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ABSTRACT

Elasticity is a design paradigm in which circuits can tolerate arbitrary latency/delay

variations in their computation units as well as communication channels. Creating elastic

(both synchronous and asynchronous) designs from clocked designs has potential benefits

of increased modularity and robustness to variations. Several transformations have been

suggested in the literature and each of these require a handshake control network (examples

include synchronous elasticization and desynchronization). Elastic control network area

and power overheads may become prohibitive. This dissertation investigates different

optimization avenues to reduce these overheads without sacrificing the control network

performance. First, an algorithm and a tool, CNG, is introduced that generates a control

network with minimal total number of join and fork control steering units.

Synchronous Elastic FLow (SELF) is a handshake protocol used over synchronous elastic

designs. Comparing to its standard eager implementation (that uses eager forks - EForks),

lazy SELF can consume less power and area. However, it typically suffers from combina-

tional cycles and can have inferior performance in some systems. Hence, lazy SELF has

been rarely studied in the literature. This work formally and exhaustively investigates

the specifications, different implementations, and verification of the lazy SELF protocol.

Furthermore, several new and existing lazy designs are mapped to hybrid eager/lazy imple-

mentations that retain the performance advantage of the eager design but have power and

area advantages of lazy implementations, and are combinational-cycle free.

This work also introduces a novel ultra simple fork (USFork) design. The USFork has

two advantages over lazy forks: it is composed of simpler logic (just wires) and does not

form combinational cycles. The conditions under which an EFork can be replaced by a

USFork without any performance loss are formally derived.

The last optimization avenue discussed in this dissertation is Elastic Buffer Controller

(EBC) merging. In a typical synchronous elastic control network, some EBCs may activate

their corresponding latches at similar schedules. This work provides a framework for

finding and merging such controllers in any control network; including open networks

(i.e., when the environment abstract is not available or required to be flexible) as well



as networks incorporating variable latency units. Replacing EForks with USForks under

some equivalence conditions as well as EBC merging have been fully automated in a tool,

HGEN.

The impact of this work will help achieve elasticity at a reduced cost. It will broaden

the class of circuits that can be elasticized with acceptable overhead (circuits that designers

would otherwise find it too expensive to elasticize). In a MiniMIPS processor case study,

comparing to a basic control network implementation, the optimization techniques of this

dissertation accumulatively achieve reductions in the control network area, dynamic, and

leakage power of 73.2%, 68.6%, and 69.1%, respectively.
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CHAPTER 1

INTRODUCTION

The dissertation problem statement is to reduce the power and area overheads of elastic

system control networks without compromising performance.

1.1 Background And Motivations

1.1.1 What Is Elasticity?

Elasticity is a design paradigm in which circuits can tolerate arbitrary latency/delay

variations in their computation units as well as communication channels [2, 3]. Different

levels of elasticity exist. Delay-Insensitive (DI) designs function correctly whatever the

delay of their gates or wires [4]. Thus, DI designs provide the highest degree of elasticity.

However, the number of circuits that can be implemented using DI methodology is limited

[5].

This dissertation will focus on the synchronous implementation of elasticity (also known

as latency insensitive (LI) design) [8, 9, 10, 11]. Some of the algorithms introduced in the

work can also be extended to asynchronous elasticity with bundled data (and, for short,

may be referred to later as just asynchronous elasticity or desynchronization) [4, 6, 7]. LI

designs can tolerate discrete number (of clock cycles) of computation and communication

latency variations, while asynchronous elasticity can tolerate finer delays.

1.1.2 Why Elasticity?

Elastic design provides advantages much needed in the nanometer era. Without loss

of generality, and for the ease of explanation, most of the following advantages will be

illustrated through synchronous elasticity. Since LI design provides discrete elasticity of

the finer asynchronous elasticity [3], these advantages naturally extend to the asynchronous

implementation as well.

1. Provides tolerance for long interconnect latency variations and easier technology mi-

gration. The International Technology Roadmap for Semiconductor (ITRS) reported

in 2009 that chip-long communication cannot be done in a single clock cycle any more
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[12]. Hence, interconnect pipelining is becoming a necessity. Interconnect delays

are affected by many factors that may not be accurately estimated before the final

layout (e.g., physical distance, metal layer used, crosstalk, etc.) [13, 14]. They also

do not scale as well as logic gates [15, 16, 17]. Hence, due to technology migration

or place and route extra delays, it is very likely to have interconnects that suffer

different latencies than estimated at earlier stages of the design. Hence, unless the

design implements some kind of latency insensitive technique, severe changes may be

required in the system to accommodate the new latencies and, possibly, a number of

iterations [9, 17, 12]. This increases the time-to-market of a product. On the other

hand, LI designs tolerate the variations of interconnect latencies by inserting any

required number of empty pipeline stages (called bubbles). This essentially cuts an

interconnect into segments that meet the target timing constraints. By the definition

of LI design, inserting empty pipeline stages does not affect the system functionality.

2. Provides easier latency/throughput tradeoff exploration. For either ordinary clocked

designs or LI, architectural analysis is required to compute and optimize the impact of

inserting pipeline stages on the overall system performance [18, 19, 20, 21]. Nonethe-

less, the LI methodology allows for an easier exploration of latency/throughput trade-

offs, since the computational blocks can be left untouched while inserting interconnect

pipelines [22]. This also allows for easier exploration of new architectures [23, 24, 25].

3. Provides more modular design and easier IP reuse. IP reuse is a key consideration for

increased productivity in the current technology [12]. LI methodology facilitates IP

assembly and reuse in complex SoCs. It can tolerate variable interconnect latencies

among IPs without need of changing them.

4. Is a natural fit for variable latency designs/interfaces - increasing performance by

targeting the more frequent faster cases rather than the worst case. Some applica-

tions require flexible interfaces that can tolerate variable latencies. Examples include

interfaces to variable latency ALUs, memories or network on chip [26, 27, 28, 29].

By its definition, LI methodology naturally fits in these applications. In fact, it has

been reported that applying flexible latency design to the critical block of one of

Intel R© SOC (H.264 CABAC) can achieve 35% performance advantage [30]. Variable

latency design aims at targeting an average performance rather than the worst case.

In particular, instead of optimizing a circuit for all corner cases, variable latency

design optimizes the fast paths in l1 clock cycles, and the slow paths in l2 cycles (with
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l2 > l1). The average throughput increases as the probability of the input patterns

that require longer latency decreases [31]. Though variable latency design comes at an

area overhead, however, trying to achieve the same performance with static latency

may lead to an even bigger design to meet the tight timing target.

5. Enables pipelining cyclic systems - a goal that cannot be achieved by the standard

bypass and retiming of regular clocked systems [23]. To illustrate, consider the Read-

Modify-Write (RMW) memory structure of Fig. 1.1. The memory structure supports

three different operations (ops): read (rd), write (wr) and read-modify-write (rmw).

An example of a rmw operation is updating a specific memory location through a

modify function fM (e.g., fM (mem[adr1]) = mem[adr1] + 1). For simplicity, assume

the ops arrive to the memory interface with a maximum rate of 1 operation per clock.

Bypass logic is designed around the memory to guarantee that every read operation

from a memory location gets the most recent data written to that location (also

referred to as memory access coherency). With regular bypass design, and if back-to-

back rmw operations (of the same memory address) are allowed, the modify function

fM cannot have a latency of more than 1 clock cycle (i.e., cannot be pipelined),

otherwise the output of fM may be required for a following operation while fM is still

being executed. Thus, the standard bypass and retiming of regular clocked designs

cannot pipeline fM in this cyclic system. This is a typical observation that I also

noticed while designing and verifying memory bypass logic during my internship at

Cisco Systems R©, Canada (Jan - Jul, 2011). On the other hand, LI design is able to

pipeline cyclic systems through its natural capability to tolerate variable latency and

to stall. For example, in LI design fM can be pipelined to take any number of clock

Figure 1.1: Sample read-modify-write memory structure.
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cycle latencies (to decrease the clock period for example). Whenever the output of fM

is required while it is still executing, LI designs provide the natural ability to propagate

back a stall signal through the system until fM finishes execution. Moreover, whenever

fM is not required, LI design (with an early evaluation join [32], for example) provides

the ability to ignore fM output such that the system will operate unstalled (i.e., with

its normal latencies). Solving this design problem with synchronous elasticity using

an early evaluation join is illustrated in [23].

6. Saves dynamic power by activating stages only when necessary. LI design provides a

fine-grained (per pipeline stage) clock gating based on dynamic data flow [8]. In LI

designs, a stage is only activated when it is processing valid data and its downstream

is not stalled. This can reduce the system dynamic power consumption. However, an

offset to this power saving is the power overhead of the hand-shake control network.

7. Avoids distribution of long stall signals that can be on critical paths. LI design also

provides an upstream stage-based stall propagation mechanism with no overhead on

the clock frequency. This avoids distribution of long global stall signals that can be

on critical paths and can limit scalability [8, 23].

8. Asynchronous elastic designs provide low electro-magnetic interference (EMI) [6].

9. Asynchronous elastic designs provide finer and dynamic tracking of Process, Voltage,

and Temperature (PVT) variations - allowing for better typical case performance

rather than worst case. Asynchronous elastic circuits synchronize through hand-shake

signals (request/acknowledge) rather than a global clock. Hence, while the clock

period of synchronous designs (and, in turn, their performance) is limited by the

worst case conditions (of process, voltage, and temperature variations), asynchronous

designs dynamically track the PVT variations providing better typical performance.

Authors of [7] reported that a desynchronized DLX processor in 90 nm process has a

performance degradation of 20% compared to a clocked one when both operate under

worst case conditions. However, the desynchronized processor runs faster than the

synchronous one in 90% of the time. They also reported 13.44% area overhead.

1.1.3 Elasticization: Converting a Normally Clocked
System into Elastic

Because of the above advantages, converting an ordinary clocked system into elastic

(also referred to as elasticization) has been frequently studied in literature. Carloni et al.

[2] introduced the concept of patient processes as a theoretical model for latency insensitive
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design (aka synchronous elastic design). Informally, a module is a patient process if its

behavior is defined based on signal events order rather than their exact latencies [2]. Since

then, several approaches were proposed to convert a clocked circuit into elastic (in both its

synchronous and asynchronous flavors). In all these approaches the resultant elastic and

the ordinary clocked systems are flow equivalent. Two signals are flow equivalent if they

exhibit the same sequence of informative events (i.e., after dropping all the empty events).

Similarly, two systems are flow equivalent if, given flow equivalent input sequences, their

outputs are flow equivalent [2, 33, 34].

Before going further through the different elasticization schemes, it is useful to consider

the elasticization example shown in Fig. 1.2. Fig. 1.2a shows a synchronous circuit composed

of registers A, E, G, and F connected through combinational logic (CL). A typical first step

in an elasticization scheme is to replace each flip-flop (or possibly a group of them) in the

original clocked system with a synchronization element (possibly double latches) enabled

through a corresponding controller1. Following this step, data communications among

registers are analyzed. For each register-to-register data communication there must be a

corresponding elastic control channel (shown in dotted lines in Fig. 1.2b) to control the data

flow between these two registers. A control channel is usually composed of two signals, one

in the forward direction indicating the data validity and the other in the backward direction

carrying the stall information. These two signals are typically referred to as Valid/Stall and

Req/Ack in synchronous and asynchronous elasticity, respectively. A network of control

channels is formed where channels are connected through join and fork components. A join

component (shown in Fig. 1.2b as ⊗) is used to join two or more input channels into one

output channel. Similarly, a fork component (shown in Fig. 1.2b as �) is used to fork one

input channel into two or more output channels. Implementations of the latch controllers,

joins, forks, and channel protocol depend on the elasticization method.

On the asynchronous side, desynchronization was proposed to convert a normally clocked

circuit into an asynchronous one [6, 7]. Desynchronized designs are synchronized through

the regular asynchronous Req and Ack hand-shake signals rather than a universal clock.

Bundled data protocols are normally used; examples include 4-phase, 2-phase, or single

rail [4, 35]. For each register-to-register communication, delay elements are inserted in the

control path to match the critical data path delay between these two registers. Thus, the

1LID-2ss and LID-1ss mentioned later in the chapter are slightly different. However, the main concepts
of Fig. 1.2 still apply to them.
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(a) Normally clocked.

(b) Elastic.

Figure 1.2: Converting a clocked system into elastic.

request signals are delayed long enough for the data signals to arrive. This guarantees

each receiving latch is not activated before the data is ready at its input. Latch controller

protocol design and implementation are crucial to achieve maximum concurrency among

latch controllers, otherwise performance penalty can occur. Hence, different hand-shake

protocols and latch controllers have been studied in the literature [36, 34, 37, 6, 35]. The

matched delay elements keep track of their corresponding data path delays under different

process, voltage and temperature variations. Thus, the desynchronized designs operate at

a typical performance rather than the worst case (as in their clocked counterparts).

Algorithms have been developed for testing desynchronized circuits [38, 39, 40].

In the synchronous domain, an initial implementation for the latency insensitive de-

sign theorem was published in [22, 17, 41]. The initial implementation wraps normally

clocked sequential modules inside latency insensitive wrappers (called pearls and shells,

respectively). Channel latencies can be adjusted through what is called relay stations. The
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protocol requires a receiver to keep the Stall (also referred to as Stop) signal asserted for two

consecutive clock cycles to stall the sender. Hence, the implementation was later referred to

as Latency Insensitive Design with two-stop-to-stall (LID-2ss) [42]. To avoid data overflow,

each shell contains (bypassable) input queues for each input of the corresponding pearl.

The queues buffer the data tokens during stall conditions and are implemented by standard

edge-triggered FIFOs [42].

Synchronous Interlocked Pipeline (SIP) technique was introduced with two major dif-

ferences comparing to LID-2ss [8]. A stall condition is simpler and indicated by asserting

the Stall signal for only one clock cycle. Second, instead of implementing external queues,

SIP splits the same flip-flops used in the original clocked system into master-slave latches

of opposite polarity and with separate enables. Under normal operation, the two latches

will have one clock cycle forward latency (same as an edge triggered flip-flop). Under stall

conditions, the two latches has the capacity (together) to carry two different data tokens

while the stall signal is being propagated upstream if necessary. Thus, the SIP controllers

consume less area than their LID-2ss counterparts [42].

The protocol used in SIP can, in principle, be used for arbitrary pipeline structures -

including joins, forks, branches, and selects. However, the proposed implementation in [8]

of the aligned (also referred to later as lazy) fork component can easily form combinational

cycles when connected to join components in an arbitrary control network. The concept of

state-machine based nonaligned (also referred to later as eager) fork was introduced in [8]

but not implemented. Because of its eagerness eager forks can allow for shorter runtime

comparing to lazy forks. Authors of [9, 10], based on a similar implementation to [8],

proposed an automatic procedure to convert an arbitrary clocked circuit into LI, namely,

synchronous elasticization. The protocol name was coined as Synchronous ELastic Flow

(SELF). They also implemented the eager fork. Eager forks constitute no combinational

cycles when connected to joins, allowing synchronous elasticization for arbitrary clocked

designs. Also, support for synchronous variable latency controllers was included in [9, 10].

Other significant latency insensitive protocols include Phased SELF (or pSELF) and

LID-1ss. pSELF is a modified version of SELF that maps easier to and from the asyn-

chronous Req/Ack hand-shake protocol [26, 27]. LID-1ss was proposed as a modified version

of LID-2ss with stall condition indicated by asserting the Stall signal for only one clock cycle

[42]. A frame work for validating latency insensitive protocol families is given in [33].

Several enhancements to the original synchronous elasticity (with the SELF protocol)
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have then been reported. The regular join component waits for all its input channels to

carry valid data before it passes the data token to the output. Early evaluation joins wait

only for a required subset of inputs to be valid to start execution [32]. For correct operation,

the early evaluation join must keep track of the inputs that were not required when they

arrive later. This is done by sending anti-token on the opposite direction of their control

channels. When an anti-token meets a token on a control channel they annihilate [32]. An

example for that is a multiplexor where both the selection line and the selected input are

valid while the nonselected input has not arrived yet. In such a case an early evaluation join

will process the valid input, pass the data token to the output, and pass an anti-token to the

nonrequired input. Early evaluation achieves performance advantage over lazy evaluation

when join inputs have different arrival latencies [43].

Several transformations that are well-known in the synchronous design to improve

performance have been carried over to synchronous elastic circuits in correct-by-construction

fashion. These include retiming, recycling and speculation [44]. Nonetheless, other transfor-

mations that can also enhance performance are available only to elastic circuits. Examples

include empty-FIFO (bubble) insertion, FIFO-capacity increase, anti-token insertion, and

early evaluation [23].

1.2 Elasticity Overhead
Generating a control network is a necessary step in any of the elasticization approaches.

The elastic control network area and power overheads may become prohibitive in some cases

[3].

A desynchronized DLX processor in 90 nm process is reported to have a 13.44% area

overhead (over the normally clocked one), and noticeable power overhead [7].

Authors of [42] show that elasticizing a 32 × 32 6-stage-pipelined multiplier with three

different synchronous elasticization techniques results in an area overhead ranging from 10%

to 19%.

Our measurements of a MiniMIPS processor fabricated in a 0.5 µm node show that

synchronous elasticization with an eager SELF implementation results in area and dynamic

power penalties of 29% and 13%, respectively [45].

Adding advanced features to synchronous elastic circuits (e.g., early evaluation and

anti-token propagation) can pose an area versus controller performance tradeoff [32].

Elastic control networks reflect the register-to-register communications in the original

clocked system. The network overhead may decrease with wider data paths. Nonetheless,
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the overhead is remarkable when a design has a communication complexity comparable to

its computation complexity.

Furthermore, elasticity can be applied at different levels of granularity [3]. A design

may be divided into very few register groups, with every group enabled by only one elastic

controller. However, finer granularity typically results in more robustness to variations,

better performance, and is sometimes required to enjoy some of the elasticity advantages

mentioned in Sec. 1.1.2 [7]. On the other hand, finer granularity typically comes at a higher

elasticity cost in terms of area and power consumption.

For all these reasons, this dissertation aims at achieving elasticity at a minimized cost.

This will be done through minimizing the control network area and power overheads without

sacrificing performance. The impact of this work will broaden the class of circuits that can

be elasticized with acceptable overhead (circuits that designers would otherwise find it

too expensive to elasticize). The impact will also enable designers to deepen the level of

elastic granularity in their designs to enjoy the full benefit of elasticity at a reasonable

cost. Furthermore, all the algorithms in this dissertation (except CNGT flow presented

in Appendix B) have been automated and applied to various benchmarks ensuring their

suitability for tight time-to-market constraints.

1.3 List of Contributions

1. Elasticization and fabrication of a MiniMIPS processor case study in 0.5 µm technol-

ogy. The MiniMIPS processor is an 8-bit subset of the MIPS (Microprocessor without

Interlocked Pipeline Stages) designed by Hennessy [1, 46]. It has been elasticized

using an all eager implementation of the SELF protocol. No bubbles or variable

latency units were used. The control network has been hand optimized. The 0.5 µm

MiniMIPS represents a class of circuits in which the register-to-register communication

complexity is comparable to the computation complexity. It, thus, provides a basic

starting point to run the optimization algorithms introduced in this dissertation. The

elasticization case study and results have been published in [45].

2. The Control Network Generator (CNG) algorithm and tool. The elastic control net-

work can be constructed in many different ways. A direct approach is provided in

[9, 3]. In that approach, for each register that is receiving data communications from

multiple registers, one multi-input join is connected to this register controller input.

Similarly, for each register that is sending data communications to multiple registers,



10

one multi-output fork is connected to this register controller output. This approach,

however, could be inefficient in terms of the total number of joins and forks used.

Hence, this dissertation introduces CNG. CNG is an algorithm (and a CAD tool) that

generates a control network with minimum total number of 2-input joins and 2-output

forks. This can substantially reduce the power and area of the control network. CNG

automatically generates the optimal network for both synchronous elasticization or

desynchronization. Comparing to the approach of [9], a MiniMIPS case study shows

that synchronous elastic implementation of the network generated by CNG will save

27.9%, 31.4%, and 28.5% of the control network area, dynamic, and leakage power,

respectively. CNG is published in [47] and an extended version in [48]. PreCNG tool

is also introduced. PreCNG takes an ISCAS benchmark and automatically finds and

expresses the register-to-register communications in eqn and verilog formats as well

as another format that CNG accepts. The work also formalizes the problem of control

network generation in a form that can be optimized by commercial synthesis tools.

Results are compared.

3. Formal investigation of the specifications, different implementations, and verification

of the lazy SELF protocol. The Synchronous Elastic Flow (SELF) protocol is a

communication protocol in synchronous elastic designs [9]. Eager implementation

of this protocol was reported in [9]. This implementation uses eager forks (EForks)

that try to optimize the control network runtime on the expense of more area and

power consumption. A lazy SELF implementation (i.e., that uses normal or, so called,

lazy forks (LForks)) consumes less area and power. However, the latter suffers from

combinational cycles and inferior runtime in some systems. Therefore, lazy SELF has

been rarely studied in the literature. To exploit its area and power advantages, this

work formally and exhaustively investigates the specifications, different implementa-

tions, and verification of the lazy SELF protocol.

4. Hybrid (EFork-LFork) SELF implementation. To make use of the eager SELF

runtime advantage and the lazy logic simplicity, this work introduces a novel hybrid

implementation of the SELF protocol, where both eager and lazy forks are incorpo-

rated. The hybrid SELF implementation proposed in this dissertation uses eager forks

only when needed for runtime optimization and combinational cycle cutting, and lazy

forks otherwise. Conditions for replacing eager with lazy forks without runtime loss

are formally derived. A MiniMIPS case study shows that, comparing to an all eager
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implementation, a hybrid SELF (EFork-LFork) will save 31.8%, 26.0%, and 30.8%

in the control network area, dynamic, and leakage power, respectively, without any

performance loss. This and the previous contribution have been published in [49].

5. Introducing an Ultra Simple Fork (USFork) design and the hybrid (EFork-USFork)

SELF implementation. To further extend the concept of hybrid network, this work

introduces a novel fork structure called the Ultra Simple Fork (USFork). The

USFork has two advantages over the lazy fork: it has even simpler logic (just wires)

and it forms no combinational cycles. This allows for even more area and power

reduction in the control network. The conditions under which an EFork will be

protocol equivalent to a USFork (and thus can be replaced) are formally derived.

Comparing to an all eager implementation of the elastic MiniMIPS processor, hybrid

(EFork-USFork) implementation shows 36.9%, 31.3%, and 32.0% savings in the

control network area, dynamic, and leakage power, respectively.

6. Merging Elastic Buffer Controllers (EBCs) under some equivalence conditions ver-

ifiable in any synchronous elastic control network. In a typical synchronous elastic

control network, some Elastic Buffer Controllers (EBCs) may activate their corre-

sponding latches at similar schedules. This can allow for possible merging of these

controllers into one controller that feeds them all (as much as the physical placement

permits). Similar observation has been made by the authors of [50]. However,

their algorithm requires both the control network and its environment to have static

latencies. Hence, this dissertation introduces a framework for merging such controllers

in any control network. That includes open networks (i.e., when the environment

abstract is not available or required to be flexible) as well as networks incorporating

variable latency units. Comparing to an all eager implementation of the elastic

MiniMIPS processor, hybrid (EFork-USFork) implementation with merged EBCs

shows 62.8%, 54.1%, and 56.9% savings in the control network area, dynamic, and

leakage power, respectively.

7. The Hybrid Network GENerator (HGEN) tool. HGEN incorporates the above two

contributions. It takes an input verilog description of a control network. It runs

IBM R© 6thSense [51] as an embedded verification engine. HGEN produces a verilog

description of a minimized version of the control network (i.e., EForks that are

protocol equivalent to USForks are replaced, and optionally, equivalent EBCs are

merged). Though HGEN has been used in this dissertation to do the EFork to
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USFork conversion and EBC merging, its value is more than that. HGEN provides

a framework where any type of synchronous elastic network can be formally verified.

Any future verification-based research or optimization can be readily integrated in the

tool. HGEN and the above two contributions have been published in [52].

8. The CNGT transformation flow. CNG does not guarantee providing the minimum

possible critical path delay in a control network. Normally this is not a problem since

the critical delay of the datapath is usually larger than that of the control network.

Nonetheless, this work introduces a systematic flow (referred to as CNGT) of structural

transformations of the synchronous elastic control network that reduces the network

delay to meet tight timing constraints. CNGT is verified that the two versions of the

control network (i.e., before and after the transformations) are functionally equivalent.

The flow, in its current state, does not take into account wire delays.

1.4 This Dissertation Structure

Chapter 2 gives an overview of synchronous elasticity and the SELF protocol. It also

introduces the MiniMIPS elasticization as a case study.

Chapter 3 formalizes the problem of minimizing the total number of 2-input joins and

2-output forks in an elastic control network. It introduces the CNG theory, algorithm, and

tool. Chapter 3 also compares the results of CNG to other possible flows using Synopsys R©

Design Compiler R© (DC) [53] or Berkeley ABC [54] over ISCAS benchmarks and other case

studies.

Chapter 4 formally and exhaustively investigates the specifications and different imple-

mentations of the lazy SELF protocol. It also introduces a hybrid implementation of the

SELF protocol where both eager and lazy forks are used.

Chapter 5 introduces two techniques for further reducing the area and power overheads

of synchronous elastic control networks, namely, utilizing the Ultra Simple Fork (USFork)

and EBC merging. The two techniques have been integrated in an automatic tool, HGEN,

based on 6thSense as an embedded verification engine.

Chapter 6 concludes the dissertation.

Appendix A shows some preliminary heuristics for running CNG on big problems. Ap-

pendix B introduces CNGT flow and transformations. CNGT aims at transforming a given

synchronous elastic control network such that it meets tight timing constraints.



CHAPTER 2

SYNCHRONOUS ELASTICIZATION AND

THE MINIMIPS CASE STUDY

Synchronous elasticization converts an ordinary clocked circuit into Latency-Insensitive

(LI) design [8, 9, 10]. The Synchronous Elastic Flow (SELF) is an LI protocol that can

be used over synchronous elastic control network channels. This chapter gives an overview

of the synchronous elastic architectures, SELF protocol and the process of synchronous

elasticization. MiniMIPS elasticization is used as a case study. The chapter is concluded

with investigation of the possible control network optimization avenues.

2.1 Synchronous Elastic Architectures1

A synchronous elastic system replaces the flip-flops used as pipeline latches in a clocked

system with Elastic Buffers (EBs). EBs serve the purpose of pipelining a design as well as

synchronization points that implement an LI protocol, also allowing the clocked pipeline to

be stalled.

Fig. 2.1 [9] shows a block diagram implementation of an EB. An EB consists of a

data-plane (double latches) and a controller. It can be in the Empty (bubble), Half or

Full states depending on the number of data tokens its two latches are holding. A sample

implementation of the EB controller can be found in [9]. EB controllers communicate

through control channels. Each channel contains two control signals. Valid (V ) travels

in the same direction as the data and indicates the validity of the data coming from the

transmitter. Stall (S) travels in the opposite direction and indicates that the receiver cannot

store the current data.

The SELF channel protocol is shown in Fig. 2.2. It defines three channel states:

1. Transfer (T ): V&!S. The transmitter provides valid data and the receiver can accept

it.

1Section 2.1 is a revised version of work originally published in [49].
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Figure 2.1: An EB implementation.

2. Idle (I): !V . The transmitter does not provide valid data. This dissertation identifies

two Idle conditions: I0 (!V&!S) where the receiver can accept data and I1 (!V&S)

where the receiver cannot accept data.

3. Retry (R): V&S. The transmitter provides valid data, but the receiver cannot accept

it. In the Retry state, the valid data must be maintained on the channel until it is

stored by the receiver.

When the connection between EBs is not point-to-point, a control network is required

to reflect the register-to-register communication in the original clocked circuit. The control

network is composed of control channels connected through control steering units, namely,

join and fork components. A join element combines two or more incoming control channels

into one output control channel. A sample join design is shown in Fig. 2.3 [8, 9]. A fork

element copies one incoming control channel into two or more output control channels.

An n branch extension of the eager fork proposed in [9] is shown in Fig. 2.4. Fork and

join components will be represented by � and ⊗, respectively. Hereafter the term control

network is used to aggregately refer to the joins, forks, and EB controllers in an elastic

system.

Figure 2.2: SELF channel protocol.
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Figure 2.3: An n-to-1 lazy join. Figure 2.4: A 1-to-n EFork.

2.2 MiniMIPS Case Study and Results

MIPS (Microprocessor without Interlocked Pipeline Stages) is a 32-bit architecture with

32 registers, first designed by Hennessey [46]. The MiniMIPS is an 8-bit subset of MIPS,

fully described in [1].

2.2.1 Elasticizing the MiniMIPS2

The MiniMIPS is used as a case study of elasticization. Fig. 2.5 shows a block diagram

of the ordinary clocked MiniMIPS [55, 1]. The MiniMIPS has a total of 12 synchronization

points (i.e., registers), shown as rectangles in Fig. 2.5: P (program counter), C (controller),

I1, I2, I3, I4 (four instruction registers), A,B and L (ALU two input and one output

registers, respectively), M (memory data register), R (register file) and Mem (memory).

To perform elasticization, each register is replaced by an elastic buffer (EB). Then,

the register to register data communications in the MiniMIPS are analyzed. The following

registers pass data to both A, B : R, to R : C, I2, I3, L, M , to C : C, I1, to I1, I2,

I3, I4 : C, Mem, to L : A, B, C, I4, P , to M : Mem, to Mem : B, C, L, P , and to

P : A, B, C, I4, L, P . For each register to register data communication there must be a

corresponding control channel to control the data flow of this communication. The resultant

2Section 2.2.1 is a revised version of work originally published in [45]. c©2010 IEEE. Reprinted with
permission.
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Figure 2.5: Block diagram of the ordinary clocked MiniMIPS.

control network can be implemented in different ways. Fig. 2.6 shows a control network

that has been hand-optimized to minimize the number of joins and forks used in the control

network (to reduce area and power consumption). From the control point of view, the

register file (R) and memory (Mem) in a microprocessor can be treated as combinational

units [9]. Hence, a separate EB for the register file (R) was not incorporated in Fig. 2.6.

For the purpose of this case study, the memory (Mem) is off-chip.

From the elastic control point of view, the MiniMIPS control signals (e.g., RegWrite,

IRWrite, etc. - see Fig. 2.5) are considered part of the data plane and they need their

own corresponding control channels. Mapping between datapath signals in the clocked

MiniMIPS (of Fig. 2.5) and the control channels in the elastic MiniMIPS (of Fig. 2.6)

should be self explanatory for most signals. RFWrite in Fig. 2.6 is the RegWrite control

channel. RFWrite valid must be active if data is going to be written in the register file.

Therefore, RFWrite valid has been ANDed with RegWrite inside the register file.

Both the clocked and the elastic MiniMIPS have been synthesized, placed, routed and

fabricated in a 0.5 µm technology. The functionality of the fabricated processors have been
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Figure 2.6: Hand-optimized control network of the elastic clocked MiniMIPS.

verified on Verigy’s V93000 SoC tester using the testbench in [1]. An eager implementation

of the SELF protocol has been used with the EFork and lazy join of Figures 2.4 and 2.3,

respectively. Table 2.1 summarizes the chip measurements. It shows that elasticizing

the MiniMIPS has area, dynamic and leakage power penalties of 29%, 13% and 58.3%,

respectively. For accurate leakage power comparison, both designs have been set to the

same state (through a test vector) before measuring the average leakage supply current.

Both MiniMIPS have been fabricated without the memory block. Memory values have

been programmed inside the tester. An assumption about the memory access time was

made. Since it affects the maximum operating frequency of both MiniMIPS designs in the

same way, therefore, an arbitrary memory access time of zero was assumed. Schmoo plots

Table 2.1: Clocked and eager elastic MiniMIPS chip results. Measurements are done at
5V and 30◦.

Clocked MiniMIPS Eager Elastic MiniMIPS Penalty

Area (µm X µm) 1246.765 X 615.91 1284.1 X 771.54 29%

Pdyn @80 MHz (mW) 330 373 13%

Pleak (µW) 16.3 25.8 58.3%

fmax (MHz) 91.7 92.2 -0.5%



18

for both clocked and elastic MiniMIPS are shown in Fig. 2.7.

2.2.2 Case Study Evaluation

It should be noted that the elastic MiniMIPS has functional features that the clocked

design does not have. The clocked design cannot support flexible interface latencies nor the

addition of extra pipeline stages between registers. The fabricated MiniMIPS case study

did not take advantage of these functional features. For example:

• The fabricated MiniMIPS (clocked and elastic) used an off-chip memory with static

latency. If the memory latency is not static, the clocked design will have to implement

some kind of latency insensitivity in the data path to accommodate for latency

variations (e.g., cache miss). A sample approach could be a finite state machine

waiting for the memory data valid signal to assert, while stalling the processor or

running no-operation (NOP) tasks. This, on the other hand, is handled naturally

in the elastic MiniMIPS by the means of the Valid and Stall control signals, without

need for additional logic in the datapath. The overhead of adding some sort of latency

insensitivity to the data path of the normally clocked MiniMIPS should be taken into

account in the comparison. The power saving due to stalling the processor (in the

elastic version) rather than running NOPs tasks (in the ordinary clocked one) should

also be considered.

• The fabricated MiniMIPS (clocked and elastic) used fixed latency ALU. Similar ar-

gument applies as the above.

• The fabricated MiniMIPS (clocked and elastic) did not have long interconnects that

had to be pipelined (i.e., no bubble insertion was needed). The synchronous elastic

design naturally handles long interconnect latencies by inserting any number of empty

pipeline stages (i.e., bubbles) to meet the target timing constraints. On the other

hand, to handle the problem in the ordinary clocked version, severe changes in the

design may be required and/or the system frequency may need to slow down.

Would elasticity be required (e.g., to accommodate variable latency interfaces, long

interconnects, etc.), the presented MiniMIPS case study shows the cost of achieving this

elasticity using the SELF protocol. The MiniMIPS is a relatively small design (8-bit

datapath). The overhead of elasticization may decrease with increasing the word width.

Nonetheless, the MiniMIPS represents a class of circuits in which the register-to-register

communication complexity is comparable to the computation complexity. Thus, the control
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(a) Schmoo plot for clocked MiniMIPS.

(b) Schmoo plot for elastic MiniMIPS.

Figure 2.7: Fabricated chips schmoo plots. Red boxes are for failed tests, while green are
for passed ones.
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network area and power overheads are remarkable. Other examples from the literature

include:

• A desynchronized DLX processor in 90 nm process is reported to have a 13.44% area

overhead (over the normally clocked one), and noticeable power overhead [7].

• Elasticizing a 32 × 32 pipelined multiplier for a pipeline depth ranging from 2 to 6

with three different synchronous elasticization techniques is reported to result in an

area overhead ranging from as low as 5% to as much as 23% [42].

2.2.3 Optimization Avenues

1. Can the required register-to-register communication be achieved by using fewer num-

ber of joins and forks? What is the minimum? - Chapter 3.

2. Eager forks incorporate one flip-flop for each branch that is clocked every clock cycle.

Thus, they are area and power expensive. Can the eager forks be replaced by lazy

without sacrificing performance? - Chapter 4.

3. Are there any other fork structures that are cheaper in area and power than even

lazy forks, do not form combinational cycles, and can substitute EForks without any

performance loss? What are the replacement conditions? - Chapter 5.

4. Elastic buffer controllers are area and power expensive. Is it possible to merge some

of the EBCs without any performance loss? - Chapter 5.



CHAPTER 3

CONTROL NETWORK GENERATOR FOR

ELASTIC CIRCUITS1

Creating latency insensitive or asynchronous designs from clocked designs has potential

benefits of increased modularity and robustness to variations. Several transformations have

been suggested in the literature and each of these require a handshake control network

(examples include synchronous elasticization and desynchronization). Numerous imple-

mentations of the control network are possible. This chapter reports on an algorithm that

generates an optimum control network consisting of the minimum total number of 2-input

join and 2-output fork control components. This can substantially reduce the area and

power consumption of the control network. The algorithm has been implemented in a CAD

tool, CNG. It has been applied to the MiniMIPS processor showing a 14% reduction in the

number of control steering units over the hand optimized version of Fig. 2.6, and a 42.9%

reduction over a network that would be implemented using a basic approach introduced

in [9]. CNG is also compared with control network synthesis approaches using industrial

strength synthesis tools, e.g., Design Compiler R© (DC) [53] from Synopsys R© and ABC [54]

from Berkeley. The tools were compared over many ISCAS-89 benchmarks as well as locally

developed examples. In all complete benchmark runs in this chapter, DC and ABC produce

a network with the same or more number of join (and fork) components than CNG. In s614,

for example, ABC produces a network with 11.3% more joins than CNG (69 vs. 62). In s1238,

DC produces a network with 10.9% more joins than CNG (51 vs. 46). Locally developed

examples (in part based on observations seen in ISCAS benchmarks) show even more favor

toward CNG. In one of the developed examples, DC produces a network with up to 50%

more join components than CNG, and ABC with 57% more joins than CNG.

1This work has been submitted to the IEEE for possible publication [48]. Copyright may be transferred
without notice.
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3.1 Problem Definition

Example 3.1. Let I1, I2, X1, X2 be four registers in the original ordinary clocked design.

Both registers I1 and I2 pass data to both registers X1 and X2. Find a control network

implementation for the elastic version of this design.

Figures 3.1a and 3.1b are two example implementations for such a control network.

The control network in Fig. 3.1b has one fewer join and one fewer fork components than

the network of Fig. 3.1a. Things get more complicated when the number of registers

and their corresponding communications increase. Hence, the purpose of the proposed

algorithm is, given a set of required register-to-register communications, the algorithm

should automatically generate a control network with minimum total number of 2-input

join and 2-output fork components.

This section lists a number of definitions required to formalize the problem. Example 3.2

will be used as a running example throughout the chapter.

Example 3.2. Let A,B,C,D,E, F,G,X1, X2, X3, X4, X5 be twelve registers in the orig-

inal ordinary clocked design. The following registers pass data to X1 : B,C,G, and to

X2 : A,B,C,G, and to X3 : A,B,C,D,E, and to X4 : A,B,D,E, F , and to X5 : A,B,E, F .

Find a control network implementation for the elastic version of this design, that incorpo-

rates minimum number of join and fork components.

A data transmitting register as well as a primary input will be referred to as an input

node (or INode). Similarly, a data receiving register as well as a primary output will be

referred to as an output node (or ONode).

The set of all INodes and the set of all ONodes in the network are designated as

INodeS and ONodeS, respectively. In Example 3.2, INodeS = {A,B,C,D,E, F,G}, and

ONodeS = {X1, X2, X3, X4, X5}. Note that, in a typical system, a register is both receiving

(a) (b)

Figure 3.1: Two possible implementations of Example 3.1.
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and transmitting data. Hence, from the data communication perspective, its data-input

interface and data-output interface are ONode and INode, respectively.

Definition 3.3. Term A set of one or more INodes.

Constructing a Term typically means joining the control channels coming from its

constituent INodes into one control channel. Each Term has a unique identifier, TermID.

As an example, a Term that joins the control channels coming from: B,D,E, is {B,D,E}

and, for simplicity, will be referred to as BDE. |Term1| designates the cardinality of

Term1. A Term that is associated with an input node (i.e., composed of only one INode)

is called a Source. The set of all Source Terms is designated as SourceS. Note that

|SourceS| = |INodeS|.

Definition 3.4. Target A Term that is associated with an output node. A Target of a

certain ONode is a Term composed of all INodes that send data to that ONode.

In Example 3.2, BCG is the Target Term associated with ONode X1. The set of all

Target Terms is designated as TargetS. Note that |TargetS| = |ONodeS|. The set of all

Terms relevant to the problem is designated as TermS. Formally,

TermS = {Termi|Termi ⊆ Targetj ∀Targetj ∈ TargetS} (3.1)

Terms in TermS or in any other Term set introduced later are identified by their unique

TermID rather than their INode set contents (see Term definition in Def. 3.3). In general,

every INode set will map to at most one TermID. However, an exception for this rule,

and without loss of generality, are the INode sets of Target Terms. This work assumes

that Target Terms are terminal in the sense that they cannot be used inside the control

network to construct other Terms. If needed to be shared by other Terms, internal images

that have the same INode set are used inside the network instead. Hence, TermS set of

Eq. 3.1 can contain both a Target as well as its internal image. An example in the Terms

listed in Table 3.1 is the Target whose INode set is {B,C,G} and TermID = 1. It has an

internal image (i.e., with the same INode set) which is the Term whose TermID = 8.

Definition 3.5. Partial Solution or PS A set of Terms that could be used to implement

another Term. Formally, PSt (set) is a partial solution of Termt, iff
⋃|PSt|

i=1 Termi =

Termt ∧ ∀Termi ∈ PSt : TermiID 6= TermtID, where TermiID and TermtID are the

TermIDs of Termi and Termt, respectively.
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Table 3.1: Terms and PSs of Example 3.2. Term types are: Target (T ), PTerm (P )
and Source(S).

TermID Term Type PSID PS Initial nUsed
Max Min

1 BCG T 1 {BCG} 0 0
2 ABCG T 1 {BCG,A} 0 0

2 {ABC,G}
3 ABCDE T 1 {ABDE,C} 0 0

2 {ABC,D,E}
4 ABDEF T 1 {ABDE,F} 0 0

2 {ABEF,D}
5 ABEF T 1 {ABEF} 0 0

6 ABDE P 1 {ABE,D} 2 0
7 ABEF P 1 {ABE,F} 2 1
8 BCG P 1 {BC,G} 2 1
9 ABC P 1 {BC,A} 2 0

2 {AB,C}
10 ABE P 1 {AB,E} 2 1
11 BC P 1 {B,C} 2 1
12 AB P 1 {A,B} 2 1

13-19 A−G S,P 1

PSt represents one way of constructing Termt. One Term could be constructed in multi-

ple ways, and thus has more than one PS. In Example 3.2, to construct Termt = ABCDE,

one possible PS is {ABC,D,E}. Another is {ABDE,C}. Note that, by definition, a Term

cannot be used to implement itself. Also, Sources do not have PSs.

Definition 3.6. Solution or Soln A vector of PSs, where TermIDs are used as indices

(first index is 1). If Soln1 is a Solution, and TermtID is the TermID of Termt, then

Soln1[TermtID] (or, for short, Soln1[Termt]) is the chosen PS to construct Termt in

Soln1. Soln1[Termi] = ∅ ⇒ Termi ∈ SourceS.2

In Example 3.2, the following is a possible Solution (Terms are sorted by their TermIDs

of Table 3.1, and Source PSs are ignored):

Soln1 = < {BCG} , {BCG,A} , {ABDE,C} , {ABDE,F} ,

{ABEF} , {ABE,D} , {ABE,F} , {BC,G} ,

{AB,C} , {AB,E} , {B,C} , {A,B} > (3.2)

2Throughout this chapter, the ⇒ symbol will be used to indicate implication, while → will indicate the
domain and codomain of a function.
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Hence, a Solution can be seen as a vector of PS choices of different Terms. For example,

Soln1[2] = {BCG,A}. This means the PS = {BCG,A} is used in Soln1 to construct

Term ABCG (whose TermID is 2). Soln1 is depicted in Fig. 3.2. The set of all Solutions

is designated as SolnS.

Definition 3.7. nUsed nUsed[Termi]
∣∣∣
Soln1

defines how many times Termi is used to

construct other useful Terms in Solution, Soln1. Formally, nUsed[Termi]
∣∣∣
Soln1

is defined

recursively to be the number of Terms, Termt, that satisfy the following two conditions:

1. Termi ∈ Soln1[Termt].

2. nUsed[Termt]
∣∣∣
Soln1

> 0 ∨ Termt ∈ TargetS.

By definition, ∀Termi ∈ TargetS : nUsed[Termi] = 0.

Definition 3.8. Useful Term Termi is said to be useful in Soln1 (or Soln1 uses Termi),

if any of the following two conditions hold:

• Termi ∈ TaregtS.

• nUsed[Termi]
∣∣∣
Soln1

> 0.

Figure 3.2: A sample control network of Example 3.2.
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The function UsefulTermS(Soln1) : SolnS → 2TermS is defined to return the useful

Terms in a given Solution. Formally, UsefulTermS(Soln1) = UTermS, where UTermS =

{Termi ∈ TermS |Termi is useful in Soln1 }.

The suffix
∣∣∣
Soln1

may be omitted from nUsed and other data structures and functions

when the context is clear. For Example 3.2 and Soln1 of Eq. 3.2: Term ABE (with

TermID of 10) is used to construct both Terms ABDE (with TermID of 6) and ABEF

(with TermID of 7). Hence, nUsed[ABE]
∣∣∣
Soln1

= 2. Also, Term ABC (with TermID of

9) is not useful in Soln1. Term AB (with TermID of 12) is used to construct both Terms

ABC (with TermID of 9) and ABE (with TermID of 10). However, since Term ABC is

not useful in Soln1, therefore, nUsed[AB]
∣∣∣
Soln1

is only 1.

Definition 3.9. Solution Graph or SG SG is a Directed Acyclic Graph (DAG) composed

of the ordered pair (V,A). V is the set of vertices and A ⊂ V × V , the set of directed arcs.

Any Soln, Soln1, can be represented by an SG, SG1, such that:

• V = {TargetS, SourceS, ITermS}. And, for short, V = {T, S, I}. ITermS =

{Termi ∈ TermS|Termi /∈ (SourceS ∪ TargetS) ∧ Termi is useful in Soln1}.

• A = {(vi, vj) |vi, vj ∈ V ∧ vi ∈ Soln1[vj ]}.

For Example 3.2 and Soln1 of Eq. 3.2, SG1 is shown in Fig. 3.3.

Note that from the A definition above and PS and Soln definitions (Definitions 3.5

and 3.6, respectively), SG1 is acyclic (i.e., no possible sequence of arcs can start from and

end at the same vertex). The following functions are defined for each vertex, vi ∈ V :

Figure 3.3: A Solution graph for Example 3.2 Solution of Eq. 3.2.
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• Ain(vi) : V → 2A. For each vi, Ain(vi) returns the set of arcs that end at vi. Formally:

Ain(vi) = {aj = (vj , vi)|aj ∈ A}.

• Similarly, Aout(vi) : V → 2A. For each vi, Aout(vi) returns the set of arcs that start

at vi. Formally: Aout(vi) = {aj = (vi, vj)|aj ∈ A}.

• nJ2(vi) : V → N. A function that returns the number of 2-input joins constructing

the Term represented by vertex vi in the Solution represented by the graph. It is

assumed in this work that an n-input join is implemented using (n− 1)J2s. Formally,

nJ2(vi) =

{
|Ain(vi)| − 1 |Ain(vi)| ≥ 1
0 |Ain(vi)| = 0

(3.3)

• Similarly, nF2(vi) : V → N. A function that returns the number of 2-output forks

immediately branching from the Term represented by vi. It is assumed in this work

that an n-output fork is implemented using (n− 1) F2s. Formally,

nF2(vi) =

{
|Aout(vi)| − 1 |Aout(vi)| ≥ 1
0 |Aout(vi)| = 0

(3.4)

Definition 3.10. Cost A function that returns the number of 2-input joins (J2s) required

to implement a PS, a Term, or a Soln.

Formally, let PSt be the PS of Term, Termt, in Soln, Soln1 (i.e., Soln1[Termt] = PSt),

then Cost(Termt) in Soln1, Cost(Termt)
∣∣∣
Soln1

: TermS×SolnS → N, is defined as follows:

Cost(Termt)
∣∣∣
Soln1

= |PSt| − 1 +

|PSt|∑
i=1

Cost(Termi)
∣∣∣
Soln1

nUsed[Termi]
∣∣∣
Soln1

(3.5)

where Termi ∈ PSt ∀i = 1, 2, . . . |PSt|. Cost(Termt)
∣∣∣
Soln1

and Cost(PSt)
∣∣∣
Soln1

will be

used interchangeably (since Soln1[Termt] = PSt). Two factors contribute to Cost(Termt)

in a Solution. First is the number of J2s used to join the PSt constituent terms. It is

assumed in Eq. 3.5 that to implement an n-input join, (n − 1)J2s are required. The other

factor is the Cost of the constituent Terms themselves, taking into account how much these

Terms are shared among other Terms in that Solution. The Term sharing information is

provided by the nUsed vector. By definition, ∀Termi ∈ SourceS : Cost(Termi) = 0.

For Example 3.2 and SG1 of Fig. 3.3, the chosen PS to construct Term ABE is {AB,E}.

nUsed[AB] = 1. Hence, Cost(ABE) = 1 + Cost(AB). The chosen PS to construct Term

AB is {A,B}, and hence, Cost(AB) = 1. Therefore, Cost(ABE) in Soln1 is 2. Similarly,

Cost(ABDE) = 2.
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Similarly, the function Cost(Soln1) : SolnS → N is defined to return the total number

of J2s used to construct all TargetS in Soln1. Formally,

Cost(Soln1) =

|TargetS|∑
i=1

Cost(Targeti) (3.6)

where Targeti ∈ TargetS ∀i = 1, 2, . . . |TargetS|. For Example 3.2 and Soln1 of Eq. 3.2

(or SG1 of Fig. 3.3), five Targets exist, namely, BCG, ABCG, ABCDE, ABDEF , ABEF .

The summation of the Costs of these Targets in Soln1 (i.e., Cost(Soln1)) is 9.

Definition 3.11. OptCost The minimum Cost among all Solution Costs. Formally,

OptCost = min
|SolnS|
i=1 Cost(Solni).

The Optimum Solution or OptSoln is defined to be a Solution such that Cost(OptSoln) =

OptCost. An OptSoln may not be unique for a given problem, since multiple Solutions

can have the same minimum Cost among all Solutions. Hence, OptSolnS is defined to be

the set of all optimum Solutions.

Definition 3.12. Search Space or Space A Space (designated as Sk) is a set of Solutions.

The (whole) search Space (designated as So) is initialized with SolnS, and then refined

throughout the algorithm until an OptSoln is found.

Definition 3.13. Cone(Term) Cone(Termt)
∣∣∣
Soln1

: TermS × SolnS → 2TermS , a func-

tion that returns the set of all Terms (down to SourceS) used in implementing Termt in

Soln1. Formally, let Soln1[Termt] = PSt, then:

Cone(Termt)
∣∣∣
Soln1

= PSt

|PSt|⋃
i=1

Cone(Termi)
∣∣∣
Soln1

(3.7)

where Termi ∈ PSt ∀i = 1, 2, . . . |PSt|.

By definition, ∀Termi ∈ SourceS : Cone(Termi) = ∅. For Example 3.2 and SG1

of Fig. 3.3: Cone(BCG) = {BC,G,B,C}. Similarly, let PS′ be a set of Terms (not

necessarily a PS of any Term), then define Cone(PS′)
∣∣∣
Soln1

: 2TermS × SolnS → 2TermS

as follows:

Cone(PS′)
∣∣∣
Soln1

= PS′
|PS′|⋃
i=1

Cone(Termi)
∣∣∣
Soln1

(3.8)

where Termi ∈ PS′ ∀i = 1, 2, . . . |PS′|. Hence, if Soln1[Termt] = PSt, then

Cone(Termt)
∣∣∣
Soln1

and Cone(PSt)
∣∣∣
Soln1

will be used interchangeably.
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Definition 3.14. Del operator - Soln1/D The Del operator (/) accompanied by a Del

set D ⊆ TermS are applied to a Solution. Applied to Soln1, it effectively removes all the

Terms in D from Soln1. Formally,

Soln1/D[Termi] =

{
Soln1[Termi] Termi /∈ D
∅ Termi ∈ D

(3.9)

Applying /D on Soln1 vector will also affect its associated data structures and functions

(e.g., nUsed, Cost and Cone). This will be denoted as, for example, nUsed[Termi]
∣∣∣
Soln1/D

.

Some of the useful Terms in Soln1 can become unused (i.e., their nUsed
∣∣∣
Soln1/D

= 0) as

so some of the Terms in their respective Cones. For Example 3.2 and SG1 of Fig. 3.3,

deleting Term BCG, will decrease nUsed of the following Terms by 1: BC (will become

unused), G (will become unused), B, and C.

Definition 3.15. nAddedJoins or nAJ(Term) nAJ(Termi)
∣∣∣
Soln1

: TermS×SolnS →

N, a function that returns the number of J2s that exist in Soln1 just to construct Termi

(i.e., the J2s that, otherwise, would not be used if Termi was deleted from Soln1). Formally,

let Soln1[Termt] = PSt, then:

nAJ(Termt)
∣∣∣
Soln1

= ut

∣∣∣
Soln1

×

|PSt| − 1 +

|Cone(Termt)|∑
i=1

si

∣∣∣
Soln1/{Termt}

× nAJo(Termi)


(3.10)

where ∀i = 1, 2, . . . |Cone(Termt)| : Termi ∈ Cone(Termt), and:

nAJo(Termi)
∣∣∣
Soln1

=

{
|Soln1[Termi]| − 1 Termi /∈ SourceS
0 Termi ∈ SourceS

(3.11)

ut

∣∣∣
Soln1

(
or u[Termt]

∣∣∣
Soln1

)
=

{
1 Termt is useful in Soln1
0 Termt is not useful in Soln1

(3.12)

si

∣∣∣
Soln1/{Termt}

(
or s[Termi]

∣∣∣
Soln1/{Termt}

)
=


1 nUsed[Termi]

∣∣∣
Soln1/{Termt}

= 0

0 nUsed[Termi]
∣∣∣
Soln1/{Termt}

> 0

(3.13)

Unless otherwise specified, nAJ will be calculated for useful Terms only. Hence, u[Termt]

(or interchangeably ut) in Eq. 3.10 will be frequently omitted. Note the analogy be-

tween nAJo of Eq. 3.11 and nJ2(vi) of Eq. 3.3. If Termi ∈ Cone(Termt)
∣∣∣
Soln1

, then

nAJo(Termi)
∣∣∣
Soln1

contributes to nAJ(Termt)
∣∣∣
Soln1

only if Termi is constructed in Soln1
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for the sole purpose of constructing Termt in Soln1 (in other words, only if Termi would not

be useful in Soln1 if Termt was deleted from Soln1). This information is provided through

s[Termi] (or interchangeably si) defined in Eq. 3.13. nAJ(Termt)
∣∣∣
Soln1

and nAJ(PSt)
∣∣∣
Soln1

will be used interchangeably (since Soln1[Termt] = PSt). As an example, let all the Terms

used by PSt be already shared by other Terms in Soln1. In this case, all that is added

to the network to construct PSt are the J2s required to join its constituent Terms (i.e.,

|PSt| − 1).

For Example 3.2 and SG1 of Fig. 3.3, nAJo(AB)
∣∣∣
Soln1

= 1 and nUsed[AB]
∣∣∣
Soln1/{ABE}

= 0, therefore, nAJ(ABE)
∣∣∣
Soln1

= 2. Although the Cost of ABDE is two, its nAJ is only

one. The reason is, Term ABE which is used to construct ABDE in Soln1 is also used in

the Solution to construct another Term (i.e., Term ABEF ). Hence, to construct Term

ABDE, the only added J2 to Soln1 is the join required to join ABE with D.

3.2 The Algorithm

Lemma 3.1. Let nJ2 and nF2 be the total number of J2s and F2s in a network, respectively.

Then, the following equality holds for any Solution ∈ SolnS (i.e., whatever the PS choices

of the different Terms):

nJ2 − nF2 = |SourceS| − |TargetS| (3.14)

Proof. Construct a Solution graph, SG1, of a Solution, Soln1 (see Fig. 3.3, for example).

Following Def. 3.9 of the SG, each arc starts at a vertex (i.e., a Term) and ends at a vertex

(i.e., another term), therefore, the following equation holds:

|V |∑
i=1

|Ain(vi)| =
|V |∑
i=1

|Aout(vi)| (3.15)

By definition, ∀vi ∈ SourceS : |Ain(vi)| = 0, and ∀vi ∈ TargetS : |Aout(vi)| = 0. Hence,

Eq. 3.15 is reduced to:

|I|+|T |∑
j=1

|Ain(vj)| =
|I|+|S|∑
j=1

|Aout(vj)| (3.16)

Since all SG1 vertices represent useful Terms in Soln1 (see Def. 3.8), and since by the

definition of Solution (Def. 3.6) all useful Terms must be implemented using other Terms

(except SourceS), therefore, the following holds:

∀vi ∈ (ITermS ∪ TargetS) : |Ain(vi)| ≥ 1 (3.17)

∀vi ∈ (ITermS ∪ SourceS) : |Aout(vi)| ≥ 1 (3.18)
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Hence, from Equations 3.3 and 3.4, Eq. 3.16 can be rewritten in terms of nJ2(vj) and

nF2(vj), as follows:

|I|+|T |∑
j=1

(nJ2(vj) + 1) =

|I|+|S|∑
j=1

(nF2(vj) + 1) (3.19)

The total number of 2-input joins and 2-output forks in Soln1 (i.e., nJ2 and nF2, respec-

tively) can be computed as follows:

nJ2 =

|I|+|T |∑
j=1

nJ2(vj) (3.20)

nF2 =

|I|+|S|∑
j=1

nF2(vj) (3.21)

Substituting Equations 3.20 and 3.21 in Eq. 3.19 concludes the proof.

Theorem 3.2. An algorithm that minimizes nJ2 will also minimize nF2 and also nJ2+nF2.

Proof. The theorem follows directly from Lemma 3.1.

In other words, for some required communications in a control network, since an OptSoln

(Def. 3.11) utilizes the minimum number of J2s, therefore, it will also incorporate the

minimum total number of J2s and F2s.

3.2.1 Algorithm Overview

Theorem 3.2 narrows down the problem to: Construct the TargetS from the SourceS

using a minimum total number of J2s (i.e., find an OptSoln). The proposed algorithm

consists of four main steps, covered in the following four subsections. Step I finds the

candidate Terms that can be used in an OptSoln. Then, for each of the candidate Terms,

Step II finds the candidate PSs that may be used by an OptSoln. Step II uses a set of

proven rules to identify (and exclude) PSs that are not needed to find an OptSoln. At this

point, the search Space of the problem consists of all the remaining possible PS choices

of all the candidate Terms. Step III collects statistics about the search Space. Metrics

computed include the max/min possible usage (or sharing) of the remaining Terms in the

search Space, from which the max/min possible nAJ value of each remaining PS can be

computed. Based on these metrics, Step III eliminates expensive PSs from the search Space.

The latter Space reduction does in turn affect the Space metrics, which in turn can lead to
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removing further expensive PSs. Hence, Step III through a number of iterations prune out

the search Space until no further reduction is possible, at which point the algorithm moves

to Step IV. Choosing a certain PS for a Term (and omitting the other PSs from the search

Space) does affect the max/min possible usage of the constituent Terms of these PSs. This

in turn can affect the max/min possible nAJ value of other PSs which use these Terms,

providing opportunity for removing expensive PSs. Hence, Step IV makes use of this fact

in case there are more than one Solution still left in the search Space after Step III. Step

IV splits the remaining search Space into multiple Spaces, each with mutually exclusive PS

choices for some Terms (called STermS). It then updates each sub-Space metrics based

on the specific PS choices made for that sub-Space, allowing for further reduction. The

splitting continues until there is only one Solution left in each sub-Space. The Cost of each

Solution of each sub-Space is calculated and compared. An OptSoln is returned.

3.2.2 Step I: Construct the Potential Terms

The first step in the algorithm is to determine which Terms could be used to construct

the TargetS Terms and eliminate the rest.

Definition 3.16. Potential Terms or PTermS A set of Terms from which an OptSoln

can be constructed. Formally,

PTermS ∩ TargetS = φ∧

∃OptSolni ∈ OptSolnS : (PTermS ∪ TargetS) ⊇ UsefulTermS(OptSolni) (3.22)

where UsefulTermS function is defined in Def. 3.8.

Definition 3.17. Common Terms or CTermS

CTermS = {Termc ∈ (TermS − TargetS)|Termc = Targeti ∩ Targetj

∀Targeti, Targetj ∈ TargetS, Targeti 6= Targetj} (3.23)

Following are the different methods used to construct the potential Terms (PTermS):

3.2.2.1 Method I: All Subsets of All CTermS Terms

Define

PTermS1
o = {Termp |Termp ⊆ Termci ∀Termci ∈ CTermS } (3.24)

PTermS1 = PTermS1
o ∪ SourceS (3.25)
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Theorem 3.3. Potential Terms of Method I PTermS1 satisfies Def. 3.16 of

the potential Terms (i.e., ∃OptSolni ∈ OptSolnS :
(
PTermS1 ∪ TargetS

)
⊇

UsefulTermS(OptSolni)). Hence, an optimum Solution can be constructed by using only

Terms from PTermS1.

Proof. The proof relies on other theorems to be stated later in the text. The reader is

advised to read the proof after finishing Sec. 3.2.4.

Define the function FTargetS(read Father-TargetS): (TermS − TargetS) → 2TargetS ,

as follows:

FTargetS(Termi) = {Targetj ∈ TargetS |Termi ⊆ Targetj }

FTargetS(Termi) returns the set of Targets that Termi can be used in their construction.

Also, define the following Term set:

UnSharedTermS = {Termi ∈ (TermS − (TargetS ∪ SourceS))|

|FTargetS(Termi)| = 1} (3.26)

From TermS definition in Eq. 3.1, PTermS1 can be redefined as follows: PTermS1 =

TermS − TargetS − UnSharedTermS, and Theorem 3.3 can be rewritten as follows: An

optimum Solution can be found without using the Terms in UnSharedTermS.

The proof will be done by iteratively using Theorem 3.15 Rule V. It is easy to show

that each Term in UnSharedTermS can maximally be used by only one Target and zero

or more other terms from UnSharedTermS. Define UnSharedTermS1 to be the Terms

in UnSharedTermS which are maximally used once (i.e., by one Target and zero other

Terms from UnSharedTermS). Formally,

UnSharedTermS1 = {Termi ∈ UnSharedTermS|

Termi ⊆ Termt ∈ TermS ⇒ Termt ∈ TargetS} (3.27)

Obviously, ∀Termi ∈ UnSharedTermS1 : nUsedMax[Termi] = 1. Hence, by Theo-

rem 3.15 Rule V, all Terms in UnSharedTermS1 can be omitted from the search Space

(i.e., an OptSoln can be found without using them).

Similarly, define UnSharedTermS2 to be the Terms in UnSharedTermS which are

maximally used by only one Target and one or more Terms from UnSharedTermS1:

UnSharedTermS2 = {Termi ∈ UnSharedTermS|

Termi ⊆ Termt ∈ TermS ⇒ Termt ∈ (TargetS ∪ UnSharedTermS1)} (3.28)
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Since the Terms in UnSharedTermS1 are omitted from the search Space, therefore,

∀Termi ∈ UnSharedTermS2 : nUsedMax[Termi] = 1. Hence, by Theorem 3.15 Rule

V, all Terms in UnSharedTermS2 can also be omitted from the search Space. The

above iterations can be repeated until all Terms in UnSharedTermS are omitted from

the search Space. Hence, an optimum Solution can be found without using any Term from

UnSharedTermS. That concludes the proof.

Method I includes in PTermS1 all CTermS Terms as well as all their subsets. The

number of potential Terms will thus quickly increase as the number and sizes of CTerms

increase. This adversely affects the algorithm runtime. Hence, following are some methods

that try to minimize the number of PTerms.

3.2.2.2 Method II: All Intersections and Differences of
CTermS Terms

This method initially populates PTermS (will be referred to, in this method, as

PTermS2) with CTermS. It then considers the intersection of and the difference between

any two PTerms to be another PTerm. Formally, define PTermS2
o to be the smallest set

(in cardinality) that satisfies the following two conditions:

1. PTermS2
o ⊇ CTermS.

2. ∀Termpi, T ermpj ∈ PTermS2
o : Termpi − Termpj ∈ PTermS2

o ∧ Termpi ∩ Termpj ∈

PTermS2
o .

PTermS2 = PTermS2
o ∪ SourceS (3.29)

It is easy to show that PTermS2 ⊆ PTermS1. A proof (or counter proof) that PTermS2

satisfies the definition of PTermS (Def. 3.16) could not be found. Hence, using Method

II to construct PTermS, while typically incorporates less number of Terms, is not proved

(or disproved) to result in an optimum Solution for all problems. Nonetheless, for all the

examples where Method I and Method II ran to completion, Method II provided optimum

Solutions.

3.2.2.3 Method III: Target Division

This method gives a label to each Term ∈ TermS. The label reflects whether, for each

Target, all the INodes (or Sources) joined by this Term belong to that Target, or only part

of them, or none of them. It then groups Terms with similar label together. The biggest

Term (in cardinality) in each group is then included in PTermS3. Non-Source Terms that
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cannot be used for constructing more than one Target are excluded from PTermS3 (since

an OptSoln can be found without using them according to the proof of Theorem 3.3).

Formally, the Label function (L : (TermS − TargetS) → {0, 1,−}|TargetS|) is defined as

follows:

L(Termt) = Vt such that Vt[i] =


1 Termt ∩ Targeti = Termt

0 Termt ∩ Targeti = ∅
− ∅ ⊂ Termt ∩ Targeti ⊂ Termt

(3.30)

∀i = 1, 2, . . . |TargetS|.

Also define nL(Termt) : (TermS − TargetS) → N to be the number of Vt[i] = 1,∀i =

{1, . . . , |Vt|} where Vt = L(Termt). Define:

PTermS3
o ={Termp ∈ (TermS − TargetS)|nL(Termp) > 1∧

∀Termi ∈ (TermS − TargetS), T ermi 6= Termp :

L(Termi) = L(Termp)⇒ Termi ⊂ Termp} (3.31)

PTermS3 =PTermS3
o ∪ SourceS (3.32)

It is easy to show that PTermS3 ⊆ PTermS2. However, similar to PTermS2, a proof

(or counter proof) that PTermS3 satisfies the definition of PTermS (Def. 3.16) could not

be found. Hence, using Method III to construct PTermS, while typically incorporates

less number of Terms, is not proved (or disproved) to result in an optimum Solution for

all problems. Nonetheless, in all the examples where Method I and Method III ran to

completion, Method III provided optimum Solutions.

3.2.2.4 Method IV: All CTermS Intersections

This method initially populates PTermS4 with CTermS. It then considers only the

intersection between any two PTerms to be another PTerm. Formally, define PTermS4
o

to be the smallest set (in cardinality) that satisfies the following two conditions:

1. PTermS4
o ⊇ CTermS.

2. ∀Termpi, T ermpj ∈ PTermS4
o : Termpi ∩ Termpj ∈ PTermS4

o .

PTermS4 = PTermS4
o ∪ SourceS (3.33)

It is easy to show that PTermS4 ⊆ PTermS3 and thus Method IV exhibits the shortest

algorithm runtime among all the four methods. Nonetheless, counter examples showing

that PTermS4 may not satisfy the definition of PTermS (Def. 3.16) in some cases do
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exist. Examples are explained in Sec. 3.2.6. Sec. 3.2.6 also provides some techniques to

help check whether a Solution returned by the algorithm when using Method IV is indeed

optimum. Possible correction techniques are explained as well.

The number of potential Terms provided by Step I is, at worst, exponential. In

particular,

PTermSi ≤ 2|SourceS| − 1 ∀i ∈ {1, 2, 3, 4}

PTermS4
o ≤ min

((
2|SourceS| − 1

)
,
(

2|TargetS| − |TargetS| − 1
))

(3.34)

Nonetheless, in practice, the size of PTermS is much smaller (see Table 3.2). The actual

size depends on the overlapping between the different Target set contents.

3.2.3 Step II: Construct the Partial Solutions

The search Space (i.e., the possible Solutions), at this point, consists of all combinations

of all possible PS choices of all PTermS. This step aims at excluding PSs that are not

needed in an OptSoln. A cost metric is thus needed to differentiate between several PSs of

the same Term and to eliminate expensive PSs from the search Space. nAJ provides such

a metric as shown in the following theorems:

Theorem 3.4. Let Soln1 and Soln2 be two Solutions. Let also, Soln1/{Termt} =

Soln2/{Termt} (i.e., ∀i = 1, 2, . . . |TermS| ∧ i 6= t : Soln1[Termi] =

Soln2[Termi]), Soln1[Termt] = PSt1, and Soln2[Termt] = PSt2. Then, if(
nAJ(PSt1)

∣∣∣
Soln1

≥ nAJ(PSt2)
∣∣∣
Soln2

)
, then Cost(Soln1) ≥ Cost(Soln2). Greater and

equal operators are ordered respectively.

Proof. It follows from Def. 3.15 of nAJ that:

Cost(Soln1) = Cost(Soln1/{Termt}) + nAJ(Termt)
∣∣∣
Soln1

(3.35)

Cost(Soln2) = Cost(Soln2/{Termt}) + nAJ(Termt)
∣∣∣
Soln2

(3.36)

Since Soln1/Termt = Soln2/Termt, therefore, Cost(Soln1/Termt) =

Cost(Soln2/Termt). This concludes the proof.

Corollary 3.5. Let PS1 and PS2 be two PSs of Termt. Then, if for all possible

combinations of other Term PS choices nAJ(PS1) > nAJ(PS2), then any OptSoln will

not use PS1.



37

Corollary 3.6. Let PS1 and PS2 be two PSs of Termt. Then, if for all possible

combinations of other Term PS choices, nAJ(PS1) ≥ nAJ(PS2), then an OptSoln can be

found that does not use PS1.

Proof of both Corollaries 3.5 and 3.6 follows from Theorem 3.4 as well as Def. 3.11 of

OptSoln.

It is easy to show that the Cost function (Def. 3.10) cannot be used instead of

nAJ in Theorem 3.4 to identify expensive PSs. In other words, let Soln1/ {Termt} =

Soln2/ {Termt}, Soln1[Termt] = PSt1, and Soln2[Termt] = PSt2. Then, if(
Cost(PSt1)

∣∣∣
Soln1

≥ Cost(PSt2)
∣∣∣
Soln2

)
, then the following inequality does not necessarily

hold: Cost(Soln1) ≥ Cost(Soln2).

Following is a list of proven rules to be considered while constructing the PTermS PSs.

The rules help identify and exclude PSs that are not needed while searching for an OptSoln.

Lemma 3.7 will be useful to prove the rules.

Lemma 3.7. Use si

∣∣∣
Soln1

as in Eq. 3.13. Let Term1 ∈ Cone(Termt)
∣∣∣
Soln1

.

Then, if s[Term1]
∣∣∣
Soln1/{Termt}

= 0, then, s[Termi]
∣∣∣
Soln1/{Termt}

= 0 ∀Termi ∈

Cone(Term1)
∣∣∣
Soln1

.

Proof. By si definition in Eq. 3.13, s[Term1]
∣∣∣
Soln1/{Termt}

= 0 if

nUsed[Term1]
∣∣∣
Soln1/{Termt}

> 0. Hence, in the absence of Termt (i.e., Soln1/ {Termt})

Term1 is still used at least once. From Def. 3.7 of nUsed and Def. 3.13 of Cone, it follows

that all Terms ∈ Cone(Term1)
∣∣∣
Soln1

will also still be used at least once in the absence of

Termt (i.e., through Term1). That concludes the proof.

Theorem 3.8. Rule I Adding a whole redundant Term to a PS always causes it to be more

expensive (in terms of nAJ). Formally, let Termt, T erm1, T erm2 ∈ TermS, Term2 ⊂

Term1 ⊆ Termt. Let PSt1 and PSt2 be two PSs of Termt. Let both PS1 and PS2 be the

same except that PS1 contains Term1, while PS2 contains Term1 and Term2. Then, an

optimum Solution will not use PSt2.

Proof. Let Soln1 and Soln2 be two Solutions such that: Soln1/ {Termt} =

Soln2/ {Termt}, Soln1[Termt] = PSt1, and Soln2[Termt] = PSt2. Let PS′ be the maximal

common subset of PSt1 and PSt2. Let also |PS′| = n′ ≥ 0. Following the theorem text (see

Fig. 3.4):
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(a) PSt1 (b) PSt2

Figure 3.4: Rule I.

PSt1 = PS′ ∪ {Term1}

PSt2 = PS′ ∪ {Term1, T erm2} (3.37)

From Def. 3.15 of nAJ :

nAJ(PSt1)
∣∣∣
Soln1

= C1

+ s1

∣∣∣
Soln1/{Termt}

× nAJo(Term1)
∣∣∣
Soln1

+

|Cone(Term1)−Cone(PS′)|∑
i=1

si

∣∣∣
Soln1/{Termt}

× nAJo(Termi)
∣∣∣
Soln1

(3.38)

nAJ(PSt2)
∣∣∣
Soln2

= C2 + 1

+ s1

∣∣∣
Soln2/{Termt}

× nAJo(Term1)
∣∣∣
Soln2

+ s2

∣∣∣
Soln2/{Termt}

× nAJo(Term2)
∣∣∣
Soln2

+

|(Cone(Term1)∪Cone(Term2))−Cone(PS′)|∑
i=1

si

∣∣∣
Soln2/{Termt}

× nAJo(Termi)
∣∣∣
Soln2

(3.39)

where Cl accounts for PS′ contribution to nAJ(PStl)
∣∣∣
Solnl

(l ∈ {1, 2}), as follows:

Cl = n′ +

|Cone(PS′)|∑
i=1

si

∣∣∣
Solnl/{Termt}

× nAJo(Termi)
∣∣∣
Solnl

(3.40)

Since Soln1/ {Termt} = Soln2/ {Termt}, it follows that C1 = C2. Therefore,

nAJ(PSt2)
∣∣∣
Soln2

− nAJ(PSt1)
∣∣∣
Soln1

≥ 1. The proof then follows from Corollary 3.5.

Consider Term ABCG. PS1 = {A,BCG} is always cheaper than PS2 =

{A,BCG,BC}. Hence, PS2 should be excluded from the search Space.
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Theorem 3.9. Rule II Using a Term in a PS is always the same or

cheaper (in terms of nAJ) than using all its constituent Terms. Formally, let

Termt, T ermc, T erma1, . . . T erman ∈ TermS, Termc ⊆ Termt, and Termc =⋃n
i=1 Termai. Let PSt1 and PSt2 be two PSs of Termt. Let both PSt1 and PSt2 be the same

except that PSt2 contains Termc, while PSt1 instead contains Terms Terma1, . . . T erman.

Then, an OptSoln can be found that does not use PSt1.

Proof. Informally, the idea behind the theorem is, if Termt needs a set of Terms in its

implementation, then it hurts nothing to join these Terms in one Term (Termc) and use

Termc instead. This is the same or cheaper than using the constituent Terms directly,

since Termc may be used by other Terms and its Cost will then be shared.

Formally, define PSc1 = {Terma1, . . . T erman}. Let PS′ be the maximal common subset

of PSt1 and PSt2. Let also |PS′| = n′ ≥ 0. Following the theorem text:

PSt1 = PS′ ∪ PSc1

PSt2 = PS′ ∪ {Termc} (3.41)

The theorem can be proved if it is proved that for each Soln1 where Soln1[Termt] = PSt1,

there exists another Soln2 such that Soln2[Termt] = PSt2 and Cost(Soln2) ≤ Cost(Soln1).

To prove the latter, it is sufficient to prove the following: For each Soln1 where

Soln1[Termt] = PSt1, there exists another Soln2 such that Soln2/{Termt, T ermc} =

Soln1/{Termt, T ermc}, Soln2[Termt] = PSt2 and Cost(Soln2) ≤ Cost(Soln1). The proof

hereafter will be concerned with the last statement.

Termt and Termc may be referred to as Tt and Tc for brevity. Notice that the theorem

does not specify a particular PS choice for Termc. Hence, in general, if there are k PSs

for Termc in the search Space (call them PSc1, PSc2, . . . PSck) then define the following

two sets of Solutions:

Soln1S = {Soln1i |Soln1i[Termt] = PSt1 ∧ Soln1i[Termc] = PSci

∧Soln1i/{Tc} = Soln1j/{Tc} ∀Soln1i, Soln1j ∈ Soln1S } (3.42)

Soln2S = {Soln2i |Soln2i[Termt] = PSt2 ∧ Soln2i[Termc] = PSci

∧Soln2i/{Tc} = Soln2j/{Tc} ∀Soln2i, Soln2j ∈ Soln2S } (3.43)

Note that, by definition,

Solni/{Termt, T ermc} = Solnj/{Termt, T ermc} ∀Solni, Solnj ∈ (Soln1S ∪ Soln2S)
(3.44)
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For illustration, and without loss of generality, three particular PScis are shown in Fig. 3.5

when used in Soln1S and Soln2S Solutions. Note that PSc2 ∩ PSc1 = ∅ and ∅ ⊂ PSc3 ∩

PSc1 ⊂ PSc1.
The theorem can be proved (i.e., PSt1 can be omitted from the search Space) if the

following statement can be proved (for all Soln1S and Soln2S Solutions):

∃Soln2i ∈ Soln2S : Cost(Soln2i) ≤ min|Soln1S|
j=1 Cost(Soln1j) (3.45)

Informally, if a Solution exists where PSt2 is used and which Cost is the same or lower

than all Solutions that use PSt1 instead, then PSt1 can be omitted from the search Space.

The claim is Soln21 does satisfy the above condition. To prove, extend Def. 3.15 of the

nAddedJoins to more than one Term (namely, Termt and Termc) and similar to Eq. 3.35,

the following holds for any Solni:

Cost(Solni) = nAJ(Termt, T ermc)
∣∣∣
Solni

+ Cost(Solni/{Termt, T ermc}) (3.46)

From Eq. 3.44, it follows that, to prove the statement of 3.45, it suffices to prove the

following:

∃Soln2i ∈ Soln2S : nAJ(Termt, T ermc)
∣∣∣
Soln2i

≤ min|Soln1S|
j=1 nAJ(Termt, T ermc)

∣∣∣
Soln1j

(3.47)

nAJ(Termt, T ermc) in the different Soln1,2S Solutions can be defined as follows (refer to

Fig. 3.5):

nAJ(Termt, T ermc)
∣∣∣
Soln1i

= C + n− 1

+

|Cone(PSc1)−Cone(PS′)|∑
j=1

sj

∣∣∣
Soln1i/{Tt,Tc}

× nAJo(Termj)

+ u[Termc]× (|PSci| − 1)

+ u[Termc]×
|Cone(PSci)−(Cone(PSc1)∪Cone(PS′))|∑

j=1

sj

∣∣∣
Soln1i/{Tt,Tc}

× nAJo(Termj)

(3.48)

nAJ(Termt, T ermc)
∣∣∣
Soln21

= C + n− 1

+

|Cone(PSc1)−Cone(PS′)|∑
j=1

sj

∣∣∣
Soln21/{Tt,Tc}

× nAJo(Termj) (3.49)

where uc (or u[Termc]), sj (or s[Termj ]) and C are defined as in Equations 3.12, 3.13

and 3.40, respectively.



41

(a
)
S
ol
n
1
1

(b
)
S
ol
n
1
2

(c
)
S
ol
n
1
3

(d
)
S
ol
n
2
1

(e
)
S
ol
n
2
2

(f
)
S
ol
n
2
3

F
ig

u
re

3
.5

:
R

u
le

II
.



42

It is clear from Equations 3.48 and 3.49 that Soln21 indeed meets the existential

condition of 3.47. In particular,

nAJ(Termt, T ermc)
∣∣∣
Soln21

≤ min|Soln1S|
j=1 nAJ(Termt, T ermc)

∣∣∣
Soln1j

(3.50)

That concludes the proof. Note that in Equations 3.48 and 3.49, u[Termt] is implicitly set

to one. In other words Termt is, and without loss of generality, assumed to be useful in all

Soln1S and Soln2S Solutions. From Eq. 3.44, and from Def. 3.8 of usefulness, it is clear

that if Termt is useful in one Solution in Soln1S ∪ Soln2S , then it is also useful in all of

them. Proving the theorem in case Termt is not useful is trivial. Since, in that case Termt

has no effect on the Cost of the Soln1,2S Solutions. In other words,

∀Soln1i ∈ Soln1S, Soln2i ∈ Soln2S : Cost(Soln1i) = Cost(Soln2i)

which meets the existential condition of 3.45.

Consider Term ABCG. PS1 = {A,BCG} is always the same or cheaper than PS2 =

{A,BC,G}. Hence, PS2 can be excluded from the search Space.

Theorem 3.10. Rule III Using a Source in a PS is always the same or cheaper (in terms

of nAJ) than any other non−Source Term. Formally, let Term1, T erm2, T ermt ∈ TermS,

Term1 ∈ SourceS, and Term2 /∈ SourceS. Let also Term1, T erm2 ⊆ Termt. Let PSt1

and PSt2 be two PSs of Termt. Let both PSt1 and PSt2 be the same except that PSt1

contains Term1, while PSt2 contains Term2, instead. Then, an OptSoln can be found that

does not use PSt2.

Proof. Let Soln1 and Soln2 be two Solutions such that: Soln1/ {Termt} =

Soln2/ {Termt}, Soln1[Termt] = PSt1 and Soln2[Termt] = PSt2. Let PS′ be the maximal

common subset of PSt1 and PSt2. Let also |PS′| = n′ > 0. Following the theorem text and

Lemma 3.7:

PSt1 = PS′ ∪ {Term1}

PSt2 = PS′ ∪ {Term2} (3.51)
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nAJ(PSt1)
∣∣∣
Soln1

= C + s1

∣∣∣
Soln1/{Termt}

× nAJo(Term1)
∣∣∣
Soln1

+ s1

∣∣∣
Soln1/{Termt}

×
|Cone(Term1)−Cone(PS′)|∑

i=1

si

∣∣∣
Soln1/{Termt}

× nAJo(Termi)
∣∣∣
Soln1

(3.52)

nAJ(PSt2)
∣∣∣
Soln2

= C + s2

∣∣∣
Soln2/{Termt}

× nAJo(Term2)
∣∣∣
Soln2

+ s2

∣∣∣
Soln2/{Termt}

×
|Cone(Term2)−Cone(PS′)|∑

i=1

si

∣∣∣
Soln2/{Termt}

× nAJo(Termi)
∣∣∣
Soln2

(3.53)

where C reflects the contribution of PS′ to nAJ(PSt1)
∣∣∣
Soln1

(or equivalently to,

nAJ(PSt2)
∣∣∣
Soln2

), and computed as in Eq. 3.40. Since Term1 is a Source, therefore,

nAJo(Term1)
∣∣∣
Soln1

= 0 (Eq. 3.11). Also, Cone(Term1) − Cone(PS′) = ∅. Hence,

nAJ(PSt1)
∣∣∣
Soln1

= C. From which, nAJ(PSt2)
∣∣∣
Soln2

≥ nAJ(PSt1)
∣∣∣
Soln1

. The proof then

follows from Corollary 3.6.

Consider Term ABCG in Example 3.2. PS1 = {BCG,A} is always the same or cheaper

than PS2 = {BCG,AB}. Hence, PS2 can be excluded from the search Space.

Definition 3.18. Target-image term or TITerm Termi is a TITerm if

(Termi ∈ PTermS) ∧ (∃Targetj ∈ TargetS : Targetj = Termi)

Also, define TITermS to be the set of all Target-image Terms. For Example 3.2 and

SG1 of Fig. 3.3: Term BCG (with TermID of 8) is a TITerm, since it is an image of

Target BCG (with TermID of 1) associated with ONode X1.
3

Theorem 3.11. Rule IV Using a TITerm in a PS is always the same or cheaper (in terms

of nAJ) than any other non − TITerm. Formally, let Term1, T erm2, T ermt ∈ TermS,

Term1 ∈ TITermS, and Term2 /∈ TITermS. Let also Term1, T erm2 ⊂ Termt. Let PSt1

and PSt2 be two PSs of Termt. Let both PSt1 and PSt2 be the same except that PSt1

contains Term1, while PSt2 contains Term2, instead. Then, an OptSoln can be found that

does not use PSt2.

Proof. Let Soln1 and Soln2 be two Solutions such that: Soln1/ {Termt} =

Soln2/ {Termt}, Soln1[Termt] = PSt1 and Soln2[Termt] = PSt2. Following the theorem

text, nAJ(PSt1,2) can be expressed the same as in Equations 3.52 and 3.53 used in the

proof of Theorem 3.10, respectively.

3TermIDs are listed in Table 3.1.
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Since Term1 is a TITerm, then by Def. 3.18, ∃Targetj ∈ TargetS : Targetj = Term1.

Based on PS construction Rule II (i.e., Theorem 3.9), Soln1[Targetj ] = Soln2[Targetj ] =

{Term1}. Hence, nUsed[Term1]
∣∣∣
Soln1

≥ 1. It is realized from the Theorem text that

Targetj 6= Termt, and, therefore, nUsed[Term1]
∣∣∣
Soln1/{Termt}

≥ 1. From si definition in

Eq. 3.13, it follows s1

∣∣∣
Soln1/{Termt}

= 0, and hence nAJ(PSt1)
∣∣∣
Soln1

= C. From which,

nAJ(PSt2)
∣∣∣
Soln2

≥ nAJ(PSt1)
∣∣∣
Soln1

. The proof then follows from Corollary 3.6.

Definition 3.19. AddedCoverage (or for short ACov) ACov(Termi, PSt) : TermS×

2TermS → 2INodeS . A function that returns the letters (i.e., INodes) covered by Termi ∈

PSt and not covered by any other Term in PSt. Formally, ACov(Termi, PSt) = Termi −⋃|PSt|
j=1,j 6=i Termj .

Definition 3.20. Redundant PS PSt is called a redundant PS if:

∃Termi ∈ PSt : |ACov(Termi, PSt)| = 0 ∨ (|ACov(Termi, PSt)| = 1 ∧ Termi /∈ SourceS)

Also, Termi will be called a redundant Term in PSt.

Corollary 3.12. An OptSoln exists that does not use redundant PSs.

Proof. The proof follows directly from Rules I and III (i.e., Theorems 3.8 and 3.10,

respectively).

Algorithm 1 takes into account all the four rules while constructing the PSs. It takes

five arguments:

• Termt: the Term to be constructed.

• PSTerms: the contents (thus far) of the PS being constructed.

• Required: a subset of Termt, consisting of the INodes that have not yet been covered

in the current PS. Initially, Required consists of all the INodeS in Termt.

• RTermS (or Relevant Terms): a set of Terms from which a PS of Termt can be

built. RTermS are initialized with

{Termi ∈ PTermS |Termi ⊆ Termt ∧ TermiID 6= TermtID}

By Def. 3.5 of PS, a PTerm cannot be used to construct itself. Also, Targets cannot

be used to construct any Term. Nonetheless, Target-image Terms (Def. 3.18) can

construct their corresponding Targets.
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• ERTermS (or Essential Relevant Terms): a set initialized with (SourceS ∪

TITermS) ∩RTermS.

Algorithm 1 runs (recursively) on each Termt ∈ (TargetS ∪ PTermS). For each

Termt, it is initially called with Required = Termt, PSTermS = ∅, and the appropriate

RTermS and ERTermS. PS and PSTermS may be used interchangeably in the algorithm

description.

Lines 1 - 15 check whether a single Source or a single TITerm exists that can cover

all the letters (i.e., INodes) in Required. If this is the case, the Source or the TITerm is

added to the current PSTermS, and the algorithm returns without further need to search

for cheaper PSs (Rules III and IV).

If there is no single Source or TITerm that can cover all the letters in Required, the

algorithm tries to cover them using all possible non-redundant combinations of the Terms

in RTermS. First, Lines 17 - 20 check whether indeed a PS can be found using the

current set of RTermS. If yes, the first Term in RTermS (call it RTermi) is picked and

removed from RTermS. Lines 23 - 27 check whether adding RTermi to the current PS

will cause any redundancy (see Def. 3.20 of redundant PSs). If it causes redundancy, the

next RTerm is picked instead. If not, the algorithm will find all possible PSs in which

RTermi is used. To do that, the algorithm creates a new set of Required1, PSTermS1,

and RTermS1 structures that are modified copies of Required, PSTermS, and RTermS,

respectively, based on the fact that RTermi is used (Lines 28 - 30). If adding RTermi to

the current PS covers all the letters in Required (Line 31) then PSTermS1 is a complete

PS. The PS is stored (Line 32) and the algorithm picks the next RTerm. If PSTermS1

is not yet complete (i.e., Required1 is not empty), the algorithm iteratively calls FindPSs

(Line 36). However, adding RTermi to PSTermS1 typically renders redundant (Def. 3.20)

some of the Terms in RTermS1. Hence, line 35 filters out such redundant RTerms (and

also applies Rule II) before iteratively calling FindPSs algorithm.

As an upper bound, Algorithm 1 will have to visit all possible combinations of RTermS.

Hence, its complexity is O(2|RTermS|), and the number of PSs per Termt(/∈ SourceS) is

bounded by:

|PSS[Termt]| ≤ 2|RTermS(of Termt)| − 1

|RTermS(of Termt)| ≤ 2|Termt| − 1 (3.54)

Nonetheless, in practice, the algorithm is much faster than (and the number of PSs is
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Algorithm 1 FindPSs(Termt, Required, RTermS, ERTermS, PSTermS)

1: ReuiredIsCoveredByAnETerm = 0
2: for each ERTermi ∈ ERTermS do
3: if ERTermi ⊇ Required then // i.e., A Source or a TITerm can cover Required

- Rules III, IV
4: if Adding ERTermi causes the PS to be redundant then // Def. 3.20
5: return
6: end if
7: ReuiredIsCoveredByAnETerm = 1
8: CoveringERTerm = ERTermi

9: end if
10: end for
11: if ReuiredIsCoveredByAnETerm then
12: PSTermS = PSTermS ∪ CoveringERTerm
13: AddThisPS (PSTermS,Termt)
14: return
15: end if
16: while |RTermS| > 0 do

17: RTermSUnion =
⋃|RTermS|

i=1 RTermi

18: if RTermSUnion + Required then // A PS cannot be constructed from the
remaining RTermS

19: return
20: end if
21: Take and remove the first Term from RTermS, RTermi

22: ERTermS = ERTermS −RTermi

23: ACov = RTermi ∩Required
24: if |ACov| > 1 ∨ (|ACov| = 1 ∧ |Required| = 1) then
25: if Adding RTermi causes the PS to be redundant then
26: continue
27: end if
28: Required1 = Required−RTermi

29: PSTermS1 = PSTermS ∪RTermi

30: RTermS1 = RTermS
31: if |Required1| = 0 then // i.e., all letters covered
32: AddThisPS (PSTermS1,Termt)
33: continue
34: end if
35: Filter RTermS1 because of adding RTermi

36: FindPSs(Termt, Required1, RTermS1, ERTermS, PSTermS1)
37: end if
38: end while
39: return
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much less than) exponential. This is because not all RTerm combinations are PSs. Also,

applying Rules I, II, III, and IV as well as RTermSUnion check (in Line 18) eliminate

substantial part of the RTerm combinations. Table 3.3 shows the reduction in the search

Space due to applying the four rules of Step II for sample problems. For Example 3.2, the

PSs computed by Algorithm 1 are listed in Table 3.1.

3.2.4 Step III: Collect Space Metrics and Remove Higher
nAJ Partial Solutions

Theorem 3.3 narrowed down the search Space by confining the number of candidate

Terms. Furthermore, Theorems 3.4 through 3.12 reduced their possible corresponding

PSs. At this point the search Space of the problem consists of all the remaining possible

PS choices of all the candidate Terms. This step aims at further pruning out the search

Space by computing the different PS upper and lower bound nAJ values and eliminating

expensive PSs. The value of nAJ(PSt) is Solution-dependent (e.g., a Solution that

provides sharing to the constituent Terms of PSt will reduce its nAJ , and vice versa).

Nonetheless, through calculating the maximum and minimum possible sharing (in any

Solution in the search Space) of the PSt constituent Terms (called nUsedMax[Termi]

and nUsedMin[Termi], respectively), the lower and upper bounds of nAJ(PSt) (called,

nAJMin(PSt) and nAJMax(PSt), respectively) can be computed. Comparing such

bounds of different PSs, some PSs can be found too expensive and thus omitted from the

search Space. This step is iterative. Omitting some Term PSs can affect the max/min usage

(sharing) of the Terms constituting these PSs. This, in turn, affects the nAJ lower/upper

bounds of other PSs that use these Terms, allowing for further reduction. At the end of

each iteration, more areas of the search Space can be eliminated. When the algorithm can

do no more eliminations, it goes to the next step.

Following are the definitions of the basic data structures and functions associated with

the search Space (also referred to as metrics):

Definition 3.21. PSS PSS[Termt]
∣∣∣
Sk

is the set of Termt PSs in the search Space, Sk.

Definition 3.22. Usable Term A Term is usable in a search Space if it is useful (Def. 3.8)

in at least one Solution in that Space. Formally, Termi is usable in search Space Sk if:

∃Solni ∈ Sk : Termi ∈ UsefulTermS(Solni)
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Definition 3.23. nUsedMax A vector of numbers where TermIDs are used as indices.

nUsedMax[Termi]
∣∣∣
Sk

provides an upper bound on the maximum possible sharing of Termi

in any Solution in the search Space, Sk. Formally,

nUsedMax[Termi]
∣∣∣
Sk

≥
|Sk|
max
j=1

nUsed[Termi]
∣∣∣
Solnj

∀Solnj ∈ Sk

nUsedMax[Termi]
∣∣∣
Sk

is recursively defined as the number of Termts in the search Space,

Sk, that satisfy the following two conditions:

1. ∃PSt ∈ PSS[Termt]
∣∣∣
Sk

: Termi ∈ PSt.

2. Termt is usable in Sk.

Table 3.1 shows the initial values of nUsedMax of different Terms in Example 3.2. At

the end of each iteration, some PSs are omitted from the search Space, and hence, the

value of nUsedMax of some Terms will decrease.

Definition 3.24. Essential Term or ETerm Termt is an essential Term in a search

Space if it is useful in all that Space Solutions. Formally, Termi is an ETerm
∣∣∣
Sk

if

∀Solni ∈ Sk : Termi ∈ UsefulTermS(Solni)

All Targets are ETerms in all Spaces. ETermS
∣∣∣
Sk

is defined to be the set of all

ETerms in Space Sk.

Definition 3.25. Essential Child or EChild Termi is said to be an essential child of

Termt in search Space Sk iff all the following conditions are satisfied:

1. ∀PSt ∈ PSS[Termt]
∣∣∣
Sk

: Termi ∈ PSt.

2. Termt is usable in Sk.

Also, define EChildren[Termt]
∣∣∣
Sk

to be all EChild Terms of Termt in search Space

Sk.

Definition 3.26. nUsedMin A vector of numbers where TermIDs are used as indices.

nUsedMin[Termi]
∣∣∣
Sk

provides a lower bound on the minimum possible sharing of Termi

in any Solution in the search Space, Sk. Formally,

nUsedMin[Termi]
∣∣∣
Sk

≤
|Sk|
min
j=1

nUsed[Termi]
∣∣∣
Solnj

∀Solnj ∈ Sk

nUsedMin[Termi]
∣∣∣
Sk

is recursively defined as the number of Termts in the search Space,

Sk, that satisfy the following two conditions:
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1. Termi is an EChild of Termt in Sk.

2. Termt is an ETerm in Sk.

The calculation of nUsedMin in a search Space starts by the fact that all Targets are

essential Terms (ETerms) in any search Space. Propagation of essentiality then takes

place. If Termt is an ETerm, then all its EChildren will also be ETerms (increasing their

nUsedMin by 1).

Table 3.1 shows the initial values of nUsedMin of different Terms in Example 3.2. At

the end of each iteration, more PSs are omitted and more Terms become ETerms, and

hence, their nUsedMin increase.

Definition 3.27. nAJMax(PS) nAJMax(PSt)
∣∣∣
Sk

is an upper bound on the maximum

value of nAJ(PSt) in all Solutions of the search Space Sk. Formally, nAJMax(PSt)
∣∣∣
Sk

≥

max
|Sk|
j=1 nAJ(PSt)

∣∣∣
Solnj

.

nAJ(PSt) is maximized in a Solution when the Solution provides minimum sharing to

the constituent Terms of PSt. Calculation of the exact maximum value of nAJ(PSt) in all

Solutions of a given search Space can be computation expensive. On the other extreme,

a very conservative approximation for the upper bound can be easily computed but will

provide too little selectivity (i.e., to find and omit expensive PSs). Between these two

extremes, nAJMax(PSt)
∣∣∣
Sk

can be computed as follows. Let PSt1 be a PS of Termt,

then:

nAJMax(PSt1)
∣∣∣
Sk

= |PSt1| − 1+

|PSt1|∑
i=1

si

∣∣∣
max,Sk

× nAJMaxo(Termi)
∣∣∣
Sk

(3.55)

nAJMaxo(PSt1)
∣∣∣
Sk

= |PSt1| − 1+

|PSt1|∑
i=1

nAJMaxo(Termi)
∣∣∣
Sk

(3.56)

nAJMaxo(Termt)
∣∣∣
Sk

=

∣∣∣∣∣PSS[Termt]

∣∣∣
Sk

∣∣∣∣∣
max
i=1

nAJMaxo(PSti)
∣∣∣
Sk

(3.57)

where
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si

∣∣∣
max,Sk

=


1 nUsedMin[Termi]

∣∣∣
Sk/{Termt}

= 0

0 nUsedMin[Termi]
∣∣∣
Sk/{Termt}

> 0
(3.58)

where nUsedMin[Termi]
∣∣∣
Sk/{Termt}

= the number of Termf s (where Termf 6= Termt)

that satisfy the following two conditions:

1. Termi is an EChild of Termf in Sk.

2. Termf is an ETerm in Sk.

Note that the above definition of nAJMax(PSt)
∣∣∣
Sk

will provide a value that is the same

or greater than the exact maximum value of nAJ(PSt) in all Solutions of Sk.

Definition 3.28. nAJMin(PS) nAJMin(PSt)
∣∣∣
Sk

is a lower bound on the minimum

value of nAJ(PSt) in all Solutions of the search Space Sk. Formally, nAJMin(PSt)
∣∣∣
Sk

≤

min
|Sk|
j=1 nAJ(PSt)

∣∣∣
Solnj

.

nAJ(PSt) is minimized in a Solution when the Solution provides maximum sharing to

the constituent Terms of PSt. nAJMin(PSt)
∣∣∣
Sk

can be computed as follows. Let PSt1 be

a PS of Termt, then:

nAJMin(PSt1)
∣∣∣
Sk

= |PSt1| − 1+

|PSt1|∑
i=1

si

∣∣∣
min,Sk

× nAJMino(Termi)
∣∣∣
Sk

(3.59)

nAJMino(PSt1)
∣∣∣
Sk

= |PSt1| − 1 (3.60)

nAJMino(Termt)
∣∣∣
Sk

=

∣∣∣∣∣PSS[Termt]

∣∣∣
Sk

∣∣∣∣∣
min
i=1

nAJMino(PSti)
∣∣∣
Sk

(3.61)

where

si

∣∣∣
min,Sk

=


1 nUsedMax[Termi]

∣∣∣
Sk/{Termt}

= 0

0 nUsedMax[Termi]
∣∣∣
Sk/{Termt}

> 0
(3.62)

where nUsedMax[Termi]
∣∣∣
Sk/{Termt}

= the number of Termf s (where Termf 6= Termt)

that satisfy the following two conditions:

1. ∃PSf ∈ PSS[Termf ]
∣∣∣
Sk

: Termi ∈ PSf .

2. Termf is usable in Sk.

Note that the above definition of nAJMin(PSt)
∣∣∣
Sk

will provide a value that is the same

or less than the exact minimum value of nAJ(PSt) in all Solutions of Sk.
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More restricted conditions, yet easier to check than those of Corollaries 3.5 and 3.6 are

stated in the following corollaries:

Corollary 3.13. Let PS1 and PS2 be two PSs of Termt in Space Sk. Then, if

nAJMin(PS1) > nAJMax(PS2), then any OptSoln will not use PS1.

Corollary 3.14. Let PS1 and PS2 be two PSs of Termt in Space Sk. Then, if

nAJMin(PS1) ≥ nAJMax(PS2), then an OptSoln can be found that doesn’t use PS1.

Theorem 3.15. Rule V A Term that is used at most once in any Solution of a given

search Space can be omitted from that search Space. Formally, if nUsedMax[Termc]
∣∣∣
Sk

=

1, then an OptSoln can be found without using Termc.

Proof. The proof is a special case of Rule II (Theorem 3.9). Informally, the idea behind

the theorem is, if Termt is the only Term (remaining) in the search Space that may need

a certain set of Terms in its implementation, then it saves nothing to join these Terms in

one Term (Termc) and use Termc instead. It saves nothing because Termc is not shared

with any other Term.

Formally, let Termt be the only Term in Sk that may use Termc (note that

nUsedMax[Termc]
∣∣∣
Sk

= 1). Without loss of generality, define PSt1 to represent the form

of any PS of Termt that uses Termc, as follows:

PSt1 = PS′ ∪ {Termc} (3.63)

The theorem can be proved if it is proved that for each Soln1 where Soln1[Termt] = PSt1,

there exists another Soln2 such that Soln2[Termt] = PSt2 where Termc /∈ PSt2 and

Cost(Soln2) = Cost(Soln1). To prove the latter statement, it is sufficient to prove the

following: For each Soln1 where Soln1[Termt] = PSt1, there exists another Soln2 such

that Soln2/{Termt} = Soln1/{Termt}, Soln2[Termt] = PSt2 = PS′ ∪ PSci (where

Soln1[Termc] = PSci), and Cost(Soln2) = Cost(Soln1). The proof hereafter will be

concerned with the last statement. PSt1 and PSt2 are depicted in Fig. 3.6 (note that

Termc is not useful in Soln2). From Def. 3.15 of nAJ :

nAJ(PSt1)
∣∣∣
Soln1

= C + sc

∣∣∣
Soln1/{Termt}

× nAJo(Termc)

+

|Cone(Termc)−Cone(PS′)|∑
i=1

si

∣∣∣
Soln1/{Termt}

× nAJo(Termi) (3.64)
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(a) PSt1 (b) PSt2

Figure 3.6: Rule V.

where C reflects the contribution of PS′ to nAJ(PSt1)
∣∣∣
Soln1

(or equivalently to,

nAJ(PSt2)
∣∣∣
Soln2

), and is computed as in Eq. 3.40. From Lemma 3.7, definition of nAJo in

Eq. 3.11 and Def. 3.13 of Cone, it follows:

nAJ(PSt1)
∣∣∣
Soln1

= C + sc

∣∣∣
Soln1/{Termt}

× (|PSci| − 1)

+ sc

∣∣∣
Soln1/{Termt}

×
|Cone(PSci)−Cone(PS′)|∑

i=1

si

∣∣∣
Soln1/{Termt}

× nAJo(Termi) (3.65)

nAJ(PSt2)
∣∣∣
Soln2

= C + (|PSci| − 1)

+

|Cone(PSci)−Cone(PS′)|∑
i=1

si

∣∣∣
Soln2/{Termt}

× nAJo(Termi) (3.66)

Since sc

∣∣∣
Soln1/{Termt}

= 1, therefore, nAJ(PSt2)
∣∣∣
Soln2

= nAJ(PSt1)
∣∣∣
Soln1

. That concludes

the proof.

Definition 3.29. Rule V Transformation

Let nUsedMax[Termc]
∣∣∣
Sk

= 1 and Termt be the only Term in Sk that may use Termc.

Define OldPSS ⊂ PSS[Termt]
∣∣∣
Sk

to be the set of all Termt PSs remaining in Sk that use

Termc. Formally,

OldPSS =

{
PSti

∣∣∣∣PSti ∈ PSS[Termt]
∣∣∣
Sk

∧ Termc ∈ PSti
}

(3.67)

Let PSS[Termc]
∣∣∣
Sk

= {PSc1, . . . , PScn}. Then, the following transformation will be

referred to as Rule V transformation: Replace each PSti ∈ OldPSS with n PSs (PSti1,

. . ., PStin), where PStij is defined as follows: If

PSti = PS′ ∪ {Termc}
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then,

PStij = PS′ ∪ PScj

The transformation has the potential of rendering many PStijs redundant (see Def. 3.20),

and thus will be omitted from the search Space. This, in turn, updates the nUsedMin and

nUsedMax structures of these PS constituent Terms. Hence, the transformation can result

in affecting nAJMin and nAJMax of other PSs that are using these Terms allowing for

more Space reduction using Corollary 3.14.

Algorithm 2 iteratively collects and updates the search Space metrics. It makes use of

Corollaries 3.13 and 3.14 and Rule V (Theorem 3.15) and its transformation (Def. 3.29) to

refine the search Space. It incorporates the following data structures:

• nAJMino/Maxo[Termt]
∣∣∣
Sk

: a vector that stores nAJMino/Maxo of all Termt in

search Space Sk, respectively.

• PSnAJMin/Max[Termt][PSti]
∣∣∣
Sk

and PSnAJMino/Maxo[Termt][PSti]
∣∣∣
Sk

: two

two dimensional structures that store nAJMin/Max and nAJMino/Maxo of all

PSti of all Termt in search Space Sk, respectively.

• UT
∣∣∣
Sk

: a set of Terms whose (or whose PS) nAJMin(o)/Max(o) need to be updated.

The Terms are ordered within the set by their cardinalities starting from the largest

to the smallest. UT is initialized with (TargetS ∪ PTermS − SourceS).

• UPSMin/Max[Termt]
∣∣∣
Sk

: a set of PSs of Termt whose nAJMin(o)/Max(o) need to

be updated, respectively. They are initialized with PSS[Termt]
∣∣∣
Sk

.

• PSR
∣∣∣
Sk

: a set of PSs that are scheduled to be removed from the search Space, Sk.

At this point, the current search Space consists of all the remaining possible PS choices

of (TargetS ∪ PTermS). The suffix
∣∣∣
Sk

will be omitted in Algorithm 2, since it is implied

that all data structures and functions are calculated for the current search Space.

Algorithm 2 starts with UT initialized with (TargetS ∪ PTermS − SourceS). Line 2

picks the smallest Term in UT , Termt. Lines 4 to 7 check whether Termt is used only once

in the search Space and, if this is the case, apply Rule V transformation. The procedure

in Line 5 also updates UT and UPSMin/Max with the Terms and PSs (respectively)

whose nAJ need to be updated in a next iteration due to the transformation. Lines 8

and 9 store the old values of Termt nAJMaxo, nAJMino, and EChildren before doing

any update. Lines 10 through 13 (Lines 14 through 17) update nAJMin(o)(nAJMax(o)) of

the PSs of Termt specified in UPSMin[Termt](UPSMax[Termt]), respectively. Lines 18



54

Algorithm 2 Collect Space Metrics and Remove Higher nAJ Partial Solutions

1: while |UT | ≥ 1 do
2: Get and remove the last element in UT , Termt

3: if nUsedMax[Termt] ≥ 1 then // Termt is usable
4: if nUsedMax[Termt] = 1 then
5: Apply Rule V transformation
6: continue
7: end if
8: OldnAJMino/Maxo = nAJMino/Maxo[Termt]
9: OEChildren = EChildren[Termt]

10: for each PSti in UPSMin[Termt] do
11: Update PSnAJMin[Termt][PSti] and PSnAJMino[Termt][PSti]
12: Remove PSti from UPSMin[Termt]
13: end for
14: for each PSti in UPSMax[Termt] do
15: Update PSnAJMax[Termt][PSti] and PSnAJMaxo[Termt][PSti]
16: Remove PSti from UPSMax[Termt]
17: end for
18: for all PSti and PStj of Termt do
19: if PSnAJMin[Termt][PSti] ≥ PSnAJMax[Termt][PStj ] then
20: PSR.insert(PSti)
21: end if
22: end for
23: if |PSR| ≥ 1 then // Some PSs are to be removed
24: Remove PSs And Update nUsedMax
25: if nUsedMin[Termt] ≥ 1 then // ETerm
26: NEChildren = EChildren[Termt]−OEChildren
27: Update nUsedMin Because Of NEChildren
28: end if
29: end if
30: Calculate and store NewnAJMino/Maxo of Termt

31: Compare them with OldnAJMino/Maxo respectively
32: if NewnAJMaxo 6= OldnAJMaxo then
33: Determine which PSs (of other Terms) whose nAJMax need to be updated.
34: Update UT and UPSMax accordingly
35: end if
36: if NewnAJMino 6= OldnAJMino then
37: Determine which PSs (of other Terms) whose nAJMin need to be updated.
38: Update UT and UPSMin accordingly
39: end if
40: end if
41: end while
42: return
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through 22 apply Corollary 3.14 to prune out expensive PSs. PSs to be removed are stored

in PSR. The procedure of Line 24 propagates the effect of removing a PS, PSt, of Termt

to nUsedMax of some (or all) of PSt constituent Terms (and possibly their corresponding

constituent Terms as well - see Def. 3.23 of nUsedMax). This in turn can affect nAJMin(o)

of other PSs that use these Terms. The affected Terms and PSs are added to UT , and

UPSMin, respectively, so that they are updated in a following iteration of the algorithm.

Removing PSs from Termt may not only affect nUsedMax of the constituting Terms, but

also may add to EChildren[Termt]. If Termt is an ETerm, and it gained new EChildren

in this iteration, then its new EChildren will also become ETerms. This is handled in

Lines 25 through 28 of Algorithm 2. The procedure of Line 27 propagates the effect of

essentiality to the nUsedMin of the new EChildren of Termt (and of their corresponding

EChildren as well - see Def. 3.26 of nUsedMin). This, in turn, can affect nAJMax(o)

of other PSs that use these Terms. Again, the affected Terms and PSs are added to

UT , and UPSMax, respectively, so that they are updated in a future iteration. The final

part of Algorithm 2 (i.e., Lines 30 through 39) checks if any change has occurred to the

values of nAJMaxo and nAJMino of Termt. If so, it determines which Terms and PSs

(that use Termt) are affected by these changes. UT , UPSMax and UPSMin are updated

accordingly. Algorithm 2 will continue to iterate until UT is empty (i.e., no more Terms

need to be updated).

3.2.5 Step IV: Divide, Refine the Search Space and Find
an Optimum Solution

In case there are more than one Solution still left in the search Space, this step aims at

finding an OptSoln from the set of remaining Solutions. It does so through iterative division

and refining of the search Space. Choosing a certain PS for a Term (and omitting the other

PSs from the search Space) does affect nUsedMax and nUsedMin of the constituent

Terms. This, in turn, can affect nAJMax(o) and nAJMin(o) of other PSs that use these

Terms, allowing for possible expensive PS elimination (through Corollary 3.14). Hence,

instead of exploring all Solutions in the current search Space, Step IV divides the search

Space into mutually exclusive sub-Spaces (based on mutually exclusive PS choices for what

is referred to as Selection Terms). Each sub-Space is then refined and possibly recursively

divided until only one Solution is left in that sub-Space. The Cost of each remaining

Solution in each sub-Space is computed, compared and an OptSoln is returned. Space

division and pruning substantially reduces the total amount of Solutions explored.
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Algorithm 3 is used to implement Step IV. It makes use of the fol-

lowing data structures for each search Space (besides nUsedMax[Termt]
∣∣∣
Sk

,

nUsedMin[Termt]
∣∣∣
Sk

, PSS[Termt]
∣∣∣
Sk

, nAJMino/Maxo[Termt]
∣∣∣
Sk

, and

PSnAJMin(o)/Max(o)[Termt][PSti]
∣∣∣
Sk

).

• STermS
∣∣∣
Sk

: a vector of Selection Terms. These are the essential Terms (see Def. 3.24

of ETermS) of Sk. They are also the Terms on whose PS choices a Space division

may occur. STermS of the whole search Space (So) is initialized with TargetS.

• STermc

∣∣∣
Sk

: the current STerm on whose PS choices Sk may be divided into sub-

Spaces.

• STP
∣∣∣
Sk

: the index of STermc in STermS.

• PSSelect
∣∣∣
Sk

: a vector that keeps track of each decision (i.e., PS choice) made for

each STerm in Sk.

Algorithm 3 is initially called with the whole search Space as an input Space (Sk).

STermS
∣∣∣
Sk

is initialized with TargetS. By definition, any Solution in Sk must construct

all STermS
∣∣∣
Sk

. Starting with the STermc pointed to by STP (initially 1), the algorithm

checks whether a Space division is required or not. In case STermc has only one PS, call it

SPS (Lines 6 - 10), SPS is chosen for STermc and that choice (also referred to as a decision

or selection) is stored in PSSelect of Sk (Line 8). Furthermore, since each STerm is an

ETerm, and by Def. 3.24 of ETermS, therefore, all the Terms in SPS are also ETerms in

Sk. Thus, they are all appended to STermS of Sk (if they were not already there) so that

the algorithm decides for their PS choices at a later point (Line 9). Also, in that case there

is no need for a Space division. The algorithm increments STP of Sk to move to the next

STermc (Line 10). On the other hand, if STermc has n PSs in Sk, with n > 1 (Lines 4

- 5), then the current Space Sk will be divided into n child sub-Spaces (Lines 20 - 26).

Each sub-Space, Sj , will initially copy all the Sk metric structures (including PSSelect and

STermS - Line 21). Then, each sub-Space, Sj , will have a mutually exclusive PS choice

of Termc, PScj . The PS choice of each sub-Space is stored in its corresponding PSSelect

(Line 22). Since each sub-Space now only sees one PS for Termc, therefore, each Term

in that PS is an ETerm of the corresponding sub-Space. These new ETerms are now

appended to STermS (Line 23) so that the algorithm decides for their PS choices at a

later point. As mentioned at the beginning of this section, such PS selections affect the

Space metrics and typically lead to further search Space reduction in each sub-Space
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Algorithm 3 Find the optimum Solution in this Space (Space Sk)

1: STP is updated = 0
2: while (!STP is updated) do

3: STermc

∣∣∣
Sk

= STermS[STP
∣∣∣
Sk

]
∣∣∣
Sk

4: if

(∣∣∣∣PSS[STermc]
∣∣∣
Sk

∣∣∣∣ > 1

)
then // A Space division is required

5: STP is updated = 1

6: else if

(∣∣∣∣PSS[STermc]
∣∣∣
Sk

∣∣∣∣ == 1

)
then // No Space division is required

7: Let SPS be the only PS of STermc in Sk

8: PSSelect[STermc]
∣∣∣
Sk

= SPS

9: Append each Termi ∈ SPS (and /∈ STermS
∣∣∣
Sk

) to STermS
∣∣∣
Sk

10: STP
∣∣∣
Sk

+ +

11: else if

(∣∣∣∣PSS[STermc]
∣∣∣
Sk

∣∣∣∣ == 0

)
then // No Space division is required

12: STP
∣∣∣
Sk

+ +

13: end if

14: if STP
∣∣∣
Sk

>

∣∣∣∣STermS∣∣∣Sk

∣∣∣∣ then // All STermS have been decided for

15: Calculate the Cost of this Soln (i.e., PSSelect
∣∣∣
Sk

) and compare with OptCost

16: Update OptSoln if necessary
17: return
18: end if
19: end while
20: for each PScj in PSS[STermc]

∣∣∣
Sk

do // Divide Sk into sub-Spaces

21: Create a new Space (Sj = Sk)

22: PSSelect[STermc]
∣∣∣
Sj

= PScj

23: Append each Termi ∈ PScj (and /∈ STermS
∣∣∣
Sj

) to STermS
∣∣∣
Sj

24: Refine this search Space based on this selection (Sj , STP
∣∣∣
Sj

)

25: Find the optimum Solution in this Space (Sj)
26: end for
27: return
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(Line 24). The procedure of Line 24 is very similar to the one in Algorithm 2, except

that UT is initialized with only one Term, namely, STermc. After refining the sub-Space,

Sj , Algorithm 3 is called iteratively to continue the divide and prune process. Iterations

continue until a sub-Space is created that has only one Solution left (Lines 14 - 18). A search

Space, Sj , is reduced to one Solution if all its STermS have been decided for, or formally,

when the following holds: ∀STermi ∈
(
STermS

∣∣∣
Sj

− SourceS
)

:

∣∣∣∣PSS[STermi]
∣∣∣
Sj

∣∣∣∣ = 1.

Once there is only one Solution left, its Cost is calculated and compared to OptCost. The

procedure repeats for all sub-Spaces and the algorithm returns an OptSoln.

In the worst case, Steps III and IV (i.e., Algorithms 2 and 3, respectively) will need

to visit every possible Solution left in the search Space (from Step II) before returning an

OptSoln, a number which is exponential (≤
∏|PTermS∪TargetS|

i=1 |PSS[Termi]|). Nonetheless,

the number of visited Solutions, in practice, is much smaller due to the Space reduction

techniques employed in these steps. Table 3.3 shows the reduction in the search Space after

running Steps III and IV for sample problems.

3.2.6 OptSoln Check

Let the minimum Cost Solution returned by Step IV be denoted as OptSolni, where

i is the index of the method used to construct the potential Terms (also referred to as

PTermSi) in Step I (Sec. 3.2.2). The algorithm is proven to return the minimum Cost

Solution (OptSolni) among those Solutions that can only use terms from PTermSi. In the

case when the potential Terms are constructed using Method I, it is proven (Theorem 3.3)

that ∃OptSolni ∈ OptSolnS : PTermS1 ⊇ UsefulTermS(OptSolni). Hence, passing

PTermS1 (computed by Method I) to the algorithm, is proven to result in, indeed, an

optimum Solution to the given problem.

Method IV, on the other hand, provides a substantially smaller number of potential

Terms than Method I which enhances the algorithm runtime. However, as shown below,

in some problems there may not be an OptSolni ∈ OptSolnS such that PTermS4 ⊇

UsefulTermS(OptSolni). Hence, in such a case, the minimum Cost Solution returned

by the algorithm (i.e., OptSoln4) may have higher Cost than the optimum Solution. This

can happen when an optimum Solution requires a Term that is not in the given potential

Terms.

Therefore, the following two criteria were developed to help check whether the OptSolni

returned by the algorithm (when given PTermSi, i 6= 1) is indeed an optimum Solution for
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a given problem. The criteria help define if a Term is missing from the given PTermSi,

and what the missing Term is. The checks are not required when the potential Terms

are constructed using Method I. Furthermore, there is no proof that these checks are

complete (although found very useful in practice as illustrated below and in Sec. 3.3 -

the Results). Failing Check I (introduced below) is a sufficient condition to show that the

returned OptSolni is not an optimum Solution for the problem, and that indeed one or more

terms are missing from the corresponding PTermSi. On the other hand, failing Check II

does not necessarily mean that the returned OptSolni is not an optimum Solution for the

problem.

Algorithm 4 shows a pseudo-code for the whole CNG algorithm (including using the

checks). The checks are used to iterate over the algorithm with added terms to PTermSi

in each iteration. Iterations stop when an OptSolni is found that passes both checks.

3.2.6.1 Check I: Sharing Check

If more than one Term (call them constituting Terms) appear together implementing

more than one useful Term in OptSolni, then, this is a sufficient condition that a Term

PTermm is missing from PTermi. PTermm is the union of these constituent Terms. It is

Algorithm 4 CNG (INodeS, TargetS, PTermConstructionMethod)

1: Step I: Construct the Potential Terms using Method PTermConstructionMethod
2: done = 0
3: while (done = 0) do
4: Step II: Construct the Partial Solutions
5: Step III: Collect Space Metrics and Remove Higher nAJ Partial Solutions
6: Step IV: Divide, Refine the Search Space and Find an Optimum Solution
7: if (PTermConstructionMethod = Method I) then
8: done = 1
9: else

10: C1 = Check I (OptSolni) // PASS/FAIL, also possibly updates NewPTermS
11: C2 = Check II (OptSolni) // PASS/FAIL, also possibly updates NewPTermS
12: if (C1 ∧ C2) then // OptSolni passes both checks
13: done = 1
14: else
15: // The checks found possibly missing PTerms (i.e., |NewPTermS| > 0)
16: PTermSi = PTermSi ∪NewPTermS
17: end if
18: end if
19: end while
20: return
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easy to show that another Solution that would be the same as OptSolni except that it uses

PTermm instead of joining its constituent Terms each time they are needed would have a

lower Cost. The following theorem formalizes the argument:

Theorem 3.16. Check I Let Termj , T ermk ∈ UsefulTerms(OptSolni). Let

OptSolni[Termj ] ∩ OptSolni[Termk] = S. Being a set of Terms, possibly empty, let

S = {Terms1, T erms2, . . .}. If |S| > 1 then Check I fails. Define PTermm =
⋃|S|

l=1 Termsl.

Also, define: PTermSi′ = PTermSi ∪ {PTermm}. The following holds:

1. OptSolni is not an optimum Solution for the problem.

2. Passing PTermSi′ to the algorithm instead of PTermSi will produce OptSolni
′

(instead of OptSolni) such that: Cost(OptSolni
′
) < Cost(OptSolni).

Proof. The description of OptSolni provided in the theorem text implies that PTermm 6∈

PTermSi. Since, if PTermm was indeed in PTermSi, then, according to Rule II, the

algorithm would have used it to construct (at least) Termj and Termk instead of using its

constituent Terms (i.e., {Terms1, T erms2, . . . })4.

Let OptSolni[Termj ] = PS
′
j ∪ S and OptSolni[Termk] = PS

′
k ∪ S.

Define Solution Soln1 such that: Soln1/ {Termj , T ermk, PTermm} =

OptSolni/ {Termj , T ermk, PTermm}, Soln1[Termj ] = PS
′
j ∪ {PTermm},

Soln1[Termk] = PS
′
k ∪ {PTermm}, and Soln1[PTermm] = S. Note that

OptSolni[PTermm] does not matter since PTermm is not useful in OptSolni. It is

easy to show that Cost(OptSolni) − Cost(Soln1) = |S| − 1. That concludes the first half

of the proof.

On the other hand, if PTermSi′ is passed to the algorithm instead of PTermSi, then

applying Rule II will result in a Solution with the same Cost of Soln1 mentioned above or

less. That concludes the second half of the proof.

Following is an example where Method IV fails to provide an optimum Solution for

the problem (i.e., Cost(OptSoln4) > OptCost). OptSoln4 fails Check I. Nonetheless, the

correction in the second iteration of Algorithm 4 results in an optimum Solution.

Example 3.30. Find an optimum control network implementation for the following

register-to-register data communications: INodeS = {A,B,C,D,E, F,G,H, I, J, L,M},

4To avoid confusion with Rule V, note also that if PTermm was to be used in OptSolni, it would have
been used more than once (i.e., to construct at least Termj and Termk). This implies that Rule V does
not apply in this case.
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ONodeS = {X1, X2, X3, X4}, Target of X1 (or for short, X1)={C,D, I, J, L,M}, X2 =

{A,B,C,D,L,M}, X3 = {A,B,C,D,E, F}, and X4 = {C,D,E, F,G,H}.

The OptCost for this problem is 12. First and second iterations of CNG running this

problem using Method IV are depicted in Fig. 3.7. Method IV first iteration returns

a Solution, OptSoln4, with Cost = 13. The Solution returned fails Check I, since∣∣OptSoln4[ABCDLM ] ∩OptSoln4[ABCDEF ]
∣∣ = |{A,B}| = 2 > 1. According to The-

orem 3.16, OptSoln4 is not an optimum Solution for the problem, and Term AB is missing

from PTermS4. In the second iteration, Term AB is added to PTermS4 and the Cost

returned is, indeed, the OptCost (i.e., 12).

3.2.6.2 Check II: Redundancy Check

If only a subset of a Term is useful in a PS of OptSolni, then, this may indicate that

this useful subset of the Term is missing in PTermSi. It may also indicate that replacing

the Term with its useful sub-Term in that PS results in a better Solution.

Formally, let Termt ∈ UsefulTermS(OptSolni) and OptSolni[Termt] = PSt. Let

also Termi ∈ PSt. Define PTermm = AddedCoverage(Termi, PSt) (see Def. 3.19 of

ACov). Then, if PTermm ⊂ Termi and PTermm /∈ PTermSi, then, Check II fails.

(a) First iteration OptSoln4.
Cost = 13.

(b) Second iteration OptSoln4.
Cost = 12.

Figure 3.7: First and second iterations for Example 3.30 using Method IV.
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Define PTermSi′ = PTermSi ∪ {PTermm}. The following holds:

1. OptSolni may not be an optimum Solution for the problem.

2. Passing PTermSi′ to the algorithm instead of PTermSi may produce OptSolni
′

(instead of OptSolni) such that: Cost(OptSolni
′
) < Cost(OptSolni).

Note that failing Check II does not necessarily imply that OptSolni is not indeed

optimum. In fact, Example 3.32 introduced in Sec. 3.3.4 shows that in some cases it

reduces the Cost if Termi (rather than its subset, PTermm) is used in PSt even if Termi is

overlapping with other terms in PSt (while PTermm is not). This can happen, for example,

if Termi is needed for other Terms in OptSolni and thus can be shared while PTermm is

not.

Following is an example where Method IV fails to provide an optimum Solution for

the problem (i.e., Cost(OptSoln4) > OptCost). OptSoln4 fails Check II. Nonetheless, the

correction in the second iteration of Algorithm 4 results in an optimum Solution.

Example 3.31. Find an optimum control network implementation for the follow-

ing register-to-register data communications: INodeS = {A,B,C,D,E, F,G,H},

ONodeS = {X1, X2, X3}, X1 = {A,B,C,D,E, F}, X2 = {C,D,E, F,G,H}, and X3 =

{A,B,E, F,G,H}.

The OptCost for this problem is 9. Minimum Cost Solutions returned by the first

and second iterations of CNG using Method IV are depicted in Fig. 3.8. Method IV first

iteration returns a Solution, OptSoln4, with Cost = 10. The Solution returned fails Check

II, since, for example, ACov(ABEF,PSX1) = AB ⊂ ABEF and AB /∈ PTermS4, where

PSX1 = OptSoln4[X1]. This suggests that OptSoln4 may not be an optimum Solution for

the problem. In that example, this is indeed the case. In the second iteration, Term AB is

added to PTermS4 and the Cost returned is the OptCost (i.e., 9).

3.3 Results

3.3.1 CNG Tool

The algorithm has been coded in C++ within a tool called CNG. Multi-core parallel

programming using OpenMP [56] has been employed whenever possible. A pseudo-code for

the main CNG steps is listed in Algorithm 4. CNG accepts an input file with the required

register-to-register communications. It returns an OptSoln and the OptCost. Another tool,

PreCNG, was developed to take an ISCAS benchmark in verilog and automatically finds
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(a) First iteration OptSoln4.
Cost = 10.

(b) Second iteration OptSoln4.
Cost = 9.

Figure 3.8: First and second iterations for Example 3.31 using Method IV.

the register-to-register communications. These communications are then expressed in eqn

and verilog formats as well as another format that CNG accepts.

3.3.2 Case Study: The MiniMIPS

MIPS (Microprocessor without Interlocked Pipeline Stages) is a 32-bit architecture, first

designed by Hennessy [46]. MiniMIPS is an 8-bit subset of MIPS. It is fully described in

[1]. A block diagram of the original clocked MiniMIPS is shown in Fig. 2.5. Its synchronous

elasticization is described in Sec. 2.2.

The required register-to-register communication in the MiniMIPS are passed to CNG.

CNG generates the elastic control network shown in Fig. 3.9.

Generating a control network for the MiniMIPS using the direct approach of [9] would

result in a network with 25 J2s and 25 F2s. A hand optimized version of its control network

is shown in Fig. 2.6. The hand optimized version utilizes 14 J2s and 14 F2s. Comparing

to the hand optimized version and to the direct approach of [9], CNG generates a network
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Figure 3.9: CNG-optimized control network of the elastic clocked MiniMIPS.

with only 12 J2s and 12 F2s, for 14.3% and 52% reductions, respectively.

3.3.3 Different PTermS Construction Methods

Table 3.2 shows PTermS size for some ISCAS benchmarks and other problems. For all

the listed examples Method IV kept PTermS size below 100. Reduction of PTermS size

from Method I to Method IV substantially reduces the algorithm runtime.

Table 3.3 shows the reduction in the search Space size after applying each CNG step

for different PTermS construction methods. Step IV (Sec. 3.2.5) does iteratively divide

and refine the search Space until each sub-Space contains only one Soln. The Cost of each

remaining Soln of each sub-Space are then computed and compared to return OptSolni.

The last column (titled “After Step IV”) lists the total number of these remaining Solns

(i.e., the Solns whose Costs are computed and compared). In all the examples of Table 3.3,

Method IV returns OptSoln4 after Step III.

3.3.4 CNG vs. Other Synthesis Tools/Flows

Following is a brief description of other approaches that may be used to construct the

control network of elastic circuits (besides CNG). For the following approaches, PreCNG is

used to take an ISCAS benchmark and automatically formulate the register-to-register



65

Table 3.2:
∣∣PTermSi

∣∣ of different PTermS Construction Methods.

Problem |SourceS| |TargetS|
∣∣PTermS1

∣∣ ∣∣PTermS2
∣∣ ∣∣PTermS3

∣∣ ∣∣PTermS4
∣∣

Example 3.2 7 5 31 31 20 14
MiniMIPS 12 12 46 22 21 17

s27 7 4 64 10 10 9
s298 17 20 162 88 41 33
s344 24 26 8,223 2,064 1,106 38
s349 24 26 8,223 2,064 1,106 38
s382 24 27 16,583 193 67 37
s386 13 13 4,096 71 32 21
s400 24 27 16,583 193 67 37
s420 34 17 131,088 65,554 155 50
s444 24 27 16,583 193 67 37
s510 25 13 1,420 46 37 30
s526 24 27 16,488 4,156 132 45
s641 54 43 3,014,686 23,593 493 85
s713 54 42 3,014,686 23,593 493 85
s820 23 24 1,105,919 9,483 330 46
s832 23 23 1,105,919 9,483 330 46
s1488 14 25 16,383 517 79 32

Table 3.3: Search Space reduction (in terms of number of Solns) for different methods.

Problem M
Total After After After After

(with Rule I applied) Step I Step II Step III Step IV

Example 2

M1

3.04× 1049

1.44× 1020 3.01× 108 42 2
M2 1.10× 1020 3.01× 108 42 2
M3 1.56× 1011 6,912 12 2
M4 9.12× 105 8 1 1

MiniMIPS

M1

7.05× 1097

1.28× 1034 1.13× 1014 234 2
M2 6.33× 108 72 6 2
M3 1.06× 108 24 4 2
M4 3.07× 104 4 1 1

s27

M1

7.94× 1078

2.72× 1077 1.64× 1033 1 1
M2 1, 000 1 1 1
M3 1, 000 1 1 1
M4 108 1 1 1

s298

M1

double overflow > 1.7× 10308

3.04× 10257 7.38× 10111 1 1
M2 1.43× 10109 2.48× 1042 1 1
M3 1.31× 1037 5.57× 108 1 1
M4 1.63× 1022 2.88× 103 1 1
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communication requirements in forms accepted by these approaches (e.g., eqn and verilog

formats).

3.3.4.1 Basic Flow

A direct flow is provided in [9, 3]. In that approach, for each register that is receiving

data communications from multiple registers, one multi-input join is connected to this

register controller input. Similarly, for each register that is sending data communications

to multiple registers, one multi-output fork is connected to this register controller output.

This approach, however, could be inefficient in terms of the total number of joins and forks

used, increasing the elastic control network area and power overheads.

3.3.4.2 Berkeley ABC

ABC [54] is a synthesis tool from Berkeley. The control network problem may be

formulated as an equation, with the join components replaced by logical ANDs. In that

sense, every Target is an output of a logical AND of all the INodes going to that Target.

Formally: ∀Targeti ∈ TargetS : Targeti = AND
|Targeti|
j=1 INodej , where INodej ∈ Targeti.

The following script (courtesy of Alan Mishchenko, one of ABC authors) is used to minimize

the number of 2-input AND gates (which would correspond to minimizing 2-input join

components) in a given control network:

read eqn connection.eqn; st; ps

clp; fx; resyn2; ps; write eqn out.eqn

connection.eqn is the file containing the required register-to-register communications (in

standard eqn format).

Note that, from Theorem 3.2, minimizing the number of 2-input join components in a

control network will equivalently minimize the total number of 2-input join and 2-output

fork components in that network.

3.3.4.3 Synopsys R© Design Compiler R©

Design Compiler R© (DC) is a synthesis tool from Synopsys R©. Similar to the control

network problem formulation with ABC, the required connections can be passed to DC as

a verilog input file. To minimize the total number of 2-input AND gates (corresponding to

2-input join components) a cell library composed of only one cell, a 2-input AND gate, is

passed to the tool. DC UltraTM is asked to minimize the control network area through the

following commands:
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set max area 0

compile ultra -area high effort script

Table 3.4 compares the results of the different approaches over several ISCAS-89

benchmarks and other problems. For each approach column, it shows the Cost (i.e., the

total number of J2s required to implement the control network) and the Worse% with

respect to CNG. In all complete benchmark runs in this chapter, DC and ABC produce a

network with the same or more number of join (and fork) components than CNG. In s614, for

example, ABC produces a network with 11.3% more joins than CNG (69 vs. 62). In s1238,

DC produces a network with 10.9% more joins than CNG (51 vs. 46). Method IV is used in

CNG. Multiple rows per problem reflects the number of CNG iterations. The CNG column

also shows the runtime required by each problem. In all the listed ISCAS problems, the total

runtime (i.e., including all iterations) is less than 1 second. The machine used has Intel R©

CoreTM i7 2.80GHz processor. ISCAS problems bigger than s1488 require impractically

long runtime. This motivates using better data structures, problem division algorithms

and/or heuristics to cut runtime for bigger problems (see Appendix A). The CNG column

also includes nSol sub-column. nSol gives the number of Solutions left in the search Space

after applying the reductions of Steps I to IV. This is the number of Solns whose Costs

have to be calculated and compared to return the OptSoln. In most of the listed ISCAS

problems, only one Solution is left after applying the algorithm reductions. This shows the

reduction efficiency of Steps I to IV.

The following example, ProOverlap n m, is locally developed based on observations of

DC and ABC synthesis of some of the ISCAS-89 benchmarks.

Example 3.32. ProOverlap 5 1 Find an optimum control network implementation for the

following register-to-register data communications: INodeS = {A,B,C,D,E}, ONodeS =

{X1, X2, X3, X4, X5}, X1 = {A,B,C,D,E}, X2 = {A,B,C}, X3 = {B,C}, X4 =

{C,D,E}, and X5 = {C,D}.

Fig. 3.10 shows CNG vs. Design Compiler R© (DC) Solutions for that problem.

CNG produces a control network with one less join (and one less fork) than DC.

The difference occurs because CNG implements Target X1 (i.e., ABCDE) as follows:

OptSolnCNG[ABCDE] = {ABC,CDE}. On the other hand, OptSolnDC [ABCDE] =

{AB,CDE}. In OptSolnCNG[ABCDE], Term ABC covers three INodes (i.e., A, B, and

C) while only A and B are needed (since Term CDE is also covering C). INodes A and
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Table 3.4: CNG Cost vs. other synthesis tools/flows. Worse percentages are calculated
with respect to CNG results.

Problem
CNG Flow of [9, 3] ABC Design Compiler R©

Cost runtime nSol Cost Worse% Cost Worse% Cost Worse%
MiniMIPS 12 < 1s 1 25 108.3% 12 0% 12 0%

s27 6 < 1s 1 17 183.3% 6 0% 6 0%
s298 22 < 1s 1 66 200% 23 4.5% 22 0%
s344 30 < 1s 1 95 216.7% 32 6.7% 30 0%

s382
22

< 1s
1

148 572.7% 22 0% 22 0%
22 1

s349 30 < 1s 10 95 216.7% 32 6.7% 30 0%
s386 15 < 1s 1 116 673.3% 15 0% 15 0%

s400
22

< 1s
1

148 572.7% 22 0% 22 0%
22 1

s420 33 < 1s 1 169 412.1% 34 3.0% 33 0%

s444
22

< 1s
1

148 572.7% 22 0% 22 0%
22 1

s510
25

< 1s
1

90 260% 28 12% 26 4%
25 1

s526 29 < 1s 1 140 382.8% 30 3.4% 29 0%

s641
62

< 1s
1

457 637.1% 69 11.3% 68 9.7%
62 1

s713
62

< 1s
1

444 616.1% 68 9.7% 68 9.7%
62 1

s820
34

< 1s
10

189 472.7% 33 0% 33 0%33 160
33 212

s832
34

< 1s
10

189 472.7% 33 0% 33 0%33 160
33 212

s838 65 < 1s 1 593 812.3% 66 1.5% 65 0%

s953
37

< 1s
12

299 730.6% 36 0% 37 2.8%36 16
36 20

s1196
46 < 1s 4

355 671.7% 48 4.3% 51 10.9%46 114
46 114

s1238
46 < 1s 4

355 671.7% 48 4.3% 51 10.9%46 114
46 114

s1488
21

< 1s
3

241 1047.6% 22 4.8% 22 4.8%
21 3

Overlap 9 1(2) 9 < 1s 1 28 211.1% 13 44% 12 33%
Overlap 25 25(2) 625 < 1s 1 4500 620% 925 48% 900 44%
Overlap 51 51(2) 2601 20s 1 35700 1272.5% 4081 57% 3825 47%

Overlap n m
m× - 1 m×

n2 − 5

4n
- - m×

n− 3

2n

n - 1
n2 + 4n− 5

4
×100% - -

3(n− 1)

2
×100%
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(a) CNG - Cost = 5.

(b) DC - Cost = 6.

Figure 3.10: ProOverlap 5 1 example: CNG vs. DC.

B could be covered by Term AB instead. Thus, it may seem that using Term ABC in

OptSoln[ABCDE] is adding redundancy. However, Term ABC is shared in the Solution

(it is a TITerm that must be constructed any way to construct Target X2 (i.e., ABC) -

see Def. 3.18 and Theorem 3.11). Term AB, on the other hand, is not shared by any other

Term in the Solution, and thus must be built solely to construct ABCDE. That adds

the 1-join overhead of DC comparing to CNG. Using Def. 3.19 of AddedCoverage, it seems

that DC misses the optimum Solution because it does not allow for using Termi in PSt if

AddedCoverage(Termi, PSt) 6= Termi. In other words, it seems that DC does not allow

for overlapping between the constituent terms of any PS. ABC seems to exhibit similar

behavior.

It can be easily shown that Example ProOverlap 5 1 can be scaled based on two

parameters (n and m), as follows: Define n = |X1|. Also, define m to be the replication

factor of the structure (i.e., how many times the structure is replicated). n must be an odd

number. For Example ProOverlap 5 1, n = 5 and m = 1. Fig. 3.11 shows CNG vs. DC

Solutions for ProOverlap 9 1. Cost(OptSolnCNG) = 9 while Cost(OptSolnDC) = 12 (and

Cost(OptSolnABC) = 13). In terms of any odd n and m, the following were verified for
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(a) CNG - Cost = 9.

(b) DC - Cost = 12.

Figure 3.11: ProOverlap 9 1 example: CNG vs. DC.

numerous values of n and m:

Cost(OptSolnCNG) = m× n (3.68)

Cost(OptSolnDC) = m×
3(n− 1)

2
(3.69)

That is, Cost(OptSolnDC) is
n− 3

2n
worse than Cost(OptSolnCNG) (independent of m).

The DC to CNG Cost overhead increases as n increases with a limit of %50 as n goes to

inf. ABC seems to produce worse results than DC for this specific set of ProOverlap n m

examples. Example ProOverlap n m was built upon observations of the DC and ABC

Solutions for some of the ISCAS-89 benchmarks.



CHAPTER 4

LAZY AND HYBRID SELF PROTOCOL

IMPLEMENTATIONS1

Synchronous elasticization converts an ordinary clocked circuit into Latency-Insensitive

(LI). The conversion involves the generation of a handshake control network that reflects

the register-to-register communication in the original circuit. The Synchronous Elastic Flow

(SELF) is an LI protocol used over the control network channels. This chapter investigates

alternative implementations of the SELF protocol that can reduce the control network area

and power consumption.

The SELF protocol can be implemented with eager or lazy evaluation in the data

steering network. Eager implementation of the SELF protocol enjoys no combinational

cycles and also may have performance advantages in some designs when compared to lazy

implementations. However, eager protocols are more expensive in terms of area and power

consumption. The LI control network area and power consumption may become prohibitive

in some cases [3]. Measurements of the MiniMIPS processor fabricated in a 0.5 µm node

(see Chapter 2) show that elasticization with an eager SELF implementation results in area,

dynamic, and leakage power penalties of 29%, 13%, and 58.3%, respectively.

Lazy SELF implementations may be an attractive solution. Unfortunately the standard

implementation suffers from combinational cycles that make it an unreliable design [9, 45].

This work defines a larger design space that can be employed to implement lazy channel

protocols and to verify correctness of these protocols both independently and when combined

with the standard eager protocol.

A formal investigation of a complete set of lazy SELF protocol specifications is reported.

This includes introducing new lazy join and fork structures, which are verified along with

the existing designs. A novel hybrid implementation flow is then introduced that combines

the advantages of both eager and lazy implementations. The hybrid SELF essentially

1This is a revised and extended version of a paper originally published in [49].



72

avoids some of the redundancy of the eager implementation without any performance loss.

Moreover, it is combinational cycle free. The hybrid SELF network is demonstrated with

the design of the elastic MiniMIPS processor. The hybrid implementation achieves the same

runtime as an all eager implementation with a reduction of 31.8%, 26.0%, and 30.8% in the

control network area, dynamic, and leakage power consumption, respectively.

An overview of the SELF protocol was given in Sec. 2.1. The notion of a control buffer is

introduced in order to gain understanding of the design and verification of control network

components, such as joins and forks. A linear control buffer simply breaks the control

signals in a channel into left and right channels. Such a buffer will have two inputs: the

V alid on the left channel and Stall on the right channel, and two outputs: the Stall on the

left channel and V alid on the right.

4.1 SELF Channel Protocol Verification

All join and fork components are verified to be conformant to the SELF channel protocol.

The correctness requirements for the channel protocol are adapted from the general elastic

component conditions consisting of persistence, freedom from deadlock, and liveness [10].

A fourth constraint is added here that disallows glitching on the control wires.

1. Persistence. No R→ I transition may occur.

2. Deadlock freedom. For each component in the verification, at least two states can be

reached from any other reachable state [57].

3. Liveness. The liveness condition is one of data preservation. Lazy control buffers must

have the same number of tokens transferred on all their channels. This functional

requirement is a special case of the liveness condition in [10]. This is implemented by

creating token counters on all the lazy control buffer channels and verifying that they

are always equivalent.

4. Glitch Free. No S↑ signal transition may occur in state I. The specification of the idle

protocol state I in Fig. 2.2 does not constrain the behavior of the Stall signal. This

allows glitching on the control wires to occur. If the Stall signal is not allowed to rise

in the idle state then glitching will not occur. This requirement is not explicit in the

SELF specifications. However, it can be observed that this transition is not possible in

published Elastic Buffer (EB) or Elastic Half Buffer (EHB) designs [9, 58]. If control

wire glitching is possible, then the composition of some forks and joins may not be

compliant with the channel protocol. For example, the Karnaugh map of LF01, one
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of the two lazy forks proven to be SELF compliant (Sec. 4.3.1.2), is shown in Fig. 4.1.

Transition A occurs when Sr2 rises in the idle state. While this glitching transition is

valid according to the channel specification, it results in Vr1 falling, which produces an

illegal R→ I transition on channel r1. Since this transition can never happen unless

channel r2 can make an S↑ transition glitch, this condition is added to the verification

suite.

4.2 SELF Control Network Design

A truth table can be created to specify the permissible behaviors for the control buffer

left Stall and right V alid signals that conform to the SELF channel protocol of Sec. 2.1.

Such a truth table shows the flexibility in design choices that can be made. The same

procedure is performed for the lazy fork and join components.

4.3 Fork Components

4.3.1 Lazy Fork

The Lazy Fork (LFork) does not propagate valid data from its root to its branches

until all branches are ready to store the data. A sample lazy fork is shown in Fig. 4.2 [8, 9]

(which maps to LF00 introduced later in the chapter). In Fig. 4.2, if any of the lazy fork

branches stalls, it forces all the other branches into the idle state.

4.3.1.1 Lazy Fork Synthesis

The truth table for a lazy fork is shown to be purely combinational. Thus it is easily

represented with the Karnaugh Map (KM) shown in Fig. 4.3. The KM has two don’t care

terms m0 and m1 giving four possible designs. Each implementation is denoted as LFm0m1

(e.g., LF00, LF01, etc.). Table 4.1 maps previsouly published lazy fork implementations

to those of this work.

Figure 4.1: Vr1 of LF01.
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Figure 4.2: A 1-to-n lazy fork (maps to
LF00).

Figure 4.3: Lazy fork specifications
(Vr1).

Table 4.1: Mapping between published and this
work lazy forks and joins.

Fork [8] LF00 Join [8] LJ0000

Fork [9] LF00 Join [9] LJ0000

LFork [45] LF00 LJoin [45] LJ0000

LKFork1[45] LF01 LKJoin1[45] LJ1111

1 LKFork and LKJoin are part of the contri-
bution of this dissertation.

The hand translation of the fork as a control buffer may still result in illegal channel

behavior on one or more of the channels due to the interactions between branches of the

fork and join. Thus a rigorous verification methodology is employed to prove correctness

of the designs. Indeed, verification shows that two of the four possible designs do not fully

obey the SELF channel protocol.

4.3.1.2 Lazy Fork Verification

The setup of Fig. 4.4 is used to verify correctness of the fork designs. The root channel

(A) as well as the branches (A1 and A2) are connected to three elastic buffers (EBs) as

well as data token counters (TCs). This work employs the EB implementation published

in [9]. The counters track the number of clock cycles that the channel is in the transfer

state T . The structure is modeled and passed to a symbolic model checker, NuSMV [59].

All constituent blocks are connected synchronously in NuSMV. Synchronous connection
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Figure 4.4: Lazy fork verification setup.

guarantees that all modules advance in lock-step. Logic delays are then executed in internal

cycles of the verification engine. All combinational logic is modeled to have zero delay. The

clock generator is modeled to have a unit delay for each phase. For example, following is

the LF00 model:

MODULE LF00(Vl,Sr1,Sr2)

DEFINE Sl := Sr1 | Sr2 ; DEFINE Vr1 := Vl & (!Sr1) & (!Sr2) ; ...

The four SELF compliance checks of Sec. 4.1 are applied to each design as follows: (The

properties are expressed in the Property Specification Language (PSL) [60] unless otherwise

specified.)

1. Persistence. For each channel (i.e., A, A1 and A2) it is verified that no R → I

transition occurs:

DEFINE R A := VA & SA ; -- Retry on channel A

DEFINE I A := !VA ; -- Idle on channel A

PSLSPEC never {[*]; R A; I A};

Out of the 4 lazy fork implementations only LF00 and LF01 pass this check.

2. Deadlock freedom. At least two states are verified as reachable from all other reachable

states [57]. For example, inside the LF00 module the following properties verify that

two states are always reachable: (The properties are specified in the Computation

Tree Logic (CTL) syntax [61].)

SPEC AG EF (Vr1=1 & Vr2 =1 & Sl=0);

SPEC AG EF (Vr1=0 & Vr2 =0 & Sl=0);

Note that a state in LF00 is defined by the three variables: Vr1, Vr2 and Sl. All four

lazy fork implementations pass this check.

3. Liveness is calculated through data token preservation. Let the number of data tokens

transferred at the fork root channel and the two branch channels be: dl, dr1 and dr2,
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respectively. (di is, equivalently, the number of clock cycles where channel i is in the

Transfer state (T ) (i.e., Vi&!Si).) The number of data tokens transferred at a lazy

fork root channel must always be the same as those at its branches. (i.e., the following

requirement must always hold: dri− dl = 0 for i ∈ {1, 2}.) The following code is used

to model a token counter for channel i. The model counts on the negative edge of the

clock.

MODULE TokenCounter (Clk,Vi,Si)

VAR Count: 0..31;

ASSIGN

init (Count) := 0;

next (Count) := case

(Clk=1)&(next(Clk)=0)&(Vi=1)&(Si=0)&(Count < 31): Count + 1;

1: Count;

esac;

NuSMV only supports finite data types. Without loss of generality, the upper limit

of the Count variable is chosen to be a sufficiently large number (32 in this case). For

each branch define and check the following property:

DEFINE TokenCountError A1 := case (dl != dr1):1; 1:0; esac;

PSLSPEC never {[*]; TokenCountError A1};

All the four lazy fork implementations pass this check.

4. No glitching. This verifies that the Stall signal does not rise in the idle state:

DEFINE I0 A := !VA & !SA ; -- Idle0 on A

DEFINE I1 A := !VA & SA ; -- Idle1 on A

PSLSPEC never {[*]; I0 A; I1 A};

All lazy fork implementations pass this check.

Hence, among the four possible lazy fork implementations, only LF00 and LF01 conform

to the SELF specification.

4.3.1.3 Lazy Fork Characterization

To help characterize the different fork implementations as well as their combinations

with lazy joins in a network, the following definitions are introduced:

Definition 4.1. CFr, Fork Reflexive Characterization Set CFr is a set of characterization

elements (cFr), where: cFr ∈ {I,N, 0, 1}.
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1. cFr = I (or inverting) in a 2-output fork iff Vri is a function of Sri, and iff, for some

constant Vl and Srj , Vri =!Sri, where i, j ∈ {1, 2} and i 6= j.

2. cFr = N (or noninverting) in a 2-output fork iff Vri is a function of Sri, and iff, for

some constant Vl and Srj , Vri = Sri, where i, j ∈ {1, 2} and i 6= j.

3. cFr = 0 (or constant zero) in a 2-output fork iff Vri is a function of Sri, and iff, for

some constant Vl and Srj , Vri = 0, where i, j ∈ {1, 2} and i 6= j.

4. cFr = 1 (or constant one) in a 2-output fork iff Vri is a function of Sri, and iff, for

some constant Vl and Srj , Vri = 1, where i, j ∈ {1, 2} and i 6= j.

Table 4.2 illustrates CFr computation of LF00. From the table, CFr of LF00 is {I, 0}.

Similarly CFr of LF01 is ∅. This is because in LF01 (see Fig. 4.5), Vri is not a function of

Sri. Sec. 4.6.1 will show that this property gives an advantage to LF01 since it can reduce

the number of combinational cycles in the control network substantially.

Definition 4.2. CFt, Fork Transitive Characterization Set CFt is a set of characterization

elements (cFt), where: cFt ∈ {I,N, 0, 1}.

1. cFt = I (or inverting) in a 2-output fork iff Vri is a function of Srj , and iff, for some

constant Vl and Sri, Vri =!Srj , where i, j ∈ {1, 2} and i 6= j.

2. cFt = N (or noninverting) in a 2-output fork iff Vri is a function of Srj , and iff, for

some constant Vl and Sri, Vri = Srj , where i, j ∈ {1, 2} and i 6= j.

3. cFt = 0 (or constant zero) in a 2-output fork iff Vri is a function of Srj , and iff, for

some constant Vl and Sri, Vri = 0, where i, j ∈ {1, 2} and i 6= j.

Figure 4.5: A 2-output LF01 implementation.



78

4. cFt = 1 (or constant one) in a 2-output fork iff Vri is a function of Srj , and iff, for

some constant Vl and Sri, Vri = 1, where i, j ∈ {1, 2} and i 6= j.

Table 4.3 illustrates CFt computation of LF00. From the table, CFt of LF00 is {I, 0}.

Similarly, CFt of LF01 is also {I, 0}.

4.3.2 Eager Fork

The Eager Fork (EFork), unlike the lazy, even if not all its branches are ready to receive,

will immediately pass the (valid) data token from its root to the branches that are ready.

The EFork will stall (if needed) until all the stalled branches (if any) receive the data

token as well. This gives the earliest possible data transfer to the branches that are ready

to receive data. Hence, the EFork can result in performance advantage over lazy forks

in some systems. This will also be illustrated in the case study of Sec. 4.7.1. Due to the

necessary pipelining that occurs in the control signals, the EFork incorporates one flip-flop

per branch. The control flip-flop is clocked every cycle to sample changes. Moreover, eager

forks have higher logic complexity comparing to lazy. This makes the EFork expensive in

terms of both area and power consumption. Fig. 2.4 shows an n output extension of the

EFork proposed in [9].

4.3.2.1 Eager Fork Verification

Similar to the lazy fork verification of Sec. 4.3.1.2, the EFork is also verified against

the four SELF compliance checks. Since the EFork allows its ready branches to transfer

tokens while stalled waiting for the other branches to be ready, the data token preservation

requirement is: 0 ≤ dri − dl ≤ 1 for i ∈ {1, 2}. Indeed, the EFork passes all the checks

and, hence, is compliant with the SELF protocol.

Table 4.2: CFr computation of LF00.

Vl Sr2 Sr1 → Vr1 cFr

0 0
0 → 0

0
1 → 0

0 1
0 → 0

0
1 → 0

1 0
0 → 1

I
1 → 0

1 1
0 → 0

0
1 → 0

Table 4.3: CFt computation of LF00.

Vl Sr1 Sr2 → Vr1 cFt

0 0
0 → 0

0
1 → 0

0 1
0 → 0

0
1 → 0

1 0
0 → 1

I
1 → 0

1 1
0 → 0

0
1 → 0
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4.4 Lazy Join

The lazy join has to wait for all its input branch channels to carry valid data before

data is transferred on the output channel. A sample lazy join is shown in Fig. 2.3 (which

maps to LJ0000 introduced later in the chapter).

4.4.1 Lazy Join Synthesis

The synthesis of a lazy join as a control buffer is performed similar to the lazy fork. The

KM is shown in Fig. 4.6. There are 16 possible implementations.

4.4.2 Lazy Join Verification

Similar to the lazy fork verification in Sec. 4.3.1.2, the structure of Fig. 4.7 is used to

verify the different lazy join implementations. The following properties are checked:

1. Persistence: All the 16 lazy joins pass this check.

2. Deadlock freedom: All the 16 joins pass.

3. Data token preservation: All the 16 joins pass.

4. Glitch Free: Out of the 16 lazy joins, only 6 pass.

Only the following lazy join designs pass verification: LJ0000, LJ0010, LJ0011, LJ1010,

LJ1011, LJ1111. Among the 6 SELF-compliant joins, LJ1111 (Fig. 4.8) has the simplest

logic allowing for more efficient area utilization during synthesis. Results of Sec. 4.7.2

confirms the observation.

4.4.3 Lazy Join Characterization

To help characterize the different join implementations as well as their combinations

with lazy forks in a network, the following definitions are introduced:

Figure 4.6: Lazy join specifications (Sl1).

Figure 4.7: Lazy join verification setup.
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Definition 4.3. CJr, Join Reflexive Characterization Set CJr is a set of characterization

elements (cJr), where: cJr ∈ {I,N, 0, 1}.

1. cJr = I (or inverting) in a 2-input join iff Sli is a function of Vli, and iff, for some

constant Sr and Vlj , Sli =!Vli, where i, j ∈ {1, 2} and i 6= j.

2. cJr = N (or noninverting) in a 2-input join iff Sli is a function of Vli, and iff, for some

constant Sr and Vlj , Sli = Vli, where i, j ∈ {1, 2} and i 6= j.

3. cJr = 0 (or constant zero) in a 2-input join iff Sli is a function of Vli, and iff, for some

constant Sr and Vlj , Sli = 0, where i, j ∈ {1, 2} and i 6= j.

4. cJr = 1 (or constant one) in a 2-input join iff Sli is a function of Vli, and iff, for some

constant Sr and Vlj , Sli = 1, where i, j ∈ {1, 2} and i 6= j.

Similar to Table 4.2, CJr of LJ0000, for example, can be computed to be {N, 0}. LJ1011

has a CJr of ∅. This is because in LJ1011 (see Fig. 4.9) Sli is not a function of Vli. Sec. 4.6.1

will show that this property gives an advantage to LJ1011 since it can reduce the number

of combinational cycles in the control network substantially.

Definition 4.4. CJt, Join Transitive Characterization Set CJt is a set of characterization

elements (cJt), where: cJt ∈ {I,N, 0, 1}.

1. cJt = I (or inverting) in a 2-input join iff Sli is a function of Vlj , and iff, for some

constant Sr and Vli, Sli =!Vlj , where i, j ∈ {1, 2} and i 6= j.

2. cJt = N (or noninverting) in a 2-input join iff Sli is a function of Vlj , and iff, for some

constant Sr and Vli, Sli = Vlj , where i, j ∈ {1, 2} and i 6= j.

Figure 4.8: A 2-input LJ1111
implementation.

Figure 4.9: A 2-input LJ1011
implementation.
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3. cJt = 0 (or constant zero) in a 2-input join iff Sli is a function of Vlj , and iff, for some

constant Sr and Vli, Sli = 0, where i, j ∈ {1, 2} and i 6= j.

4. cJt = 1 (or constant one) in a 2-input join iff Sli is a function of Vlj , and iff, for some

constant Sr and Vli, Sli = 1, where i, j ∈ {1, 2} and i 6= j.

Similar to Table 4.3, CJt of LJ0000, for example, can be computed to be {I, 0, 1}.

4.5 Lazy SELF Networks

Unlike eager forks, lazy forks have no state holding elements (e.g., flip-flops). Hence,

arbitrary connections of lazy joins and forks in a control network typically result in

combinational cycles. These cycles can cause deadlock or oscillation due to logical or

transient instability:

4.5.1 Deadlock - D

A combinational cycle can cause a deadlock if under some input sequence its internal

signals can get stuck at certain values. For example, consider a structure in which a fork

output channel is feeding a join (Fig. 4.10a). This structure is a basic building block of

typical elastic control networks. Fig. 4.11 shows a circuit implementation of Fig. 4.10a using

LF00 and LJ1111.

It can be easily shown that if VA is zero, VA1 and VAC must also be zero. This will

force SA1 to be one, SA to be one and VA1 to be zero. Apparently, the loop shown in

(a)

(b)

Figure 4.10: Sample fork join combinations.
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Figure 4.11: LF00 and LJ1111 combination.

dotted lines forms a latch, since all its wires can simultaneously carry controlling values to

the gates they are driving in the loop. Hence, after a zero on VA, the system will deadlock.

VA2, VAC, SC and SA will be stuck at zero, zero, one and one, respectively.

In general, for the common structure of Fig. 4.10a, the following can be readily proved.

Let CJr1 (CFr1) and CJt1 (CFt1) be the join (fork) reflexive and transitive characteristic

sets of the lazy join (fork) used, LJ1 (LF1), respectively. Then, the connection of Fig. 4.10a

will result in deadlock if the following condition holds: CJr1 = {1, I} and CFr1 = {I, 0}. To

illustrate, since CFr1 = {I, 0}, therefore, for all the possible values of LF1 inputs, V A1 is

either 0 or the inverse of SA1. Similarly, since CJr1 = {1, I}, therefore, for all the possible

values of LJ1 inputs, SA1 is either 1 or the inverse of V A1. Hence, once V A1 is 0 or SA1

is 1, the loop formed by V A1 and SA1 will stuck at these values.

Similarly, a deadlock will occur in the connection of Fig. 4.10b if the following condition

holds: CJt1 = {1, I} and CFt1 = {0, I}.

4.5.2 Oscillation Due to Logical Instability - LI

A loop is logically unstable if it has an odd number of inverting elements. Under some

input sequence, it can behave as a ring oscillator.

For example, consider again the structure of Fig. 4.10a. Fig. 4.12 shows a circuit

implementation of that structure using LF00 and LJ0000.

Assume the elastic buffer C in Fig. 4.12 holds a bubble (i.e., its output V alid signal is

zero), while A holds data. Assume also that SA2 is zero (B is not stalled). This connection

will form a loop (shown in dotted lines in Fig. 4.12). The loop is logically unstable since it
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Figure 4.12: LF00 and LJ0000 combination.

has an odd number of inverting elements. This results in an oscillation inside the loop as

well as on the SA wire.

In general, for the common structure of Fig. 4.10a, the following can be readily proved.

Let CJr1 (CFr1) and CJt1 (CFt1) be the join (fork) reflexive and transitive characteristic

sets of the lazy join (fork) used, LJ1 (LF1), respectively. Then, the connection of Fig. 4.10a

will result in logical instability if any of the following condition holds:

• I ∈ CJr1 and N ∈ CFr1.

• N ∈ CJr1 and I ∈ CFr1.

4.5.3 Oscillation Due to Transient Instability - TI

Even if a combinational loop does have an even number of inverting elements it can still

cause oscillation in an elastic control network. Since the loop has more than one input, both

logic one and zero values can be simultaneously injected at different places in the loop. The

one and zero values can then race around the loop causing oscillation.

Table 4.4 shows the different lazy fork-join combinations characteristics. The table refers

to the network structures of Fig. 4.10.

Research is still in progress to investigate whether the oscillation due to transient

instability can be avoided by forcing network-specific timing constraints on the control

network. However, a simpler solution, not only for transient instability, but also for deadlock

and logical instability, is to use eager forks when needed to cut such combinational cycles.

This will be discussed in Sec. 4.6.
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Table 4.4: Lazy fork-join combination characterization. All other combinations (2 forks
× 10 joins) are noncompliant with the SELF protocol.

Join 0000 0010 0011 1010 1011 1111

Fork
Cr

Ct

N, 0

I, 0, 1

N, 0, 1

I, 0, 1

N, 0, 1

I, 0, 1

N, 0, 1

I, 1

∅
I, 1

I, 1

I, 1

00
I, 0

I, 0
LI LI LI LI D D

01
∅
I, 0

TI TI TI D D D

The following logic is used for the root’s Stall signal in all of the lazy forks investigated

in this work: Sl = Sr1|Sr2. Similarly, the lazy join elements use Vr = Vl1&Vl2. Other

implementations for these signals that consider flexibility allowed by lazy control buffers

is not presented here. However, note that designs with additional logic will increase the

probability of combinational loops in component composition.

4.6 Hybrid SELF Protocol

Two lazy forks and six lazy joins, as well as the traditional eager fork, have been proven

to be compliant with the SELF channel protocol. Therefore, eager and lazy forks (and

joins) can be correctly connected together as long as no combinational cycles are formed

[10]. Eager forks exhibit no cycles and can achieve better runtime in some systems. However,

they consume more power and area than lazy forks. Hence, this work introduces a hybrid

SELF implementation, that uses both eager and lazy forks, has no cycles, and achieves the

same runtime as an all eager implementation. Hybrid implementation should keep minimal

number of eager forks in the control network that are necessary for the following reasons:

4.6.1 Cycle Cutting

Lazy fork-join combinations can result in combinational cycles that cause oscillation or

deadlock. These cycles can be avoided by replacing lazy forks with eager in places where

cycles exist. Cycles can be easily identified either by hand analysis of the control network

or through synthesis tools (e.g., report timing -loops command in Design CompilerTM

[53]).

LF01 enjoys the property that there is no internal path in the fork that connects any

of its branch Stalls to its corresponding V alid. This reduces the number of combinational

cycles substantially. Similarly, LJ1011 enjoys the property that there is no internal path
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in the join that connects any of its input channel V alid signals to its corresponding Stall.

This also reduces the number of cycles substantially. Hence, the fork-join combination of

LF01−LJ1011 results in the minimum number of combinational cycles among all the other

lazy fork-join combinations. This, in turn, minimizes the need to use eager forks to cut the

cycles, resulting in minimizing the total area and power consumption of the hybrid control

network.

4.6.2 Runtime Boosting

Eager forks can enjoy better performance than lazy due to the early start they provide

for ready branches (Sec. 4.3.2). However, this section shows that under some constrained

input behavior, a lazy fork can replace an eager fork without any performance loss. In that

context, the term LFork will be used to refer to the lazy forks LF00 and/or LF01.

A 2-output EFork operation will reduce to the KM of Fig. 4.13a if the EFork flip-flops

are initialized to logic one and if the following input combinations are avoided (a proof will

be provided in Sec. 5.1):

1. (Vl = 1)&(Sr1 = 0)&(Sr2 = 1).

2. (Vl = 1)&(Sr1 = 1)&(Sr2 = 0).

The KM of the lazy forks LF00 and LF01, with the above input combinations avoided,

is shown in Fig. 4.13b. Comparing Fig. 4.13a and Fig. 4.13b, it is apparent that, under these

conditions, the EFork will behave exactly the same as the lazy forks, except in the case

when both branches are stalled simultaneously. One might add a conservative constraint

by avoiding such an input as well. However, as the following verification will confirm, when

both branches are stalled, the lazy forks will have both branches in the Idle (I) state, while

the EFork will keep them in the Retry (R) state. Since there is no data transfer occurring

(a) EFork (b) LFork

Figure 4.13: Vr1 (or Vr2) of the EFork and LFork under some constrained input
behavior.
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in either states (i.e., I or R), there is no performance advantage of the EFork comparing

to the LFork in such a case. Hence, the above stated conditions are sufficient to replace

an EFork with LF00 or LF01 without any performance loss. The conditions will, thus, be

referred to as performance equivalence conditions, or, for short, equivalence conditions.

To verify this argument, the verification setup of Fig. 4.14 is employed. The whole

structure is modeled in the symbolic model checker, NuSMV. The input and output channels

of both the EFork and LFork are connected to terminal Elastic Buffers (EBs). The EBs

are initialized in random states. The EFork input and two output channels are named:

L E (read Left Eager), R1 E (read Right1 Eager), and R2 E (read Right2 Eager),

respectively. Similarly, the LFork input and 2 output channels are named: L L, R1 L,

and R2 L, respectively. V and S are prepended to the channel names to indicate the V alid

and Stall signals of these channels, respectively.

All the blocks as well as the clock generator are connected synchronously inside NuSMV.

The clock changes phase with each unit verification cycle. The Transfer state on the EFork

input and output channels are defined as follows:

DEFINE L E T := VL E & !SL E;

DEFINE R1 E T := VR1 E & !SR1 E;

DEFINE R2 E T := VR2 E & !SR2 E;

Similarly, for the LFork:

DEFINE L L T := VL L & !SL L;

Figure 4.14: EFork-LFork performance equivalence verification setup.
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DEFINE R1 L T := VR1 L & !SR1 L;

DEFINE R2 L T := VR2 L & !SR2 L;

A performance mismatch may occur if any of the channels in the EFork transfers data

while the corresponding channel in the LFork does not. Hence, a channel (i.e., L, R1, or

R2) TOKEN MISMATCH can be defined as follows:

DEFINE L TOKEN MISMATCH := (L E T xor L L T);

DEFINE R1 TOKEN MISMATCH := (R1 E T xor R1 L T);

DEFINE R2 TOKEN MISMATCH := (R2 E T xor R2 L T);

A TOKEN MISMATCH is defined to be the ORing of any channel mismatch:

DEFINE TOKEN MISMATCH := L TOKEN MISMATCH | R1 TOKEN MISMATCH |

R2 TOKEN MISMATCH;

The performance equivalence conditions are defined as following:

DEFINE C 1 := !(VL & (SR1 xor SR2));

Constraint C 1 is forced by using the NuSMV reserved word INVAR which semantically

defines an invariant:

INVAR C 1;

The performance equivalence property is then verified using PSLSPEC:

PSLSPEC never TOKEN MISMATCH;

The property is proven true by the model checker. There is no clock cycle in which any of

the EFork channels is in the Transfer state while the corresponding channel in the LFork is

not transferring data as well. Hence, under the stated performance equivalence conditions,

the EFork and LFork will transfer exactly the same number of tokens, thus, achieving the

same performance. The results can be easily extended to n-output forks with n > 2, based

on the fact that an n-output fork is logically equivalent to concatenated (n − 1) 2-output

forks.

4.6.3 Eager to Hybrid Conversion Flow

An automatic flow to identify which eager forks satisfy the performance equivalence

conditions will be provided in Chapter 5. For the sake of illustration, a simulation-based

analysis will be used in this section. In that approach, a closed eager control network

is simulated and all the fork V alid and Stall patterns are collected and analyzed. An

example will be shown in the MiniMIPS case study in Sec. 4.7. Starting with an elastic

control network (generated manually or through automatic tools like CNG - Chapter 3), the
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following flow generates a hybrid SELF implementation (H) of that network:

1. Define the set of all forks in the control network, Φ.

2. Construct a pure eager implementation of the control network, E1, such that each fork

F ∈ Φ is an eager fork. Define the set of forks, Φp, that do not meet the performance

equivalence conditions. Φp are the forks that must be implemented as eager to achieve

the same runtime as a pure eager implementation of the control network.

3. Construct an intermediate hybrid network, H1, such that: each fork F ∈ Φ− Φp is a

lazy fork, and each fork F ∈ Φp is an eager fork.

4. In H1, identify the set of forks, Φc, that need to be replaced by eager forks to cut the

combinational cycles.

5. Build a final hybrid network,H, such that: each fork F ∈ Φ − Φp − Φc is lazy, and

each F ∈ Φp ∪ Φc is eager.

4.7 MiniMIPS Case Study and Results

MIPS (Microprocessor without Interlocked Pipeline Stages) is a 32-bit architecture with

32 registers, first designed by Hennessey [46]. The MiniMIPS is an 8-bit subset of MIPS,

fully described in [1]. Elasticizing the MiniMIPS was illustrated in Sec. 2.2.1. A block

diagram of the original clocked MiniMIPS and the hand-optimized elastic version are shown

in Figures 2.5 and 2.6, respectively.

4.7.1 Eager Versus Lazy SELF Implementations

Beside their combinational cycle problems, lazy forks can suffer inferior performance

comparing to eager when the branch Stall patterns do not match. Eager forks provide the

earliest possible start for the ready branches (Sec. 4.3.2). To measure this advantage, a

different number of bubbles are inserted at the register file outputs (i.e., before registers

A and B of Fig. 2.6, simultaneously). Table 4.5 compares the number of clock cycles

required by a lazy and by an eager implementations of the MiniMIPS control network

to complete the testbench program of [1]. For the lazy protocol, the LF01-LJ0000

combination is used. The behavioral simulations used some timing constraints to avoid

possible oscillations. Table 4.5 shows that running the same testbench program on an

elastic MiniMIPS processor implemented with lazy SELF takes 32.7% and 58.8% longer

runtime than an eager implementation in case of one and three bubbles in the register file

path, respectively.
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Table 4.5: Time required (in terms of #cycles) by lazy and eager protocols to finish the
testbench program in [1]. Bubbles are inserted at the register file outputs.

Fork-join combination 0 Bubbles 1 Bubble 3 Bubbles

Lazy protocol: LF01-LJ0000 98 195 389

Eager protocol: EFork-LJ0000 98 147 245

Clocked MiniMIPS 98 - -

The runtime advantage of the eager versus lazy designs is illustrated in the following

example (taken from the MiniMIPS control network of Fig. 2.6). Fig. 4.15 shows a simplified

part of the MiniMIPS control network. One bubble is added before the A register, and

another one before the B register, labeled b1 and b2, respectively. Consider the clock cycle

when V A and V B go low. SC1 will go high through join JABCI4P . In FC (assuming SC2

is low), V C is high and SC1 is high. A lazy FC will invalidate the data at C2 (i.e., deassert

V C2) until SC1 goes low again. Hence, no new data token can be written at register b1 or

b2 until the stall condition on C1 is removed (i.e., SC1 goes low again). On the other hand,

an eager FC will validate the data on C2 (i.e., assert V C2) for the first clock cycle giving

C2 branch an early start. Hence, new data tokens can be written immediately in registers

b1 and b2 in the following cycle.

Figure 4.15: A sample structure where eager protocol will have runtime advantage over
lazy.
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4.7.2 Eager Versus Hybrid SELF Implementations

The hybrid SELF implementation attempts to achieve the same performance of the eager

SELF with less area and power consumption. This is done by replacing as many eager forks

by lazy as possible. Without loss of generality, both eager and hybrid implementations will

be applied to the CNG-generated elastic MiniMIPS control network of Fig. 3.9. This control

network achieves the same register-to-register communications as the hand-optimized one

in Fig. 2.6 but with two fewer joins and two fewer forks. Furthermore, zero to three bubbles

(i.e., EBs that hold no valid data) are inserted at the register file output (i.e., at the inputs

of A and B registers, simultaneously). In practice, this might be done, for example, to

accommodate a high latency register file without affecting the functionality of the whole

system.

The flow of Sec. 4.6.3 will be followed to construct the hybrid implementation. Starting

with an all eager implementation of the closed control network of Fig. 3.9 (call it E1), the

sample testbench program of [1] is run. The simulation waveforms of each eager fork in

the network are analyzed. EForks whose input behavior does not meet the performance

equivalence conditions (of Sec. 4.6.2) are then identified. These are the forks that must be

implemented as eager in the (to-be) hybrid control network in order to maintain the same

performance as the all eager network. The set of these forks will be called Φp.

Analysis of the simulation waveforms of the MiniMIPS case (with 0 to 3 bubbles at the

register file output) shows that all forks except FC and FL receive V alid and Stall patterns

that meet the performance equivalence conditions. Hence, all the forks except FC and FL

can be safely implemented as lazy forks without any performance loss. For FC, repetitive

Stall patterns similar to those shown in Fig. 4.16 are observed. The numbered columns in

Fig. 4.16 represent the clock cycles. The red 0s and 1s are the branch Stall signal values at

the corresponding clock cycles. It is obvious that the Stall patterns at C1 and C3 meet the

conditions of Sec. 4.6.2 (they do not stall at all). Hence, branches C1 and C3 can be safely

connected through a lazy fork (call it FC 1 3). Similarly, the Stall patterns at branches

C2 and C4 meet the replacement conditions (their Stall patterns match). Hence, branches

C2 and C4 can also be connected through another lazy fork (call it FC 2 4). To maintain

the same runtime as an all eager implementation, FC 1 3 and FC 2 4 must be connected

through an eager fork (call it FC i) since their corresponding Stall patterns do not match.

The resultant hybrid FC implementation is shown in Fig. 4.17. EF and LF in the figure

refer to eager and lazy forks, respectively. Similarly, based on the simulation waveform
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Figure 4.16: Stall patterns at the
branches of FC in the presence of bubbles.

Figure 4.17: Hybrid implementation of
FC.

analysis, branches 1 and 2 of FL could be connected through a lazy fork (FL 1 2). FL 1 2

must be connected eagerly to the third branch of FL to maintain the runtime of an all

eager implementation.

As stated in Sec. 4.6.3, a hybrid network (call it H1) is now constructed. All forks of

H1 are implemented as lazy except those in set Φp (i.e., that do not meet the equivalence

conditions). H1 typically involves combinational cycles formed by the connection of lazy

forks and joins. To cut the cycles in H1, more forks have to be implemented as eager (call

this set of forks Φc). The number of forks in Φc depend on the lazy fork and join combination

used. Some lazy fork-join combinations exhibit more cycles than others and, hence, require

more eager fork replacements. For example, when the lazy combination LF01 − LJ1011

is used, only 2 extra forks have to be implemented as eager to cut the cycles, namely,

FL 1 2 and FC 2 4. The MiniMIPS control network is implemented using all the correct

12 lazy fork-join combinations (with some eager fork replacements). The network is also

implemented with an all eager control network.

Table 4.6 shows the synthesis results. The Artisan academic library for IBM R© 65nm

library is used for physical design. The MiniMIPS control network has been synthesized

separately from the data path. All area and power numbers in Table 4.6 are for the control

network only. All combinations have passed post synthesis simulation (with 0 to 3 bubbles).

The MiniMIPS testbench program in [1] is used to validate correctness. Column 1 in

Table 4.6 lists the different combinations (sorted by their area). Column 2 lists the set of

all forks that have to be implemented as eager (to both maintain the performance and cut the

cycles). The column also shows the ratio of the number of EForks used to the total number

of forks in the network. For counting the forks, it is assumed that an n-output fork counts

as n− 1 concatenated 2-output forks. Unsurprisingly, E − LF01− LJ1011 needs the least

number of eager fork replacements (see Sec. 4.6.1), tying with E −LF00−LJ1011



92

T
a
b

le
4
.6

:
A

re
a,

p
ow

er
,

an
d

ru
n
ti

m
e

of
th

e
M

in
iM

IP
S

co
n
tr

ol
n

et
w

or
k

u
si

n
g

d
iff

er
en

t
h
y
b

ri
d

(e
a
g
er

/
la

zy
)

S
E

L
F

im
p

le
m

en
ta

ti
o
n

s.

C
om

b
in

at
io

n
n

E
F

o
rk

s/
n

F
or

k
s:

n
C

y
cl

es
A

re
a

P
ow

er
@

4n
s

P
d
y
n

P
le
a
k
a
g
e

(µ
W

)
R

u
n
ti

m
e

(C
y
cl

es
)

E
ag

er
F

or
k
s

U
se

d
(µ
m

2
)

0
B

1
B

3
B

0
B

1
B

3
B

E
−

L
F
0
0
−

L
J
1
0
1
1

4
/
1
2
:S
O
M
E

B
R
A
N
C
H
E
S
O
F

F
C
,
F
L

0
5
1
3
.0

5
8
.1
8
7

1
.9
8
0

1
6
4
.2
8
4

1
.9
9
0

1
2
2
.7
2
0

1
.9
9
2

9
8

1
4
7

2
4
5

E
−

L
F
0
1
−

L
J
1
1
1
1

6
/
1
2
:F
C
,
F
L
,
F
B
C
P

0
5
7
5
.4

6
5
.6
2
6

2
.3
3
9

1
8
8
.0
9
4

2
.3
0
7

1
4
0
.3
8
9

2
.2
7
8

9
8

1
4
7

2
4
5

E
−

L
F
0
1
−

L
J
1
0
1
1

4
/
1
2
:S
O
M
E

B
R
A
N
C
H
E
S
O
F

F
C
,
F
L

0
5
8
8
.0

5
8
.1
8
7

2
.6
4
0

1
8
3
.9
9
1

2
.5
3
6

1
3
4
.6
3
6

2
.5
4
2

9
8

1
4
7

2
4
5

E
−

L
F
0
1
−

L
J
0
0
0
0

6
/
1
2
:F
C
,
F
L
,
F
B
C
P

0
6
3
4
.2

6
5
.6
2
6

2
.7
3
9

1
9
4
.0
0
1

2
.6
6
3

1
4
3
.8
2
2

2
.5
9
9

9
8

1
4
7

2
4
5

E
−

L
F
0
0
−

L
J
1
1
1
1

8
/
1
2
:F
C
,
F
L
,
F
B
C
P
,
F
M
em

,
F
A
B
C
I4
P

0
6
3
9
.0

7
4
.4
7
5

2
.5
2
5

2
0
6
.8
8
2

2
.5
1
4

1
5
5
.1
4
5

2
.4
9
9

9
8

1
4
7

2
4
5

E
−

L
F
0
1
−

L
J
0
0
1
1

6
/
1
2
:F
C
,
F
L
,
F
B
C
P

0
6
4
6
.8

6
5
.6
2
6

2
.7
3
8

1
9
2
.5
4
5

2
.6
7
2

1
4
3
.0
6
5

2
.6
1
7

9
8

1
4
7

2
4
5

E
−

L
F
0
1
−

L
J
1
0
1
0

6
/
1
2
:F
C
,
F
L
,
F
B
C
P

0
6
4
9
.8

6
4
.7
1
0

2
.7
6
1

1
9
7
.2
6
1

2
.6
9
1

1
4
5
.4
8
1

2
.6
3
1

9
8

1
4
7

2
4
5

E
−

L
F
0
1
−

L
J
0
0
1
0

6
/
1
2
:F
C
,
F
L
,
F
B
C
P

0
6
5
3
.4

6
5
.6
3
5

2
.6
8
5

1
9
1
.2
0
8

2
.6
4
2

1
4
2
.1
4
9

2
.5
9
8

9
8

1
4
7

2
4
5

E
−

L
F
0
0
−

L
J
0
0
0
0

8
/
1
2
:F
C
,
F
L
,
F
B
C
P
,
F
M
em

,
F
A
B
C
I4
P

0
6
8
3
.4

7
4
.9
3
3

2
.8
2
5

1
9
6
.3
3
8

2
.7
6
2

1
4
8
.9
1
9

2
.7
1
3

9
8

1
4
7

2
4
5

E
−

L
F
0
0
−

L
J
0
0
1
1

8
/
1
2
:F
C
,
F
L
,
F
B
C
P
,
F
M
em

,
F
A
B
C
I4
P

0
6
9
5
.4

7
4
.9
3
3

2
.7
9
0

1
9
8
.9
5
7

2
.7
4
2

1
5
0
.5
8
0

2
.6
9
9

9
8

1
4
7

2
4
5

E
−

L
F
0
0
−

L
J
0
0
1
0

8
/
1
2
:F
C
,
F
L
,
F
B
C
P
,
F
M
em

,
F
A
B
C
I4
P

0
6
9
8
.4

7
4
.4
7
5

2
.8
5
3

2
0
2
.5
3
9

2
.8
3
8

1
5
2
.3
7
4

2
.8
1
1

9
8

1
4
7

2
4
5

E
−

L
F
0
0
−

L
J
1
0
1
0

8
/
1
2
:F
C
,
F
L
,
F
B
C
P
,
F
M
em

,
F
A
B
C
I4
P

0
7
0
4
.4

7
3
.1
0
1

2
.8
8
7

2
0
5
.5
2
1

2
.8
6
7

1
5
3
.9
1
4

2
.8
4
4

9
8

1
4
7

2
4
5

E
F
o
r
k
−

L
J
0
0
0
0

1
2
/
1
2
:A

L
L

0
7
5
2
.4

8
6
.1
5
8

2
.9
1
4

2
2
1
.9
2
1

2
.8
7
5

1
6
8
.8
0
7

2
.8
4
2

9
8

1
4
7

2
4
5



93

in this specific network. Column 3 lists the number of combinational cycles in the control

network (after eager fork replacements), which is zero for all of them. Column 4 lists the

synthesis area. E−LF00−LJ1011 requires minimum area among all with 31.8% reduction

comparing to an all eager implementation. E − LF01 − LJ1111 comes second. Note that

even though E −LF01−LJ1111 uses more EForks than E −LF01−LJ1011, it requires

less area. This can be attributed to the logic simplicity of LJ1111 (Fig. 4.8) in comparison

with LJ1011 (Fig. 4.9), making it easier to optimize the former during synthesis.

Column 5 lists the dynamic and leakage power consumption reported by the synthesis

tool. Power is calculated with different number of bubbles inserted at the output of the

register file. To accurately estimate the power, the synthesized netlist is simulated and

an saif file is generated. That file is then read by the synthesis tool to calculate the

power. Synthesis and simulation are done at 4 ns clock period for all the implementations.

E−LF00−LJ1011 consumes the least power among all with up to 32.5% and 32.1% dynamic

and leakage power reduction comparing to an eager implementation. E − LF01− LJ1011

comes second.

Finally, column 6 lists the required runtime (in terms of number of clock cycles) to finish

the testbench program in [1]. The 12 hybrid networks all achieve the same runtime as the

all eager implementation.

The elastic MiniMIPS constructed using the hybrid control network implementations

listed in Table 4.6 can tolerate 0 - 3 bubbles in the register file path, and still achieve

the same runtime as the all eager implementation. A direct comparison with the ordinary

clocked MIPS cannot be established since inserting bubbles in the latter will change some

channel latencies causing it to fail. For the normally clocked MiniMIPS to handle bubbles

(or variable latency interfaces) over its channels, several changes in the datapath may

be required (e.g., implementing FSMs at channel receiver ends to wait until valid data

arrive, some mechanism to propagate this information to the rest of the system, a stalling

mechanism, etc.). On the other hand, and by its definition, synchronous elasticization

inherently achieves such a goal.

Table 4.7 shows the cost of achieving this required elasticity using the SELF protocol

in an all eager and a hybrid (E − LF00 − LJ1011) implementations. The results in the

table are synthesis numbers for the whole MiniMIPS (not just the control network). Since

the normally clocked MiniMIPS cannot directly tolerate register file bubbles, therefore and

for the sake of comparison, no bubbles are added in either the normally clocked or the
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Table 4.7: Elasticity area and power overheads of an all eager and a hybrid (eager/lazy)
SELF implementations of the MiniMIP processor.

Implementation
Area Pdyn @ 4ns Pleak

µm2 over.% µW over.% µW over.%

Normally clocked Flip-flop based 2617.2 446.247 8.850

MiniMIPS Latch based 2642.4 380.466 9.504

Elastic clocked All eager (EFork − LJ0000) 3385.2 28.1% 474.465 24.7% 12.681 33.4%

MiniMIPS Hybrid (E − LF00− LJ1011) 3136.2 18.7% 437.977 15.1% 11.686 23.0%

elastic MiniMIPS (even though the elastic MiniMIPS can tolerate the register file bubbles).

Two implementations for the clocked MiniMIPS are listed. The first is flip-flop (FF) based.

In the second one, each FF is replaced by a master-slave latch pair. The latches used in

both the latch based and the elastic MiniMIPS are selected from manually synthesized and

optimized templates that are protected during synthesis with set size only attributes. The

FF based design is completely synthesized by DC. In this specific design and cell library, the

latch based design consumed more area and leakage power but less dynamic power. Without

loss of generality, overhead percentages (over. %) of elastic versions are with respect to the

latch based design. Please note that if more bubbles (or variable latency interfaces) are

required in the MiniMIPS, more lazy forks (in the hybrid implementation) may need to be

replaced by EForks to keep the same runtime as the all eager implementation, resulting in

more area and power.



CHAPTER 5

UTILIZING THE ULTRA SIMPLE FORK

AND CONTROLLER MERGING1

This chapter introduces two more area and power reduction techniques in synchronous

elastic control networks, namely, utilizing the novel Ultra Simple Fork (USFork) and

controller merging. The two techniques are fully automated and have been integrated

in a tool called HGEN.

Last chapter introduced the concept of replacing expensive eager forks with lazy in

places where eagerness does not provide any runtime advantage. Though the technique was

shown to substantially reduce the area and power of a control network, the idea of hybrid

(eager and lazy) control network can be further exploited. The flow of Sec. 4.6.3 showed

that some of the eager forks are kept in the lazy-eager hybrid network for the sole purpose

of cutting the combinational cycles (formed by lazy forks and joins). This motivates the

search for a new fork structure that is, unlike lazy forks, does not form combinational cycles

when combined with lazy joins in any arbitrary connection. Similar to lazy forks, the new

sought design should also be cheap in area and power, and under similar constrained input

behavior can also be substituted for eager forks without any performance loss.

Sec. 5.1 introduces the Ultra Simple Fork (USFork). As the name implies, the USFork

implementation has no logic gates - just wired connections. The EFork transition diagram is

computed and the conditions under which an EFork can be replaced by a USFork without

any performance loss are formally driven. The transformation guarantees that, under such

conditions, the USFork will schedule exactly the same state transitions as the EFork over

all its channels, thus maintaining the same runtime. Unlike lazy SELF implementations,

utilizing the USFork does not create combinational cycles when connected to lazy joins.

In essence, the proposed approach selectively replaces the redundant EForks in a control

network with USForks resulting in a hybrid network where both EForks and USForks are

1This is a revised and extended version of a paper originally published in [52]. c©2011 IEEE. Reprinted
with permission.
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used. The resultant network has the same runtime as the all eager network with reduced

area and power consumption.

The second contribution of this chapter is automatically merging equivalent controllers.

Sec. 5.2 investigates the conditions under which multiple SELF controllers can be merged

into one controller. The transformation reduces the control network area and power

overhead and is limited only by the physical placement constraints. SELF controller

clustering has previously been reported in [50]. However, their approach requires both

the control network and its environment to have static (and known) latencies. On the other

hand, the approach proposed in this work can handle situations where the environment

abstract is not available or required to be flexible. It can also handle designs with variable

latency units.

The above two transformations have been integrated in a fully automated tool, HGEN

(Sec. 5.4). Hybrid GENerator (HGEN) selectively replaces redundant EForks with

USForks and, optionally, merges equivalent controllers. HGEN uses IBM R© 6thSense tool

[51] as an embedded verification engine. Comparing to the methodology used in published

work on a MiniMIPS processor case study, HGEN shows up to 36.9% and 31.3% savings in

area and power, respectively, due to utilizing USForks. If the physical placement allows

for controller merging, the resultant control network shows up to 62.8% and 54.1% savings

in area and power, respectively. HGEN also shows at least 32% saving in the number of

EForks in s382 ISCAS benchmark. More reduction is possible if the physical placement

allows for controller merging. Thanks to the advance in synchronous verification technology,

HGEN runs within seconds or a few minutes (for all this chapter examples). This makes the

proposed approach suitable for tight time-to-market constraints.

5.1 Eager to Ultra Simple Fork Transformation

An overview of the SELF protocol was given in Sec. 2.1. An Elastic Buffer (EB)

block diagram and the protocol state transition graph are drawn in Figures 2.1 and 2.2,

respectively.

5.1.1 Eager SELF Protocol

An eager SELF implementation uses eager forks (EForks) and lazy joins. Study of lazy

joins (and forks) are given in Chapter 4. Fig. 5.1 shows a 2-output-channel EFork proposed

in [9]. Once a (V alid) data token is available at an EFork stem, it will immediately pass it

to all its branches that are ready to receive (i.e., their corresponding Stall signals are low).
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Figure 5.1: A 2-output-channel EFork.

Meanwhile, the EFork will Stall until all its branches receive the data token. This gives

an early start to the branches that are ready.

5.1.2 Eager Fork State Diagram

A 2-output-channel EFork has 3 terminal channels, namely, L (Left), R1 (Right1),

and R2 (Right2). L consists of signals Vl and Sl. Similarly, R1 consists of Vr1 and Sr1,

and R2 of Vr2 and Sr2. In order to compute the state diagram of the EFork, the behavior

allowed by the SELF protocol over the fork 3 channels must be taken into account. Hence,

the desired state diagram is obtained by composing the simple (2 flip-flop based) 4-state

diagram of the EFork circuit of Fig. 5.1 with the SELF transition diagram of Fig. 2.2 (over

the three terminal channels). The EFork state table and diagram are depicted in Table 5.1

and Fig. 5.2, respectively. In this diagram, the inputs Vl, Sr1, and Sr2 are part of the

state vector (along with the flip-flop outputs, Q1 and Q2). To simplify the notation, the

state vector takes the following format: <Q1,Q2,L,R1,R2>, where L, R1, and R2 carry the

corresponding channel status (i.e., I, T , or R). States with dot inside are reset states. Some

of the transitions (and states) are not allowed (or reached) because of the SELF protocol

constraints, and hence, omitted from the diagram. Most of the transition labels are omitted

from Fig. 5.2 for brevity.

5.1.3 Input Behavior Constraints

In a 2-output-channel EFork, the input vector, I, is a 3-tuple of signals < Vl, Sr1, Sr2 >∈

{0, 1}3. Subscript n is added to I and the 3 signals to denote the value at clock cycle n. SI is
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Table 5.1: The EFork state table.

Current State Next State Inputs Next State
si Q1 Q2 L R1 R2 Vl Sr1 Sr2 si Q1 Q2 L R1 R2

s0 1 1 I I I

0 - - s0 1 1 I I I
1 0 0 s1 1 1 T T T
1 0 1 s3 1 1 R T R
1 1 0 s4 1 1 R R T
1 1 1 s2 1 1 R R R

s1 1 1 T T T

0 - - s0 1 1 I I I
1 0 0 s1 1 1 T T T
1 0 1 s3 1 1 R T R
1 1 0 s4 1 1 R R T
1 1 1 s2 1 1 R R R

s2 1 1 R R R

0 - - Illegal Transition
1 0 0 s1 1 1 T T T
1 0 1 s3 1 1 R T R
1 1 0 s4 1 1 R R T
1 1 1 s2 1 1 R R R

s3 1 1 R T R

0 - - Illegal Transition
1 0 0 s5 0 1 T I T
1 0 1 s6 0 1 R I R
1 1 0 s5 0 1 T I T
1 1 1 s6 0 1 R I R

s4 1 1 R R T

0 - - Illegal Transition
1 0 0 s7 1 0 T T I
1 0 1 s7 1 0 T T I
1 1 0 s8 1 0 R R I
1 1 1 s8 1 0 R R I

s5 0 1 T I T

0 - - s0 1 1 I I I
1 0 0 s1 1 1 T T T
1 0 1 s3 1 1 R T R
1 1 0 s4 1 1 R R T
1 1 1 s2 1 1 R R R

s6 0 1 R I R

0 - - Illegal Transition
1 0 0 s5 0 1 T I T
1 0 1 s6 0 1 R I R
1 1 0 s5 0 1 T I T
1 1 1 s6 0 1 R I R

s7 1 0 T T I

0 - - s0 1 1 I I I
1 0 0 s1 1 1 T T T
1 0 1 s3 1 1 R T R
1 1 0 s4 1 1 R R T
1 1 1 s2 1 1 R R R

s8 1 0 R R I

0 - - Illegal Transition
1 0 0 s7 1 0 T T I
1 0 1 s7 1 0 T T I
1 1 0 s8 1 0 R R I
1 1 1 s8 1 0 R R I
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Figure 5.2: The EFork state diagram.

defined to be an infinite sequence of input vectors ordered by the clock index. Hence, SI [n] =

In. The total input behavior, BI
T , is defined to be the set of all input sequences. Some of the

input sequences are not allowed by the SELF protocol. For example, the following sequence

will cause an R to I transition on the L channel: << 1, 0, 0 >,< 1, 1, 1 >,< 0, 1, 1 >,.. >.

The set of all sequences that are excluded for violating the SELF protocol will be denoted

as EI
P . Nonetheless, in this section, some of the sequences will also be excluded due to other

constraints. Under Constraint Ci, the allowed input behavior, BI
Ci, is, thus, given by the

following equation:

BI
Ci = BI

T − (EI
P ∪ EI

Ci) (5.1)

where EI
Ci is the set of sequences excluded from the input behavior for violating constraint

Ci. The words property and constraint will be used interchangeably as long as the context is

clear. In this work notation, constraint x constrains the input behavior such that property

x holds. Properties (and constraints) will be specified using the Property Specification

Language (PSL) syntax [60] unless mentioned otherwise.

Definition 5.1. Protocol Equivalence Two forks are said to be SELF protocol equivalent

(or, for short, just protocol equivalent), if given the same input sequences, their terminal

channels go through the same SELF state transitions.

Theorem 5.1. The EFork of Fig. 5.1 is protocol equivalent to the USFork of Fig. 5.3 if

the fork input behavior is constrained such that the following property is true in the former:

ALWAYS s0|s1|s2, where si is 1 if the EFork is in state si ∀i ∈ {0, 1, 2} (Refer to Fig. 5.2).

Proof. Figures 5.4 and 5.5 show the Karnaugh maps of Vr1 (or Vr2) and Sl, respectively, in

states s0 - s2. By using simple logic optimization, the following equations can be obtained:
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Figure 5.3: A 2-output-channel USFork.

Vr1 = Vl, Vr2 = Vl, Sl = Sr1 or Sl = Sr2 (5.2)

The USFork of Fig. 5.3 exactly implements these equations.

Notice that the choice to connect Sl to either Sr1 or Sr2 in Fig. 5.3 is irrelevant.

The reason is, as will be shown in Theorem 5.2, under the input constraint specified in

Theorem 5.1, Sr1 and Sr2 are always identical. They may differ only when Vl is zero, in

which case the L channel is in the idle (I) state whatever the value of Sl.

Definition 5.2. Equivalent Constraints Referring to Equation 5.1, two constraints Ci

and Cj are said to be equivalent if BI
Ci = BI

Cj (i.e., the allowed input behavior under

constraint i is the same as the allowed input behavior under constraint j).

In other words, two properties i and j (also referred to as constraints) are equivalent

if constraining the input behavior such that property i holds, will also cause property j to

hold, and vice versa.

Similarly, n properties (also referred to as constraints) are equivalent if ∀i, j ∈

{1, 2, .., n} : property i and property j are equivalent.

Figure 5.4: Vr1 (same for Vr2) in states
s0 to s2.

Figure 5.5: Sl in states s0 to s2.
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Theorem 5.2. The following three properties (also referred to as constraints) are equivalent:

1. ALWAYS s0|s1|s2, where si is 1 if the EFork is in state si ∀i ∈ {0, 1, 2}.

2. NEVER Vl&(Sr1 xor Sr2).

3. ALWAYS Vr1 xnor Vr2.

Proof. It will be proved that constraining the input behavior such that any one property

holds will cause the other two to hold as well.

C. 1 If the input behavior is constrained such that EFork operates in s0 to s2 only (i.e.,

C. 1 holds), then, as shown in s0 to s2 entries in Table 5.1, Sr1 never differs from Sr2

while Vl is one (C. 2), and Vr1 is always the same as Vr2 (C. 3).

C. 2 States s0 to s4 are reset states. However, if the input behavior is constrained such

that Sr1 is always the same as Sr2 while Vl is one, then the EFork can reset only in

any of the states s0 to s2, exclusively. Besides, it will stay in these states since all the

red transitions in Fig. 5.2 will not fire. Hence, C. 1 will be satisfied, and subsequently,

C. 3 will be satisfied as well.

C. 3 If the input behavior is constrained such that only those input sequences that cause

Vr1 to be always the same as Vr2 are allowed, then the EFork will never move to

any of the states s5 to s8 (where Vris differ). Moreover, the EFork will not reset

in states s3 or s4 since all the input sequences that go through them must also go

through states s5 to s8 (no other transition is permitted). And the latter sequences

are excluded by the constraint. Hence, forcing C. 3 will cause the EFork to reset and

operate in states s0 to s2 only. Therefore, both C. 1 and C. 2 will be satisfied.

Definition 5.3. Equivalence Constraint A constraint on the input behavior that causes

the EFork to be protocol equivalent to the USFork is called an equivalence constraint.

Thus, each of the three constraints of Theorem 5.2 is an equivalence constraint. When

the context is clear, an equivalence constraint will also be referred to as an equivalence

condition. Following, it will be proved that any of these three conditions allow us to find

the maximum number of candidate EForks in a network that can be replaced by USForks.

Definition 5.4. Minimal Equivalence Constraint An equivalence constraint is minimal

if it allows for maximum behavior of the inputs beyond which an EFork will fail to be

protocol equivalent to a USFork.



102

Theorem 5.3. Each of the three constraints of Theorem 5.2 is minimal.

Proof. If C. 1 is not minimal, then the EFork is allowed to operate in other states beside

s0 to s2 and still be protocol equivalent to the USFork. However, this is not the case. In

states s5 to s8, the EFork Vr1 and Vr2 differ. Thus, the EFork R1 and R2 channels will

be in protocol states that cannot be provided (or scheduled) by the USFork (where Vr1 is

tied to Vr2 - Fig. 5.3). Similarly, if the EFork operates in states s3 or s4, it has no other

legal transition but to move to one of the states s5 to s8 (which as was argued break the

protocol equivalence). Hence, C. 1 is a minimal constraint.

Since the three constraints are equivalent (from Theorem 5.2), therefore, they constrain

the input behavior similarly. It follows that, since C. 1 is minimal, C. 2 and C. 3 are minimal

as well.

To check for EFork replacements, the EFork can be checked against any of the three

properties. However, without loss of generality, only property 3 will be used, hereafter.

Would two branches of an EFork satisfy property 3, the EFork can be correctly replaced

by a USFork. Being a minimal condition for equivalence (as proven in Theorem 5.3), it

maximizes the chance of finding candidate EForks for replacement.

Replacing an EFork with a USFork cannot create combinational cycles, since there

are no internal paths inside the USFork that connects V alid to Stall ports (or vice versa).

This is an advantage over lazy forks where such internal paths do exist. Besides, since

(under the mentioned conditions) the USFork is protocol equivalent to the EFork, they

both schedule the same protocol state transitions over their terminal channels. Hence, they

will both have the same runtime. Finally, replacing an EFork with a USFork should never

degrade the control network maximum frequency. It can actually boost it since the USFork

cuts from all the EFork internal path delays (by removing the logic gates), and it does not

add any new paths.

5.1.4 Verification

To verify Theorems 5.1 and 5.2, the setup of Fig. 5.6 is used. The whole structure is

modeled and passed to a symbolic model checker, NuSMV [59]. The EFork and USFork

inputs (i.e., Vl, Sr1, and Sr2) are driven from Protocol Terminals (PTs). A PT can simply

be an EB controller initialized in a random state. It can also be implemented as a SELF

channel with protocol constraints forced on its V alid and Stall signals. In this section the

first approach is used, the other will be used later in the chapter. The outputs of the EFork
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and USFork have suffixes of E and US, respectively. They are ORed together to form

the corresponding signals over the three terminal channels (i.e., L, R1, and R2). V alid and

Stall signals on channel L will be denoted as V L and SL, respectively. Same for the other

channels. For example, V R1 is the ORing of V R1 E and V R1 US.

The shown blocks as well as a clock generator are all connected synchronously in

NuSMV. The clock changes phase with every verification cycle. The I, T , and R states of

the EFork L channel (denoted as L E) are defined as follows:

DEFINE L E I := !VL E;

DEFINE L E T := VL E & !SL E;

DEFINE L E R := VL E & SL E;

And on the USFork:

DEFINE L US I := !VL US;

DEFINE L US T := VL US & !SL US;

DEFINE L US R := VL US & SL US;

The other states of the other 2 channels are defined similarly for both EFork and USFork.

The EFork states of operation are also defined as follows:

-- s0 = 11III

DEFINE S0 E := EFork.q1 & EFork.q2 & L E I & R1 E I & R2 E I;

-- s1 = 11TTT

DEFINE S1 E := EFork.q1 & EFork.q2 & L E T & R1 E T & R2 E T;

Figure 5.6: EFork-USFork equivalence verification setup.
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-- s2 = 11RRR

DEFINE S2 E := EFork.q1 & EFork.q2 & L E R & R1 E R & R2 E R;

-- s3 = 11RTR

DEFINE S3 E := EFork.q1 & EFork.q2 & L E R & R1 E T & R2 E R;

-- s4 = 11RRT

DEFINE S4 E := EFork.q1 & EFork.q2 & L E R & R1 E R & R2 E T;

Mismatches over the three channels are defined as follows:

DEFINE L MISMATCH := (L E I xor L US I) | (L E T xor L US T) | (L E R xor

L US R);

DEFINE R1 MISMATCH := (R1 E I xor R1 US I) | (R1 E T xor R1 US T) | (R1 E R

xor R1 US R);

DEFINE R2 MISMATCH := (R2 E I xor R2 US I) | (R2 E T xor R2 US T) | (R2 E R

xor R2 US R);

DEFINE MISMATCH := L MISMATCH | R1 MISMATCH | R2 MISMATCH;

Finally, the three constraints (or properties) are defined as follows (without temporal

qualifiers):

DEFINE C 1 := S0 E | S1 E | S2 E;

DEFINE C 2 := !(VL & (SR1 xor SR2));

DEFINE C 3 := VR1 E xnor VR2 E;

A constraint is forced through the NuSMV INVAR reserved word, and a property is verified

using PSLSPEC. In the following code, only one constraint is forced at a time. To verify

Theorem 5.1:

INVAR C 1;

PSLSPEC never MISMATCH; -- True

Similarly, Theorem 5.2 Constraint. 1 is verified as follows:

INVAR C 1;

PSLSPEC always C 2; -- True

PSLSPEC always C 3; -- True

And Theorem 5.2 Constraint. 2:

INVAR C 2;

PSLSPEC always C 1; -- True

PSLSPEC always C 3; -- True

And Constraint. 3:
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INVAR C 3;

PSLSPEC always C 1; -- True

PSLSPEC always C 2; -- True

5.1.5 Multi-output-channel EForks

Theorem 5.6 extends the results of the previous theorems to multi-output-channel

EForks.

Lemma 5.4. An n-output-channel EFork is protocol equivalent to concatenated (n-1) 2-

output-channel EForks.

Proof. Proof is trivial and omitted for brevity.

Lemma 5.5. An n-output-channel USFork is protocol equivalent to concatenated (n-1)

2-output-channel USForks.

Proof. Proof is trivial and omitted for brevity.

Theorem 5.6. If, in Fig. 5.7, ∀i, j ∈ {1, 2, .., k} the following property holds: ALWAYS

(Vri xnor Vrj), then the hybrid fork (HFork) of Fig. 5.7b is protocol equivalent to the eager

fork (EFork) of Fig. 5.7a.

Proof. The proof follows from Lemmas 5.4 and 5.5 and Theorems 5.1 and 5.2, and was

omitted for brevity.

Red forks in Fig. 5.7 are EForks while green are USForks.

(a) Eager fork (EFork). (b) Hybrid fork (HFork).

Figure 5.7: Eager to hybrid transformation of multi-output forks.
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5.2 Elastic Buffer Controller Merging

In a typical control network, some Elastic Buffer Controllers (EBCs) may activate

their corresponding latches at similar schedules. This can allow for possible merging of

these controllers into one controller that feeds them all (as much as the physical placement

permits). In this section and the following, a framework is provided for finding and merging

such controllers in any control network; including open networks (i.e., when the environment

abstract is not available or required to be flexible) as well as networks incorporating variable

latency units.

Definition 5.5. Functional Equivalence Two structures are said to be functionally

equivalent, if given the same input sequences, they produce the same output sequences.

Theorem 5.7. If the n EBCs of Fig. 5.8a are initialized in the same state and the

environment behavior is constrained such that the following two properties (also referred

to as constraints) are true ∀i, j ∈ {1, 2, ..n}, i 6= j:

1. ALWAYS (Vli xnor Vlj).

2. ALWAYS (Sri xnor Srj).

Then, the structure of Fig. 5.8b is functionally equivalent to the one in Fig. 5.8a.

Proof. Trivial. It is easy to show under the conditions of the theroem, that the following

properties will also hold: ALWAYS (Vri xnor Vrj), ALWAYS (Sli xnor Slj), ALWAYS

(Emi xnor Emj), and ALWAYS (Esi xnor Esj).

EBC merging is limited only by the physical placement constraints. Authors of [50]

proposed a technique in which a maximum diameter per cluster of merged EBCs is specified.

The same technique can be readily integrated in this approach.

5.3 Verification Models of Different Control
Network Components

An elastic control network needs to be verified as a whole to check if the required

conditions for using USForks or merging EBCs are met. Two frameworks were particularly

useful in this work, namely, 6thSense and NuSMV. This section will try to cover both

frameworks as space allows.

6thSense uses a standard VHDL to model a circuit and is particularly designed for

synchronous circuit verification. Most of the control network models will be omitted since

they are intuitive.
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(a) Before (b) After

Figure 5.8: EBC merging.

NuSMV model checker has its own input language and supports both synchronous and

asynchronous circuit verification. To mimic a synchronous behavior in NuSMV, the network

components (e.g., joins and forks), including a clock generator, are connected synchronously.

All combinatorial logic are modeled with zero delay (using DEFINE reserved word), and

the clock generator changes phase with every verification cycle. An NuSMV model for a

clock generator is as follows:

MODULE ClkGenerator

VAR Clk:boolean;

ASSIGN init(Clk) := 0; next (Clk) := !Clk;

and for a D-FF (with a reset value of 1):

MODULE DFF1(Clk,D)

VAR Q:boolean;

ASSIGN

init(Q):= 1;

next(Q):= case

(Clk=0) & (next(Clk))=1: D;

1: Q; esac;



108

5.3.1 n-Input Join

An NuSMV model for an n-input extension of the LJ1111 join structure of Fig. 4.8 is

as follows:

MODULE LJoinn(Vl1,Vl2,..Vln,Sr)

DEFINE Vr:= Vl1 & Vl2 & ... Vln;

DEFINE Sl1:= !(Vr & !Sr); ... DEFINE Sln:= !(Vr & !Sr);

5.3.2 n-Output Fork

An NuSMV model for the n-output EFork of Fig. 2.4 is as follows:

MODULE EForkn(Clk,Vl,Sr1,Sr2,...Srn)

VAR DFF 1: DFF1(Clk,d1); ... DFF n: DFF1(Clk,dn);

DEFINE d1 := (Sr1 & q1) | !(Vl & Sl) ;

DEFINE q1 := DFF 1.Q; DEFINE Vr1 := Vl & q1; ...

DEFINE dn := (Srn & qn) | !(Vl & Sl) ;

DEFINE qn := DFF n.Q; DEFINE Vrn := Vl & qn;

DEFINE Sl := (Sr1 & q1) | (Sr2 & q2) | .. (Srn & qn);

USFork transformation Condition 3 of Theorem 5.2 is verified for each two branches

in the EFork to determine if they can be replaced by a USFork. Hence, in an n-output

EFork F and ∀i, j ∈ {1, 2, .., n}, i 6= j, the following properties are specified. In NuSMV:

DEFINE F i j MISMATCH := Vri xor Vrj ;

PSLSPEC never F i j MISMATCH;

And, in 6thSense (bil file):

[ fail; F i j; "F i j" ] <= Vri xor Vrj ;

5.3.3 Elastic Buffer Controller

Similarly, the EBC model immediately follows the FSM or the circuit implementation

of [9]. The EBC merging condition of Theorem 5.7 is verified for each two EBCs in the

network to determine if they can be merged. Hence, for a control network with n EBCs

and ∀i, j ∈ {1, 2, .., n}, i 6= j, the following properties are specified. In NuSMV:

DEFINE EBC i j MISMATCH := (Vli xor Vlj) | (Sri xor Srj) ;

PSLSPEC never EBC i j MISMATCH;

And in 6thSense (bil file) as:

[ fail; EBC i j; "EBC i j" ] <= (Vli xor Vlj) or (Sri xor Srj) ;
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5.3.4 SELF Input Channel

A SELF input channel (see Fig. 5.9) is the control channel corresponding to a data input

(or group of data inputs) to the design. The V alid signal of this channel V i is an input to

the design and the Stall (Si) is an output. V i will be defined as an input with the SELF

protocol constraints applied. In particular, SELF prohibits a transition from R to I states

on any channel. This constraint on the input behavior is expressed in NuSMV as:

DEFINE InputChannel i Constraint := !(Vi) | !(Si) | Vi next;

INVAR InputChannel i Constraint;

and in 6thSense (bil file) as:

[ constraint; InputChannel i Constraint ] <= not(Vi) or not(Si) or Vi next;

In both cases, V i is a one clock delayed version of V i next. V i next is, then, considered as

the virtual input that the verification engine exhaustively randomizes.

5.3.5 SELF Output Channel

Similarly, a SELF output channel (see Fig. 5.9) is the control channel corresponding to

a data output (or group of data outputs) from the design. The V alid signal of this channel

V i is an output from the design and the Stall (Si) is an input. The SELF protocol does

not explicitly set constraints on the possible sequence of values over the input Stall signal.

However, it can be easily inferred from the EB specifications in [9] or the EHB (elastic half

buffer) in [58] that a transition from I0 (!V&!S) to I1 (!V&S) states cannot happen on any

SELF channel. Hence, the following constraint is applied to the SELF output channel. In

NuSMV:

Figure 5.9: Illustration of elastic control network input and output channels.
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DEFINE OutputChannel i Constraint := Vi | Si | !(Si next);

INVAR OutputChannel i Constraint;

and in 6thSense as:

[ constraint; OutputChannel i Constraint ] <= Vi or Si or not(Si next);

Again, Si is a one clock delayed version of the input Si next.

5.3.6 Variable Latency Unit

Fig. 5.10 [9] shows a block diagram of a variable latency unit (VLU) and a variable

latency controller (VLC). The VLC model follows the figure directly and omitted for brevity.

The VLU model would depend on the actual unit design. Nonetheless, to be able to verify

the control network, it suffices to know the minimum and maximum latency values of that

unit (whatever its functionality is). Hence, for each VLU, a model is used that randomly

picks the next latency value from a range of values [min,max] specified by the designer for

that VLU.

5.4 HGEN Tool

To automate the transformations described in this chapter, HGEN was developed. HGEN

(Hybrid network GENerator) is a fully automated tool that takes a verilog description of

a control network and returns a verilog description of the minimized version. The tool

currently uses 6thSense as the verification engine. Support for NuSMV is left for future

versions. HGEN models the input verilog control network into VHDL. It adds the proper

Figure 5.10: A variable latency unit and a controller.
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constraints for the SELF channels. The EFork to USFork transformation conditions are

verified for each fork in the network. Similarly, the EB controller merging conditions are

checked for each two EB controllers. HGEN automatically generates the suitable models

for the variable latency units (based on the min and max latencies provided by the user

in a configuration file). It generates a report with the EFork branches that have been

transformed into USFork, and the merged EB controllers. -nm (no merge) option can be

used to prevent HGEN from merging equivalent EB controllers (i.e., to only check for and

do EFork to USFork transformations). The option is useful for doing the EBC merge

after having some insight over the place and route information. HGEN currently supports

all the network components described in Sec. 5.3 and more. Other component models (e.g.,

elastic half buffer and early evaluation components [43]) can be readily integrated.

5.5 Results

For all the designs in this section, CNG tool (Chapter 3) is used to automatically generate

their initial elastic control networks. HGEN is then run to do the transformations described

in this chapter. In all the designs the runtime is within seconds or a few minutes. The

machine used has AMD AthlonTM 64 X2 Dual Core 3.2GHz processor. Area and power are

synthesis numbers. DC UltraTM [53] technology and IBM R© 65 nm library were used.

5.5.1 The MiniMIPS Processor

For the sake of comparison with previous optimization techniques in this dissertation,

the MiniMIPS processor is used as one of this chapter case studies. The MiniMIPS is

an 8-bit subset of the 32-bit MIPS (Microprocessor without Interlocked Pipeline Stages)

[46, 1]. A block diagram of the original clocked MiniMIPS is shown in Fig. 2.5. The

MiniMIPS synchronous elasticization is described in Sec. 2.2. The CNG-generated elastic

control network is in Fig. 3.9.

To illustrate the capability of the proposed approach, the MiniMIPS is studied in three

different settings:

5.5.1.1 Register File Bubbles

In this setting the control network is closed. One to three bubble stages are inserted at

the two outputs of the register file (shown in dotted rectangles in Fig. 5.11). In practice

this can be done to accommodate a high latency register file or because of long wires. The
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resultant control network verilog is passed to HGEN twice (once to do EFork to USFork

conversion only, and the second to merge equivalent EBCs as well). Table 5.2 shows the

synthesis results. The last two rows in Table 5.2 are entries for the cases when controller

merging is enabled. For the sake of comparison, Table 5.2 also includes entries from

Chapter 4 for the all eager network as well as two implementations that were found to be the

most area efficient among the MiniMIPS hybrid (EFork-LFork) implementations, namely,

LF01-LJ1111 and LF00-LJ1011. The EFork-USFork hybrid networks are implemented

using the area and power efficient lazy joins LJ0000 and LJ1111. Column 1 in Table 5.2 lists

the different combinations (sorted by their area). Column 2 lists the set of all forks that have

to be implemented as eager (to both maintain the performance and cut the cycles (for the

case of lazy forks)). The column also shows the ratio of the number of EForks used to the

total number of forks in the network. Since USForks do not produce combinational cycles,

therefore, EForks are only used when their eagerness provide runtime advantage. Hence,

comparing to EFork-LFork hybrid combinations, EFork-USFork hybrid combinations

require fewer number of EForks, thus minimizing the area and power of the control network.

Column 3 lists the number of Elastic Buffer Controllers (EBCs) in the network. HGEN

verification found that 6 out of the 10 EBCs in the MiniMIPS elastic network (in this

setting) can be merged into other EBCs. The EBCs in the following groups can be merged

Figure 5.11: Control network of the elastic clocked MiniMIPS with register file bubbles.



113

T
a
b

le
5
.2

:
A

re
a,

p
ow

er
,

an
d

ru
n
ti

m
e

o
f

th
e

M
in

iM
IP

S
co

n
tr

ol
n

et
w

or
k

u
si

n
g

d
iff

er
en

t
h
y
b

ri
d

(e
a
g
er

/
u

lt
ra

-s
im

p
le

)
S

E
L

F
im

p
le

m
en

ta
ti

on
s

w
it

h
an

d
w

it
h

ou
t
E
B
C

m
er

gi
n

g.

C
om

b
in

at
io

n
n
E
F
or
k
s/

n
F

or
k
s:

n
E
B
C

s
n

C
y
c.

A
re

a
P

ow
er

@
4n

s
P
d
y
n

P
le
a
k
a
g
e

(µ
W

)
R

u
n
ti

m
e

(C
y
c.

)

E
a
ge

r
F

or
k
s

U
se

d
(µ
m

2
)

0
B

1
B

3
B

0
B

1
B

3
B

E
F
or
k
−
L
J

00
00

12
/1

2:
A

ll
10

0
75

2.
4

86
.1

58

2.
91

4

22
1.

92
1

2.
87

5

16
8.

80
7

2.
84

2
98

14
7

24
5

E
−
L
F

01
−
L
J

11
11

6/
12

:F
C

,
F

L
,

F
B

C
P

10
0

57
5.

4
65
.6

26

2.
33

9

18
8.

09
4

2.
30

7

14
0.

38
9

2.
27

8
98

14
7

24
5

E
−
L
F

00
−
L
J

10
11

4
/1

2:
S

o
m

e
br

a
n

ch
es

o
f

F
C

,
F

L
10

0
51

3.
0

58
.1

87

1.
98

0

16
4.

28
4

1.
99

0

12
2.

72
0

1.
99

2
98

14
7

24
5

E
−
U
S
F
or
k
−
L
J

00
00

2/
12

:S
o
m

e
br

a
n

ch
es

o
f

F
C

,
a
n

d
o
f

F
L

10
0

50
3.

4
53
.9

92

2.
15

9

15
3.

78
9

2.
11

9

11
4.

59
5

2.
07

7
98

14
7

24
5

E
−
U
S
F
or
k
−
L
J

11
11

2/
12

:S
o
m

e
br

a
n

ch
es

o
f

F
C

,
a
n

d
o
f

F
L

10
0

47
4.

6
53
.9

92

1.
96

5

15
2.

36
0

1.
95

5

11
3.

66
3

1.
94

0
98

14
7

24
5

E
−
U
S
F
or
k
−
L
J

00
00

m
2/

12
:S

o
m

e
br

a
n

ch
es

o
f

F
C

,
a
n

d
o
f

F
L

4
0

28
8.

6
26
.8

92

1.
27

6

95
.3

91

1.
28

1

68
.6

43

1.
27

9
98

14
7

24
5

E
−
U
S
F
or
k
−
L
J

11
11

m
2/

12
:S

o
m

e
br

a
n

ch
es

o
f

F
C

,
a
n

d
o
f

F
L

4
0

27
9.

6
27
.3

50

1.
25

6

10
1.

75
4

1.
24

0

72
.6

67

1.
22

3
98

14
7

24
5



114

together (EBCs of the same group are drawn with the same color in Fig. 5.11; no EBC for

Mem): {(C), (I4, L, P ), (I1, I2, I3,M), (A,B)}. The two bubble EBCs before A and B,

respectively, can be merged as well; however, the two bubble areas are not included in the

results. Column 4 lists the number of combinational cycles in the control network (after

eager fork replacements), which is zero for all of them. Columns 5 and 6 list the synthesis

area and power consumption, respectively. Comparing to the all eager implementation, the

EFork-USFork-LJ1111 (or, for short, E-USFork-LJ1111) hybrid network (without EBC

merging), in the case of 1 bubble, for example, shows up to 36.9% and 31.3% savings in the

control network area and power, respectively. If the physical placement allows for controller

merging, the resultant control network (with EBC merging) shows up to 62.8% and 54.1%

savings in area and power, respectively. Finally, column 7 lists the required runtime (in

terms of number of clock cycles) to finish the testbench program in [1]. Since all the

transformations in this dissertation preserve the runtime, all the settings listed achieve the

same runtime as the all eager implementation.

Row 1 of Table 5.3 contrasts the results of this setting (in case of 1 bubble in the register

file path) with the other settings studied in this section.

5.5.1.2 Variable Latency ALU

In this setting, the control network is closed, and there are no bubbles at the register file

outputs. The ALU is modeled with a variable latency unit that finishes an operation within

one or two clk cycles. Row two of Table 5.3 shows the results. In this setting, 9 out of the

12 EForks can be replaced by USForks. This achieves 32.3% area reduction, and 30.5%

and 25.9% dynamic, and leakage power savings, respectively. Similarly, the table also shows

63.1%, 63.0%, and 55.6% reductions in area, dynamic and leakage power, respectively, in

case the physical placement allows for merging 7 out of the 10 EBCs.

5.5.1.3 Off-Chip Memory with Unknown Latency

In this setting, the control network is open at the memory interface. The memory

interface is modeled in HGEN by one input and one output SELF channels. In practice

this can be done if the actual latency of the memory is unknown or required to be flexible.

Row three of Table 5.3 shows the results. In this setting, 7 out of the 12 EForks can be

replaced by USForks. This achieves 25.6% area reduction, and 22.8% and 22.2% dynamic

and leakage power savings, respectively. Similarly, the table also shows 47.7%, 45.0%, and
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40.7% reductions in area, dynamic, and leakage power, respectively, in case the physical

placement allows for merging 5 out of the 10 EBCs.

5.5.2 S382

S382 (see Fig. 5.12) is one of the ISCAS benchmarks. It has 3 input channels: F, T, and

C, and 6 output channels: Y2, Y1, R2, R1, G2, and G1, and 21 EBCs. Table 5.4 shows

the results of running HGEN over s382 in 3 different incremental settings:

1. All the 9 input/output channels are left open.

2. Y2 is connected to F, and Y1 is connected to T. The other 5 input/output channels

are left open.

3. Y2 is connected to F, and Y1 is connected to T. R2, R1, and G2 are connected to C

through a 3-input join followed by a bubble. Output channel G1 is left open.

(a) Settings - 1. (b) Settings - 2. (c) Settings - 3.

Figure 5.12: S382.

Table 5.4: HGEN results for s382 benchmark.

Design #I #O
Total # Total # # Repl. # Merg. #Prop.

T ime(s)
EForks EBCs EForks EBCs

s382 - 1 3 6 25 21 8 7
255

20.1

s382 - 2 1 4 25 21 9 8
255

375.22

s382 - 3 0 1 25 22 18 17
255

152.29
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Intuitively, the input behavior of setting 3 is a subset of 2, which in turn, is a subset

of 1. Hence, the number of EForks that can be replaced by USForks is the same or

increases from setting 1 to setting 3. Though the proposed approach handles open and

closed control networks, however, this example shows that the chance of finding candidate

EForks for replacement increases as more knowledge of the environment is available. In

s382, the reduction in the number of EForks is 32%, 36%, and 72% in settings 1, 2, and 3,

respectively.

Finally, Table 5.5 shows HGEN results for other ISCAS benchmarks verified in totally

open control network settings (i.e., no abstract for the environment is provided). The results

emphasize the speed of the tool. Further savings in the number of EForks and EBCs can

be achieved with more knowledge of the environment model.

Table 5.5: HGEN results for other ISCAS benchmarks - in open network settings.

Design #I #O
Total # Total # # Repl. # Merg. #Prop.

T ime(s)
EForks EBCs EForks EBCs

s27 4 1 3 3 1 1
7

0.79

s298 3 6 25 14 2 2
131

5.37

s344 9 11 32 15 2 2
177

2.61

s386 7 7 15 6 2 2
40

1.49

s1488 8 19 32 6 5 5
102

4.56



CHAPTER 6

CONCLUSION AND FUTURE WORK

Several optimization algorithms, tools and flows have been introduced in this dissertation

to minimize the area and power overhead of elastic control networks without sacrificing

performance. That included:

• minimizing the total number of join and fork control steering units in the control

network.

• replacing the area and power expensive eager forks with lazy forks under some

performance equivalence conditions.

• utilizing a novel Ultra Simple Fork (USFork) implementation. The USFork has two

advantages over lazy forks: it is composed of simpler logic (just wires) and does not

form combinational cycles in the control network.

• merging equivalent Elastic Buffer Controllers (EBC)s.

The dissertation also introduced a fully automated control network verification (and trans-

formation) framework (HGEN). HGEN automatically verifies the conditions under which an

EFork can be replaced by a lazy fork or a USFork, and the conditions under which several

EBCs can be merged in a control network. HGEN supports different types of synchronous

elastic control networks. That includes open networks (i.e., when the environment abstract

is not available or required to be flexible) as well as networks incorporating variable latency

units.

The MiniMIPS processor was studied as a running case study throughout the disserta-

tion. Table 6.1 shows the area, power, and runtime of the most relevant control network

implementations in this work. Results are synthesis numbers (of the control network only)

using the Artisan academic library for IBM R© 65 nm process. Runtime is measured in the

number of clock cycles required to finish the testbench program in [1]. The table starts with

the non-optimized version generated using the direct approach proposed in [9, 3] (Row 1).

Every following row shows the effect of applying one of the optimization techniques proposed

in this dissertation. Comparing the last row to the first, the optimization techniques of this
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dissertation accumulatively achieve an area, dynamic, and leakage power reduction (in the

control network) of 73.2%, 68.6%, and 69.1%, respectively. Charts illustrating the area and

dynamic power of different MiniMIPS synchronous elastic control network implementations

are shown in Figures 6.1 and 6.2, respectively. In both charts, except for the first two bars

in each, the control network is automatically generated by CNG tool.

The elastic MiniMIPS constructed using the hybrid control network implementations

listed in Table 6.1 can tolerate bubbles in the register file path, and still achieve the same

runtime as the all eager implementation. A direct comparison with the ordinary clocked

MIPS cannot be established since inserting bubbles in the latter will cause it to fail as

it is designed for static latencies only. For the normally clocked MiniMIPS to handle

bubbles (or variable latency interfaces) over its channels, several changes in the datapath

may be required (e.g., implementing FSMs at channel receiver ends to wait until valid data

arrive, some mechanism to propagate this information to the rest of the system, a stalling

mechanism, etc.). On the other hand, and by its definition, the SELF protocol inherently

achieves this goal.

Table 6.2 shows the cost of achieving this required elasticity using an all eager and a

set of hybrid SELF implementations. The results in the table are synthesis numbers for

Figure 6.1: A chart of the MiniMIPS control network area in different synchronous
elastic implementations.
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Figure 6.2: A chart of the MiniMIPS control network dynamic power in different
synchronous elastic implementations.

the whole MiniMIPS (not just the control network). Since the normally clocked MiniMIPS

cannot directly tolerate register file bubbles, therefore and for the sake of comparison, no

bubbles are added in either the normally clocked or the elastic MiniMIPS (even if the

elastic MiniMIPS can tolerate the register file bubbles). Two implementations for the

clocked MiniMIPS are listed. The first is flip-flop (FF) based. In the second one, each FF

is replaced by a master-slave latch pair. The latches used in both the latch based and the

elastic MiniMIPS are selected from manually synthesized and optimized templates that are

protected during synthesis with set size only attributes. The FF based design is completely

synthesized by DC. In this specific design and cell library, the latch based design consumed

more area and leakage power but less dynamic power. Without loss of generality, overhead

percentages (over. %) of elastic versions are with respect to the latch based design. Please

note that if more bubbles (or variable latency interfaces) are required in the MiniMIPS,

more lazy forks (in the hybrid implementation) may need to be replaced by EForks to

keep the same runtime as the all eager implementation, and some of the EBCs may not be

mergeable any more, resulting in more area and power.

The optimization techniques have also been applied to several ISCAS benchmarks

showing similar significant reductions in area and power. For the case of s382, for example,
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Table 6.2: Elasticity area and power overheads of different hybrid SELF implementations
of the MiniMIP processor.

Implementation
Area Pdyn @ 4ns Pleak

µm2 over.% µW over.% µW over.%

Normally Flip-flop based 2617.2 446.247 8.850

clocked Latch based 2642.4 380.466 9.504

All eager (EFork − LJ0000) 3385.2 28.1% 474.465 24.7% 12.681 33.4%

Elastic Hybrid (E − LF00− LJ1011) 3136.2 18.7% 437.977 15.1% 11.686 23.0%

clocked Hybrid (E − USFork − LJ1111) 3106.8 17.6% 435.334 14.4% 11.620 22.3%

Hybrid (E − USFork − LJ1111 m) 2889.6 9.4% 408.840 7.5% 10.838 14.0%

CNG generates a control network with only 22 2-input join (J2) and 25 2-output fork (F2)

components compared to a control network of 148 J2s and 151 F2s generated through a

direct unoptimized approach. Furthermore, HGEN verifies that at least 32% of the EForks

in the CNG-generated s382 control network can be replaced by USForks, reducing area and

power without any performance loss. More reduction is possible if the physical placement

allows for controller merging.

The impact of this work will broaden the class of circuits that can be elasticized

with acceptable overhead (circuits that designers would otherwise find it too expensive to

elasticize). The impact will also enable designers to deepen the level of elastic granularity

in their designs to enjoy the full benefit of elasticity at a reasonable cost.

6.1 Future Work

Though the optimization algorithms introduced in this work were applied to basic join

and fork structures, nonetheless, we do not see any major obstacles for extending the work

to advanced structures like early evaluation joins and anti-token propagation [32]. Other

tool-specific future work is listed below:
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6.1.1 CNG

The CNG algorithm described in Chapter 3 is based on continuous reduction of the

search Space until an optimum Solution is returned. Indeed, the Space reduction steps are

so efficient that in 18 out of the 25 problems listed in Table 3.4, only one Solution is left

in the search Space (i.e., the OptSoln). The CNG runtime is also less than 1 second for

all the listed 20 ISCAS-89 benchmarks. Nonetheless, since the search Space is exponential

in the problem input size, for ISCAS problems bigger than s1488, the tool (as described in

Chapter 3) requires impractically long runtime. This motivates the search for better data

structures, algorithms for dividing the problem into a set of smaller ones, and/or heuristics

to cut the runtime. Chapter 3 laid the foundation for the theoretical background of CNG.

With its plenty of theorems, numerous ideas for good heuristics can be devised as well

as integration of well known search heuristic methods (e.g., simulated annealing, genetic

algorithms, etc. [62]). Appendix A shows some preliminary heuristics that were briefly

explored. This is an area for future research.

6.1.2 HGEN

HGEN replaces EForks with USForks when the former eagerness is not adding any

performance advantage (i.e., redundant). Similarly, it also merges EBCs when they

schedule their corresponding latches at similar times. Nonetheless, the conditions used

in either cases (i.e., EFork to USFork conversion and equivalent EBC merging) are

rather conservative. In both cases, the equivalence conditions were based on cycle-by-cycle

equivalence. For example, in EFork to USFork conversion, conditions are employed that

guarantee the different branches have matched Stall patterns in all clock cycles (when

the left V alid is one). Nonetheless, it can be true in some networks that even if the Stall

patterns are not matched in all clock cycles, yet still, the eagerness is not required. Consider,

for example, the case when both branches which have mismatched Stall patterns are not

on any critical (architectural) cycle in the network. Hence, delaying passing the data token

to one of them (rather than the earliest start provided by the EFork) may not enhance

the overall network performance as the bottleneck is somewhere else. Hence, finding the

equivalence conditions (for both aforementioned transformations) that preserves the overall

network performance rather than the local cycle-by-cycle equivalence is left for future work.

This can allow for more relaxed conditions that would provide higher chances for EFork

replacements and EBC merging, further reducing the area and power. The future work
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can make very much use of HGEN since the tool provides a fully automated framework for

synchronous elastic control network verification and transformation. The idea of overall

network performance (expressed as throughput) is well formulated in the literature (see, for

example, [63, 43]).



APPENDIX A

HEURISTICS TO CUT CNG RUNTIME

FOR BIG PROBLEMS

For all the 20 (out of 28) ISCAS-89 problems listed in Table 3.4, CNG required less

than 1 second to finish. However, for ISCAS problems bigger than s1488, the tool (as

described in Chapter 3) requires impractically long runtime. This motivates using better

data structures, problem division algorithms, and/or heuristics to cut runtime for bigger

problems. Based on the numerous theorems listed in Chapter 3, several heuristics may be

devised. This is an open area for research. Following are some heuristics that were briefly

explored:

• H1 Limit the maximum number of PSs per Term to value m. H1(m) will be used as

a shortcut for applying H1 with a maximum number of PSs = m per Term. m can

be defined as a constant value or a function of the Term cardinality. It can also be

defined as a function of the Term essentiality; giving more choices for Terms that are

known to be used in the OptSoln (i.e., essential Terms - see Definitions 3.18, 3.24,

and 3.26).

• H2 Restrict overlapping of Terms in any PS; allow a Term to overlap with other

Terms in a PS only if it is a TITerm (see Def. 3.18). Termi is overlapping in PSt

if ACov(Termi, PSt) 6= Termi (see Def. 3.19).

• H3 Relax the PS elimination condition of Corollary 3.14 to the following condition:

Let PSt1 and PSt2 be two PSs of Termt in Space Sk. Then, eliminate PSt1 from the

search Space if nAJMino(PSt1)
∣∣∣
Sk

≥ nAJMino(PSt2)
∣∣∣
Sk

.

• H4 Generate a good Solution in a short time using any combination of H1 - H3,

and use it as an initial seed for well known search heuristic methods (e.g., simulated

annealing, genetic algorithms, etc. [62]).

By their definition, heuristics do not guarantee an optimum Solution, nonetheless, good

heuristics give good Solutions in a short runtime in most cases [62]. Only a small subset of

the above heuristics has been tried. For the sake of demonstration, Table A.1 shows sample
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results for applying some of the heuristics above over the rest of the ISCAS-89 benchmarks

that were not covered in Table 3.4. The table shows that with even preliminary application

of simple heuristics on the listed examples, on the average, ABC from Berkeley generates a

control network with a number of joins (and forks) that is 3.02% worse than CNG and DC

is slightly (0.53%) better than CNG. The sample results show the potential of even simple

heuristics in both the quality of the Solution and the runtime.

Refining the above heuristics, devising new set based on the CNG theorem of Chapter 3,

as well as integration of well known search heuristic methods (e.g., simulated annealing,

genetic algorithms, etc. [62]) are kept for future work.
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APPENDIX B

ELIMINATING NEGATIVE SLACK IN

SYNCHRONOUS ELASTIC CONTROL

NETWORKS

CNG tool described in Chapter 3 produces a control network with minimal total number

of 2-input joins and 2-output forks. Nonetheless, it is not guaranteed that the generated

network has the minimum possible critical path delay. Normally this is not a problem

since the critical delay of the datapath is usually larger than that of the control network.

Nonetheless, this appendix introduces a systematic flow (referred to as CNGT) of structural

transformations of the control network (of basic synchronous elastic circuits) that reduces

the network delay to meet tight timing constraints. CNGT iteratively targets paths that

have negative slacks at the cost of possibly adding some hardware until meeting a specified

clock period constraint. The flow is validated by proving that the two versions of the

control network (i.e., before and after the transformations) are functionally equivalent. It

has been applied to the MiniMIPS processor and s298 ISCAS-89 benchmark. In the former,

it removed a total negative slack of 1.3 ns with an area improvement of 6.2%. In the

latter, it removed 5.3 ns with an area penalty of only 0.4%. Though the CNG-generated

control network can be implemented synchronously or asynchronously, however, CNGT (in

its current form) is applicable to synchronous elasticity only.

B.1 Proposed Structural Transformations

A path, pi, in a synchronous elastic control network is defined the same way as in the

data path. A path is a concatenation of signals. It starts at a Q-output of a synchronizing

element (e.g., a flip-flop or a latch), and it ends at a D-input of a synchronizing element. A

path, pi, is called a violator, vi, if its delay violates one of the timing constraints. This flow

focuses on maximum delay constraints. A path is considered a violator if its delay exceeds

some maximum delay constraints (usually a clock period with setup and propagation delays

and time borrowing taken into account). The difference between a time constraint and the
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path delay is known as slack. If the slack is negative, the path is a violator. The total

negative slack is defined to be the sum of the negative slacks in all the violators of the

design (i.e., the control network in this case). It is usually represented with a positive

number. The purpose of the presented flow is to reduce the total negative slack to zero at

a certain clock period constraint. Following are some proposed structural transformations

that help reducing violator delays:

B.1.1 Combining Joins and Input V alids Reorder

Concatenated m-input-channel and n-input-channel joins can be combined into an

(m+n-1)-input-channel join, as shown in Fig. B.1. The combination preserves the control

network functionality. It also reduces the delay of the V alid output signal, Vr.

Combining reduces the amount of logic gates between the latest input V alid signal and

the join V alid output, Vr. It allows for an optimization inside the combined join that takes

into account the relative arrival times of the different input V alid signals moving critical

signals closer to the output.

Similarly, local optimization inside the combined (m+n-1)-input join can reduce the

delays of the Stall output signals (i.e., Sl1, Sl2, etc.).

B.1.2 Combining Forks and Input Stalls Reorder

Similarly, a concatenated m-output-channel and n-output-channel forks can be com-

bined into (m+n-1)-output-channel fork. The combination preserves the control network

functionality. It also reduces the delay of the Stall output signal, Sl. Reasons are the same

(a) Before (b) After

Figure B.1: Combining concatenated n-input and m-input joins.
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as in Sec. B.1.1 but with respect to the Stall signals. Also, local optimization inside the

combined (m+n-1)-output-channel fork can reduce the delays of the V alid output signals

(i.e., Vr1, Vr2, etc.).

B.1.3 Rolling Back a Fork

If concatenated joins and forks are, respectively, combined, then any path would pass

through a concatenation of interleaving multi-input (or output) joins (or forks).

Rolling back a fork moves a fork back in a path, such that it can combine with forks

preceding it in that path. Further, this allows the joins before and after it to be combined

as well. Rolling back a fork preserves the control network functionality (see the verification

in Sec. B.4). It has the potential of cutting from the path delay because of the combining

action that takes place in both joins and forks that surround this fork. However, in some

cases the transformation can introduce more violators. Quantifying the effect of rolling back

a fork is deferred to Sec. B.2.

Example B.1. Let A, B, C, D, X1, X2, X3, and X4 be eight registers in the original

ordinary clocked design. The following registers pass data to X1: A, B, and C, and to X2:

A, B, and D, and to X3: A, and to X4: B. A possible control network of the LI version of

this design is shown in Fig. B.2a.

Let V x and Sx be the V alid and Stall signals of control channel x, respectively. Assume

that the following path is a violator in Fig. B.2a: (from A), V A, V A2, V AB, V AB1, V ABC

(to X1). This path passes through two 2-output forks and two 2-input joins. Rolling fork

FAB back to the inputs of join JAB is shown in Fig. B.2b. This allows for combining the

preceding and following joins and forks as shown in Fig. B.2c. The path from A to X1 now

incorporates only one 3-output fork and one 3-input join. Hence, rolling back fork FAB

allows for delay optimization in the 3-output fork and in the 3-input join, reducing that

violator delay.

In general, rolling back an n-output fork through an m-input join is shown in Fig. B.3,

where Iij is the jth output of an n-output fork whose input is Ii. The m n-output forks

that produce Iijs are omitted from Fig. B.3b for simplicity. Iis and Xis in Fig. B.3 could be

any control channels (i.e., not necessarily directly connected to controllers). Rolling back

some (not all) of the branches of an n-output fork through an m-input join also has delay

reduction effects for some of the paths. However, in the context of this work, when a fork
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(a)

(b)

(c)

Figure B.2: Steps of rolling back fork FAB.
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(a) Before (b) After

Figure B.3: Rolling back an n-output fork through an m-input join

is rolled back, all its branches are rolled.

B.2 Gain Function

Rolling back a fork would usually decrease the delay of the associated paths because

of the combining action that takes place in the preceding and following joins and forks.

However, in some cases, it may increase the negative slack of some violators. To quantify

these effects on a certain fork Fi, a heuristic Gain function is defined, Gain(Fi). Gain(Fi)

evaluates to a number that should be proportional to the reduction in the total negative

slack of the network if fork Fi is rolled back.

To compute the Gain of a certain fork, Fi, the different path types that can pass through

this fork need, first, be examined. Following is a list of six path types along with the rolling

back effect on each. The argument will make use of the network of Fig. B.2, where fork FAB

is to be rolled back. The work is applicable to eager fork and lazy join implementations

(see, for example, Figures 2.4 and 2.3, respectively).

B.2.1 Type I

A path of this type will have the fork Vl and any of the Vri as part of it (i.e., it passes

through the fork in the V alid direction).

Let us consider a path of type I passing through fork FAB in Fig. B.2a. A path cannot

start nor end in a join, since a join does not have any synchronizing elements. A path can

only start or end either in an elastic controller or in a fork (since eager forks incorporate

flip-flops). Hence, a type I path, that passes through fork FAB, will end either at the V alid
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input of X1 controller (i.e., through join JABC), or at the V alid input of X2 controller

(i.e., through join JABD), or at the Stall input of C controller (i.e., V AB1, then through

join JABC to SC), or at the Stall input of D controller (i.e., V AB2, then through join

JABD to SD). In all these four cases, rolling back fork FAB will reduce the delay of the

path end points, respectively. Delay reduction is due to the fork combination (FA with

FAB, and FB with FAB) and the join combination (JAB with JABC, and JAB with

JABD), as shown in Fig. B.2c.

B.2.2 Type II

A path of this type will have any of the fork Sri and Sl as part of it (i.e., it passes

through the fork in the Stall direction).

Let us consider a path of type II passing through fork FAB in Fig. B.2a. This path

will end either at the Stall input of A or B controllers, or at the D-input of any of the two

registers R1 and R2 in forks FA or FB. In all these cases, the path delays are the same or

less after rolling back fork FAB.

Consider, as an example, the following path in Fig. B.2a: (from X1), SABC, SAB1,

SAB, SA2, SA,(to A). The path incorporates two 2-output forks and two 2-input joins.

After rolling back, in Fig. B.2c, the path is reduced to only one 3-output fork and one

3-input join.

B.2.3 Type III

A path of this type will have the fork Vl and any of the Ri register D-inputs as part of

it (i.e., it is a path coming in the V alid direction and ends inside the fork). Rolling back a

fork is likely to decrease the delay of this type of paths.

An example of this type in Fig. B.2a is: (from A), V A, V A2, V AB, (FAB/R1/D).

It can be easily shown that rolling back fork FAB will decrease the delay at that path

endpoint.

B.2.4 Type IV

A path of this type will have any of the Ri register Q-outputs (inside the fork) and Sl

as part of it (i.e., it starts inside the fork and propagates in the Stall direction). Rolling

back a fork is likely to decrease the delay of this type of paths.

An example of this type in Fig. B.2a is: (from FAB/R1/Q), SAB, SA2, SA, (to A). It

can be shown that rolling back fork FAB will decrease the delay at that path endpoint.
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B.2.5 Type V

A path of this type will have any of the Ri register Q-outputs (inside the fork) and the

corresponding Vri as part of it (i.e., it is a path starting inside the fork and propagating in

the V alid direction). Rolling back a fork is likely to increase the delay of this type of paths.

An example of this type in Fig. B.2a is: (from FAB/R1/Q), V AB1, V ABC, (to X1).

It can be easily shown that rolling back fork FAB will increase the delay at that path

endpoint.

B.2.6 Type VI

A path of this type will have any of the fork Sri and any of the Ri register D-inputs as

part of it (i.e., it is a path coming in the Stall direction and ends inside the fork). Rolling

back a fork is likely to increase the delay of this type of paths.

An example of this type in Fig. B.2a is: (from X1), SABC, SAB1, (to FAB/R1/D).

It can be easily shown that rolling back fork FAB will increase the delay at that path

endpoint.

The Gain function of a certain fork, Fi, is defined as follows:

Gain(Fi) =

|V iolators|∑
j=1

rj .wj (B.1)

where |V iolators| is the number of violators. rj is a number proportional to the delay

reduction in violator, vj , caused by rolling back fork Fi. wj is the weight of violator vj .

One approach of choosing violator weights (i.e., wj), is to give each violator a weight

based on its negative slack. This approach will give priority to worst slack violator fixing.

Another approach is to choose a value of 1 for all violator weights, giving all of them the

same priority. The results reported in this appendix are based on the latter approach.

The value of rj is technology and topology dependent. It also depends on the synthesis

tool optimization algorithms. Accurate evaluation of these values are kept for future work.

A value of 1 is chosen for each violator that is of type I, II, III or IV, and -1 for each violator

that is of type V or VI, and 0 otherwise (i.e., if Fi is not in the violator path).

B.3 The Proposed Flow

A chart of the proposed flow is shown in Fig. B.4. The flow starts by running the CNG

tool (Chapter 3) to generate a control network with minimal total number of 2-input joins

and 2-output forks. The flow then takes as an input a target clock frequency for the control
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Figure B.4: The proposed flow.

network. The network is synthesized and checked against the timing constraints. If there is

no violation, the flow exits successfully. If there are timing violations, the reported violators

(by the synthesis tool) are analyzed. The Gain function is computed for all the forks in

the design. The fork with the highest Gain is chosen to be rolled back. The new network

is now passed to the synthesis tool again. The loop continues until the network meets the

timing constraint (i.e., success) or there are no more forks available to be rolled back (i.e.,

fail).

B.3.1 Synthesis Considerations

Only the control network part of the design is synthesized. The data path is abstracted

out. The EB controller implementation of [9] is used. In the controllers, a value of zero
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is set for the output port delays of the master and slave latch enables (i.e., Em and Es,

respectively). This allows Em and Es to change as late as the clock positive edge but not

later. It also ensures maximum possible time borrowing (for Em) without touching the

data path performance (i.e., no time borrowing from the data path will take place). A

more accurate value for Em and Es port delays should be the enable setup times, which are

library dependent.

One of the strongest motivations behind the latency insensitive paradigm is to tackle

long wire delay problems [15, 16, 17]. Besides, it facilitates communication between different

IP cores on a chip. Hence, the logic in the LI control network is expected to be highly

distributed, where wire delays are substantial contributors in the violator slacks. It is

planned to include a metric for wire delays in the Gain function proposed in Sec. B.2

in future work. The wire delay metric will be based on back-annotated place and route

information. Hence, the choice of rolling back a fork will take into account the added (or

removed) wire delay expenses. For this same reason, the hierarchy is kept during synthesis

(i.e., the logical positions of joins and forks are kept and only local optimizations inside the

joins and forks are allowed). This way it will be possible to back annotate the wire delays

into this flow calculations and into the synthesis tool.

Example B.2. Given the control network of Fig. B.5, find a functionally equivalent network

that can be clocked with 370 ps clock.

The original control network of Fig. B.5 is synthesized with Design Compiler R© (DC)

[53] for clock period constraint of 370 ps. DC reports an area of 1304.4 µm2, 23 violators,

and a total negative slack of 1.4 ns. All reported violators are then analyzed and the Gain

function is calculated for all the network forks.

Table B.1 shows the analysis results. Since fork FABDE has the highest Gain of 38, it is

chosen to be rolled back. FABDE is preferred over FABE, because 4 of the violators that

pass through both of them in the V alid direction (i.e., type I), pass only through FABDE

in the Stall direction. An example of such violators is: (start from FA/R2/Q), V A2,

V ABE, V ABE2, V ABDE, V ABDE2, (through join JABCDE), SABDE2, SABDE,

(end at SD). Besides, two violators end at the internal registers of FABE coming in the

Stall direction (i.e., Type VI).

Hence, FABDE is rolled back and the new control network is synthesized again with

the same timing constraints (i.e., 370 ps clock period). DC reports an area of 1174.2 µm2,
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Figure B.5: Control network of Example B.2.

Table B.1: Iteration 1 for Example B.2.

FBCG FABE FABDE
Type I 0 21 21
Type II 0 13 17
Type III 0 0 0
Type IV 0 0 0
Type V 0 0 0
Type VI 0 2 0
Gain 0 32 38

9 violators and total negative slack of only 0.1 ns. Violators are similarly analyzed. FABE

is rolled back. Then, the network is synthesized. DC reports an area of 1195.8 µm2 and no

violations. Hence, the flow eliminated the whole negative slack (1.4 ns) in three iterations,

with an area gain (i.e., decrease) of 8.3%. Results are summarized in Table B.2. Rolling

back a fork involves adding redundant forks and joins to the design. However, this is

compensated, in part, by join and fork combinations that take place. Besides, rolling a fork

back makes it easier for DC to meet the timing constraints. This, in turn, seems to help

DC optimizes the area more efficiently. The last column in Table B.2 shows the area of the
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Table B.2: Example B.2 results.

# Total Neg. Area (µm2) Fork To Its Area (µm2)
Slack (ns) @T=0.37 ns Roll Back Gain @T=400 ns

1 1.4 1304.4 FABDE 38 852
2 0.1 1174.2 FABE 16 859
3 0.0 1195.8 940.8

control network in the different iterations when they are synthesized with 400 ns timing

constraint (i.e., virtually no constraints). In that case, rolling the fork back costs an area

degradation (i.e., increase) of 10.4%.

B.4 Verification

The correctness of the proposed structural transformations of Sec. B.1 is verified using

a symbolic model checker, NuSMV [59]. It is verified that the control networks before and

after the transformations are functionally equivalent. In other words, there is no sequence

of inputs to the control network that produces different outputs in the two versions of the

control network. In this section the correctness of rolling back a fork (Sec. B.1.3) is verified.

Other transformations (i.e., of Sections B.1.1 and B.1.2) can be similarly verified.

Fig. B.3 showed rolling back an n-output fork through an m-input join. For brevity, the

case of n=2 and m=2 is verified. Higher values of n and m have also been verified. The setup

of Fig. B.6 is used. Elastic buffer controllers I1 and I2 are connected to controllers X1 and

X2 through two versions of the control network. The one on the top (designated ‘Before’) is

the control network before doing any transformations. The one on the bottom (designated

‘After’) is the control network after rolling back fork FI1I2 through join JI1I2. Green lines

represent the V alid signals of the control channels. Red lines represent the Stalls. Suffixes

B and A are used to designate the outputs of the control network before and after the

transformation, respectively. The inputs coming from the controllers (i.e., V I1, V I2, SX1,

and SX2) are applied to both networks simultaneously. The corresponding two network

outputs (i.e., V X1, V X2, SI1, and SI2) are ORed together, respectively, and then passed to

the controllers. For example, V X1 B and V X1 A are ORed and passed to the input V alid

pin of controller X1. The different components of Fig. B.6 are connected synchronously

in NuSMV similar to [57]. Synchronous connection guarantees that all components of the

design advance synchronously. The delay of each component is then encoded in individual

counters in terms of the global time unit used by NuSMV. Without loss of generality, all
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combinational logic are assumed to have zero delay. NuSMV verification models for joins,

forks, etc. are similar to those presented in Sec. 5.3.

The following PSL [60] properties are used to check the functional equivalence of the

two versions of the control network (i.e., before and after the transformation):

DEFINE VX1 MISMATCH := VX1 B xor VX1 A ;

PSLSPEC never VX1 MISMATCH;

-- Similarly check VX2, SI1, SI2.

All the properties are proven true by NuSMV which guarantees functional equivalence

between the two versions of the control network. It also proves the correctness of the

transformation (rolling back a fork).

B.5 Case Studies and Results

This section presents two case studies: the MiniMIPS processor and the s298 ISCAS-89

benchmark. Results are synthesis numbers. Design Compiler R© (DC) is used as a synthesis

tool with an ARM R© 65 nm library. DC UltraTM is run with -timing script to ensure the

highest performance optimization effort. To minimize the area, set max area is set to zero.

Figure B.6: Verification setup for rolling back a fork.
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B.5.1 MiniMIPS

MIPS (Microprocessor without Interlocked Pipeline Stages) is a 32-bit architecture, first

designed by Hennessy [46]. MiniMIPS is an 8-bit subset of MIPS. A block diagram of the

original clocked MiniMIPS is shown in Fig. 2.5. The MiniMIPS synchronous elasticization

is described in Sec. 2.2. The CNG-generated elastic control network is in Fig. 3.9. The

MiniMIPS control network (with elastic buffer controllers for the register file and for the

memory) is passed to the CNGT flow in order to meet a clock period constraint of 370 ps.

The results are shown in Table B.3. The flow eliminated, in only one iteration, the whole

negative slack (1.3 ns), with an area gain (i.e., decrease) of 6.2%. As argued in Example B.2,

rolling back a fork involves adding redundant forks and joins to the design. However, this

is compensated, in part, by join and fork combinations that take place. Besides, rolling a

fork back makes it easier for DC to meet the timing constraints. This, in turn, seems to

help DC optimizes the area more efficiently. The last column in Table B.3 shows the area of

the control network in the different iterations when they are synthesized with 400 ns timing

constraint (i.e., virtually no constraints). In that case, rolling the fork back costs an area

degradation (increase) of 6.5%.

B.5.2 S298

S298 is an ISCAS-89 benchmark. It is a traffic light controller. S298 has a total of

23 synchronization points (14 registers + 3 inputs + 6 outputs). After analyzing all the

register-to-register communications in the data path, the required connections are passed

to the CNG tool. The resultant control network is shown in Fig. B.7. The s298 control

network is passed to the CNGT flow in order to meet a clock period constraint of 500 ps.

The results are shown in Table B.4. CNGT eliminated, in 3 iterations, the whole negative

slack (5.3 ns), with an area degradation (i.e., increase) of only 0.4%.

Table B.3: MiniMIPS results.

# Total Neg. Area (µm2) Fork To Its Area (µm2)
Slack (ns) @T=0.37 ns Roll Back Gain @T=400 ns

1 1.3 1350 FABCI4P 35 953.4
2 0.0 1266 1015.2
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Figure B.7: Control network of the synchronous elastic version of s298.

Table B.4: S298 results.

# Total Neg. Area (µm2) Fork To Its Area (µm2)
Slack (ns) @T=0.5 ns Roll Back Gain @T=400 ns

1 5.3 2657.4 F5 70 1991.4
2 2.2 2799 F3 42 1977
3 0.4 2392.8 F4 36 1989.6
4 0.0 2668.8 2374.2
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