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ABSTRACT

Numerical simulation methods, Monte Carlo simulation and phase field simulation meth-

ods were applied to the solid state sintering of unequal size particles. A geometrical model

describing the solid state sintering was also developed. The numerical simulation methods

and developed geometrical model were compared against results of the solid state sintering

experiments.

Monte Carlo simulations were performed using Kawasaki and Glauber dynamics to ac-

curately simulate the solid state sintering. The simulation results of two unequal particles

showed that sintering occurs in three subprocesses: (1) neck growth, (2) coarsening and (3)

grain boundary migration. A finite overlap between the three subprocesses was also observed

in the simulation results.

The phase field model using conserved and nonconserved fields was applied to the sin-

tering in solid state. The thermodynamics equations describing the energetics of the system

were developed for performing the phase field simulations. An application of phased field

simulations on two unequal size particle yielded results similar to those obtained by Monte

Carlo simulations. The phase field simulation method was also applied to sintering of multiple

particles. Realistic microstructures of multiparticle simulations were obtained.

A geometric model based upon two particles simulation results was developed. The

geometrical model describes the overlapping three sintering subprocesses of neck growth,

coarsening and grain boundary migration. Analytical expressions for the three subprocesses

were developed. These expressions were used to calculate microstructural evolution of two

unequal particles and a linear array of particles.

The numerical simulations and the developed geometrical model were compared with

experimental data. The experimental data were obtained from sintering of nanosized tungsten

powders. The geometric model successfully predicted the observed linear grain growth during

sintering of tungsten.
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CHAPTER 1

INTRODUCTION

This research described in this dissertation is related to sintering process involving bonding

between material particles at elevated particles. This chapter provides the motivation,

objective and scope of the research performed. This chapter concludes with a description

of the organization of the dissertation.

1.1 Motivation

The sintering process is usually understood by geometrical models of sintering. These

models are based upon idealized geometries of particles [1,2]. These idealized geometries are

used to describe the sintering process of equal sized particles. However, the consolidation

of real powders involves sintering of unequal sized particles. The sintering behavior of real

powders can be described using unequal sized particles sintering models.

The existing unequal sized particles sintering models do not provide a complete quanti-

tative description of the sintering process. For example, Coble’s model [3] is limited to the

initial stage of sintering and does not consider mass transport between particles. On the other

hand, Lange’s thermodynamical model [4,5] of unequal sized particles sintering describes the

complete process of sintering. The model describes the sintering process to be occurring in

three subprocesses: (1) neck growth, (2) coarsening, and (3) rapid grain boundary migration.

Although Lange’s model provides a complete description of three subprocesses, it does not

provide kinetic equations of subprocesses. Furthermore, Lange’s model neglects any overlap

of sintering subprocesses, whereas a finite overlap may occur near transition of subprocesses.

The models described above suggest that the sintering of unequal sized particles is not well

understood. Specifically, neck growth and coarsening kinetics for unequal sized particles are

not known. Also, the expression of rapid grain boundary migration is not known. The reasons

for not understanding the kinetics could be due to experimental difficulties and analyzing the

unequal size particle sintering data. For example, the high temperature of the sintering

process makes real time observation challenging. Furthermore, additional sintering variables

such as particle size ratio and grain boundary mobility add to the complexity in deriving
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expressions of unequal particle sized sintering kinetics. Therefore, the lack of understanding

of unequal sized particles sintering is the main motivation behind this work.

1.2 Objective and scope

The primary objective of this study is to understand the mechanism of unequal sized

particles sintering. In order to achieve the objective, a geometrical model quantitatively

describing the three sintering subprocess will be developed. The geometrical model should

also be capable of describing the overlap of the sintering subprocesses.

The objective is achieved using numerical simulations and geometrical modeling. The

numerical simulation methods include Monte Carlo simulation and phase field simulation.

The numerical simulations can provide a microstructural evolution and kinetics during sin-

tering. This observation of microstructural evolution circumvents the problem of real time

observation encountered during sintering experiments. The sintering results obtained from the

numerical simulation methods and geometrical model are compared against experimentally

obtained sintering data.

The numerical simulations and geometrical models can be used to obtain the sintering

kinetics. Both of the methods have their advantages and drawbacks. The Monte Carlo

simulations and phase field simulations do not make assumptions regarding the particle

shape and size. These models provide accurate sintering kinetics with respect to geometrical

assumptions. The Monte Carlo and Phase field simulation methods are applied to the

sintering of two particles. The models show the sintering to be occurring in three sequential

subprocesses: (1) neck growth, (2) coarsening, and (3) grain boundary migration. The

sintering of two particles shows an overlap of the three subprocesses. In the first subprocess

of neck growth, a neck and a grain boundary between the particles form and grow. This

neck and grain boundary provides the necessary path for interparticle mass transport during

the coarsening subprocess. Next, during the grain boundary migration subprocess, the grain

boundary sweeps across the small particle until the small particle disappears. Although

Monte Carlo and the phase field simulation methods provide sintering kinetics without making

any geometrical assumptions, the kinetics are provided on a relative time and length scales.

Because real time and length scales would rather be obtained, geometrical modeling is applied

in addition to the simulations.

The geometrical models make assumptions regarding particle geometry and mass trans-

port. Although these assumptions regarding geometry and mass transport add to the inac-

curacy of the sintering model, geometrical models are very useful. Their usefulness stems
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from modeling the sintering in real time and length scale. At the same time, these models

provide the dependence of sintering variables on kinetics in closed form expressions. These

closed form expressions enhance the usefulness of the geometrical models. The geometrical

model developed in this work provides results similar to the Monte Carlo and the phase field

simulation method. The geometrical model shows that subprocesses of the neck growth and

the grain boundary migration are kinetically fast as compared to coarsening. This indicates

that the coarsening is the rate determining subprocesses in the sintering.

The numerical models described above provide the sintering kinetics of two unequal

particles. The models are compared against the experiments. Sintering experiments on

tungsten powders are used for comparison. A satisfactory comparison between modeling and

experiments is found.

1.3 Organization of dissertation

This dissertation is divided in two parts. The first part of the dissertation describes the

background of sintering theories and numerical simulations whereas the second part contains

the results and discussion of research performed in this dissertation. In the first part of

the dissertation, Chapter 2 describes the sintering theory. This chapter also summarizes the

analytical models of unequal sized particle sintering. Background, methodology and recent

applications of Monte Carlo and phase field simulation methods are described in Chapter 3

and 4, respectively. The second part of the dissertation includes results and discussion of

numerical simulations. The second part also contains details and application of geometrical

model developed in this dissertation. The application of Monte Carlo simulation to sintering

of two unequal particle sintering is discussed in Chapter 5. Phase field simulation method is

applied to various initial microstructure. Chapter 6 describes the application and discusses

the results of the phase field simulations. The geometrical model is described in Chapter 7.

Application of the geometrical model to sintering of linear array of particles and a comparison

with sintering of tungsten nanopowder is also described in Chapter 7. Finally, summary,

conclusions and comments on future work are provided in Chapter 8.
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CHAPTER 2

SINTERING THEORY AND MODELS

Sintering can be defined as a material processing method to produce density controlled

materials and components from powers by application of thermal energy. Sintering involves

the elimination of the pores between the particles. The elimination of the pores requires

the movement of the vacancies from the interior of the sample to the exterior of the sample.

The movement of the vacancies is equivalent to the movement of the atoms in the opposite

direction. The movements of the vacancies and atoms can occur along numerous paths in the

sintering microstructure. These paths include surfaces, grain boundary and bulk materials.

The mass transport due to the vacancies and the atoms movement along these paths defines

the sintering mechanism. The sintering mechanisms are described in detail in Section 2.1. In

practice, several sintering mechanisms are simultaneously active resulting in mass transport

via various routes. The simultaneously active sintering mechanisms indicate the complex

nature of the sintering process. The complexity of the sintering is aggravated by a continuous

change in particle size and shape.

A comprehensive sintering theory describing the complete sintering process has not been

developed. Rahman suggested that the development of such comprehensive theory is un-

likely [6]. This suggestion is based upon the complex nature of the sintering process. The

conventional approach to describe the sintering process is to separate the sintering process

into subprocess or stages. The separation of the stages is based upon the mass transport

mechanisms and the sintering geometry. The sintering kinetics for simple geometry can

be developed. The conventional sintering models provide kinetics for equal size spherical

particles. The influence of sintering parameters such as particle size and temperature can be

inferred from these models. A description of these models is given in Section 2.2

The densification of the real powders involves sintering of unequal particles. The sintering

models for unequal particles have drawn attention recently. Researchers have adopted several

approaches to establish geometrical changes and sintering kinetics during the sintering of

unequal sized particles. These approaches include numerical simulations [7,8] and geometrical

modeling [5, 9]. Numerical simulations provide microstructural evolution during sintering
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using computational methods. The sintering kinetics in numerical simulations are obtained

from microstructural evolution. Therefore, numerical simulations are similar to sintering

experiments. On the other hand, The geometrical models are based upon idealized geometries

of particles during sintering. The geometrical models are generally used to describe the

dependence of sintering parameters and materials properties on sintering kinetics in terms

of analytical expressions. Sec. 2.3 summarizes the geometrical models of two unequal sized

particles sintering reported in the literature.

2.1 Sintering mechanisms

The densification during the sintering occurs due to the mass transport. The mass

transport may take place by various mass transport mechanisms along different paths. A

sintering mechanism refers to a combination of mass transport mechanism and mass transport

paths. The sintering mechanisms depend upon the source and sink for the mass transport.

A chemical potential exists between the source and sink region. The mass transport reduces

the chemical potential between the source and sink regions. The sintering mechanisms also

depend upon the mass transport paths such as surfaces and grain boundaries. The six

sintering mechanisms are possible based upon the sink and source of mass transport. These

mechanisms are listed in Table 2.1 and graphically shown in Fig. 2.1

The driving force for the above mentioned sintering mechanisms originates from the

chemical potential difference among different points in the microstructure. The regions of

high chemical potential act as the source of the material for transport. The sink regions in

the microstructure have lower chemical potential. The source and the sink regions are given

in Table 2.1. The chemical potential difference primarily results from difference in surface

curvature. The difference in the surface curvature may cause difference in bulk pressure, vapor

pressure and vacancy concentration among regions in the microstructure. These differences

2.1: Sintering mechanisms

S. no. Sintering mechanism Material source Material sink
1 Lattice diffusion from surface Particle surface Neck
2 Lattice diffusion from grain

boundaries
Grain boundary Neck

3 grain boundary diffusion Grain boundary Neck
4 surface diffusion Particle surface Neck
5 viscous flow Bulk grain Neck
6 gas phase transport via

evaporation/condensation or gas
diffusion

Particle surface Neck
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Grain boundary 
diffusion 

2.1: Various sintering mechanisms in sintering

in bulk pressure, vapor pressure and vacancy concentration can be identified with two particle

geometry as follows.

1. bulk pressure difference or stress between particle interior and neck region

2. vapor pressure difference over the neck and the particle surfaces

3. vacancy concentration difference between particle interior, surface and neck region

Fig. 2.2 shows the bulk pressure, vapor pressure and vacancy concentration at different

locations in the microstructure. The bulk pressure, vapor pressure and vacancy concentration

can be expressed as a function of surface curvature.

The stress σ under a curved surface can be given by Young-Laplace equation [6]:

σ = γs

(
1

R1

+
1

R2

)

(2.1)

where γs is the specific surface energy, and R1 and R2 are the principle radii of curvature. The

radius of curvature at the particle surface has a positive curvature resulting in a compressive
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2.2: Vacancy concentration, vapor pressure and bulk pressure at various locations in the
microstructure

stress under the particle surface. The neck has a concave curvature with a negative radius of

curvature. The negative radius of curvature results in a tensile stress at the neck.

The vapor pressure p over a curved surface can be given by the Young-Laplace equa-

tion [10]:

loge

(
p

p0

)

=
γsΩ

kT

(
1

R1

+
1

R2

)

(2.2)

where p0 is the equilibrium vapor pressure over a flat surface, Ω is the atomic volume, k is

the Boltzmann constant and T is the absolute temperature. The radii of curvature at the

particle surface and the neck lead to a higher and lower vapor pressure than a flat surface

respectively.

The vacancy concentration cv can beneath a curved surface can be given as [11]:

cv = c0exp

[

−γsΩ
kT

(
1

R1

+
1

R2

)]

(2.3)

where c0 is equilibrium vacancy concentration beneath a flat surface. The concave radius of

curvature at neck results in an excess vacancy concentration. The vacancy concentration is

less than equilibrium vacancy concentration beneath the particle surface.
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The mass transport for the sintering occurs due to the difference in vacancy concentration,

vapor pressure and bulk pressure. The mass transport due to these differences takes place

along paths given in Table 2.1. The sintering by surface diffusion and gas phase brings shape

change to the particles. These sintering mechanisms do not bring particle centers closer.

Therefore, these two mechanisms are considered as nondensifying mechanisms. The other

sintering mechanisms result in a shrinkage and are referred to as densifying mechanisms. The

densifying and nondensifying mechanisms play roles in the sintering.

2.2 Geometrical models

The geometrical models of sintering provide sintering kinetics. The relationship between

sintering time and sintering parameters such as particle size, temperature and diffusion

coefficient can be obtained with the geometrical model. The geometrical models assume

idealized geometries to describe the particle shapes in the sintering powder. The geometry of

the particles and pores changes during sintering and cannot be idealized by one particle

geometry. The sintering process is conceptually divided into three stages to avoid the

problems of idealized geometries [6]. These three stages are: (1) initial stage sintering, (2)

intermediate stage sintering and (3) final stage sintering.

The model for initial stage of sintering was proposed by Kingery and Berg [12]. They

used an idealized microstructure of two touching particles to describe neck formation during

the initial stage of sintering. The neck between the particles forms as soon as the sintering

begins. The neck growth continues until it about 40-50% of the partice size [6]. Kang

assumed the maximum neck size to be about 20% of the particle size [13]. The densifying

and nondensifying mechanisms contribute in neck growth. The initial stage of sintering results

in linear shrinkage of about 3-5%. The microstructure at the end of the initial stage consists

of a skeleton formed by the particles. The pores remain open at the end of the initial stage

of sintering.

The intermediate stage of sintering begins when pores acquire their equilibrium shapes

[14]. The pores form a continuous structure in the microstructure. The particle shapes are

idealized as space filling tetrakaidecahedron. The pores are assumed to have cylindrical shape

and located along the particle edges. The lattice diffusion and grain boundary diffusion result

in a reduction of pore radius. The pore radius is reduced until the pores become unstable

and pinch off. The intermediate stage of sintering usually constitutes a major part of overall

sintering leading to a relative density becomes about 0.09. The microstructure at the end of

the intermediate stage sintering consists of grains having pores at the corners.
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The final stage sintering begins when pores are isolated [14]. The spherical pores are

assumed to located on tetrakaidecahedron grains. The pores shrink due to densifying mech-

anisms until the sintering microstructure becomes fully dense. The relative density increases

from ∼ 0.9 to 1.0 during final stage of sintering.

The sintering kinetics can be derived for the idealized geometries in each stage of the

sintering. The kinetics are obtained by setting up a mass flux equation for the idealized

geometry. The mass flux is solved using appropriate boundary conditions.

2.2.1 Initial stage sintering

The initial stage of sintering involves a formation and growth of neck between the particles

[12]. The neck growth driven by a reduction in surface energy at the expense of the grain

boundary energy. The neck growth can be accomplished by densifying and nondensifying

mechanisms. The densifying and nondensifying mechanisms require different geometries to

model the sintering. These geometries consist of two spherical particles. The geometries

for the densifying and nondensifying mechanisms, referred to as sintering geometry “with

shrinkage” and “without shrinkage”, respectively, are shown in Fig. 2.3.

In case of sintering with shrinkage, the two spherical particles intersect. The two particles

touch each other for sintering without shrinkage. The neck between the particles has a circular

profile. The radius of curvature r at neck, area A and volume V of the neck can be given as:

{r, A, V } ≈







{
x2

2R
,
2πx3

R
,
πx4

2R

}

without shrinkage
{
x2

4R
,
πx3

R
,
πx4

4R

}

with shrinkage
(2.4)

The kinetics of the initial stage of sintering can be obtained by equating the mass transported

from the materials source and change in the neck volume. For the neck growth with lattice

diffusion from grain boundaries

dV

dt
= JAVm

πx3

R

dx

dt
=
Dl

kT
∇σAVm

=
Dl

kT

γs
rx

πx3

R
Vm

⇒ x4 =
16DlγsRVm

kT
t (2.5)
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(a) with shrinkage

(b) without shrinkage

2.3: Initial stage sintering geometries

where J is the atom flux, Vm is the molar volume, k is the Boltzmann constant and T is the

absolute temperature. In eq. 2.5, Dl is the volume diffusion coefficient and t is the time. The

time required for neck growth by other sintering mechanisms can be calculated in a similar

fashion. The kinetics for the initial stage sintering can be expressed as:

( x

R

)n

=
B(T )

Rm
t (2.6)
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In eq. 2.6, B(T ) is a temperature dependent term. The term B(T ) also includes materials

properties such as diffusion coefficients and geometrical constants. In eq. 2.6, the exponent n

is termed as mechanism characteristic exponent whereas the exponent m defines the particle

size dependence. The value of the term B(T ) and coefficientsm, n depends upon the sintering

mechanisms. The initial stage sintering kinetics for different mechanisms are given in Table

2.2.

The exponents n, m in eq. 2.6 can obtained by plotting relative neck size x/R with

sintering time t and particle size R on logarithmic scale. The sintering mechanism can be

obtained from the exponents given in Table 2.2. The determination of mechanism from the

exponent is based on the assumption that only one sintering mechanism is active. When

several sintering mechanisms are simultaneous active, the exponent may correspond to an

entirely different mechanism. For example, Kingrey and Breg [12] showed that the exponents

n, m indicate the lattice diffusion was the dominant neck growth mechanism. Later analysis

showed the surface diffusion was the dominant mechanism with a significant contribution

from lattice diffusion [6].

2.2.2 Intermediate stage sintering

The microstructure at the end of the initial stage contains an interconnected open pore

structure [14]. The pores are located on the grain edges. The intermediate stage of the

sintering involves the removal of the open pores. The removal of pores is obtained by

densifying sintering mechanisms, namely, grain boundary diffusion and lattice diffusion.

The geometry to describe the intermediate stage sintering assumes cylindrical pores on

the edges of tetrakaidecahedron grains. The driving force for this stage of sintering is the

reduction in pore surface area. The pores shrink as sintering progresses until the Rayleigh’s

surface instability criterion is met [15]. When Rayleigh’s criterion is met, the pores become

isolated. The change in the pore structure indicate the end of the intermediate stage of

sintering.

The intermediate stage of sintering is modeled with tetrakaidecahedron grains. The

assumed microstructure consists of grains arranged in bcc arrangement with pores along

the grain edges. A tetrakaidecahedron has 36 edges, 24 corners and 14 faces as shown in Fig.

2.4. The volume of a tetrakaidecahedron can be given as:

Vt = 8
√
2lp

3 (2.7)



1
3

2.2: Initial stage sintering kinetics. Adapted from ref. [6]

Sintering mechanism Kinetics expression n m

Lattice diffusion from particle surfaces x5 =
20DlγsVmR

2

kT
t 5 3

Lattice diffusion from grain boundary x4 =
16DlγsVmR

kT
t 4 3

Grain boundary diffusion from grain boundary x6 =
48DgbδgbγsVmR

2

kT
t 6 4

Surface diffusion from particle surfaces x7 =
56DsδsγsVmR

3

kT
t 7 4

Viscous flow x2 =
4γsR

η
t 2 1

Gas phase transport via evaporation/condensation x3 =

√

18

π

p0γs
d2

(
M

kT

)(3/2)

Rt 3 2

Gas phase transport via gas diffusion x5 = 20p0Dgγs

(
Vm
kT

)2

R2t 5 3

x = neck size; R = particle radius; t = time; Dl = lattice diffusion coefficient; Dgb = grain boundary diffusion coefficient; Ds = surface
diffusion coefficient; γs = specific surface energy; δs = diffusion thickness of the surface diffusion; δgb = grain boundary width; Vm =
molar volume; k = Boltzmann constant; T = absolute sintering temperature; d = material density; Dg = diffusivity of gas atoms; p0 =
equilibrium vapor pressure over a flat surface; η = viscosity; M = molecular weight.
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where lp is the edge length of a tetrakaidecahedron. A edges in the assumed closed packing is

shared by three tetrakaidecahedron. Therefore, the volume of the porosity can be given as:

Vp =
1

3
36πr2lp (2.8)

where r is the pore radius.

The kinetics of the intermediate stage sintering is obtained using a vacancy flux from the

pores to the grain boundary. Diffusion of vacancies from circular source to the center of grain

boundary faces is assumed. The edge effects of the pores are neglected for deriving sintering

kinetics. The diffusion flux equation for sintering kinetics is set up by analogy of sintering

geometry with steady state heat dissipation electrically heated cylindrical conductor with

2.4: Tetrakaidecahedron
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concentric surface cooling.

The flux per unit length of the cylinder J/l can be given as:

J/l = 4πDv∆c (2.9)

where Dv is the vacancy diffusion coefficient and ∆c is the difference in vacancy concentration

between the pore (source) and the grain boundary (sink). If the length l in eq. 2.9 is taken

as 2r, the number of vacancies arriving at the grain boundary per unit time Ṅv can be given

as:

Ṅv = 4πDv∆c.2r (2.10)

The vacancy flux of eq. 2.10 is distributed over two grains separated by the grain boundary.

Since there are 14 faces in a tetrakaidecahedron, the volume flux per unit time per polyhedron

can be given as:

dV

dt
=

14

2
ṄvΩ = 56πDv∆crΩ (2.11)

The principal radii of curvature of cylindrical pore are r and infinity. The vacancy

concentration difference can be approximated from radii of curvature using eq. 2.3 as:

∆c =
c0γsΩ

kTr
(2.12)

with substitution of 2.12 in eq. 2.11 and using Dl = Dvc0Ω, a change in volume of the

vacancies can be given as:

dV =
56πDlγsΩ

kT
dt (2.13)
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The volume of the vacancies V can be correlated to change in volume the pores Vp as:

dV = −dVp = −36

3
2πlrdr =

56πDlγsΩ

kT
dt (2.14)

Eq. 2.13 can be integrated from initial pore radius r0 to pore radius r as:

r2 − r0
2 = −14

3

DlγsΩ

kT l
t (2.15)

Densification rate derived from eq. 2.15 can be given as:

1

ρ

dρ

dt
≈ 14DlγsΩ

3ρG3kT
(2.16)

where G is the grain size.

The grain boundary diffusion is also an active sintering mechanism that leads to densifi-

cation in intermediate stage of sintering. The expression of sintering kinetics can be derived

using a similar procedure described as above. The densification rate for grain boundary

diffusion can be given as:

1

ρ

dρ

dt
≈ 4

3

DgbδgbγsΩ

ρ(1− ρ)G4kT
(2.17)

2.2.3 Final stage sintering

The final stage of sintering is idealized with tetrakaidecahedron grains having isolated

pores on grain corners [14]. The pores located on the grain corners are assumed to have

spherical shapes. A tetrakaidecahedron has 24 corners which are shared by 4 grains in a bcc

arrangement. The volume of the pores per grain can be given as:

Vp =
24

4

4π

3
r3 = 8πr3 (2.18)



17

The diffusion flux for the spherical geometry has not been solved. The sintering kinetics are

obtained by using equations of flux between two concentric spherical shells. The flux equation

for concentric spherical shells can be given as:

Ṅv = 4πDv∆c
r1r2
r2 − r1

(2.19)

In eq. 2.19, r1 and r2 are inner and outer radii of spherical shells. If r1 << r2, eq. 2.19 can

be simplified as:

Ṅv = 4πDv∆cr1 (2.20)

The volume flow per tetrakaidecahedron can be given as:

dV

dt
=

24

4
ṄvΩ = 24πDv∆cΩr (2.21)

where r = r1 is the pore radius. The difference in vacancy concentration gradient can be

approximated from eq. 2.3 as:

∆c =
c0γsΩ

kT

2

r
(2.22)

The volume flow can be obtained by substituting eq. 2.22 and Dv = Dlc0Ω in eq. 2.21 as:

dV

dt
=

48πdlγsΩ

kT
(2.23)

The volume flow of the vacancies can be correlated to the pore size as:
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dV = −dVp = −d(8πr3) = −24πr2dr (2.24)

The change in the pore size as a function of time can be obtained by substituting eq. 2.24 in

eq. 2.23 and integrating as given below:

r3 − r0
3 = −6DlγsΩ

kT
t (2.25)

2.3 Sintering of unequal size particles

The consolidation of real powders involves the sintering of unequal sized particles. The

sintering of unequal particles involves additional sintering mechanisms. These mechanisms

include coarsening and grain boundary migration. We define coarsening as change in particle

size due to long range diffusion. The change in the particle size is caused by chemical potential

difference among particles of different sizes. The mass transport due to this chemical potential

occurs by diffusion or gas transport. Similar to coarsening, a migration of grain boundary

between particles also results in a particle size change. However, this particle size change

occurs due to short range movement of atoms. Atoms located on different sides of the grain

boundary may have different chemical potential difference. Atoms of high chemical potential

may jump across the grain boundary to the region of lower chemical potential. These jumps

involve movement of atoms of the order of lattice parameter. The jump of the atoms results

in the migration of the grain boundary. The mass transport due to coarsening and grain

boundary migration is during sintering of equal particles due to the assumed symmetry of

sintering geometry. The sintering kinetics of unequal sized particles involves the effect of

particle size distribution and grain boundary migration on sintering kinetics. These two effects

make the sintering of unequal sized particles sintering complex. The sintering of unequal sized

particles is not as comprehensively studied as sintering of equal particles described in Sec.

2.2. Coble proposed a theory of sintering of unequal size particles [3]. Coble’s model can be

used to predict the neck growth kinetics and shrinkage for unequal sized particles. Coble’s

model does not consider the interparticle mass transport and grain boundary diffusion. Lange

and Kellett proposed a thermodynamic model to explain the sintering behavior of unequal

particles [5]. Lange’s model described the neck growth, interparticle mass transport or
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particle coarsening and grain boundary migration. The sintering kinetics are not provided in

Lange’s model. Another model for sintering of unequal particles is proposed by Colbeck [9].

Colbeck’s model focuses on bonding of particles. Colbeck’s model was developed to explain

the bonding behavior of snow particles. These models provide insight into the sintering of

unequal particles. These models are summarized in this section.

2.3.1 Coble’s model

Coble proposed a model to describe the sintering of unequal particles [3]. The model was

presented to address issues related to unequal particles which could not be explained by equal

particles sintering models. Coble pointed out that sintering of unequal sized particles array

in two dimensions (2D) may require a more complex analysis. The examples of unequal sized

particles array could be a wire wound mandrel and a sintering geometry where small particles

just fit into interstices of the large particles.

The sintering of the wire wound mandrel would require the same shrinkage rate along the

axis of the mandrel. However, a differential rate of shrinkage would exist as large particles

exhibit smaller shrinkage. This difference in the shrinkage of mandrel and wires would result

in stress along the neck. The existing models of sintering do not address the issue of stress

between the particles.

Similarly, the sintering of small particles just fitting into interstices of the large particles

cannot be explained by existing models. The sintering model for particles on plate shows

that the sintering between a large and a small particle occurs more rapidly than sintering of

the large particles alone [16]. This differential rate of sintering will result in a tensile stress in

the small particles and a compressive stress in large particles. The sintering of touching small

particles may require a debonding from some contacts or plastic deformation to compensate

for the sintering rate between the particles.

Coble suggested that the sintering of a row of unequal sized particles can be analyzed for

an accumulative shrinkage. The stress effects due to differences in the particle size can be

neglected during the sintering of linear array of particles.

While developing a model for unequal sized particles sintering, Coble assumed a negligible

change in morphology by surface diffusion, evaporation-condensation and liquid phase sin-

tering. The developed model included only lattice diffusion and grain boundary mechanism

as mass transport mechanisms. The model can be applied to cases when densifying sintering

mechanisms are dominant. Coble further suggested that the model was developed with

assumed initial particle sizes and would not be applicable when particle growth occurs during
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initial stage sintering.

The two particle sintering geometry to derive the sintering kinetics is shown in Fig. 2.5.

The particles of radii R1 and R2 intersect each other. The radii of curvature at the neck are

ρ1 and ρ2. The geometrical relations for the geometry are given below.

y1 =
x21
2R1

(2.26)

y2 =
x21
2R2

x2 =
√
2x1 (2.27)

ρ1 = y1 =
x22
4R1

(2.28)

ρ2 = y2 =
x22
4R2

V1 =
πx41
4R1

(2.29)

V2 =
πx41
4R2

where V1 and V2 volume of spherical segments in sphere with radii R1 and R2, respectively.

The radius of curvature K at the neck is defined as:

2.5: Schematic cross section of pair of spherical particles; geometric notation used for the
model is shown.
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K =
2

ρ1 + ρ2
− 1

x2
(2.30)

The definition of radius of curvature at the neck given in eq. 2.30 is different from that

used for equal size particles [1] to avoid a discontinuity at grain boundary. The last term with

neck size x2 is usually neglected as x2 >> ρ1, ρ2. The kinetics using the above geometrical

parameters can be obtained for sintering by lattice diffusion and grain boundary diffusion.

2.3.1.1 Lattice diffusion

The diffusion flux equation used for equal particles (eq. 2.9) is also used for sintering of

unequal particles as given below:

J/l = 4πDv∆c (2.31)

The volume of the flowing vacancies can be given as:

dV

dt
=
J

l
Ω(ρ1 + ρ2) = 4πDv∆cΩ(ρ1 + ρ2) (2.32)

The volume of the flowing vacancies should be equal to the volume change in the neck. The

volume change can be expressed as:

dV

dt
= πx22

d(y1 + y2)

dt
(2.33)

The value of vacancy concentration difference ∆c can be approximated using Gibbs - Thomp-

son relation in eq. 2.3 as:

∆c = c0
2

ρ1 + ρ2

γsΩ

kT
(2.34)
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The sintering kinetics can be obtained by solving eq. 2.32 - 2.34 and using Dv = Dvc0Ω.

πx22
d(y1 + y2)

dt
=

16πDlγsΩ

kT

⇒ π

2

(
1

R1

+
1

R2

)

x32
dx2
dt

=
16DlγsΩ

kT
(2.35)

Integration of eq. 2.35 gives the sintering kinetics as:

x42

(
1

R1

+
1

R2

)

=
128DlγsΩ

kT
t (2.36)

2.3.1.2 Grain boundary diffusion

For the grain boundary diffusion, the equation used in lattice diffusion (eq. 2.31) can be

used to model the sintering. However, the diffusion coefficient should be replaced by grain

boundary diffusion coefficient Dgb and the length l should be taken as grain boundary width

δgb. The diffusion equation for the grain boundary diffusion can be written as:

dV

dt
=
J

l
Ωδgb = 4πDgb∆cΩδgb (2.37)

The values of concentration difference ∆c and volume difference dV in eq. 2.37 can be

substituted from Eq. 2.33 and 2.34.

(ρ1 + ρ2)πx
2
2

d(y1 + y2)

dt
=

16πDbδgbγsΩ

kT
(2.38)

With geometrical relations in eq. 2.26 - 2.29, eq. 2.38 gives:

(
1

R1

+
1

R2

)2
πx52
8

dx2
dt

=
16πDbδgbγsΩ

kT
(2.39)
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Eq. 2.39 can be integrated to obtain the sintering kinetics:

x62

(
1

R1

+
1

R2

)2

=
768DbδgbγsΩ

kT
t (2.40)

2.3.1.3 Applications of Coble’s model

Coble applied his unequal sized particle model to a linear array of particles and two

dimensional array of particles described in Section 2.3.1. Coble applied the model to bimodal,

trimodal and pentamodal particles size distributions and obtained effective particle size that

can be used to describe the linear shrinkage. The effective particle size was found to be

intermediate of minimum and maximum particle size. Coble also analyzed the effect of stress

produced due to particles size differences in two dimensional arrays. The stress is found to

increase the rate of sintering. Coble showed that the driving force increases by ≈ 25% due

to inclusion of interstitially contacting small particles.

2.3.2 Lange and Kellett’s model

Lange and Kellett developed a thermodynamical model for sintering of unequal particles

[5]. Although the model does not provide sintering kinetics, the model provides insight

into the effect of grain boundary migration in sintering. The model is based upon three

observations from various experiments [17–19]:

1. Grain growth occurs after necks are formed.

2. In partially sintered body, grain growth in appears to be dependent only upon density.

3. Grain growth and densification are closely related.

The model utilized some results from Lange and Kellett’s equal particle model [4]. These

results are: (1) Grain boundary forms until the particle array achieved the minimum energy

configuration, (2) the pores with coordination number n exceeding a critical value nc do not

shrink but acquire their equilibrium configurations. Lange and Kellett assumed that the

energy calculation that provided these results for equal particles holds for unequal particles

as well. The terms coarsening and sintering in their model are defined differently from their

usual definitions. The sintering is defined as a phenomenon where mass is transported to

form a neck at the contact point of particles. The sintering refers to a phenomenon where

interparticle mass transport causes larger particle to grow at the expense of smaller particle.
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The geometrical model is based on an interpenetrating particles geometry as shown in

Fig. 2.6. It is assumed that the radius of curvature is independent of the position on the

surface, i.e., the particles maintain a spherical shape everywhere. As particles penetrate each

other during sintering, the mass of penetration is redistributed over particles such that the

each particle maintains its mass. This redistribution of mass results in an increased particle

radius. The mass of particles change during the coarsening under the condition that the total

mass is conserved. This geometry neglects the presence of a neck with a negative radius of

curvature. The grain boundary is assumed to be bisecting the contact angle ψ. The sintering

of two particles and an array of particles can be described using this geometry.

2.3.2.1 Two particles

The sintering of two unequal particles starts with a touching contact between them; ψ = 0.

As sintering continues, the sintering geometry changes. Lange and Kellett used contact angle

ψ to describe the geometrical changes. The geometrical changes in the sintering geometry

are shown in Fig. 2.7.

The contact angle between the particles in the beginning of sintering is zero (ψ = 0) as

shown in Fig. 2.7(a). The system lowers its energy by a particle penetration. As particles

2.6: Schematic cross section of interpenetrating spherical particles for Lange and Kellett’s
model; geometric notation used for the model is shown.
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2.7: Geometrical changes during sintering and coarsening of two particles. Subfigure (D) shows the configuration when grain boundary
can migrate through small grain and continuously decrease the free energy of the system.

lJ!e 
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(d) 
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penetrate into each other, the contact angle ψ increases (Fig. 2.7(b)). Lange and Kellett

suggested that the system lowers its energy until contact angle becomes equal to equilibrium

dihedral angle ψe by particle penetration. The radius of each particle r1,2 normalized by

initial radius ri 1,2 in Fig. 2.6 can be determined using following equations.

R1 =
r1
ri 1

=

[

1− 1

4
(1− cos θ1)

2(2 + cos θ1)

+2

(
R

R− 1

)3

cos3
(
ψ

2

)

(1− cosφ)2(2 + cosφ)

]−1/3

(2.41)

R2 =
r2
ri 2

=

[

1− 1

4
(1− cos θ2)

2(2 + cos θ2)

−2

(
1

R− 1

)3

cos3
(
ψ

2

)

(1− cosφ)2(2 + cosφ)

]−1/3

(2.42)

where

θ1 = arctan

(
R sinψ

R cosψ + 1

)

(2.43)

θ2 = ψ − θ1

φ = θ1 − ψ/2

R = r2/r1 (2.44)

The radius of curvature of the grain boundary can be given as:

rgb =
2r1r2
r2 − r1

cos
ψ

2
=

2r2
R− 1

cos
ψ

2
(2.45)

As sintering progresses, the contact angle ψ increases. Lange and Kellett pointed out

that angle ψ can be used to find a critical radius ratio Rc with which the grain boundary will

migrate. They suggested that the grain will migrate by reducing its energy when center of

the small particle lies on an imaginary plane formed by joining contact points of sphere. In

this situation, the distance r1 cos θ1 will be equal to zero.
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r1 cos θ1 = 0

⇒ θ1 = π/2 ∵ r1 6= 0

arctan

(
Rc sinψe

Rc cosψe + 1

)

= π/2 from eq. 2.43

Rc cosψe + 1 = 0

⇒ Rc = −(cosψe)
−1 (2.46)

With respect to the critical radius ratio Rc, two geometrical configurations can be achieved

as shown in Fig. 2.7(c)-(d). Configuration 2.7(c) occurs when R < Rc and represent the

lowest energy configuration during sintering without interparticle mass transport. Lange and

Kellett suggested that development of configuration (e) from (c) in Fig. 2.7 would require

an interparticle mass transport. The interparticle mass transport would result in increase in

ratio R. The configuration in Fig. 2.7(d) would occur when ratio R becomes Rc. The grain

boundary migration at this point will lead to configuration (e). The configuration in Fig.

2.7(d) can occur from (b) when R ≥ Rc. In this situation, the grain boundary can migrate

without any coarsening.

The condition at which the grain boundary migration occurs with critical radius ratio

Rc in eq. 2.46. Lange and Kellett analyzed the effect of equilibrium dihedral angle on the

critical radius ratio Rc. They found that the initial particle ratio required for spontaneous

grain boundary migration Rc decreases from 6.6 to 1.1 when dihedral angle ψe increases from

100◦ to 150◦. This indicates that the grain boundary migration will occur easily in systems

with higher dihedral angle. This will result in a larger grain growth during sintering.

2.3.2.2 Three particles

Lange and Kellett applied a geometrical analysis to a three touching particles geometry.

A geometrical analysis similar to performed in Sec. 2.3.2.1 performed on collinear particles

can reveal the microstructural evolution as shown in Fig. 2.8.

The system lowers its energy by forming the neck between the particles in transition from

Fig. 2.8 (a) to (b). If particle size ratio R is less than Rc, coarsening would be required before

the grain boundary migrates. The grain boundary can spontaneously migrate after sintering

if R ≥ Rc. The small particle would disappear as a result of grain boundary migration as

shown in FIg. 2.8(c). The contact angle between the large particles after disappearance of

small particle can be given as:
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2.8: Geometrical changes produced by sintering and coarsening of three collinear particles. The disappearance of small particles in
subfigure (c) reinitiates sintering
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ψ = 2ψe − π (2.47)

The new contact angle ψ is less than the equilibrium dihedral angle. The contact angle given

by eq. 2.47 will result in sintering until dihedral angle increases to ψe. This indicates that the

disappearance of the small particle reinitiates the driving force for mass transport for neck

formation that leads to configuration shown in Fig. 2.8(d). Lange and Kellett concluded

that the coarsening within an equilibrium configuration can reestablish the driving force for

sintering.

Lange and Kellett also analyzed the shrinkage in collinear particles during microstructural

evolution shown in Fig. 2.8. The analysis was performed for initial sintering ((a)-(b)),

coarsening during shrinkage of small particle ((b)-(c)) and sintering between two large par-

ticles ((c)-(d)). The analysis showed that the sintering causing the neck growth contributed

significantly in overall shrinkage. The process of coarsening which causes the small particle

disappearance produced a small shrinkage. Lange and Kellett argued that the shrinkage due

to reduction in small particle size was compensated by the growth of large particles. Their

analysis showed that the shrinkage during coarsening is nil for systems with dihedral angle ψe

greater than 130◦. Lange and Kellett concluded that the grain growth within the linear array

resulting from coarsening reinitiates the driving force for coarsening, and thus shrinkage.

2.3.3 Colbeck’s model

Colbeck’s model provides the neck growth kinetics by grain boundary diffusion on a

relative time scale [9]. The geometrical model provides insights into the bonding of particles

in layers. The study of the bonding of layers is of great interest in packing of snow to avoid

avalanche.

The idealized geometry used in Colbeck’s model to derive the sintering kinetics is shown

in Fig. 2.9.

The geometry shown in Fig. 2.9 consists of two interpenetrating spherical particles. The

grain boundary is assumed to have radius Rgb. The radii of the small and the large particles

are assumed to be Rs and Rl respectively. The dihedral angle is assumed to be A. Distances

in the geometry can be described with respect to the center of the sphere forming the grain

boundary. In this geometry, the radius of curvature of the grain boundary is assumed to

be constant. The particle radii and center positions calculated in terms of grain boundary

curvature are given in eq. 2.48-2.51.
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2.9: Geometry of two particle microstructure with a grain boundary of fixed curvature
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Rs =
Rgb cos θ◦

cos(θ◦ − A/2)
(2.48)

Rl = − Rgb cos θ◦
cos(θ◦ + A/2)

(2.49)

Ys =
Rgb sin θ◦

cos(θ◦ − A/2)
(2.50)

Yl = − Rgb sin θ◦
cos(θ◦ + A/2)

(2.51)

where subscript ◦ in angle θ◦ refers to value of angle θ at the cusp of the boundary. Colbeck

argued that the grain boundary flux J is driven by the gradient of normal stress σ along the

grain boundary. The neck grows by molecules diffusing out of the grain boundary. Coble set

up the flux equation describing the molecular flux along the curved boundary as:

J =
δgbDgb

kT

dσ

ds
(2.52)

where, δgb is the grain boundary width, Dgb is grain boundary diffusion coefficient and s is

the distance along the grain boundary from its center. The distance s can be given as:

s = Rgb(π/2− θ) (2.53)

Colbeck derived sintering kinetics expression using flux equation (eq. 2.52), continuity

equation and force balance at the grain boundary as:

d(Yl − Ys)

dt
= −ΩδgbDgbγs

2kTRgb
2








1

Rsm

− 1

Rs

+
1

Rlm

− 1

Rl

2 ln

(
2

1 + sin θ◦

)

−
(
1− sin θ◦
cos θ◦

)2








(2.54)

where Rsm and Rlm are the radii of small and large particles respectively when the neck is

fully formed. A relationship between Rsm and Rlm in terms of Rgb can be found by analyzing

the pressure difference across at the grain boundary.
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Ps − Pl =
2γs
Rsm

− 2γs
Rlm

=
2γgb
Rgb

⇒ γs

(
1

Rsm

− 1

Rlm

)

= γgb
1

Rgb

⇒ 1

Rsm

− 1

Rlm

=
γgb
γs

1

Rgb

⇒ 1

Rsm

− 1

Rlm

= 2Rgb cos

(
Am

2

)

(2.55)

where Ps and Pl are the pressures in the small and the large particles respectively. Angle

Am in eq. 2.55 represent the equilibrium dihedral angle. The values of Rsm and Rlm can be

calculated with eq. 2.55 and volume conservation in eq. 2.56.

Rs◦
3 +Rl◦

3 =R3
sm

(

1− 1

4
cos

(

θ◦ +
Am

2

)(

1− cos

(

θ◦ +
Am

2

))2
)

+R3
lm

(

1− 1

4
cos

(

θ◦ −
Am

2

)(

1− cos

(

θ◦ −
Am

2

))2
)

(2.56)

where Rs◦ and Rl◦ are the initial radii of the small and the large particle, respectively. The

rate of sintering can be determined from eq. 2.54 using Rsm and Rlm obtained from eq. 2.55

- 2.56.

Colbeck analyzed the geometrical model with respect to the bonding between the snow

layers. Coble observed that the grain boundary becomes highly curved and smaller grain

becomes more deeply embedded in the larger grain as differences in the particle size increases.

If particle size ratio (Rl/Rs) is large enough, the exposed area of the small grain may not

be sufficient for bonding with other grains. This inability of bonding of smaller particle

may result in weaker bonding between snow layers. Coble also estimated of effect of particle

size ratio on the rate of neck growth. Colbeck found that the stress gradient in the grain

boundary increases and the grain boundary becomes more curved as the particle size ratio

(Rl/Rs) increases. Both of these effects result in a decrease of the rate of neck growth for

two reasons: (1) flux rate in the grain boundary decreases and (2) path length for the flux

increases.



CHAPTER 3

MONTE CARLO SIMULATION

Monte Carlo simulation method can be used to obtain sintering kinetics. Monte Carlo

simulation method utilizes random numbers and a probability distribution function. The

microstructural evolution is determined by generating a random number and comparing

it with probability distribution function. The methodology of the simulation method are

described in Section 3.1. Although the method was initially used by scientists working on

atomic bomb, it has successfully been applied to simulate microstructural evolution. The

development and recent application of Monte Carlo simulations in microstructural evolution

are reviewed in Section 3.2. In this dissertation, Monte Carlo method is applied to simulation

the sintering of two unequal particles. The simulation is performed on a two-dimensional

microstructure. The microstructural evolution shows subprocesses of neck growth, coarsening

and grain boundary migration. The details of Monte Carlo simulation performed in this

dissertation are provided in Section 5. Results of Monte Carlo simulation are also discussed

in Section 5.

3.1 Methodology

In Monte Carlo simulation method, the microstructure is determined using a probability

distribution function (PDF). The Monte Carlo method utilizes a sequence of random numbers

to simulate the sintering phenomenon. The random numbers set up a trial for the change

in microstructure. The outcome of the trial is decided by the change in energy of the

microstructure and probability distribution function (PDF). The details of the Monte Carlo

simulation implemented in this dissertation are described below.

A microstructure in the Monte Carlo simulation method is described as a two-dimensional

(2D) lattice. In this work, A square lattice (n× n) with regular spacing between the lattice

points is chosen. This choice of the square lattice is very common for the simulation of

sintering [20]. The lattice sites on the exterior of the square region have fewer neighboring

sites. For avoiding the difference between interior and exterior lattice sites, a periodic

boundary condition is applied. The periodic boundary condition is a frequently applied
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boundary condition for microstructural simulation. The periodic boundary condition involves

assigning a neighbor of each side of the edge to the opposite side of the edge.

Although a simulation of isotropic material is intended, the choice of the square lattice

induces anisotropy along [1 0] and [1 1] direction [21]. The anisotropy in surface energy and

mobilities along [1 0] and [1 1] are induced differently. The difference of anisotropy in surface

energy and mobilities compensates each other and reduces overall anisotropy in square lattice

microstructure.

Each lattice site in the microstructure is assigned a spin state s as shown in Fig. 3.1. The

spin states of lattice site in solid phase are assigned a positive integer less than Q. Q is the

number of possible spin states in the simulation. The spin state si of i
th lattice site is related

to its crystallographic orientation. The spin states of lattice sites in vapor phase are assigned

with negative unity (-1). A grain in the microstructure can be defined as a contiguous region

of lattice sites with same spin states s. The neighboring lattice sites of different spin states

contribute to the energy E of the microstructure. The total energy E of the microstructure

can be given as

E =
1

2

n2

∑

i=1

z∑

j=1

γ(si, sj) (3.1)

where z refers to the number of neighbors of a site in microstructure. The value of z up to

second neared neighbors in the square lattice is 8. In eq. 3.1, contributions from bulk free

energy and other sources are assumed to be zero due to their invariable nature during the

simulation. The term γ in eq. 3.1 is defined such that

γ(si, sj) =







0 for si = sj
γs for si 6= sj and sisj < 0
γgb for si 6= sj and sisj > 0

(3.2)

The distribution of the spin state s in the lattice determines the microstructure. The

microstructure is evolved by change in the spin states s. For changing the spin states, rth

lattice site and neighboring tth lattice sites are randomly chosen. A new spin state s′r and s
′
t

are temporarily assigned to rth and tth lattice sites in the following way:
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3.1: Distribution of spin states s in lattice of Monte Carlo simulation.
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(s′r, s
′
t) =







(−1, − 1) if sr < 0 and st < 0
(R(Q), − 1) if sr < 0 and st > 0
(−1, R(Q)) if sr > 0 and st < 0
(R(Q), st) if sr > 0 and st > 0

(3.3)

where R(Q) represent a random number in [1 Q]. It should be noted that assignment of eq.

3.3 conserves the spin states of vapor phase (s = −1). When one of the (rth, tth) lattice sites

has a spin state of -1, the assignment ensures that one of the s′r or s′t is also negative to

conserve the number of sites having spin states of −1. This scheme of conserving the fraction

of spin states is called Kawasaki dynamics. On the other hand, spin states for the solid phase

are not conserved. This schemed is called Glauber dynamics.

The microstructural evolution involves calculation of change in energy before and after

assigning the temporary spin states to rth and tth lattice sites. The change in total energy of

the system ∆E due to the spin states from sr and st to s
′
r and s

′
t can be calculated using eq.

3.1. The changes in the spin states of sth and tth lattice sites are accepted or rejected based

upon the change in energy ∆E and probability distribution function (PDF). The probability

P (∆E) of the change to spin states can calculated from probability distribution function

given in eq. 3.4.

P (∆E) =







1 if ∆E ≤ 0

exp
−∆E

kTs
if ∆E > 0

(3.4)

where kTs defines the thermal energy of the simulation. The term kTs is analogous to the

thermal energy available at the sintering temperature but it is not directly related. The

probability distribution function given in eq. 3.4 is known as Metropolis function. The

Metropolis function is a common choice of PDF [22].

The acceptance or the rejection of temporarily assigned spin states is finally decided

by generating a random number R′ in [0 1]. If R is less than or equal to the probability

P (∆E), the changes in the spin state sr and st are accepted. The microstructure evolution

is calculated by sampling the microstructure for change in spin state s.

The scheme for Monte Carlo simulation for the sintering can be described as given in

Listing 3.1 as algorithm. The algorithm of Monte Carlo simulation can also be depicted as

flow chart in Fig. 3.2.
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Listing 3.1: Algorithm for Monte Carlo simulation of sintering

I n i t i a l i z e m i c ro s t ruc tu r e
r = po s i t i o n o f randomly chosen s i t e
t = po s i t i o n o f randomly chosen neighbor o f r
s r o l d = sp in s t a t e o f s i t e r
s t o l d = sp in s t a t e o f s i t e t
s r new = temporar i l y a s s i gned sp in s t a t e o f s i t e r
s t new = temporar i l y a s s i gned sp in s t a t e o f s i t e t
E old = t o t a l energy with sp in s t a t e s s r o l d and s t o l d
E new = t o t a l energy with sp in s t a t e s s r new and s t new
i f (E new − E old ) > 0 {

s r new i s accepted
s t new i s accepted

} else {
P dE = exp(−(E new − E old )/kT)
R = a random number between 0 and 1
i f ( random < P dE){

s r new i s accepted
s t new i s accepted

}
}
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3.2: Flow chart for Monte Carlo simulation of sintering.
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3.2 Development and applications

The Monte Carlo method was developed under the Manhattan project during World

War II [22]. The Monte Carlo method was first applied in solid state physics to model the

ferromagnetic materials. Potts simulated the magnetic spins of two possible types: spin up

and spin down [23]. The scheme of spin up and spin down is known as the Ising model [24].

Anderson et al. were the first to apply the Monte Carlo method to grain growth in single

phase materials [25]. They simulated the shrinkage of a circular grain embedded in a larger

grain using a triangular lattice. A reduction in the grain area A(t)− A(t = 0) was found to

be linear with respect to time t such that:

A(t)− A(t = 0) = −αt (3.5)

where α is a constant. These kinetics of grain shrinkage were found in agreement in theoretical

predictions [26–28]. Anderson et al. also applied the Monte Carlo method simulation of

polycrystalline microstructure [25]. The grain growth exponent n in eq. 3.6 was found to be

independent of choice of orientations Q when Q > 30.

R̄(t)n = kt (3.6)

where R̄ is the mean grain size, k is a prefactor and t is the time. The value of grain growth

exponent n was found to be 0.41±0.03. Anderson et al. argued that the Monte Carlo method

can be used to simulate a truly continuous range of possible grain orientations (Q = ∞) with

a model in which Q is large but finite. The grain growth exponent n was found to be

independent of temperature. The observed dependence of exponent n was in agreement with

predictions of theory [29].

Srolovitz et al. studied the grain size distribution, topology and local dynamics in

Mote Carlo simulations of grain growth [30]. The grain size distribution obtained from

the simulations resulted in a self similar log normal curve at various times. The obtained

log normal grain size distribution showed a good agreement between simulation results

and experimental observations during grain growth of high purity aluminum [31, 32]. The
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simulation results were also compared to Beck’s data for grain edge distribution. An excellent

agreement between simulations and experiments was found.

Srolovitz et al. also incorporated second phase particles to the grain growth simulations

[33]. The lattice sites of the second phase particles were assigned with orientation Q number

different from all other grains. The simulation for the grain growth in presence of second

phase particle was set up such that the particles were immobile. The simulation results

showed a normal grain growth which was later pinned by the presence of second phase

particles. The grain size distribution and growth kinetics were found to be independent

of particle concentration. The final average grain size and time required to obtain pinned

microstructure was proportional to inverse of the particle concentration. Srolovitz et al.

proposed a topological theory explaining these results [33].

Grest et al. introduced an anisotropy in grain boundary energy during grain growth

simulations [34]. The anisotropy in grain boundary energy was assumed to be dependent upon

the grain misorientation. Three different functions of grain boundary energy were chosen

such that the low angle boundaries had lower energies than the high angle energies. The

anisotropic grain boundary energy resulted in faceted grain structure. Grain growth kinetics

showed that the grain growth exponent n decreases when grain boundary energy increases.

The grain growth exponent n decreased from 0.42±0.02 for isotropic grain boundary energy

to 0.25±0.02 for highly anisotropic grain boundary energy. The exponent n of 0.25±0.02

was found to be independent of choice of function describing grain boundary energy. This

indicated a universal nature of the exponent.

Srolovitz et al. extended the Monte Carlo method to study abnormal grain growth [35].

The abnormal grain growth in bulk sample simulation was achieved in a two-step process.

In the first step, the normal grain growth was allowed to take place and in the second step,

a large grain was physically introduced in the microstructure as a nucleus. An abnormal

growth of the nucleus was observed during the simulation. Abnormal grain growth in the

presence of particle dispersions and in thin films was also studied.

Holm et al. successfully implemented the Monte Carlo method to simulate grain growth

in two phase materials [36]. The model was implemented by assigning different signs of

orientations Q to different phases. The signs of orientations were utilized in calculating

grain boundary and interphase energy. The ratio of grain boundary and interphase energies

were shown to have strong effect of microstructural evolution. The microstructural evolution

was analyzed with respect evolution of grain boundary trijunctions. The microstructure was

found to be realistic having only thermodynamically stable features. The trijunction angles
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acquired values close to their equilibrium values determined by interface energy and grain

boundary ratios.

Liu and Lin successfully demonstrated the application of Monte Carlo simulation method

to liquid phase sintering [37]. They modeled the grain growth by coalescence in initial stage

of sintering. The also assumed an anisotropy in grain boundary energy. The grain boundary

energy was considered to be dependent upon the grain misorientation angle. The coincidence

site lattice (CSL) boundaries were assigned with lower grain boundary energies. A particle

size distribution in the initial microstructure was also considered. The simulation utilized a

random microstructure based upon a given particle size distribution. Liu and Lin focused the

sintering simulation on agglomeration of particles. They concluded that the size distribution

of agglomerates strongly depends upon solid volume fraction and standard deviation of initial

particle size distribution. Liu and Lin found that size distribution of agglomerated particles

can be broadened by either increasing standard deviation or decreasing volume fraction of

liquid. Liu and Lin argue that increased probability of solid solid contact due to larger

standard deviation of the size distribution or low volume fraction of liquid results in wider size

distribution of agglomerated particles. Monte Carlo simulation also showed the evidences of

the particle coalescence. Liu and Lin also compared the simulation results with experimental

data on W-Ni-Fe alloy. A satisfactory agreement between the simulation and experimental

results was observed.

Zhang et al. studied grain growth during intermediate and final stage sintering, and

during Ostwald ripening [6] in BaTiO3 based ceramics [38]. The liquid phase was observed

to be well distributed on grain boundaries. Zhang et al. also observed evidence of grain

coalescence. A grain growth exponent of 4.2 obtained from simulation was in good agreement

with experiments [39].

Monte Carlo simulations described above utilize surface energies and dihedral angle to de-

termine microstructural evolution. Based upon results in ref. [40], Aldazabal et al. suggested

that dissolution and precipitation of solute based upon solubility should be incorporated in

liquid phase sintering simulations [41]. They incorporated the solute concentration using

phase diagrams which affected the dissolution and precipitation of solute. The distribution

of the solute was also affected by diffusion. They used Fick’s second law to determine

the movement of solute. In the scheme devised by Aldazabal et al., different weights were

attributed to first and second nearest neighbor lattice sites. A certain number of weighted

neighbor was needed for dissolution and precipitation events. They applied their scheme

to simulation of tungsten particles in nickel matrix. Aldazabal et al. found the volume
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fraction of solid to be consistent with predictions of phase diagram. However, the time

to obtain the equilibrium volume fractions was affected by the choice of diffusion rates.

Aldazabal et al. concluded that the diffusion rates have strong influence on morphology of

final microstructures.

Monte Carlo simulation was applied to grain growth in cemented tungsten carbides by

Kishno et al. [42]. They argued that classical theory of Ostwald ripening is insufficient to

explain the grain growth mechanism in cemented carbides. The insufficiency of the theory is

prominent in case of sintering with low binder content. In case of sintering with low binder

content, all of the carbide grains are not surrounded by cobalt. The grain growth of these

grains is controlled by grain boundary migration instead of Ostwald ripening. Kishino et

al. applied Monte Carlo simulation due to its potential to incorporate Ostwald ripening and

grain boundary migration simultaneously. The grain boundary migration was implemented

following a procedure similar to grain growth; however, a random walk method was employed

to simulate dissolution and precipitation to simulate Ostwald ripening. They used the

simulation to investigate the continuous and discontinuous grain growth mechanisms and

effect of grain growth inhibitors such as VC and Cr3C2. For simulation of sintering without

grain growth inhibitors, two grain boundary energies γss1 and γss2 where chosen such that

γsl < 2γss1; γsl < 2γss2 (3.7)

where γsl is the interfacial energy between matrix and particles. The choice of two grain

boundary energies resulted in two types of interfaces: (1) solid solid interface and (2) solid

liquid interface. Kishino et al. observed a continuous grain growth with lower binder content

(<5%) and high binder content (>20%). A discontinuous grain growth was observed for

sintering with 10% binder content. The expermental results of sintering of cemented tungsten

carbides confirmed the binder content regime for discontinuous grain growth [42]. Based

upon the simulation and experimental results, Kishino et al. proposed a mechanism of

discontinuous grain growth. They proposed that the grain boundary migration controls the

grain growth in sintering with lower binder content. On the other hand, the grain growth is

controlled by Ostwald ripening in case of higher binder content. Both of these mechanisms

result in continuous grain growth. The discontinuous grain growth at certain binder content

is a result of localization of binder phase. Kishno et al. also studied the effect of coarse

grains on discontinuous grains. A discontinuous grain growth was observed when a large
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grain surrounded by binder was placed in the simulation microstructure. Based upon the

simulation results, they recommeneded that the contamination by coarse grains must be

avoided in the manufacturing process of fine grain carbides.

Kishino et al. also studied the effect of grain growth inhibitor doping on grain growth

during sintering of cemented carbides [42]. The effect of doping materials was incorporated by

changing the grain boundary energies such that eq. 3.7 does not satisfy. The choice of surface

energy was justified based upon the contiguity results in ref. [43]. With addition of doping

materials, a continuous grain growth was observed irrespective of binder content. The grain

growth with doping was observed to be controlled by the grain boundary migration. However,

the contribution of grain boundary migration in grain growth diminished with higher binder

content. These results were verified by experimental data [43].

The sintering models described above incorporate grain boundary migration and disso-

lution – reprecipitation as sintering mechanisms. Tikare et al. suggested the addition of

vacancy annihilation to model densification during solid state sintering [44]. They developed

a sintering model involving three processes: (1) grain growth by short range diffusion across

the grain boundary, (2) long range diffusion of material to pores by grain boundary diffusion

or surface diffusion and (3) annihilation of vacancies. The grain growth by short range

diffusion was applied using a scheme of grain growth in single phase materials described in

ref. [25]. The pore migration was simulated using conserved dynamics. The pore and grain

lattice sites were switched in favor of reduction of energy. This switch of sites ensures that the

solid and vapor volume fractions in the simulation domain are conserved. A higher value of

temperature term (KBT ) was used to simulate pore migration. The choice of the temperature

was justified based upon the results of their previous research [45, 46]. For simulating the

annihilation of vacancies, isolated pore sites were considered as vacancies. When a vacancy

at the grain boundary was annihilated, the center of neighboring grain was moved towards

the grain boundary. This movement resulted in a densification. Tikare et al. argued that

the rate controlling factor in the annihilation of a vacancy is the diffusion along the entire

grain boundary. Therefore, they correlated the frequency of vacancy annihilation to the time

required to diffuse along the grain boundary. They applied their model to sintering of three

equal particles. They showed that their model accurately predicted the expected topological

changes and kinetics of densification. A comparison between of topological changes and

kinetics of densification between their model and experimental evidences in literature showed

a good agreement. Braginsky et al. applied the model to sintering of array of particles and

sintering of randomly arranged particles [20] and found a satisfactory performance.



CHAPTER 4

PHASE FIELD SIMULATION

The previous chapter described the application of the Monte Carlo simulation method to

sintering. The Monte Carlo method is a stochastic method which relies on random sampling

to calculate the microstructural evolution. In Monte Carlo simulation, the microstructure

cannot be exactly determined from microstructure at previous time step. On the contrary,

the phase field simulation method is a deterministic simulation method in which we can

exactly determine the microstructural evolution. It should be noted that Monte Carlo and

phase field simulation methods have different methodology; they use minimization of energy

to obtain the microstructural evolution. Therefore, both of them can be used to gain insights

into mechanism of sintering process. This chapter describes the phase field simulation method

and recent developments for its application to sintering process.

A microstructure in the phase field method is described by spatial distribution of density

and crystal orientation. Changes in distribution of density and crystal orientations are derived

by minimizing a free energy functional. The free energy functional contains a global minimum

with respect to the density and crystal orientation. This minimum corresponds to a solid

phase. Changes in distribution of density and crystal orientations are used to obtain the

microstructural evolution. A detailed scheme of obtaining microstructural evolution using the

phase field method is described in Section 4.1. Although the phase field model can be used to

obtaining the microstructural evolution, it was developed for deriving the interface width by

Cahn and Hilliard [47]. Cahn later applied the model to simulate spinodal decomposition [48].

Thereafter, the model has been modified to simulate various microstructural phenomena. The

development and application of the phase field method are reviewed in Section 4.2. In this

dissertation, the phase field method is applied to simulate the sintering of two unequal sized

particles, equal sized particles, pores, and randomly arranged particles. Specific details of

these simulations are given in Chapter 6. The results of these simulations are also discussed

in Chapter 6.
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4.1 Methodology

The phase field simulation method is based upon temporal evolution of thermodynamic

quantities such as density, crystal orientation and temperature. In this method, spatial

distributions of these thermodynamic quantities are referred to as phase fields [49]. The

microstructural evolution is determined by a change in these phase fields using a free energy

functional. This free energy functional which describes the total free energy of the system

can be expressed in terms of thermodynamic quantities. The microstructure evolves by

minimization of the total free energy of the system. Kinetic equations of microstructural

evolution obtained by the minimization of energy are variational derivatives containing phase

fields.

In this dissertation, thermodynamic quantities, density ρ and crystal orientation η are

considered as the phase fields. The density field refers to mass per unit volume in the mi-

crostructure. The density field acquires the value of solid density ρsol inside and vapor density

ρvap outside a solid particle, respectively. The orientation field refers to crystal orientation of

the particles. Each particle is assigned with one orientation field ηi which is unity inside the

associated particle and zero elsewhere. In case of a two particle microstructure, orientation

fields η1 and η2 can be assigned to the first and second particles. Fig. 4.1 shows the variation

of density field ρ and orientation field η1, η2 across various interfaces. Fig. 4.1 depicts that

value of density field ρ gradually increases from vapor density to sold density across vapor

solid interface. Similarly, Fig. 4.1 indicate that value of orientation fields η1 and η2 transition

gradually between 0 and 1.

The density field ρ and orientation field η can be used to calculate free energy at a position

in microstructure. The free energy equation is chosen such that the energy is at minimum

when phase fields acquire their equilibrium values. An energy minimum occurs inside the

solid phase when the density field is equal to the solid density ρsol and the crystal orientation

field for only one grain is equal to unity. An energy minimum also occurs when the density

field is equal to the vapor density ρvap and the orientation fields for all of the particles are zero.

Variational derivatives of the above mentioned free energy equation are used to determine the

kinetics of microstructure evolution. The kinetics of microstructure evolution also depend on

diffusion coefficients. The diffusion coefficient is generally chosen as unity everywhere in the

microstructure [50–52]. However, a variable diffusion coefficient is used in this work [53]. The

free energy, diffusion coefficient, and kinetics equations are further described in the following

sections.



46

0 200 400 600 800
0

0.5

1

P
ha

se
 F

ie
ld

 V
al

ue

0 200 400 600 800
0

0.5

1

0 200 400 600 800
0

0.5

1

Distance (pixels)

P
ha

se
 F

ie
ld

 V
al

ue

Density field ρ

Orientation  Field η
1

Orientation  Field η
2

4.1: Variation of density field ρ and orientation field η in microstructure.
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4.1.1 Free energy

The total free energy F over the microstructure volume can be defined as a sum of bulk

free energy, interface energy and grain boundary energy as given in eq. 4.1.

F =

∫

v









f(ρ, η1..p)
︸ ︷︷ ︸

Bulk free energy

+
κρ
2
(∇ρ)2

︸ ︷︷ ︸

Interphase energy

+
κη
2

p
∑

i=1

(∇ηi)2

︸ ︷︷ ︸

Grain boundary energy









dv (4.1)

where p is the total number of grains, and κρ and κη are gradient energy coefficients. The

bulk free energy f(ρ, η1..p) has a form of the Landau type potential [54] given by eq. 4.2.

f(ρ, ηi..p) =A(ρ
4 +

−4ρvap − 4(1− Vc)− 2

3
ρ3

+
4ρvap(1− Vc) + 2ρvap + 2(1− Vc)

2
ρ2

− 2ρvap(1− Vc)ρ)

+B(ρ2 + 6(1− ρ)

p
∑

i

η2i − 4(2− ρ)

p
∑

i

η3i

+ 3

p
∑

i

η4i + Cgbe

p
∑

i

p
∑

j,j 6=i

η2i η
2
j )

(4.2)

where A and B are constants. The parameters ρvap and Vc in eq. 4.2 represent the equilibrium

vapor density and equilibrium vacancy concentration, respectively, vc = 1 − ρsol. The

parameter Cgbe in eq. 4.2 affects the grain boundary energy. Eq. 4.2 is chosen such that the

bulk free energy f(ρ, η1..p) is minimized when the value of density field ρ approaches solid

density (1− Vc) or vapor density ρvap. This suggests that the bulk free energy is minimized

in solid phase and vapor phase. The minimization of bulk free energy f(ρ, ηi..p) in solid phase

requires that only one of the orientation fields ηi approaches unity and rest of the orientation

fields approach zero. The minimization of bulk free energy f(ρ, ηi..p) in vapor phase requires

that all of the orientation fields ηi approach zero. The positions of free energy minima in the

density ρ and orientation η fields for a two particles microstructure are shown in Fig. 4.2 and

4.3.

The positions of free energy minima at desired values of density ρ and orientation fields η

are obtained by changing of terms associated with constants A and B in eq. 4.2. The term
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associated with A is chosen such that two minima exist at density field value ρ = rhovap and

ρ = 1−Vc. The term associated with B is related to the effect of the grain boundaries. This

term leads to a deviation in the values of density field ρ at minima. The values of density

field ρ at minima can also be manipulated by changing the values of ρvap and Vc in eq. 4.2.

The equilibrium values of density field ρ are determined by drawing a common tangent to

the free energy curve as shown in Fig. 4.2. The term associated with constant B is chosen

such that free energy minima occur at orientation field value ηi = 0 and ηi = 1 as shown

in Fig. 4.3. Fig. 4.3 shows that bulk free energy in the vapor phase (ρ ≈ ρvap) is minimized

when all of orientation fields ηi, i ∈ [1 p] approach zero. The free energy inside the solid phase

(ρ ≈ 1 − Vc) is minimized when only one of the orientation fields approaches unity and rest

of them approach zero.

4.1.2 Diffusion coefficients

The phase field simulation can be applied with a variable diffusion coefficient in the

microstructure. With this approach, diffusion coefficient acquires different value in solid

phase, vapor phase, surfaces and grain boundaries. A variable diffusion coefficient can be

calculated using the local density field ρ and orientation field η. The following expression for

diffusion coefficient was developed in this dissertation.

D = Dvolφ+Dvap(1− φ) +Dsurfρ
2(1− ρ)2 +Dgbρ(1−

p
∑

i

η2i ) (4.3)

where Dvol, Dvap, Dsurf , and Dgb are the parameters that can be adjusted to achieve the

desired value of diffusion coefficient in solid phase, in vapor phase, along the vapor solid

interphase and along the grain boundary, respectively. The function φ in eq. 4.3 is defined

as φ = ρ4(7ρ2− 18ρ+12). The function φ acquires maximum in solid phase and minimum in

vapor phase. The variable diffusion coefficient approach in eq. 4.3 allows diffusion coefficient

D to acquire different values in different regions of microstructure. For example, diffusion

coefficient will transition between Dvap to Dvol across the particle surface. This transition

can be inferred from eq. 4.3. For example, the value of ρ, ηi, φ approach zero in vapor phase.

A substituting these values in eq. 4.3 results in D ≈ Dvap. The values of parameters Dvol,

Dvap, Dsurf , and Dgb should chosen such that diffusion coefficient D represent diffusion in a

real microstructure.
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4.1.3 Simulation kinetics

The simulation kinetics pertain to temporal evolutions of density field ρ and orientation

field η. The temporal evolutions of these fields are obtained by using Cahn Hilliard equation

and Ginzburg-Landau equation. Cahn Hilliard equation [47,48] which relates diffusional flux

to the chemical potential is used to obtain temporal evolution of density field ρ.

~J = −D∇µ = −D∇δF

δρ
(4.4)

Using Cahn Hilliard equation (eq. 4.4) and continuity equation (∂ρ/∂t = −∇. ~J), the
temporal evolution of the density field ρ can be calculated as:

∂ρ

∂t
= ∇.

(

D∇δF

δρ

)

= ∇.
(

D∇
(
∂f(ρ, η1..p)

∂ρ
− κρ∇2ρ

))

(4.5)

The temporal evolution of the orientation field is calculated using the time dependent

Ginzburg-Landau equation given in eq. 4.6 [55].

∂ηi
∂t

= −L∂F
∂ηi

= −L
(
∂f(ρ, η1..p)

∂ηi
− κη∇2ηi

)

(4.6)

where L is a kinetic coefficient. The kinetics equations described above are solved numerically

to simulate the microstructure evolution.

4.1.4 Numerical solution of equations

The phase field method for simulating the sintering is implemented in two dimensions in

this dissertation. The microstructure in two dimensions can be described by a square lattice

with uniform spacing as shown in Fig. 4.4.
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Each lattice point the square lattice is associated with density field ρ, and orientation

fields ηi. The initial values of the phase fields ρ and ηi can be determined from the initial

microstructure. The evolution of the microstructure is determined by the changes in the

phase fields ρ and ηi with time. The changes in the phase fields ρ and ηi are determined by

numerically solving the kinetic equations (eq. 4.5, 4.6) on the square lattice.

The kinetic equations (eq. 4.5, 4.6) can be solved using discrete derivatives obtained from

Taylor series. Taylor series in two dimensions can be given as:

f(x+∆x, y +∆y) = f(x, y)

+
1

1!
[∆xfx(x, y) + ∆yfy(x, y)]

+
1

2!

[
(∆x)2fxx(x, y) + 2∆x∆yfxy(x, y) + (∆y)2fyy

]

+
1

3!

[
(∆x)3fxxx(x, y) + 3(∆x)2∆yfxxy(x, y) + 3∆x(∆y)2fxyy(x, y)

]

+ e (4.7)

where fx(x, y) is ∂f(x, y)/∂x, fy(x, y) is ∂f(x, y)/∂y, fxy(x, y) is ∂f(x, y)/∂x∂y and so on.

In eq. 4.7, e contains higher order terms of Taylor series. For a small ∆x and ∆y, the higher

order terms can be neglected. From Taylor series in eq. 4.7, it follows that:

f(x+∆x, y) = f(x, y) + ∆xfx(x, y) +
1

2!
(∆x)2fxx(x, y) +

1

3!
(∆x)3fxxx(x, y) + e (4.8)

f(x−∆x, y) = f(x, y)−∆xfx(x, y) +
1

2!
(∆x)2fxx(x, y)−

1

3!
(∆x)3fxxx(x, y) + e (4.9)

The value of second derivative fxx(x, y) can be determined from eq. 4.8 and 4.9 as

fxx(x, y) = −2f(x, y) +
f(x+∆x, y) + f(x−∆x, y)

(∆x)2
(4.10)
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Similarly,

fyy(x, y) = −2f(x, y) +
f(x, y +∆y) + f(x, y −∆y)

(∆y)2
(4.11)

The numerical first derivatives can be obtained as:

f+
x x, y =

f(x+∆x, y)− f(x, y)

∆x
(4.12)

f−
x x, y =

f(x, y)− f(x−∆x, y)

∆x
(4.13)

f+
y x, y =

f(x, y +∆y)− f(x, y)

∆y
(4.14)

f−
y x, y =

f(x, y −∆y)− f(x, y)

∆x
(4.15)

The superscripts +, − in eq. 4.12-4.15 refer to forward and backward derivatives. The terms

higher than the second order in Taylor series were neglected in deriving first derivatives in

eq. 4.12-4.15.

The derivatives described above can be used to transform the partial differential equation

into algebraic equations. The microstructure evolution can be obtained by solving these

algebraic equations. The temporal evolution of the density field ρ is calculated from kinetic

equation 4.5. Firstly, the term with the Laplacian operator ∇2 can be calculated as:

gtr,s =
∂f t

r,s

∂ρ
− κρ∇2ρtr,s

=
∂f t

r,s

∂ρ
− κρ

(
∂2ρtr,s
∂x2

+
∂2ρtr,s
∂y2

)

=
∂f t

r,s

∂ρ
− κρ

(

−4ρtr,s +
ρtr+∆x,s + ρtr−∆x,s

(∆x)2
+
ρtr,s+∆y + ρtr,s−∆y

(∆y)2

)

(4.16)

The subscripts and superscripts in eq. 4.16 refer to position and time, respectively. The

same convention of subscripts and superscripts is used in the following equations.
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Secondly, the value of gr,s at all lattice points in the microstructure obtained from eq.

4.16 is used in calculating the temporal evolution of the density field ρ. The kinetic eq. 4.5

can be written as follows:

∂ρtr,s
∂t

= ∇.(Dt
r,s∇gtr,s)

= ∇Dt
r,s.∇gtr,s +Dt

r,s∇2gtr,s

=
∂Dt

r,s

∂x

∂gtr,s
∂x

+
∂Dt

r,s

∂y

∂gtr,s
∂y

+Dt
r,s

(
∂2gtr,s
∂x2

+
∂2gtr,s
∂y2

)

(4.17)

Eq. 4.17 can be numerically solved using derivatives in eq. 4.8 - 4.15 as:

ρt+∆t
r,s =ρtr,s +

∆t

2

[
Dt

r+∆x,s(g
t
r+∆x,s − gtr,s)

∆x2
+
Dt

r−∆x,s(g
t
r−∆x,s − gtr,s)

∆x2

+
Dt

r,s+∆y(g
t
r,s+∆y − gtr,s)

∆y2
+
Dt

r,s−∆y(g
t
r,s−∆y − gtr,s)

∆y2

+ Dt
r,s

(−2ρtr,s + ρtr+∆x,s + ρtr−∆x,s

∆x2
+

−2ρtr,s + ρtr,s+∆y + ρtr,s−∆y

∆y2

)]

(4.18)

Similarly, the temporal evolution of orientation field η can be calculated as:

ηt+∆ti r, s = ηti r,s +∆tL

(
∂f t

r,s(ρ, ηi)

∂ηi

+ κη

(−2ηti r,s + ηti r+∆x,s + ηti r−∆x,s

∆x2
+

−2ηti r,s + ηti r,s+∆y + ηti r,s−∆y

∆y2

))

(4.19)

The temporal evolution of the phase fields ρ and η in eq. 4.18 - 4.19 utilizes Euler’s

explicit scheme of solving partial differential scheme. The time step (∆t) and distance step

(∆x) required for accurate results in the explicit schemes should be small [56]. The time

steps in explicit schemes are constrained by distance steps for solving Cahn-Hilliard equation

such that:
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∆t ≈ (∆x)4 (4.20)

An implicit scheme of solving partial differential equations usually allows larger time

steps. The implicit scheme also improves the stability of the simulations. The application of

the implicit scheme in this study requires long computational time due to use of a variable

diffusion coefficient. Therefore, the implicit scheme could not be used in this study.

4.2 Development and applications

Phase field model was primarily developed by Cahn and Hilliard for estimating the

interface energy [47]. Chan derived the kinetics equations to extend the model to describe the

spinodal decomposition [48]. The phase field method of Cahn and Hilliard has been modified

to simulate microstructural evolution including cases of grain growth and sintering [52,57].

Cahn and Hilliard assumed that intensive properties such as composition and density are

spatially distributed in a system [47]. These properties of the system were assumed to be

varying smoothly across the interface. They referred such a system as being a nonuniform

system and interface as being a diffuse interface. Cahn expressed the total free energy F of

the system as:

F = Nv

∫

v

[f◦(c) + k(∇c)2 + ...]dV (4.21)

where f◦ is the free energy per molecule of a solution of with uniform composition c, Nv is

the number of molecules per unit volume in a system with volume V . The term κ known as

gradient energy coefficient is defined as:

κ = −
(
∂2f(c)

∂c∂∇2c

)

◦

+

(
∂2f

∂2 | ∇c |

)

◦

(4.22)

where f the local free energy per molecule of the system. The subscript ◦ refers to quantities

at equilibrium. While deriving eq. 4.21, it is assumed that the composition gradient is

large compared to intermolecular distance and that concentration c and its derivatives are

independent variables. Cahn pointed out from eq. 4.21 that the total free energy of a small
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volume of a nonuniform system can be expressed as a sum of two terms: (1) bulk free energy

term (f◦) and (2) gradient energy (k(∇c)2 + ...). The first term refers to bulk free energy far

away from interfaces. The gradient energy term which refers to interfacial energy is non zero

within interfaces. Cahn also derived interface energy σ of an interface between phase A and

B in a binary system as:

σ = Nv

∫ +∞

−∞

[

∆f(c) + κ

(
dc

dx

)]

dx (4.23)

where ∆f(c) is given by

∆f(c) = f◦(c)− [cµ
(e)
B + (1− c)µ

(e)
A ]

= c[µ
(c)
B − µ

(e)
B ] + (1− c)[µ

(c)
A − µ

(e)
A ] (4.24)

In eq. 4.24, superscripts c and e refer to chemical potentials at interface and at equilibrium,

respectively. If equilibrium compositions of phases A and B are cα and cβ, the interface

energy can be expressed as:

σ = 2Nv

∫ cβ

cα

√

κ∆f(c)dc (4.25)

Cahn and Hilliard expressed the interface profile x and the interface width l as:

x =

∫ cβ

cα

√
κ

∆f
dc (4.26)

l ∼= cβ − cα
(dc/dx)c

= (cβ − cα)

√
κ

∆fmax

(4.27)

Cahn and Hilliard derived the dependence of gradient energy coefficient κ and excess free

energy ∆fmax on interface width given by eq. 4.27. The interfaces with higher kappa and
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small ∆fmax are expected to be wider. The above analysis is based upon the assumption that

the interface width l is much larger than intermolecular distance.

For deriving the kinetics of spinodal decomposition, Cahn expressed the total energy of

the system in terms of concentration c as [48]:

F =

∫

v

[

f◦(c) +
η2E

1− ν
(c− c◦)

2 + κ(∇c)2
]

dV (4.28)

Cahn derived the flux ~J from total free energy such that:

~J = −M∇
[
∂f◦
∂c

− ∂κ

∂c
(∇c)2 − 2κ∇2c

]

(4.29)

whereM is a positive quantity. Cahn obtained the temporal evolution of concentration c with

Fick’s second law such that [48]:

∂c

∂t
= −∇. ~J = −∇.

(

M∇
[
∂f◦
∂c

− ∂κ

∂c
(∇c)2 − 2κ∇2c

])

(4.30)

Cahn and Hilliard later showed that the temporal evolution for any differentiable function

F of composition c and derivations can be expressed as [58]:

∂c

∂t
= −∇. ~J = ∇.

[

M∇
(
δF

δc

)]

(4.31)

The temporal evolution described above can be applied to variables which are conserved

over the volume of system. Density or concentration are examples of such conserved variables.

In certain cases, the total free energy F also depends upon nonconserved variables such as

crystal orientations. Allen and Cahn used an order parameter approach to the describe a

migration of antiphase boundary between different crystal orientations [28]. They described

the free energy per unit volume f◦ of a homogeneous phase as a function of a long range order

parameter η. They assumed a symmetric double well potential for free energy f◦ below order
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disorder transition temperature. Allen and Cahn considered two states that order parameters

can acquire η′ and −η′. In equilibrium the system achieves state such that:

∂f◦
∂η

= 0 (4.32)

Allen and Cahn suggested that the equilibrium order parameters will be of equal mag-

nitude and opposite sign (+ηe and −ηe) for the chosen free energy function. The described

the antiphase boundaries as regions where order parameter has values between −ηe and +ηe.

Allen and Cahn introduce the function ∆f◦ to discuss the free energy of the interfaces. They

defined ∆f◦ as the free energy difference between a homogeneous state of an arbitrary order

parameter and that with η = ±ηe. They described the total energy F of the system in terms

of ∆f◦ and order parameter η as:

∆F =

∫

v

∆f◦ + 2κ(∇η)2dV s (4.33)

where κ is called the gradient energy coefficient. Allen and Cahn derived the expression for

the boundary width l and energy σ as:

l = 2ηe

√
κ

(∆f◦)max

(4.34)

σ =

∫ +ηe

−ηe

2
√

κ∆f◦dη (4.35)

Allen and Cahn derived the following expression for temporal evolution of order parameter

η:

∂η

∂t
= −αδF

δη
= −α∂∆f◦

∂η
+ 2κα∇2η (4.36)
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where α is a positive kinetic coefficient. The formulation described above has been used to

determine the microstructural evolution in several studies. Some of these studies are described

below.

Fan et al. analyzed the effect of grain boundary width and number of order parameters on

grain growth kinetics [59,60]. They showed that the grain growth kinetics can be accurately

simulated with a large but finite number of order parameters or crystal orientations η.

They also showed that the grain growth kinetics slows down with insufficient grid points

in simulation to resolve the grain boundaries. They found the grain growth kinetics to be

independent of grain boundary width when grain boundary contained more than seven grid

points. With seven grid points, the motion of the grain boundary was found to be identical to

its sharp interface limit. Fan et al. compared their phase field simulation results with grain

growth kinetics obtained from the Monte Carlo method [60]. A good agreement between the

two methods was found.

Ma et al. applied the phase field method to simulation of grain growth [61]. They exam-

ined the effect of anisotropy in grain boundary mobility and energy. They also studied the

effect of initial microstructure on evolution of texture component. They used Read-Shockley

formula for small angle boundaries [62] to apply grain boundary energy anisotropy. They

followed approached of Huang and Humphreys for anisotropy in grain boundary mobility [63].

The initial microstructure contained a small fraction of grain with cube texture embedded in

randomly oriented grains. Ma et al. observed that the fraction of texture component increases

when grain boundary energy is anisotropic; however, the texture component decreases when

mobility is anisotropic with isotropic energy. They also found the texture growth to be

decelerating whereas the texture reduction accelerated with time. Ma et al. simulated grain

growth with different distributions of cube textured grains to study the texture evolution.

They found grain boundary energy density γgb/d to be the parameter controlling the texture

evolution. Here, γgb is the specific grain boundary energy and d is the mean grain size in a

cluster of textured grains. They observed that the fraction of texture component increases

when γgb/d of randomly oriented grains is greater than γgb/d of textured grains and vice-versa.

Ko et al. implemented the phase field method in three dimensions (3D) to simulate the

grain growth [64]. They studied the effect of grain boundary energy anisotropy on abnormal

grain growth. They considered a presence of two types of grain boundaries with energy values

of 1.0 and 0.3. They observed a normal grain growth in absence of grain boundaries with

energy of 0.3. Ko et al. also observed that the grain boundary energy anisotropy results in

abnormal grain growth.
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Fan et al. employed the phase field method to simulate Ostwald ripening in high volume

fraction regime [51]. The Ostwald ripening was simulated in two dimensions to study the effect

of volume fraction of solid on coarsening kinetics. They used the conserved field approach

of Cahn and Hilliard [47] to obtain the temporal evolution of concentration. However, the

temporal evolution of noncoserved order parameters η describing the crystal orientation of

solid phase was determined using Allen-Cahn kinetics [28]. The free energy functional for the

simulation was chosen such that grain boundary energy to interface energy ratio of 2.14 was

obtained. This energy ratio ensured the presence of liquid phase sintering (cf. eq. 3.7). The

coarsening kinetic coefficient k and exponent m in eq. 4.37 were obtained from simulation

results.

Rm
t −Rm

0 = kt (4.37)

where t refers to sintering time and Rt, and R0 are the mean grain size at time t and at

time 0, respectively. Fan et al. found a nice fit of power law in eq. 4.37 to coarsening data

with exponent m of 3.0. The coarsening exponent m did not vary significantly even for high

volume fraction (>90%) of coarsening phase. Fan et al. found the kinetic coefficient k to

be strongly dependent upon the volume fraction of coarsening phase. The value of kinetic

coefficient k increased from 0.833 for volume fraction of 0.25 to 24.45 for volume fraction of

0.90. The rapid increase in the kinetic coefficient k was attributed to dramatic decrease in

diffusion distance of atoms in the matrix phase at higher volume fraction of coarsening phase.

They also compared the simulation results with coarsening experiments on Fe-Cu, Pb-Sn and

Sn-Pb systems [65]. The comparision confirmed the obtained trend in kinetic coefficient k.

Chen and Fan applied the phase field model to coupled grain growth and Ostwald ripening

in two phase Al2O3-ZrO2 system [66]. The grain boundary to interface energy ratio for the

simulation was chosen to produce experimentally obtained energy ratio. The simulation was

performed with varying volume fractions of phases. The simulated microstructures appeared

to have striking resemblance to experimentally observed microstructures [67]. The phase

field model predicted the main features of coupled grain growth and Ostwald ripening, as

observed experimentally in Ref [67]. In a microstructure containing low volume fraction of

zirconia, zirconia grains were found to be located at grain boundaries and trijunctions. The

coarsening for such a microstructure was controlled by Ostwald ripening process. The motion

of alumina grain boundaries was pinned by zirconia grains, and the alumina grain size was
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limited by location and distribution of zirconia grains. The migration and readjustment of

alumina grain boundaries was observed after the disappearance of zirconia grain. The growth

of alumina grains decreased with higher volume fraction of zirconia phase. Chen and Fan

argued that the reduction in grain growth was due to increased pinning sites.

Aps and Agren developed a phase field simulation method using a vacancy diffusion

approach [68]. They treated solid phase as a region with low vacancy concentration and pore

as region of high vacancy concentration. The surface of the solid phase was characterized by

a continuous variation in vacancy concentration. Aps and Agren used thermodynamics of

vacancies to describe the free energy for the simulation. The temporal evolution of vacancies

was calculated using Cahn Hilliard and Allen Cahn kinetics. The kinetic equations were

numerically solved using finite element method.

Kumar et al. [69] applied phase field simulation method to sintering of unequal sized

particles. They found that sintering of unequal sized particles occur in three subprocesses:

(1) neck growth, (2) coarsening, and (3) grain boundary migration. They also found a

slow grain boundary migration concurrent with coarsening. This slow migration was neither

observed nor proposed earlier.

Wang argued that a rigid body motion is required for simulating the solid state sintering

[53]. Wang incorporated the rigid body motion into phase field equations of Chan-Hilliard [47]

and Allen-Cahn [28]. Wang defined the total flux ~J for sintering as the sum of diffusion flux

~Jdiff and advection flux ~Jadv from rigid body motion. Wang set up the rigid body motion

such that it was only active when density inside the grain boundary deviates from equilibrium

density. The advection force of rigid body motion tries to restore the equilibrium density

inside the grain boundary. Wang’s formulation incorporated Newton’s third law of motion

to ensure zero force on the sample. Wang also argued that the diffusion coefficient in the

microstructure is not constant. He treated diffusion coefficient as a variable that acquires

different values at grain boundary, particle surface, inside solid and in vapor phases. The

model with rigid body motion and variable diffusion coefficient was applied to sintering of

two equal particles. The neck growth kinetics were obtained in terms of exponent n in eq.

4.38.

(
X

D

)n

= kt (4.38)
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where X is the neck size, D is the particle diameter, n is the neck growth exponent, k is the

neck growth coefficient and t is the time. Wang calculated the neck growth exponent n for

sintering by grain boundary diffusion, volume diffusion, surface diffusion and vapor trans-

port. A satisfactory agreement between obtained exponents and predictions of theoretical

models was found. Wang also applied the model to the sintering of multiple particles. The

model showed several realistic microstructural evolution phenomena such as grain boundary

migration and pore migration.



PART II

RESULTS AND DISCUSSION



CHAPTER 5

MONTE CARLO SIMULATION

The Monte Carlo simulation method described in Section 3.1 was applied to the sintering

of two unequal sized particles. The sintering simulation was performed in two dimensions

(2D) on a 512×512 uniform grid of points. Sintering started with two touching circles of radii

128 pixels and 64 pixels. The sintering of circles in two dimensions is equivalent to sintering

of long cylindrical particles in three dimensions. The large and small particles were assigned

with spin state Q of 1 and 2, respectively. The total number of possible spin states Q was

taken as 5. The values of the grain boundary energy and the surface energy per unit area

were assumed to be 0.6kT and 1.0kT , respectively. The simulations were performed with a

thermal energy of 0.7kT until the small particle disappeared.

Figure 5.1 shows the simulation results for two unequal sized particles. The change in the

sintering geometry is quantitatively shown in Fig. 5.2 on a relative scale. The geometrical

parameters and simulation time are rescaled in [0 1] in Fig. 5.2. The initial configuration

of the sintering simulation consisted of two touching particles as shown in Fig. 5.1(a). A

neck between the particle form in 0.6% of total sintering time. The neck growth was rapid

initially but slowed down with increasing neck size. It can be observed from Fig. 5.1(c) that

the neck growth slowed at relative time 0.059. It should be noted that a negligible particle

size change occured until the neck was grown significantly. The coarsening was found to be

accompanied with a slow grain boundary migration. The coarsening and slow grain boundary

migration remained active mass transport mechanisms from relative time 0.059 to 0.9. The

grain boundary started migrating rapidly at relative time 0.9. The rapid grain boundary

migration resulted in a rapid shrinkage rate of the small particle. The sintering process was

completed by coalescence of the small particle.

The results from the Monte Carlo simulation method show that the sintering of the

two unequal particles involves three subprocesses. The three subprocesses are: (1) neck

growth, (2) coarsening, and (3) grain boundary migration. The mechanisms mass transport in

coarsening and grain boundary migration are explained in Section 2.3. The three subprocesses

overlap to some extent. In the first subprocesses of neck growth, a neck and a grain boundary
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(a) time 0 (0) (b) time 0.1m (0.006) (c) time 1m (0.059)

(d) time 4m (0.237) (e) time 6m (0.353) (f) time 12m (0.706)

(g) time 16m (0.947) (h) time 16.5m (0.976) (i) time 16.9m (1.0)

5.1: Monte Carlo simulations of two particle sintering. The number below images refers to sintering time in Monte Carlo steps (m refers
to million). Time in parentheses indicates relative time to sinter.
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5.2: The geometrical changes during two unequal sized particles sintering using the Monte Carlo simulation method
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forms. The neck formation and growth is rapid and takes a relatively short time as compared

to the total sintering. A negligible coarsening occurs while neck grows significantly. A

noticeable coarsening occurs when neck is fully formed. The particle size changes during

the coarsening subprocess. The coarsening causes the large particle to grow and the small

particle to shrink. The coarsening is a relatively slow process as compared to the neck

growth. The rate of coarsening increases as coarsening progresses. A slow grain boundary

accompanies the coarsening. The grain boundary migrates rapidly towards the end of the

coarsening subprocess. The kinetics of the rapid grain boundary migration are faster than

the coarsening kinetics. The sintering of two unequal particles was completed when small

particle disappeared due to the grain boundary migration. The simulation results show

that the coarsening is the slowest among the three subprocesses of sintering. Therefore, the

coarsening is the rate determining subprocess during the sintering process.

After performing sintering simulations with different specific surface energy, specific grain

boundary energy, and sintering temperature, it was found that these parameters affect the

neck growth, coarsening and grain boundary migration. The relative ratios of the three

subprocesses depend upon the choice of parameters in Monte Carlo simulations. However,

the microstructural evolution described above was not found very sensitive to the choice of

parameters.



CHAPTER 6

PHASE FIELD SIMULATION

The phase field model described in Section 4.1 was applied to simulate solid state sintering.

The simulations were performed for various initial microstructures. These microstructures

include: (1) two unequal sized particles, (2) two equal sized particles, (3) closed packed array

of particles, (4) multiparticle random microstructures, and (5) isolated pores. The details

of the above mentioned microstructural simulations are described in following sections. The

results of the microstructural simulations are also discussed.

6.1 Two unequal sized particles

The phase field simulation method described in Section 4.1 was applied to the sintering

of two unequal sized particles. The phase field simulation was performed in two dimensions

(2D) on a 256×256 regular grid of points. The sintering started with two circular particles

making a point contact. Similar to the Monte Carlo simulation method, the sintering of

circular particles in 2D is considered to be equivalent to sintering of cylindrical particles in

3D. The initial diameters of the large and the small particles were 120 pixels and 60 pixels,

respectively. Two phase fields variables were used to simulate the sintering: (1) density field

ρ and (2) orientation field η. Each of the particles was associated with one orientation field.

The total free energy of the microstructure was assumed to be comprising of the bulk free

energy and surface energy. The total energy of the microstructure was obtained from the

phase fields ρ and η given by eq. 6.1.

F =

∫

v

f(ρ, η1..p) +
κρ
2
(∇ρ)2 +

p
∑

i=1

κη
2
(∇ηi)2dv (6.1)

where f(ρ, η1..2) is the bulk free energy. The values of κρ, κη and p were taken as 10, 3.75 and

2, respectively. The expression of bulk free energy of the microstructure is given in eq. 6.2.
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f(ρ, ηi..p) =A(ρ
4 +

−4ρvap − 4(1− Vc)− 2

3
ρ3

+
4ρvap(1− Vc) + 2ρvap + 2(1− Vc)

2
ρ2

− 2ρvap(1− Vc)ρ)

+B(ρ2 + 6(1− ρ)

p
∑

i

η2i − 4(2− ρ)

p
∑

i

η3i

+ 3

p
∑

i

η4i + Cgbe

p
∑

i

p
∑

j,j 6=i

η2i η
2
j )

(6.2)

For phase field simulation, values of A , B, Cgbe, ρvap and Vc were chosen as 16, 1, 7, 0.009 and

0.001, respectively. The values of these variables was found such that the bulk free energy

f(ρ, ηi..p) acquires minima in equilibrium phases. For example, bulk free energy f(ρ, ηi..p) is

minimized in solid phase, i.e., when ρ = 1 − Vc, ηi = 1 and ηj = 0; j 6= i, j ∈ [1 p]; i ≤ p.

Similarly, the choice of parameters in eq. 6.2 ensures that the bulk free energy in vapor

phase is minimized. This minima of energy occur when ρ = ρvap and ηi = 0; i ∈ [1 p]. The

diffusion coefficient D for the simulation was chosen such that it varied with positions in the

microstructure. The diffusion coefficient for the simulation is given in eq. 6.3.

D = Dvolφ+Dvap(1− φ) +Dsurf (1− ρ)2 +Dgbρ(1−
∑

η2) (6.3)

where φ = ρ4(7ρ2−18ρ+12) andDvol, Dvap, Dsurf , and, Dbg are parameters used to adjust the

value of diffusion coefficient along bulk, vapor, surface and grain boundary paths, respectively.

The values of Dvol, Dvap, Dsurf , Dgb were chosen as 0.08, 0.012, 45 and 4.1, respectively. The

values of parameters in eq. 6.3 is chosen such that diffusivities along various paths follow

trends similar to diffusivites of real materials. The diffusion coefficients were calculated using

eq. 6.3. The calculated values of D were 2.0 at surface, 0.4 at grain boundary, 0.08 in the

particle and 0.016 in vapor phase. The value of diffusivity of vapor transport is an effective

coefficient that determines the mass transport via gas phase which contain quantities such as

sticking coefficient and vapor pressure. Fig. 6.1 depicts the variation of diffusion coefficient

along the a line joining the particle centers in the microstructure. The variation of diffusion

coefficient in Fig. 6.1 indicates that diffusion coefficient at surfaces is the highest and lowest in

vapor phase. This difference in values of D is expected as we anticipate more mass transport
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6.1: Variation of diffusion coefficient D in the microstructure. The values in the graph
correspond to diffusion coefficient along a line joining the particle centers. Reprinted with

permission from ref. [69]

via surface diffusion than vapor transport during sintering of real powders. A similar scheme

of variable diffusion coefficient was used by Wang [53].

The phase field simulation for two unequal sized particles was performed with parameters

described above. The simulation results are described on a relative time and length scale. The

results on simulation time and relative time-length scale are given in Table 6.1. The simulation

results shown graphically in Fig. 6.2 depict the geometrical changes during the sintering. The

geometrical changes during the sintering are also given in Table 6.1 quantitatively. These

geometrical changes are plotted in Fig. 6.3. These geometrical changes (data in Table 6.1)

can be used to derive the sintering kinetics in terms of neck growth, particle size change and

grain boundary velocity provided in Table 6.2.

The phase field simulation of two unequal sized particles began with two particles making

a point contact as shown in the Fig. 6.2(a). Fig. 6.2(b) shows that the neck and the grain
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6.1: Microstructure parameters (in pixels)

Relative
time

Sintering
time

Small particle
size

Neck size Grain boundary
position

0 0 59.7 0 129
0.01 268 59.7 31 129
0.2 5353 59.0 51 129
0.5 13382 55.1 52 129
0.95 25427 43.0 51 139
1.0 26765 0.0 0 154

(a) time 0 (0) (b) time 268 (0.01)

(c) time 5353 (0.2) (d) time 13382 (0.5)

(e) time 25427 (0.95) (f) time 26765 (1.0)

6.2: Microstructure evolution of two unequal size particles during sintering. Time below
subfigures indicates sintering time and time in parentheses refers to relative time to sinter.

Reprinted with permission from ref. [69].
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6.3: Geometrical changes during sintering of two unequal sized particles. The particle size
is defined as the radius of particle with equivalent volume. Reprinted with permission from

ref. [69]

boundary between the particles formed quickly. The neck formed with a rate of 3100 pixels

per unit time in the beginning of the sintering. The rate of neck growth can be observed in

Fig. 6.3 which shows that the 60% of the neck grew during 1% of sintering time. The rate

of the neck growth slowed down during 0.01-0.20 time to 105 pixels per unit time. The neck

growth stopped at time 0.20. The neck size remained the same between 0.20-0.95 time. The

neck and the grain boundary shrank rapidly between time 0.95 to 1.00. The rate of neck

6.2: Rate of sintering subprocesses (pixel per unit time)

Time Stage Small particle
shrinkage
rate

Neck
growth
rate

Grain
boundary
velocity

0.00-0.01 Rapid neck growth 0.0 3100.0 0
0.01-0.20 Slow neck growth 3.7 105.3 0
0.20-0.50 Coarsening 13.0 3.3 0
0.50-0.95 Coarsening with slow

grain boundary migration
26.9 2.2 22.2

0.95-1.0 Rapid grain boundary
migration

860.0 -1020.0 300.0
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shrinkage between time 0.95-1.00 was 1020 pixels per unit time.

Change in the particles size can be inferred from Fig. 6.3 and Table 6.1. The particle

size in Fig. 6.3 and Table 6.1 is defined as radius of circle with equivalent area. It can be

inferred that the particle size did not change noticeably until the time 0.2, i.e., until the neck

was fully formed. The small particle shrank slowly between time 0.2 to 0.5 with a rate of 13

pixels per unit time. During the next 0.45 time units, the rate of coarsening doubled. The

small particle shrank rapidly after 0.95 time units until it disappeared.

A boundary migration can also be observed in the simulation of two unequal particle

sintering. Fig. 6.3 shows the position of the grain boundary during sintering. It can be

observed that the grain boundary remained stationary until time 0.50. It should be noted

that the neck grew to completion and coarsening occurred significantly before time 0.50. The

grain boundary migrated slowly between time 0.5-0.95. The mean grain boundary velocity

between during this time interval was 22.2 pixels per unit time. The grain boundary migrated

rapidly between time 0.95-1.0 with a velocity of 300 pixel per unit time.

Based upon the results of the phase field simulations, the sintering of two unequal particles

can be described into three subprocesses: (1) neck growth, (2) coarsening, and (3) grain

boundary migration. Approximate transitions between these subprocesses are highlighted by

arrow marks in Fig. 6.3. A neck and grain boundary between the particles form in the first

subprocess of the neck growth. The driving force ∆µn for the neck growth is the difference

between neck curvature and particle curvature given by eq. 6.4.

∆µn = γΩ

(
1

rn
− 1

rp

)

(6.4)

where rn and rp are radii of curvature at neck and particle surface, respectively. The radius of

curvature increases with neck growth. Therefore, the rate of the neck growth reduces as neck

grows. The neck and the grain boundary provide a path for the interparticle mass transport

for sintering. Therefore, the subprocess of coarsening does not noticeably begins until a

significant size of neck is formed. The reason for a negligible coarsening before a significant

neck formation could be the difference in chemical potential. The chemical potential difference

for coarsening given in eq. 6.5 can be compared with chemical potential difference for neck

growth in Fig 6.4.
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6.4: Chemical potential ratio for neck growth and coarsening.
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∆µn = γΩ

(
1

rs
− 1

rl

)

(6.5)

In eq. 6.5, rs and rl are the radii of the small and the large particle, respectively. Fig.

6.4 shows that the driving force for coarsening is orders of magnitude smaller than driving

force for coarsening. Therefore, the coarsening begins slowly after a significant neck growth.

There is a small overlap of the neck growth and the coarsening subprocesses. The coarsening

subprocess also overlaps with a grain boundary migration. The grain boundary velocity

during coarsening is small. The slow grain boundary migration indicates a small driving force

for the grain boundary migration. The small driving force can be attributed to drag force due

to increase in grain boundary during grain boundary migration. The grain boundary migrates

rapidly towards the end of the sintering. A reduction in grain boundary area could result in

the rapid migration rate. During this rapid grain boundary migration, a rapid shrinkage of

small particle occurs. The sintering of two unequal particle sintering is completed when the

small particle disappears.

6.2 Two equal sized particles

The phase field simulations on two equal sized particles were performed. The simulations

were performed on a uniform square grid of 512×512 pixels. The sintering variables used in

simulation of equal sized particles were the same as described in Section 6.1. The simulations

were performed for particle sizes given in Table 6.3. Fig. 6.5 shows the neck size during

simulations of various particle sizes. It can be observed from Fig. 6.5 that the neck growth

slowed down with time.

The dependence of the ratio X/R on particle size and time can be used to extract the mass

transport mechanism during neck growth. The kinetics of the neck growth can be expressed

as follows [6]:

6.3: Particle size for sintering simulations of equal sized particles

S. no. Particle radius
(pixels)

time required to achieve 0.3
X/R (simulation time)

1 30 18
2 40 45
3 45 70
4 50 100
5 60 190
6 90 720
7 120 2040
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6.5: Neck size during the sintering of equal sized particles

(
X

R

)n

=
B(T )

Rm
t (6.6)

where X, R and t are the neck size, particle radius and time, respectively. The term B(T )

in eq. 6.6 depends upon temperature, materials properties and geometrical constants. The

exponent n is termed as the mechanism-characteristic exponent. The exponents m and n

depend upon the mass transport mechanism. The values of the exponents m and n can be

obtained for phase field simulation results using the neck growth kinetics shown in Fig. 6.5.

The neck growth kinetics shown in Fig. 6.5 is shown as a log-log plot in Fig. 6.6. Fig. 6.6

showing a relationship between relative neck size X/R and particle size R at 50 simulation

time t provide a value of exponent ratio m/n of 0.572. The relationship between the relative

neck size X/R and sintering time t is shown Fig. 6.7 on a log-log scale for various particle

sizes. The slopes and intercepts of the curves in Fig. 6.7 are related to exponents m and n. It

can be observed from Fig. 6.7 that all of the particle sizes show similar slopes. The similarity

of the slopes indicates similar mass transport mechanisms for all of the particle sizes in Fig.
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6.6: Effect of particle size on neck growth kinetics for equal sized particle sintering
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6.7. A trend line is fit to neck growth kinetics of particle radius 120 pixels in Fig. 6.7. The

trend line shows a slope of 0.164. The slope 0.164 of trend line in Fig. 6.7 refers to value of

1/n. The value of exponents n and m obtained from the neck growth kinetics are given as:

n = 6.09; m = 3.48

The value of mechanism-characteristic exponent n = 6.09 suggests the grain boundary

migration to be the dominent mass transporting mechanism. The value of exponent m is

expected to be 4.0 for the mass transport via grain boundary migration. The obtained value

of exponent m = 3.48 deviates from the expected value of 4.0.

Although one might expect the above analysis of exponents to predict the mass transport

mechanism during neck growth, the predictions may be incorrect when more than one mech-

anism is simultaneously active. A deviation of sintering geometry from spherical particle

geometry may also result in incorrect prediction of mass transport mechanism. One example

of such incorrect prediction is Kingrey and Berg experiment [12] cited in ref. [6].

6.2.1 Nanoparticles

The consolidation of nanoparticles requires a lower sintering temperature and shorter

sintering time as compared to micron size particles [70]. The lower sintering temperature and

shorter sintering time may result from the difference in structure between nanoparticles and

micron size particles. Nanoparticles have higher surface area per unit volume as compared

to the micron size particles. Furthermore, nanoparticles usually have a higher defect density

which results in higher diffusivity [71–73].

A shorter sintering time for the nanoparticles has also been predicted by Herring’s scaling

law [6]. Herring’s predictions of shorter sintering time do not include the effects of high

diffusivity. The Herring’s law suggests that the time taken for obtaining similar geometries

depends upon the particle size as given in eq. 6.7.

∆t2
∆t1

= λm =

(
R2

R1

)m

(6.7)

where ∆t1 and ∆t2 are the time required to obtain similar particle geometries for particles

with sizes R1 and R2, respectively. In eq. 6.7, λ is a numerical factor and m is an exponent.

The value of m depends on the sintering mechanism.
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The phase field simulation results of two equal particle sintering can be compared with

Herring’s scaling law to highlight the differences in sintering of nanoparticles. The time

required to achieve a 0.3 neck size to particle size ratio is considered for the analysis. The

time required to form neck of 30% of the particle radius is shown in Table 6.3. The data in

Table 6.3 are ploted in log-log format to obtain the exponent m as shown in Fig. 6.8. In Fig.

6.8, a trend line is added to the sintering times. The trend line shows a good linear fit to

sintering times required to achive 0.3 neck size to particle size ratio X/R. The constant slope

for all of the data points indicate that the phase field simulations of neck growth in equal size

particle sintering follows the Herring’s scaling law. The phase field simulation results show

a shorter sintering time for smaller particle size. However, this reduction in sintering time is

the same as expected by Herring’s scaling law.

The comparison of the sintering simulation results with Herring’s scaling law shows that

the sintering behavior of nanoparticles can be predicted by the scaling law.

Rhodes studied the particle size effect (Herring’s scaling law) on sintering of yttria-

stablized zirconia [74]. Rhodes found that samples containing nano powders requires longer
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6.8: Time required to achieve 0.3 neck size to particle size ratio
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sintering time. The sintering of these powders did not follow Herring’s scaling law. Rhodes

attributed this lower sinterability and deviation from the scaling law to presence of agglomer-

ate in the samples. Rhodes prepared a sample from agglomerate free powder. He found that

agglomerate free sample followed Herring’s scaling law satisfactorily. Rhodes suggested that

difference in sinterablity of nanopowders is a result of difference in initial microstructures.

The results of phase field simulations presented in this dissertation also show that Herring’s

scaling law holds. This shows the agreement between the particle size effect obtained from

sintering simulations and sintering experiments.

6.3 Closed packed particles

The sintering simulations of closed packed array of equal sized particles were performed

using phase field method. The particle sizes for simulations were chosen such that the total

solid volume of the particles was similar. The particle sizes for the sintering simulations are

given in Table 6.4. Table 6.4 also show that the total solid volume was the same for sintering

of 4, 9 and 16 particles. The parameters Dvol, Dvap, Dsurf , Dgb in eq. 6.3 were chosen as 0.5,

0.23, 38, and 1.15, respectively. These values of variables resulted in diffusion coefficients of

2, 1, 0.5, and 0.25 along surface, grain boundary, surface and vapor phase, respectively.

The microstructural evolution of the 25 particle closed pack array sintering is shown in

Fig. 6.9. The sintering started with particles touching in a hexagonal arrangement. The neck

between the particles was formed significantly by simulation time of 100. It should be noted

that the symmetry of the initial microstructure is lost during neck formation. For example,

the pores on the upper left corner and lower left corner are symmetrically situated in Fig.

6.9(a). However, Fig. 6.9(b) indicates that one of the pores disappears first resulting in loss

of symmetry of the configuration. This loss of the symmetry could be attributed to random

fluctuation in phase field due to floating point errors during computation. Fig. 6.9 show

that voids closer to the outer surface of the sintering geometry disappeared first. It can also

be noted that the voids connected with more grain boundaries for the same distance from

the outer surface disappeared rapidly. The voids in the interior of the sintering geometry

6.4: Particle size for sintering simulations of closed packed array of equal sized particles

S. no. Particle diameter
(pixels)

No. of particles Total particle volume
(pixel2)

1 96 4 28393
2 64 9 28393
3 48 16 28393
4 38 25 28353
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(a) time 0 (b) time 100 (c) time 200

(d) time 400 (e) time 600 (f) time 800

(g) time 1000 (h) time 1200 (i) time 1500

6.9: Microstructure evolution of sintering of close packed array of 25 particles using phase
field simulation method. The number below images refers to coursing time. The density

field ρ is shown on a gray scale of [0.95 1] in the figures.
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disappeared in the end of the sintering.

The closed pack array of particles makes a symmetric configuration. The sintering of such

symmetric configuration involves densification without interparticle mass transport. The

grain boundary in such a configuration may not migrate due to the symmetry. Therefore,

the densification in such closed packed array is achieved by change in the particle shapes.

The amount of mass to be transported for densification increases with reduction in particle

size for close packed array. At the same time, the grain boundary area and surface area for

the mass transport increases. In this set of simulation, effect of the particle size on sintering

can be observed. The particle size effect in this case is based upon constant volume. For

the constant volume of green compact, the initial density depends upon particle size. Even

if the particle arrangement is the same, the compacts with smaller particles have lower green

density. The effect of particle size on green density can be observed in Fig. 6.9. Fig. 6.9

shows that particles with 24 pixels radius have lower density than particles with 48 pixel

radius. The sintering curves in Fig. 6.9 show that sintering of smaller particles results in

higher sintering rates. It should be noted that this effect of particle size excludes effect of

particle coarsening and grain boundary migration. The effect of particle size on the sintering

kinetics of the close packed array is shown in Fig. 6.10. Fig. 6.10 shows that the initial

relative density of the arrays with smaller particles was lower; however, the rate of sintering

was faster for the smaller particles. This shows that the effect of increase in void fraction for

smaller particles can be outweighed by increase in the surface area and the grain boundary

area.

6.4 Randomly arranged particles

The phase field simulations were performed for randomly distributed particles. The

simulations were performed on particles of size 40 pixel in diameter. In order to fit the

sintering geometry in simulation domain, a few particles on the edges were truncated. The

values of variables for this set of simulations were the same as values in simulations of two

unequal size particles described in Section 6.1.

The sintering of multiparticle microstructure started from touching circular particles as

shown in Fig. 6.11(a). The circular particles made a point contact. The neck between the

particles grew significantly in 10 unit simulation time as shown in Fig. 6.11(b). The 10 unit

simulation time is less than 0.1% of total sintering time. The neck formation was also accom-

panied by a shape change in the particles and voids. The voids also acquired their equlibrium

shapes. The pores with smaller coordination numer shrank and disappeared preferentially.
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6.10: Effect of particle size on sintering kinetics of equal sized close packed array of particles

All of the pores with coordination number 3 disappeared by 40 unit simulation time. A grain

boundary migration in Fig. 6.11(c)-(d) can also observed at 40-70 unit simulation time.

Migration of a grain boundary located at the upper left corner in microstructure during this

period of time can be observed in Fig. 6.11(c)-(d). This grain boundary migration resulted

in a rapid shrinkage of the partice at the corner. The particle in the corner diappeared by

130 sintering time. The pore size also changed during the sintering. Fig. 6.4 shows that few

pores shrank and the rest of the pores grew in size. Fig. 6.11(e)-(f) show that the “U” shaped

pore near the bottom of the sintering geometery grew in size between 130-190 unit sintering

time. On the other hand, the pore located on the upper right corner reduced during the same

period of time. As pores reduced and disappeared, the coordination number of the pores

changed. This change in the pores coordination number resulted in increasing rate of pore

closure. It should be noted from the Fig. 6.4 that the grain boundary did not cross a pore.

Therefore, the pore functioned as grain boundary pinning sites. The number of pores reduced

considerably by 430 sintering time. At this time, the grain boundary migration became a

predominant factor in evolution of microstructure. The grain boundary migration affected

the grain size significantly from 430 unit sintering time until the end of the sintering as shown
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(a) time 0 (b) time 10

(c) time 40 (d) time 70

(e) time 130 (f) time 190

Microstructure

evolution of sintering of randomly distributed particles using phase field simulation method.
The number below images refers to coursing time. The density field ρ is shown on a gray

scale of [0.95 1] in the figures.
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(g) time 310 (h) time 430

(i) time 670 (j) time 910

(k) time 1410 (l) time 1910

Continued
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by Fig. 6.11(h)-(l).

The density of the sintering geometry in Fig. 6.4 increased as sintering progressed. Fig.

6.12 shows the density of the sintering geometry as a function of sintering time.

Fig. 6.12 shows that the rate of densification decreased with sintering time. Fig. 6.12

also shows the density of simulations with various values of κη. The kinetic coefficient κη

in eq. 6.1 was found to be affecting the grain boundary mobility. A higher value of the

kinetic coefficient κη resulted in increased grain boundary mobility. The grain boundary was

observed to be almost immobile with a kinetic coefficient κη of 3.33. Relative density curves

in Fig. 6.1 show that the rate of densification increased with grain boundary mobility. The

increase in the densification could be attributed to reduction in the pore coordination number

during the grain boundary migration. It is reported that the pores with small coordination

number shrink rapidly [5]. This reduction in the pore coordination number may lead to higher

rates of densification.

The mean grain size variation during the sintering is shown in Fig. 6.13. Fig. 6.13 shows

that the mean grain size of the sintering geometry increases with time. Fig. 6.13 shows a
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6.12: Relative density of multiparticle random microstructures
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6.13: Mean grain size of multiparticle random microstructures

strong effect of the grain boundary mobility on the grain size during sintering. The grain

growth rate reduced with a lower grain boundary mobilities, κη 3.33. The rate of grain growth

increases with the grain boundary mobility. The grain size increased rapidly in a high grain

boundary mobility sintering with kinetic coefficient κη 3.75. This showed that final grain size

in the sintering simulation was controlled by the grain boundary mobility.

This relative effect of the grain boundary mobility can be observed in Fig. 6.14. Fig. 6.14

indicates that the grain boundary mobility showed a stronger effect on the grain size than

on the relative density. The sintering simulation with immobile grain boundaries achieved

theoretical density with a minimal grain growth. With high grain boundary mobility κη

3.75, the grain size increased by three times before sintering geometry was fully dense. An

intermediate value of κη 3.6 resulted in a moderate grain growth as shown in Fig. 6.14.

6.5 Pores

The phase field simulations were performed to simulate the closure of pores. The simu-

lation variables used in this set of simulations were the same as variables in sintering to two

unequal particles described in Section 6.1. The simulations were performed to understand a

relation between shrinkage behavior and pore coordination number. For simulating the pore
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6.14: Mean grain size and relative density of multiparticle random microstructures

shrinkage, microstructures with a circular pore surrounded by symmetrically arranged grains

were simulated. The simulations were performed with pores of coordination number 2, 4, 6,

8, 10, and 20. Figure 6.15 show the microstructures of various pores.

The shrinkage of the pores is quantitatively shown in Fig. 6.16. The radius of a pore in

Fig. 6.16 refers to the radius of a circle having area equal to the pore area.

The initial pore size was the same for pores with different coordination numbers. The

shrinkage of a pore is found to have a strong correlation with the pore coordination number

as shown in Fig. 6.16. Fig. 6.16 shows that the pore with coordination number 2 shrank

rapidly. The rate of pore shrinkage reduced as pore coordination number was increased. The

pore with the coordination number of 20 did not shrink during shrinkage.

The energy analysis of pore shrinkage provides the critical coordination number below

which pores shrink [5]. The critical coordination number nc depends upon the dihedral angle

as

nc =
π − φe

2π
(6.8)
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(a) Pore coordination no. 2 (b) Pore coordination no. 4 (c) Pore coordination no. 6

(d) Pore coordination no. 8 (e) Pore coordination no. 10 (f) Pore coordination no. 20

6.15: Microstructures of pore shrinkage using phase field simulation method. The density
field ρ is shown on a gray scale of [0.95 1] in the figures.

where φe is the equilibrium dihedral angle. The equilibrium dihedral angle for the simulation

performed was 140deg. This dihedral angle of 140deg resulted in a critical pore coordination

number of 9. The shrinkage of all of the pores follows the prediction of eq. 6.8 except the pore

with the coordination number 10. Based on the analysis of eq. 6.8, the pore with coordination

number 10 should not shrink. A microstructural analysis indicates that the pore shrinkage

in this case was achieved by geometrical distortion. Fig. 6.15(e) indicates that the pore with

coordination number 10 acquired an elliptical shape. This shape is not symmetric and can

be achieved by small asymmetric fluctuation. The asymmetry in the pore shape resulted in

concave and convex radii of curvature at different surfaces of the pore. The pore may shrink

in such cases even though it has a coordination number higher than critical pore coordination

number nc.

6.6 Limitations of 2D simulations

The phase field simulations described above provide insight into sintering of various

microstructures. These simulations were performed in two dimensions. These simulations

of circular particles in two dimensions can be correlated with sintering of cylindrical particles

in three dimensions. This correlation of circular and cylindrical particles can provide under-
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standing of sintering of various microstructures. These microstructures include linear array

of particles, pores and symmetric array of particles. However, microstructures containing

randomly distributed particles cannot be appropriately simulated using two-dimensional

simulation. The inappropriateness results from inability of two-dimensional microstructure

to correctly describe microstructure during intermediate stage of sintering. The intermediate

stage of sintering in three dimensions is characterized by cylindrical pores long grain edges.

These pores are closed by vacancy transport from pores to grain boundaries. The config-

uration of cylindrical pores along the grain edges and required vacancy transport cannot

be described by a two-dimensional microstructure. Therefore, sintering of bulk powders

containing randomly oriented particles should be simulated in three dimensions.

6.7 3D simulations of two unequal sized particles

The sintering simulation on two unequal sized particles was performed in three dimensions.

The simulation variables in this simulation were the same as variables used in sintering of

two unequal sized particles described in Section 6.1. The simulation in three dimensions

was performed on a lattice of 128×128×128 voxels. The initial particle sizes were 64 and 32

voxels. The microstructural evolution of the two unequal sized particles in three dimensions

is shown in Fig. 6.17.
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6.16: Pore shrinkage during phase field simulation of sintering
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(a) time 0 (b) time 10 (c) time 50

(d) time 100 (e) time 300 (f) time 500

(g) time 750 (h) time 760 (i) time 800

6.17: Microstructure evolution of sintering of two unequal sized particles in three
dimensions using phase field simulation method. The number below images refers to

coursing time.
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Fig. 6.17(a) shows the particles making point contact at the beginning of the sintering.

A neck between the particles was formed rapidly. Fig. 6.17(b) shows that a significant

neck size was formed in 10 unit simulation time. The neck growth was reduced as sintering

progressed. The neck was reduced considerably by 100 unit simulation time as shown in

Fig. 6.17(d). It can be observed that particle size change until 100 unit simulation time was

negligible. Fig. 6.17(d) - 6.17(g) show that the particle size change slowly during 100 - 750

unit simulation time. Fig. 6.17(g) - 6.17(h) show a rapid grain boundary migration. This

rapid grain boundary migration resulted in a rapid shrinkage of the small particle. The small

particle disappeared at the end of the sintering as shown in Fig. 6.17(d).

A similarity between two-dimensional and three-dimensional simulations can be observed

from Fig. 6.17 and 6.2. These figures show that the sintering of two particles follows the same

microstructural evolution path irrespective of dimensionality of the simulation. Therefore,

a two-dimensional simulation of two unequal sized particles can produce a microstructural

evolution for quantitative analysis.

6.8 Randomly arranged particles in 3D

The sintering simulation on randomly distributed particles was performed in three di-

mensions. The simulation variables in this simulations were the same as variables used in

sintering of two unequal sized particles described in Section 6.1. The simulation in three

dimensions was performed on a lattice of 128×128×128 voxels. The initial particle sizes were

20-21 voxels. The initial microstructure contained 28 particles. The particles located on the

edges of the simulation domain were truncated. The truncation was performed due to a use

of periodic boundary conditions. The particle on the one side of edge can bond with particles

on the other side of edge due to periodic boundary condition. The truncation of the particles

resulted in smaller particle sizes.

The microstructural evolution of randomly distributed particles in three dimensions is

shown in Fig. 6.18. Fig. 6.18(a) shows the initial microstructure. The neck between the

particles forms rapidly. Fig. 6.18(b) show that the significant neck formation occurred

between 0-10 unit simulation time. The coarsening and grain boundary migration subprocess

during simulation can also be seen in Fig. 6.18. A quantitative analysis on this simulation

was not performed.
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(a) time 0 (b) time 10 (c) time 50

(d) time 100 (e) time 200 (f) time 300

(g) time 400 (h) time 500 (i) time 600

6.18: Microstructure evolution of sintering of randomly distributed particles using phase
field simulation method. The number below images refers to coursing time.



CHAPTER 7

GEOMETRICAL MODEL

A geometrical sintering model using microstructural evolution results from the Monte

Carlo simulation methods is developed. The geometrical model makes assumptions regarding

the sintering geometries during the microstructural evolution. The geometrical assumptions

introduce errors in deriving the sintering kinetics. Nevertheless, the assumptions help in

deriving simple expressions for sintering kinetics. The kinetics expressions of the geometrical

model can provide sintering kinetics in terms of real time and length scale. Moreover,

geometrical models can be used to obtain the sintering kinetics with sintering parameters

such as temperature and diffusion coefficients.

7.1 Description of geometrical model

A geometry of two unequal sized spherical particles is used for obtaining kinetics using a

geometrical model. The sintering kinetics are derived for the unequal sized particle geometry

shown in Fig. 7.1. The geometry in Fig. 7.1 consists of two spheres bonded by a neck. The

particle radii in Fig. 7.1 are R1 and R2, (R1 ≥ R2). The solid vapor surfaces and grain

boundary at the neck maintain the equilibrium dihedral angle φe. The radii of curvature at

the neck are r1 and r2 as shown in Fig. 7.1. The neck of size X subtends an angle of θ on

the curvature center of the grain boundary.

The sintering model using the above geometry is described in three stages. The stages are:

(1) neck growth, (2) coarsening and (3) rapid grain boundary migration. These stages brings

geometrical changes in the two particle geometry. The time required to bring the geometrical

changes depends upon the mass transport path and diffusion coefficient. The kinetics of the

sintering is determined by estimating the time required for bringing geometrical changes. The

kinetics can be calculated from the following equation.

dV

dt
= ~JAΩ (7.1)
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7.1: The two particle geometry

where dV
dt

is the rate of volume transport, ~J is the flux in moles/(m2 s), A is the area through

which the mass is transported and Ω is the molar volume. The flux ~J in equation 7.1 can be

written as follows:

~J =
D

ΩRT

∆µ

∆x
(7.2)

where D is the diffusion coefficient, R is the universal gas constant, T is the absolute tem-

perature, and ∆µ
∆x

is the chemical potential gradient. Equation 7.1 can be solved numerically

to derive the sintering kinetics as:

∆t =
∆V

D

ΩRT

∆µ

∆x
AΩ

(7.3)

Eq. 7.3 is used to calculate the time intervals between sintering geometries during

microstructural evolution. The time intervals provide the sintering kinetics.

7.1.1 Sintering stages

The sintering kinetics of the three sintering stages can be derived using eq. 7.3. The choice

of parameters the equation 7.3 in each stage depends upon the mass transport mechanism.
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The kinetics of the three stages of sintering can be described as follows.

7.1.1.1 Neck growth

In the neck growth stage of sintering, a formation of neck binds the particles. The neck

between the particles can grow by several mass transport mechanisms. These mechanisms

include (1) surface diffusion from particle surfaces, (2) grain boundary diffusion from grain

boundaries, (3) lattice diffusion from particle surfaces and (4) lattice diffusion from grain

boundary. The choice of parameters in eq. 7.3 is given in Table 7.1 for various mass transport

mechanisms. For solving eq. 7.3, the value of dV is taken as the volume added to the neck

for the neck growth.

In Table 7.1, Ds, Dgb, and Dl are surface diffusion coefficient, grain boundary diffusion

coefficient, and lattice diffusion coefficient, respectively. In Table 7.1, Ω, δS, and δgb refer to

molar volume, thickness of atomic diffusion layer on surface, and thickness grain boundary,

respectively.

7.1.1.2 Coarsening

The particle sizes change during the coarsening stage. The particle size change is driven

by the chemical potential difference between the particles. This chemical potential difference

depends upon the two particle sizes. The choice of parameters in equation 7.3 for calculation

of coarsening kinetics are given in Table 7.1.

7.1.1.3 Grain boundary migration

The grain boundary between the particles migrates in the later stage of sintering. The

driving force for the grain boundary migration results from change in volume energy and

grain boundary energy. The atoms in the smaller particles are at higher chemical potential

due to the pressure difference caused by dissimilarity in particle sizes (cf. eq. 2.2) The atoms

in small particle jump across the grain boundary to reduce the volume energy. The jump of

the atoms results in the grain boundary migration. The grain boundary may also migrate

due to a reduction in the grain boundary area. The velocity of the grain boundary can be

derived from changes in volume energy and grain boundary energy per unit volume swept by

the boundary.

v = mF = −mdG

dV
= ∆P

︸︷︷︸

Volume energy

+ γgb
dA

dV
︸ ︷︷ ︸

Grain boundary energy

(7.4)



9
7

7.1: Parameters for estimating the kinetics of neck growth and coarsening subprocesses
mass transport mechanism Materials source Materials sink ∆µ ∆x A D
Neck growth

surface diffusion particle surface neck γsΩ

(
1

R1

+
1

R2

+
2

r1 + r2
− 1

X

)

S 2πXδS Ds

grain boundary diffusion grain boundary neck γsΩ

(
2

r1 + r2
− 1

X

)

X 2πXδgb Dgb

lattice diffusion particle surface neck γsΩ

(
1

R1

+
1

R2

+
2

r1 + r2
− 1

X

)

S 2πXS Dl

lattice diffusion grain boundary neck γsΩ

(
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r1 + r2
− 1

X
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X 2πXS Dl

Coarsening

surface diffusion small particle surface large particle γsΩ

(
2

R1

− 2

R2

)

S 2πXδS Ds

lattice diffusion small particle large particle γsΩ

(
2

R1

− 2

R2

)

S πX2 Dl

R1 radius of large particle, R2 radius of small particle, (r1, r2) radii of curvature at neck, X neck size, α half of angle subtended by grain boundary on center of
large particle, β half of angle subtended by grain boundary on center of small particle, θ half of angle subtended by grain boundary on center of sphere formed by
grain boundary, Neck width S = r1(cos(α)− cos(φe/2− θ)) + r2(cos(β)− cos(φe/2+ θ)), δs diffusion thickness of surface, δgb grain boundary thickness, γs specific
surface energy, Ds surface diffusion coefficient, Dgb grain boundary diffusion coefficient, Dl lattice diffusion coefficient
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where m is the grain boundary mobility, F is the net driving force, dG/dV is the change

in total free energy per unit volume swept by the boundary, ∆P is the pressure across the

boundary and dA/dV change in grain boundary area per unit volume swept by the boundary.

If grain boundary shown in geometry in Fig. 7.1 migrates towards the right by a distance

dx, the quantities ∆P and dA/dV can be calculated as:

∆P = γs

(
2

R1

− 2

R2

)

(7.5)

dA

dV
= γgb

2π∆xX sec θ

(tan β − tan θ)

π∆x(X2 +∆xR2 cos β −∆x2/3)
(7.6)

where R1 and R2 are radii of curvature of the large and the small particles and ∆X is the

change in neck size. Eq. 7.5 is based upon Young-Laplace equation [10] which describes the

pressure due to a curved surface. The grain boundary velocity can be approximated from

Eq. 7.4 - 7.6 for δX << X as:

v = −m
[

γs

(
2

R1

− 2

R2

)

+ γgb
2 sec θ

X(tan β − tan θ)

]

(7.7)

For a small angle θ in the two particle geometry, eq. 7.7 can be written as follows

v = 2m

[

γs

(
1

R2

− 1

R1

)

− γgb
cot(β)

X

]

(7.8)

The first term in eq. 7.8 provides the driving force for the grain boundary migration, whereas

the second term containing cot β can act as a drag force or driving force. When grain

boundary migration results in increase in grain boundary area, the second term acts as drag

force. Otherwise it acts a driving force. Eq. 7.8 shows the dependence of grain boundary

velocity on geometry via angle β. When subtended angle β becomes greater than π/2, the

drag force term in eq. 7.8 becomes positive. In this situation, both terms in eq. 7.8 drive

the grain boundary migration. Therefore, the grain boundary migration is rapid for angle

β > π/2.
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For β ≤ π/2, eq. 7.7 can be used to calculate the kinetics. In order to calculate

the volume change due to grain boundary migration ∆Vgb, time required for small change

in particle size ∆t is first calculated using eq. 7.3. The grain boundary velocity v is then

calculated from eq. 7.8 using geometrical parameters. The volume change due to the slow

grain boundary migration is calculated as

∆Vgb = πX2v∆t (7.9)

When angle β becomes greater than π/2, a rapid grain boundary migration occurs. During

the rapid grain boundary migration, the neck size and the volume of particle reduces to zero.

The time required to bring a small change in volume ∆V in small particle can be calculated

as

∆t =
∆V

πX2v
(7.10)

7.1.2 Sintering geometry

As discussed before, the sintering geometry consists of two spherical particles and a neck

between them. The neck formed between the particles has two circular profiles intersecting

at equilibrium dihedral angle φe. The angle φe depends upon the grain boundary and surface

energy ratio given by eq. 7.11. The following sections describe the sintering geometry for

neck growth, coarsening and grain boundary migration.

φe = 2arccos

(
γgb
2γS

)

(7.11)

7.1.2.1 Neck growth geometry

The sintering geometry to derive the neck growth kinetics can be described for sintering

cases of (1) with shrinkage and (2) without shrinkage as shown in Fig. 7.2 and 7.3, respec-

tively. Angles 2α and 2β in Fig. 7.2 and 7.3 are angles subtended by the grain boundary on
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7.2: Sintering geometry with shrinkage

7.3: Sintering geometry without shrinkage

particle centers of radii R1 and R2, respectively. The following equations describe the scheme

to obtain the geometrical parameters for the two cases of sintering.

For the case of neck growth with shrinkage, the geometry consists of two intersecting

particles. The mass of particle intersection and neck is shown as dark and light gray color

in Fig. 7.2. The mass of particle intersection is transported to the neck for the case of neck

formation with shrinkage.

In case of neck growth without shrinkage, the mass from the particle surfaces is transported
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to the neck. Fig. 7.3 shows the mass transported to the neck by a gray color. The geometries

for neck growth with and without shrinkage are used to derive the sintering kinetics.

The geometries described above provide the radii of curvature at the neck r1, r2 and

the volume of the neck dV for calculating the sintering kinetics. The radii of curvature

and volume of the neck are calculated by equating the volume added to neck and volume

transported from the particles. For calculating the radius of curvature and neck volume,

distance between particle centers d is used as a variable. The particle sizes R1 and R2 for a

distance d can be given as:

{R1, R2} =







{

R′
1 −

R′
2
2(R′

1 +R′
2 − d)

R′
1
2 +R′

2
2 , R′

2 −
R′

1
2(R′

1 +R′
2 − d)

R′
1
2 +R′

2
2

}

without shrinkage

{R′
1, R

′
2} with shrinkage

(7.12)

where R′
1 and R′

2 are initial radii of the large and small particles, respectively. The particles

radii R1, R2 can be used to evaluate the grain boundary radius of curvature as given by eq.

7.13.

Rgb =
γgb
γs

(
R1R2

R1 −R2

)

(7.13)

The center of the sphere forming the grain boundary is located at distance dgb from the

center of the large particle. The value of dgb can be given as

dgb =







R1 +Rgb without shrinkage

1

2d
(d2 −R2

2 −R2
1) +

√

(
1

2d
(d2 −R2

2 −R2
1))

2 +R2
gb −R2

1 with shrinkage

(7.14)

For a given neck size X, the radii of curvature can be calculated as
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r1 =
1

2

d2gb +R2
gb − 2dgbRgb cos θ −R2

1

R1 − (dgb −Rgb − cos θ) cos(φe

2
− θ)−Rgb sin θ sin(

φe

2
− θ)

(7.15)

r2 =
1

2

(d− dgb)
2 +R2

gb − 2(d− dgb) cos θ −R2
2

R2 − (d− dgb +Rgb cos θ) cos(
φe

2
+ θ)−Rgb sin θ sin(

φe

2
+ θ)

(7.16)

In the above equations, angle θ can be calculated as

θ = arcsin
X

Rgb

(7.17)

A relation between the neck size X and distance between particle centers d cannot be

expressed in closed form for the assumed sintering geometry. The neck size X is numerically

determined by a mass conservation condition such that

4π

3
(R′

1
3
+R′

2
3
) = πR1

3

(
2

3
+ cosα− cos3 α

3

)

+ πR2
3

(
2

3
+ cos β − cos3 β

3

)

+ π

∫ R1+r1(cosα−cos(φe/2−θ))

R1 cosα

(

(R1 + r1) sinα−
√

r21 − x2
)2

dx

+ π

∫ d−R2 cosβ

R1+r1(cosα−cos(φe/2−θ))

(

(R2 + r2) sin β −
√

r22 − (x− d)2
)2

dx (7.18)

The values of geometrical parameters neck size X, radii of curvature at the neck r1 and

r2, angles α, β and θ can be obtained from the above calculations. These parameters are

used to derive the sintering kinetics.

7.1.2.2 Coarsening and grain boundary migration
geometry

During the coarsening stage, the small particle shrinks. The neck size is assumed to be

the same as achieved at the end of the neck growth stage. Due to the assumption of the

invariable neck size, the geometry used for neck growth cannot be used for coarsening. The

two particle geometry used for coarsening is similar to the geometry of neck growth with

shrinkage. The geometry consists of two intersecting particles as shown in Fig. 7.4. The

particle surface intersect at equilibrium dihedral angle at the junction of particle surface and

grain boundary. The region between particle surface and grain boundary junctions is assumed



1
0
3

7.4: Geometry for coarsening. The inset shows the local geometry at the grain boundary - surface junction
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to be very small. This assumption is equivalent to neglecting circular profiles at the neck.

Therefore, the local geometry at the particle surface - grain boundary has been ignored. The

particle size change during the coarsening caused the sintering geometry to evolve. During

the geometrical evolution, the volume of the particles change while maintaining the spherical

shapes shown in Fig. 7.4. For calculation of geometrical parameters, the volume of the small

particle V2 can be calculated from mass conservation in eq. 7.19.

V2 =
4π

3

(

R′
1
3
+R′

2
3
)

− V1 (7.19)

where V1 is the volume of the large particle. The radii of the large and the small particles

are found such that eq. 7.20 and 7.21 are simultaneously satisfied.

V1 + V2 = π

((

cosα− cos3 α

3
+

2

3

)

R1
3 +

(

cos β − cos3 β

3
+

2

3

)

R2
3

)

(7.20)

V1 = π

((

cosα− cos3 α

3
+

2

3

)

R1
3 −

(

cos(π − θ)− cos3(π − θ)

3
+

2

3

)

Rgb
3

)

(7.21)

where Rgb is defined by eq. 7.13. The angles α, β, and θ in eq. 7.20 and 7.21 are defined as

α = arcsin
X

R1

(7.22)

β = arcsin
X

R2

(7.23)

θ = arcsin
X

Rgb

(7.24)

7.1.3 Sequence of the sintering stages

The sintering starts with two touching particles. The neck and the grain boundary

between the particles form in the beginning of the sintering. The growth of the neck and the

grain boundary is driven by the curvature difference at the neck and at the particle surfaces.

The coarsening may occur during the neck growth stage; however, the rate of coarsening may
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be very low. This is due to the difference in chemical potential for neck growth ∆µn and

chemical potential for coarsening ∆µc. The chemical potential difference for the neck growth

and the coarsening can be calculated from eq. 7.25 and 7.26, respectively.

∆µn = γsΩ

(

2
X2

4R′

1

+ X2

4R′

2

− 1

X

)

(7.25)

∆µc = γsΩ

(
2

R2

− 2

R1

)

(7.26)

The ratio of the chemical potential difference for the neck growth to coarsening is shown in

Fig. 7.5. Fig. 7.5 shows that the chemical potential for neck growth is several orders of

magnitude higher than that of coarsening. This supports the arguments that a negligible

coarsening occurs until neck grows significantly.

The driving force for the neck growth results from the difference in curvature at the neck

and the particle surfaces. This driving force approaches zero as the mean radii of curvature
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at neck (r1+r2)/2 approaches infinite. When mean radius of curvature at the neck (r1+r2)/2

approaches infinity, the neck growth ceases and coarsening dominates.

During coarsening, the neck size does not change. The neck between the particles provides

a path for interparticle diffusion. The coarsening stage may overlap with the slow grain

boundary migration. The slow grain boundary migration occurs when the subtended angle

on small particle β is less than π/2.

When angle β becomes larger than π/2, the grain boundary migrates rapidly. This

rapid grain boundary migration involves short range atomic jumps as opposed to long range

diffusion of coarsening. Therefore, a negligible coarsening is expected to occur simultaneously

with rapid grain boundary migration.

7.2 Application of geometrical model

The geometrical model described above has been applied to sintering of two equal par-

ticles, two unequal sized particles and sintering of a linear array of particles. Neck growth

and coarsening by surface diffusion is considered to be mass transport mechanism during

sintering. The results of the sintering kinetics are compared with existing sintering theories

and experimental data produced in the author’s research group. The kinetics results of

two equal sized particles are compared with existing sintering theories. The kinetics results

of two unequal sized particles are compared with Monte Carlo and phase field simulation

results. The sintering kinetics of linear array of particles are compared with experimental

data obtained from sintering of tungsten powders.

7.2.1 Two equal sized particles

The geometrical model described in Section 2.2 is applied to sintering of two equal sized

particles. The sintering kinetics of equal sized particles are used to compare the model against

sintering theories. These sintering theories are described in Section 2.2. The parameters used

to obtain the sintering kinetics are given in Table 7.2. The geometrical model describes

sintering process in three stages. These stages are (1) neck growth, (2) coarsening, and

(3) grain boundary migration. The sintering of equal sized particle occurs only by neck

growth. The stages of coarsening and grain boundary migration are absent in sintering of

equal particles.

The neck growth kinetics for particles of 1 µ are obtained for the two cases: (1) neck growth

with shrinkage and (2) neck growth without shrinkage. The neck growth with shrinkage

can be accomplished by a mass transporting mechanism of grain boundary diffusion. The
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7.2: Materials properties and sintering parameters

Materials property/sintering parameter Value
Sintering Material Tungsten (W)
Surface energy per unit area γs 2.8 joul/m2 [75]
Grain boundary energy per unit area γgb 2.37 joul/m2

Equilibrium dihedral angle φe 130◦ [76]

Surface diffusion coefficient Ds 4.0 × 10−4 ∗ exp

(−300000

RT

)

m2/s

[77]

Grain boundary diffusion coefficient Dgb 54×10−4∗exp
(−504000

RT

)

m2/s [77]

Gas constant R 8.3114 joul.mol−1K−1

Surface diffusion layer thickness δs 0.3 nm [78]
Grain boundary diffusion layer thickness δs 1 nm
Molar volume Ω 9.55× 10−6 m3/mol
Grain boundary mobility m 3.5×10−21 m4s−1Pa−1 [79]
Sintering temperature T 950 ◦C

mass transporting mechanism for neck growth without shrinkage is considered to be surface

diffusion.

7.2.1.1 Neck growth with shrinkage

The neck growth with shrinkage may occur due to a mass transport from the particles

through the grain boundary. The driving force for the neck growth originates from curvature

difference at the neck and at the center of the grain boundary. Fig. 7.6 shows the variation

of the radius of curvature r1 at neck as a function of the neck size X. The figure also

shows the classical approximation of the radius of curvature r1 = X2/(4R1). The classical

approximation is valid for small neck sizes due to assumptions made during derivation the

expression. Both of the estimations of radius curvature provide similar radius of curvature

for small neck sizes. The difference in the prediction of scheme of Section 7.1.2.1 and the

classical approximation increases at larger neck sizes. The classical approximation shows that

the radius of curvature increases slowly and attains a maximum value of R1/4 when the neck

size become the particle size (X = R1). On the other hand, the scheme described in Section

7.1.2.1 show that the radius of curvature approaches infinite when neck size to particle size

ratio (X/R1) approaches 0.66 for equal size particles (R1 = R2).

The radius of curvature and the volume transported calculated following the scheme

described in Section 7.1.2.1 are used to derive the neck growth kinetics. The kinetics derived

using equations described in Section 7.1 are shown in Fig. 7.7.

Fig. 7.7 shows that the neck growth kinetics are rapid as neck growth starts. The neck
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7.6: Radius of curvature at neck for case of neck growth with shrinkage

grows to 30% of the particle radius in almost no time. The rate of neck growth slows down

and neck grows slowly to about 40% of the particle radius. It should be noted that the neck

growth ceases when mean radius of curvature at the neck r1/2 + r2/2 approcaches the neck

size X. When 2/(r1 + r2) becomes equal to 1/R1 + 1/R2 − 1/X, the neck growth ceases as

driving force for the neck growth reduces to zero.

Fig. 7.7 also shows the neck growth kinetics for classical model of Coble. The sintering

kinetics of Coble’s model are given in eq. 7.27. Fig. 7.7 shows that neck growth kinetics in

Coble’s model are faster than predictions of geometrical model developed in the dissertation.

It should be noted that the Coble’s model is only valid for small neck sizes. If Coble’s

model is used for large neck sizes, the models predicts that the neck should grow indefinitely.

Nevertheless, Coble’s model can be compared against the geometrical model for small neck

sizes with help of Fig. 7.8. Fig. 7.8 shows sintering kinetics on a log-log scale.

t =
X6

48DgbδgbγSΩR2
1/RT

(7.27)

The slopes of curves in Fig. 7.8 indicate the exponent between time and neck size terms

in eq. 7.27. It can be seen that the slopes of Coble’s equation and the geometrical model are
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similar for small neck sizes. The exponent of the geometrical model increases for large neck

sizes indicating a reduction in neck growth rate.

7.2.1.2 Neck growth without shrinkage

The neck growth without shrinkage may occur by a transport of material through particle

surfaces. The particle surface acts as a source of material whereas the neck acts as a sink.

The mass transport from particles causes a reduction in the particle sizes. This particle size

change is negligible. However, due to this size change, this case of neck growth does not

occur without absolute shrinkage. The neck growth kinetics without shrinkage are calculated

using scheme described in Section 7.1. The scheme of deriving sintering kinetics require an

estimation of the radius of curvature at the neck. Fig. 7.9 show the estimated radius of

curvature at the neck.

The estimation in Fig. 7.9 is based on methods described in Section 7.1.2.1. Fig. 7.9 also

shows the conventional approximation of the neck size (r = X2/2R). It can be observed that

the prediction of the radius of curvature using numerical methods is similar to conventional

approximations for small neck sizes. The differences in the prediction of the numerical method
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and conventional approximation increases as neck size increases.

The radius of curvature at the neck is used to evaluate the neck growth kinetics for equal

particle of size 1µ. Fig. 7.10 shows the numerically evaluated neck growth kinetics.

Fig. 7.10 shows that neck growth kinetics slows down as neck grows. The numerical

estimation of the neck growth kinetics are compared with Coble’s model. The neck growth

kinetics of Coble’s equal particle model are given eq. 7.28.

t =
X7

56DsδsγSΩR3
1/RT

(7.28)

Fig. 7.10 show that Coble’s model predicts a faster neck growth kinetics. The differences of
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the analytical model and numerical estimation can be highlighted in the log-log plot. Fig.

7.11 shows the log-log plot of the sintering time and neck size.

The slope of sintering kinetics in the log-log plot refers to the exponent between time and

neck size terms in kinetics equation. Fig. 7.11 and Eq. 7.28 show that the conventionally

used Coble’s model predicts an exponent of 7. The neck growth kinetics obtained from the

geometrical model show that the slope of sintering kinetics in Fig. 7.11 decrease. This

indicates that the exponent increases as the neck grows. The increase in the exponent results

in slower neck growth kinetics. Therefore, the rate of the neck growth reduces as the neck

grows.

7.2.2 Two unequal sized particles

The geometrical model was applied to the sintering of two unequal sized particles of

initial size 100 nm and 50 nm. The choice of particle sizes resulted in a ratio of 2:1. This

particle size ratio is the same as the particle size ratio in Monte Carlo simulation and phase

field simulations. The sintering parameters and materials properties used for obtaining the
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sintering kinetics are given in Table 7.2.

The microstructural evolution obtained using geometrical model is shown in Fig.7.12.

The sintering of two unequal sized particles began with two touching particles as shown in

Fig. 7.12(a). Fig. 7.12(b) depicts that a neck between the particles formed rapidly. The neck

growth slowed down as neck grew. This can be inferred from Fig. 7.12(c) which shows that

neck growth was completed in 4.5 hours. The coarsening continued until 32 hours resulting

in the particles size change. Microstructure in Fig. 7.12(e) shows the onset of grain boundary

migration. A grain boundary migration resulted in rapid shrinkage of small particle as shown

in Fig. 7.12(f) - 7.12(g).

The geometrical changes during sintering of two unequal sized is shown quantitatively in

Fig. 7.13. Neck size evolution in Fig. 7.13 shows that the neck grew to about 60% of its

maximum size instantaneously. However neck growth slowed down towards the end of neck
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growth subprocess. The neck size remained constant during coarsening subprocess. A reduc-

tion in small particles size can also be observed in Fig. 7.13. The rate of coarsening increased

with reduction in particle size. A slow grain boundary migration occured towards the end

of sintering process. This slow grain boundary migration resulted in an increase in grain

boundary area. The slow grain boundary migration was followed by a rapid grain boundary

migration. The grain boundary area was reduced by rapid grain boundary migration until

the small particle disappeared.

The sintering kinetics obtained using geometrical model can be compared with kinetics

obtained using Monte Carlo and phase field simulation methods described in Chapters 5 and

6, respectively. A similarity between microstructural evolution obtained from geometrical

model (Fig. 7.12) and microstructural evolution obtained from simulation methods (Fig.

5.1 and 6.2) can be noticed. A quantitative comparison of neck size and small particle size
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7.12: Microstructure evolution of two unequal sized particles obtained using geometrical
model. The distances in the subfigures are in units of nanometers. Time below subfigures

indicates the sintering time.
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7.13: Small particle size and neck size during sintering of two unequal sized particles

evolution obtained from geometrical model and simulations in Fig. 7.13, 5.2 and 6.3 indicate

that all three methods are in good agreement.

7.2.3 Linear array of particles

The geometrical model was extended to sintering of a linear array of particles. The

extension of the geometrical model includes simultaneous subprocesses or stages of neck

growth, coarsening, and grain boundary migration. The simultaneous subprocesses require a

suitable time interval for microstructural evolution. The suitable time interval ensures that

the geometrical changes due to subprocess of neck growth, coarsening and grain boundary

migration are small. The suitable time interval can be adaptively chosen for estimation of

geometrical changes. The results of geometrical model were compared against experimental

sintering results of tungsten powders. These experiments were performed in author’s research

group. Details of sintering experiments on tungsten powders can be found in ref. [80]. The

results of the sintering experiments and predictions of geometrical model are given below.

The sintering experiments at various temperatures were performed on nano sized tungsten

powders. Fig. 7.14 shows the microstructural evolution during sintering at 1050 ◦C and
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various times. The initial density for the sample was 69% of theoretical density.

Fig. 7.14(a) shows the microstructure after 5 minutes of sintering. This microstructure

can be considered to be in initial stage of sintering (cf. 2.2.1). Necks between particles

can be observed in Fig. 7.14(a). The pores between the particles make an interconnecting

network. The porosity between the particles is open porosity. Fig. 7.14(b) shows that pores

are located at grain edges. This signifies the intermediate stage of sintering (cf. 2.2.2).

(a) time 5 min

(b) time 15 min (c) time 30 min

(d) time 45 min (e) time 60 min

7.14: Microstructure evolution during sintering of tungsten powder at 1050 ◦C. Time below
subfigures indicates the sintering time.



117

During intermediate stage of sintering, a vacancy transport from pores located at grain edges

to grain faces occurs. Pores become rounded at sintering time of 45 minutes as shown in Fig.

7.14(d). The pore structure at this time becomes closed pore structure. This pore structure

characterize the final stage of sintering.

Fig. 7.15 shows a microstructure evolution of sintering at temperature 950 ◦C. The initial

density in the beginning of sintering was 42% of theoretical density. The microstructure in

(a) time 5 min

(b) time 15 min (c) time 30 min

(d) time 45 min (e) time 60 min

7.15: Microstructure evolution during sintering of tungsten powder at 950 ◦C. Time below
subfigures indicates the sintering time.
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the beginning of the sintering (Fig. 7.15(a)) shows that particles are connected by necks.

The pores at this time are interconnected. The interconnected pores form an open pore

structure. Fig. 7.15(b) - 7.15(e) show that pore structure remains the same from 5-60

minute sintering times. Therefore, the microstructure containing particles connected by necks

maintains morphology during sintering.

This maintenance of morphology results in similarity between the sintering of sample with

42% green density and sintering of linear array of partilces. In sintering of linear array of

particles, the particles are connected by a neck. When a particle disappears due to grain

boundary migration, a neck between the adjacent particles forms. After this neck formation,

all of the particles are connected by necks and the microstructure maintains its morphology.

These similarities of microstructures are the basis of comparison between sample with 42%

green density and sintering of linear array of particles.

The geometrical model was applied to linear array of particles. The predictions of

geometrical model on linear array of particles were compared with sintering of sample sintered

at 950 ◦C. The initial particle size distribution for geometrical model was same as distribution

of starting tungsten powder. Two hundred particles from the particle size distribution of

tungsten powder were randomly chosen and arranged to form a linear array as shown in Fig.

7.16. The geometrical model was applied on this array of particles using materials properties

and sintering parameters given in Table 7.2.
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7.16: Initial particle arrangement used in application of geometrical model to linear array
of particles
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Figure 7.17 shows volume weighted mean grain size of linear array of particles during

sintering. For particle size analysis during sintering, volume weighted mean grain size is

chosen to describe particle size change. The algebraic mean grain size decreases for during

neck growth and coarsening subprocesses. Volume weighted mean grain size Rv given by

eq. 7.29 increases during the subprocesses of neck growth, coarsening and grain boundary

migration.

Rv =

∑

i ViRi
∑

i Vi
(7.29)

where, Vi is the volume of ith particle with radius Ri. Fig. 7.17 shows the volume weighted

mean grain size obtained from geometrical model.

A comparison between particle size change obtained using experiments shown in Fig.

7.18 and using geometrical model (Fig. 7.17) indicate a qualitative agreement. However, a
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7.17: Volume weighted mean grain size during sintering of linear array of particles
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7.18: Mean grain size during sintering of tungsten powder at 950 ◦C

larger particle size change was experimentally observed. This difference can be attributed to

following factors:

1. The sintering experiments involved three-dimensional network of particles resulting in

larger area per particle for interparticle mass transport.

2. The sintering experiments involved a rearrangement process which was not considered

in geometrical model.

The particle size distribution during sintering can also be used to compare with experi-

mentally observed trends. Particle size distributions at various times are shown in Fig. 7.19.

Fig. 7.19 shows that the grain size distribution shifted to the larger grain size as sintering

progresses. This observation is expected due to the disappearance of small particles. A

normalized grain size distribution is shown in Fig. 7.20. Normalized grain size distributions

normalized with mean grain size show that shape of the grain size distribution does not

change during coarsening. This observation is in agreement with experiments [81].
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7.19: Grain size distributions during application of geometrical model to sintering of linear
array of particles
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CHAPTER 8

SUMMARY, CONCLUSION AND

FUTURE WORK

In this dissertation, we successfully applied Monte Carlo method to simulate solid state

sintering process. For the first time, we demonstrated three subprocesses of sintering of

unequal sized particles with help of numerical simulations. These subprocesses are neck

growth, coarsening, and grain boundary migration. In addition, we applied phase field method

to simulate sintering of various particle geometries. The three subprocesses of sintering of

unequal sized particles were again demonstrated by phase field simulation. We also observed

two types of grain boundary migration, namely slow and rapid grain boundary migration. The

rapid grain boundary migration has been quantitatively discussed in the literature; however,

slow grain boundary migration that we observed has neither been observed experimentally

nor proposed theoretically in sintering process. In this dissertation, we derived an equation

to quantitatively describe the slow and rapid grain boundary migration.

In addition to unequal sized particles, we applied phase field method to simulate sin-

tering of two equal sized particle, nanoparticles, closed packed array of particles, randomly

distributed particles and pores. We found that phase field simulation of sintering of two

equal sized particles follow neck growth kinetics of Kingery and Berg’s model. We further

extrapolated the neck growth kinetics to infer particle size effect in sintering of nanoparticles.

We found that sintering of nanoparticles follows Herring’s scaling law. We also studied the

effect of pore distribution in sintering of regular array of particles using phase field simulation.

We observed that a larger amount of porosity for a given solid volume results in higher

densification rates. We attributed this higher densification rate to larger grain boundary area

which acts as a path for mass transport. Further, we studied the effect of grain boundary

mobility during sintering of randomly distributed particles. We deduced that a higher grain

boundary mobility supports particle coarsening.

We did not find a model in the literature that can analytically explain the results obtained

from Monte Carlo and the phase field simulation. Therefore, we developed a geometrical

model to analytically describe the sintering of two unequal sized particle. This model is based
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upon idealized geometries to describe three sintering subprocess: neck growth, coarsening, and

grain boundary migration. For the first time, this model provided a quantitative description

for the three subprocesses of the sintering. This model also successfully describes the overlap

between the three subprocess. This overlap has been ignored in models reported in the

literature.

Furthermore, the geometrical model developed in this dissertation is used to obtain neck

growth kinetics of two equal size particles. We found that the developed model is capable

of predicting the maximum neck size, a result that cannot be obtained from conventionally

used geometric models. Further, an application of the model to unequal sized particles

reproduced microstructural evolution similar to that obtained by Monte Carlo and phase

field simulations. We also applied the geometrical model developed in this dissertation to a

row of particles and compared the results with sintering experiments on tungsten powders.

The geometrical model predicted a grain growth trend similar to the trend observed during

sintering experiment. An analysis of particle size distributions obtained from the geometrical

model predicts that the normalized particle size does not change during sintering. This

prediction has been experimentally observed during sintering experiments.

8.1 Conclusion

We conclude the following based upon the studies performed in this dissertation:

1. The sintering of unequal sized particles involves three subprocesses: neck growth,

coarsening, and grain boundary migration. These subprocesses transition from one

to another with a finite overlap.

2. The coarsening is the rate determining subprocess during the sintering process.

3. The pressure difference between the particles drives the grain boundary migration. The

change in grain boundary area may apply drag force or driving force on the grain

boundary migration. The grain boundary migration is possible before grain boundary

area reduction occurs.

4. The sintering of nanoparticles follow Herring’s scaling law as long as material properties

remain the same.

5. During sintering of a given volume of solid particles, reduction in particle size results

in higher densification rates.
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6. The grain boundary migration during sintering of randomly distributed particles sup-

ports the particle growth.

7. The rate of pore closure depends upon the pore coordination number.

8.2 Future Work

The sintering process in practice involves rearrangement of particles. This rearrangement

of particles involves bonding and debonding of particles due to stress between particles. The

rearrangement of particles during sintering has not been studied extensively due to difficulties

in experimental observation as well as mathematical formulation. The numerical simulation

method applied in this dissertation may be helpful in observing rearrangement of particles

in sintering simulation. This observation could be helpful in mathematically describing the

rearrangement phenomenon.

In addition to rearrangement, the sintering stress may change the rate of densification

and coarsening. The geometrical model developed in this dissertation is applicable to only

one-dimensional arrangement because this model does not incorporate the effect of stress

between particles. The geometrical model presented in this dissertation may be improved

by considering the effect of stress between particles on properties of the sintered product.

This stress analysis should result in extension of the model to two and three dimensions, and

therefore it can be more directly compared with sintering experiments.



APPENDIX A

MONTE CARLO SIMULATION

The code of Monte Carlo simulation of two unequal particle is given below:

Listing A.1: Algorithm for Monte Carlo simulation of sintering

#include <s t d i o . h>
#include <s t d l i b . h>
#include <math . h>
#include <time . h>

#define xDim 512
#define yDim 512
#define nsp 512∗512
#define Q 5
#define l i qF ra c 1 .0
#define so lFrac 0 .0

#define nNeigh 8
// cons tan t s f o r procedure ran3
#define MBIG 1000000000
#define MSEED 161803398
#define MZ 0
#define FAC (1 . 0/MBIG)

#define l i qSo lSu r fEne rgy 0 . 6 ;
#define so lSo lSur fEnergy 1 . 0 ;
#define kTss 0 . 0
#define kTsl 0 . 7

#define maxMCS 2000000000000
#define MCSPeriod 100000

struct LP{
int Id ;
int neigh [ 8 ] ;
int o r i e n t ;

} ;
struct o r i e n t a t i o n {

f loat phi1 ;
f loat phi ;
f loat phi2 ;

} ;
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void InitLP ( struct LP ∗p) ;
double ran3 ( long ∗idum) ;
int q ran ( int q ) ;
void MCGrowthBySolReppt ( struct LP ∗p) ;
f loat SurfaceEnergyByPhase ( int oId1 , int oId2 ) ;
void OutputData ( struct LP ∗p , struct o r i e n t a t i o n ∗O, int f i l enameExt

) ;
void In i tOr i en tTab l e ( struct o r i e n t a t i o n ∗O) ;
void MakeCircle ( struct LP ∗p , int x , int y , int rad ius , int c i rO r i )

;
main ( ) {

struct LP ∗ p a r t i c l e ;
struct o r i e n t a t i o n ∗ o r i ;
int mcStep , i ;
p a r t i c l e = ( struct LP ∗) mal loc ( ( nsp )∗ s izeof ( struct LP) ) ;
o r i = ( struct o r i e n t a t i o n ∗) mal loc ( (Q+1)∗ s izeof ( struct

o r i e n t a t i o n ) ) ;
In i tOr i en tTab l e ( o r i ) ;

InitLP ( p a r t i c l e ) ;
MakeCircle ( p a r t i c l e , 144 , 256 ,128 , 1) ;
MakeCircle ( p a r t i c l e , 336 , 256 ,64 , 2) ;

for (mcStep = 0 ; mcStep< maxMCS+1; mcStep++){
for ( i = 0 ; i<nsp ; i++){

MCGrowthBySolReppt ( p a r t i c l e ) ;
}
i f (mcStep%MCSPeriod==0){

p r i n t f ("OutputData started for mcStep = %d\n" , mcStep ) ;
OutputData ( p a r t i c l e , o r i , mcStep ) ;
p r i n t f ("output data end\n" ) ;

}
}
return 0 ;

}

double ran3 ( long ∗idum){
stat ic int inext , inextp ;
stat ic long ma [ 5 6 ] ;
stat ic int i f f =0;
long mj ,mk;
int i , i i , k ;
i f (∗ idum < 0 | | i f f == 0) {

i f f =1;
mj=labs (MSEED−l ab s (∗ idum) ) ;
mj %= MBIG;
ma[55]=mj ;
mk=1;
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for ( i =1; i <=54; i++) {
i i =(21∗ i ) % 55 ;
ma[ i i ]=mk;
mk=mj−mk;
i f (mk < MZ) mk += MBIG;
mj=ma[ i i ] ;

}
for ( k=1;k<=4;k++)

for ( i =1; i <=55; i++) {
ma[ i ] −= ma[1+( i +30) % 5 5 ] ;
i f (ma[ i ] < MZ) ma[ i ] += MBIG;

}
i n ex t =0;
inextp =31;
∗idum=1;

}
i f (++inex t == 56) inex t =1;
i f (++inextp == 56) inextp=1;
mj=ma[ in ex t ]−ma[ inextp ] ;
i f (mj < MZ) mj += MBIG;
ma[ in ex t ]=mj ;
return mj∗FAC;

}
int q ran ( int q ){

stat ic int itemp ;
stat ic long seed2 ;
seed2 = 2 ;
itemp = ( int ) ( q∗ ran3(&seed2 ) + 1) ;
return itemp ;

}
void InitLP ( struct LP ∗p){

int i , x , y , x1 , y1 ;
long seed1 ;
f loat ran1 ;

for ( i = 0 ; i<nsp ; i++){
p [ i ] . Id = i ;
ran1 = ( f loat ) ran3(&seed1 ) ;
i f ( ran1 < l i qF ra c ){

p [ i ] . o r i e n t = −1;
} else {

p [ i ] . o r i e n t = q ran (Q) ;
}
x = i%xDim ;
y = ( i−i%xDim) /xDim ;

x1 = (x−xDim)%xDim + xDim −1;
y1 = (y−yDim)%yDim + yDim −1;
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p [ i ] . ne igh [ 0 ] = y1∗xDim + x1 ;
x1 = x ;
y1 = (y−yDim)%yDim + yDim −1;
p [ i ] . ne igh [ 1 ] = y1∗xDim + x1 ;
x1 = (x+1)%xDim ;
y1 = (y−yDim)%yDim + yDim −1;
p [ i ] . ne igh [ 2 ] = y1∗xDim + x1 ;
x1 = (x−xDim)%xDim + xDim −1;
y1 = y ;
p [ i ] . ne igh [ 3 ] = y1∗xDim + x1 ;
x1 = (x+1)%xDim ;
y1 = y ;
p [ i ] . ne igh [ 4 ] = y1∗xDim + x1 ;
x1 = (x−xDim)%xDim + xDim −1;
y1 = (y+1)%yDim ;
p [ i ] . ne igh [ 5 ] = y1∗xDim + x1 ;
x1 = x ;
y1 = (y+1)%yDim ;
p [ i ] . ne igh [ 6 ] = y1∗xDim + x1 ;
x1 = (x+1)%xDim ;
y1 = (y+1)%yDim ;
p [ i ] . ne igh [ 7 ] = y1∗xDim + x1 ;

}
}

void MCGrowthBySolReppt ( struct LP ∗p){

int cS i t e , cOr ient ;
int nSite , nOrient ;
int i ;
double prob ;
long seed3 ;
int tcOrient , tnOrient ;
// i n t t cS i t e , t nS i t e ;
f loat E1 , E2 , E3 , E4 , dE ;
f loat th r e sho ld ;
f loat kT ;
int neighborRan ;

c S i t e = q ran ( nsp )−1;
cOr ient = p [ cS i t e ] . o r i e n t ;

neighborRan = q ran ( nNeigh )−1;
nS i t e = p [ c S i t e ] . ne igh [ neighborRan ] ;
nOrient = p [ nS i t e ] . o r i e n t ;

i f ( cOr ient == nOrient )
return ;

E1 = 0 . 0 ; E2 = 0 . 0 ; E3 = 0 . 0 ; E4 = 0 . 0 ;
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// Lets a s s i gn new o r i e n t a t i o n f o r a l l p o s s i b l e cases .

i f ( cOr ient ∗nOrient < 0){ // l i q u i d and s o l i d s i t e
i f ( cOr ient == −1){

t cOr i ent = q ran (Q) ;
tnOrient = −1;

} else {
t cOr i ent = −1;
tnOrient = q ran (Q) ;

}
kT = ( f loat ) kTsl ;

} else { // s o l i d s o l i d s i t e
t cOr i ent = q ran (Q) ;
tnOrient = nOrient ;
kT = ( f loat ) kTss ;

}

// Lets do Energy c a l c u l a t i o n s
for ( i = 0 ; i <nNeigh ; i++){

E1 = E1 + SurfaceEnergyByPhase ( cOrient , p [ p [ c S i t e ] . ne igh [ i ] ] .
o r i e n t ) ;

E2 = E2 + SurfaceEnergyByPhase ( nOrient , p [ p [ nS i t e ] . ne igh [ i ] ] .
o r i e n t ) ;

E3 = E3 + SurfaceEnergyByPhase ( tcOrient , p [ p [ c S i t e ] . ne igh [ i ] ] .
o r i e n t ) ;

E4 = E4 + SurfaceEnergyByPhase ( tnOrient , p [ p [ nS i t e ] . ne igh [ i ] ] .
o r i e n t ) ;

}
dE = E3 + E4 − E1 − E2 +
SurfaceEnergyByPhase ( cOrient , nOrient ) + SurfaceEnergyByPhase (

tnOrient , t cOr i ent )
−SurfaceEnergyByPhase ( tcOrient , nOrient ) − SurfaceEnergyByPhase

( cOrient , tnOrient ) ;

i f (dE > 0){
prob = exp ((−1.0)∗dE/kT) ;

} else {
prob = 1 . 0 ;

p [ c S i t e ] . o r i e n t = tcOr i ent ;
p [ nS i t e ] . o r i e n t = tnOrient ;
return ;
}

seed3 = 3 ;
th r e sho ld = ( f loat ) ran3(&seed3 ) ;

i f ( prob < th r e sho ld ){
return ;

}
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p [ c S i t e ] . o r i e n t = tcOr i ent ;
p [ nS i t e ] . o r i e n t = tnOrient ;

return ;
}
f loat SurfaceEnergyByPhase ( int oId1 , int oId2 ){

i f ( oId1 == oId2 ){
return 0 . 0 ;

}
i f ( oId1∗oId2 <0){ // i f one o f them i s l i q u i d and o ther one i s

s o l i d
return ( f loat ) l i qSo lSu r fEne rgy ;

} else { // i f both are s o l i d −
return ( f loat ) so lSo lSur fEnergy ;

}
}

void OutputData ( struct LP ∗p , struct o r i e n t a t i o n ∗O, int f i l enameExt
){

char f i l ename [ 1 0 0 ] ;
int i ;
struct tm ∗ l t ime ;
char s t r i n g [ 2 0 ] ;
FILE ∗ outputF i l e ;
t ime t now ;
now = time ( ( t ime t ∗)NULL) ;
time(&now) ;
l t ime = l o c a l t ime (&now) ;
s t r f t im e ( s t r i ng , s izeof s t r i ng , "%d-%b-%y" , l t ime ) ;
s p r i n t f ( f i l ename , "2DMC %s %d.ang" , s t r i ng , f i l enameExt ) ;

outputF i l e = fopen ( f i l ename , "w" ) ;
f p r i n t f ( outputFi le , "# TEM_PIXperUM 1.000000\n# x-star

0.467500\n# y-star 0.946700\n# z

-star 0.704700\n# WorkingDistance

12.000000\n#\n# Phase 1\n# MaterialName Tungsten Carbide\n#

Formula WC\n# Info\n# Symmetry 62\n#

LatticeConstants 2.906 2.906 2.838 90.000 90.000

120.000\n# NumberFamilies 8\n# hklFamilies 0 0 1

1 45.000000 1\n# hklFamilies 1 0 0 1 33.299999 1\n#

hklFamilies 1 0 1 1 16.700001 1\n# hklFamilies 1

1 0 1 6.700000 1\n# hklFamilies 1 1 1 1 4.200000 1\n#

hklFamilies 1 0 2 1 5.000000 1\n# hklFamilies 2 0

1 1 3.300000 1\n# hklFamilies 1 1 2 1 2.300000 1\n#

Categories16992756 0 16992756 16992640 2009385142 \n#\n# GRID:

SqrGrid\n# XSTEP: 10.000000\n# YSTEP: 10.000000\n# NCOLS_ODD:

%d\n# NCOLS_EVEN: %d\n# NROWS: %d\n#\n# OPERATOR: vineet\n
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#\n# SAMPLEID: \n#\n# SCANID: \n#\n" , xDim , xDim , yDim) ;
for ( i =0; i< nsp ; i++){

i f (p [ i ] . o r i e n t <0){
f p r i n t f ( outputFi le , " %2.5f %2.5f %2.5f" , 4 . 94880 ,

1 .95727 , 4 .37499 ) ;
f p r i n t f ( outputFi le , " %2.5f %2.5f" , ( f loat ) ( i%xDim)

, ( f loat ) ( ( i−i%xDim) /xDim) ) ;
f p r i n t f ( outputFi le , " %3.1f %1.3f %d %d %1.3f \n" ,

117 . 4 , 0 . 000 , 0 , −1, 1 . 6 6 ) ;
} else {

f p r i n t f ( outputFi le , " %2.5f %2.5f %2.5f" ,O[ p [ i ] . o r i e n t ] .
phi1 , O[ p [ i ] . o r i e n t ] . phi , O[ p [ i ] . o r i e n t ] . phi2 ) ;

f p r i n t f ( outputFi le , " % 2.5f %2.5f" , ( f loat ) ( i%xDim)
, ( f loat ) ( ( i−i%xDim) /xDim) ) ;

f p r i n t f ( outputFi le , " %3.1f %1.3f %d %d %1.3f \n" ,
117 . 4 , 0 . 343 , 0 , −1, 1 . 6 6 ) ;

}
}
f c l o s e ( outputF i l e ) ;

}

void In i tOr i en tTab l e ( struct o r i e n t a t i o n ∗O){
int i ;
long seed1 = 2 ;
f loat pi = ( f loat ) 3 . 14159265 ;
for ( i =1; i<=Q; i++){
O[ i ] . phi1 = ( f loat ) ( ran3(&seed1 )∗ pi /2 . 0 ) ;
O[ i ] . phi = ( f loat ) ( acos ( ran3(&seed1 ) ∗2.0−1.0) ) ;
O[ i ] . phi2 = ( f loat ) ( ran3(&seed1 )∗ pi /2 . 0 ) ;

}
p r i n t f ("orientation matrix table initalization - Done ...\n" ) ;

}

void MakeCircle ( struct LP ∗p , int x , int y , int rad ius , int c i rO r i )
{
int i , j ;
int i s I nC i r ;
for ( i =0; i<xDim ; i++){

for ( j = 0 ; j<yDim ; j++){
i s I nC i r = ( i−x ) ∗( i−x ) + ( j−y ) ∗( j−y ) −r ad iu s ∗ r ad iu s ;
i f ( i s InC i r <=0)

p [ j ∗xDim+i ] . o r i e n t = c i rO r i ;
}

}
}



APPENDIX B

PHASE FIELD SIMULATION

The code of phase field simulation of two unequal particle is given below:

Listing B.1: Algorithm for Monte Carlo simulation of sintering

#include "stdio.h"

#include "math.h"

#include "stdlib.h"

#include "time.h"

#define MBIG 1000000000
#define MSEED 161803398
#define MZ 0
#define FAC (1 . 0/MBIG)
#define pi 3.14159265358979323846

struct dimensions {
int nx , ny ;
int noOfGrains ; // noOfGb ;
double deltaT , totalTime ;
// doub le deltaX , de l taY ;
double randFluctC , randFluctEta , rhoVap , etaVap ;
double rhoSol , e t aSo l ;
char f i l ename [ 5 0 ] ;

} ;
struct makeCirc l e In fo {

int centerX , centerY , grainNo ;
double r ad iu s ;
double c i rVa l ;

} ;
struct constWang2005{

double A, B;
double betaRho , betaEta ;
double Dvol , Dvap , Dsurf , Dgb ;
// doub le kappa , rho0 ;
// doub le c , mT, mR;
double L ;
double pa r t i c l eDen s i t y , vaporDensity ;
// doub le advFlagEtaIJSum , advFlagEta i j , advFlagRhoMin ,

advFlagRhoMax ;
double GBEFactor ;

} ;
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double∗ double1D ( int n , const char ∗message ) ;
double ∗∗double2D ( int nx , int ny , const char ∗message ) ;
void freeDouble2D ( double ∗∗m, int nx , int ny ) ;
int ∗∗ int2D ( int nx , int ny , const char ∗message ) ;
double Ran3( long ∗idum) ;
void RandInit3D (double ∗∗∗M, long seed , struct dimensions dim) ;
void RandInit2D (double ∗∗M, long seed , struct dimensions dim) ;
void MakeCircle (double ∗p , struct dimensions dim , struct

makeCirc l e In fo c i r ) ;

int main ( ) {
double ∗rho , ∗∗ eta , ∗FPR, ∗∗FPE, ∗vol , ∗∗ rc ;
double ∗rhoNew , ∗∗etaNew , ∗rhoSwap , ∗∗etaSwap ;
double ∗D;
double oneBy12 = 1 . 0 / 1 2 . 0 ;
int ∗∗N, x , y , g , i , j , nxny , ou tput In t e rva l ;
struct dimensions sim ; struct constWang2005 vars ;
struct makeCirc l e In fo c i r ;
long seed = 1 ;
double etaSqSum , etaCubeSum , etaSq , phi , sum , rhoSq ;
double timeT = 0 . 0 , totalTime = 5000000 .0 ;
double ∗ var i a t i onDer i , ∗rhoTemp ;
int readFromFile ;
double AT2, BT12 , de ltaTThal f ;
double gravityCenterX , gravityCenterY , i n e r t i a ;
double ∗∗ pt In fo ;
char s t r i n g 1 [ 2 0 0 ] , s t r i n g 2 [ 2 0 0 ] ;
int gra inS i z e , g1 ;
double e t a i j ;
FILE ∗ f , ∗ fp ;

sim . nx = 256 ;
sim . noOfGrains = 2 ;
sim . rhoVap = 0 .008917 ;
sim . randFluctC = 0 .0000001 ;
sim . rhoSol = 0 . 99857 ;
sim . etaVap = 0 ;
sim . randFluctEta = 0 . 0000 ;
sim . e taSo l = 1 . 0 ;
sim . deltaT = 0 . 0 0 1 ;
ou tput In t e rva l = 1000 ;
vars .A = 16 . 0 ;
vars .B = 1 ;
vars . p a r t i c l eDen s i t y = 0 . 9 9 9 ;
vars . vaporDensity = 0 . 0 1 ;

vars . Dsurf = 45 ;
vars .Dgb = 4 . 1 ;
vars . Dvol = 0 . 0 8 ;
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vars . Dvap = 0 . 0 1 2 ;
vars . betaRho = 10 ;
vars . betaEta = 3 . 7 5 ;
vars . L = 10 . 0 ;
vars . GBEFactor = 7 ;
g r a i nS i z e = 30 ;

p r i n t f ("read from old file yes==1, from matlabInitFile ==2, no

== 0\n If yes: make a copy of progressFile\n" ) ;
s can f ("%d" , &readFromFile ) ;
fp = fopen ("progressFile.dat" ,"a" ) ;
f p r i n t f ( fp , "nx = %d, noOfGrains = %d, average C = %f, fluctuation

in C = %f, average eta = %f, fluctuation in eta = %f, delta t

= %f\n" , sim . nx , sim . noOfGrains , sim . rhoVap , sim . randFluctC ,
sim . etaVap , sim . randFluctEta , sim . deltaT ) ;

f p r i n t f ( fp , "A = %f, B = %f, betaRHo = %f, betaEta = %f, " , vars .
A, vars .B, vars . betaRho , vars . betaEta ) ;

f c l o s e ( fp ) ;
nxny = sim . nx∗ sim . nx ;

//memory A l l o ca t i on
rho = double1D ( sim . nx∗ sim . nx , "rho" ) ;
rhoTemp = double1D ( sim . nx∗ sim . nx , "rhoTemp" ) ;
rhoNew = double1D (nxny , "ehoNew" ) ;
e ta = double2D ( sim . noOfGrains , sim . nx∗ sim . nx , "eta" ) ;
D = double1D ( sim . nx∗ sim . nx , "D" ) ;
etaNew = double2D ( sim . noOfGrains , nxny , "etaNew" ) ;
etaSwap = (double ∗∗) mal loc ( sim . noOfGrains ∗ s izeof (double ∗) )

;
FPR = double1D ( sim . nx∗ sim . nx , "FPR" ) ;
FPE = double2D ( sim . noOfGrains , sim . nx∗ sim . nx , "FPE" ) ;
N = int2D ( sim . nx∗ sim . nx , 4 , "NeighList" ) ;
vo l = double1D ( sim . noOfGrains , "volume of the partilces" ) ;
r c = double2D ( sim . noOfGrains , 2 , "center of mass" ) ;
p t In fo = double2D ( sim . noOfGrains , 3 ,"ptInfo" ) ;
v a r i a t i onDe r i = double1D ( sim . nx∗ sim . nx , "variDeri" ) ;

i = g r a i nS i z e ;
i f ( readFromFile == 0){

pt In fo [ 0 ] [ 2 ] = (double ) i ∗2 ; p t In fo [ 0 ] [ 1 ] = 2∗ i +8;
p t In fo [ 0 ] [ 0 ] = sim . nx /2 ;

p t In fo [ 1 ] [ 2 ] = (double ) i ; p t In fo [ 1 ] [ 1 ] = 5∗ i +8+1;
p t In fo [ 1 ] [ 0 ] = sim . nx /2 ;

// I n i t i a l i z a t i o n o f i n i t i a l mic ros t ruc ture
for ( i = 0 ; i<nxny ; i++){

rho [ i ] = sim . rhoVap + (0 . 5 − Ran3(&seed ) )∗ sim . randFluctC ;
for ( g = 0 ; g<sim . noOfGrains ; g++){

eta [ g ] [ i ] = sim . etaVap + (0 . 5 − Ran3(&seed ) )∗ sim .
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randFluctEta ;
}

}

fp = fopen ("progressFile.dat" ,"a" ) ;
for ( g = 0 ; g<sim . noOfGrains ; g++){

c i r . r ad iu s = pt In fo [ g ] [ 2 ] ;
c i r . centerX = pt In fo [ g ] [ 0 ] ;
c i r . centerY = pt In fo [ g ] [ 1 ] ;
c i r . c i rVa l = sim . rhoSol ; c i r . grainNo = g ;
MakeCircle ( rho , sim , c i r ) ;
c i r . c i rVa l = sim . e taSo l ; MakeCircle ( eta [ c i r . grainNo ] , sim ,

c i r ) ;
f p r i n t f ( fp , "circle radius = %f, Cx = %d, Cy = %d, val = %f,

grain no %d\n" , c i r . rad ius , c i r . centerX , c i r . centerY , c i r .
c i rVal , c i r . grainNo ) ;

}
f c l o s e ( fp ) ;

}
i f ( readFromFile == 1){

p r i n t f ("Whats the time\n" ) ; s can f ("%lf" , &timeT ) ;

s p r i n t f ( sim . f i l ename , "Rho%d.txt" , ( int ) ( timeT ) ) ;
f = fopen ( sim . f i l ename , "r" ) ;
for ( y = 0 ; y<sim . nx ; y++){

for ( x = 0 ; x<sim . nx ; x++){
i = y∗ sim . nx + x ;
f s c a n f ( f , "%lf\t" , &rho [ i ] ) ;

} f s c a n f ( f , "\n" ) ;
} f c l o s e ( f ) ;
s p r i n t f ( sim . f i l ename , "Eta%d.txt" , ( int ) ( timeT ) ) ;
f = fopen ( sim . f i l ename , "r" ) ;
for ( g = 0 ; g<sim . noOfGrains ; g++){

for ( y = 0 ; y<sim . nx ; y++){
for ( x = 0 ; x<sim . nx ; x++){

i = y∗ sim . nx + x ;
f s c a n f ( f , "%lf\t" , &eta [ g ] [ i ] ) ;

} f s c a n f ( f , "\n" ) ;
}

} f c l o s e ( f ) ;
}

s p r i n t f ( s t r i ng1 , "scp *.c 128.110.227.36:/media/Elements/cade/

be3p75/2pt/2pt%d_%d" , sim . nx , g r a i nS i z e ) ;
// system ( s t r i n g 1 ) ;

s p r i n t f ( s t r i ng1 , "scp *.txt *.dat 128.110.227.36:/media/Elements

/cade/be3p75/2pt/2pt%d_%d" , sim . nx , g r a i nS i z e ) ;
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// I n i t i a l z a t i o n o f ne i ghbor ing l i s t
for ( y = 0 ; y<sim . nx ; y++){

for ( x = 0 ; x<sim . nx ; x++){
i = sim . nx∗y + x ;
N[ i ] [ 0 ] = ( ( y+sim . nx )%sim . nx )∗ sim . nx + ( ( x+sim . nx+1)%sim . nx ) ;
N[ i ] [ 1 ] = ( ( y+sim . nx )%sim . nx )∗ sim . nx + ( ( x+sim . nx−1)%sim . nx ) ;
N[ i ] [ 2 ] = ( ( y+sim . nx+1)%sim . nx )∗ sim . nx + ( ( x+sim . nx )%sim . nx ) ;
N[ i ] [ 3 ] = ( ( y+sim . nx−1)%sim . nx )∗ sim . nx + ( ( x+sim . nx )%sim . nx ) ;

}
}

// running the main loop f o r m i c ro s t r u c t u ra l e v o l u t i on
BT12 = vars .B ∗ 1 2 . 0 ;
AT2 = vars .A ∗ 2 . 0 ;
de l taTThal f = sim . deltaT ∗ 0 . 5 ;

while ( timeT < totalTime ){
// Ca l cu l a t i on o f d i f f u s i o n c o e f f i c i e n t and p a r t i a l d e r i v a t i v e s

o f rho and e ta
for ( i = 0 ; i<nxny ; i++){

rhoSq = rho [ i ]∗ rho [ i ] ; //R = rho [ i ]∗ rho [
i ]∗ rho [ i ]∗ ( 10 . 0 − 15.0∗ rho [ i ] + 6.0∗ rho [ i ]∗ rho [ i ] ) ;

phi = rhoSq ∗ rhoSq ∗ ( 7 . 0 ∗ rhoSq − 18 .0∗ rho [ i ] + 12 . 0 ) ;

etaCubeSum = eta [ 0 ] [ i ]∗ eta [ 0 ] [ i ]∗ eta [ 0 ] [ i ] + eta [ 1 ] [ i ]∗ eta
[ 1 ] [ i ]∗ eta [ 1 ] [ i ] ;

etaSqSum = eta [ 0 ] [ i ]∗ eta [ 0 ] [ i ] + eta [ 1 ] [ i ]∗ eta [ 1 ] [ i ] ;
e t a i j = eta [ 0 ] [ i ]∗ eta [ 1 ] [ i ] ;

D[ i ] = vars . Dvol ∗ phi + vars . Dvap ∗ ( 1 . 0 − phi ) + vars . Dsurf
∗ rhoSq ∗(1.0− rho [ i ] ) ∗(1.0− rho [ i ] ) + vars .Dgb ∗ 2 ∗
e t a i j ;

FPR[ i ] = AT2∗ ( rho [ i ]−vars . vaporDensity ) ∗ ( vars .
pa r t i c l eDen s i t y−rho [ i ] ) ∗ (1.0−2.0∗ rho [ i ] )

+ 2 . 0∗ ( rho [ i ] − 3 .0∗ etaSqSum + 2.0∗ etaCubeSum) ; // This
term shou l s have been mu l t i p l i e d wi th vars .B which i s
un i t y

etaSq = eta [ 0 ] [ i ]∗ eta [ 0 ] [ i ] ;
FPE [ 0 ] [ i ] = BT12∗ eta [ 0 ] [ i ] ∗ ( (1.0− rho [ i ] ) − (2.0− rho [ i

] ) ∗ eta [ 0 ] [ i ] + etaSq + vars . GBEFactor∗( etaSqSum − etaSq ) ) ;
etaSq = eta [ 1 ] [ i ]∗ eta [ 1 ] [ i ] ;
FPE [ 1 ] [ i ] = BT12∗ eta [ 1 ] [ i ] ∗ ( (1.0− rho [ i ] ) − (2.0− rho [ i

] ) ∗ eta [ 1 ] [ i ] + etaSq + vars . GBEFactor∗( etaSqSum − etaSq ) ) ;
}
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for ( i = 0 ; i<nxny ; i++){
va r i a t i onDe r i [ i ] = FPR[ i ] − vars . betaRho ∗(−4.0∗ rho [ i ] + rho [

N[ i ] [ 0 ] ] + rho [N[ i ] [ 1 ] ] + rho [N[ i ] [ 2 ] ] + rho [N[ i ] [ 3 ] ] ) ;
}

for ( i = 0 ; i<nxny ; i++){
rhoNew [ i ] = rho [ i ] + deltaTThal f ∗ (

D[ i ] ∗ ( −4.0∗ va r i a t i onDe r i [ i ] + va r i a t i onDe r i [N[ i ] [ 0 ] ] +
va r i a t i onDe r i [N[ i ] [ 1 ] ] + va r i a t i onDe r i [N[ i ] [ 2 ] ] +
va r i a t i onDe r i [N[ i ] [ 3 ] ] )

+ D[N[ i ] [ 0 ] ] ∗ ( v a r i a t i onDe r i [N[ i ] [ 0 ] ] − va r i a t i onDe r i [ i ] )
+ D[N[ i ] [ 2 ] ] ∗ ( v a r i a t i onDe r i [N[ i ] [ 2 ] ] − va r i a t i onDe r i [ i ] )
− D[N[ i ] [ 1 ] ] ∗ ( v a r i a t i onDe r i [ i ] − va r i a t i onDe r i [N[ i ] [ 1 ] ] )
− D[N[ i ] [ 3 ] ] ∗ ( v a r i a t i onDe r i [ i ] − va r i a t i onDe r i [N[ i ] [ 3 ] ] ) )

;

etaNew [ 0 ] [ i ] = eta [ 0 ] [ i ] + sim . deltaT ∗ (
(− vars . L ∗ (FPE [ 0 ] [ i ] − vars . betaEta ∗ (−4.0∗ eta [ 0 ] [ i ]

+ eta [ 0 ] [N[ i ] [ 0 ] ] + eta [ 0 ] [N[ i ] [ 1 ] ] + eta [ 0 ] [N[ i
] [ 2 ] ] + eta [ 0 ] [N[ i ] [ 3 ] ] ) ) ) ) ;

etaNew [ 1 ] [ i ] = eta [ 1 ] [ i ] + sim . deltaT ∗ (
(− vars . L ∗ (FPE [ 1 ] [ i ] − vars . betaEta ∗ (−4.0∗ eta [ 1 ] [ i ]

+ eta [ 1 ] [N[ i ] [ 0 ] ] + eta [ 1 ] [N[ i ] [ 1 ] ] + eta [ 1 ] [N[ i
] [ 2 ] ] + eta [ 1 ] [N[ i ] [ 3 ] ] ) ) ) ) ;

}
//Output Data to f i l e
i f ( ( int ) ( timeT/sim . deltaT )%(output In t e rva l ) == 0){

s p r i n t f ( sim . f i l ename , "D%d.txt" , ( int ) ( timeT ) ) ;
f = fopen ( sim . f i l ename , "w" ) ;
sum = 0 . 0 ;
for ( y = 0 ; y<sim . nx ; y++){

for ( x = 0 ; x<sim . nx ; x++){
i = y∗ sim . nx + x ;
f p r i n t f ( f , "%1.3f\t" , D[ i ] ) ;

} f p r i n t f ( f , "\n" ) ;
} f c l o s e ( f ) ;
// Ca l cu l a t e the de l taRho wi th each d i f f u s i o n c o e f f i c i e n t
for ( j = 0 ; j <4; j++){

switch ( j ){
case 0 : // Volume

s p r i n t f ( sim . f i l ename , "RhoVol%d.txt" , ( int ) ( timeT ) ) ;
for ( i = 0 ; i<nxny ; i++){

phi = rho [ i ]∗ rho [ i ]∗ rho [ i ]∗ rho [ i ] ∗ ( 7 . 0 ∗ rho [ i ]∗ rho [ i ]
−18.0∗ rho [ i ] +12.0) ;

D[ i ] = vars . Dvol ∗ phi ;
} break ;

case 1 : // vapor
s p r i n t f ( sim . f i l ename , "RhoVap%d.txt" , ( int ) ( timeT ) ) ;
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for ( i = 0 ; i<nxny ; i++){
phi = rho [ i ]∗ rho [ i ]∗ rho [ i ]∗ rho [ i ] ∗ ( 7 . 0 ∗ rho [ i ]∗ rho [ i ]

−18.0∗ rho [ i ] +12.0) ;
D[ i ] = vars . Dvap ∗ ( 1 . 0 − phi ) ;

} break ;
case 2 : // Sur face

s p r i n t f ( sim . f i l ename , "RhoSurf%d.txt" , ( int ) ( timeT ) ) ;
for ( i = 0 ; i<nxny ; i++){

D[ i ] = vars . Dsurf ∗ rho [ i ]∗ rho [ i ]∗(1.0− rho [ i ] )
∗(1.0− rho [ i ] ) ;

} break ;
case 3 : // gb

s p r i n t f ( sim . f i l ename , "RhoGb%d.txt" , ( int ) ( timeT ) ) ;
etaSqSum = 0 . 0 ;
for ( i = 0 ; i<nxny ; i++){

for ( g = 0 ; g<sim . noOfGrains ; g++){
etaSqSum = etaSqSum + eta [ g ] [ i ]∗ eta [ g ] [ i ] ;

}
D[ i ] = vars .Dgb ∗ ( rho [ i ]∗(1.0− etaSqSum) ) ;

} break ;
}
for ( i = 0 ; i<nxny ; i++){

rhoTemp [ i ] = 0 . 5∗ (
D[ i ] ∗ ( −4.0∗ va r i a t i onDe r i [ i ] + va r i a t i onDe r i [N[ i ] [ 0 ] ]

+ va r i a t i onDe r i [N[ i ] [ 1 ] ] + va r i a t i onDe r i [N[ i ] [ 2 ] ] +
va r i a t i onDe r i [N[ i ] [ 3 ] ] )

+ D[N[ i ] [ 0 ] ] ∗ ( v a r i a t i onDe r i [N[ i ] [ 0 ] ] − va r i a t i onDe r i [ i
] )

+ D[N[ i ] [ 2 ] ] ∗ ( v a r i a t i onDe r i [N[ i ] [ 2 ] ] − va r i a t i onDe r i [ i
] )

− D[N[ i ] [ 1 ] ] ∗ ( v a r i a t i onDe r i [ i ] − va r i a t i onDe r i [N[ i
] [ 1 ] ] )

− D[N[ i ] [ 3 ] ] ∗ ( v a r i a t i onDe r i [ i ] − va r i a t i onDe r i [N[ i
] [ 3 ] ] ) ) ;

}
f = fopen ( sim . f i l ename , "w" ) ;
for ( y = 0 ; y<sim . nx ; y++){

for ( x = 0 ; x<sim . nx ; x++){
i = y∗ sim . nx + x ;
f p r i n t f ( f , "%1.3f\t" , rhoTemp [ i ] ) ;

} f p r i n t f ( f , "\n" ) ;
} f c l o s e ( f ) ;

} // End induv i dua l mechanism con t r i b u t i o n s

s p r i n t f ( sim . f i l ename , "Rho%d.txt" , ( int ) ( timeT ) ) ;
f = fopen ( sim . f i l ename , "w" ) ;
sum = 0 . 0 ;
for ( y = 0 ; y<sim . nx ; y++){
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for ( x = 0 ; x<sim . nx ; x++){
i = y∗ sim . nx + x ;
f p r i n t f ( f , "%1.3f\t" , rho [ i ] ) ;
sum = sum + rho [ i ] ;

} f p r i n t f ( f , "\n" ) ;
} f c l o s e ( f ) ;
p r i n t f ( "\n%f\t%1.10f\t" , timeT , sum/nxny ) ;

s p r i n t f ( sim . f i l ename , "Eta%d.txt" , ( int ) timeT ) ;
f = fopen ( sim . f i l ename , "w" ) ;
for ( g = 0 ; g<sim . noOfGrains ; g++){

sum = 0 . 0 ;
for ( y = 0 ; y<sim . nx ; y++){

for ( x = 0 ; x<sim . nx ; x++){
i = y∗ sim . nx + x ;
sum = sum + eta [ g ] [ i ] ;
f p r i n t f ( f , "%1.2f\t" , e ta [ g ] [ i ] ) ;

} f p r i n t f ( f , "\n" ) ;
}
p r i n t f ("\t%1.10f" , sum/nxny ) ;

} f c l o s e ( f ) ;
// i = system ( s t r i n g 1 ) ;
// i f ( i == 0){ system (”rm ∗ . t x t ”) ; }

fp = fopen ("progressFile.dat" ,"a" ) ;
p r i n t f ( "\n" ) ;
f p r i n t f ( fp , "\n%f\t%f\n" , timeT , sum/nxny ) ;
f c l o s e ( fp ) ;

}
rhoSwap = rho ; rho = rhoNew ; rhoNew = rhoSwap ;
etaSwap = eta ; for ( g = 0 ; g<sim . noOfGrains ; g++){ etaSwap [ g ]

= eta [ g ] ; }
eta = etaNew ; for ( g = 0 ; g<sim . noOfGrains ; g++){ eta [ g ] =

etaNew [ g ] ; }
etaNew = etaSwap ; for ( g = 0 ; g<sim . noOfGrains ; g++){ etaNew [ g ]

= etaSwap [ g ] ; }
timeT = timeT + sim . deltaT ;

}
return 0 ;

}

double∗ double1D ( int n , const char ∗message )
{

double ∗m;
m = (double∗) mal loc ( n ∗ s izeof ( double ) ) ;
i f ( m == NULL ) {

p r i n t f ("double1D() cannot allocate memory size=%d: %s\n" ,
n , message ) ;

e x i t ( 0 ) ;
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}
p r i n t f ("memory allocated for %s is %d bytes\n" , message , n∗ s izeof

(double ) ) ;
return ( m ) ;

} /∗ end double1D () ∗/

double ∗∗double2D ( int nx , int ny , const char ∗message )
{

double ∗∗m;
int i ;
m = (double∗∗) mal loc ( nx ∗ s izeof ( double∗ ) ) ;
i f ( m == NULL ) {

p r i n t f ("double2D cannot allocate pointers, size=%d: %s\n" ,
nx , message ) ;

e x i t (0 ) ;
}
for ( i =0; i<nx ; i++){
m[ i ] = (double ∗) mal loc ( ny ∗ s izeof ( double ) ) ;
i f ( m[ i ] == NULL ){

p r i n t f ("double2D cannot allocate arrays, size=%d: %s\n" ,
ny , message ) ;

e x i t (0 ) ;
}

}
p r i n t f ("memory allocated for %s is %d bytes\n" , message , nx∗ny∗

s izeof (double ) ) ;
return m;

} /∗ end double2D () ∗/

void freeDouble2D ( double ∗∗m, int nx , int ny ){
int i ;
for ( i = 0 ; i<nx ; i++){

f r e e (m[ i ] ) ;
}
f r e e (m) ;

}

int ∗∗ int2D ( int nx , int ny , const char ∗message )
{ int ∗∗m;

int i ;
m = ( int ∗∗) mal loc ( nx ∗ s izeof ( int∗ ) ) ;
i f ( m == NULL ) {

p r i n t f ("int2D cannot allocate pointers, size=%d: %s\n" ,
nx , message ) ;

e x i t (0 ) ;
}
for ( i =0; i<nx ; i++){
m[ i ] = ( int ∗) mal loc ( ny ∗ s izeof ( int ) ) ;
i f ( m[ i ] == NULL ){
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p r i n t f ("int2D cannot allocate arrays, size=%d: %s\n" ,
ny , message ) ;

e x i t (0 ) ;
}

}
p r i n t f ("memory allocated for %s is %d bytes\n" , message , nx∗ny∗

s izeof ( int ) ) ;
return m;

} /∗ end double2D () ∗/

double Ran3( long ∗idum){
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ran3 ()−−−−−−−−−−−−−−−−−−−−−−−−

This program take s the po in t e r a long i n t e g e r and genera t e s
a random number between 0 to 1
usage − ran3(&seed )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗/

stat ic int inext , inextp ;
stat ic long ma [ 5 6 ] ;
stat ic int i f f =0;
long mj ,mk;
int i , i i , k ;

i f (∗ idum < 0 | | i f f == 0) {
i f f =1;
mj=labs (MSEED−l ab s (∗ idum) ) ;
mj %= MBIG;
ma[55]=mj ;
mk=1;
for ( i =1; i <=54; i++) {

i i =(21∗ i ) % 55 ;
ma[ i i ]=mk;
mk=mj−mk;
i f (mk < MZ) mk += MBIG;
mj=ma[ i i ] ;

}
for ( k=1;k<=4;k++)

for ( i =1; i <=55; i++) {
ma[ i ] −= ma[1+( i +30) % 5 5 ] ;
i f (ma[ i ] < MZ) ma[ i ] += MBIG;

}
i n ex t =0;
inextp =31;
∗idum=1;

}

i f (++inex t == 56) inex t =1;
i f (++inextp == 56) inextp=1;
mj=ma[ in ex t ]−ma[ inextp ] ;
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i f (mj < MZ) mj += MBIG;
ma[ in ex t ]=mj ;
return mj∗FAC;

}

void RandInit3D (double ∗∗∗M, long seed , struct dimensions dim){
/∗−−−−−−−−−−−−−−−−−RandInit2Dim ()−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

This f unc t i on i n i t i a l l i z e s a t h r e e dimensiona l array to
average composi t ion +− random f l u c t u a t i o n s .
usage RandInit3D ( 3DMatrixPointer , LongIntNo ,

s t ruc tureDimens ionPointer )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

double randFluct , avgComp ;
int noOfLayers ;
int i , j , k , nx , ny ;

nx = dim . nx ;
ny = dim . ny ;

noOfLayers = dim . noOfGrains ;
randFluct = dim . randFluctEta ;
avgComp = dim . etaVap ;

for ( i = 0 ; i<noOfLayers ; i++){
for ( k = 0 ; k<ny ; k++){

for ( j = 0 ; j<nx ; j++){
M[ i ] [ k ] [ j ] = avgComp + (0 . 5 − Ran3(&seed ) )∗ randFluct ;

} // j − X
}// k −Y

}// i
}// RandInit3D ()

void RandInit2D (double ∗∗M, long seed , struct dimensions dim){
/∗−−−−−−−−−−−−−−−−−RandInit2Dim ()−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

This f unc t i on i n i t i a l l i z e s a two dimensiona l array to
average composi t ion +− random f l u c t u a t i o n s .
usage RandInit2D ( 3DMatrixPointer , LongIntNo ,

s t ruc tureDimens ionPointer )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

int j , k ;
int nx , ny ;
double avgComp , randFluct ;

avgComp = dim . rhoVap ;
randFluct = dim . randFluctC ;
nx = dim . nx ;
ny = dim . ny ;

for ( k = 0 ; k<ny ; k++){
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for ( j = 0 ; j<nx ; j++){
M[ k ] [ j ] = avgComp + (0 . 5 − Ran3(&seed ) )∗ randFluct ;

}// j
}//k

}// RandInit2D ()

void MakeCircle (double ∗p , struct dimensions dim , struct

makeCirc l e In fo c i r ){
/∗ This f un s c t i on i n i t a l i z e the mircos t ruc ture by making a c i r c l e

.
This i s des i gned f o r s imu la t i on s in f o u r i e r space where we
s h a l l be working in 1 dimensiona l arrays ∗/

int x , y ;

for ( y = 0 ; y<dim . nx ; y++){
for ( x = 0 ; x<dim . nx ; x++){

i f ( ( x − c i r . centerX ) ∗( x − c i r . centerX ) +
(y − c i r . centerY ) ∗( y − c i r . centerY ) <= c i r . r ad iu s ∗ c i r .

r ad iu s ){
p [ x+y∗dim . nx ] = c i r . c i rVa l ;

}
}

}
}



APPENDIX C

GEOMETRICAL MODEL

The code of geometrical model is given below:

Listing C.1: Algorithm for Monte Carlo simulation of sintering

%% I n i t i a l i z e the data and prov ide va l u e s o f ma t e r i a l s consa tn t s
clc ; clear ; %c l o s e a l l ;
format shor t e ;
gs = dlmread (’initialGS.txt’ ) ;
gs = gs ( : , 1 ) ’ /1000 ;
s i zeGs = s ize ( gs ) ;
a = randperm( s i zeGs (2 ) ) ;
gs = gs ( a ) ; clear a ;

%gs =[0.0278 0.0181 0.0180 0.0302 0 . 0 240 ] ;
gs = gs ( 1 :min( [ 2 00 s i zeGs (2 ) ] ) ) ;
s i zeGs = s ize ( gs ) ;

%% Mater ia l s p r o p e r t i e s
de l taS = 0 .3E−3; % micron − Ref : J am ceram soc vo l 71 (2) pp

113−20 (1988) 1E−3;%
gammaS = 2 . 8 ; %j /mˆ2 Ref : J o f Less Common Metals vo l20 (2) pp

93−103 (1970) 1;%
gammaGb = 2 . 3667 ;%1.0715 ; %j /mˆ2
psiBy2 = acos ( 0 .5∗gammaGb/gammaS) ; %radians Dihedra l Angle The

e f f e c t o f thermal e t ch ing on emmis iv i ty o f tungsten , T J Quinn
% Bri t . J Appl Phys , 1965 , Vol 16 , p 973 h t t p :// i op s c i enc e . iop . org

/0508−3443/16/7/310
mobi l i ty = 1E−18;
Ds = 4 .0 ∗ exp((−300 ∗ 1000) /((273 + 950) ∗8 .3144) ) ∗ 1E−4; %in mˆ2/

s at 950C 5E−11;%
RT = 8.3144∗(950+273) ; %in J/mol
molarVol = 183 .84/19 .25 ∗ 1E−6; %mˆ3/mol (mol we igh t / d en s i t y ) 102

E−3/1522;%
%% I n i t i a l i z a t i o n o f var ious arrays and f l a g s
vo l = 4/3∗pi ∗ gs . ˆ 3 ;
de l taT i = 1e−3; deltaT = de l taTi ; timeT = 0 ;

gb = zeros (1 , s i zeGs (2 )−1) ; s izeGb = s ize ( gb ) ;
gbMax = zeros ( [ 1 , s izeGb (2) ] ) ;
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f lagNeckGrowth = ones ( [ 1 , s izeGb (2) ] ) ;
f lagGbMigrat ion = zeros ( [ 1 , s izeGb (2) ] ) ;
rapidGbMigrationGeometry = zeros ( [ 5 , s izeGb (2) ] ) ; %R1 R2 Rgb

be ta in each row
neckVolMat = zeros ( [ 1 , s izeGb (2) ] ) ;
neckSizeMat = zeros ( [ 1 , s izeGb (2) ] ) ;
f lagFirstRunNeckGrowth = ones ( [ 1 , s izeGb (2) ] ) ;

timeMat = [ ] ;
gsMat = [ ] ;
gbMat = [ ] ;
volWeightedMean = [ ] ;
neckSizeMatr ix = [ ] ;
f lagVolChange = 1 ;
f l agGra inDisappear = 0 ;
f l agEvo lve = 1 ;

%% Ca l cu l a t e gb Max to e va l ua t e the presence o f neck growth
for i = 1 : sizeGb (2)

R1P = max( [ gs ( i ) gs ( i +1) ] ) ;
R2P = min ( [ gs ( i ) gs ( i +1) ] ) ;
R = R2P/R1P;
gbMax( i ) = −.11∗Rˆ3 + .084∗Rˆ2 + 0.6∗R + 0.7E−5;
gbMax( i ) = gbMax( i ) ∗ R1P;
gb ( i ) = 1E−2∗(round(gbMax( i ) ∗100) /10) ;

end

%%
while s i zeGs (2 ) > 1 % un t i l a l l g ra in boundar ies d i sappear

%% i f a gra in d i sappear s
while f l agGra inDisappear == 1

[ i j ] = min( vo l ) ;
i f j == 1

vo l (2 ) = vo l (2 ) + vo l (1 ) ;
vo l = vo l ( 2 : end) ;
gb = gb ( 2 : end) ;
flagNeckGrowth = flagNeckGrowth ( 2 : end) ;
flagNeckGrowth (1 ) = 1 ;
flagFirstRunNeckGrowth = flagFirstRunNeckGrowth ( 2 : end) ;
f lagFirstRunNeckGrowth (1 ) = 1 ;
f lagGbMigrat ion = flagGbMigrat ion ( 2 : end) ;
f lagGbMigrat ion (1 ) = 0 ;
gbMax = gbMax ( 2 : end) ;
gs = (3∗ vo l /(4∗pi ) ) . ˆ ( 1 /3 ) ;
R = min ( [ gs (1 ) gs (2 ) ] ) /max( [ gs (1 ) gs (2 ) ] ) ;
gbMax(1) = −.11∗Rˆ3 + .084∗Rˆ2 + 0.6∗R + 0.7E−5;
gbMax(1) = gbMax(1) ∗ max( [ gs (1 ) gs (2 ) ] ) ;
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gb (1 ) = 1E−2∗(round(gbMax(1) ∗100) /10) ;
e l s e i f j == s izeGs (2 )

vo l ( s i zeGs (2 ) −1) = vo l ( s i zeGs (2 ) − 1) + vo l ( s i zeGs (2 ) )
;

vo l = vo l ( 1 : end−1) ;
gb = gb ( 1 : end−1) ;
flagNeckGrowth = flagNeckGrowth ( 1 : end−1) ;
flagNeckGrowth (end) = 1 ;
f lagGbMigrat ion = flagGbMigrat ion ( 1 : end−1) ;
f lagFirstRunNeckGrowth = flagFirstRunNeckGrowth ( 1 : end

−1) ;
f lagFirstRunNeckGrowth (end) = 1 ;
f lagGbMigrat ion (end) = 0 ;
gbMax = gbMax ( 1 : end−1) ;
gs = (3∗ vo l /(4∗pi ) ) . ˆ ( 1 /3 ) ;
R = min ( [ gs (end) gs (end−1) ] ) /max( [ gs (end) gs (end−1) ] ) ;
gbMax(end) = −.11∗Rˆ3 + .084∗Rˆ2 + 0.6∗R + 0.7E−5;
gbMax(end) = gbMax(end) ∗ max( [ gs (end) gs (end−1) ] ) ;
gb (end) = 1E−2∗(round(gbMax(end) ∗100) /10) ;

else

i f vo l ( j +1) > vo l ( j−1)
vo l ( j +1) = vo l ( j +1) + vo l ( j ) ;

else

vo l ( j−1) = vo l ( j−1) + vo l ( j ) ;
end

vo l = [ vo l ( 1 : j−1) vo l ( j +1:end) ] ;
gb = [ gb ( 1 : j−1) gb ( j +1:end) ] ;
f lagNeckGrowth = [ flagNeckGrowth ( 1 : j−1) flagNeckGrowth (

j +1:end) ] ;
f lagNeckGrowth ( j−1) = 1 ;
f lagGbMigrat ion = [ f lagGbMigrat ion ( 1 : j−1)

f lagGbMigrat ion ( j +1:end) ] ;
f lagGbMigrat ion ( j−1) = 0 ;
gbMax = [ gbMax ( 1 : j−1) gbMax( j +1:end) ] ;
f lagFirstRunNeckGrowth = [ flagFirstRunNeckGrowth ( 1 : j−1)

flagFirstRunNeckGrowth ( j +1:end) ] ;
f lagFirstRunNeckGrowth ( j−1) = 1 ;
gs = (3∗ vo l /(4∗pi ) ) . ˆ ( 1 /3 ) ;
R = min ( [ gs ( j−1) gs ( j ) ] ) /max( [ gs ( j−1) gs ( j ) ] ) ;
gbMax( j−1) = −.11∗Rˆ3 + .084∗Rˆ2 + 0.6∗R + 0.7E−5;
gbMax( j−1) = gbMax( j−1) ∗ max( [ gs ( j−1) gs ( j ) ] ) ;
gb ( j−1) = 1E−2∗(round(gbMax( j−1)∗100) /10) ;

end

s i zeGs = s ize ( gs ) ;
s izeGb = s ize ( gb ) ;
f l agEvo lve = 1 ;
f l agGra inDisappear = 0 ;
f lagVolChange = 1 ;
i f s i zeGs (2 ) == 1
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f l agEvo lve = 0 ;
break ;

end

end

%%

deltaVCoarsen = zeros (1 , s izeGb (2) ) ;
deltaVGbMigration = zeros (1 , s izeGb (2) ) ;
deltaVneckGrowth = zeros (1 , s izeGb (2) ) ;

while f l agEvo lve == 1
%% Ca l cu l a t e d r i v i n g f o r c e f o r m i c ro s t r u c t u ra l e v o l u t i on

i f f lagVolChange == 1

for i = 1 : sizeGb (2)
%% gb migrat ion
%I f be ta < p i /2 , soap bubb l e geometry sub rou t ine

used to
%c a l c u l a t e the geometry
i f ( f lagGbMigrat ion ( i ) == 1 | | f lagGbMigrat ion ( i ) ==

0)
R1P = max( [ gs ( i ) gs ( i +1) ] ) ;
R2P = min ( [ gs ( i ) gs ( i +1) ] ) ;
R = R2P/R1P;
volP = 4∗pi /3 ;
[ R1i , R2i , Rgbi , a lpha i , beta i , the ta i ,

e r rorR1i , e r ro rR2 i ]= soapBubbleGeom (1 , R, gb
( i ) /R1P, volP , gammaS , gammaGb) ;

R1i = R1i ∗ R1P; R2i = R2i ∗ R1P; Rgbi =
Rgbi ∗ R1P; e r ro rR2 i = er ro rR2 i ∗R1P;

gbVeloc i ty = 2 ∗ mobi l i ty ∗ ( gammaS ∗ (1/R2i −
1/R1i ) − gammaGb ∗ sec ( t h e t a i ) / ( gb ( i )∗ (

tan ( b e t a i ) − tan ( t h e t a i ) ) ) ) ;
gbVe loc i ty = ( gbVeloc i ty > 0) ∗ gbVeloc i ty ∗ 1

E6 ;
f lagGbMigrat ion ( i ) = ( gbVeloc i ty > 0) ;

i f ( b e t a i >= pi /2) | | abs ( e r ro rR2 i /R2i ) > 0 .1
f lagGbMigrat ion ( i ) = 2 ;
gbVeloc i ty = 1E20 ;

else

i f be ta i > 85∗pi /180
pa r t c l e no and ang l e b e t a = [ i b e t a i ] ;

end

rapidGbMigrationGeometry (1 , i ) = R1i ;
rapidGbMigrationGeometry (2 , i ) = R2i ;
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rapidGbMigrationGeometry (3 , i ) = Rgbi ;
rapidGbMigrationGeometry (4 , i ) = be ta i ;
rapidGbMigrationGeometry (5 , i ) = gb ( i ) ;

end

end

i f f lagGbMigrat ion ( i ) == 2
R1P = rapidGbMigrationGeometry (1 , i ) ;
R2P = rapidGbMigrationGeometry (2 , i ) ;
volP = min ( [ vo l ( i ) vo l ( i +1) ] ) ;
[ R1i , R2i , Rgbi , X, a lpha i , beta i , the ta i ,

e r r o rBe t a i ]= soapBubbleGeomForRapidGBM(R1P,
R2P, volP , gammaS , gammaGb) ;

gbVeloc i ty = 1E6∗ 2 ∗ mobi l i ty ∗ ( gammaS ∗ (1/
R2i − 1/R1i ) + gammaGb ∗ sec ( t h e t a i ) / (X∗ (
tan ( b e t a i ) − tan ( t h e t a i ) ) ) ) ;

rapidGbMigrationGeometry (4 , i ) = be ta i ;
end

%% neckGrowth
i f f lagNeckGrowth ( i ) == 1

R1P = max( [ gs ( i ) gs ( i +1) ] ) ;
R2P = min ( [ gs ( i ) gs ( i +1) ] ) ;
R = R2P/R1P;
dMax = −0.027∗Rˆ2 + R + 0 . 9 9 ;
f indNeckFlag = 0 ;
c en t e r = (1+R + dMax) /2 ;
d e l t a = (1+R − dMax) /2 ;
while f indNeckFlag < 0 .5

xStepFlag = 0 ;
i f gb ( i ) /gbMax( i ) < 0 .2

xStepFlag = 1 ;
end

[ R1 , R2 , r1 , r2 , x , alpha , beta , theta ,
neckVol , error ] = noShrink3D 1 (1 , R,
center , gb ( i ) /R1P, xStepFlag ) ;

x = x ∗ R1P;
de l t a = de l t a /2 ;
i f gb ( i ) > x

cente r = cente r − de l t a ;
else

cen t e r = cente r + de l t a ;
end

f indNeckFlag = (abs ( x − gb ( i ) ) /gb ( i ) <= 1E
−3 ∗( f lagFirstRunNeckGrowth ( i )==1) + 1E
−5 ∗( f lagFirstRunNeckGrowth ( i ) == 0) )
;%

i f de l t a < 1E−15
%x = gb ( i ) ;
f indNeckFlag = 2 ;



149

f lagNeckGrowth ( i ) = 0 ;
end

end

R1 = R1∗R1P; R2 = R2∗R1P; r1 = r1∗R1P;
r2 = r2∗R1P; neckVol = neckVol∗R1Pˆ3 ;

deltaVneckGrowth ( i ) = 0 ;
i f f indNeckFlag ˜=2 % i f we f i nd a neck s i z e

l a r g e r than the prev ious one
f lagFirstRunNeckGrowth ( i ) = 0 ;
neckVolMat ( i ) = neckVol ;
deltaMu = gammaS ∗ molarVol ∗ (1/R1 + 1/R2

+ 2/( r1+r2 ) − 1/x ) ∗1E6 ;
i f deltaMu <= 0

deltaMu = 0 ;
f indNeckFlag = 2 ;
flagNeckGrowth ( i ) = 0 ;

end

deltaX = min ( [ r1∗cos ( psiBy2 − alpha − theta
) + r2∗cos ( psiBy2 − beta + theta ) ,
0 . 25∗ (R1+R2) ] ) ∗1E−6;

neckSizeMat ( i ) = deltaX ;
area = 2∗pi∗x∗ de l taS ∗1E−12;
deltaVneckGrowth ( i ) = 1E18 ∗ (Ds/RT) ∗

deltaMu / deltaX ∗ area ;
end

end

%% Coarsening : R1i and R2i come from gb migrat ion
c a l c u l a t i o n .

deltaMu = gammaS∗molarVol ∗ (1/R2i − 1/R1i ) ∗1E6 ;
area = 2∗pi∗gb ( i )∗ de l taS ∗1E−12;
deltaX = neckSizeMat ( i ) ;
deltaVCoarsen ( i ) = 1E18 ∗ (Ds/RT) ∗ ( deltaMu /

deltaX ) ∗ area ;
dx = gbVeloc i ty ;
deltaVGbMigration ( i ) = pi∗gb ( i )∗gb ( i )∗dx∗1E18 ; %in

micron cube
end

deltaVCoarsenTmp = deltaVCoarsen ;
deltaVneckGrowthTmp = deltaVneckGrowth ;
deltaVGbMigrationTmp = deltaVGbMigration ;

end

clear R R1 R1P R1i R2 R2i R2P Rgb Rgbi alpha a lpha i beta

be ta i area cen t e r d e l t a dMax deltaMu
clear deltaX dr iv ingForce dx error e r ro rR1 i e r ro rR2 i

f indNeckFlag i theta t h e t a i volP x
clear r1 r2

deltaVCoarsen = deltaVCoarsenTmp ∗ deltaT ;
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deltaVneckGrowth = deltaVneckGrowthTmp ∗ deltaT ;
deltaVGbMigration = deltaVGbMigrationTmp ∗ deltaT ;

%% Make changes in the volume
volTmp = vol ;
gbTmp = gb ;
i f max( [ deltaVneckGrowth deltaVGbMigration deltaVCoarsen ] )

< max( vo l )
for i = 1 : sizeGb (2)

[ volMin j1 ] = max( [ vo l ( i ) vo l ( i +1) ] ) ;
[ volMax j2 ] = min ( [ vo l ( i ) vo l ( i +1) ] ) ;
vo l ( i + j1 −1) = vo l ( i + j1 − 1) + deltaVCoarsen ( i )

;
vo l ( i + j2 −1) = vo l ( i + j2 − 1) − deltaVCoarsen ( i )

;

vo l ( i + j1 −1) = vo l ( i + j1 − 1) +
deltaVGbMigration ( i ) ;

vo l ( i + j2 −1) = vo l ( i + j2 − 1) −
deltaVGbMigration ( i ) ;

i f f lagNeckGrowth ( i ) == 1
R1P = max( [ gs ( i ) gs ( i +1) ] ) ;
R2P = min ( [ gs ( i ) gs ( i +1) ] ) ;
R = R2P/R1P;
dMax = −0.027∗Rˆ2 + R + 0 . 9 9 ;

neckVol i = neckVolMat ( i ) ;
[R1 , R2 , r1 , r2 , x , alpha , beta , theta , neckVol ,

error ] = noShrink3D 1 (1 , R, dMax , gbTmp( i ) /
R1P, 1) ;

neckVol = neckVol∗R1Pˆ3 ;
neckVolRatio = ( neckVol i + deltaVneckGrowth ( i )−

neckVol ) /( neckVol i + deltaVneckGrowth ( i ) ) ;
gb ( i ) = 1E9 ;

i f neckVolRatio < 0
f indNeckFlag = 0 ;
c en t e r = (1+R + dMax) /2 ;
d e l t a = (1+R − dMax) /2 ;
while f indNeckFlag == 0

xStepFlag = 0 ;
i f gb ( i ) /gbMax( i ) < 0 .2

xStepFlag = 1 ;
end

[ R1 , R2 , r1 , r2 , x , alpha , beta , theta ,
neckVol , error ] = noShrink3D 1 (1 , R,
center , gbTmp( i ) /R1P, xStepFlag ) ;
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neckVol = neckVol∗R1Pˆ3 ; x = x∗R1P;
neckVolRatio = ( neckVol i +

deltaVneckGrowth ( i )−neckVol ) /(
neckVol i + deltaVneckGrowth ( i ) ) ;

d e l t a = de l t a /2 ;
i f neckVolRatio > 0% neckVol i +

deltaVneckGrowth ( i ) > neckVol∗R1Pˆ3
cen t e r = cente r − de l t a ;

else

cen t e r = cente r + de l t a ;
end

f indNeckFlag = abs ( neckVolRatio ) <
0 . 0 0 1 ;

i f de l t a <1E−20
x = 1E9 ;
f indNeckFlag = 1 ;

end

end

i f gb ( i ) == x
s t r = s t r c a t (’No neck growth at

boundary no’ , num2str( i ) ) ; disp ( s t r )
; clear s t r ;

end

gb ( i ) = x ;
end

end

end

else

gb = 1000000000∗ ones (1 , s izeGb (2) ) ; %i f max volume change
> l a r g e s t p a r t i c l e volume

end

f l a g 1 = max( gb ) > 100000;
f l a g 2 = max(abs ( vo l − volTmp) . / volTmp) > 0 .2 ;
f l a g 3 = sum( vol<0) >0;
f l a g 4 = max(abs ( gb − gbTmp) . /gbTmp) > 0 . 2 ;
f l a g 5 = min( gb . / gbMax) >0.2;
disp ( [mean( gs ) mean( gb ) deltaT s izeGs (2 ) ] )
i f f l a g 1 | | f l a g 2 | | f l a g 3 | | ( f l a g 4 && f l a g 5 )

vo l = volTmp ;
gb = gbTmp;
deltaT = deltaT ∗ 0 . 5 ;
f lagVolChange = 0 ;
pause (2 ) ;

else

i f sum( gb < gbTmp) > 0
letsHaveABreak = 0 ;

end
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f lagVolChange = 1 ;
gs = ((3∗ vo l ) /(4∗pi ) ) . ˆ ( 1 /3 ) ;
timeT = timeT + deltaT ;
timeMat = [ timeMat ; deltaT timeT ] ;
sizeTimeMat = s ize ( timeMat ) ;
gsMat ( sizeTimeMat (1 ) , 1 : s i zeGs (2 ) ) = gs ;
gbMat( sizeTimeMat (1 ) , 1 : s izeGb (2) ) = gb ;
volWeightedMean = [ volWeightedMean ; sum( gs .∗ vo l ) /sum( vo l

) ] ;

neckSizeMatr ix = [ neckSizeMatr ix ; neckSizeMat ] ;
dlmwrite (’neckSize.txt’ , neckSizeMatr ix , ’\t’ ) ;

dlmwrite (’gsMat.txt’ , gsMat , ’\t’ ) ; dlmwrite (’gbMat.txt
’ , gbMat , ’\t’ ) ; dlmwrite (’timeMat.txt’ , timeMat , ’\t’
) ; dlmwrite (’volWeightedMean.txt’ , volWeightedMean , ’\
t’ ) ;

pause ( 0 . 1 ) ;
deltaT = deltaT ∗4 ;

end

i f deltaT< 1E−10
f lagGra inDisappear = 1 ; f l agEvo lve = 0 ;
deltaT = max( [ de l taT i deltaT ∗1000 ] ) ;

end

end

end

function [ R1 , R2 , Rgb , alpha , beta , theta , errorR1 , errorR2 ] =
soapBubbleGeom(R1P, R2P, X, vol1 , gammaS , gammaGb)

l h s = 4∗pi/3 ∗ (R1Pˆ3 + R2Pˆ3) ; %Total volume

matR = [ ] ;

DeltaR = 0 . 0005 ;
R1 = R1P;
d i f f 1 = 1 ;
while d i f f 1 > 0

i f X/R1<=1
alpha = asin (X/R1) ;
mat = [ ] ;
R2 = 0 ;
d i f f = 1 ;
while di f f>0

i f X/R2 <= 1
beta = asin (X/R2) ;
rhs = pi ∗ (R1ˆ3 ∗ ( cos ( alpha ) − (1/3) ∗ ( cos ( alpha )
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) ˆ3 + 2/3) ) + . . .
pi ∗ (R2ˆ3 ∗ ( cos (beta ) − (1/3) ∗( cos (beta ) )

ˆ3 + 2/3) ) ;
d i f f = ( lh s − rhs ) / l h s ∗100 ;
mat = [mat ; d i f f alpha beta R2 ] ;

end

R2 = R2 + DeltaR ;
end

[R2 i ] = min(abs (mat ( : , 1) ) ) ;
R2 = mat( i , 4 ) ;
alpha = mat( i , 2) ;
beta = mat( i , 3 ) ;
error = mat( i , 1 ) ;
Rgb = (gammaGb/gammaS) ∗ (R1∗R2) /(R1 − R2) ;
theta = asin (X/Rgb) ;
vo l = pi ∗ R1ˆ3 ∗ ( cos ( alpha ) − (1/3) ∗( cos ( alpha ) ) ˆ3 + 2/3)

. . .
− pi ∗ Rgbˆ3 ∗ ( cos (pi−theta ) − (1/3) ∗( cos (pi−theta

) ) ˆ3 + 2/3) ;
d i f f 1 = ( vo l1 − vo l ) / vo l1 ∗ 100 ;

i f (abs ( error ) <1) | | ( beta < pi /2)
matR = [matR ; d i f f 1 R1 R2 Rgb alpha beta theta error ] ;

end

end

R1 = R1 + DeltaR ;

end

[R1 i ] = min(abs (matR ( : , 1 ) ) ) ;
errorR1 = matR( i , 1 ) ;
R1 = matR( i , 2 ) ;
R2 = matR( i , 3 ) ;
Rgb = matR( i , 4 ) ;
alpha = matR( i , 5 ) ;
beta = matR( i , 6 ) ;
theta = matR( i , 7 ) ;
errorR2 = matR( i , 8 ) ;

s izeMat = s ize (matR) ;
i f s izeMat (1 ) < 1

alpha = 0 ;
beta = pi /2 ;
theta = 0 ;
errorR1 = 1E10 ;
errorR2 = 1E10 ;

end
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function [ R1 , R2 , Rgb , X, alpha , beta , theta , e r rorBeta ]=
soapBubbleGeomForRapidGBM(R1 , R2 , volP , gammaS , gammaGb)

Rgb = (gammaGb/gammaS) ∗ (R1∗R2) /(R1 − R2) ;

beta = 0 ;
de l taBeta = 1∗pi /180 ;
v o lD i f f = 0 ;
mat = [ ] ;
volOld =0;
volNew = 0 ;
while v o lD i f f <= 0

X = R2∗ sin (beta ) ;
theta = asin (X/Rgb) ;
vo l = pi ∗ R2ˆ3 ∗ ( cos (pi−beta ) − (1/3) ∗( cos (pi−beta ) ) ˆ3 + 2/3)

. . .
+ pi ∗ Rgbˆ3 ∗ ( cos (pi−theta ) − (1/3) ∗( cos (pi−theta

) ) ˆ3 + 2/3) ;
v o lD i f f = vo l − volP ;
mat = [mat ; v o lD i f f beta ] ;
beta = beta + deltaBeta ;
volOld = volNew ;
volNew = vo lD i f f ;

end

i f abs ( volNew ) < abs ( volOld )
beta = beta − de l taBeta ;

else

beta = beta − 2∗ de l taBeta ;
end

X = R2∗ sin (beta ) ;
theta = asin (X/Rgb) ;
e r rorBeta = abs (min ( [ volNew , volOld ] ) ) /volP ;
alpha = asin (X/R1) ;
function [ R1 , R2 , r1 , r2 , x , alpha , beta , theta , neckVol , error ] =

noShrink3D 1 (R1P, R2P, d , xOld , xStepFlag )

mat1 = 1E20∗ones (2 , 7 ) ;

psiBy2 = pi /3 ;
dR2 = (R1P + R2P − d) /( 1 + R2Pˆ2/R1Pˆ2) ;
dR1 = (R2Pˆ2/R1Pˆ2)∗dR2 ;
R1 = R1P − dR1 ;
R2 = R2P − dR2 ;

vo l1 = 4∗pi /3∗(R1Pˆ3 + R2Pˆ3) ;
R3 = 100000;
i f R1>R2

R3 = R1∗R2/(R1 − R2) ;
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end

d3 = R1 + R3 ;

x = 0 ;%xOld ;
deltaX = 0 . 0001 ;
i f xStepFlag == 1

deltaX = 0 .00001 ;
end

while mat1 (2 , 1 ) > 0 && x < 1%vo lD i f f > −1E−10
theta = asin ( x/R3) ;

A = R1 + R3 − R3∗cos ( theta ) ; B = x ;
r1 = 0 .5 ∗ ( Aˆ2 + Bˆ2 − R1ˆ2) /( R1 − A∗cos ( psiBy2 − theta ) − B

∗ sin ( psiBy2− theta ) ) ;

A = d − d3 + R3∗cos ( theta ) ;
B = x ;
r2 = 0 . 5∗ (Aˆ2 + Bˆ2 − R2ˆ2) /(R2 − A∗cos ( psiBy2+theta ) − B∗ sin (

psiBy2 + theta ) ) ;

alpha = asin ( ( x + r1∗ sin ( psiBy2 − theta ) ) /(R1 + r1 ) ) ;
beta = asin ( ( x + r2∗ sin ( psiBy2 + theta ) ) /(R2 + r2 ) ) ;

cy2 = (R1+r1 )∗ sin ( alpha ) ;

v1 = pi ∗ R1ˆ3 ∗ ( cos ( alpha ) − (1/3) ∗( cos ( alpha ) ) ˆ3 + 2/3) ;

A = pi − alpha ; b = cy2 ;
v2L = bˆ2∗ r1∗cos (A) + r1 ˆ3∗( cos (A) − (1/3) ∗( cos (A) ) ˆ3) + b∗ r1∗

r1 ∗(A−0.5∗ sin (2∗A) ) ;
A = pi − psiBy2 + theta ;
v2R = bˆ2∗ r1∗cos (A) + r1 ˆ3∗( cos (A) − (1/3) ∗( cos (A) ) ˆ3) + b∗ r1∗

r1 ∗(A−0.5∗ sin (2∗A) ) ;
v2 = pi ∗(v2R − v2L) ;

A = psiBy2 + theta ; b = (R2+r2 )∗ sin (beta ) ;
v3L = bˆ2∗ r2∗cos (A) + r2 ˆ3∗( cos (A) − (1/3) ∗( cos (A) ) ˆ3) + b∗ r2∗

r2 ∗(A−0.5∗ sin (2∗A) ) ;
A = beta ;
v3R = bˆ2∗ r2∗cos (A) + r2 ˆ3∗( cos (A) − (1/3) ∗( cos (A) ) ˆ3) + b∗ r2∗

r2 ∗(A−0.5∗ sin (2∗A) ) ;
v3 = pi ∗(v3R − v3L) ;

v4 = pi ∗ R2ˆ3∗( cos (beta ) − (1/3) ∗( cos (beta ) ) ˆ3 + 2/3) ;

vo l2 = v1 + v2 + v3 + v4 ;
v o lD i f f = vol1 − vo l2 ;

i f r1>=0 && r2>=0
mat1 ( 1 , : ) = mat1 ( 2 , : ) ;
mat1 ( 2 , : ) = [ v o lD i f f x r1 r2 alpha beta theta ] ;
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end

x = x + deltaX ;

end

[ r f ] = min(abs (mat1 ( : , 1 ) ) ) ;
r1 = mat1 ( f , 3 ) ;
r2 = mat1 ( f , 4 ) ;

alpha = mat1 ( f , 5 ) ;
beta = mat1 ( f , 6 ) ;

x = mat1 ( f , 2) ;
theta = mat1 ( f , 7 ) ;
error = mat1 ( f , 1 ) ;
i f x == 1

x = 1E20 ;
end

neckVol = 4∗pi/3 ∗ (R1Pˆ3 + R2Pˆ3 − R1ˆ3 − R2ˆ3) ;

function [ r , x , alpha , beta , theta , neckVol , error ] = aaha (R1 , R2 , d)

mat = [ ] ;
h1 = (R1ˆ2 −R2ˆ2 + dˆ2) /(2∗d) ;
k1 = sqrt (R1ˆ2 − h1ˆ2) ;

psiBy2 = pi /3 ;

vo l1 = 4∗pi /3∗(R1ˆ2 + R2ˆ2) ;
R3 = 1000 ;
i f R1>R2

R3 = R2∗R2/(R1 − R2) ;
end

d3 = h1 + sqrt (R3ˆ2 − k1 ˆ2) ;

for x = k1 : 0 . 0 0 0 1 :R1
theta = asin ( x/R3) ;
A = d3 − R3∗cos ( theta ) ; B = x ;
r = 0 .5 ∗ ( Aˆ2 + Bˆ2 − R1ˆ2) /( R1 − A∗cos ( psiBy2 − theta ) − B∗

sin ( psiBy2− theta ) ) ;
alpha = asin ( ( x + r∗ sin ( psiBy2 − theta ) ) /(R1 + r ) ) ;
beta = asin ( ( x + r∗ sin ( psiBy2 + theta ) ) /(R2 + r ) ) ;
cx1 = 0 ; cy1 = 0 ;
cx2 = (R1+r )∗cos ( alpha ) ; cy2 = (R1+r )∗ sin ( alpha ) ;
cx3 = d − (R2+r )∗cos (beta ) ; cy3 = (R2 +r )∗ sin (beta ) ;
cx4 = d ; cy4 = 0 ;
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h = 0 .5 ∗ ( d + (R1+r )∗cos ( alpha ) − (R2+r )∗cos (beta ) − 2∗ r∗ sin (
psiBy2 )∗ sin ( theta ) ) ;

h 1 l = −R1 ; h1 r = R1∗cos ( alpha ) ;
h2 l = R1∗cos ( alpha ) ; h2 r = h ;
h3 l = h ; h3 r = d−R2∗cos (beta ) ;
h 4 l = d−R2∗cos (beta ) ; h4 r = d + R2 ;

x1 = linspace ( h1 r , h1 l , 10000) ; z1 = ( h1 r−h1 l ) /10000;
x2 = linspace ( h2 r , h2 l , 10000) ; z2 = ( h2 r−h2 l ) /10000;
x3 = linspace ( h3 r , h3 l , 10000) ; z3 = ( h3 r−h3 l ) /10000;
x4 = linspace ( h4 r , h4 l , 10000) ; z4 = ( h4 r−h4 l ) /10000;

y1 2 = R1ˆ2 − x1 . ˆ 2 ;
y2 2 = ( cy2 − sqrt ( r ˆ2 − ( x2−cx2 ) . ˆ 2 ) ) . ˆ 2 ;
y3 2 = ( cy3 − sqrt ( r ˆ2 − ( x3−cx3 ) . ˆ 2 ) ) . ˆ 2 ;
y4 2 = R2ˆ2 − ( x4−cx4 ) . ˆ 2 ;

v1 = z1∗pi∗trapz ( y1 2 ) ;
v2 = z2∗pi∗trapz ( y2 2 ) ;
v3 = z3∗pi∗trapz ( y3 2 ) ;
v4 = z4∗pi∗trapz ( y4 2 ) ;

vo l2 = v1 + v2 + v3 + v4 ;
v o lD i f f = vol1 − vo l2 ;

mat = [mat ; v o lD i f f x r alpha beta theta h vo l1 vo l2 ] ;

end

[ r f ] = min(abs (mat ( : , 1 ) ) ) ;
r = mat( f , 3 ) ;
alpha = mat( f , 4 ) ;
beta = mat( f , 5 ) ;
x = mat( f , 2) ;
theta = mat( f , 6 ) ;
error = mat( f , 1 ) ;

cx2 = (R1+r )∗cos ( alpha ) ; cy2 = (R1+r )∗ sin ( alpha ) ;
cx3 = d − (R2+r )∗cos (beta ) ; cy3 = (R2 +r )∗ sin (beta ) ;

h = 0 .5 ∗ ( d + (R1+r )∗cos ( alpha ) − (R2+r )∗cos (beta ) − 2∗ r∗ sin (
psiBy2 )∗ sin ( theta ) ) ;

h 2 l = R1∗cos ( alpha ) ; h2 r = h ;
h3 l = h ; h3 r = d−R2∗cos (beta ) ;

x2 = linspace ( h2 r , h2 l , 1000) ; z2 = ( h2 r−h2 l ) /1000 ;
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x3 = linspace ( h3 r , h3 l , 1000) ; z3 = ( h3 r−h3 l ) /1000 ;

y1 2 = R1ˆ2 − x2 . ˆ 2 ;
y2 2 = ( cy2 − sqrt ( r ˆ2 − ( x2−cx2 ) . ˆ 2 ) ) . ˆ 2 ;
y3 2 = ( cy3 − sqrt ( r ˆ2 − ( x3−cx3 ) . ˆ 2 ) ) . ˆ 2 ;
y4 2 = R2ˆ2 − ( x3−cx4 ) . ˆ 2 ;

v1 = z2∗pi∗trapz ( y1 2 ) ;
v2 = z2∗pi∗trapz ( y2 2 ) ;
v3 = z3∗pi∗trapz ( y3 2 ) ;
v4 = z3∗pi∗trapz ( y4 2 ) ;

neckVol = −v1 + v2 + v3 − v4 ;
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