_{t}$, Term $_{c}$, Term $_{a 1}, \ldots$ Term $_{\text {an }} \in$ TermS, Term $_{c} \subseteq$ Term $_{t}$, and Term ${ }_{c}=$ $\bigcup_{i=1}^{n}$ Termai $_{\text {. Let }} P S_{t 1}$ and $P S_{t 2}$ be two PSs of Termt. Let both $P S_{t 1}$ and $P S_{t 2}$ be the same except that $P S_{t 2}$ contains Term ${ }_{c}$, while $P S_{t 1}$ instead contains Terms Terma1, \ldots Terman . Then, an OptSoln can be found that does not use $P S_{t 1}$.

Proof. Informally, the idea behind the theorem is, if Term $_{t}$ needs a set of Terms in its implementation, then it hurts nothing to join these Terms in one Term (Term ${ }_{c}$) and use Term_{c} instead. This is the same or cheaper than using the constituent Terms directly, since Term $_{c}$ may be used by other Terms and its Cost will then be shared.

Formally, define $P S_{c 1}=\left\{\right.$ Term $_{a 1}, \ldots$ Term $\left._{a n}\right\}$. Let $P S^{\prime}$ be the maximal common subset of $P S_{t 1}$ and $P S_{t 2}$. Let also $\left|P S^{\prime}\right|=n^{\prime} \geq 0$. Following the theorem text:

$$
\begin{align*}
& P S_{t 1}=P S^{\prime} \cup P S_{c 1} \\
& P S_{t 2}=P S^{\prime} \cup\left\{\text { Term }_{c}\right\} \tag{3.41}
\end{align*}
$$

The theorem can be proved if it is proved that for each Soln_{1} where $\operatorname{Soln}_{1}\left[\operatorname{Term}_{t}\right]=P S_{t 1}$, there exists another Soln_{2} such that $\operatorname{Soln}_{2}\left[\right.$ Term $\left._{t}\right]=P S_{t 2}$ and $\operatorname{Cost}\left(\operatorname{Soln}_{2}\right) \leq \operatorname{Cost}\left(\operatorname{Soln}_{1}\right)$. To prove the latter, it is sufficient to prove the following: For each Soln_{1} where $\operatorname{Soln}_{1}\left[\right.$ Term $\left._{t}\right]=P S_{t 1}$, there exists another Soln $_{2}$ such that Soln $_{2} /\left\{\right.$ Term $_{t}$, Term $\left._{c}\right\}=$ $\operatorname{Soln}_{1} /\left\{\right.$ Term $\left._{t}, \operatorname{Term}_{c}\right\}, \operatorname{Soln}_{2}\left[\operatorname{Term}_{t}\right]=P S_{t 2}$ and $\operatorname{Cost}\left(\operatorname{Soln}_{2}\right) \leq \operatorname{Cost}\left(\operatorname{Soln}_{1}\right)$. The proof hereafter will be concerned with the last statement.
Term_{t} and Term_{c} may be referred to as T_{t} and T_{c} for brevity. Notice that the theorem does not specify a particular $P S$ choice for Term $_{c}$. Hence, in general, if there are $k P S \mathrm{~s}$ for $T e r m_{c}$ in the search Space (call them $P S_{c 1}, P S_{c 2}, \ldots P S_{c k}$) then define the following two sets of Solutions:

$$
\begin{align*}
\operatorname{Soln}_{1} S=\{ & \text { Soln }_{1 i} \mid \text { Soln }_{1 i}\left[\text { Term }_{t}\right]=P S_{t 1} \wedge \text { Soln }_{1 i}\left[\text { Term }_{c}\right]=P S_{c i} \\
& \left.\wedge \text { Soln }_{1 i} /\left\{T_{c}\right\}=\text { Soln }_{1 j} /\left\{T_{c}\right\} \quad \forall \text { Soln }_{1 i}, \text { Soln }_{1 j} \in \text { Soln }_{1} S\right\} \tag{3.42}\\
\text { Soln }_{2} S=\{ & \text { Soln }_{2 i} \mid \text { Soln }_{2 i}\left[\text { Term }_{t}\right]=P S_{t 2} \wedge \text { Soln }_{2 i}\left[\text { Term }_{c}\right]=P S_{c i} \\
& \left.\wedge \text { Soln }_{2 i} /\left\{T_{c}\right\}=\text { Soln }_{2 j} /\left\{T_{c}\right\} \quad \forall \text { Soln }_{2 i}, \text { Soln }_{2 j} \in \text { Soln }_{2} S\right\} \tag{3.43}
\end{align*}
$$

Note that, by definition,

$$
\begin{equation*}
\operatorname{Soln}_{i} /\left\{\operatorname{Term}_{t}, \operatorname{Term}_{c}\right\}=\operatorname{Soln}_{j} /\left\{\operatorname{Term}_{t}, \operatorname{Term}_{c}\right\} \quad \forall \operatorname{Soln}_{i}, \operatorname{Soln}_{j} \in\left(\operatorname{Soln}_{1} S \cup \operatorname{Soln}_{2} S\right) \tag{3.44}
\end{equation*}
$$

For illustration, and without loss of generality, three particular $P S_{c i}$ s are shown in Fig. 3.5 when used in $\operatorname{Soln}_{1} S$ and $\operatorname{Soln}_{2} S$ Solutions. Note that $P S_{c 2} \cap P S_{c 1}=\emptyset$ and $\emptyset \subset P S_{c 3} \cap$ $P S_{c 1} \subset P S_{c 1}$.

The theorem can be proved (i.e., $P S_{t 1}$ can be omitted from the search Space) if the following statement can be proved (for all $\operatorname{Soln}_{1} S$ and Soln $2 S$ Solutions):

$$
\begin{equation*}
\exists \operatorname{Soln}_{2 i} \in \operatorname{Soln}_{2} S: \operatorname{Cost}\left(\operatorname{Soln}_{2 i}\right) \leq \min _{j=1}^{\left|\operatorname{Soln}_{1} S\right|} \operatorname{Cost}\left(\operatorname{Soln}_{1 j}\right) \tag{3.45}
\end{equation*}
$$

Informally, if a Solution exists where $P S_{t 2}$ is used and which Cost is the same or lower than all Solutions that use $P S_{t 1}$ instead, then $P S_{t 1}$ can be omitted from the search Space. The claim is Soln $_{21}$ does satisfy the above condition. To prove, extend Def. 3.15 of the n AddedJoins to more than one Term (namely, Term ${ }_{t}$ and Term $_{c}$) and similar to Eq. 3.35, the following holds for any Soln_{i} :

$$
\begin{equation*}
\operatorname{Cost}\left(\operatorname{Soln}_{i}\right)=\left.n A J\left(\operatorname{Term}_{t}, \operatorname{Term}_{c}\right)\right|_{\text {Soln}_{i}}+\operatorname{Cost}\left(\operatorname{Soln}_{i} /\left\{\text { Term }_{t}, \text { Term }_{c}\right\}\right) \tag{3.46}
\end{equation*}
$$

From Eq. 3.44, it follows that, to prove the statement of 3.45 , it suffices to prove the following:

$$
\begin{equation*}
\exists \text { Soln }_{2 i} \in \operatorname{Soln}_{2} S:\left.n A J\left(\text { Term }_{t}, \text { Term }_{c}\right)\right|_{\text {Soln }_{2 i}} \leq\left.\min _{j=1}^{\mid \text {Soln }_{1} S \mid} n A J\left(\text { Term }_{t}, \text { Term }_{c}\right)\right|_{\text {Soln }_{1 j}} \tag{3.47}
\end{equation*}
$$

$n A J\left(\right.$ Term $_{t}$, Term $\left._{c}\right)$ in the different $\operatorname{Soln}_{1,2} S$ Solutions can be defined as follows (refer to Fig. 3.5):

$$
\begin{align*}
& \left.n A J\left(\text { Term }_{t}, \text { Term }_{c}\right)\right|_{\text {Soln }_{1 i}}=C+n-1 \\
& \quad+\left.\sum_{j=1}^{\left|\operatorname{Cone}\left(P S_{c 1}\right)-\operatorname{Cone}\left(P S^{\prime}\right)\right|} s_{j}\right|_{\text {Soln }_{1 i} /\left\{T_{t}, T_{c}\right\}} \times n A J_{o}\left(\text { Term }_{j}\right) \\
& \quad+u\left[\text { Term }_{c}\right] \times\left(\left|P S_{\text {ci }}\right|-1\right) \\
& \quad+u\left[\text { Term }_{c}\right] \times\left.\sum_{j=1}^{\left|\operatorname{Cone}\left(P S_{c i}\right)-\left({\operatorname{Cone}\left(P S_{c 1}\right) \cup \operatorname{Cone}\left(P S^{\prime}\right)}\right)\right|} s_{j}\right|_{S o l n_{1 i} /\left\{T_{t}, T_{c}\right\}} \times n A J_{o}\left(\text { Term }_{j}\right) \tag{3.48}\\
& \left.n A J\left(\text { Term }_{t}, \text { Term }_{c}\right)\right|_{\text {Soln }_{21}}=C+n-1 \\
& \quad+\left.\sum_{j=1}^{\left|C o n e\left(P S_{c 1}\right)-\operatorname{Cone}^{\left(P S^{\prime}\right) \mid}\right|} s_{j}\right|_{\text {Soln }_{21} /\left\{T_{t}, T_{c}\right\}} \times n A J_{o}\left(\text { Term }_{j}\right) \tag{3.49}
\end{align*}
$$

where u_{c} (or $u\left[\right.$ Term $\left._{c}\right]$), s_{j} (or $s\left[\right.$ Term $\left._{j}\right]$) and C are defined as in Equations 3.12, 3.13 and 3.40 , respectively.

It is clear from Equations 3.48 and 3.49 that $S o l n_{21}$ indeed meets the existential condition of 3.47 . In particular,

$$
\begin{equation*}
\left.n A J\left(\operatorname{Term}_{t}, \operatorname{Term}_{c}\right)\right|_{\text {Soln}_{21}} \leq\left.\min _{j=1}^{\left|\operatorname{Soln}_{1} S\right|} n A J\left(\operatorname{Term}_{t}, \operatorname{Term}_{c}\right)\right|_{\text {Soln }_{1 j}} \tag{3.50}
\end{equation*}
$$

That concludes the proof. Note that in Equations 3.48 and $3.49, u\left[\right.$ Term $\left._{t}\right]$ is implicitly set to one. In other words Term_{t} is, and without loss of generality, assumed to be useful in all $\operatorname{Soln}_{1} S$ and $\operatorname{Soln}_{2} S$ Solutions. From Eq. 3.44, and from Def. 3.8 of usefulness, it is clear that if Term $_{t}$ is useful in one Solution in $\operatorname{Soln}_{1} S \cup \operatorname{Soln}_{2} S$, then it is also useful in all of them. Proving the theorem in case Term $_{t}$ is not useful is trivial. Since, in that case Term $_{t}$ has no effect on the Cost of the $\operatorname{Soln}_{1,2} S$ Solutions. In other words,

$$
\forall \operatorname{Soln}_{1 i} \in \operatorname{Soln}_{1} S, \operatorname{Soln}_{2 i} \in \operatorname{Soln}_{2} S: \operatorname{Cost}\left(\operatorname{Soln}_{1 i}\right)=\operatorname{Cost}\left(\operatorname{Soln}_{2 i}\right)
$$

which meets the existential condition of 3.45 .
Consider Term $A B C G . P S_{1}=\{A, B C G\}$ is always the same or cheaper than $P S_{2}=$ $\{A, B C, G\}$. Hence, $P S_{2}$ can be excluded from the search Space.

Theorem 3.10. Rule III Using a Source in a $P S$ is always the same or cheaper (in terms of $n A J$) than any other non-Source Term. Formally, let Term Th $_{1}$, Term $_{2}$, Term $_{t} \in \operatorname{TermS}$, Term $_{1} \in$ SourceS , and Term Ten $_{2} \notin$ SourceS. Let also Term ${ }_{1}$, Term $_{2} \subseteq$ Term $_{t}$. Let $P S_{t 1}$ and $P S_{t 2}$ be two $P S s$ of Termm_{t}. Let both $P S_{t 1}$ and $P S_{t 2}$ be the same except that $P S_{t 1}$ contains Term ${\text {, while } P S_{t 2} \text { contains Term }}_{2}$, instead. Then, an OptSoln can be found that does not use $P S_{t 2}$.

Proof. Let Soln_{1} and $S_{\text {Soln }}^{2}$ be two Solutions such that: $\operatorname{Soln}_{1} /\left\{\operatorname{Term}_{t}\right\}=$ $\operatorname{Soln}_{2} /\left\{\operatorname{Term}_{t}\right\}, \operatorname{Soln}_{1}\left[\operatorname{Term}_{t}\right]=P S_{t 1}$ and $\operatorname{Soln}_{2}\left[\operatorname{Term}_{t}\right]=P S_{t 2}$. Let $P S^{\prime}$ be the maximal common subset of $P S_{t 1}$ and $P S_{t 2}$. Let also $\left|P S^{\prime}\right|=n^{\prime}>0$. Following the theorem text and Lemma 3.7:

$$
\begin{align*}
& P S_{t 1}=P S^{\prime} \cup\left\{\text { Term }_{1}\right\} \\
& P S_{t 2}=P S^{\prime} \cup\left\{\text { Term }_{2}\right\} \tag{3.51}
\end{align*}
$$

$$
\begin{align*}
& \left.n A J\left(P S_{t 1}\right)\right|_{\text {Soln }_{1}}=C+\left.s_{1}\right|_{\text {Soln }_{1} /\left\{\text { Term }_{t}\right\}} \times\left. n A J_{o}\left(\text { Term }_{1}\right)\right|_{\text {Soln }_{1}} \\
& \mid \operatorname{Cone}\left(\text { Term }_{1}\right) \text {-Cone }\left(P S^{\prime}\right) \mid \\
& +\left.s_{1}\right|_{\text {Soln }_{1} /\left\{\text { Term }_{t}\right\}} \times\left.\quad \sum_{i=1} \quad s_{i}\right|_{\text {Soln }_{1} /\left\{\text { Term }_{t}\right\}} \times\left. n A J_{o}\left(\text { Term }_{i}\right)\right|_{\text {Soln }_{1}} \tag{3.52}\\
& \left.n A J\left(P S_{t 2}\right)\right|_{\text {Soln }_{2}}=C+\left.s_{2}\right|_{\text {Soln }_{2} /\left\{\text { Term }_{t}\right\}} \times\left. n A J_{o}\left(\text { Term }_{2}\right)\right|_{\text {Soln }_{2}} \\
& \mid \operatorname{Cone}\left(\text { Term }_{2}\right)-\operatorname{Cone}\left(\text { PS }^{\prime}\right) \mid \\
& +\left.s_{2}\right|_{\text {Soln}_{2} /\left\{\text { Term }_{t}\right\}} \times\left.\quad \sum_{i=1} \quad s_{i}\right|_{\text {Soln }_{2} /\left\{\text { Term }_{t}\right\}} \times n \text { AJ }\left.\left(\text { Term }_{i}\right)\right|_{\text {Soln }_{2}} \tag{3.53}
\end{align*}
$$

where C reflects the contribution of $P S^{\prime}$ to $\left.n A J\left(P S_{t 1}\right)\right|_{S_{\text {oln }}^{1}}$ (or equivalently to, $\left.\left.n A J\left(P S_{t 2}\right)\right|_{\text {Soln }_{2}}\right)$, and computed as in Eq. 3.40. Since Term ${ }_{1}$ is a Source, therefore, $\left.n A J_{o}\left(\operatorname{Term}_{1}\right)\right|_{\text {Soln }_{1}}=0$ (Eq. 3.11). Also, Cone $\left(\operatorname{Term}_{1}\right)-\operatorname{Cone}\left(P S^{\prime}\right)=\emptyset$. Hence, $\left.n A J\left(P S_{t 1}\right)\right|_{\text {Soln }_{1}}=C$. From which, $\left.n A J\left(P S_{t 2}\right)\right|_{\text {Soln }_{2}} \geq\left. n A J\left(P S_{t 1}\right)\right|_{S o l n_{1}}$. The proof then follows from Corollary 3.6.

Consider Term $A B C G$ in Example 3.2. $P S_{1}=\{B C G, A\}$ is always the same or cheaper than $P S_{2}=\{B C G, A B\}$. Hence, $P S_{2}$ can be excluded from the search Space.

Definition 3.18. Target-image term or TITerm Term ${ }_{i}$ is a TITerm if

$$
\left(\text { Term }_{i} \in \text { PTermS }\right) \wedge\left(\exists \text { Target }_{j} \in \text { Target } S: \text { Target }_{j}=\text { Term }_{i}\right)
$$

Also, define TITermS to be the set of all Target-image Terms. For Example 3.2 and $S G_{1}$ of Fig. 3.3: Term BCG (with TermID of 8) is a TITerm, since it is an image of Target BCG (with TermID of 1) associated with ONode $X_{1} .{ }^{3}$

Theorem 3.11. Rule IV Using a TITerm in a PS is always the same or cheaper (in terms of $n A J$) than any other non - TITerm. Formally, let Term ${ }_{1}$, Term $_{2}$, Term $_{t} \in$ TermS, Term $_{1} \in$ TITermS, and Term \neq TITermS. Let also Term ${ }_{1}$, Term $_{2} \subset$ Term $_{t}$. Let PS St $_{t 1}$ and $P S_{t 2}$ be two PSs of Termt. Let both $P S_{t 1}$ and $P S_{t 2}$ be the same except that $P S_{t 1}$ contains Term , while $^{P} S_{t 2}$ contains Term 2 , instead. Then, an OptSoln can be found that does not use $P S_{t 2}$.

Proof. Let Soln_{1} and Soln_{2} be two Solutions such that: $\operatorname{Soln}_{1} /\left\{\right.$ Term $\left._{t}\right\}=$ $\operatorname{Soln}_{2} /\left\{\right.$ Term $\left._{t}\right\}, \operatorname{Soln}_{1}\left[\right.$ Term $\left._{t}\right]=P S_{t 1}$ and Soln $_{2}\left[\right.$ Term $\left._{t}\right]=P S_{t 2}$. Following the theorem text, $n A J\left(P S_{t 1,2}\right)$ can be expressed the same as in Equations 3.52 and 3.53 used in the proof of Theorem 3.10, respectively.

[^5] Based on PS construction Rule II (i.e., Theorem 3.9), Soln $_{1}\left[\right.$ Target $\left._{j}\right]=\operatorname{Soln}_{2}\left[\right.$ Target $\left._{j}\right]=$ $\left\{\operatorname{Term}_{1}\right\}$. Hence, $\left.n U \operatorname{sed}\left[\operatorname{Term}_{1}\right]\right|_{\text {Soln }_{1}} \geq 1$. It is realized from the Theorem text that $\operatorname{Target}_{j} \neq \operatorname{Term}_{t}$, and, therefore, $\left.n U \operatorname{sed}\left[\right.$ Term $\left._{1}\right]\right|_{\text {Soln }_{1} /\left\{\text { Term }_{t}\right\}} \geq 1$. From s_{i} definition in Eq. 3.13, it follows $\left.s_{1}\right|_{\text {Soln }_{1} /\left\{\text { Term }_{t}\right\}}=0$, and hence $\left.n A J\left(P S_{t 1}\right)\right|_{S_{\text {oln }}^{1}}=C$. From which, $\left.n A J\left(P S_{t 2}\right)\right|_{\text {Soln }_{2}} \geq\left. n A J\left(P S_{t 1}\right)\right|_{S o l n_{1}}$. The proof then follows from Corollary 3.6.

Definition 3.19. AddedCoverage (or for short ACov) $A \operatorname{Cov}\left(\operatorname{Term}_{i}, P S_{t}\right): T e r m S \times$ $2^{\text {TermS }} \rightarrow 2^{\text {INodeS }}$. A function that returns the letters (i.e., INodes) covered by Termi \in $P S_{t}$ and not covered by any other Term in $P S_{t}$. Formally, $\operatorname{ACov}\left(\operatorname{Term}_{i}, P S_{t}\right)=\operatorname{Term}_{i}-$ $\bigcup_{j=1, j \neq i}^{\left|P S_{t}\right|}$ Term $_{j}$.

Definition 3.20. Redundant PS $P S_{t}$ is called a redundant $P S$ if:
$\exists \operatorname{Term}_{i} \in P S_{t}:\left|A \operatorname{Cov}\left(\operatorname{Term}_{i}, P S_{t}\right)\right|=0 \vee\left(\left|A \operatorname{Cov}\left(\operatorname{Term}_{i}, P S_{t}\right)\right|=1 \wedge\right.$ Term $\left._{i} \notin \operatorname{Source} S\right)$

Also, Term_{i} will be called a redundant Term in $P S_{t}$.
Corollary 3.12. An OptSoln exists that does not use redundant PSs.

Proof. The proof follows directly from Rules I and III (i.e., Theorems 3.8 and 3.10 , respectively).

Algorithm 1 takes into account all the four rules while constructing the $P S$ s. It takes five arguments:

- Term $_{t}$: the Term to be constructed.
- PSTerms: the contents (thus far) of the PS being constructed.
- Required: a subset of Term $_{t}$, consisting of the INodes that have not yet been covered in the current PS. Initially, Required consists of all the INodeS in Term $_{t}$.
- RTermS (or Relevant Terms): a set of Terms from which a PS of Term ${ }_{t}$ can be built. R TermS are initialized with

$$
\left\{\text { Term }_{i} \in P \operatorname{Term} S \mid \operatorname{Term}_{i} \subseteq \operatorname{Term}_{t} \wedge \operatorname{Term}_{i} I D \neq \operatorname{Term}_{t} I D\right\}
$$

By Def. 3.5 of $P S$, a PTerm cannot be used to construct itself. Also, Targets cannot be used to construct any Term. Nonetheless, Target-image Terms (Def. 3.18) can construct their corresponding Targets.

- ERTermS (or Essential Relevant Terms): a set initialized with (SourceS \cup TITermS $) \cap$ RTermS .

Algorithm 1 runs (recursively) on each Term $_{t} \in$ (Target $S \cup P T e r m S$). For each Term $_{t}$, it is initially called with Required $=$ Term $_{t}, P S T e r m S=\emptyset$, and the appropriate RTermS and ERTermS. PS and PSTermS may be used interchangeably in the algorithm description.

Lines 1-15 check whether a single Source or a single TITerm exists that can cover all the letters (i.e., INodes) in Required. If this is the case, the Source or the TITerm is added to the current $P S T e r m S$, and the algorithm returns without further need to search for cheaper $P S \mathrm{~s}$ (Rules III and IV).

If there is no single Source or TITerm that can cover all the letters in Required, the algorithm tries to cover them using all possible non-redundant combinations of the Terms in RTermS. First, Lines $17-20$ check whether indeed a $P S$ can be found using the current set of $R T e r m S$. If yes, the first Term in R Term S (call it $R T e r m_{i}$) is picked and removed from $R T e r m S$. Lines 23-27 check whether adding $R T e r m_{i}$ to the current PS will cause any redundancy (see Def. 3.20 of redundant $P S$ s). If it causes redundancy, the next RTerm is picked instead. If not, the algorithm will find all possible $P S$ s in which R Term $_{i}$ is used. To do that, the algorithm creates a new set of Required ${ }_{1}$, PSTerm $_{1}$, and $R T e r m S_{1}$ structures that are modified copies of Required, PSTermS, and $R T e r m S$, respectively, based on the fact that $R T e r m_{i}$ is used (Lines 28-30). If adding $R T e r m_{i}$ to the current $P S$ covers all the letters in Required (Line 31) then $P S T e r m S_{1}$ is a complete $P S$. The $P S$ is stored (Line 32) and the algorithm picks the next RTerm. If $P S T e r m S_{1}$ is not yet complete (i.e., Required ${ }_{1}$ is not empty), the algorithm iteratively calls FindPSs (Line 36). However, adding RTerm $_{i}$ to PSTerm S_{1} typically renders redundant (Def. 3.20) some of the Terms in $R T e r m S_{1}$. Hence, line 35 filters out such redundant RTerms (and also applies Rule II) before iteratively calling FindPSs algorithm.

As an upper bound, Algorithm 1 will have to visit all possible combinations of RTermS. Hence, its complexity is $O\left(2^{|R T e r m S|}\right)$, and the number of $P S$ s per $\operatorname{Term}_{t}(\notin S o u r c e S)$ is bounded by:

$$
\begin{align*}
& \mid P S S\left[\text { Term }_{t}\right] \mid \leq 2^{\mid R T e r m S}\left(\text { of } \text { Term }_{t}\right) \mid \\
& \mid R T e r m S\left(\text { of } \text { Term }_{t}\right) \mid \leq 2^{\mid \text {Term }} \mid \tag{3.54}\\
& \mid
\end{align*}
$$

Nonetheless, in practice, the algorithm is much faster than (and the number of $P S \mathrm{~s}$ is

```
Algorithm 1 FindPSs(Term , Required, RTermS, ERTermS, PSTermS)
    ReuiredIsCoveredByAnETerm \(=0\)
    for each \(E R T e r m_{i} \in E R T e r m S\) do
        if \(E_{\text {RTerm }}^{i} \supseteq\) Required then // i.e., A Source or a TITerm can cover Required
        - Rules III, IV
            if Adding \(E R T e r m_{i}\) causes the \(P S\) to be redundant then // Def. 3.20
                return
            end if
            ReuiredIsCoveredByAnETerm \(=1\)
            CoveringERTerm \(=\) ERTerm \(_{i}\)
        end if
    end for
    if ReuiredIsCoveredByAnETerm then
        \(P S T e r m S=P S T e r m S \cup\) CoveringERTerm
        AddThisPS (PSTermS,Term \({ }_{t}\) )
        return
    end if
    while \(|R T e r m S|>0\) do
        RTermSUnion \(=\bigcup_{i=1}^{|R T e r m S|}\) RTerm \(_{i}\)
        if RTermSUnion \(\nsupseteq\) Required then // A PS cannot be constructed from the
        remaining \(R\) TermS
            return
        end if
        Take and remove the first Term from \(R\) TermS, RTerm \({ }_{i}\)
        \(E R T e r m S=E R T e r m S-\) RTerm \(_{i}\)
        ACov \(=\) RTerm \({ }_{i} \cap\) Required
        if \(|A C o v|>1 \vee(|A C o v|=1 \wedge \mid\) Required \(\mid=1)\) then
            if Adding \(R\) Term \(_{i}\) causes the \(P S\) to be redundant then
                continue
            end if
            Required \(_{1}=\) Required - RTerm \(_{i}\)
            PSTerm \(S_{1}=P S T e r m S \cup\) RTerm \(_{i}\)
            \(R\) Term \(S_{1}=R\) Term \(S\)
            if \(\mid\) Required \(_{1} \mid=0\) then \(/ /\) i.e., all letters covered
                AddThisPS (PSTerm \(S_{1}\), Term \(\left._{t}\right)\)
                continue
            end if
            Filter \(R\) Term \(S_{1}\) because of adding \(R\) Term \({ }_{i}\)
            FindPSs \(\left(\right.\) Term \(_{t}\), Require \(_{1}\), RTerm \(\left._{1}, E R T e r m S, P S T e r m S_{1}\right)\)
        end if
    end while
    return
```

much less than) exponential. This is because not all RTerm combinations are $P S$ s. Also, applying Rules I, II, III, and IV as well as RTermSUnion check (in Line 18) eliminate substantial part of the RTerm combinations. Table 3.3 shows the reduction in the search Space due to applying the four rules of Step II for sample problems. For Example 3.2, the $P S$ s computed by Algorithm 1 are listed in Table 3.1.

3.2.4 Step III: Collect Space Metrics and Remove Higher $n A J$ Partial Solutions

Theorem 3.3 narrowed down the search Space by confining the number of candidate Terms. Furthermore, Theorems 3.4 through 3.12 reduced their possible corresponding $P S \mathrm{~s}$. At this point the search Space of the problem consists of all the remaining possible $P S$ choices of all the candidate Terms. This step aims at further pruning out the search Space by computing the different $P S$ upper and lower bound $n A J$ values and eliminating expensive PSs. The value of $n A J\left(P S_{t}\right)$ is Solution-dependent (e.g., a Solution that provides sharing to the constituent Terms of $P S_{t}$ will reduce its $n A J$, and vice versa). Nonetheless, through calculating the maximum and minimum possible sharing (in any Solution in the search Space) of the $P S_{t}$ constituent Terms (called nU sedMax[Term ${ }_{i}$] and $n U$ sedMin[Term ${ }_{i}$], respectively), the lower and upper bounds of $n A J\left(P S_{t}\right)$ (called, $n A J M i n\left(P S_{t}\right)$ and $n A J M a x\left(P S_{t}\right)$, respectively) can be computed. Comparing such bounds of different $P S \mathrm{~s}$, some $P S \mathrm{~s}$ can be found too expensive and thus omitted from the search Space. This step is iterative. Omitting some Term PSs can affect the max/min usage (sharing) of the Terms constituting these $P S$ s. This, in turn, affects the $n A J$ lower/upper bounds of other $P S \mathrm{~s}$ that use these Terms, allowing for further reduction. At the end of each iteration, more areas of the search Space can be eliminated. When the algorithm can do no more eliminations, it goes to the next step.

Following are the definitions of the basic data structures and functions associated with the search Space (also referred to as metrics):

Definition 3.21. PSS PSS[Term$\left.]_{t}\right]\left.\right|_{S_{k}}$ is the set of Term $_{t} P S \mathrm{~s}$ in the search Space, S_{k}. Definition 3.22. Usable Term A Term is usable in a search Space if it is useful (Def. 3.8) in at least one Solution in that Space. Formally, Term $_{i}$ is usable in search Space S_{k} if:

$$
\exists \operatorname{Soln}_{i} \in S_{k}: \text { Term }_{i} \in U \text { sefulTermS } S\left(\operatorname{Soln}_{i}\right)
$$

Definition 3.23. nUsedMax A vector of numbers where TermIDs are used as indices. $\left.n U \operatorname{sedMax}\left[\operatorname{Term}_{i}\right]\right|_{S_{k}}$ provides an upper bound on the maximum possible sharing of Term $_{i}$ in any Solution in the search Space, S_{k}. Formally,

$$
\left.n U \operatorname{sedMax}\left[\text { Term }_{i}\right]\right|_{S_{k}} \geq\left.\underset{j=1}{\left|S_{k}\right|} \underset{j=1}{\max } n U \operatorname{sed}\left[\text { Term }_{i}\right]\right|_{\text {Soln }_{j}} \forall \operatorname{Soln}_{j} \in S_{k}
$$

$\left.n U \operatorname{sedMax}\left[\operatorname{Term}_{i}\right]\right|_{S_{k}}$ is recursively defined as the number of $\operatorname{Term}_{t} \mathrm{~s}$ in the search Space, S_{k}, that satisfy the following two conditions:

1. $\left.\exists P S_{t} \in P S S\left[\right.$ Term $\left._{t}\right]\right|_{S_{k}}: \operatorname{Term}_{i} \in P S_{t}$.
2. Term $_{t}$ is usable in S_{k}.

Table 3.1 shows the initial values of $n U$ sedMax of different Terms in Example 3.2. At the end of each iteration, some $P S$ s are omitted from the search Space, and hence, the value of $n U$ sedMax of some Terms will decrease.

Definition 3.24. Essential Term or ETerm Term $_{t}$ is an essential Term in a search Space if it is useful in all that Space Solutions. Formally, Termi is an ETerm $\left.\right|_{S_{k}}$ if

$$
\forall \operatorname{Soln}_{i} \in S_{k}: \text { Term }_{i} \in U \text { sefulTermS }\left(\text { Soln }_{i}\right)
$$

All Targets are ETerms in all Spaces. ETermS $\left.\right|_{S_{k}}$ is defined to be the set of all ETerms in Space S_{k}.

Definition 3.25. Essential Child or EChild Term $_{i}$ is said to be an essential child of Term $_{t}$ in search Space S_{k} iff all the following conditions are satisfied:

1. $\left.\forall P S_{t} \in P S S\left[\right.$ Term $\left._{t}\right]\right|_{S_{k}}: \operatorname{Term}_{i} \in P S_{t}$.
2. Term $_{t}$ is usable in S_{k}.

Also, define EChildren $\left.\left[\right.$ Term $\left._{t}\right]\right|_{S_{k}}$ to be all EChild Terms of Term ${ }_{t}$ in search Space S_{k}.

Definition 3.26. nUsedMin A vector of numbers where TermIDs are used as indices. $\left.n U \operatorname{sedMin}\left[\operatorname{Term}_{i}\right]\right|_{S_{k}}$ provides a lower bound on the minimum possible sharing of Term_{i} in any Solution in the search Space, S_{k}. Formally,

$$
\left.n U \operatorname{sed} M i n\left[\operatorname{Term}_{i}\right]\right|_{S_{k}} \leq\left.\min _{j=1}^{\left|S_{k}\right|} n U \operatorname{sed}\left[\operatorname{Term}_{i}\right]\right|_{\text {Soln }_{j}} \forall \operatorname{Soln}_{j} \in S_{k}
$$

$\left.n U \operatorname{sedMin}\left[\operatorname{Term}_{i}\right]\right|_{S_{k}}$ is recursively defined as the number of $\operatorname{Term}_{t} \mathrm{~S}$ in the search Space, S_{k}, that satisfy the following two conditions:

1. Term $_{i}$ is an EChild of Term $_{t}$ in S_{k}.
2. Term $_{t}$ is an ETerm in S_{k}.

The calculation of $n U$ sedMin in a search Space starts by the fact that all Targets are essential Terms (ETerms) in any search Space. Propagation of essentiality then takes place. If Term $_{t}$ is an ETerm, then all its EChildren will also be ETerms (increasing their $n U \operatorname{sedMin}$ by 1).

Table 3.1 shows the initial values of $n U$ sedMin of different Terms in Example 3.2. At the end of each iteration, more PSs are omitted and more Terms become ETerms, and hence, their $n U$ sedMin increase.

Definition 3.27. nAJMax (PS) $\left.n A J M a x\left(P S_{t}\right)\right|_{S_{k}}$ is an upper bound on the maximum value of $n A J\left(P S_{t}\right)$ in all Solutions of the search Space S_{k}. Formally, $\left.n A J M a x\left(P S_{t}\right)\right|_{S_{k}} \geq$ $\left.\max _{j=1}^{\left|S_{k}\right|} n A J\left(P S_{t}\right)\right|_{\text {Soln }_{j}}$.
$n A J\left(P S_{t}\right)$ is maximized in a Solution when the Solution provides minimum sharing to the constituent Terms of $P S_{t}$. Calculation of the exact maximum value of $n A J\left(P S_{t}\right)$ in all Solutions of a given search Space can be computation expensive. On the other extreme, a very conservative approximation for the upper bound can be easily computed but will provide too little selectivity (i.e., to find and omit expensive $P S \mathrm{~s}$). Between these two extremes, $\left.n A J \operatorname{Max}\left(P S_{t}\right)\right|_{S_{k}}$ can be computed as follows. Let $P S_{t 1}$ be a $P S$ of Term_{t}, then:

$$
\begin{align*}
\left.n A J M a x\left(P S_{t 1}\right)\right|_{S_{k}}= & \left|P S_{t 1}\right|-1+ \\
& \left.\sum_{i=1}^{\left|P S_{t 1}\right|} s_{i}\right|_{\max , S_{k}} \times\left. n A J M a x_{o}\left(\operatorname{Term}_{i}\right)\right|_{S_{k}} \tag{3.55}\\
\left.n A J M a x_{o}\left(P S_{t 1}\right)\right|_{S_{k}}= & \left|P S_{t 1}\right|-1+ \\
& \left.\sum_{i=1}^{\left|P S_{t 1}\right|} n A J M a x_{o}\left(\text { Term }_{i}\right)\right|_{S_{k}} \tag{3.56}\\
\left.n A J M a x_{o}\left(\operatorname{Term}_{t}\right)\right|_{S_{k}}= & \left|\max _{i=1}^{P S S\left[\operatorname{Term}_{t}\right]}\right|_{S_{k}}\left|n A J M a x_{o}\left(P S_{t i}\right)\right|_{S_{k}} \tag{3.57}
\end{align*}
$$

where

$$
\left.s_{i}\right|_{\max , S_{k}}= \begin{cases}1 & \left.n U \operatorname{sedMin}\left[\text { Term }_{i}\right]\right|_{S_{k} /\left\{\text { Term }_{t}\right\}}=0 \tag{3.58}\\ 0 & \left.n U \operatorname{sedMin}\left[\text { Term }_{i}\right]\right|_{S_{k} /\left\{\text { Term }_{t}\right\}}>0\end{cases}
$$

where $\left.n U \operatorname{sedMin}\left[\operatorname{Term}_{i}\right]\right|_{S_{k} /\left\{\operatorname{Term}_{t}\right\}}=$ the number of $\operatorname{Term}_{f} \mathrm{~S}\left(\right.$ where $\left.\operatorname{Term}_{f} \neq \operatorname{Term}_{t}\right)$ that satisfy the following two conditions:

1. Term ${ }_{i}$ is an EChild of Term $_{f}$ in S_{k}.
2. Term $_{f}$ is an ETerm in S_{k}.

Note that the above definition of $\left.n A J M a x\left(P S_{t}\right)\right|_{S_{k}}$ will provide a value that is the same or greater than the exact maximum value of $n A J\left(P S_{t}\right)$ in all Solutions of S_{k}.

Definition 3.28. nAJMin(PS) $\left.n A J M i n\left(P S_{t}\right)\right|_{S_{k}}$ is a lower bound on the minimum value of $n A J\left(P S_{t}\right)$ in all Solutions of the search Space S_{k}. Formally, $\left.n \operatorname{AJMin}\left(P S_{t}\right)\right|_{S_{k}} \leq$ $\left.\min _{j=1}^{\left|S_{k}\right|} n A J\left(P S_{t}\right)\right|_{S_{\text {oln }}^{j}}$.
$n A J\left(P S_{t}\right)$ is minimized in a Solution when the Solution provides maximum sharing to the constituent Terms of $P S_{t} .\left.n A J M i n\left(P S_{t}\right)\right|_{S_{k}}$ can be computed as follows. Let $P S_{t 1}$ be a PS of Term $_{t}$, then:

$$
\begin{align*}
\left.n A J M i n\left(P S_{t 1}\right)\right|_{S_{k}}= & \left|P S_{t 1}\right|-1+ \\
& \left.\sum_{i=1}^{\left|P S_{t 1}\right|} s_{i}\right|_{\text {min }, S_{k}} \times\left. n A J M i n_{o}\left(\text { Term }_{i}\right)\right|_{S_{k}} \tag{3.59}\\
\left.n A J M i n_{o}\left(P S_{t 1}\right)\right|_{S_{k}}= & \left|P S_{t 1}\right|-1 \tag{3.60}\\
\left.n A J M i n_{o}\left(\operatorname{Term}_{t}\right)\right|_{S_{k}}= & \left|\min _{i=1}^{\mid P S S[\text { Term }]}\right|_{S_{k}}\left|n A J M i n_{o}\left(P S_{t i}\right)\right|_{S_{k}} \tag{3.61}
\end{align*}
$$

where

$$
\left.s_{i}\right|_{\min , S_{k}}=\left\{\begin{array}{rl}
1 & \left.n U \operatorname{sedMax}\left[\text { Term }_{i}\right]\right|_{S_{k} /\left\{\text { Term }_{t}\right\}}=0 \tag{3.62}\\
0 & \left.n U \operatorname{sedMax}\left[\text { Term }_{i}\right]\right|_{S_{k} /\left\{\text { Term }_{t}\right\}}>0
\end{array}\right.
$$

where $\left.n U \operatorname{sed} \operatorname{Max}\left[\operatorname{Term}_{i}\right]\right|_{S_{k} /\left\{\text { Term }_{t}\right\}}=$ the number of $\operatorname{Term}_{f} \mathrm{~S}\left(\right.$ where $\left.\operatorname{Term}_{f} \neq \operatorname{Term}_{t}\right)$ that satisfy the following two conditions:

1. $\left.\exists P S_{f} \in P S S\left[\operatorname{Term}_{f}\right]\right|_{S_{k}}: \operatorname{Term}_{i} \in P S_{f}$.
2. Term_{f} is usable in S_{k}.

Note that the above definition of $\left.n A J M i n\left(P S_{t}\right)\right|_{S_{k}}$ will provide a value that is the same or less than the exact minimum value of $n A J\left(P S_{t}\right)$ in all Solutions of S_{k}.

More restricted conditions, yet easier to check than those of Corollaries 3.5 and 3.6 are stated in the following corollaries:

Corollary 3.13. Let $P S_{1}$ and $P S_{2}$ be two PSs of Term ${ }_{t}$ in Space S_{k}. Then, if $n A J M i n\left(P S_{1}\right)>n A J M a x\left(P S_{2}\right)$, then any OptSoln will not use $P S_{1}$.

Corollary 3.14. Let $P S_{1}$ and $P S_{2}$ be two PSs of Term ${ }_{t}$ in Space S_{k}. Then, if $n A J M i n\left(P S_{1}\right) \geq n A J M a x\left(P S_{2}\right)$, then an OptSoln can be found that doesn't use $P S_{1}$.

Theorem 3.15. Rule V A Term that is used at most once in any Solution of a given search Space can be omitted from that search Space. Formally, if nU sedMax $\left.\left[\right.$ Term $\left.m_{c}\right]\right|_{S_{k}}=$ 1, then an OptSoln can be found without using Terme.

Proof. The proof is a special case of Rule II (Theorem 3.9). Informally, the idea behind the theorem is, if Term $_{t}$ is the only Term (remaining) in the search Space that may need a certain set of Terms in its implementation, then it saves nothing to join these Terms in one Term $\left(\operatorname{Term}_{c}\right)$ and use Term_{c} instead. It saves nothing because Term_{c} is not shared with any other Term.

Formally, let Term $_{t}$ be the only Term in S_{k} that may use Term_{c} (note that $\left.n U \operatorname{sedMax}\left[\operatorname{Term}_{c}\right]\right|_{S_{k}}=1$). Without loss of generality, define $P S_{t 1}$ to represent the form of any PS of Term_{t} that uses Term_{c}, as follows:

$$
\begin{equation*}
P S_{t 1}=P S^{\prime} \cup\left\{\text { Term }_{c}\right\} \tag{3.63}
\end{equation*}
$$

The theorem can be proved if it is proved that for each Soln_{1} where $\operatorname{Soln}_{1}\left[T e r m_{t}\right]=P S_{t 1}$, there exists another Soln $_{2}$ such that $\operatorname{Soln}_{2}\left[\right.$ Term $\left._{t}\right]=P S_{t 2}$ where Term $_{c} \notin P S_{t 2}$ and $\operatorname{Cost}\left(\operatorname{Soln}_{2}\right)=\operatorname{Cost}\left(\operatorname{Soln}_{1}\right)$. To prove the latter statement, it is sufficient to prove the following: For each Soln_{1} where $\operatorname{Soln}_{1}\left[\right.$ Term $\left._{t}\right]=P S_{t 1}$, there exists another Soln_{2} such that $\operatorname{Soln}_{2} /\left\{\right.$ Term $\left._{t}\right\}=\operatorname{Soln}_{1} /\left\{\right.$ Term $\left._{t}\right\}$, Soln $2\left[\right.$ Term $\left._{t}\right]=P S_{t 2}=P S^{\prime} \cup P S_{c i}$ (where $\left.\operatorname{Soln}_{1}\left[\operatorname{Term}_{c}\right]=P S_{c i}\right)$, and $\operatorname{Cost}\left(\operatorname{Soln}_{2}\right)=\operatorname{Cost}\left(\operatorname{Soln}_{1}\right)$. The proof hereafter will be concerned with the last statement. $P S_{t 1}$ and $P S_{t 2}$ are depicted in Fig. 3.6 (note that Term $_{c}$ is not useful in $S o l n_{2}$). From Def. 3.15 of $n A J$:

$$
\begin{align*}
& \left.n A J\left(P S_{t 1}\right)\right|_{\text {Soln }_{1}}=C+\left.s_{c}\right|_{\text {Soln }_{1} /\left\{\text { Term }_{t}\right\}} \times n A J_{o}\left(\text { Term }_{c}\right) \\
& \quad+\left.\quad \sum_{i=1}^{\mid \operatorname{Cone}\left(\text { Term }_{c}\right)-\operatorname{Cone}\left(P S^{\prime}\right) \mid} s_{i}\right|_{\text {Soln }_{1} /\left\{\text { Term }_{t}\right\}} \times n A J_{o}\left(\text { Term }_{i}\right) \tag{3.64}
\end{align*}
$$

Figure 3.6: Rule V.
where C reflects the contribution of $P S^{\prime}$ to $\left.n A J\left(P S_{t 1}\right)\right|_{S o l n_{n_{1}}}$ (or equivalently to, $\left.\left.n A J\left(P S_{t 2}\right)\right|_{\text {Soln2 }_{2}}\right)$, and is computed as in Eq. 3.40. From Lemma 3.7, definition of $n A J_{o}$ in Eq. 3.11 and Def. 3.13 of Cone, it follows:

$$
\begin{align*}
& \left.n A J\left(P S_{t 1}\right)\right|_{\text {Soln }_{1}}=C+\left.s_{c}\right|_{\text {Soln }_{1} /\left\{\text { Term }_{t}\right\}} \times\left(\left|P S_{c i}\right|-1\right) \\
& \quad+\left.s_{c}\right|_{S o l n_{1} /\left\{\text { Term }_{t}\right\}} \times \sum_{i=1}^{\left|{\operatorname{Cone}\left(P S_{c i}\right)-\operatorname{Cone}\left(P S^{\prime}\right) \mid} s_{i}\right|_{\text {Soln }_{1} /\left\{\text { Term }_{t}\right\}} \times n A J_{o}\left(\text { Term }_{i}\right)} \tag{3.65}\\
& \left.n A J\left(P S_{t 2}\right)\right|_{\text {Soln }_{2}}=C+\left(\left|P S_{c i}\right|-1\right) \\
& \quad+\left.\sum_{i=1}^{\left|\operatorname{Cone}\left(P S_{c i}\right)-\operatorname{Cone}\left(P S^{\prime}\right)\right|} s_{i}\right|_{\text {Soln }_{2} /\left\{\text { Term }_{t}\right\}} \times n A J_{o}\left(\text { Term }_{i}\right) \tag{3.66}
\end{align*}
$$

Since $\left.s_{c}\right|_{\text {Soln }_{1} /\left\{\text { Term }_{t}\right\}}=1$, therefore, $\left.n A J\left(P S_{t 2}\right)\right|_{\text {Soln }_{2}}=\left.n A J\left(P S_{t 1}\right)\right|_{\text {Soln }_{1}}$. That concludes the proof.

Definition 3.29. Rule V Transformation

Let $\left.n U \operatorname{sedMax}\left[\operatorname{Term}_{c}\right]\right|_{S_{k}}=1$ and Term_{t} be the only Term in S_{k} that may use Term ${ }_{c}$. Define $\left.\operatorname{OldPSS} \subset P S S\left[\operatorname{Term}_{t}\right]\right|_{S_{k}}$ to be the set of all $\operatorname{Term}_{t} P S$ s remaining in S_{k} that use Term. . Formally,

$$
\begin{equation*}
\operatorname{OldPSS}=\left\{P S_{t i}\left|P S_{t i} \in P S S\left[\operatorname{Term}_{t}\right]\right|_{S_{k}} \wedge \operatorname{Term}_{c} \in P S_{t i}\right\} \tag{3.67}
\end{equation*}
$$

Let $\left.P S S\left[\operatorname{Term}_{c}\right]\right|_{S_{k}}=\left\{P S_{c 1}, \ldots, P S_{c n}\right\}$. Then, the following transformation will be referred to as Rule V transformation: Replace each $P S_{t i} \in O l d P S S$ with n $P S \mathrm{~s}\left(P S_{t i 1}\right.$, $\ldots, P S_{t i n}$), where $P S_{t i j}$ is defined as follows: If

$$
P S_{t i}=P S^{\prime} \cup\left\{\text { Term }_{c}\right\}
$$

then,

$$
P S_{t i j}=P S^{\prime} \cup P S_{c j}
$$

The transformation has the potential of rendering many $P S_{t i j} \mathrm{~s}$ redundant (see Def. 3.20), and thus will be omitted from the search Space. This, in turn, updates the $n U$ sedMin and $n U$ sedMax structures of these PS constituent Terms. Hence, the transformation can result in affecting $n A J M$ in and $n A J M a x$ of other $P S$ s that are using these Terms allowing for more Space reduction using Corollary 3.14.

Algorithm 2 iteratively collects and updates the search Space metrics. It makes use of Corollaries 3.13 and 3.14 and Rule V (Theorem 3.15) and its transformation (Def. 3.29) to refine the search Space. It incorporates the following data structures:

- $n A J M i n_{o} /$ Max $\left._{o}\left[\right.$ Term $\left._{t}\right]\right|_{S_{k}}$: a vector that stores $n A J M i n_{o} /$ Max $_{o}$ of all Term $_{t}$ in search Space S_{k}, respectively.
- PSnAJMin/Max[Term $]\left.\left[P S_{t i}\right]\right|_{S_{k}}$ and PSnAJMino $/$ Max $\left._{o}\left[\right.$ Term $\left._{t}\right]\left[P S_{t i}\right]\right|_{S_{k}}: \quad$ two two dimensional structures that store nAJMin/Max and nAJMin $/ M a x_{o}$ of all $P S_{t i}$ of all Term_{t} in search Space S_{k}, respectively.
- $\left.U T\right|_{S_{k}}$: a set of Terms whose (or whose PS) $n \operatorname{AJMin}_{(o)} / \operatorname{Max}_{(o)}$ need to be updated. The Terms are ordered within the set by their cardinalities starting from the largest to the smallest. $U T$ is initialized with (Target $S \cup P T e r m S-S o u r c e S)$.
- UPSMin/Max[Term$t]\left.\right|_{S_{k}}$: a set of PS s of Term_{t} whose $n A J M i n(o) / \operatorname{Max}_{(o)}$ need to be updated, respectively. They are initialized with $\left.\operatorname{PSS}\left[\right.$ Term $\left._{t}\right]\right|_{S_{k}}$.
- $\left.P S R\right|_{S_{k}}$: a set of $P S \mathrm{~s}$ that are scheduled to be removed from the search $S p a c e, S_{k}$.

At this point, the current search Space consists of all the remaining possible $P S$ choices of $($ Target $S \cup P \operatorname{Term} S)$. The suffix $\left.\right|_{S_{k}}$ will be omitted in Algorithm 2, since it is implied that all data structures and functions are calculated for the current search Space.

Algorithm 2 starts with $U T$ initialized with (Target $S \cup P T e r m S-S o u r c e S)$. Line 2 picks the smallest Term in $U T, \operatorname{Term}_{t}$. Lines 4 to 7 check whether Term_{t} is used only once in the search Space and, if this is the case, apply Rule V transformation. The procedure in Line 5 also updates $U T$ and $U P S M i n / M a x$ with the Terms and $P S \mathrm{~s}$ (respectively) whose $n A J$ need to be updated in a next iteration due to the transformation. Lines 8 and 9 store the old values of Term $_{t} n A J M a x_{o}, n A J M i n o$, and EChildren before doing any update. Lines 10 through 13 (Lines 14 through 17) update $n A J M i n(o) n_{(o)}\left(\operatorname{nJMax}_{(o)}\right)$ of the PSs of Term $_{t}$ specified in $U P S M i n\left[\right.$ Term $\left._{t}\right]\left(U P S M a x\left[\right.\right.$ Term $\left.\left._{t}\right]\right)$, respectively. Lines 18

```
Algorithm 2 Collect Space Metrics and Remove Higher \(n A J\) Partial Solutions
    while \(|U T| \geq 1\) do
        Get and remove the last element in \(U T\), Term \(_{t}\)
        if \(n U\) sedMax \(\left[\right.\) Term \(\left._{t}\right] \geq 1\) then // Term \(_{t}\) is usable
            if \(n U \operatorname{sedMax}\left[\right.\) Term \(\left._{t}\right]=1\) then
                Apply Rule V transformation
                continue
            end if
            OldnAJMin \(/\) Max \(_{o}=n A J M i n_{o} /\) Max \(_{o}\left[\right.\) Term \(\left._{t}\right]\)
            OEChildren \(=\) EChildren \(\left[\right.\) Term \(\left._{t}\right]\)
            for each \(P S_{t i}\) in UPSMin \(\left[\right.\) Term \(\left._{t}\right]\) do
                Update PSnAJMin \(\left[\right.\) Term \(\left._{t}\right]\left[P S_{t i}\right]\) and \(\operatorname{PSnAJMin} n_{o}\left[\right.\) Term \(\left._{t}\right]\left[P S_{t i}\right]\)
            Remove \(P S_{t i}\) from UPSMin \(\left[\right.\) Term \(\left._{t}\right]\)
            end for
            for each \(P S_{t i}\) in UPSMax \(\left[\right.\) Term \(\left._{t}\right]\) do
                    Update PSnAJMax[Term \(\left.{ }_{t}\right]\left[P S_{t i}\right]\) and PSnAJMax \({ }_{o}\left[\right.\) Term \(\left._{t}\right]\left[P S_{t i}\right]\)
                    Remove \(P S_{t i}\) from UPSMax[Term \({ }_{t}\) ]
            end for
            for all \(P S_{t i}\) and \(P S_{t j}\) of \(T e r m_{t}\) do
                    if \(P S n A J M i n\left[\right.\) Term \(\left._{t}\right]\left[P S_{t i}\right] \geq P S n A J M a x\left[\right.\) Term \(\left._{t}\right]\left[P S_{t j}\right]\) then
                PSR.insert \(\left(P S_{t i}\right)\)
            end if
            end for
            if \(|P S R| \geq 1\) then // Some PSs are to be removed
            Remove \(P S\) s And Update \(n U\) sedMax
            if \(n U \operatorname{sedMin}\left[\right.\) Term \(\left._{t}\right] \geq 1\) then // ETerm
                NEChildren \(=\) EChildren \(\left[\right.\) Term \(\left._{t}\right]-\) OEChildren
                Update \(n U\) sedMin Because Of NEChildren
            end if
            end if
            Calculate and store NewnAJMin \(/\) Max \(_{o}\) of Term \(_{t}\)
            Compare them with OldnAJMino/Maxo respectively
            if NewnAJMax \(\neq\) OldnAJMaxo then
            Determine which PSs (of other Terms) whose nAJMax need to be updated.
            Update \(U T\) and \(U P S M a x\) accordingly
            end if
            if NewnAJMin \({ }_{o} \neq\) OldnAJMin \(_{o}\) then
                    Determine which \(P S \mathrm{~s}\) (of other Terms) whose nAJMin need to be updated.
                    Update \(U T\) and \(U P S M\) in accordingly
            end if
        end if
    end while
    return
```

through 22 apply Corollary 3.14 to prune out expensive $P S$ s. $P S$ s to be removed are stored in PSR. The procedure of Line 24 propagates the effect of removing a $P S, P S_{t}$, of $T_{e r m}^{t}$ to $n U$ sedMax of some (or all) of $P S_{t}$ constituent Terms (and possibly their corresponding constituent Terms as well - see Def. 3.23 of $n U$ sedMax). This in turn can affect $n A J M i n n_{(o)}$ of other PSs that use these Terms. The affected Terms and PSs are added to $U T$, and UPSMin, respectively, so that they are updated in a following iteration of the algorithm. Removing PSs from Term ${ }_{t}$ may not only affect $n U$ sedMax of the constituting Terms, but also may add to EChildren $\left[\right.$ Term $\left._{t}\right]$. If Term ${ }_{t}$ is an ETerm, and it gained new EChildren in this iteration, then its new EChildren will also become ETerms. This is handled in Lines 25 through 28 of Algorithm 2. The procedure of Line 27 propagates the effect of essentiality to the $n U$ sedMin of the new EChildren of Term $_{t}$ (and of their corresponding EChildren as well - see Def. 3.26 of $n U$ sedMin). This, in turn, can affect $n A J M a x_{(o)}$ of other $P S \mathrm{~s}$ that use these Terms. Again, the affected Terms and $P S \mathrm{~s}$ are added to $U T$, and UPSMax, respectively, so that they are updated in a future iteration. The final part of Algorithm 2 (i.e., Lines 30 through 39) checks if any change has occurred to the values of $n A J M a x_{o}$ and $n A J M i n_{o}$ of Term ${ }_{t}$. If so, it determines which Terms and PSs (that use Term_{t}) are affected by these changes. UT, UPSMax and UPSMin are updated accordingly. Algorithm 2 will continue to iterate until $U T$ is empty (i.e., no more Terms need to be updated).

3.2.5 Step IV: Divide, Refine the Search Space and Find an Optimum Solution

In case there are more than one Solution still left in the search Space, this step aims at finding an OptSoln from the set of remaining Solutions. It does so through iterative division and refining of the search Space. Choosing a certain PS for a Term (and omitting the other $P S$ s from the search Space) does affect $n U s e d M a x$ and $n U$ sedMin of the constituent Terms. This, in turn, can affect $n A J M a x_{(o)}$ and $\operatorname{nAJMin}_{(o)}$ of other $P S \mathrm{~s}$ that use these Terms, allowing for possible expensive $P S$ elimination (through Corollary 3.14). Hence, instead of exploring all Solutions in the current search Space, Step IV divides the search Space into mutually exclusive sub-Spaces (based on mutually exclusive $P S$ choices for what is referred to as Selection Terms). Each sub-Space is then refined and possibly recursively divided until only one Solution is left in that sub-Space. The Cost of each remaining Solution in each sub-Space is computed, compared and an OptSoln is returned. Space division and pruning substantially reduces the total amount of Solutions explored.

Algorithm 3 is used to implement Step IV. It makes use of the following data structures for each search Space (besides $\left.n U \operatorname{sedMax}\left[\operatorname{Term}_{t}\right]\right|_{S_{k}}$, $\left.n U \operatorname{sedMin}\left[\right.$ Term $\left._{t}\right]\right|_{S_{k}},\left.\quad \operatorname{PSS}\left[\right.$ Term $\left._{t}\right]\right|_{S_{k}}, \quad n A J M i n_{o} /$ Max $\left._{o}\left[\right.$ Term $\left._{t}\right]\right|_{S_{k}}, \quad$ and $\left.\operatorname{PSnAJMin}_{(o)} /\left.\operatorname{Max}_{(o)}\left[\operatorname{Term}_{t}\right]\left[P S_{t i}\right]\right|_{S_{k}}\right)$.

- STermS $\left.\right|_{S_{k}}:$ a vector of Selection Terms. These are the essentialTerms (see Def. 3.24 of ETermS) of S_{k}. They are also the Terms on whose $P S$ choices a Space division may occur. STermS of the whole search Space $\left(S_{o}\right)$ is initialized with Target S.
- S Term $\left.\right|_{S_{k}}$: the current $S T$ erm on whose $P S$ choices S_{k} may be divided into subSpaces.
- $\left.S T P\right|_{S_{k}}$: the index of $S T e r m_{c}$ in $S T e r m S$.
- PSSelect $\left.\right|_{S_{k}}$: a vector that keeps track of each decision (i.e., $P S$ choice) made for each $S T e r m$ in S_{k}.
Algorithm 3 is initially called with the whole search Space as an input Space $\left(S_{k}\right)$. STermS $\left.\right|_{S_{k}}$ is initialized with TargetS. By definition, any Solution in S_{k} must construct all $\left.S T e r m S\right|_{S_{k}}$. Starting with the $S T e r m_{c}$ pointed to by $S T P$ (initially 1), the algorithm checks whether a Space division is required or not. In case $S T e r m_{c}$ has only one $P S$, call it SPS (Lines 6-10), SPS is chosen for $S T e r m_{c}$ and that choice (also referred to as a decision or selection) is stored in PSSelect of S_{k} (Line 8). Furthermore, since each STerm is an ETerm, and by Def. 3.24 of ETermS, therefore, all the Terms in SPS are also ETerms in S_{k}. Thus, they are all appended to $S T e r m S$ of S_{k} (if they were not already there) so that the algorithm decides for their $P S$ choices at a later point (Line 9). Also, in that case there is no need for a Space division. The algorithm increments $S T P$ of S_{k} to move to the next $S \operatorname{Term}_{c}$ (Line 10). On the other hand, if $S T e r m_{c}$ has $n P S \mathrm{~s}$ in S_{k}, with $n>1$ (Lines 4 -5), then the current Space S_{k} will be divided into n child sub-Spaces (Lines 20-26). Each sub-Space, S_{j}, will initially copy all the S_{k} metric structures (including PSSelect and STermS - Line 21). Then, each sub-Space, S_{j}, will have a mutually exclusive $P S$ choice of $\mathrm{Term}_{c}, P S_{c j}$. The $P S$ choice of each sub-Space is stored in its corresponding PSSelect (Line 22). Since each sub-Space now only sees one $P S$ for Term $_{c}$, therefore, each Term in that PS is an ETerm of the corresponding sub-Space. These new ETerms are now appended to $S T e r m S$ (Line 23) so that the algorithm decides for their $P S$ choices at a later point. As mentioned at the beginning of this section, such $P S$ selections affect the Space metrics and typically lead to further search Space reduction in each sub-Space

```
Algorithm 3 Find the optimum Solution in this Space (Space \(S_{k}\) )
    STP_is_updated \(=0\)
    while (!STP_is_updated) do
        \(\left.S \operatorname{Serm}_{c}\right|_{S_{k}}=S \operatorname{TermS}\left[\left.\left.S T P\right|_{S_{k}}\right|_{S_{k}}\right.\)
        if \(\left(\left|\operatorname{PSS}\left[S T e r m_{c}\right]\right|_{S_{k}} \mid>1\right)\) then // A Space division is required
        STP_is_updated \(=1\)
        else if \(\left(\left|\operatorname{PSS}\left[S T \operatorname{Term} m_{c}\right]\right|_{S_{k}} \mid==1\right)\) then // No Space division is required
            Let \(S P S\) be the only \(P S\) of \(S T e r m_{c}\) in \(S_{k}\)
        PSSelect \(\left.\left[S T\right.\) Term \(\left.m_{c}\right]\right|_{S_{k}}=S P S\)
        Append each \(\operatorname{Term}_{i} \in S P S\) ( and \(\left.\notin S T e r m S\right|_{S_{k}}\) ) to STerm \(\left.S\right|_{S_{k}}\)
        \(\left.S T P\right|_{S_{k}}++\)
        else if \(\left(\left|\operatorname{PSS}\left[S T e r m_{c}\right]\right|_{S_{k}} \mid==0\right)\) then // No Space division is required
        \(\left.S T P\right|_{S_{k}}++\)
        end if
        if STP \(\left.\right|_{S_{k}}>|S T e r m S|_{S_{k}} \mid\) then // All STermS have been decided for
        Calculate the Cost of this Soln (i.e., PSSelect \(\left.\right|_{S_{k}}\) ) and compare with OptCost
        Update OptSoln if necessary
        return
        end if
    end while
    for each \(P S_{c j}\) in PSS[STerm \(\left.m_{c}\right]\left.\right|_{S_{k}}\) do // Divide \(S_{k}\) into sub-Spaces
        Create a new Space ( \(S_{j}=S_{k}\) )
        PSSelect \(\left.\left[\right.\) STerm \(\left.m_{c}\right]\right|_{S_{j}}=P S_{c j}\)
        Append each Termi \(\in P S_{c j}\) (and \(\left.\notin S T e r m S\right|_{S_{j}}\) ) to \(\left.S T e r m S\right|_{S_{j}}\)
        Refine this search Space based on this selection \(\left(S_{j},\left.S T P\right|_{S_{j}}\right)\)
        Find the optimum Solution in this Space \(\left(S_{j}\right)\)
    end for
    return
```

(Line 24). The procedure of Line 24 is very similar to the one in Algorithm 2, except that $U T$ is initialized with only one Term, namely, $S T e r m_{c}$. After refining the sub-Space, S_{j}, Algorithm 3 is called iteratively to continue the divide and prune process. Iterations continue until a sub-Space is created that has only one Solution left (Lines 14-18). A search Space, S_{j}, is reduced to one Solution if all its $S T e r m S$ have been decided for, or formally, when the following holds: $\forall S T e r m_{i} \in\left(\left.S T e r m S\right|_{S_{j}}-\right.$ SourceS $):\left|\operatorname{PSS}\left[S T \operatorname{Term} m_{i}\right]\right|_{S_{j}} \mid=1$. Once there is only one Solution left, its Cost is calculated and compared to OptCost. The procedure repeats for all sub-Spaces and the algorithm returns an OptSoln.

In the worst case, Steps III and IV (i.e., Algorithms 2 and 3, respectively) will need to visit every possible Solution left in the search Space (from Step II) before returning an OptSoln, a number which is exponential ($\leq \prod_{i=1}^{|P T e r m S \cup T a r g e t S|} \mid P S S\left[\right.$ Term $\left.\left._{i}\right] \mid\right)$. Nonetheless, the number of visited Solutions, in practice, is much smaller due to the Space reduction techniques employed in these steps. Table 3.3 shows the reduction in the search Space after running Steps III and IV for sample problems.

3.2.6 OptSoln Check

Let the minimum Cost Solution returned by Step IV be denoted as $O p t S o l n^{i}$, where i is the index of the method used to construct the potential Terms (also referred to as PTerm S^{i}) in Step I (Sec. 3.2.2). The algorithm is proven to return the minimum Cost Solution (O ptSoln ${ }^{i}$) among those Solutions that can only use terms from PTermS ${ }^{i}$. In the case when the potential Terms are constructed using Method I, it is proven (Theorem 3.3) that \exists OptSoln $_{i} \in$ OptSolnS : PTerm ${ }^{1} \supseteq$ UsefulTermS $\left(\right.$ OptSoln $\left.n_{i}\right)$. Hence, passing PTerm S^{1} (computed by Method I) to the algorithm, is proven to result in, indeed, an optimum Solution to the given problem.

Method IV, on the other hand, provides a substantially smaller number of potential Terms than Method I which enhances the algorithm runtime. However, as shown below, in some problems there may not be an $\operatorname{OptSoln}_{i} \in \operatorname{OptSolnS}$ such that $P T e r m S^{4} \supseteq$ UsefulTermS $\left(O_{p t S o l n}^{i}\right)$. Hence, in such a case, the minimum Cost Solution returned by the algorithm (i.e., $O p t S o l{ }^{4}$) may have higher Cost than the optimum Solution. This can happen when an optimum Solution requires a Term that is not in the given potential Terms.

Therefore, the following two criteria were developed to help check whether the OptSoln ${ }^{i}$ returned by the algorithm (when given PTermS ${ }^{i}, i \neq 1$) is indeed an optimum Solution for
a given problem. The criteria help define if a Term is missing from the given PTermS ${ }^{i}$, and what the missing Term is. The checks are not required when the potential Terms are constructed using Method I. Furthermore, there is no proof that these checks are complete (although found very useful in practice as illustrated below and in Sec. 3.3 the Results). Failing Check I (introduced below) is a sufficient condition to show that the returned $O p t S o l n^{i}$ is not an optimum Solution for the problem, and that indeed one or more terms are missing from the corresponding PTermS ${ }^{i}$. On the other hand, failing Check II does not necessarily mean that the returned $O p t S o l{ }^{i}$ is not an optimum Solution for the problem.

Algorithm 4 shows a pseudo-code for the whole CNG algorithm (including using the checks). The checks are used to iterate over the algorithm with added terms to PTermS ${ }^{i}$ in each iteration. Iterations stop when an $O p t S o l n^{i}$ is found that passes both checks.

3.2.6.1 Check I: Sharing Check

If more than one Term (call them constituting Terms) appear together implementing more than one useful Term in OptSoln ${ }^{i}$, then, this is a sufficient condition that a Term PTerm m_{m} is missing from PTerm i. PTerm m_{m} is the union of these constituent Terms. It is

```
Algorithm 4 CNG (INodeS, TargetS, PTermConstructionMethod)
    Step I: Construct the Potential Terms using Method PTermConstructionMethod
    done \(=0\)
    while (done \(=0\) ) do
        Step II: Construct the Partial Solutions
        Step III: Collect Space Metrics and Remove Higher nAJ Partial Solutions
        Step IV: Divide, Refine the Search Space and Find an Optimum Solution
        if (PTermConstructionMethod \(=\) Method I) then
            done \(=1\)
        else
            \(C_{1}=\) Check I \(\left(O p t S o l n^{i}\right) / /\) PASS/FAIL, also possibly updates NewPTermS
            \(C_{2}=\) Check II \(\left(O p t S o l n^{i}\right) / /\) PASS/FAIL, also possibly updates NewPTermS
            if \(\left(C_{1} \wedge C_{2}\right)\) then // OptSoln \({ }^{i}\) passes both checks
                done \(=1\)
            else
                // The checks found possibly missing PTerms (i.e., \(\mid\) NewPTermS \(\mid>0\) )
                PTermS \({ }^{i}=\) PTermS \(S^{i} \cup\) NewPTermS
            end if
        end if
    end while
    return
```

easy to show that another Solution that would be the same as $O p t S o l n^{i}$ except that it uses PTerm m_{m} instead of joining its constituent Terms each time they are needed would have a lower Cost. The following theorem formalizes the argument:

Theorem 3.16. Check I Let Term Therm $\left._{k} \in \operatorname{UsefulTerms(OptSoln}{ }^{i}\right)$ Let OptSoln ${ }^{i}\left[\right.$ Term $\left._{j}\right] \cap$ OptSoln $^{i}\left[\right.$ Term $\left._{k}\right]=S$. Being a set of Terms, possibly empty, let $S=\left\{\right.$ Term $_{s 1}$, Term $\left._{s 2}, \ldots\right\}$. If $|S|>1$ then Check I fails. Define PTerm ${ }_{m}=\bigcup_{l=1}^{|S|}$ Term $_{s l}$. Also, define: PTerm $S^{i^{\prime}}=P T e r m S^{i} \cup\{$ PTerm m. The following holds:

1. OptSoln ${ }^{i}$ is not an optimum Solution for the problem.
2. Passing PTerm $S^{i^{\prime}}$ to the algorithm instead of PTermS ${ }^{i}$ will produce OptSoln ${ }^{i^{\prime}}$ (instead of OptSoln $\left.{ }^{i}\right)$ such that: $\operatorname{Cost}\left(O p t S o l n^{i}\right)<\operatorname{Cost}\left(O p t S o l n{ }^{i}\right)$.

Proof. The description of $O p t S o l n^{i}$ provided in the theorem text implies that PTerm $_{m} \notin$ PTerm S^{i}. Since, if $P T e r m_{m}$ was indeed in PTerm S^{i}, then, according to Rule II, the algorithm would have used it to construct (at least) Term $_{j}$ and Term $_{k}$ instead of using its constituent Terms (i.e., $\left\{\right.$ Term $_{s 1}$, Term $\left.\left._{s 2}, \ldots\right\}\right)^{4}$.

Let $O p t S o l n^{i}\left[\right.$ Term $\left._{j}\right]=P S_{j}^{\prime} \cup S$ and $O p t S o l n^{i}\left[\right.$ Term $\left._{k}\right]=P S_{k}^{\prime} \cup S$. Define Solution Soln ${\text { Such that: } \operatorname{Soln}_{1} /\left\{\text { Term }_{j}, \text { Term }_{k}, \text { PTerm }_{m}\right\}=}=$ OptSoln $^{i} /\left\{\right.$ Term $_{j}$, Term $_{k}$, PTerm $\left._{m}\right\}, \quad \operatorname{Soln}_{1}\left[\right.$ Term $\left._{j}\right]=P S_{j}^{\prime} \cup\left\{\right.$ PTerm $\left._{m}\right\}$, $\operatorname{Soln}_{1}\left[\right.$ Term $\left._{k}\right]=P S_{k}^{\prime} \cup\left\{\right.$ PTerm $\left._{m}\right\}$, and $\operatorname{Soln}_{1}\left[\right.$ PTerm $\left._{m}\right]=S$. Note that OptSoln ${ }^{i}\left[\right.$ PTerm $\left._{m}\right]$ does not matter since PTerm $_{m}$ is not useful in OptSoln ${ }^{i}$. It is easy to show that $\operatorname{Cost}\left(\operatorname{OptSoln}^{i}\right)-\operatorname{Cost}\left(\operatorname{Soln}_{1}\right)=|S|-1$. That concludes the first half of the proof.

On the other hand, if PTerm $S^{i^{\prime}}$ is passed to the algorithm instead of $P T$ erm S^{i}, then applying Rule II will result in a Solution with the same Cost of Soln ${ }_{1}$ mentioned above or less. That concludes the second half of the proof.

Following is an example where Method IV fails to provide an optimum Solution for the problem (i.e., Cost $\left(\right.$ OptSoln $\left.\left.{ }^{4}\right)>O p t C o s t\right)$. OptSoln ${ }^{4}$ fails Check I. Nonetheless, the correction in the second iteration of Algorithm 4 results in an optimum Solution.

Example 3.30. Find an optimum control network implementation for the following register-to-register data communications: $I N o d e S=\{A, B, C, D, E, F, G, H, I, J, L, M\}$,

[^6]ONode $S=\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$, Target of X_{1} (or for short, $\left.X_{1}\right)=\{C, D, I, J, L, M\}, X_{2}=$ $\{A, B, C, D, L, M\}, X_{3}=\{A, B, C, D, E, F\}$, and $X_{4}=\{C, D, E, F, G, H\}$.

The OptCost for this problem is 12. First and second iterations of CNG running this problem using Method IV are depicted in Fig. 3.7. Method IV first iteration returns a Solution, OptSoln ${ }^{4}$, with Cost $=13$. The Solution returned fails Check I, since \mid OptSoln ${ }^{4}[A B C D L M] \cap O p t S o l n 4[A B C D E F]|=|\{A, B\}|=2>1$. According to Theorem 3.16, OptSoln ${ }^{4}$ is not an optimum Solution for the problem, and Term $A B$ is missing from PTerm S^{4}. In the second iteration, Term $A B$ is added to $P T e r m S^{4}$ and the Cost returned is, indeed, the OptCost (i.e., 12).

3.2.6.2 Check II: Redundancy Check

If only a subset of a Term is useful in a PS of $O p t S o l n^{i}$, then, this may indicate that this useful subset of the Term is missing in PTermS ${ }^{i}$. It may also indicate that replacing the Term with its useful sub-Term in that PS results in a better Solution.

Formally, let Term $_{t} \in U$ sefulTermS $\left(\right.$ OptSoln $\left.^{i}\right)$ and $\operatorname{OptSoln}{ }^{i}\left[\right.$ Term $\left._{t}\right]=P S_{t}$. Let also Term $_{i} \in P S_{t}$. Define $P T e r m_{m}=\operatorname{AddedCoverage~}\left(\right.$ Term $\left._{i}, P S_{t}\right)$ (see Def. 3.19 of ACov). Then, if PTerm $_{m} \subset$ Term $_{i}$ and PTerm $_{m} \notin$ PTerm S^{i}, then, Check II fails.

(a) First iteration $O p t S o l n^{4}$.

$$
\text { Cost }=13 .
$$

(b) Second iteration OptSoln ${ }^{4}$.

$$
\text { Cost }=12 .
$$

Figure 3.7: First and second iterations for Example 3.30 using Method IV.

Define PTerm $S^{i^{\prime}}=P$ Term $S^{i} \cup\left\{\right.$ PTerm $\left.m_{m}\right\}$. The following holds:

1. OptSoln ${ }^{i}$ may not be an optimum Solution for the problem.
2. Passing PTerm $S^{i^{\prime}}$ to the algorithm instead of P Term S^{i} may produce $O p t S o l n^{i^{\prime}}$ (instead of $\left.O p t S o l n^{i}\right)$ such that: $\operatorname{Cost}\left(O p t S o l n^{i} i^{\prime}\right)<\operatorname{Cost}\left(O p t S o l n^{i}\right)$.
Note that failing Check II does not necessarily imply that OptSoln i is not indeed optimum. In fact, Example 3.32 introduced in Sec. 3.3.4 shows that in some cases it reduces the Cost if Term_{i} (rather than its subset, P Term m_{m}) is used in $P S_{t}$ even if Term_{i} is overlapping with other terms in $P S_{t}$ (while $P T e r m_{m}$ is not). This can happen, for example, if Term $_{i}$ is needed for other Terms in OptSoln ${ }^{i}$ and thus can be shared while PTerm $_{m}$ is not.

Following is an example where Method IV fails to provide an optimum Solution for
 correction in the second iteration of Algorithm 4 results in an optimum Solution.

Example 3.31. Find an optimum control network implementation for the following register-to-register data communications: INode $S=\{A, B, C, D, E, F, G, H\}$, ONode $S=\left\{X_{1}, X_{2}, X_{3}\right\}, X_{1}=\{A, B, C, D, E, F\}, X_{2}=\{C, D, E, F, G, H\}$, and $X_{3}=$ $\{A, B, E, F, G, H\}$.

The OptCost for this problem is 9 . Minimum Cost Solutions returned by the first and second iterations of CNG using Method IV are depicted in Fig. 3.8. Method IV first iteration returns a Solution, $O p t S o l n^{4}$, with Cost $=10$. The Solution returned fails Check II, since, for example, $A \operatorname{Cov}\left(A B E F, P S_{X_{1}}\right)=A B \subset A B E F$ and $A B \notin P T e r m S^{4}$, where $P S_{X_{1}}=$ OptSoln ${ }^{4}\left[X_{1}\right]$. This suggests that OptSoln ${ }^{4}$ may not be an optimum Solution for the problem. In that example, this is indeed the case. In the second iteration, Term $A B$ is added to PTermS ${ }^{4}$ and the Cost returned is the OptCost (i.e., 9).

3.3 Results

3.3.1 CNG Tool

The algorithm has been coded in C++ within a tool called CNG. Multi-core parallel programming using OpenMP [56] has been employed whenever possible. A pseudo-code for the main CNG steps is listed in Algorithm 4. CNG accepts an input file with the required register-to-register communications. It returns an $O p t S o l n$ and the $O p t C o s t$. Another tool, PreCNG, was developed to take an ISCAS benchmark in verilog and automatically finds

(a) First iteration $O p t S o l n^{4}$.

$$
\text { Cost }=10 \text {. }
$$

(b) Second iteration $O p t S o l n^{4}$. Cost $=9$.

Figure 3.8: First and second iterations for Example 3.31 using Method IV.
the register-to-register communications. These communications are then expressed in eqn and verilog formats as well as another format that CNG accepts.

3.3.2 Case Study: The MiniMIPS

MIPS (Microprocessor without Interlocked Pipeline Stages) is a 32 -bit architecture, first designed by Hennessy [46]. MiniMIPS is an 8-bit subset of MIPS. It is fully described in [1]. A block diagram of the original clocked MiniMIPS is shown in Fig. 2.5. Its synchronous elasticization is described in Sec. 2.2.

The required register-to-register communication in the MiniMIPS are passed to CNG. CNG generates the elastic control network shown in Fig. 3.9.

Generating a control network for the MiniMIPS using the direct approach of [9] would result in a network with $25 J_{2}$ and $25 F_{2} \mathrm{~s}$. A hand optimized version of its control network is shown in Fig. 2.6. The hand optimized version utilizes $14 J_{2}$ s and $14 F_{2}$ s. Comparing to the hand optimized version and to the direct approach of [9], CNG generates a network

Figure 3.9: CNG-optimized control network of the elastic clocked MiniMIPS.
with only $12 J_{2} \mathrm{~S}$ and $12 F_{2} \mathrm{~s}$, for 14.3% and 52% reductions, respectively.

3.3.3 Different PTermS Construction Methods

Table 3.2 shows PTermS size for some ISCAS benchmarks and other problems. For all the listed examples Method IV kept PTermS size below 100. Reduction of PTermS size from Method I to Method IV substantially reduces the algorithm runtime.

Table 3.3 shows the reduction in the search Space size after applying each CNG step for different PTermS construction methods. Step IV (Sec. 3.2.5) does iteratively divide and refine the search Space until each sub-Space contains only one Soln. The Cost of each remaining Soln of each sub-Space are then computed and compared to return OptSoln ${ }^{i}$. The last column (titled "After Step IV") lists the total number of these remaining Solns (i.e., the Solns whose Costs are computed and compared). In all the examples of Table 3.3, Method IV returns $O p t S o l n^{4}$ after Step III.

3.3.4 CNG vs. Other Synthesis Tools/Flows

Following is a brief description of other approaches that may be used to construct the control network of elastic circuits (besides CNG). For the following approaches, PreCNG is used to take an ISCAS benchmark and automatically formulate the register-to-register

Table 3.2: $\left|P T e r m S^{i}\right|$ of different P TermS Construction Methods.

Problem	\mid Source \mid	\mid TargetS 2	\mid PTermS $^{1} \mid$	\mid PTerm $^{2} \mid$	PTerm $^{3} \mid$	\mid PTerm $^{4} \mid$
Example 3.2	7	5	31	31	20	14
MiniMIPS	12	12	46	22	21	17
s27	7	4	64	10	10	9
s298	17	20	162	88	41	33
s344	24	26	8,223	2,064	1,106	38
s349	24	26	8,223	2,064	1,106	38
s382	24	27	16,583	193	67	37
s386	13	13	4,096	71	32	21
s400	24	27	16,583	193	67	37
s420	34	17	131,088	65,554	155	50
s444	24	27	16,583	193	67	37
s510	25	13	1,420	46	37	30
s526	24	27	16,488	4,156	132	45
s641	54	43	$3,014,686$	23,593	493	85
s713	54	42	$3,014,686$	23,593	493	85
s820	23	24	$1,105,919$	9,483	330	46
s832	23	23	$1,105,919$	9,483	330	46
s1488	14	25	16,383	517	79	32

Table 3.3: Search Space reduction (in terms of number of Solns) for different methods.

Problem	M	Total (with Rule I applied)	After Step I	After Step II	After Step III	After Step IV
Example 2	M1	3.04×10^{49}	1.44×10^{20}	3.01×10^{8}	42	2
	M2		1.10×10^{20}	3.01×10^{8}	42	2
	M3		1.56×10^{11}	6,912	12	2
	M4		9.12×10^{5}	8	1	1
MiniMIPS	M1	7.05×10^{97}	1.28×10^{34}	1.13×10^{14}	234	2
	M2		6.33×10^{8}	72	6	2
	M3		1.06×10^{8}	24	4	2
	M4		3.07×10^{4}	4	1	1
s27	M1	7.94×10^{78}	2.72×10^{77}	1.64×10^{33}	1	1
	M2		1, 000	1	1	1
	M3		1,000	1	1	1
	M4		108	1	1	1
s298	M1	double overflow $>1.7 \times 10^{308}$	3.04×10^{257}	7.38×10^{111}	1	1
	M2		1.43×10^{109}	2.48×10^{42}	1	1
	M3		1.31×10^{37}	5.57×10^{8}	1	1
	M4		1.63×10^{22}	2.88×10^{3}	1	1

communication requirements in forms accepted by these approaches (e.g., eqn and verilog formats).

3.3.4.1 Basic Flow

A direct flow is provided in $[9,3]$. In that approach, for each register that is receiving data communications from multiple registers, one multi-input join is connected to this register controller input. Similarly, for each register that is sending data communications to multiple registers, one multi-output fork is connected to this register controller output. This approach, however, could be inefficient in terms of the total number of joins and forks used, increasing the elastic control network area and power overheads.

3.3.4.2 Berkeley ABC

ABC [54] is a synthesis tool from Berkeley. The control network problem may be formulated as an equation, with the join components replaced by logical ANDs. In that sense, every Target is an output of a logical AND of all the INodes going to that Target.
 The following script (courtesy of Alan Mishchenko, one of ABC authors) is used to minimize the number of 2-input AND gates (which would correspond to minimizing 2-input join components) in a given control network:
read_eqn connection.eqn; st; ps
clp; fx; resyn2; ps; write_eqn out.eqn
connection.eqn is the file containing the required register-to-register communications (in standard eqn format).

Note that, from Theorem 3.2, minimizing the number of 2-input join components in a control network will equivalently minimize the total number of 2 -input join and 2-output fork components in that network.

3.3.4.3 Synopsys ${ }^{\circledR}$ Design Compiler ${ }^{\circledR}$

Design Compiler ${ }^{\circledR}$ (DC) is a synthesis tool from Synopsys ${ }^{\circledR}$. Similar to the control network problem formulation with ABC , the required connections can be passed to DC as a verilog input file. To minimize the total number of 2-input AND gates (corresponding to 2-input join components) a cell library composed of only one cell, a 2-input AND gate, is passed to the tool. DC Ultra ${ }^{\text {TM }}$ is asked to minimize the control network area through the following commands:
set_max_area 0
compile_ultra -area_high_effort_script
Table 3.4 compares the results of the different approaches over several ISCAS-89 benchmarks and other problems. For each approach column, it shows the Cost (i.e., the total number of J_{2} s required to implement the control network) and the Worse $\%$ with respect to CNG. In all complete benchmark runs in this chapter, DC and ABC produce a network with the same or more number of join (and fork) components than CNG. In s614, for example, ABC produces a network with 11.3% more joins than CNG (69 vs. 62). In s1238, DC produces a network with 10.9% more joins than CNG (51 vs. 46). Method IV is used in CNG. Multiple rows per problem reflects the number of CNG iterations. The CNG column also shows the runtime required by each problem. In all the listed ISCAS problems, the total runtime (i.e., including all iterations) is less than 1 second. The machine used has Intel ${ }^{\circledR}$ Core ${ }^{\mathrm{TM}}$ i 72.80 GHz processor. ISCAS problems bigger than s1488 require impractically long runtime. This motivates using better data structures, problem division algorithms and/or heuristics to cut runtime for bigger problems (see Appendix A). The CNG column also includes $n S o l$ sub-column. $n S o l$ gives the number of Solutions left in the search Space after applying the reductions of Steps I to IV. This is the number of Solns whose Costs have to be calculated and compared to return the OptSoln. In most of the listed ISCAS problems, only one Solution is left after applying the algorithm reductions. This shows the reduction efficiency of Steps I to IV.

The following example, ProOverlap_n_m, is locally developed based on observations of DC and ABC synthesis of some of the ISCAS-89 benchmarks.

Example 3.32. ProOverlap_5_1 Find an optimum control network implementation for the following register-to-register data communications: I Node $S=\{A, B, C, D, E\}$, ONode $S=$ $\left\{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right\}, X_{1}=\{A, B, C, D, E\}, X_{2}=\{A, B, C\}, X_{3}=\{B, C\}, X_{4}=$ $\{C, D, E\}$, and $X_{5}=\{C, D\}$.

Fig. 3.10 shows CNG vs. Design Compiler ${ }^{\circledR}$ (DC) Solutions for that problem. CNG produces a control network with one less join (and one less fork) than DC. The difference occurs because CNG implements Target X_{1} (i.e., $A B C D E$) as follows: $O_{\text {OptSoln }}^{C N G}\left[\begin{array}{ll}\end{array} A B C D E\right]=\{A B C, C D E\}$. On the other hand, OptSoln ${ }_{D C}[A B C D E]=$ $\{A B, C D E\}$. In $O p t S o n_{C N G}[A B C D E]$, Term $A B C$ covers three INodes (i.e., A, B, and C) while only A and B are needed (since Term $C D E$ is also covering C). INodes A and

Table 3.4: CNG Cost vs. other synthesis tools/flows. Worse percentages are calculated with respect to CNG results.

Problem	CNG			Flow of [9, 3]		ABC		Design Compiler ${ }^{\circledR}$	
	Cost	runtime	$n S o l$	Cost	Worse\%	Cost ${ }^{\text {\| }}$	Worse\%	Cost	Worse\%
MiniMIPS	12	$<1 s$	1	25	108.3\%	12	0\%	12	0\%
s27	6	$<1 s$	1	17	183.3\%	6	0\%	6	0\%
s298	22	$<1 s$	1	66	200\%	23	4.5\%	22	0\%
s344	30	$<1 s$	1	95	216.7\%	32	6.7\%	30	0\%
s382	$\begin{aligned} & 22 \\ & 22 \end{aligned}$	$<1 s$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	148	572.7\%	22	0\%	22	0\%
s349	30	$<1 s$	10	95	216.7\%	32	6.7\%	30	0\%
s386	15	$<1 s$	1	116	673.3\%	15	0\%	15	0\%
s400	$\begin{aligned} & 22 \\ & 22 \end{aligned}$	$<1 s$	1	148	572.7\%	22	0\%	22	0\%
s420	33	$<1 s$	1	169	412.1\%	34	3.0\%	33	0\%
s444	$\begin{aligned} & \hline 22 \\ & 22 \end{aligned}$	$<1 s$	1 1	148	572.7\%	22	0\%	22	0\%
s510	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$<1 s$	1	90	260\%	28	12\%	26	4%
s526	29	$<1 s$	1	140	382.8\%	30	3.4\%	29	0\%
s641	$\begin{aligned} & 62 \\ & 62 \end{aligned}$	$<1 s$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	457	637.1\%	69	11.3\%	68	9.7\%
s713	$\begin{aligned} & \hline 62 \\ & 62 \end{aligned}$	$<1 s$	1	444	616.1\%	68	9.7\%	68	9.7\%
s820	$\begin{aligned} & 34 \\ & 33 \\ & 33 \end{aligned}$	$<1 s$	$\begin{gathered} \hline 10 \\ 160 \\ 212 \end{gathered}$	189	472.7\%	33	0\%	33	0\%
s832	$\begin{aligned} & 34 \\ & 33 \\ & 33 \end{aligned}$	$<1 s$	$\begin{gathered} \hline 10 \\ 160 \\ 212 \end{gathered}$	189	472.7\%	33	0\%	33	0\%
s838	65	$<1 s$	1	593	812.3\%	66	1.5\%	65	0\%
s953	$\begin{aligned} & 37 \\ & 36 \\ & 36 \end{aligned}$	$<1 s$	$\begin{aligned} & 12 \\ & 16 \\ & 20 \end{aligned}$	299	730.6\%	36	0\%	37	2.8\%
s1196	$\begin{aligned} & 46 \\ & 46 \\ & 46 \\ & \hline \end{aligned}$	$<1 s$	4 114 114	355	671.7\%	48	4.3\%	51	10.9\%
s1238	$\begin{aligned} & \hline 46 \\ & 46 \\ & 46 \\ & \hline \end{aligned}$	$<1 s$	4 114 114	355	671.7\%	48	4.3\%	51	10.9\%
s1488	$\begin{aligned} & \hline 21 \\ & 21 \end{aligned}$	$<1 s$	$\begin{aligned} & \hline 3 \\ & 3 \end{aligned}$	241	1047.6\%	22	4.8\%	22	4.8\%
Overlap_9_1(2)	9	$<1 s$	1	28	211.1\%	13	44\%	12	33%
Overlap_25_25(2)	625	$<1 s$	1	4500	620\%	925	48\%	900	44\%
Overlap_51_51(2)	2601	$20 s$	1	35700	1272.5\%	4081	57\%	3825	47\%
Overlap_n_m	$\begin{gathered} m \times \\ n \end{gathered}$	-	1 1	$\begin{gathered} m \times \\ \frac{n^{2}+4 n-5}{4} \\ \hline \end{gathered}$	$\begin{aligned} & \frac{n^{2}-5}{4 n} \\ & \times 100 \% \end{aligned}$		-	$\begin{gathered} m \times \\ \frac{3(n-1)}{2} \\ \hline \end{gathered}$	$\begin{aligned} & \frac{n-3}{2 n} \\ & \times 100 \% \end{aligned}$

Figure 3.10: ProOverlap_5_1 example: CNG vs. DC.
B could be covered by Term $A B$ instead. Thus, it may seem that using Term $A B C$ in OptSoln $[A B C D E]$ is adding redundancy. However, Term $A B C$ is shared in the Solution (it is a TITerm that must be constructed any way to construct Target X_{2} (i.e., $A B C$) see Def. 3.18 and Theorem 3.11). Term $A B$, on the other hand, is not shared by any other Term in the Solution, and thus must be built solely to construct $A B C D E$. That adds the 1-join overhead of DC comparing to CNG. Using Def. 3.19 of AddedCoverage, it seems that DC misses the optimum Solution because it does not allow for using Term in $_{i} P S_{t}$ if AddedCoverage $\left(\right.$ Term $\left._{i}, P S_{t}\right) \neq$ Term $_{i}$. In other words, it seems that DC does not allow for overlapping between the constituent terms of any $P S$. ABC seems to exhibit similar behavior.

It can be easily shown that Example ProOverlap_5_1 can be scaled based on two parameters (n and m), as follows: Define $n=\left|X_{1}\right|$. Also, define m to be the replication factor of the structure (i.e., how many times the structure is replicated). n must be an odd number. For Example ProOverlap_5_1, $n=5$ and $m=1$. Fig. 3.11 shows CNG vs. DC Solutions for ProOverlap_9_1. Cost $\left(O p t S o l n_{C N G}\right)=9$ while $\operatorname{Cost}\left(O p t S o l n_{D C}\right)=12$ (and $\left.\operatorname{Cost}\left(O p t S o l n_{A B C}\right)=13\right)$. In terms of any odd n and m, the following were verified for

Figure 3.11: ProOverlap_9_1 example: CNG vs. DC.
numerous values of n and m :

$$
\begin{align*}
\operatorname{Cost}\left(O p t \text { Soln }_{C N G}\right) & =m \times n \tag{3.68}\\
\operatorname{Cost}\left(O p t S o l n_{D C}\right) & =m \times \frac{3(n-1)}{2} \tag{3.69}
\end{align*}
$$

That is, $\operatorname{Cost}\left(O p t \operatorname{Soln}_{D C}\right)$ is $\frac{n-3}{2 n}$ worse than $\operatorname{Cost}\left(O p t \operatorname{Soln}_{C N G}\right)$ (independent of m). The DC to CNG Cost overhead increases as n increases with a limit of $\% 50$ as n goes to inf. ABC seems to produce worse results than DC for this specific set of ProOverlap_n_m examples. Example ProOverlap_n_m was built upon observations of the DC and ABC Solutions for some of the ISCAS-89 benchmarks.

CHAPTER 4

LAZY AND HYBRID SELF PROTOCOL IMPLEMENTATIONS ${ }^{1}$

Synchronous elasticization converts an ordinary clocked circuit into Latency-Insensitive (LI). The conversion involves the generation of a handshake control network that reflects the register-to-register communication in the original circuit. The Synchronous Elastic Flow (SELF) is an LI protocol used over the control network channels. This chapter investigates alternative implementations of the SELF protocol that can reduce the control network area and power consumption.

The SELF protocol can be implemented with eager or lazy evaluation in the data steering network. Eager implementation of the SELF protocol enjoys no combinational cycles and also may have performance advantages in some designs when compared to lazy implementations. However, eager protocols are more expensive in terms of area and power consumption. The LI control network area and power consumption may become prohibitive in some cases [3]. Measurements of the MiniMIPS processor fabricated in a $0.5 \mu \mathrm{~m}$ node (see Chapter 2) show that elasticization with an eager SELF implementation results in area, dynamic, and leakage power penalties of $29 \%, 13 \%$, and 58.3%, respectively.

Lazy SELF implementations may be an attractive solution. Unfortunately the standard implementation suffers from combinational cycles that make it an unreliable design [9, 45]. This work defines a larger design space that can be employed to implement lazy channel protocols and to verify correctness of these protocols both independently and when combined with the standard eager protocol.

A formal investigation of a complete set of lazy SELF protocol specifications is reported. This includes introducing new lazy join and fork structures, which are verified along with the existing designs. A novel hybrid implementation flow is then introduced that combines the advantages of both eager and lazy implementations. The hybrid SELF essentially

[^7]avoids some of the redundancy of the eager implementation without any performance loss. Moreover, it is combinational cycle free. The hybrid SELF network is demonstrated with the design of the elastic MiniMIPS processor. The hybrid implementation achieves the same runtime as an all eager implementation with a reduction of $31.8 \%, 26.0 \%$, and 30.8% in the control network area, dynamic, and leakage power consumption, respectively.

An overview of the SELF protocol was given in Sec. 2.1. The notion of a control buffer is introduced in order to gain understanding of the design and verification of control network components, such as joins and forks. A linear control buffer simply breaks the control signals in a channel into left and right channels. Such a buffer will have two inputs: the Valid on the left channel and Stall on the right channel, and two outputs: the Stall on the left channel and Valid on the right.

4.1 SELF Channel Protocol Verification

All join and fork components are verified to be conformant to the SELF channel protocol. The correctness requirements for the channel protocol are adapted from the general elastic component conditions consisting of persistence, freedom from deadlock, and liveness [10]. A fourth constraint is added here that disallows glitching on the control wires.

1. Persistence. No $R \rightarrow I$ transition may occur.
2. Deadlock freedom. For each component in the verification, at least two states can be reached from any other reachable state [57].
3. Liveness. The liveness condition is one of data preservation. Lazy control buffers must have the same number of tokens transferred on all their channels. This functional requirement is a special case of the liveness condition in [10]. This is implemented by creating token counters on all the lazy control buffer channels and verifying that they are always equivalent.
4. Glitch Free. No $S \uparrow$ signal transition may occur in state I. The specification of the idle protocol state I in Fig. 2.2 does not constrain the behavior of the Stall signal. This allows glitching on the control wires to occur. If the Stall signal is not allowed to rise in the idle state then glitching will not occur. This requirement is not explicit in the SELF specifications. However, it can be observed that this transition is not possible in published Elastic Buffer (EB) or Elastic Half Buffer (EHB) designs [9, 58]. If control wire glitching is possible, then the composition of some forks and joins may not be compliant with the channel protocol. For example, the Karnaugh map of LF01, one
of the two lazy forks proven to be SELF compliant (Sec. 4.3.1.2), is shown in Fig. 4.1. Transition A occurs when $S_{r 2}$ rises in the idle state. While this glitching transition is valid according to the channel specification, it results in $V_{r 1}$ falling, which produces an illegal $R \rightarrow I$ transition on channel r_{1}. Since this transition can never happen unless channel r_{2} can make an $S \uparrow$ transition glitch, this condition is added to the verification suite.

4.2 SELF Control Network Design

A truth table can be created to specify the permissible behaviors for the control buffer left Stall and right Valid signals that conform to the SELF channel protocol of Sec. 2.1. Such a truth table shows the flexibility in design choices that can be made. The same procedure is performed for the lazy fork and join components.

4.3 Fork Components

4.3.1 Lazy Fork

The Lazy Fork (LFork) does not propagate valid data from its root to its branches until all branches are ready to store the data. A sample lazy fork is shown in Fig. 4.2 [8, 9] (which maps to $L F 00$ introduced later in the chapter). In Fig. 4.2, if any of the lazy fork branches stalls, it forces all the other branches into the idle state.

4.3.1.1 Lazy Fork Synthesis

The truth table for a lazy fork is shown to be purely combinational. Thus it is easily represented with the Karnaugh Map (KM) shown in Fig. 4.3. The KM has two don't care terms m_{0} and m_{1} giving four possible designs. Each implementation is denoted as $L F m_{0} m_{1}$ (e.g., $L F 00, L F 01$, etc.). Table 4.1 maps previsouly published lazy fork implementations to those of this work.

Figure 4.1: $V_{r 1}$ of $L F 01$.

Figure 4.2: A 1-to- n lazy fork (maps to LF00).

Figure 4.3: Lazy fork specifications $\left(V_{r 1}\right)$.

Table 4.1: Mapping between published and this work lazy forks and joins.

Fork $[8]$	LF00	Join $[8]$	LJ0000
Fork $[9]$	LF00	Join $[9]$	LJ0000
LFork $[45]$	LF00	LJoin $[45]$	LJ0000
LKFork ${ }^{1}[45]$	LF 01	LKJoin $^{1}[45]$	LJ 1111

${ }^{1}$ LKFork and LKJoin are part of the contribution of this dissertation.

The hand translation of the fork as a control buffer may still result in illegal channel behavior on one or more of the channels due to the interactions between branches of the fork and join. Thus a rigorous verification methodology is employed to prove correctness of the designs. Indeed, verification shows that two of the four possible designs do not fully obey the SELF channel protocol.

4.3.1.2 Lazy Fork Verification

The setup of Fig. 4.4 is used to verify correctness of the fork designs. The root channel (A) as well as the branches ($A 1$ and $A 2$) are connected to three elastic buffers $(E B \mathrm{~s})$ as well as data token counters (TCs). This work employs the $E B$ implementation published in [9]. The counters track the number of clock cycles that the channel is in the transfer state T. The structure is modeled and passed to a symbolic model checker, NuSMV [59].

All constituent blocks are connected synchronously in NuSMV. Synchronous connection

Figure 4.4: Lazy fork verification setup.
guarantees that all modules advance in lock-step. Logic delays are then executed in internal cycles of the verification engine. All combinational logic is modeled to have zero delay. The clock generator is modeled to have a unit delay for each phase. For example, following is the LF00 model:

MODULE LFOO (V1,Sr1,Sr2)
DEFINE Sl := Sr1 | Sr2 ; DEFINE Vr1 := Vl \& (!Sr1) \& (!Sr2) ; ...
The four SELF compliance checks of Sec. 4.1 are applied to each design as follows: (The properties are expressed in the Property Specification Language (PSL) [60] unless otherwise specified.)

1. Persistence. For each channel (i.e., $A, A 1$ and $A 2$) it is verified that no $R \rightarrow I$ transition occurs:

DEFINE RAA := VA \& SA ; -- Retry on channel A
DEFINE I_A := !VA ; -- Idle on channel A
PSLSPEC never $\{[*]$; R_A; I_A $\}$;
Out of the 4 lazy fork implementations only $L F 00$ and $L F 01$ pass this check.
2. Deadlock freedom. At least two states are verified as reachable from all other reachable states [57]. For example, inside the LF00 module the following properties verify that two states are always reachable: (The properties are specified in the Computation Tree Logic (CTL) syntax [61].)
SPEC AG EF (Vr1=1 \& Vr2 $=1$ \& $\mathrm{Sl}=0$) ;
SPEC AG EF (Vr1=0 \& Vr2 $=0$ \& $\mathrm{Sl}=0$);
Note that a state in $L F 00$ is defined by the three variables: $V_{r 1}, V_{r 2}$ and S_{l}. All four lazy fork implementations pass this check.
3. Liveness is calculated through data token preservation. Let the number of data tokens transferred at the fork root channel and the two branch channels be: $d_{l}, d_{r 1}$ and $d_{r 2}$,
respectively. (d_{i} is, equivalently, the number of clock cycles where channel i is in the Transfer state (T) (i.e., $\left.V_{i} \&!S_{i}\right)$.) The number of data tokens transferred at a lazy fork root channel must always be the same as those at its branches. (i.e., the following requirement must always hold: $d_{r i}-d_{l}=0$ for $i \in\{1,2\}$.) The following code is used to model a token counter for channel i. The model counts on the negative edge of the clock.

MODULE TokenCounter (Clk,Vi,Si)
VAR Count: 0..31;
ASSIGN
init (Count) := 0;
next (Count) := case
$(C l k=1) \&($ next $(C l k)=0) \&(V i=1) \&(S i=0) \&($ Count $<31):$ Count +1 ;
1: Count;
esac;
NuSMV only supports finite data types. Without loss of generality, the upper limit of the Count variable is chosen to be a sufficiently large number (32 in this case). For each branch define and check the following property:

DEFINE TokenCountError_A1 := case (dl != dr1):1; 1:0; esac;
PSLSPEC never $\{[*]$; TokenCountError_A1\};
All the four lazy fork implementations pass this check.
4. No glitching. This verifies that the Stall signal does not rise in the idle state:

DEFINE IO_A := !VA \& !SA ; -- Idle0 on A
DEFINE I1_A := !VA \& SA ; -- Idle1 on A
PSLSPEC never $\{[*] ;$ IO_A; I1_A $\}$;
All lazy fork implementations pass this check.
Hence, among the four possible lazy fork implementations, only LF00 and LF01 conform to the SELF specification.

4.3.1.3 Lazy Fork Characterization

To help characterize the different fork implementations as well as their combinations with lazy joins in a network, the following definitions are introduced:

Definition 4.1. $C_{F r}$, Fork Reflexive Characterization $S e t C_{F r}$ is a set of characterization elements $\left(c_{F r}\right)$, where: $c_{F r} \in\{I, N, 0,1\}$.

1. $c_{F r}=I$ (or inverting) in a 2-output fork iff $V_{r i}$ is a function of $S_{r i}$, and iff, for some constant V_{l} and $S_{r j}, V_{r i}=!S_{r i}$, where $i, j \in\{1,2\}$ and $i \neq j$.
2. $c_{F r}=N$ (or noninverting) in a 2-output fork iff $V_{r i}$ is a function of $S_{r i}$, and iff, for some constant V_{l} and $S_{r j}, V_{r i}=S_{r i}$, where $i, j \in\{1,2\}$ and $i \neq j$.
3. $c_{F r}=0$ (or constant zero) in a 2-output fork iff $V_{r i}$ is a function of $S_{r i}$, and iff, for some constant V_{l} and $S_{r j}, V_{r i}=0$, where $i, j \in\{1,2\}$ and $i \neq j$.
4. $c_{F r}=1$ (or constant one) in a 2-output fork iff $V_{r i}$ is a function of $S_{r i}$, and iff, for some constant V_{l} and $S_{r j}, V_{r i}=1$, where $i, j \in\{1,2\}$ and $i \neq j$.
Table 4.2 illustrates $C_{F r}$ computation of $L F 00$. From the table, $C_{F r}$ of $L F 00$ is $\{I, 0\}$. Similarly $C_{F r}$ of $L F 01$ is \emptyset. This is because in $L F 01$ (see Fig. 4.5), $V_{r i}$ is not a function of $S_{r i}$. Sec. 4.6.1 will show that this property gives an advantage to $L F 01$ since it can reduce the number of combinational cycles in the control network substantially.

Definition 4.2. $C_{F t}$, Fork Transitive Characterization Set $C_{F t}$ is a set of characterization elements $\left(c_{F t}\right)$, where: $c_{F t} \in\{I, N, 0,1\}$.

1. $c_{F t}=I$ (or inverting) in a 2-output fork iff $V_{r i}$ is a function of $S_{r j}$, and iff, for some constant V_{l} and $S_{r i}, V_{r i}=!S_{r j}$, where $i, j \in\{1,2\}$ and $i \neq j$.
2. $c_{F t}=N$ (or noninverting) in a 2-output fork iff $V_{r i}$ is a function of $S_{r j}$, and iff, for some constant V_{l} and $S_{r i}, V_{r i}=S_{r j}$, where $i, j \in\{1,2\}$ and $i \neq j$.
3. $c_{F t}=0$ (or constant zero) in a 2-output fork iff $V_{r i}$ is a function of $S_{r j}$, and iff, for some constant V_{l} and $S_{r i}, V_{r i}=0$, where $i, j \in\{1,2\}$ and $i \neq j$.

Figure 4.5: A 2-output LF01 implementation.
4. $c_{F t}=1$ (or constant one) in a 2-output fork iff $V_{r i}$ is a function of $S_{r j}$, and iff, for some constant V_{l} and $S_{r i}, V_{r i}=1$, where $i, j \in\{1,2\}$ and $i \neq j$.
Table 4.3 illustrates $C_{F t}$ computation of $L F 00$. From the table, $C_{F t}$ of $L F 00$ is $\{I, 0\}$. Similarly, $C_{F t}$ of $L F 01$ is also $\{I, 0\}$.

4.3.2 Eager Fork

The Eager Fork ($E F o r k$), unlike the lazy, even if not all its branches are ready to receive, will immediately pass the (valid) data token from its root to the branches that are ready. The EFork will stall (if needed) until all the stalled branches (if any) receive the data token as well. This gives the earliest possible data transfer to the branches that are ready to receive data. Hence, the EFork can result in performance advantage over lazy forks in some systems. This will also be illustrated in the case study of Sec. 4.7.1. Due to the necessary pipelining that occurs in the control signals, the EFork incorporates one flip-flop per branch. The control flip-flop is clocked every cycle to sample changes. Moreover, eager forks have higher logic complexity comparing to lazy. This makes the EFork expensive in terms of both area and power consumption. Fig. 2.4 shows an n output extension of the EFork proposed in [9].

4.3.2.1 Eager Fork Verification

Similar to the lazy fork verification of Sec. 4.3.1.2, the EFork is also verified against the four SELF compliance checks. Since the EFork allows its ready branches to transfer tokens while stalled waiting for the other branches to be ready, the data token preservation requirement is: $0 \leq d_{r i}-d_{l} \leq 1$ for $i \in\{1,2\}$. Indeed, the $E F$ ork passes all the checks and, hence, is compliant with the SELF protocol.

Table 4.2: $C_{F r}$ computation of $L F 00$.

V_{l}	$S_{r 2}$	$S_{r 1} \rightarrow V_{r 1}$	$c_{F r}$
0	0	$0 \rightarrow 0$ $1 \rightarrow 0$	$\mathbf{0}$
0	1	$0 \rightarrow 0$ $1 \rightarrow 0$	$\mathbf{0}$
1	0	$0 \rightarrow 1$ $1 \rightarrow 0$	\mathbf{I}
1	1	$0 \rightarrow 0$ $1 \rightarrow 0$	$\mathbf{0}$

Table 4.3: $C_{F t}$ computation of $L F 00$.

V_{l}	$S_{r 1}$	$S_{r 2} \rightarrow V_{r 1}$	$c_{F t}$
0	0	$0 \rightarrow 0$ $1 \rightarrow 0$	$\mathbf{0}$
0	1	$0 \rightarrow 0$ $1 \rightarrow 0$	$\mathbf{0}$
1	0	$0 \rightarrow 1$ $1 \rightarrow 0$	\mathbf{I}
1	1	$0 \rightarrow 0$ $1 \rightarrow 0$	$\mathbf{0}$

4.4 Lazy Join

The lazy join has to wait for all its input branch channels to carry valid data before data is transferred on the output channel. A sample lazy join is shown in Fig. 2.3 (which maps to $L J 0000$ introduced later in the chapter).

4.4.1 Lazy Join Synthesis

The synthesis of a lazy join as a control buffer is performed similar to the lazy fork. The KM is shown in Fig. 4.6. There are 16 possible implementations.

4.4.2 Lazy Join Verification

Similar to the lazy fork verification in Sec. 4.3.1.2, the structure of Fig. 4.7 is used to verify the different lazy join implementations. The following properties are checked:

1. Persistence: All the 16 lazy joins pass this check.
2. Deadlock freedom: All the 16 joins pass.
3. Data token preservation: All the 16 joins pass.
4. Glitch Free: Out of the 16 lazy joins, only 6 pass.

Only the following lazy join designs pass verification: LJ0000, LJ0010, LJ0011, LJ1010, LJ1011, LJ1111. Among the 6 SELF-compliant joins, LJ1111 (Fig. 4.8) has the simplest logic allowing for more efficient area utilization during synthesis. Results of Sec. 4.7.2 confirms the observation.

4.4.3 Lazy Join Characterization

To help characterize the different join implementations as well as their combinations with lazy forks in a network, the following definitions are introduced:

Figure 4.6: Lazy join specifications ($S_{l 1}$).

Figure 4.7: Lazy join verification setup.

Definition 4.3. $C_{J r}$, Join Reflexive Characterization Set $C_{J r}$ is a set of characterization elements $\left(c_{J r}\right)$, where: $c_{J r} \in\{I, N, 0,1\}$.

1. $c_{J r}=I$ (or inverting) in a 2-input join iff $S_{l i}$ is a function of $V_{l i}$, and iff, for some constant S_{r} and $V_{l j}, S_{l i}=!V_{l i}$, where $i, j \in\{1,2\}$ and $i \neq j$.
2. $c_{J r}=N$ (or noninverting) in a 2 -input join iff $S_{l i}$ is a function of $V_{l i}$, and iff, for some constant S_{r} and $V_{l j}, S_{l i}=V_{l i}$, where $i, j \in\{1,2\}$ and $i \neq j$.
3. $c_{J r}=0$ (or constant zero) in a 2-input join iff $S_{l i}$ is a function of $V_{l i}$, and iff, for some constant S_{r} and $V_{l j}, S_{l i}=0$, where $i, j \in\{1,2\}$ and $i \neq j$.
4. $c_{J r}=1$ (or constant one) in a 2-input join iff $S_{l i}$ is a function of $V_{l i}$, and iff, for some constant S_{r} and $V_{l j}, S_{l i}=1$, where $i, j \in\{1,2\}$ and $i \neq j$.

Similar to Table 4.2, $C_{J r}$ of $L J 0000$, for example, can be computed to be $\{N, 0\} . L J 1011$ has a $C_{J r}$ of \emptyset. This is because in $L J 1011$ (see Fig. 4.9) $S_{l i}$ is not a function of $V_{l i}$. Sec. 4.6.1 will show that this property gives an advantage to $L J 1011$ since it can reduce the number of combinational cycles in the control network substantially.

Definition 4.4. $C_{J t}$, Join Transitive Characterization Set $C_{J t}$ is a set of characterization elements $\left(c_{J t}\right)$, where: $c_{J t} \in\{I, N, 0,1\}$.

1. $c_{J t}=I$ (or inverting) in a 2-input join iff $S_{l i}$ is a function of $V_{l j}$, and iff, for some constant S_{r} and $V_{l i}, S_{l i}=!V_{l j}$, where $i, j \in\{1,2\}$ and $i \neq j$.
2. $c_{J t}=N$ (or noninverting) in a 2-input join iff $S_{l i}$ is a function of $V_{l j}$, and iff, for some constant S_{r} and $V_{l i}, S_{l i}=V_{l j}$, where $i, j \in\{1,2\}$ and $i \neq j$.

Figure 4.8: A 2-input $L J 1111$ implementation.

Figure 4.9: A 2-input $L J 1011$ implementation.
3. $c_{J t}=0$ (or constant zero) in a 2-input join iff $S_{l i}$ is a function of $V_{l j}$, and iff, for some constant S_{r} and $V_{l i}, S_{l i}=0$, where $i, j \in\{1,2\}$ and $i \neq j$.
4. $c_{J t}=1$ (or constant one) in a 2-input join iff $S_{l i}$ is a function of $V_{l j}$, and iff, for some constant S_{r} and $V_{l i}, S_{l i}=1$, where $i, j \in\{1,2\}$ and $i \neq j$.
Similar to Table 4.3, $C_{J t}$ of $L J 0000$, for example, can be computed to be $\{I, 0,1\}$.

4.5 Lazy SELF Networks

Unlike eager forks, lazy forks have no state holding elements (e.g., flip-flops). Hence, arbitrary connections of lazy joins and forks in a control network typically result in combinational cycles. These cycles can cause deadlock or oscillation due to logical or transient instability:

4.5.1 Deadlock - D

A combinational cycle can cause a deadlock if under some input sequence its internal signals can get stuck at certain values. For example, consider a structure in which a fork output channel is feeding a join (Fig. 4.10a). This structure is a basic building block of typical elastic control networks. Fig. 4.11 shows a circuit implementation of Fig. 4.10a using LF00 and LJ1111.

It can be easily shown that if $V A$ is zero, VA1 and $V A C$ must also be zero. This will force $S A 1$ to be one, $S A$ to be one and $V A 1$ to be zero. Apparently, the loop shown in

(a)

(b)

Figure 4.10: Sample fork join combinations.

Figure 4.11: LF00 and $L J 1111$ combination.
dotted lines forms a latch, since all its wires can simultaneously carry controlling values to the gates they are driving in the loop. Hence, after a zero on $V A$, the system will deadlock. VA2, $V A C, S C$ and $S A$ will be stuck at zero, zero, one and one, respectively.

In general, for the common structure of Fig. 4.10a, the following can be readily proved. Let $C_{J r 1}\left(C_{F r 1}\right)$ and $C_{J t 1}\left(C_{F t 1}\right)$ be the join (fork) reflexive and transitive characteristic sets of the lazy join (fork) used, $L J 1(L F 1)$, respectively. Then, the connection of Fig. 4.10a will result in deadlock if the following condition holds: $C_{J r 1}=\{1, I\}$ and $C_{F r 1}=\{I, 0\}$. To illustrate, since $C_{F r 1}=\{I, 0\}$, therefore, for all the possible values of $L F 1$ inputs, $V A 1$ is either 0 or the inverse of $S A 1$. Similarly, since $C_{J r 1}=\{1, I\}$, therefore, for all the possible values of $L J 1$ inputs, $S A 1$ is either 1 or the inverse of $V A 1$. Hence, once $V A 1$ is 0 or $S A 1$ is 1 , the loop formed by $V A 1$ and $S A 1$ will stuck at these values.

Similarly, a deadlock will occur in the connection of Fig. 4.10b if the following condition holds: $C_{J t 1}=\{1, I\}$ and $C_{F t 1}=\{0, I\}$.

4.5.2 Oscillation Due to Logical Instability - LI

A loop is logically unstable if it has an odd number of inverting elements. Under some input sequence, it can behave as a ring oscillator.

For example, consider again the structure of Fig. 4.10a. Fig. 4.12 shows a circuit implementation of that structure using LF00 and LJ0000.

Assume the elastic buffer C in Fig. 4.12 holds a bubble (i.e., its output Valid signal is zero), while A holds data. Assume also that $S A 2$ is zero (B is not stalled). This connection will form a loop (shown in dotted lines in Fig. 4.12). The loop is logically unstable since it

Figure 4.12: LF00 and LJ0000 combination.
has an odd number of inverting elements. This results in an oscillation inside the loop as well as on the $S A$ wire.

In general, for the common structure of Fig. 4.10a, the following can be readily proved. Let $C_{J r 1}\left(C_{F r 1}\right)$ and $C_{J t 1}\left(C_{F t 1}\right)$ be the join (fork) reflexive and transitive characteristic sets of the lazy join (fork) used, $L J 1$ (LF1), respectively. Then, the connection of Fig. 4.10a will result in logical instability if any of the following condition holds:

- $I \in C_{J r 1}$ and $N \in C_{F r 1}$.
- $N \in C_{J r 1}$ and $I \in C_{F r 1}$.

4.5.3 Oscillation Due to Transient Instability - TI

Even if a combinational loop does have an even number of inverting elements it can still cause oscillation in an elastic control network. Since the loop has more than one input, both logic one and zero values can be simultaneously injected at different places in the loop. The one and zero values can then race around the loop causing oscillation.

Table 4.4 shows the different lazy fork-join combinations characteristics. The table refers to the network structures of Fig. 4.10.

Research is still in progress to investigate whether the oscillation due to transient instability can be avoided by forcing network-specific timing constraints on the control network. However, a simpler solution, not only for transient instability, but also for deadlock and logical instability, is to use eager forks when needed to cut such combinational cycles. This will be discussed in Sec. 4.6.

Table 4.4: Lazy fork-join combination characterization. All other combinations (2 forks $\times 10$ joins) are noncompliant with the SELF protocol.

	Join	0000	0010	0011	1010	1011	1111
Fork	$\frac{C_{r}}{C_{t}}$	$\frac{N, 0}{I, 0,1}$	$\frac{N, 0,1}{I, 0,1}$	$\frac{N, 0,1}{I, 0,1}$	$\frac{N, 0,1}{I, 1}$	$\frac{\emptyset}{I, 1}$	$\frac{I, 1}{I, 1}$
00	$\frac{I, 0}{I, 0}$	$\mathbf{L I}$	$\mathbf{L I}$	$\mathbf{L I}$	$\mathbf{L I}$	\mathbf{D}	\mathbf{D}
01	$\frac{\emptyset}{I, 0}$	TI	TI	$\mathbf{T I}$	\mathbf{D}	\mathbf{D}	\mathbf{D}

The following logic is used for the root's Stall signal in all of the lazy forks investigated in this work: $S_{l}=S_{r 1} \mid S_{r 2}$. Similarly, the lazy join elements use $V_{r}=V_{l 1} \& V_{l 2}$. Other implementations for these signals that consider flexibility allowed by lazy control buffers is not presented here. However, note that designs with additional logic will increase the probability of combinational loops in component composition.

4.6 Hybrid SELF Protocol

Two lazy forks and six lazy joins, as well as the traditional eager fork, have been proven to be compliant with the SELF channel protocol. Therefore, eager and lazy forks (and joins) can be correctly connected together as long as no combinational cycles are formed [10]. Eager forks exhibit no cycles and can achieve better runtime in some systems. However, they consume more power and area than lazy forks. Hence, this work introduces a hybrid SELF implementation, that uses both eager and lazy forks, has no cycles, and achieves the same runtime as an all eager implementation. Hybrid implementation should keep minimal number of eager forks in the control network that are necessary for the following reasons:

4.6.1 Cycle Cutting

Lazy fork-join combinations can result in combinational cycles that cause oscillation or deadlock. These cycles can be avoided by replacing lazy forks with eager in places where cycles exist. Cycles can be easily identified either by hand analysis of the control network or through synthesis tools (e.g., report_timing -loops command in Design Compiler ${ }^{\text {TM }}$ [53]).

LF01 enjoys the property that there is no internal path in the fork that connects any of its branch Stalls to its corresponding Valid. This reduces the number of combinational cycles substantially. Similarly, LJ1011 enjoys the property that there is no internal path
in the join that connects any of its input channel Valid signals to its corresponding Stall. This also reduces the number of cycles substantially. Hence, the fork-join combination of LF01 - LJ1011 results in the minimum number of combinational cycles among all the other lazy fork-join combinations. This, in turn, minimizes the need to use eager forks to cut the cycles, resulting in minimizing the total area and power consumption of the hybrid control network.

4.6.2 Runtime Boosting

Eager forks can enjoy better performance than lazy due to the early start they provide for ready branches (Sec. 4.3.2). However, this section shows that under some constrained input behavior, a lazy fork can replace an eager fork without any performance loss. In that context, the term LFork will be used to refer to the lazy forks LF00 and/or LF01.

A 2-output EFork operation will reduce to the KM of Fig. 4.13a if the EFork flip-flops are initialized to logic one and if the following input combinations are avoided (a proof will be provided in Sec. 5.1):

1. $\left(V_{l}=1\right) \&\left(S_{r 1}=0\right) \&\left(S_{r 2}=1\right)$.
2. $\left(V_{l}=1\right) \&\left(S_{r 1}=1\right) \&\left(S_{r 2}=0\right)$.

The KM of the lazy forks $L F 00$ and $L F 01$, with the above input combinations avoided, is shown in Fig. 4.13b. Comparing Fig. 4.13a and Fig. 4.13b, it is apparent that, under these conditions, the EFork will behave exactly the same as the lazy forks, except in the case when both branches are stalled simultaneously. One might add a conservative constraint by avoiding such an input as well. However, as the following verification will confirm, when both branches are stalled, the lazy forks will have both branches in the Idle (I) state, while the EFork will keep them in the Retry (R) state. Since there is no data transfer occurring

Figure 4.13: $V_{r 1}$ (or $V_{r 2}$) of the EFork and LFork under some constrained input behavior.
in either states (i.e., I or R), there is no performance advantage of the EFork comparing to the LFork in such a case. Hence, the above stated conditions are sufficient to replace an EFork with $L F 00$ or $L F 01$ without any performance loss. The conditions will, thus, be referred to as performance equivalence conditions, or, for short, equivalence conditions.

To verify this argument, the verification setup of Fig. 4.14 is employed. The whole structure is modeled in the symbolic model checker, NuSMV. The input and output channels of both the EFork and LFork are connected to terminal Elastic Buffers (EBs). The EBs are initialized in random states. The EFork input and two output channels are named: L_E (read Left_Eager), R1_E (read Right1_Eager), and R2_E (read Right2_Eager), respectively. Similarly, the LFork input and 2 output channels are named: L_L, R1_L, and $R 2$ _ L, respectively. V and S are prepended to the channel names to indicate the Valid and Stall signals of these channels, respectively.

All the blocks as well as the clock generator are connected synchronously inside NuSMV. The clock changes phase with each unit verification cycle. The Transfer state on the EFork input and output channels are defined as follows:

DEFINE L_E_T := VL_E \& !SL_E;
DEFINE R1_E_T := VR1_E \& !SR1_E;
DEFINE R2_E_T := VR2_E \& !SR2_E;
Similarly, for the LFork:
DEFINE L_L_T := VL_L \& !SL_L;

Figure 4.14: EFork-LFork performance equivalence verification setup.

DEFINE R1_L_T := VR1_L \& !SR1_L;
DEFINE R2_L_T := VR2_L \& !SR2_L;
A performance mismatch may occur if any of the channels in the EFork transfers data while the corresponding channel in the L Fork does not. Hence, a channel (i.e., $L, R 1$, or R2) TOKEN_MISMATCH can be defined as follows:

```
DEFINE L_TOKEN_MISMATCH := (L_E_T xor L_L_T);
DEFINE R1_TOKEN_MISMATCH := (R1_E_T xor R1_L_T);
DEFINE R2_TOKEN_MISMATCH := (R2_E_T xor R2_L_T);
```

A TOKEN_MISMATCH is defined to be the ORing of any channel mismatch:
DEFINE TOKEN_MISMATCH := L_TOKEN_MISMATCH | R1_TOKEN_MISMATCH |
R2_TOKEN_MISMATCH;
The performance equivalence conditions are defined as following:
DEFINE C_1 := ! (VL \& (SR1 xor SR2)) ;
Constraint C_1 is forced by using the NuSMV reserved word INVAR which semantically defines an invariant:
INVAR C_1;
The performance equivalence property is then verified using PSLSPEC:
PSLSPEC never TOKEN_MISMATCH;
The property is proven true by the model checker. There is no clock cycle in which any of the EFork channels is in the Transfer state while the corresponding channel in the LFork is not transferring data as well. Hence, under the stated performance equivalence conditions, the EFork and LFork will transfer exactly the same number of tokens, thus, achieving the same performance. The results can be easily extended to n-output forks with $n>2$, based on the fact that an n-output fork is logically equivalent to concatenated $(n-1) 2$-output forks.

4.6.3 Eager to Hybrid Conversion Flow

An automatic flow to identify which eager forks satisfy the performance equivalence conditions will be provided in Chapter 5. For the sake of illustration, a simulation-based analysis will be used in this section. In that approach, a closed eager control network is simulated and all the fork Valid and Stall patterns are collected and analyzed. An example will be shown in the MiniMIPS case study in Sec. 4.7. Starting with an elastic control network (generated manually or through automatic tools like CNG - Chapter 3), the
following flow generates a hybrid SELF implementation (H) of that network:

1. Define the set of all forks in the control network, Φ.
2. Construct a pure eager implementation of the control network, E_{1}, such that each fork $F \in \Phi$ is an eager fork. Define the set of forks, Φ_{p}, that do not meet the performance equivalence conditions. Φ_{p} are the forks that must be implemented as eager to achieve the same runtime as a pure eager implementation of the control network.
3. Construct an intermediate hybrid network, H_{1}, such that: each fork $F \in \Phi-\Phi_{p}$ is a lazy fork, and each fork $F \in \Phi_{p}$ is an eager fork.
4. In H_{1}, identify the set of forks, Φ_{c}, that need to be replaced by eager forks to cut the combinational cycles.
5. Build a final hybrid network, H, such that: each fork $F \in \Phi-\Phi_{p}-\Phi_{c}$ is lazy, and each $F \in \Phi_{p} \cup \Phi_{c}$ is eager.

4.7 MiniMIPS Case Study and Results

MIPS (Microprocessor without Interlocked Pipeline Stages) is a 32 -bit architecture with 32 registers, first designed by Hennessey [46]. The MiniMIPS is an 8-bit subset of MIPS, fully described in [1]. Elasticizing the MiniMIPS was illustrated in Sec. 2.2.1. A block diagram of the original clocked MiniMIPS and the hand-optimized elastic version are shown in Figures 2.5 and 2.6, respectively.

4.7.1 Eager Versus Lazy SELF Implementations

Beside their combinational cycle problems, lazy forks can suffer inferior performance comparing to eager when the branch Stall patterns do not match. Eager forks provide the earliest possible start for the ready branches (Sec. 4.3.2). To measure this advantage, a different number of bubbles are inserted at the register file outputs (i.e., before registers A and B of Fig. 2.6, simultaneously). Table 4.5 compares the number of clock cycles required by a lazy and by an eager implementations of the MiniMIPS control network to complete the testbench program of [1]. For the lazy protocol, the LF01-LJ0000 combination is used. The behavioral simulations used some timing constraints to avoid possible oscillations. Table 4.5 shows that running the same testbench program on an elastic MiniMIPS processor implemented with lazy SELF takes 32.7% and 58.8% longer runtime than an eager implementation in case of one and three bubbles in the register file path, respectively.

Table 4.5: Time required (in terms of \#cycles) by lazy and eager protocols to finish the testbench program in [1]. Bubbles are inserted at the register file outputs.

Fork-join combination	0 Bubbles	1 Bubble	3 Bubbles
Lazy protocol: $L F 01-L J 0000$	98	195	389
Eager protocol: $E F$ Fork- $L J 0000$	98	147	245
Clocked MiniMIPS	98	-	-

The runtime advantage of the eager versus lazy designs is illustrated in the following example (taken from the MiniMIPS control network of Fig. 2.6). Fig. 4.15 shows a simplified part of the MiniMIPS control network. One bubble is added before the A register, and another one before the B register, labeled $b 1$ and $b 2$, respectively. Consider the clock cycle when $V A$ and $V B$ go low. $S C 1$ will go high through join $J A B C I 4 P$. In $F C$ (assuming $S C 2$ is low), $V C$ is high and $S C 1$ is high. A lazy $F C$ will invalidate the data at $C 2$ (i.e., deassert $V C 2$) until $S C 1$ goes low again. Hence, no new data token can be written at register $b 1$ or $b 2$ until the stall condition on $C 1$ is removed (i.e., $S C 1$ goes low again). On the other hand, an eager $F C$ will validate the data on $C 2$ (i.e., assert $V C 2$) for the first clock cycle giving $C 2$ branch an early start. Hence, new data tokens can be written immediately in registers $b 1$ and $b 2$ in the following cycle.

Figure 4.15: A sample structure where eager protocol will have runtime advantage over lazy.

4.7.2 Eager Versus Hybrid SELF Implementations

The hybrid SELF implementation attempts to achieve the same performance of the eager SELF with less area and power consumption. This is done by replacing as many eager forks by lazy as possible. Without loss of generality, both eager and hybrid implementations will be applied to the CNG-generated elastic MiniMIPS control network of Fig. 3.9. This control network achieves the same register-to-register communications as the hand-optimized one in Fig. 2.6 but with two fewer joins and two fewer forks. Furthermore, zero to three bubbles (i.e., $E B$ s that hold no valid data) are inserted at the register file output (i.e., at the inputs of A and B registers, simultaneously). In practice, this might be done, for example, to accommodate a high latency register file without affecting the functionality of the whole system.

The flow of Sec. 4.6.3 will be followed to construct the hybrid implementation. Starting with an all eager implementation of the closed control network of Fig. 3.9 (call it E_{1}), the sample testbench program of [1] is run. The simulation waveforms of each eager fork in the network are analyzed. EForks whose input behavior does not meet the performance equivalence conditions (of Sec. 4.6.2) are then identified. These are the forks that must be implemented as eager in the (to-be) hybrid control network in order to maintain the same performance as the all eager network. The set of these forks will be called Φ_{p}.

Analysis of the simulation waveforms of the MiniMIPS case (with 0 to 3 bubbles at the register file output) shows that all forks except $F C$ and $F L$ receive Valid and Stall patterns that meet the performance equivalence conditions. Hence, all the forks except $F C$ and $F L$ can be safely implemented as lazy forks without any performance loss. For $F C$, repetitive Stall patterns similar to those shown in Fig. 4.16 are observed. The numbered columns in Fig. 4.16 represent the clock cycles. The red 0s and 1s are the branch Stall signal values at the corresponding clock cycles. It is obvious that the Stall patterns at $C 1$ and $C 3$ meet the conditions of Sec. 4.6.2 (they do not stall at all). Hence, branches $C 1$ and $C 3$ can be safely connected through a lazy fork (call it FC_1_3). Similarly, the Stall patterns at branches $C 2$ and $C 4$ meet the replacement conditions (their Stall patterns match). Hence, branches $C 2$ and $C 4$ can also be connected through another lazy fork (call it FC_2_4). To maintain the same runtime as an all eager implementation, FC_1_3 and FC_2_4 must be connected through an eager fork (call it $F C _i$) since their corresponding Stall patterns do not match. The resultant hybrid $F C$ implementation is shown in Fig. 4.17. EF and $L F$ in the figure refer to eager and lazy forks, respectively. Similarly, based on the simulation waveform

Figure 4.16: Stall patterns at the branches of $F C$ in the presence of bubbles.

Figure 4.17: Hybrid implementation of $F C$.
analysis, branches 1 and 2 of $F L$ could be connected through a lazy fork ($F L_{-} 1 _2$). $F L _1 _2$ must be connected eagerly to the third branch of $F L$ to maintain the runtime of an all eager implementation.

As stated in Sec. 4.6.3, a hybrid network (call it H_{1}) is now constructed. All forks of H_{1} are implemented as lazy except those in set Φ_{p} (i.e., that do not meet the equivalence conditions). H_{1} typically involves combinational cycles formed by the connection of lazy forks and joins. To cut the cycles in H_{1}, more forks have to be implemented as eager (call this set of forks Φ_{c}). The number of forks in Φ_{c} depend on the lazy fork and join combination used. Some lazy fork-join combinations exhibit more cycles than others and, hence, require more eager fork replacements. For example, when the lazy combination $L F 01-L J 1011$ is used, only 2 extra forks have to be implemented as eager to cut the cycles, namely, $F L _1 _2$ and $F C _2 _4$. The MiniMIPS control network is implemented using all the correct 12 lazy fork-join combinations (with some eager fork replacements). The network is also implemented with an all eager control network.

Table 4.6 shows the synthesis results. The Artisan academic library for $\mathrm{IBM}^{\circledR}{ }^{\circledR} 65 \mathrm{~nm}$ library is used for physical design. The MiniMIPS control network has been synthesized separately from the data path. All area and power numbers in Table 4.6 are for the control network only. All combinations have passed post synthesis simulation (with 0 to 3 bubbles). The MiniMIPS testbench program in [1] is used to validate correctness. Column 1 in Table 4.6 lists the different combinations (sorted by their area). Column 2 lists the set of all forks that have to be implemented as eager (to both maintain the performance and cut the cycles). The column also shows the ratio of the number of EForks used to the total number of forks in the network. For counting the forks, it is assumed that an n-output fork counts as $n-1$ concatenated 2 -output forks. Unsurprisingly, $E-L F 01-L J 1011$ needs the least number of eager fork replacements (see Sec. 4.6.1), tying with $E-L F 00-L J 1011$

Table 4.6: Area, power, and runtime of the MiniMIPS control network using different hybrid (eager/lazy) SELF implementations.

Combination	nEForks/nForks: Eager Forks Used	nCycles	$\begin{aligned} & \text { Area } \\ & \left(\mu m^{2}\right) \end{aligned}$	Power @ 4ns $\frac{P_{\text {dyn }}}{P_{\text {leakage }}}(\mu \mathrm{W})$			Runtime (Cycles)		
				0 B	1 B	3 B		1 B	3 B
E-LF00-LJ1011	4/12:SOME BRANCHES OF FC, FL	0	513.0	$\frac{58.187}{1.980}$	$\frac{164.284}{1.990}$	$\frac{122.720}{1.992}$	98	147	245
E-LF01-LJ1111	6/12:FC, FL, FBCP	0	575.4	$\frac{65.626}{2.339}$	$\frac{188.094}{2.307}$	$\frac{140.389}{2.278}$	98	147	245
E-LF01-LJ1011	4/12:SOME BRANCHES OF FC, FL	0	588.0	$\frac{58.187}{2.640}$	$\frac{183.991}{2.536}$	$\frac{134.636}{2.542}$	98	147	245
E-LF01-LJ0000	6/12:FC, FL, FBCP	0	634.2	$\frac{65.626}{2.739}$	$\frac{194.001}{2.663}$	$\frac{143.822}{2.599}$	98	147	245
$E-L F 00-L J 1111$	8/12:FC, FL, FBCP, FMem, FABCI4P	0	639.0	$\frac{74.475}{2.525}$	$\frac{206.882}{2.514}$	$\frac{155.145}{2.499}$	98	147	245
E-LF01-LJ0011	6/12:FC, FL, FBCP	0	646.8	$\frac{65.626}{2.738}$	$\frac{192.545}{2.672}$	$\frac{143.065}{2.617}$	98	147	245
E-LF01-LJ 1010	6/12:FC, FL, FBCP	0	649.8	$\begin{array}{\|c} \hline \frac{64.710}{2.761} \\ \hline \end{array}$	$\frac{197.261}{2.691}$	$\frac{145.481}{2.631}$	98	147	245
E-LF01-LJ0010	6/12:FC, FL, FBCP	0	653.4	$\frac{65.635}{2.685}$	$\frac{191.208}{2.642}$	$\frac{142.149}{2.598}$	98	147	245
$E-L F 00-L J 0000$	8/12:FC, FL, FBCP, FMem, FABCI4P	0	683.4	$\frac{74.933}{2.825}$	$\frac{\frac{196.338}{2.762}}{}$	$\frac{148.919}{2.713}$	98	147	245
E - LF00-LJ0011	8/12:FC, FL, FBCP, FMem, FABCI4P	0	695.4	$\frac{74.933}{2.790}$	$\frac{198.957}{2.742}$	$\frac{150.580}{2.699}$	98	147	245
E-LF00-LJ0010	8/12:FC, FL, FBCP, FMem, FABCI4P	0	698.4	$\frac{74.475}{2.853}$	$\frac{202.539}{2.838}$	$\frac{152.374}{2.811}$	98	147	245
$E-L F 00-L J 1010$	8/12:FC, FL, FBCP, FMem, FABCI4P	0	704.4	$\frac{73.101}{2.887}$	$\frac{205.521}{2.867}$	$\frac{153.914}{2.844}$	98	147	245
EFork - LJoooo	12/12:ALL	0	752.4	$\frac{86.158}{2.914}$	$\frac{221.921}{2.875}$	$\frac{168.807}{2.842}$	98	147	245

in this specific network. Column 3 lists the number of combinational cycles in the control network (after eager fork replacements), which is zero for all of them. Column 4 lists the synthesis area. $E-L F 00-L J 1011$ requires minimum area among all with 31.8% reduction comparing to an all eager implementation. $E-L F 01-L J 1111$ comes second. Note that even though $E-L F 01-L J 1111$ uses more $E F$ orks than $E-L F 01-L J 1011$, it requires less area. This can be attributed to the logic simplicity of $L J 1111$ (Fig. 4.8) in comparison with $L J 1011$ (Fig. 4.9), making it easier to optimize the former during synthesis.

Column 5 lists the dynamic and leakage power consumption reported by the synthesis tool. Power is calculated with different number of bubbles inserted at the output of the register file. To accurately estimate the power, the synthesized netlist is simulated and an saif file is generated. That file is then read by the synthesis tool to calculate the power. Synthesis and simulation are done at 4 ns clock period for all the implementations. $E-L F 00-L J 1011$ consumes the least power among all with up to 32.5% and 32.1% dynamic and leakage power reduction comparing to an eager implementation. $E-L F 01-L J 1011$ comes second.

Finally, column 6 lists the required runtime (in terms of number of clock cycles) to finish the testbench program in [1]. The 12 hybrid networks all achieve the same runtime as the all eager implementation.

The elastic MiniMIPS constructed using the hybrid control network implementations listed in Table 4.6 can tolerate $0-3$ bubbles in the register file path, and still achieve the same runtime as the all eager implementation. A direct comparison with the ordinary clocked MIPS cannot be established since inserting bubbles in the latter will change some channel latencies causing it to fail. For the normally clocked MiniMIPS to handle bubbles (or variable latency interfaces) over its channels, several changes in the datapath may be required (e.g., implementing FSMs at channel receiver ends to wait until valid data arrive, some mechanism to propagate this information to the rest of the system, a stalling mechanism, etc.). On the other hand, and by its definition, synchronous elasticization inherently achieves such a goal.

Table 4.7 shows the cost of achieving this required elasticity using the SELF protocol in an all eager and a hybrid ($E-L F 00-L J 1011$) implementations. The results in the table are synthesis numbers for the whole MiniMIPS (not just the control network). Since the normally clocked MiniMIPS cannot directly tolerate register file bubbles, therefore and for the sake of comparison, no bubbles are added in either the normally clocked or the

Table 4.7: Elasticity area and power overheads of an all eager and a hybrid (eager/lazy) SELF implementations of the MiniMIP processor.

Implementation		Area		$P_{\text {dyn }} @ 4 \mathrm{~ns}$		$P_{\text {leak }}$	
		μm^{2}	over.\%	$\mu \mathrm{W}$	over.\%	$\mu \mathrm{W}$	over.\%
Normally clocked	Flip-flop based	2617.2		446.247		8.850	
MiniMIPS	Latch based	2642.4		380.466		9.504	
Elastic clocked	All eager (EFork - LJ0000)	3385.2	28.1\%	474.465	24.7\%	12.681	33.4%
MiniMIPS	Hybrid ($E-L F 00-L J 1011$)	3136.2	18.7\%	437.977	15.1\%	11.686	23.0\%

elastic MiniMIPS (even though the elastic MiniMIPS can tolerate the register file bubbles). Two implementations for the clocked MiniMIPS are listed. The first is flip-flop (FF) based. In the second one, each FF is replaced by a master-slave latch pair. The latches used in both the latch based and the elastic MiniMIPS are selected from manually synthesized and optimized templates that are protected during synthesis with set_size_only attributes. The FF based design is completely synthesized by DC. In this specific design and cell library, the latch based design consumed more area and leakage power but less dynamic power. Without loss of generality, overhead percentages (over. \%) of elastic versions are with respect to the latch based design. Please note that if more bubbles (or variable latency interfaces) are required in the MiniMIPS, more lazy forks (in the hybrid implementation) may need to be replaced by EForks to keep the same runtime as the all eager implementation, resulting in more area and power.

CHAPTER 5

UTILIZING THE ULTRA SIMPLE FORK AND CONTROLLER MERGING ${ }^{1}$

This chapter introduces two more area and power reduction techniques in synchronous elastic control networks, namely, utilizing the novel Ultra Simple Fork (USFork) and controller merging. The two techniques are fully automated and have been integrated in a tool called HGEN.

Last chapter introduced the concept of replacing expensive eager forks with lazy in places where eagerness does not provide any runtime advantage. Though the technique was shown to substantially reduce the area and power of a control network, the idea of hybrid (eager and lazy) control network can be further exploited. The flow of Sec. 4.6.3 showed that some of the eager forks are kept in the lazy-eager hybrid network for the sole purpose of cutting the combinational cycles (formed by lazy forks and joins). This motivates the search for a new fork structure that is, unlike lazy forks, does not form combinational cycles when combined with lazy joins in any arbitrary connection. Similar to lazy forks, the new sought design should also be cheap in area and power, and under similar constrained input behavior can also be substituted for eager forks without any performance loss.

Sec. 5.1 introduces the Ultra Simple Fork (USFork). As the name implies, the USFork implementation has no logic gates - just wired connections. The EFork transition diagram is computed and the conditions under which an EFork can be replaced by a USFork without any performance loss are formally driven. The transformation guarantees that, under such conditions, the USFork will schedule exactly the same state transitions as the EFork over all its channels, thus maintaining the same runtime. Unlike lazy SELF implementations, utilizing the USFork does not create combinational cycles when connected to lazy joins. In essence, the proposed approach selectively replaces the redundant EForks in a control network with USForks resulting in a hybrid network where both EForks and USForks are

[^8]used. The resultant network has the same runtime as the all eager network with reduced area and power consumption.

The second contribution of this chapter is automatically merging equivalent controllers. Sec. 5.2 investigates the conditions under which multiple SELF controllers can be merged into one controller. The transformation reduces the control network area and power overhead and is limited only by the physical placement constraints. SELF controller clustering has previously been reported in [50]. However, their approach requires both the control network and its environment to have static (and known) latencies. On the other hand, the approach proposed in this work can handle situations where the environment abstract is not available or required to be flexible. It can also handle designs with variable latency units.

The above two transformations have been integrated in a fully automated tool, HGEN (Sec. 5.4). Hybrid GENerator (HGEN) selectively replaces redundant EForks with USForks and, optionally, merges equivalent controllers. HGEN uses IBM ${ }^{\circledR} 6$ thSense tool [51] as an embedded verification engine. Comparing to the methodology used in published work on a MiniMIPS processor case study, HGEN shows up to 36.9% and 31.3% savings in area and power, respectively, due to utilizing $U S F$ orks. If the physical placement allows for controller merging, the resultant control network shows up to 62.8% and 54.1% savings in area and power, respectively. HGEN also shows at least 32% saving in the number of EForks in s382 ISCAS benchmark. More reduction is possible if the physical placement allows for controller merging. Thanks to the advance in synchronous verification technology, HGEN runs within seconds or a few minutes (for all this chapter examples). This makes the proposed approach suitable for tight time-to-market constraints.

5.1 Eager to Ultra Simple Fork Transformation

An overview of the SELF protocol was given in Sec. 2.1. An Elastic Buffer ($E B$) block diagram and the protocol state transition graph are drawn in Figures 2.1 and 2.2, respectively.

5.1.1 Eager SELF Protocol

An eager SELF implementation uses eager forks (EForks) and lazy joins. Study of lazy joins (and forks) are given in Chapter 4. Fig. 5.1 shows a 2-output-channel EFork proposed in [9]. Once a (Valid) data token is available at an EFork stem, it will immediately pass it to all its branches that are ready to receive (i.e., their corresponding Stall signals are low).

Figure 5.1: A 2-output-channel EFork.

Meanwhile, the EFork will Stall until all its branches receive the data token. This gives an early start to the branches that are ready.

5.1.2 Eager Fork State Diagram

A 2-output-channel EFork has 3 terminal channels, namely, L (Left), R_{1} (Right $_{1}$), and $R_{2}\left(\right.$ Right $\left._{2}\right)$. L consists of signals V_{l} and S_{l}. Similarly, R_{1} consists of $V_{r 1}$ and $S_{r 1}$, and R_{2} of $V_{r 2}$ and $S_{r 2}$. In order to compute the state diagram of the EFork, the behavior allowed by the SELF protocol over the fork 3 channels must be taken into account. Hence, the desired state diagram is obtained by composing the simple (2 flip-flop based) 4 -state diagram of the EFork circuit of Fig. 5.1 with the SELF transition diagram of Fig. 2.2 (over the three terminal channels). The EFork state table and diagram are depicted in Table 5.1 and Fig. 5.2, respectively. In this diagram, the inputs $V_{l}, S_{r 1}$, and $S_{r 2}$ are part of the state vector (along with the flip-flop outputs, Q_{1} and Q_{2}). To simplify the notation, the state vector takes the following format: $\left.<Q_{1}, Q_{2}, L, R_{1}, R_{2}\right\rangle$, where L, R_{1}, and R_{2} carry the corresponding channel status (i.e., I, T, or R). States with dot inside are reset states. Some of the transitions (and states) are not allowed (or reached) because of the SELF protocol constraints, and hence, omitted from the diagram. Most of the transition labels are omitted from Fig. 5.2 for brevity.

5.1.3 Input Behavior Constraints

In a 2-output-channel $E F o r k$, the input vector, I, is a 3 -tuple of signals $<V_{l}, S_{r 1}, S_{r 2}>\epsilon$ $\{0,1\}^{3}$. Subscript n is added to I and the 3 signals to denote the value at clock cycle n. S^{I} is

Table 5.1: The EFork state table.

Current State		Next State Inputs		Next State	
s_{i}	$Q_{1} Q_{2} \quad L \quad R_{1} \quad R_{2}$	$V_{l} \quad S_{r 1}$	$S_{r 2}$	s_{i}	$Q_{1} \quad Q_{2} \quad L \quad R_{1} \quad R_{2}$
s_{0}	$1 \begin{array}{lllll}1 & 1 & I & I & I\end{array}$	$\begin{array}{ll} \hline 0 & - \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	s_{0} s_{1} s_{3} s_{4} s_{2}	$\begin{array}{lllll}1 & 1 & I & I & I \\ 1 & 1 & T & T & T \\ 1 & 1 & R & T & R \\ 1 & 1 & R & R & T \\ 1 & 1 & R & R & R\end{array}$
s_{1}	$1 \begin{array}{lllll}1 & 1 & T & T & T\end{array}$	$\begin{array}{ll} \hline 0 & - \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	s_{0} s_{1} s_{3} s_{4} s_{2}	$\begin{array}{lllll}1 & 1 & I & I & I \\ 1 & 1 & T & T & T \\ 1 & 1 & R & T & R \\ 1 & 1 & R & R & T \\ 1 & 1 & R & R & R\end{array}$
s_{2}	$1 \quad 1 \quad R \quad R \quad R$	$\begin{array}{\|ll\|} \hline 0 & - \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	s_{1} s_{3} s_{4} s_{2}	$\begin{aligned} & \text { Illegal Transition } \\ & \begin{array}{\|ccccc} \hline & 1 & T & T & T \\ 1 & 1 & R & T & R \\ 1 & 1 & R & R & T \\ 1 & 1 & R & R & R \\ \hline \end{array} \end{aligned}$
s_{3}	$1 \begin{array}{lllll}1 & 1 & R & T & R\end{array}$	$\begin{array}{ll} \hline 0 & - \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	s_{5} s_{6} s_{5} s_{6}	$\begin{aligned} & \text { Illegal Transition } \\ & \begin{array}{\|ccccc} 0 & 1 & T & I & T \\ 0 & 1 & R & I & R \\ 0 & 1 & T & I & T \\ 0 & 1 & R & I & R \\ \hline \end{array} \end{aligned}$
s_{4}	$1 \quad R \quad R \quad T$	$\begin{array}{ll} \hline 0 & - \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	s_{7} s_{7} s_{8} s_{8}	$\begin{aligned} & \text { Illegal Transition } \\ & \begin{array}{\|ccccc} 1 & 0 & T & T & I \\ 1 & 0 & T & T & I \\ 1 & 0 & R & R & I \\ 1 & 0 & R & R & I \end{array} \end{aligned}$
s_{5}	0	$\begin{array}{ll} \hline 0 & - \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	s_{0} s_{1} s_{3} s_{4} s_{2}	$\begin{array}{lllll}1 & 1 & I & I & I \\ 1 & 1 & T & T & T \\ 1 & 1 & R & T & R \\ 1 & 1 & R & R & T \\ 1 & 1 & R & R & R\end{array}$
s_{6}	$0 \quad 1 \begin{array}{lllll} \\ 0 & & R & I & R\end{array}$	$\begin{array}{\|ll\|} \hline 0 & - \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	s_{5} s_{6} s_{5} s_{6}	$\begin{aligned} & \text { Illegal Transition } \\ & \begin{array}{\|ccccc} 0 & 1 & T & I & T \\ 0 & 1 & R & I & R \\ 0 & 1 & T & I & T \\ 0 & 1 & R & I & R \end{array} \end{aligned}$
s_{7}	$0 \quad T \quad T \quad I$	$\begin{array}{\|ll\|} \hline 0 & - \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	s_{1} s_{3} s_{4} s_{2}	$\begin{array}{lllll}1 & 1 & I & I & I \\ 1 & 1 & T & T & T \\ 1 & 1 & R & T & R \\ 1 & 1 & R & R & T \\ 1 & 1 & R & R & R\end{array}$
s_{8}	$1 \quad 0 \quad R \quad R \quad I$	$\begin{array}{ll}0 & - \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1\end{array}$	$\begin{aligned} & - \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	s_{7} s_{7} s_{8} s_{8}	$\begin{aligned} & \text { Illegal Transition } \\ & \begin{array}{\|ccccc} 1 & 0 & T & T & I \\ 1 & 0 & T & T & I \\ 1 & 0 & R & R & I \\ 1 & 0 & R & R & I \end{array} \end{aligned}$

Figure 5.2: The EFork state diagram.
defined to be an infinite sequence of input vectors ordered by the clock index. Hence, $S^{I}[n]=$ I_{n}. The total input behavior, B_{T}^{I}, is defined to be the set of all input sequences. Some of the input sequences are not allowed by the SELF protocol. For example, the following sequence will cause an R to I transition on the L channel: $\langle<1,0,0\rangle,\langle 1,1,1\rangle,<0,1,1\rangle, .$.$\rangle .$ The set of all sequences that are excluded for violating the SELF protocol will be denoted as E_{P}^{I}. Nonetheless, in this section, some of the sequences will also be excluded due to other constraints. Under Constraint C_{i}, the allowed input behavior, $B_{C i}^{I}$, is, thus, given by the following equation:

$$
\begin{equation*}
B_{C i}^{I}=B_{T}^{I}-\left(E_{P}^{I} \cup E_{C i}^{I}\right) \tag{5.1}
\end{equation*}
$$

where $E_{C i}^{I}$ is the set of sequences excluded from the input behavior for violating constraint C_{i}. The words property and constraint will be used interchangeably as long as the context is clear. In this work notation, constraint x constrains the input behavior such that property x holds. Properties (and constraints) will be specified using the Property Specification Language (PSL) syntax [60] unless mentioned otherwise.

Definition 5.1. Protocol Equivalence Two forks are said to be SELF protocol equivalent (or, for short, just protocol equivalent), if given the same input sequences, their terminal channels go through the same SELF state transitions.

Theorem 5.1. The EFork of Fig. 5.1 is protocol equivalent to the USFork of Fig. 5.3 if the fork input behavior is constrained such that the following property is true in the former: ALWAYS $s_{0}\left|s_{1}\right| s_{2}$, where s_{i} is 1 if the EFork is in state $s_{i} \forall i \in\{0,1,2\}$ (Refer to Fig. 5.2).

Proof. Figures 5.4 and 5.5 show the Karnaugh maps of $V_{r 1}$ (or $V_{r 2}$) and S_{l}, respectively, in states $s_{0}-s_{2}$. By using simple logic optimization, the following equations can be obtained:

Figure 5.3: A 2-output-channel USFork.

$$
\begin{equation*}
V_{r 1}=V_{l}, V_{r 2}=V_{l}, S_{l}=S_{r 1} \text { or } S_{l}=S_{r 2} \tag{5.2}
\end{equation*}
$$

The USFork of Fig. 5.3 exactly implements these equations.
Notice that the choice to connect S_{l} to either $S_{r 1}$ or $S_{r 2}$ in Fig. 5.3 is irrelevant. The reason is, as will be shown in Theorem 5.2, under the input constraint specified in Theorem 5.1, $S_{r 1}$ and $S_{r 2}$ are always identical. They may differ only when V_{l} is zero, in which case the L channel is in the idle (I) state whatever the value of S_{l}.

Definition 5.2. Equivalent Constraints Referring to Equation 5.1, two constraints C_{i} and C_{j} are said to be equivalent if $B_{C i}^{I}=B_{C j}^{I}$ (i.e., the allowed input behavior under constraint i is the same as the allowed input behavior under constraint j).

In other words, two properties i and j (also referred to as constraints) are equivalent if constraining the input behavior such that property i holds, will also cause property j to hold, and vice versa.

Similarly, n properties (also referred to as constraints) are equivalent if $\forall i, j \in$ $\{1,2, . ., n\}$: property i and property j are equivalent.

Figure 5.4: $V_{r 1}$ (same for $V_{r 2}$) in states s_{0} to s_{2}.

Figure 5.5: S_{l} in states s_{0} to s_{2}.

Theorem 5.2. The following three properties (also referred to as constraints) are equivalent:

1. ALWAYS $s_{0}\left|s_{1}\right| s_{2}$, where s_{i} is 1 if the EFork is in state $s_{i} \forall i \in\{0,1,2\}$.
2. NEVER $V_{l} \&\left(S_{r 1}\right.$ xor $\left.S_{r 2}\right)$.
3. ALWAYS $V_{r 1}$ xnor $V_{r 2}$.

Proof. It will be proved that constraining the input behavior such that any one property holds will cause the other two to hold as well.
C. 1 If the input behavior is constrained such that EFork operates in s_{0} to s_{2} only (i.e., C. 1 holds), then, as shown in s_{0} to s_{2} entries in Table 5.1, $S_{r 1}$ never differs from $S_{r 2}$ while V_{l} is one (C. 2), and $V_{r 1}$ is always the same as $V_{r 2}$ (C. 3).
C. 2 States s_{0} to s_{4} are reset states. However, if the input behavior is constrained such that $S_{r 1}$ is always the same as $S_{r 2}$ while V_{l} is one, then the EFork can reset only in any of the states s_{0} to s_{2}, exclusively. Besides, it will stay in these states since all the red transitions in Fig. 5.2 will not fire. Hence, C. 1 will be satisfied, and subsequently, C. 3 will be satisfied as well.
C. 3 If the input behavior is constrained such that only those input sequences that cause $V_{r 1}$ to be always the same as $V_{r 2}$ are allowed, then the EFork will never move to any of the states s_{5} to s_{8} (where $V_{r i}$ differ). Moreover, the EFork will not reset in states s_{3} or s_{4} since all the input sequences that go through them must also go through states s_{5} to s_{8} (no other transition is permitted). And the latter sequences are excluded by the constraint. Hence, forcing C. 3 will cause the EFork to reset and operate in states s_{0} to s_{2} only. Therefore, both C. 1 and C. 2 will be satisfied.

Definition 5.3. Equivalence Constraint A constraint on the input behavior that causes the EFork to be protocol equivalent to the USFork is called an equivalence constraint.

Thus, each of the three constraints of Theorem 5.2 is an equivalence constraint. When the context is clear, an equivalence constraint will also be referred to as an equivalence condition. Following, it will be proved that any of these three conditions allow us to find the maximum number of candidate EForks in a network that can be replaced by USForks.

Definition 5.4. Minimal Equivalence Constraint An equivalence constraint is minimal if it allows for maximum behavior of the inputs beyond which an EFork will fail to be protocol equivalent to a USFork.

Theorem 5.3. Each of the three constraints of Theorem 5.2 is minimal.

Proof. If C. 1 is not minimal, then the EFork is allowed to operate in other states beside s_{0} to s_{2} and still be protocol equivalent to the USFork. However, this is not the case. In states s_{5} to s_{8}, the EFork $V_{r 1}$ and $V_{r 2}$ differ. Thus, the EFork R_{1} and R_{2} channels will be in protocol states that cannot be provided (or scheduled) by the USFork (where $V_{r 1}$ is tied to $V_{r 2}$-Fig. 5.3). Similarly, if the EFork operates in states s_{3} or s_{4}, it has no other legal transition but to move to one of the states s_{5} to s_{8} (which as was argued break the protocol equivalence). Hence, C. 1 is a minimal constraint.

Since the three constraints are equivalent (from Theorem 5.2), therefore, they constrain the input behavior similarly. It follows that, since C. 1 is minimal, C. 2 and C. 3 are minimal as well.

To check for EFork replacements, the EFork can be checked against any of the three properties. However, without loss of generality, only property 3 will be used, hereafter. Would two branches of an EFork satisfy property 3, the EFork can be correctly replaced by a USFork. Being a minimal condition for equivalence (as proven in Theorem 5.3), it maximizes the chance of finding candidate EForks for replacement.

Replacing an EFork with a USFork cannot create combinational cycles, since there are no internal paths inside the USFork that connects Valid to Stall ports (or vice versa). This is an advantage over lazy forks where such internal paths do exist. Besides, since (under the mentioned conditions) the USFork is protocol equivalent to the EFork, they both schedule the same protocol state transitions over their terminal channels. Hence, they will both have the same runtime. Finally, replacing an EFork with a USFork should never degrade the control network maximum frequency. It can actually boost it since the USFork cuts from all the EFork internal path delays (by removing the logic gates), and it does not add any new paths.

5.1.4 Verification

To verify Theorems 5.1 and 5.2, the setup of Fig. 5.6 is used. The whole structure is modeled and passed to a symbolic model checker, NuSMV [59]. The EFork and USFork inputs (i.e., $V_{l}, S_{r 1}$, and $S_{r 2}$) are driven from Protocol Terminals (PTs). A PT can simply be an $E B$ controller initialized in a random state. It can also be implemented as a SELF channel with protocol constraints forced on its Valid and Stall signals. In this section the first approach is used, the other will be used later in the chapter. The outputs of the EFork
and USFork have suffixes of $_E$ and $_U S$, respectively. They are ORed together to form the corresponding signals over the three terminal channels (i.e., L, R_{1}, and R_{2}). Valid and Stall signals on channel L will be denoted as $V L$ and $S L$, respectively. Same for the other channels. For example, $V R 1$ is the ORing of $V R 1 _E$ and $V R 1_{-} U S$.

The shown blocks as well as a clock generator are all connected synchronously in NuSMV. The clock changes phase with every verification cycle. The I, T, and R states of the EFork L channel (denoted as $L_{-} E$) are defined as follows:
DEFINE L_E_I := !VL_E;
DEFINE L_E_T := VL_E \& !SL_E;
DEFINE L_E_R := VL_E \& SL_E;
And on the USFork:
DEFINE L_US_I := !VL_US;
DEFINE L_US_T := VL_US \& !SL_US;
DEFINE L_US_R := VL_US \& SL_US;
The other states of the other 2 channels are defined similarly for both EFork and USFork. The EFork states of operation are also defined as follows:
-- s0 = 11III
DEFINE SO_E := EFork.q1 \& EFork.q2 \& L_E_I \& R1_E_I \& R2_E_I;
-- s1 = 11TTT
DEFINE S1_E := EFork.q1 \& EFork.q2 \& L_E_T \& R1_E_T \& R2_E_T;

Figure 5.6: EFork-USFork equivalence verification setup.

```
-- s2 = 11RRR
DEFINE S2_E := EFork.q1 & EFork.q2 & L_E_R & R1_E_R & R2_E_R;
-- s3 = 11RTR
DEFINE S3_E := EFork.q1 & EFork.q2 & L_E_R & R1_E_T & R2_E_R;
-- s4 = 11RRT
DEFINE S4_E := EFork.q1 & EFork.q2 & L_E_R & R1_E_R & R2_E_T;
```

Mismatches over the three channels are defined as follows:

```
DEFINE L_MISMATCH := (L_E_I xor L_US_I) | (L_E_T xor L_US_T) | (L_E_R xor
L_US_R);
DEFINE R1_MISMATCH := (R1_E_I xor R1_US_I) | (R1_E_T xor R1_US_T) | (R1_E_R
xor R1_US_R);
DEFINE R2_MISMATCH := (R2_E_I xor R2_US_I) | (R2_E_T xor R2_US_T) | (R2_E_R
xor R2_US_R);
DEFINE MISMATCH := L_MISMATCH | R1_MISMATCH | R2_MISMATCH;
Finally, the three constraints (or properties) are defined as follows (without temporal
qualifiers):
```

DEFINE C_1 := S0_E | S1_E | S2_E;
DEFINE C_2 := ! (VL \& (SR1 xor SR2)) ;
DEFINE C_3 := VR1_E xnor VR2_E;

A constraint is forced through the NuSMV INVAR reserved word, and a property is verified using PSLSPEC. In the following code, only one constraint is forced at a time. To verify Theorem 5.1:

INVAR C_1;
PSLSPEC never MISMATCH; -- True
Similarly, Theorem 5.2 Constraint. 1 is verified as follows:
INVAR C_1;
PSLSPEC always C_2; -- True
PSLSPEC always C_3; -- True
And Theorem 5.2 Constraint. 2:
INVAR C_2;
PSLSPEC always C_1; -- True
PSLSPEC always C_3; -- True
And Constraint. 3:

INVAR C_3;

PSLSPEC always C_1; -- True
PSLSPEC always C_2; -- True

5.1.5 Multi-output-channel EForks

Theorem 5.6 extends the results of the previous theorems to multi-output-channel EForks.

Lemma 5.4. An n-output-channel EFork is protocol equivalent to concatenated (n-1) 2-output-channel EForks.

Proof. Proof is trivial and omitted for brevity.

Lemma 5.5. An n-output-channel USFork is protocol equivalent to concatenated ($n-1$) 2-output-channel USForks.

Proof. Proof is trivial and omitted for brevity.

Theorem 5.6. If, in Fig. 5.7, $\forall i, j \in\{1,2, . ., k\}$ the following property holds: ALWAYS ($V_{r i}$ xnor $V_{r j}$), then the hybrid fork (HFork) of Fig. 5.7 b is protocol equivalent to the eager fork (EFork) of Fig. 5.7a.

Proof. The proof follows from Lemmas 5.4 and 5.5 and Theorems 5.1 and 5.2, and was omitted for brevity.

Red forks in Fig. 5.7 are EForks while green are USForks.

Figure 5.7: Eager to hybrid transformation of multi-output forks.

5.2 Elastic Buffer Controller Merging

In a typical control network, some Elastic Buffer Controllers ($E B C$ s) may activate their corresponding latches at similar schedules. This can allow for possible merging of these controllers into one controller that feeds them all (as much as the physical placement permits). In this section and the following, a framework is provided for finding and merging such controllers in any control network; including open networks (i.e., when the environment abstract is not available or required to be flexible) as well as networks incorporating variable latency units.

Definition 5.5. Functional Equivalence Two structures are said to be functionally equivalent, if given the same input sequences, they produce the same output sequences.

Theorem 5.7. If the n EBCs of Fig. 5.8a are initialized in the same state and the environment behavior is constrained such that the following two properties (also referred to as constraints) are true $\forall i, j \in\{1,2, . . n\}, i \neq j$:

1. ALWAYS ($V_{l i}$ xnor $V_{l j}$).
2. ALWAYS ($S_{r i}$ xnor $S_{r j}$).

Then, the structure of Fig. $5.8 b$ is functionally equivalent to the one in Fig. 5.8a.

Proof. Trivial. It is easy to show under the conditions of the theroem, that the following properties will also hold: ALWAYS ($V_{r i}$ xnor $V_{r j}$), ALWAYS ($S_{l i}$ xnor $S_{l j}$), ALWAYS ($E_{m i}$ xnor $E_{m j}$), and ALWAYS ($E_{s i}$ xnor $E_{s j}$).
$E B C$ merging is limited only by the physical placement constraints. Authors of [50] proposed a technique in which a maximum diameter per cluster of merged $E B C$ s is specified. The same technique can be readily integrated in this approach.

5.3 Verification Models of Different Control Network Components

An elastic control network needs to be verified as a whole to check if the required conditions for using USForks or merging EBCs are met. Two frameworks were particularly useful in this work, namely, 6thSense and NuSMV. This section will try to cover both frameworks as space allows.

6thSense uses a standard VHDL to model a circuit and is particularly designed for synchronous circuit verification. Most of the control network models will be omitted since they are intuitive.

Figure 5.8: $E B C$ merging.

NuSMV model checker has its own input language and supports both synchronous and asynchronous circuit verification. To mimic a synchronous behavior in NuSMV, the network components (e.g., joins and forks), including a clock generator, are connected synchronously. All combinatorial logic are modeled with zero delay (using DEFINE reserved word), and the clock generator changes phase with every verification cycle. An NuSMV model for a clock generator is as follows:

MODULE ClkGenerator
VAR Clk:boolean;
ASSIGN init(Clk) := 0; next (Clk) := !Clk;
and for a D-FF (with a reset value of 1):
MODULE DFF1 (Clk,D)
VAR Q:boolean;
ASSIGN
init(Q):= 1;
next(Q):= case
(Clk=0) \& (next (Clk)) $=1: \quad \mathrm{D}$;
1: Q; esac;

5.3.1 n-Input Join

An NuSMV model for an n-input extension of the $L J 1111$ join structure of Fig. 4.8 is as follows:

```
MODULE LJoinn(Vl1,Vl2,..Vln,Sr)
DEFINE Vr:= Vl1 & V12 & ... Vln;
DEFINE Sl1:= !(Vr & !Sr); ... DEFINE Sln:= !(Vr & !Sr);
```


5.3.2 n-Output Fork

An NuSMV model for the n-output EFork of Fig. 2.4 is as follows:
MODULE EForkn (Clk, V1, Sr1, Sr2, ...Srn)
VAR DFF_1: DFF1 (Clk,d1); ... DFF_n: DFF1 (Clk,dn) ;
DEFINE d1 := (Sr1 \& q1) | ! (V1 \& Sl) ;
DEFINE q1 := DFF_1.Q; DEFINE Vr1 := V1 \& q1; ...
DEFINE dn $:=(S r n ~ \& ~ q n) ~ \mid ~!~(V 1 ~ \& ~ S l) ~ ; ~$
DEFINE qn $:=$ DFF_n.Q; DEFINE Vrn $:=\mathrm{Vl}$ \& qn;
DEFINE Sl $:=(S r 1 \& q 1)|(S r 2 \& q 2)| . . \quad(S r n ~ \& q n) ;$
USFork transformation Condition 3 of Theorem 5.2 is verified for each two branches in the EFork to determine if they can be replaced by a USFork. Hence, in an n-output EFork F and $\forall i, j \in\{1,2, . ., n\}, i \neq j$, the following properties are specified. In NuSMV: DEFINE F_i_j_MISMATCH := Vri xor Vrj ;
PSLSPEC never F_i_j_MISMATCH;
And, in 6thSense (bil file):
[fail; F_i_j; "F_i_j"] <= Vri xor Vrj ;

5.3.3 Elastic Buffer Controller

Similarly, the $E B C$ model immediately follows the FSM or the circuit implementation of [9]. The EBC merging condition of Theorem 5.7 is verified for each two $E B C$ s in the network to determine if they can be merged. Hence, for a control network with n EBCs and $\forall i, j \in\{1,2, . ., n\}, i \neq j$, the following properties are specified. In NuSMV:

DEFINE EBC_i_j_MISMATCH := (Vli xor Vlj) | (Sri xor Srj) ;
PSLSPEC never EBC_i_j_MISMATCH;
And in 6thSense (bil file) as:

```
[ fail; EBC_i_j; "EBC_i_j" ] <= (Vli xor Vlj) or (Sri xor Srj) ;
```


5.3.4 SELF Input Channel

A SELF input channel (see Fig. 5.9) is the control channel corresponding to a data input (or group of data inputs) to the design. The Valid signal of this channel $V i$ is an input to the design and the Stall (Si) is an output. Vi will be defined as an input with the SELF protocol constraints applied. In particular, SELF prohibits a transition from R to I states on any channel. This constraint on the input behavior is expressed in NuSMV as:
DEFINE InputChannel_i_Constraint $:=$! (Vi) | ! (Si) | Vi_next;
INVAR InputChannel_i_Constraint;
and in 6thSense (bil file) as:
[constraint; InputChannel_i_Constraint] <= not(Vi) or not(Si) or Vi_next; In both cases, $V i$ is a one clock delayed version of Vi_next. Vi_next is, then, considered as the virtual input that the verification engine exhaustively randomizes.

5.3.5 SELF Output Channel

Similarly, a SELF output channel (see Fig. 5.9) is the control channel corresponding to a data output (or group of data outputs) from the design. The Valid signal of this channel $V i$ is an output from the design and the Stall (Si) is an input. The SELF protocol does not explicitly set constraints on the possible sequence of values over the input Stall signal. However, it can be easily inferred from the $E B$ specifications in [9] or the EHB (elastic half buffer) in [58] that a transition from $I 0(!V \&!S)$ to $I 1(!V \& S)$ states cannot happen on any SELF channel. Hence, the following constraint is applied to the SELF output channel. In NuSMV:

Figure 5.9: Illustration of elastic control network input and output channels.

```
DEFINE OutputChannel_i_Constraint := Vi | Si | ! (Si_next);
```

INVAR OutputChannel_i_Constraint;
and in 6thSense as:
[constraint; OutputChannel_i_Constraint] <= Vi or Si or not(Si_next);
Again, $S i$ is a one clock delayed version of the input Si_next.

5.3.6 Variable Latency Unit

Fig. 5.10 [9] shows a block diagram of a variable latency unit (VLU) and a variable latency controller (VLC). The VLC model follows the figure directly and omitted for brevity. The VLU model would depend on the actual unit design. Nonetheless, to be able to verify the control network, it suffices to know the minimum and maximum latency values of that unit (whatever its functionality is). Hence, for each VLU, a model is used that randomly picks the next latency value from a range of values [min,max] specified by the designer for that VLU.

5.4 HGEN Tool

To automate the transformations described in this chapter, HGEN was developed. HGEN (Hybrid network GENerator) is a fully automated tool that takes a verilog description of a control network and returns a verilog description of the minimized version. The tool currently uses 6thSense as the verification engine. Support for NuSMV is left for future versions. HGEN models the input verilog control network into VHDL. It adds the proper

Figure 5.10: A variable latency unit and a controller.
constraints for the SELF channels. The EFork to USFork transformation conditions are verified for each fork in the network. Similarly, the $E B$ controller merging conditions are checked for each two $E B$ controllers. HGEN automatically generates the suitable models for the variable latency units (based on the min and max latencies provided by the user in a configuration file). It generates a report with the EFork branches that have been transformed into $U S F o r k$, and the merged $E B$ controllers. - nm (no merge) option can be used to prevent HGEN from merging equivalent $E B$ controllers (i.e., to only check for and do EFork to USFork transformations). The option is useful for doing the $E B C$ merge after having some insight over the place and route information. HGEN currently supports all the network components described in Sec. 5.3 and more. Other component models (e.g., elastic half buffer and early evaluation components [43]) can be readily integrated.

5.5 Results

For all the designs in this section, CNG tool (Chapter 3) is used to automatically generate their initial elastic control networks. HGEN is then run to do the transformations described in this chapter. In all the designs the runtime is within seconds or a few minutes. The machine used has AMD Athlon ${ }^{\text {TM }} 64$ X2 Dual Core 3.2 GHz processor. Area and power are synthesis numbers. DC Ultra ${ }^{\mathrm{TM}}[53]$ technology and $\mathrm{IBM}^{\circledR} 65 \mathrm{~nm}$ library were used.

5.5.1 The MiniMIPS Processor

For the sake of comparison with previous optimization techniques in this dissertation, the MiniMIPS processor is used as one of this chapter case studies. The MiniMIPS is an 8-bit subset of the 32 -bit MIPS (Microprocessor without Interlocked Pipeline Stages) $[46,1]$. A block diagram of the original clocked MiniMIPS is shown in Fig. 2.5. The MiniMIPS synchronous elasticization is described in Sec. 2.2. The CNG-generated elastic control network is in Fig. 3.9.

To illustrate the capability of the proposed approach, the MiniMIPS is studied in three different settings:

5.5.1.1 Register File Bubbles

In this setting the control network is closed. One to three bubble stages are inserted at the two outputs of the register file (shown in dotted rectangles in Fig. 5.11). In practice this can be done to accommodate a high latency register file or because of long wires. The
resultant control network verilog is passed to HGEN twice (once to do EFork to USFork conversion only, and the second to merge equivalent $E B C$ s as well). Table 5.2 shows the synthesis results. The last two rows in Table 5.2 are entries for the cases when controller merging is enabled. For the sake of comparison, Table 5.2 also includes entries from Chapter 4 for the all eager network as well as two implementations that were found to be the most area efficient among the MiniMIPS hybrid (EFork-LFork) implementations, namely, LF01-LJ1111 and LF00-LJ1011. The EFork-USFork hybrid networks are implemented using the area and power efficient lazy joins $L J 0000$ and $L J 1111$. Column 1 in Table 5.2 lists the different combinations (sorted by their area). Column 2 lists the set of all forks that have to be implemented as eager (to both maintain the performance and cut the cycles (for the case of lazy forks)). The column also shows the ratio of the number of EForks used to the total number of forks in the network. Since USForks do not produce combinational cycles, therefore, EForks are only used when their eagerness provide runtime advantage. Hence, comparing to EFork-LFork hybrid combinations, EFork-USFork hybrid combinations require fewer number of E Forks, thus minimizing the area and power of the control network. Column 3 lists the number of Elastic Buffer Controllers (EBCs) in the network. HGEN verification found that 6 out of the $10 E B C$ s in the MiniMIPS elastic network (in this setting) can be merged into other $E B C$ s. The $E B C$ s in the following groups can be merged

Figure 5.11: Control network of the elastic clocked MiniMIPS with register file bubbles.
Table 5.2: Area, power, and runtime of the MiniMIPS control network using different hybrid (eager/ultra-simple) SELF

Combination	nEForks/nForks: Eager Forks Used	$\mathrm{n} E B C \mathrm{~s}$	nCyc.	Area$\left(\mu m^{2}\right)$	$\text { Power @ 4ns } \frac{P_{\text {dyn }}}{P_{\text {leakage }}}(\mu \mathrm{W})$			Runtime (Cyc.)		
					0 B	1 B	3 B		1 B	3 B
EFork - LJ0000	12/12:All	10	0	752.4	$\frac{86.158}{2.914}$	$\frac{221.921}{2.875}$	$\frac{168.807}{2.842}$	98	147	245
E-LF01-LJ1111	6/12:FC, FL, FBCP	10	0	575.4	$\frac{65.626}{2.339}$	$\frac{188.094}{2.307}$	$\frac{140.389}{2.278}$	98	147	245
E-LF00-LJ1011	4/12:Some branches of FC, FL	10	0	513.0	$\frac{58.187}{1.980}$	$\frac{164.284}{1.990}$	$\frac{122.720}{1.992}$	98	147	245
E-USFork - LJ0000	2/12:Some branches of FC, and of FL	10	0	503.4	$\frac{53.992}{2.159}$	$\frac{153.789}{2.119}$	$\frac{114.595}{2.077}$	98	147	245
E-USFork - LJ1111	2/12:Some branches of FC, and of FL	10	0	474.6	$\frac{53.992}{1.965}$	$\frac{152.360}{1.955}$	$\frac{113.663}{1.940}$	98	147	245
E-USFork - LJ0000_m	2/12:Some branches of FC, and of FL	4	0	288.6	$\frac{26.892}{1.276}$	$\frac{95.391}{1.281}$	$\frac{68.643}{1.279}$	98	147	245
E-USFork - LJ1111_m	2/12:Some branches of FC, and of FL	4	0	279.6	$\frac{27.350}{1.256}$	$\frac{101.754}{1.240}$	$\frac{72.667}{1.223}$	98	147	245

together $(E B C$ s of the same group are drawn with the same color in Fig. 5.11; no $E B C$ for Mem $):\{(C),(I 4, L, P),(I 1, I 2, I 3, M),(A, B)\}$. The two bubble $E B C$ s before A and B, respectively, can be merged as well; however, the two bubble areas are not included in the results. Column 4 lists the number of combinational cycles in the control network (after eager fork replacements), which is zero for all of them. Columns 5 and 6 list the synthesis area and power consumption, respectively. Comparing to the all eager implementation, the EFork-USFork-LJ1111 (or, for short, E-USFork-LJ1111) hybrid network (without EBC merging), in the case of 1 bubble, for example, shows up to 36.9% and 31.3% savings in the control network area and power, respectively. If the physical placement allows for controller merging, the resultant control network (with EBC merging) shows up to 62.8% and 54.1% savings in area and power, respectively. Finally, column 7 lists the required runtime (in terms of number of clock cycles) to finish the testbench program in [1]. Since all the transformations in this dissertation preserve the runtime, all the settings listed achieve the same runtime as the all eager implementation.

Row 1 of Table 5.3 contrasts the results of this setting (in case of 1 bubble in the register file path) with the other settings studied in this section.

5.5.1.2 Variable Latency ALU

In this setting, the control network is closed, and there are no bubbles at the register file outputs. The ALU is modeled with a variable latency unit that finishes an operation within one or two clk cycles. Row two of Table 5.3 shows the results. In this setting, 9 out of the 12 EForks can be replaced by USForks. This achieves 32.3% area reduction, and 30.5% and 25.9% dynamic, and leakage power savings, respectively. Similarly, the table also shows $63.1 \%, 63.0 \%$, and 55.6% reductions in area, dynamic and leakage power, respectively, in case the physical placement allows for merging 7 out of the 10 EBCs.

5.5.1.3 Off-Chip Memory with Unknown Latency

In this setting, the control network is open at the memory interface. The memory interface is modeled in HGEN by one input and one output SELF channels. In practice this can be done if the actual latency of the memory is unknown or required to be flexible. Row three of Table 5.3 shows the results. In this setting, 7 out of the 12 EForks can be replaced by USForks. This achieves 25.6% area reduction, and 22.8% and 22.2% dynamic and leakage power savings, respectively. Similarly, the table also shows $47.7 \%, 45.0 \%$, and
Table 5.3: HGEN results for the elastic MiniMIPS control network. Power is computed at 4 ns clock period.

			The Original Control Network				HGEN Step 1				HGEN Step 2			
Design	\#I	\#	Total \# EForks	Total \# EBCs	$\begin{gathered} \text { Area } \\ \left(\mu m^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{P}(\mu \mathrm{~W}) \\ \frac{P_{\text {dyn }}}{P_{\text {leakage }}} \end{gathered}$	\# Repl. EForks	$\begin{aligned} & \text { Area } \\ & \left(\mu m^{2}\right) \end{aligned}$	$\begin{array}{\|c} \mathrm{P}(\mu \mathrm{~W}) \\ \frac{P_{\text {dyn }}}{P_{\text {leakage }}} \\ \hline \end{array}$	$\frac{\# \text { Prop. }}{\text { Time }(s)}$	$\begin{gathered} \text { \# Merg. } \\ E B C \mathrm{~s} \end{gathered}$	$\begin{aligned} & \text { Area } \\ & \left(\mu m^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{P}(\mu \mathrm{~W}) \\ & \frac{P_{\text {dyn }}}{P_{\text {leakage }}} \end{aligned}$	$\frac{\# \text { Prop. }}{\text { Time }(s)}$
MiniMIPS - 1	0	0	12	10	752.4	$\frac{221.921}{2.875}$	10	474.6	$\frac{152.360}{1.955}$	$\frac{19}{0.52}$	6	279.6	$\frac{101.754}{1.240}$	$\frac{65}{0.64}$
MiniMIPS - 2	0	0	12	10	754.2	$\frac{108.3}{2.7}$	9	510.6	$\frac{75.3}{2.0}$	$\frac{19}{0.7}$	7	278.4	$\frac{40.1}{1.2}$	$\frac{64}{0.85}$
MiniMIPS - 3	1	1	12	10	754.2	$\frac{110.5}{2.7}$	7	561.0	$\frac{85.3}{2.1}$	$\frac{19}{20.56}$	5	394.8	$\frac{60.8}{1.6}$	$\frac{64}{10.46}$

40.7% reductions in area, dynamic, and leakage power, respectively, in case the physical placement allows for merging 5 out of the $10 E B C$ s.

5.5.2 \quad S382

S382 (see Fig. 5.12) is one of the ISCAS benchmarks. It has 3 input channels: F, T, and C, and 6 output channels: Y2, Y1, R2, R1, G2, and G1, and 21 EBCs. Table 5.4 shows the results of running HGEN over s382 in 3 different incremental settings:

1. All the 9 input/output channels are left open.
2. Y2 is connected to F, and Y1 is connected to T. The other 5 input/output channels are left open.
3. Y 2 is connected to F , and Y 1 is connected to T . R2, R1, and G 2 are connected to C through a 3 -input join followed by a bubble. Output channel G1 is left open.

Figure 5.12: S382.

Table 5.4: HGEN results for s382 benchmark.

Design	\#I	\# O	Total \# EForks	Total \# $E B C \mathrm{~s}$	\# Repl. EForks	\# Merg. $E B C \mathrm{~s}$	$\frac{\# \text { Prop }}{\text { Time }(s)}$
s382-1	3	6	25	21	8	7	$\frac{255}{20.1}$
s382-2	1	4	25	21	9	8	$\frac{255}{375.22}$
s382-3	0	1	25	22	18	17	$\frac{255}{152.29}$

Intuitively, the input behavior of setting 3 is a subset of 2 , which in turn, is a subset of 1. Hence, the number of EForks that can be replaced by USForks is the same or increases from setting 1 to setting 3 . Though the proposed approach handles open and closed control networks, however, this example shows that the chance of finding candidate EForks for replacement increases as more knowledge of the environment is available. In s382, the reduction in the number of EForks is $32 \%, 36 \%$, and 72% in settings 1, 2, and 3, respectively.

Finally, Table 5.5 shows HGEN results for other ISCAS benchmarks verified in totally open control network settings (i.e., no abstract for the environment is provided). The results emphasize the speed of the tool. Further savings in the number of $E F$ orks and $E B C$ s can be achieved with more knowledge of the environment model.

Table 5.5: HGEN results for other ISCAS benchmarks - in open network settings.

Design	\#I	\#	Total \# EForks	Total \# EBCs	\# Repl. EForks	\# Merg. $E B C \mathrm{~s}$	$\frac{\# \text { Prop. }}{\text { Time }(s)}$
s27	4	1	3	3	1	1	$\frac{7}{0.79}$
s298	3	6	25	14	2	2	$\frac{131}{5.37}$
s344	9	11	32	15	2	2	$\frac{177}{2.61}$
s386	7	7	15	6	2	2	$\frac{40}{1.49}$
s1488	8	19	32	6	5	5	$\frac{102}{4.56}$

CHAPTER 6

CONCLUSION AND FUTURE WORK

Several optimization algorithms, tools and flows have been introduced in this dissertation to minimize the area and power overhead of elastic control networks without sacrificing performance. That included:

- minimizing the total number of join and fork control steering units in the control network.
- replacing the area and power expensive eager forks with lazy forks under some performance equivalence conditions.
- utilizing a novel Ultra Simple Fork (USFork) implementation. The USFork has two advantages over lazy forks: it is composed of simpler logic (just wires) and does not form combinational cycles in the control network.
- merging equivalent Elastic Buffer Controllers $(E B C)$ s.

The dissertation also introduced a fully automated control network verification (and transformation) framework (HGEN). HGEN automatically verifies the conditions under which an EFork can be replaced by a lazy fork or a USFork, and the conditions under which several $E B C$ s can be merged in a control network. HGEN supports different types of synchronous elastic control networks. That includes open networks (i.e., when the environment abstract is not available or required to be flexible) as well as networks incorporating variable latency units.

The MiniMIPS processor was studied as a running case study throughout the dissertation. Table 6.1 shows the area, power, and runtime of the most relevant control network implementations in this work. Results are synthesis numbers (of the control network only) using the Artisan academic library for $\mathrm{IBM}^{\circledR} 65 \mathrm{~nm}$ process. Runtime is measured in the number of clock cycles required to finish the testbench program in [1]. The table starts with the non-optimized version generated using the direct approach proposed in [9, 3] (Row 1). Every following row shows the effect of applying one of the optimization techniques proposed in this dissertation. Comparing the last row to the first, the optimization techniques of this
Table 6.1: Summary of results for some of the different MiniMIPS control network implementations introduced in this dissertation. One bubble is inserted at each of the register file two outputs.

Network Generator	Reference Chapter	Combination	nEForks/nForks: Eager Forks Used	$\mathrm{n} E B C \mathrm{~s}$	nCyc.	Area $\left(\mu m^{2}\right)$	P@4ns $\frac{P_{\text {dyn }}}{P_{\text {leakage }}}(\mu \mathrm{W})$	Runtime (Сус.)
[9, 3]	Ch. 1	EFork - LJ0000	25/25:ALL	10	0	1044.0	$\frac{324.424}{4.018}$	147
Hand optimized	Ch. 2	EFork - LJ0000	14/14:ALL	10	0	799.2	$\frac{235.941}{2.990}$	147
CNG	Ch. 3	EFork - LJ0000	12/12:ALL	10	0	752.4	$\frac{221.921}{2.875}$	147
	Ch. 4	E-LF01-LJ1011	4/12:Some branches of FC, FL	10	0	588.0	$\frac{183.991}{2.536}$	147
	Ch. 4	E-LF01-LJ1111	6/12:FC, FL, FBCP	10	0	575.4	$\frac{188.094}{2.307}$	147
	Ch. 4	E-LF00-LJ1011	4/12:Some branches of FC, FL	10	0	513.0	$\frac{164.284}{1.990}$	147
	Ch. 5	E-USFork-LJ0000	2/12:Some branches of FC, and of FL	10	0	503.4	$\frac{153.789}{2.119}$	147
	Ch. 5	E-USFork-LJ1111	2/12:Some branches of FC, and of FL	10	0	474.6	$\frac{152.360}{1.955}$	147
	Ch. 5	E-U SFork-LJ0000_m	2/12:Some branches of FC, and of FL	4	0	288.6	$\frac{95.391}{1.281}$	147
	Ch. 5	E-U SFork-LJ1111_m	2/12:Some branches of FC, and of FL	4	0	279.6	$\frac{101.754}{1.240}$	147

dissertation accumulatively achieve an area, dynamic, and leakage power reduction (in the control network) of $73.2 \%, 68.6 \%$, and 69.1%, respectively. Charts illustrating the area and dynamic power of different MiniMIPS synchronous elastic control network implementations are shown in Figures 6.1 and 6.2, respectively. In both charts, except for the first two bars in each, the control network is automatically generated by CNG tool.

The elastic MiniMIPS constructed using the hybrid control network implementations listed in Table 6.1 can tolerate bubbles in the register file path, and still achieve the same runtime as the all eager implementation. A direct comparison with the ordinary clocked MIPS cannot be established since inserting bubbles in the latter will cause it to fail as it is designed for static latencies only. For the normally clocked MiniMIPS to handle bubbles (or variable latency interfaces) over its channels, several changes in the datapath may be required (e.g., implementing FSMs at channel receiver ends to wait until valid data arrive, some mechanism to propagate this information to the rest of the system, a stalling mechanism, etc.). On the other hand, and by its definition, the SELF protocol inherently achieves this goal.

Table 6.2 shows the cost of achieving this required elasticity using an all eager and a set of hybrid SELF implementations. The results in the table are synthesis numbers for

Figure 6.1: A chart of the MiniMIPS control network area in different synchronous elastic implementations.

Figure 6.2: A chart of the MiniMIPS control network dynamic power in different synchronous elastic implementations.
the whole MiniMIPS (not just the control network). Since the normally clocked MiniMIPS cannot directly tolerate register file bubbles, therefore and for the sake of comparison, no bubbles are added in either the normally clocked or the elastic MiniMIPS (even if the elastic MiniMIPS can tolerate the register file bubbles). Two implementations for the clocked MiniMIPS are listed. The first is flip-flop (FF) based. In the second one, each FF is replaced by a master-slave latch pair. The latches used in both the latch based and the elastic MiniMIPS are selected from manually synthesized and optimized templates that are protected during synthesis with set_size_only attributes. The FF based design is completely synthesized by DC. In this specific design and cell library, the latch based design consumed more area and leakage power but less dynamic power. Without loss of generality, overhead percentages (over. \%) of elastic versions are with respect to the latch based design. Please note that if more bubbles (or variable latency interfaces) are required in the MiniMIPS, more lazy forks (in the hybrid implementation) may need to be replaced by EForks to keep the same runtime as the all eager implementation, and some of the $E B C$ s may not be mergeable any more, resulting in more area and power.

The optimization techniques have also been applied to several ISCAS benchmarks showing similar significant reductions in area and power. For the case of s382, for example,

Table 6.2: Elasticity area and power overheads of different hybrid SELF implementations of the MiniMIP processor.

Implementation		Area		$P_{d y n} @ 4 \mathrm{~ns}$		$P_{\text {leak }}$	
		μm^{2}	over.\%	$\mu \mathrm{W}$	over.\%	$\mu \mathrm{W}$	over.\%
Normally	Flip-flop based	2617.2		446.247		8.850	
clocked	Latch based	2642.4		380.466		9.504	
Elastic	All eager (EFork - LJ0000)	3385.2	28.1\%	474.465	24.7\%	12.681	33.4\%
	Hybrid (E-LF00-LJ1011)	3136.2	18.7\%	437.977	15.1\%	11.686	23.0\%
clocked	Hybrid (E-USFork - LJ1111)	3106.8	17.6\%	435.334	14.4\%	11.620	22.3\%
	Hybrid (E-USFork - LJ1111_m)	2889.6	9.4\%	408.840	7.5\%	10.838	14.0\%

CNG generates a control network with only 22 2-input join $\left(J_{2}\right)$ and 25 2-output fork (F_{2}) components compared to a control network of $148 J_{2}$ s and $151 F_{2}$ s generated through a direct unoptimized approach. Furthermore, HGEN verifies that at least 32% of the EForks in the CNG-generated s 382 control network can be replaced by USForks, reducing area and power without any performance loss. More reduction is possible if the physical placement allows for controller merging.

The impact of this work will broaden the class of circuits that can be elasticized with acceptable overhead (circuits that designers would otherwise find it too expensive to elasticize). The impact will also enable designers to deepen the level of elastic granularity in their designs to enjoy the full benefit of elasticity at a reasonable cost.

6.1 Future Work

Though the optimization algorithms introduced in this work were applied to basic join and fork structures, nonetheless, we do not see any major obstacles for extending the work to advanced structures like early evaluation joins and anti-token propagation [32]. Other tool-specific future work is listed below:

6.1.1 CNG

The CNG algorithm described in Chapter 3 is based on continuous reduction of the search Space until an optimum Solution is returned. Indeed, the Space reduction steps are so efficient that in 18 out of the 25 problems listed in Table 3.4, only one Solution is left in the search Space (i.e., the OptSoln). The CNG runtime is also less than 1 second for all the listed 20 ISCAS- 89 benchmarks. Nonetheless, since the search Space is exponential in the problem input size, for ISCAS problems bigger than s1488, the tool (as described in Chapter 3) requires impractically long runtime. This motivates the search for better data structures, algorithms for dividing the problem into a set of smaller ones, and/or heuristics to cut the runtime. Chapter 3 laid the foundation for the theoretical background of CNG. With its plenty of theorems, numerous ideas for good heuristics can be devised as well as integration of well known search heuristic methods (e.g., simulated annealing, genetic algorithms, etc. [62]). Appendix A shows some preliminary heuristics that were briefly explored. This is an area for future research.

6.1.2 HGEN

HGEN replaces EForks with USForks when the former eagerness is not adding any performance advantage (i.e., redundant). Similarly, it also merges $E B C$ s when they schedule their corresponding latches at similar times. Nonetheless, the conditions used in either cases (i.e., EFork to USFork conversion and equivalent EBC merging) are rather conservative. In both cases, the equivalence conditions were based on cycle-by-cycle equivalence. For example, in EFork to USFork conversion, conditions are employed that guarantee the different branches have matched Stall patterns in all clock cycles (when the left Valid is one). Nonetheless, it can be true in some networks that even if the Stall patterns are not matched in all clock cycles, yet still, the eagerness is not required. Consider, for example, the case when both branches which have mismatched Stall patterns are not on any critical (architectural) cycle in the network. Hence, delaying passing the data token to one of them (rather than the earliest start provided by the EFork) may not enhance the overall network performance as the bottleneck is somewhere else. Hence, finding the equivalence conditions (for both aforementioned transformations) that preserves the overall network performance rather than the local cycle-by-cycle equivalence is left for future work. This can allow for more relaxed conditions that would provide higher chances for EFork replacements and $E B C$ merging, further reducing the area and power. The future work
can make very much use of HGEN since the tool provides a fully automated framework for synchronous elastic control network verification and transformation. The idea of overall network performance (expressed as throughput) is well formulated in the literature (see, for example, [63, 43]).

APPENDIX A
 HEURISTICS TO CUT CNG RUNTIME FOR BIG PROBLEMS

For all the 20 (out of 28) ISCAS-89 problems listed in Table 3.4, CNG required less than 1 second to finish. However, for ISCAS problems bigger than s1488, the tool (as described in Chapter 3) requires impractically long runtime. This motivates using better data structures, problem division algorithms, and/or heuristics to cut runtime for bigger problems. Based on the numerous theorems listed in Chapter 3, several heuristics may be devised. This is an open area for research. Following are some heuristics that were briefly explored:

- H1 Limit the maximum number of $P S$ s per Term to value m. $\mathrm{H} 1(m)$ will be used as a shortcut for applying H 1 with a maximum number of $P S \mathrm{~s}=m$ per Term. m can be defined as a constant value or a function of the Term cardinality. It can also be defined as a function of the Term essentiality; giving more choices for Terms that are known to be used in the OptSoln (i.e., essential Terms - see Definitions 3.18, 3.24, and 3.26).
- H2 Restrict overlapping of Terms in any PS; allow a Term to overlap with other Terms in a $P S$ only if it is a TITerm (see Def. 3.18). Term ${ }_{i}$ is overlapping in $P S_{t}$ if $A \operatorname{Cov}\left(\operatorname{Term}_{i}, P S_{t}\right) \neq \operatorname{Term}_{i}$ (see Def. 3.19).
- H3 Relax the $P S$ elimination condition of Corollary 3.14 to the following condition: Let $P S_{t 1}$ and $P S_{t 2}$ be two $P S \mathrm{~s}$ of Term $_{t}$ in Space S_{k}. Then, eliminate $P S_{t 1}$ from the search Space if $\left.n A J M i n_{o}\left(P S_{t 1}\right)\right|_{S_{k}} \geq\left. n A J M i n_{o}\left(P S_{t 2}\right)\right|_{S_{k}}$.
- H4 Generate a good Solution in a short time using any combination of H1-H3, and use it as an initial seed for well known search heuristic methods (e.g., simulated annealing, genetic algorithms, etc. [62]).

By their definition, heuristics do not guarantee an optimum Solution, nonetheless, good heuristics give good Solutions in a short runtime in most cases [62]. Only a small subset of the above heuristics has been tried. For the sake of demonstration, Table A. 1 shows sample
results for applying some of the heuristics above over the rest of the ISCAS-89 benchmarks that were not covered in Table 3.4. The table shows that with even preliminary application of simple heuristics on the listed examples, on the average, ABC from Berkeley generates a control network with a number of joins (and forks) that is 3.02% worse than CNG and DC is slightly (0.53%) better than CNG. The sample results show the potential of even simple heuristics in both the quality of the Solution and the runtime.

Refining the above heuristics, devising new set based on the CNG theorem of Chapter 3, as well as integration of well known search heuristic methods (e.g., simulated annealing, genetic algorithms, etc. [62]) are kept for future work.
Table A.1: CNG Cost vs. other synthesis tools/flows using heuristics. Worse percentages are calculated with respect to CNG

| Problem | \|SourceS| | \mid TargetS\| | \mid PTermS $^{4} \mid$ | CNG | | | Flow of [9, 3] | | ABC | | Design Compiler ${ }^{(8)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Cost | Heuristics used | runtime | Cost | Worse\% | Cost | Worse\% | Cost | Worse\% |
| s5378 | 214 | 228 | 493 | 367 | H1(30), H3 | 0.7s | 2085 | 468.12\% | 367 | 0.00\% | 359 | -2.18\% |
| s9234 | 247 | 250 | 672 | 414 | H1(30), H2, H3 | 2.2 s | 3010 | 627.05\% | 411 | -0.72\% | 419 | 1.21\% |
| s1423 | 91 | 79 | 322 | $\begin{aligned} & 175 \\ & 171 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{H} 1(1) \\ & \mathrm{H} 1(2) \\ & \hline \end{aligned}$ | $\begin{gathered} \hline 1.3 \mathrm{~s} \\ 108.4 \mathrm{~s} \\ \hline \end{gathered}$ | 2156 | 1160.82\% | 172 | 0.58\% | 166 | -2.92\% |
| s13207 | 700 | 790 | 1051 | $\begin{aligned} & 900 \\ & 893 \end{aligned}$ | $\begin{gathered} \mathrm{H} 1(30), \mathrm{H} 3 \\ \mathrm{H} 1(2) \end{gathered}$ | $\begin{array}{\|c\|} \hline 8.5 \mathrm{~s} \\ 1613.0 \mathrm{~s} \end{array}$ | 3931 | 340.20\% | 902 | 1.01\% | 941 | 5.38\% |
| s15850 | 611 | 684 | 1534 | 1129 | H1(30), H3 | 101.3 s | 16203 | 1335.16\% | 1186 | 5.05\% | 1186 | 5.05\% |
| s35932 | 1763 | 2048 | 3781 | 3635 | H1(30), H3 | 5.7 s | 5547 | 52.6\% | 3938 | 8.34\% | 3695 | 1.65\% |
| s38417 | 1664 | 1742 | 4087 | 2838 | H1(1) | 29.49s | 32609 | 1049.01\% | 3235 | 13.99\% | 2699 | -4.90\% |
| s38584 | 1464 | 1730 | 5086 | 3428 | H1(20), H2, H3 | 145.4 s | 18714 | 445.92\% | 3287 | -4.11\% | 3170 | -7.53\% |

APPENDIX B

ELIMINATING NEGATIVE SLACK IN SYNCHRONOUS ELASTIC CONTROL NETWORKS

CNG tool described in Chapter 3 produces a control network with minimal total number of 2-input joins and 2-output forks. Nonetheless, it is not guaranteed that the generated network has the minimum possible critical path delay. Normally this is not a problem since the critical delay of the datapath is usually larger than that of the control network. Nonetheless, this appendix introduces a systematic flow (referred to as CNGT) of structural transformations of the control network (of basic synchronous elastic circuits) that reduces the network delay to meet tight timing constraints. CNGT iteratively targets paths that have negative slacks at the cost of possibly adding some hardware until meeting a specified clock period constraint. The flow is validated by proving that the two versions of the control network (i.e., before and after the transformations) are functionally equivalent. It has been applied to the MiniMIPS processor and s298 ISCAS-89 benchmark. In the former, it removed a total negative slack of 1.3 ns with an area improvement of 6.2%. In the latter, it removed 5.3 ns with an area penalty of only 0.4%. Though the CNG-generated control network can be implemented synchronously or asynchronously, however, CNGT (in its current form) is applicable to synchronous elasticity only.

B. 1 Proposed Structural Transformations

A path, p_{i}, in a synchronous elastic control network is defined the same way as in the data path. A path is a concatenation of signals. It starts at a Q-output of a synchronizing element (e.g., a flip-flop or a latch), and it ends at a D-input of a synchronizing element. A path, p_{i}, is called a violator, v_{i}, if its delay violates one of the timing constraints. This flow focuses on maximum delay constraints. A path is considered a violator if its delay exceeds some maximum delay constraints (usually a clock period with setup and propagation delays and time borrowing taken into account). The difference between a time constraint and the
path delay is known as slack. If the slack is negative, the path is a violator. The total negative slack is defined to be the sum of the negative slacks in all the violators of the design (i.e., the control network in this case). It is usually represented with a positive number. The purpose of the presented flow is to reduce the total negative slack to zero at a certain clock period constraint. Following are some proposed structural transformations that help reducing violator delays:

B.1.1 Combining Joins and Input Valids Reorder

Concatenated m-input-channel and n-input-channel joins can be combined into an ($m+n$-1)-input-channel join, as shown in Fig. B.1. The combination preserves the control network functionality. It also reduces the delay of the Valid output signal, V_{r}.

Combining reduces the amount of logic gates between the latest input Valid signal and the join Valid output, V_{r}. It allows for an optimization inside the combined join that takes into account the relative arrival times of the different input Valid signals moving critical signals closer to the output.

Similarly, local optimization inside the combined ($m+n$-1)-input join can reduce the delays of the $S t a l l$ output signals (i.e., $S_{l 1}, S_{l 2}$, etc.).

B.1.2 Combining Forks and Input Stalls Reorder

Similarly, a concatenated m-output-channel and n-output-channel forks can be combined into ($m+n-1$)-output-channel fork. The combination preserves the control network functionality. It also reduces the delay of the $S t a l l$ output signal, S_{l}. Reasons are the same

Figure B.1: Combining concatenated n-input and m-input joins.
as in Sec. B.1.1 but with respect to the Stall signals. Also, local optimization inside the combined ($m+n$-1)-output-channel fork can reduce the delays of the Valid output signals (i.e., $V_{r 1}, V_{r 2}$, etc.).

B.1.3 Rolling Back a Fork

If concatenated joins and forks are, respectively, combined, then any path would pass through a concatenation of interleaving multi-input (or output) joins (or forks).

Rolling back a fork moves a fork back in a path, such that it can combine with forks preceding it in that path. Further, this allows the joins before and after it to be combined as well. Rolling back a fork preserves the control network functionality (see the verification in Sec. B.4). It has the potential of cutting from the path delay because of the combining action that takes place in both joins and forks that surround this fork. However, in some cases the transformation can introduce more violators. Quantifying the effect of rolling back a fork is deferred to Sec. B.2.

Example B.1. Let $A, B, C, D, X_{1}, X_{2}, X_{3}$, and X_{4} be eight registers in the original ordinary clocked design. The following registers pass data to $X_{1}: A, B$, and C, and to X_{2} : A, B, and D, and to $X_{3}: A$, and to $X_{4}: B$. A possible control network of the LI version of this design is shown in Fig. B.2a.

Let $V x$ and $S x$ be the Valid and Stall signals of control channel x, respectively. Assume that the following path is a violator in Fig. B.2a: (from A), $V A, V A 2, V A B, V A B 1, V A B C$ (to X_{1}). This path passes through two 2-output forks and two 2-input joins. Rolling fork $F A B$ back to the inputs of join $J A B$ is shown in Fig. B.2b. This allows for combining the preceding and following joins and forks as shown in Fig. B.2c. The path from A to X_{1} now incorporates only one 3 -output fork and one 3 -input join. Hence, rolling back fork $F A B$ allows for delay optimization in the 3 -output fork and in the 3 -input join, reducing that violator delay.

In general, rolling back an n-output fork through an m-input join is shown in Fig. B.3, where $I_{i j}$ is the jth output of an n-output fork whose input is I_{i}. The $m n$-output forks that produce $I_{i j} \mathrm{~s}$ are omitted from Fig. B.3b for simplicity. $I_{i} \mathrm{~s}$ and $X_{i} \mathrm{~s}$ in Fig. B. 3 could be any control channels (i.e., not necessarily directly connected to controllers). Rolling back some (not all) of the branches of an n-output fork through an m-input join also has delay reduction effects for some of the paths. However, in the context of this work, when a fork

(a)

(b)

(c)

Figure B.2: Steps of rolling back fork $F A B$.

Figure B.3: Rolling back an n-output fork through an m-input join
is rolled back, all its branches are rolled.

B. 2 Gain Function

Rolling back a fork would usually decrease the delay of the associated paths because of the combining action that takes place in the preceding and following joins and forks. However, in some cases, it may increase the negative slack of some violators. To quantify these effects on a certain fork F_{i}, a heuristic Gain function is defined, $\operatorname{Gain}\left(F_{i}\right) . \operatorname{Gain}\left(F_{i}\right)$ evaluates to a number that should be proportional to the reduction in the total negative slack of the network if fork F_{i} is rolled back.

To compute the Gain of a certain fork, F_{i}, the different path types that can pass through this fork need, first, be examined. Following is a list of six path types along with the rolling back effect on each. The argument will make use of the network of Fig. B.2, where fork $F A B$ is to be rolled back. The work is applicable to eager fork and lazy join implementations (see, for example, Figures 2.4 and 2.3, respectively).

B.2.1 Type I

A path of this type will have the fork V_{l} and any of the $V_{r i}$ as part of it (i.e., it passes through the fork in the Valid direction).

Let us consider a path of type I passing through fork $F A B$ in Fig. B.2a. A path cannot start nor end in a join, since a join does not have any synchronizing elements. A path can only start or end either in an elastic controller or in a fork (since eager forks incorporate flip-flops). Hence, a type I path, that passes through fork $F A B$, will end either at the Valid
input of X_{1} controller (i.e., through join $J A B C$), or at the Valid input of X_{2} controller (i.e., through join $J A B D$), or at the $S t a l l$ input of C controller (i.e., $V A B 1$, then through join $J A B C$ to $S C$), or at the Stall input of D controller (i.e., $V A B 2$, then through join $J A B D$ to $S D$). In all these four cases, rolling back fork $F A B$ will reduce the delay of the path end points, respectively. Delay reduction is due to the fork combination ($F A$ with $F A B$, and $F B$ with $F A B$) and the join combination ($J A B$ with $J A B C$, and $J A B$ with $J A B D)$, as shown in Fig. B.2c.

B.2.2 Type II

A path of this type will have any of the fork $S_{r i}$ and S_{l} as part of it (i.e., it passes through the fork in the Stall direction).

Let us consider a path of type II passing through fork $F A B$ in Fig. B.2a. This path will end either at the Stall input of A or B controllers, or at the D-input of any of the two registers R_{1} and R_{2} in forks $F A$ or $F B$. In all these cases, the path delays are the same or less after rolling back fork $F A B$.

Consider, as an example, the following path in Fig. B.2a: (from X_{1}), $S A B C, S A B 1$, $S A B, S A 2, S A,($ to $A)$. The path incorporates two 2-output forks and two 2-input joins. After rolling back, in Fig. B.2c, the path is reduced to only one 3-output fork and one 3 -input join.

B.2.3 Type III

A path of this type will have the fork V_{l} and any of the R_{i} register D-inputs as part of it (i.e., it is a path coming in the Valid direction and ends inside the fork). Rolling back a fork is likely to decrease the delay of this type of paths.

An example of this type in Fig. B.2a is: (from A), VA, VA2, VAB, $\left(F A B / R_{1} / D\right)$. It can be easily shown that rolling back fork $F A B$ will decrease the delay at that path endpoint.

B.2.4 Type IV

A path of this type will have any of the R_{i} register Q-outputs (inside the fork) and S_{l} as part of it (i.e., it starts inside the fork and propagates in the Stall direction). Rolling back a fork is likely to decrease the delay of this type of paths.

An example of this type in Fig. B.2a is: (from $F A B / R_{1} / Q$), $S A B, S A 2, S A$, (to A). It can be shown that rolling back fork $F A B$ will decrease the delay at that path endpoint.

B.2.5 Type V

A path of this type will have any of the R_{i} register Q-outputs (inside the fork) and the corresponding $V_{r i}$ as part of it (i.e., it is a path starting inside the fork and propagating in the Valid direction). Rolling back a fork is likely to increase the delay of this type of paths.

An example of this type in Fig. B.2a is: (from $\left.F A B / R_{1} / Q\right), V A B 1, V A B C$, (to X_{1}). It can be easily shown that rolling back fork $F A B$ will increase the delay at that path endpoint.

B.2.6 Type VI

A path of this type will have any of the fork $S_{r i}$ and any of the R_{i} register D-inputs as part of it (i.e., it is a path coming in the Stall direction and ends inside the fork). Rolling back a fork is likely to increase the delay of this type of paths.

An example of this type in Fig. B.2a is: (from X_{1}), $S A B C, S A B 1$, (to $F A B / R_{1} / D$). It can be easily shown that rolling back fork $F A B$ will increase the delay at that path endpoint.

The Gain function of a certain fork, F_{i}, is defined as follows:

$$
\begin{equation*}
\operatorname{Gain}\left(F_{i}\right)=\sum_{j=1}^{\mid \text {Violators } \mid} r_{j} \cdot w_{j} \tag{B.1}
\end{equation*}
$$

where \mid Violators \mid is the number of violators. r_{j} is a number proportional to the delay reduction in violator, v_{j}, caused by rolling back fork $F_{i} . w_{j}$ is the weight of violator v_{j}.

One approach of choosing violator weights (i.e., w_{j}), is to give each violator a weight based on its negative slack. This approach will give priority to worst slack violator fixing. Another approach is to choose a value of 1 for all violator weights, giving all of them the same priority. The results reported in this appendix are based on the latter approach.

The value of r_{j} is technology and topology dependent. It also depends on the synthesis tool optimization algorithms. Accurate evaluation of these values are kept for future work. A value of 1 is chosen for each violator that is of type I, II, III or IV, and -1 for each violator that is of type V or VI, and 0 otherwise (i.e., if F_{i} is not in the violator path).

B. 3 The Proposed Flow

A chart of the proposed flow is shown in Fig. B.4. The flow starts by running the CNG tool (Chapter 3) to generate a control network with minimal total number of 2 -input joins and 2-output forks. The flow then takes as an input a target clock frequency for the control

Figure B.4: The proposed flow.
network. The network is synthesized and checked against the timing constraints. If there is no violation, the flow exits successfully. If there are timing violations, the reported violators (by the synthesis tool) are analyzed. The Gain function is computed for all the forks in the design. The fork with the highest Gain is chosen to be rolled back. The new network is now passed to the synthesis tool again. The loop continues until the network meets the timing constraint (i.e., success) or there are no more forks available to be rolled back (i.e., fail).

B.3.1 Synthesis Considerations

Only the control network part of the design is synthesized. The data path is abstracted out. The $E B$ controller implementation of [9] is used. In the controllers, a value of zero
is set for the output port delays of the master and slave latch enables (i.e., E_{m} and E_{s}, respectively). This allows E_{m} and E_{s} to change as late as the clock positive edge but not later. It also ensures maximum possible time borrowing (for E_{m}) without touching the data path performance (i.e., no time borrowing from the data path will take place). A more accurate value for E_{m} and E_{s} port delays should be the enable setup times, which are library dependent.

One of the strongest motivations behind the latency insensitive paradigm is to tackle long wire delay problems $[15,16,17]$. Besides, it facilitates communication between different IP cores on a chip. Hence, the logic in the LI control network is expected to be highly distributed, where wire delays are substantial contributors in the violator slacks. It is planned to include a metric for wire delays in the Gain function proposed in Sec. B. 2 in future work. The wire delay metric will be based on back-annotated place and route information. Hence, the choice of rolling back a fork will take into account the added (or removed) wire delay expenses. For this same reason, the hierarchy is kept during synthesis (i.e., the logical positions of joins and forks are kept and only local optimizations inside the joins and forks are allowed). This way it will be possible to back annotate the wire delays into this flow calculations and into the synthesis tool.

Example B.2. Given the control network of Fig. B.5, find a functionally equivalent network that can be clocked with 370 ps clock.

The original control network of Fig. B. 5 is synthesized with Design Compiler ${ }^{\circledR}$ (DC) [53] for clock period constraint of 370 ps . DC reports an area of $1304.4 \mu \mathrm{~m}^{2}, 23$ violators, and a total negative slack of 1.4 ns . All reported violators are then analyzed and the Gain function is calculated for all the network forks.

Table B. 1 shows the analysis results. Since fork $F A B D E$ has the highest Gain of 38, it is chosen to be rolled back. $F A B D E$ is preferred over $F A B E$, because 4 of the violators that pass through both of them in the Valid direction (i.e., type I), pass only through $F A B D E$ in the Stall direction. An example of such violators is: (start from $F A / R_{2} / Q$), VA2, $V A B E, V A B E 2, V A B D E, V A B D E 2$, (through join $J A B C D E), S A B D E 2, S A B D E$, (end at $S D$). Besides, two violators end at the internal registers of $F A B E$ coming in the Stall direction (i.e., Type VI).

Hence, $F A B D E$ is rolled back and the new control network is synthesized again with the same timing constraints (i.e., 370 ps clock period). DC reports an area of $1174.2 \mu^{2}$,

Figure B.5: Control network of Example B.2.

Table B.1: Iteration 1 for Example B.2.

	$F B C G$	$F A B E$	$F A B D E$
Type I	0	21	21
Type II	0	13	17
Type III	0	0	0
Type IV	0	0	0
Type V	0	0	0
Type VI	0	2	0
Gain	0	32	38

9 violators and total negative slack of only 0.1 ns . Violators are similarly analyzed. $F A B E$ is rolled back. Then, the network is synthesized. DC reports an area of $1195.8 \mu \mathrm{~m}^{2}$ and no violations. Hence, the flow eliminated the whole negative slack (1.4 ns) in three iterations, with an area gain (i.e., decrease) of 8.3%. Results are summarized in Table B.2. Rolling back a fork involves adding redundant forks and joins to the design. However, this is compensated, in part, by join and fork combinations that take place. Besides, rolling a fork back makes it easier for DC to meet the timing constraints. This, in turn, seems to help DC optimizes the area more efficiently. The last column in Table B. 2 shows the area of the

Table B.2: Example B. 2 results.

$\#$	Total Neg. Slack (ns)	Area $\left(\mu m^{2}\right)$ $@ T=0.37 \mathrm{~ns}$	Fork To Roll Back	Its Gain	Area $\left(\mu m^{2}\right)$ $@ T=400 \mathrm{~ns}$
1	1.4	1304.4	$F A B D E$	38	852
2	0.1	1174.2	$F A B E$	16	859
3	0.0	1195.8			940.8

control network in the different iterations when they are synthesized with 400 ns timing constraint (i.e., virtually no constraints). In that case, rolling the fork back costs an area degradation (i.e., increase) of 10.4%.

B. 4 Verification

The correctness of the proposed structural transformations of Sec. B. 1 is verified using a symbolic model checker, NuSMV [59]. It is verified that the control networks before and after the transformations are functionally equivalent. In other words, there is no sequence of inputs to the control network that produces different outputs in the two versions of the control network. In this section the correctness of rolling back a fork (Sec. B.1.3) is verified. Other transformations (i.e., of Sections B.1.1 and B.1.2) can be similarly verified.

Fig. B. 3 showed rolling back an n-output fork through an m-input join. For brevity, the case of $n=2$ and $m=2$ is verified. Higher values of n and m have also been verified. The setup of Fig. B. 6 is used. Elastic buffer controllers $I 1$ and $I 2$ are connected to controllers $X 1$ and $X 2$ through two versions of the control network. The one on the top (designated 'Before') is the control network before doing any transformations. The one on the bottom (designated 'After') is the control network after rolling back fork $F I 1 I 2$ through join $J I 1 I 2$. Green lines represent the Valid signals of the control channels. Red lines represent the Stalls. Suffixes ${ }_{-} B$ and $_A$ are used to designate the outputs of the control network before and after the transformation, respectively. The inputs coming from the controllers (i.e., VI1, VI2, SX1, and $S X 2$) are applied to both networks simultaneously. The corresponding two network outputs (i.e., $V X 1, V X 2, S I 1$, and $S I 2$) are ORed together, respectively, and then passed to the controllers. For example, $V X 1_{-} B$ and $V X 1_{-} A$ are ORed and passed to the input Valid pin of controller $X 1$. The different components of Fig. B. 6 are connected synchronously in NuSMV similar to [57]. Synchronous connection guarantees that all components of the design advance synchronously. The delay of each component is then encoded in individual counters in terms of the global time unit used by NuSMV. Without loss of generality, all
combinational logic are assumed to have zero delay. NuSMV verification models for joins, forks, etc. are similar to those presented in Sec. 5.3.

The following PSL [60] properties are used to check the functional equivalence of the two versions of the control network (i.e., before and after the transformation):

DEFINE VX1_MISMATCH := VX1_B xor VX1_A ;
PSLSPEC never VX1_MISMATCH;
-- Similarly check VX2, SI1, SI2.
All the properties are proven true by NuSMV which guarantees functional equivalence between the two versions of the control network. It also proves the correctness of the transformation (rolling back a fork).

B. 5 Case Studies and Results

This section presents two case studies: the MiniMIPS processor and the s298 ISCAS-89 benchmark. Results are synthesis numbers. Design Compiler ${ }^{\circledR}$ (DC) is used as a synthesis tool with an $\mathrm{ARM}^{\circledR} 65 \mathrm{~nm}$ library. DC Ultra ${ }^{\mathrm{TM}}$ is run with -timing_script to ensure the highest performance optimization effort. To minimize the area, set_max_area is set to zero.

Figure B.6: Verification setup for rolling back a fork.

B.5.1 MiniMIPS

MIPS (Microprocessor without Interlocked Pipeline Stages) is a 32 -bit architecture, first designed by Hennessy [46]. MiniMIPS is an 8-bit subset of MIPS. A block diagram of the original clocked MiniMIPS is shown in Fig. 2.5. The MiniMIPS synchronous elasticization is described in Sec. 2.2. The CNG-generated elastic control network is in Fig. 3.9. The MiniMIPS control network (with elastic buffer controllers for the register file and for the memory) is passed to the CNGT flow in order to meet a clock period constraint of 370 ps . The results are shown in Table B.3. The flow eliminated, in only one iteration, the whole negative slack (1.3 ns), with an area gain (i.e., decrease) of 6.2%. As argued in Example B.2, rolling back a fork involves adding redundant forks and joins to the design. However, this is compensated, in part, by join and fork combinations that take place. Besides, rolling a fork back makes it easier for DC to meet the timing constraints. This, in turn, seems to help DC optimizes the area more efficiently. The last column in Table B. 3 shows the area of the control network in the different iterations when they are synthesized with 400 ns timing constraint (i.e., virtually no constraints). In that case, rolling the fork back costs an area degradation (increase) of 6.5%.

B.5.2 S298

S298 is an ISCAS-89 benchmark. It is a traffic light controller. S298 has a total of 23 synchronization points (14 registers +3 inputs +6 outputs). After analyzing all the register-to-register communications in the data path, the required connections are passed to the CNG tool. The resultant control network is shown in Fig. B.7. The s298 control network is passed to the CNGT flow in order to meet a clock period constraint of 500 ps . The results are shown in Table B.4. CNGT eliminated, in 3 iterations, the whole negative slack (5.3 ns), with an area degradation (i.e., increase) of only 0.4%.

Table B.3: MiniMIPS results.

$\# \#$	Total Neg. Slack (ns)	Area $\left(\mu m^{2}\right)$ $@ T=0.37 \mathrm{~ns}$	Fork To Roll Back	Its Gain	Area $\left(\mu \mathrm{m}^{2}\right)$ $@ T=400 \mathrm{~ns}$
1	1.3	1350	FABCI4P	35	953.4
2	0.0	1266			1015.2

Figure B.7: Control network of the synchronous elastic version of s298.

Table B.4: S298 results.

$\#$	Total Neg. Slack (ns)	Area $\left(\mu m^{2}\right)$ $@ T=0.5 \mathrm{~ns}$	Fork To Roll Back	Its Gain	Area $\left(\mu m^{2}\right)$ $@ T=400 \mathrm{~ns}$
1	5.3	2657.4	$F 5$	70	1991.4
2	2.2	2799	$F 3$	42	1977
3	0.4	2392.8	$F 4$	36	1989.6
4	0.0	2668.8			2374.2

REFERENCES

[1] N. Weste and D. Harris, CMOS VLSI design: a circuits and systems perspective. Addison Wesley, 2004.
[2] L. Carloni, K. Mcmillan, and A. L. Sangiovanni-VincentelliR, "Theory of latency insensitive design," in IEEE Transactions on CAD of Integrated Circuits and Systems, vol. 20, no. 9, Sep. 2001, pp. 1059-1076.
[3] J. Carmona, J. Cortadella, M. Kishinevsky, and A. Taubin, "Elastic circuits," Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 28, no. 10, pp. 1437-1455, Oct. 2009.
[4] C. J. Myers, Asynchronous Circuit Design. John Wiley \& Sons, New York, 2001.
[5] A. J. Martin, "The limitations to delay-insensitivity in asynchronous circuits," in Proceedings of the sixth MIT conference on Advanced research in VLSI. Cambridge, MA, USA: MIT Press, 1990, pp. 263-278. [Online]. Available: http://dl.acm.org/citation.cfm?id=101415.101434
[6] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou, "Desynchronization: Synthesis of asynchronous circuits from synchronous specifications," Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 25, no. 10, pp. 1904-1921, Oct. 2006.
[7] N. Andrikos, L. Lavagno, D. Pandini, and C. Sotiriou, "A fully-automated desynchronization flow for synchronous circuits," in Design Automation Conference, 2007. DAC '07. 44th ACM/IEEE, Jun. 2007, pp. 982-985.
[8] H. M. Jacobson, P. N. Kudva, P. Bose, P. W. Cook, S. E. Schuster, E. G. Mercer, and C. J. Myers, "Synchronous interlocked pipelines," in 8th International Symposium on Asynchronous Circuits and Systems, Apr. 2002, pp. 3-12.
[9] J. Cortadella, M. Kishinevsky, and B. Grundmann, "Synthesis of synchronous elastic architectures," in ACM/IEEE Design Automation Conference, Jul. 2006, pp. 657-662.
[10] S. Krstic, J. Cortadella, M. Kishinevsky, and J. O’Leary, "Synchronous elastic networks," in Formal Methods in Computer Aided Design, 2006. FMCAD '06, Nov. 2006, pp. 19-30.
[11] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli, "Latency insensitive protocols," in The 11th International Conference on Computer-Aided Verification, Jul. 1999.
[12] ITRS report 2009 edition. Available online at. http://www.itrs.net/Links/2009ITRS/ 2009Chapters_2009Tables/2009_Design.pdf.
[13] A. Nieuwoudt, J. Kawa, and Y. Massoud, "Crosstalk-induced delay, noise, and interconnect planarization implications of fill metal in nanoscale process technology," Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 18, no. 3, pp. 378 -391, Mar. 2010.
[14] S. Shah, N. Mansouri, and A. Nunez-Aldana, "Pre-layout estimation of interconnect lengths for digital integrated circuits," in Electronics, Communications and Computers, 2006. CONIELECOMP 2006. 16th International Conference on, Feb. 2006, p. 38.
[15] M. Bohr, "Interconnect scaling-the real limiter to high performance ULSI," in Electron Devices Meeting, 1995., International, Dec. 1995, pp. 241-244.
[16] R. Ho, K. Mai, H. Kapadia, and M. Horowitz, "Interconnect scaling implications for CAD," in Computer-Aided Design, 1999. Digest of Technical Papers. 1999 IEEE/ACM International Conference on, 1999, pp. 425-429.
[17] L. Carloni and A. Sangiovanni-Vincentelli, "Coping with latency in SoC design," Micro, IEEE, vol. 22, no. 5, pp. 24-35, Sep./Oct. 2002.
[18] ——, "Performance analysis and optimization of latency insensitive systems," in Design Automation Conference, 2000. Proceedings 2000. 37th, 2000, pp. 361-367.
[19] D. Bufistov, J. Julvez, and J. Cortadella, "Performance optimization of elastic systems using buffer resizing and buffer insertion," in Computer-Aided Design, 2008. ICCAD 2008. IEEE/ACM International Conference on, 10-13 2008, pp. 442-448.
[20] P. Cocchini, "Concurrent flip-flop and repeater insertion for high performance integrated circuits," in Computer Aided Design, 2002. ICCAD 2002. IEEE/ACM International Conference on, 10-14 2002, pp. 268-273.
[21] R. Collins and L. Carloni, "Topology-based optimization of maximal sustainable throughput in a latency-insensitive system," in Design Automation Conference, 2007. DAC '07. 44th ACM/IEEE, Jun. 2007, pp. 410-415.
[22] L. Carloni, K. McMillan, A. Saldanha, and A. Sangiovanni-Vincentelli, "A methodology for correct-by-construction latency insensitive design," in Computer-Aided Design, 1999. Digest of Technical Papers. 1999 IEEE/ACM International Conference on, 1999, pp. 309-315.
[23] T. Kam, M. Kishinevsky, J. Cortadella, and M. Galceran-Oms, "Correct-byconstruction microarchitectural pipelining," in Computer-Aided Design, 2008. ICCAD 2008. IEEE/ACM International Conference on, Nov. 2008, pp. 434-441.
[24] M. Galceran-Oms, J. Cortadella, D. Bufistov, and M. Kishinevsky, "Automatic microarchitectural pipelining," in Design, Automation Test in Europe Conference Exhibition (DATE), 2010, Mar. 2010, pp. 961-964.
[25] M. Galceran-Oms, Ph.D. dissertation.
[26] J. You, Y. Xu, H. Han, and K. S. Stevens, "Performance evaluation of elastic GALS interfaces and network fabric," Electronic Notes in Theoretical Computer Science, vol. 200, no. 1, pp. $17-32$, 2008, proceedings of the Third International

Workshop on Formal Methods for Globally Asynchronous Locally Synchronous Design (FMGALS 2007). [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S1571066108000868
[27] D. Gebhardt and K. S. Stevens, "Elastic flow in an application specific network-onchip," in in: Third International Workshop on Formal Methods in Globally Asynchronous Locally Synchronous Design (FMGALS 07), Elsevier Electronic Notes in Theoretical Computer Scinece, 2007.
[28] L. Benini and G. De Micheli, "Networks on chip: a new paradigm for systems on chip design," in Design, Automation and Test in Europe Conference and Exhibition, 2002. Proceedings, 2002, pp. 418-419.
[29] ——, "Networks on chips: a new SoC paradigm," Computer, vol. 35, no. 1, pp. $70-78$, Jan. 2002.
[30] A. Gotmanov, M. Kishinevsky, and M. Galceran-Oms, "Evaluation of flexible latencies: Designing synchronous elastic H. 264 CABAC decoder." in The Problems in design of micro- and nano-electronic systems, Oct. 2010.
[31] L. Benini, G. De Micheli, A. Lioy, E. Macii, G. Odasso, and M. Poncino, "Automatic synthesis of large telescopic units based on near-minimum timed supersetting," Computers, IEEE Transactions on, vol. 48, no. 8, pp. 769 -779, Aug. 1999.
[32] J. Cortadella and M. Kishinevsky, "Synchronous elastic circuits with early evaluation and token counterflow," in Design Automation Conference, 2007. DAC '07. 44th ACM/IEEE, Jun. 2007, pp. 416-419.
[33] S. Suhaib, D. Mathaikutty, D. Berner, and S. Shukla, "Validating families of latency insensitive protocols," Computers, IEEE Transactions on, vol. 55, no. 11, pp. 1391 -1401, Nov. 2006.
[34] I. Blunno, J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and C. Sotiriou, "Handshake protocols for de-synchronization," in Asynchronous Circuits and Systems, 2004. Proceedings. 10th International Symposium on, Apr. 2004, pp. 149 - 158.
[35] S. Furber and P. Day, "Four-phase micropipeline latch control circuits," Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 4, no. 2, pp. 247-253, Jun. 1996.
[36] G. Birtwistle and K. S. Stevens, "The family of 4-phase latch protocols," in Asynchronous Circuits and Systems, 2008. ASYNC '08. 14th IEEE International Symposium on, Apr. 2008, pp. 71-82.
[37] K. Stevens, Y. Xu, and V. Vij, "Characterization of asynchronous templates for integration into clocked CAD flows," in Asynchronous Circuits and Systems, 2009. ASYNC '09. 15th IEEE Symposium on, 17-20 2009, pp. 151 -161.
[38] O. Roig, J. Cortadella, M. Peiia, and E. Pastor, "Automatic generation of synchronous test patterns for asynchronous circuits," in Design Automation Conference, 1997. Proceedings of the 34th, Jun. 1997, pp. 620-625.
[39] F. te Beest, A. Peeters, K. van Berkel, and H. Kerkhoff, "Synchronous full-scan for asynchronous handshake circuits," Journal of Electronic Testing, vol. 19, pp. 397-406, 2003, 10.1023/A:1024687809014. [Online]. Available: http://dx.doi.org/10.1023/A: 1024687809014
[40] O. Petlin and S. Furber, "Scan testing of micropipelines," in VLSI Test Symposium, 1995. Proceedings., 13th IEEE, Apr.-3 May 1995, pp. 296 -301.
[41] L. P. Carloni, "The role of back-pressure in implementing latency-insensitive systems," in Electronic Notes in Theoretical Computer Science, 2006, pp. 61-80.
[42] C.-H. Li, R. Collins, S. Sonalkar, and L. P. Carloni, "Design, implementation, and validation of a new class of interface circuits for latency-insensitive design," in Fifth ACM-IEEE International Conference on Formal Methods and Models for Codesign (MEMOCODE), 2007.
[43] J. Julvez, J. Cortadella, and M. Kishinevsky, "Performance analysis of concurrent systems with early evaluation," in Computer-Aided Design, 2006. ICCAD '06. IEEE/ACM International Conference on, Nov. 2006, pp. 448-455.
[44] M. Galceran-Oms, J. Cortadella, and M. Kishinevsky, "Speculation in elastic systems," in Design Automation Conference, 2009. DAC '09. 46th ACM/IEEE, Jul. 2009, pp. 292-295.
[45] E. Kilada, S. Das, and K. Stevens, "Synchronous elasticization: Considerations for correct implementation and MiniMIPS case study," in VLSI System on Chip Conference (VLSI-SoC), 2010 18th IEEE/IFIP, Sep. 2010, pp. $7-12$.
[46] J. L. Hennessy, N. P. Jouppi, J. Gill, F. Baskett, A. Strong, T. R. Gross, C. Rowen, and J. Leonard, "The MIPS machine." in COMPCON'82, 1982, pp. 2-7.
[47] E. Kilada and K. Stevens, "Control network generator for latency insensitive designs," in Design, Automation Test in Europe Conference Exhibition (DATE), 2010, Mar. 2010, pp. $1773-1778$.
[48] -, "Theory and implementation of CNG: a control network generator for elastic circuits," in Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, submitted.
[49] E. Kilada and K. S. Stevens, "Design and verification of lazy and hybrid implementations of the SELF protocol," in VLSI-SoC: forward-looking trends in IC and system design (best papers of VLSI-SoC 2010), J. L. Ayala, D. Atienza, and R. Reis., Eds. Springer, 2011, to appear.
[50] J. Carmona, J. Júlvez, J. Cortadella, and M. Kishinevsky, "A scheduling strategy for synchronous elastic designs," Fundam. Inform., vol. 108, no. 1-2, pp. 1-21, 2011.
[51] IBM ${ }^{\circledR}$ SixthSense. http://domino.research.ibm.com/comm/research_projects.nsf/ pages/sixthsense.index.html.
[52] E. Kilada and K. Stevens, "Synchronous elasticization at a reduced cost: Utilizing the ultra simple fork and controller merging," in Computer-Aided Design, 2011. ICCAD 2011. IEEE/ACM International Conference on, Nov. 2011.
[53] Synopsys ${ }^{\circledR}$ Design Compiler ${ }^{\circledR}$. http://www.synopsys.com/Tools/Implementation/ RTLSynthesis.
[54] R. K. Brayton and A. Mishchenko, "ABC: An academic industrial-strength verification tool." in 22nd International Conference on Computer Aided Verification. CAV'10., 2010, pp. 24-40.
[55] D. A. Patterson and J. L. Hennessy, Computer Organization and Design. Morgan Kaufmann Publishers, 2004.
[56] B. Chapman, G. Jost, and R. van van der Pas, Using OpenMP: Portable Shared Memory Parallel Programming. MIT Press, Cambridge, Mass., 2008.
[57] V. Vakilotojar and P. Beerel, "RTL verification of timed asynchronous and heterogeneous systems using symbolic model checking," in Design Automation Conference 1997. Proceedings of the ASP-DAC '97. Asia and South Pacific, 28-31 1997, pp. 181 -188.
[58] G. Hoover and F. Brewer, "Synthesizing synchronous elastic flow networks," in Design, Automation and Test in Europe, 2008. DATE '08, 10-14 2008, pp. 306-311.
[59] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella, "NuSMV 2: An opensource tool for symbolic model checking." in Proc. of 14th Conf. on Computer Aided Verification (CAV 2002), vol. 2404, Jul. 2002.
[60] "IEEE standard for property specification language (PSL)," IEEE Std 1850-2010 (Revision of IEEE Std 1850-2005), pp. 1 -171, 62010.
[61] E. M. Clarke, E. A. Emerson, and A. P. Sistla, "Automatic verification of finite-state concurrent systems using temporal logic specifications," ACM Trans. Program. Lang. Syst., vol. 8, no. 2, pp. 244-263, 1986.
[62] "Heuristic methods," in Complexity and approximation, G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M.Protasi, Eds. Springer-Verlag Berlin Heidelberg, 1999.
[63] J. Carmona, J. Julvez, J. Cortadella, and M. Kishinevsky, "Scheduling synchronous elastic designs," in Application of Concurrency to System Design, 2009. ACSD '09. Ninth International Conference on, Jul. 2009, pp. 52-59.

[^0]: ${ }^{1}$ LID-2ss and LID-1ss mentioned later in the chapter are slightly different. However, the main concepts of Fig. 1.2 still apply to them.

[^1]: ${ }^{1}$ Section 2.1 is a revised version of work originally published in [49].

[^2]: ${ }^{2}$ Section 2.2 .1 is a revised version of work originally published in [45]. (c) 2010 IEEE. Reprinted with permission.

[^3]: ${ }^{1}$ This work has been submitted to the IEEE for possible publication [48]. Copyright may be transferred without notice.

[^4]: ${ }^{2}$ Throughout this chapter, the \Rightarrow symbol will be used to indicate implication, while \rightarrow will indicate the domain and codomain of a function.

[^5]: ${ }^{3}$ TermIDs are listed in Table 3.1.

[^6]: ${ }^{4}$ To avoid confusion with Rule V, note also that if P Term m_{m} was to be used in OptSoln ${ }^{i}$, it would have been used more than once (i.e., to construct at least Term_{j} and Term $_{k}$). This implies that Rule V does not apply in this case.

[^7]: ${ }^{1}$ This is a revised and extended version of a paper originally published in [49].

[^8]: ${ }^{1}$ This is a revised and extended version of a paper originally published in [52]. (c)2011 IEEE. Reprinted with permission.

