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ABSTRACT 

During rapid-onset disasters, timely dissemination of warning information to the 

public is crucial. Official emergency information channels are often slow, leaving the 

public to monitor social media websites for more timely updates. Examining Twitter 

communications, or tweets, sent during the 2012 Waldo Canyon Fire, this research seeks 

to determine what level of descriptive information is sent through Twitter during a 

wildfire, whether or not that information can inform other users of changes in fire 

activity, and how the spatial and temporal information within a tweet can be used in 

conjunction with geographic information systems (GIS) to determine fire location and 

activity. 

This research utilized geotagged tweets and viewshed analysis in GIS as a means 

of determining what portions of the wildfire are visible from each Twitter user. These 

visible areas, or viewsheds, were then overlapped with viewsheds from other users to 

generate shared viewsheds. Both individual and shared viewsheds were compared to the 

area of new fire growth to determine if burning areas could be more confidently 

identified by considering different user perspectives. 

The shared viewshed method showed that while increasing the number of 

observations does result in a decrease in shared visible area, the portion of the shared 

viewshed that falls within the fire boundary significantly increases. Many groupings, 
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which were compiled based on time sent and ranged in size from two to eight tweets, 

could see more than 20% of the fire.  

This research found that there is the potential for users to inform one another of 

changes in fire activity that may not be visible from different points of view. The addition 

of viewshed analysis adds another layer of valuable information to the tweets and could 

be useful if done in real-time, especially during events occurring at a smaller scale. 
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1. INTRODUCTION 

1.1 Background 

Disasters occur in numerous forms and regularly threaten human populations at 

varying levels of vulnerability (Wisner, 2004). Often times, disasters occur in the form of 

rapid-onset events, in which preparation times are short and lives are immediately 

threatened (Smith, 2013). Recent examples include the single deadliest tornado in over a 

half century on May 21, 2011 in Joplin, Missouri (Simmons & Sutter, 2012) and the 

Black Saturday bushfires in the Australian state of Victoria in February 2009 (Cameron 

et al., 2009). During rapid-onset disasters such as these, the dissemination of warning 

information to the public, especially in a timely manner, is pivotal in saving lives 

(Sorensen, 2000).  

Unfortunately, official information from emergency response organizations is 

often disseminated to the public at a slower rate than desired (Pultar et al., 2009). 

Recently, volunteered geographic information (VGI) through social media websites, such 

as Twitter or Facebook, has shown promise in filling the time-sensitive void of 

information during disasters (Goodchild & Glennon, 2010; Mileti et al., 2006; Palen et 

al., 2010; St. Denis et al., 2012; Starbird et al., 2012; Sutton et al., 2008; Verma et al., 

2011). The rapidly growing number of location-aware devices has allowed citizens to 

function as sensors, reporting what they deem pertinent to the situation (Goodchild, 

2007). Naturally, since the citizens providing VGI are not professionals operating under 
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established constraints, the accuracy and validity of the information becomes a concern 

(Goodchild & Glennon, 2010). These concerns raise the question of whether geolocated 

VGI from multiple sources and locations can help track the movement of a rapidly 

advancing threat. 

 Accurately tracking the movement of a dynamic threat is not only crucial for 

emergency managers, but for the public as well. In the eyes of the public, when a threat is 

looming in their vicinity, the primary concern is likely whether their family or property is 

at risk. The answer generally is contingent on the threat’s location, trajectory, and rate of 

progress. User-generated messages sent through Twitter may help disseminate 

information to answer the public’s concerns, essentially allowing citizens to help one 

another address the lag in information distributed by authorities through official channels. 

 

1.2 Study Aims 

The goal of this research is to use geotagged Twitter communications—known as, 

“tweets”—from a wildfire event in conjunction with viewshed analysis to improve the 

understanding of the location and extent of an advancing fire. While viewshed analysis 

and VGI have been paired in research by Jones et al. (2013), these two topics have yet to 

be jointly applied to a natural disaster scenario. Tweets are limited to 140 characters, 

which can limit the depth of communicated information. When a user elects to geotag 

their tweet, which simply attaches geographic coordinates to their message, they are 

providing another layer of information without using any of the limited characters. The 

value of geotagged tweets increases when they are paired with viewshed analysis in a 

GIS, which is used to determine the area that is visible from a specific location on the 
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Earth’s surface (Ormsby & Alvi, 1999). In this research, viewsheds from individual 

tweets will be intersected to identify a shared visible area. The area will then be 

compared to the wildfire’s known boundary to determine if the shared viewshed can 

accurately depict the fire’s location. This research aims to answer the following 

questions:  

1) What type of information can be extracted from tweets during a wildfire that 

may aid in understanding its location, movement, and attributes? 

2) How can the spatial and temporal information within a tweet be used in 

conjunction with viewshed analysis to narrow the location, extent, and 

direction of an advancing wildfire in areas of high relief? 

3) Does the spatial and temporal variation of tweets allow users at one location 

to inform users at another location of changes in wildfire location, extent, and 

behavior?  

A description of Twitter and short review of the relevant literature is covered in Section 

2, followed by a Section 3, which provides a description of the study area and event. 

Section 4 describes the data sources and provides a detailed methodology. The results and 

all associated figures and tables are presented in Section 5, with the discussion of the 

research questions and the closing remarks in Section 6 and 7, respectively. 
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2. LITERATURE REVIEW 

2.1 Twitter 

Twitter is a social media website that allows users to communicate with one 

another in 140-character or less messages, known as “tweets,” which can be sent directly 

to another user or broadcast to a network of users. In addition to textual information, 

tweets can include photos, hashtags, and locational information. Hashtags, which utilize 

the ‘#’ symbol, immediately followed by a relevant keyword or phrase, allow users to 

categorize their tweets. Once a tweet is sent, the hashtag becomes a clickable link that 

directs a user to a list of all other tweets using the same keyword or phrase. Users can 

also elect to include their locational information, or geotag, which imbeds the user’s 

geographic coordinates or place-based location in the tweet. 

2.2 VGI and Social Media in Disasters 

Within the last 6 years, the emerging subfield of VGI, introduced by Goodchild 

(2007), has expanded rapidly. In his seminal article, Goodchild introduces the concept of 

humans as sensors, specifying that humans have the ability to compile relevant 

information around them and share it. In the first mention of disasters, he suggests that 

VGI allows for people to provide a better description of current conditions based on their 

familiarity with the area. This article directly led to further expansion of the VGI 

literature, especially concerning disasters. VGI applications to disasters have been 
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described for wildfires (De Loungeville et al., 2009; Goodchild & Glennon, 2010; Pultar 

et al., 2009; St. Denis et al., 2012; Sutton et al., 2008), floods (Palen et al., 2010), and 

earthquakes (Sarcevic et al., 2012; Starbird & Palen, 2011). 

Although the discussion of the inaccuracies associated with VGI are well 

described in the literature (Goodchild, 2007; Goodchild & Glennon, 2010; Mendoza et 

al., 2010; Sutten et al., 2008), it is also recognized for its potential to be utilized by 

official sources of information or even surpass the quality of those channels (Goodchild 

& Glennon, 2010; Pultar et al., 2009; St. Denis et al., 2012; Sutten et al., 2008). It is 

already becoming more common for emergency officials to play an active role in the 

dissemination of information on Twitter. Cooperation in the dissemination of fire spread 

and evacuation information has already been displayed by on-scene emergency officials 

and remote volunteers that posted the information on various social network websites (St. 

Denis et al., 2012). Remote volunteerism is one of the more creative applications of VGI 

in the realm of disasters and has been demonstrated in the 2010 Haitian Earthquake 

(Starbird & Palen, 2011; Zook et al., 2010) and the 2011 Shadow Lake fire (St. Denis et 

al.). Another unique application of VGI in disaster has been the use of natural language 

processing to extract situational awareness from tweets during disasters (Verma et al., 

2011; Vieweg et al., 2010).  

In perhaps the article most parallel to this research, De Loungeville et al. (2009) 

uses VGI to detect spatio-temporal data on forest fires in the South of France. While the 

authors used data from Twitter as well, of the 127 users that contributed to their final 

dataset, only 5 provided tweets with geographic coordinates (i.e., geotags). As a result, 

the location of most tweets had to be inferred from the context of the tweet or the generic 
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location provided in the user’s profile. By specifically looking at tweets tagged with 

geographic coordinates, this paper aims to increase the value of spatio-temporal data in 

tweets by adding another layer of detail using viewshed analysis.  

2.3 Viewshed Analysis 

In GIS, viewshed analysis uses stored elevation values, often from a digital 

elevation model (DEM), to determine the visibility based on the elevation of the 

observation point, as well as the surrounding area. In other words, a viewshed is 

determined solely by an area’s topography, and does not account for obstructions such as 

trees or buildings. Despite the exclusion of physical obstructions, a viewshed analysis 

performed in an area of high relief still yields a more complex result than one performed 

in a relatively flat terrain. 

Viewshed analysis was a prominent GIS research topic in the early 1990s. Some 

early applications of viewsheds used triangulated irregular network (TIN) models to 

represent the data (Goodchild & Lee, 1989), but that was quickly replaced by the digital 

elevation model (DEM) (Fisher, 1991; Fisher, 1992; Fisher, 1996). Much of Fisher’s 

work focused on determining viewshed and DEM accuracy, something that Maloy and 

Dean (2001) also addressed by comparing computer-generated viewsheds with loosely 

determined viewsheds using in-situ photos. Viewshed analysis has occasionally been 

applied to natural hazards and emergencies. While Midkiff and Bostian (2002) applied 

viewshed analysis to determine the best location for deploying broadband internet towers 

during emergencies, the remainder of the applications in natural hazards focuses on 

wildfires, mainly concerning potential fire tower placement (Fisher, 1996; Goodchild & 

Lee, 1989; Pompa-Garcia et al., 2010). 



7 
 

 
 

2.4 GIS in Emergencies 

 Geographic information systems have served a key role in the four phases of 

emergency management: mitigation, preparedness, response, and recovery. Reviews of 

the applicability of GIS to these phases have been conducted by Cova (1999) and Cutter 

(2003). Applications in the mitigation phase are often associated with vulnerability 

assessments, which have been applied for many types of disasters, including floods 

(Messner & Meyer, 2006) and tsunamis (Wood & Good, 2004). GIS has also been used 

in determining social vulnerability to disasters (Chakraborty et al., 2005; Cutter & 

Emrich, 2006; Morrow, 1999). 

 GIS is primarily used to structure and implement emergency response plans, and 

as a result, the preparedness and response phases are often merged (Cova, 1999). GIS can 

also help in compiling information from multiple sources and scales into a single 

database capable of being utilized in mapping and decision-making. An area of 

emergency management that has emerged as the foremost application of GIS in these 

phases is evacuation planning. GIS models of evacuation plans have been developed for a 

range of hazards, with wildfire being the most relevant for this research (Cova et al., 

2005; Cova & Church, 1997; Dennison et al., 2007; Pultar et al., 2009). 

While the GIS applications of the first three phases of emergency management 

focus heavily on modeling, the initial period of the recovery phase often uses GIS to 

coordinate recovery activities, including the positioning of logistical support and 

resources and preliminary damage assessments (Cova, 1999; Cutter, 2003). GIS can also 

be used to communicate the progression of the response effort, such as the making of 

daily maps that illustrate the availability of services and resources for the public. Some of 
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these GIS applications were used in the extensive recovery efforts of the United States’ 

greatest disasters, including the terrorist events of September 11, 2001 and Hurricane 

Katrina in 2005 (Cutter, 2003; Mills, 2008). 
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3. STUDY AREA AND EVENT 

The focus of this research is the Waldo Canyon Fire, which affected the Colorado 

Springs, Colorado area from June 23
rd

 – July 10
th

, 2012. More specifically, the research 

focus is 1 day, June 26
th

, when dry conditions and high winds caused the fire to rapidly 

grow from 5,180 acres to just over 15,500 acres. On this day, the fire also encroached 

into the wildland-urban interface (WUI), forcing the evacuation of thousands of people 

and eventually destroying approximately 346 homes. At the time, the Waldo Canyon Fire 

became the most destructive and expensive fire in Colorado state history, with over 350 

million U.S. dollars in insurance claims. 
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4. DATA AND METHODS 

4.1 Outline 

This research integrates user-generated data created via Twitter and GIS 

techniques, including viewshed analysis, in an effort to track the movement of an 

advancing wildfire. In the first subsection, the data sources are described in detail. The 

methodology is explained in the subsections that follow, with the extensive filtering of 

the Twitter dataset covered first. In order to perform a viewshed analysis, the DEMs of 

the study area had to first be manipulated, the process of which is described in the third 

subsection. This subsection also includes the generation and conversion of the viewsheds, 

and the description of the tools used to determine shared viewsheds and fire visibility 

follow in the last subsection. 

4.2 Data Sources 

The digital elevation models (DEMs) for this research were downloaded from the 

United States Geological Survey (USGS) National Map Viewer. The size and location of 

the study area required the download of four separate DEM files in an ArcGRID format, 

each of which covered a one square degree area with a resolution of 1/3 arc second (about 

10 meters). To create the final DEM, the four rasters were mosaicked together and 

converted to a single raster with a 32-bit floating point pixel type, which covered an area 

ranging from 38 degrees to 40 degrees north and 104 degrees to 106 degrees west.   
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The wildfire boundary was generated using two shapefiles that were downloaded 

from the Geospatial Multi-Agency Coordination Group (GeoMAC) website. These 

shapefiles were drawn according to thermal infrared imagery at two different times, the 

first occurring before the rapid growth on June 26 (22:53 on June 25) and the second 

occurring the following night (01:30 on June 27). In order to focus on just the areas of 

new growth, all areas from the June 25 shapefile were removed from the June 27 

shapefile, leaving the 10,000+ acre area that burned on June 26. The timing for this 

change in perimeter was confirmed using the MODIS Active Fire Detection maps. 

The Twitter dataset was provided by colleagues at Floating Sheep, a collective of 

geography and Big Data researchers that originated at the University of Kentucky 

(Crampton et al., 2013). As a part of their DOLLY Project (Data On Local Life and You), 

Floating Sheep has been collecting every geotagged tweet worldwide since December 

2011. The data that are captured with each geotagged tweet includes a tweet ID number; 

user ID number; the users profile bio; geographic coordinates for the tweet; a geotag and 

place type; the country, state, and county from which the tweet occurred; a timestamp; 

and the text and hyperlinks included in the tweet. Originally included in the dataset for 

this research were all geotagged tweets sent during the 18-day life of the fire (17, 481 

tweets), but as the research focus was narrowed to the day with the greatest fire rate-of-

spread (ROS), all tweets not sent on June 26 were removed, leaving a total of 1,302 

tweets. These tweets encompassed a set area around the Waldo Canyon Fire perimeter, 

including Colorado Springs and the United States Air Force Academy. The filtering 

process for these data can be found in the next section. 
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4.3 Filtering of Twitter Data 

 Next, the tweets had to be further filtered to remove those with only place-based 

location. These are tweets whose geotag is given for the general coordinates of a place, 

which is usually a polygon and can range in size from a point-of-interest (POI) to a city. 

For this dataset, all of the place-based geotags were at the city level, which given its size 

and the inherent inaccuracy with using its generic coordinates, had to be removed. This 

step left 912 tweets, all of which included a geotag based on specific latitude and 

longitude coordinate pairs. 

 The 912 remaining tweets were run through a Python script that counted the 

number of occurrences for each word. Table 1 shows the word counts for the heuristically 

determined fire-related words, locations of interest, and photo hyperlinks that were then 

manually sorted to yield the final dataset. During the manual filtering, tweets that 

provided no description of the fire’s activity or location were removed, as were tweets 

that included photos accompanied by phrases such as ‘taken by a friend’ or ‘taken 

earlier’, which indicate that the coordinates associated with the tweet do not match those 

of the photo. Furthermore, any tweets that were retweets, which act as a forward of a 

tweet posted by another user, were removed for the same reason. Of the tweets that 

remained, 82% (98) included photos. Each photo link was then opened in a web browser 

and deemed suitable for the research or not. Photos deemed unsuitable either pictured the 

smoke plume without any visual reference of the ground or contained views obstructed 

by homes. Lastly, the locations of the remaining photos were verified using Google 

Earth. In the end, 82 tweets were considered of value for this research, with 68 containing 

the event hashtag, 13 containing either ‘fire’, ‘flames’, or ‘wildfire’, and the last 
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containing ‘Garden of the Gods’, which is a popular public park and tourist destination 

northwest of Colorado Springs. 

 

4.4 DEM and Viewshed Manipulation 

 The four DEMs were imported into ESRI’s ArcMap, where they were converted 

to a new mosaic raster. Before generating viewsheds from each tweet location, two 

additional fields were applied to the twitter dataset: AZIMUTH1 and AZIMUTH2. Both 

azimuth fields are given directional values in degrees based on the location of each tweet. 

To explain the values for each field, consider the cardinal directions. Each observer is 

considered to have a 360-degree view. The value for AZIMUTH1 marks one cardinal 

direction, such as 180-degrees south, and the value for AZIMUTH2 marks a second 

cardinal direction, such as 0-degrees north. If an observer were to face in the direction of 

AZIMUTH1 and then rotate to their right until they were facing the direction of 

AZIMUTH2, everything visible between those two directions would be of concern. Thus, 

in this example, only the areas visible to the west of the observer would be included in 

the viewshed. Adding the azimuth fields allowed for the exclusion of portions of a 

viewshed in the opposite direction of the observer from the fire.  

 The viewsheds were then generated for each observer in each time group. In order 

for the viewsheds to include units of linear measurement, each required a series of GIS 

steps. Since the viewshed output is in raster format, the first step was to convert it to a 

series of polygons based on its value of visible or not visible. Once converted, all of the 

polygons with a value of 0, or not visible, were selected and removed, leaving only those 

polygons that represent visible areas. Lastly, the polygons were given a projected 
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coordinate system in order for them to contain units of linear measurement. Based on the 

location of the study area and meters as the desired linear unit, NAD 1983 UTM Zone 

13N was chosen. 

 

4.5 Shared Viewsheds and Fire Visibility 

 After the viewsheds were projected, each one was separated into a small group 

based on the time the tweet occurred. The timeframe for the groupings were kept short, 

20 minutes or less, due to the rapid spreading of the fire, which averaged just over 430 

acres of new growth per hour that day. This method resulted in 30 temporal groupings, 

ranging in size from one to eight tweets, or observers, occurring in an average timeframe 

of just over 10 minutes. While there was a natural clustering of tweets throughout the 

day, 6 of the unique observers were included in more than one group. Due to the limited 

size of the final dataset, the decision to include these tweets in two groupings was made 

so that the shared viewshed methods could be tested against larger groups. Without this 

decision, the largest grouping would have consisted of only 6 observers. The resulting 

distribution of group sizes can be seen in the histogram in Figure 1.  

The steps that follow the grouping of observers are diagrammed in Figure 2. Once 

the temporal groups were established, shared viewsheds were created for each 

combination of observers using the Intersect Tool in ArcMap. In order to determine 

which portions of the fire were visible, each shared viewshed was run through the Clip 

Tool, which removed any viewshed polygons that did not fall within the fire boundary. 

The total area statistics were then extracted from each shared viewshed, whether clipped 

or unclipped, and organized in a spreadsheet. In the spreadsheet, each total area was 
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converted to acres, and the clipped and unclipped totals were mathematically compared 

to determine what percentage of the viewshed fell within the fire boundary, as well as the 

percentage of the fire covered. This directly ties back to determining the location and 

extent of the fire, with the theory that the more observers that see the area, the more 

likely it is that area is burning. 
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Table 1 – June 26 Tweet Word Counts 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Tweet Grouping Histogram 
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Figure 2 – Shared Viewshed and Result Calculation Process 
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5. RESULTS 

 For each grouping, viewsheds were generated for every observer and then 

intersected with each other to determine which areas were visible by a combination, or 

all, of the observers. Each of these shared viewsheds, as well as the individual viewsheds 

for each observer, was then clipped based on the fire boundary to determine which 

portions of the fire were visible. Figure 3 shows an example of the observer locations and 

corresponding viewsheds for a group of 4 observers from 6:19 pm to 6:33 pm. In this 

example, the 4 observers are distributed broadly, with the average distance between them 

being 13.6 kilometers. With such high spatial separation, it was expected that each 

observer’s location would offer a unique vantage point, thus resulting in viewsheds that 

cover different portions of the fire.  

 Figure 4 illustrates the changes in the shared viewsheds for the same grouping as 

each observer is included. As can be seen by comparing Figure 4a and 4b, the addition of 

Observer 3’s northern perspective to those of Observer 1 and Observer 2 drastically 

reduces the shared viewshed, with the total coverage dropping from about 4,376 acres to 

882 acres. Conversely, the addition of the last perspective from Observer 4 in Figure 4c 

hardly alters the shared viewshed, only decreasing the total coverage by another 40 acres, 

bringing the total coverage visible by all 4 observers to 842 acres. This is likely due to 

Observer 4 being located only 4.55 kilometers from Observer 1, the closest distance 

between observers in this group, and thus not offering a greatly differing perspective. 
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Figures 5a, 5b, and 5c focus on the change in coverage strictly within the fire boundary, 

which follows a similar, slightly less drastic pattern, with coverage dropping from about 

825 acres to 224 acres when adding Observer 3 and only decreasing an additional 3 acres 

when adding Observer 4. Even though this equates to a decrease from 8.0% to 2.2% to 

2.1%, respectively, of the fire covered, the smaller factor of decrease in coverage inside 

the fire boundary versus the entire coverage means that a higher percentage of the shared 

viewshed falls within the fire boundary, an increase from 18.9% to 25.4% to 26.3%, 

respectively. 

In addition to the above example, the same statistics were also calculated for each 

of the viewsheds in the other groups, and then consolidated across the entire day based on 

the number of observers, and organized into Table 2. For each unique combination of 

observers, two percentages are calculated: 1) percentage of viewshed within the fire 

boundary, and 2) percentage of fire covered by that viewshed. The median percentages 

are then determined for all unique combinations with the same number of observers 

across all groupings. Figure 6 shows how these percentages change when observers are 

added.  

In Table 3, the total area of the fire visible from at least 1 observer was calculated 

for each group with more than 1 observer, as was the average distance between the 

observers. Of those groups, nine had 4 or greater observers and 12 had 2 or 3 observers. 

All of the groups with 4 or more observers could see more than 20% of the fire between 

them. While the largest group (8) did also have the largest percentage of the fire covered, 

the next three highest percentages came from groups of 4, not groups of 5 or 7.  
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Looking at the groups with 2 or 3 observers, 2 of the 12 groups could see less than 

6% of the fire between them. On the other hand, five groups could see more than 17% of 

the fire between them, with the 5:13 pm to 5:28 pm group of 2 having the highest 

percentage, at 24%, as well one of the highest average distances between observers, at 

16.6 kilometers. The two preceding groupings (4:20 – 4:25 pm and 4:38 – 4:45 pm) also 

have 2 observers, as well as large spatial distribution; however, they cover two vastly 

different percentages of the fire at 5% and 17%, respectively.  
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Table 2 – Statistics for all Observer Groupings of Same Size 

 

 

 

 

Figure 6 – Effects of Group Size on Fire Visibility 
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1 85 1,177.5 1,460.4 4.9% 14.1% 
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Table 3 – Spatial Distribution and Fire Visibility for each Grouping 

 

  

 

 

 

 

Timeframe 

 

 

 

Number of 

Observers 

 

 

Average 

Distance 

(km) 

 

 

Visible from 

at Least One 

Observer (m) 

 

Percentage of 

Fire Visible from 

at Least One 

Observer 

2:35 – 2:55pm 2 11.1 1,569.5 15.2% 

3:32 – 3:44pm 3 6.2 1,957.7 18.9% 

3:44 – 3:56pm 5 7.8 2,179.9 21.1% 

4:20 – 4:25pm 2 16.7 562.7 5.4% 

4:38 – 4:45pm 2 16.8 1,798.4 17.4% 

5:13 – 5:28pm 2 16.6 2,375.6 23.0% 

5:28 – 5:36pm 4 7.8 2,763.4 26.7% 

6:19 – 6:33pm 4 13.6 2,980.0 28.8% 

6:31 – 6:44pm 8 11.0 3,244.9 31.4% 

6:53 – 7:07pm 7 6.2 2,316.4 22.4% 

7:06 – 7:19pm 4 6.3 2,670.3 25.8% 

7:29 – 7:36pm 3 6.9 1,511.3 14.6% 

7:44 – 7:54pm 7 9.8 2,527.6 24.4% 

8:26 – 8:29pm 2 15.8 1,315.8 12.7% 

8:46 – 8:54pm 2 10.5 404.1 3.9% 

9:50 – 9:53pm 2 10.3 1,355.4 13.1% 

10:11 – 10:16pm 3 6.4 2,277.9 22.0% 

10:27 – 10:39pm 5 8.6 2,114.7 20.5% 

10:35 – 10:45pm 3 8.2 1,910.5 18.5% 

10:57 – 11:10pm 4 7.0 2,469.4 23.9% 

11:42 – 11:50pm 2 3.3 2,219.1 21.5% 
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6. DISCUSSION 

6.1 Type of Information in Wildfire Tweets 

 One of the goals of this research was to determine what kind of information the 

public disseminates during wildfires. In order to do so, the logical first step was to 

understand what words were being used in tweets and how often they occurred. After 

running the dataset through a custom Python code, it was determined that of the 912 

tweets sent on June 26
th

, the most commonly mentioned fire-related keywords were 

‘#WaldoCanyonFire’ (141) and ‘fire’ (84). Considering the high frequency of the official 

event hashtag (#WaldoCanyonFire), it is safe to say that by the fourth day of the fire, 

Twitter users were well aware of the hashtag. In fact, of the 83 tweets used in this study, 

68 of them used the event hashtag by itself or in combination with other fire-related 

words. Of course, if the wildfire activity and intensity on June 26
th

 occurred on the first 

day of the fire, it is likely that an event hashtag would not have been established, making 

the filtering of tweets more difficult. It is also possible that multiple event hashtags would 

circulate until an official fire name was determined, which occurred during the Waldo 

Canyon Fire. On June 23
rd

, as the public got first wind of the fire, both 

‘#WaldoCanyonFire’ and ‘#PyramidMtnFire’ were gaining footing with local Twitter 

users, with 13 and 26 mentions, respectively. The next day, the fire’s official name 

circulated and ‘#WaldoCanyonFire’ was accepted by the public as the event hashtag, 

with 74 mentions, compared to 1 mention of ‘#PyramidMtnFire’. 
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 Other keywords associated with the wildfire event, but not describing the fire 

activity itself, also garnered frequent mentions. The most frequent of these keywords 

were variations of ‘evacuation’ (37) and ‘prayers’ (39). While a majority of the 

evacuation tweets involved users forwarding updates on evacuation areas, a few offered 

emotional stories of the user or other family members having to evacuate. Tweets 

offering prayers and condolences, whether they are for victims or first responders, seem 

to accompany disasters, usually coming from outside the affected area. Of the 39 that 

came from the affected area, most of them were asking for prayers for not only the Waldo 

Canyon Fire, but also the entire state, which had seven other ongoing wildfires. 

 There were a few other noticeable trends in the data as well, the first of which 

being the tendency for tweets to include photos, especially those related to the event. In 

fact, of the 912 tweets run through the word count Python code, 319 included hyperlinks 

to photos. The final dataset of 82 tweets had an even higher percentage, 92.6% or 76 

tweets, include photos. Another trend involved the nature of tweets mentioning smoke. 

Thirty of the 912 tweets mentioned smoke, but none of them made the final dataset due to 

the fact that they made no mention of fire activity. Instead, all 30 tweets mentioned the 

irritations accompanied by heavy smoke, including difficulty breathing, the 

overwhelming smell, and poor visibility.  

 

6.2 Viewsheds and Tracking Wildfires 

 When the rate of spread of a wildfire increases, so too does the value of fire-

related tweets, as they have the potential to fill the time-sensitive void of information that 

is created by the lagged dissemination of information through official channels. When 
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considering the value of tweets, in general, those that include the geotagged location have 

significantly greater value than others, as they link detailed coordinates to the content of 

the tweet. In disasters, including the geotag with a tweet can provide otherwise unknown 

details to the unfolding story and contribute greatly to situational awareness. Tweets that 

contribute to situational awareness are defined by Verma et al. (2011) as those that 

demonstrate an awareness of the scope of the disaster. While the value of a geotagged 

tweet during a disaster is high, the content can be made even richer by incorporating it 

into a GIS. When looking at tweets during disasters, especially wildfires, the concern not 

only lies with what the user is saying, but what they are seeing, as well. Adding tweet 

locations into a GIS and creating viewsheds allows for the delineation of what is visible 

or not visible from a user’s location, thus making the tweets even more valuable.  

For this research, the purpose of adding the viewsheds to the twitter data was to 

determine if a group of users sending tweets around the same time, and from different 

locations, could use their unique perspectives to delineate areas that were most likely on 

fire. Looking back at Figure 5, although the total percentage of the fire covered by the 

shared viewsheds becomes quite small as more observers are considered, the portions that 

do fall within the fire boundary account for a much higher percentage of the shared 

viewsheds. In other words, while less of the fire is visible by all observers as their 

number increases, the areas that are visible are much more likely to fall within the fire 

boundary, thus allowing for greater confidence in determining at least a small portion of 

the fire’s location. Naturally, due to high relief and population distribution in the affected 

area, there were large portions of the fire not visible from any user’s location and likely 

not visible from any point outside of the fire boundary. Looking back at Table 3, many of 
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the observer groups were quite successful in covering a significant portion of the fire with 

at least one tweet. In fact, considering all 82 tweets throughout the day, just over 32%, or 

4,980 acres, of the fire was visible by at least 1 of the observers, most of which was made 

up of the east-facing canyons and slopes extending down towards the city. Although 

10,537 acres of the fire were not visible, the public was likely only concerned with the 

areas that were visible on the city-facing slopes, as that is when the perceived threat 

quickly became real. 

 

6.3 User-Generated Information Dissemination 

 Given the spatial and temporal variation of the tweets in this research, another 

goal was to determine if users could inform one another of changes in the wildfire 

activity or location. While it is already known that using Twitter on location-aware 

devices allows users to function as sensors (Goodchild), it has not been determined if 

users can also function as fire scouts. Looking closely at the location and timing of each 

tweet, there were two noticeable ways in which users offered potentially unknown and 

informative content regarding fire activity. The first considers users that offered unique 

perspectives of the fire and the second highlights users whose tweets provided powerful 

content. 

 In regards to the spatial distribution of the tweets, 75 were sent from a location 

with longitudinal coordinates further east than the easternmost extent of the fire 

boundary. While the visibility of the fire on the east-facing slopes varied between these 

users, they all shared the same perception of the fire activity before it crested the ridge. 

The remaining seven tweets included the event hashtag and were sent from users offering 
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exclusive views of the fire, either due south of the fire in Manitou Springs or west of the 

fire in Crystola. All of these tweets were sent during the late morning and early afternoon 

hours, as conditions were worsening and the fire was beginning to spread more quickly, 

but had not yet entered Queen’s Canyon, located on the west side of ridgeline visible 

from Colorado Springs. The content within the tweets included descriptions of increasing 

fire intensity and photos, one in particular showing billowing smoke plumes growing 

thicker and being blown eastward, indicating the current wind direction and likely 

direction of spread. While the tweet and included photo were helpful by themselves, the 

inclusion of the geotag made it possible for anyone to orient the photo and determine 

where the fire seemed to be spreading. Although there was no guarantee that other users 

in Colorado Springs saw these tweets, there was at least an effort made by the observers 

to be informative by offering the first clues of changing fire activity and including the 

event hashtag. 

 Users that provide powerful content send tweets that use a combination of clear 

and concise textual information and a photo that verifies the text. These tweets tend to 

grab the attention of other users and then circulate to their network of followers via the 

retweet. In this study, two tweets stood out in the dataset as having a combination of 

informative textual content and impactful photos that offered clear visibility of the 

expanding fire boundary. The first tweet, sent at 4:40 pm, included the short message 

“Crested over the ridge #WaldoCanyonFire” and a photo. While the textual content was 

concise and somewhat informative, it is the included photo that made this tweet so 

powerful. In the photo, the statement that the fire had crested the ridgeline is confirmed 

by a clearly visible eruption of flames on the face of the mountain just above a 
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neighborhood nestled in the foothills. Not 18 minutes later, the second tweet was sent 

from a location slightly south and much closer to the fire than the first. In addition to an 

impressive photo, this user managed to cram a great deal of detail into his textual 

message, stating, “This just became an urban fire. Right behind the MCI building. Wall 

of Fire. #waldocanyonfire.” Once again, the textual content is verified by the photo, 

which looks across a small, empty field at the fire encroaching on a building very close to 

where the user was located. Both of these tweets provided great detail on the fire’s 

location during a point in the event where the fire was violently spreading, the extent was 

unknown, and other citizen’s lives and property were suddenly threatened.  
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7. CONCLUSION 

 Along the way of developing the methods used in this research, some ways in 

which it could be altered or expanded upon were identified. For instance, in this research, 

the effect of flame height on the observer’s perspective of the fire was disregarded. This 

could likely be accounted for by shifting the DEM or elevation of the observer. Secondly, 

if the temporal resolution of the fire boundary were less coarse, the viewshed calculations 

could be determined for smaller, shifting boundaries instead of a solitary boundary; 

however, this alteration would be strictly reliant on more frequent thermal infrared scans 

during the critical containment periods. Lastly, given that there were a large number 

viewsheds generated for a short timeframe, the temporal shift in the viewsheds may be 

worth investigating for any patterns that may emerge.  

 While the addition of a viewshed certainly makes a tweet more valuable during a 

disaster, that value is minimal unless the viewshed is utilized during the event. With the 

quantity of tweets sent during these scenarios, it is not feasible to push tweets through the 

GIS workflow at an efficient rate without an automated process. Automation of the 

methods written here could be established through a combination of the Twitter 

application program interface (API) and Python coding. The application of this process 

could serve well for wildfires, but given their large scale, it may be better served in other 

disasters. For example, immediately following an earthquake, tweet viewsheds could be 

cross-referenced to help identify major damage, fires, or other areas of focus for 
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response. At a localized level, the isolated and immobile nature of an earthquake makes it 

more likely for the viewhsheds to produce information that is actionable. Theoretically, if 

the tweets were being monitored by an emergency response agency, and a second 

perspective of damage was not available, the agency could open a line of communication 

with that civilian and ask them to provide more information from another view. Of 

course, there are social implications of the public’s awareness of the value of their tweets. 

If even a few citizens took it upon themselves to tweet from different locations in or 

around the threat, they could essentially be putting themselves in harm’s way. It is worth 

debating the point at which a tweeting citizen is doing more harm to themselves or the 

situation than they are benefitting it.  

 Focusing again on wildfires, with relation to the temporal shifts in viewsheds, is 

the concept of tracking the shift in tweet locations as the fire grows. For instance, as the 

fire expands northward, does the location of tweets also shift northward? The temporal 

tracking of tweet locations as related to a natural hazard has already been done, with one 

example coming from Mislove et al. (2011), in which they simultaneously animated the 

progression of the August 23, 2011Virginia earthquake wave and the aggregate count of 

tweets mentioning “earthquake” per county. The short video shows that in a matter of 

minutes, some users were tweeting about the earthquake before the shockwave even 

reached them. Plotting tweet locations in relation to a moving subject may also have 

applications outside the realm of disasters. Take, for instance, a large sporting event such 

as the Boston Marathon. This event covers a relatively large area, draws dense crowds of 

potential tweeters, likely has an event-specific hashtag, and much like a wildfire, has a 

moving focal point in the runners. By using geotagged tweets along the race route, it 
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seems likely that one could track the progression of the major packs of runners without 

being in attendance.  

The GIS methods described here were developed in an effort to move beyond the 

accuracy concerns of VGI data and identify a useful application during wildfires. The 

goal of this research was to enrich the VGI data by adding the viewshed and use it to help 

track the location of a fast-spreading fire. By separating the tweets into time-based groups 

and comparing their viewsheds to one another, the research was able to determine 

possible fire locations with higher confidence than would have been possible without 

including the viewshed. The research was also able to identify trends in the content of 

event-related tweets, including the frequency of tweets with photos and the public’s quick 

awareness and acceptance of the event hashtag. The potential for users to inform one 

another of changes in fire activity or location was also noticed, with tweets offering 

unique perspectives of the fire or powerful content and photos being the most 

informative. All in all, it seems more likely that VGI, especially when incorporated into 

GIS, could help fill the lag in information dissemination during fast-moving events. 
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