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A B STR A C T

The motivation for this work is the forward and inverse problem for magnetotel- 

lurics, a frequency domain electromagnetic remote-sensing geophysical method used in 

mineral, geothermal, and groundwater exploration. The dissertation consists of four 

papers. In the first paper, we prove the existence and uniqueness of a representation 

of any vector field in H(curl) by a vector lying in H(curl) and H(div). It allows 

us to represent electric or magnetic fields by another vector field, for which nodal 

finite element approximation may be used in the case of non-constant electromagnetic 

properties. W ith this approach, the system matrix does not become ill-posed for low- 

frequency. In the second paper, we consider hexahedral finite element approximation 

of an electric field for the magnetotelluric forward problem. The near-null space of the 

system matrix for low frequencies makes the numerical solution unstable in the air. 

We show that the proper solution may obtained by applying a correction on the null 

space of the curl. It is done by solving a Poisson equation using discrete Helmholtz 

decomposition. We parallelize the forward code on multicore workstation with large 

RAM. In the next paper, we use the forward code in the inversion. Regularization 

of the inversion is done by using the second norm of the logarithm of conductivity. 

The data space Gauss-Newton approach allows for significant savings in memory and 

computational time. We show the efficiency of the method by considering a number 

of synthetic inversions and we apply it to real data collected in Cascade Mountains. 

The last paper considers a cross-frequency interpolation of the forward response as 

well as the Jacobian. We consider Pade approximation through model order reduction 

and rational Krylov subspace. The interpolating frequencies are chosen adaptively in 

order to minimize the maximum error of interpolation. Two error indicator functions 

are compared. We prove a theorem of almost always lucky failure in the case of the 

right hand analytically dependent on frequency. The operator's null space is treated 

by decomposing the solution into the part in the null space and orthogonal to it.
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CH APTER 1

IN TRO DUCTION

Magnetotellurics (MT) is a deep electromagnetic sounding used to image the 

earth’s subsurface up to depths of 50km and more. It is used to look deep into the 

crust to help understand the geological processes. The main source of signal is due to 

solar wind and lightning, which is approximated by a plane wave traveling downwards. 

When the wave encounters conducting rock, it induces currents, which in turn act as 

a source of electromagnetic waves, which are emitted in all directions, also upwards. 

Thus the electromagnetic field measured on the surface is a superposition of the source 

wave, traveling downwards and the wave traveling upwards, which carries information 

about the conductivity of the subsurface. The smaller the frequency of the wave, the 

deeper the wave penetrates. Thus the M T response is usually considered for a number 

of frequencies, which give information for a range of depths. Additionally, in a 3D 

M T survey, a number of receivers are placed in a spatial grid on the earth’s surface. 

Both of those techniques allow one to obtain information of the conductivity of the 

subsurface as a function of location in 3D space.

As the source of the wave traveling upwards is a conductive rock, M T is intrin

sically more sensitive to conductive structures. This is the reason why the main 

application of this method is in geothermal energy exploration, where the target 

reservoirs contain hot brine, which is electrically conductive. Thermal changes often 

cause development of a clay cap above the reservoir, which is even more conductive 

and may be detected with MT. Recently, there is more interest in using M T and other 

electromagnetic methods in mineral and hydrocarbon exploration. For the latter, the 

targets are rocks rich in hydrocarbons that are electrically very resistive, thus as 

the electromagnetic methods get more sensitive, more hydrocarbon deposits will be 

found. This makes the field of electromagnetic geophysical methods very dynamic



and exciting.

One of the difficulties the field experiences is a need for fast and stable 3D inversion 

code. A fast 3D inversion requires a fast 3D forward problem, as it has to be solved 

many times in the inversion process. This was a motivation for the current work.

The thesis consists of four papers that are put into separate chapters. In the first 

paper, presented in Chapter 2, we prove a theorem that every member K  of H 0(V x )  

for a scalar function k can be represented by a vector field F  E H 0(V x )  if H (V -) in 

a form

K  =  F  -  V ( kV -  F )

This is an interesting representation that, simplifying a little, says that even if a vector 

has discontinuous normal component across some surface, it may be represented using 

a continuous vector field, where the information about the jumps of normal component 

of K  is stored in the divergence of F . The vector field F  is called a Shelkunoff potential 

and we apply it in the numerical approximation of the electromagnetic field at low 

frequencies, as the electric field E  as well as the magnetic field H  are members of 

H (V  x ). In this case, k is a function of electromagnetic properties that does not 

need to be constant. The advantage of this approach is that one can use nodal finite 

element approximation and the system matrix does not suffer from a very large null 

space as is the case for a curl-curl equation for an electric field.

In the next paper, which is presented in Chapter 3, we consider a finite element 

approximation of the electric field at low frequency and we apply it to the magnetotel- 

luric forward problem. Particular difficulty arises from the presence of the air in part 

of the domain. The smallness of conductivity in the air makes the system matrix very 

ill-conditioned. Because of that, even if a direct solver is used, for low frequencies, 

the approximation of the electric field in the air consists of almost pure numerical 

error. We show that this solution still contains the information about the electric field 

values that may be extracted if a correction on the null space of the curl is applied. 

Using a compatible approximation through edge elements, using discrete Helmholtz 

decomposition, the correction may be applied by solving the Poisson equation on the 

same mesh as is used for approximation of the electric field. The correction makes 

sure that there are no spurious current sources and is called divergence correction.
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We implement a finite element approximation of the electric field on a hexahedral 

mesh and we parallelize the code on a symmetric multiprocessor workstation with 

large RAM. We show the accuracy of the approximation by considering a number 

of magnetotelluric models and compare the approximated field values with the other 

codes.

The next paper describes the use of this forward code in the inversion of mag- 

netotelluric data, which given M T measurements, seeks a conductivity model in the 

subsurface that is able to replicate the measurements. We regularize the ill-posed 

inversion by using the second norm of the gradient of the logarithm of conductivity 

and consider various spatial weightings for the second norm. To minimize the 

inversion functional, we employ the Gauss-Newton approach, which is suitable for 

our quadratic regularization functional. The model update in Gauss-Newton is low 

rank. The update is in the space of dimension equal to the number of real valued 

measurements. This gives rise to the data space Gauss-Newton, which allows for 

significant savings in memory and computational time. We show that it is possible to 

use the same regularization as for the model space Gauss-Newton, and in our case, it 

is required to apply an inverse of a matrix to each row of the Jacobian. The considered 

matrix has a similar non-zero pattern to a matrix arising from finite difference 

approximation of a Poisson problem, thus the time needed for the calculation is not 

significant. We also implement inversion for static distortion matrices, which allows 

us to account for small-scale conductivity anomaly close to an M T receiver. We test 

the inversion code with a couple of synthetic M T models and apply it to real data 

collected in the Cascade Mountains.

The last paper considers a speedup of calculation of the forward response and 

Jacobian, through cross-frequency interpolation. The approximation is done by 

noticing that in both cases, one needs to evaluate transfer function (A  +  iu B )-1b 

for a range of frequencies u E [umin,u max]. In the case of the forward response, b 

depends on frequency and in the case of the Jacobian, it does not. We consider a 

Pade approximation through model order reduction using rational Krylov subspace. 

We consider an adaptive choice of shifts in a strategy that tries to minimize the 

maximum error of approximation. For the case of b having an analytic dependence

3



on frequency, we prove a theorem of almost always lucky failure. We consider two 

error indicator functions. As in our case, matrix A has a non-empty null space, we 

propose to decompose b into the part in the null space and orthogonal to it. This 

is accomplished using a discrete Helmholtz decomposition, in a similar manner to 

divergence correction, and in the case of b dependent on frequency, it allows us to 

decrease the relative error of approximation by two orders of magnitude. Overall, for 

a moderately large M T survey, the described cross-frequency interpolation is able to 

speed-up the inversion 4 times.

4



CH APTER 2

VARIATIONAL FORM ULATION FOR  

M A X W E L L ’S EQUATIONS  
W IT H  LORENTZ GAUGE: 

EXISTENCE A N D  

UNIQUENESS OF 

SOLUTION1

Kordy M.23, Cherkaev E.2, and Wannamaker P.3

2.1 Abstract
We develop the finite element method based on nodal shape functions for simula

tion of low-frequency electromagnetic fields in geophysical applications. The existence 

and uniqueness of the vector-scalar potential for Maxwell’s equations with a Lorentz 

gauge is proven for a conducting medium with piecewise constant properties. A 

variational formulation based on the Schelkunoff potential is considered for both the 

electric field E and the magnetic field H. A regularized formulation for the magnetic 

field is obtained for the case when magnetic permeability ^ is constant and thus 

the magnetic field is divergence free. In the case of non-divergence-free H field, an 

equation involving scalar and vector potentials is presented. The solution to both 

problems may be approximated by nodal shape functions in the finite element method 

with system matrices that remain well-conditioned for low frequencies. A numerical

1 Submitted to International Journal of Numerical Analysis and Modeling in 2014

2Department of Mathematics, University of Utah

3Energy & Geoscience, University of Utah



study of a forward problem of computation of electromagnetic fields in the diffusive 

electromagnetic regime shows the efficiency of the proposed method.

2.2 Introduction
Fast and stable methods are needed for calculating electromagnetic (EM) fields 

in and over the Earth. Such simulation has applications in imaging of subsurface 

electrical conductivity structures related to exploration for geothermal, mining, and 

hydrocarbon resources. Over commonly used frequencies, EM propagation in the 

Earth is diffusive since conduction dominates over dielectric displacement. The Finite 

Element Method (FEM) is attractive for this simulation in comparison with other 

techniques in that it may be easily adapted to complex boundaries between regions of 

constant EM properties, including topography or bathymetry. The 3D interpretation 

of geophysical data is numerically expensive, as the simulation (forward problem) 

needs to be computed many times [1-3].

For large-scale simulation problems, iterative methods have been the ones of choice 

to solve the linear system matrices resulting from FEM formulations [4-8]. The speed 

of iterative methods is strongly related to the properties of the variational problem 

used. Difficulties arise when the computational domain includes high contrast, both 

non-conducting air and a conducting medium in the Earth subsurface, especially for 

low frequencies. Furthermore, the Earth’s subsurface in general is characterized by 

spatially changing conductivity, dielectric permittivity and magnetic permeability. 

These can slow or prevent iteration convergence [9, 10].

There have been multiple approaches to addressing the difficulties encountered 

with high physical property contrasts and potentially discontinuous EM field vari

ables. One is to apply special finite elements, so-called edge elements, that have a 

discontinuous normal component of the vector field across elements, while keeping 

the tangential field component continuous [11-13]. Edge elements are also compatible 

with the curl operator and are a part of the de Rham diagram [14]. However, if the 

curl-curl equation for the electric field E  is used, and if the conductivity is very small 

in part of the domain (e.g., in the air) or if frequencies are very low, the problem 

becomes ill-posed and the system matrix has a very large, near null space. This 

requires use of sophisticated preconditioners that handle the null space of the curl

6



properly in order to use iterative solvers. Such preconditioners have been developed 

(see [15-20]).

An alternative is to not solve directly for the EM fields themselves, but instead 

to initially solve a well-conditioned equation for a quantity that is continuous. 

Subsequently, the EM fields are obtained through spatial differentiation with the field 

discontinuities defined by the property jumps. One such quantity is the Schelkunoff 

potential [21-24], which we examine in this paper. In general, this potential has both 

scalar and vector components, and there are both electric and magnetic versions. 

The scalar potential can be expressed as a function of the vector potential, and as a 

result, only the vector potential is needed to represent the EM field. The Schelkunoff 

potential approach for non-constant EM properties, to the best of our knowledge, 

lacks theoretical justification. It is essential to know under what conditions such a 

potential exists, and what boundary conditions make it unique, before attempting to 

approximate it numerically.

In this paper, we show that a continuous Schelkunoff potential exists for both the 

electric and magnetic fields with assumptions valid for low frequency. Specifically, 

we show that for spatially varying and complex valued k, a Schelkunoff potential 

representation E  =  F - V ( * k V - F ) exists for every member E  of H 0(V x ) .  We discuss 

the use of this potential for FEM approximation of the EM field. First we consider the 

possibility of using just the vector potential, which is enough to represent the field. 

Yet in the case of the electric Schelkunoff potential, when the conductivity a is not 

constant and the electric field is not divergence-free, finding a weak equation involving 

only the vector potential is difficult. In particular, we show that the potential does 

not satisfy the weak form of Helmholtz equation, sometimes erroneously used as a 

basis for FEM simulation [23]. For the general case of non divergence-free EM fields, 

we propose a mixed formulation involving scalar and vector potentials.

We consider also the case of the magnetic Schelkunoff potential. If the magnetic 

permeability ^ is constant, the magnetic field is divergence-free and the vector 

potential coincides with the magnetic field. We show that the Schelkunoff potential 

approach leads to a regularized weak equation for the magnetic field involving the 

divergence term, and as a result, the equation does not suffer from the large near null

7



space problem.

We show that a bilinear form of the equations for both magnetic vector potential 

and electric scalar-vector formulations remains coercive at low frequencies. It makes 

iterative solvers fast even if only standard vector multigrid preconditioners [25] are 

used. Another advantage is that continuous Schelkunoff potentials (more precisely, a 

member of H (V x )  f  H (V -)) allow us to use nodal shape functions, which have more 

widely available implementations than edge elements. Edge elements, due to disconti

nuity of the shape functions across elements boundaries, require postprocessing to get 

the value of the field at a specific point within an element. In geophysical applications, 

the domain is a convex polygon, so nodal discretization is dense in H 0(V x )  if H (V -) 

or in H (V x )  if H 0(V-) [14, 26].

Regularization of the curl-curl equation using the divergence term has also been 

suggested in [26, 27]. The current paper extends these ideas to the case of non

constant, complex valued electromagnetic properties and non-divergence-free fields. 

In [27], the authors consider existence, uniqueness, and proper boundary conditions 

for a Schelkunoff-like vector potential only for the case of constant electromagnetic 

properties. In [26], the authors consider non-constant properties; however, they seek 

a solution E  e  H (V x )  such that aE  e  H (V -). If a is not constant, it is difficult to 

construct a compatible finite element discretization for the space of vector fields of 

the suggested kind.

In this paper, we consider a different approach. The original vector electric 

Schelkunoff potential F  and the vector electric field E  differ by V<£. The scalar 

potential p  satisfies a Poisson equation for which the source term is given by the 

jumps of the normal component of E  across boundaries of regions with different EM 

properties. Separating the discontinuities of the electric field onto p  allows the vector 

potential to be continuous, or more precisely to lie in the space H (V x )  f  H (V -), 

which allows us to approximate it using nodal elements.

A representation of an electric field related to ours was considered in ([24] Lorentz 

gauge #2), where the authors proved the uniqueness of a continuous Schelkunoff 

potential for a non-lossy medium using a mixed formulation that involved both scalar 

and vector potentials. The mixed formulation involving scalar and vector potentials

8



considered in the current paper is a reformulation of this approach for a medium with 

losses. We prove not only uniqueness, but also existence of the solution (Theorem 6).

The structure of the paper is as follows. In Section 2.3 next, a brief description 

of the electric Schelkunoff potential is given in the way it typically appears in the 

literature. We also show that it satisfies the Helmholtz equation if the electromagnetic 

properties are constant.

In Section 2.4, a general definition of the electric Schelkunoff potential is given 

for the case when no conditions are imposed on the boundaries between regions of 

constant electromagnetic properties. Then, an existence and uniqueness theorem for 

a continuous Schelkunoff potential is formulated and proven. In Section 2.5, the 

difficulty in obtaining a weak equation involving only the vector electric Schelkunoff 

potential is presented.

In Section 2.6, the approach suggested in [24] is discussed and reformulated for a 

lossy medium. As a result, a mixed formulation involving a scalar and vector potential 

for electric Schelkunoff potential is developed.

In Section 2.7, a different approach is suggested to proceed from the difficulties 

with the electric potential. A magnetic Schelkunoff potential is defined and, in the 

situation where magnetic permeability ^ is constant, an appealing weak form of the 

governing equation is derived.

The last Section (2.8) shows results of numerical simulations. We use the 

developed magnetic Schelkunoff potential approach to calculate the electromagnetic 

field generated by a conductive brick in a resistive whole space with a plave-wave 

(magnetotelluric) source. Comparison of the results with calculations done by an 

independent Integral Equations code [28] is shown. Good agreement between the 

calculated fields provides a verification of the validity of the method.

2.3 Lorentz gauge formulation of 
Maxwell’s equations

Let us consider the electromagnetic field satisfying Maxwell’s equations in the 

frequency domain, with time dependence eiWt, with the electric source Jimp, in some 

bounded domain Q C R 3:

9



V  x E  =  —iu^H  (2 1)
V  x H  =  aE  +  J%mp , a =  a +  iue ( . )

Here, a and e are conductivity and complex permittivity of the medium, ^ is magnetic 

permeability, and u is the frequency of the applied field.

The Schelkunoff potential, or electric Schelkunoff potential, is a vector potential 

F  used together with a scalar potential ^  to represent the electric field E  [21-24] in 

a form:

E  =  —iu F  — V-0 (2.2)

A relationship between F  and ^, called the Lorentz gauge, is imposed:

V  =  —W  (2.3)
V )

As a result, the electric field is represented as:

E  =  —iu F  +  v f ^ - H  (2.4)
V )

Substituting the first equation into the second one in (2.1) and using (2.2) to represent 

electric field E , in the region of constant properties a , ^ we obtain:

V x  | v x  1 F^ =  Jimp — a iu F  — a V ^

Application of the vector identity (2.49) results in:

V  ( v  ' 1  ̂  — V  ‘ ( v  ( 1 F^ ^ =  J imp — a iu F  — a V ^

If the equation is multiplied by —̂  (again, it is assumed that a , ^ are constant), the 

Lorentz gauge (2.3) is used, and the following vector Helmholtz equation is obtained:

A F  — ia ̂ u F  =  — (2.5)

Yet the potential satisfies this equation only if the electromagnetic properties are 

constant. The weak form of the Helmholtz equation, which is a separate equation for 

each component Fk of the vector field, k =  1, 2, 3, for any A k E H ^Q ),

I  V A fc ■ V F fc +  iu  /  a^Ffc ■ A fc =  I  ■ A fc (2.6)
Jo Jo Jo

imposes conditions on the boundaries between regions of different a , ^ listed below:

10
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1. Fk is continuous, k = 1 ,  2, 3

2. dnFk is continuous, k =  1, 2, 3

In Section 2.4 existence and uniqueness of an electric Schelkunoff potential 

satisfying those conditions is investigated. As it turns out, with some reasonable 

assumptions when a , ^ are not constant, a continuous electric Schelkunoff potential 

(condition 1 satisfied) exists, yet the condition 2 is not satisfied. As a result, there is no 

electric Schelkunoff potential that satisfies the weak form of Helmholtz equation (2.6), 

so it should not be used as a basis for the Finite Element Method if the electromagnetic 

properties are not constant.

2.4 Existence and uniqueness of a continuous electric 
Schelkunoff potential

Let us consider a domain Q C R3, which is an open bounded set with Lipschitz 

boundary. The domain is divided into a finite number of disjoint open regions Vj, j  E I  

(I  is a finite set of indices), such that

U  v  c  Q c  U  V j
je i jei

It is assumed that the properties a , ^ are constant in each Vj-, but may differ between 

those regions. In other words, the properties a , ^ are piecewise constant in Q.

It is assumed not only that Maxwell’s equations (2.1) are satisfied in strong sense 

in each Vj but also that they are satisfied in weak sense in Q.

It is assumed further that all considered functions are C ^ (V j) for j  E I , yet the 

functions may have jumps in value or derivatives across boundaries between sets Vj. 

These assumptions greatly simplify the analysis and allow us to develop physical 

intuition about the Schelkunoff potential. A more rigorous reasoning regarding 

existence and uniqueness of Schelkunoff potential is presented as Theorem 8 in the 

Appendix (Section 2.9). Schelkunoff potential is a member of H (V x )  n H (V -), which 

with our simplifying assumption is equivalent to being continuous.

As a definition of an electric Schelkunoff potential, we will take a vector field 

that is properly defined in each region Vj, no matter what the boundary conditions 

between regions Vj are.
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D efin ition  1 An electric Schelkunoff potential is any vector field F  e  C ^ (V j) for all 

j  e  I , satisfying

E  =  - i u F  +  v ( V ^  in Vj Vj e  I  (2.7)

where E  is the electric field satisfying Maxwell’s Equations (2.1) in weak sense in Q.

It turns out that if we assume that the source Jimp is piecewise divergence free, 

then the electric field E  multiplied by a constant is an electric Schelkunoff potential, 

which is expressed in the following lemma.

L em m a 2 If  V  ■ Jimp =  0 in Vj for all j  e  I , then V  ■ E

Fe =  - — E  
iu

is an electric Schelkunoff potential.

P r o o f  : As Maxwell’s Equations (2.1) are satisfied in strong sense in each of Vj, 

then the following equation is satisfied in strong sense:

V  x ( -----— V  x E  ) =  Jimp +  a E  in Vj
\ iu^ j

Taking divergence of both sides yields

V  . j imp =  - v  . (a E ) =  - a V  ■ E 

and the last equality holds as a is constant in Vj. As a result, if V  ■ J imp =  0 , then

V  ■ E  =  0 in Vj 

If we define FE according to (2.8), then

V  ■ Fe =  V  ■ | — ;— E  j =  — ;— V  ■ E  =  0
iu iu

Hence the equation (2.7), defining electric Schelkunoff potential, is satisfied in strong 

sense in each Vj:

—iuFE +  V  ( V -— E ] =  —iuFE +  0 =  —iu\ —— E  ) =  E 
\ a ̂  J \ iu J

This is exactly what is needed for FE to be the electric Schelkunoff potential according

to Definition 1.

=  0 in Vj for all j  e  I  and

(2.8)



The fact that the equation (2.7) defining electric Schelkunoff potential is linear 

allows us to state the conditions for the vector field F  to be an electric Schelkunoff 

potential as a condition on the difference F  — FE. This is expressed in the following 

theorem.

L em m a 3 If V  ■ Jimp =  0 in each Vj, then the following statements are equivalent:

1. F  is an electric Schelkunoff potential (definition 1)

2. F  =  Fe +  K  =  E  +  K , where K  satisfies

—iu K  +  V ( V -  = 0  (2.9)
V <w

in strong sense in each V j.

3. F  =  Fe  +  V p  =  iljE +  V p , where p satisfies

A p  — iu a ^ p  =  0 (2.10)

in strong sense in each Vj.

P r o o f  : Assume 1. As both F  and FE satisfy the equation (2.7) defining elec

tric Schelkunoff potential, the equation (2.9) for K  is obtained by subtracting the 

equations for F  and FE.

Moreover, from (2.9) it follows that in each Vj, K  is a gradient of some scalar 

function, K  =  V  ^ V  ■ =  V p . Inserting the latter into (2.9) yields

—iu V p  +  V  (  V  ■ V-iP J =  0
V J

Hence the following holds:

V  ( —iu p  +  ( V ' f ) ) = 0

Multiplying this equation by and using the fact that a , ^ are constant in Vj, the 

following equation is obtained:

13

V  (V  ■ V p  — iuJ^ p) =  0



This is equivalent to existence of constants Cj such that
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in each Vj, so that

V  • V  <p — iua^ ip =  Cj

CjV  • V p  — iua^  ( p +  -—j—
lUG ̂

Define <p =  p +  j— . In each Vj, the values of C j, G, ^ are constant, therefore, in each

Vj, V p  =  V  t , so K  =  V  t , and (2.10) is satisfied in strong sense in each Vj. 1 ^ 2 ^ 3  

has been proven.

To prove 3 ^ 1 , assume that F  =  FE +  V  t  and t  satisfies (2.10). To prove that F  

is an electric Schelkunoff potential, it is enough to prove that K  =  V  t  satisfies (2.9), 

which is readily obtained if gradient of the equation (2.10) is taken.

Next we consider a continuous electric Schelkunoff potential and investigate 

conditions for p  imposed by continuity. Consider two regions V1, V2 and a boundary 

between those regions 5V1 fl dV2. Let F1, F2 be potentials in V1, V2, respectively. 

Let n be a vector normal to the boundary, pointing towards V2. It is useful to split 

continuity of F  into continuity of the tangential components and continuity of normal 

components,

n x F1 =  n x F2 (2.11)

n • F1 =  n • F2 (2.12)

If F  is an electric Schelkunoff potential, then according to Lemma 3, F  =  FE +  V  t  =

— j jE  +  V if. As the tangential component of electric field is continuous, in order for

(2.11) to be satisfied, it is needed that V  t  have continuous tangential components,

n x V  1 =  n x V  2

The last equation states that the derivative in the tangential direction t is the same 

on both sides of the boundary,
^  ^  (2 13) 
dt =  dt (2.13) 

where , j  =  1, 2 is the tangential derivative. The equation (2.13) has to be satisfied 

for all tangential directions. Therefore, continuity of the tangential component of F  is

0
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Let us now focus on a condition more difficult to satisfy -  continuity of the normal 

component, the equation (2.12). It is useful to notice that if a 1 =  a2, then the normal 

component of the electric field is not continuous. Representing the potential in a form 

F  =  — iijE +  V ^  one may see that (2.12) is equivalent to

To sum up, the continuity of the normal component of F  (2.12) is equivalent to 

a jump in the normal derivative of <̂ , dictated by jump in normal component of the 

electric field E . The jump is given in (2.15).

Armed with those results, we are ready to prove the main theorem of this paper:

T h eorem  4 Suppose that the following assumptions are satisfied:

• Maxwell’s Equations (2.1) are satisfied for E ,H  in weak sense in an open, 

bounded region Q C R 3 with Lipschitz boundary, subdivided into disjoint open 

sets Vj, j  e  I .

• a ,p  are constant in each Vj, a is real and

0 <  am <  aj <  aM <  ro, 0 <  ^m <  ^j <  <  ro for all j  e  I  (2.16)

• V  ■ Jimp =  0 inside each Vj

which is equivalent to

(2.14)

or using a different notation:

(2.15)
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Then there exists a continuous electric Schelkunoff potential F  satysfying

E =  —iu F  +  v f ^ - H  (2.17)
V a^ /

V  ■ F
—-—  is continuous across boundaries between sets Vj (2.18)

a^

so (2.17) is satisfied in the sense of distributions. Moreover, if

n ■ F U  =  — iu  (n ■ E )Un (2.19)

or

V  ■ F|8fi =  0 (2.20)

then F  is unique.

For complex valued a, assumption (2.16) may be replaced with:

^ ,a  are piecewise constant,

0 <  <  rc>, |a| <  aM <  ro

and one of the following is satisfied:

• there exists a positive constant 7 such that a — ue >  7 >  0

• in the case of boundary condition (2.20),

0 <  em <  e <  £m <  ^ ,  c >  u 2£m 

where c is a constant in Poincare inequality (2.52) for functions in

R em ark  5 Assumption V  ■ Jimp =  0 is equivalent to V  ■ E  =  0 in each Vj, which 

in turn is equivalent to absence of current sources inside of V j. Notice that it is 

not assumed that V  ■ E  =  0 in the whole Q, so there may be an (oscillating) charge 

deposited on the boundaries between regions Vj.



P r o o f  : Consider an electric Schelkunoff potential F , which is the vector field 

F  =  Fe  +  V<£, with p  satisfying (2.10) in strong sense in each Vj. Because F  =  

Fe  +  V ^  =  — E  +  V ^  and V  ■ E  =  0 in Vj, the following relationship holds

V -  F  =  V - (  —— E  +  V H  =  V - V ^  (2.21)
\ iu I
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so using the equation (2.10),

V  ■ F  V  ■ V ^ (2.22)
a ̂  a ̂

As a result, ^ being continuous is equivalent to being continuous. To ensure 

(2.18), should be continuous, so we request ^ E %*(Q).

Next, a weak equation for <̂ , that results in a continuous electric Schelkunoff 

potential F , will be formulated. It was shown that a desired p  should satisfy (2.10),

(2.13), (2.15).

It is useful to notice that (2.13) is satisfied if only ^  on 3V\ n dV2, so as p  is 

a continuous function in Q, then (2.13) is satisfied automatically. Multiplying (2.10) 

by a conjugated test function and integrating by parts yields

V  /  — iu  V  f  =  0
je i JV 3ei JV

—V /  V * - V l + V /  l — i u V l  a^ 1 = 0
j e i Jyj j e i JdvA  dnj J j e i Jyj

where nj denotes a unit outward normal on dVj. Let us now analyze the middle term:

V  JqvX  dnj j  l  j!eiJV ,ji= j2  ^avn nSV2(  dnji +  dnj2 ^ 0  l  +  I a n {  d n ^ )  l

and using (2.15), the latter equals to

V  f  iu  (nji ■ Eji + nj2 ■Ej2) l  +  f
j i e i j e i j j  dvn nSV2 iu  dn

Let a function

f  =  iU (nji ■ Eji +  nj2 ■ Ej2) 

be defined on a set D  =  ( J j ei j  ei j =j2 d V j n dVj2 consisting of boundaries between 

Vji and Vj2. Then the equation for p  is obtained:

£ v v  ■ V i + iu f j  w i =  ^  f i  +  ^  I  <223)



Before we proceed, we have to consider boundary conditions for F . Rewriting 

(2.17) using (2.22) the following is obtained

E  =  —iu F  +  V  | V — | =  —iu F  +  V(iuip) (2.24)
V J

The last equation together with the boundary condition (2.19) implies 

n ■ E  =  n ■ ( —iu (  — —  j j  E  +  n ■ V (iw ^) on dQ

18

which is equivalent to
d

~0n^ dn dn
On the other hand, because of (2.22), boundary condition (2.20) implies that

0 (2.25)

^Idn =  0 (2.26)

Returning back to (2.23), the term Jdn( <^) £  vanishes if <p =  0 on dQ, as well as 

when < ,̂£ e  H ^Q ), so l  =  0 on dQ.

In the case of both Dirichlet (^|dn =  0) and Neumann (dn^|dn =  0) boundary 

conditions for <£, the weak equation for p  is:

/  V ^ ' V C +  iu [  =  /  f l  (2.27)
J n J n «/ d

To sum up, (2.17), (2.18), continuity of F , and boundary condition (2.19) imply 

that ip has to satisfy equation (2.27), for <^,l e  H 1(Q). Similarly, (2.17), (2.18), 

continuity of F , and boundary condition (2.20) imply that p  has to satisfy equation 

(2.27), for p , l  e Hi ( Q) .

Existence and uniqueness of continuous F  is equivalent to existence and uniqueness 

of the solution p  of equation (2.27) in H 1 (Q) and H ^Q ) for (2.19) and (2.20), 

respectively.

Let us analyze the left-hand side of equation (2.27). It is a bilinear form B(<£, l ) ,  

which is bounded:
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|b (^, e) i 2 / V ^  ■ V£  +  iw / a ^ ^ e
n n  

2 
2 2 2<  2 /  iv ^ iiv e i  + 2w2a^^m  /  Mi e i

n n
<  2||Vp||0 iivelis +  2w2* M | M | g  Iie||0

<  (2 +  2w V M ) (liv^IlS liveIIS +  IMIS iiei

<  (2 +  2uj‘2a 2M^2M) ( ||v^ ||o +  ||̂ ||2)(||ve 112 +  1

=  (2 +  2w2aM ̂ M )||̂ ||?||e Ill

For definition of ||.||o, ||.||i see the Appendix(Section 2.9). Moreover, this bilinear 

form is coercive:

|B(e,e)i v e  ■v e + iw /  a^ ee

The first term is purely real and the second term is purely imaginary (w ,a ,^  G

so

1 B (e-e > / „ '  ve| 2+ w L a " le 1 2)  > t i
|ve |2 +  wam^

1
>  ^ | m in(1,wam^m)

1

mpm I |e 1
n

2iv e i2 +  le i^  =  ^  m in(1,wam^m)iieIll
in Jn J V2

To summarize, the left-hand side of the equation (2.27) is a bounded coercive bilinear

form on H ^Q ) x H 1 (Q) (and on H  (Q) x H0(Q)), the right-hand side is a bounded

linear functional on H 1(Q) (and also on H l(Q )), so from the Lax-Milgram theorem,

there exists a unique ^ G H 1(Q) (or ^ G H ^ Q )) satisfying equation (2.27). Hence

there exists a unique F  for boundary condition (2.19) as well as for boundary condition

(2.20).

Let us now remove requirement that a is real in assumption (2.16). Saying that 

a =  a +  iwe is real is equivalent to neglecting the term iwe. This is a simplifying 

assumption often used for low-frequency EM fields in a conducting medium, in 

particular for magnetotellurics. However, this assumption is not necessarily required 

for B  to be coercive.

Indeed, consider B (e ,e ), the term that has to be bounded from below, to prove 

coercivity of B. Substitution of a +  iwe in place of a gives:

|b  ( e , e ) i > / |ve|2 +  iw / (a +  iwe)|e|2 
n n

/  iv e i2 -  w2eiei2 +  i waiei2 
n n n

2

2

n n n n

n



/  |Vl|2 — /  w2e|l|2 + /  wa|l|2
Q Q Q
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(2.28)

If there exists a positive constant 7 such that a — we >  7 >  0 in Q, then B  is 

coercive and the electric Schelkunoff potential F  exists.

Continuing with the calculation using this assumption, we derive the following 

estimate

| B ( l , l ) | > - ^ (  /  | Vl| 2 — /  w2e | l  |2 +  f  u a | l  | :
V2 V JQ JQ JQ

>  min — , - Y  ||lHi

-  ( L | V l  | 2 + / * u ( a —ue) | l  | 0  >  M  L | V l  | 2 + u  | l  | 2
_1 _ 112

,- 2  ’ - 2

So the bilinear form B  is coercive, and the hypothesis of Theorem 4 is true.

Consider boundary condition (2.20). In this case, l  G H ,. We will show that, 

if c >  w2eM, where c is a constant in Poincare inequality (2.52) for functions 

in then B  is coercive and the electric Schelkunoff potential exists even if 

a =  0.

Continuing with the calculation (2.28), let us drop the term containing a

|B ( l - c)| >  —  (
/ |Vl|2 — w2e|l|2
Q Q

>  —  ( /  |Vl|2 — I u 2e.M|l|2

If c >  w2eM, then there is a  G (0,1) such that c >  ac >  w2eM, using Poincare 

inequality (2.52), one can rewrite the latter as

- ^ ( ( 1  — a) /  |Vl|2 +  a f  |Vl|2 — /  u 2eM|l|2
V 2 \ JQ JQ JQ

>  —  ((1  — a) /  |Vl|2 +  a c f  |l|2 — /  w2cm |l|2
V2 \ JQ JQ JQ

>  — j ((1  — a) |Vl|2 +  (ac — w2cm) £  |l|2

. /1  — a ac — u 2e^ V  2
> mi^ - —r , —

So even in the non-lossy medium case (a =  0), if the frequency is small enough 

(c >  w2eM), B  is coercive and unique electric Schelkunoff potential F  exists for 

the case of boundary condition (2.20).



2.5 Difficulty in obtaining a weak form of 
the governing equation for the electric 

Schelkunoff potential
To be able to use the Finite Element Method for calculation of the EM field, a

weak form of the governing equation satisfied by the electric Schelkunoff potential is

needed.

In order to obtain a weak equation, one starts from Maxwell’s equations (2.1). 

Dividing the first equation by —iw .̂, taking the curl and substituting into the second 

equation, one obtains

V  x V  x E  — aE  =  Jimp (2.29)
—iw^

Next —iwF +  V  ^ j  is substituted for E  and the equation is multiplied by a test 

vector field A. The result is

[  ( V  x 1  V x  f )  ■ A — [  V  ( )  ■ (aA) +  [  iwaF  ■ A =  [  J imp ■ A 
J n \  ^ J Jn V a^ J Jn Jn

In order to integrate by parts the first term in the above equation, one uses continuity 

of the tangential component of 1V  x F , which is equivalent to continuity of tangential 

component of H  and one needs tangential components of A to be continuous across

dV i n d j .
On the other hand, in order to integrate by parts the second term, one would use 

continuity of , and one needs normal components of a A to be continuous. So if a is 

discontinuous, so is the normal component of A. This is the essence of the problem in 

obtaining a proper weak form of the equation for F . A family of vector shape functions 

with continuous tangential components and normal components experiencing specific 

jumps is difficult to build. One may consider a mixed formulation involving scalar 

and vector potential (see Section 2.6), but that increases the number of degrees of 

freedom.

It turns out that, assuming that ^ is constant, it is possible to obtain an equation 

involving only the vector potential, but for a Schekunoff potential representation of 

the magnetic field H . This idea is presented in Section 2.7.
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2.6 Formulation with both scalar and 
vector potentials

If the original field is not divergence free, a potential equation involving both

scalar and vector components must be considered. Although the number of degrees

of freedom per point in space increases from 3 to 4, the obtained equation is valid for

non-constant electromagnetic properties and the non-divergence-free field. Also the

bilinear form of the equation remains coercive as w ^  0.

In [24], in the case of Lorentz gauge #2, the authors proved the uniqueness of

Schelkunoff potential. The bilinear form

G ((F, p), (A,0))  =  / Q[V x F  ■ j  V x  A +  V -  F j V -  A — w2eF ■ A 
—iweV ■ 0 F  +  eV p ■ V 0  — w2e2̂ p 0  — iweV ■ pA]

of the weak equation they propose (see (58) in [24]), for purely imaginary frequency

w =  iU, w >  0, may be rewritten as

G =  j -(V -F + ^ U ep )(V -A + ^ U e0 ) +  f  e (V p + U F )-(V 0 + U A )+  f  —( V x F ) - ( V x A )  
Jq ^ Jq Jq ^

Using this form, we can prove boundedness and coercivity of G for F, A G 

H 0( V x ,  Q) n H (V -, Q), p ,0  G H ^Q ). So from the Lax-Milgram theorem, there 

exists a unique solution to the equation for the Schelkunoff potential that is considered 

in [24]. The solution is a continuous electric Schelkunoff potential. This formulation 

may be easily adapted to a lossy medium, which is expressed in Theorem 6.

T h eorem  6 Let the assumptions of Theorem 4 be satisfied. The unique 

Schelkunoff potential F  satisfying boundary condition (2.20), together with p = 

satisfy the following equation

Jq j ( V  x f ) ■ ( V x A )  +  Jq j (V  ■ f  +  ^ a p ) (v  ■ a  +  ,<a0 )

+  Jq a (iw F  +  V p ) ■ (iwA +  V 0 ) =  Jq Jimp ■ (iwA +  V 0 )

VA G Ho ( V x )  n H(V-)  and 0 G H0 

F  G H ( V x )  n H(V-) ,  n x F  =  n x (—i u E ) on dQ, p G HO

The bilinear form associated with the equation (2.30) is bounded and coercive with 

respect to the norm

||(A,0)||B =  V'HAHS +  ||Vx A||2 +  ||V-A||2 +  ||V0||2 +  ||0||O (2.31)
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Hence if Jimp E L2 (Q), then the solution to this equation exists and is unique. 

R em ark  7

• If the domain is a convex polygon, or if the domain has C 2 boundary, then one 

may use nodal shape functions to approximate both F  and p.

• In order to obtain the electric field, one has to calculate

E  =  —iu F  — V  p

• If one drops all the terms multiplied by u, the resulting bilinear form remains 

coercive. To prove this, one has to use the Poincare inequality for  H0( V x )  if 

H(V-)  (see [29], Lemma 3.6). The proof of this result is easier than the proof 

of coercivity of the original bilinear form, so it is omitted.

P r o o f  : The fact that the pair (F, p) satisfies the equation (2.30) is straightforward. 

As p =  — and the boundary condition (2.20) is satisfied, p E . F  is the electric 

Schelkunoff potential satisfying the hypothesis of Theorem 4 so F  is continuous, and 

hence is a member of H ( V x )  if H(V-).  Moreover, on dQ

n x F  =  n x (—iuE  — V p )  =  n x  (—iuE)

as n x V  p =  0 on dQ, which is a consequence of p E H ^Q ).

Moreover, if p =  — , then’ r (7̂  ’

V  ■ F  +  p =  0

so the middle term in equation (2.30) vanishes. If

E  =  —iu F  — V  p 

is used, equation (2.30) simplifies to

[  1 (V  x E ) ■ ( V x  A) +  iu  [  JE ■ ( a  — ^ )  =  —iu [  Jimp ■ ( a  — ^ )
Jn ^ Jn V iu J Jn V iu  /

Since A  E H 0( V x )  f  H(V-)  and p E H^, then A  =  A  — ^  e  H 0( V x )  and V  x A  =

V  x A, so it remains to show that for any A  E H 0( V x ) ,  the following equation is 

satisfied:

[  1 ( v  x e ) ■ (V  x A) +  iu /  a e  ■ A  =  —i u f  Jimp ■ A  
Jn ^ Jn Jn
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This equation is a standard equation satisfied by the electric field satisfying Maxwell’s 

equations (2.1). It is satisfied for all A  e  H o( V x ) .  We proved that (F, <̂ ) satisfy 

equation (2.30).

Let us now focus on the proof of boundedness and coercivity of the bilinear form 

B ((F , <̂ ), (A,0))  defined as the left-hand side of the equation (2.30).

Boundedness of B  is straightforward, as from Cauchy-Schwartz inequality, it 

follows that:

|B((F,^), (A,0))| =

I —( V x F ) - ( V  x A ) +  I —( V - F + —0<^)(V ■ A +  —00) +  f  0 ( iw F +V^)- ( iw A  +  V 0)
Jn — Jn — Jn

<  —  I |VxF| |VxA|+ I —  |V-F+—<t̂ | |V-A+—<t0| +  f  aM|iwF+V^| |iwA+V0|
—m Jn Jn —m Jn

<  —  ||Vx F  ||o||Vx A||o+------||V-F+—<T^||o||V-A+—<T0||o+aM ||iwF+V^||o||iwA+V0||o
—m —m

<  ||V x F  ||o||V x A||o + (||V ■ F  ||o +  —M0 M ||̂ ||o) (||V ■ A||o +  —M0 M ||0 ||o)
—m —m

+ o M(w||F||o +  ||V̂ ||o) (w||A||o +  ||V0 ||o)

<  m a ^ — , — o m , —  aM ,om , om w , omw2\ ||(F,^)||b||(A,0)||b
\—m —m —m /

To prove coercivity, we have to prove that there exists a constant /3 >  0 such that 

for any (A, 0) e  (H o(V x ,  Q) n H (V - ,  Q)) x Ho(Q)

B ( ( A , 0), ( A ,0)) >  0 ||(A,0)||B

It is enough to prove that it is not possible to have a sequence of (An, 0n) such that

1 =  \ \(An, 0n) || B =  ||An||0 +  ||V x An||0 +  ||V ' An||o +  ||V0n||o +  H0^ ^  (2.32)

and

B((An, 0n) , (An, 0n)) -------> 0 (2.33)

For proof by contradiction, assume that there is (An,0 n) satisfying (2.32) and (2.33). 

Notice that

B  ((An, 0n), (An,0n)) =  f  |Vx An|2 +  f  ~  |V ■ An +  —(J0n|2 +  f  0 |iwAn +  V 0n|2
n — n — n
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All the terms in the sum are non-negative, so if the sum converges to 0, all of the 

terms converge to 0:

I 1  |Vx Ara|2 -------► 0 (2.34)
Jq V n^ ~

I ~  |V ■ An +  va0n|2 -------  ̂ 0 (2.35)
Jq V n^ ~
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/ a|iwAn +  V 0 n| -------> 0 (2.36)
Jq n^ ~

In the following, we will prove that all the terms in || (An, 0n) || B, the right-hand

side of (2.32), converge to 0. Let us start with ||V x An||O:

||V x An||2 =  f  |V x An|2 <  Vm f  1  |V x An|2 -------> 0 (2.37)
Jq Jq V n^ ~

The last term converges to 0 from (2.34).

As An G H 0( V x ) ,  there is Hodge decomposition of An (see [14], Appendix A). 

There exist unique ^n G HO and A^ G R ( V ) X such that

An =  V<0n +  An

where R ( V ) X is the space orthogonal to the range of the gradient, namely:

R ( V ) X =  { A G H o (V x )  : Vfe„ ^  V l  ■ A =  0

One can also say that this is a decomposition of An into a curl free part V ^ n and a 

divergence free part A^. Using this decomposition, we conclude that

||V x An||2 =  ||V x A |̂|0 >  d||A^||0

Here c, depends on Q only. The last inequality is a consequence of Poincare inequality 

for H ( V x )  (2.53) and the fact that A^ G R ( V ) X. As a result, (2.37) implies that

||A |̂|2-------► 0 (2.38)

Moreover as n increases, the norm of the difference between V 0 n and —iu V ^ n goes 

to zero. Indeed,

||V0n +  iwV'0n||o =  JQ |V0n +  iw V^n|2

<  Jq 2 [|V0n +  iu V ^n +  iuA ra |2 +  | — iuA ra |2]

<  Jq a |V0n +  iu (V ^n +  A^ )|2 +  2u V q  |AnP

=  Jq a|V0n +  iuA n12 +  2u2||A^ ||0



The last two terms converge to 0 as a result of (2.36) and (2.38), respectively, hence

||V0n +  iwV'0n||°-------  ̂ 0 (2.39)

The Poincare inequality for Ho (2.52) states that there exists a constant c2 >  0 

dependent on Q only, such that

||V0n +  iwV^n||o =  ||V(0n +  iW^n)||o >  C2||0n +  iW n̂||o

As a result

||0n +  iW n̂||o -------  ̂ 0 (2.40)

Let us now work on the norms ||0n||o and ||V0n||o. Using the fact that A^ e  R ( V ) X 

and integrating by parts, one can obtain

|V^n|2 =  V<0n ' V<0n =  (An — A« ) ' V<0n =  An ' V<0n =  — V  ' An ^n
n n n n n

Using this fact, it is possible to bound from above the following expression:
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^ = i i W ’niiS +  j|^n!!S =

< |V^n|° +  i w0— |̂ n|°

I |V^n|° +  WO—|^n|2 
n J n

— V  ■ An ^n +  i WO—'^n'0

— V  ■ An ^n — 0nO—̂ n +  0nO—̂ n +  iWO—'^n'0-

— (V  ■ An +  0nO—)^n +  O— (0n +  iW ^ ) ^  
n n

<  / |V ■ An +  0nO — | |0 n| +  Om—M / |0n +  iW0 n||̂ n|

From Cauchy-Schwarz inequality, the latter is less than

|V ■ An +  O—0n|2||̂ n||o +  Om—M||0n +  iŵ n||o||̂ n||o

< ^  I— M I ~  |V ' An +  0—0n|2||̂ n||o +  °M —M ||0n +  iw0n\\o ||0n\\o n —

This bound converges to 0 because of (2.35), (2.39) and the fact that the sequence of 

norms ||'0n||o is bounded, which in turn is a consequence of (2.32) and (2.40). As a 

result

1 = | | V «  +-------^_^||^n||o n^  i i V « o  +  i W i S  0

n n n n

n

n



Hence
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||Wn||5 =  |V^n|2 -------► 0 (2.41)
Jq n^ ~

|| n̂||0 =  I  |^n|2 -------► 0 (2.42)n

From (2.41) and (2.39), it follows that

||V0n||0-------► 0 (2.43)

Similarly, (2.42) and (2.40) imply

n̂ ||0 0 (2.44)

Let us consider ||V ■ An||0 :

||V' An||0 =  [  |V ' An12 <  [  2 [|V ' An +  V^0n|2 +  |— Va 0n|2]
Jq Jq

<  2VM I ~  |V ■ An +  Va 0n12 +  2VMa M ||0n||0 
Jq v

The latter converges to 0 because of (2.35) and (2.44). Hence

||V ■ An||0-------► 0 (2.45)

The last term to consider is ||An||0. It may be bounded as follows:

||An||0 =  ||V<0n +  A„ ||0 <  ||V̂ n||0 +  ||Â ||0

The last two terms converge to 0, which was noted in (2.41) and (2.38).

All the terms of || (An, 0n) ||B converge to 0 as n ^  ro, so it cannot be that 

||(An,0 n)||B =  1. Contradiction. Hence the bilinear form B  is coercive.

If jtmp g L2(Q), then the right-hand side of (2.30) is a bounded linear functional 

on (H 0( V x )  nH (V - ) )  x H0 with the norm ||.||B, thus from the Lax-Milgram theorem, 

there exists a unique solution to equation (2.30).

The theorem above proves the existence and uniqueness of a continuous 

Schelkunoff potential by considering an equation satisfied by vector and scalar 

potentials. The main theorem of this paper, Theorem 4 shows that the existence 

and uniqueness of a continuous Schelkunoff potential is equivalent to a simpler 

equation (2.27) involving only the scalar potential. Also it is clearly shown how

Q



H  =  G — V ^ ^ ^  (2.46)

the jumps of normal component of the electric field are represented by the jumps 

of the normal derivative of the scalar potential, allowing the vector potential to be 

continuous across the boundaries between regions with different properties. This 

vector-scalar formulation forms the basis for a general finite element simulation 

scheme for non-divergence-free EM fields.

2.7 A  magnetic Schelkunoff potential
If the original field is divergence-free, a simpler weak equation involving only 

the vector potential may be obtained. This approach is presented for a magnetic 

Schelkunoff potential.

Instead of representing E  field by (2.4), a similar representation for magnetic field 

H  may be used, namely with a magnetic Schelkunoff potential G. This representation 

is mentioned in [21],

 ̂luG^ )
Existence of this representation might be proven in a similar way as in Theorem 4. 

Alternatively, existence of potential G follows from Theorem 8 with k =  .

Although in a geophysical setting, it cannot be assumed that conductivity is 

constant, most of the rocks have magnetic permeability ^ =  y 0. In this case, the 

magnetic field H  is divergence free:

V  • H  =  0

In this situation, magnetic Schelkunoff potential satisfying V  • G =  0 on dQ coincides 

with the magnetic field:

G =  H

If ^H — V  ^ i s  substituted in place of H  in a standard curl-curl equation for 

magnetic field H, one obtains the equation presented below:

[  4 ( V x H ) ^ ( V x A ) +  /  4 (V^H)(V^A) + iu [  H •A =  /  1  Jimp• ( V x  A) (2.47) 
Jn a Jn G Jn Jn G

V A e  H ( V x )  f  H(V^), n x A ^  =  0 

H  e  H ( V x )  f  H(V^),n x H|dn =  n x H |dn

where n x H  denote tangential boundary values for H .
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The bilinear form of this equation for a G R and 0 <  am <  a <  aM <  ro is 

coercive and bounded with respect to a norm

||A||DC =  ^||V x A||0 +  ||V ■ A||2 +  ||A||0

So the equation admits a unique solution, which is the magnetic field H .

The advantage of the equation (2.47) is that even if the term iu  f Q v 0H  ■ A was not 

present, which happens when the frequency w =  0, the bilinear form would remain 

coercive, and as a result, the system matrix is well conditioned for small frequencies. If 

there is a jump in conductivity, the condition number of the system matrix increases, 

yet the situation is similar to a discontinuous coefficient in the Poisson equation. 

Even if there is a high contrast in conductivity, it should be sufficient to use standard 

vector multigrid preconditioners (see [25]) for the iterative solver to converge.

This kind of regularization has been studied in the literature (see [26, 27]) without 

introducing the notion of the Schelkunoff potential. Indeed, if the original field 

is divergence free, then the Schelkunoff potential with boundary condition (2.20) 

coincides with the original field. An interesting eigenvalue analysis for the equation 

with and without divergence term is presented in [30].

Caution is needed as (H 1)3 n H 0( V x )  is not always dense in H(V-)  n H 0( V x )  

(see [26] or Appendix B in [14]). In geophysical applications a computational domain 

is usually a convex polygon (in magnetotellurics it is a cuboid). In this situation, 

(H 1)3 n H 0( V x )  is dense in H(V-)  n H 0( V x ) ,  so the use of nodal shape functions 

leads to a convergent discretization. Numerical tests involving equation (2.47) are 

presented in Section 2.8.

2.8 Numerical results
In this section, the magnetic field for a plane-wave (magnetotelluric) source 

is calculated using equation (2.47) and compared with a field calculated by an 

independent integral equation code of [28].

The considered model is a conductive brick of resistivity 1Qm and dimensions 1km 

x 2km x 2km in the whole space of resistivity 100Qm. The field is calculated 500m 

above the brick, along a line going in y-direction. Second-order nodal shape functions
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are used for each component of the field. Hexahedral mesh is used. A sketch of the 

model and hexahedral mesh is presented in Figure 2.1.

The solution H  is approximated by
n

H =  V  Xj Nj (2.48)
j=l

where n is the number of degrees of freedom, Nj are shape functions. Inserting (2.48) 

into equation (2.47) gives

In I  ( V «  E "= , x N j )  ■ (V  x Nk) +  Jn | ( v  ■ j  x j N j )  (V  ■ N„)

+ iu  In E n=i xj Nj ■ Nk =  In I  Jimp(V x Nk)

which produces a linear system A x  =  b to be solved, where

Akj =  f  4 (V  x N j) ■ (V  x Nk) +  /  4 (V  ■ N j)(V  ■ N ) +  iu f  ^ o N  ■ N  
Jn a Jn a Jn

bk =  [  1  J imp ■ (V  x Nk)
./n a

The total field of a plane wave in a whole space with a brick is decomposed Ht =  

Hp +  Hs, Et =  Ep +  E s into a primary electromagnetic field (Hp, Ep) and a secondary 

electromagnetic field (Hs, E s). The primary field is a plane wave going in increasing z 

direction in whole space with the H  field in y direction and the secondary field is the 

difference due to the presence of the brick. The code solves for the secondary field Hs, 

with n x Hs =  0 on dQ. It is assumed that a =  at is the conductivity of a conducting 

brick in a whole space, with the source Jimp =  Epas, where as =  at — ap is the 

difference between the conductivity of the whole space with the conducting brick and 

the conductivity of the whole space. Two frequencies were considered: 0.001Hz and 

10Hz. The mesh consisted of 15x15x20 hexahedral elements and extended more than 

20km from the brick. The inner part of the mesh is presented on the following figures. 

The linear system had 98, 397 unknowns. QMR with incomplete LU preconditioner 

converged to 10-7 of the starting residue in 28 iterations for the frequency 10Hz and 

in 54 iterations for 0.001Hz.

Figure 2.2 presents the ratio of the secondary field to the primary field. The fields 

calculated by Integral Equation code and FEM code that uses (2.47) are similar for 

both frequencies. The proposed method gives proper values of the magnetic field H.

30



31

FEM grid(m iddle part), side view

i i 

_4000 _2000 0 2000 4000
y [m]

FEM grid(m iddle part), plane view

° prism
receivers positions

-LI_L
0

_4000 _2000 0
y [m]

2000 4000

F igure 2.1. Sketch of a considered model for numerical simulation(left); Hexahedral 
mesh cross-sections(right)
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Magnetic field, real part, freq = 10Hz Magnetic field, imaginary part, freq = 10Hz
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Magnetic field, real part, freq = 0.001Hz Magnetic field, imaginary part, freq = 0.001Hz
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F igure 2.2. Ratio of the secondary field to the primary field for frequency 10Hz(top) 
and for frequency 0.001Hz(bottom)
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2.9 Appendix
In this section, formal definitions and some intuition for the spaces used in the 

paper are presented.

H 1 space, defined formally below, is a space of scalar functions in Q that are 

square integrable, and for which it is possible to calculate gradient, and the gradient 

is square integrable as well. A useful intuition is to think about members of this 

family as being continuous. For example, if the domain is split into two subsets and 

the function experiences a jump on the boundary between those two subsets and 

otherwise is continuous, it is not a member of H 1. This is a natural space for scalar 

potentials for which the gradient exists.

H ( V x )  is a space of vector fields, defined in Q, which are square integrable, and 

for which it is possible to calculate the curl, and the curl is square integrable. It is 

useful to imagine the members to have continuous tangential components across any 

surface in Q. Normal components do not have to be continuous. This is a natural 

space for force fields, electric field E  and magnetic field H .

H(V-)  is a space of vector fields, defined in Q, which are square integrable, and for 

which it is possible to calculate the divergence, and the divergence is square integrable. 

Fields in this family will have continuous normal components across any surface in 

Q. This is a natural space for fluxes. Total electric current J  and magnetic induction 

B  are members of this family.
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L2 =  L2(Q) =  {p
H 1 =  H 1 (Q) =  {p
H ( V x )  =  H ( V x ,  Q) =  { A
h (v -) =  h (v -, Q) =  { A

Q ^  C : Jq |P |2 <  r o J 
Q ^  C : / j  |Vp|2 +  Jq |p|2 < ro }
Q ^  C3 : J j  |V x A |2 +  J j  |A|2 <  ro }  
Q ^  C3 : J j  |v ' A|2 +  J j  |A|2 < r o }

If homogeneous boundary conditions are assumed, a subscript ” 0” is added. For 

H 1, H 0(V  x ), H 0(V-), the value of the function, tangential, or normal components of 

a vector field are fixed, respectively. If n is a vector normal to the boundary dQ, then



H0 =  Hl(Q)  =  G H 1(Q) : ^|sn =  0}
H o (V x )  =  H o (V x ,  Q) =  ( A  g H ( V x , Q) : n x A ^  =  0}
H o ( V )  =  H o ( V ,  Q) =  ( A  g H ( V ,  Q ) :  n ■ A U  =  0}

Additionally, norms defined below are used in the paper.

IMIo =  J f e M 2

IMIi =  VIM io  +  IlV^lio =  J I n  M 2 +  In I W I 2

Three vector identities are used. For K, L : R 3 ^  C 3, u : R 3 ^  C, we have:

V  x V  x K  =  V (V  ■ K ) — V  ■ ( V K ) (2.49)

[  (V  x K ) ■ L =  [  K  ■ (V  x L) +  f  (n x K ) ■ L (2.50)
Jn Jn J on

[  V u  ■ K  =  — [  uV  ■ K  +  /  u (K  ■ n) (2.51)
Jn J n J on

Poincare inequalities (see Appendix A in [14]):

cIMIo <  IIV^IIo for ^ G H  (2.52)

cIIAIIo <  IIV x AIIo for A G Ho ( V x ) ,  A G R ( V ) ± (2.53)

cIIAIIo <  IIV ■ AIIo for A G Ho(V-), A G R ( V x )1 (2.54)

The following theorem expresses the fact that a Schelkunoff type representation is 

valid not only for electric field E , magnetic field H , and for piecewise constant ^, a, 

but is a general feature of members of H ( V x )  and any function k that is bounded 

from above and below in Q.

T h eorem  8 Let Q be an open bounded subset of R 3 with Lipschitz boundary. For 

any K  G H o( V x ,  Q), and any k : Q ^  C such that k =  Kr +  iKi

Vx G Q Kr(x) >  0, 0 <  Km <  Ik(x)I <  km <  ro (2.55)

there exists

F  G H o (V x ,  Q) DH (V- ,  Q) (2.56)

such that

kV  ■ F  G H1(Q) (2.57)

and

K  =  F  — V ( kV^ F ) (2.58)
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R em ark  9

• One may also consider K  e  H ( V x )  and F  e  H ( V x )  f i H 0(V-). The proof is 

similar. Equation (2.59) has to be considered for  F, A e  H 0(V-)

• Notice that we no longer need the assumption that k is piecewise constant or 

that the field K  is piecewise divergence free.

P r o o f  : Consider F  e  H(V-) ,  a solution of the equation:

V A e  H(V-)  / f  ■ A + [  k (V  ■ F ) ( V -  A) = [  K  ■ A (2.59)
Jn Jn Jn

A calculation similar to the one in the proof of Theorem 4 shows that the left-hand 

side of (2.59) is a bounded and coercive bilinear form with respect to the norm

||A||v =  J  f  |A|2 +  f  |V- A |2
V Jn Jn

Hence the problem has a unique solution from the Lax-Milgram theorem.

It remains to show that the solution F  has all the desired properties. First, let 

us show that kV  ■ F  is a member of H ^Q ). It belongs to L2(Q), as F  e  H(V-)  and 

|k| <  km <  ro. Let us consider V ( k V  ■ F ) as a distribution. Let us take any vector 

field with compact support in Q, having derivatives of any order, A e  ( C ^ Q ) ) 3. 

Such A is also a member of H(V-) ,  so it satisfies (2.59). Evaluating the value of the 

distribution V ( k V  ■ F ) at A, we obtain:

<  V ( k V  ■ F ), A > =  -  <  kV ■ F, V  ■ A > =  -  f  k (V  ■ F ) ( V  ■ A) (2= 9) f  (F  -  K ) ■ A
Jn Jn

Therefore, V ( k V  ■ F ) =  F  — K  e  L2(Q). We have shown that kV  ■ F  e  H  1(Q) and

also that (2.58) is satisfied. Let us now show that a trace of kV  ■ F  on dQ is 0. For

any A e  H(V-),  we have

f  (kV  ■ F )A  ■ n =  f  V ( k V  ■ F) ■ A +  [  (kV ■ F ) ( V  ■ A) (2=8)
J dQ J Q t/ Q

f  (F  -  K ) ■ A +  [  (kV  ■ F ) ( V  ■ A) (2̂ 9) 0

So indeed, (kV  ■ F ) e  H,]-. This implies V ( k V  ■ F ) e  H 0( V x ) ,  also K  e  H 0(V x ) .  

From (2.58), one can conclude that F  =  K  +  V ( k V  ■ F ), so F  e  H0( V x ) .
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CH APTER 3

3D M AGNETOTELLURIC INVERSION  

INCLUDING T O P O G R A P H Y  USING  
DEFORM ED H EXAH ED R AL EDGE  

FINITE ELEMENTS A N D  DIRECT  

SOLVERS PARALLELIZED ON  

SMP CO M PU TER S, PART I:

FORW ARD PROBLEM A N D  

PAR AM ETER  JA C O B IA N 1

Kordy M.23, Wannamaker P.3, Maris V .3, and Cherkaev E.2

3.1 Abstract
We have developed an algorithm, which we call HexMT for 3D simulation and 

inversion of magnetotelluric (MT) responses using deformable hexahedral finite el

ements, that permits the incorporation of topography. Direct solvers parallelized 

on symmetric multiprocessor (SMP), single-chassis workstations with large RAM 

are used throughout, including the forward solution, the parameter Jacobian, and 

model parameter update. In Part I, the forward simulator and Jacobian calculations 

are presented. We use first-order edge elements to represent the secondary electric 

field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low 

frequencies or small material admittivities, the E-field requires divergence correction. 

With the help of Hodge decomposition, the correction may be applied in one step after
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the forward solution is calculated. This allows accurate E-field solutions in dielectric 

air. The system matrix factorization and source vector solutions are computed using 

the MUMPS library, which shows moderately good scalability through 12 processor 

cores but limited gains beyond that. The factored matrix is used to calculate 

the forward response as well as the Jacobian of EM field and M T responses using 

the reciprocity theorem. Comparison with other codes demonstrates accuracy of 

our forward calculations. We consider a popular conductive/resistive double brick 

structure and several topographic models. In particular, the ability of finite elements 

to represent smooth topographic slopes permits accurate simulation of refraction of 

electromagnetic waves normal to the slopes at high frequencies. Run time tests of 

the parallelized algorithm indicate that for meshes as large as 150x150x60 elements, 

the M T forward response and the Jacobian can be calculated in ~  2.5 hours per 

frequency. Together with an efficient inversion parameter step described in Part II, 

M T inversion problems of 200-300 stations are computable with total run times of 

several days on such workstations.

3.2 Introduction
Impressive progress has been made over the past several years in the simulation 

and inversion of three-dimensional (3D) diffusive electromagnetic (EM) responses for 

earth electrical resistivity structure. Most approaches have adopted finite difference 

or finite element numerical methods although the integral equations technique also 

has been utilized [see reviews by 1, 2]. An effective simulation and inversion algorithm 

needs to handle a large range of structural scales due to possibly complex resistivity 

distributions and the wide frequency bandwidth of survey techniques (e.g., potentially 

seven or more orders of magnitude in magnetotellurics). Furthermore, in many 

orogenic or resource settings, the earth’s surface can show considerable topographic 

variation which will have its own EM response and introduces nonuniformity of 

receiver placement with respect to subsurface structure.

To include topography in earth resistivity models, we pursue the finite element 

method. Finite elements allow a relatively smooth representation of topography 

whereas the stair-step construction inherent with finite differences may introduce
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spurious local electric field behavior [3]. Several authors have considered the choice 

between tetrahedral and hexahedral elements for this purpose [e.g., 4-6], with tetrahe- 

dra argued by some to allow a more arbitrary discretization of structure. However, we 

will show that much can be accomplished using hexahedral elements, and their simpler 

implementation in both the forward and inverse modules helps to keep computer 

resources manageable and may facilitate wider transfer of technique within the EM 

community. We solve for the electric field through the governing Helmholtz equation, 

so edge finite elements are used (lowest order type) [7]. These conforming elements 

allow field discontinuities normal to conductivity interfaces to be represented but 

preserve continuity of the tangential field component. Finite elements do not invoke 

material averaging procedures across cell boundaries as is done in staggered grid finite 

difference schemes [4] so there is no question about the placement of sharp interfaces.

The design factors cited above can put high demands upon mesh discretization 

and computing resources for larger data sets. Because of such demands, especially 

memory, iterative solutions have dominated the literature heretofore [8- 11, and many 

others]. Since at least the work of [12], however, iterative forward solvers are known 

to become ill-conditioned and slow to converge if grid cell aspect ratios grow to 

be extreme. Moreover, iterative solutions for the Helmholtz equation require careful 

preconditioning and even so may sometimes fail to converge [also see 13]. They become 

expensive when many right-hand source vectors are needed, such as in controlled- 

source applications or the inversion approach we describe, as each source requires the 

work of a full simulation. Conditioning issues may apply as well to iteratively solving 

normal equations in the inversion parameter step (op. cit.).

Recent advances in computing power, especially emergence of less expensive many- 

core, symmetric multiprocessor (SMP) workstations with substantial RAM, have 

motivated us to implement direct solvers both for the forward model responses and 

for Gauss-Newton inversion parameter steps. This is intended to produce a practical 

3D inversion code incorporating topography that can handle moderately large data 

sets on an affordable, single-box computer format. We find that accurate solutions 

for meshes with large element aspect ratios having run-times nearly independent 

of frequency are possible. The solution of hundreds of source vectors for the cost
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of factoring the forward system matrix allows explicit calculation of the parameter 

Jacobian accurately and efficiently, as has been applied for some time with the 2D 

problem [e.g., 14-16].

We certainly are not the first to examine direct solutions for 3D problems. In

[17], the author created a staggered-grid finite difference algorithm for simulating 

marine CSEM responses. The authors of [18, 19] used a direct solver in their finite 

difference H-field simulator for TDEM inversion. In [4], the authors utilized rectilinear 

edge finite elements in forward modeling of seafloor CSEM models. The author of

[13] incorporated the solver of [17] to compute forward responses and parameter 

the Jacobian explicitly and create an inversion algorithm where the parameter step 

was estimated using a preconditioned conjugate gradient (PCG) scheme. In [6], the 

authors develop an unstructured mesh of tetrahedra with the forward problem solved 

directly and the parameter step computed via PCG or iterative quasi-Newton method.

In Part I of our contribution, we apply a direct solver to edge finite element 

(FE) equations of a deformed hexahedral mesh and verify that accurate responses are 

achieved for subsurface and topographic structure. Good responses are obtained also 

in the dielectric air portion of the model after applying a divergence correction. The 

parameter Jacobian is computed accurately and efficiently in the direct framework 

exploiting reciprocity. Moderately large meshes can be computed in what we believe 

are practical run times. In Part II, simulations are combined with M T data to form 

normal equations for a regularized inversion step. We investigate both model space 

and data space [20] formulations of the step and confirm that significantly larger 

parameter sets can be handled by the latter for typical M T data. We invert a well- 

known field data set to demonstrate algorithm performance in real-world settings. The 

algorithm, which we name HexMT, is parallelized for widely available, server-class 

SMP workstations.

3.3 Finite element formulation
For representing structure with topography, we use an FE mesh such as in Figure 

3.1. Corners of elements at the air-earth interface (surface) are adjusted vertically to 

represent elevation changes. This is similar to the fashion of [21]. Sub- and suprajacent 

element layers are moved similarly but with steadily diminishing magnitude away from
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F igure 3.1. 3D view of an example hexahedral mesh with topography. Only the 
underground part of the mesh is shown. One sees increasingly high aspect ratio of 
elements approaching the boundary dQ.
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the surface until upper and lower datum planes are reached. Beyond those planes, the 

element layers remain flat. The height and depth of these planes from the background

Formally, the spatial domain of Figure 3.1 is a cuboid Q, whose top portion is 

air (a =  0) and whose lower portion is earth’s subsurface (a >  0) which may exhibit 

topography in its central portion. We assume that the conductivity of the earth’s 

subsurface may be an arbitrary three-dimensional (3D) isotropic function in the 

middle of the domain, while toward the distant domain boundaries, the conductivity 

becomes 1D with flat topography, i.e., changing only vertically. In the frequency 

domain with e1Mt time dependence and u the angular frequency, the physical property 

variables are admittivity a =  a +  iue with electrical conductivity a >  0 , dielectric 

permittivity e >  0, and magnetic permeability ^ >  0.

Similar to numerous other authors [e.g., following 22], we define (Ep, H p) as 

primary fields, which would be those within and over the 1D host, for use as an 

impressed source J imp. Thus we denote

air-earth interface typically are several times the maximal topographic model relief.

J imp =  — (a — ap)Ep (3.1)

Secondary and primary fields are added to obtain total fields as:

E* =  E  +  E p, H * =  H  +  H p (3.2)

One assumes that far from conductivity inhomogeneity, i.e., near dQ

(3.3)

The secondary field E  obeys the vector Helmholtz equation in the open spatial domain 

Q C R 3:

[22]. As a basis for finite element formulation, we will consider a weak form of the 

equation (3.4):



satisfied for all F  G H 0( V x ,  Q). The solution E  should be a member of the same 

Sobolev space H 0( V x ,  Q), which is formally defined as

H o (V x ,  Q) =  {F :Q  ^  C 3 : f a (|F|2 +  |V x F|2) <  rc , (3 6)
n x F|do =  0} l' ' )

It is a space of complex valued vector fields that are square integrable with square 

integrable curl. Heuristically, one can think of the members of this space as having 

continuous tangential components across any surface going through Q. H 0( V x ,  Q) 

is a natural space for the electric field E. The boundary condition n x E  =  0 is 

a natural consequence of (3.2) and (3.3). Equation (3.5) imposes weakly another 

condition: V  ■ E  =  0 on dQ, which is also a consequence of E  «  0 close to dQ.

For numerical approximation, we choose first-order edge elements ( V x ,  Q) on 

a hexahedral mesh [see 7]. By construction H ^ ( V x , Q) C H 0( V x , Q) and as the mesh 

element size h ^  0, H ^ ( V x , Q) approaches H 0( V x , Q). Therefore, this discretization 

is called “compatible” . The tangential component of the members of H ^ (V x ,  Q) are 

continuous across elements while the normal component may experience a jump. 

Degrees of freedom of the first-order edge elements are related to the integral of the 

E-field along an edge. Through Stokes theorem, an integration of E  along the edges, 

around the face yields the flux of V  x E  through the face. This shows that edge 

element discretization is compatible with the curl operator.

The electric field over Q is represented as a linear combination of the edge shape 

functions N  with coefficients ^:

ne
E  =  £ & N  (3.7)

j=1

where i =  1 , . . .  ,ne are indices of the edges that do not lie on the boundary. By 

substituting this to equation (3.5) and using Nj as test functions, one obtains a linear 

system

=  b (3.8)

(3.9)
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In V Jn

bj =  J imp ■ Nj (3.10)
n
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The secondary magnetic field is calculated as

E
H (3.11)

This justifies the choice of first-order edge elements which have the same accuracy 

O(h) for both the field and the curl.

Note that 1D host layer interfaces may project through individual deformed 

elements and as a result, J imp is discontinuous within an element. The integration of 

terms in (3.9) and (3.10) is done using a quadrature integration of the form:

(3.12)
i=1

where m  are points in the reference element, which is a unit cube in our case and v  

are weights. If the integrand f  is smooth in the element, which is true for (3.9) and 

for (3.10) if the 1D host layer interface does not project through an element, positions 

M and weights v  are set according to Gaussian quadrature. Yet for (3.10), if a 1D 

conductivity layer interface splits the element, the integrated function is discontinuous 

and the integration is done by distributing m  uniformly in the unit cube and setting all 

Vj =  n . For accuracy of integration, n should have larger values than in the case of a 

smooth function. As will be seen, with sufficiently fine integration of the primary field 

over the element conductivity differences, we are able to achieve accurate responses.

In this paper, we consider the magnetotelluric (MT) source, namely that of a 

vertically propagating, planar EM wave. The total field components at specified 

surface locations and frequencies are interrelated through the tensor impedance Z  

and tipper K  as:
Ex Z xx Zxy
E = ZZyz ZZyy

K1v zx KK zy

hx

Hy j
(3.13)

where subscripts x, y ,z  denote components of a vector field. The equation (3.8) is 

solved twice for two polarizations (k =  1,2) of the source field E p, typically in the x 

and then the y directions, to generate two equations in two unknowns for each row of 

the tensor (3.13). The impedance element equations are listed in, e.g., [23] and can 

be written analogously for the tipper.
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A receiver can be positioned at an arbitrary location r with respect to element 

edges via appropriate interpolation. In general, let r be inside an element with edges 

e1, . . . ,  e12. Then field E k at location r is given by

Here wE , w^ ,w E contain interpolation vectors with at most 12 non-zero values 

corresponding to x,y,  and z components of edge shape functions Nei( r ) , . . . ,  Nei2(r).

This time, the only non-zero values of w ,f, wH, w:f are x,y,  and z components of

Total fields are obtained as in (3.2).

By convention and for inversion convenience, the location r of an M T receiver is

is continuous across the surface, it is immaterial whether we approach the surface 

from within an element below or above the air-earth interface. E-fields normal to a

^ is the same above and below the surface, the magnetic field should be continuous 

as well. However, our edge element discretization allows for discontinuous tangential 

components of the magnetic field. Thus we use an average of the H-field just above 

and just below the surface. As a result, interpolation vectors w corresponding to 

the magnetic field may have up to 20 non-zero entries. The interpolation vectors w 

depend neither on the primary source fields nor on the conductivity model a.

(3.14)

Similarly, the secondary magnetic field H k (r) for polarization k, calculated using

(3.11) at location r, is given by

at the earth’s surface at an element face center. Because the tangential electric field

surface would have to be evaluated on the side of interest. If magnetic permeability

3.4 Divergence correction
It has been recognized for the first time by [24] that matrices formed from the 

numerical approximation of equation (3.4) suffer from a particular ill-conditioning.



The second term on the left side of (3.4) becomes very small at either low frequencies 

or small admittivities, so the solution becomes vulnerable to parasitic curl-free fields. 

These are manifest as erroneous divergences of current density within the earth model 

that require corrective steps. For example, consider a linear system (3.8) whose true 

solution is £, approximated by (3.7). Let the gradient of a potential field be added 

to the solution such that ne
E  =  E  +  V  <p =  ^  (3.16)

i= 1
and let the values of V p  be of order 1. The residual r of equation (3.7) is defined by: 

r =  A£  — b =  A£ — b +  A(£ — £) =  A(£ — £) (3.17)

The i-th component of the residual vector r is:

ne
ri =  ^  Ai,j (£j — £j ) 

j= 1

which for air in particular reduces to

ri =  —u 2e0 Ni ■ V<p 
Jn

Thus the residual will be non-zero, but very small -  of the order u 2e0 for air. Even if 

we modify the field substantially by adding V<p, there may be hardly any difference 

in the residual value. An eigenvalue analysis of ill-conditioning of equation (3.8) is 

presented in Appendix A (Section 3.11).

For iterative solutions to equation (3.8), the typical procedure for removing spu

rious curl-free fields (divergence correction) is to compute several solution iterations, 

estimate current divergences over the discretized model domain, calculate the curl-free 

fields arising from such divergences, and remove these fields from the full iterative 

solution at that stage [e.g., 23-27]. This is repeated numerous times until final 

convergence. In their direct solution, the authors of [13] augment equation (3.8) 

to explicitly enforce a divergence condition, resulting in an increase in matrix rank 

by four-thirds.

We present an alternative technique that achieves an efficient and accurate diver

gence correction for our FE method. Consider any domain Q, with spatially changing
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conductivity 7, which includes both air and the subsurface. The space H0( V x ,  Q), 

defined in (3.6), may be decomposed into the null space of the curl and the space 

orthogonal to it [28]. Specifically:

Ho ( V x )  =  R (V )  © R ( V ) ^  (3.18)

For every F  G H0( V x ,  Q), there is a unique decomposition:

F  =  V p F +  F± , p F G H0(Q), F± g R ( V ) ±# (3.19)
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where
H1(Q) =  (p :Q ^  C 
R(°V) =  (V p  
R ( v )±# =  ( K  g Co

Jn ( M 2 +  |VP |2) <  ^  P |dn =  0} 
p G H 0(Q)}
/ n 7 K  - V p  =  0 Vp GH1(Q)}

For a discussion of Sobolev spaces H 0( V x )  and in our context, see [29, 30]. 

The decomposition (3.18) is called a Hodge decomposition of H 0( V x )  and it exists 

when Q includes both air and the earth’s subsurface (see Appendix B in Section 3.12).

To visualize the subsequent derivations, consider Figure 3.2. Let the solution E 

to equation (3.5) be represented using the Hodge decomposition (3.19), namely

E  =  VpE +  E ± , p E G H0(Q), E± g R ( V ) ±# (3.20)

By setting K  =  K^ G R ( V ) ±# and then K  =  V p , one can show that (3.5) is 

equivalent to two uncoupled equations on R ( V ) ±# and R(V) ,  respectively:

Jn i V  x E ± 'V  x K ± +  ^  Jn 7E ^ K  =  Jn Jlmp'K ± (3 21)
W n  7 V Pe ' V P =  Jn Jlmp'V P .

The first equation is satisfied VK^ G R ( V ) ±#, the second Vp G H ( Q ) .  The second 

equation ensures that the component V p E is proper, so if we impose this equation, 

we may remove the error of the form V p . In a discrete case, we are dealing with 

% h( V x ,  Q), which is the space of first-order edge elements. An important property 

of this space is that a Hodge decomposition similar to (3.18) exists [see 28]. The space 

%o(Q) has to be replaced with %Qh(Q) -  the space spanned by first-order nodal shape 

functions on the same mesh.
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F igure 3.2. Hodge decomposition of the solution E , together with the added error 
of the form V p .



The correction is applied as follows. Let E be an approximation of the electric 

field given by (3.7). Solve Poisson equation for V ^ corr G %Qh(Q), V^ G %1,h(Q):

iw /  <rV^corr ■ V ^ =  (E — J imp)-V^ (3.22)
n n

The corrected electric field Ecorr is

Ecorr =  E — V^corr (3.23)

The correction may be given further justification by considering the second 

equation in (3.21). Using the fact that E^ =  E — V ^ E G R (V )±# and integrating by 

parts, we obtain:

iw /  (V  ■ (aE ))p  =  /  (V  ■ Jimp)^ (3.24)
n n

Thus we ensure that the divergence of electric current is proper weakly, on average, 

with ^ G (Q) as a weight. The right-hand side of (3.22) may be viewed as 

excessive divergence of the electric current, which is removed when (3.23) is applied.

Divergence correction requires solving the Poisson equation (3.22), which we do 

using nodal-based finite elements. The divergence correction system matrix has three 

times less variables than the original system matrix, and at least four times less 

non-zeroes. In our experience, the divergence correction requires much less run-time 

than solving the original system (3.8); factorization phase is at least 8 times faster 

and solve phase is at least 5 times faster.

3.5 Field and M T  response Jacobian
A primary goal in developing the FE simulator is to apply it to nonlinear inversion 

of MT field data. As described more fully in our companion paper, we examine both 

model and data space approaches to parameter updates under the Gauss-Newton 

framework [20]. For defining terms as related to FE simulation, the model space 

update equation is [e.g., 31, 32]:

[JT BdJ +  ABm](mra+i — TO0) =  JT [d — F  (m„) — J (mn — m0)] (3.25)

F (m k) is the MT response at iteration n using our finite element code, d is the 

vector of Nd observed MT data weighted against their estimated covariance matrix
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B - 1, Bm1 is a model covariance matrix which stabilizes or regularizes the Nm model 

parameter variations, m0 is a reference model, and A is a constant controlling the 

trade-off between data fit and model parameter stabilization.

Term J is the Nm by Nd matrix of the parameter Jacobian or derivatives [31] 

which specify the incremental change in the value of an MT response datum (in Z  

or K ) to an incremental change in the value of a subsurface electrical conductivity 

parameter. First we focus on the derivatives of the secondary fields. There have been 

numerous ways to express this in the literature [e.g., 33]; here we basically generalize 

from the 2D approach of [15]. Recalling the interpolation vectors w, consider an entry 

aj of the FE mesh conductivity vector a. The entry may correspond to a single 

element or a group of them. The derivative of a field value wT£k with respect to aj 

may be evaluated as:
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d(wT §k) 
da. wT d£k _ Td(A-1bk)= w

= w
da j 
T

wT
da j bk +  A-1 dbida j

wT
(—A -1 A-1)bk +  A-1 ̂  

- A -1 dA (A-1bk) +  A-1 90.

wT - A -1 dA £k +  A-1 fa-

for source polarization k. This reduces to:

d (wT t k) 
da.

Tw A 1 dA k dbk--------£k +--------
daj daj

(3.26)

As written, in order to calculate the derivatives of the field values with respect to 

all (aj )N=1, one would have to solve one linear equation for each polarization and for 

each a j , and then multiply by the proper w, to obtain the desired derivatives. That 

yields 2 ■ Nm linear systems to solve, where Nm is the number of inversion voxels.

However, exploiting interchangeability of sources and receivers in reciprocity, 

(3.26) may be rewritten as

d(wT £k) 
da. (wT A -1 

(A
T T -Tw

_ dA tk I dbk
da. ’  +  da.

_ dA tk i dbk
da.  ̂ da.

(3.27)

In this form, we solve one linear system for each field component. The method yields 

5 ■ Nrec linear systems to solve, where Nrec denotes the number of receivers. The

matrix A, defined at (3.9), is symmetric, so A =  A 1. To calculate A 1w, we are



solving a linear system where the source w, defined at (3.14), (3.15) is distributed on 

the edges surrounding the receiver location [cf. 15].

The Jacobian for impedance Z  and tipper K  at each receiver follow by appling the 

chain rule to the equations for the impedance and tipper elements of (3.13) defined 

from applying the two source polarizations k =  1, 2. The individual impedance 

element derivatives are listed in [23] and the tipper element derivatives follow by 

analogy. For inversion implementation, derivatives are converted to be with respect 

to log10 resistivity [34].

3.6 Direct solver

Several attractive features of direct solutions were listed in the Introduction. Here 

we investigate the viability of 3D FE modeling and inversion performed on single

chassis, multicore, symmetric multiprocessing (SMP) computers typically used in 

server applications and which are relatively affordable. We were attracted to this 

platform at first for direct solution of the model-space, Gauss-Newton parameter 

step equation, which was parallelized using a matrix tiling approach under OpenMP 

compiler directives and showed good scalability across an 8-core workstation with 32 

GB RAM [35]. Initially this tiling solution was applied also to the banded [4] FE 

matrix and showed good scalability across a newer 24-core workstation with 512 GB 

RAM [36]. However, solution time overall was slower than desired, for example, taking 

over 1 hour per frequency for a mesh with 85, 88, 50 cells in the x, y, z directions, 

respectively (85x 88y 50z) and two source vectors (i.e., no Jacobian).

Thus we have investigated the MUMPS library [37, 38], as have others [4, 17

19], to factorize A =  LLT. Athough this library is written for distributed memory 

architecture (using MPI), we show that it performs well on SMP machines. The 

matrix A in (3.8) is complex valued and symmetric (but not hermitian). The main 

idea is that a permutation of variables P  is found and the matrix is replaced with 

P A P T (permutation of both columns and rows of the matrix, so that the matrix 

remains symmetric). Then matrix L is found such that P A P T =  LLT. The last step 

is the solve phase, i.e., solving the system (3.8), which may be written as
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P A P T(P£) =  Pb or LLt £ =  Pb, where f  =  P£



Permutation P  is chosen to minimize the number of non-zero values in L matrix, and 

to allow for parallelization of the factorization and solve phases.

MUMPS allows use of third party ordering libraries; recommended choices are 

METIS [39] and SCOTCH [40]. We tested both together with their parallel versions 

ParMETIS and PT-SCOTCH. In the end, we have selected METIS to be most suitable 

based on the experience below.

A test problem for a hexahedral mesh with 53x 53y 38z cells was chosen, giving 

a system matrix A of ~  307,000 variables. The test machine had 8 cores (two Intel 

X5355 Clovertown quad-core processors at 2.66 GHz) and the results are presented in 

Table 3.1. The analysis time is that needed to calculate the ordering matrix P , while 

factorization time is that needed to calculate L such that P A P T =  LLT. Solve time 

is the time needed to solve (3.8) for 500 different vectors b, which would be needed 

to calculate the Jacobian matrix J in an MT problem with 100 receivers.

In this test, the parallel versions of the ordering libraries calculate matrix P  faster, 

yet the ordering produced is not the same. In particular, ParMETIS gives an ordering 

with 30% more non-zeroes than METIS. The factorization time is nearly three times 

slower and the solve time is 1.5 times slower. Also one needs almost twice the memory 

to store L with ParMETIS, so we have stopped considering it. To chose among the 

remaining orderings, we consider a similar test on a 24-core workstation (four Intel 

E5-4610 Sandy Bridge hex-core processors at 2.4 GHz), the results of which appear 

in Table 3.2.

When 24 cores were used, the PT-SCOTCH ordering experienced some incon

sistency. The number of non-zeroes is slightly larger than for SCOTCH and the 

factorization time is 50% bigger. Also the solve time is 30% greater. Our tests show 

that the parallel versions of orderings SCOTCH and METIS calculated ordering 

faster, but the ordering was of poorer quality. Comparing METIS and SCOTCH, 

because METIS has a shorter analysis time while the factorization and solve times 

are similar, we settle on the METIS library. However, results of different tests on 

other machines might vary.

Analysis time appears independent of the number of cores used. Additionally, 

the factorization and solve times increase more rapidly than the analysis time as
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Table 3.1. Ordering library tests for MUMPS using both METIS and SCOTCH, 
and their parallel correspondants, on an 8-core workstation

ordering
library

analysis
time[s]

factorization
time[s]

solve time 
for 500 
rhs[s]

RAM 
memory 

used [GB]

number of 
non-zeroes 

in L
METIS 7.7 96.4 192.2 6.729 194,581,000
ParMETIS 3.2 283.0 299.0 11.898 252,859,250
SCOTCH 17.7 101.7 204.8 6.889 197,632,878
PT-SCOTCH 3.3 106.5 194.0 6.712 193,753,609

Table 3.2. Ordering library tests for MUMPS using METIS, SCOTCH, and PT-S- 
COTCH on a 24-core workstation

ordering
library

analysis
time[s]

factorization
time[s]

solve time 
for 500 
rhs[s]

RAM 
memory 

used [GB]

number of 
non-zeroes 

in L
METIS 7.6 20.5 34.9 8.181 192,585,549
SCOTCH 15.1 19.0 36.0 8.109 197,632,878
PT-SCOTCH 2.2 33.0 46.1 11.182 219,518,561



the problem gets larger. For example, for a model with mesh 85x 88y 46z, which 

gives around 1mln of columns in the matrix A, the analysis time, factorization time, 

and solve time for METIS are 20.5s, 180.8s, and 386s, respectively. Moreover, the 

solution phase time increases relative to factorization. Bigger problems also may 

mean more receivers in the survey, so more solution vectors (3.8) need to be reduced 

for a Gauss-Newton step.

Performance of MUMPS is increased considerably by using a BLAS library 

optimized for a given machine. Using the Intel MKL library provided a speedup 

versus a not optimized BLAS library of 2x. Additionally, the Intel library offered 

an option of using multithreaded functions for BLAS operations. Thus one can run 

MUMPS with some number of MPI processes and each process will use some number 

of threads. For example, on a 24-core machine running MUMPS with one MPI 

process and 24 threads, all parallelism is done by the BLAS library. If one uses 

24 MPI processes and each process uses one thread, all the parallelism is done by 

MUMPS.

A summary of execution times with different numbers of processes and threads 

for METIS ordering on our 24-core workstation is presented in Table 3.3 using the 

mesh 85x 88y 46z. For factorization only, one sees that the best configuration is 6 

MPI processes and 4 threads each. If solve time is considered, the fastest option is 

24 MPI processes and 1 thread for each process. MUMPS requires more memory as 

more MPI processes are used.

MUMPS parallel speedup is about 7x with 24 cores (see Figure 3.3). However 

not much is gained beyond 12 cores with a speedup of 6x. We can only speculate 

that memory or bus speeds have become limiting factors [cf. 13]. Nevertheless, we 

have found that for large models, MUMPS is at least 20x and 5x faster than our 

earlier tiling approach for factorization and solve phases, respectively. MUMPS also 

uses about two times less memory, allowing us to consider larger models with a given 

RAM.

3.7  Example forward calculations
The accuracy of our 3D FE forward code is tested against independent algorithms. 

These include a standard test of conductive and resistive heterogeneity under a flat
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Table 3.3. Dependence of execution time of MUMPS with METIS ordering on the 
number of threads in BLAS, run on a 24-core workstation, for 85x 88y 46z mesh.

number 
of MPI 
processes

number
of

threads

analysis
time[s]

factorization
time[s]

solve 
time 

for 500 
rhs[s]

RAM 
memory 

used [GB]

number 
of 

non- 
zeroes 
in L

24 1 20.5 180.8 176.4 40.5 998,715,481
12 2 19.9 154.5 191.5 38.5 998,715,481
6 4 19.3 150.5 267.5 33.3 998,715,481
2 12 19.4 186.5 422.8 28.3 998,715,481
1 24 19.3 208.2 886.2 22.4 1,092,567,331

number of cores

Figure 3.3. Speedup of MUMPS. Varying number of MPI processes, 1 thread per 
process.



surface, but we also focus on topography as a principal rationale for this work. Tests 

highlight the strength of the FE method in defining smooth, nonjagged topographic 

slopes.

3.7.1 O utcropping double brick m odel

First we consider the popular, outcropping double brick 3D model originally 

proposed in 2D by [41, 42] and included in the Commemi collection of trial models by

[43]. The central portion of its finite element mesh appears in Figure 3.4. The mesh 

has 52x 53y 31z elements, out of which the two bodies consist of 20x 21y 8z elements. 

We used 10 layers for the air and 21 layers for the earth. Element sizes grow steadily 

away from the center of the domain to a total distance of 555km from the center. All 

calculations are done in double precision.

Complex tensor impedance Z  and tipper K  elements were calculated at the 

surface, over the cells centers, along a profile at y =  16km for frequencies of 0.001Hz 

and 0.1Hz. They are compared in Figure 3.5 with those computed using the Integral 

Equations code of [44], for which the body discretization coincides with that of the 

FE mesh. The agreement between the two codes clearly is very good, and compares 

favorably with the check against a finite difference approach in [45]. Comparison was 

similarly good for the profile at y =  0km (not shown) although Zxx, Zyy, K zy are zero 

there.

The requirement for, and effectiveness of, the divergence correction described 

previously is demonstrated for a profile 2 km in the air over the center of the double 

brick model in Figure 3.6. On the left is the electric field in the x-direction across the 

sides of the body at the low frequency of 0.001 Hz. It consists mainly of numerical 

noise due to spurious curl-free electric fields. Nevertheless, as seen on the right side, 

the divergence correction is able to remove the error leaving a response which is a 

smooth, upward-continued version of a surface response (cf. Zxy in Figure 3.5). Thus 

we are able to model accurate E-fields in the air with our FE method as would be 

desired under efforts to create airborne MT platforms [e.g., 46].
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Figure 3.4. Outcropping double brick resistivity model, together with the mesh 
used. Element boundaries are drawn as solid green lines.
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Figure 3.5. Forward MT response of a double brick model for profile at y =  16km 
for comparison with Integral Equation code response. Frequencies are 0.001Hz and 
0.1Hz



3.7.2 2D valley and hill

Because topographic simulation and inversion is a principal motivation for this 

work, we present several accuracy checks here. First, we compare fields over an 

elongate 3D valley with those of the 2D valley model of [47] computed with their 

nodal FE code. The valley is 450m deep, 500m wide at the bottom, and 3km wide 

at the top in a host of resistivity p =  100Qm (3D cross-section in Figure 3.7). In 

3D, infinite strike is approximated with a 30km length (Figure 3.8). The entire 3D 

mesh consisted of 39x 41y 30z elements while the valley portion was covered by 21 

elements across the y direction. The mesh extended to 6km above the ground, 11km 

below the ground and laterally 26km and 14km from the valley in x and y directions, 

respectively.

A coarse and a finer 2D discretization are considered. The coarse valley is made 

up of 20 layers of elements each 22.5m thick. The finer valley is made up of 40 layers 

of elements each 11.25m thick. Element dimensions grow steadily away from the 

center to a total distance of >20 km to the sides and depth. Note that the 2D mesh 

is rectilinear such that slopes must be made up of triangles rather than deformed 

quadrilaterals [47]. The E - and H-fields across the valley center normalized by the 

primary fields are plotted in Figure 3.9. The responses of the 3D and 2D codes are 

in close agreement.

For the hill model, we consider the high frequency of 1000Hz to test whether the 

3D code can accurately simulate refraction of the EM fields normal to the slope, as 

was done in 2D in [47]. The small skin depth (~  160m) requires a finer mesh closer to 

the hill surface, although the lateral limits do not have to be so far (Figure 3.10). The 

mesh extends 3km above the highest point, 1.3km below the base and laterally 5km 

and 4km from the hill in x and y directions. The 2D hill has the same dimensions 

and discretization as the valley for both coarse and fine versions. We compute the 

E- and H- fields parallel to the slope of the hill, and use those values to calculate 

apparent resistivity pa.

The high-frequency pa should approach the true resistivity of the ground (100Qm) 

at high frequency because the total EM fields ideally become purely parallel to the 

slope. We present pa and phase for TE and TM modes in Figure 3.11. Note that
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before divergence correction after divergence correction

x fk m l x fk m l

Figure 3.6. Real component of electric field Ex at a height of 2 km for the double 
brick model calculated before and after divergence correction for a frequency of 0.001 
Hz. Y-axis scales are different for figure on the right and on the left; the field before 
correction is 10 x larger overall in magnitude. Tick marks along top plot border show 
calculation point locations.

y  [k m ]

Figure 3.7. YZ cross-section of a 2D valley, together with the central part of the 3D 
FEM mesh. Element boundaries are drawn as solid green lines.
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Figure 3.8. XZ cross-section of the 2D valley, together with the 3D FEM mesh. 5x 
vertical exaggeration.

y[km] y[km] y[km] y[km]

Figure 3.9. Normalized EM fields along the profile across the 2D valley, for x =  0km.

y [km]

Figure 3.10. YZ cross-section of a 2D hill, together with the central part of 3D FEM 
mesh.
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for both fine mesh 2D code and 3D code results, away from breaks in slope, pa is 

close to 100^m and phase is close to 45°. In fact, the 3D phase results look the most 

accurate, which may reflect a greater ease for layers of hexahedral elements to simulate 

essentially 1D fields than for triangles, although the 2D results are converging with 

finer discretization.

dimensions as the previous 2D hill, but is square in cross-section (see Figure 3.12). It 

is 0.45km high, 0.5km at the hilltop, 2km wide at the base with resistivity of 100^m. 

It is calculated for 2Hz, and the MT response is compared to that of [21]. Two grids 

were considered, the finer grid being 97x, 97y, and 50z while the coarser grid is 27x, 

27y, 24z. The pa and phase along a profile across the center of the hill is presented in 

Figure 3.13. The MT response calculated in [21] and the field calculated by our FE 

code appear very similar.

3.7.4 Jacobian test calculations

Next, we test the calculation of MT response Jacobian as they are essential for 

inversion purposes. We consider derivatives with respect to log10 resistivity model 

m =  (m j)N=1, where in principle, each mj could be parsed as finely as a single finite 

element. We consider the coarse 3D hill mesh with receivers over the centers of surface 

element faces at y =  0km. For the test parameter, we use two adjacent finite elements 

on the facing hill slope (Figure 3.14). The Jacobian is calculated using reciprocity as 

described previously and it is compared with a symmetric difference approximation 

of the derivative, i.e.,

where ej is a vector with only one non-zero entry at the jth position, which is equal 

to 1. In Figure 3.15, we present the result of calculation for frequencies of 100Hz 

and 0.001Hz for Z xy ,Z y x ,K zy  and for the inversion voxel marked in the model

3.7.3 3D trapezoidal hill

The final test model is the 3D hill model considered in [21]. It has the same

(Z, K )(m  +  ejh) — (Z, K )(m  — ejh) 
2h

figure. We used h =  0.05. A wide range of frequencies and various locations of the
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y[km] y[km]

Figure 3.11. The pa and phase responses from the 2D code and 3D codes for the 
2D hill at 1000 Hz.

Figure 3.12. Central part of the finer mesh for the 3D hill model.
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Zxy Zyx

x[km] x[km]

Figure 3.13. MT responses of the 3D hill model along a profile across the hill 
compared with the result of [21]. The results of Nam have been discretized from their 
plots.

Figure 3.14. Central part of the coarse mesh of 3D hill, together with the location 
of receivers and the chosen inversion voxel mj
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Figure 3.15. Comparison of a Jacobian of Z, K  calculated using reciprocity and 
symmetric difference



inversion voxel have been tried and in all cases the values of the Jacobian showed 

precise agreement.

3.8  Exam ple run times

In Tables 3.4 and 3.5, we present run times related to solving the equation

(3.8) with the MUMPS library. Recall that MUMPS finds a permutation matrix 

P  (analysis phase), then calculates matrix L such that P TAP =  LLT (factorization 

phase). MUMPS then uses L to solve a linear system (3.8) for numerous rhs vectors 

b. Times in the tables correspond to work done for a single frequency. In order to 

calculate full MT Jacobian, for each receiver location, one needs to solve 5 linear 

systems (3.8). For example, 500rhs in Table 3.5 would correspond to a survey with 

100 receivers. As expected, run time increase is geometric with respect to number of 

unknowns. With data space parameter step formulation, as discussed in Part II, the 

inversion run time will be dominated by the forward problem and Jacobian. For the 

largest test mesh and assuming each element can be a parameter, a 400 site survey 

(20 x 20) could be inverted using a mesh with five columns of parameters per site in 

both x and y directions, leaving >20 columns of padding to far distances outside the 

survey domain.

3.9  Conclusions

Finite elements provide a flexible and accurate means of simulating EM responses 

of 3D resistivity structure beneath topographic variations. Hexahedral elements 

provide a straightforward means of representing earth surface slopes, are compatible 

with the Helmholtz governing equation as discretization increases, and generate 

FE system matrices of simple structure. In particular, discretization requirements 

for topography at high frequencies are modest compared to those for traditional 

rectilinear meshes because layers of elements can lie parallel to the earths surface. 

By invoking an efficient current divergence correction, accurate E-field results may 

be obtained at very low frequencies and small admittivities, even those of dielectric 

air. Because we utilize a secondary field approach, it should be straightforward to 

generalize to finite source problems. As will be shown in Part II, hexahedral elements 

also provide a simple path to regularized inversion, for example, by direct mapping

68



69

Table 3.4. MUMPS analysis and factorization phase times for factoring matrix A in 
(3.8) for various meshes (in hr:min:sec).

mesh number 
of un

knowns 
in A

number 
of non- 

zeroes in 
A

number of 
non-zeroes 

in L

analysis
time

factor
ization

time

RAM
memory
used
[GB]

30x 30y 25z 62,785 1, 008, 965 21,614,954 00 : 00 : 01 00 : 00 : 02 1.27
50x 50y 35z 250,635 4,111, 215 146,622, 950 00 : 00 : 04 00 : 00 : 13 6.9
75x 75y 45z 734,820 12,179, 490 647, 221, 887 00 : 00 : 14 00 : 01 : 55 29

100x 100y 50y 1,460,250 24,316,190 1,679,493, 542 00 : 00 : 32 00 : 06 : 08 70
125x 125y 55z 2,519,680 42,085, 390 3, 487, 912, 888 00 : 00 : 59 00 : 17 : 12 147
150x 150y 60z 3,969,360 66,443, 340 6,643,228, 266 00 : 01 : 36 00 : 53 : 10 273

Table 3.5. MUMPS solution phase time for the linear system (3.8), for various 
meshes and numbers of rhs vectors b.

mesh 100rhs 500rhs 1000rhs 1500rhs 2000rhs
30x 30y 25z 00 : 00 : 01 00 : 00 : 07 00 00 14 00 00 21 00 00 28
50x 50y 35z 00 : 00 : 06 00 : 00 : 32 00 01 04 00 01 36 00 02 08
75x 75y 45z 00 : 00 : 27 00 : 02 : 16 00 04 32 00 06 48 00 09 04

100x 100y 50y 00 : 01 : 16 00 : 06 : 21 00 12 43 00 19 04 00 25 26
125x 125y 55z 00 : 02 : 36 00 : 13 : 01 00 26 01 00 39 02 00 52 03
150x 150y 60z 00 : 04 : 36 00 : 23 : 02 00 46 04 01 09 06 01 32 08



of triaxial parameter roughness damping into deformed coordinates.

Efficient and affordable parallel computing solutions have emerged that are putting 

direct solutions to fairly large 3D EM simulation problems within reach of an 

increasing number of users. These include a powerful public-domain library for 

direct solutions (MUMPS) that is seeing increased community use. Because the 

factorization provided by direct solutions allows economical solution of large numbers 

of source vectors, explicit and accurate values of the parameter Jacobian can be 

obtained. Technological advances also include single-box, server-class workstations 

with numerous cores and substantial RAM that provide relatively affordable com

puting. Parallelization of the direct solver MUMPS on multicore SMP computers 

was moderately good but reached communication limits beyond ~  12 cores. Further 

improvements might be achieved with faster memory performace. Parallelization also 

could be increased with distributed computing using multiple SMP. Nevertheless, 

direct simulations including the Jacobian can be done on a single workstation for 

meshes with one million elements in 1-2 hours.
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3.11 A ppendix A

To explain the ill-conditioning related to spurious curl-free E-fields, let us analyze 

eigenvalues of the system matrix A. A good approximation of those eigenvalues are 

eigenvalues of the operator

L (F ) =  V  x ^—V  x F^ +  i^<rF (3.28)

L should be defined on some suitable finite dimensional space, dependent on the mesh 

size h. First let us consider infinite dimensional space of vector fields F  e H0(V x , Q), 

with the additional assumption that V  x  ̂V  x F  exists and is square integrable. Let
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the domain be a cube Q =  [0, M ]3 with a ,^  =  const. It is straightforward to verify 

that the eigenvectors of L are of the form:
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CX cos (n Mx^ sin U  My y j sin (n Mz

Cy sin (n MXx) cos ( n My y j  sin (n If z)

Cz sin (n Mxx) sin ( n My y ) cos (n Mzz)

for kx, ky, kz G N where

'  Cx '

1
k

1 1
zkz11

0
Cy = ky , 0 or kz
Cz 1 k 1 1 k 1 ky _

The corresponding eigenvalues are: 

A =
. . n2|k|2 . . n2 |k|2 . .
i^a, ---7777- +iWff, ---7T7" +  iU<T

(3.29)

(3.30)

(3.31)/(Af2 ^ M 2

For an infinite dimensional space, we have 3 < |k|2 < ro, yet for a discretization with 

spatial mesh parameter h, it would be:

3 < |k|2 < 0 ( ( t - (3.32)

Let us look at those eigenvalues for some practical setting for magnetotellurics. Let 

M  =  10km, M =  50. The quantity is in the interval [2-10-1 , 2-10-2]. The values 

of the first eigenvalue iu<r for conductivity corresponding to the earth subsurface 

(<r =  0.01 m) and air (a =  iue0) are presented in Table 3.6. The corresponding 

condition numbers of the system matrix, defined as cond(A) =  mX(|A|), are presented 

in Table 3.7. One can see that if a conductivity corresponding to the earth is used, the 

condition number increases as the frequency decreases, yet remains at a reasonable 

level of 10+5 even for frequency as small as 0.01Hz. If conductivity of the air is used, 

the situation is different. As the frequency decreases, the condition number increases 

quadratically and reaches very large value of of 10+18 for the frequency 0.01Hz.

In magnetotellurics, the domain contains both earth and air. Because of the 

presence of the air, the matrix is ill-conditioned. Nevertheless, the calculated electric 

field, approximated by solving (3.8) using a direct solver, and using (3.7) has improper 

values only in the air. The electric field below the earth’s surface does not suffer from
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Table 3.6. Values of |wa| for different a and w. Unit of |wa| is ^m̂

w 2n 100Hz 2n 1Hz 2n 0.01Hz
earth: a =  0.01 —m

air: a =  iweo

iO1
oo 

2
 

o 
•o
5.

6.3 ■ 10-2 
5.6 ■ 10-11

6.3 ■ 10-4 
5.6 ■ 10-17

Table 3.7. Condition number of the system matrix A as a function of frequency w 
and a

w 2n 100Hz 2n 1Hz 2n 0.01Hz
earth: a =  0.01 —m2air: a =  iw2eo 3. 

3.
5

1
 

1
1

 
o 

o
+ 

+ 
a 

I—1 3.1 ■ 10+3 
3.5 ■ 10+12

3.1 ■ 10+5 
3.5 ■ 10+18



numerical instability. It is also worth mentioning, that the magnetic field, calculated 

using the curl of electric field as in (3.11), has proper values in all of the domain. It 

shows that the error added to the electric field in the air is curl-free.
The condition number of the matrix gets this large because of the smallness of the 

eigenvalue A =  iua, corresponding to the first eigenvector in (3.30). Notice that this 

eigenvector is curl-free, whereas the other two are not. Moreover, the first eigenvector 

is equal to V  p , where

f  kx \ f  ky \ f  kz \p =  sin n — x sin n — y sin n — z
Y V M  )  \ M yJ V M  )

and p|dq =  0. This is not a coincidence.

3.12 A ppendix B
Theorem  10 (H odge decom position  for H o(V x, Q)) If

F  e H o(V x, Q)

Re(a) > 0, Im(a) > 0, 0 < am < |a| < aM 

then there exist unique pF e H^(Q), F± e R (V )±a such that

F  =  V  p f  +  F±

P ro o f : p F, F± satisfy (3.36) if and only if p F e H^(Q) satisfies

f  a V p FV  p =  f  F V p  Vp e Hq(Q) (3.37)
Jq Jn

and F± is defined as F± =  F  — p F.

Existence and uniqueness of solution to (3.37) follows from the Lax-Milgram 

theorem if only F  is square integrable (which is true for F  e H0(V x ))  and the 

left-hand side of (3.37) is a bounded, coercive bilinear form. It is true, because of 

Poincare inequality for Hq(Q) if only a is in the first quadrant of the complex plane 

C and is bounded from 0 and ro. This is what we assume in (3.35).

Rem ark 11 The important conclusion is that the decomposition exists in our situa

tion, when the domain Q includes both the air and the earth’s subsurface. In the earth 

a =  a +  i^e0 and in the air a =  i^e0. If we assume that a is bounded, assumption 

(3.35) is satisfied as a > 0 and e0 > 0.
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(3.35)

(3.36)
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4.1 Abstract
Following the creation described in Part I of a deformable edge finite element 

simulator for 3D magnetotelluric (MT) responses using direct solvers, in Part II, we 

develop an algorithm named HexMT for 3D regularized inversion of MT data includ

ing topography. Direct solvers parallelized on large-RAM, symmetric multiprocessor 

(SMP) workstations are used also for the Gauss-Newton parameter step estimate. 

By exploiting the data space approach, the computational cost of the parameter 

step becomes much less in both time and computer memory than the cost of the 

forward simulation. In order to regularize using the second norm of the gradient,
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we factor the matrix related to the regularization term and apply its inverse to the 

Jacobian, which is done using the MUMPS library. For dense matrix multiplication 

and factorization related to the parameter step, we use the PLASMA library which 

shows very good scalability across processor cores. A synthetic test inversion using 

a simple hill model shows that including topography can be important; in this case, 

depression of the electric field by the hill can cause false conductors at depth or 

mask the presence of resistive structure. With a simple model of two buried bricks, a 

uniform spatial weighting for the norm of model smoothing recovered more accurate 

locations for the tomographic images compared to weightings which were a function 

of parameter Jacobian. We implement joint inversion for static distortion matrices 

tested using the Dublin secret model 2, for which we are able to reduce nRMS to

1.1 while avoiding oscillatory convergence. Finally, we test the code on field data by 

inverting full impedance and tipper MT responses collected around Mount St. Helens 

in the Cascade volcanic chain. Among several prominent structures, the north-south 

trending, eruption-controlling shear zone is clearly imaged in the inversion.

4.2 Introduction

In Part I [1], we have shown that moderately large 3D magnetotelluric models 

including topography can be simulated accurately in practical run times using a 

direct solver on a single-box, server-class multicore workstation with large RAM. 

The deformable mesh approach allows us to avoid expending many rows of cells to 

define just the topography as is done with finite differences, and which even then may 

not escape local electric field distortion [e.g., 2, 3]. The public-domain solver library 

MUMPS is effective on this platform, showing moderately good scalability across at 

least 12 cores that appears better than scalability for distributed clusters [cf. 4]. For 

a mesh of 150x 150y 60z elements, 2000 source vectors (corresponding to 400 MT 

sites) could be solved in just under twice the time required for factorization, with 

total time for both under 2.5 hours. Meshes comparable to that could simulate site 

arrays of similar size to the Earthscope MT Transportable Array of the U.S. Pacific 

Northwest using this parallelized direct solver [5].

Here in Part II, we also use direct solvers exclusively to create a 3D regularized
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inversion algorithm for MT data including topography, which we name HexMT. Due 

to its good convergence properties, we pursue a Gauss-Newton formulation for the 

nonlinear, iterative parameter update, as have others [4, 6-8]. The number of param

eters usually is significantly greater than the number of data for tomographic-style, 

regularized inversion. As noted by [9], inverse formulations using fewer parameters 

than data may suffer from a dependence of solution upon parameterization. One may 

also expect some lack of fit to data to occur if parameters are not defined optimally. 

On the other hand, tomographic inversions for MT data sets of a few hundred sites 

may require a number of parameters of order one million [e.g., 5]. Direct solution of the 

parameter step matrix in the traditional model-space definition [e.g., 6, 10], even using 

parallelization across multicore [11], is not practical for that scale of parameterization. 

As a result, researchers have tended to retain iterative solvers for the parameter step 

solution whether cast as Gauss-Newton or otherwise [e.g., 4, 12-14].

An alternative is to investigate the data space formulation for solving the Gauss- 

Newton parameter step [9, 15, 16]. This approach reduces the size of the parameter 

step matrix from Nm x Nm to Nd x Nd (m =  model parameters, d =  data), while 

the solutions in theory are identical. Consider an MT survey of 400 sites with 

20 frequencies (four per decade say) and twelve data per frequency (four complex 

impedance and two complex tipper elements). The total data set size would be

96,000. As we show, this turns out to be a very manageable size of matrix to invert 

using direct solvers, particularly as parallelized across multicore SMP computers. 

Matrices twice this size in fact are not impractical, allowing data sets of more sites, 

greater bandwidth, or finer frequency sampling, with a fairly arbitrary number of 

model parameters.

This paper sets out with a brief overview of both model- and data space approaches 

to solving the Gauss-Newton step. Attention is paid to the mechanics of solving 

stably the step equation for a model gradient regularization functional. Run time 

and scalability of the step solver is investigated for multicore using different sized 

trial models. At this point, it appears that parameter step solution time will 

remain significantly smaller than forward simulation run time across all models with 

moderately fine parameter discretization. The inversion code is tested on several
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models. These include a simple conductive brick below a hill to show the strength 

of effect that topography can have on inversion models assuming a flat surface. 

Subsequently, we examine a multiprism test model used as a community standard

[17] and experiment with various regularization weighting schemes. Finally, we invert 

an extensive MT data set acquired over the volcano Mount St. Helens [18] to show 

performance for a model where parameter number approaches one million.
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4.3 Forward problem
The forward problem is described in detail in [1], touched on briefly here to define 

terms. We consider the magnetotellurics (MT) problem in a domain Q that includes 

the air and earth’s subsurface. The earth’s surface is allowed to have topography. 

In order to calculate the MT response due to an arbitrary 3D conductivity structure 

a, we consider a hexahedral edge finite element discretization of the equation for the 

secondary electric field E :

I 1 V  x E ■ V  x F  +  iw 
In V-

aE • F —iw(a — ap)Ep ■ F (4.1)

ap close to the domain

for E, F  e H0(V x ), where w is angular frequency, e > 0 is dielectric permittivity, ^ is

magnetic permeability, a _  a+iwe, and ap _  ap +  iwe. Ep is the primary electric field,

which is that of a plane wave traveling downwards in primary conductivity structure

ap, the conductivity of a 1D earth. We assume that a

boundaries. The solution space is defined below:

H o(V x, Q) _  {F :Q  ^  C3 : / n (|F|2 +  |V x F|2) < ro,
n x F|dn _  0}

The approximate solution to equation (4.1) is obtained using edge elements. Sec

ondary magnetic field H  is calculated as
E

(4.2)

H

The total field E t, Ht is a sum of secondary and primary fields:

E t _  E +  Ep, Ht _  H +  Hp 

The MT response is obtained by finding Z, K  such that

HX 
H  j

EX ' Ẑxx Z■̂ xy
E^ _ ZZyz ZZyy
HZ K zx KKzy

(4.3)

(4.4)

(4.5)

n n



is satisfied no matter what is the polarization of the primary (Ep, Hp) plane wave.

4.4  G auss-N ew ton inversion procedure
For defining inversion terminology, we consider again Figure 3.1 where layers 

of hexahedral elements are deformed vertically to represent topography. This was 

efficient for the forward problem, but also will be for inversion. Although elements 

below the earth surface could be grouped to form a parameter, for maximal flexibility, 

we usually consider each element as being a possible parameter linked through 

regularization in a tomographic inversion.

4.4.1 D escription o f  the m ethod

As is usual, the portion of the model domain Q below the air-earth interface is split 

into model parameters, which are disjoint regions with constant resistivity. Let 

m =  ( mi , . . . ,  mNm) be the vector of parameter log10 resistivity values. We work with 

log10 resistivity as this ensures that resistivity remains positive during inversion and 

makes the square norms of the step matrix columns more nearly equal in magnitude

[19]. There are data points collected, denoted as d =  (d1, . . . ,  dNd). As individual 

data values, we consider the real and imaginary parts of all entries in Z, K  for all Nrec 

receivers, namely =  12Nrec, and for all frequencies. Let e1, . . .  ,eNd be the vector 

of measurements errors, for which standard deviations Sj are known. By F(m) G RNd 

we denote the response of the current model m, calculated by the forward code.

The inversion procedure seeks a model m such that

|Fj(m) -  dj| ~  Si, i = 1 , . . . , N d  (4.6)

together with the constraint that some measure of roughness of the model m is limited. 

The roughness will be measured by

||m -  mo||Bm =  (m -  mo)TBm(m -  mo) (4.7)

where m0 is a reference model and is a symmetric non-negative definite matrix, 

so that ||.||Bm is a seminorm. Often is such that ||m- m0||Bm =  ||V(m- m0)||L2, 

where V  denotes spatial gradient (in all three directions) of the log10 resistivity model. 

In the deformed mesh geometry we implement, the three directions in general are not
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purely perpendicular; one remains vertical while the other two lie along the variably 

deformed layer of elements.

Specifically, in the inversion, we seek a model m that minimizes the functional

W (m) =  (F  (m) — d)T Bd(F  (m) — d) +  A(m — m0)T B m(m  — m0) (4.8)

for some suitable value of A > 0, where B d is a diagonal matrix with -2 as entries.Si
The Gauss-Newton procedure is an iterative one that seeks a minimizer of (4.8). 

It starts with an initial guess mi. Given a current model mn, the Gauss-Newton 

scheme approximates the response F(m) around mn by its linear part:

F(m) «  F(m n) +  J(m  — mn) (4.9)

where J is a Nd x Nm matrix of derivatives of F

dF-
Ji,j =  dm1 (m), i =  1 , . . . ,  Nd, j  =  1 , . . . ,  Nm (4.10)

whose computation we have described in Part I. If (4.9) is used, the functional (4.8) 

becomes quadratic and the minimizer mn+1 satisfies a linear equation:

[JT BdJ +  ABm ](mn+i — mo) =  JT Bdd (4.11)

where d =  d — F(m n) — J(mn — m0).

The matrix in the equation (4.11) is dense, symmetric positive definite, and has 

dimension Nm x Nm. This is the traditional model-space parameter step formulation. 

The time to solve it using Cholesky decomposition is O( 3 N^). This cubical growth 

eventually makes direct solution of the model-space Gauss-Newton scheme impractical 

for arbitrarily large model size Nm.

The data space method [9, 15, 16] replaces equation (4.11) with a linear equation 

having only Nd unknowns. For the moment, we assume that B m is invertible (which 

implies that Bm is positive definite and ||.||Bm is a norm), the treatment of which we 

will revisit shortly. When (4.11) is left-multiplied by Bm1, we obtain:

Bm1[JT BdJ +  ABm ](mn+i — mo) =  Bm1JT Bdd

Bm1 JT (BdJ )(mn+i — mo) +  A(mn+i — mo) =  B;n1JTBdd
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mn+1 -  mo =  Bm1JTABd[d -  J(mn+1 -  mo)]

This proves that

m„+1 -  mo =  B - J TP (4.12)

for some P G . When (4.12) is plugged into (4.11) and the equation is left- 

multiplied by Bm1, we obtain an equation equivalent to (4.11):

Bm1 j t  [BdJBm1 j t  +  A/]p =  Bm1 j t  Bdd (4 .13)

This equation will be satisfied if P satisfies

[BdJBm1 JT +  A/]P =  Bdd (4.14)

which is equivalent to

[JBm1JT +  A B -1̂  =  d (4.15)

The latter equation has a unique solution as JBm1JT is symmetric non-negative 

definite and B - 1 is symmetric positive definite. The data space Gauss-Newton 

method finds P, the solution to (4.15), and uses (4.12) to calculate a model update

mn+1.

4.4.2 C om putational considerations

In the data space method, one has to invert Bm and apply it to JT in order 

to calculate JBm1JT. In [16], matrix Bm1 was denoted Cm and called the model 

covariance matrix. It was not defined explicitly as a result of inverting a norm matrix 

Bm, but was treated as a natural matrix to consider for regularization.

The choice of a proper regularization functional ||.||Bm is important, as minimizing 

the functional W  in (4.8) is equivalent to minimizing the data misfit

(F(m ) -  d)TBd(F(m ) -  d) (4.16)

subject to a condition on the model norm

||m -  mo||Bm < 5 (4.17)

where 5 > 0 depends on the choice of A. The regularization functional we consider is 

L2 norm of the gradient of the model,

||m -  mo||sm =  ||V (m -  mo)||L2 (4.18)
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In order to use this functional in data space method, matrix Bm must be inverted. 

However, if (4.18) is used, Bm is non-negative definite and thus singular. To make it 

positive definite, we add a small number e > 0 to its diagonal before inverting. The 

functional is negligibly modified as then
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To estimate the cost of calculation of Bm1JT, we exploit the coincidence that 

the matrix Bm has a similar non-zero pattern as a scalar Poisson equation over the 

inversion voxel grid. Even if each inversion voxel consists of one element, the number 

of inversion voxels will be similar to the number of interior nodes in the earth’s 

subsurface. Thus the non-zero pattern in Bm should be similar to those of the matrix 

used for the divergence correction described in Part I and the number of variables 

should be less. Even though the number of linear systems to be solved is 12xNrec, 

and for divergence correction it was 5 x Nrec, here all variables are real valued. Thus 

if the solution library MUMPS is used, the time of factorization of Bm and applying 

Bm1 to JT is expected to be less than the cost of applying the divergence correction, 

which takes a fraction of time of the forward problem. One concludes that calculation 

of B-1 JT will not add significant execution time to the inversion process no matter 

how large the model is, as long as the direct solver is used for forward modeling.

For matrix multiplications like JTBdJ and the Cholesky factorization needed to 

solve equations (4.11) and (4.15), we use the PLASMA library [20, 21]. PLASMA is 

a linear algebra library for dense matrices, parallelized for shared memory machines 

(like the SMP unit we use). It uses a matrix tiling approach [cf. 11, 22, 23], which 

reduces the time of transporting the matrix entries from RAM to CPU. The scalability 

of Cholesky factorization and matrix multiplication using PLASMA is presented in 

Figure 4.1. The speedup using 24 cores is ~17 and ~19 for Cholesky factorization 

and matrix multiplication, respectively.

To assemble the model-space Gauss-Newton matrix (4.11) , one has to evaluate 

JTBdJ , which has numerical complexity O(NmNd). Solving the matrix as noted 

previously has complexity O (3Nm). For the data space method on the other hand, 

to assemble the matrix equation (4.15), one has to evaluate J(Bm1JT), which has



numerical complexity O(NmN j). Solving the equation using Cholesky decomposition 

has complexity O( 3 N j). As typically Nd < Nm, the computational cost associated 

with data space method is less. The difference becomes more pronounced for larger 

MT surveys.

Example computation times are presented in Table 4.1. The models that are 

considered in the tests are listed in Table 4.2. The time to solve the model-space 

Gauss-Newton equation (4.11) increases rapidly with the model size and quickly gets 

impractical, reaching over 27 hours for the largest model considered. On the other 

hand, the time to solve the data space equation (4.15) remains short, less than one 

minute for all the models considered. In the case of the data space method, more 

time consuming than solving equation (4.15) is evaluating J(Bm1JT), which takes 1 

hour for the largest model considered. Nevertheless, the corresponding evaluation of 

JTBdJ for model-space Gauss-Newton takes longer, more than seven times longer 

for model 5. Comparable to the time of calculation of J(Bm1JT) is the time of 

evaluation of B^1 JT. However, as we expected, this time is less than that of applying 

the divergence correction (more than two times less), which in turn is almost 10 times 

less than the total time spent solving forward problem. Thus the advantage of the 

data space Gauss-Newton approach over the model-space version for this application 

is clear.

Concerning RAM requirements, for model-space GN, one needs to store the matrix 

J , which is Nd x Nm as well as the matrix in the equation (4.11), which is a symmetric 

Nm x Nm matrix. In the data space version, one needs to store matrix J and the 

matrix Bm1JT of the same size, but depending on implementation, those may be 

saved on hard disk and parts of them may be read into RAM memory when needed. 

Also, one needs to store the matrix of equation (4.15), which is a symmetric Nd x Nd 

matrix. One can see that as typically Nd < Nm the memory requirements are smaller 

for data space Gauss-Newton than for its model-space cousin.

In Table 4.3, we present the RAM memory requirements for the models considered. 

The matrix J is Nd x Nm in size, but largely can be stored on hard disk and parts 

accessed as needed. For the largest model considered, the model-space GN step 

requires 413GB, whereas the data space step requires as little as 4.6GB of RAM
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Figure 4.1. Speedup of PLASMA library for Cholesky factorization (dpotrf) and 
matrix multiplication (dgemm).

Table 4.1. Run times in format hh:mm:ss for models listed in Table 4.2. “FP” 
denotes the total time of calculation of the forward problem (response F (m) and 
Jacobian J ) using MUMPS. “FP DC” is the time spent on divergence correction using 
MUMPS(fraction of “FP” ). “GN JTB dJ” denotes the time spent on evaluation of 
JTB dJ using PLASMA. “GN” solve denotes time needed to solve the Gauss-Newton 
equation (4.11) using PLASMA once the matrix JTB dJ +  AB m has been assembled. 
“DS B-n1JT” denotes the time spent to calculate B —1JT using MUMPS. “DS JJT” 
denotes the time spent to evaluate J (B ^1 JT) using PLASMA. “DS solve” denotes the 
time spent to solve equation (4.15) using PLASMA, once the matrix JB ^1 JT +  A B -1 
has been assembled. * denotes the estimated time, the calculation hasn’t been 
done due to insufficient RAM memory. The calculations have been done on 24-core 
workstation (four Intel E5-4610 Sandy Bridge hex-core processors at 2.4 GHz).

ID FP total FP DC GN JTBdJ GN solve DS Bm1JT DS JJT DS solve
1 00:08:35 00:01:34 00:00:39 00:00:27 00:00:33 00:00:24 00:00:02
2 03:11:13 00:11:27 00:14:33 01:03:39 00:04:00 00:04:23 00:00:10
3 04:16:10 00:15:43 00:21:51 05:10:34 00:04:03 00:03:44 00:00:02
4 09:19:08 01:10:57 02:16:54 05:10:20 00:11:31 00:14:54 00:00:43
5 17:18:00 02:12:53 07:11:27* 27:12:21* 01:00:30 01:02:24 00:00:43
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Table 4.2. Statistics of test models used for run times testing. The brick under a 
hill model with topography has been used.

ID FEM grid inversion grid edges no recv no freq no Nd Nm
1 41x 41y 30z 39x 39y 19z 143,120 81 13 12,636 28,899
2 65x 65y 45z 63x 63y 29z 550,400 121 15 21,780 115,101
3 81x 81y 47z 79x 79y 31z 896,960 64 15 11,520 193,471
4 81x 81y 47z 79x 79y 31z 896,960 196 15 35,280 193,471
5 101x 101y 50z 99x 99y 34z 1,489,800 196 15 35,280 333,234

Table 4.3. RAM memory needed for matrices related to the Gauss-Newton step 
using model-space and data space for models listed in Table 4.2. “FP” denotes RAM 
needed to calculate the forward problem. “J” denotes the memory needed to store the 
matrix J of size Nm x Nd. “GN” denotes the memory needed to store the (symmetric) 
matrix JTBd J +  ABm of size Nm x Nm. “DS” denotes the memory needed to store 
the (symmetric) matrix JBm1 JT +  AB-1 of size Nd x Nd

ID Nm Nd FP J GN DS
1 28899 12636 3.4GB 2.7GB 3.1GB 0.6GB
2 115101 21780 21.6GB 18.7GB 49.4GB 1.8GB
3 193471 11520 38.8GB 16.6GB 139.4GB 0.5GB
4 193471 35280 38.0GB 50.9GB 139.4GB 4.6GB
5 333234 35280 76.1GB 87.6GB 413.7GB 4.6GB



memory depending upon treatment of J.
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4.4.3 Regularization norm  weight

Up to this point, we have not specified details of the entries of matrix Bm, other 

than that it is a finite difference representation of spatial gradients in the model 

parameter vector m. Several investigators have explored whether entries of Bm 

should also be weighted according to influence (Jacobian) of their corresponding 

parameter [e.g., 24, 25]. Here we present three different regularization functionals, 

the performance of which will be compared with numerical tests.

Consider the infinite-dimensional problem and its response F(m) given a spatially 

varying log10 resistivity model m =  m(r). Also consider the derivative S(r) of F  with 

respect to m satisfying:

F(m  +  ^m) ~  F(m) +  /  S(r)£m(r)dr (4.20)
n

for a small change in model £m. The quantity ||S(r)||2 measures the sensitivity of 

the response F  to the change of the conductivity at the point r.

As the regularization functional (m - m0)TBm(m - m0), we will consider L2 norms 

of the gradient of m with a weight v(r) > 0 defined as follows:

||V(m -  m0)||L2(v) =  /  |V(m -  m0)|2v(r)dr (4.21)
n

Further, we consider three possible values for v:

v (r) =  ||S (r)||2
v(r) =  1 (4.22)
v <r> =  P 5 W

Norm ||V(m -  m0)||L2(1) uses no information about the influence of the inversion 

voxel on the data. If norm ||V(m -  m0)||L2(||S||2) is used for regularization, smoothing 

is suppressed for parameter regions with low sensitivity, allowing them to show

additional structure [cf. 24]. Norm ||V(m -  m0)|L ( i \ will suppress regions with
L2\nsih)

low sensitivity, using the reasoning that if we cannot detect the properties of a region 

well, we will make it similar to its surroundings. This is similar to the approach of

[25], although they make a rigorous evaluation of the parameter resolution matrix 

with is computationally intractible for the larger problems we consider here.



Norm ||m||L2(v) has the property that if the inversion mesh is changed in such 

a way that the model m(r) remains the same, the norm remains the same. For 

example, if one decides to split a given voxel Vj into two voxels Vji, Vj2 and sets 

m j1 =  mj2 =  m j, the corresponding function m(v) remains the same and so does 

||m||L2(v). It is a desired property especially in the case of our hexahedral mesh, when 

the elements and as a result inversion voxels vary in size and shape; some of them 

may be nearly cubic in shape while others may be long and thin.

More details on how these norms are approximated are provided in Appendix A 

(Section 4.9).

4.5 Synthetic inversion examples

In this section, we present results of the inversion of synthetic MT data to evaluate 

algorithm performance under controlled conditions. As a measurement error, we will 

use the value
e (Zij ) = m ax{ 3.5% |Zxy -  Zyx|| , i , j  =  x , y (4 23)
e (K Zj ) =  0.03 , j  =  x ,y

We use Zxy — Zyx because it is a rotational invariant and shows relative stability to 

data noise [see 26]. As the measurement error Sj (noted in (4.6)) for real or imaginary 

part of Z  and K , we take the above value e. The data used in the inversion are 

calculated by the forward problem for the true conductivity model, with Gaussian 

noise having zero mean and standard deviation S added to the real and imaginary 

parts of Z  and K.

To assess goodness of fit of a model response to the data, we use the normalized 

root mean square (nRMS), defined as:
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nRMS(m)
\

where d is the vector of our synthetic data, F  is a vector of response of the model m, 

and S is the measurement error vector.

In the inversion process, the parameter A in (4.8) that is used to obtain model 

mj+1 is set as:

A =  nRMS(mj) ■ k (4.25)



Parameter k is set to some initial value k0 > 0 at the beginning of the inversion. 

If at some iteration the nRMS does not decrease by more than 5%, parameter k is 

decreased by a factor of two. As a result in our inversions, the parameter A steadily 

decreases and the model acquires increasing amoounts of structure. The scaling with 

respect to nRMS is consistent with experience in Constable et al. (1987) where the 

optimal A decreased as iterations proceeded and misfit improved. However, we to not 

sweep through a series of A values at each iteration due to computational expense. 

Procedures for determining A warrant more investigation.

4.5.1 Brick under a hill

Our first model is a brick under a hill in 100Qm background. The hill has 

dimensions 2000m and 4000m in x and y directions at the bottom and 500m and 

1000m at the top. The hill is 450m high. The object is placed below the hill with 

the top and the bottom of the object 650m and 1600m, respectively, below the top 

of the hill and its X Y  cross-section is a square [—328m, 328m] x [—700m, 700m]. We 

consider a conductive (5Qm) and resistive (2000Qm) object as well as no object at 

all. We compare the inversion that has the mesh conforming to the topography as in 

Figure 4.2 to the mesh without topography(flat surface). Both meshes have the same 

location of voxels in x and y directions and the same x and y coordinates of receivers. 

The only difference is the elevation of layers close to the earth surface.

We generated the data using a different grid than the one used for inversion. The 

forward code grid consisted of 95 cells in x direction, 95 cells in y direction, and 50 

cells in z direction (95x, 95y, 50z) and extended to 18km from the grid center in x 

and y directions, 5.6km above the earth’s surface (air layer), and 12.5km below the 

surface. The inversion grid was 41x, 41y, and 30z. It extended 14km and 15km from 

the center of the grid in x and y directions, respectively. There were 106 receivers. 

The location of a receiver is always at the center of the face of an element lying on 

the earth’s surface, thus the location of the forward code receivers is slightly different 

than the inversion receivers. The inversion grid, together with the location of the 

brick and receivers in 3 of the 4 quadrants, is presented in cutaway view in Figure 

4.2.

The data consisted of the impedance Z  and the tipper K  for 13 frequencies between
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1Hz and 1000Hz distributed evenly in log10 space. We added Gaussian error with 

standard deviation (4.23) to the forward data. The initial value of k0 started at the 

same value for all inversions. The starting and reference (a priori) models were set to 

50Qm uniformly. The regularization functional used was ||Vm||L2(1).

Iteration history is presented in Figure 4.3. The regularization norm ||mj — m0||Bm 

increases as the inversion proceeds and A decreases in the effort to decrease nRMS. 

One can see that inversion with topography is able to achieve nRMS close to 1 in less 

than 3 iterations, whereas the inversion without topography is struggling to decrease 

nRMS below 1.6 even though the model norm is larger than in the case of inversion 

with topography.

We have plotted cross-sections of selected models for 6 inversions in Figures 4.4 

and 4.5 for comparison. In all cases, the inversion with topography is able to recover a 

smoothed version of the original object (or no object in the no brick case). Inversion 

without topography puts a more conductive object below the ground to make-up 

for the absence of a hill. This occurs because the electric field is reduced by the 

hill as background electric current only partially flows upward into that volume [see 

TM mode results in 27]. Even for the resistive brick forward data, the inversion 

without topography returns a (somewhat) conductive object. The inversion also 

creates an oscillatory region above the object (more apparent on X Z  cross-section) 

that resembles the shape of a hill. These results emphasize the importance of including 

the topography in the inversion of MT data.

4.5.2 Simple two brick m odel

Our next synthetic model consists simply of two buried and separated bricks, one 

conductive (2Qm) and one resistive (1000Qm), in a 40Qm half-space (Figure 4.6). 

With this model, we examine the effect of inversion regularization weights on model 

characteristics.

The forward mesh consists of 58x 58y 45z elements. In the XY plane, the central 

33 x 33 elements are square with sides _  0.333km. Further from the center, the 

element sizes grow gradually and extend 130km from the center of the grid. In 

the Z direction, there were 34 elements below the surface and 11 elements in the 

air. The mesh extends to 100km above the surface and 140km below the surface.
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Figure 4.2. Central part of the inversion grid together with the receiver locations in 
3 quadrants. Conductive brick is shown below the hill.
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Figure 4.3. Inversion iteration history for model of bricks under a hill. nRMS(mj),A 
used to obtain model m j, ||mj — m0||Bm as a function of iteration number j .  The 
models plotted in Figures 4.4 and 4.5 are denoted by bold symbols.
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Figure 4.4. Inversion results for bricks under a hill along XZ cross-section at 
y =  0km. Top row shows inversion with topography, bottom row the inversion without 
topography.
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Figure 4.5. Inversion results for bricks under a hill along YZ cross-section at 
x =  0km. Top row shows inversion with topography, bottom row the inversion 
without topography.



There are 10 x 10 receivers evenly distributed in XY plane, separated by 10km. The 

forward response (impedance Z  and tipper K ) was generated for 31 frequencies evenly 

distributed in log space between 0.01Hz and 1000Hz, which gives 6 frequencies per 

decade. We added Gaussian error with standard deviation (4.23) to the forward data.

The inversion mesh consists of 41x 41y 41z elements. In the XY plane, the central 

24 by 24 elements are square with sides =  0.5km. Further from the center, the 

element sizes grow gradually and extend 135km from the center of the grid. In the Z 

direction, there were 31 elements below the surface and 10 elements in the air. The 

mesh extends to 110km above the surface and 140km below the surface. Thus the 

forward and inversion meshes differ in discretization but have the same locations for 

the receivers, which are at the center of elements faces in both cases. The inversion 

mesh is presented in Figure 4.7.

For this model, we conducted inversions using different regularization functionals. 

We used (4.30), (4.27) and (4.32) that give regularization functionals resembling 

||Vm|||2(||S||2), ||Vm|||2(1) and | | V m | | L ^ y  respectively. The value of ||S||2 was 

confined to change within a factor of 104. More precisely, two values were found S1 

and S2, such that |2 =  104, and the value of ||S||2 was truncated if it lies outside 

the interval [S1, S2]. Additionally, weights v have been multiplied by a normalization 

constant, so that the average v over the central part of the domain is the same in 

all cases. This allows us to use the same initial value of A. The nRMS, A, and the 

regularization norm as a function of the iteration number are presented in Figure 4.8. 

One can see that the nRMS values as a function of iteration number are almost the 

same for the different regularization schemes, and thus the amount of regularization 

is similar for all weightings.

The models calculated by the different inversion schemes at iteration 6 are 

presented in Figure 4.9, with weights v of L2(p) norms used for regularization to 

obtain those models plotted in Figure 4.10. Generally speaking, the weight v =  ||S||2 

decreases with depth and the weight v =  p 1̂ - increases with depth. Thus the effect 

of using L2(||S||2) is to prolong the depth extent of the formed image to minimize the 

value of the regularization norm. Similarly for L2 ^ p 1 ^ , the recovered objects tend 

to be compressed toward the surface for comparable reasons. In the case of L2 ( p 1̂ - j ,
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Plan View, z=1km— 2km Side View, y=-1.66km — 1.66km
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Figure 4.6. Sketch of two bricks model.

Figure 4.7. Cross-sections of the inversion grid for the two bricks model. Central 
part of the grid is shown.
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Figure 4.8. Two bricks model iteration history. nRMS(mj), A used to obtain model 
mj , llTOj — m0||Bm as a function of iteration number j . The model number 6, plotted 
on Figure 4.9 is denoted by a bold symbol.
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significant resistivity oscillations are apparent at shallow depths; one of their effects is 

to drive the background resistivity toward 25Qm rather than the true 40Qm because 

of the voxel-scale heterogeneity formed under the receivers. Nevertheless, the nRMS 

values are all very close, underscoring the nonuniqueness inherent in this ill-posed 

inversion problem. We observed no systematic difference in the fit of the final models 

across the frequency range for the three regularizations. Results for other models 

might differ, however. Further challenges in establishing appropriate regularization 

may be expected for more complex settings.

4.5.3 D SM 2 m odel

The Dublin MT Modeling and Inversion workshops have provided model results 

for the EM community to test newly developed simulation and imaging codes [see 17]. 

Here we consider inversion of the MT responses of the Dublin Secret Model 2 (DSM2) 

presented in Figure 4.11. It is a flat-earth model with two contacting, shallow bricks 

in a four-layer earth. There are 144 MT receivers arranged in a uniform grid 12x12 

with 7km spacing.

The forward data, supplied by the workshop organizers, consist of the impedance 

tensor Z  values only (no tipper) for 30 frequencies between 0.016s and 10000s evenly 

distributed in log10. Random galvanic distortion was applied to the responses by the 

organizers as described in [17]. Gaussian noise of 5% of the maximal impedance value 

also had been added to the distorted data set. This supplied error bound was treated 

as a standard deviation and was used for both real and imaginary parts of Z. The 

data from all sites and frequencies were used in our inversion.

The applied static distortion provides an opportunity for us to implement and 

test recent distortion removal procedures [28-30]. Specifically, we follow the approach 

of Avdeeva et al., summarized in Appendix B (Section 4.10). Initially, an inversion 

model is sought without distortion correction. This model is used as a initial guess to 

estimate a new, more stable model plus the static distortion matrices of the impedance 

Z . We invert the data using the L2(1) regularization functional.

We considered coarse and fine inversion meshes. The coarse mesh has two columns 

of parameters per site in the central portion of the model whereas the fine mesh has 

five columns of parameters per site. The purpose of the latter mesh is to test whether
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a fine discretization allows formation of a small-scale shallow structure which can 

simulate the impedance galvanic distortion without having to solve explicitly for 

correction factors [cf., e.g., 5].

Specifically, the coarse(fine) mesh consisted of 45x 45y 41z(78x 78y 50z) elements. 

In the XY plane, the central 23 by 23(58 by 58) elements are squares with sides =  

3.5km(1.4km). Further from the center, the element sizes grow gradually and extend 

600km from the center of the grid. In the Z direction, there were 31(38) elements 

below the surface and 10(12) elements in the air. The mesh extends to 300km above 

the surface and 700km below the surface. The central part of the coarse mesh is 

presented in Figure 4.12.

The inverted models are presented in Figure 4.13. Inverting only for log10 

resistivity on the coarse mesh with no distortion correction yields a model with 

nRMS of 4.2, with little further improvement by relaxing the regularization factor 

(see Figure 4.14). Subsequently, inverting also for the distortion matrices obtains a 

model with nRMS of 1.1. The latter model achieves generally smoother resistivity 

structure with values closer to the true values, especially in the deeper structure, 

than does the former model. For the coarse model, there is some scatter in the 

norm of distortion matrices versus iteration. This presumably is a result of small 

regularization (t =  0.01). Further investigation is warranted as to when, and to what 

degree of regularization, distortion should be estimated through the iteration history.

When the fine mesh inversion for log10 resistivity only is considered, the resulting 

model has nRMS of 2.2, significantly less than the similar model obtained on a coarse 

mesh. The fine mesh inversion is able to represent some of the distortion by small-scale 

variability of log10 resistivity in the vicinity of the receivers, at shallow depths. 

Nevertheless, the fine mesh inversion for log10 resistivity including the distortion 

estimation provides a smoother model with a smaller nRMS of 1.1 (see Figure 

4.14). Here we see smoother behavior in the estimated distortion versus iteration. 

From this result, we suggest that distortion matrices should be considered in tensor 

impedance inversion even for fine discretizations. However, we also advocate that fine 

discretization be used to the extent practical to ensure that nongalvanic variations at 

the highest frequencies are accommodated by the smallest-scale mesh structure.
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Figure 4.11. Sketch of DSM2 model
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Figure 4.12. Cross-sections of the coarse inversion grid for DSM2 model.
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Figure 4.13. Inversion models obtained for DSM2. Top two rows consider a coarse 
mesh. Row three and four show inversions on a fine mesh. Rows second and fourth, 
denoted by ’statics’ , show results of inversion for log10 resistivity and the static 
distortion matrices. The last row shows the true model.

iteration no iteration no iteration no iteration no

Figure 4.14. Iteration history for DSM2 model, for coarse and fine meshes. Initial 
inversion without static distortion is shown in black. Subsequent inversion with 
distortion matrix estimation is plotted in red. Bold symbols denote models shown in 
Figure 4.13.



4.6 Field inversion examples
4.6.1 M ount St. Helens

Finally, we examine the MT field data set collected by the authors of [18] 

from the north-central Cascade volcanic environment in Washington State, USA, 

to demonstrate the ability of our solution to handle moderately large models with 

topography. There are 82 soundings primarily clustered over the recently-active 

Mount St. Helens volcano, but with 14 of the sites extending in a nearly E-W profile 

past the north side of Mount Adams (Figure 4.15). This gives us the opportunity 

also to compare 3D inversion of profile data [e.g., 32] with 2D inversion results. We 

invert the complex tensor impedance Z  and tipper K  for 20 frequencies log-uniformly 

distributed from 100 through 0.0018 Hz.

The mesh, presented in Figure 4.16, consists of 111x 167y 62z elements in total. 

This requires storage of 500 GB, which fills the capacity of our particular workstation. 

Over the large central section including the two volcanoes, horizontal dimensions of 

the elements were in the 500x 600 to 500x1000 m range typically. Around this 

region, the element sizes grew gradually, covering a total area of 375 kmx 425 km. 

In the z direction, there are 50 elements below the ground and 12 elements in the air. 

The elements at the earth’s surface have a thickness of 80 m (at mesh edge) and grow 

gradually to reach an elevation of 250 km above the surface and a depth of 220 km 

below the ground. We did not attempt to include the Pacific Ocean nearly 200 km to 

the west, as that distance is significantly larger than the depth range of interest here 

(< 100 km). A rim of one element around the side edges and bottom of the mesh 

was excluded from the inversion and fixed to be a 1D (flat) initial model. Thus there 

are 109x165x49 =  881265 inversion parameters in the Mount St. Helens model. 

However, in data space formulation, the rank of the step matrix is only 19680. This 

may seem like a large model to handle 82 MT sites, but that is a result of particular 

site distribution. In principle, many more MT sites could be placed in this model 

mesh with additional computational cost only being more Jacobian source reductions 

and a larger (though still modest) data space step matrix.

The inversion was run without distortion matrix estimation for 11 iterations, with 

iteration history shown in Figure 4.17. Data error floors as given in equation (23) were
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Figure 4.15. Mount St. Helens inversion model. Elevation map of the central part 
of the domain. Coordinate (0,0) corresponds to the location of Mount St. Helens, 
marked by a red cross. Blue cross denotes Mount Adams. Blue line denotes profile 
A -B  used in Figure 4.18. MT receiver locations are marked by black and red dots. 
Red dots denote receivers used in 2D inversion of [18]. Mount St. Helens shear zone 
(MSZ) after [31].

Figure 4.16. Central part of the mesh for the Mount St. Helens inversion model. 
Blue and red crosses denote Mount Adams and Mount St. Helens, respectively.



adopted. The starting model was a 100 ohm-m half-space, the same as considered in

[18], and the starting nRMS was ~11.5. Run time on the 24-core workstation was 

~30 hours per iteration, which was by far dominated by the forward and Jacobian 

calculations over the 20 frequencies. Model 11 has nRMS of 1.2, which is considered 

a good fit so that distortion correction should yield little improvement and was not 

carried out.

Model cross-section and plan views are presented in Figures 4.18 and 4.19, and 

can be compared to the original results of [18]. The cross-section overall bears a 

close ressemblance to the 2D inversion of Hill et al., which emphasized the nominal 

TM mode (relative to profile orientation) of data. Steep low resistivity is seen in 

the middle crust directly under Mount St. Helens, presumably related to recent 

eruptive processes, of which more will be discussed shortly. This gives way at depths 

> 20 km to broad, quasi-horizontal low resistivity between the two volcanoes, which 

we attribute to lower crustal magmatic underplating and high temperature fluid 

release. Shallow, very low resistivity overlies the deep crustal conductor approaching 

Mount Adams which may reflect in part the presence of graphitic metasediments 

associate with a suture between the Siletz terrane and former North American 

margin [the southern Washington Cascades conductor or SWCC or 33], although this 

interpretation is nonunique and not without controversy [18, 34]. A large resistive 

body extending to > 15 km depth lies between the Mount St. Helens and Mount 

Adams and could be correlated with earlier Western Cascades intrusive rocks [see 

35].

The steep low resistivity directly under Mount St. Helens in Figure 4.18 is similar 

to that in the flat-earth 3D inversion model of [18] although the most anomalous 

portion does not extend to quite as shallow a depth as that in Hill’s. This may in 

part be explained by the conical ediface of the volcano inducing additional depression 

of the electric field as discussed with Figure 4.4. A second, somewhat lesser conductor 

in the 5-9 km depth range appears just west of the first one, which is more subtly 

expressed in the model of Hill et al. In plan view at 7 km depth (Figure 4.19), we see 

that this steep conductor is strongly linear in a nearly N-S direction and is associated 

with the Mount St. Helens shear zone passing through the west flank of the volcanic

104



105

ite ra tion  no ite ra tion  no ite ra tion  no

Figure 4.17. Values of nRMS, A, and model norm as a function of iteration number 
for the Mount St. Helens inversion.

Hm

A  - >  B [km ]

Figure 4.18. Cross-section of Mount St. Helens inversion at iteration 11 along profile 
A-B  marked on Figure 4.15. Black ticks at the top denote the locations of receivers 
denoted red on Figure 4.15 that were used in 2D inversion of [18]
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plan view at depth 27km
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Figure 4.19. Plan views of Mount St. Helens inversion model 11. Receivers locations 
marked by black dots, Mount St. Helens by red cross, and Mount Adams by blue 
cross.



edifice [31, 36]. Clear representation of this structure in our model we believe may be 

due to inclusion of the tipper elements in the inversion, as the tipper shows a subtle 

reversal on the west flank of the volcano [18, also see our Supplemental Material 

Section]. The second, subsidiary conductor flanks the shear zone nearby to the west.

The large resistor east of Mount St. Helens confines the large conductor further 

east to be in the Mount Adams area, providing better resolution than prior 3D images 

based just on regional tipper data [34]. The NNW-SSE limits of the resistor cannot be 

considered as well-resolved, however, without site coverage. At lower crustal depths 

(27 km in Figure 4.19), resistivity under Mount St. Helens decreases from west 

to east as in [18] and the low is somewhat elongate toward the south-southeast. 

On the other hand, low deep crustal resistivity under Mount Adams expands to 

the north. It is tempting to assign this geometry to an offset in lower crustal 

magmatic underplating associated with the E-W offset in the Cascade volcanic chain 

at this latitude. However, such conjecture should await better resistivity structural 

constraints from further 3D MT coverage both north and south of the current data 

set.

4.7  Conclusions

As other researchers are finding as well, direct solutions to various aspects of 

the diffusive EM inversion problem are becoming increasingly practical. Here we 

have shown that direct solvers can effectively handle the Gauss-Newton step for 

inverse problems approaching one million parameters with parallelization on multicore 

SMP workstations and large RAM if the step is formulated in data space. Thus, 

with the forward problem and the Jacobian computed directly using MUMPS, our 

entire inversion process is done now with direct solutions. In this case, the limiting 

computational cost both in run time and memory is the forward problem (including 

the Jacobian). Finite element models of order 150 x 150x60 elements fill a workstation 

with 0.5 TB RAM but such meshes can, for example, fit large MT data sets of 400 sites 

with five columns of parameters per site in both x and y directions with padding of 25 

expanding element columns around the mesh edges. We have not experienced system 

conditioning problems due to high element aspect ratios with our direct solutions.
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Single-box SMP workstation capabilities continue to progress, with platforms 

holding up to 4 TB RAM available at the time of this writing. Although scalability of 

MUMPS performance on multicore appears to be better than that across distibuted 

cluster systems [4, cf. ], finite scalability at present is an impediment to exploiting 

machines with larger numbers of cores. We suspect that this will be helped with 

improvements in memory speed and latency. Otherwise, run times of significantly 

larger models than that for Mount St. Helens may be prohibitive. One option could 

be to construct a distributed cluster whose nodes were large-RAM multicore machines 

such as we employed herein each devoted to a different response frequency, although 

at considerably greater hardware investment. Finally, we find that the deformable 

hexahedral mesh framework lends a predictability to mesh design and performance 

of libraries such as MUMPS that counters concerns that the geometries of simulation 

with such a mesh may not be as arbitrary as is possible with assemblies of tetrahedra.

4.8  Acknowledgements

We acknowledge the support of this work from the U.S. Dept. of Energy under 

contract DE-EE0002750 to PW. EC acknowledges the partial support of the U.S. 

National Science Foundation through grants ARC-0934721 and DMS-1413454.

4.9 A ppendix A : Approxim ation of 
regularization norms

Here, we present how we approximate norms ||V(m — mo)||L2(1),||V(m — 

mo)||L2(||S||2),||V(m — m0)||L2  ̂ 1 y  For simplicity, we will write m instead of m — m0.

First we will consider norms ||m||L2(1), ||m||L2(||S||2), ||m||L / 1 y  To approximate
V H S|1 2 /

them, we will take norm of the form:

l|m||Bm =  mT B mm  (4.26)

with appropriate matrix B m, where m =  (m)N=1 is a vector of log10 resistivities of 

inversion voxels and it corresponds to a function m =  m(r), where r is a location in 

space. m(r) is piecewise constant and m(r) =  mj whenever r is in the space occupied 

by the inversion voxel Vj.
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If one takes to be a diagonal matrix with entries wj equal to volumes of 

inversion voxels:

Wj =  #Vj =  /  dr (4.27)
yj

then one obtains a model norm ||m||Bm that is equal to the L2(1) norm of the model 

m(r):
M L  =  E f= i mi Bm( j ,j )  =  E 5=1 m2# Vj

=  Efmi /y. m (r)2dr =  / n m (r)2dr (4.28)
=  H ^ L u )

Consider the derivative S of infinite dimensional problem defined at (4.20). 

Assuming that the discretization of the domain is fine enough so that the finite 

dimensional approximation of the problem is close to the infinite dimensional problem, 

using F  for finite dimensional response, one could write that the j-th  column of 

Jacobian matrix J is:

J j =  dmj =  / .  S (r)dr <4-29)

where Vj is a j-th  inversion voxel. If we assume that the inversion voxel Vj is small 

enough that S(r) — Sj =  const for r G Vj, then a sensitivity of inversion voxel Vj is 

obtained: ________ _____
/y. S (r)dr 2

>dr (4.30)
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Wj = J J j =  V J .jJ j =  l|J.jII2
lI#VjSj||2 =  #Vj||SjII2 =  JVj ||S,

||S(r) ||2dr

If we define to be a diagonal matrix with Wj as entries, then

||m||Bm =  Ej="l mi Wj — Ej="l fy. ||S (r) || 2dr
|2

m - j
=  /n ||m(r)||2||S(r)||2dr (4.31)2
=  ||m||L2 (||S||2)

The regularization norm is approximately equal to the weighted L2 norm with 

||S||2 as a weight. Notice also that to calculate Wj =  ||J.j||2, one does not need to 

know the voxel volume, only Jacobian matrix J is used. This regularization was 

considered in [24] (see equation (3.89)).
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The third weight we consider is defined as

w =  ( # V ) 2 ( # v; ) 2 =  # V ( 4  32)
j J J  ~  #Vj||Sj||2 # j ||Sj11'2 ( . ]

The corresponding norm of the model is approximately

||m||Bm =  £ &  m2wj - E f — m j#V j 1|Bm ^ j —1 " ; w; ~  ^ j —1 " ||Sj||2
'fm  _2  J 1

j  j v ,  iisiru;dr .4 33.
Jn ||m(r) ||2 p s * *  ( . '(r)||22
|m ||L ( iMI|S||2

The norm is approximately equal to the weighted L2 norm with as a weight. 

This norm will suppress regions with low sensitivity, using the reasoning that if 

we cannot detect the properties of a region well, we will make it similar to its 

surroundings. This is similar to the approach of [25].

To get an approximation of a norm of the model gradient, rather than of the model, 

so a norm that resembles ||Vm||L2(v) rather than ||m||L2(v), we will do as follows. 

Assume that the inversion voxel consists of one finite element. Air layers as well as 

one layer of elements close to the boundary are not used in the inversion. As a result, 

the inversion voxels can be addressed using three indices ix =  1 , . . . ,  nx, iy =  1 , . . . ,  ny, 

iz =  1 , . . . ,  nz, where the total number of inversion voxels is Nm =  nxnynz. Matrix

Bm is such that

|m||2Bm
V"̂ nx V"̂ ny V"̂ nz .jx / mix ,iy ,iz— mix—1>iy >iz
Z^ix—2 2̂ 1 ly — 1 Z_̂ iz — 1 lxtly ̂   ̂ %ix,iy,iz-x ix-1,iy,iz
I V'' nx V̂ ny s~̂ nz wy I mix,iy,iz, ~ " "ix, i y -

 ̂ lx ̂ 1 ' ly —2 / lz ̂ 1 lx )ly jlz
n̂x Y^ny V^z . z  f mix ,iy,izi nx V"̂ ny v^n;

+  Z—/ lx — 1 /ly — 1 / lz

where

x 1 ^ ' ly — 1 *—' lz —2 lx ily ilz Y zix,iy,iz -

wx _ wix — i ,iy ,iz +wix ,iy ,iz
Wlxily ilz 2
wy _ wix ,iy — 1,iz +wix ,iy ,iz
wix>iy ilz 2
r z _ wix ,iy ,iz — 1j +Wix ,iy ,iz

and

[xlx !ly !lz , Vixiiy tlz , îxjly jlz]

is the location of the center of mass of the inversion voxel denoted by ix, iy, iz.

2

2

2

2x y z
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Using the procedure described above with w given by (4.30), (4.27), or (4.32), one

gets norms of model m resembling ||Vm||L2(||S||2), ||Vm||L2(L), and ||Vm||L2 1ISII
respectively. Those norms are used for regularization and the inversion results are 

compared.

4.10 A ppendix B : Inversion for static 
distortion matrices

We present the inversion for the impedance static distortion matrices similar to 

the approach of [30]. Shallow conductivity structure causes a static distortion of the 

impedance such that

=  Cfc Zfc (u) (4.34)

where is the impedance without the shallow conductivity structure and Z£bs is the 

impedance with the shallow conductivity structure. Matrix Ck G R2x2 is real valued 

and not dependent on frequency, yet different for each receiver k =  1 , . . . ,  Nrec [see 

30].

In the inversion procedure, apart from calculating the unknown model m =  

(mj)N=1 of log10 resistivities, we invert also for real valued matrices C =  ( Ck , 

one for each receiver location.

The forward problem response F(m), defined by (4.5), is modified by applying 

(4.34) to obtain F(m, C ). The regularized functional to be minimized changes from

(4.8) by adding squares of Frobenius norms ||.||F of the difference between distortion 

matrices Ck and identity matrix 1, yielding:

VF(m, C) =  (F(m, C) -  d)TBd(F(m, C) -  d) +  
A(m -  mo)TBm.(m -  mo) + ||Ct- -  1 ||F

(4.35)

Notice that if we define Nm =  Nm +  4Nrec,

m  =  (mfc)^! =  (m i, . . . ,  mNm
C C C C^l,##} C1,yx, C1,yx, C1,yy, . . . , 
CNrec,xx, Cfrec,yx, Cfrec,yx, Cfrec,yy)

mo =  (mM )f=\ =  (mi,o,. . . ,  mWm,o, 
1 ,0 ,0 ,1 ,... ,
1,0, 0,1)

Bm 0
0 X1



Then (4.35) may be written in the form similar to (4.8):

WW(m) =  (F(m) -  d)TBd(F(m ) -  d) +  A(m -  m0)TBm(m -  m0)

Jacobian J of the forward response F(m) may be easily obtained from J using 

chain rule. As a result, one can apply Gauss-Newton and data space Gauss-Newton 

procedure similarly to the case of inversion for m only.

Similarly to [30], we use r  =  0.01. Notice that this value of r  is very small, giving 

almost no regularization for distortion matrices term in (4.35). Yet it is enough to 

obtain good models, if only the starting model is not far from the true model. It is 

our experience so far that using the starting model that was obtained in the inversion 

without the distortion matrix yields good results. On the other hand, if one starts 

from half space that is far from the true model, the iteration may not converge to a 

plausible model. In this case, we have seen the matrices C converge to 0.

4.11 Supplementary materials

We present here additional materials related to the Mount St. Helens inversion. In 

Figure 4.20, we show the induction vectors, where Parkinson convention is used (real 

and imaginary part of - K  is plotted), so the vectors points towards the conductors. 

In Figure 4.21, we present the final nRMS as a function of receiver location and MT 

response component.

In Table 4.4, we list the values of nRMS for all frequencies for the starting and the 

final models. For the half-space starting model, the initial nRMS values at the upper 

frequencies are about one-half those of the higher frequencies. This carries through 

to the relative nRMS values for the final model. We expect that if a starting model 

was used where the initial nRMS was more evenly distributed, the final nRMS would 

be more even as well. Such a model might be a depth profile obtained through 1D 

inversion of the invariant Zxy-Zyx integrated over the survey area [see e.g., 35].
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Figure 4.20. Real and imaginary induction vectors for the measured data and the 
prediction by the model obtained in the Mount St. Helens inversion for five frequencies 
between 1Hz and 0.01Hz. Parkinson convention is used.
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Figure 4.21. nRMS for each component of the MT response and for each receiver 
for the final model of Mount St. Helens inversion.
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Table 4.4. Table of nRMS as a function of frequency for the starting model and the 
final model for Mount St. Helens inversion.

Frequency [Hz] Model 1 Model 11
100 8.1 0.85
56 8.2 0.7
32 8.3 0.7
18 8.7 0.79
10 9.2 0.94
5.6 9.4 0.97
3.2 9.3 1.02
1.8 9.7 1.33
1 10.2 1

0.56 10.8 1.15
0.32 11.8 1.07
0.18 12.4 1.32
0.1 12.4 1.2

0.056 12.9 1.22
0.032 13.8 1.38
0.018 15.7 1.53
0.01 17.9 1.49

0.0056 19 1.47
0.0032 17.3 1.62
0.0018 16.4 1.57
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C H A P T E R  5

F O R W A R D  A N D  IN V E R S E  M U L T IP L E  

F R E Q U E N C Y  P R O B L E M  F O R  

M A X W E L L ’S E Q U A T IO N S  

U S IN G  A D A P T IV E  

M O D E L  O R D E R  

R E D U C T IO N 1

Kordy M.23, Cherkaev E.2, and Wannamaker P.3

5.1 Abstract

This work develops a model order reduction method for numerical solution of 

forward and inverse multifrequency eddy current problem. Using Helmholz decom

position, we extend previously developed technique to the case when the operator 

has a non-empty null space. In the case of finite element discretization of Maxwell’s 

equations with edge elements, the discrete Helmholtz decomposition is accomplished 

by solving a Poisson equation on nodal elements of the same grid. Exploiting 

analyticity of the electromagnetic field, we use Pade interpolation in the complex 

frequency plane; this allows us to approximate the forward solution as well as the 

frequency-dependent Jacobian in the inversion procedure. To adaptively choose in

terpolating frequencies, we propose to minimize the maximal approximation error. We 

discuss several error estimates and propose a fast method of calculating the residual 

across a range of frequencies. The efficiency of the developed approach is demon

strated by applying it to the forward and inverse magnetotelluric problem, which is a

2Department of Mathematics, University of Utah

3Energy & Geoscience, University of Utah



geophysical electromagnetic remote sensing method used in mineral, geothermal, and 

groundwater exploration. Numerical tests show excellent performance of the proposed 

methods characterized by a significant reduction of computational time without loss 

of accuracy.

5.2 Introduction
Model order reduction (MOR) is a powerful technique to reduce dimensionality of 

a problem. It has become popular recently and has been used in a variety of contexts 

[1-7]. This work is inspired mainly by the work of [8, 9], where the authors consider 

adaptive choice of shifts for approximation of the transfer function using rational 

Krylov subspaces, with application to a time-domain electromagnetic geophysical 

forward problem. Their work is followed by the application to the inverse problem [10, 

11], which considers a regularization through a small admissible set of conductivity 

models.

Here we develop a different approach. We consider the Gauss-Newton method 

for the minimization of the inversion functional and we use model order reduction 

through rational Krylov subspaces only to speedup the calculation of the transfer 

function used in the forward problem as well as a transfer function used in the 

calculation of the Jacobian. The application of interest is magnetotellurics (MT), 

which is a frequency domain electromagnetic remote-sensing geophysical method used 

in mineral, geothermal, ad groundwater exploration. In this case, the transfer function 

h(s) =  (A +  s i ) -1b for the forward problem has a complex valued right-hand side 

(rhs) b dependent on frequency. In the case of the calculation of the Jacobian, the 

rhs b is not dependent on frequency and is real valued.

The rational Krylov subspaces are build from the values of the transfer function, 

evaluated at a number of points, called here interpolating shifts. In our application 

the transfer function values are needed in a purely imaginary interval, so we consider 

interpolating shifts in the same imaginary interval. In the case of real valued rhs b, 

we consider also real shifts, following the suggestion of [9].

The interpolating shifts are chosen to minimize the maximal error of interpolation 

and as the true error is unknown, an error indicator is needed. We consider error 

indicator suggested by [9] and compare it with the residual suggested as the error
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indicator by [12], which turns out to be superior in our numerical tests. We propose a 

fast way to calculate the residual at multiple frequencies, which makes it a practical 

error indicator.

A matrix A, arising in discretization of the variational problem has a nonempty 

nullspace. This is not a problem in the case of b ±  null(A). Yet if b /  null(A), 

we propose to decompose b into the part in null(A) and the part orthogonal to it. 

We calculate the part of the transfer function h that is in the null space exactly and 

use model order reduction only for the part orthogonal to null(A). This procedure 

is particularly useful in the case of rhs b dependent on frequency (the forward 

problem case), making the approximation better by two orders of magnitude. In our 

application, the decomposition of rhs b is possible using Helmholtz decomposition on 

a discrete level, which is valid for mimetic finite element approximation through edge 

elements [13, 14].

We present a simple theorem of a lucky failure of the model order reduction 

algorithm for the case of rhs b not dependent on frequency. For the case of b dependent 

on the frequency, we prove that a failure will almost always be lucky, if only b is an 

analytic function of the frequency.

In our application, the transfer function is of the form h(s) =  (A  +  sB )-1b, where 

B is not the identity matrix. We show that it is related with the case of B =  I 

through a simple scaling using B 2, that need not be calculated in the approximation 

procedure, but is useful to simplify the analysis.

In the numerical tests, the speedup of applying model order reduction gets better 

when the number of frequencies considered in MT survey increases. For 30 frequencies, 

the speedup is 2 times for the forward problem and 4 times for the Jacobian.

The paper is organized as follows. In Section 5.3, we present the magnetotelluric 

formulation of the forward and inverse problem explaining how approximation of the 

transfer function may be used to speedup the calculations. Next we show the theory 

of approximation of the transfer function using rational Krylov subspaces for the case 

of b dependent and not dependent on frequency. Then we propose the idea for the 

treatment of null(A).

In Section 5.4, we present the error indicator functions and algorithms based on
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them. We also give details of the numerical implementation. In particular, we propose 

a fast way to calculate the residual. In Section 5.5, we show results of numerical tests 

for a 3D magnetotelluric model with non-constant conductivity structure and with a 

hill and a valley in topography.

The forward and inverse magnetotelluric problem is described in detail in [15, 16]. 

We consider a domain Q that includes the air and earth’s subsurface. The earth’s 

surface is allowed to have topography. In order to calculate the MT response due 

to an arbitrary 3D conductivity structure a >  0, we consider edge finite element

tests presented are done using lowest order edge hexahedral discretization, all the 

methods may be applied to tetrahedral mesh. Higher order edge elements may be 

used as well.

Define the solution space for the unknown electric field

H q(V x, Q) =  {F :Q  ^  C3 : f Q (|F |2 +  |V x F |2) < ro, n x F U  =  0} (5.1)

Consider Maxwell’s equation in frequency domain for low frequency, where the 

term iwe, related to displacement current, is neglected. Assuming further that E  is a 

secondary field, the equation for E is

for E, F  G Hq(V x ), where the source term depends on Ep, the primary electric 

field which is a plane wave traveling in a primary conductivity structure ap, the 

conductivity of a 1D earth. We assume that a ~  ap close to the domain boundaries. 

We denote angular frequency by u  and magnetic permeability by ^. Most of the 

methods presented may be adapted to the case when the term iue is present.

The electric field over Q is represented as a linear combination of the edge shape 

functions Si with coefficients î:

5.3 Theory
5.3.1 N um erical form ulation o f  m agnetotelluric problem

discretization of the equation for the secondary electric field E. Though the numerical

(5.2)

N
E =  £  fi,Si (5.3)
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where i _  1 ,.. . ,N  are indices of the edges that do not lie on the boundary. By 

substituting this to equation (5.2) and using Sj as test functions, one obtains a linear 

system

+  _  g (5.4)

A n  _  f  1 V  x Si ■ V  x S7-, B n  _  [  aSi ■ S7- 
’ Jn V ’ Jn

gi _  gi(w, a) _  / —iw(a — ap)Ep ■ Si 
n

Secondary magnetic field H is calculated as

- V  x E
H

iw

(5.5)

(5.6)

(5.7)

The total field E*, H* is a sum of secondary and primary fields:

E* _  E +  Ep, H* _  H +  Hp 

The MT response is obtained by finding impedance Z  and tipper K  such that

HX
H^

(5.8)

EX ' Ẑxx Zxy
Et _ ZZyz ZZyy
HZ K zx KKzy

(5.9)

is satisfied no matter what is the polarization of the primary (Ep, Hp) plane wave.

A receiver can be positioned at an arbitrary location r with respect to element 

edges via appropriate interpolation. In general, let r be inside an element with edges 

e1, . . . ,  e12. Then field E at location r is given by

“ (vE)T£ “12
E (r) =  £  S„(r)£e,

1=1
(vE)T£ 
(vE )T £

(5.10)

Here v,f, vE, v.f contain interpolation vectors with at most 12 non-zero values corre

sponding to x, y, and z components of edge shape functions Sei (r ) , . . . ,  Sei2 (r).



Similarly, the secondary magnetic field H (r), calculated using (5.7) at location r, 

is given by
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12
H (r) =  V  V X  5’e(r) & , = -

^  —i^^ iW

(VxH )T £
(v f )T £
(v f  )T £

(5.11)

This time the only non-zero values of v f  , v f , vf  are x,y, and z components of

V x  Se1 (r) V x  Se12 (r)
— ̂  ^

As a result, each component of secondary electric and magnetic fields E, H at a 

specific receiver location may be represented using

vT£ =  vT (A +  iwB)-1g (5.12)

where v is a real valued vector, g =  g(w) is complex valued, and one should write 

in place of g in the case of H . The calculation is done in such a way that the quantity 

in square brackets is evaluated first and then it is multiplied by vT. This gives us 

the values of electric and magnetic secondary fields at a receiver location, which are 

enough to calculate the MT response at this location.

In the inversion of the MT data, one seeks a conductivity model that fits the

measured data. One of the ways to find it is to use Gauss-Newton algorithm (see

for example [16]) to minimize the functional that consists of data misfit and the

regularization term. In order to use this algorithm, one needs the Jacobian J of the

response functional. Let the domain be split into Nm inversion cells C j, which form

a partition of the subsurface part of the domain (the domain excluding the air). We

assume that each cell consists of a number of finite elements and the conductivity a

is constant in each cell. Let a; denote the value of the conductivity in an inversion

cell C j. The conductivity in the whole earth’s subsurface is given by the vector of

conductivities (a;)fm1. Each entry of Jacobian matrix J consists of values of the

derivative of the magnetotelluric response Z, K  at some receiver location r with

respect to a ;, for some r and some j  =  1 ,.. . , Nm. The response is a function of

secondary electromagnetic field E, H , so its derivative with respect to a; may be

calculated using chain rule, if the derivatives

dE dH 
5 a /  daj



are found. In order to find the latter, one has to evaluate the derivative of expression

(5.12):

4  (v T ((.a + iw i?)-1g ) )  _  _  

vT ( g + (J4 + iwJB )-1 j  _  

vT ( —(A +  iwB)-1 (A +  iwB)-1g + (.4 +  iw ii)- 1 g - )  _
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(5.13)
where £ and g should be replaced with A  and A in the case of H . The calculation"n J  r '

of the quantity above is done in such a way that the expression in square brackets is 

evaluated first and then it is multiplied by ^— £ +  Jjg j  for each o j . Notice that 

one has to find £ before the multiplication is done and that both the matrix and 

the vector djg are sparse.

Magnetotelluric response Z, K  is a smooth function of frequency, so it may 

be efficiently interpolated between frequencies. Such an interpolation has been 

considered [17]. In Figure 5.1, we present values of Zxx in the complex plane when 

the frequency is changed. One can see that Zxx is a quite complicated function of 

frequency; piecewise linear or high order polynomial interpolation is not accurate 

enough. Model order reduction interpolation, which is the topic of this paper, is 

much more appropriate.

5.3.2 M odel order reduction

Values of the E, H fields (5.12) and the Jacobian (5.13) may be approximated 

in such a way that the vectors in square brackets in (5.12), (5.13) are approximated 

first, and then they are multiplied by the remaining part of expressions (5.12), (5.13). 

Thus in both cases, we are interested in approximation of the expression

h(s) _  (A +  sB )-1b (5.14)

Here s _  iw for some chosen finite number of frequencies w at which the MT 

measurements are taken. Those frequencies are usually log-uniformly distributed 

in an interval [wmin,wmax]. In the case of (5.12), b _  g(w), so it is dependent on w

T — (A +  iwB) -1 dî B
£ +  (A + iwB) 1 ) _

T

vT (A +  iwB) 1 dî B£ + (A +  iwB) 1v

(A +  iwB)
T

1 dî B£ +
dî B £ I dg
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Re( Zxx )

Figure 5.1. Zxx in the complex plane for a model considered in Section 5.5 for 
31 frequencies log-uniformly distributed in the interval [1Hz, 1000Hz]. True values 
are shown together with high order polynomial, piecewise linear, and model order 
reduction interpolation. Every third value (shown in green) is used as an interpolation 
point.



and complex valued. In the case of (5.13), b =  v, so it is not dependent on u and real 

valued. Matrix A, defined at (5.5), is real valued symmetric, non-negative definite, 

with a significant null space. We assume that the conductivity a >  0, so matrix B, 

defined at (5.5), is real valued, symmetric positive definite.

We will consider approximation of (5.14) using the model order reduction method 

[1-11]. Some of its theory is presented next.

Let us start with the equation satisfied by h:

(A +  sB )h  =  b (5.15)

Consider V , which is a N  x  n matrix whose columns span the space

colsp(V) =  span | (A +  s1B )-1 b, (A  +  s2B ) -1b, . . . ,  (A +  snB )-1b| (5.16)

for some complex values s1, . . . ,  sn, which satisfy

si =  sj if i =  j  (5.17)

As A is non-negative definite and B is positive definite, eigenvalues of B - 1A B - 2 are 

in [0, ro). Thus, in order for the equation (5.14) to have a solution, we assume that

s, sj G (—ro, 0] (5.18)

If we consider approximation of the solution of (5.15) by a vector in colsp(V), 

namely hy =  V p , for G Cn and if we make the residual orthogonal to colsp(V), 

then we get an equation for :

V* (A +  sB )(V p ) =  V*b (5.19)

and if the equation has a unique solution (see Theorem 12), then we obtain the 

approximation hy (s) =  Vj3 to h(s):

h y (s) =  V ( v *(A +  sB )V ) 1 V*b (5.20)

We assume that n < <  N , so equation (5.19) is much easier to solve than equation 

(5.15). In a simplest case sj =  iu j, for Uj G [umin,u max]. In this case, u 1, . . .  ,un may 

be called interpolating frequencies as the following theorem holds:
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Theorem  12 If the matrix V satisfying (5.16) is full rank, then for  s G C, the 

solution to (5.19) exists and is unique. Moreover,

hy (sj ) =  h(s; )> j  =  1 ,. . . ,n (5.21)

P ro o f : First we show that the matrix in equation (5.19) is not singular. Indeed

y  *(A +  sB )y  =  y  *AV +  y  *sBV =  A 1 +  sB1

As V is full rank and A is symmetric non-negative definite, A 1 is hermitian, non

negative definite. Similarly, as B is symmetric positive definite, B 1 is hermitian 

positive definite. Thus the matrix may be written as:

A 1 +  sB1 =  B1 ( b - 1A 1B - 2 +  s i )  B 1

1 _1 _1 
with B1 symmetric, invertible. B - 2 A 1B 1 2 is hermitian, non-negative definite, so

it has real, non-negative eigenvalues a1, . . . , a n. As a result, the eigenvalues of

B - 2A 1B - 2 +  s i  are a1 +  s , . . .  ,an +  s. With the assumption (5.18) that s is not

real, non-positive, none of the eigenvalues a  +  s can be equal to zero, thus matrix

B - 2 A 1B - 2 +  s i  is invertible and so is A 1 +  sB1 as a product of invertible matrices.

We have proven that (5.19) has a unique solution.

Next notice that because of (5.16), for each j , there is such that V^j =  (A +

s ;B )-1b. Thus fyj satisfies (5.19) for s =  s ;. This implies

hy (s; ) =  Vfyj =  (A +  s; B )-1b =  h(s;) (5.22)

The theorem above is valid for both the approximation of E, H when b is dependent 

on w and the approximation of the Jacobian, when b is constant.

5.3.3 Relationship with (A +  s i ) -1b 

Let us relate our problem to the situation when B is an identity matrix I . If we 

define

A =  B - 1A B - 1, b =  B - 1 b, h(s) =  (A +  s i ) -1b (5.23)

we can rewrite h(s) as

h(s) =  (A +  sB )-1b =  B - 1 (A +  s i  ) -1b =  B - 1 h(s) (5.24)
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Moreover, if we define the matrix V as V _  B 2 y , then

colsp(V) _  span {(A  +  s11 )-1b, (A +  s2/ )-1b ,. . . ,  (A +  sn/  )-1b} (5.25)

Notice that particular form of V does not matter, as long as (5.16) is satisfied. So to 

make the presentation easier, we will assume that columns of V are othogonal. With 

this assumption we obtain

V *AV _  V*AV, y *BV _  V*V _  /  (5.26)

and

hy (s) _  V (V*(A  +  sB )V ) 1 V'*b _  B - 2 V (V*(A + s /)V )-1 V *b _  B - 1 hv,(s)

(5.27)

Combining (5.24) and (5.27) together allows us to relate the error of approximation 

of h(s) with the error of approximation h(s):

h(s) — hy(s) _  B - 1 (h(s) — (s)) (5.28)

Consider the diagonalization of A:

A _  UAU* (5.29)

where A is a diagonal matrix with eigenvalues Ak as entries and columns of U are 

eigenvectors . With this notation, it is easy to write h(s) as a vector valued function 

with each entry being a rational function of s:

N / \
h(s) =  (A +  s / ) -1b _  Y ,  (5.30)

k = 1 A* + s

For s _  iw with b _  b(iw) being analytic, h(iw) is an analytic function of w. This 

rational (or analytic) function is approximated by (s):

h y (s )_  V (V*AV +  s / ) -1 V*b _  ^  VYj(YjV b) (5 .31)
j=1 Aj +  s

where Aj and Yj are eigenvectors and eigenvalues of V*AV. Notice that for an analytic 

function, Laurent series may exist outside the Taylor series circle of convergence. Thus
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it makes more sense to approximate an analytic function by a rational function than 

to approximate it by a polynomial. Extensive theory of rational approximation to an 

analytic function may be found in [18].

Intuitively, the approximation (5.31) will be good if Aj, VYj j  =  1 , . . . ,n  ap

proximates Ak, uk, k =  1 , . . . ,  N for k such that u*b =  0. Yet the quality of this 

approximation depends on the choice of V, which in turn depends on the choice of 

interpolating shifts s j. We will discuss algorithms that are able to choose sj to adapt 

to the part of the spectrum of A for which u*b =  0.

5.3.4 The case o f  b not dependent on frequency u

Next, we consider the case of approximating of the Jacobian. We will assume that 

b is not dependent on frequency u. At some places, we will also use the fact that b 

is real valued. This implies that b, defined at (5.23), is not dependent on u and real 

valued.

Using the idea that for any vector z, and any s1, s2

A(A +  s1l ) 1(A +  s2^) 1 z +  s1(A +  s1l ) 1(A +  s2l ) 1z =  (A +  s2l ) 1z (5.32)

and using assumption (5.17), it is easy to show that the space (5.25) may be written 

as a Krylov subspace (see also [8])

colsp(V) =  span { q, A q ,. . . ,  An-1q} , q =

With this notation we can formulate and prove the following theorem:

Theorem  13 If (5.17) is satisfied and the number of distinct eigenvalues Ak such 

that ukb =  0 is greater than or equal to n, then V is full rank.

P r o o f : Assume that V is not full rank and take a linear combination of columns of

V and assume that it is 0. Using the representation (5.33), there is a polynomial p 

of degree < n — 1 such that

0 =  p(A)q

Using diagonalization (5.29) and the definition of q, we obtain:

0 =  p(A)q =  Up(A)U *q =  Up(A)
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^  s jI ) -1 U*b

n
n (A + sj 1) j b (5.33)



From the latter, as columns of U are linearly independent, we can conclude that for 

each k _  1 , . . . ,  N we have

_  P(Afc) * ,

0 TTn ( \ _i_ \ Ukn ?=1(Ak +  sj )
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so for each k _  1, . . . , N

0 n n  Pa fcI — ) or 0 _  ukb n ,= 1 (Afc +  sj )^=1
Given the assumption that the number of distinct Ak such that ukb _  0 is greater or 

equal than n, we obtain that the polynomial p has at least n distinct roots. As p has 

degree not greater than n — 1, it has to be that

p _  0

This proves that V is full rank. Notice that the assumption in Theorem 13 is true in 

most practical applications. If the number of distinct eigenvalues Ak is greater than 

or equal to n, the assumption not satisfied is equivalent for b to be in one of (nJ- 1) 

subspaces of CN. If b is chosen randomly, the probability of that happening is 0.

Moreover, failure to satisfy the assumption of Theorem 13 is a lucky failure as the 

following theorem is true.

Theorem  14 If  s1, . . . ,  sn satisfy (5.17) and the space U(b) defined as

U(b) _  span{uk : 'kb _  0} (5.34)

has dimension n, then the approximation hy (s) to h(s) is exact for any s.

P ro o f : Given (5.30), for any s, h(s) G U(b), so using definition of V (5.25), 

colsp(V) C U(b). Moreover using Theorem 13,

dim(colsp(V)) _  rank(V) _  n _  dim(U(b))

thus

colsp(V) _  U(b)

This implies that for any s, h(s) G colsp(V), so there exists such that h(s) _  V^s 

given uniqueness of solution to (5.19) (see Theorem (12)). Hence

hy (s) _  h(s)



Next, we will follow [8] to present an interesting interpretation of the approxima

tion hy (s) to h(s), which allows us to derive the error of the approximation.

Notice, that all vectors x G colsp(V), using (5.33) may be written as

x =  Ug(A)U*b, g G V (5.35)

where V is a space of rational functions, defined as follows

V =  < P,(. )----- r : p is a polynomial of degree < n — 1 > (5.36)
U W A + s; ) J

One may write an equation for hy as

(aV  )*(A +  s i  )hv (s) =  (aV  )*b (5.37)

for all a G Rn. From (5.35), one can conclude that there is /  G V such that

U/(A)U*b =  hy(s) =  V (V*(A +  s i)V )-1 V*b

Similarly, each aV  G colsp(V), so it may be represented as Ug(A)U*b for some g G V. 

Using those representations, one can rewrite (5.37) as

(Ug(A)U *b)*(A +  s i  )(U/(A)U*b) =  (Ug(A)U *b)*b

for all g G V. The latter may be rewritten as
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b*U g(A)(A +  s i ) / (A)U *b =  b*Ug(A)U *b
EN—1 g(Ak )(Afc +  s )/(A fc )|uk b|2 =  Y , N—1 g(Ak )|uk b|2 

And that may be rewritten as

< (A +  s ) /  — 1, g >^= 0 Vg G V (5.38)

where the measure ^ is defined on the spectrum of A (which is a subset of [0, ro)) as 

a linear combination of delta measures:
N

v  =  Y ,  Kb|2«(A.Ak) (5.39)
k—1

Theorem  15 If the number of distinct eigenvalues Ak such that ukb =  0 is greater 

than or equal to n, then /  G V satisfying (5.38) approximates ^+- with a relative 

error

/ =  (A + s ) /(A ,.)  — 1 =  — n  (A — 8j) (A ~ :|j ) (5.40)
A+- j—1 (A +  sj )(s +  Aj )

where A;, j  =  1 , . . . ,  n are eigenvalues of V*AV.

The proof, shorter than the one in [8], is given in the Appendix (Section 5.7).
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5.3.5 The case o f  b dependent on frequency u

In the case of approximation of the forward MT response, b(iu) =  g(u) where g(u)

is defined at (5.6), so that b depends on the value of shift s. In this case, Theorem 

12 as well as the formulas (5.30) and (5.31) are valid.

We will investigate now what it means that at some point in the iterations, V is 

not full rank. Theorem 13 and Theorem 14 say that in the case of b not dependent on 

u, V becoming not full rank is a lucky failure. It turns out that we can get a result 

almost as strong in the case of b(s), if the dependence on s is analytic.

Let 1 be a closed, bounded, connected set in the complex plane. In can be in 

particular the interval in which we will calculate h and in which we will choose 

interpolating shifts s j. We can think of a purely imaginary interval 1 =  {iu  : u G 

[umin, umax]}. Crucial for further investigation is the representation of h(s) by (5.30).

Define functions

assume that the singularities of h (which are s =  —Ak) are not in 1. In this case, h 

as well as dk(s) are analytic on 1.

(5.41)

for s G 1

Using the above definition, (5.29) and the definition of V , we can rewrite the 

condition of V being full rank:

d1 (s1) ••• d1(sn)
rank(V) =  n ^  rank n (5.42)

dN (s1) ■ ■ ■ dN (sn)

Let us assume that all the entries of b(s) are analytic functions on 1. Let us also

Theorem  16 Assume that there are at least n functions dkl, . . . ,  dkn among (dk)jN=1 

that are linearly independent (domain of those functions is assumed to be 1). Then 

for all j  =  1 , . . . ,  n the following is true. If

dki (s1) ' ' ' dki (sj-1 )
rank j — 1 (5.43)

dkn (s1) ••• dkn (sj-1 )



then there is at most a finite number of points s G I  for which
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rank
4 i  (si) ••• dkl ( s j - 1) dkl (s)

dkn (si ) ••• dkn (sj - i ) dkn (s)
< j  (5.44)

Rem ark 17 The theorem above tells us that if there are n linearly independent 

functions among dk, then at each iteration, it is highly unlikely for V  not be full 

rank. At each step, almost any choice of s =  sj in I  is good (any apart from at most 

a finite number of points).

Before we prove Theorem 16, let us formulate another theorem, similar to 14, that 

tells us that failure to satisfy assumption of Theorem 16 is a lucky failure.

Theorem  18 If there are exactly n linearly independent functions among dk and V  

is full rank, then the approximation hV(s) to h(s) is exact for any s.

In the proof, we will use the following lemma

Lem m a 19 Assume that a function f  is analytic on a bounded, closed, connected set

I . If there are infinitely many points sj G I  for which f  (s j) =  0, then f  (s) =  0 for  

all s G I .

P ro o f : As I  is bounded and closed, it is compact, thus there is a subsequence of 

points (s j )£=1 convergent to so G I . We use the fact that if an analytic function has 

an accumulation point of zeros, then it is equal to zero everywhere on the connected 

component containing the accumulation point. In our case, I  is connected, so we 

obtain that f  (s) =  0 for all s G I .

P ro o f : (of Theorem 16)

Assume that (5.44) is not satisfied.

If j  =  1, it means that there is an infinite number of points s G I  for which 

dkl (s) =  . . .  =  dkn (s) =  0. From Lemma 19, we obtain that dkl (s) =  . . .  =  dkn (s) =  0 

for all s G I , which contradicts dkl, . . . ,  dkn being linearly independent.

Consider j  > 1. As (5.43) is true, there is a submatrix with j  rows of the matrix 

in (5.43) which has rank j  — 1. To simplify the notation, assume that the first j  rows 

form a matrix with rank j  -  1, in other words, we have
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rank
4x (s1) dki (sj-1 )

dkj (s1) ••• dkj (s j -1)
(5.45)

Moreover, (5.44) not satisfied implies

dki(s1)
/ (s) _  det

dkj (s1)

dki (sj-1 ) dki (s) 

dkj (s j -1) dkj (s)
0 (5.46)

for infinitely many points s in I . The determinant / (s) is analytic on I  as it is a sum 

of products of analytic functions, so from Lemma 19, (5.46) is satisfied for all s G I . 

Given (5.45), it has to be that for all s G I , the last column of matrix in (5.46) has 

to be a linear combination of the rest of the columns. In other words, there exist 

functions ^1 (s ) ,. . .  ,^k(s), s G I  (the coefficients of the combination) such that

j -1
dki(s) _  Y A ( s ) 4 ; (si) for l _ 1 , . . . , j ,  s G I  (5.47)

i=1
So if one thinks about the linear subspaces of functions defined on I , we have

span(dk1, . . . ,  dk̂ .) C span(^1, . . .  , ^ - 1) (5.48)

This contradicts with the assumption of dkl, . . . ,  dkj being linearly independent. 

P ro o f : (of Theorem 18) If there are no more than n linearly independent functions 

among dk, then for any points s1, . . .  , sn, s G I  we have:

d1(s1) ••• d1(sn) d1(s)
rank n (5.49)

dN (s1) ••• dN (sn) dN (s)

With the assumption that V is full rank, which implies (5.42), we obtain that the 

rank in (5.49) is exactly n and the last column of the matrix in (5.49) is a linear 

combination of the first n columns:

d1(s) n d1(sj )
_  Y  aj , for s G I

dN (s) j=1 dN(sj ) _

Using (5.41) and (5.29), the previous relationship may be rewritten as
n

(A +  s i  ) -1b(s) _  aj (A +  sj I  ) -1b(sj), for s G I 
j=1



which, from the definition of hV implies

hV(s) =  h(s), for s G 1 (5.50)

From representations (5.30) and (5.31), for b having analytic coefficients, both h 

and hV are analytic in 1. As a result, (5.50) is satisfied wherever b and h may be 

analytically extended from 1. For example, if b has coefficients which are entire 

functions, then (5.50) is satisfied in all of the domain of h.

To draw a connection between assumptions of Theorems (16), (18), valid for the 

case of b dependent on frequency and Theorems (13), (14) formulated for the case 

of b not dependent on frequency, we notice that if b is not dependent on frequency, 

uk b =  0 for j  =  1 , . . . ,  n and {Akj } n=1 are n distinct values, then (dkj)n=1, defined 

in (5.41) are linearly independent. Also, (dkj)n=1 are linearly independent if u* b are 

entire functions and uk b(—Akj) =  0, as then each dkj has a simple pole at s =  — Ak 

and is elsewhere analytic.

If one goes back to the considered application, then b(iu) =  g(u), where g is 

defined at (5.6) using Ep. Ep is a plane wave going downwards and if we consider 

the electric field normalized to 1 at the earth’s surface, then the dependence of Ep 

on the frequency at any location in the domain Q is analytic. This implies that the 

coefficients of g are analytic functions of the frequency u.

Yet if one thinks about Ep being a plane wave with a fixed frequency u, there 

is a question of magnitude of the wave as well as the way the magnitude changes as 

the frequency u changes. For example, one could choose Ep(u) to be equal to 1 at 

the top of the domain, at the earth’s surface or according to some other recipe. The 

following theorem says that the relative error of approximation will be the same in 

all cases.

Theorem  20 Let g be any scalar function defined in 1, such that g(s) =  0 for  s G 1. 

Take any vector valued function b(s), s G 1 and define

b(s) =  b(s)g (s)

Consider h(s) and h(s) satisfying

(A +  s1 )h(s) =  b(s)
(A +  s1 )h(s) =  b(s)
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Take any distinct interpolating shifts (sj j =1, let V  and V be defined as

colsp(V) =  span{h(sj) : j  =  1 , . . . ,  n} 
colsp(V) =  span{h(sj) : j  =  1 , . . . ,  n}

Model order reduction approximation is defined in a natural way as

h v (s) =  V a, where V*(A +  sI )V a  =  V *b(s) 
h^(s) =  V a, where V *(a +  sI)V a  =  V *b(s)

Then the relative errors of approximation are the same

llhV(s) — h(s)H _  llhv (s) — h(s) (5.51)
llh(s)ll ll h(s) ll

P ro o f : Using the definition of h(s) and h(s), we obtain immediately that

h(s) =  h(s)g(s) (5.52)

This, together with the definition of V and V implies

colsp{V} =  colsp{V } (5.53)

which results in

hv> (s) =  hv (s)g(s) (5.54)

The hypothesis (5.51) is an immediate consequence.

Rem ark 21 The quantities of interest in M T are impedance Z  and tipper K , which 

are defined in (5.9). Using a reasoning similar to the one in the proof, one can show 

that if in the formulas for numerical approximation of electric (5.10) and magnetic 

(5.11) fields, we use approximation hv (iw) instead of £, it does not matter if we use 

hv (iw) of hv(iw), the value of Z, K  will be exactly the same.

5.3.6 Treatm ent o f  the null space o f  A

Existing algorithms that consider approximation of h(s) for real shifts s G 

[Amin,Amax] require Amin > 0 [9], which means that the matrix A has a trivial null 

space, so is positive definite. If Amin =  0, the error indicator might have the maximum 

at s =  0, for which the equation (5.15) is not solvable. For example, for algorithm 

AR(defined in Section 5.4), if at some point one of the Ritz values Aj =  0, the error



indicator (5.75) approaches ro as s approaches 0. We present a solution to this 

problem, which requires us to decompose b into the part lying on the null space of A 

and the part orthogonal to it.

Take any matrix K , whose columns are the basis of null space of A:

colsp(K) _  null(A) (5.55)

Define

K  _  B 1K  (5.56)

with this definition, we have

colsp(K) _  null(A) (5.57)

Take a matrix W , whose columns are an orthonormal basis the range of A. Matrix 

A is hermitian, so its range is orthogonal to its null space, thus:
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K  *K 0 
0 I[K W]*[K W] _

Consider a representation of h in the bases of columns of K  and W :

(5.58)

h _  [K W ] aw _  K « k +  W aw _  h-K +  hw (5.59)

Using this decomposition, one can rewrite the equation

(A +  si)h  _  b (5.60)

as
f W*(A +  s i ) (K « k  +  W aw ) _  W*b 
\ K * (A +  s i ) (K « k  +  W aw ) _  K*b

which is equivalent to two uncoupled equations for aw and a K:

(W*AW +  si)aw  _  W *b 
s(K *K ) « k _  K*b (5.61)

If b is orthogonal to the null space of A, in which case, K*b _  0, then a K _  0 and 

thus:

h(s) _  (A +  s i ) -1b _  W (W *AW  +  s i ) -1W*b (5.62)

In this case, one could modify the matrix eigenvalues on the null space of A in an 

arbitrary way, and h would be the same. This explains that if b ±  null(A), then



it is enough to consider [Amin,Amax] to be the spectral interval of W *AW , which 

is the effective spectral interval of A (spectral interval of A, disregarding the null 

space). Notice that even more is true; it is enough to consider the interval containing 

eigenvalues Ak of A for which u*kb =  0 which are the support of the measure ^ defined 

at (5.39).

Let us focus on the situation when b is not orthogonal to the null space of A. One 

can solve the second equation in (5.61) obtaining

hK (s) =  K a x  =  1 K  (K  * K  )-1K  * b (5.63)
s

And then finding hw may be done equivalently by solving the original equation (5.60) 

with a modified right-hand side, consisting only of the component bw in the range of 

A:

(A +  sI )hw =  bw (5.64)

where

bw =  b — K  (K  *K )-1K  *b (5.65)

We propose to calculate hK(s) exactly and to use model order reduction techniques 

only to approximate hw (s), the solution of equation (5.64). In this case, one can use 

algorithms AR, ARR, and NARR with the effective spectral interval [Amin,Amax] of 

A.

Notice that in the case of b not dependent on s, in order to get hK(s) for all s, 

one needs to calculate K (K *K )-1K*b once only.

Although AI, AIR, and NAIR algorithms (defined in Section 5.4) might be used 

without this decomposition, the technique described above is likely to improve the 

approximation of h(s) firstly because one can obtain hK exactly, and secondly because 

the location of interpolation frequencies used for (5.64) will need to adapt to ^ with 

a smaller support (not containing 0) than in the case of equation (5.60).

Representation of the null space of A, allowing for a sparse K *K , is not possible 

in all situations. Yet in the case of edge element discretization of the equation (5.2) 

for electric field E , the null space of A, which is the null space of the curl operator 

V x , is the range of the gradient operator V  acting on the space %Qh(n) of nodal 

shape functions on the same mesh (see Appendix B in [14]). Let ^ be a scalar field
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defined at vertices inside the domain Q (p =  0 on dQ), p G %Qh(Q). V p  is defined 

at edges of Q. Let edge e point from vertex v1 to vertex v2, then the operator V  acts 

on p in such a way, that

(V P)(e) =  P(v2) — P(v1)

Let Nv be the number of vertices inside Q. If (^j)N=1 are nodal shape functions, then 

we define K  as a matrix with entries 1, —1 such that for p =  j j a  £? ̂ k

((Vp)(e))N=1 =  K f  (5.66)

Notice that, using (5.56)
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K  *K =  K  *B K aV^j ■ V^.
N„

(5.67)
j,j=1

Thus finding (K *K )-1K*b =  (K *B K )-1K*b requires us to solve a Poisson equation 

with a as a coefficient (compare with the divergence correction [15]). The matrix 

(5.67) is real valued and also b G R in our situation. Moreover, the number of vertices 

Nv is more than three times less than the number of edges N , so finding (K  *K)-1K  *b 

is more than 10 times faster than solving evaluating h(s) for one value of s.

We write the resulting procedure of approximating h(s) using original quantities 

of interest (not scaled by B 2). We use the fact that

h(s) =  hw (s) +  hK (s) =  (A +  sB )-1b1y +  1 (K  *BK )-1K  * b (5.68)

where

bW =  B - 1 bw =  b — K  (K  *BK )-1K  *b (5.69)

We calculate hK(s) exactly and observe that it may be found at the expense of one 

solve of Poisson equation per s (in the case of b not dependent on s one solve of 

Poisson equation for all s). We further approximate h^(s) by h^ y(s) using model 

order reduction techniques. The final approximation to h(s) is given by

n

h(s) w hww,v (s) +  hr(s) (5.70)



5.4 Algorithm s
5.4.1 The case o f  b not dependent on frequency u

In this Section, we present the algorithms for choosing the interpolating shifts 

s j. We will consider the values of the shifts in an purely imaginary interval {s _  

iu : u G [umin,u max]}, or in a purely real interval [Amin,Amax]. Both intervals are 

presented in Figure 5.2. Considering that we need to evaluate the transfer function 

in a purely imaginary interval, the best choice of shifts would be such that minimizes 

the maximum relative error of approximation:
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ll'l'(iu) hV(iu)||2 ,71 ^minsi,...,sne/ maxW€[Wmin,Wmax]-------  ~ --------  (5.71)
||h(iu)||2

Such an approach is not pursued in this paper for two reasons. Firstly, because the 

true relative error of approximation is not known, we have to use an error indicator 

e(si,...,sn)(iu). Secondly, if (5.71) was used, the values (s1, . . . ,  sn) would most likely 

not appear among (s1, . . . ,  sn, sn+1).

Because of that we consider an approach in which at each iteration, given 

(s1, . . . ,  sn), we will add one value sn+1 in order to form (s1, . . . ,  sn, sn+1). We use the 

fact that at each interpolation shift, the error of approximation is 0, thus the value 

of the next interpolation shift sn+1 is chosen as the maximum of the error indicator 

function in the interval i :

sn+1 _  argmaxse/  e(si,...,sn)(s) (5.72)

Next, we present two error indicator functions and the algorithm based on them. 

Let us start with the idea of [9]. The relative error (5.40) is related to the residual:
R _  (A +  s i)h V(s) — b _  (A +  s i)(h V(s) — h(s)) _  U((A +  s)/(A , s) — 1)U*b

_  — "nn=1 s j -  s [u  (n n = .(A — Aj i ) n n = ,(A + sj i  ) - ^  u  *6
’ (5.73)■

The quantity above is split into two parts. The first part is a scalar, the second is 

a vector. Once the interpolation shifts sj are fixed, the Ritz values Aj minimize the 

norm of the second part:

(n n \
n < A  — Aj i ) n < A  +  s j i ) -1 U* (5.74)

j=1 j=1 /  2
For the proof of this statement, see the Theorem 22 in the Appendix (Section 5.7). 

This property of eigenvalues Aj is a basis of the adaptive choice of interpolating shifts
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Figure 5.2. Complex plane -  the domain of h. The interval over which the values 
of h are needed is shown in red. Interval of effective spectrum of A shown in blue.



sj in [9]. Authors of [9] consider s real valued and in the interval [Amin,Amax] where 

Amin, Amax > 0 are the smallest and the largest eigenvalues of A. The algorithm of [9] 

is presented below:

A lgorithm  A R  (A daptive choice of R eal shifts):

1. Set n =  2, choose s1 =  Amin, s2 =  Amax and set V1:2 in such a way that

colsp(V1:2) =  span{(A +  s1BB)-1b, (A +  s2BB)-1b}

2. Find sn+1 as a maximizer of
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s — sj (5.75)
n  s + aj= 1s +  Aj

over s G [Amin, Amax], where A1, . . . ,  An are eigenvalues of V*AV.

3. Set V1:(n+1) in such a way that

colsp(V1:(n+1)) =  colsp(V1:n) © span{(A +  sn+1B )-1b}

4. If exit criteria met(approximation good enough), stop

5. Set n =  n + 1  and jump to 2

The details of update of V at 3 are presented in Section 5.4.2. Notice that according 

to (5.26) V *AV =  V*AV, so those two matrices have the same eigenvalues.

This approach is valid for A symmetric positive definite or for b orthogonal to the 

null space of A (in this case, Amin is the smallest of non-zero eigenvalues). In the 

current paper, we suggest what may be done in the case when b is not orthogonal to 

the null space of A (see Section 5.3.6). To use this algorithm, one needs estimates 

of Amin and Amax, which might not be easy if A has a nontrivial null-space. The 

advantage of this approach is that at each iteration, to enlarge V, one needs to solve 

the linear system (5.15) for real s. In this case, the matrix A +  sB is real, symmetric 

positive definite, and solution of the linear system with iterative solvers is faster than 

for the complex case. One matrix vector multiplication is 4 times faster. And the 

total number of iterations is less as methods for hermitian matrices (like Conjugate 

Gradient) may be used.
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Next we propose a similar algorithm, but for purely imaginary values of s =  iw, 

where the frequency is in an interval of interest w G [wmin,wmax]. This is a natural 

approach for MT, as one needs the response for a number of frequencies log-uniformly 

distributed in an interval. Also if b G R, w G R then

so if one calculates h at s =  iw;, then one simultaneously gets the value of h at

we add two shifts s =  ± w ;, the squared norm of the first part of the residual (5.73) 

evaluated at s =  iw is

algorithm is presented below:

A lgorithm  AI (A daptive  choice of Imaginary shifts):

1. Set n =  2, choose w1 =  wmin, w2 =  wmax, and set V1:4 in such a way that 

colsp(V1:4) =  span{(A +  iw1B )-1 b, (A — iw1B )-1b, (A +  iw2B )-1b, (A — iw2B )-1b}

2. Find wn+1 as a maximizer of

h(iw) =  (A +  iwB) 1b =  (A — iwB) 1b =  h(—iw) (5.76)

s =  —iw;. Hence with one interpolating frequency w;, the dimension of colsp(F) may

be increased by 2, using hy(iw) and hy(iw). In this setting when at each iteration

(5.78)

over w G [wmin, wmax], where A1, . . . ,  A2n are eigenvalues of V*AV.

3. Set V1:2(n+1) in such a way that

colsp(V1:2(n+1)) =  colsp(V1:2n) © span{(A +  iwra+1 B) 1b, (A — iwra+1B) 1b}

4. If exit criteria met(approximation good enough), stop

5. Set n =  n + 1  and jump to 2
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In this algorithm, the update 3 may be done in such a way that V is a real matrix, 

which saves some computational time (see Section 5.4.2).

The advantage over the AR algorithm is that one does not need to estimate 

Amin, Amax and the approximation is tuned for the interval of interest [umin,u max].

Both AR and AI algorithms adapt to the spectral distribution ^. The error 

indicators (5.75), (5.78) depend on Ritz values Aj , which in turn depend on ^. Both 

AR and AI algorithms choose new values of shifts in an attempt to decrease the 

maximum norm of the residual (5.73). Yet they do it by considering a part of the norm 

of the residual as the error indicator. One could also consider the norm of the residual 

itself as the error indicator [12]. The norm of the residual may be approximated as

gives rise to the following two algorithms:

A lgorithm  A R R  (A daptive choice of R eal shifts; norm of the 

R esidual as the error indicator):

The algorithm is the same as AR, apart from step 2, which is replaced with

2. Find sn+1 as a maximizer of residual

over s G [Amin, Amax].

A lgorithm  A IR  (A daptive  choice of Imaginary shifts; norm  of the 

R esidual as the error indicator):

The algorithm is the same as AI, apart from step 2, which is replaced with

2. Find un+1 as a maximizer of residual

||Bd 2 ((A +  sB)hV(s) — b)||2 (5.80)

||Bd 2 ((A +  iuB)hV(iu) — b)||2 (5.81)

over u G [umin, u,max



In Section 5.4.3, we present a fast method of calculating the residual over an 

interval, allowing for practical implementation of algorithms ARR and AIR.

The previous methods used the approach where at each s, the approximation 

hv (s) to h(s) is obtained as U f (A, s)U*, where f  G V is such that (5.38) is satisfied. 

The adaptive choice of shifts was such that the maximum of the residual that may 

be written as

||(a +  s )f  — 1||m (5.82)

was minimized for s G [Amin, Amax](or s =  iw, w G [wmin, wmax]). There is a natural 

question: For s fixed, why not choose f  G V such that the residual (5.82) is minimal? 

The approximation h y rm(s) to h(s) is given by

hvorm(s) =  V£, where minimizes ||B- 2((A +  sB)V^ — b)||2 (5.83)

In practice, we will approximate the above by

hvorm(s) «  V ', where ' minimizes ||Bd 2 ((A +  sB )V ^ ' — b)||2 (5.84)

To find ', one needs to solve the normal equation

(A +  sB )*(Bd)- 2 1 (A +  sB )y £ ' =  (A +  sB )* (Bd)- 2 b (5.85)

This gives rise to two algorithms:

A lgorithm  N A R R  (N ormal equation ; A daptive  choice of R eal 

shifts; norm of the R esidual as the error indicator):

The algorithm is the same as AR, apart from step 2, which is replaced with

2. Find sn+1 as a maximizer of residual

llB- 2 ((A +  sB)hvorm(s) — b)||2 (5.86)

over s G [Amin, Amax], where hv~orm(s) is given by the approximation (5.84).

Also hv3™(s) instead of hy (s) is used as the approximation to h(s).

A lgorithm  N A IR  (N ormal equation ; A daptive choice of Imaginary 

shifts; norm of the R esidual as the error indicator):

The algorithm is the same as AI, apart from step 2, which is replaced with
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2. Find un+1 as a maximizer of residual

||B- 2 ((A + iuB)h“ ”'m(iw) — b)||2 (5.87)

over u G [umin,u max], where h~°rm(iu) is given by the approximation (5.84) for 

s _  iu.

Details of solving (5.85) for and finding maximum of the residuals (5.86), (5.87) 

are discussed in Section 5.4.3.

5.4.2 U pdate o f  m atrix V

Let v  denote the columns of V . We update V in such a way that the columns 

of V are orthonormal. If we need to add a vector u to the column space V , we 

orthogonalize it according to the algorithm:

In the case of AR, ARR, and NARR algorithms, the vector to be added is

u _  h(s) _  (A +  sB )-1b

for some real s. As a result, u G R and the matrix V is real.

In the case of AI, AIR, and NAIR algorithms when b G R, for some u instead of

Also h~°rm(s) instead of hy (s) is used as the approximation to h(s).

vn+1 u
for (j _  1 : n ){

vn+1 — vn+1 (vn+1,vj )vj
}

(5.88)

adding h(iu) and its complex conjugate h(iu) _  h(—iu), we add its real and imaginary 

parts Re(h(iu)), Im(h(iu)). The latter two vectors span the same two-dimensional

space as h(iu), h(iu), yet they are real valued and as a result, the matrix V is real 

valued. This allows for computational savings whenever columns of V have to be 

multiplied by matrices A, B or when inner products have to be calculated (see also 

Section 5.4.3).

5.4.3 Fast evaluation o f  the residual

We assume that all of the error indicators have a single maximum in the interval 

between two interpolating shifts (or interpolating frequencies). For AR and AI
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algorithms, this is quite obvious. For the other algorithms, it might not be so easy to 

prove, yet this is what we observe in numerical tests. In order to maximize the error 

indicator, one needs to find a single maximum in each of the n — 1 subintervals and 

then choose the largest of them for a global maximum. Finding a maximum in one 

of the subintervals requires a number of evaluations of the error indicator. Because 

of that it is important for those evaluations to be fast.

Using the notation:

llB- ((A +  sB)hv(s) — b)||2 =  II6II2 — 2Re (p*([(AVyb] +  s[(BV)*6])))  +

p * ([(,4V)*(AV)] +  s[(BV)*(Au)] +  s[(A u )*(B V )] +  |s|2[(bBv7)*(BV)]) p (5.90) 

= : ||b|12 — 2Re (p*(q1 +  s?2))) +  p * (Q1 +  sQ2 +  sQ3 +  |s|2q4) p

For ARR and AIR, p is found as a solution to (5.19), which may be rewritten as

In the case of NARR and NAIR, p is a minimizer of (5.90). In order to make the 

evaluation of residual norm fast, we suggest to precompute matrices Q 1, . . . ,  Q4 and 

vectors q1, q2 and to use them in order to evaluate the residual norm at a given value of 

s. The matrices are of size m x m (m =  n for ARR, NARR, m =  2n for AIR, NAIR) 

and the vectors of length m. With this approach, the numerical cost of evaluation 

of the residual norm at each s is of the order of O(m3). And as will be seen in the 

numerical Section, we consider m to be not more than 30, so the cost of evaluation 

at a one s is much less than the cost of a single sparse matrix vector multiplication 

which has numerical complexity of order O (N ), where N  is the number of edges in 

the domain. For example, if N =  300,000, the average number of non-zeros per row 

of A +  sB is 72(hexahedral mesh), m =  30, then the cost of evaluation of the error 

indicator at each frequency is about 2200 times less than the cost of a single complex 

matrix-vector multiplication. If there were 29 subintervals, we could easily evaluate 

the error indicator 75 times in each subinterval. This takes into account only the

A =  B -  2 A
l

B  =  B - 2 B
l

l (5.89)

the residual (5.80) (and similarly (5.86)) may be rewritten as

([V*AV] +  s[V*BV])P =  V*b (5.91)



numerical complexity. In practice, the residual evaluation for each frequency will be 

even faster as all the data will fit into the cache memory.

Also at each iteration of one of the algorithms, one has to update matrices in square 

brackets of (5.90) and (5.91). The numerical cost is 2(5m +  2)N double precision 

floating point operations (flops) (for ARR, AIR, matrices in (5.90) and (5.91) needed) 

or 2(3m +  2)N flops (for NARR, NAIR, only matrices in (5.90) needed). For m _  30 

this is less than one sparse complex matrix-vector multiplication. Notice also that for 

AR or AI, the algorithms that do not use the residual as the indicator, one needs to 

solve equation (5.91) once, for a chosen shift s j. So one needs the matrices V*AV, 

U*BV, update of which has numerical cost of 2mN flops. Also orthogonalization 

described at (5.4.2) requires us to calculate m inner products each time a vector is 

added, which has numerical cost of 2mN flops. All of this discussion shows that if 

the residual is used as the error indicator, it will not add a significant computation 

time.

The procedure described above is not able to calculate the relative residual which 

is less than the square root of the machine precision. This is because, simplifying a 

little, to calculate the square of the residual ||x — y||2, we are adding three numbers 

of similar magnitude:

||x — y ||2 _  (x — x — y) _  (x x) — 2(x  y) +  (y> y) (5.92)

As a result, ||x — y||2 cannot be calculated if it is less than £||x||2, where £ is the 

machine precision. The residual is a square root of (5.92), so may not be evaluated if 

it is less than -\/£||x||2. As a consequence, if double precision is used, the residual used 

as an error indicator if evaluated this way stops working when the relative residual 

of the approximation approaches 10-7 (c.f. Figure 5.3).

Approximate solution with the relative residual of 10-7 is considered satisfactory 

in many applications. If a better approximation is needed, one can use quadruple 

precision, which is only 4 times slower than double precision on modern machines

[19] or double-double precision [20] if quadruple precision on the machine used is 

slow. Higher precision is needed to evaluate the residual for each frequency as well as 

to form matrices in square brackets in (5.90), (5.91), for which one has to evaluate a 

number of inner products. We checked though that for calculation of AV, B V double
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Figure 5.3. Relative residual calculated at the iteration n =  16 of AIR for Jacobian 
of Ex. The figure shows that the calculation in double precision is not sufficiently 
accurate. Values equal to zero indicate that the numerical value of the squared 
residual is non-positive.



precision is sufficient. To evaluate the inner products, the input vectors may be stored 

in double precision, only the calculations have to be done in quadruple precision. As 

a result reading from RAM is the same, only the calculations at the CPU are slower 

than in double precision. Example code in Fortran showing precisely what we mean 

is presented in the Appendix (Section 5.7).

5.4.4 The case o f  b dependent on frequency w

In the case of the forward problem approximation, when b is complex valued 

and depends on the frequency, we consider only one algorithm, similar to AIR. As b 

depends on the value of shift, it makes more sense to approximate it in the interval 

of interest {iw : w G [wmin, max]}.

Also this time, it is more natural to use the relative residual as the error indicator, 

instead of the residual. This will make our algorithm not dependent on the strength 

of the primary plane wave Ep (compare with Theorem 20). The evaluation of the 

residual is more expensive than in the case of b not dependent on shift s. In order 

to find , the solution of equation (5.91), one has to evaluate V *b(s), which is a cost 

of order O(nN) for each value of s. To calculate the residual of the approximation, 

we cannot use (5.90) with precomputed matrices Q 1, . . . , Q 4 and vectors q1,q2 as 

they depend on s through b. Thus we propose to evaluate the relative residual by 

calculating

l|B-1 (([AV-] + — b(s))||2

l|B-2 S(s)||2 .

for precomputed [AV], [By ]. The most expensive part is evaluation of ([AV] +  

s[BV]),5, which has numerical complexity O(nN ). This tells us that the numerical 

cost of evaluation of the error indicator (5.93) is of order O (nN ), which is more 

computationally expensive than in the case of b not dependent on s.

Also, as was mentioned before, in MT, there is a number of frequencies of interest 

w1, . . . ,  Wm log-uniformly distributed in an interval. We propose an algorithm that 

considers the values of interpolating shifts only in the set {icw1, . . . ,  iwm}, for m small. 

If m =  30, the cost of evaluation of the error indicator at each of those frequencies is 

comparable with one matrix vector multiplication.

151



Moreover, as only a fixed number of frequencies is considered, we can apply 

the null space treatment. As a first step, one evaluates the null space part 

h (icu 1) , . . . ,  hKy(ium), and then constructs the model order reduction approximation 

to (5.64).

The algorithm is presented below 

A lgorithm  A IR D  (A daptive  choice of Imaginary shifts; norm  of the 

R esidual as the error indicator ; b D ependent on u ):

The algorithm is the same as AI, apart from step 2, which is replaced with

2. Find un+1 as a maximizer of the (scaled) relative residual

||B- 2((A +  iuB)hy (iu) — b(iu)))||2 (5 94)
||B- f b(iu) || 2 .

over u G {u 1, . . .  , um}.

5.5 Numerical results
Although the proposed methods are designed primarily for iterative solvers, in 

order to test the algorithms, we use a forward solver of [15]. We consider a model 

presented in Figure 5.4. There is a 3d hill and a 3d valley. Below the surface, there 

is a conductive (1Qm) brick in 50^m background. The conductive object is placed 

at [—700m, 700m] x [—328m.3, 328.3m] in XY plane and extends from on average 

450m to 1153m depth. The air is approximated by 107^m and the term iue is 

dropped completely in the whole domain. In the numerical test, we will consider 

magnetotelluric response Z, K  at one receiver location at the bottom of the valley, 

marked blue in Figure 5.4. We are interested in the response h(iu) for a range of 

frequencies considered in Magnetotellurics 2n G [0.01Hz, 1000Hz]. YZ cross-section 

plotted in Figure 5.5 shows the location of the object. The hexahedral mesh consists 

of 31, 31, and 25 elements in x,y, and z directions, respectively and it extends to 

45km from the center in x and y directions. In z direction, it extends to 32km above 

the surface and 47km deep.

5.5.1 The case o f  b not dependent on frequency u

First, let us consider the approximation of the Jacobian, the case of b _  v for v not 

dependent of frequency. Vector v has been defined at (5.10) and (5.11) for the electric
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Figure 5.4. Central part of the surface mesh, together with the location of the 
receiver in blue
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field E and the magnetic field H , respectively. We consider v for E  corresponding to 

x and y directions and H corresponding to x, y, and z directions. For the magnetic 

field H , vector b is orthogonal to the null space of the matrix A (see Appendix in 

Section 5.7 for a proof), yet in the case of the electric field E , the decomposition 

described in Section 5.3.6 will be used.

First, consider the case of the magnetic field H . To compare the quality of 

approximation, we calculate the maximum relative error of approximation

max ||hV M  -  M ^ 2 (5.95)
w e [wmin ,wmax ] ||h(iw)||2

The max relative residual is defined as

||(A +  iw /)hV(iw) -  b||2 ||Bd 2 (A +  iwB)hv (iw) -  b ||2

154

max -------------- ——---------------- «  max
we[Wmin,Wmax] || b || 2 [Wmin ,Wmax] ||B 2 b||2

(5.96)

In Figure 5.6, we compare the strategies that evaluate the error indicator over 

the purely imaginary interval shown in red in Figure 5.2. AIR and NAIR strategies 

decrease the maximal relative error (5.95) with a similar speed, reaching the value of 

10_1° in about 30 iterations. The strategy AI, using an error indicator, which is a part 

of the residual, based on the idea of [9] does poorly in comparison. To understand the 

reason for that, in Figure 5.7 we plot the relative error of approximation and the error 

indicator as a function of frequency w G [wmin, wmax] for two consecutive iterations for 

all three strategies. One can see that all of the strategies tend to focus on the high 

frequency part putting more interpolation shifts there. AI strategy does it to the 

biggest extent and thus fails to reduce the error of approximation at low frequencies.

Let us now consider strategies that use real valued shifts: AR, ARR, NARR. In 

this case, we need an estimate of minimum Amin and maximum Amax eigenvalues from 

effective spectrum of A. We do not discuss the ways to do that, but for the purpose 

of comparison with the imaginary shifts strategies, we use minimum and maximum 

of the spectrum of V*AF, where F  is a matrix obtained by applying the strategy AI. 

As a result, our estimates may give a slightly narrower interval. But it focuses only 

on the important part of the spectrum, the one related to U (b), defined in (14).

Max relative error and max relative residual as a function of iteration n is presented 

in Figure 5.8. One can see that the strategy of [9], AR does more poorly than the
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Figure 5.6. Relative error(left) and the relative residual(right) as a function of 
iteration number n for strategies that choose imaginary shifts. The case of a Jacobian 
of z component of the magnetic field H .
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Figure 5.7. The true relative error(black) and the error indicator(blue) as a function 
of the frequency for two consecutive iterations(n=11,12). For three strategies: AI, 
AIR, NAIR. The case of a Jacobian of z component of the magnetic field H .



strategies based on residual as the error indicator: ARR, NARR. In Figure 5.9, we 

present the errors as a function of frequency. One can see that AR focuses more 

on the high frequency end. This explains why it reduces the max relative error of 

approximation slower than the other strategies.

All of the real shifts strategies seem to perform worse than the strategies based on 

imaginary interpolating shifts: AI, AIR, NAIR. One has to remember, though, that 

one iteration of a real shift strategy needs a solution of equation (5.15) for s G R and 

as b G RN, everything is real valued, so the solution time is less. One real matrix 

vector multiplication is 4 times faster than a complex matrix vector multiplication. 

Moreover, the real system matrix is hermitian, related to a minimization of a quadratic 

functional, whereas for complex s, we have a saddle point problem, so the number of 

iterations needed to solve (5.15) for real s should be less than for complex s. In Figure 

5.10, we plot max relative error and max relative residual for all of the strategies as 

a function of time, for which one unit is the cost of solving (5.15) once with complex 

s. We assume that the solution for real s is four times faster. Comparing this way, 

real shift strategies appear to be two times faster in reducing the max relative error 

of approximation.

To assess the importance of the null space treatment, let us consider the case of 

calculation of the Jacobian for the electric field E , the case when b is not orthogonal 

to the null space of A. In this case, the estimation is done according to (5.70). We 

consider the maximum relative error of approximation of the part orthogonal to the 

null space of A, using model order reduction techniques:

||hW/,y(iw) — hW (iw)||2 , s max -----------~---- ;---------------- (5.97)
W £ [wmin,Wmax ] \\hW (iw)||2

We also consider the maximum of total relative error of approximation

||[hW,V(iw) +  hK(iw)] — h(iw)||2 no. max ------- !-----------— ------------------------ (5.98)
[wmin,wmax ] ||h(iw)||2

Notice that in the case of a Jacobian of the magnetic field H , h^(iw) =  0, so (5.97) 

coincides with (5.98) and is equal to (5.95).

In Figure 5.11, we present the max relative error and max relative residual as a 

function of iteration number for strategies selecting imaginary shifts: AI, AIR, NAIR.
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Figure 5.8. Relative error(left) and the relative residual(right) as a function of 
iteration number n for strategies that choose real shifts. The case of a Jacobian of z 
component of the magnetic field H .

Figure 5.9. The true relative error as a function of the frequency for one itera- 
tion(n=20). For three strategies: AR, ARR, NARR. The case of a Jacobian of z 
component of the magnetic field H.
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Figure 5.10. Relative error(left) and the relative residual(right) as a function of 
iteration number n for all strategies. The case of a Jacobian of z component of the 
magnetic field H . One unit of time is the cost of solving (5.15) once with complex s.

Figure 5.11. Relative error(left) and the relative residual(right) as a function of 
iteration number n for strategies choosing imaginary shifts. The case of a Jacobian 
of x component of the electric field E. O denotes the error (5.97) of approximation 
of the part orthogonal to the null space of A, © corresponds to the total error (5.98), 
the solid line corresponds to using model order reduction for the original b, without 
any null space treatment. The residuals of approximation of hW and h do not differ 
substantially, so only one is plotted.



If one looks at the error of model order reduction (5.97) (denoted in the figure by 

O), the comparison between strategies is similar to the case of the Jacobian for the 

magnetic field H . AIR and NAIR perform better than AI. The total error (5.98) 

(denoted in the figure by ®) is around three orders of magnitude less. Again AI 

performs worse than AIR, NAIR.

We compared those results with a case of not considering the null space treatment 

at all. In this case, the model order reduction is used for the equation with the original 

vector b. The max relative error (5.95) and the corresponding relative residual are 

denoted by a solid line on 5.11. One can see that the strategies without the null 

space treatment are less stable numerically. They diverge beyond n =  20. What is 

interesting though, the quality of approximation is almost the same as the quality of 

approximation with the null space treatment for the first 20 iterations. This is a little 

surprising at first. Recollect that for a given s, the rational approximation f  satisfies 

(5.38). And for the original b, measure ^, defined at (5.39), contains a significant 

portion of mass at point 0, so f  has to be good estimator of also at A =  0. It 

might though be that the difference between null space treatment and no null space 

treatment is not that large because A =  0 is only one point. Hence h(s) differ from 

hw (s) only by adding a single vector multiplied by 1 (c.f. Section 5.3.6). So if one 

has a space colsp(V) that is good for approximation of hW(s), it is enough to add 

one vector to be able to approximate h(s) with the same quality.

This result encourages us to consider the strategies without the null space treat

ment, with real shifts in Sj G [Amin, Amax], where Amin, Amax are bounds of the essential 

spectrum. In Figure 5.12, we present the max relative error and max relative residual 

as a function of iteration number n. One can see that the strategies without the null 

space treatment perform similarly to the strategies with the null space treatment.

Additionally, although ARR and NARR are better than AR in decreasing the 

error (5.97) of approximating hw, when the total error (5.98) is considered, strategy 

AR seems to perform better. It seems to be a result of a two errors canceling each 

other, which we describe below.

First notice that the error of approximation of hw^), (5.97) and the total error 

(5.98) differ by a multiplicative constant, dependent on frequency:
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||h(iw)||2 || hW (iw)||2

for

C (iw) || hW (iw)||2 
||h(iw)||2 ||hw (iw) +  £  (K  * B K  )-1K  *b||2

||hW (iw)||2 (5.99)

The value of C as a function of frequency is plotted in Figure 5.13. One can see that

we use model order reduction for approximation of hw (iw), the ideal error indicator 

function should focus on high frequency more. AR strategy focuses on high frequency 

(see Figure 5.9), thus although the error of approximating hw is bigger for it than 

for ARR of NARR, the total error is less for AR.

The conclusion one might draw is that in order to profit from null space treatment, 

one has to deal with the factor C(iw) in a proper way.

To calculate the speedup of calculation of Jacobian, one has to do the following. 

Assume that the iterative solver is used to solve the linear systems, and that the 

solver is such that the speed of reducing the log of residual does not depend on the 

value of the relative residual, i.e., the same number of iterations needed to reduce the 

relative residual from 10-1 to 10-2 is the same as the number of iterations needed to 

reduce the relative error from 10-5 to 10-6 . It is true for solvers that use multigrid 

techniques, divergence correction, and if the mesh does not have high aspect ratio 

elements [21, 22]. Assume further that the approximation hy (iw) is used as h(iw) 

if it has sufficiently small residual and if not, it is used as a starting guess for the 

iterative solver. Assume that the cost of applying the model reduction techniques 

is negligible compared with the cost of calculating (A +  iwB)-1b for one w using an 

iterative solver. If we are interested in finding solutions that have relative residuals 

no more than 10-6 for 30 frequencies, in our numerical test, the speedup of using AIR 

or NAIR versus not using model order reduction is 4 times. The speedup is higher if 

more frequencies are needed. For example, for 60 frequencies, the speedup would be 

8 times. The speedup may be different for different geometries of the model and for 

finer discretization.

it spans almost 5 orders of magnitude. If we are interested in values of h(iw), and
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Figure 5.12. Relative error(left) and the relative residual(right) as a function of 
iteration number n for strategies choosing real shifts. The case of a Jacobian of x 
component of the electric field E . O denotes the error (5.97) of approximation of 
the part orthogonal to the null space of A, © corresponds to the total error (5.98), 
the solid line corresponds to using model order reduction to the original b, without 
any null space treatment. The residuals of approximation of hW and h do not differ 
substantially, so only one is plotted.

m/2n (Hz)

Figure 5.13. The ratio of relative errors C(iw) defined at (5.99). The case of a 
Jacobian of x component of the electric field E .



5.5.2 The case o f  b dependent on frequency u

Let us consider the approximation of the forward MT response, so the case of 

b(iu) =  g(u) where g(u), defined at (5.6) depends on the primary plane wave field. 

Usually in MT, one considers two cases: E field purely in x direction(with H purely 

in y direction) and E field purely in y direction(with H purely in x direction).

As the source in equation (5.2), the primary plane wave electric field multiplied by 

the conductivity difference (a — ap)Ep, is not divergence free, the vector b(iu) is not 

orthogonal to the null space of A. Moreover, its part lying in the null space bK(iu) 

depends on u. Thus we can expect the null space treatment to have a bigger impact 

on the quality of approximation than in the case of b not dependent on u.

We consider algorithm AIRD for 31 frequencies of interest log-uniformly dis

tributed in [umin,u max]. In Figure 5.14, we present maximum over the whole interval 

[umin, umax] of the relative error and relative residual as a function of iteration number. 

This time, the null space treatment decreases the relative error of approximation by 

nearly two orders of magnitude, allowing us to decrease the maximum relative error of 

approximation to 10-7 in 25 iterations. For n larger than 25, we can see a stagnation 

caused by the limitation of the choice of interpolation frequencies to { u i , . . . ,  um}

In Figure 5.15, we present a similar plot, but this time, the maximum of the 

relative error and the relative residual is taken only over the frequencies of interest 

cui , . . .  ,u m. The main difference with the previous figure is seen for large n.

We calculate the time savings from using the AIRD algorithm, with the same 

assumptions as in the case of Jacobian. If we are interested in finding a solution that 

has relative residual no more than 10-6 for 30 frequencies, the speedup AIRD versus 

not using model order reduction is 2 times. So the speedup in the forward problem 

case is two times less than in the case of the Jacobian. There may be two reasons for 

that. One is that this time b depends on u, the other is that we limit the values of 

frequencies to u i , . . . ,  u30, thus the location of interpolation points is not optimal.

Although the speedup for using model order reduction techniques is less for the 

forward problem case, the majority of calculation at each iteration of the Gauss- 

Newton method is due to calculation of the Jacobian. If the same mesh is used for 

all of the receivers, one needs two linear solves to obtain two £ (one for each plane
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Figure 5.14. Relative error(left) and the relative residual(right) as a function of 
iteration number n for strategies choosing imaginary shifts. The case of the forward 
problem for source plane wave with E purely in x direction. O denotes the error 
(5.97) of approximation of the part orthogonal to the null space of A, © corresponds 
to the total error (5.98), the solid line corresponds to using model order reduction to 
the original b, without any null space treatment. The residuals of approximation of 
hW and h do not differ substantially, so only one is plotted.

Figure 5.15. Same Figure as 5.14, except for the max error and max residual being 
calculated only among the trial frequencies uj\,. . . ,  cD31



wave polarization) that are needed in the forward response calculation (5.12) and 

subsequently as much as 5 times the number of receivers linear solves to obtain the 

Jacobian in (5.13). With 100 MT receivers in the domain, the ratio of workload is 

500 to 2. In this case, one does not need to consider model order reduction for the 

forward problem at all.

Obviously, one could only be interested in forward modeling and then the speedup 

of the forward problem matters, but this speedup might be of interest also in inversion 

using the Gauss-Newton method. The method we propose for the calculation of the 

Jacobian considers each receiver separately, so one could use a different mesh for each 

receiver (local meshes). In this case, one needs two forward problem solves for each 

receiver, and then the workload is 5 to 2 so the speedup of the forward solve matters 

much more.
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5.7 A ppendix

P ro o f : (proof of Theorem 15) Let Aj, Yj be eigenvalues and eigenvectors of V*AV. 

As V*AV is hermitian, non-negative definite

Aj > 0, j  =  1 , . . . , n  (5.100)

and Yj might be chosen to be orthonormal. Using representation (5.35), define Zj G V 

such that

VYj =  Uzj (A)U *b (5.101)

functions Zj are ^ orthonormal eigenvectors of operator of multiplication by A in V :

*(i =  j ) =  Y*Yj =  Y* V * VYj =  (V%)* (V ^ ) =  (Uz*(A)U *b)*Uzj (A)U *b = <  Zj, z* >

(5.102)

Aj < zj ,z* > M=  AjY*Yj =  Y**(AjYj) =  Y*(V *AVYj) =  (VY*)*A (V Yj) = <  Azj , z* > m

(5.103)
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Using the latter and (5.38), one can calculate the coefficients of f  in eigendirections 

Zj to obtain:
n .j

f  (A,s) =  ^  < ^, >  zj (A) (5.104)
j=1 Aj +  s

Using the definition (5.36) of V , let pj be a polynomial of degree at most n — 1 such 

that
Pj(A)

nn=1(A +  si)
This allows us to rewrite (5.104) as

165

 ̂ ^  ( <  1,Zj >  Pj(A) ^ P(A,s)f  (A, s) =  > .  ---------- T-rn ,, , v =  ___ra *-------- — ------- T (5.106)
j=1 V A  + s n,=1(A+ s0 y  n ,= 1 (Aj + s)(A+ sj )

for some P, which is a polynomial of the order at most n -  1 with respect to A as well 

as with respect to s. Define

n n=1(A+ sj )(s +  Aj ) — n n=1(s — sj ) (A —Aj )
/ (A ,s)  =  1A + s

1 _  (s — sj )(A — Aj ) 
7 = 1 (A +  sj )(s +  Aj ) (A +  s^ n=1(A +  sj )(s +  Aj )

following the idea of [23], we notice that if we plug in —s for A, then the numerator 

is 0. Thus the polynomial in the numerator is divisible by (A +  s). This allows us to 

write f  as

/ (A,s) ^
n n=1 (Aj + s)(A+ sj )i j=n / j  1 1 j

where P is a polynomial of order at most n -  1 of s and of A. In order to prove 

Theorem 15, it remains to show that p =  p .

Define

hy(s) =  U f  (A, s)U*b (5.107)

Using (5.21) and (5.28), and the definition of f  , we have

hy (s) =  hy (sj), for s =  s j , j  =  1 , . . . ,  n
U f  (A, s)U*b =  U f  (A, s)U*b, for s =  s j, j  =  1 , . . . ,  n

f  (A, s)U*b =  f  (A, s)U*b, for s =  s j , j  =  1 , . . . ,  n
f  (Ak, s)ukb =  f  (Ak, s)ukb, for s =  s j, j  =  1 , . . . ,  n, k =  1 , . . . ,  N

Let us now fix Ak. Assuming b =  0, we have

p(Afe,s) =  p(Afe,s) for s s j =  i n 
n?=i(Ai+s)(Afc+«*) nn=i(Ai+s)(Afc+ *), o s sj, j  , . . . ,n



As Ak, Aj > 0, with the assumption (5.18), we can conclude that

p(Afc, s) =  p(Afc, s), for s =  s j, j  =  1,. . .  ,n 
p(Ak, s) — p5(Ak, s) =  0, for s =  Sj, j  =  1 , . . . ,  n

p(Ak, s) — p(Ak, s) is a polynomial of degree at most n — 1. As it has n distinct roots,

it has to be equal to 0. We have obtained:

ukb =  0 ^  Vs p(Afc , s ) =  p(Afc, s)

Now, fix s. p(A, s) — p(A, s) is a polynomial of A of degree at most n — 1. With the 

assumption that the number of distinct Ak such that «kb =  0 is greater or equal n, 

this polynomial has at least n distinct roots, so it is equal to 0. We have obtained 

that

p(A, s) =  p(A, s), VA, s

which implies

/ (A,s) =  VA,s

which in turn implies (5.40).

Theorem  22 For any values sj (—ro, 0], the eigenvalues Aj of V*AV minimize 

the norm (5.74).

P ro o f : The square of the norm may be rewritten as
/ \ 2  ̂ 2 -2 

u  (nn=1(A—Aji ) n?=1(A+ sj/ )-1)  u*b 2 =  / 0°° n n u ( A —Aj) n n u ( A —sj) ^

r  nn=1(A—Aj )2dr (a) =  iinnii2
(5.108)
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where the measure t is defined as
1 _ 2

dT (A)

and the polynomial is

n (A —sj ) 
j=1

d^(A) (5.109)

n„(A) =  IJ(A  — Aj ) (5.110)
j=1

The expression (5.103) for eigenvalues Aj and eigenvectors Zj, defined at (5.101) 

may be rewritten using the measure t as

< (A — Aj)pj ,pi > r =  0 (5.111)



for all i , j  =  1 , . . . ,n .  Polynomial pj has been defined at (5.105). Consider a 

polynomial nn(A) of order n, which is t orthogonal to all the polynomials of degree at 

most n — 1. If the measure t has support consisting of at least n points (which is true 

if the number of distinct eigenvalues Ak for which u*b =  0 is at least n), then nn has 

n distinct zeros. This is a standard result of the theory of orthogonal polynomials, 

the proof is not given here. According to (5.111), we have

nn(A) =  Cj (A — Aj )Pj 

where Cj is a constant. This shows that Aj for j  =  1 , . . . ,  n are roots of nn. Thus

n
nn (A) =  C n ( A  — Aj ) =  Cnn(A) (5.112)

j=i

for some constant C .

If one varies the values A, the quantity (5.108) yields ||p(A) ||̂ for some polynomial 

p of degree n and the coefficient next to An equal to 1. If p is divided by nn, one 

obtains

p(A) =  ffn(A) +  r(A) (5.113)

where the degree of r is at most n — 1. Because of (5.112), nn is t orthogonal to r 

and thus

I|p|l2 =  M ?  +  l|r||2

so

I|p|l2 >l|nn||2
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Example code for high precision inner product follows. Calculations are done in 

quadruple precision, yet input vectors are in double precision.

subroutine HighPrecisionInnerProduct(N,x,y,res) 

im p lic it  none 

integer , in ten t ( in )  : : N

rea l (8 )  , in ten t ( in )  : : x(N),y(N) !! input in double prec is ion  

re a l (1 6 ) , in ten t (ou t )  : : res !! output in quadruple prec is ion



! ! lo ca l  variab les: 

integer : :  i  

res = 0 

do i  = 1,N

res = res + r e a l ( y ( i ) , 1 6 ) * r e a l ( x ( i ) , 1 6 )  !! quadruple prec. 

enddo

endsubroutine HighPrecisionInnerProduct

Theorem  23 If b =  B 2v for v =  v^ ,vH or v ^ , defined at (5.11), then

b ±  null(A)

P ro o f : We present a proof for lowest order edge elements on hexahedral grid. A 

proof for tetrahedral grid is similar.

We have to prove that

0 =  K  *b =  K  *v

for K  defined (5.66). Consider an element, plotted in Figure 5.16, that contains 

the location r of the receiver. As K  corresponds to discrete gradient V  operator, K * 

corresponds to negative discrete divergence -V -  operator. Each row of K  corresponds 

to a vertex, and each entry of K*v  corresponds to a value of sink at the vertex. The 

values ve are added for all edges connected to the vertex, with the sign related to the 

orientation towards the vertex. If we consider the vertex j  in Figure 5.16, only edges 

e 1,e 2,e 3 need to be considered as ve =  0 for other edges and
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K  *vx 
K  *vy
K  *vz

Y ( K j ;e)* (V x Se)(r) =  (V x  Se± )(r) +  (V x Se2 )(r) +  (V X Se3 )(r) =  0

J
The above is true, as V  x Sei +  V  x Se2 +  V  x Se3 =  0. To explain the latter, 

notice that for each edge e, V  x Se is a member of 'hih(V-), which have degrees of 

freedom being fluxes through faces. For face f 1 in Figure 5.16, using Stokes theorem, 

we obtain

(V x Sei +  V  x Se2 +  V  x Se3)fi =  (V x Sei +  V  x Se2)f1 =  1 — 1 =  0

Similarly for f 2, f 3. As all the coefficients of vector field V  x Sei +  V  x Se2 +  V  x Se3 

are 0, it is identically zero.
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Figure 5.16. Plot showing a hexahedral element used in the proof of Theorem 23
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