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ABSTRACT 

 

Functional vitamin B12 (cobalamin) deficiency is a subtle, progressive clinical 

disorder affecting 6-23% of elderly adults. Its symptoms, including fatigue, mood 

disturbances, and decreased strength, are vague and erroneously attributed to aging. 

Detection of cobalamin deficiency in elderly adults is confounded by clinical 

heterogeneity and lack of standardization in metabolic tests. Whereas some patients are 

asymptomatic with slightly altered metabolite profiles, others develop severe clinical 

outcomes. Better understanding of biologic factors contributing to cobalamin deficiency 

heterogeneity in older adults is needed.  

This is a candidate gene association study evaluating the relationship between 

genetic variation in the cobalamin-transport molecules (transcobalamin II and its 

receptor) with cobalamin-related outcome parameters in 795 research participants of the 

Women’s Health and Aging 1 and 2 Studies. Research participant DNA was whole 

genome amplified and genotyped using the iPLEX Sequenom mass spectroscopy 

platform. Relationships between genotypes and clinical parameters were assessed using 

two-way analysis of variance and two-way analysis of covariance, on the fixed factors, 

race and Single Nucleotide Polymorphism genotype.  

Results of the dissertation research generated several genetic associations that are 

useful for further hypothesis testing and clinical validation research. In the 

transcobalamin II gene, two missense variants were associated with homocysteine 



and methylmalonic acid levels (rs9621049, rs35838082), two intronic variants were 

associated with serum cobalamin and homocysteine levels (rs4820888, rs4820887), and 

one missense variant was associated with mean corpuscular volume (rs11801198). A 

cluster of SNPs in the promoter region of the transcobalamin II gene was associated with 

the physical performance parameters, hand grip strength, and walking speed. In the 

transcobalamin II-receptor gene, a missense coding SNP (rs2336573) was associated with 

mean serum cobalamin concentrations.   

 Scientific advances responsible for the technology used in this dissertation are 

being incorporated into healthcare. The tailoring of treatment to an individual’s genetic 

make-up is termed Personalized Medicine. To assist nursing professionals in 

understanding and preparing for use of these technologies, four elements of Personalized 

Medicine are reviewed, including 1) discovery of novel biology that guides clinical 

translation mechanisms, 2) genetic risk assessment, 3) molecular diagnostic technology, 

and 4) pharmacogenetics and pharmacogenomics. Opportunities for nursing profession 

engagement are addressed.  
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“If we’re serious about preventive medicine, and using personalized genomics 

to inform that, we’re not going to change the genome.  
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CHAPTER 1

OVERVIEW OF DISSERTATION RESEARCH

Statement of Clinical Research Problem

Prevalence of metabolically confirmed cobalamin (vitamin B12) deficiency 

among community-dwelling elderly is between 6% and 23%, and depending upon 

definition criteria used—as high as 40.5% (Allen, 2009; Baik & Russell, 1999; Johnson 

et al., 2003; Lindenbaum, Rosenberg, Wilson, Stabler, & Allen, 1994; Pennypacker et al., 

1992). Classic hematological and neurological manifestations include megaloblastic 

anemia, psycho-cognitive decline, and functional impairment. Less recognized is sub-

clinical deficiency, involving subtle biochemical and clinical changes, resulting in 

unrecognized or misattributed diagnosis.

Manifestations of cobalamin deficiency are vague and include fatigue, decreased 

cognition, malaise, peripheral insensitivity, decreased strength, sleep, and mood 

disturbances, which present prior to grossly elevated metabolite profiles and hallmark 

presence of megaloblastic anemia. Long-term consequences of cobalamin deficiency in 

older adult individuals may increase the disability trajectory, resulting in increased 

frequency of hospital admissions, lengthier and more severe hospitalizations, and greater 

degrees of chronic disablement that significantly effect mobility and quality of life 

(Bartali et al., 2006).
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Numerous challenges in detection, diagnosis, and treatment of cobalamin

deficiencies in older adults exist secondary to lack of accurate laboratory assays and vast 

clinical heterogeneity. While some individuals are asymptomatic with low-normal 

cobalamin levels and slightly altered metabolite screening panels, others with similar 

profiles develop severe, permanent clinical outcomes (Carmel & Sarrai, 2006). For these 

reasons, relatively little progress has been made in the identification of cobalamin

deficient individuals who would benefit most from pre-emptive supplementation of the 

nutrient.

Better understanding of the genetic factors contributing to clinical heterogeneity 

surrounding cobalamin deficiency, subclinical deficiency states, and treatment responses 

could enhance clinical care of elderly individuals. To identify possible factors 

contributing to the clinical heterogeneity in cobalamin deficiency, this study used a 

candidate gene approach to perform a secondary analysis of data and banked biologic 

samples from the Women’s Health and Aging Studies. Because of their roles in 

cobalamin physiology and metabolism, the candidate genes for the dissertation research 

included the cobalamin carrier protein (transcobalamin II) and the cobalamin carrier 

protein receptor (transcobalamin II-receptor). There are different forms of cobalamin; for 

the purposes of this work, the terms cobalamin and vitamin B12 will be used 

interchangeably to denote all chemical forms of the nutrient unless otherwise specified 

through more exact terminology (methyl-, 5’ deoxyadenosyl-, cyano-, etc.). 
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Dissertation Project Scientific Aims and Research Questions

The goal of this project was to determine if genetic variants, Single Nucleotide 

Polymorphisms (SNPs), in two candidate cobalamin metabolic genes were associated 

with clinical and biochemical parameters in a cohort of community-dwelling elderly 

women. Secondary scholarly aims were to orient the scientific data within a broader 

translation framework for the field of professional nursing, and thus relatable to the 

context of Personalized Medicine.

Aim 1

Accounting for folate status, Aim 1 was to determine if there are differences in 

the hematological vitamin B12 indicators, hemoglobin concentration and mean 

corpuscular volume (MCV) level, by race and SNP genetic variation in the 

transcobalamin II (vitamin B12 carrier molecule) and transcobalamin II-receptor (vitamin 

B12 carrier molecule receptor) genes. 

Research Question 1.1 

Do hemoglobin concentrations differ by race and SNPs in the transcobalamin II 

and transcobalamin II-receptor genes?

Research Question 1.2

Do MCV levels differ by race and SNPs in the transcobalamin II and 

transcobalamin II-receptor genes?
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Aim 2

Accounting for renal function (questions 2.1-2.3), folate (question 2.2), and 

cobalamin status (questions 2.2-2.3), Aim 2 was to determine if there are concentration 

differences in the biochemical vitamin B12 indicators, serum cobalamin, homocysteine, 

and serum methylmalonic acid, by race and SNP genetic variation in the transcobalamin 

II and transcobalamin II-receptor genes.

Research Question 2.1  

Accounting for renal function, are there differences in serum cobalamin 

concentrations by race and SNPs in the transcobalamin II and transcobalamin II-receptor

genes?

Research Question 2.2 

Accounting for renal function, folate, and cobalamin status, are there differences 

in homocysteine levels by race and SNPs in the transcobalamin II and transcobalamin II-

receptor genes?

Research Question 2.3 

Accounting for renal function and cobalamin status, are there differences in serum 

methylmalonic acid levels by race and SNPs in the transcobalamin II and transcobalamin 

II-receptor genes?
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Aim 3

Aim 3 was to determine if there are differences in the neurologic vitamin B12 

indicators, depression score and peripheral vibration sensitivity, by race and genetic 

variation within the transcobalamin II and transcobalamin II-receptor genes.

Research Question 3.1 

Do depression scores differ by race and SNPs in the transcobalamin II and 

transcobalamin II-receptor genes?

Research Question 3.2

Do peripheral extremity vibratory sensation scores differ by race and SNPs in the 

transcobalamin II and transcobalamin II-receptor genes?

Aim 4

Aim 4 was to determine if there are differences in the functional performance 

vitamin B12 indicators, hand grip strength, and walking speed, by race and genetic 

variation within the transcobalamin II and transcobalamin II-receptor genes. 

Research Question 4.1 

Does hand grip strength differ by race and SNPs in the transcobalamin II and 

transcobalamin II-receptor genes?
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Research Question 4.2

Accounting for standing height, does walking speed differ by race and SNPs in 

the transcobalamin II and transcobalamin II-receptor genes?

Aim 5

Aim 5 was to identify opportunities for the field of professional nursing in the 

area of genetics and genomics, or Personalized Medicine.

Research Question 5.1 

What is the current state of genetic/genomic science as relevant for professional 

nurses in research, education, and practice settings?
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CHAPTER 2

THE MOLECULAR, PHYSIOLOGIC, GENETIC, AND CLINICAL 

BASIS OF VITAMIN B12 METABOLISM 

IN AGING INDIVIDUALS

History and Origins

The critical importance of vitamin B12 to human physiology has a rich history 

steeped in vigilant patient observation. The initial discovery of what is now known to be 

pernicious anemia can be traced to 1824 when James Scarfe Combe, a civil practice 

physician, described an anecdotal account of an individual whose symptoms included 

severe pallor, thirst, diarrhea, and excessive urination (Combe, 1824). The patient, Mr. 

Alexander Haynes, initially presented to Combe in July of 1821 at which point the 

symptoms progressively became worse until his death in February 1822. 

Dr. Combe’s report did not gain recognition as being significant until 1849, when 

English physician Thomas Addison submitted a description of anemia “commencing 

insidiously, and proceeding very slowly, so as to occupy a period of several weeks, or 

even months, before any serious alarm is taken by either the patient or by the patient’s 

friends” (Addison, 1849). Addison’s clinical observations outlined physiological 

characteristics unlike any other previous classification of anemia, most striking of which 

was the subtle and progressive clinical course of symptom development. A historical
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account cites that in 1872, a German physician from Zurich, Dr. Biermer, noted the 

severe intractable progressive characteristics of the Addisonian anemia in 15 subjects and 

issued the title “pernicious anemia” (Sinclair, 2008).

Patients suffered over decades from pernicious anemia and its unsuccessful 

treatment; common therapeutic interventions for the condition included dietary 

modifications, exposure to sunlight, and even use of an arsenic supplementation known 

as “Fowler’s Solution” (Sinclair, 2008). Things would not change until 1925 when a team 

of three physicians, Drs. Whipple, Hooper, and Robscheit, researched hematopoeisis 

associated with chronic blood loss. Among the treatment interventions studied was the 

administration of beef liver to canines and significant findings were obtained; dogs who 

were bled and fed the uncooked liver were noted to experience rapid resolution of anemic 

symptoms (Whipple, 1925). Two prominent Boston-area physicians in the United States 

who learned of the work developed a protocol for human patients with pernicious anemia, 

and fed 45 patients a high protein daily diet incorporating 120-240 grams of raw liver 

(Minot, 1926). Within days of starting treatment, patients’ jaundice began to resolve, 

reticulocyte counts increased, and hemoglobin values normalized.

This discovery went on to be confirmed by many practicing physicians and in 

1934, Drs. Whipple, Minot, and Murphy were the first Americans to receive the Nobel 

Prize in Medicine and Physiology. In 1948, the fraction responsible for this physiologic, 

dubbed vitamin B12, was purified from liver and kidney and shortly after, daily dietary 

intake requirements were established (Rickes, Brink, Koniuszy, Wood, & Folkers, 1948; 

E. Smith, 1948). As researchers identified cobalt as a key component of vitamin B12, its 

name was changed from vitamin B12 to cobalamin, and in 1955-1956, a scientific team 



 10 
led by Dorothy Hodgkin used x-ray crystallography to identify and elucidate its 

crystalline 3-dimensional structure. Using electron density measurements, Hodgkin’s 

landmark effort identified atomic positions of elements surrounding the central cobalt 

atom (Hodgkin et al., 1956; Hodgkin, Pickworth, Robertson, Trueblood, & Prosen, 

1955). The discovery led to another Nobel Prize, this time in Chemistry, and was issued 

to Dr. Hodgkin in 1964.

Scientific progress from the late 1950s through the 1960s was notable for the 

identification of variable chemical isoforms of cobalamin and the key enzymes directing 

molecular rearrangements in metabolic reduction/oxidation reactions. In 1958, Barker, 

Weissbach, and colleagues discovered a key biologic role for vitamin B12 in the bacterial 

model system Clostridium tetanomorphum; the conversion of L-methylmalonyl-

Coenzyme A required adenosylcobalamin to formulate succinyl-Coenzyme A (Barker, 

Smyth, Wawszkiewicz, Lee, & Wilson, 1958; Barker, Smyth, Wilson, & Weissbach, 

1959; Barker, Weissbach, & Smyth, 1958). In 1962, Smith and colleagues created 

carbon-enriched methylcobalamin and found that it could serve as a cofactor for 

methionine synthase (Guest, Friedman, Woods, & Smith, 1962). Shortly after, Weissbach 

deducted the chemical reaction responsible for methionine synthesis, and proved 

methylcobalamin serves as the necessary cofactor for conversion of homocysteine to 

methionine (Weissbach & Taylor, 1966).

In the 1970s, scientists produced the total chemical synthesis of cobalamin, a 

monumental achievement. The effort was notable for 11 years’ worth of chemical 

reaction calculations and required the skills of over 100 collaborating scientists 

(Woodward, 1973). Heading the project at Harvard University’s Department of 
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Chemistry was Dr. Robert Woodward, who, in 1965, also received the Nobel Prize for 

Chemistry. 

In the 1980s-1990s, scientists identified the stereochemistry and functional 

mechanisms responsible for cobalamin-dependent reduction/oxidation rearrangements. 

The piecing together of all the intricate steps of aerobic microbial cobalamin biosynthesis 

in 1993 was a capstone achievement spanning over 25 years of scientific research 

(Battersby, 1994). Elucidation of three-dimensional structures of the methionine synthase 

and methylmalonyl CoA enzymes provided understanding of how vitamin B12 reactions 

occur in both mammalian and microbial species (Dixon, Huang, Matthews, & Ludwig, 

1996; Drennan, Huang, Drummond, Matthews, & Lidwig, 1994; Mancia et al., 1996).

Recently, techniques and knowledge derived from fields such as genetics, molecular 

biology, and recombinant engineering are permitting not just discovery, but purposeful 

manipulation of both the aerobic and anaerobic cobalamin pathways to understand 

intermediate steps and biosynthetic processes across all life forms (Battersby, 1994; 

Warren, Raux, Schubert, & Escalante-Semerena, 2002).

Chemical Properties

The chemical activities of vitamin B12 vary temporally, spatially, and across 

numerous life forms. Their overall function can be broken down into three distinct 

categories where they can serve as 1) mutases, facilitating electron exchange between 

hydrogen and other atoms nested between two carbon atoms; 2) ribonucleotide 

reductases, reducing ribonucleotide triphosphate to 2’-deoxyribonucleotide phosphate via 

adenosylcobalamin; and 3) intermolecular methyl group transfers, shuttling of methyl 
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groups across chemical bonds and intermediaries as catalyzed by methylcobalamin 

(Green & Miller, 2007; Martens, Barg, Warren, & Jahn, 2002). In the animal kingdom, 

cobalamin is used for only two enzymatic reactions, which will be discussed in a later 

section.

Structure

The organometallic cobalamin molecule (chemical formula C83H88O14N14PCo; 

molecular weight 1355 daltons) is among the most structurally complex found in all of 

nature. There are two primary features in addition to its central cobalt atom, including (1) 

a planar corrin ring and (2) a nucleotide that lies perpendicular to the planar group. 

Comprising the nucleotide is a base, 5,6-dimethylbenzimidazole, and a phosphorylated 

sugar, ribose-3-phosphate. The 5,6-dimethylbenzimidazole base is exclusive to the 

cobalamin molecule in nature, and the ribose is unusually phosphorylated at carbon 

position 3.

The corrin ring contains a group of four pyrroles (5-member rings of C4H4NCH3)

with each N atom affixed and coordinated to the central cobalt atom. A fifth ligand 

extends from the central cobalt atom, where various functional (R) groups may attach and 

yield various biologic forms of cobalamin. The four primary groups in mammals include 

a 5’-deoxyadenosyl group (adenosylcobalamin), a hydroxyl group (hydroxocobalamin), a 

methyl group (methylcobalamin), and a glutathione group (glutathionylcobalamin). The 

two co-enzyme forms of cobalamin directly relevant to humans are adenosylcobalamin, 

found in mitochondrial membranes, and methylcobalamin in the cytosol, which is 
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clinically measurable in human plasma. Other forms of cobalamin exist in plants and 

bacteria.

Variable oxidation and reduction states of the cobalt atom yields greater 

complexity, where arrangement of electrons can result in varying forms of hydroxo-,

adenosyl-, and methylcobalamin. For example, trivalent cob(III)alamin represents full 

oxidation capacity in the hydroxocobalamin form, but adenosylcobalamin and 

methylcobalamin contain divalent cob(II)alamin and monovalent cob(I)alamin states of 

the cobalt atom. 

As the C-Co chemical bonds in cobalamin are extremely sensitive to degradation, 

in the presence of light and a cyanide source, all cobalamin forms are converted to 

cyanocobalamin. This is cobalamin’s most stable form, and subsequently is the 

commercial preparation used for the majority of pharmaceutical and therapeutic 

applications in the U.S. (National Academy of Sciences, 1998). Regardless of the form, 

the cobalamin that is delivered to mammalian cells is enzymatically activated to either 

methylcobalamin or 5’-deoxyadenosylcobalamin (Scott, 1999).

Synthesis

Vitamin B12 is the most chemically complex vitamin; in biologic systems that 

produce it, the coordinated and functional integration of over 30 genes is required. 

Although cobalamin is required by humans and mammals, synthesis of vitamin B12 is 

exclusive to microorganisms, and even then—limited to members of the Archea and 

Eubacteria families (Raux, Schubert, & Warren, 2000). Plants and fungi are understood 

not to produce or use cobalamin (Benner, Ellington, & Tauer, 1989).
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Microbial synthesis of vitamin B12 can be either aerobic or anaerobic, and begins 

along a complex branched pathway starting with uroporphyrinogen III. The formation of 

adenosylcobalamin from uroporphyrinogen III has three distinct steps including 1) 

synthesis of the corrin ring, 2) construction of the nucleotide base (right-angle) ligand, 

and 3) the piecing together of the corrin ring with the base ligand to produce the final 

coenzyme (Roth, Lawrence, Rubenfield, Kieffer-Higgins, & Church, 1993). Both aerobic 

and anaerobic pathways begin with uroporphyrinogen III, with precorrin biosynthetic 

intermediates of cobalamin successively carrying methyl groups across varying 

numbered carbon units (i.e., precorrin 1, precorrin 2, precorrin 3A, etc.) (Battersby, 

1994). However, the most significant difference between the two biosynthetic pathways 

is the point of cobalt insertion; aerobic production features a late insertion whereas 

anaerobic production is characterized by early incorporation (Warren et al., 2002).

Metabolism of cobalamin in mammalian cells will be discussed later in this chapter.

Food Sources and Daily Requirements

As cobalamin is produced exclusively by certain bacteria, natural sources of its 

production are found in microorganisms from soil, sewage, water, human and other 

mammalian intestines, and animal rumens (first stomach of plant-eating mammals such 

as cattle, sheep, and goats). Thus, human dependency on cobalamin is rooted in dietary 

intake of the animals ingesting microbially synthesized vitamin B12. Human food 

sources rich in vitamin B12 are animal-based protein, including liver, meat, seafood, 

shellfish, eggs, and dairy products.
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Vitamin B12 content for standard Western diets varies between 5-30 micrograms 

per day and fulfills average daily intake requirements of 7-8 micrograms per day for men, 

4-5 micrograms per day for women, and 3-4 micrograms per day for children under age 

five (Beck, 2001). For adolescents, the recommended daily intake requirement for 

cobalamin is approximately 2 micrograms per day (The Standing Committee on the 

Scientific Evaluation of Dietary Reference Intakes, Subcomittee on Upper Reference 

Levels of Nutrients, Food and Nutrition Board, 1998). Intestinal microbes represent an 

additional nondietary source of vitamin B12 for humans, and account for absorption of 1-

5 micrograms per day (Heyssel, Bozian, Darby, & Bell, 1966). Obligatory losses of the 

nutrient have been established at a rate of 0.1% of the body’s circulatory cobalamin pool 

per day, and occurs independently from other factors such as total body storage amounts 

in tissues and the liver (Heyssel et al., 1966).

Physiologic Properties

Absorption

The normal absorption of vitamin B12 in mammals demonstrates both passive 

and active mechanisms (Rosenblatt & Fenton, 2001). Passive absorption accounts for 1-

2% of oral intake, occurs rapidly throughout the entire gastrointestinal tract, and is 

extremely inefficient (Green & Miller, 2007). Active absorption is dependent upon the 

coordinated actions of binding proteins that attach to ingested dietary protein in the 

stomach and intestine, and facilitate its entry into the plasma (Herrmann, Obeid, Schorr, 

& Geisel, 2003; Rosenblatt & Fenton, 2001). Age-related changes in humans related to 

these processes are discussed in a later section in this chapter.
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Intrinsic Factor

After food containing vitamin B12 enters the stomach, gastric parietal cells in the 

fundus and body of the stomach release pepsin and intrinsic factor (IF). In the acidic 

environment of the stomach, pepsin breaks down food/protein particles to release vitamin 

B12, which attaches to salivary R-binder proteins (haptocorrin family). Salivary R-

binder/B12 complexes then pass through the duodenum, where the pancreatic enzyme 

trypsin splits them apart. This frees vitamin B12 to bind to IF. Binding of vitamin B12 to 

IF is dependent on specific folding interactions with the 5,6-dimethylbenzimidazole base 

and the corrin ring, after which the complex shrinks to close around the cobalamin 

molecule (Lien, Ellenbogen, Law, & Wood, 1974). This binding process protects both IF 

and vitamin B12; free IF is particularly susceptible to rapid degradation by pancreatic 

enzymes, and similarly in acid, free vitamin B12 is susceptible to side chain 

modifications of the corrin ring and removal of axial ligands (Kondo et al., 1982). In 

mammals, all forms of vitamin B12 (methylcobalamin, adenosylcobalamin, 

cyanacobalamin) are absorbed by the IF-dependent mechanism.

Cubulin and Megalin 

IF/B12 complexes travel the small intestine until they come into contact with IF 

receptors embedded on the outer surface of the terminal ileum, and are endocytosed. Ileal 

mucosal receptors preferentially accept IF/B12 over free IF, and binding takes place in 

villous cells as opposed to crypts (Kapadia & Essandoh, 1988; Mathan, Babior, & 

Donaldson, 1974). There are two structural subcomponents to the IF receptors—cubulin 

and megalin. Cubulin is a peripherally attached glycoprotein on the intestinal brush 
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border, and megalin is a large, endocytotic transmembrane glycoprotein (Alpers, 2005; 

Birn et al., 1997; Christensen & Birn, 2002). On the external border of the enterocyte, 

cubulin uses calcium ions to recognize and bind the IF/B12 complex (Barth & Argraves, 

2001; Birn, 2006). Upon cubulin recognition and ligand binding of the IF/B12 complex, 

megalin facilitates entry of IF/B12 into the ileal enterocyte via receptor-mediated 

endocytosis (Green & Miller, 2007).

Cubulin and megalin have broader physiologic functions than just the binding of 

IF/B12 complexes in the small intestine. Located in the plasma membranes and 

endocytoplasmic surfaces of cells across various types of epithelial tissue, cubulin and 

megalin colocalize for ligand binding in renal epithelium, visceral yolk sacs, and in the 

placental cytotrophoblast (Birn et al., 1997; Moestrup et al., 1998). Other ligands bound 

by the cubulin and megalin dual-receptor complex include albumin, vitamin-D binding 

protein, and hemoglobin (Birn et al., 2000; Cui, Verroust, Moestrup, & Christensen, 

1996; Gburek et al., 2002; Nykjaer et al., 1999; Nykjaer et al., 2001). Categorized as part 

of the low-density lipoprotein family, megalin also binds ligands singularly (without 

cubulin) in a wider array of epithelial tissues. Present in lung alveoli, epididymis, 

endometrium, oviduct, inner ear, thryocytes, eye cilia, choroid plexus in cerebral 

ventricles, kidney, and parathyroid, megalin binds ligands, including retinol binding 

protein, lactoferrin, apolipoproteins (B, E, J, H), hormones, drugs, toxins, enzymes, 

immune, stress-response-related proteins, and B12 transcobalamin II complex during 

enterohepatic recirculation (Christensen & Birn, 2002).
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Transport

Transcobalamin II 

After an ileal enterocyte absorbs the IF/B12 complex, vitamin B12 is dissociated 

from IF in lysosomal compartments. It is then paired with the cobalamin transport protein 

transcobalamin II, released into the portal circulation, and carried to cells in target tissues 

throughout the body. After ingestion of food, the time required for absorption and 

binding to transcobalamin II is approximately 3-4 hours (Carkeet et al., 2006). Under 

normal physiologic conditions, transcobalamin II is 20-30% saturated, and represents 10-

20% of the total circulatory cobalamin pool (Refsum, Johnston, Guttormsen, & Nexo, 

2006). Also called holotranscobalamin (holoTC), it is the biologically active form of 

vitamin B12 in the body and has a half-life of approximately 2 hours (Lindgren, Kilander, 

Bagge, & Nexo, 1999). Upon arrival at target cells, the B12/transcobalamin II binds to 

the transcobalamin II-receptor embedded in a cell’s plasma membrane, and vitamin B12 

is endocytosed into an intracellular lysosome (Christensen & Birn, 2002).

Transcobalamin I (Haptocorrin) 

In contrast to transcobalamin II-mediated transport of cobalamin (10-20%), the 

remaining 80-90% of circulating B12 in blood is bound to plasma transcobalamin I 

(Carmel, 1985). Transcobalamin I has a second isoform known as transcobalamin III. 

Both are encoded by a single gene. Transcobalamin III contains the same protein core as 

transcobalamin I but is glycosylated differently. These sugar moieties change the 

biophysical properties of the molecule but do not significantly alter vitamin B12 binding. 

For the purposes of this work, transcobalamin I will be used to denote both isoforms. 



 19 
Part of the haptocorrin family, transcobalamin I belongs to a group of cobalamin-

binding glyoproteins that are also found in saliva and gastric mucosa (R-binders), 

(Russell-Jones & Alpers, 1999). In the blood, transcobalamin I does not facilitate direct 

B12 uptake from a receptor-mediated mechanism; it binds to an asialoglycoprotein 

receptor in the liver and transports released hepatic cobalamin stores, recycling some into 

bile. Hypothesized functions of transcobalamin I include the removal of cobalamin 

analogs from the bloodstream (Burger, Schneider, Mehlman, & Allen, 1975; Hardlei & 

Nexo, 2009). Vitamin B12 analogs bound to the transcobalamin I protein turn over 

extremely slowly and demonstrate a half-life of approximately 10 days (Finkler & Hall, 

1967). There is significant unsaturated binding capacity and up to 47.1% of 

transcobalamin I in plasma can be free of cobalamin analogs (Beck, 2001).

Transcobalamin I receptors are not ubiquitously expressed in tissues; thus, in the blood, 

transcobalamin I’s role as an effective transport protein is unclear. 

Metabolism:  Vitamin B12 Biochemistry

Vitamin B12 is required in all mammalian cells for one-carbon metabolism and 

cellular mitosis (Refsum et al., 2006). It plays important roles in two essential reactions, 

one mitochondrial and the other cytoplasmic (Figure 1). In the mitochondria, vitamin B12 

(5’-deoxyadenosylcobalamin) is required for the enzyme methylmalonyl CoA mutase, 

which catalyzes conversion of methylmalonyl CoA to succinyl CoA. This conversion is 

critical for odd-chain fatty acid oxidation and ketogenic amino acid catabolism (Green & 

Miller, 2007).
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In the cytoplasm, vitamin B12 (methylcobalamin) is used in the conversion of 

homocysteine to methionine, and simultaneously overlaps with folate-dependent 

methylation and carbon exchange (Allen, Stabler, Savage, & Lindenbaum, 1993).

Methionine is necessary for methylation, proper protein synthesis, and DNA formation. 

Methylcobalamin catalyzes a two-substrate two-product reaction. The conversion of 

homocysteine to methionine and folate-dependent reactions co-occur, the latter being the 

conversion of 5-methylenetetrahydrofolate (5-methyl THF) to tetrahydrofolate (THF). 

The end result of cobalamin-folate one-carbon metabolism mechanism is DNA precursor 

formation, deoxythymidine monophosphate (dTMP) (Beck, 2001).

Recycling Mechanisms

Storage 

Half of ingested B12 is delivered immediately to tissues by transcobalamin II 

while the other half is taken up by the liver (National Academy of Sciences, 1998). In 

healthy adults, total body cobalamin stores are between 2 and 4 milligrams, with total 

hepatic content between 1 and 1.5 milligrams (Grasbeck, 1959). The large majority of 

hepatic cobalamin stores (up to 70%) are comprised of adenosylcobalamin. Mobilization 

and liberation of vitamin B12 stores is hypothesized to occur via hepatic cell haptocorrin 

surface receptors (Burger et al., 1975).

Reabsorption 

B12 undergoes enterohepatic recycling and between 0.5-9.0 micrograms per day 

is released into the gastrointestinal tract from biliary content (Grasbeck, 1959; Grasbeck, 
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Nyberg, & Reizenstein, 1958). Of the 0.5-9.0 micrograms, 65-70% is intestinally 

reabsorbed through the actions of intrinsic factor (Booth & Spray, 1960). Also classified 

as part of the enterohepatic circulatory process, vitamin B12 from sloughed intestinal 

epithelial cells is absorbed. It has been hypothesized that presence of bile may enhance 

cobalamin absorption from the intestine (Green, Jacobsen, Van Tonder, Kew, & Metz, 

1982).

Excretion 

Vitamin B12 bound to carrier proteins filters through renal glomeruli with tubular 

reabsorption to prevent excessive losses. In the renal tubular epithelium, colocalized 

cubulin and megalin absorb cobalamin/transcobalamin II via receptor-mediated 

endocytosis (Birn, 2006). Normal renal filtration uptake of the cobalamin/transcobalamin 

II complex is estimated at 1.5 micrograms (Lindemans, van Kapel, & Abels, 1986).

Because very small amounts of vitamin B12 binding proteins are measurable in human 

urine, it is recognized that tubular reabsorption is very effective (Hall, 1964; Wahlstedt & 

Grasbeck, 1985). When circulating levels of the vitamin B12/transcobalamin II complex 

exceeds the rate-limited binding ability of megalin and cubulin, the excess is excreted 

into urine. 

Cobalamin Transport Genetics and Molecular Biology

Individual Genes in Transport

The cobalamin transport system is categorized into three main groups of ligands 

and receptors and includes intrinsic factor (IF) and the IF receptor, transcobalamin II and 
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the transcobalamin II-receptor, and haptocorrin and the haptocorrin receptor (Seetharam 

& Yammani, 2003). This section provides an overview of key genetic and molecular 

biology principles of the genes studied in this dissertation, transcobalamin II and the 

transcobalamin II-receptor. Also highlighted is the significance of the biologic overlap of 

transcobalamin II with the other cobalamin transporters, as demonstrated by shared 

exonic sequences, interspecies conservation, and amino-acid homology (Russell-Jones & 

Alpers, 1999).

Transcobalamin II Gene 

The transcobalamin II gene, located at 22q12.2, has nine exons, eight introns, and 

a total length of 19,887 base pairs. The final protein product is non-glycosylated, 

comprises 427 amino acid residues, and yields a molecular mass of 43 kDa (Seetharam & 

Li, 2000). In humans, expression occurs across many different tissue types, but at varying 

levels. Li and associates (1994) reported a single 1.9kb 32P-labelled cDNA band present 

across heart, brain, placenta, lung, liver, muscle, kidney, pancreas, spleen, thymus, 

prostate, testis, ovary, small intestine, colon, and leukocyte tissue samples using Northern 

blot analysis (Li, Seetharam, Rosenblatt, & Seetharam, 1994). Quadros and associates 

(1989) identified a similar band, but analyses identified amino acid differences at three 

codon positions, leading to the hypothesis that there are multiple isoforms of 

transcobalamin II (Quadros, Rothenberg, & Jaffe, 1989). Kidney tissue expresses highest 

levels of transcobalamin II mRNA and compared to this kidney baseline (100%), heart 

and pancreas tissues were at 15%, placenta, lung, liver, muscle, prostate, and ovary 

tissues at 7-9%, and all remaining tissues were at between 2-5% of kidney mRNA 
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expression. Regulation of gene expression occurs through a promoter demonstrating 

features including a 1kb 5’-flanking region that is GC-rich, absence of a TATA start-

transcription motif, and presence of multiple transcription start sites such as Sp1, CF1, 

HIP1, Ets-1, and MED-1 elements (Li, Seetharam, & Seetharam, 1995, 1998).

Transcobalamin II expression occurs through binding to a TGGTCC (5’-3’) hexameric 

sequence that is located 121bp upstream from the transcription start site (Regec, Quadros, 

& Rothenberg, 2002).

Transcobalamin II-Receptor Gene

The transcobalamin II-receptor gene, located at 19p13.3, has five exons, four 

introns, and is 6,229 base pairs in length. The final protein product is heavily 

glycosylated with a molecular mass of 58,000 atomic mass units (Quadros, Sai, & 

Rothenberg, 1994).

Expression of the transcobalamin II-receptor gene has been identified in many 

human tissues. Bose and associates (1995) used immunoblotting experiments to ascertain 

presence of a noncovalent homodimerized 124 kDa protein band (Bose, Seetharam, & 

Seetharam, 1995). Quantitative evaluation showed expression in human kidney was the 

greatest (100%) followed by placenta at 28%, intestine at 18%, and liver at 2%. 

Subsequent monomeric purification of the 124 kDa fragment yielded a 62 kDa band 

bound to a phospholipid bilayer. Study of the purified 62 kDa fragment identified a single 

polypeptide with 27% carbohydrate content and four intermolecular disulfide bonds; 

these characteristics were thought to indicate that transcobalamin II-receptor’s functional 
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importance extended beyond ligand binding to include Golgi-trafficking across plasma 

membranes (Bose & Seetharam, 1997).

Despite these novel purification findings, they proved incomplete and 

irreproducible until 2005, when the binding and functional properties of transcobalamin 

II were described by Quadros and associates (Quadros, Nakayama, & Sequeira, 2005).

Results differed significantly from previously published work, where a 58 kDa band was 

observed and demonstrated binding specificity lacking in previous reports. Full 

purification and definitive identification of transcobalamin II-receptor’s primary structure 

and gene sequence was published in 2009 (Quadros, Nakayama, & Sequeira, 2009).

Because transcobalamin II-receptor is highly glycosylated, the true size and the 

conformations of the attached sugars were difficult to identify and likely contributed to 

ambiguous results between various laboratory efforts. Quadros and associates (2009) 

used sodium dodecyl sulfate-polyacrylamide gel electrophoresis to separate a single 

homogenous band of 58-60 kDa that was 252 amino acid residues in length. Comprising 

the 252-amino acid sequence is an extracellular domain of 199 residues, a transmembrane 

domain of 21 residues, and a cytoplasmic domain of 32 residues. Within the molecule are 

18 residues that comprise two low-density lipoprotein receptor-class A domains, 

indicating that disulfide bonding is likely. 

Relationships Between Cobalamin Transport Genes

Since cobalamin is a highly polar and complex molecule, it cannot easily cross 

plasma membranes in physiologically significant amounts. All higher animals, including 

humans, use hydrophobic cobalamin transport proteins to bind dietary vitamin B12, and 
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facilitate its movement from the stomach and intestine (haptocorrin R-binders and 

intrinsic factor) into the plasma and cells (transcobalamin II), and across circulatory 

storage pools (transcobalamin I in the haptocorrin family).

Sequence Alignment  

Although proteins across the three groups are distinct and function through 

specific receptors, they share biologic similarity in their capacity to bind cobalamin with 

high affinity (Seetharam, 1999). This insight was first appreciated when Hoedemaker and 

associates described presence of IF in the stomachs of multiple species (Hoedemaeker, 

Abels, Wachters, Arends, & Nieweg, 1966). Several decades later, molecular biologic 

approaches significantly advanced this understanding. Through techniques such as 

cloning, genetic sequence from multiple organisms was compared in genes across the 

three groups.

A 1988 analysis of genetic sequence (cDNA) for rat IF determined primary 

structural domains for cobalamin binding and outlined preliminary homologies to other 

biochemical proteins (Dieckgraefe, Seetharam, Banaszak, Leykam, & Alpers, 1988).

Comparison of these genetic rat IF features to human transcobalamin II and 

transcobalamin I (haptocorrin) sequences yielded identification of homologous regions 

across the groups; transcobalamin II had 20% amino acid identity with both human 

transcobalamin I and rat IF (Platica et al., 1991). Simultaneous progress in porcine model 

systems produced additional alignments between rat IF, porcine haptocorrin, and human 

transcobalamin I (Hewitt, Seetharam, Leykam, & Alpers, 1990; Johnston, Bollekens, 

Allen, & Berliner, 1989). Collectively from these studies, overall protein alignment was 
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at 33% and found within them were six regions of high structural sharing, at 60-90% 

similarity in amino acid sequence. The most highly conserved of these six regions 

extends across 15 residues, from position 174 to 188 (174SVDTAAMAGLAFTCL188).

Ancestral Origins 

The overlap across species for the cobalamin binding protein genes is significant 

because it indicated a likely common ancestral gene of evolutionary origin. Recent 

mammalian (rat, mouse, porcine, bovine, human) phylogenetic analysis of the highly 

conserved 15-amino acid residue showed an evolutionary relationship suggesting that 

transcobalamin II evolved earlier than other cobalamin binding proteins (Kalra, Li, 

Yammani, Seetharam, & Seetharam, 2004). The radial tree that was generated from this 

work pictured a relationship where transcobalamin II evolved independently and earlier 

than that of IF and haptocorrin, which co-evolved in a more dependent manner. The 

analysis was also significant for the convergence of mouse and rat transcobalamin II, 

with 95-98% sequence homology compared to 71-74% for human and bovine 

counterparts.

Pathophysiology of Cobalamin Deficiency

Since total-body stores of cobalamin are between 2 and 5 milligrams and daily 

requirements are at several micrograms per day, abrupt cessation of cobalamin dietary 

intake does not yield immediately clinically observable effects. It can take many years for 

classical cobalamin deficiency clinical symptoms to appear as tissues slowly release 

needed minute daily requirements. There are numerous causes of clinical cobalamin 
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deficiency that result from 1) insufficient intake from poor diet or mal-absorptive 

pathology, 2) increased metabolic needs (i.e., pregnancy), and 3) impaired use or vitamin 

activation in tissues such as that which occurs in genetic inborn errors of metabolism. 

The majority of documented clinical deficiencies arise from the first category stemming 

from varying states of impaired gastrointestinal absorption.

Traditional and common clinical definitions of the cobalamin deficiency include 

1) presence of megaloblastic anemia and/or neuropsychiatric alterations that respond to 

supplemental cobalamin therapy, or 2) decreased total serum cobalamin with or without 

altered biochemical metabolites (Miller et al., 2006; Savage, Lindenbaum, Stabler, & 

Allen, 1994).

Megaloblastic Anemia

When there is decreased availability of dTMP coming from conversion of 

homocysteine to methionine, deoxyuridine monophosphate (dUMP) is erroneously 

incorporated into DNA. DNA repair enzymes subsequently recognize this 

misincorporated uracil and cleave out the base. Incomplete DNA repair leads to frequent 

gaps and breaks in DNA sequence (Goulian, Bleile, & Tseng, 1980). Improper DNA 

synthesis results in cellular derangement and premature cell death. Although required in 

all cells, vitamin B12 is needed most by dividing cells, such as those in the bone marrow. 

In absence of adequate dTMP, all hematopoietic precursors undergo abnormal DNA 

synthesis and yield delayed or halted cell division events observable via variable cell 

morphologies (Aster, 2005). As a result, up to 90% of an affected patient’s red blood cell 
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precursors may be destroyed prior to their release into the blood, compared to 10-15% 

under normal circumstances (Babior & Franklin Bunn, 2005).

Destruction of red blood cell precursors on this scale will result in decreased 

hemoglobin concentration and elevated mean corpuscular volume (MCV); presence of 

both are classic hallmark hematologic indicators of megaloblastic changes (Andres et al., 

2006). Normal hemoglobin values in adult women according to the World Health 

Organization are 12-16 g/dL, and levels under 12 g/dL are considered indicative of 

anemia (Aster, 2005; Chaves, Ashar, Guralnik, & Fried, 2002). MCV is used in anemia 

classification discerning microcytic (MCV below 83 fL), normocytic (MCV 83 to 103 

fL), and macrocytic (MCV greater than 103 fL) categories (Williamson et al., 1995).

Thus, macrocytic anemia is characterized by a low red blood cell count, decreased 

hemoglobin concentration, and abnormally large (macrocytic) red blood cells, and 

indicates presence of cobalamin or folate deficiency (Aster, 2005). Cobalamin’s overlap 

with folate will be discussed later in this section. 

In cobalamin deficiency, rapidly dividing granulocytic precursors demonstrate 

nuclear immaturity while protein assembly continues normally. Although cytoplasmic 

features are intact, nuclei demonstrate visible chromatin clumping, become abnormally 

large for the cell’s size, and develop numerous, hyper-segmented granules (Chui et al., 

2001). Malformed platelets, thrombocytopenia, hypercellular bone marrow, and 

decreased white blood cell counts can also occur (Allen et al., 1993).

Accompanying these cellular changes, symptoms commonly reported by patients 

include vertigo, light-headedness, palpitations, and chest pain. Physical examination may 

yield pallor, jaundice (secondary to red blood cell destruction), rapid heart rate, evidence 
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of cardiomegaly, and a holosystolic murmur. Insidiously, anemia impacts a person’s 

perception and understanding of their own health, resulting in feelings of fatigue, 

decreased strength, and a poor sense of well-being (Eisenstaedt, Penninx, & Woodman, 

2006; Guralnik, Eisenstaedt, Ferrucci, Klein, & Woodman, 2004; Penninx et al., 2004; 

Woodman, Ferrucci, & Guralnik, 2005). Life threatening hematological changes can also 

occur, including symptomatic pancytopenia, pseudo-thrombotic microangiopathy, and 

hemolytic anemia (Andres et al., 2006).

Neurologic Changes

Although anemic symptoms usually occur first in cobalamin deficiency, 

neurological symptoms can present prior to, in concordance with, or separately from 

hematological alterations (Carmel, 2000; Carmel, Green, Rosenblatt, & Watkins, 2003; 

Lindenbaum et al., 1988). The central nervous system and neural cells are dependent 

upon continuous supply of nutrients (Selhub, Bagley, Miller, & Rosenberg, 2000). For 

example, myelin sheaths experience frequent turnover and are dependent upon 

methylations of precursor proteins and essential fatty acid oxidations (Scott, 1999). When 

altered, the primary feature of neurologic pathology resulting from decreased cobalamin 

is demyelination that affects both central and peripheral neurons (Green & Kinsella, 

1995).

There are two hypotheses on the pathophysiology that leads to demyelination: 1) 

in the absence of cobalamin, there is decreased synthesis of the methyl group donor S-

adenosylmethionine, which prevents precursor myelin basic protein from being formed, 

(the S-adenosylmethionine hypothesis); and 2) in the absence of cobalamin, 
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mitochondrial precursor methylmalonyl CoA accumulates, becomes toxic, and disrupts 

odd-chain fatty acid metabolism in neurons, (the adenosylcobalamin hypothesis). The 

first of these hypotheses, the S-adenosylmethionine hypothesis, is favored to the second, 

adenosylcobalamin hypothesis. 

The S-Adenosylmethionine Hypothesis 

In the cytoplasm, methylcobalamin serves as a cofactor for the conversion of 

homocysteine to methionine. This enzymatic conversion feeds two cycles, the 

methylation cycle and the DNA replication cycle (Figure 2), (Scott, 1999). The universal 

methyl donor S-adenosylmethionine donates a methyl group to S-adenosylhomocysteine 

for which to use in methylation of proteins, DNA, lipids, and other needed substrates 

(Dinn et al., 1980). Without proper methylation, required substrates are not produced 

properly, including neurotransmitters, membrane phospholipids, and precursor proteins 

used in nerve conduction, such as myelin basic protein (Metz, 1992). Multiple nervous 

system components become affected by these derangements, including long tracts of 

white matter in the posterior and lateral columns of the spinal cord, sensory fibers 

responsible for vibration sensitivity and position sense, and motor fibers controlling 

movement.  

The Adenosylcobalamin Hypothesis 

The alternative hypothesis to neurodegenerative changes observed in cobalamin 

deficiency postulates that neurologic symptoms arise from insufficient conversion of 

methylmalonyl CoA to succinyl CoA in the mitochondria. There is evidence that suggests 
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that accumulated methylmalonic acid disrupts odd-chain fatty acid metabolism, leading 

to neurological damage (Frenkel, 1973). Although there are numerous studies that 

identify quantitative abnormalities of odd-chain and branched-chain fatty acids in vitamin 

B12-deficient spinal cord and peripheral nerve tissue, there is not a clear relationship 

between these measurements and clinical development of cobalamin neuropathy 

(Kishimoto, Williams, Moser, Hignite, & Biermann, 1973; Levy, Mudd, Schulman, 

Dreyfus, & Abeles, 1970; Ramsey, Scott, & Banik, 1977). Further evidence against the 

adenosylcobalamin hypothesis comes from children with inherited disorders yielding 

high methylmalonic acid levels; despite having extraordinarily high levels, the patients’ 

neurologic features are inclusive of mental retardation and muscular hypotonia and not 

those of cobalamin deficiency neuropathy (Rosenblatt & Cooper, 1987).

Clinical Progression and Effects

When there is insufficient methylation for normal neurologic homeostasis, small 

vacuoles in the myelin sheath result in focal swelling of individual neuronal fibers (Pant, 

Asbury, & Richardson, 1968). The focal swellings expand in scope to develop larger foci; 

beginning at the cervicothoracic junction of the spinal cord, posterior columns are usually 

the first to be affected before spreading up and down the cord and into anterior segments. 

On magnetic resonant imaging, increased T2-weighted signal, decreased T1-weighted 

signal, and contrast enhancement of the posterior and lateral spinal cord columns in 

cervical and upper thoracic segments are observed (Locatelli, Laureno, Ballard, & Mark, 

1999).
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Clinical presentation of the focal neuronal swelling is initially mild and 

measurable only by electrophysiological methods (Carmel & Sarrai, 2006).

Neuropsychiatric symptoms, including parasthesias, ataxia, memory loss, mood 

alterations, and extremity weakness, are common initial presentations. If untreated, these 

symptoms become more severe and progress to numbness and tingling of extremities, 

clonus, weakness, spasticity of extremities, ataxia, abnormal reflexes, and gait and visual 

disturbances (Babior & Franklin Bunn, 2005). Underlying these worsening symptoms is 

progressive demyelination that affects peripheral nerves, posterior and lateral columns of 

the spinal cord, and the cerebrum (Allen et al., 1993).

If continuing uncorrected, permanent pathology such as axonal degeneration and 

neuronal death occur (Babior & Franklin Bunn, 2005). Cerebellar involvement is 

inclusive of urinary and/or fecal incontinence, and cranial nerve decompensation, 

including visual disturbances and optic neuritis (Allen et al., 1993). Decreases in 

cognitive function, development of dementia, personality changes, and occurrence of 

depression and Parkinsonian symptoms have all been documented as part of the clinical 

neurologic vitamin B12 deficiency profile (Carmel, 2000; Carmel & Sarrai, 2006; Clarke 

et al., 2003).

Metabolite Abnormalities

Prior to development of hallmark anemic or neurologic symptoms, metabolite 

assays are a valuable tool in providing an indication of a patient’s vitamin B12 status. In 

deficiency states, the cobalamin metabolic reaction precursors methylmalonic acid 

(mitochondrial indicator) and homocysteine (cytosolic indicator) are not metabolized and 
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accumulate in cells and tissues (Lindgren et al., 1999). Increased serum methylmalonic 

acid and total homocysteine correlate with hematological and neurologic symptoms of 

clinical vitamin B12 deficiency and decrease responsively with supplemental cobalamin 

therapy (Henning, Tepel, Riezler, & Naurath, 2001; Naurath et al., 1995; Rajan et al., 

2002).

In clinical practice, normal vitamin B12 metabolic profiles include serum 

cobalamin at >258 pmol/liter, total homocysteine at 5.4-�������	
�
���������������

methylmalonic acid (MMA) at <280 nmol/liter (Carmel, 2000; Carmel et al., 2003; 

Carmel & Sarrai, 2006). Clinical vitamin B12 deficiency is diagnosed when serum 

�	��
�����������	
�
�����	�
��	�	��������������	
�
�����	��������!!"�������

nmol/liter. Less restrictive parameters are used for ascertaining presence of subclinical 

vitamin B12 deficiency, which is present when serum cobalamin is 185-258 pmol/liter, 

total homocysteine is 15-#����	
�
�����	��������!!"����#��-999 nmol/liter. Altered 

metabolite levels in subclinical deficiency can be present even if hemoglobin 

concentration and MCV are normal. In addition to reflecting altered vitamin B12 status, 

abnormal metabolite concentrations have been hypothesized to affect risk for 

development of comorbid pathology, such as homocysteine and cardiac disease. For 

some time, elevated serum homocysteine was recognized as a risk factor for the 

occurrence of cardiovascular disease and thrombosis (Refsum, Ueland, Nygard, & 

Vollset, 1998). However this role is no longer clear, as a recent randomized evaluation of 

folic acid and vitamin B12 versus placebo on blood homocysteine failed to demonstrate 

beneficial effects in preventing myocardial infarction (Study of the Effectiveness of 

Additional Reductions in Cholesterol and Homocysteine Collaborative Group, 2010). 
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Elevated methylmalonic acid and homocysteine concentrations occur in over 90% 

of patients with vitamin B12 deficiency, are increased prior to development of overt 

clinical symptoms, and often accompany normal serum cobalamin levels (Herrmann et 

al., 2003; Stabler, Allen, Savage, & Lindenbaum, 1990). Both methylmalonic acid and 

homocysteine concentrations can be altered in other disease states, such as inborn errors 

of metabolism, folate deficiency, and renal insufficiency (Allen, Lindenbaum, & Stabler, 

1996; Bostom & Lathrop, 1997; Herrmann et al., 2000; Manns et al., 1999; Metz et al., 

1996; D. S. Rosenblatt & Cooper, 1987). Serum homocysteine can be elevated in folic 

acid deficiencies, but methylmalonic acid elevations are specific to cobalamin deficiency 

(Stabler, Lindenbaum, & Allen, 1997).

To better define subtle features of early clinical development of cobalamin 

deficiency, four stages of progressive metabolite alterations and clinical characteristics 

have been suggested: (1 and 2) depletion of plasma and cell stores; (3) incidence of 

functional imbalances as measured by decreased biologically active cobalamin in serum, 

increased homocysteine and/or methylmalonic acid; and (4) appearance of megaloblastic 

and neuropsychiatric clinical symptoms (Herrmann et al., 2003).

Measurement Challenges

Even in individuals with known cobalamin deficiency, normal circulating levels 

of vitamin B12 can be maintained at the cost of tissues for several years (Lindenbaum, 

Savage, Stabler, & Allen, 1990). Total serum cobalamin demonstrates poor sensitivity 

and specificity for ascertainment of when the body is “low” in cobalamin from a tissue 

perspective (Miller et al., 2006). Serum holotranscobalamin, the biologically active 
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cobalamin in serum that is bound to transcobalamin II, is recognized for providing 

improved detection of cobalamin status in individuals (Green, 2008; Lindgren et al., 

1999). Although more precise measurement alternatives such as holotranscobalamin can 

provide clinicians better proof of deficiency, it is generally accepted that interpreting 

multiple testing analytes with clinical presentation symptoms yields accurate detection 

(Green & Miller, 2007; Herrmann et al., 2003; Herrmann et al., 2000; Obeid, Schorr, 

Eckert, & Herrmann, 2004).

Measurement of cobalamin metabolites can be challenging, as sophisticated 

techniques require specialized equipment and training. This is primarily because 

methylmalonic acid and homocysteine levels accumulating in cobalamin deficiency states 

are typically in the nanomolar to micromolar range, and accurately detected by gas 

chromatography-mass spectrometry (GC-MS) and high-pressure liquid chromatography 

(HPLC) in both serum and urine (Green, 1995; Miller et al., 2006). Due to their cost, 

many laboratories cannot afford the technology required for these specialized assays. For 

laboratories that do perform them, accurate interpretation can be affected by absence of 

standardized laboratory procedures, assay reagents, and testing approaches. For serum 

cobalamin, concentrations reported by laboratories often vary from those used in 

international measurement standards, contributing to clinician misinterpretation. Coupled 

with absence of consensus on what is considered ‘elevated’ or ‘decreased’ due to poor 

correlation with actual tissue level—clinicians can erroneously underestimate the 

complexity of commonly used cobalamin laboratory tests (Carmel et al., 2003).
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Cobalamin Overlap with Folate and the Methyl-Folate Trap

As mentioned, megaloblastic anemia and elevated homocysteine clinical features 

can also be caused by decreased folate. This is because cobalamin metabolism overlaps 

with folate metabolism in the conversion of homocysteine to methionine (Figure 3). In 

the absence of adequate cobalamin, an intracellular backlog of 5-

methylenetetrahydrofolate occurs. Since the 5,10-methylenetetrahydrofolate enzyme 

strongly favors one direction, it does not go backwards in the pathway; thus, the cell has 

plenty of folate but it is “trapped” in an unusable form for DNA synthesis (Scott & Weir, 

1981; Scott & Weir, 1994). The resulting clinical presentation is identical to that of 

megaloblastic anemia caused by true deficiency of folate. 

Synthetic folate (folic acid) enters downstream of the methionine synthase 

conversion, and as it is converted to tetrahydrofolate from dihydrofolate, can rescue DNA 

synthesis in cobalamin deficiency. However, it does not resolve elevated homocysteine 

levels, as cobalamin is required for conversion of homocysteine to methionine. If a well-

meaning health care provider aims to treat megaloblastic anemia with folic acid without 

fully reviewing metabolic parameters, the patient experiences resolution of megaloblastic 

anemia as cobalamin deficiency continues, masked by this treatment (Pfeiffer, Caudill, 

Gunter, Osterloh, & Sampson, 2005). In such cases, it is not until progression of 

neurologic symptoms becomes significantly severe that cobalamin deficiency is 

suspected and more detailed metabolite profiles are checked. In the advent of widespread 

folate fortification, research into vitamin B12 and folate status has identified that low-

cobalamin levels exist with high folate levels, and can compound risk of neurologic 

decline (Morris et al., 2005; Selhub, Morris, & Jacques, 2007).
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Gerontologic Research Factors

Cobalamin Deficiency 

Nutritional deficiencies in the elderly population are well characterized as 

functions of expected age-related physiological changes (Saltzman & Russell, 1998). At 

worst, 20-50% of the aging population experience some form of vitamin B12 deficit 

(Lindenbaum, Rosenberg, Wilson, Stabler, & Allen, 1994; Selhub et al., 2000; Stabler et 

al., 1997). Pernicious anemia (Type A atrophic gastritis) is the end-stage presentation of 

autoimmune gastritis and is the primary cause of frankly overt clinical vitamin B12 

deficiency in North American populations (Baik & Russell, 1999). For every elderly 

adult female diagnosed with pernicious anemia, approximately five males are affected, 

and Caucasian and African American elderly adults shoulder increased prevalence of 

pernicious anemia compared to other racial demographic groups (Baik & Russell, 1999).

Antibodies that attack H+/K+ ATPase pumps progressively destroy parietal cells, causing 

continued decline of vitamin B12 absorption and extraction from protein (Morris, 

Jacques, Rosenberg, & Selhub, 2007).

In contrast, Type B atrophic gastritis is a naturally occurring phenomenon of 

aging, stemming from decreased secretion of stomach acid, pepsin, and intrinsic factor 

(Saltzman & Russell, 1998). Concomitant with achlorydia stemming from all forms of 

gastric atrophy, microorganism overgrowth fostered by decreased gastric acid production 

can competitively consume ingested vitamin B12 in aging individuals (Suter, Golner, 

Goldin, Morrow, & Russell, 1991). Although more rare in elderly populations, poor diet, 

decreased dietary intake of foods containing vitamin B12, and strict vegetarianism can 

also result in dietary deficiency for aging adults.
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Additional causative factors include side effects from medications and comorbid 

conditions that increase nutritional need for vitamin B12. Medications interfering with 

vitamin B12 absorption commonly prescribed in elderly individuals include antiepileptic 

agents, proton pump inhibitors, histamine receptor antagonists, the antidiabetic drug 

metformin, antibiotics, and cholestyramine (Wolters, Strohle, & Hahn, 2004). Comorbid 

conditions contributing to malabsorption or increasing nutritional requirements include 

intestinal diseases (Crohn’s), gastric or ileal resections, alcohol intake, smoking, renal 

insufficiency, diabetes mellitus, and lymphoma (Wolters et al., 2004).

Subclinical Cobalamin Deficiency

Subclinical B12 deficiency is a burden largely shouldered by older adults because 

symptoms indicating its presence are often interpreted by clinicians to be associated with 

other disease states or nonspecific effects of aging (Andres et al., 2004). The subtle 

nature of weakness, fatigue, headache, depression, shortness of breath, malaise, vertigo, 

early dementia, and sensory parasthesias is common in aging patients and often 

improperly attributed to other causative mechanisms (Baik & Russell, 1999; Clarke et al., 

2003). Unrecognized deficiency or misattribution of symptoms to folate increases chance 

of progression to irreversible neurological changes. For elderly adults, permanent 

neurological changes commonly experienced by the elderly stemming from unrecognized 

cobalamin deficiencies include taste alterations, memory loss, parasthesias, spinal cord 

subacute degeneration, neuropathy, gait ataxia, dementia, anosmia, incontinence, 

impotence, decreased visual acuity, and psychosis (Baik & Russell, 1999; Carmel, 2000).

For elderly individuals, the best primary defense against permanent neuropsychiatric 
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injury is maintaining a healthy awareness for subclinical cobalamin deficiency in the 

event of nonspecific symptom presentations.

Although measuring cobalamin metabolite levels helps greatly in ascertaining 

presence of deficiency in older adults, several clinical factors are known to affect 

accurate detection. Similar to trends in other age groups, erroneous attribution of 

megaloblastic anemia to folate in the absence of a full metabolic workup can obscure 

diagnosis (Allen & Casterline, 1994; Pfeiffer et al., 2005). Common in elderly 

individuals, renal insufficiency is known to cause increases in both homocysteine and 

methylmalonic acid (Herrmann, Obeid, Schorr, & Geisel, 2005; Herrmann, Schorr, 

Geisel, & Riegel, 2001; Obeid, Kuhlmann, Kirsch, & Herrmann, 2005). Molecular 

etiology for accumulations of homocysteine and methylmalonic acid stemming from 

renal dysfunction are largely unknown. However, elevations in either serum 

homocysteine or methylmalonic acid from renal insufficiency are modest compared to 

those that occur in true cobalamin deficiency states (Savage et al., 1994; Stabler, 

Lindenbaum, & Allen, 1996).

Renal Function Assessment

In clinical practice, serum creatinine is a common measure of renal function and 

is the most widely used method of assessing an individual’s renal status. However, it is 

recognized that relying on serum creatinine measurement alone is limiting, as it does not 

correlate with actual physiologic glomerular filtration rates (Shemesh, Golbetz, Kriss, & 

Myers, 1985; Stevens, Coresh, Greene, & Levey, 2006). In older adults, renal function 

slowly declines and tubular secretion of creatinine increases; thus, elevations in serum 
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creatinine are not seen until more than half of total glomerular filtration is lost (Giannelli  

et al., 2007). In addition, decreased muscle mass in older adults is associated with 

decreased creatinine production. If kidney problems in older adults are not diagnosed, 

renal disease can progress and result in additional costly comorbidities, clinical 

complications, and drug toxicities. In a recent study of 660 elderly adults with normal 

serum creatinine values, alternative renal-estimation equations identified that up to 39% 

of them could be classified as having renal impairment (Giannelli et al., 2007).

A common measure of renal-function estimation used in elderly individuals that 

employs age, weight, and serum creatinine, is the Cockcroft-Gault estimation equation 

(Cockcroft & Gault, 1976). For females, the Cockcroft-Gault formula incorporates a 

constant of 0.85 to account for 15% less muscle mass as compared to males. The 

Cockcroft-Gault has been used in many studies of older adults, and although reported to 

underestimate creatinine clearance, is considered by many experts a more valid and 

reliable method than if using serum creatinine alone (Froissart, Rossert, Jacquot, Paillard, 

& Houillier, 2005; Lamb et al., 2005).

Role of Cobalamin in Cognition

There is a significant and storied history of the suspected role of cobalamin in 

cognition, with much clinician speculation focused on delineating cause and effect 

between altered homocysteine levels and dementia in Alzheimer’s disease (McCaddon, 

2006). However, the concept that deficits in nutritional status would precipitate 

neuropsychiatric decline was not fully acknowledged until 1990, when it was reported 

that low-normal concentrations of cobalamin were associated with cognitive impairment 
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(Bell et al., 1990). The chart review by Bell et al. of 102 geriatric inpatients found that 

the 3.7% of patients who were vitamin B12 deficient were more likely to have 

significantly lower Mini-Mental State Examination scores. Shortly later, Rosenberg and 

Miller’s review of dietary factors and neuro-cognitive health concluded that elderly 

individuals were extremely susceptible to cognitive decline from subtle and progressive 

forms of subclinical nutritive deficiencies (Rosenberg & Miller, 1992). An unintended 

consequence of this position was the assumption that vitamin B12 indeed contributed to 

pathologic progression of cognitive decline in elderly patients, without there being 

presence of strong prospective controlled clinical evidence to confirm it.

Since that time, numerous research studies have reported variable efficacy of 

vitamin B12 on the protection and maintenance of cognitive function (Smith & Refsum, 

2009). Total homocysteine and cognitive measures were inversely related in 2,096 

elderly adult dementia and stroke-free participants (>60 years) of the Framingham 

Offspring Study (Elias et al., 2005). A 3-year prospective evaluation of the association 

between dietary B-vitamin intake and cognitive decline in a subset of 321 men in the 

Veterans Affairs Normative Aging Study revealed that the association of poor cognitive 

status with low vitamin B12 and high homocysteine was only applicable to performance 

on a construction praxis spatial copying score (Tucker, Qiao, Scott, Rosenberg, & Spiro, 

2005). A 6-year prospective observational study of 3,718 community-dwelling elderly 

individuals over 65 indicated that high dietary B12 intake was associated with slower 

cognitive decline, but only in the oldest individuals (Morris et al., 2005). Authors of a 

recent Cochrane Collaboration meta-analysis concluded that there is no evidence that 

folic acid with or without vitamin B12 improves cognitive function of elderly individuals 
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with or without dementia; however, long-term supplementation may be protective for 

healthy elders with high homocysteine levels (Malouf & Grimley Evans, 2008). This is 

likely due to the great clinical and research heterogeneity across studies in the literature. 

Variability in cognitive assessment tools, clinical outcome parameters, quasi-

experimental study designs, laboratory metabolite measurements, and deficiency 

threshold cutoffs contribute to poor-quality evidence from which to draw clinical 

conclusions (Raman et al., 2007).

The Dissertation’s Clinical Measurements of 

Altered Cobalamin Status

The dissertation research uses multiple measures of cobalamin status for elderly 

adult women subjects. Measures previously discussed as related to pathophysiology, 

diagnosis, and clinical management of vitamin B12 deficiency include hemoglobin, mean 

corpuscular volume, serum cobalamin, and the biochemical metabolites homocysteine 

and methylmalonic acid. However, the dissertation also explores relationships to other 

clinical outcomes, including depression, peripheral neuropathy, and functional decreases 

in strength and speed of ambulation.  

Depression

Patients experiencing alterations in mood, primarily depression, are commonly 

reported to also have abnormal cobalamin and folate laboratory values (Bell et al., 1990; 

Carney et al., 1990; Lindenbaum et al., 1988; Savage & Lindenbaum, 1995). Previous 

work in the Women’s Health and Aging Study found a twofold increase in risk of severe 
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depression in patients who experienced clinical cobalamin deficiency as measured by 

serum cobalamin, homocysteine, and methylmalonic acid levels (Penninx et al., 2000). A 

longitudinal association study of depressive symptoms in 3,503 older adults over 7 years 

identified that for each 10 additional micrograms of vitamin B12 intake, there was a 2% 

lower odds of depressive symptoms per year (Skarupski, Tangeny, Li, Ouyang, Evans & 

Morris, 2010). 

Although the association between vitamin B12 intake and depression in older 

adults is reported in multiple observation studies, causation of its presence has not been 

able to be determined. Hypothesized molecular origins of the connection may stem from 

insufficient cobalamin and folate to drive the conversion of homocysteine to methionine, 

preventing methylation of key neurotransmitters in the brain, including the monoamines 

dopamine and serotonin (Bottiglieri et al., 2000; Weir & Scott, 1999). However, many 

behavioral factors that accompany depressive symptomology in aging individuals, such 

as decreased appetite and socioeconomic status, likely contribute to this association as 

well (Donini, Savina, & Cannella, 2003). 

Depression is a challenging phenomenon to measure; it displays lack of 

agreement between clinicians and researchers on the concepts that comprise it, and 

classification mechanisms across numerous settings and groups vary widely according to 

patient subpopulation and clinical care specialty (Pasacreta, 2004). Depression contains 

both affective and somatic components, which results in significant overlap with 

comorbid symptomology (i.e., fatigue, decreased appetite) obscuring accurate research 

measurement. Common to elderly populations, dementia is a common confounder where 
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psychomotor retardation and passive responses to examiner questions are misinterpreted 

as depressive pathology. 

The Geriatric Depression Scale (GDS) was derived for use in geriatric 

populations so that somatic depression manifestations and dementia presence do not 

threaten validity of accurate detection (Feher, Larrabee, & Crook, 1992; Yesavage et al., 

1982). Comprised of 30 items requiring a yes/no answer, higher GDS scores indicate 

depression severity. Generally accepted cutoffs are no depression (scores less than or 

equal to 9), mild depression (scores 10-13), and severe depression (scores greater than or 

equal to 14) (Ferrucci, Kittner, Corti, & Guralnik, 1995; Lyness et al., 1997; Norris, 

Gallagher, Wilson, & Winograd, 1987). Criterion validity using psychiatric evaluation of 

DSM III diagnostic standards for mild depression on GDS was 89%, and for severe 

symptoms was 78%. Specificity values were similar at 73% for mild depression and 86% 

for severe depression (Norris et al., 1987). Although GDS measurements are reliable and 

valid in older persons with respect to research diagnostic criteria and DSM-IV criteria, 

presence of mild or severe depression using the screening scale is not necessarily 

indicative of a clinical diagnosis.

Peripheral Neuropathy

Abnormal sensation is a widely reported indicator of presence or development of 

vitamin B12 deficiency pathology (Carmel et al., 2003). Abnormal sensation is also 

considered a key subtle clinical manifestation indicative of subclinical vitamin B12 

deficiency (Carmel & Sarrai, 2006). As discussed in previous pathophysiology sections, 

aberrated methylation for myelin basic protein precursors from altered conversion of 
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homocysteine to methionine disrupts neuronal signaling. The neurologic syndrome of 

cobalamin deficiency commonly starts with peripheral paresthesias in the feet before 

progressing to more severe pathology (Beck, 2001; Green & Miller, 2007). In a study of 

neurologic aspects of cobalamin deficiency in 369 cobalamin deficient patients, it was 

found that paresthesia was the most common neurologic finding at the time of diagnosis 

on physical examination (Healton, Savage, Brust, Garrett, & Lindenbaum, 1991).

Comprising 87.7% of the paresthesia symptom profiles, the most common abnormality 

was found to be significant diminishment of vibration sensitivity in the feet, or feet and 

legs up to the knees. Less commonly, diminished abnormality also extended up from the 

feet to include the iliac crest, lower thoracic area, midthoracic area, hands and elbows, 

and shoulders. 

Alterations in vibration sensitivity stemming from large-fiber peripheral nerve 

function provide an objective measurement for declining nerve function (Ferrucci, 

Kittner, et al., 1995). Vibratory perception sensory thresholds in older adults are 

reproducible and reliable indicators of polyneuropathy (de Neeling, Beks, Bertelsmann, 

Heine, & Bouter, 1994). Vibration perception testing (VPT) protocols involve serial 

application of quantified vibration and assessing if subjects are able to feel it or not. 

Depending upon a patient’s response, the strength of stimulus is incrementally adjusted 

until an individual can no longer sense vibration. VPT can be administered via electronic 

or mechanical clinical measurement tools, such as vibrometers and tuning forks. 

Although reliability is well established for varying measurement modalities individually, 

measurement methods are not interchangeable due to slight physiological differences in 

how sensory neurons transmit mechanical stimuli (tuning fork) as compared to energy-
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based stimuli (voltage or current) (Temlett, 2009). Key advantages to using voltage- and 

current-based modalities include the removal of variability coming from inconsistent 

techniques of generating and applying the tuning fork’s blade intensity. 

VPT in the Women’s Health and Aging Studies (WHAS) 1 and 2 were assessed 

using different techniques, WHAS 1 with a vibrometer modality and WHAS 2 with a 

tuning fork. In WHAS 1, the VPT used was modeled after a diabetic neuropathy protocol, 

where vibration measures are considered valid if 18 or less stimulation attempts are 

made, and not more than one error occurs in the first eight attempts (Ferrucci, Kittner, et 

al., 1995; Maser et al., 1989). The amplitude of vibration stimulus is converted to a 

micron unit measurement, with higher values indicating that a stronger stimulus was 

required to elicit a correct sensory response from the patient (Resnick et al., 2000; 

Volpato et al., 2003). Accepted neuropathic functional micron unit cutoffs include normal 

function at less than 3.43 units, mild dysfunction at 3.44-4.87 units, moderate dysfunction 

at 4.88-6.31 units, and severe dysfunction at over 6.31 units (Resnick, Vinik, Heimovitz, 

Brancati, & Guralnik, 2001; Volpato, Leveille, Blaum, Fried, & Guralnik, 2005).

Functional Indicators

As reviewed in earlier sections, 5’ adenosylcobalamin serves as the coenzyme for 

methylmalonyl-coenzyme A mutase, which facilitates conversion of methylmalonyl-

coenzyme A to succinyl-coenzyme A in the mitochondria. This conversion is necessary 

for catabolism of odd-chain fatty acids and some amino acids, and results in maintenance 

of normal energy metabolism. 
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In the absence of this conversion, methylmalonyl-coenzyme A and its precursor, 

propionic acid, accumulates and diffuses out of the mitochondria into the cytoplasm and 

disrupts normal metabolism (Brass, Tahiliani, Allen, & Stabler, 1990). The cellular 

accumulation of propionic acid and methylmalonic acid (acyl-coenzyme A thioesters) has 

been shown to inhibit gluconeogenesis from pyruvate, pyruvate oxidation, fatty acid 

oxidation, and ureogenesis (Brass, 1986; Glasgow & Chase, 1976; Walajtys-Rode, Coll, 

& Williamson, 1979; Walajtys-Rode & Williamson, 1980). In cobalamin deficiency, the 

combined effects of deranged energy production processes in addition to accumulated 

methylmalonic, propionic acids, disrupts energy homeostasis and impairs the action of 

multiple critical enzymes (Depeint, Bruce, Shangari, Mehta, & O'Brien, 2006; Kolker & 

Okun, 2005). The clinical effects of these metabolic impairments can be severe, such as 

that which is demonstrated by individuals diagnosed with methylmalonic acidurias. 

As a diagnostic class, methylmalonic acidurias are a group of autosomal recessive 

genetic disorders that offer valuable biologic insight to the broader mechanisms of 

cobalamin deficiency. Methylmalonic acidurias are caused by autosomal recessive 

mutations in genes that code for methylmalonyl-coenzyme A mutase or the cobalamin 

complementation groups, which synthesize 5’ adenosylcobalamin for use in the 

mitochondria (Chandler et al., 2007; Coelho et al., 2008; Rosenblatt & Fenton, 2001).

Inherited methylmalonic acidurias produce severe clinical symptoms that are often fatal. 

Because of their severity, clinical study of organ-system derangements from drastically 

excessive methylmalonic acid levels is limited to animal studies, observations of affected 

newborn infants, postmortem analyses, and children with less severe defects who have 

matured into adolescence and young adulthood. Common symptoms experienced by 
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individuals with methylmalonic acidurias include lactic acidosis, decreased muscle 

strength, muscular hypotonia, lethargy, and failure to thrive (Coelho et al., 2008; 

Rosenblatt & Cooper, 1987; Tanpaiboon, 2005). In a recent characterization of the 

methylmalonic aciduria phenotype, investigators examined correlations of murine and 

human disease characteristics and found that altered metabolism in skeletal muscle was a 

significant source of pathology (Chandler et al., 2007).

Although the autosomal recessive methylmalonic acidurias do not present in older 

adults and thus cannot be generalized to the geriatric population, they may offer biologic 

insight into concomitant metabolic processes when methylmalonic acid concentrations 

are significantly elevated. For example, methylmalonic acidurias in neonates and children 

produce drastically elevated methylmalonic acid levels at approximately 1000 nmol/L, a 

level which is similar to that of severe cobalamin deficiency in older adults. Although 

these metabolic concentrations may be similar, a key limitation in understanding the 

relationship between elevated methylmalonic acid concentration and poor functional 

status in elderly individuals is that it is relatively unexplored in the area of cobalamin 

metabolism. 

Available data is limited to several separate investigations of neuromuscular 

effects of cobalamin deficiency and its possible genetic influences. In a focused 

observational study of 153 cases of cobalamin deficiency in older adults, 16 individuals 

experienced weakness in limbs and 28 individuals experienced difficulties walking 

(Healton et al., 1991). Descriptive data on the neurophysiologic profiles of older 

individuals with cobalamin deficiency identify ataxia as a common clinical presentation, 

with confirmatory decreases in motor neuron action potentials (Fine, Soria, Paroski, 



 49 
Petryk, & Thomasula, 1990). Recent investigations of the Women’s Health and Aging 

Study cohorts have identified that genetic variation in cobalamin metabolism genes 

influences methylmalonic acid concentrations and functional status (Matteini et al., 2008; 

Matteini et al., 2010). The dissertation study more fully explored these relationships by 

examining the functional performance measures hand grip strength and 4-meter walking 

speed.  

Hand Grip Strength

Hand grip strength measurements are an indication of basic upper extremity 

function and measure total force of upper limb muscles (Rantanen, Era, & Heikkinen, 

1994). Although it is a measurement of isometric strength in the upper body, hand grip 

strength has been found to also correlate with other skeletal muscle groups in the body 

(Rantanen, Pertti, Kauppinen, & Heikkinen, 1994). For this reason, hand grip strength is 

commonly used as an estimate of overall body strength.

Hand grip strength has consistently demonstrated value in clinical and research 

settings as a reliable and valid measurement technique. It is a sensitive predictor of 

progressive disability, and morbidity, mortality in elderly adults (Blake et al., 1988; Kerr 

et al., 2006; Phillips, 1986; Rantanen, Era et al., 1994; Rantanen et al., 1999).

Additionally, it has been found to be a useful clinical assessment parameter in screening 

individuals for nutritional deficiencies (Klidjian, Archer, Foster, & Karran, 1982; Matos, 

Tavares, & Amaral, 2007). Crucial for work with elderly patient populations, the hand 

dynamometers that measure grip strength force are portable, inexpensive, rapid, simple to 

use, and ideal for clinical assessments in home and community health settings.
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Various studies identify use of grip strength as a valuable measurement technique, 

since it demonstrates both low intra- and interobserver variability and high clinical 

reproducibility (Bohannon, 2006; Schaubert & Bohannon, 2005; Windsor & Hill, 1988).

However, it is recommended that use of dynamometers in research and clinical settings is 

consistent with respect to device manufacturer (Guerra & Amaral, 2009). A recent 

comparison report identified that although accuracy of dynamometers is high in elderly 

adults, measurements do not correlate well across manufacturers.  

Walking Speed

An indication of strength, mobility, coordination, proprioception, reflex control, 

and balance, the ability to walk provides significant information about a patient across 

numerous functional parameters (Ferrucci, Guralnik, et al., 1995). One of these 

parameters, lower extremity muscle strength, is determined by the speed at which an 

individual is able to walk (Holloszy, 1995; Schwartz, 1997). Walking speed, or gait 

velocity, in combination with other key lower extremity functional health assessments 

can predict disability, mortality, and nursing home admission across diverse elderly 

populations (Fried, Bandeen-Roche, Chaves, & Johnson, 2000; Guralnik, Ferrucci, 

Simonsick, Salive, & Wallace, 1995; Guralnik et al., 1994; Ostir, Markides, Black, & 

Goodwin, 1998; Seeman et al., 1994). When used singularly, gait speed is a relatively 

accurate proxy for full lower extremity performance battery examination, and predicts 

incident disability up to 6 years (Guralnik et al., 2000). Furthermore, longitudinal 

evaluations identify that changes in lower extremity strength over time are linearly 
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associated with meaningful changes in gait speed for sedentary older adults (Purser, 

Pieper, Poole, & Morey, 2003).

In addition to their predictive capacity for adverse outcomes, walking speed 

measurements are simple, reliable, and inexpensive to obtain. Commonly identified 

factors known to affect their accurate measurement include height and gender (Samson et 

al., 2001). Presence of dual tasking, simultaneously performing another task while an 

individual is walking, has also been recognized to affect gait measurement and its 

interference correlates to the difficulty of the concurrent task (Ble et al., 2005; Springer et 

al., 2006). Environmental and contextual factors, such as familiarity with surroundings, 

lighting, smooth walking surface, and use of assistive medical equipment, are also 

recognized to modify walking speed assessments (Hoenig et al., 2006; Richardson, Thies, 

DeMott, & Ashton-Miller, 2004a, 2004b).
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Figure 1. The Biochemical Role of Cobalamin (Vitamin B12) in the Cell.

Vitamin B12 participates in 2 essential reactions: (1) methylcobalamin in folate-

dependent conversion of homocysteine to methionine (cytoplasm) for DNA synthesis and 

methylation, (2) adenosylcobalamin in conversion of methylmalonyl coenzyme-A to 

succinyl coenzyme-A (mitochondrial).  Abbreviations: TCN2 (Transcobalamin II), 

methyl B12 (methylcobalamin), THF (tetrahydrofolate), dT (deoxythymidine).
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Figure 2. The Metabolic Pathway Overlap of Cobalamin and Folate in the Cell. 

The metabolic pathways that involve cobalamin and folate are shown. Their point of 

overlap encompasses the vitamin B12-dependent conversion of homocysteine to 

methionine, which drives 1) methylation (lipids, myelin basic protein, DNA, others) and 

2) the 5-methyl-THF conversion to THF that produces DNA precursors. 

For methylation to occur, S-adenosylmethionine donates a methyl group to S-

adenosylhomocysteine. In the absence of sufficient vitamin B12, this transfer stops. Folic 

acid supplementation bypasses this path. 

Abbreviations: 5,10-MTHFR (5,10-methylene-tetrahydrofolate reductase), 5-MTHF (5-

methyl-tetrahydrofolate), THF (tetrahydrofolate), DHFR (dihydrofolate reductase), 10-

FTHF (10-formyl-tetrahydrofolate), dUMP (deoxyuridine monophosphate), dTMP 

(deoxythymidylate monophosphate), DNA (deoxyribonucleic acid).
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CHAPTER 3

STUDY DESIGN, MEASUREMENT, METHODS, AND ANALYSIS

Introduction

The Women’s Health and Aging Study (WHAS) 1 and 2 cohorts offer a unique 

and valuable research opportunity to evaluate cobalamin metabolism through the lens of a 

population-based approach. The WHAS study methods were designed to capture 

functional health heterogeneity existing in the community-dwelling elderly, including 

presence of disability and its complex modifiers (Kasper, Shapiro, Guralnik, Bandeen-

Roche, & Fried, 1999). The WHAS 1 and 2 initiatives are a rich data source, cataloguing 

numerous clinical, psychosocial, and demographic measures over several years in order 

to assess trajectories of aging and disability. For example, several hundred peer-reviewed 

publications stem from WHAS 1 and 2 data. 

Study Design

This dissertation project is a candidate-gene association study using previously 

collected data from the National Institute on Aging’s WHAS 1 and 2 research initiatives. 

WHAS 1 and 2 were cross-sectional research cohorts of low-, mid-, and high-functioning 

community-dwelling elderly women. Primary objectives of both WHAS initiatives were 

to better understand the causes and trajectories of physical disability in elderly women
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(Chaves et al., 2006; Ferrucci et al., 1995; Guralnik, Fried, Simonsick, Bandeen-Roche, 

& Kasper, 1995). Subjects in WHAS 1 were active study participants from 1992-1995

and for WHAS 2 from 1994-1996.

Sampling and Recruitment, Data Collection

Sampling for both WHAS cohorts was conducted by randomly selecting subjects 

from 32,538 Health Care Financing Administration Medicare eligibility lists in 12 

contiguous Baltimore zip codes (Fried, Bandeen-Roche, Chaves, & Johnson, 2000;  

Guralnik, Fried, Simonsick, Kasper, & Lafferty, 1995). Patients who were unable to 

speak English, physically unable to complete the screening, or who were too cognitively 

impaired to respond to questions were excluded from participation in both cohorts. 

Participants in WHAS 2 had to be well functioning enough to participate in a 1-day clinic 

evaluation.

Sampling and Recruitment:  WHAS 1, 1992-1995

From the 32,538 Health Care Financing Administration (HCFA) Medicare 

records, 6,521 age stratified elderly women (65-74, 75-84, and over 85) were randomly 

selected for screening and possible enrollment (Ferrucci et al., 1995). An introductory 

letter describing the WHAS 1 study was sent to the 6,521 potential participants, which 

was followed 2 weeks later by a second letter inviting participation from Dr. Linda Fried. 

A study interviewer contacted women and administered a screening instrument in each 

patient’s home. Women who lived in nursing homes or were not able to be contacted by 
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study personnel were not eligible for screening, resulting in the final total of 3,841 

participants screened.

The objectives of WHAS 1 recruitment were to select the community-dwelling 

elderly adult women who were most disabled. To do this, population-based disability 

screening was used to select WHAS subjects that were the one-third most disabled in the 

Baltimore area. Each screened research participant was evaluated on 15 tasks across four

physical disability domains: 1) mobility and exercise tolerance, 2) upper extremity 

function, 3) higher function tasks (instrumental activities of daily living), and 4) basic 

self care (high function tasks that are nonmobility dependent). Using the combination 

approach of 4 domains allowed many more women to participate in WHAS than if using 

one singular criterion (i.e., such as self care disability). Previous factor analyses and 

piloting efforts demonstrated validity in using this type of prospective population-based 

functional screening (Branch, Katz, Kniepmann, & Papsidero, 1984; Fried, Ettinger, 

Lind, Newman, & Gardin, 1994; Kasper et al., 1999).

To conduct the disability screening, trained study personnel conducted 20-30

minute home interviews to collect basic demographic information, self-reported health 

status, and medical history (Guralnik et al., 1995). Data collected for the physical 

disability screening included a participant’s ability to perform basic tasks, their 

adaptation to disability, difficulty, and/or dependency, prescription and nonprescription 

medication use, presence of medical diagnoses, physical symptoms for over 20 chronic 

medical conditions, psychological health, social networks and support, health behaviors, 

and health care utilization practices (Ferrucci et al., 1995).
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Women who reported difficulty with two, three, or four physical disability 

domains and had a Mini-Mental State Examination (MMSE) score of 18 or higher were 

invited to participate in WHAS 1 (n = 1,409) (Fried, Kasper, Guralnik, & Simonsick, 

1995; Guralnik et al., 1995). MMSE is a global measure of cognition and surveys 

multiple domains in order to comprehensively assess for presence of impairment 

(Folstein, Folstein, & McHugh, 1975). Total possible score is 30, and anything under 24 

indicates presence of cognitive impairment (Kaufman, Weinberger, Strain, & Jacobs, 

1979). The final WHAS 1 sample size eligible for WHAS and who consented to 

participation was 1,002 (Guralnik et al., 1995). A further subset of 762 elderly women 

consented to research involving phlebotomy. Missing data are discussed later in this 

chapter. 

Sampling and Recruitment:  WHAS 2, 1994-1996

Following shortly after WHAS 1 was WHAS 2, a companion study that focused 

on the higher functioning group in Baltimore’s community-dwelling elderly women 

population. Primary aims for WHAS 2 included prospective observation and analysis of 

the transition from predisability states to functional impairment (Chaves, Garrett, & 

Fried, 2000). WHAS 2 participants were the two-thirds least disabled community-

dwelling elderly women. Although using the same sampling frame as WHAS 1 (HCFA 

records in 12 Baltimore zip codes), a new random sample was selected from 3,592 age-

stratified (70-74, 75-79 years) HCFA Medicare Enrollee records. A total of 2,541 elderly 

women were randomly selected for physical disability screening, with a total of 1,630 

women undergoing initial screening (Fried et al., 2000).
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Women who were not living in extended care facilities were contacted by a 

trained study interviewer who evaluated a third of the patients directly in their home, and

the remaining two-thirds via telephone (secondary to cost). Of the same 15 tasks across 4 

domains, women who reported difficulty in zero or one domain of functioning, and 

demonstrated an MMSE score of 24 or higher were eligible for WHAS 2 (Chaves et al., 

2006; Fried et al., 2000; Fried, Young, Rubin, & Bandeen-Roche, 2001). For participants 

screened over the phone, the MMSE was abbreviated to exclude irrelevant questions (i.e., 

location of examination center) and questions requiring in-person assessment. Screened 

individuals answering at least 80% of abbreviated MMSE questions correctly via 

telephone were eligible for WHAS 2 study inclusion. A total of 1,630 patients were 

screened for eligibility, n = 880 were invited to participate, with final WHAS 2 sample 

size participation at n = 436 (Fried et al., 2000). Similar to WHAS 1, a subset of the 

consented WHAS 2 patients also consented to additional phlebotomy (n = 405). Missing 

data is discussed later in this chapter. 

Data Collection:  WHAS 1, 1992-1995

Approximately 2 weeks after eligibility screening, a trained nurse conducted a 

standardized 4-5 hour examination in the homes of each study participant (Ferrucci et al., 

1995). Reported medical conditions were validated and their severities ascertained. A 

comprehensive examination was completed and included: physical assessments, vital 

signs, anthropomorphic data, electrocardiography, joint photographs, audiometry, 

pulmonary function, and various other strength, agility, and endurance performance 

measures. Medical records underwent ongoing surveillance and participants’ primary 
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care physicians provided confirmation of self-reported information. Phlebotomy was 

performed on 762 of the 1,002 participants who signed a secondary consent. Prospective 

data collection occurred in the form of in-home follow up visits that were conducted 

every 6 months for a total of 3 years (Volpato, Leveille, Blaum, Fried, & Guralnik, 

2005). Updated information on participants’ health status was collected, including new 

diagnoses of any major illnesses, medication changes, surgeries, hospitalizations, and 

acute decompensations stemming from chronic conditions. After the 3-year prospective 

follow-up was completed, two more phone interviews were done to perform vital status 

assessment, yielding a total follow-up time span of 5 years (Chaves et al., 2004).

Data Collection:  WHAS 2, 1994-1996

After screening, eligible participants were scheduled for a 5-6 hour baseline 

examination at the John’s Hopkins Functional Laboratory (Fried et al., 2000).

Participants completed the same standardized questionnaires as WHAS 1 subjects. 

Detailed demographic information, information on functional capacity, and self-report of 

medical diagnoses for 11 chronic diseases were among data collected. Many tests of 

functional capacity were administered, and phlebotomy was performed on 369 of the 436 

participants who signed a secondary consent. A 4-5 hour follow-up examination (also at 

the John’s Hopkins Functional Laboratory) was performed for each participant 18 months 

after baseline to ascertain change in functional status. For the majority of laboratory and 

clinical measurements, WHAS 2 methods of data collection were standardized to WHAS 

1 instrumentation and techniques (Semba, Garrett, Johnson, Guralnik, & Fried, 2000).

Exceptions to this rule were due to time and cost constraints. 
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Data Collection Differences Between WHAS 1 and 2

For the dissertation study’s laboratory, clinical outcome, and covariate 

measurements, all data collection and measurement methods used the same laboratory 

services, clinical instrumentation, and data collection protocols except for the peripheral 

extremity vibration sensitivity testing. WHAS 1 employed a vibrometer (voltage/current 

stimuli) measurement protocol while WHAS 2 used a tuning fork measurement protocol. 

For several reasons, dissertation analysis of peripheral sensitivity scoring was restricted 

to include only WHAS 1 vibrometer data (n = 498). 

Reasons for restricting analyses to WHAS 1 included the following: 1) reliability 

of results would be threatened if using measurements from both instruments since the 

protocols were not interchangeable; 2) there was potential for variability coming from 

tuning fork stimulus application that could not be adjusted for (i.e., could not ensure 

clinician hit the tuning fork the same way in the same location for all WHAS 2 subjects); 

and 3) there was a much smaller sample size for WHAS 2 subjects with tuning fork data, 

which did not meet power analysis estimate requirements.  

Subject Demographics

Numerous investigations have pooled WHAS 1 and 2 subject data for a 

strengthened approach representative of the community-dwelling elderly (Bandeen-

Roche et al., 2006; Chaves, Ashar, Guralnik, & Fried, 2002; Chaves et al., 2005; Leng, 

Xue, Tian, Walston, & Fried, 2007; Semba et al., 2000; Semba et al., 2005; Walston et 

al., 2005). Key differences in the two WHAS studies include an increased proportion of 
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individuals with higher education in WHAS 2, and greater representation of African-

Americans in WHAS 1. Both cohorts have minimal inclusions for other racial minorities. 

Outcome Variable Measurement

Hematological measurements used in the dissertation include hemoglobin 

concentration and mean corpuscular volume (MCV). Cobalamin-related biochemical 

measurements used in the dissertation include serum cobalamin and the metabolites 

homocysteine and methylmalonic acid. Neurologic measurements used in the dissertation 

include depression scores (Geriatric Depression Scale) and vibratory sensitivity.

Functional performance measurements include grip strength and 4-meter walking speed. 

Phlebotomy and WHAS Sample Processing, Storage

The dissertation research includes measurements from WHAS 1 and 2 

participants who consented to phlebotomy. WHAS 1 venipuncture was performed in 

subjects’ homes by a certified phlebotomist who followed a standardized study protocol. 

The blood samples were nonfasting and after venipuncture, taken for processing and 

aliquoting at the Core Genetics Laboratory in Johns Hopkins University School of 

Medicine. WHAS 2 venipuncture was performed during clinic visits by a certified 

phlebotomist following the same standardized protocol as used in WHAS 1. The blood 

samples were also nonfasting and processed at the Johns Hopkins University School of 

Medicine. Frozen aliquots were sent on dry ice to Quest Diagnostics (formerly Corning 

Clinical Laboratories and MetPath) in Teterboro, NJ for analysis that included complete 

blood count, and biochemical, hormonal serum measurements. Remaining aliquots were 
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stored at -80 degrees Celsius in the Core Genetics Laboratory at the Johns Hopkins 

University School of Medicine.

Hematologic Measures

Hemoglobin 

WHAS 1 and 2 blood samples were collected for hemoglobin assessment in 

sterile, vacuum, ethylenediaminetetraacetic acid (EDTA) tubes.  At Quest Diagnostics, 

hemoglobin levels were measured via the standard cyanmethemoglobin method, a 

calorimetric approach that determines hemoglobin concentration through 

spectrophotometry (Chaves et al., 2006; Williamson et al., 1995).

Mean Corpuscular Volume (MCV) 

The MCV is a calculated value of the hematocrit percentage (proportion of 

erythrocyte volume to whole blood volume in a sample) divided by the red blood cell 

count number, and is reported in femtoliters (fL), (Williamson et al., 1995). Performed as 

part of the complete blood count for WHAS subjects, the MCV levels were collected at 

the same time and in the same tubes as blood drawn for hemoglobin.

Biochemical Metabolites

Serum Cobalamin

At Quest Diagnostics (Teterboro, NJ), serum cobalamin concentrations were 

determined using a competitive intrinsic factor protein-binding assay according to the 

method of Ciba-Corning Diagnostics Corporation in Medfield, MA (Stabler et al., 1999).
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Homocysteine and Methylmalonic Acid

A subset of WHAS 1 and 2 sample aliquots were shipped on dry ice from the 

Core Genetics Laboratory at John’s Hopkins University School of Medicine to the 

University of Colorado Health Sciences Center (UCHSC) for measurement by WHAS 

collaborator, Dr. Sally Stabler (Penninx et al., 2000; Stabler et al., 1999). Both total 

homocysteine and methylmalonic acid levels were obtained using stable-isotope dilution 

and capillary gas chromatography-mass spectrometry with selected ion monitoring 

(Stabler, Marcell, Podell, Allen, & Lindenbaum, 1986; Stabler et al., 1988).

Neurologic Measures

Geriatric Depression Scale (GDS)

WHAS 1 and 2 subjects were administered the GDS. It is a straightforward 

depressive examination scale consisting of 30 items requiring approximately 10 minutes 

to administer (Yesavage et al., 1982). Questions require a yes/no answer from 

participants; of 30 items, only one concerns presence of somatic (physical) 

symptomology, which was of special interest for WHAS applications where on average 

participants had at least one chronic condition (Kasper et al., 1999).

Questions in many generalized depression screening tools involve assessing 

presence of symptoms that are also present in other disease states, such as “do you have 

low energy”? A false positive can easily result in elderly individuals suffering from a 

chronic condition such as chronic obstructive pulmonary disease, as they would 

experience low energy due to difficulty breathing and not depression. The GDS was 

specifically designed to assess depression symptoms in the elderly to reduce the 



 87 
occurrence of these false positives from the aging process or other common comorbid 

conditions, by removing focus from physical symptoms (Norris, Gallagher, Wilson, & 

Winograd, 1987). GDS scores under 10 indicate absence of depression, 10-13 mild 

depression, and scores over 14 indicating moderate and severe depression (Norris et al, 

1987). 

Vibratory Sensitivity  

As indicated in Chapter 2 and earlier in this chapter, vibration sensitivity was not 

measured similarly between WHAS 1 and WHAS 2 subjects due to cost and time 

limitations. Because the measurement methods did not use the same instruments and 

protocols, only WHAS 1 subjects’ vibration sensitivity data were analyzed in the 

dissertation study. 

In WHAS 1, vibration perception testing (VPT) was conducted using a 

vibrometer. Thresholds were measured and established by applying voltage/current based 

stimuli called ‘vibration units’ to participants’ lower extremities with the Vibratron II 

(Physitemp Instrument, Inc., Clifton, NJ). Women were asked to indicate when vibration 

was felt after stimulation of the lower surface of their right big toe (yes/no), using a two-

alternative forced choice procedure. Progressive stimulation intensity decreases in 10% 

increments were performed until subjects could no longer detect vibration. Upon error, 

the intensity was increased by 10%, with progressive incremental decreases continued 

until a total of five errors were made. After conversion of vibration units to microns, 

mean thresholds were identified by taking the five errors and five lowest correct scores, 
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eliminating the highest and lowest of each, and obtaining the mean of the remaining 

values. 

Functional Measures

Grip Strength 

Grip strength was measured for study subjects using a JAMAR hand 

dynamometer (Model #BK-7498; Fred Sammons Inc, Burr Ridge, IL). WHAS 1 and 2 

subjects were asked to grasp the dynamometer and squeeze as hard as possible three 

times on each hand. The best measure in the stronger hand was recorded and reported in 

kilograms. 

Four-Meter Timed Walk

WHAS 1 and 2 participants were asked to walk over a 4-meter course, two times 

at their usual speed and once, as fast as possible. For some participants, 4 meters was not 

available in their homes and a distance of 3 meters was used instead. Beginning at a

starting line, walking and timing of the walk did not begin until the command to start was 

given by the interviewer. Using the faster of the two usual-pace walks, average walking 

speed was calculated by dividing the length of the walk (in meters) by the time in seconds 

required to complete it. Subjects were permitted to use a cane, walker, or walking aid, but 

not assistance from an additional person. 
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Covariate Variable Measurement

Renal Function

The dissertation research analyzes biochemical metabolite data that is adjusted for 

a participant’s renal function. An essential component of several renal-estimation 

calculations, serum creatinine levels were obtained for WHAS 1 and 2 subjects who 

participated in venipuncture. Performed by Quest Diagnostics in Teterboro, NJ, serum 

creatinine concentrations were analyzed via the conventional Jaffe method (Semba et al., 

2009). Incorporating serum creatinine, age, weight, and a female muscle mass constant, 

the Cockcroft-Gault formula used in the dissertation research to estimate WHAS 1 and 2 

subjects renal function (mL/min) is: 

Creatinine Clearance = (140-age in years) x (mass in kg) x 0.85 

72 x serum creatinine (mg/dL)

Folate

In addition to serum cobalamin levels, the central laboratory of Corning Clinical 

Laboratories in Teterboro, NJ also determined serum folate concentrations for WHAS 1 

and 2 subjects. Serum folate concentrations were determined using a competitive folate-

binding protein assay according to the method of Ciba-Corning Diagnostics Corporation 

in Medfield, MA (Penninx et al., 2000).
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Standing Height

During in-home screenings for WHAS 1 subjects and clinic visits for WHAS 2 

subjects, standing height (in centimeters) was measured by trained study staff accordant 

with study protocol.

Genotyping Methods

Isolation and Preparation of WHAS Subject DNA

Blood Processing

At the Core Genetics Laboratory in Johns Hopkins School of Medicine, WHAS 1 

and 2 subject DNA was extracted from whole blood using the Puregene DNA 

Purification Kit from GentraSystems, Inc. DNA samples were then stored in a -80

(Celsius) freezer at the Johns Hopkins University. Approximately 50 nanograms of 

genomic DNA was provided for genotyping the 794 WHAS 1 and 2 subjects. It was not 

known how many freeze/thaw cycles WHAS subject DNA underwent prior to their 

receipt for this project; however, genetic research using WHAS material dates from 

published reports in 2005. 

Whole Genome Amplification

Large-scale genotyping methods, such as that used in this dissertation research, 

require several micrograms of DNA. The small amount of available starting material (50 

nanograms) would be quickly consumed, severely limiting investigative capacity. In the 

case of limited starting DNA, a method that can be used to provide ample supply of 

genomic material is Whole Genome Amplification (WGA). Relatively new, WGA 
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reproduction of small amounts of DNA is becoming a widely utilized technique in 

conducting high-throughput SNP genotyping (Berthier-Schaad et al., 2007; Dean et al., 

2002).

There are several WGA methodologies and they are categorized into polymerase 

chain reaction (PCR)-based, and non-PCR-based approaches. A non-PCR-based method, 

multiple displacement amplification, is the WGA technique that was used in this 

dissertation research to amplify the limited starting quantity of WHAS DNA into more 

substantiative working material for genotyping. Multiple displacement amplification is 

based on the rolling circle amplification mechanisms used by plasmids and viral vectors 

during DNA replication—but is adapted to use genomic DNA instead (Dean et al., 2002).

In multiple displacement amplification, a highly processive bacteriophage enzyme *@#��

DNA polymerase) displaces DNA strands, replicates copies, and proofreads their 

assembly. Compared to Taq Polymerase��@#��\^"��	
�����������	���������

significantly lower error rate and faithfully amplifies DNA across the entire genome 

(Lovmar & Syvanen, 2006). Accuracy and fidelity of multiple displacement amplification 

is dependent upon the amount and quality of genomic DNA that is used as starting 

material in the reaction; at least 10 nanograms of genomic DNA input is required for SNP 

genotyping (Bergen, Qi, Haque, Welch, & Chanock, 2005).

The dissertation research used Qiagen’s 100-reaction REPLI-g Midi Kit. The 

protocol required 10 nanograms of starting genomic material to yield over 40 micrograms 

of final high-molecular weight material in 10-100kb stretches (Appendix A). Although 

use of multiple displacement amplification prod�����������������
������@#��\^"�

polymerase can randomly amplify one of the patient’s alleles and drop out the remaining 
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counterpart (Bergen et al., 2005). As a result, heterozygotes are susceptible to “allele 

drop-out,” often causing heterozygotes to be erroneously interpreted as homozygotes. To 

correct for incidence of heterozygote dropouts, the dissertation research performed two 

separate and independent rounds of multiple displacement amplification, which were 

pooled together into a common solution for genotyping.   

Candidate Gene SNP Selection

The Haplotype Map, or HapMap, was a research initiative completed in 2003 that 

provides public access to a catalogue of human genetic variation for racial subgroups:  

Caucasian, African American, Chinese, and Japanese (The International HapMap 

Consortium, 2003). Following successful dissertation proposal defense in May 2008, the 

most current version of HapMap (2.0) was used to select SNPs for the dissertation 

research (The International HapMap Consortium, 2007). Within HapMap 2.0, Haploview 

and Tagger were used to visualize population SNP alleles, genomic regions, and overall 

SNP selection. Conceptualized and released by Broad Institute, Haploview is a freely 

accessible public program that can be used to visualize linkage disequilibrium plots. A 

function that exists as part of the Haploview program, Tagger identifies similarity among 

SNPs as a function of their proximity to one another. SNPs closest together offer the 

same information as that contained by its neighbors (linkage disequilibrium), (Ardlie, 

Kruglyak, & Seielstad, 2002). The population statistic that is used to discern similarity 

among SNPs is r2 and for the dissertation research, a conservative threshold (r2 = 0.9) was 

used to eliminate redundancies (Wall & Pritchard, 2003).



 93 
In addition to HapMap SNPs, other variants that were likely to have functional 

implications were explored and included. Searched for in the public catalogue of SNPs 

(dbSNP), additional selected candidates included variants within exons, promoters, 

conserved sequences across species, and those reported in literature that were associated 

with clinical characteristics and biochemical parameters being explored in this research. 

In sum, a total of 51 SNPs incorporating both Caucasian and African American ethnic 

ancestries were selected for the dissertation study—29 SNPs in the transcobalamin II 

gene and 22 SNPs in the transcobalamin II-receptor gene (Tables 1 and 2).

SNP Genotyping for Whole Genome Amplified WHAS Material

There are many high-throughput SNP genotyping systems available for laboratory 

use, and they vary according to throughput capacity, accuracy, cost, and scale. The 

Sequenom MassARRAY iPLEX Platform is well known for its ability to incorporate 

high-throughput features for reasonable multistep system/reagent use and costs (Gabriel, 

Ziaugra, & Tabbaa, 2009).

The Sequenom MassARRAY platform allows for accurate custom SNP 

genotyping by using a homogeneous reaction format with two progressive phases of

specificity comprising: 1) a locus-specific PCR reaction to obtain a 100-base pair region 

where a SNP is located, and 2) a locus-specific primer extension reaction that produces 

the SNP genotype. A single extension primer can generate allele-specific results with 

unique masses, and multiplexed SNP extension reactions can be performed with a single 

termination mix (iPLEX) and universal reaction conditions. Following extension, 

samples are analyzed by MALDI-TOF mass spectroscopy.  
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A singular Sequenom system is capable of generating over 100,000 genotypes per 

day (Gabriel et al., 2009). There are multiple preparatory phases and reaction steps that 

were required to obtain genotypes for plates of whole genome amplified WHAS DNA,

including pre-PCR sample and assay preparation, PCR amplification, post-PCR cleanup, 

iPLEX primer extension, primer extension cleanup, and spotting extension products onto 

SpectroChips. 

Pre-PCR: WHAS Sample and Assay Preparation 

After WHAS DNA was whole genome amplified and the amplification rounds 

were pooled in 96-well plates, samples were diluted to create working stocks at a 

concentration of 10ng/ul. Four groups of 96-well plates were concatenated onto a single 

384-well plate and stored in desiccators. In sum, there were nine unique master 384-well 

WHAS plates for the dissertation research, from which small volumes of sample were 

aliquoted and stamped into genotyping stockpiles using automated liquid transfer 

machinery (BeckmanCoulter’s Biomek; Tomtec’s Quadra tower). Labeled genotyping 

plates (384 wells) had approximately 5-20 ng of whole genome amplified DNA placed 

into each well. Negative blank and water control wells were created prior to automated 

transfer and were spatially unique to each master WHAS plate.  

An automated approach was used to design PCR assays and to select 

oligonucleotide primers. Using sequence in publicly available bioinformatics databases, 

DNA sequence (~100 base pairs 3’-5’) surrounding each selected SNP was copied and 

pasted into an Excel Spreadsheet and brackets were inserted around SNP sites. The final 

Excel spreadsheet was converted into a text file and run through Sequenom’s 
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MassARRAY Designer software. The software automatically designed forward and 

reverse PCR primers, and extension iPLEX primers, and grouped all the assays into 

chemically optimized assay pools. Through this pooling, many different individual SNP 

loci can be analyzed simultaneously within the same sample well. The WHAS 

dissertation project had a total of 5 pools (also called “plexes”) and were broken down 

according to the following: Plex 1 with 19 SNP assays, Plex 2 with 18 SNP assays, Plex 

3 with 28 SNP assays, Plex 4 with 23 SNP assays, and Plex 5 with 17 SNP assays. Thus, 

when prepping a 384-well plate, reactants and primers would be mixed and aliquoted into 

each of the wells according to which Plex was being run. 

PCR Amplification of Target Loci 

PCR primers from Sequenom’s MassARRAY Designer software output file were 

ordered from Integrated DNA Technologies (IDT) and were unmodified with standard 

purification at 25 nanomolar concentration. The following reactants were mixed and 

added to the 384-well plates of WHAS whole genome amplified DNA (1X reaction): 

2.85 ul water, 0.625 ul of 10X PCR Buffer, .325 ul of 25 mM MgCl2, 0.1 ul of 25mM 

dNTPs, 1 ul of 500 nM F/R PCR Primer Mix, and 0.1 ul of 0.5U/ul HotStart Taq 

Polymerase. Automated fluid transfer from a dispenser holding the PCR reaction mix into 

each of the 384 wells was performed through the automated Biomek (Beckman Coulter) 

in a pre-PCR area of the laboratory. PCR thermocycler conditions for the 384-well plates 

were as follows: initial denaturation at 94 degrees C for 15 minutes; 45 cycles of 

denaturing at 94 degrees C for 20 seconds, annealing at 56 degrees C for 30 seconds, and 

extension at 72 degrees C for 60 seconds; followed by final extension at 72 degrees C for 
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3 minutes; and held at 4 degrees C for infinity until removed from the thermocycler 

block.

Post-PCR Cleanup Using SAP

Following the PCR reaction, there are many remaining nonincorporated dNTPs 

from amplification products in each well of the 384-well plate. If allowed to remain in the 

wells, functional dNTPs can extend in the primer extension reactions, causing erroneous 

contaminant peaks to occur, which greatly detriments data analysis and interpretation. 

Treatment with the enzyme shrimp alkaline phosphatase (SAP) is performed to remove 

any remaining and unincorporated dNTPs from the PCR amplification products. SAP acts 

by dephosphorylating the unincorporated dNTPs and cleaves available phosphate groups 

from the 5’ termini. The following reactants were mixed and added to the 384-well plates 

of WHAS whole genome amplified DNA following PCR (1X reaction): 1.53 ul water, 

0.17 ul SAP buffer, and 0.30 ul SAP.  Automated fluid transfer from a dispenser holding 

the SAP reaction mix into each of the 384 wells was performed through the automated 

Multimek in a post-PCR area of the laboratory. SAP thermocycler conditions for the 384-

well plates included SAP activation treatment at 37 degrees C for 20 minutes, SAP 

deactivation at 85 degrees C for 5 minutes, and held at 4 degrees C for infinity until 

removed from the thermocycler block.

Primer Extension Using iPLEX Chemistry

In comparison to previous Sequenom genotyping technologies, the use of iPLEX 

extension assays is what allows for routine multiplexing of up to 30-36 SNPs in one 
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sample well. In the iPLEX extension assay, primers and amplified target DNA are 

incubated with dideoxynucleotide terminators that are mass modified. The extension into 

the SNP site proceeds according to the sequence at the variant loci, and is a single and 

complementary terminator base. Before iPLEX, the masses of the A, C, G, T terminators 

that were incorporated at the SNP site were very close together and difficult for the mass 

spectrometer to discern between; only several assays could be run simultaneously (i.e., 1-

6 SNP assays). Sequenom’s development of mass-modified dideoxynucleotide 

terminators provides clearer allele signals, reducing allele-bias and providing for easy 

discernment by the mass spectrometer (Table 3) (Oeth et al., 2006).

For the dissertation’s iPLEX reaction in the lab, unmodified extension primers 

from Sequenom’s MassARRAY Designer software output file were ordered from 

Integrated DNA Technologies (IDT) featuring standard purification at 250 nanomolar 

concentration. Because there is an inverse relationship between mass spectrometer peak 

intensity and the mass of the SNP analyte, all extension primers were optimized so that 

they were as equal in intensity as possible. After optimization, the following reactants 

were mixed and added to the 384-well plates of WHAS whole genome amplified DNA 

(1X reaction): 0.619 ul water, 0.2 ul 10X iPLEX buffer, 0.2 ul iPLEX terminator, 0.94 ul 

of extension primer mix, and 0.041 ul of 0.655U/ul iPLEX extension enzyme. Automated 

fluid transfer from a dispenser holding the iPLEX extension reaction mix into each of the 

384 wells was performed through the automated Multimek in a post-PCR area of the 

laboratory. Extension thermocycler conditions for the 384-well plates included initial 

denaturation of 94 degrees C for 30 seconds, 40 cycles of denaturing at 94 degrees C for 

5 seconds, annealing at 52 degrees C for 5 seconds, and extension at 80 degrees. 
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Embedded in each of the 40 cycles are 5 repeat cycles between annealing at 52 degrees C 

for 5 seconds and extension at 80 degrees for 5 seconds. Following the 30 cycles, a final 

extension at 72 degrees for 3 minutes occurs before being held at 4 degrees C for infinity 

(until taken out of thermocycler block).

Post-iPLEX Resin Cleanup

Following primer extension, there are many salts left over from the iPLEX 

extension reaction products. If left in the sample wells untreated, salts including Na+, K+,

and Mg2+ ions can cause a great deal of background noise in the spectra, preventing the 

mass spectrometer from making genotype calls. Sequenom’s SpectroCLEAN is a sand-

like resin that is pretreated with acid reagents, and is added directly to the primer 

extension products in each of the 384 wells. To make the slurry, 80ul of water is added to 

12 mg of resin in a 96-well PCR plate; the Multimek transfers 16 ul of the resin/water 

slurry to each of the 384 wells. After automated addition of the slurry, the 384-well plate 

is slowly rotated for 10-30 minutes to ensure that samples are thoroughly mixed with 

cation removal resin.  

Spotting of iPLEX Products on SpectroChips

After rotation of the 384-well plates, the plates were centrifuged. Clear fluid on 

top of the settled resin contained the extended/desalted SNP genotype analyte products. 

After the plate was laid flat in an automated spotting machine, a pinned robotic spotting 

head transferred ~25 nL of the sample analyte solution onto a silica chip (SpectroChips). 

Each of the 384 spots on the SpectroChips was comprised of 3-hydroxypicolinic acid, the 
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appropriate matrix for MALDI TOF mass spectroscopy. In addition to the 384 sample 

matrix spots, 10 additional reference matrix spots were reserved for application of 

Sequenom’s MassARRAY mass spectrometry calibrant solution.   

Calling the Genotypes

Mass Spectrometry Detection of SNP Genotype 

Matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass 

spectrometry can differentiate SNP densities and ascertain a patient’s genotype at a SNP 

locus for one of three combinations: heterozygous alleles (A/T) or homozygous alleles 

(A/A and T/T). The laser is measuring the time-of-flight that genotype analyte fragments 

on the SpectroChip’s matrix take to travel from one end of the mass spectrometer to the 

other. Each allele or allelic combination has an expected time-of-flight, which correlates 

to a specific weight in daltons. Longer times indicate heavier products and shorter times 

indicate lighter products.

A total of 80 SpectroChips were analyzed for the dissertation research. After 

spotting, each chip was placed into the mass spectrometer (Sequenom; Bruker 

Instruments), placed under vacuum pressure, and the spots were sequentially shot with a 

laser. The 3-hydroxypicolinic acid matrix comprising each spot played an important role 

in the MALDI-TOF; it absorbed the laser light energy and caused part of the illuminated 

analyte substrate to vaporize. The vaporized matrix plume expanded after the laser fired, 

and as it passed into the vacuum, became ionized. After vaporization and ionization, the 

genotype analyte fragments were electrostatically transferred into the time-of-flight 

chamber and separated from matrix ions. The genotypes were then detected (or “called”) 
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based on this mass-to-charge characteristic; ion detection at the end of the flight chamber 

was directly proportional to the square root of the postvapor plume mass-to-charge ratio.

MassARRAY Typer 4.0 and Manual Calling  

After spectra and calls for each chip were generated, Typer 4.0 Software was used 

to visualize plate results and the spectral curves. The Typer 4.0 system allowed 

visualization of an assay’s performance for the chip, and inspection of automated calls by 

the software. MassARRAY had difficulties in automatically calling genotypes of WHAS 

material due to the whole genome amplification process. For example, heterozygote calls 

for many assays were scattered widely from the x-axis to the y-axis, as opposed to the 

typical tight cluster formation at the 45-degree demarcation area between the axes. 

MassARRAY often erroneously called these spread-out heterozygotes as homozygotes, 

since heterozygotes demonstrated a greater range than would normally be expected due to 

the whole genome amplified process. Subsequently, all genotype calls in the dissertation 

research were inspected manually, and approximately 40-50% of all WHAS genotypes 

were issued manually following the creation of a validated calling algorithm (Appendix 

B). To ensure manual calling did not introduce unacceptable levels of variability, all 

plexes (1 through 5) of WHAS DNA underwent three to five independent rounds of 

genotyping and calling, and irreconcilable discordant genotypes were discarded from 

analyses. 
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Protection of Human Subjects

For both WHAS 1 and 2, protection of human subjects was obtained through 

Institutional Review Board approval at the John’s Hopkins University and the National 

Institutes of Health’s National Institute on Aging. To obtain human subjects approval for 

the genotyping phase of this research, I submitted an application to the University of 

Utah IRB. A review panel concluded that the genotyping in my dissertation research did 

not meet the definitions of Human Subjects Research according to Federal regulations. 

Therefore, IRB oversight was not required (Appendix C).  

To ensure maximum confidentiality, WHAS samples were anonymized and 

clinical phenotype data were not linkable to patients without a master code file, which 

was available only to approved study staff at Johns Hopkins University and at the 

National Institute on Aging. For the dissertation research, I catalogued WHAS subject 

DNA samples by anonymous ID numbers in an Excel spreadsheet on a heavily fire-

walled NIH intramural network. Each record had a unique identification number that was 

not connected to any traceable personally identifiable information such as date of birth, 

social security number, address, etc. Presently, many of the WHAS 1 and 2 participants 

are deceased.

Analysis

The independent variable in this study across all aims and research questions was 

the transcobalamin II and transcobalamin II-receptor SNP genotype, according to three 

ordered categories: homozygous minor allele (AA), heterozygous (AB), and homozygous 

major allele (BB). The dependent outcome variables are continuous, and include 
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hemoglobin concentration, MCV, serum cobalamin and cobalamin metabolites, 

depression scores, vibration sensitivity, grip strength, and walking speed measurements. 

Genetic data was analyzed using Haploview 4.0 and linkage disequilibrium plots were 

constructed for the transcobalamin II and transcobalamin II-receptor genes for 

Caucasians and African American subjects.  

Using SPSS v12.0, missing clinical phenotype data and descriptive statistics were 

analyzed, with summary statistics (means, medians, standard deviations, ranges, 

quartiles) reported for each outcome measure. Histograms and trend plots were evaluated 

to assess data normality, and Kolmogorov-Smirnoff tests were conducted to assess degree 

of normality violation. Extreme outliers that were greater than 3 standard deviations away 

from the mean were identified, evaluated, and removed from analyses if they 

inappropriately skewed sample population means or greatly affected normality tests. 

Pearson correlations between the dependent variables were evaluated for collinearity. 

Genotype and allele frequencies were counted for each SNP in both Caucasian and 

African American cohorts, and Hardy-Weinberg statistics were calculated. Hardy-

_������`��������{2 test (Pearson goodness-of-fit) to ascertain presence of equilibrium and 

���	���������{2 probability distribution under the null hypothesis (Balding, 2006). A 

conventional significance level of |�}��������������`������	���

����
������Using 

Cohen’s small effect size (.25�), two-tailed significance of .05, and desired power of 

0.90, the minimum sample size necessary for adequate strength was n = 171. Overall 

differences in socio-demographic, clinical, and biochemical variables between African 

Americans and Caucasians, and between WHAS 1 and WHAS 2 cohorts, were assessed 

using independent t-tests.  
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To assess differences in outcome variable means across race and SNP genotype, 

an analysis of variance or covariance was performed for each outcome measure. 

Homogeneity of variance was assessed through the Levene’s test of equality of error 

variances. For all analysis of covariance tests, linearity was assessed between the 

covariates and the dependent variable, covariate reliability was ensured, and homogeneity 

of regression was evaluated by exploring slope inequality between the dependent variable 

and the covariate. 

Significant interaction (race) and main (genetic) effect F tests from the analysis of 

variance or covariance were explored further with traditional post-hoc comparison tests. 

Statistical interactions between Caucasian and African American subjects across 

genotype groups were assessed by evaluating plotted graphs in SPSS. Post-hoc testing for 

significant main effects was conducted with the Tukey procedure to identify where mean 

differences between groups existed. Post-hoc testing for simple main effects following 

significant interactions was conducted with the Least Significant Difference procedure. In 

the presence of extreme normality violations or a violated Levene’s test, nonparametric 

post-hoc comparison tests were used. The Bonferroni adjustment was used to reduce 

alpha inflation stemming from performing multiple statistical tests. At nine outcome 

measures and 27-29 SNPs per measure, the Bonferroni adjustment was designated at

p=(0.05/243)=0.0002. Linkage disequilibrium plots to assess tagging success were 

constructed using Haploview 4.0 analysis program tools. 
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Aim 1

Research Question 1.1

Hemoglobin concentrations were continuous data. Differences in means were 

analyzed using a 2-way analysis of covariance (ANCOVA) on the fixed factors, race 

(African American, Caucasian) and SNP genotype, and accounted for serum folate 

variance. Post-hoc analyses for significant F tests were conducted by using simple tests 

of pairwise comparison for main effects and evaluating graphical interactions on profile 

plots.

Research Question 1.2 

Mean corpuscular volume (MCV) concentrations were continuous data and 

differences in means were analyzed using a 2-way ANCOVA on the fixed factors, race 

(African American, Caucasian) and SNP genotype, and adjusted for serum folate 

variance. Post-hoc analyses for significant F tests were conducted by using simple tests 

of pairwise comparison for main effects and evaluating graphical interactions on profile 

plots.

Aim 2

Research Question 2.1 

Serum cobalamin concentrations were continuous data. To account for the effects 

of a subject’s renal function (creatinine clearance estimation per Cockcroft-Gault), 

differences in mean cobalamin concentration were analyzed using a 2-way ANCOVA on 

the fixed factors, race (African American, Caucasian) and SNP genotype. Post-hoc 
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analyses for significant F tests were conducted by using simple tests of pairwise 

comparison for main effects and evaluating graphical interactions on profile plots.

Research Question 2.2 

Serum homocysteine concentrations were continuous data. To account for the 

effects of a subject’s renal function (creatinine clearance estimation per Cockcroft-Gault), 

serum folate, and serum cobalamin, a 2-way ANCOVA was used to ascertain presence of 

association between homocysteine concentration and the fixed factors, race (African 

American, Caucasian) and SNP genotype. Post-hoc analyses for significant F tests were 

conducted by using simple tests of pairwise comparison for main effects and evaluating 

graphical interactions on profile plots.

Research Question 2.3 

Serum methylmalonic acid concentrations were continuous data. Accounting for 

renal function (creatinine clearance estimation per Cockcroft-Gault) and serum 

cobalamin, a 2-way ANCOVA was used to ascertain presence of association between 

methylmalonic acid concentration and the fixed factors, race (African American, 

Caucasian) and SNP genotype. Post-hoc analyses for significant F tests were conducted 

by using simple tests of pairwise comparison for main effects and evaluating graphical 

interactions on profile plots.
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Aim 3

Research Question 3.1

Geriatric Depression Scores (GDS) scores were continuous, interval-level data. 

Differences in GDS means were analyzed using a 2-way ANOVA on the fixed factors, 

race (Caucasian or African American) and SNP genotype. Post-hoc analyses for 

significant F tests were conducted by using the Tukey test and evaluating graphical 

interactions on profile plots. 

Research Question 3.2 

Vibrometer sensitivity measurements were continuous data. Differences in means 

were analyzed using a 2-way ANOVA on the fixed factors, race (African American,

Caucasian) and SNP genotype. Post-hoc analyses for significant F tests were conducted 

by using the Tukey test and evaluating graphical interactions on profile plots. 

Aim 4

Research Question 4.1 

Hand grip strength dynamometer measurements were continuous data. 

Differences in hand grip strength means were analyzed using a 2-way ANOVA on the 

fixed factors, race (African American, Caucasian) and SNP genotype. Post-hoc analyses 

for significant F tests were conducted by using the Tukey test and evaluating graphical 

interactions on profile plots. 
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Research Question 4.2

Three and 4-meter walking speed were continuous data. Differences in mean 

walking speeds were analyzed using a 2-way ANCOVA on the fixed factors, race 

(African American, Caucasian) and SNP genotype, adjusted for an individual’s standing 

height. Post-hoc analyses for significant F tests were conducted by using simple tests of 

pairwise comparison for main effects and evaluating graphical interactions on profile 

plots.

Missing Data

Data Availability, Transfer Procedures, and File Merging

Although a total sample of 1,167 women consented to phlebotomy in WHAS 1 

and 2, blood was no longer available for all subjects at the onset of the dissertation study 

in 2008. DNA availability for WHAS 1 was n = 536 and for WHAS 2 was n = 253, 

yielding a total available patient sample of n = 789 for the dissertation’s genetic analysis. 

A file provided by Johns Hopkins University study staff (Dr. Amy Matteini) in 

November 2009 contained selected health, clinical, and socio-demographic 

measurements for the total documented 1,438 WHAS 1 and 2 participants and included 

data on subjects who did not provide blood samples. 

In December 2009, a combined data file was generated that restricted content to 

include only the WHAS 1 and 2 research subjects with corresponding genotype data 

generated in the laboratory (n = 789). Missing data within this pool of 789 subjects were 

analyzed (genotype field entries plus social and clinical characteristics) for nonrandom 

patterns through the SPSS ‘Missing Data’ function and cleaned. No outstanding patterns 
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of nonrandom missing data were identified; however, restricting analyses to WHAS 1 

and 2 subjects with available genomic DNA likely affected result generalizability, in that 

it represented 54.7% (789/1,438) of the original sampling study frame. The 789 available 

DNA samples represented 67.6% of WHAS 1 and 2 subjects consenting to phlebotomy 

(789/1,167).

Collectively, missing data for the dissertation research in the n = 789 sample 

population were observed across two categories: genotyping failures (including 

noninformative monomorphic alleles) and unavailable clinical data in the WHAS 1 and 2 

dataset. 

Missing Genetic Data

Genotyping failures included 6 noninformative SNPs that were monomorphic in 

both African American and Caucasian subjects. A total of 16 of the 51 total SNPs did not 

meet quality control thresholds in the laboratory and were removed from analysis. For the 

remaining 29 SNPs, missing genotype data ranged from n = 11 to n=63 depending on the 

assay. On average each SNP was missing 40 genotypes, which corresponded to 5% of the 

dissertation study sample, which met the National Human Genome Research Institute’s 

standard laboratory threshold metrics for minimally required data. 

Missing Laboratory and Clinical Data

For each of the dissertation study’s biochemical and clinical outcome variables, 

there were varying degrees of missing data. For example, not all laboratory tests were 

successful for each study participant and not all clinical parameters (depression, walking 
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speeds, vibration testing) were successfully measured in patient homes or during clinic 

appointments. Missing data for each of the dissertation study’s outcomes for the 789 

WHAS subjects include the following: n = 37 hemoglobin, n = 38 mean corpuscular 

volume, n = 12 cobalamin, n = 25 homocysteine, n = 25 methylmalonic acid, n = 0 

depression score, n = 39 peripheral sensitivity score, n = 70 hand grip strength, and n =

21 walking speed. Missing data for each of the dissertation study’s covariates for the 789 

WHAS subjects include the following: n = 9 folate, n = 53 estimated creatinine 

clearance, and n = 41 standing height. 

Outliers

For many of the laboratory traits, there were severe outliers that were either zero 

(representing an error in laboratory reporting) or greater than 3 standard deviations away 

from the mean. These values were coded as missing data and removed from analysis to 

mitigate their skewing effect on outcome variable sample means, distributions, and

normality tests (n = 6 cobalamin, n = 6 total homocysteine, n = 10 serum methylmalonic 

acid, and n = 7 MCV). Final exact sample sizes for each genetic marker that was 

genotyped, and mean values for each WHAS outcome analyzed in this study, are listed 

for reader reference in Appendix D. 

Impact of Missing Data

To meet the stated objectives of the dissertation’s research aims and questions, 

research subjects had to have laboratory values and clinical parameter measurements in 

addition to a SNP genotype result to be included in the analyses of variance and 
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covariance statistical evaluation. Chapters 4 and 5 report F statistics and post-hoc test 

analyses incorporating this requirement. However, the generalized assessments of means 

and standard deviations for the WHAS subjects’ biochemical and clinical traits in 

Chapters 4 and 5 (delineated by race and cohort) were conducted separately from this 

requirement in order to assess the impact of missing data. 

Outcome means and clinical mean parameter profiles obtained from the 

dissertation sample were compared with previously published WHAS 1 and 2 data using 

the full sample population. Across all clinical outcome and covariate parameters, the 

means and standard deviations in the n =789 WHAS dissertation sample corresponded 

closely with previously published results for both the combined and separated WHAS 

cohort literature (Chaves et al., 2006; Fried et al., 2000; Guralnik, Fried, Simonsick, 

Kasper et al., 1995; Resnick et al., 2000; Resnick, Vinik, Heimovitz, Brancati, & 

Guralnik, 2001; Penninx et al., 2000; Rantanen et al., 1998; Stabler et al., 1999).
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Table 1

Transcobalamin II Gene SNPs

Reference Sequence #      Gene Position     Target Population       Identified From

rs12159600 intron 3 AA HapMap
rs16988838 intron 1 AA HapMap
rs11912238                intron 5        AA HapMap
rs7286107 intron 1                 CEPH HapMap
rs4820021 intron 6                 CEPH HapMap
rs3178000 exon 8 CEPH HapMap
rs2301955 intron 7 both HapMap
rs2267163 intron 5 both HapMap
rs2072194 intron 8 both HapMap
rs740234 intron 2 both HapMap
rs4820889 exon 8 both HapMap
rs4820886 intron 7 both HapMap
rs2301958 intron 7 both HapMap
rs7289549 intron 1 both HapMap
rs11703570 intron 3 both HapMap
rs16988828 intron 1 both HapMap
rs4820887 intron 7 both HapMap
rs4820888 intron 7 both HapMap
rs9606756 exon 2 both HapMap
rs35915865 exon 3 CEPH dbSNP
rs35838082 exon 5 both dbSNP
rs1801198 exon 6 both dbSNP
rs9621049 exon 7 both dbSNP
rs1131603 exon 8 CEPH dbSNP
rs11557600 exon 3 AA literature
rs17849434 exon 5 n/a literature
rs2301956* intron 7 CEPH HapMap
rs2267162* intron 4 both HapMap
rs740233* intron 2 both HapMap

Note. Dropped assays marked by asterisk (*), AA=African American, CEPH=Caucasian. 
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Table 2

Transcobalamin II-Receptor Gene SNPs

Reference Sequence #           Gene Position        Target Population Identified From

rs3760680 3’ near gene AA HapMap
rs250510 exon 5 (3’ UTR) AA HapMap
rs36263 3’ near gene AA HapMap
rs2232772 5’ UTR AA HapMap
rs2232779 intron 1 AA HapMap
rs2232788 exon 5 (3’ UTR) AA HapMap
rs2232768 5’ near gene CEPH HapMap
rs2927707 intron 1 both HapMap
rs2227288 intron 4 both HapMap
rs2232775 exon 1 AA dbSNP
rs2232787 exon 5 no data dbSNP
rs2336573 exon 4 both dbSNP
rs2232786 exon 5 AA dbSNP
rs173665 3’ near gene both Brody lab hit
rs12461677* intron 1 AA HapMap
rs2232766* near gene AA HapMap
rs2227266* 5’ near gene AA HapMap
rs250511* intron 4 both HapMap
rs2232765* near gene both HapMap
rs2232774* exon 1 no data dbSNP
rs5719548* exon 2 no data dbSNP

Note. Dropped assays marked by asterisk (*), AA=African American, CEPH=Caucasian. 
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Table 3

Dalton Differences in iPLEX Dideoxynucleotide Mass-Modified Terminators

Terminator A C G T

A 0.0 -24.0 16.0 55.9
C 24.0 0.0 40.0 79.9
G -16.0 -40.0 0.0 39.9
T -55.9 -79.9 -39.9 0.0

Note. Chemically modified dNTPs for iPLEX extension reaction (Oeth et al., 2006).



   

CHAPTER 4

ASSOCIATION OF TRANSCOBALAMIN II AND TRANSCOBALAMIN II-

RECEPTOR GENETIC VARIATION WITH COBALAMIN 

METABOLITE LEVELS IN ELDERLY WOMEN

Abstract

Functional cobalamin deficiency, a subtle progressive clinical disorder, affects 6-

23% of individuals >60 years old. This deficiency arises due to age-related decreases in 

the ability of the GI tract to extract and absorb cobalamin. Better understanding of 

biologic and genetic factors that contribute to the high prevalence of cobalamin 

deficiency observed in older adults would allow for targeted care and improved 

functional quality of life in advanced age. This candidate gene association study 

examined the association of genetic variation in the transcobalamin II and transcobalamin 

II-receptor genes on the concentration of cobalamin, homocysteine, and methylmalonic 

acid in the blood of 789 participants of the Women’s Health and Aging Studies. A total 

of four SNPs were identified for additional hypothesis testing. In the transcobalamin II 

gene, a missense coding SNP (rs9621049) was associated with mean homocysteine 

concentrations, a missense coding SNP (rs35838082) was associated with mean 

homocysteine and methylmalonic acid levels, and two SNPs in intron 7 were associated 

with serum cobalamin (rs4820888) and homocysteine (rs4820887) concentrations. A
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final SNP in the transcobalamin II-receptor gene, a missense coding SNP (rs2336573), 

was associated with mean serum cobalamin concentrations. 

Introduction

Cobalamin, commonly known as vitamin B12, is a critical nutrient. Humans are 

dependent upon adequate dietary intake or supplementation of cobalamin for survival, 

since it is only synthesized by microorganisms. In the human body, cobalamin is used as 

enzymatic cofactors for only two biochemical reactions. The first is in the cytoplasm, 

where methylcobalamin serves as a cofactor for methionine synthase. This enzyme uses 

folate to convert homocysteine to methionine, which is necessary for one-carbon 

metabolism that fuels essential cell processes, including methylation and DNA synthesis. 

The second is in the mitochondrion where 5’-deoxyadenosylcobalamin catalyzes 

conversion of methylmalonyl coenzyme-A to succinyl coenzyme-A, which is essential 

for odd-chain fatty acid and amino acid catabolism (Beck, 2001). In the event of 

decreased cobalamin availability, the metabolites homocysteine and methylmalonyl 

coenzyme-A (methylmalonic acid) accumulate. Additionally, deficit of one-carbon 

intermediates produces a range of clinical disorders, including megaloblastic anemia and 

neurologic impairment (Lindenbaum et al., 1988). Because clinical symptoms can exist 

and progress in individuals with normal serum cobalamin concentrations, homocysteine 

and methylmalonic acid are commonly used as deficiency indicators in the assessment of 

an individual’s cobalamin nutrition status (Green, 2008).

Prevalence of cobalamin deficiency in elderly adults is reported to range from 6% 

to 23%, and depending on diagnostic criteria used—even as high as 40.5% (Allen, 2009;  
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Baik & Russell, 1999; Johnson et al., 2003; Lindenbaum, Rosenberg, Wilson, Stabler, & 

Allen, 1994; Pennypacker et al., 1992). Elder adults are especially susceptible to 

cobalamin deficiency due to a combination of factors, including decreased dietary intake, 

age-related decline in gastric absorption, use of interfering medications, and presence of 

comorbid conditions (Baik & Russell, 1999; Wolters, Strohle, & Hahn, 2004).

Unrecognized cobalamin deficiency in older adults may result in an exaggerated 

disability trajectory involving higher frequency of hospital admissions, lengthier and 

more severe hospitalizations, or greater degrees of chronic disablement significantly 

affecting mobility and quality of life (Bartali et al., 2006).

To assist in the development of strategies to prevent or delay the disablement 

process, better understanding of the biologic factors contributing to altered cobalamin 

status is needed. For example, low cobalamin concentrations inside cells can also result 

from disturbances in transport and cellular uptake processes. Following intestinal 

absorption, cobalamin is bound to the carrier molecule transcobalamin II in the plasma 

for nutrient delivery to target cells. From the circulation, the cobalamin-transcobalamin II 

complex is endocytosed into lysosomal compartments via the transcobalamin II-receptor 

(Quadros, Nakayama, & Sequeira, 2009; Seetharam & Li, 2000). Structural variations in 

the transcobalamin II carrier molecule and its receptor can affect binding efficiency 

characteristics, resulting in decreased cellular availability for essential metabolic

reactions and influencing susceptibility to deficiency (Miller, Ramos, Garrod, Flynn, & 

Green, 2002; Quadros et al., 2010). To explore these factors more broadly, this study 

examined if transcobalamin II and transcobalamin II-receptor genetic variation was 

associated with biochemical cobalamin parameters in elderly participants of the Women’s 
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Health and Aging Study 1 and 2 cohorts. Parameters of interest included serum 

cobalamin, homocysteine, and methylmalonic acid concentrations.  

Methods

Study Design and Population

This project is a candidate gene association study using genetic material from 

research subjects who participated in the Women’s Health and Aging Study (WHAS) 1 

and 2 cohorts. WHAS 1 (1992-1995) and WHAS 2 (1994-1996) were prospective, 

observational research initiatives that examined the trajectories and sources of physical 

disability in community-dwelling elderly women in 12 Baltimore, MD area zip codes. 

WHAS 1 was designed to sample the one-third most disabled women in the Baltimore 

community, and as a complementary companion study, WHAS 2 was designed to sample

the two-thirds least disabled women. Numerous investigations have pooled WHAS 1 and 

2 subject data for a strengthened approach representative of the community-dwelling 

elderly (Bandeen-Roche et al., 2006; Chaves, Ashar, Guralnik, & Fried, 2002; Chaves et 

al., 2005; Leng, Xue, Tian, Walston, & Fried, 2007; Semba, Garrett, Johnson, Guralnik, 

& Fried, 2000; Semba et al., 2005; Walston et al., 2005). Although summarized briefly in 

this report, detailed descriptions of the sampling, screening, recruitment, and data 

collection procedures employed in WHAS 1 and 2 are fully described elsewhere (Fried, 

Bandeen-Roche, Chaves, & Johnson, 2000; J. Guralnik, Fried, Simonsick, Kasper, & 

Lafferty, 1995). The data collection protocols utilized in WHAS 1 and 2 were approved 

by the Johns Hopkins Medical Institutions institutional review board. The genotyping 
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portion of this research was approved by the Office of Human Subjects Research at the

National Institutes of Health and the University of Utah’s institutional review board. 

WHAS 1 (1992-1995) 

From 32,538 Health Care Financing Administration (HCFA) Medicare enrollee 

records in Baltimore, MD, 6,521 age-stratified elderly women (65-74, 75-84, and >85) 

were randomly selected for screening and possible enrollment (Ferrucci et al., 1995). A

total of 3,841 individuals were evaluated for physical disability across four domains: 1) 

mobility and exercise tolerance, 2) upper extremity function, 3) high function tasks 

(activities of daily living), and 4) basic self care. Women who reported difficulty with 

two, three, or four physical disability domains and had a Mini-Mental State Examination 

(MMSE) score of 18 or higher were invited to participate in WHAS 1 (n = 1,409), (Fried, 

Kasper, Guralnik, & Simonsick, 1995; Guralnik, Fried, Simonsick, Bandeen-Roche, & 

Kasper, 1995). Of the 1,409 individuals eligible, 1,002 consented to participate in WHAS 

1. Trained interviewers administered several health questionnaires and conducted 

physical performance measures and a standardized physical examination in homes of 

consented subjects. Part of a secondary consent, 762 of the 1,002 total WHAS 1 

participants agreed to phlebotomy and provided blood samples for research. DNA that 

was still available for genetic analysis used in this study was for 536 WHAS 1 research 

participants.  
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WHAS 2 (1994-1996) 

From the same 32,538 Health Care Financing Administration (HCFA) Medicare 

enrollee records in Baltimore, MD, another sample of elderly women (ages 70-79) was 

randomly selected for screening and possible enrollment. A total of 1,630 individuals

were evaluated for physical disability across the same four functional disability domains. 

Women who reported difficulty with zero or one disability domains and had a Mini-

Mental State Examination (MMSE) score of 24 or higher were invited to participate in 

WHAS 2 (n = 880). In WHAS 2, some subjects were screened by telephone, and an 

abbreviated MMSE was used; individuals who correctly answered at least 80% of 

questions were eligible for study inclusion. Of the 880 eligible individuals, 436 consented 

to WHAS 2 participation. The consented subjects participated in a clinic examination 

visit where trained study personnel administered the same standardized questionnaires, 

physical performance measures, and standardized physical examination as WHAS 1 

subjects. Also part of a secondary consent, 405 of the 436 total WHAS 2 participants 

agreed to phlebotomy and provided blood samples. The DNA that was still available for 

genetic analysis used in this study was for 253 WHAS 2 research participants.  

Blood Assay Measurement

Nonfasting blood samples from WHAS 1 and 2 subjects were processed, 

aliquoted, and frozen (-80 degrees Celsius) at the Core Genetics Laboratory in the Johns 

Hopkins University School of Medicine. 
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Serum Cobalamin, Folate, Creatinine

For determination of serum cobalamin, folate, and creatinine concentrations, 

frozen aliquots were sent from Johns Hopkins University School of Medicine to Quest 

Diagnostics (formerly Corning Clinical Laboratories and MetPath) in Teterboro, NJ. At 

Quest Diagnostics, serum cobalamin and folate concentrations were determined using 

competitive intrinsic factor protein-binding and folate-binding protein assays, according 

to the methods of Ciba-Corning Diagnostics Corporation in Medfield, MA. The normal 

range of serum cobalamin and folate was reported at 148-664 pmol/L and 6.8-36.0

nmol/L. Also at Quest Diagnostics, serum creatinine concentrations were analyzed via 

the conventional Jaffe method with normal ranges reported at 0.6-1.1 mg/dL for females. 

Cobalamin, folate, and creatinine laboratory values were available for the WHAS 

participants, including n = 772 cobalamin concentrations, n = 780 folate concentrations, 

and n = 769 creatinine concentrations.  

Homocysteine and Methylmalonic Acid

A subset of WHAS 1 and 2 sample aliquots were shipped on dry ice from the 

Core Genetics Laboratory at John’s Hopkins University School of Medicine to the 

University of Colorado Health Sciences Center for measurement. Homocysteine and 

methylmalonic acid levels were obtained using stable-isotope dilution and capillary gas 

chromatography-mass spectrometry with selected ion monitoring (Penninx et al., 2000; 

Stabler et al., 1999). Normal homocysteine and methylmalonic acid concentrations are 

5.4-13.9 ��	
���������-271 nmol/L per previous WHAS 1 and 2 research reports 

(Penninx et al., 2000; Stabler et al., 1999). Homocysteine and methylmalonic acid 
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laboratory assay values were available for the WHAS participants, including n = 758 

homocysteine concentrations and n = 754 methylmalonic acid concentrations. 

Renal Function Assessment 

Previous studies of elderly individuals demonstrate that modest elevations in 

homocysteine and methylmalonic acid can occur from renal insufficiency (Lindenbaum 

et al., 1994; Pennypacker et al., 1992; Stabler, Lindenbaum, & Allen, 1996). However, in 

older adults, singular use of serum creatinine as a kidney function assessment is 

recognized to significantly underascertain presence of impaired renal status (Giannelli et 

al., 2007). Thus, this study used serum creatinine to estimate creatinine clearance for 

WHAS 1 and 2 subjects through the Cockcroft-Gault formula: creatinine clearance 

(mL/s) = weight (kg) x [140 – age (years)] / [72 x serum creatinine (mg/dL) x 0.85],

(Cockcroft & Gault, 1976). According to guidelines established by the National Kidney 

Foundation’s Kidney Disease Outcome Quality Initiative (NKF-KDOQI), a calculated 

estimated value of over 90 mL/min indicates normal glomerular filtration (Stage 1), 60-

89 mL/min indicates mild renal impairment (Stage 2), 30-59 mL/min indicates moderate 

renal impairment (Stage 3), 15-29 mL/min indicates severe kidney impairment (Stage 4), 

and under 15 mL/min indicates presence of kidney failure requiring dialysis (Stage 5) 

(National Kidney Foundation, 2002). Estimated creatinine clearance values were 

available for n = 736 WHAS participants.
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Genetic Variant Measurement

SNP Selection 

Single Nucleotide Polymorphisms (SNPs) were selected for the study’s candidate 

genes using publicly available databases HapMap (Phase 1 and 2 full dataset), dbSNP 

(build 125), and NCBI (build 35). For both Caucasian and African American ancestral 

groups, Haploview (4.0) Tagger was used to tag SNPs in the candidate genes and 

including 10kb flanks on both ends of the genes. Because both candidate genes were 

small, at 19 kilobases and 6 kilobases, and there was high likelihood of dropped assays 

due to working with whole genome amplified material, the r2 statistic threshold was set at 

0.9 and minor allele frequency set at 0.05. Additional selected candidates included 

variants within exons, promoters, conserved sequences across species, and those reported 

in literature associated with clinical characteristics and biochemical parameters of 

interest. A total of 51 SNPs were selected—29 SNPs in the transcobalamin II gene and 22 

SNPs in the transcobalamin II-receptor gene.

Whole Genome Amplification

At the Core Genetics Laboratory in Johns Hopkins School of Medicine, DNA 

from WHAS 1 and 2 subjects was extracted from whole blood using the Puregene DNA 

Purification Kit from GentraSystems, Inc. DNA samples for WHAS subjects were plated 

at Johns Hopkins University and 50 ng was sent on dry ice to the National Human 

Genome Research Institute for genotyping. Because of limited starting quantity of genetic 

material, 10 ng of each participant’s DNA was whole genome amplified using Qiagen's 

REPLI-g Midi Kit (Product # 150045_100 Rx). This kit uses the multiple displacement 
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possible allele dropout, two independent reactions of whole genome amplification for 

each WHAS subject were performed and pooled for use in high-throughput genotyping. 

Hardy-Weinberg calculations in pilot genotyping analyses for whole genome amplified 

material matched that of nonamplified WHAS genomic material. All 789 WHAS 

participant genomic samples were successfully amplified. 

SNP Genotyping

Genotyping of the WHAS 1 and 2 whole genome amplified samples was 

performed at the National Human Genome Research Institute using the Sequenom 

MassArray iPLEX platform (San Diego, CA). The genotyping reaction is characterized 

by two phases: 1) a locus-specific PCR reaction to produce a 100-base pair region that 

contains the SNP of interest, and 2) a locus-specific primer extension reaction that 

produces a mass-modified product for each allele of the SNP. Following amplification 

and extension reactions, the mass-modified products are resolved using MALDI-TOF 

mass spectroscopy. Genotype data were transferred to a local database for analysis. 

Statistical Analysis

Descriptive and inferential statistics were analyzed using the SPSS program 

(version 12.0). Summary statistics, frequency distributions, and independent t-tests were 

evaluated for sociodemographic and health characteristics, and for the study’s three 

outcome variables, serum cobalamin, homocysteine, and methylmalonic acid. Missing 

data were assessed for nonrandomness and WHAS subjects missing SNP genotypes, 
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study outcome parameters, or covariate values were removed from analysis. Assessment 

of the outcome and covariate variables for linearity, homogeneity of variance, 

homogeneity of regression slopes, and measurement reliability indicated no violations of 

statistical assumptions. For the study’s three biochemical outcome parameters, extreme 

outliers that were zero or greater than 3 standard deviations away from the mean were 

removed from analysis (serum cobalamin n = 6, homocysteine n = 6, methylmalonic acid 

n = 10).  

Hardy-Weinberg statistics, allele, and genotype frequencies were calculated for 

transcobalamin II and transcobalamin II-receptor SNPs in African American and 

Caucasian WHAS subjects. To test for association between cobalamin concentration and 

the two independent variables, race and SNP, while also accounting for variability 

produced by altered renal function, a two-way analysis of covariance was conducted. To 

ascertain presence of association between mean homocysteine concentration and the 

independent variables while also accounting for variability produced from known 

physiologic mediators, a two-way analysis of covariance was conducted on the fixed 

factors, race and SNP genotype, with folate, creatinine clearance, and serum cobalamin 

designated as covariates. Similarly, a two-way analysis of covariance was performed to 

ascertain presence of association between mean methylmalonic acid and the fixed factors, 

race and SNP genotype, with creatinine clearance and serum cobalamin as covariates. 

Significant (p<0.05) interaction and SNP main effect F tests were explored further using 

the Tukey and Least Significant Difference procedures, and by assessing interaction 

graphs. The Bonferroni adjustment was used to correct for alpha inflation arising from 

multiple testing.  
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Results

Demographics

Demographic and other baseline health characteristics of the 789 study 

participants are shown in Table 4. The 591 Caucasian participants in this study

represented 75% of the study sample, were slightly older than the 198 African Americans 

[t(787)= -2.90, p=0.004], and had more years of education [t(787)= -7.27, p<0.01]. There 

were 536 WHAS 1 subjects, who comprised 68% of the study sample. The remaining

WHAS 2 subjects (32%) were significantly more educated than their WHAS 1 

counterparts [t(787) = -10.9, p<0.01]. The study population was 71% Caucasian and 29% 

African American for WHAS 1 participants, and 83% Caucasian and 17% African 

American for WHAS 2 participants. 

The number of chronic diseases did not differ substantially between the African 

Americans as compared to Caucasians; however, WHAS 1 subjects had more chronic 

diseases than WHAS 2 subjects due to that cohort’s sampling focus on the more disabled 

portion of the Baltimore population [t(787)= 9.50, p<0.01]. African American elderly 

women were more likely to have elevated body mass index values [t(741)= 5.13, p<0.01], 

as were WHAS 1 cohort participants [t(741)= 3.62, p<0.01].              

Biochemical Characteristics

Descriptive summary statistics and clinical biochemical profile parameters for the 

WHAS 1 and 2 participants are presented in Tables 5 and 6. The mean serum cobalamin 

for African American subjects was 563 pmol/L compared to 461 pmol/L for Caucasian 

elderly women [t(770)= 5.24, p<0.01]. Clinically low serum cobalamin was more 
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prevalent in Caucasian subjects [t(775)= 2.83, p=0.005] with 3% of Caucasians 

demonstrating low serum cobalamin concentrations compared to 1% in African 

Americans. Although mean homocysteine concentrations were similar between African 

American and Caucasian subjects in both cohort groups, the mean values for WHAS 2 

subjects were much lower than WHAS 1 subjects [t(756)= 4.90, p<0.01]. Caucasian 

subjects had higher mean methylmalonic acid concentrations at 254 nmol/L compared to 

209 nmol/L for African Americans [t(752)= -3.78, p<0.01], and WHAS 1 Caucasian 

women had the highest mean methylmalonic acid concentration at 268 nmol/L. Moderate 

clinical elevations in methylmalonic acid levels [t(762)= 3.70, p<0.01] were more 

prevalent in Caucasian elderly women, where 29% of Caucasians experienced moderate 

to high serum methylmalonic acid concentrations compared to 15.7% in African 

Americans.

There were no differences between African American and Caucasian women or 

between participants for WHAS 1 and 2 cohorts in overall mean folate concentration. 

However, African American women were more likely to have clinically low serum folate, 

with 44.4% demonstrating concentrations less than 6.8 nmol/L compared to 28.3% for 

Caucasians [t(778)= 4.32, p=0.00]. Although the mean serum creatinine concentration for 

WHAS subjects was in the normal laboratory reference range for renal function 

assessment, mean values of creatinine clearance estimation for both groups indicated 

presence of moderately impaired renal status. Estimated glomerular filtration rates of 52 

mL/min for Caucasians and 53 mL/min for African Americans corresponded to Stage 3 

NKF-K/DOQI criteria. WHAS 2 subjects had better renal function per Cockcroft-Gault 

creatinine clearance estimation [t(734)= -2.61, p=0.009]. Both groups were comparable 



 132 
in their distribution of renal function, and the majority of WHAS subjects experienced 

mild to moderate renal insufficiency (NKF-KDOQI Stage 2 and 3). 

Genetic Data 

Of the total 51 SNPs selected for genotyping in the transcobalamin II and 

transcobalamin II-receptor genes, 29 SNPs were successfully genotyped, resulting in 

incomplete tagging coverage for both genes. SNPs were dropped if they were 

monomorphic (n = 6) or if they did not meet genotyping quality control thresholds (n =

16). Genotype and allele frequencies for the 29 successfully genotyped SNPs are 

presented in Table 7. For two-way between-groups analysis of covariance statistical 

association tests, WHAS subjects were divided into one of the three genetic categories 

(AA, AB, BB) according to their genotypes and stratified by race. Bonferroni adjustment 

for multiple testing of the 29 SNPs across the three biochemical outcomes in this study 

yields a corrected alpha significance threshold of 0.0006 (0.05/87). Table 8 provides a 

summary of the F values obtained in this research, including interaction effect, SNP main 

effects, and race main effects. No result reached the stringent level of significance 

according to the Bonferroni-adjusted threshold. However, several results were significant 

at the p=0.01 level and p=0.05 level. These findings may be true associations that fail to 

survive correction. Due to the exploratory nature of this research and the value of 

hypothesis generating information, several of these are highlighted below. 
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Cobalamin

For the two-way analysis of covariance evaluating mean cobalamin 

concentrations across race and genetic factors adjusted for estimated creatinine clearance, 

there were two significant SNPs—rs4820888  in the transcobalamin II gene and 

rs2336573 in the transcobalamin II-receptor gene. 

The rs4820888 G|A SNP is located in intron 7 of the transcobalamin II gene, and 

although there was no significant interaction (race) effect, there was a statistically 

significant main (genetic) effect [F(2, 692)= 3.17, p=0.04, partial eta squared = 0.01]. 

Pairwise comparison of main effects across the genotype groups indicated that mean 

cobalamin concentrations of GA heterozygotes (M=474 pmol/L) were lower than the AA 

homozygotes (M=507 pmol/L) at p=0.018. Differences between AA homozygotes 

(M=507 pmol/L) and GG homozygotes (M=470 pmol/L) were not statistically significant 

at p=0.06, as was the difference between GA heterozygotes (M=474 pmol/L) and GG 

homozygotes (M=470 pmol/L) at p=0.95. A significant main race effect was found [F(1, 

692)= 22.37, p=<0.01, partial eta squared=0.032] for African American subjects’ higher 

cobalamin concentrations.

The rs2336573 C|T SNP in the transcobalamin II-receptor gene is a missense 

polymorphism located in exon 4, resulting in an arginine to glycine amino acid change at 

codon position 220. The interaction effect between race and rs2336573 genotype 

category [F(2, 684)= 0.27, p=0.76] did not reach statistical significance. However, there 

was a statistically significant main genetic effect with a small effect size [F(2, 684)= 

3.25, p=0.04, partial eta squared 0.01]. Pairwise comparison tests across the main genetic 

groups indicated that mean serum cobalamin concentrations in the TC group (M=573 
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pmol/L) were higher than the CC group (M=466 pmol/L) at p=0.02. Differences between 

CC homozygotes (M=466 pmol/L) and TT (M=576 pmol/L) were insignificant at p=0.16, 

as were differences between TT and TC groups significant at p=0.96. A significant main 

race effect was found [F(1, 684]= 6.78, p=0.009, partial eta squared=0.01] for African 

Americans’ higher cobalamin concentrations.  

Homocysteine

The two-way analysis of covariance was performed to evaluate mean 

homocysteine concentrations on the fixed factors, race and SNP genotype, after 

designating a singular mean value for WHAS subjects’ creatinine clearance, serum folate, 

and serum cobalamin concentrations. After creatinine clearance, serum folate, and serum 

cobalamin adjustment, there was no interaction effect [F(2, 673)= 2.66, p=0.071], and a 

significant main effect for the transcobalamin II SNP rs9621049 [F(2, 673)= 4.97, 

p=0.007, partial eta squared=0.015]. The rs9621049 SNP is a C|T missense 

polymorphism in exon 7 that results in an amino acid change of a phenylalanine to serine 

at codon position 348. Simple comparison testing found the mean homocysteine 

concentration for the TT group (M}�#�����	
����������`�������
�������������	��������

group (M}�������	
����� p=0.002. The difference between the TT group (M=12.5 

��	
���������
�	���`�������
�������������	��������`�	���*M}�������	
������p=0.003. 

A significant main race effect was found [F(1, 673)= 6.91, p=0.009, partial eta 

squared=0.01] for African Americans’ higher homocysteine concentrations.

A second significant result from the analysis of covariance on mean homocysteine 

concentration included an interaction effect [F(2, 666)= 4.58, p=0.01, partial eta 
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squared=0.014] for the transcobalamin II A|G SNP rs4820887 in intron 7 (Figure 3). 

Simple comparison testing on the interaction effect found that African American subjects 

with an AA genotype (M}�������	
����������`�������
�����������������	�	��������

concentrations from both the GA group (M}������	
������p=0.001, and the GG group 

(M}���#���	
������p=0.002. For this SNP, there was also a significant main effect [F(2, 

666)= 4.73, p=0.009, partial eta squared =0.014]. Simple comparison testing on the SNP 

main effect found that mean homocysteine was different between the AA (M=12.9 

��	
���������"�*M}�������	
����`��	����`�	������p=0.002, and between the AA and 

GG (M}�������	
����`��	����`�	��� at p=0.003. However, these relationships are not 

certain nor are the strengths of the significant associations assured; the A allele frequency 

of 0.09 in both the African Americans and Caucasian WHAS subject groups resulted in a 

small number of AA homozygotes (n=3 for African Americans and n=9 for Caucasians) 

from which wider variability may spuriously be driving significance. For this SNP, there 

was also a significant main race effect [F(1, 666)= 7.94, p=0.005, partial eta 

squared=0.012] for African Americans’ higher homocysteine concentrations.

The last SNP found to be associated with mean homocysteine concentration was 

SNP rs35838082, a C|T missense polymorphism in exon 5 of the transcobalamin II gene 

resulting in an amino acid change of tryptophan to arginine at codon position 215. There 

was no interaction effect [F(2, 676)= 0.001, p=0.98] and a significant SNP main effect 

[F(2, 676)= 3.36, p=0.035, partial eta squared=0.01]. Simple comparison testing 

ascertained higher mean homocysteine concentrations in the CC homozygote group 

(M}�������	
��������	�������	��������	�	��`	��`�	���*M}������	
������p=0.019. 

There was no race main effect [F(1, 676)= 1.50, p=0.22].
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Methylmalonic Acid 

The two-way analysis of covariance evaluated mean methylmalonic acid 

concentrations on the fixed factors, race and SNP genotype, after designating a singular 

mean value for WHAS subjects’ creatinine clearance and serum cobalamin. The only 

significant SNP in this analysis for the outcome parameter methylmalonic acid was 

rs35838082—a C|T missense polymorphism in exon 5 of the transcobalamin II gene that 

was also associated with mean homocysteine concentrations. Although a highly 

significant interaction effect was found [F(2, 671)= 7.58, p=0.004, partial eta 

squared=0.011], the low frequency of the T allele in WHAS Caucasians resulted in 

absent TT and low CT cell sample sizes (TT n=0 and CT n=6); these small sample 

numbers increase the risk that the observed significance is spurious. For this SNP, there 

was also a significant main race effect [F(1, 671)= 12.62, p<0.01, partial eta 

squared=0.019] for Caucasians’ higher methylmalonic acid concentrations.

Discussion

Reported cobalamin deficiency prevalence indicates evidence of widespread 

decreases in cobalamin nutritional status for older adults. Understanding which older 

adults are susceptible to functional cobalamin deficiency could improve healthcare 

mechanisms and strategies aimed at decreasing onset or speed of disability trajectories. 

To better understand genetic factors contributing to decreased cobalamin nutrition status 

in the elderly, this study examined association of variants in the transcobalamin II and 

transcobalamin II-receptor genes with metabolic parameters in Women’s Health and 

Aging Study 1 and 2 participants. Although no genetic variants reached the stringent 
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Bonferroni-adjusted significance threshold of p=0.0006, this exploratory analysis did find 

six variants that were associated with various biochemical parameters ranging from the 

p=0.004 to p=0.04 level of significance. Concordant with HapMap reference population 

statistics, two of the six significant variants (rs35838083 and rs4820887) had low allele 

frequencies that resulted in decreased cell sizes for which to make fully adequate 

comparisons. The four remaining SNPs are discussed further.  

The primary finding from this study was the significant main effect indicating 

association of a F348S missense SNP in exon 7 (rs9621049) in the transcobalamin II 

gene with mean homocysteine concentration. After adjusting for estimated creatinine 

clearance, serum folate, and serum cobalamin, TT homozygotes experienced a 2.0 

��	
�����`����������	�	���������	�������	����������	�	��`	�����������

difference between mean homocysteine of the TT and CT groups was similar at 1.9 

��	
�����	��	����	��
�����`��������������	��
������������������	tein as a result of the 

phenylalanine-to-serine amino acid residue change could result in variable binding 

efficacy of cobalamin in serum, preventing effective transport to cells, and affecting 

conversion of homocysteine to methionine.

Elevated homocysteine has been previously reported as a risk factor in the 

development of cardiovascular disease via a hypothesized connection to atherosclerosis 

through hypomethylation, generation of reactive oxygen species, and vascular endothelial 

dysfunction (Di Minno, Tremoli, Coppola, Di Minno, & Lupoli; Lawrence de Koning, 

Werstuck, Zhou, & Austin, 2003; Zhou & Austin, 2009). However, a recent randomized 

evaluation of folic acid and vitamin B12 supplementation versus placebo on blood 

homocysteine concentration did not demonstrate benefit in preventing myocardial 
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infarction outcomes (Study of the Effectiveness of Additional Reductions in Cholesterol 

and Homocysteine Collaborative Group, 2010). Presently, it is not known if elevated 

homocysteine is mediated by interactions between genetic factors such as rs9621049 SNP 

genotype and an individual’s cobalamin nutrition status.  

The rs9621049 SNP finding obtained in this study is not consistent with a 

previous study of transcobalamin II genetic variation on homocysteine concentrations 

(Lievers et al., 2002). The evaluation by Lievers et al. of transcobalamin II missense 

SNPs found rs1801198 (P259R) to be significantly associated with elevated 

homocysteine, whereas rs9621049 was not significant. For the WHAS participants, there 

was no rs1801198 interaction effect [F(2, 676)=1.23, p=0.29] or SNP main effect [F(2, 

676)=0.11, p=0.90]. Differences in results obtained may be due to the dissimilarity in 

patient sampling and demographics as Lievers et al. examined the influence of altered 

homocysteine levels in younger patients at risk of cardiac disease. 

A second key finding from this study was the significant association of two SNPs 

in intron 7 of the transcobalamin gene with mean serum cobalamin (rs4820888) and 

homocysteine (rs4820887) concentrations. After adjusting for estimated creatinine 

clearance, GG rs4820888 homozygotes experienced a 37 pmol/L lower mean cobalamin 

concentration than AA rs4820888 homozygotes, and the difference between mean serum 

cobalamin of the GG and GA groups was similar, at 33 pmol/L. After adjusting for 

estimated creatinine clearance, serum folate, and serum cobalamin, rs4820887’s 

differences in homocysteine concentration mirrored that of rs9621049, where AA 

homozygotes (M}�#�����	
�������	���������#�����	
�����`����������	�	��������

concentration compared to AG heterozygotes (M}�������	
������������	�	��`	���
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(M}�������	
��������	�	�	��
�����������������������#����������	��������

rs4820887 in intron 7 is 3,495 base pairs and the relationship between these two SNPs is 

not known. 

Neither rs4820888, rs4820887, or the chromosomal region (haplotype block) on 

which they lie, are currently indicated in literature as being associated with biochemical 

parameters of cobalamin deficiency. Because the genetic distance between both intron 7 

SNPs is only 408 base pairs, it is not known if one marker is acting as a surrogate for the 

other. As this was a candidate gene association study using haplotype tagging to select 

SNPs for genotyping, it is possible that both SNPs are significant because the real signal 

is nearby in close linkage disequilibrium to rs4820888 and rs4820887, but was not 

genotyped in this study.  

The final SNP to be highlighted from this study is rs2336573 (A220G), the 

missense coding SNP in exon 4 of the transcobalamin II-receptor that was associated 

with mean serum cobalamin concentrations (Figure 4). Regardless of an individual’s 

race, individuals with a CC genotype had significantly lower mean serum cobalamin, 

demonstrating a 110 pmol/L difference from subjects with a TT genotype. This finding 

may possibly indicate that the C allele of rs2336573 exerts a functional difference 

resulting in decreased cobalamin uptake by a cell, reducing intracellular nutrient 

availability. Because rs2336573 is located in an exon, it is biologically plausible that it 

could result in functional differences in cobalamin uptake kinetics across a cell’s plasma 

membrane; however, this hypothesis has not been tested in an experimental system. As 

the transcobalamin II-receptor gene and protein were only just recently identified and 

purified, little is known about the clinical effects of genetic variation or the relevance it 
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may hold for patients in cohorts such as WHAS (Quadros et al., 2009). Nonetheless, the 

rs2336573 results obtained in this study identify an attractive candidate polymorphism 

for further research.

The work outlined in this study also mirrors recently published WHAS reports on 

the evaluation of methylmalonic acid with SNPs in the transcobalamin II gene (Matteini, 

Walston, Bandeen-Roche, Arking, Allen, Fried et al., 2008; Matteini, Walston, Bandeen-

Roche, Arking, Allen, Fried et al., 2010). In their candidate gene analysis reports on 326

Caucasian WHAS 1 and 2 subjects, no significant association between methylmalonic 

acid levels and transcobalamin II SNPs were found. 

In addition to genetic association data, this study indicated presence of variability 

in the mean outcome measures that was not due to genetics. Of the 29 SNPs, there were 

18 significant race main effects for the serum cobalamin outcome, and 8 significant race 

main effects for the homocysteine and methylmalonic acid outcomes. Factors specific to 

the social contexts of the WHAS participants such as nutrition, socio-economics, quality 

of life, and mental well-being, may explain a small portion of the variability observed in 

this study. Additionally, some of these observed findings may be coming from other 

factors that were not controlled for in this research, including use of medications and 

presence of comorbid chronic diseases. Although participants’ ages were controlled for 

through the sampling design (WHAS 1 at 65-74, 75-84, >85 and WHAS 2 at 70-74, 75-

79), the mean age of WHAS 1 participants at 77.4 years was higher than that of WHAS 2 

participants at 73.9 years. Some of the observed race main effects may also be arising 

from the age differences between the cohorts. Ultimately very little data exists on gene-

environment interactions involving social factors and their effects on the transcobalamin 
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II and the transcobalamin II-receptor genes for which to confirm these findings in the 

broader literature base.      

Strengths of this research include the use of a well-characterized and examined 

elder adult cohort to ascertain effects of genetic variation on metabolic parameters of 

cobalamin deficiency. In that there was limited quantity of genomic starting material, this 

study also demonstrates that use of whole genome amplification to generate genetic data 

is a sound technique to augment previous clinical and epidemiological research 

initiatives. Also notable is that this investigation includes examination of genetic 

variation from a recently characterized gene and protein, the transcobalamin II-receptor.

Limitations of this study are primarily notable for incomplete tagging of the 

transcobalamin II and transcobalamin II-receptor genes. This stemmed from 

implementation of stringent quality control criteria and other genotyping challenges 

associated with using whole genome amplified material of DNA that ranged from 16-18

years old. Another limitation of this research is that serum holotranscobalamin 

measurements, the amount of cobalamin bound to the transcobalamin II carrier molecule, 

were not available for WHAS 1 and 2 subjects. Using holotranscobalamin as an outcome 

variable would have permitted more direct assessment of the relationship between 

biologically active cobalamin in serum and transcobalamin II-receptor uptake. 

Another limitation to this work is that environmental factors known to affect 

susceptibility to cobalamin deficiency in older adults (such as medications and co-

morbidities), were not included in these analyses. Because many genotype frequencies 

were low in African American and Caucasian subgroups and several covariates were 

already used, further loss of power from additional covariate inclusion would have 
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removed ability to detect genetic effects. Had environmental factors been included there 

may have been less variance in the study’s outcomes attributable to genetic influence.  

Despite the limitations of this study, the findings obtained suggest that there are 

additional biologic factors that contribute to an elderly adult’s susceptibility to decreased 

cobalamin nutritional status. Further research in more highly powered and diverse patient 

cohorts is needed to replicate the transcobalamin II rs9621049 (F348S), rs4820888, 

rs4820887 findings, and the transcobalamin II-receptor rs2336573 (A220G) finding 

reported here. The information produced from this report may contribute to identification 

of valuable cobalamin-related targets for future functional studies.  
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Table 4

Selected Sociodemographic and Health Characteristics for WHAS Subjects

Characteristic Mean (SD) N Mean (SD) N Mean (SD) N

Age (Years) WHAS 1** WHAS 2 Total
African American 75.7 (7.0)   155        73.0 (2.5)    43       75.1  (6.4)  198*
Caucasian 78.1 (7.8)   381    74.1 (2.7)  210       76.7  (6.8)  591

Education (Years completed) WHAS 1** WHAS 2 Total
African American 8.6 (3.2)   155 11.0 (3.8)   43          9.1  (3.5) 198*
Caucasian 10.3 (3.7) 381 13.2 (3.2) 210        11.3  (3.8)  591

Number of Chronic Diseasesa WHAS 1** WHAS 2 Total
African American 1.4 (1.6)   155 0.6 (1.1)   43         1.3   (1.5) 198  
Caucasian 1.4 (1.4) 381 0.4 (0.9) 210         1.0   (1.3) 591

Body Mass Index (kg/m2) WHAS 1** WHAS 2 Total
African American 31.5 (16.1)  138    29.3 (6.3)   43      31.0 (14.3) 181*  
Caucasian 28.0   (6.1)  352  26.0 (0.9) 210      27.2   (5.7) 562

Note. Summary statistics including mean values, standard deviations (SD), and sample 

size. Significant differences from independent t-tests between WHAS 1 and WHAS 2 

subjects (**p<0.01) and African American and Caucasian subjects (*p<0.01) are 

indicated. 

aSelf-reported diseases include angina, myocardial infarction, coronary artery disease, 

congestive heart failure, peripheral artery disease, stroke, diabetes mellitus, and cancer. 
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Table 5

Serum Metabolite and Chemistry Concentration Descriptive Summaries 

Variable
Mean (SD) N Mean (SD) N Mean (SD) N

Cobalamin (pmol/L) WHAS 1 WHAS 2 Total
African American 557   (263)   149        579   (267)     43       563 (264)  192*
Caucasian 456   (223)   372        468   (221)   208       461  (222)  580

�	�	��������*��	
��� WHAS 1** WHAS 2 Total
African American 11.3   (4.3)   149          9.7   (3.2)    39        11.0  (4.1)  188
Caucasian 11.1   (4.3)   369          9.7   (2.6)  201        10.6  (3.8)  570

Methylmalonic acid (nmol/L)         WHAS 1** WHAS 2 Total
African American 214   (135)   150        190   (122)   39         209  (133)  189*
Caucasian 268   (135)   364        227   (149)  201        253  (141)  565

Folate (nmol/L) WHAS 1 WHAS 2 Total
African American 11.2  (23.0)  152          9.8  (8.3)    43        10.9  (20.1)  195
Caucasian 12.6  (10.5)  375  12.2  (8.1)  210   12.5   (9.7)   585

Creatinine WHAS 1 WHAS 2 Total
African American 1.2   (0.9)   152 1.1   (0.2)    42          1.2   (0.8)   194
Caucasian 1.1   (0.4)   366 0.9   (0.2)  209          1.0   (0.3)   575

Creatinine ClearanceE (mL/min)a WHAS 1** WHAS 2 Total
African American 52.3   (22.0) 136 57.2   (18.0)   42      53.4   (21.2) 178
Caucasian 50.4   (21.0) 349 54.3   (14.0) 209      51.8   (18.8) 558

Note. Significant differences from independent t-tests between WHAS 1 and WHAS 2 

subjects (**p<0.01) and African American and Caucasian subjects (*p<0.01) are 

indicated. 

aEstimated creatinine clearance by Cockcroft-Gault formula.
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Table 6

Metabolic and Clinical Profiles for WHAS Subjects by Race Category

Clinical Parameter
N % N % N %

Cobalamin (pmol/L) African American*   Caucasian              Total
Low (<148) 2      1.0 18       3.0 20     2.5
Moderate (149-258) 11     5.6            67     11.3 78     9.9
Normal (>259) 181   91.4 498   84.3 679   86.1

�	�	��������*��	
��� African American Caucasian Total
Normal (<14) 149   75.3 486   82.2 635   80.5
Moderate (15-49) 31   15.7 68   11.5 99   12.5 
High (>50) 1     0.5 2     0.4 3 0.4

Methylmalonic acid (nmol/L) African American*    Caucasian Total
Normal (<279) 158   79.8 391   66.2 549   69.6
Moderate-High (280-999)     31   15.7 174   29.4 205   26.0
Very High (>1000) 2    1.0 8     1.4 10 1.3

Folate (nmol/L) African American* Caucasian Total
Low (<6.8) 88   44.4 167   28.3 255   32.3
Normal (>6.9) 107   54.0 418   70.7 525   66.5

Creatinine ClearanceE
a African American Caucasian Total

Stage 1 (>90) 11     5.6 17    2.9 28     3.5
Stage 2 (60-89) 46   23.2 140   23.7 186   23.6 
Stage 3 (30-59) 98   49.5 325   55.0 423   53.6
Stage 4 (15-29) 20   10.1 50     8.5 70     8.9
Stage 5 (<15) 2     1.0 2     0.3 4     0.5

Note. Percentages may not add to 100% due to missing data. Significant differences in 

means of African American and Caucasian clinical parameter groups from independent t-

tests (*p<0.01) are indicated.

aNational Kidney Foundation-KDOQI Clinical Practice Guideline criteria, in mL/min.



 151 
Table 7

Genotype and Allele Frequencies for TCNII and TCNII-Receptor SNPs

African American Caucasian
SNP AA     AB    BB        Aa B AA    AB BB        A         B
TCNII
rs16988828 5 39 141 0.13 0.87 10      87    454      0.10     0.90
rs7289549 19       67     103       0.28     0.72 11      92    458      0.10     0.90
rs7286107 12       60     117       0.22     0.78 3        1    561      0.01     0.99
rs9606756    10       48     132       0.18     0.82         28 87    447      0.13     0.87
rs740234                  4       29     157       0.10     0.90 35    159    371      0.20     0.80
rs35915865 1         2     188       0.01     0.99 4      19    544      0.02     0.98
rs11703570 14 50     123       0.21     0.79 45    148    367      0.21     0.79
rs35838082              9       54 126 0.19     0.81 0        7    562      0.01     0.99
rs2267163 14       56 116 0.23 0.77 123    225    203      0.43     0.57 
rs1801198 16 65 108 0.26     0.74       133    251    183      0.46     0.54
rs4820021 0         6     187 0.02 0.98 14      92    455      0.11     0.89
rs9621049 7 51 134 0.17     0.83 14    101 448      0.11     0.89
rs4820886 4 50 135 0.15     0.85 12    102    450      0.11     0.89
rs4820887 4 27     157       0.09     0.91 9      85    465      0.09     0.91
rs4820888 38      90       62       0.44 0.56 127    235    199 0.44     0.56
rs2301955 17      71     102       0.28     0.72 120    230    220      0.41     0.59
rs2301958 11      59     121       0.21     0.79 32    172    368      0.21     0.79
rs1131603                 0        1     195       0.00     1.00           2      49    531      0.05     0.95   
rs4820889 5      31     154       0.11     0.89           2      23    547      0.02     0.98
rs2072194 4      44     136       0.14     0.86       115    238    200      0.42     0.58

TCNII-Receptor
rs173665 7      33     148       0.13     0.88 10      79    466 0.09     0.91
rs250510 3      22     157       0.08     0.92 1        6    539      0.01     0.99
rs2232787 1        3     186       0.01     0.99 1        0    547 0.00     1.00 
rs2227288 13      50     125       0.20     0.80 12      98    427      0.11     0.89
rs2336573 21      72       94       0.30     0.70 9      35    512      0.05     0.95
rs2232779 2      18 174       0.06     0.94 5        2    573      0.01     0.99
rs2927707 16     51     118       0.22     0.78         57     202   288      0.29     0.71
rs3760680 29     75       78       0.37     0.63 81     221 242      0.35     0.65
rs8100119 23     65      102      0.29     0.71 5       35   524      0.04     0.96

Note. SNP data in genomic order as occurring on the chromosome. 

aA denotes the minor allele and B denotes the major allele.



 152 
Table 8

Two-Way ANCOVA F-Statistics for Cobalamin-Related Clinical Outcomes 

Cobalamin Homocysteine MMAa

SNP                  Int.    M(S)    M(R)        Int.    M(S)    M(R)        Int.    M(S)    M(R)  
TCNII
rs16988828  0.55     1.31     8.47**     1.13     0.86     0.04         0.39      1.60     1.29 
rs7289549      2.36     0.05   14.39** 0.12     0.18     1.67 1.86      0.85     6.87**
rs7286107      0.50     0.46     0.01         0.19     1.30 0.00 0.05      0.10     0.45
rs9606756      0.02     0.01     7.54**     1.41     0.52     3.10 0.09      0.96     1.28
rs740234        0.20     0.14     3.38         0.33     0.46     0.00 1.76      0.58     0.75
rs35915865    0.04     0.57 1.38         0.95     0.58 0.19         0.60      2.18     0.15
rs11703570    0.56     2.73   11.29**     1.61     0.92     0.60 0.39      0.29     1.56
rs35838082    0.03     0.39     3.92*       0.00     3.36*   1.50  8.21**  2.51 12.62**
rs2267163      0.86     1.69     5.90**     1.30     0.16 3.49         0.38      0.06     3.96* 
rs1801198      1.25     1.97     6.41*       1.23     0.29 6.21**     0.17      0.01     3.79
rs4820021      0.85     2.11     0.81         0.73     0.01     2.56         0.50      0.04     0.27
rs9621049      2.30     0.77     6.41**     2.66     4.97** 6.91**     0.60      0.01     2.56
rs4820886      2.07     1.24     4.37         1.72     2.89     5.17* 0.69      0.19     3.00
rs4820887      0.75     0.74     5.24*       4.58** 4.73** 7.94**     0.37      0.03     0.76
rs4820888      1.59     3.17* 22.33**     0.80     1.17     5.33*       0.26      0.33     5.58*
rs2301955      1.05     0.98   15.82**     1.17     0.66 1.86 0.57      0.73     2.31
rs2301958      1.11     2.79   10.68**     1.40     0.43     0.07 0.05      0.01     3.70
rs1131603      1.64     1.30     0.15 0.10     0.14     0.02 0.78      0.91     1.81
rs4820889      1.54     1.21     1.52 0.03     0.27     0.83 1.77      1.54     1.22 
rs2072194      0.22     0.25     4.72* 1.03     0.58 4.47*       1.13      0.24     3.42

TCNII-Receptor
rs173665        0.01     1.01     5.55* 0.77     1.04 0.02          0.81     1.23 1.89
rs250510        0.06     2.05     1.87 1.25     1.82 4.38*        0.08     1.35     0.01
rs2232787      0.32     0.98     1.47 0.17     0.03     0.01 3.55     0.32     4.85*
rs2227288      0.27     2.80     5.94* 1.29     0.00 0.85 1.28     0.07     0.09
rs2336573      0.27     3.25*   6.78** 1.86     0.35     0.00          0.29     0.41     2.29
rs2232779      0.39     0.01     3.84* 0.39     0.37     0.06 0.96     0.69     4.10*
rs2927707      2.20   1.59     7.24**     0.76     0.73     5.67* 1.07     0.08     7.75**
rs3760680      1.34     1.95   17.47** 3.51     1.22     1.19 0.40     0.16     5.37*
rs8100119      0.01     2.10     2.72 1.21     0.33 0.17          0.84 0.34     0.55

Note. 2-way ANCOVA F-statistics for Interaction Effects (Int.), SNP Genotype Main 

Effects M(S), and Race Main Effects M(R), after adjustment for covariates. (*) indicates 

p=0.05 significance and (**) indicates p=0.01 significance. Data shown here are before 

Bonferroni adjustment.
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Figure 4. Transcobalamin II-Receptor SNP rs2336573 and Mean Serum Cobalamin. 

Box and whiskers plot serum cobalamin concentration (pmol/L) in African American and 

Caucasian WHAS subjects by rs2336573 (A220G) genotype in the transcobalamin II-

receptor. The figure also includes the distribution of outlying cases.  



   

CHAPTER 5

ASSOCIATION OF TRANSCOBALAMIN II AND TRANSCOBALAMIN II-

RECEPTOR GENETIC VARIATION WITH CLINICAL FEATURES 

OF VITAMIN B12 DEFICIENCY IN ELDERLY WOMEN

Abstract

Vitamin B12 (cobalamin) deficiency is an insidious and chronically progressive 

condition that demonstrates increased prevalence in older adult populations. Elder adults 

are particularly susceptible to its development due to age-related decreases in nutrient 

absorption, presence of comorbidities and medications that interfere with vitamin B12, 

and misattribution of vague symptoms to “older age.” Confounding accurate detection is 

clinical heterogeneity in the spectrum of symptom presentation, where clinical 

presentation spans mild fatigue and weakness to full-blown megaloblastic anemia and 

permanent neuropathic injury. This study aimed to better understand the heterogeneity 

observed in clinical cobalamin deficiency by evaluating the role of genetic variation on 

vitamin B12 deficiency symptom profiles in 795 Women’s Health and Aging Study 

elderly subjects. A candidate gene association study was performed to test for 

associations between variation in genes involved in vitamin B12 transport and 

hematologic, neurologic, and functional performance features of cobalamin deficiency. 

Two genes were studied, the primary cobalamin transport molecule and its receptor
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(transcobalamin II and transcobalamin II-receptor). An association was identified 

between a missense coding SNP (rs11801198) in the transcobalamin II gene and red 

blood cell mean corpuscular volume. A cluster of SNPs in the promoter region of the 

transcobalamin II gene were associated with the physical performance parameters, hand 

grip strength, and walking speed.  

Introduction

Vitamin B12, also referred to as cobalamin, is an essential nutrient for survival in 

human beings. Because vitamin B12 is made only by bacteria, humans are dependent on 

receiving at least 2-����`�����������	�`���������������	�������
���	�������������������

poultry, seafood, eggs, dairy, or alternatively, through supplementation practices 

(National Academy of Sciences, 1998). In the human body, vitamin B12 has two primary 

forms, methylcobalamin and adenosylcobalamin, and is used as a cofactor for two 

enzymatic reactions: 1) in the cytoplasm, methylcobalamin overlaps with folate and 

serves as a methyl donor for the reaction catalyzed by methionine synthase. The products 

of this reaction provide the molecular precursors for DNA synthesis and cellular 

methylations, and 2) in the mitochondria, adenosylcobalamin is used as an essential 

cofactor in the metabolism of odd chain fatty acids and ketogenic amino acids for proper 

energy balance (Rosenblatt & Fenton, 2001).

Pathophysiologic responses to vitamin B12 deficiency commonly occur in cells 

that divide rapidly, such as those in the hematopoietic system, and in cells that require 

methylations for proper neurologic function, such as axons that experience frequent 

myelin sheath turnover. When methylations and DNA synthesis are disrupted, classical 
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pathology development includes macrocytic anemia, peripheral neuropathy, and subacute 

degeneration of the spinal cord (Beck, 2001). However, clinical vitamin B12 deficiency 

more often presents subtly, spanning a sizeable and heterogeneous preclinical spectrum 

with nonspecific symptom profiles, including malaise, vertigo, fatigue, mood alterations, 

sleeping, and gait disturbances (Carmel, 2000). Furthermore, neurologic symptoms may 

or may not occur before development of macrocytic anemia, and individuals receiving 

treatment may or may not experience resolution of neurologic symptoms even if using 

prescribed standardized replacement therapy (Allen, Stabler, Savage, & Lindenbaum, 

1990; Lindenbaum, Savage, Stabler, & Allen, 1990).

The challenge of accurately identifying presence of decreased vitamin B12 status 

and effectively treating it is especially difficult for older adult populations. Nonspecific 

symptoms of borderline cobalamin status are often erroneously attributed to older age. 

Presence of common medications, age-related declines in gastric function, and 

comorbidities in older adults can impair normal vitamin B12 absorption (Baik & Russell, 

1999). Estimated vitamin B12 deficiency prevalence in older adults ranges from 6 to as 

high as over 40% depending on the definition criteria used (Allen, 2009; Baik & Russell, 

1999; Johnson et al., 2003; Lindenbaum, Rosenberg, Wilson, Stabler, & Allen, 1994; 

Pennypacker et al., 1992). If unrecognized, vitamin B12 deficiency could contribute to 

increased disability trajectories in older adults (Bartali et al., 2006).

Improved understanding of the factors contributing to the heterogeneity of clinical 

features observed in vitamin B12 deficiency affecting older adults is needed. Recently, 

research has identified that genetic variation in cobalamin metabolism genes can affect 

clinical parameters such as serum metabolites (Hazra et al., 2009; Miller, Ramos, Garrod, 
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Flynn, & Green, 2002; Tanaka et al., 2009). Genes involved in the transport of all 

biologically active vitamin B12 used by the body are especially attractive candidates in 

exploring the role of genetic variation in an elder adult’s cobalamin status. 

To explore this hypothesis, a candidate gene association study was performed to 

examine if genetic variation in the primary cobalamin carrier molecule (transcobalamin 

II), and its receptor (transcobalamin II-receptor) were associated with clinical indicators 

of vitamin B12 deficiency in a population of elderly women. Research subjects were 

previous participants of the Women’s Health and Aging Studies. The clinical phenotypes 

examined in this study were traits that represented primary manifestations of clinical 

cobalamin deficiency and spanned hematological, neurologic, and functional 

performance parameters. Specifically, this study evaluated if genetic variation in the 

transcobalamin II and transcobalamin II-receptor gene was associated with hemoglobin 

concentration, mean corpuscular volume, depression scale score, peripheral neuropathy 

desensitization, hand grip strength, and walking speeds.  

Methods

Study Design and Population 

The Women’s Health and Aging Study (WHAS) 1 and 2 were prospective 

observational female cohort research initiatives conducted by the National Institute on 

Aging (NIA) in conjunction with the Johns Hopkins School of Public Health (Fried, 

Bandeen-Roche, Chaves, & Johnson, 2000; Guralnik, Fried, Simonsick, Bandeen-Roche, 

& Kasper, 1995). Designed as complementary companion studies, data from WHAS 1 

and 2 are often combined for a strengthened analytic approach representative of the 
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community-dwelling elderly (Bandeen-Roche et al., 2006; Chaves, Ashar, Guralnik, & 

Fried, 2002; Chaves et al., 2005; Leng, Xue, Tian, Walston, & Fried, 2007; Semba, 

Garrett, Johnson, Guralnik, & Fried, 2000; Semba et al., 2005; Walston et al., 2005). The 

WHAS studies represent a broad spectrum of illness and health in the Baltimore, MD 

community-dwelling female elderly population, as WHAS 1 focused on examination of 

the one-third most disabled women and WHAS 2 focused on two-thirds of the least 

disabled individuals. Although outlined briefly here, detailed reports of the sampling, 

screening, recruitment, and data collection procedures employed in WHAS 1 and 2 are 

reported elsewhere (Fried et al., 2000; Guralnik et al., 1995). The research protocols used 

by WHAS 1 and 2 investigators were approved by the Johns Hopkins Medical 

Institutions institutional review board. The genotyping portion of the WHAS research 

presented in this report was conducted at the National Human Genome Research 

Institute, and was approved by the Office of Human Subjects Research at the National 

Institutes of Health and the institutional review board at the University of Utah.   

WHAS 1 (1992-1995) 

Using Health Care Financing Administration (HCFA) Medicare enrollees from 12 

Baltimore area zip codes, 6,521 elderly women were randomly selected for WHAS 1 

screening (Fried, Kasper, Guralnik & Simonsick, 1995). Of the 6,521 age stratified 

women (65-74, 75-84, and >85) who were selected, 3,841 individuals met screening 

eligibility criteria and were assessed for physical disability across four domains: 1) 

mobility and exercise tolerance, 2) upper extremity function, 3) high function tasks 

(activities of daily living), and 4) basic self care. If participants had trouble performing 
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tasks in two, three, or four of the domains, and were moderately cognitively impaired as 

indicated by a score of at least 18 on Mini-Mental State Examination (MMSE), they were 

invited for WHAS 1 participation (n = 1,409) (Fried, Kasper, Guralnik, & Simonsick, 

1995; Guralnik et al., 1995). Following consent, trained interviewers collected data on 

1,002 WHAS 1 participants. In subjects’ homes, interviewers used standardized 

assessment protocols to administer health questionnaires, physical examinations, and 

functional performance measures. A subset of 762 WHAS 1 research subjects consented 

to phlebotomy. DNA availability from the phlebotomy performed in 1992-1993 included 

samples for 536 WHAS 1 subjects. 

WHAS 2 (1994-1996) 

Also randomly selected from the 32,538 Health Care Financing Administration 

(HCFA) Medicare enrollee records in Baltimore, MD, an age-stratified sample (70-74,

75-79) of 1,630 women was identified for health screening and enrollment. Evaluated 

across the same four physical disability domains, women with difficulties in none or one 

of the domains with a Mini-Mental State Examination (MMSE) score of 24 or higher 

were invited for study participation (n = 880). Subjects assessed over the telephone with 

an abbreviated MMSE who correctly answered at least 80% of the verbal response items 

were also eligible. A total of 436 subjects consented and were enrolled in WHAS 2, 

where they participated in a clinic examination visit conducted by trained study 

personnel. The same standardized questionnaires, physical examination criteria, and 

functional performance measures were administered to WHAS 2 subjects as in WHAS 1. 
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A subset of 405 WHAS 2 research subjects consented to phlebotomy with DNA 

availability for 253 research subjects. 

Blood Assay Measurement

Blood assay measurements used for this study included hemoglobin 

concentration, mean corpuscular volume (MCV), and serum folate. Nonfasting blood 

samples for WHAS 1 and 2 subjects were collected using venipuncture into sterile tubes 

containing ethylenediaminetetraacetic acid as an anticoagulant and processed at the Core 

Genetics Laboratory in the Johns Hopkins University School of Medicine. Frozen 

aliquots were sent to Quest Diagnostics (formerly Corning Clinical Laboratories and 

MetPath) in Teterboro, NJ. Hemoglobin concentrations were measured using the 

traditional cyanmethemoglobin method. Hemoglobin concentrations under 12.0 g/dL are 

considered to be low, indicating presence of anemia (World Health Organization, 1968).

MCV values were calculated by taking the proportion of blood volume in a subject’s 

sample comprised of erythrocytes (hematocrit) and dividing it by the total red blood cell 

count number. MCV values are reported in femtoliters (fL) and used to differentiate 

between various etiologies of anemia: microcytic (<83fL), normocytic (83-103 fL), and 

macrocytic (>103 fL). For serum folate measurement, frozen aliquots were sent from 

Johns Hopkins University School of Medicine to Quest Diagnostics (formerly Corning 

Clinical Laboratories and MetPath) in Teterboro, NJ. At Quest Diagnostics, subjects’ 

serum folate concentrations were determined using a competitive folate-binding protein 

assay, according to reported methods of the Ciba-Corning Diagnostics Corporation 

(Medfield, MA). The Quest Diagnostics laboratory’s reported normal reference range for 
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serum folate was 6.8-36.0 nmol/L. The hemoglobin, MCV, and serum folate values 

available for the WHAS participants included n = 752, hemoglobin concentrations, n =

744 MCV concentrations, and n = 780 folate concentrations. 

Neurologic Clinical Measures

Depression

Depressive symptoms in WHAS 1 and 2 subjects were evaluated through use of 

the Geriatric Depression Scale (GDS), a psychometric depression assessment in elderly 

adults designed to circumvent somatic depression symptoms and presence of dementia 

(Yesavage et al., 1982). The GDS is a validated 30-item survey of dichotomous (yes/no) 

questions requiring approximately 8 minutes to administer. Although the continuous 

scores were used for analysis in this study, generally accepted clinical scoring cutoffs 

include no depression (less than or equal to 9), mild depression (scores 10-13), and severe 

depression (greater than or equal to 14) (Ferrucci, Kittner, Corti, & Guralnik, 1995; 

Lyness et al., 1997; Norris, Gallagher, Wilson, & Winograd, 1987). Depression scores 

were available for all 789 WHAS 1 and 2 research subjects in this study. 

Peripheral Neuropathy

To assess for presence and severity of peripheral neuropathy, vibration perception 

testing (VPT) was conducted in both WHAS 1 and 2 cohorts. Unlike other laboratory 

tests and clinical measurements in WHAS, VPT data collection was not standardized 

between the two cohorts. WHAS 1 measurement protocols used a vibrometer and WHAS 
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2 measurement protocols used a tuning fork. To ensure reliability, the genetic analysis 

performed for this study was restricted to VPT continuous data for WHAS 1 subjects.

VPT testing for the WHAS 1 elderly women was performed on study participants’ 

lower extremities using the Vibratron II (Physitemp Instrument, Inc., Clifton, NJ). 

Modeled after a diabetic neuropathy protocol, subjects placed their right toe on the 

Vibratron II’s platform and reported whether or not a vibratory stimulus was felt using a 

two-alternative (yes/no) forced choice procedure (Ferrucci, Kittner, et al., 1995; Maser et 

al., 1989). Stimulation intensity was progressively decreased in 10% decrements until 

study subjects could no longer detect vibration. When a study subject provided an 

erroneous response, the vibration intensity was increased by 10% and the progressive 

decrements continued until a total of 5 errors were made. Vibration units measured by the 

Vibratron II were converted to microns, and after identifying the five errors and five 

lowest correct scores, a participant’s mean vibratory threshold was identified by 

removing the highest and lowest scores and averaging the remaining values. Although the 

continuous scores were used for analysis in this study, accepted neuropathic functional 

micron unit cutoffs include normal function (<3.43 units), mild dysfunction (3.44-4.87

units), moderate dysfunction (4.88-6.31 units), and severe dysfunction (>6.31 units) 

(Resnick, Vinik, Heimovitz, Brancati, & Guralnik, 2001; Volpato, Leveille, Blaum, 

Fried, & Guralnik, 2005). There were n = 498 continuous WHAS 1 vibration scores 

available for analysis. 
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Functional Performance Measures

Hand Grip Strength

A JAMAR hand dynamometer was used to measure hand grip strength in WHAS 

elderly participants (Model #BK-7498; Fred Sammons Inc, Burr Ridge, IL). Testing was 

performed with subjects in a seated position and elbow flexure at a 90-degree angle 

(Ferrucci, Guralnik, Bandeen-Roche, Lafferty, Pahor & Fried, 1995). Subjects were 

asked to grasp the dynamometer and squeeze as hard as possible three times on each 

hand. The best measure in the stronger hand was recorded and reported in kilograms of 

force. There were n = 718 hand grip strength measurements available for this study’s 

analysis. 

Four-Meter Walking Speed 

WHAS 1 and 2 participants were asked to walk over a 4-meter course, at their 

usual speed two times and once, as fast as possible. For some participants, 4 meters was 

not available in their homes and a distance of 3 meters was used instead. Walking and 

timing of the walk beginning at a starting line did not start until the command to start was 

given by the interviewer. Using the faster of the two usual-pace walks, average walking 

speed was calculated by dividing the length of the walk (in meters) by the time in seconds 

required to complete it. Subjects were permitted to use a cane, walker, or walking aid, but 

not assistance from an additional person. There were n = 767 walking speed 

measurements available for this study’s analysis.
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Genetic Variant Measurement

SNP Selection 

Information from publicly available databases (HapMap phase 1 and 2 full 

dataset, dbSNP build 125, and NCBI build 35) was used to select single nucleotide 

polymorphisms (SNPs) in the candidate genes, for Caucasians and African Americans. 

Haploview (4.0) Tagger was used to tag SNPs spanning both candidate genes, including 

10kb flanking regions, using an r2 threshold of 0.9 and a minor allele frequency of 0.05. 

Other candidates selected included those reported in literature to be associated with 

clinical vitamin B12 deficiency parameters, and functional variants within exons, 

promoters, or conserved sequences across species. A total of 51 SNPs were selected 

including 29 SNPs in the transcobalamin II gene and 22 SNPs in the transcobalamin II-

receptor gene.

Whole Genome Amplification 

To extract WHAS 1 and 2 subjects’ genomic DNA from whole blood samples, 

study staff at the Core Genetics Laboratory in the Johns Hopkins School of Medicine 

used the Puregene DNA Purification Kit from GentraSystems, Inc. WHAS subject 

genomic DNA was plated at Johns Hopkins University and 50ng was provided to the 

National Human Genome Research Institute for genotyping. Due to limited starting 

quantities of genetic material, 10 ng of WHAS subject DNA was whole genome 

amplified using Qiagen's REPLI-g Midi Kit (Product # 150045_100 Rx). This kit is 

molecularly characterized by use of multiple displacement amplification via a highly 
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one allele. To minimize random allele dropout, two independent rounds of whole genome 

amplification reactions were performed and pooled for high-throughput genotyping. In 

pilot analyses, Hardy Weinberg statistics were closely correlated between calculations of 

whole genome amplified material and those of nonamplified genomic material. All 789 

WHAS participant genomic samples were successfully amplified.

SNP Genotyping

Genotyping of the WHAS whole genome amplified material was completed at the 

National Human Genome Research Institute using the Sequenom MassArray iPLEX 

platform (San Diego, CA). Sequenom’s high-throughput genotyping platform is 

characterized by a locus-specific PCR reaction producing a 100-base pair segment with 

the SNP of interest, followed by a locus-specific primer extension reaction producing a 

mass-modified SNP genotype. Following these serial amplifications and extensions, the 

mass-modified SNP genotypes were resolved using MALDI-TOF mass spectroscopy.  

Statistical Analysis

SPSS (version 12.0) was used to compute descriptive and inferential statistics. 

Summary data, frequency distributions, normality parameters, and independent t-tests 

were evaluated for WHAS participant demographic characteristics and the study’s 

hematologic, neurologic, and functional performance outcomes. For genetic data, Hardy-

Weinberg statistics were calculated for each SNP in the transcobalamin II and 

transcobalamin II-receptor genes. Allele and genotype frequencies were obtained for 

African American and Caucasian WHAS subjects. Missing data were evaluated through 
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SPSS’ missing data analysis function, and no nonrandom patterns were observed. WHAS 

subjects missing genotypes, clinical outcome measurements, or covariate measurement 

data were removed from analysis. For the outcome and covariate variables used in this 

study, assessment of linearity, homogeneity of variance, homogeneity of regression 

slopes, and covariate reliability indicated no violations of statistical assumptions. For the 

study’s laboratory parameters, extreme outliers that were zero (indicating a false 

laboratory entry) or greater than 3 standard deviations away from the mean were removed 

from analysis (hemoglobin n = 0, MCV n = 7, and serum folate n = 1).

For hematologic parameters, a two-way analysis of covariance was conducted to 

ascertain presence of differences in mean hemoglobin concentration, MCV, covaried on 

serum folate by the independent variables, race and SNP genotype. For neurologic 

parameters, a two-way analysis of variance was performed to ascertain presence of 

differences in mean depression score and peripheral vibration sensitivity outcomes by the 

independent variables, race and SNP genotype. For physical performance parameters, a 

two-way analysis of variance was performed to assess differences in hand grip strength

by race and SNP genotype. An analysis of covariance was conducted to ascertain 

differences in subjects’ 4-meter walking speed by independent variables, race and SNP 

genotype, covarying on standing height to adjust for the influence of an individual’s 

height on gait length. All analyses of variance and covariance in this study used 

continuous data. Significant interaction and main effect F tests (p=0.05) were evaluated 

using the Tukey and Least Significant Difference pairwise comparison test procedures,

and by assessing interaction graphs. To correct for alpha inflation arising from multiple 

testing, the Bonferroni adjustment was used. 
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Results

Demographics

The demographic and other baseline health characteristics for the WHAS 1 and 2 

study participants are summarized in Table 9. Caucasian participants were significantly 

older than African Americans [t(787)= -2.90, p=0.004], and WHAS 1 subjects were older 

than WHAS 2 subjects [t(787)= 7.01, p<0.01]. Caucasians had more years of education 

than African Americans [t(787)= -7.27, p<0.01] and as a cohort, WHAS 2 participants 

were more highly educated [t(787)= -10.9, p<0.01]. The number of chronic diseases was 

higher in WHAS 1 participants due to the cohort’s focus on more disabled members of 

the community [t(787)= 9.50, p<0.01]. African American participants had elevated body 

mass index (BMI) parameters compared to the Caucasian participants [t(741)= 5.13, 

p<0.01], and WHAS 1 subjects had higher average BMI compared to WHAS 2 subjects 

[t(741)= 3.62, p<0.01]. 

Clinical Characteristics 

Summary data for the WHAS subjects’ clinical outcome characteristics are shown 

in Table 10 and frequencies for the clinical diagnoses related to the study’s outcome 

parameters are indicated in Table 11. The mean hemoglobin concentration for African 

Americans at 12.4 gm/dL was lower than that for Caucasians at 13.3 gm/dL [t(750)=        

-8.58, p<0.01]. This difference was also noted for mean corpuscular volume (MCV),

where African Americans’ mean MCV was significantly lower at 90.3 fL compared to 

94.2 fL for Caucasian participants [t(742)= -8.39, p<0.01]. African Americans subjects 

had a significantly higher prevalence of anemia compared to Caucasians [t(750)= 6.04, 
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p<0.01], and microcytic anemia affected more African Americans than Caucasians 

[t(742)= -7.05, p<0.01]. Across the cohorts, WHAS 1 elderly subjects had lower mean 

hemoglobin concentrations [t(750)= -3.65, p<0.01]. Although mean depression scale 

scores were similar between African Americans and Caucasians participants, WHAS 1 

elderly women had higher scores than WHAS 2 elderly women [t(787)= 10.0, p<0.01]. 

Peripheral neuropathy measurements were only available for WHAS 1 subjects. Mean 

peripheral sensitivities did not differ between the ethnic groups and at 8.4 microns for 

African Americans and 8.3 microns for Caucasians, reflected an average of severe 

neuropathy for the sample. Given the varying and complementary selection criteria 

between the two different cohorts, these observed differences were expected and mirrored 

results of other WHAS publications.

Mean hand grip strengths indicate that African American elderly women were 

physically stronger than Caucasian elderly women [t(716)= 2.86, p=0.004], and mean 4-

meter walking speeds for Caucasian elderly women were significantly faster than the 

African Americans [t(765)=  -6.25, p<0.01]. WHAS 1 elderly women were less strong 

[t(716)= -11.4, p<0.01] and not as fast [t(765)= -20.3, p<0.01] as WHAS 2 elderly 

women. Table 12 provides functional performance percentiles for the WHAS elderly 

subjects on hand grip strength and 4-meter walking speeds. Previous characterization of 

physical performance measures in WHAS participants ascertained that individuals in the

lowest quintile of measurement meet the definition of physical weakness, and physical 

slowness (Fried et al., 2001).
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Genetic Data 

Of the 51 SNPs selected for genotyping, only 29 SNPs were genotyped 

successfully. SNPs that were monomorphic (n = 6) or did not meet genotyping quality 

control thresholds (n = 16) were dropped. This resulted in incomplete tagging coverage 

for the transcobalamin II and transcobalamin II-receptor genes. SNPs were not included 

in the analysis if they were monomorphic or did not meet strict quality-control thresholds. 

Table 13 shows the genotype (AA, AB, BB) and allele (A, B) frequencies for SNPs that 

were successfully genotyped in WHAS African American and Caucasian subjects. 

Bonferroni adjustment for multiple testing of the 29 SNPs across the six clinical 

outcomes in this study yields a corrected alpha significance threshold of 

[p=(0.05/174)=0.0003]. Tables 14-16 provide a summary of the F values for interaction 

effects, SNP main effects, and race main effects obtained from the two-way analysis of 

variance and analysis of covariance statistical testing, and no results approach the 

Bonferroni-adjusted threshold level. However, several SNP main effect results were 

significant at the unadjusted p=0.01 levels for the hematologic parameters, and p=0.05 

for the neurologic and functional performance parameters. 

Hematologic Parameters

The two-way analysis of covariance of mean hemoglobin concentrations and 

MCV across race and SNP genotype factors adjusted for serum folate identified four 

highly significant SNPs, two for hemoglobin concentration and two for MCV (Table 14). 

Although there were no gross normality violations for the hemoglobin distribution, the 

MCV distribution demonstrated a bimodal peak that corresponded to differences between 
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African American’s mean MCV of 90.3 fL and Caucasian subjects’ mean MCV of 94.2 

fL. Levene’s test for equality of variances was violated in all analyses of covariance for 

MCV, resulting in the need for cautious interpretation in SNPs that did not meet more 

stringent alpha significance levels, such as under 0.025 (Tabachnik & Fidell, 2007).

For the hemoglobin concentration outcome, an A|G SNP in intron 7 of the 

transcobalamin II gene, rs4820888, demonstrated a significant interaction effect [F(2, 

716), p=0.008, partial eta squared = 0.013] between race and genotype. Simple 

comparison testing type on the interaction effect indicated that African American GG 

homozygotes (M=12.7 gm/dL) were different from AG heterozygotes (M=12.2 gm/dL) at 

p=0.04. The SNP main effect of rs4820888 was insignificant [F(2, 716)= 0.694, p=0.5]. 

Also associated with mean hemoglobin concentration, a significant interaction effect 

[F(2, 700)= 5.57, p=0.004, partial eta squared = 0.016], and a significant SNP main effect 

[F(2, 700)= 4.10, p=0.017, partial eta squared = 0.012] was observed for the SNP 

rs2072194, an A|G polymorphism in intron 8 of the transcobalamin II gene. However, 

this association was  spurious, its strength stemming from too few cases in the African 

American GG and GA genotype group cells that contained lower hemoglobin 

concentrations, thus driving the differences detected in the SNP main effect.

For the MCV outcome trait, a missense C|G polymorphism in exon 6 of the 

transcobalamin II gene, rs1801198 (P259R), demonstrated a significant interaction effect 

[F(2, 709)= 5.37, p=0.005, partial eta squared = 0.015]. Simple pairwise comparison tests 

were performed and identified statistically significant differences between the GG and

CG groups (p=0.002) and the GG and CC groups (p=0.029) of African American elderly 

subjects. African American GG homozygotes had lower MCV (M=86.1 fL) compared to 
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CG heterozygotes (M=91.4 fL) and CC homozygotes (M=89.7 fL). There was no 

graphical interaction observed between African Americans and Caucasians for the MCV 

trait by rs1801198 genotype. Pairwise comparison tests across genotype groups in 

Caucasian elderly subjects were insignificant. Although there was a significant SNP main 

effect for rs1801198 [F(2, 709)= 3.73, p=0.025, partial eta squared = 0.011], it was likely 

driven by the strength of the association observed in African Americans. A second SNP 

associated with MCV was rs2232787, a synonymous SNP (S280S) in exon 5 of the 

transcobalamin II-receptor gene with a significant interaction effect [F(2, 690)= 4.874,

p=0.028, partial eta squared = 0.007]. However, this SNP was monomorphic in both 

African American and Caucasian elderly subjects; discrepancies in MCV of genotype 

group cell sizes with zero, one, or two research subjects were driving this signal. In 

summary, the key finding identified in the analysis of hematologic parameters that was 

not attributable to low genotype frequencies was that of rs1801198 on MCV in African 

American subjects. 

Neurologic Parameters

The two-way analysis of variance evaluating geriatric depression score and 

peripheral neuropathy measurements across race and SNP genotype factors identified no 

SNPs significantly associated with neurologic vitamin B12 deficiency parameters at the 

p=0.01 level, and three SNPs at the p=0.05 level (Table 15). The association closest to 

the 0.01 alpha threshold was a significant interaction effect [F(2, 738)= 5.64, p=0.018, 

partial eta squared 0.008] observed for the rs2232787 synonymous SNP (S280S) in exon 

5 of the transcobalamin II-receptor gene; however, this was the same monomorphic SNP 
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from the MCV results. Inadequate cell sizes for the AA homozygotes (n=1 for African 

Americans, n=1 for Caucasians) and AG heterozygotes (n=3 for African Americans, n=0 

for Caucasians) were driving wide variability in mean depression scores, resulting in 

false association.

Demonstrating weaker significance were three SNPs associated with peripheral 

neuropathy micron measurements. The first SNP, rs4820886, a G|T polymorphism in 

intron 7 of the transcobalamin II gene, demonstrated a significant SNP main effect [F(2, 

470)= 3.67, p=0.026, partial eta squared 0.016] between genotype groups. The Tukey 

post-hoc analysis test ascertained significant differences between the mean micron 

measurement levels of GT heterozygotes (M=7.3 microns) and TT homozygotes (M=8.6 

microns) at p= 0.04. The second SNP, rs2227288, a C|G polymorphism in intron 4 of the 

transcobalamin II-receptor gene on peripheral neuropathy micron measurement, 

demonstrated a significant interaction effect [F(2, 451)= 3.21, p=.041, partial eta squared 

= 0.014]. The Tukey post-hoc comparison test identified significant differences of mean 

micron measurements across genotype groups in African Americans and Caucasians. For 

Caucasian elderly women, mean micron measurements in GC heterozygotes (M=9.8) 

were significantly different from GG homozygotes (M=8.0) at p=0.024, and also 

significantly different from CC homozygotes (M=5.4) at p=0.006. However, the minor C 

allele comprised small cell sizes, at n=10 for African Americans and n=6 for Caucasians. 

The last SNP reaching significance with mean micron measurement was rs2927707, a 

T|C polymorphism located in intron 1 of the transcobalamin II-receptor gene, which 

demonstrated a weakly significant interaction effect [F(2, 448)= 3.02, p=0.05, partial eta 

squared = 0.013]. In African American elderly women, Tukey post-hoc testing 
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ascertained that African American CC homozygotes (M=10.9 microns) were significantly 

different from TT homozygotes (M=8.4 microns) at p=0.048. 

In summary, four significant SNPs were found to be associated with neurologic 

parameters, one for depression (rs2232787) that was spurious due to low genotype 

frequencies from a monomorphic SNP, and three for peripheral neuropathy (rs4820886, 

rs2227288, and rs2927707). There was a significant main effect between genotype 

groups for rs4820886 independent of race. For rs227288, small genotype frequencies in 

the minor allele group drove false association. For rs2927707, differences in peripheral 

neuropathy measurements across genotype groups were identified in African Americans. 

Functional Performance Parameters

At the p=0.05 level, the two-way analysis of variance for hand grip strength 

identified four significant SNPs, and the two-way analysis of covariance for walking 

speed, adjusted for standing height, identified three significant SNPs (Table 16). The 

majority of these observed findings were clustered in the five prime region of the 

transcobalamin II gene, including rs16988828 in intron 1, rs7289549 in intron 1, 

rs7286107 in intron 1, rs9606756 in exon 2, and rs11703570 in intron 3. The strongest of 

these significant associations is rs7286107, a C|T polymorphism in intron 1, 

demonstrating a SNP main effect in genotype groups across mean walking speeds [F(2, 

708)= 4.18, p=0.016, partial eta squared = 0.012]. Simple comparison testing to ascertain 

which genotype groups were significantly different from each other showed that CT 

heterozygotes (M=0.54 m/s) had lower mean walking speeds than TT homozygotes 

(M=0.78 m/s) at p=0.018. 
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The final SNP in this analysis to be significantly associated with a functional 

performance parameter was rs2232779 in the transcobalamin II-receptor gene, an A|G 

polymorphism in intron 1 that had a significant interaction effect [F(2, 726)= 3.47, 

p=0.032, partial eta squared = 0.010] on walking speed. Pairwise comparison testing 

identified differences in mean walking speeds for Caucasians between TT homozygotes 

(M=0.67 m/s) and TC heterozygotes (M=1.3 m/s) at p=0.006, and between TT and CC 

(M=0.80 m/s) homozygotes at p=0.023, but inadequate cell frequency numbers were 

responsible for this effect (TT n = 4 and CT n =2). In summary, differences in functional 

performance not attributable to low cell frequencies were identified in a small cluster of 

six significant SNPs in the five prime region of the transcobalamin II gene. 

Discussion

A candidate gene association study was performed to ascertain if genetic variation 

in the transcobalamin II and transcobalamin II-receptor genes was associated with 

clinical phenotype parameters of B12 deficiency in a cohort of older adult women. Using 

banked samples and previously catalogued clinical measurements, genotypes were 

generated and analyzed for their association with clinical traits using a two-way analysis 

of variance and covariance. Although no genetic variant association reached the level of 

statistical significance required from the Bonferroni adjustment (p=0.0003), this 

exploratory analysis did find a transcobalamin II variant that was significant with the 

MCV trait at p=0.008, and a cluster of lower-level significant SNPs associating with 

physical performance parameters in a region of the transcobalamin II gene. 
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The first, and primary, finding from this study was a significant interaction effect 

between the transcobalamin II rs11801198 (P259R) SNP and the clinical parameter MCV 

in African American elderly women (Figure 5). African American subjects with a GG 

genotype had significantly lower MCV values compared to other genotype groups. 

Currently, there are no published reports that identify effects of rs11801198 on the MCV 

trait. However, this SNP is suspected to exert a functional biologic effect, most notably 

resulting in altered cobalamin-dependent metabolite levels in serum (Afman, Lievers, van 

der Put, Trijbels, & Blom, 2002; Lievers et al., 2002).

Current population-based studies identify that hematologic parameters including 

hemoglobin and MCV percentiles in African American individuals are slightly lower 

than in Caucasian individuals (Cheng, Chan, Cembrowski, & van Assendelft, 2004).

Although it has been proposed that differences in hemoglobin and MCV in African 

Americans may be attributable to socio-economic differences between the two 

populations, recent studies have identified alternative causes, such as genetic factors 

(Beutler & West, 2005). Ultimately, reasons for the rs11801198 finding in this study are 

unknown, and further research would be needed to validate this association in 

independent cohorts and ascertain its magnitude in a more adequately powered sample of 

elderly African American women.

A second finding from this work is the cluster of SNPs in the five prime region of 

the transcobalamin II gene associated with the cobalamin functional performance 

parameters. These SNPs span a genomic distance of approximately 5kb, extending across 

intron 1, exon 2, and intron 3, indicating that they are likely travelling together as part of 

a haplotype block. In addition to protein coding regions, this block is likely to include 
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sequences that regulate the expression of transcobalamin II messenger RNA, including 

enhancers and silencers. SNPs associated with decreased physical performance could act 

by influencing vitamin B12 availability and increase risk of functional vitamin B12 

deficiency in elderly individuals.

Two recent reports of transcobalamin II candidate gene associations with frailty 

parameters in Caucasian Women’s Health and Aging Study 1 and 2 subjects were 

published (Matteini, Walston, Bandeen-Roche, Arking, Allen, Fried et al., 2008; 

Matteini, Walston, Bandeen-Roche, Arking, Allen, Fried et al., 2010). These efforts 

identified significant associations between the frailty syndrome and transcobalamin II 

SNPs, specifically rs2267163 (and rs11801198 in linkage disequilibrium), which are 

located in the genomic region of intron 5 and exon 6. In comparison, results reported in 

this paper were slightly different in that the location of the significant SNPs was in intron 

1 through intron 3. 

Reasons for this difference may be in the varying analytic approaches used. 

Matteini and colleagues collapsed five continuous measurements of functional 

performance traits (walking speed, hand grip strength, energy level, body mass, and 

physical activity) into dichotomous outcomes according to widely accepted frailty 

parameters. Research subjects with at least three of the five frailty traits were categorized 

as being frail and entered into multivariate logistic regression models with SNP 

genotypes. In comparison, the analysis of covariance and analysis of variance approach 

outlined in this work used continuous data and conducted analysis of African American 

subjects in addition to Caucasian subjects. As both efforts identified findings in the 

transcobalamin II gene as being significant to functional performance in older adults, the 
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transcobalamin II gene remains an attractive biologic candidate for further replication and 

validation with a larger sample of older adults.

This study also assessed presence of variability in the mean outcome measures 

that was not due to genetics. For hemoglobin, MCV, and walking speed outcomes, the 

majority of SNPs had significant race main effects. There was one significant race main 

effect for depression score and peripheral neuropathy, 14 significant race main effects for 

hand grip strength, and 23 for walking speed. The variability in outcome measures in the 

race main effects was arising from factors related to the social contexts of the WHAS 

subjects, including nutrition, comorbidities, socio-economic status, or access to health 

care. For the traits hemoglobin and MCV, it is understood that social factors in addition 

to biologic differences account for clinical variability between African Americans and 

Caucasians (Beutler & West, 2005). However, there is no data on gene-environment 

interactions involving social mechanisms that is known to affect transcobalamin II and 

the transcobalamin II-receptor gene function in the broader literature base. Although this 

study indicates that social factors are present and impacting the outcome measures, this 

research does not ascertain which factors from an individual’s environment are 

generating the observed association. 

The strengths of this research include the use of a well-characterized elder adult 

research cohort such as WHAS 1 and 2 to investigate effects of genetic variation on 

clinical parameters of cobalamin deficiency. Additionally, because this study made use of 

very small amounts of genomic DNA, it demonstrates that use of whole genome 

amplification is a sound methodological technique to complement previous 

epidemiological investigations, such as WHAS 1 and 2. 
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Limitations of this work include the inability to fully tag both genes, due to the 

genotyping challenges associated with using whole genome amplified material from 

WHAS subject DNA that was between 16 and 18 years old. Because this is a candidate 

gene association study, it is important to note that although the findings identify new 

transcobalamin II and transcobalamin II-receptor genetic associations, knowledge of 

these associations cannot provide information as to their role in biologic causation of 

clinical vitamin B12 deficiency.     

Another limitation to this research is that environmental factors known to affect 

cobalamin status in older adults, such as medication use and comorbidities, were not 

included in the analyses. Since frequencies were low in many African American and 

Caucasian SNP genotype subgroups, greater loss of statistical power through additional 

covariate inclusion would have impaired ability to detect genetic effects. However, if data 

on medications and comorbidities was incorporated, there may have been less variance in 

the study’s outcomes attributable to SNP genotype. 

The MCV and physical performance genetic associations identified in this 

research support improved understanding of clinical heterogeneity of cobalamin 

deficiency parameters in older adult women. Additional research is required to replicate 

rs1801198 SNP (P259R) and the SNP cluster associations identified in the 

transcobalamin II gene, and to ascertain their biologic significance in the development 

and progression of vitamin B12 deficiency. The results obtained in this study may 

contribute to new analytic targets for future functional analyses of vitamin B12 related 

research.  
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Table 9

Selected Demographic and Health Characteristics for WHAS Subjects

Characteristic Mean (SD) N Mean (SD) N Mean (SD) N

Age (Years) WHAS 1**              WHAS 2 Total
African American 75.7 (7.0)   155        73.0 (2.5)    43  75.1  (6.4)   198*
Caucasian 78.1 (7.8)   381    74.1 (2.7)  210      76.7  (6.8)   591

Education (Years completed)         WHAS 1** WHAS 2                      Total
African American 8.6 (3.2)   155 11.0 (3.8)   43        9.1  (3.5) 198* 
Caucasian 10.3 (3.7) 381 13.2 (3.2) 210        11.3  (3.8) 591

Number of Chronic Diseasesa WHAS 1**              WHAS 2                      Total
African American 1.4 (1.6)   155 0.6 (1.1)  43         1.3   (1.5) 198
Caucasian 1.4 (1.4) 381 0.4 (0.9) 210         1.0   (1.3) 591

Body Mass Index (kg/m2)              WHAS 1** WHAS 2 Total
African American 31.5 (16.1)  138    29.3 (6.3)   43    31.0 (14.3) 181*  
Caucasian 28.0   (6.1)  352  26.0 (0.9) 210      27.2   (5.7) 562

Note. Summary statistics including mean values, standard deviations (SD), and sample 

size. Significant differences on independent t-tests between WHAS 1 and WHAS 2 

subjects (**p<0.01) and African American and Caucasian subjects (*p<0.01) are 

indicated. 

aSelf-reported diseases include angina, myocardial infarction, coronary artery disease, 

congestive heart failure, peripheral artery disease, stroke, diabetes mellitus, and cancer. 
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Table 10

Descriptive Summary of Cobalamin-Related Clinical Outcome Variables

Clinical Outcomea

Mean (SD) N Mean (SD) N Mean (SD) N

Hemoglobin (gm/dL) WHAS 1** WHAS 2 Total
African American 12.3   (1.6)  144        12.6   (1.0)    41      12.4  (1.5)   185*
Caucasian 13.2   (1.3)  367        13.4   (1.1)  200      13.3  (1.2)   580

Mean Corpuscular Volume (fL)    WHAS 1 WHAS 2 Total
African American 90.3   (6.3)  143        90.4   (6.9)    41       90.3  (6.4)  184*
Caucasian 95.1   (5.2)  361        92.7   (4.8)  199       94.2  (5.2)  560

Geriatric Depression Score            WHAS 1** WHAS 2
African American 7.2   (5.1)  155          4.2   (4.1)    43         6.6  (5.0)  198
Caucasian 8.2   (5.9)  381          3.9   (3.8)  210         6.7  (5.6)  591

Peripheral Neuropathya (microns) WHAS 1
African American 8.4  (4.6)  144                  
Caucasian 8.3  (4.4)  354

Hand Grip Strength (kg)                WHAS 1** WHAS 2 Total
African American 21.9   (5.9)  129 27.1 (5.6)    43        23.2 (6.3)  172*
Caucasian 19.8   (5.4)  341 24.8 (4.7)  205        21.7 (5.7)  546

4-Meter Walking Speed (m/s) WHAS 1** WHAS 2 Total
African American 0.5   (0.2)  145 0.9 (0.3)    43          0.6 (0.3)  188*
Caucasian 0.6   (0.3)  372        1.1 (0.3)  207          0.8 (0.4)   579 

Note. Significant differences in means from independent t-tests between WHAS 1 and 

WHAS 2 subjects (**p<0.01), and African American and Caucasian subjects (*p<0.01)  

are indicated.

aVibratron II peripheral neuropathy measurements were collected only on WHAS 1 

participants. 
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Table 11

Clinical Profile Descriptive Summaries for WHAS Subjects by Race Category

Clinical Parameter
N % N % N %

Hemoglobin (gm/dL) African American* Caucasian Total
Anemia (<12.0) 60     30.3 75     12.7 135     17.1
Normal (>12.0) 125     63.1 492     83.2 617     78.2

Mean Corpuscular Volume (fL) African American* Caucasian Total
Microcytic (<83) 30     15.2 9       1.5 39      4.9
Normal (83-103) 151     76.3 529     89.5 680    86.2 
Macrocytic (>103) 3       1.5 22      3.7 25 3.2

Geriatric Depression Score African American Caucasian Total
None (0-9) 148     74.7 445     75.3 593    75.2
Mild (10-13) 23     11.6 66     11.2          89 11.3
Moderate/Severe (>13)        27      13.6 80     13.5 107 13.6

Peripheral Neuropathy African American Caucasian Total
None (<3.44)                        14       7.1 41       6.9 55      7.0
Mild (3.44-4.87) 21     10.6              42       7.1 63      8.0
Moderate (4.88-6.31) 24     12.1 52 8.8          76      9.6
Severe (>6.31) 85     42.9 219      37.1       304    38.5 

Note. Percentages may not add to 100% due to missing data. Significant differences in 

means of African American and Caucasian clinical parameter groups from independent t-

tests (*p<0.01) are indicated.
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Table 12

Functional Performance Percentiles in WHAS Elderly Subjects

Clinical Parameter African American Caucasian Total

Hand Grip Strength (kg) N=188 N=546 N=718

20th percentile 18.00 17.00 17.00
40th percentile 22.00 20.00 20.00
60th percentile 24.00 23.00 24.00
80th percentile 28.00 26.00 27.00

4-Meter Walking Speed (m/s) N=172 N=579 N=767

20th percentile 0.34 0.48 0.43
40th percentile 0.51 0.67 0.63
60th percentile 0.64 0.83 0.78
80th percentile 0.85 1.08 1.03
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Table 13

Genotype and Allele Frequencies for TCNII and TCNII-Receptor SNPs

African American Caucasian
SNP AA     AB    BB        Aa B AA    AB BB        A         B

TCNII
rs16988828 5 39 141 0.13 0.87 10      87    454      0.10     0.90
rs7289549 19       67     103       0.28     0.72 11      92    458      0.10     0.90
rs7286107 12       60     117       0.22     0.78 3        1    561      0.01     0.99
rs9606756              10       48     132       0.18     0.82         28 87    447      0.13     0.87
rs740234                  4       29     157       0.10     0.90 35    159    371      0.20     0.80
rs35915865 1         2 188       0.01     0.99 4      19    544      0.02     0.98
rs11703570 14 50     123       0.21     0.79 45    148    367      0.21     0.79
rs35838082              9       54 126 0.19     0.81 0        7 562      0.01     0.99
rs2267163 14       56 116 0.23 0.77 123    225    203      0.43     0.57 
rs1801198 16 65 108 0.26     0.74       133    251    183      0.46     0.54
rs4820021 0         6     187 0.02 0.98 14      92    455      0.11     0.89
rs9621049 7 51 134 0.17     0.83 14    101 448      0.11     0.89
rs4820886 4 50 135 0.15     0.85 12    102    450      0.11 0.89
rs4820887 4 27     157       0.09     0.91 9      85    465      0.09     0.91
rs4820888 38      90       62       0.44 0.56 127    235    199 0.44     0.56
rs2301955 17      71     102       0.28     0.72 120    230    220      0.41     0.59
rs2301958 11      59     121       0.21     0.79 32    172    368      0.21     0.79
rs1131603                 0        1     195       0.00     1.00           2      49    531      0.05 0.95
rs4820889 5      31     154       0.11     0.89           2      23    547      0.02     0.98
rs2072194 4      44     136       0.14     0.86       115    238    200      0.42     0.58

TCNII-Receptor
rs173665 7 33     148       0.13     0.88 10      79    466 0.09     0.91
rs250510 3      22     157       0.08     0.92 1        6    539      0.01     0.99
rs2232787 1        3     186       0.01     0.99 1 0    547      0.00     1.00 
rs2227288 13      50     125       0.20     0.80 12      98    427      0.11     0.89
rs2336573 21      72       94       0.30     0.70 9      35    512      0.05     0.95
rs2232779 2      18     174       0.06     0.94 5        2    573      0.01     0.99
rs2927707 16     51     118       0.22     0.78         57     202   288      0.29     0.71
rs3760680 29     75       78       0.37     0.63 81     221   242      0.35     0.65
rs8100119 23     65      102      0.29     0.71 5       35   524      0.04     0.96
Note. SNP data in genomic order as occurring on the chromosome. 

aA denotes the minor allele and B the major allele.
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Table 14 

Two-Way ANCOVA F-Statistics for Hematologic Parameters

Hemoglobin Mean Corpuscular Volume
SNP                 Interaction    Main(S)     Main(R)      Interaction     Main(S)     Main(R)

TCNII 
rs16988828            0.25          0.06   8.73**            0.75          1.30             8.70**
rs7289549     0.02 0.10 26.40**            2.63          0.59 12.61**
rs7286107    0.22          1.06           1.58                0.49          1.58 5.23*
rs9606756      2.38 1.13 45.94** 0.60          0.33 17.42**
rs740234                1.48    0.86 4.74*              0.20 0.24 13.83**
rs35915865    2.41 1.97 0.09                0.56          1.06 4.10*
rs11703570   2.11 0.13 18.60**            1.13          0.02 37.87**
rs35838082    0.57 1.64 19.13** 0.26          2.65           17.46**
rs2267163              1.74 0.91         65.10**            3.67*        2.98 59.91**
rs1801198              0.84          0.28         56.92**            5.37**      3.73* 66.29**
rs4820021              0.07  0.11 14.11**            1.44          0.79 19.97**
rs9621049 1.46          0.30 19.60** 0.26          0.01 20.86**
rs4820886 1.33 0.50 19.88**            0.25          0.01 9.24**
rs4820887             1.73 0.77 19.20**            1.86          0.65 5.03*
rs4820888              4.81** 0.69 57.50**            2.92          0.86 77.88**
rs2301955 2.73 0.27 33.28**            1.21          0.02 50.60**
rs2301958            1.01 0.36 19.17** 0.53          0.66 33.81**
rs1131603              1.81 1.11 0.03** 0.40          2.29 0.59
rs4820889              0.64 0.55 6.66**            0.35 0.49 10.24**
rs2072194 5.57** 4.10** 50.29**            0.22          0.69 23.31**

TCNII-Receptor
rs173665                0.01 0.67 18.70** 0.37          0.26           20.61**
rs250510                1.01 0.77 0.94 0.44          0.15             6.92**
rs2232787 0.14 0.67 0.50 4.87**      0.19 9.89**
rs2227288              2.70 0.78 25.75** 1.43          1.62 14.69**
rs2336573 0.45 1.07 37.68** 1.52          0.73 26.95**
rs2232779 0.27 0.04 0.04 0.81          1.22 7.80**
rs2927707              0.20 0.46 48.90**            0.10          0.33           38.26**
rs3760680 0.01 0.19 67.00** 0.74          0.43 49.36**
rs8100119              0.32 0.76 14.82** 0.28          0.94 16.87**
Note. ANCOVA F-statistics covaried on serum folate, with Interaction Effect, SNP Main 

Effect (S), and Race Main Effect (R) values shown.  (*) indicates p=0.05 significance and 

(**) indicates p=0.01 significance. Data shown are before Bonferroni adjustment.
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Table 15

Two-Way ANOVA F-Statistics for Neurologic Parameters

Geriatric Depression Score Peripheral Neuropathy
SNP                Interaction    Main (S)    Main (R)        Interaction    Main (S)    Main (R)

TCNII 
rs16988828 2.08          0.41          2.41                     2.49          0.94          2.29
rs7289549     0.63          1.36 0.59 0.13          0.53 0.05
rs7286107              2.90          1.16 0.73 2.90 2.40 4.51*
rs9606756      0.05          1.95 0.00 0.13          0.94          0.24
rs740234        0.85          0.12 1.28 0.34          0.34 0.05
rs35915865    1.60          0.29 1.95 2.48          0.84          3.57
rs11703570   0.06          0.15 0.00 0.85          0.51 0.14
rs35838082    0.49          1.63 0.72 0.12          0.12          0.15
rs2267163              0.20          0.97 0.24 0.98          1.02          0.81
rs1801198              0.02          0.85 0.32 1.42          1.69          1.58
rs4820021              0.93      0.63 0.31                     0.01          0.08          0.00
rs9621049 0.55          0.16 0.20 0.78          2.57          0.14
rs4820886 0.06          0.36 0.09 1.29          3.67*        1.10
rs4820887              0.09          0.25  0.06 0.47          0.86          0.37
rs4820888              0.10          0.21 0.50 1.72          1.26          0.00
rs2301955 0.21          0.75 0.03 2.10 1.09          1.02
rs2301958              1.45          0.49 0.83 1.98          0.90          0.75
rs1131603              1.40          0.73 1.46 -- 0.11          0.13
rs4820889              1.12          0.33 0.65                     1.63          0.50          1.77 
rs2072194 1.32          0.72 1.22                     0.89          2.87          0.18

TCNII-Receptor
rs173665                1.20          0.16 0.32 1.26 0.03          0.71
rs250510                0.79          1.82 1.37 1.84          0.40 1.51
rs2232787 5.64*        2.10 5.50* 0.01          0.35          0.01
rs2227288              2.58          0.27 1.40 3.21*        2.32          0.08
rs2336573 0.14          1.13 1.13 0.30          0.40          0.43
rs2232779 0.39          4.51 0.05 0.13 2.34          0.01
rs2927707              0.49          0.80 0.04 3.02*        0.61          3.05
rs3760680 0.20          0.63 0.22 2.32          0.06          1.22
rs8100119              0.14          0.03 0.09 0.65          1.61 0.45
Note. F-statistics with Interaction Effect, SNP Main Effect (S), and Race Main Effect (R) 

values. (*) indicates p=0.05 and (**) indicates p=0.01 significance. Data shown here are 

before Bonferroni adjustment.
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Table 16

Two-Way ANOVA and ANCOVA F-Statistics for Functional Performance 

Parameters 

Hand Grip Strength                           4-Meter Walking Speed
SNP               Interaction    Main (S)    Main (R)        Interaction     Main (S)     Main (R)

TCNII 
rs16988828 3.64*         1.25          7.44** 0.23          0.28          5.44*
rs7289549     3.69*         2.29        16.22**                 3.84*        0.80        29.49**
rs7286107            1.56           0.54          5.11*                   1.52          4.18*    0.54
rs9606756      0.86           3.74*        0.68                     0.19          1.04          8.60**
rs740234              0.74           1.34          4.49*                   0.33          0.77          3.81*
rs35915865    0.03 0.73          0.29 0.07          0.11          1.05
rs11703570   3.08*         1.69        10.65**                 0.39          0.13        11.67** 
rs35838082    0.26           0.19          0.62 0.65          0.12          7.48**
rs2267163            1.23           0.44          3.18                     0.07          1.59        14.29** 
rs1801198            0.23           1.22          5.23* 0.07          2.77        18.10**
rs4820021            2.15   0.27          0.00                     0.42          0.14          8.49**
rs9621049 0.04           0.07          2.53                     0.39          0.12          6.68**
rs4820886 0.14           0.10          0.89                     0.71          0.17          4.12*
rs4820887            1.42           1.75          0.48 0.41          0.05          3.81*
rs4820888            0.03           0.21          7.62**                 0.99          0.11        26.95**
rs2301955         0.26           1.06          8.25**                 1.47          0.28        14.82**
rs2301958            0.55           0.56          6.37** 1.85          0.74          5.47*
rs1131603            1.77           1.59          3.38              0.49          0.11          0.10
rs4820889            0.26           1.91          0.94                     0.66          1.53          8.25**
rs2072194 1.66           1.77          0.13                     0.84          1.30        11.72**

TCNII-Receptor
rs173665              0.38            0.47 4.13*                   0.68          2.33          3.22
rs250510              0.01            1.70 0.24 0.23          1.37          0.48
rs2232787 -- --        -- 1.33          0.35          3.48
rs2227288            0.69            0.15         4.66*                   1.50          1.52        14.80**
rs2336573 0.72            0.64 1.98 1.43          0.22           5.01*
rs2232779 1.42            1.69         4.01*                   3.47*        2.03           5.12*
rs2927707            0.19            0.12 6.16** 0.78          0.69         16.73**
rs3760680 1.89            1.06         4.91* 0.42 0.43         22.33**
rs8100119            0.10            1.81 2.26 0.01          0.72           6.69**
Note. F-statistics with Interaction, SNP (S), and Race (R) main effect values. (*) 

indicates p=0.05 and (**) p=0.01 significance, before Bonferroni adjustment.
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Figure 5. Transcobalamin II SNP rs1801198 and Mean Corpuscular Volume. 

Box and whiskers plot mean MCV for African American and Caucasian WHAS subjects 

by genotype of rs1801198 (P259R) in the transcobalamin II gene. The distribution of 

outlying cases is included. 



   

CHAPTER 6

TRANSLATION OF GENETICS AND GENOMICS FOR NURSING—

PERSONALIZED MEDICINE

Abstract

Scientific advances in genetics and genomics will be incorporated into healthcare 

soon. The tailoring of treatment to an individual’s genetic make up has been termed 

Personalized Medicine. These advances are promising and are receiving significant 

attention; however, many nurses are caught in the gap between technologic advances and 

clinical diffusion and uptake. Four elements of Personalized Medicine are described in 

this paper, which include 1) discovery of novel biology that guides clinical translation 

mechanisms; 2) genetic risk assessment; 3) molecular diagnostic technology; and 4) 

pharmacogenetics and pharmacogenomics. Opportunities for engagement of the nursing 

profession that are presented by Personalized Medicine are addressed. Successful design 

and implementation of Personalized Medicine will hinge on the roles of nurses 

conducting or participating in collaborative initiatives that are furthering genetic/genomic 

applications.
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Introduction

Formally completed in 2003, The Human Genome Project provided a reference 

map of human genome DNA sequence (The International Human Genome Sequencing 

Consortium, 2001, 2004). Similarly, the International Haplotype Map Project (HapMap, 

www.hapmap.org), completed in 2005, provided a map of variation in human DNA and 

how this variation was arranged in populations (The International HapMap Consortium,

2005). Fruits of these research efforts are revolutionizing biology, medicine, and 

ultimately, healthcare delivery (Collins, Green, Guttmacher, & Guyer, 2003; Collins & 

McKusick, 2001). Clinical translation of these landmark scientific achievements will 

contribute to Personalized Medicine, where an individual’s DNA can be used to finely 

tailor healthcare practices. Health advances include personalized risk assessments that 

predict disease development years before clinical appearance, use of precisely tuned 

molecular screening tests and clinical diagnostics, and safer and more effective 

pharmaceutical agents prescribed to match individuals’ genetic constitution. Further 

developing and fueling these innovative applications is the continued discovery of novel 

biology in high-tech laboratory settings across the country and throughout the world.

Scientific achievement beyond The Human Genome Project and the HapMap is 

being fueled by unprecedented technological advancement. Cost of sequencing an 

individual’s genome in 2002 was 1 billion dollars, but through Illumina, Inc., Personal 

Genome Sequencing Service can now be commercially performed for $48,000 (Illumina, 

2009). Furthermore, it is estimated that this price will drop to under $1000 per genome in 

the next 2-3 years, a magnitude and rate of cost reduction that surpasses the gains made 

by the microprocessor industry. Because the human genome is approximately 6 billion 
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data points, the sheer volume of scientific data is overwhelming, and data flowing from 

studies examining the associations between genetic sequences and disease has been 

likened to ‘drinking water from a fire hose’ (Hunter & Kraft, 2007). A PubMed search 

using the terms “genetics” and “genomics” comparing 1989-1999 and 1999-2009

demonstrates this rapid increase: 576,170 and 7,412 results, respectively, for 1989-1999,

compared to 1,169,310 and 47,297 for the past decade 

(http://www.ncbi.nlm.nih.gov/sites/entrez/ queried on 30 November 2009).

Intense mainstream media coverage of scientific progress in genetics and genomics 

has resulted in public expectation that these advances are already incorporated into 

clinical practice. Capitalizing on this environment, several companies have launched 

direct-to-consumer marketing campaigns for genomic profiling tests. Some testing 

companies provide test results and interpretations that are not supported by scientific data 

(Janssens et al., 2008). Others may include information that is difficult for the consumer 

to interpret in the absence of knowledgeable practitioner guidance (Gollust, Wilfond, & 

Hull, 2003; Kutz, 2006). Current examples include services offered by 23andMe, 

DeCode, and Navigenics, where for $300-$1500, a consumer can submit a sample of their 

DNA and obtain personalized analyses of their genetic code. Information contained in 

these companies’ reports includes a person’s lifetime risk for development of health 

conditions such as osteoporosis, cancer, diabetes, and heart disease. 

Previous scholarly papers in nursing have discussed genetics, and genomics, but 

none outline Personalized Medicine while identifying implications and opportunities for 

nurses. In this paper, I outline four conceptual Personalized Medicine elements, describe 

their healthcare implications and the current translation obstacles they face, and outline 
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implications for nurses in research, education, and practice settings. Although the 

biologic advances fueling Personalized Medicine offer sound proof of technologic 

possibility, it will likely be one or two decades until there is enough evidence concerning 

its application before nurses can use the entirety of an individual’s genome to guide 

personalized patient healthcare. During this long incubation period, health care patterns 

and practices will begin to incorporate elements of genetics. The field of nursing should 

anticipate and contribute to these developments and play an integral role in their 

translation and application. 

Clinical Application of Genetics and Genomics:  

Personalized Medicine

Personalized Medicine, in lay definition, is “using information about a person’s 

genetic makeup to tailor strategies for the detection, treatment, or prevention of disease”

(Collins, 2005). This new paradigm of healthcare rests on four key elements, the first 

driving the latter three, which contain direct clinical relevance to the nursing community 

(Figure 6): (1) discovery of novel biologic processes, which serve as the foundation for 

all clinical translation; (2) personalized risk assessments; (3) enhanced diagnostic 

accuracy through molecular profiling; and (4) pharmacogenetics and pharmacogenomics. 

Throughout the paper, refer to Table 17 for a concept glossary and Table 18 for relevant 

reference genetics and genomics websites.  
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The Foundation of Personalized Medicine—

New Biology, New Drugs

Novel biologic knowledge arising from the Human Genome Project and HapMap 

has great implications for advances in future healthcare practices. Validated Genome 

Wide Association Study (GWAS) associations identify 100 new loci for over 40 common 

health and disease traits, and are publicly searchable in an online catalogue maintained by 

the National Human Genome Research Institute at www.genome.gov/26525384

(Hindorff et al., 2009; Manolio, Brooks, & Collins, 2008). This knowledge translates to 

understandings of biologic networks not previously known as involved with common 

diseases (Figure 7). Through these new pathway connections, opportunities for improved 

clinical measurement and therapeutic manipulation will arise. A relevant example is 

illustrated by the case of age-related macular degeneration (Figure 8), one of the first 

conditions to be analyzed with the GWAS approach.

While gene/disease associations like those for age-related macular degeneration 

arose from the Human Genome Project and HapMap, several additional ongoing 

scientific initiatives are expected to yield similar biomedical impact. These include 

ENCylopedia Of DNA Elements (ENCODE), 1000 Genomes Project, Human 

Microbiome Project, and the Cancer Genome Atlas. As nurses play integral roles in 

generation of new knowledge and clinical realization of novel technologies, 

understanding significance of these efforts can help drive their clinical translation and 

application.
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ENCODE

ENCODE is a public research consortium for identification of all parts of the 

human genome (within each gene) that regulate normal physiologic and biologic 

functions (National Human Genome Research Institute, 2008). Findings from ENCODE 

have shown that regions of the human genome previously thought to have no obvious or 

direct protein coding function are extremely important in gene regulation; expansive 

areas of intronic ‘junk’ DNA actually regulate protein production in distant genes and 

chromosomes (The ENCODE Project Consortium, 2007). Demonstrating enormous 

complexity, new structural categories are realized through ENCODE; instead of clear 

translation boundaries between exons and introns, there are alternative start and stop sites 

that have temporal and spatial uniqueness. When completed, ENCODE will demonstrate 

how an individual’s biologic make-up may be linked to a person’s responses in health, 

illness, and injury states. 

1000 Genomes Project

Through HapMap and GWAS efforts, common genetic variants have been 

identified that contribute to complex chronic diseases. But the effects of those identified 

variants account for very little, in terms of risk, of developing a particular trait or 

phenotype. For example, obesity GWAS research identifies two common variants in the 

FTO and MC4R (melanocortin-4 receptor) genes carried by ~20% of those of European-

descent. These variants exert physiologic effects on Body Mass Index but account for 

only 2% of adult variability of the trait (Frayling et al., 2007; Loos et al., 2008). Rare and 

difficult to find genetic variants may explain more of the variability in BMI, but are not 
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currently known. Sequencing the genomes of more individuals will allow for 

identification of rare variants with greater and more sizeable genetic effects (The 1000 

Genomes Project Analysis Group and Steering Committee, 2008). In September 2008, an 

international consortium launched the 1000 Genomes Project to generate an extensive 

catalogue of human genetic variation capable of increasing discoveries of new biology 

from a population perspective.

Human Microbiome Project

Understanding how bacterial colonies interact in our bodies is increasingly 

important (Hsiao & Fraser-Liggett, 2009). Bacteria and the colonies with which they live 

interact elegantly and intricately in contexts of greater host micro-environments. 

Recently, presence of specific types of bacteria in gut flora were found to predict 

occurrence of Type 1 Diabetes in experimental mouse models (Wen et al., 2008).

Although symbiotic bacteria outnumber human body cells by 10:1, the species living 

upon and within us have yet to be cataloged and information on how they communicate 

with each other and their human hosts is unknown (Turnbaugh et al., 2007). Using 

genomic sequencing, analyses of microbes from intestinal epithelial tissue in animals and 

individuals with obesity, intestinal disease, and cancer identified unique microbial 

profiles (Chu et al., 2004; Eckburg & Relman; Turnbaugh et al., 2006). To ascertain the 

extent that microbial communities participate in health and disease, the NIH Roadmap for 

Medical Research established the Human Microbiome Project (HMP) (The Human 

Microbiome Project, 2007). A global consortium, the HMP will provide genome 

sequence for floral communities across various human epithelial tissues. Initial data 
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identify great diversity within and across individuals dependent on tissue sampling site 

(Grice et al., 2008).

Cancer Genome Atlas 

In 2007, the National Cancer Institute and the National Human Genome Research 

Institute began large-scale genome sequencing of human tumor cells from cancer cohorts 

to provide a comprehensive catalogue of malignancy abnormalities (Collins & Barker, 

2007; The Cancer Genome Atlas, 2008). Characterization of glioblastoma, a common 

brain malignancy in adults noted for poor survival outcomes, yielded molecular profiles 

that may be used to reclassify and target clinical treatments (The Cancer Genome Atlas 

Research Network, 2008). Continued progress with other common tumor types such as 

ovarian and pancreatic cancer are revolutionizing how molecular derangements in 

malignancies are understood, and are expanding diagnostic, prognostic, and treatment 

options. 

Genetic Risk Assessment

Human genetic variation holds great promise in predicting the development of 

costly chronic and preventable diseases. For example, carriers of Single Nucleotide 

Polymorphism (SNP) risk alleles in the Transcription Factor 7-like 2 (TCF7L2) gene 

have significantly increased lifetime risk of developing diabetes (Helgason et al., 2007; 

Prokunina-Olsson et al., 2009). Using the information contained in a person’s genetic 

constitution for these purposes is increasingly attractive given that recent Genome-Wide 

Association Studies (GWAS) delineate numerous novel and quantifiable genetic risks for 
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common health conditions including heart disease, depression, colorectal cancer, and 

osteoporosis (Figure 7) (McPherson et al., 2007; Scott et al., 2007; Tomlinson et al., 

2007; Wellcome Trust Case Control Consortium, 2007).

Of particular interest is if the SNPs identified in GWAS reports can be used in 

preventive medicine, to predict illnesses. Sponsored by the Agency for Healthcare 

Research and Quality (AHRQ), the U.S. Preventive Services Task Force (USPSTF) 

evaluates health screening mechanisms for efficacy, cost, and accuracy, and includes well 

known examples of screening standards (Atkins, Fink, & Slutsky, 2005; Harris et al., 

2001; U.S. Preventive Services Task Force, 2002a, 2002b, 2003a, 2003b, 2004, 2005).

Presently, there is not enough evidence to guide a USPSTF review of using genomic SNP 

sequence for preventive screening (Burke & Psaty, 2007; Gwinn & Khoury, 2006; 

Khoury, Yang, Gwinn, Little, & Dana Flanders, 2004). For example, many gene-gene 

and gene-environment interactive effects are unknown, attributable risk over one’s 

lifetime is small to modest for many SNPs, and population SNP allele frequencies are not 

yet fully established (Janssens et al., 2007; Khoury, Little, Gwinn, & Ioannidis, 2007).

Further contributing to delays in clinical translation are inadequate experimental designs, 

biased or erroneous interpretation of scientific data, and public dissemination of results 

from less rigorous research (Little et al., 2002; Moonesinghe, Khoury, & Janssens, 2007).

In order to properly inform a USPSTF investigation, novel genetic variant associations 

must be consistently replicated across various settings (Burke & Psaty, 2007).

Knowledge gaps aside, the most heated debates involving SNP genetic testing 

concern provision of maximal benefit while limiting harm to patients (Khoury, Gwinn, 

Burke, Bowen, & Zimmern, 2007). Possible adverse unintended consequences of SNP 
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genomic profiling include increased anxiety stemming from a test that does not impact 

health outcomes and excessive financial cost for little clinical advantage (Burke & 

Zimmern, 2004). Equally important is need for scientific data demonstrating how patients 

will use personalized genetic risk information once they receive it (McBride & Brody, 

2007; Thompson, 2007).

As mentioned previously, several companies market and sell genomic “risk” 

profiles directly to consumers (Burke & Press, 2006; Janssens et al., 2008). Proposed 

advantages of direct-to-consumer genomic profiling are increased availability, privacy, 

convenience, and enhanced market translation of molecular research advances (Goddard 

et al., 2007). Test results are interpreted and communicated to customers via a report that 

is mailed to them or accessed via the Internet. Detailed test interpretations and lifestyle 

recommendations may also be provided. Regulatory protection against false health claims 

for consumers using these services is a key deficiency as genomic technologies flood 

healthcare markets (Katsanis, Javitt, & Hudson, 2008; The Secretary's Advisory 

Committee on Genetics Health and Society, 2008).

To enhance accurate clinical translation of SNP associations, numerous resources 

are available to guide how biologic information can be used (Table 18). The Centers for 

Disease Control has developed and maintained HuGENet (Human Genome 

Epidemiology Network), a research database similar to The Cochrane Collaboration 

Reviews, where results of population-based gene-environment associations can be 

searched and obtained (Higgins et al., 2007; Lin et al., 2006; Seminara et al., 2007).

Launched in 2004, The Evaluation of Genomic Applications in Practice and Prevention 

(EGAPP) is an independent and multidisciplinary panel that critically evaluates evidence 
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supporting use of genomic tests in clinical practice through assessment of analytic 

validity, clinical validity, and clinical utility (Teutsch et al., 2009). Genetic test 

recommendations are available for a variety of conditions, including venous 

thromboembolism, breast cancer, and Lynch syndrome (HNPCC). Building on the 

foundations of EGAPP, The Genomic Applications in Practice and Prevention Network 

(GAPPNet) brings together more collaborative stakeholders in order to better outline and 

disseminate current knowledge; develop an evidence-based recommendation process for 

review of newly released genetics/genomics technologies; translate research into real-

world dissemination; and develop comprehensive education, outreach, and surveillance 

programs (Khoury, Feero, et al., 2009). Professional organizations are also assuming 

positions of leadership by clarifying a clinician’s role when managing patient inquiries 

about genomic profiling. For example, The American Society for Human Genetics  

issued a position statement outlining scope of clinical services that can be safely and 

legitimately provided to consumers (Hudson, Javitt, Burke, & Byers, 2007).

Diagnostics

Nurses can expect that technology-driven increases in diagnostic capacity will 

yield dramatic advancements for Personalized Medicine. Efficient diagnosis is presently 

a benchmark standard for healthcare quality and patient safety, and improved specificity 

and sensitivity for clinical decision-making is a key feature of many programs of research 

(Bissonnette & Bergeron, 2006; Dietel & Sers, 2006; Institute of Medicine, 2001; 

Snyderman & Langheier, 2006). The ability to generate and analyze enormous amounts 
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of unique biologic data is fueling three fields of clinical application: infectious disease, 

cancer, and biomarker discovery.

Infectious Disease 

In prescribing antimicrobial agents, the inability to reach a definitive clinical 

diagnosis is a significant challenge. Diagnostic certainty in treating infectious disease 

decreases patient inflammatory responses, transmission risks, and harmful exposure to 

clinicians (Bissonnette & Bergeron, 2006; Diekema et al., 2004; McGowan & Tenover, 

2004; Raoult, Fournier, & Drancourt, 2004; Tenover, 2006; The Alliance for the Prudent 

Use of Antibiotics, 2005). However, culturing of patient specimens typically requires 1-2

days for results, and until they are obtained, incorrect use of broad-spectrum prescriptive 

agents yields high pharmaceutical costs and the formation of antibiotic-resistant bacterial 

strains. 

Genomic science is revealing why it is so challenging to effectively identify 

organisms resulting in a patient’s clinical deterioration. Microbial genome sequence 

comparison shows evidence of horizontal gene transfer, resulting in enormous differences 

across and between singular pathogenic strains, shattering standard dogma of bacterial 

classification and clinical treatment (Fraser & Rappuoli, 2005). Applying these findings 

to clinical settings, it is hoped that ultra-fast sequencing of microbial genomes from 

infectious specimens can provide agent identification in 1-2 hours, versus the traditional 

culturing standard of 24-48 hours (Bissonnette & Bergeron, 2006).
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Cancer

As a professional discipline, oncology currently experiences the most clinical 

progress in working towards Personalized Medicine, where molecular tumor profiles can 

be used to correlate targeted treatment regiments. Classic examples include breast cancers 

expressing human epidermal growth factor receptor-2 protein (HER2/neu) and chronic 

myelogenous leukaemia with positive Philadelphia chromosome status. Molecular 

understanding of both conditions has yielded extraordinarily successful response rates to 

drug therapy with the monoclonal antibody Herceptin, and tyrosine kinase inhibitor 

Gleevec. These therapeutic agents target specific and clinically measurable genetic 

changes (Fischer, Streit, Hart, & Ullrich, 2003). Further expansion of molecular cancer 

profiling beyond these examples is being driven by the Cancer Genome Atlas Project (see 

above) and high-throughput screening technologies (Ludwig & Weinstein, 2005; 

Srivastava, 2006).

As with other areas of genomic scientific advancement, translation into clinical 

treatment and screening mechanisms is proving challenging. Presently, a formidable 

challenge preventing Personalized Medicine from being realized in cancer care is 

reconciling the unexpected difference between meaningful clinical diagnostic standards 

with personalized genomic tumor profiling (Ludwig & Weinstein, 2005). For example, 

genetic and genomic molecular profiles challenge current oncologic survival and 

treatment curves, necessitating redefined scoring criteria for the Tumor, Nodes, and 

Metastasis (TNM) staging system, the widely used clinical grading system for cancer 

diagnosis stratification (Lam, Shvarts, Leppert, Figlin, & Belldegrun, 2005; Leong, 2006; 

Nguyen & Schrump, 2006; Piccaluga et al., 2008). Also contributing to the translation 
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gap is the need for improved clinical research standards when validating positive 

scientific findings or performing cross-comparison analyses across different study 

populations. Spanning both research and clinical settings—differences in tumor specimen 

collection, laboratory processing and testing procedures, and clinical phenotype 

documentation are proving to be a significant source of confounding variability when 

trying to validate high-throughput genomic screening signals (Compton, 2007; 

Srivastava, 2006).

Biomarker Discovery

Nurses are widely familiar with biomarkers, or singular proteins and molecules in 

body fluids associated with diseases, as a way to facilitate personalized approaches to 

patient health. The linking of biomarkers to clinical outcome measurements presently 

represents a fruitful area of biologic research, and efforts can be classified into genetic, 

proteomic, antigen and auto-antibody classes (Srivastava, 2006). Powerful molecular 

approaches, such as microarray platforms, are fueling biomarker discovery because of 

technological ability to simultaneously evaluate thousands of molecules within and across 

numerous samples and patients (He, 2006). In the coming years, biomarkers will 

contribute greatly to Personalized Medicine by providing increasingly precise 

mechanisms of disease detection, prognostication, and therapeutic monitoring (Rai, 

2007). Presently, the technology-driven increases in data volume and precision have yet 

to replace less accurate and widely used screening tests, such as the prostate-specific 

antigen, and ovarian cancer antigen-125 tests. A chief reason for biomarker adoption 

delay is the vast amount of time and work that is required to appropriately screen and 
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validate initial findings before reliable reproducibility is obtained (Ransohoff, 2004).

Development chronology occurs over many years with five distinct basic and clinical 

research development phases: (1) preclinical discovery, (2) assay analytical validation, 

(3) case/control cohort investigation, (4) longitudinal observation, and lastly, (5) 

prospective case/control investigation (Pepe et al., 2001). Stage progression occurs in a 

“funnel” format, where initial screens of many molecules are examined and eliminated in 

order to meet rigorous specificity and sensitivity criteria, while also demonstrating 

potential for predictive capacity (Srivastava, 2006). Poor reproducibility early on 

prohibits further application and progression to clinical translation.

Pharmacogenomics

Pharmacogenomics evolved from pharmacogenetics, a field established 50 years 

ago when it was demonstrated that a person’s genetic inheritance could effect drug 

metabolism (Alving, Carson, Flanagan, & Ickes, 1956; Evans & Relling, 2004; Meyer, 

2004). Building on the pharmacogenetic paradigm of one-gene and one-drug, 

pharmacogenomics studies how numerous genes interact with each other and the 

environment (Evans & McLeod, 2003; Goldstein, Tate, & Sisodiya, 2003; R. 

Weinshilboum, 2003; R. M. Weinshilboum & Wang, 2006). Presently, pharmacogenomic 

science understands and predicts adverse reactions to medical therapeutics based upon an 

individual’s DNA sequence (Ginsburg, Konstance, Allsbrook, & Schulman, 2005; A. D. 

Roses, 2004). Pharmacogenomics is projected to have broad clinical utility in 

multifactorial diseases in order to reduce adverse drug reactions (Phillips, Veenstra, Oren,

Lee, & Sadee, 2001).
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A recent illustrative case study for Personalized Medicine is warfarin 

(Coumadin), a frequently prescribed anticoagulant. Warfarin demonstrates costly 

challenges such as limited therapeutic windows, large dosage differences across

individuals, risk for serious bleeding sequelae, inability to estimate patient drug-

responses from medical and physical criteria, and need for frequent International 

Normalized Ratio (INR) monitoring via phlebotomy (Daly & King, 2003). Traditional 

dosing factors incorporated include diet, age, gender, dietary intake, body weight, and use 

of other medications (Wadelius et al., 2007). More recently, variation in genes encoding 

the hepatic microsomal enzyme cytochrome P450 2C9 (CYP2 C9) and the vitamin K 

epoxide reductase complex 1 (VKORC1) demonstrated influence respectively on 

warfarin pharmacokinetics and pharmacodynamics (Higashi et al., 2002; Rieder et al., 

2005). Single Nucleotide Polymorphisms (SNPs) in CYP29 and VKORC1 genes 

explained 35-50% of dosage difference variability among patients—leading to 

development of a clinical genetic test for alleles resulting in altered dose requirements 

(Aquilante et al., 2006; Gage et al., 2004; Geisen et al., 2005). On August 16, 2007, the 

Federal Drug Administration (FDA) updated the warfarin label to support combined CYP

2C9 and VKORC1 genetic testing, with up to 35% of individuals benefiting from lower 

starting doses (FDA Press Conference on Warfarin Transcript, 2007).

Though the FDA’s position incorporating genomic information prior to dosing is 

indicative of movement towards pharmacogenomics in Personalized Medicine, it is not a 

formal recommendation to conduct CYP2 C9/VKORC1 genetic testing prior to 

anticoagulation. Furthermore, warfarin is the first mainstream drug for which the FDA 

provides genomic recommendations and is not yet successful from a combination
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perspective of uptake, utility, and cost perspectives. Recent warfarin genetic testing 

studies show that CYP2 C9/VKORC1 is predictive of INR level but not bleeding or 

thrombotic sequelae, and that cost effectiveness remains a key concern (Eckman, Rosand, 

Greenberg, & Gage, 2009; Millican et al., 2007; Rieder et al., 2005). As a result, Centers 

for Medicare and Medicaid Services (CMS) could not conclude from available evidence 

that warfarin pharmacogenetic testing was better than existing care coverage, and denied 

reimbursement for CYP2/C9 testing on May 4, 2009 (Jensen et al., 2009). Opening the 

door for decision reversal if clinical trials demonstrate significant and cost-effective 

clinical utility, CMS issued the decision “pursuant to Coverage with Evidence 

Development (CED).” For widespread clinical uptake in the U.S., use of the 

CYP2C9/VKORC1 genetic test (currently priced at $300-$500) in current clinical trials 

will need to demonstrate ability to affordably improve current standards of care through 

prevention of adverse bleeding and thrombotic events for CMS coverage to be issued 

(Figure 9). 

Implications and Opportunities for Nursing 

in Personalized Medicine

Personalized Medicine, or healthcare practices tailored to a person’s genetic 

make-up, is poised to enter healthcare stemming from unprecedented technology 

advances. Implementation and uptake of Personalized Medicine is presently hampered by 

lack of clinical application evidence and could benefit greatly from nursing’s patient-

focused approach. Across the four domains outlined in this paper, nurses are uniquely 

positioned to reconcile the competing perspectives of scientific innovation with practical 
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matters of clinical adoption and dissemination. The expertise of nurses across all 

research, education, and practice roles could be harnessed to address the global nature of 

the clinical translation challenges outlined thus far.  

Research

Nurse scientists and scholars presently have limitless possibilities for which to 

become involved in the translation of Personalized Medicine from research settings to 

clinical application mechanisms. For example, academic nursing leaders can evaluate 

their current research programs and integrate any number of genetics/genomics themes 

into institutional and individual grant submissions to fill recently identified priorities of 

evidentiary need (Khoury et al., 2008; Khoury, McBride et al., 2009; NIH Consensus 

Development Program, 2009). Individually, interested nurse scientists can develop 

expertise to incorporate genetics/genomics into their current programs of research (Barr 

et al.; Ersig, Williams, Hadley, & Koehly, 2009; Meilleur et al., 2009; Voss et al., 2008).

This can be done by collaborating with knowledgeable colleagues in multidisciplinary 

settings or by obtaining supplemental training to add genetic questions, outcomes, or 

markers to current scholarly efforts. Because many nurse scientists are currently most 

familiar with research incorporating the latter three Personalized Medicine domains 

(genetic risk assessment, diagnostics, and pharmacogenetics), this section will highlight 

nursing research opportunities presented by recent biologic initiatives.    

The ENCylopedia Of DNA Elements (ENCODE), 1000 Genomes Project, Human 

Microbiome Project, and the Cancer Genome Atlas represent key opportunities for nurse 

scientists to ask clinically relevant scientific questions. As nurses have long appreciated 
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the uniqueness of a patient’s biologic make-up, they can empower the scientific 

community to pair clinically observed phenotypes with generated sequence data. For 

example, nurses can link newly identified genetic elements (silencers, enhancers, and 

promoters) from ENCODE with knowledge of a patient’s environment and clinical status 

to better understand, predict, or manipulate functional health outcomes in various 

diseases. From the 1000 Genomes Project, nurses can more finely search genetic data to 

select and study effects of rare genetic variants that may be responsible for biologic traits 

in their patient populations. Nursing scientists can ensure the Human Microbiome Project 

findings are translated into clinically useful tools by cross-comparing microbial sequence 

from a wide range of patients (varying health and disease states, age groups), aligning 

clinical infection measurements with microbial sequence results, developing standards for 

clinical specimen sampling protocols, identifying what quality control mechanisms are 

needed, and developing affordable models of health care access for clinical use (Bryant, 

Venter, Robins-Browne, & Curtis, 2004; Burnett, Henchal, Schmaljohn, & Bavari, 2005; 

Call, 2005; Loy & Bodrossy, 2006; Simon, 2003; Tenover, 2007). Cancer Genome Atlas 

sequence will become most useful if nurse researchers can help oncologic scientists to 

create genomic profiles that correlate meaningfully with clinical phenotype 

characteristics, such as symptom presentation and disease progression, for each tumor 

type.

Education

Because genetics and genomics science is accelerating and its impact on health is 

growing in significance, nursing educators can prepare for Personalized Medicine by 
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nurturing development of genetic/genomic expertise at their institutions and in their 

students. Nurses have been at the fore-front of genetic education initiatives for many 

years, and efforts in designing basic genetic/genomic professional competencies, 

curriculum guidelines, and nursing faculty resources are well noted (Calzone et al., 2009; 

Greco & Salveson, 2009; Jenkins & Calzone, 2007; Lewis, Calzone, & Jenkins, 2006; 

Prows, Glass, Nicol, Skirton, & Williams, 2005; Read, Dylis, Mott, & Fairchild, 2004; 

Seibert, Edwards, & Maradiegue, 2007). Cumulatively, these efforts have been so 

effective that for 2009 credentialing, the American Association of Colleges of Nursing 

has integrated the genetic competencies into three of the nine Essentials of Baccalaureate 

Education: liberal education for baccalaureate generalist nursing practice (I), clinical 

prevention and population health (VII), and baccalaureate generalist nursing practice (IX) 

(American Association of Colleges of Nursing, 2008). Despite these tremendous 

advances, a key challenge presented by Personalized Medicine will be how to best 

prepare professional nurses to move beyond single-gene concepts to that of genomics, 

where patients will need extensive help in understanding complex and probabilistic 

health information spanning multiple genes and the environment (Guttmacher, Porteous, 

& McInerney, 2007). The difficulty of this transition faces not just nursing but all 

healthcare professionals, for which the Secretary’s Advisory Committee in Genetics 

Health and Society is preparing a detailed report for the Health and Human Services 

Secretary in its 2010 Genetics Education and Training Task Force report (Secretary's 

Advisory Committee on Genetics Health and Society, 2009).
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Practice 

No other group of professional nurses will be as heavily impacted by the science 

of Personalized Medicine as clinically practicing registered nurses and advanced practice 

registered nurses. Because health promotion interventions and lifestyle management 

needs rely on genetic components of disease development, nursing clinicians are 

expected to translate genomic risk factor information into practical language for patients, 

families, and communities. Pursuant, the Essential Nursing Competencies for Genetics 

and Genomics were established in 2005 with 50 professional nursing stakeholder 

organizations endorsing minimal genetic/genomic services every practicing nurse should 

be capable of providing (Lewis et al., 2006). A similar consensus effort is currently 

underway for advanced practice nursing competencies (Seibert, Greco, & Tinley, 2009).

When applying these competencies to recent scientific findings such as the Human 

Microbiome Project, practicing nurses can appreciate that despite their patients being 

enrolled in nutritional counseling or adhering to recommended guidelines, gene-

environment effects of microbiotic floral communities may proffer great challenges to 

best clinical management efforts.

However, the most powerful translational promoter of Personalized Medicine will 

be the collaborations between nursing scientists/researchers and practicing nurses. For 

example, upon combining symptom profiles with genomic data, collaborating nursing 

teams can submit findings to scientific initiatives such as The Pharmacogenomics 

Knowledge Base (Pharmacogenomics Knowledge Base, 2009); contributing to these 

efforts will ensure understanding how a patient’s unique biology predicts response to 

medication or adherence to prescriptive requirements (Sangkuhl, Berlin, Altman, & 
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Klein, 2008). Similarly, advanced practice nurses or registered nurses who collaborate 

with molecular scientists in tertiary care settings can help guide adaptation and feasibility 

trials of molecular diagnostic tools like the 1-2 hour ultra-fast microbial sequencing 

platforms. As such, baccalaureate-prepared nurses who are interested in research, 

genetics, and the scientific process can seek clinical genetic/genomic research studies that 

are ongoing in their practice settings. For example, a motivated intensive care nurse in an 

academic research setting can quickly and powerfully organize and promote the 

sampling, recruitment, and enrollment of patients in a genomic investigation trial. The 

benefit to science from practicing nurses who work with senior scientific mentors in these 

ways is untold, and largely an untapped resource at present. 

Concluding Remarks

This paper outlines how personalization of healthcare practices will be affected 

through continued waves of scientific knowledge about how an individual’s DNA guides 

tailored healthcare interventions. Despite the presence of these opportunities and the great 

potential for improved health across the four domains, scientific initiatives outlined in 

this paper will fall short of desired outcomes without the commitment and global 

participation of the nursing community. As these technologic efforts expand and 

accelerate, it is hoped that professional nurses of all backgrounds heed this call to 

increase their practical involvement in the realization of Personalized Medicine. The 

country’s 2.9 million Registered Nurses represent a valuable and untapped resource at the 

forefront of Personalized Medicine to translate biologic findings into practical clinical 

applications. Because nurses “hold the keys” to accurate patient observation and 
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healthcare practice dissemination, they are the foremost health discipline capable of 

bringing full investment in scientific advancement to fruition—yielding advanced health 

for patients, families, and communities. 
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Table 17

Personalized Medicine Working Glossary

Term/Acronym Definition*

Allele Varying (or variant) forms of a gene at a specific location in the 
genome.  

Analytic validity Accuracy and reliability a genetic/genomic test detects a particular 
genetic characteristic.

Biomarkers Biological molecules in blood or other body fluids whose 
parameters can be associated with disease presence and severity. 
Can be detected and measured by many different methods such as 
laboratory assays and imaging technology. 

CNV Copy Number Variation; where combinations of 2-3 nucleotides 
are continually repeated in non-coding portions of the genome, i.e.: 
CACACACACACACA.

Clinical utility Degree with which a genetic or genomic test will provide benefit 
to patients after accounting for potential harms.

Clinical validity Ability of a genetic/genomic test to detect or predict a clinical 
condition or outcome.

Deletion A mutation caused by the removal of DNA from the chromosome. 
Deletions can be of any length, from one base pair to a large 
chromosomal segment (millions of base pairs). 

Enhancer Short stretch of regulatory DNA sequence that signals where 
transcription factors should bind. Enhancers modulate rate of 
transcription and can be found great distances away from the gene 
it regulates. 

Epigenetics Study of heritable differences in gene function which occur 
without changes in DNA sequence (i.e.: methylation patterns).

Exon Region of a gene encoding for a particular portion of the complete 
protein.

Gene The functional and physical unit of heredity passed from parent to 
offspring. Genes contain information for making a specific protein.

* Adapted from publicly available Department of Health and Human Services glossaries.
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Table 17 Continued

Term/Acronym Definition

Genetic Testing Generic term for an array of techniques that analyze DNA, RNA or 
proteins for general health or medical identification purposes. 
Currently over 1200 tests are clinically available.

Genome The entirety of an individual’s genetic code, approximately 6 
billion nucleotides comprising 23,500 genes. 

Genomics Scientific study of a genome—including any or all combinations of 
genes, their functions, and their interactions with each other and 
the surrounding environment.

Genotype An individual’s 2 alleles at a specific loci. 

Haplotype Combinations of SNP alleles located close to one another on a 
chromosome. If close together, haplotypes can be inherited as units 
or blocks. 

HapMap The Haplotype Map: a map of all inherited genetic variation 
(haplotypes) in the human genome.

Heterozygous Having two different forms of a particular gene (AB).

Homozygous Having two identical forms of a particular gene (AA).

Indel An insertion/deletion polymorphism where AA, AB, BB yield:  
insertion/insertion, insertion/deletion, deletion/deletion. 

Insertion A mutation caused by the insertion of DNA from the chromosome. 
Insertions can also be of variable length (one to many base pairs).

Intron Non-coding sequences of DNA that are removed from the RNA 
transcript prior to exportation from the nucleus. 

Locus The physical location of a gene or gene segment on a chromosome. 

Loci The plural of locus. 

Methylation Chemical reactions that place a methyl group (3 hydrogen atoms
and 1 carbon atom) on the DNA nucleotide cytosine (C); presence 
of methylation silences genetic expression. 
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Table 17 Continued

Term/Acronym Definition

Multifactorial Dx Diseases caused by interactions of numerous genes with 
environmental factors. Examples include obesity, diabetes, heart 
disease and cancer. 

Mutation Permanent and structural alteration in DNA. Most cause little, if 
any harm. If in a critical location, such as the DNA repair genes in 
BRCA 1 and 2, can cause severe disease such as early onset 
cancer. 

Negative Predictive Probability that patients with a negative genetic/genomic test result 
will

Value not get a specific disease or condition.  

Phenotype A patient’s observable clinical and physiologic characteristics as a 
result of inherited genotype interacting with their environment.

Polymorphism The existence of multiple genotypes in a population, at one locus. 
Variants are not due to mutations in DNA because they occur at a 
frequency greater than can occur by evolutionary (slow) means. 
Polymorphisms may take several forms, including SNPs, CNVs, 
and insertion/deletion (indel’s). 

Positive Predictive
Value Probability that patients with a positive genetic/genomic test result 

will get a specific disease or condition.  

Promoter Short stretch of regulatory DNA sequence that signals where 
transcription should start in a gene (for the RNA polymerase).

Sensitivity (clinical) Percent of patients with positive genetic/genomic test result that 
are correctly identified as having the defined clinical trait.

Silencer Short stretch of regulatory DNA sequence that signals where 
chromatin should become condensed. This blocks other enzymes 
from accessing the DNA strands to prevent transcription.  

Specificity (clinical) Percent of patients with a negative genetic/genomic test result that 
are correctly identified as not having the defined clinical trait.
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Table 17 Continued

Term/Acronym Definition

SNPs Single Nucleotide Polymorphism(s). The difference of a single 
base pair at a specific position in the genome between 2 different 
individuals in a population. Most are inconsequential, but if in a 
coding region, may cause changes in gene efficiency and/or 
function. 

Variant Another word for polymorphism. There are different types of 
variants, such as SNPs, CNVs, insertion/deletion (indels), and 
RFLPs.
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Table 18

Genetics and Genomics Scientific and Clinical Translation Resources

Resource Title Reference Websites Locations

GENERAL INFORMATION
Centers for Disease Control www.cdc.gov
Current Drug Trials www.clinicaltrials.gov/
Database of Genotype and Phenotype www.ncbi.nlm.nih.gov/sites/entrez?Db=gap
Food and Drug Administration www.fda.gov/
Genomic Careers for Students http://www.genome.gov/27538514
Gene Tests www.genetests.org/
Human Genome Epidemiology Network www.cdc.gov/genomics/hugenet/
Illumina, Personalized Genome Service http://www.everygenome.com/
NCHPEG www.nchpeg.org/
NCI’s Early Detection Research Network edrn.nci.nih.gov/
NIH www.nih.gov
NHGRI www.genome.gov/
National Office of Public Health Genomics www.cdc.gov/genomics/
Pharmacogenomics Knowledge Base www.pharmgkb.org/

CLINICAL TRANSLATION
EGAPP www.egappreveiws.org
GAPPNet www.cdc.gov/genomics/GAPPNet/index.htm
HuGENet www.cdc.gov/genomics/hugenet/default.htm

PROFESSIONAL SOCIETY RECOMMENDATIONS*
American Society for Human Genetics
www.ashg.org/pdf.dtc_statement.pdf

American College of Medical Genetics
http://www.acmg.net/AM/Template.cfm?Section=Policy_Statements&Template=/CM/H
TMLDisplay.cfm&ContentID=4157

International Society of Nurses in Genetics 
http://www.isong.org/about/ps_consumer_marketing.cfm

National Society of Genetic Counselors
http://www.nsgc.org/about/position.cfm#DTC

*Direct-to-Consumer Testing and Complex Disease Management
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Figure 6.  The Four Elements of Personalized Medicine.
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Population A:  Heart Disease Cases Population B: Healthy Controls

Figure 7. Basic Foundation of Genome Wide Association Studies.

Shown above is the basic model for Genome Wide Association Studies, where DNA 

from diseased patients is compared to healthy individuals to detect differences. Patient 

DNA is placed on a chip and millions of SNPs can be tested at once. This approach 

permits identification of genes that cannot be predicted by selecting candidates from 

known disease pathways, allowing for discovery of novel genes contributing to complex 

diseases. 
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Figure 8. Age-Related Macular Degeneration: From HapMap to Clinical Trial in <5 

Years.

Age-related Macular Degeneration (AMD) is a complex and multi-factorial disease, is 
the leading cause of blindness with 1.75 million affected Americans, and is projected 
to affect 1 in 4 individuals >75 years old (R. Klein, Peto, Bird, & Vannewkirk, 2004; 
Ting, Lee, & MacDonald, 2009). In 2004-2005, researchers using HapMap identified 
a genetic variant responsible for 50% increased risk of developing AMD in the 
Complement Factor H gene (Edwards, et al., 2005; Haines, et al., 2005; R. J. Klein, et 
al., 2005). Complement Factor H is part of the inflammatory complement cascade, and 
helped lend credibility to concurrent investigations on inflammatory pathways as 
causative mechanisms of AMD, such as those involving C-Reactive Protein (Seddon, 
Gensler, Milton, Klein, & Rifai, 2004; Seddon, George, Rosner, & Rifai, 2005). These 
research efforts permitted development of prospective assessments of the role of the
contributory SNP in patients; findings validated the role of genetics and inflammation 
in AMD (Schaumberg, et al., 2006). Follow-up investigation ascertained interactive 
effects of the Complement Factor H variant with modifiable environmental risk 
factors, including Body Mass Index, smoking, regular aspirin intake, and dietary 
habits (Schaumberg, Hankinson, Guo, Rimm, & Hunter, 2007). This culminated in the 
formation of a large, randomized, controlled clinical trial enrolling 4,757 patients from 
11 medical centers (M. L. Klein, et al., 2008). The multi-disciplinary collaborative 
effort, “The Age Related Eye Disease Study”, ascertained pharmacogenetic effects of 
treatment with zinc and antioxidant supplements according to SNP genotypes, one of 
which being in the Complement Factor H gene. 
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Figure 9. The Pharmacogenomic and Policy Implications of CYP 2C9 and VKORC1 

Genetic Testing. 

Despite strong scientific genetic evidence of efficacy, warfarin classically 
demonstrates the systematic, structural, and clinical evidentiary challenges awaiting 
pharmacogenomics in Personalized Medicine (Phillips & Van Bebber, 2006). Because 
tests must demonstrate high predictive value for adverse events, metabolically 
accurate dosing ranges and treatment effects will need to be established according to 
allele prevalence in populations (Smits et al., 2005). Study designs specific to 
population genetics do not reflect current standards for FDA drug evaluation and 
approval, where criteria are dependent upon 20th century infrastructure and 
measurements (Califf, 2004; Haga, Thummel, & Burke, 2006; Woodcock, Witter, & 
Dionne, 2007). Moving forward, a key concern is that randomized clinical trials 
cannot account for genomic variability across study participants, or clearly delineate 
patient groups per genetic responses to pharmaceutical agents. Common approaches to 
address the issue involve patient stratification according to race or ethnicity, but 
question of appropriateness is necessary as genetics research identifies serious flaws 
in these categories (Bamshad, Wooding, Salisbury, & Stephens, 2004; Doyle, 2006; 
Foster & Sharp, 2002; Lee, 2007). To better account for biotechnologic advancement, 
many proposals call for overhauled federal regulatory networks allowing improved 
focus on pharmacogenomic clinical research including: synchronized payment 
systems; genetic/genomic education for patients and healthcare providers; and clinical 
care focusing on an individual’s dynamic probability for disease development (Califf, 
2004). What may achieve this most quickly is integration across government networks 
to form clinically accurate, large-scale, prospective observational cohorts (A. Roses, 
2007).

A barrier to large-scale clinical genetic research efforts is reluctance in wholly 
embracing research efforts, stemming from public fears of genetic discrimination. To 
better address these concerns, the Genetic Information Non-discrimination Act was 
passed in 2008. This legislation guarantees basic protection for individuals receiving 
genetic testing, so that they are protected against employer and health insurance 
discrimination practices (Slaughter, 2008). Limitations of the legislation are that it 
does not protect individuals from discrimination in the military or for long term care 
coverage determinations, in addition to considerations that the legislative language is 
not specific enough regarding what is considered a “genetic test” (Baruch & Hudson, 
2008; McGuire & Majumder, 2009).



   

CHAPTER 7

CONCLUSIONS

Summary of Dissertation Research and Its Scientific Context

The overarching intent of the work performed in this dissertation research was to 

“bridge” seemingly disparate disciplines and worlds. As exemplar to this inspired path, 

the problem of clinical heterogeneity observed in cobalamin deficiency of older adults 

was investigated using genetic technology through a behavioral lifespan lens—a common 

perspective in nursing research. The theoretical underpinnings of vitamin B12 as a health 

concern extend back to the early 1800s from simple observations of confounding clinical 

trajectories that resulted in tragic loss of life. Three Nobel prizes were issued to 

individuals able to solve intricately complex puzzles of nature, permanently improving 

morbidity and mortality for all humankind. Collectively, as science continued its forward 

movement, the age of molecular genetics produced ability to clone cobalamin-related 

genes and manipulate model organisms for more sophisticated awareness of why 

cobalamin is an essential nutritional requirement. 

Despite these tremendous and storied advancements, there is still not a clear 

understanding as to why certain individuals are severely affected by small changes in 

cobalamin status, while others remain completely unaffected. Not all “low” serum 

cobalamin and metabolite test results paint the clinical picture of deficiency, and not all
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“normal” test results indicate that metabolic sufficiency is present (Carmel 2000; Carmel 

et al., 1999). Clinical signs alone cannot be the only metric, as severe metabolic crises 

can occur in their absence and may be reversible with supplemental therapy (Carmel et 

al., 1995; Carmel, Sinow, & Karnaze, 1987).

Study Context Within Broader Literature Base

The overarching hypothesis of this dissertation research was that there exists a 

genetic basis to the phenomenon of clinical heterogeneity observed in cobalamin 

deficiency affecting older adults. The use of a well-characterized and measured 

phenotype is instrumental in exploring genetic associations; otherwise, carefully 

generated genetic data are at risk of being spurious or meaningless upon combination 

with clinical data. Use of the Women’s Health and Aging Study Cohorts (WHAS) 

permitted examination of a sophisticated combination of clinical traits that either would 

not have been possible, or at the very least, quite costly to prospectively collect the 

amount and type of data used in this study. 

Although the WHAS 1 and 2 publications on physical disability trajectories are 

widely known and number into the several hundreds, linking the original WHAS data to a 

genetics focus is not nearly as common. For genetic researchers that have realized that 

carefully catalogued phenotypes are contained within these extraordinary epidemiologic 

research initiatives, genetic-focused analyses have been performed. Walston and 

colleagues examined the role of genetic variation in the interleukin-6 gene and its 

relationship with circulating inflammatory biomarkers, and muscle, weakness, and frailty 

measurements in WHAS 2 subjects (Walston et al., 2005). Seibert and colleagues 
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examined polymorphic variation in the human myostatin (GDF-8) gene and its 

relationship with various strength measures in WHAS 1 and WHAS 2 participants to 

ascertain a genetic basis of skeletal mass decline (Seibert, Xue, Fried, & Walston, 2001).

And recently, genome-wide association studies were undertaken to evaluate the effect of 

genetic variation in iron metabolism genes on serum iron concentrations in WHAS 1 and 

2 subjects (Tanaka et al., 2010).

However, the most closely relevant effort to the dissertation research has been the 

recent work by Matteini et al. in evaluating the WHAS 1 and 2 cohorts for susceptibility 

to frailty through study of genetic variation in one-carbon metabolism genes (Matteini et 

al., 2008; Matteini et al., 2010). In the 2008 and 2010 reports, SNPs from vitamin B12

candidate genes were selected, genotyped, and analyzed for their relationship with serum 

methylmalonic acid and frailty syndrome. Frailty syndrome was characterized as WHAS 

participants having at least 3 of the 5 following indicators: slow walking speed, weak 

hand grip strength, decreased energy level, decreased body mass, and low physical 

activity. Although the dissertation results corresponded to Matteini’s findings of no SNPs 

being associated with methylmalonic acid, data related to the physical performance of the 

WHAS 1 and 2 participants was somewhat divergent. For example, rs2267163 (in intron 

5) was found to have significant association with frailty syndrome according to Matteini 

and colleagues. In the dissertation study, neither rs2267163 nor the SNPs in close 

proximity to it were significantly associated with the continuous functional performance 

outcomes, hand grip strength and walking speed. Instead, a small cluster of several SNPs 

in the five prime region of the gene (intron 1-intron 3) were identified as being 

significant. 
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Reasons for these differing results may lie in the varying analytic approaches used 

and the population sample differences between the research efforts. Whereas this 

dissertation study directly analyzed continuous traits of WHAS participants in analyses of 

variance and covariance, Matteini and colleagues collapsed five different continuous 

physical performance measurements (walking speed, hand grip strength, energy level, 

body mass, and physical activity) into dichotomous outcomes (slow, weak, decreased 

energy, decreased muscle density, low activity) to create a ‘frail’ profile before entering 

them into multivariate logistic regression models. 

Additionally, because Matteini’s genotyping used the Illumnia BeadArray 

genotyping technology, analysis was restricted to WHAS 1 and 2 subjects with ample 

remaining amounts of native genomic DNA for chip typing requirements (i.e., at least 

100 ng). As a result, the final sample size available for analysis was n = 326 Caucasian 

and n = 90 African American subjects, representing 35.6% of the total 1,167 WHAS 1 

and 2 subjects who consented to phlebotomy. Furthermore, results are only reported for 

Caucasian subjects since African Americans were too underpowered to detect any effects, 

yielding a final sample size that was 27.9% of the initial WHAS 1 and 2 subject pool who 

had blood samples drawn. Because the dissertation used whole genome amplification to 

augment remaining genomic material, many more WHAS 1 and 2 subjects’ DNA were 

able to be analyzed than in Matteini’s reports. Furthermore, use of two-way analysis of 

variance and covariance in the dissertation study permitted evaluation of SNP effects 

across all 789 African Americans and Caucasian WHAS subjects collectively, which 

provided greater statistical power in assessing presence and impact of genetic differences. 
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Study Rationale

The broader goals of WHAS 1 and 2 research initiatives are to identify which 

functional determinants may (or may not) contribute to physical disability, the frailty 

syndrome, and the development of comorbidities in older adults (Fried, Ferrucci, Darer, 

Williamson, & Anderson, 2004). Availability of genetic data greatly enhances the 

biologic understanding of these processes. Thus, the dissertation aims of evaluating 

genetic variation in the transcobalamin II and transcobalamin II-receptor genes on 

cobalamin deficiency parameters in WHAS subjects were selected to better understand 

factors leading to poorer health status in aging individuals. 

Ascertaining biologic correlates to functional determinant outcome measures has 

been a fruitful area of WHAS research. For example, several WHAS 1 and WHAS 2 

studies outline a variety of biologic, socio-demographic, and psychologic factors that 

affect the dissertation’s functional performance outcomes, hand grip strength and walking 

speed. Presence of reactive oxygen species in skeletal muscle, as measured by serum 

protein carbonyls, was independently associated with poor hand grip strength (Howard et 

al., 2007). Hand grip strength measurements were shown to be significant predictors of 

cardiovascular disease, respiratory disease, and total mortality for up to 5 years (Rantanen 

et al., 2003). Decreased serum insulin-like growth factor-I and elevated serum 

interleukin-6 concentrations were associated with slower walking speeds (Cappola et al., 

2003). Tobacco smoking and cognitive decline were found to affect physical decline 

trajectories, including walking speeds, independent of potential confounders (Atkinson et 

al., 2005). And lastly, although presence of pain did not predict walking difficulties for 

WHAS subjects, report of widespread musculoskeletal pain was found to be associated 
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with onset and deterioration of walking capacity (Leveille, Bean, Ngo, McMullen, & 

Guralnik, 2007). Similar to these published efforts, the dissertation study was designed to 

better identify those biologic factors contributing to functional impairment and decline of 

health status across cobalamin-related outcomes in WHAS 1 and 2 subjects.     

The Dissertation’s Candidate Genes

Transcobalamin II and the transcobalamin II-receptor were candidate genes 

selected from a careful evaluation of cobalamin pathophysiology in humans. In selecting 

both, they represented the system of serum transport and target cell uptake for all 

biologically active cobalamin in the body, and thus the “least common denominator” that 

could provide the most information about an individual’s clinical deficiency from a 

genetic perspective. The transcobalamin II-receptor gene was only recently identified, the 

protein purified and structure elucidated (Quadros, Nakayama, & Sequeira, 2009). Until 

this time, very little information on the transcobalamin II-receptor was available in public 

databases and published reports. At the time of dissertation writing, no information 

existed about the contribution of genetic variation in the transcobalamin II-receptor gene 

to clinical conditions affecting humans. Thus, the dissertation research is the first 

examination of association between transcobalamin II-receptor genetic variation and 

clinical outcomes in individuals. Knowledge obtained from the dissertation contributes to 

a better understanding of the importance of this candidate gene to human health, while 

also generating more focused targets for functional laboratory analyses. Understanding 

which part of the transcobalamin II-receptor gene yields increased cobalamin uptake for 
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certain individuals as compared to others may enhance clinical care treatments and help 

prevent deficiency from occurring. 

There were also other interesting genes considered for evaluation, had the 

dissertation study been adequately powered to investigate more genes. Other possible 

candidates included intrinsic factor (the molecule pairing with dietary cobalamin in the 

duodenum) and its receptor on ileal enterocytes. Representing a ‘class’ of targets are the 

cobalamin-cofactor synthesis groups, nicknamed “cbl.” After the transcobalamin II-

receptor endocytoses cobalamin into a lysosome, the cobalamin is shuttled through a 

series of cytoplasmic cbl compartments where chemical reactions prepare cobalamin for 

use in the mitochondria or cytoplasm (Coelho et al., 2008). There are eight cbl 

complementation groups (cblA, cblB, cblC, cblD, cblE, cblE, cblF, cblG, cblH), and 

candidate selection of cbl groups responsible for intracellular trafficking to the cytoplasm 

(cblF, cblC, or cblD) or mitochondria (cblD, cblA, or cblB) would also have been 

meaningful candidates for investigation. 

The Dissertation’s Cobalamin-Deficiency Phenotype Traits

Selection of the phenotype characteristics representative of cobalamin deficiency 

was undertaken with the intent to strike a balance between the classic “hallmarks” and the 

chronic, subtle “preclinical” symptoms. Hemoglobin concentrations, mean corpuscular 

volumes (MCV), and the biochemical assays including serum cobalamin, methylmalonic 

acid, and total homocysteine are all regularly utilized components in deriving a clinical 

diagnosis of cobalamin deficiency (Beck, 2001). However, subtle signs of cobalamin 

deficiency, such as mood and sleep alterations, gait disturbances, peripheral insensitivity, 
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and fatigue, also accompany the subclinical metabolic definitions that are yielding higher 

prevalence rates identified in older adult populations (Carmel, 2000). It was important for 

the dissertation research to include assessment of quantitative traits that included these 

subclinical aspects of the cobalamin deficiency trajectory, including depression, 

peripheral insensitivity, physical strength, and walking capacity. That being noted, these 

outcomes were objective measurements of biological and physical traits. It also would 

have been interesting to explore the genetic basis of subjective phenomena that is 

associated with cobalamin deficiency, such as fatigue symptoms and perceived quality of 

life.

Biochemical Metabolites

The first data-based paper in this dissertation ascertained if genetic variation in 

the transcobalamin II and transcobalamin II-receptor gene was associated with any of the 

biochemical parameters traditionally used in making a clinical diagnosis of cobalamin 

deficiency. Results identified two significant genetic variants that were very promising 

for future research, because they were both located in genetic positions responsible for 

amino acid changes. The first coding variant, rs2336573, in exon 4 of the transcobalamin 

II-receptor gene, encodes an arginine to glycine switch (R220G) and was associated with 

serum cobalamin after adjusting for creatinine clearance. The second coding variant, 

rs9621049, in exon 7 of the transcobalamin II gene (F348S), was associated with 

homocysteine concentrations after adjusting for creatinine clearance, serum folate, and 

serum cobalamin.
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In evaluating the transcobalamin II-receptor genotype group differences of 

rs2336573, even though none of the mean serum cobalamin values were “low,” there was 

a 112-115 pmol/L difference between the CC genotype and the other genotype groups. 

However, measurement of serum cobalamin reflects not just the biologically active B12 

in the circulation that is bound to transcobalamin II, but also includes the longer 

circulating bound forms, transcobalamin I and III (20-30 days). Since approximately 80% 

of serum cobalamin measures the cobalamin attached to transcobalamin I and III, it is not 

clear how much different forms of the transcobalamin II-receptor on cell surfaces would 

impact serum cobalamin levels. Additional research efforts should analyze the 

association of rs2336573 with measures of holotranscobalamin, the fraction of B12 that is 

only bound to transcobalamin II. In doing so, there would be a more direct biologic link 

between SNP influence, substrate availability in serum, and uptake capacity by the 

receptor on the cell surface. 

The second key biochemical finding was the association between rs9621049 in 

the transcobalamin II gene with homocysteine concentration. There were significant 

differences between the three genotype groups independent of race. Three percent of 

elderly women belonging to the TT genotype group had the highest mean homocysteine 
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cobalamin deficiency in tissues, may be a risk factor for development of cardiovascular 

diseases and occurrence of thrombotic events (Arnesen et al., 1995; Boushey, Beresford, 

Omenn, & Motulsky, 1995; Selhub et al., 1995). However, this link is not well 

understood, since recent randomized evaluation of folic acid and vitamin B12 
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supplementation versus placebo on blood homocysteine concentration did not have any 

effect on preventing myocardial infarction outcomes (Study of the Effectiveness of 

Additional Reductions in Cholesterol and Homocysteine Collaborative Group, 2010).

The broader significance of the associations observed for these two genetic 

variants is not clear. The measured partial eta effect sizes, at 0.01 for rs2336573 and at 

0.015 for rs9621049, are very small—indicating that the effect on biochemical parameter 

means approaches 1%. This effect is typical compared to other phenotype 

characterizations of complex traits demonstrating both environmental and genetic 

components, and illustrates the difficulty of ascertaining meaning from genetic variability 

observed across individuals.  

Clinical Parameters

The second data-based paper in this dissertation ascertained if genetic variation in 

the transcobalamin II and transcobalamin II-receptor gene was associated with any of the 

hematologic, neurologic, and functional performance parameters that comprise some of 

the clinical assessments and symptoms indicative of cobalamin deficiency. Results 

identified one significant coding variant in the transcobalamin II gene associated with 

mean corpuscular volume (MCV), and second, a genomic region of interest in the 

transcobalamin II gene associated with hand grip strength and walking speed. 

The first finding identified was differences in MCV by rs1801198 SNP allele. 

This SNP is a coding polymorphism encoding a proline to arginine switch at position 259 

(P259R) in exon 6 of the transcobalamin II gene and demonstrated a significant 

interaction effect after adjusting for folate status. In African American WHAS elderly 
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women, GG homozygotes had the lowest mean MCV of 86.1 fL, compared to CG (91.4 

fL) and CC (90.1 fL) genotype groups. The reason for this result is not clear; there is no 

published research on the effect of transcobalamin II genetic variation on hematologic 

traits such as MCV. Although it is widely known that there is a race effect for the 

hematological traits, MCV and hemoglobin, the reasons for this difference cannot 

currently be explained by socio-economic differences, and genetic reasons for this 

possible difference are just beginning to be explored. While values for MCV are at 

physiologically lower levels for African American as compared to their Caucasian 

counterparts, the large difference found in this dissertation study suggests a biologic 

influence from rs1801198 occurring within the African American group only. 

The second finding was the identification of a cluster of significant SNPs in the 

five prime (front end) of the transcobalamin II gene with the physical performance 

measures, hand grip strength and walking speed. Singularly, none of these SNPs on their 

own were highly significant, but that they were clustered within a specific region of one 

gene and associating only with the strength-related outcome measures is intriguing. 

Because of the high assay dropout stemming from working with whole genome amplified 

material (of genomic DNA that was 16-18 years old) the analysis for this research 

conducted a series of independent association tests, and the significance obtained from 

each SNP was relatively muted. However, reperforming the analyses in blocks of SNPs 

that are inherited together could likely produce a signal for this region that is more 

intense. If the signal obtained in the dissertation research is found to be true after further 

validation, this would mean that elderly patients with specific transcobalamin II allelic 
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combinations may be predisposed to experience physical weakness and slowness 

compared to others. 

Dissertation Research Limitations and Future Research

The most significant shortcoming of this research is the inability to completely 

“tag” both the transcobalamin II and transcobalamin II-receptor genes with full genetic 

coverage. Due to the difficulty of working with whole genome amplified material from 

DNA that was 16-18 years old, there was a tremendous amount of assay loss that resulted 

in an inability to analyze SNPs in heredity blocks as they occur on the chromosome, also 

called “haplotype blocks.” 

Although the counter-measure to this was to independently analyze SNPs 

singularly, great loss of power to detect significant loci in WHAS subjects was the cost of 

running many tests. But as the clustered findings of the functional performance 

parameters indicate, the analyses are not independent, making the Bonferroni adjustment 

an especially restrictive and overly stringent corrective mechanism. Furthermore, the fact 

that many singular tests were run in linked areas of the genome, it is likely that existing 

signals found in this dissertation research would be greatly amplified upon performance 

of a haploblock analysis. Because of poorly performing assays, regenotyping WHAS 

whole genome amplified material will not be able to fill existing holes in blocks of the 

two candidate genes to produce the required coverage. Other alternatives to validating the 

signals obtained in this dissertation include 1) imputation of population-specific reference 

genotypes from HapMap, and 2) transitioning efforts to another adult cohort with similar 
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clinical measurements but with better genomic DNA quality, and genotype selected 

transcobalamin II, transcobalamin II-receptor SNPs.    

As with any candidate gene association study, positive findings (even if validated 

in independent cohorts) do not yield information about molecular mechanism or 

causality. Although knowledge of association can provide increased understanding of 

how genetics may be involved with a clinical phenotype, it cannot answer the question as 

to whether a SNP with functional effects results in a disease or health status changes. 

Additional studies involving different methodologic and laboratory approaches would be 

required to address the issue of causation. Despite the genotyping shortcomings and the 

inferential methodologic limitations, this dissertation research provides several 

hypothesis-generating genetic variants to evaluate in further cohorts of elderly adults. If 

validated, these variants may become meaningful targets for laboratory research to better 

understand their functional consequences and lay the foundations for future translation 

into clinical interventions.

A second limitation to this study is that analyses were conducted without 

adjusting for all of the environmental factors known to impact B12 nutrition in older 

adults. For example, Chapter 2 indicated numerous medications (antiepileptic agents, 

proton pump inhibitors, histamine receptor antagonists, the antidiabetic drug metformin, 

antibiotics, and cholestyramine) and comorbid conditions (intestinal diseases, gastric or 

ileal resections, alcohol intake, smoking, diabetes mellitus, and lymphoma) known to 

affect cobalamin nutritional status and deficiency parameters (Wolters, Strohle, & Hahn, 

2004).
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The overarching reason that many of these factors were not incorporated into the 

dissertation analysis is that accounting for them as covariates would have consumed 

further statistical power. As frequencies in African American and Caucasian genotype 

subgroups were low for many SNPs, the genetic effects being studied accounted for a 

small percentage of variance in each outcome trait, and many outcome variables were 

already being analyzed with two and three covariates—including additional medications 

and comorbidities would have further decreased statistical power to detect changes in 

study outcomes due to genetics. Because the research advantages of their inclusion could 

not offset the decrease in statistical power that would have occurred, they were not taken 

into account. Further validation efforts should aim for a sample size that is large enough 

to fully account for environmental factors such as medication use and comorbid 

conditions.

A third concern regarding this work is that the use of WHAS, despite all the 

advantages and strengths it carries in performing genetic research, could possibly be 

limiting. WHAS and similar aging research initiatives from the National Institute on 

Aging constitute the “state of the science,” and many citations in this dissertation look to 

the precedent that was set by these landmark efforts. Unfortunately, this carries a risk of 

sampling error being built into the knowledge base, in that previous WHAS findings are 

driving further research conducted in the WHAS cohorts. 

However, the issue of clinical heterogeneity in cobalamin deficiency of older 

adults, as reported by multiple non-WHAS sources in Chapter 2, is a distinctly separate 

and significant problem. As little genetic research has been published regarding the 

WHAS participants and genetic contributors to vitamin B12 deficiency were gaining in 
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their health significance for older adults, this dissertation represented a unique research 

opportunity and a valuable learning experience.     

The final limitation of this research is that it was a secondary data analysis of pre-

existing studies (WHAS 1, 2). Although it added new information to the field through the 

generation of candidate-gene SNP genotypes, the analysis of selected outcome 

measurements and covariates in this study was limited to what data was available. 

Already mentioned is that use of serum cobalamin is not a direct measurement of 

biologically active cobalamin, the fraction of vitamin B12 that is bound to the 

transcobalamin II molecule. Serum “holotranscobalamin” measurements, cobalamin 

bound to transcobalamin II, were unavailable for WHAS subjects. This limitation made 

inference about how a genetic variant may be exerting a biologic effect (i.e., on serum 

metabolites) more difficult.      

Implications for Leadership and Policy

Using the knowledge of biologic diversity provided through resources such as the 

Human Genome Project and the Haplotype Map, genomics research is unraveling 

complexities of chronic diseases in humans (Hindorff et al., 2009; Manolio, Brooks, & 

Collins, 2008). Without the ability to translate these findings into clinically relevant and 

meaningful tools that can be practically applied to patient care settings, many of these 

technologic breakthroughs will remain limited to the halls of science where they were 

conceived. The dissertation research was undertaken with an overarching interest in 

bridging these seemingly disconnected worlds. However, simply performing the research, 
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without effort of broader education or outreach, would not help facilitate true 

understanding between the worlds of nursing research and genomic science. 

Chapter 6, the final manuscript of this dissertation, reflects an exercise in 

academic nursing leadership. The effort was undertaken to highlight the opportunities in 

genetics/genomics for nurses to advance human health through the adoption and 

utilization of Personalized Medicine. Policy, research, education, and practice 

implications were addressed in order to provide a bridge between the genetic 

technologies used in Chapters 4 and 5’s research, and what nurses from varying settings 

may expect upon seeing the same technologies in their local healthcare settings. For 

nurses who are able to incorporate and implement these incredible tools, significant 

groundwork will be laid for sound health policy derivation and widespread health benefit 

for patients, families, and communities. 
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APPENDIX A

WHOLE GENOME AMPLIFICATION FOR DISSERTATION 

Scientific Protocol for Qiagen REPLI-g Midi Kit (Product #150045_100)

Reagents:
Microcentrifuge tubes Pipetes and pipet tubes
Water bath or heating block Ice
Microcentrifuge Nuclease-free water
Vortexer

Before Starting:
Prepare Buffer DLB by adding 500 ul nuclease-free water to the tube. Mix 
thoroughly and centrifuge briefly. Reconstituted buffer DLB can be stored for 6 
months at -20 degrees C. Buffer DLB is pH-labile. Avoid neutralization with 
CO2. All buffers and reagents should be vortexed before use to ensure thorough 
mixing. Set heating block to 30 degrees C.

Protocol:
1. Prepare a sufficient amount of Buffer D1 (denaturation buffer) and Buffer N1 

(neutralization buffer) for the total number of whole genome amplification 
reactions.

Preparation of Buffer D1:
Reconstituted Buffer DLB 5.0 ul
Nuclease-free water 35.0 ul 
Total 40.0 ul (for 7 reactions)

Preparation of Buffer N1:
Solution B (stop solution) 8.0 ul
Nuclease-free water 72.0 ul
Total 80.0 ul (for 7 reactions)

2. Place 5.0 ul of template DNA into a microcentrifuge tube.
3. Add 5.0 ul of Buffer D1 to the DNA. Mix by vortexing and centrifuge briefly. 
4. Incubate the samples at room temperature for 3 minutes.
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Scientific Protocol for Qiagen REPLI-g Midi Kit (Product #150045_100)

1. Add 10.0 ul of Buffer N1 to the samples. Mix by vortexing and centrifuge 
briefly. 

2. Thaw REPLI-g DNA polymerase on ice. Thaw all other components at room 
temperature; vortex then centrifuge briefly.

7.  Prepare a master mix on ice. Mix and centrifuge briefly. 
Preparation of Master Mix:

REPLI-g Mini Reaction Buffer 29.0 ul
REPLI-g Mini DNA Polymerase 1.0 ul (for 1 reaction)

8. Add 30 ul of master mix to 20 ul of denatured DNA. 
9. Incubate at 30 degrees C for 10-16 hours. The maximum DNA yield is 

achieved using an incubation time of 16 hours. 
10. Inactivate REPLI-g DNA Polymerase by heating the sample for 3 minutes at 

65 degrees C.
11. Store amplified DNA at 4 degrees C for short-term storage or -20 degrees C 

for long-term storage. 

 



   

APPENDIX B

MANUAL GENOTYPE CALLING OF WHOLE

GENOME AMPLIFIED MATERIAL 

Parameters for Manual Calling in Typer 4.0

1. No signals under log/height arc threshold of .25 are called. 
2. No use of “lasso” function to manually change multiple calls simultaneously; 

spectra of each call must be individually inspected for accuracy. If inaccurate, 
change to No Call, save file, and issue recall.  

3. Spectral peaks of all “aggressive” calls at bleed-border edge of 
heterozygote/homozygote cluster overlap regions are inspected to ensure they are 
accurately heterozygous or homozygous.

4. Low-probability calls can be made manually if they are not located in red or 
yellow wells.

5. Peaks in yellow and red wells can be called as long as using parameter guidelines.  
6. Inspect spectral peak and log/height scatter plot to assess the following:

a. On the spectra, where is the Unexpected Primer (UEP) in relation to the 
expected SNP allele? 

i. If UEP difficult to visualize and separate from allele peak = No 
Call

ii. If UEP is distinctly separate and visible = Call
b. On the spectra, where does the midline of the call’s peak lie in relation to 

the expected allele mass?
i. If midline of peak is not present at expected allele mass = No Call

ii. If midline of peak is present at expected allele mass = Call
c. On the spectra, what is the amplitude of a candidate peak in relation to the 

underlying baseline? 
i. If difficult or impossible to distinguish from baseline = No Call

ii. If candidate peak can be is noticeably higher or distinguishable 
from baseline = Call
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Parameters for Manual Calling in Typer 4.0

a. On the log/height plot, how far away is the candidate call from the closest 
cluster of calls? 

i. If far away from cluster = No Call; or conservatively follow 
parameter 6a through c.  

ii. If within or close to existing cluster = Call
b. On the log/height plot, is the candidate call within a region of cluster bleed 

border overlap?
i. If yes = No Call; or conservatively follow parameter 6a through c.

ii. If no = Call according to 6d.

 



   

APPENDIX C

HUMAN SUBJECTS CLASSIFICATION FOR 

DISSERTATION RESEARCH 

Electronic Mail Correspondence Regarding IRB Approval for Dissertation Research

IRB_00031719

PI: Emma Kurnat-Thoma

Title: Impact of Genetic Variation on Vitamin B12 Metabolism: A Retrospective 
Analysis Of the Women’s Health and Aging Study

Thank you for submitting your request for approval of this project. The IRB has 
administratively reviewed your application and has determined on 12/4/2008 that your 
project does NOT meet the definitions of Human Subjects Research according to Federal 
regulations. Therefore, IRB oversight is not required or necessary for your project.

This determination of non-human subjects research only applies to the project as 
submitted to the IRB. Since this determination is not an approval, it does not expire or 
need renewal. Remember that all research involving human subjects must be approved or
exempted by the IRB before the research is conducted.

If you have questions about this, please contact our office at 581-3655 and we will be 
happy to assist you. Thank you again for submitting your proposal.

Click IRB_00031719 to view the application.



   

APPENDIX D

DISSERTATION DATA 



  267

Table 19

Hemoglobin

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs16988828 M SD N
African American GG 12.60 0.84 4

GA 12.34 1.26 35
AA 12.33 1.52 132
Total 12.34 1.45 171

Caucasian GG 13.05 1.60 10
GA 13.22 1.27 84
AA 13.32 1.24 431
Total 13.30 1.25 525

Total GG 12.92 1.41 14
GA 12.96 1.33 119
AA 13.09 1.37 563
Total 13.06 1.36 696

TCN2_rs7289549 M SD N
African American CC 12.29 1.39 18

CG 12.27 1.66 60
GG 12.35 1.33 98
Total 12.32 1.45 176

Caucasian CC 13.19 1.44 11
CG 13.28 1.15 88
GG 13.30 1.26 436
Total 13.29 1.25 535

Total CC 12.63 1.46 29
CG 12.87 1.46 148
GG 13.12 1.32 534
Total 13.05 1.36 711
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Table 19 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs7286107 M SD N
African American CC 12.85 1.07 11

CT 12.10 1.64 54
TT 12.37 1.35 110
Total 12.32 1.44 175

Caucasian CC 13.73 0.93 3
CT 12.10 . 1
TT 13.30 1.25 535
Total 13.30 1.24 539

Total CC 13.04 1.08 14
CT 12.10 1.62 55
TT 13.14 1.31 645
Total 13.06 1.36 714

TCN2_rs9606756 M SD N
African American GG 12.22 0.97 9

GA 12.32 1.20 44
AA 12.34 1.55 123
Total 12.33 1.44 176

Caucasian GG 13.87 1.21 26
GA 13.58 1.05 80
AA 13.19 1.26 430
Total 13.28 1.25 536

Total GG 13.45 1.36 35
GA 13.13 1.26 124
AA 13.00 1.38 553
Total 13.05 1.36 712
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Table 19 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs740234 M SD N
African American CC 13.17 0.67 3

TC 12.59 1.18 29
TT 12.25 1.50 144
Total 12.32 1.45 176

Caucasian CC 13.15 1.17 34
TC 13.28 1.27 150
TT 13.31 1.26 355
Total 13.30 1.25 539

Total CC 13.15 1.13 37
TC 13.17 1.27 179
TT 13.01 1.42 499
Total 13.06 1.37 715

TCN2_rs35915865 M SD N
African American CC 13.80 . 1

CT 14.15 1.20 2
TT 12.31 1.44 174
Total 12.34 1.45 177

Caucasian CC 13.02 0.56 4
CT 13.28 0.98 19
TT 13.29 1.26 518
Total 13.29 1.25 541

Total CC 13.18 0.60 5
CT 13.36 1.00 21
TT 13.04 1.38 692
Total 13.05 1.36 718
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Table 19 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs11703570 M SD N
African American AA 12.77 1.02 12

AT 12.40 1.26 46
TT 12.29 1.55 115
Total 12.35 1.45 173

Caucasian AA 12.98 1.51 42
AT 13.16 1.21 143
TT 13.37 1.22 349
Total 13.28 1.25 534

Total AA 12.93 1.41 54
AT 12.98 1.27 189
TT 13.10 1.39 464
Total 13.05 1.36 707

TCN2_rs35838082 M SD N
African American TT 13.08 1.21 9

CT 12.18 1.71 51
CC 12.34 1.33 115
Total 12.33 1.45 175

Caucasian CT 13.60 0.81 7
CC 13.28 1.25 536
Total 13.29 1.25 543

Total TT 13.08 1.21 9
CT 12.35 1.69 58
CC 13.12 1.32 651
Total 13.05 1.36 718
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Table 19 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs2267163 M SD N
African American TT 11.77 1.92 13

TC 12.32 1.69 55
CC 12.37 1.23 104
Total 12.31 1.45 172

Caucasian TT 13.39 1.08 120
TC 13.32 1.29 211
CC 13.28 1.22 194
Total 13.32 1.22 525

Total TT 13.23 1.27 133
TC 13.11 1.44 266
CC 12.96 1.30 298
Total 13.07 1.35 697

TCN2_rs1801198 M SD N
African American GG 12.02 1.90 15

CG 12.30 1.65 63
CC 12.39 1.23 97
Total 12.33 1.45 175

Caucasian GG 13.36 1.09 130
CG 13.28 1.32 236
CC 13.26 1.26 176
Total 13.29 1.25 542

Total GG 13.22 1.26 145
CG 13.07 1.45 299
CC 12.95 1.31 273
Total 13.06 1.36 717
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Table 19 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820021 M SD N
African American AT 12.32 1.56 6

TT 12.33 1.44 173
Total 12.33 1.44 179

Caucasian AA 13.50 1.33 14
AT 13.40 1.32 87
TT 13.28 1.22 434
Total 13.31 1.24 535

Total AA 13.50 1.33 14
AT 13.33 1.35 93
TT 13.01 1.35 607
Total 13.06 1.36 714

TCN2_rs9621049 M SD N
African American TT 12.38 0.90 6

CT 12.23 1.27 44
CC 12.36 1.52 128
Total 12.32 1.44 178

Caucasian TT 13.14 1.81 14
CT 13.58 1.12 92
CC 13.25 1.26 431
Total 13.30 1.26 537

Total TT 12.91 1.61 20
CT 13.14 1.32 136
CC 13.04 1.37 559
Total 13.06 1.37 715
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Table 19 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820886 M SD N
African American GG 12.12 1.00 4

GT 12.25 1.29 43
TT 12.33 1.51 129
Total 12.31 1.44 176

Caucasian GG 13.38 0.83 12
GT 13.59 1.25 93
TT 13.23 1.24 433
Total 13.30 1.24 538

Total GG 13.07 1.01 16
GT 13.16 1.41 136
TT 13.02 1.36 562
Total 13.05 1.36 714

TCN2_rs4820887 M SD N
African American AA 11.10 0.00 2

GA 12.33 1.08 23
GG 12.33 1.51 149
Total 12.32 1.45 174

Caucasian AA 13.67 1.28 9
GA 13.57 1.23 78
GG 13.23 1.24 446
Total 13.29 1.25 533

Total AA 13.20 1.55 11
GA 13.29 1.30 101
GG 13.00 1.37 595
Total 13.05 1.36 707
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Table 19 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820888 M SD N
African American GG 12.71 1.12 37

AG 12.15 1.57 83
AA 12.30 1.40 57
Total 12.32 1.44 177

Caucasian GG 13.02 1.30 123
AG 13.32 1.27 222
AA 13.44 1.17 191
Total 13.29 1.25 536

Total GG 12.95 1.26 160
AG 13.00 1.46 305
AA 13.18 1.31 248
Total 13.05 1.37 713

TCN2_rs2301955 M SD N
African American TT 12.81 1.17 15

CT 12.30 1.27 67
CC 12.26 1.60 94
Total 12.32 1.45 176

Caucasian TT 13.04 1.30 117
CT 13.30 1.28 215
CC 13.43 1.16 212
Total 13.29 1.24 544

Total TT 13.01 1.28 132
CT 13.06 1.34 282
CC 13.07 1.42 306
Total 13.06 1.36 720
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Table 19 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs2301958 M SD N
African American CC 12.71 1.03 9

CG 12.29 1.29 55
GG 12.30 1.54 114
Total 12.32 1.44 178

Caucasian CC 13.02 1.64 31
CG 13.22 1.25 164
GG 13.37 1.20 351
Total 13.31 1.25 546

Total CC 12.95 1.52 40
CG 12.98 1.32 219
GG 13.11 1.37 465
Total 13.06 1.36 724

TCN2_rs1131603 M SD N
African American

Caucasian

TC 14.20 . 1
TT 12.32 1.42 181
Total 12.33 1.43 182
CC 13.60 0.57 2
TC 13.36 1.14 47
TT 13.29 1.26 507
Total 13.29 1.25 556

Total CC 13.60 0.57 2
TC 13.38 1.14 48
TT 13.03 1.37 688
Total 13.06 1.36 738



 276 
Table 19 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820889 M SD N
African American AA 13.14 0.58 5

GA 12.05 2.13 30
GG 12.34 1.27 141
Total 12.31 1.44 176

Caucasian AA 13.40 0.14 2
GA 13.52 1.01 22
GG 13.30 1.26 522
Total 13.31 1.25 546

Total AA 13.21 0.49 7
GA 12.67 1.88 52
GG 13.09 1.32 663
Total 13.06 1.37 722

TCN2_rs2072194 M SD N
African American GG 10.30 1.83 4

GA 12.36 1.29 43
AA 12.32 1.45 123
Total 12.28 1.44 170

Caucasian GG 13.40 1.09 110
GA 13.28 1.32 224
AA 13.22 1.25 193
Total 13.29 1.25 527

Total GG 13.29 1.25 114
GA 13.14 1.36 267
AA 12.87 1.40 316
Total 13.04 1.37 697
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Table 19 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs173665 M SD N
African American TT 12.53 0.84 7

CT 12.08 1.82 31
CC 12.35 1.38 136
Total 12.31 1.45 174

Caucasian TT 13.51 0.80 10
CT 13.16 1.22 77
CC 13.33 1.26 442
Total 13.30 1.24 529

Total TT 13.11 0.93 17
CT 12.85 1.49 108
CC 13.10 1.35 578
Total 13.06 1.37 703

CD320_rs250510 M SD N
African American TT 14.17 1.03 3

CT 11.96 1.53 21
CC 12.34 1.43 144
Total 12.32 1.46 168

Caucasian TT 13.30 . 1
CT 13.38 1.14 5
CC 13.29 1.23 514
Total 13.29 1.23 520

Total TT 13.95 0.94 4
CT 12.23 1.55 26
CC 13.08 1.34 658
Total 13.05 1.35 688
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Table 19 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2232787 M SD N
African American AA 12.50 . 1

AG 13.70 0.42 2
GG 12.32 1.46 173
Total 12.34 1.45 176

Caucasian AA 12.80 . 1
GG 13.29 1.24 521
Total 13.29 1.24 522

Total AA 12.65 0.21 2
AG 13.70 0.42 2
GG 13.05 1.36 694
Total 13.05 1.36 698

CD320_rs2227288 M SD N
African American CC 12.13 0.86 10

GC 12.00 1.82 47
GG 12.47 1.29 118
Total 12.32 1.44 175

Caucasian CC 13.01 1.49 11
GC 13.49 1.15 94
GG 13.28 1.26 407
Total 13.31 1.25 512

Total CC 12.59 1.28 21
GC 12.99 1.57 141
GG 13.10 1.31 525
Total 13.06 1.37 687
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Table 19 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2336573 M SD N
African American TT 12.25 1.36 21

TC 12.45 1.41 68
CC 12.25 1.52 84
Total 12.33 1.46 173

Caucasian TT 13.73 1.71 9
TC 13.54 1.33 35
CC 13.29 1.22 486
Total 13.31 1.24 530

Total TT 12.70 1.60 30
TC 12.82 1.47 103
CC 13.13 1.32 570
Total 13.07 1.36 703

CD320_rs2232779 M SD N
African American TT 12.55 0.49 2

CT 12.31 1.10 18
CC 12.33 1.48 160
Total 12.33 1.43 180

Caucasian TT 12.84 0.51 5
CT 13.00 0.28 2
CC 13.32 1.25 547
Total 13.31 1.25 554

Total TT 12.76 0.49 7
CT 12.37 1.06 20
CC 13.09 1.37 707
Total 13.07 1.36 734
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Table 19 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2927707 M SD N
African American CC 12.27 1.24 16

CT 12.19 1.82 47
TT 12.38 1.32 108
Total 12.32 1.46 171

Caucasian CC 13.30 1.09 56
CT 13.27 1.19 195
TT 13.33 1.31 271
Total 13.31 1.24 522

Total CC 13.07 1.20 72
CT 13.06 1.40 242
TT 13.06 1.38 379
Total 13.06 1.37 693

CD320_rs3760680 M SD N
African American TT 12.32 1.36 29

CT 12.37 1.35 69
CC 12.26 1.50 71
Total 12.32 1.41 169

Caucasian TT 13.26 1.37 79
CT 13.37 1.27 205
CC 13.30 1.15 234
Total 13.32 1.23 518

Total TT 13.01 1.42 108
CT 13.12 1.36 274
CC 13.06 1.31 305
Total 13.07 1.35 687
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Table 19 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs8100119 M SD N
African American CC 12.17 1.39 23

CT 12.32 1.40 59
TT 12.36 1.47 96
Total 12.32 1.43 178

Caucasian CC 12.82 2.65 5
CT 13.46 1.24 35
TT 13.28 1.23 498
Total 13.29 1.25 538

Total CC 12.29 1.64 28
CT 12.74 1.44 94
TT 13.14 1.32 594
Total 13.05 1.36 716
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Table 20

Mean Corpuscular Volume

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs16988828 M SD N
African American GG 93.00 7.70 4

GA 90.51 5.29 35
AA 89.91 6.71 131
Total 90.11 6.45 170

Caucasian GG 96.40 4.97 10
GA 93.37 5.01 81
AA 94.29 5.28 427
Total 94.18 5.24 518

Total GG 95.43 5.77 14
GA 92.51 5.24 116
AA 93.26 5.94 558
Total 93.18 5.83 688

TCN2_rs7289549 M SD N
African American CC 92.83 5.80 18

CG 89.30 6.72 60
GG 90.25 6.23 97
Total 90.19 6.41 175

Caucasian CC 92.55 5.15 11
CG 94.27 5.23 86
GG 94.14 5.23 431
Total 94.13 5.23 528

Total CC 92.72 5.47 29
CG 92.23 6.36 146
GG 93.43 5.63 528
Total 93.15 5.80 703
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Table 20 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs7286107 M SD N
African American CC 93.82 6.62 11

CT 89.83 6.51 54
TT 90.19 6.31 109
Total 90.31 6.42 174

Caucasian CC 96.33 5.51 3
CT 99.00 . 1
TT 94.13 5.22 528
Total 94.15 5.22 532

Total CC 94.36 6.28 14
CT 90.00 6.57 55
TT 93.45 5.61 637
Total 93.20 5.77 706

TCN2_rs9606756 M SD N
African American GG 90.67 7.86 9

GA 90.18 6.38 44
AA 90.16 6.28 122
Total 90.19 6.35 175

Caucasian GG 93.65 4.11 26
GA 93.38 5.22 80
AA 94.41 5.29 423
Total 94.22 5.23 529

Total GG 92.89 5.36 35
GA 92.24 5.84 124
AA 93.46 5.80 545
Total 93.22 5.79 704
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Table 20 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs740234 M SD N
African American CC 90.33 7.51 3

TC 90.24 6.24 29
TT 90.17 6.51 143
Total 90.19 6.44 175

Caucasian CC 96.15 3.58 34
TC 93.93 5.22 148
TT 94.12 5.34 350
Total 94.20 5.23 532

Total CC 95.68 4.18 37
TC 93.33 5.55 177
TT 92.98 5.97 493
Total 93.21 5.81 707

TCN2_rs35915865 M SD N
African American CC 90.00 . 1

CT 85.00 2.83 2
TT 90.35 6.47 173
Total 90.29 6.45 176

Caucasian CC 93.25 5.62 4
CT 93.37 3.98 19
TT 94.23 5.27 511
Total 94.19 5.23 534

Total CC 92.60 5.08 5
CT 92.57 4.58 21
TT 93.25 5.84 684
Total 93.22 5.80 710
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Table 20 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs11703570 M SD N
African American AA 88.83 5.06 12

AT 90.57 5.07 46
TT 90.32 7.10 114
Total 90.28 6.47 172

Caucasian AA 95.23 4.79 40
AT 93.74 5.25 141
TT 94.20 5.26 346
Total 94.16 5.22 527

Total AA 93.75 5.52 52
AT 92.96 5.37 187
TT 93.24 6.00 460
Total 93.20 5.80 699

TCN2_rs35838082 M SD N
African American TT 94.00 3.74 9

CT 90.33 6.36 51
CC 89.84 6.56 114
Total 90.20 6.42 174

Caucasian CT 95.57 3.26 7
CC 94.12 5.21 529
Total 94.14 5.19 536

Total TT 94.00 3.74 9
CT 90.97 6.29 58
CC 93.37 5.71 643
Total 93.18 5.77 710
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Table 20 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs2267163 M SD N
African American TT 86.08 6.36 12

TC 90.84 6.87 55
CC 90.10 6.10 104
Total 90.05 6.44 171

Caucasian TT 94.18 5.21 119
TC 93.74 5.39 209
CC 94.42 4.72 191
Total 94.09 5.11 519

Total TT 93.44 5.79 131
TC 93.14 5.84 264
CC 92.89 5.63 295
Total 93.09 5.74 690

TCN2_rs1801198 M SD N
African American GG 86.21 7.28 14

CG 91.44 6.37 63
CC 89.70 6.16 97
Total 90.05 6.44 174

Caucasian GG 94.31 5.61 129
CG 93.97 5.28 233
CC 94.48 4.84 173
Total 94.22 5.22 535

Total GG 93.52 6.25 143
CG 93.44 5.62 296
CC 92.76 5.81 270
Total 93.20 5.82 709
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Table 20 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820021 M SD N
African American AT 87.33 9.24 6

TT 90.26 6.35 172
Total 90.16 6.46 178

Caucasian AA 93.71 5.51 14
AT 94.16 6.09 86
TT 94.19 4.96 428
Total 94.17 5.16 528

Total AA 93.71 5.51 14
AT 93.72 6.49 92
TT 93.06 5.68 600
Total 93.16 5.78 706

TCN2_rs9621049 M SD N
African American TT 89.33 4.46 6

CT 90.30 7.93 44
CC 90.07 5.96 127
Total 90.10 6.43 177

Caucasian TT 95.07 4.63 14
CT 93.98 5.19 91
CC 94.21 5.23 425
Total 94.20 5.20 530

Total TT 93.35 5.21 20
CT 92.78 6.42 135
CC 93.26 5.68 552
Total 93.17 5.81 707
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Table 20 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820886 M SD N
African American GG 91.25 4.72 4

GT 89.95 7.95 43
TT 90.03 5.94 128
Total 90.04 6.44 175

Caucasian GG 93.17 5.25 12
GT 94.27 4.87 92
TT 94.18 5.27 427
Total 94.18 5.20 531

Total GG 92.69 5.04 16
GT 92.90 6.32 135
TT 93.23 5.70 555
Total 93.15 5.81 706

TCN2_rs4820887 M SD N
African American AA 89.00 12.73 2

GA 91.96 7.68 23
GG 89.96 6.21 148
Total 90.21 6.48 173

Caucasian AA 93.11 4.20 9
GA 93.62 5.19 78
GG 94.27 5.23 439
Total 94.16 5.21 526

Total AA 92.36 5.75 11
GA 93.24 5.85 101
GG 93.19 5.80 587
Total 93.18 5.80 699
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Table 20 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820888 M SD N
African American GG 88.46 5.80 37

AG 90.82 6.31 82
AA 90.09 6.95 57
Total 90.09 6.45 176

Caucasian GG 94.60 4.91 121
AG 93.88 5.10 219
AA 94.32 5.43 189
Total 94.20 5.18 529

Total GG 93.16 5.74 158
AG 93.05 5.62 301
AA 93.34 6.07 246
Total 93.17 5.80 705

TCN2_rs2301955 M SD N
African American TT 89.07 4.76 15

CT 90.54 5.41 67
CC 90.17 7.34 93
Total 90.22 6.45 175

Caucasian TT 95.02 4.94 115
CT 93.84 5.24 212
CC 94.16 5.25 210
Total 94.22 5.19 537

Total TT 94.33 5.26 130
CT 93.05 5.46 279
CC 92.93 6.24 303
Total 93.23 5.78 712



 290 
Table 20 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs2301958 M SD N
African American CC 88.44 5.59 9

CG 89.96 4.83 55
GG 90.50 7.08 113
Total 90.23 6.38 177

Caucasian CC 94.67 4.57 30
CG 93.79 5.51 161
GG 94.39 5.17 348
Total 94.23 5.24 539

Total CC 93.23 5.44 39
CG 92.81 5.59 216
GG 93.44 5.93 461
Total 93.24 5.80 716

TCN2_rs1131603 M SD N
African American TC 94.00 . 1

TT 90.20 6.46 180
Total 90.22 6.45 181

Caucasian CC 102.50 2.12 2
TC 94.55 5.06 47
TT 94.17 5.21 500
Total 94.24 5.21 549

Total CC 102.50 2.12 2
TC 94.54 5.01 48
TT 93.12 5.83 680
Total 93.24 5.80 730
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Table 20 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820889 M SD N
African American AA 85.80 8.44 5

GA 90.48 7.56 29
GG 90.09 6.12 141
Total 90.03 6.44 175

Caucasian AA 94.50 6.36 2
GA 94.09 4.29 22
GG 94.23 5.23 515
Total 94.22 5.19 539

Total AA 88.29 8.50 7
GA 92.04 6.55 51
GG 93.34 5.69 656
Total 93.19 5.81 714

TCN2_rs2072194 M SD N
African American GG 88.00 6.48 4

GA 89.60 6.24 42
AA 90.22 6.52 123
Total 90.01 6.43 169

Caucasian GG 94.27 5.37 109
GA 93.95 5.24 220
AA 94.48 5.08 191
Total 94.21 5.20 520

Total GG 94.04 5.50 113
GA 93.25 5.63 262
AA 92.81 6.05 314
Total 93.18 5.81 689



 292 
Table 20 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs173665 M SD N
African American TT 90.29 2.21 7

CT 89.94 7.77 31
CC 90.24 6.29 135
Total 90.19 6.44 173

Caucasian TT 95.80 5.85 10
CT 94.40 4.43 77
CC 94.08 5.35 435
Total 94.16 5.23 522

Total TT 93.53 5.37 17
CT 93.12 5.92 108
CC 93.17 5.82 570
Total 93.17 5.81 695

CD320_rs250510 M SD N
African American TT 87.00 9.64 3

CT 90.67 5.35 21
CC 90.15 6.59 143
Total 90.16 6.48 167

Caucasian TT 97.00 . 1
CT 95.20 5.36 5
CC 94.16 5.21 507
Total 94.17 5.21 513

Total TT 89.50 9.33 4
CT 91.54 5.55 26
CC 93.28 5.79 650
Total 93.19 5.81 680
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Table 20 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2232787 M SD N
African American AA 80.00 . 1

AG 88.00 9.90 2
GG 90.44 6.42 172
Total 90.35 6.46 175

Caucasian AA 101.00 . 1
GG 94.15 5.21 514
Total 94.16 5.21 515

Total AA 90.50 14.85 2
AG 88.00 9.90 2
GG 93.22 5.76 686
Total 93.19 5.79 690

CD320_rs2227288 M SD N
African American CC 89.10 4.28 10

GC 91.72 6.69 46
GG 89.78 6.31 118
Total 90.25 6.35 174

Caucasian CC 92.50 4.90 10
GC 94.13 5.25 94
GG 94.28 5.17 402
Total 94.22 5.17 506

Total CC 90.80 4.81 20
GC 93.34 5.85 140
GG 93.26 5.76 520
Total 93.20 5.76 680
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Table 20 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2336573 M SD N
African American TT 89.52 4.57 21

TC 89.53 6.44 68
CC 91.30 6.69 83
Total 90.38 6.40 172

Caucasian TT 95.56 8.22 9
TC 94.20 6.18 35
CC 94.14 5.10 479
Total 94.17 5.23 523

Total TT 91.33 6.40 30
TC 91.12 6.70 103
CC 93.72 5.45 562
Total 93.23 5.77 695

CD320_rs2232779 M SD N
African American TT 93.00 2.83 2

CT 89.78 6.16 18
CC 90.32 6.50 159
Total 90.30 6.43 179

Caucasian TT 97.80 3.70 5
CT 98.50 3.54 2
CC 94.16 5.21 540
Total 94.21 5.21 547

Total TT 96.43 3.99 7
CT 90.65 6.47 20
CC 93.29 5.76 699
Total 93.25 5.78 726
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Table 20 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2927707 M SD N
African American CC 90.06 7.33 16

CT 89.91 6.58 47
TT 90.55 6.34 107
Total 90.33 6.47 170

Caucasian CC 94.48 4.29 56
CT 93.92 5.28 194
TT 94.17 5.30 266
Total 94.11 5.18 516

Total CC 93.50 5.39 72
CT 93.14 5.76 241
TT 93.13 5.84 373
Total 93.17 5.76 686

CD320_rs3760680 M SD N
African American TT 90.03 6.10 29

CT 89.57 6.06 68
CC 90.86 6.99 71
Total 90.20 6.47 168

Caucasian TT 93.90 5.59 77
CT 94.17 5.17 202
CC 94.02 5.22 232
Total 94.06 5.24 511

Total TT 92.84 5.96 106
CT 93.01 5.75 270
CC 93.28 5.83 303
Total 93.10 5.81 679
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Table 20 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs8100119 M SD N
African American CC 87.91 5.74 23

CT 90.32 6.07 59
TT 90.78 6.83 95
Total 90.25 6.48 177

Caucasian CC 93.20 9.78 5
CT 94.14 6.35 35
TT 94.21 5.08 491
Total 94.20 5.21 531

Total CC 88.86 6.73 28
CT 91.74 6.41 94
TT 93.65 5.54 586
Total 93.21 5.81 708
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Table 21

Cobalamin (B12)

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs16988828 M SD N
African American GG 484.60 126.53 5

GA 579.40 239.84 35
AA 555.97 270.99 123
Total 558.81 260.84 163

Caucasian GG 306.38 100.81 8
GA 437.71 242.41 83
AA 468.33 224.95 427
Total 460.92 227.27 518

Total GG 374.92 139.32 13
GA 479.74 249.25 118
AA 487.93 238.58 550
Total 484.35 239.22 681

TCN2_rs7289549 M SD N
African American CC 620.33 284.44 18

CG 534.57 244.33 58
GG 557.00 261.93 90
Total 556.03 258.03 166

Caucasian CC 381.91 171.09 11
CG 489.36 234.80 86
GG 458.51 226.39 429
Total 461.95 227.01 526

Total CC 529.90 270.99 29
CG 507.57 238.87 144
GG 475.59 235.64 519
Total 484.52 238.05 692
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Table 21 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs7286107 M SD N
African American CC 555.73 183.24 11

CT 554.02 283.46 54
TT 556.63 255.21 100
Total 555.72 259.48 165

Caucasian CC 485.00 378.37 3
CT 701.00 . 1
TT 463.58 225.44 524
Total 464.15 226.03 528

Total CC 540.57 220.82 14
CT 556.69 281.52 55
TT 478.49 232.77 624
Total 485.95 237.46 693

TCN2_rs9606756 M SD N
African American GG 561.88 255.22 8

GA 554.90 266.91 40
AA 560.92 263.38 118
Total 559.52 262.29 166

Caucasian GG 460.25 174.68 24
GA 464.98 237.81 82
AA 460.47 223.90 419
Total 461.17 223.78 525

Total GG 485.66 198.36 32
GA 494.46 250.24 122
AA 482.55 236.58 537
Total 484.79 237.17 691
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Table 21 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs740234 M SD N
African American CC 543.67 389.96 3

TC 533.78 256.15 27
TT 562.95 260.07 136
Total 557.86 260.08 166

Caucasian CC 474.71 269.94 31
TC 463.35 217.17 153
TT 458.97 224.78 344
Total 461.16 225.05 528

Total CC 480.79 275.42 34
TC 473.91 224.09 180
TT 488.43 239.67 480
Total 484.29 237.33 694

TCN2_rs35915865 M SD N
African American CC 525.00 . 1

CT 484.50 37.48 2
TT 562.90 264.81 165
Total 561.74 262.59 168

Caucasian CC 331.75 199.99 4
CT 387.78 168.02 18
TT 465.94 227.71 509
Total 462.28 226.19 531

Total CC 370.40 193.56 5
CT 397.45 161.92 20
TT 489.67 240.77 674
Total 486.18 239.07 699
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Table 21 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs11703570 M SD N
African American AA 609.38 243.72 13

AT 497.04 204.63 45
TT 566.47 269.92 106
Total 550.82 252.67 164

Caucasian AA 473.15 242.48 39
AT 440.14 224.87 142
TT 469.44 222.83 342
Total 461.76 224.83 523

Total AA 507.21 247.65 52
AT 453.83 220.98 187
TT 492.40 238.11 448
Total 483.02 234.69 687

TCN2_rs35838082 M SD N
African American TT 494.78 199.66 9

CT 576.69 286.86 48
CC 554.89 254.04 108
Total 557.95 260.70 165

Caucasian CT 455.83 101.33 6
CC 463.30 226.43 526
Total 463.21 225.37 532

Total TT 494.78 199.66 9
CT 563.26 274.61 54
CC 478.90 233.71 634
Total 485.64 237.46 697
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Table 21 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs2267163 M SD N
African American TT 484.42 263.59 12

TC 524.19 256.74 47
CC 579.78 262.13 104
Total 556.73 261.07 163

Caucasian TT 462.66 222.67 117
TC 453.32 219.07 211
CC 471.80 237.27 189
Total 462.19 226.40 517

Total TT 464.68 225.71 129
TC 466.23 227.52 258
CC 510.13 251.32 293
Total 484.85 238.42 680

TCN2_rs1801198 M SD N
African American GG 468.00 259.22 13

CG 530.34 245.31 56
CC 584.21 268.51 96
Total 556.77 261.09 165

Caucasian GG 462.60 222.09 125
CG 450.63 225.47 235
CC 468.70 226.64 172
Total 459.28 224.78 532

Total GG 463.11 224.79 138
CG 465.97 231.14 291
CC 510.08 248.25 268
Total 482.36 237.34 697
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Table 21 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820021 M SD N
African American AT 417.17 130.62 6

TT 561.85 260.90 163
Total 556.71 258.58 169

Caucasian AA 399.43 163.02 14
AT 424.10 163.23 92
TT 472.14 237.89 418
Total 461.76 225.52 524

Total AA 399.43 163.02 14
AT 423.67 160.86 98
TT 497.31 247.64 581
Total 484.92 237.35 693

TCN2_rs9621049 M SD N
African American TT 546.29 325.18 7

CT 617.10 273.01 42
CC 536.39 249.37 119
Total 556.98 259.33 168

Caucasian TT 520.29 258.95 14
CT 441.10 203.09 93
CC 462.59 230.68 419
Total 460.33 226.77 526

Total TT 528.95 274.71 21
CT 495.85 240.44 135
CC 478.91 236.70 538
Total 483.72 238.49 694
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Table 21 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820886 M SD N
African American GG 614.50 423.22 4

GT 612.05 271.73 43
TT 536.56 248.99 120
Total 557.86 259.86 167

Caucasian GG 570.42 257.14 12
GT 440.13 201.08 95
TT 460.21 231.33 420
Total 459.10 227.12 527

Total GG 581.44 291.03 16
GT 493.70 238.25 138
TT 477.18 237.27 540
Total 482.87 238.98 694

TCN2_rs4820887 M SD N
African American AA 654.67 540.11 3

GA 604.24 290.92 21
GG 552.49 250.85 140
Total 560.99 260.94 164

Caucasian AA 532.33 223.98 9
GA 447.39 206.04 77
GG 459.70 229.37 437
Total 459.13 225.85 523

Total AA 562.92 304.28 12
GA 481.00 234.30 98
GG 482.21 237.90 577
Total 483.45 238.49 687
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Table 21 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820888 M SD N
African American GG 539.57 266.12 35

AG 522.48 219.77 79
AA 622.68 300.67 53
Total 557.86 259.86 167

Caucasian GG 448.88 245.76 116
AG 457.21 217.68 223
AA 473.66 227.02 186
Total 461.20 227.20 525

Total GG 469.90 252.65 151
AG 474.28 219.75 302
AA 506.70 252.31 239
Total 484.52 238.92 692

TCN2_rs2301955 M SD N
African American TT 572.00 266.71 16

CT 525.84 228.89 64
CC 590.85 285.81 86
Total 563.97 263.63 166

Caucasian TT 458.68 230.73 107
CT 463.38 229.29 220
CC 464.62 222.78 206
Total 462.92 226.67 533

Total TT 473.42 237.63 123
CT 477.45 230.29 284
CC 501.80 249.29 292
Total 486.91 239.67 699
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Table 21 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs2301958 M SD N
African American CC 613.40 282.57 10

CG 503.04 213.01 53
GG 583.82 275.02 105
Total 560.10 259.02 168

Caucasian CC 477.79 256.12 28
CG 448.36 228.39 164
GG 466.01 221.28 343
Total 461.22 225.12 535

Total CC 513.47 266.37 38
CG 461.71 225.48 217
GG 493.62 239.91 448
Total 484.85 237.26 703

TCN2_rs1131603 M SD N
African American TC 268.00 . 1

TT 564.16 260.02 171
Total 562.44 260.24 172

Caucasian CC 645.50 275.06 2
TC 465.38 209.65 48
TT 460.34 226.55 494
Total 461.47 225.10 544

Total CC 645.50 275.06 2
TC 461.35 209.36 49
TT 487.04 239.75 665
Total 485.72 237.79 716
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Table 21 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820889 M SD N
African American AA 513.25 182.90 4

GA 474.39 234.16 28
GG 581.38 266.69 135
Total 561.81 261.91 167

Caucasian AA 364.00 59.40 2
GA 468.18 293.26 22
GG 461.67 222.28 509
Total 461.58 224.98 533

Total AA 463.50 163.45 6
GA 471.66 259.00 50
GG 486.77 237.14 644
Total 485.49 238.00 700

TCN2_rs2072194 M SD N
African American GG 604.67 119.06 3

GA 534.31 260.46 39
AA 566.49 266.05 121
Total 559.49 262.20 163

Caucasian GG 457.84 225.35 109
GA 460.29 213.15 222
AA 463.80 236.92 184
Total 461.03 224.04 515

Total GG 461.78 224.13 112
GA 471.35 221.88 261
AA 504.54 253.50 305
Total 484.70 237.35 678



 307 
Table 21 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs173665 M SD N
African American TT 569.50 261.49 6

CT 597.00 350.38 27
CC 555.38 243.27 133
Total 562.66 262.67 166

Caucasian TT 466.25 260.76 8
CT 490.08 220.57 76
CC 451.87 225.55 435
Total 457.69 225.32 519

Total TT 510.50 256.37 14
CT 518.11 263.25 103
CC 476.11 233.75 568
Total 483.13 238.99 685

CD320_rs250510 M SD N
African American TT 357.00 83.61 3

CT 606.38 231.30 21
CC 558.32 262.26 136
Total 560.85 257.45 160

Caucasian TT 199.00 . 1
CT 508.17 208.90 6
CC 458.51 224.14 503
Total 458.58 223.91 510

Total TT 317.50 104.41 4
CT 584.56 226.45 27
CC 479.75 236.12 639
Total 483.00 236.23 670
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Table 21 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2232787 M SD N
African American AA 567.00 . 1

AG 368.00 65.05 2
GG 568.59 265.04 165
Total 566.19 263.60 168

Caucasian AA 243.00 . 1
GG 461.57 226.32 511
Total 461.14 226.31 512

Total AA 405.00 229.10 2
AG 368.00 65.05 2
GG 487.69 240.59 676
Total 487.10 240.19 680

CD320_rs2227288 M SD N
African American CC 423.60 110.39 10

GC 561.29 232.97 41
GG 582.24 281.93 114
Total 567.42 264.76 165

Caucasian CC 387.50 253.56 12
GC 441.90 193.61 93
GG 469.21 233.66 398
Total 462.21 227.38 503

Total CC 403.91 198.08 22
GC 478.43 212.84 134
GG 494.38 249.42 512
Total 488.20 241.27 668
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Table 21 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2336573 M SD N
African American TT 616.71 261.70 21

TC 602.05 292.60 65
CC 520.58 227.57 78
Total 565.18 261.38 164

Caucasian TT 480.78 199.96 9
TC 512.63 229.28 32
CC 456.96 225.97 479
Total 460.80 225.77 520

Total TT 575.93 249.55 30
TC 572.55 275.39 97
CC 465.87 227.07 557
Total 485.83 238.80 684

CD320_rs2232779 M SD N
African American TT 647.50 267.99 2

CT 617.80 300.16 15
CC 554.80 255.06 153
Total 561.45 258.47 170

Caucasian TT 421.00 170.37 5
CT 442.50 282.14 2
CC 460.82 225.53 535
Total 460.38 224.90 542

Total TT 485.71 208.65 7
CT 597.18 295.30 17
CC 481.72 235.49 688
Total 484.51 237.12 712
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Table 21 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2927707 M SD N
African American CC 450.93 224.32 15

CT 600.09 265.55 44
TT 560.71 260.22 103
Total 561.24 260.11 162

Caucasian CC 468.53 212.15 53
CT 458.31 222.49 192
TT 462.90 234.77 269
Total 461.76 227.59 514

Total CC 464.65 213.31 68
CT 484.75 237.06 236
TT 489.98 245.67 372
Total 485.60 239.39 676

CD320_rs3760680 M SD N
African American TT 578.36 273.01 28

CT 593.21 282.72 66
CC 515.81 236.59 69
Total 557.90 263.29 163

Caucasian TT 484.87 264.93 75
CT 460.71 230.92 206
CC 458.11 207.42 230
Total 463.09 225.88 511

Total TT 510.28 269.07 103
CT 492.86 250.50 272
CC 471.43 215.47 299
Total 486.02 238.75 674
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Table 21 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs8100119 M SD N
African American CC 555.38 255.89 21

CT 596.02 291.37 59
TT 541.30 243.85 88
Total 562.27 262.57 168

Caucasian CC 508.75 71.25 4
CT 516.09 252.72 33
TT 457.58 224.64 491
Total 461.63 225.93 528

Total CC 547.92 235.59 25
CT 567.35 279.38 92
TT 470.31 229.42 579
Total 485.92 239.02 696
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Table 22

Homocysteine

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs16988828 M SD N
African American GG 8.80 1.64 5

GA 10.91 4.15 34
AA 11.04 4.18 117
Total 10.94 4.12 156

Caucasian GG 10.10 2.51 8
GA 10.98 3.76 81
AA 10.37 3.73 415
Total 10.46 3.72 504

Total GG 9.60 2.24 13
GA 10.96 3.86 115
AA 10.52 3.84 532
Total 10.58 3.82 660

TCN2_rs7289549 M SD N
African American CC 10.27 3.52 18

CG 11.49 3.86 54
GG 10.82 4.38 87
Total 10.99 4.11 159

Caucasian CC 10.95 4.12 11
CG 9.84 2.92 85
GG 10.63 3.85 416
Total 10.50 3.72 512

Total CC 10.53 3.70 29
CG 10.48 3.40 139
GG 10.66 3.94 503
Total 10.62 3.82 671
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Table 22 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs7286107 M SD N
African American CC 9.00 2.46 11

CT 11.30 3.86 52
TT 11.05 4.37 95
Total 10.99 4.12 158

Caucasian CC 9.13 1.91 3
CT 10.90 . 1
TT 10.47 3.72 510
Total 10.46 3.71 514

Total CC 9.03 2.28 14
CT 11.29 3.82 53
TT 10.56 3.83 605
Total 10.59 3.81 672

TCN2_rs9606756 M SD N
African American GG 13.05 7.12 8

GA 10.35 3.52 38
AA 10.99 4.06 113
Total 10.94 4.14 159

Caucasian GG 11.05 2.57 24
GA 10.59 3.89 80
AA 10.41 3.73 407
Total 10.47 3.70 511

Total GG 11.55 4.14 32
GA 10.52 3.76 118
AA 10.54 3.81 520
Total 10.58 3.82 670
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Table 22 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs740234 M SD N
African American CC 5.80 0.57 2

TC 11.10 4.03 25
TT 11.01 4.15 132
Total 10.96 4.14 159

Caucasian CC 10.63 4.34 30
TC 10.26 3.73 146
TT 10.58 3.64 338
Total 10.49 3.70 514

Total CC 10.33 4.37 32
TC 10.39 3.77 171
TT 10.70 3.79 470
Total 10.60 3.81 673

TCN2_rs11703570 M SD N
African American AA 11.38 3.17 13

AT 10.58 4.08 44
TT 11.10 4.32 100
Total 10.98 4.15 157

Caucasian AA 11.32 3.54 38
AT 10.98 4.21 139
TT 10.20 3.49 332
Total 10.50 3.72 509

Total AA 11.34 3.42 51
AT 10.89 4.17 183
TT 10.41 3.71 432
Total 10.61 3.83 666
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Table 22 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs35915865 M SD N
African American CC 10.40 . 1

CT 14.90 . 1
TT 10.91 4.15 159
Total 10.93 4.13 161

Caucasian CC 11.53 4.00 4
CT 10.07 3.69 18
TT 10.52 3.72 495
Total 10.51 3.72 517

Total CC 11.30 3.50 5
CT 10.33 3.76 19
TT 10.61 3.83 654
Total 10.61 3.82 678

TCN2_rs35838082 M SD N
African American TT 8.48 3.24 9

CT 10.93 3.56 48
CC 11.16 4.42 101
Total 10.94 4.14 158

Caucasian CT 9.70 1.51 6
CC 10.52 3.75 512
Total 10.51 3.73 518

Total TT 8.48 3.24 9
CT 10.80 3.40 54
CC 10.62 3.87 613
Total 10.61 3.83 676
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Table 22 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs2267163 M SD N
African American TT 11.50 3.87 9

TC 11.52 4.62 47
CC 10.72 3.96 100
Total 11.01 4.16 156

Caucasian TT 9.87 3.03 114
TC 10.38 3.77 208
CC 11.00 3.97 181
Total 10.49 3.71 503

Total TT 9.99 3.11 123
TC 10.59 3.96 255
CC 10.90 3.96 281
Total 10.61 3.82 659

TCN2_rs4820021 M SD N
African American AT 11.52 4.10 6

TT 10.95 4.12 156
Total 10.97 4.11 162

Caucasian AA 10.38 3.49 13
AT 9.97 3.53 92
TT 10.57 3.66 405
Total 10.46 3.63 510

Total AA 10.38 3.49 13
AT 10.06 3.57 98
TT 10.68 3.79 561
Total 10.58 3.76 672
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Table 22 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs1801198 M SD N
African American GG 12.63 5.11 10

CG 10.92 4.15 55
CC 10.88 4.05 93
Total 11.00 4.15 158

Caucasian GG 9.90 3.05 121
CG 10.40 3.81 230
CC 10.95 3.88 167
Total 10.46 3.68 518

Total GG 10.11 3.31 131
CG 10.50 3.87 285
CC 10.92 3.93 260
Total 10.59 3.80 676

TCN2_rs9621049 M SD N
African American TT 13.77 6.70 7

CT 10.08 3.85 40
CC 11.11 3.97 114
Total 10.97 4.12 161

Caucasian TT 11.81 2.94 14
CT 10.78 3.84 90
CC 10.36 3.69 408
Total 10.48 3.71 512

Total TT 12.47 4.47 21
CT 10.56 3.84 130
CC 10.53 3.77 522
Total 10.59 3.81 673
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Table 22 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820886 M SD N
African American GG 14.88 8.73 4

GT 10.26 3.89 41
TT 11.13 3.95 115
Total 11.00 4.12 160

Caucasian GG 11.68 3.04 12
GT 10.90 3.89 92
TT 10.36 3.70 409
Total 10.49 3.72 513

Total GG 12.48 4.90 16
GT 10.70 3.89 133
TT 10.53 3.76 524
Total 10.61 3.82 673

TCN2_rs4820888 M SD N
African American GG 11.30 4.58 35

AG 10.78 3.88 73
AA 11.11 4.19 52
Total 11.00 4.12 160

Caucasian GG 11.02 4.04 115
AG 10.37 3.78 213
AA 10.33 3.43 183
Total 10.50 3.72 511

Total GG 11.09 4.16 150
AG 10.47 3.80 286
AA 10.50 3.62 235
Total 10.62 3.83 671
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Table 22 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820887 M SD N
African American AA 17.03 8.94 3

GA 9.09 3.18 20
GG 11.13 3.97 134
Total 10.99 4.11 157

Caucasian AA 11.54 3.92 9
GA 10.96 3.97 76
GG 10.38 3.67 424
Total 10.48 3.72 509

Total AA 12.92 5.65 12
GA 10.57 3.88 96
GG 10.56 3.76 558
Total 10.60 3.82 666

TCN2_rs2301955 M SD N
African American TT 10.71 3.91 16

CT 10.63 3.95 62
CC 11.28 4.37 81
Total 10.97 4.15 159

Caucasian TT 11.24 4.13 106
CT 10.27 3.75 211
CC 10.32 3.38 202
Total 10.49 3.70 519

Total TT 11.17 4.09 122
CT 10.35 3.79 273
CC 10.59 3.71 283
Total 10.60 3.82 678
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Table 22 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs2301958 M SD N
African American CC 10.33 3.23 10

CG 10.97 3.99 52
GG 10.89 4.13 99
Total 10.88 4.02 161

Caucasian CC 11.21 3.34 28
CG 11.01 4.12 160
GG 10.18 3.45 333
Total 10.49 3.68 521

Total CC 10.98 3.29 38
CG 11.00 4.08 212
GG 10.34 3.63 432
Total 10.58 3.77 682

TCN2_rs4820889 M SD N
African American AA 11.93 7.52 4

GA 11.70 4.50 25
GG 10.86 3.93 131
Total 11.02 4.11 160

Caucasian AA 7.50 2.55 2
GA 10.22 3.21 21
GG 10.50 3.71 496
Total 10.48 3.68 519

Total AA 10.45 6.36 6
GA 11.03 3.99 46
GG 10.57 3.75 627
Total 10.60 3.79 679
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Table 22 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs1131603 M SD N
African American TC 12.30 . 1

TT 10.94 4.09 164
Total 10.95 4.08 165

Caucasian CC 8.45 1.20 2
TC 11.38 4.61 48
TT 10.43 3.60 480
Total 10.51 3.71 530

Total CC 8.45 1.20 2
TC 11.39 4.56 49
TT 10.56 3.74 644
Total 10.61 3.80 695

TCN2_rs2072194 M SD N
African American GG 14.43 4.29 3

GA 10.89 3.46 36
AA 10.89 4.32 117
Total 10.96 4.14 156

Caucasian GG 10.15 3.21 106
GA 10.32 3.64 215
AA 10.82 4.09 180
Total 10.47 3.73 501

Total GG 10.27 3.30 109
GA 10.41 3.62 251
AA 10.85 4.18 297
Total 10.58 3.83 657
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Table 22 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs173665 M SD N
African American TT 9.87 2.50 6

CT 11.19 4.57 25
CC 11.01 4.09 128
Total 11.00 4.11 159

Caucasian TT 11.75 4.32 8
CT 10.50 4.31 73
CC 10.47 3.61 424
Total 10.49 3.72 505

Total TT 10.94 3.66 14
CT 10.68 4.36 98
CC 10.59 3.73 552
Total 10.61 3.82 664

CD320_rs2232787 M SD N
African American AA 13.80 . 1

AG 9.35 3.32 2
GG 10.96 4.14 158
Total 10.95 4.12 161

Caucasian AA 13.40 . 1
GG 10.47 3.72 497
Total 10.48 3.72 498

Total AA 13.60 0.28 2
AG 9.35 3.32 2
GG 10.59 3.83 655
Total 10.59 3.82 659
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Table 22 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs250510 M SD N
African American TT 17.20 5.81 3

CT 9.99 2.89 21
CC 10.95 4.18 129
Total 10.94 4.14 153

Caucasian TT 13.80 . 1
CT 8.87 2.35 6
CC 10.44 3.72 489
Total 10.43 3.70 496

Total TT 16.35 5.04 4
CT 9.74 2.78 27
CC 10.55 3.82 618
Total 10.55 3.82 649

CD320_rs2227288 M SD N
African American CC 11.02 3.13 10

GC 11.54 4.44 39
GG 10.64 4.07 109
Total 10.89 4.11 158

Caucasian CC 11.70 4.04 12
GC 10.27 3.45 92
GG 10.52 3.79 387
Total 10.51 3.74 491

Total CC 11.39 3.58 22
GC 10.65 3.80 131
GG 10.55 3.85 496
Total 10.60 3.83 649
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Table 22 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2336573 M SD N
African American TT 10.20 3.54 20

TC 10.82 4.20 62
CC 11.35 4.23 75
Total 10.99 4.13 157

Caucasian TT 10.68 3.79 9
TC 11.05 3.03 31
CC 10.39 3.72 466
Total 10.43 3.68 506

Total TT 10.34 3.56 29
TC 10.90 3.84 93
CC 10.52 3.81 541
Total 10.57 3.80 663

CD320_rs2927707 M SD N
African American CC 12.37 4.67 15

CT 11.17 4.78 42
TT 10.76 3.73 98
Total 11.03 4.13 155

Caucasian CC 10.64 3.76 51
CT 10.40 3.57 188
TT 10.57 3.84 262
Total 10.51 3.73 501

Total CC 11.04 4.02 66
CT 10.54 3.82 230
TT 10.62 3.80 360
Total 10.63 3.83 656
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Table 22 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2232779 M SD N
African American TT 10.90 2.12 2

CT 10.24 2.71 14
CC 11.02 4.22 147
Total 10.95 4.09 163

Caucasian TT 11.20 3.05 5
CT 11.30 2.97 2
CC 10.46 3.68 521
Total 10.47 3.67 528

Total TT 11.11 2.64 7
CT 10.38 2.66 16
CC 10.58 3.81 668
Total 10.58 3.77 691

CD320_rs3760680 M SD N
African American TT 10.21 3.82 27

CT 10.47 4.19 62
CC 11.72 4.16 67
Total 10.96 4.14 156

Caucasian TT 11.26 4.95 75
CT 10.29 3.15 198
CC 10.33 3.67 224
Total 10.46 3.71 497

Total TT 10.98 4.68 102
CT 10.33 3.42 260
CC 10.65 3.83 291
Total 10.58 3.82 653
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Table 22 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs8100119 M SD N
African American CC 10.91 3.70 21

CT 10.55 3.95 55
TT 11.20 4.30 85
Total 10.94 4.10 161

Caucasian CC 12.08 4.86 4
CT 11.23 3.33 32
TT 10.44 3.75 478
Total 10.50 3.74 514

Total CC 11.10 3.81 25
CT 10.80 3.73 87
TT 10.55 3.85 563
Total 10.60 3.83 675
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Table 23

Methylmalonic Acid

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs16988828 M SD N

African American
GG 180.40 105.05 5
GA 211.37 128.10 35
AA 197.64 117.83 116
Total 200.17 119.29 156

Caucasian GG 248.38 124.04 8
GA 275.65 156.66 80
AA 246.89 136.24 411
Total 251.53 139.65 499

Total GG 222.23 117.64 13
GA 256.09 150.94 115
AA 236.05 133.87 527
Total 239.29 136.76 655

TCN2_rs7289549 M SD N
African American CC 178.11 80.15 18

CG 186.89 89.11 54
GG 214.38 139.49 87
Total 200.94 119.05 159

Caucasian CC 302.27 176.86 11
CG 241.29 159.25 83
GG 253.25 135.81 413
Total 252.36 140.79 507

Total CC 225.21 137.23 29
CG 219.85 138.19 137
GG 246.49 137.12 500
Total 240.08 137.59 666
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Table 23 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs7286107 M SD N
African American CC 182.55 78.81 11

CT 188.67 93.00 52
TT 209.81 135.30 95
Total 200.96 119.53 158

Caucasian CC 229.00 19.52 3
CT 232.00 . 1
TT 249.97 139.72 505
Total 249.81 139.18 509

Total CC 192.50 72.30 14
CT 189.49 92.29 53
TT 243.61 139.69 600
Total 238.24 136.30 667

TCN2_rs9606756 M SD N
African American GG 197.38 110.07 8

GA 193.58 123.51 38
AA 203.67 120.48 113
Total 200.94 120.07 159

Caucasian GG 228.96 78.96 24
GA 236.43 117.66 80
AA 255.34 147.00 402
Total 251.09 140.29 506

Total GG 221.06 86.92 32
GA 222.63 120.73 118
AA 244.00 143.11 515
Total 239.10 137.32 665
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Table 23 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs740234 M SD N
African American CC 101.50 23.33 2

TC 246.64 164.84 25
TT 193.79 107.34 132
Total 200.94 119.09 159

Caucasian CC 266.00 147.75 30
TC 243.63 134.00 145
TT 253.16 142.28 334
Total 251.20 140.14 509

Total CC 255.72 148.58 32
TC 244.08 138.42 170
TT 236.34 135.87 466
Total 239.24 137.02 668

TCN2_rs35915865 M SD N
African American CC 204.00 . 1

CT 401.00 . 1
TT 198.53 118.44 159
Total 199.82 118.78 161

Caucasian CC 325.50 232.75 4
CT 326.22 164.41 18
TT 248.14 138.48 490
Total 251.49 140.78 512

Total CC 301.20 208.76 5
CT 330.16 160.70 19
TT 235.98 135.45 649
Total 239.13 137.53 673
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Table 23 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs11703570 M SD N
African American AA 222.46 140.88 13

AT 208.57 152.66 44
TT 198.10 103.63 100
Total 203.05 121.74 157

Caucasian AA 242.82 136.85 38
AT 258.52 134.93 138
TT 247.60 140.09 328
Total 250.23 138.28 504

Total AA 237.63 136.76 51
AT 246.45 140.63 182
TT 236.03 134.01 428
Total 239.02 135.94 661

TCN2_rs35838082 M SD N
African American TT 170.00 37.20 9

CT 189.35 102.30 48
CC 208.79 131.31 101
Total 200.68 119.67 158

Caucasian CT 373.00 231.24 6
CC 250.10 138.62 507
Total 251.54 140.31 513

Total TT 170.00 37.20 9
CT 209.76 133.11 54
CC 243.24 138.19 608
Total 239.56 137.36 671
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Table 23 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs2267163 M SD N
African American TT 202.56 119.31 9

TC 217.85 108.44 46
CC 192.81 126.00 101
Total 200.76 120.50 156

Caucasian TT 263.14 159.04 112
TC 245.82 139.28 206
CC 251.36 129.63 180
Total 251.72 140.52 498

Total TT 258.64 156.85 121
TC 240.71 134.42 252
CC 230.32 131.17 281
Total 239.56 137.65 654

TCN2_rs1801198 M SD N
African American GG 207.60 113.61 10

CG 207.62 106.37 55
CC 199.57 131.97 93
Total 202.88 121.87 158

Caucasian GG 257.73 155.72 119
CG 246.82 137.09 228
CC 249.57 132.17 166
Total 250.24 139.89 513

Total GG 253.84 153.11 129
CG 239.20 132.42 283
CC 231.61 134.01 259
Total 239.09 137.25 671
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Table 23 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820021 M SD N
African American AT 245.83 133.08 6

TT 200.23 120.18 156
Total 201.92 120.54 162

Caucasian AA 254.46 100.31 13
AT 249.01 149.36 90
TT 252.89 139.69 402
Total 252.24 140.38 505

Total AA 254.46 100.31 13
AT 248.81 147.76 96
TT 238.17 136.48 558
Total 240.02 137.45 667

TCN2_rs9621049 M SD N
African American TT 160.43 60.93 7

CT 203.90 130.03 40
CC 203.95 120.64 114
Total 202.04 120.91 161

Caucasian TT 271.38 90.48 13
CT 248.44 120.76 90
CC 251.57 145.93 404
Total 251.52 140.47 507

Total TT 232.55 96.39 20
CT 234.74 124.89 130
CC 241.09 142.02 518
Total 239.60 137.56 668
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Table 23 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820886 M SD N
African American GG 152.50 44.81 4

GT 203.07 128.43 41
TT 203.48 120.78 115
Total 202.10 121.28 160

Caucasian GG 260.92 74.03 12
GT 252.22 122.26 91
TT 250.36 146.10 405
Total 250.94 140.66 508

Total GG 233.81 82.29 16
GT 236.95 125.80 132
TT 239.99 142.12 520
Total 239.24 137.77 668

TCN2_rs4820887 M SD N
African American AA 185.00 27.73 3

GA 190.65 132.14 20
GG 203.00 122.93 134
Total 201.08 122.65 157

Caucasian AA 251.78 78.94 9
GA 246.49 121.19 76
GG 252.36 144.73 419
Total 251.46 140.36 504

Total AA 235.08 74.73 12
GA 234.85 124.93 96
GG 240.40 141.25 553
Total 239.49 137.95 661
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Table 23 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820888 M SD N
African American GG 219.46 147.54 35

AG 209.18 128.71 73
AA 180.48 84.88 52
Total 202.10 121.28 160

Caucasian GG 262.19 143.47 115
AG 247.00 138.36 210
AA 251.90 142.16 181
Total 252.21 140.74 506

Total GG 252.22 145.06 150
AG 237.24 136.72 283
AA 235.96 134.73 233
Total 240.17 137.90 666

TCN2_rs2301955 M SD N
African American TT 231.94 194.23 16

CT 202.92 120.61 62
CC 195.42 104.05 81
Total 202.02 121.62 159

Caucasian TT 261.31 143.84 106
CT 240.71 129.08 208
CC 259.97 152.17 200
Total 252.45 141.54 514

Total TT 257.46 150.76 122
CT 232.03 127.96 270
CC 241.36 142.86 281
Total 240.54 138.68 673
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Table 23 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs2301958 M SD N
African American CC 179.80 149.64 10

CG 211.23 139.11 52
GG 197.85 108.26 99
Total 201.05 121.14 161

Caucasian CC 255.86 151.94 28
CG 256.08 139.48 158
GG 250.11 141.53 330
Total 252.25 141.23 516

Total CC 235.84 153.12 38
CG 244.98 140.40 210
GG 238.05 136.27 429
Total 240.07 138.37 677

TCN2_rs1131603 M SD N
African American TC 131.00 . 1

TT 202.27 120.50 164
Total 201.84 120.26 165

Caucasian CC 162.00 18.38 2
TC 238.02 124.02 48
TT 253.35 141.56 475
Total 251.60 139.84 525

Total CC 162.00 18.38 2
TC 235.84 123.67 49
TT 240.24 138.19 639
Total 239.70 136.99 690
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Table 23 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820889 M SD N
African American AA 164.00 77.90 4

GA 213.80 100.31 25
GG 202.34 126.73 131
Total 203.18 121.74 160

Caucasian AA 191.50 21.92 2
GA 295.43 163.56 21
GG 249.34 139.59 491
Total 250.99 140.55 514

Total AA 173.17 62.76 6
GA 251.07 137.65 46
GG 239.44 138.22 622
Total 239.64 137.74 674

TCN2_rs2072194 M SD N
African American GG 159.33 23.25 3

GA 215.64 130.69 36
AA 197.58 120.10 117
Total 201.01 121.45 156

Caucasian GG 262.49 161.43 104
GA 239.00 128.91 213
AA 254.87 132.73 179
Total 249.65 137.73 496

Total GG 259.60 160.08 107
GA 235.63 129.16 249
AA 232.22 130.73 296
Total 238.02 135.52 652
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Table 23 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs173665 M SD N
African American TT 182.67 90.88 6

CT 229.36 170.45 25
CC 196.76 108.92 128
Total 201.35 119.85 159

Caucasian TT 291.50 69.03 8
CT 249.11 143.52 73
CC 250.30 141.69 419
Total 250.78 141.01 500

Total TT 244.86 94.16 14
CT 244.07 150.18 98
CC 237.77 136.54 547
Total 238.86 137.75 659

CD320_rs250510 M SD N
African American TT 175.67 90.59 3

CT 155.50 35.84 20
CC 207.31 128.48 130
Total 199.92 120.81 153

Caucasian TT 234.00 . 1
CT 200.67 100.82 6
CC 251.82 142.59 484
Total 251.16 142.05 491

Total TT 190.25 79.51 4
CT 165.92 58.19 26
CC 242.40 140.80 614
Total 238.99 138.93 644
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Table 23 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2232787 M SD N
African American AA 133.00 . 1

AG 166.50 98.29 2
GG 199.71 119.80 158
Total 198.88 119.10 161

Caucasian AA 497.00 . 1
GG 251.34 141.37 492
Total 251.84 141.66 493

Total AA 315.00 257.39 2
AG 166.50 98.29 2
GG 238.79 138.14 650
Total 238.80 138.26 654

CD320_rs2227288 M SD N
African American CC 232.10 160.90 10

GC 218.66 105.04 38
GG 191.87 119.57 110
Total 200.86 119.19 158

Caucasian CC 230.50 103.92 12
GC 235.51 130.80 90
GG 252.52 142.77 384
Total 248.83 139.76 486

Total CC 231.23 129.44 22
GC 230.51 123.54 128
GG 239.02 140.12 494
Total 237.06 136.49 644



 339 
Table 23 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2336573 M SD N
African American TT 193.57 129.12 21

TC 196.29 121.07 62
CC 204.65 118.61 74
Total 199.87 120.30 157

Caucasian TT 245.44 90.14 9
TC 233.61 107.26 31
CC 252.40 143.65 461
Total 251.11 140.80 501

Total TT 209.13 119.68 30
TC 208.73 117.40 93
CC 245.79 141.32 535
Total 238.88 137.85 658

CD320_rs2232779 M SD N
African American TT 132.50 38.89 2

CT 200.00 172.49 14
CC 200.20 112.97 147
Total 199.35 118.13 163

Caucasian TT 368.40 232.81 5
CT 326.00 241.83 2
CC 251.44 139.44 516
Total 252.84 140.93 523

Total TT 301.00 222.79 7
CT 215.75 177.59 16
CC 240.08 135.62 663
Total 240.13 137.67 686
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Table 23 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2927707 M SD N
African American CC 211.93 100.98 15

CT 186.12 101.27 41
TT 205.04 130.91 99
Total 200.70 120.73 155

Caucasian CC 277.08 179.43 50
CT 254.82 149.22 187
TT 243.87 124.35 259
Total 251.35 140.41 496

Total CC 262.05 166.27 65
CT 242.46 144.06 228
TT 233.13 127.21 358
Total 239.29 137.60 651

CD320_rs3760680 M SD N
African American TT 193.32 134.51 28

CT 197.02 122.50 62
CC 213.52 118.48 66
Total 203.33 122.56 156

Caucasian TT 263.72 143.46 74
CT 249.48 145.11 198
CC 242.20 133.13 220
Total 248.37 139.52 492

Total TT 244.39 143.90 102
CT 236.97 141.61 260
CC 235.58 130.26 286
Total 237.52 136.91 648
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Table 23 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs8100119 M SD N
African American CC 204.95 170.95 21

CT 175.02 77.00 56
TT 220.58 129.28 84
Total 202.70 121.65 161

Caucasian CC 232.75 58.20 4
CT 249.44 108.20 32
TT 250.86 142.45 473
Total 250.62 139.97 509

Total CC 209.40 157.75 25
CT 202.08 96.00 88
TT 246.29 140.85 557
Total 239.11 137.24 670



 342 
Table 24

Geriatric Depression Scale Score

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs16988828 M SD N
African American GG 8.40 4.88 5

GA 6.54 4.77 39
AA 6.30 5.11 141
Total 6.41 5.02 185

Caucasian GG 2.60 2.72 10
GA 7.06 5.76 87
AA 6.59 5.60 454
Total 6.60 5.61 551

Total GG 4.53 4.42 15
GA 6.90 5.46 126
AA 6.52 5.48 595
Total 6.55 5.46 736

TCN2_rs7289549 M SD N
African American CC 6.79 5.57 19

CG 5.81 4.48 67
GG 6.84 5.24 103
Total 6.47 5.01 189

Caucasian CC 4.73 2.90 11
CG 6.22 5.22 92
GG 6.73 5.66 458
Total 6.61 5.55 561

Total CC 6.03 4.82 30
CG 6.04 4.91 159
GG 6.75 5.58 561
Total 6.57 5.42 750
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Table 24 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs7286107 M SD N
African American CC 8.17 5.44 12

CT 5.25 3.77 60
TT 7.03 5.34 117
Total 6.53 4.96 189

Caucasian CC 3.33 2.08 3
CT 16.00 . 1
TT 6.64 5.56 561
Total 6.64 5.56 565

Total CC 7.20 5.28 15
CT 5.43 3.99 61
TT 6.71 5.52 678
Total 6.62 5.42 754

TCN2_rs9606756 M SD N
African American GG 8.40 6.65 10

GA 6.83 5.46 48
AA 6.33 4.83 132
Total 6.56 5.09 190

Caucasian GG 8.43 6.01 28
GA 6.62 5.51 87
AA 6.48 5.50 447
Total 6.60 5.53 562

Total GG 8.42 6.09 38
GA 6.70 5.47 135
AA 6.44 5.35 579
Total 6.59 5.42 752
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Table 24 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs740234 M SD N
African American CC 5.50 5.26 4

TC 6.10 5.09 29
TT 6.55 5.02 157
Total 6.46 5.01 190

Caucasian CC 8.71 6.46 35
TC 6.64 5.60 159
TT 6.32 5.43 371
Total 6.56 5.57 565

Total CC 8.38 6.36 39
TC 6.55 5.52 188
TT 6.39 5.31 528
Total 6.54 5.43 755

TCN2_rs35915865 M SD N
African American CC 5.00 . 1

CT 1.50 2.12 2
TT 6.48 5.01 188
Total 6.42 5.00 191

Caucasian CC 8.25 6.18 4
CT 8.42 8.64 19
TT 6.49 5.41 544
Total 6.56 5.55 567

Total CC 7.60 5.55 5
CT 7.76 8.47 21
TT 6.48 5.30 732
Total 6.53 5.41 758
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Table 24 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs11703570 M SD N
African American AA 7.07 5.41 14

AT 6.42 5.12 50
TT 6.30 5.01 123
Total 6.39 5.04 187

Caucasian AA 6.73 5.63 45
AT 6.51 5.12 148
TT 6.54 5.71 367
Total 6.55 5.54 560

Total AA 6.81 5.54 59
AT 6.49 5.11 198
TT 6.48 5.54 490
Total 6.51 5.42 747

TCN2_rs35838082 M SD N
African American TT 6.33 5.12 9

CT 5.59 4.14 54
CC 6.83 5.35 126
Total 6.46 5.03 189

Caucasian CT 3.86 4.74 7
CC 6.67 5.56 562
Total 6.63 5.56 569

Total TT 6.33 5.12 9
CT 5.39 4.21 61
CC 6.70 5.52 688
Total 6.59 5.43 758
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Table 24 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs2267163 M SD N
African American TT 6.07 5.06 14

TC 6.29 5.03 56
CC 6.62 5.03 116
Total 6.48 5.01 186

Caucasian TT 6.37 5.77 123
TC 6.26 5.60 225
CC 7.25 5.55 203
Total 6.65 5.63 551

Total TT 6.34 5.68 137
TC 6.27 5.48 281
CC 7.02 5.37 319
Total 6.61 5.48 737

TCN2_rs1801198 M SD N
African American GG 5.94 4.85 16

CG 6.11 5.05 65
CC 6.76 5.06 108
Total 6.47 5.03 189

Caucasian GG 6.33 5.68 133
CG 6.49 5.69 251
CC 6.98 5.25 183
Total 6.61 5.55 567

Total GG 6.29 5.58 149
CG 6.41 5.56 316
CC 6.90 5.18 291
Total 6.57 5.42 756
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Table 24 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820021 M SD N
African American AT 5.17 3.43 6

TT 6.47 5.03 187
Total 6.42 4.98 193

Caucasian AA 5.36 4.13 14
AT 6.17 5.88 92
TT 6.76 5.56 455
Total 6.63 5.58 561

Total AA 5.36 4.13 14
AT 6.11 5.75 98
TT 6.67 5.41 642
Total 6.58 5.43 754

TCN2_rs9621049 M SD N
African American TT 6.86 4.98 7

CT 6.25 5.04 51
CC 6.49 5.01 134
Total 6.44 4.99 192

Caucasian TT 4.86 3.01 14
CT 6.96 5.84 101
CC 6.57 5.57 448
Total 6.60 5.57 563

Total TT 5.52 3.78 21
CT 6.72 5.58 152
CC 6.55 5.44 582
Total 6.56 5.43 755
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Table 24 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820886 M SD N
African American GG 5.25 4.03 4

GT 6.12 5.02 50
TT 6.52 5.05 135
Total 6.39 5.01 189

Caucasian GG 5.50 3.42 12
GT 6.67 5.77 102
TT 6.70 5.59 450
Total 6.67 5.58 564

Total GG 5.44 3.44 16
GT 6.49 5.53 152
TT 6.66 5.47 585
Total 6.60 5.44 753

TCN2_rs4820887 M SD N
African American AA 5.25 3.86 4

GA 6.33 5.14 27
GG 6.55 5.01 157
Total 6.49 4.99 188

Caucasian AA 5.56 3.13 9
GA 6.89 5.83 85
GG 6.56 5.55 465
Total 6.59 5.56 559

Total AA 5.46 3.20 13
GA 6.76 5.65 112
GG 6.56 5.41 622
Total 6.57 5.42 747
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Table 24 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820888 M SD N
African American GG 6.24 5.06 38

AG 6.52 4.95 90
AA 6.31 5.09 62
Total 6.39 5.00 190

Caucasian GG 6.87 5.28 127
AG 6.83 5.89 235
AA 6.38 5.46 199
Total 6.68 5.60 561

Total GG 6.73 5.22 165
AG 6.75 5.64 325
AA 6.36 5.37 261
Total 6.61 5.45 751

TCN2_rs2301955 M SD N
African American TT 7.47 4.94 17

CT 6.55 5.09 71
CC 6.13 5.00 102
Total 6.41 5.02 190

Caucasian TT 7.01 5.36 120
CT 6.37 5.49 230
CC 6.46 5.72 220
Total 6.54 5.55 570

Total TT 7.07 5.30 137
CT 6.41 5.39 301
CC 6.35 5.49 322
Total 6.50 5.42 760
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Table 24 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs2301958 M SD N
African American CC 8.91 4.70 11

CG 6.17 4.93 59
GG 6.37 5.03 121
Total 6.46 5.00 191

Caucasian CC 6.03 5.45 32
CG 6.78 5.22 172
GG 6.67 5.77 368
Total 6.67 5.58 572

Total CC 6.77 5.37 43
CG 6.63 5.15 231
GG 6.60 5.59 489
Total 6.62 5.44 763

TCN2_rs1131603 M SD N
African American TC 0.00 . 1

TT 6.54 5.00 195
Total 6.51 5.01 196

Caucasian CC 6.00 1.41 2
TC 6.57 5.80 49
TT 6.62 5.54 531
Total 6.62 5.55 582

Total CC 6.00 1.41 2
TC 6.44 5.81 50
TT 6.60 5.40 726
Total 6.59 5.42 778



 351 
Table 24 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820889 M SD N
African American AA 4.20 3.56 5

GA 5.23 4.16 31
GG 6.73 5.19 154
Total 6.42 5.03 190

Caucasian AA 6.00 4.24 2
GA 7.43 8.19 23
GG 6.64 5.50 547
Total 6.67 5.61 572

Total AA 4.71 3.50 7
GA 6.17 6.23 54
GG 6.66 5.43 701
Total 6.61 5.47 762

TCN2_rs2072194 M SD N
African 
American

GG 10.25 9.78 4
GA 6.43 5.38 44
AA 6.26 4.74 136
Total 6.39 5.02 184

Caucasian GG 6.21 5.27 115
GA 6.63 5.83 238
AA 6.82 5.46 200
Total 6.61 5.58 553

Total GG 6.34 5.46 119
GA 6.60 5.75 282
AA 6.59 5.18 336
Total 6.55 5.44 737
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Table 24 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs173665 M SD N
African American TT 7.14 7.01 7

CT 5.48 3.27 33
CC 6.65 5.23 148
Total 6.46 5.01 188

Caucasian TT 7.20 5.03 10
CT 7.25 5.32 79
CC 6.50 5.65 466
Total 6.62 5.59 555

Total TT 7.18 5.71 17
CT 6.73 4.86 112
CC 6.53 5.55 614
Total 6.58 5.45 743

CD320_rs250510 M SD N
African American TT 10.67 7.57 3

CT 4.32 3.87 22
CC 6.52 4.91 157
Total 6.32 4.90 182

Caucasian TT 3.00 . 1
CT 4.00 3.03 6
CC 6.63 5.59 539
Total 6.59 5.57 546

Total TT 8.75 7.27 4
CT 4.25 3.66 28
CC 6.60 5.44 696
Total 6.52 5.41 728
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Table 24 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2232787 M SD N
African American AA 21.00 . 1

AG 5.67 1.53 3
GG 6.41 4.95 186
Total 6.47 5.01 190

Caucasian AA 3.00 . 1
GG 6.52 5.53 547
Total 6.51 5.53 548

Total AA 12.00 12.73 2
AG 5.67 1.53 3
GG 6.49 5.39 733
Total 6.50 5.40 738

CD320_rs2227288 M SD N
African American CC 9.38 5.80 13

GC 5.90 4.25 50
GG 6.46 5.06 125
Total 6.52 4.96 188

Caucasian CC 5.25 5.22 12
GC 7.09 6.13 98
GG 6.53 5.45 427
Total 6.61 5.58 537

Total CC 7.40 5.81 25
GC 6.69 5.58 148
GG 6.52 5.36 552
Total 6.58 5.42 725



 354 
Table 24 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2336573 M SD N
African American TT 7.05 6.11 21

TC 5.78 5.16 72
CC 6.71 4.40 94
Total 6.39 4.91 187

Caucasian TT 8.00 6.40 9
TC 6.03 6.13 35
CC 6.59 5.55 512
Total 6.58 5.59 556

Total TT 7.33 6.10 30
TC 5.86 5.47 107
CC 6.61 5.38 606
Total 6.53 5.43 743

CD320_rs2232779 M SD N
African American TT 15.00 1.41 2

CT 6.61 3.93 18
CC 6.46 5.08 174
Total 6.56 5.02 194

Caucasian TT 11.60 6.27 5
CT 8.50 7.78 2
CC 6.58 5.57 573
Total 6.63 5.59 580

Total TT 12.57 5.41 7
CT 6.80 4.16 20
CC 6.55 5.46 747
Total 6.61 5.45 774
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Table 24 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2927707 M SD N
African American CC 6.88 4.95 16

CT 5.61 4.57 51
TT 6.70 5.02 118
Total 6.42 4.90 185

Caucasian CC 6.60 4.46 57
CT 6.42 5.68 202
TT 6.55 5.52 288
Total 6.50 5.47 547

Total CC 6.66 4.54 73
CT 6.25 5.48 253
TT 6.59 5.37 406
Total 6.48 5.33 732

CD320_rs3760680 M SD N
African American TT 5.83 5.71 29

CT 6.35 5.19 75
CC 6.23 4.28 78
Total 6.21 4.89 182

Caucasian TT 5.77 4.68 81
CT 6.48 5.64 221
CC 6.89 5.79 242
Total 6.55 5.58 544

Total TT 5.78 4.94 110
CT 6.44 5.52 296
CC 6.73 5.47 320
Total 6.47 5.41 726
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Table 24 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs8100119 M SD N
African American CC 6.87 5.78 23

CT 6.51 4.97 65
TT 6.47 4.90 102
Total 6.53 5.01 190

Caucasian CC 5.60 6.19 5
CT 6.71 6.91 35
TT 6.65 5.53 524
Total 6.65 5.62 564

Total CC 6.64 5.76 28
CT 6.58 5.69 100
TT 6.62 5.43 626
Total 6.62 5.47 754
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Table 25

Peripheral Neuropathy

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs16988828 M SD N
African American GG 4.19 1.56 5

GA 8.80 4.54 31
AA 8.43 4.48 97
Total 8.35 4.48 133

Caucasian GG 9.23 4.72 8
GA 7.85 4.32 57
AA 8.49 4.40 258
Total 8.40 4.39 323

Total GG 7.29 4.51 13
GA 8.19 4.39 88
AA 8.47 4.42 355
Total 8.39 4.41 456

TCN2_rs7289549 M SD N
African American CC 8.15 5.46 18

CG 8.13 4.44 47
GG 8.91 4.45 71
Total 8.54 4.57 136

Caucasian CC 8.17 3.82 6
CG 8.11 4.68 54
GG 8.38 4.36 269
Total 8.33 4.39 329

Total CC 8.15 5.02 24
CG 8.12 4.54 101
GG 8.49 4.37 340
Total 8.39 4.44 465
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Table 25 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs7286107 M SD N
African American CC 8.23 5.72 10

CT 8.20 4.62 46
TT 8.62 4.42 80
Total 8.45 4.55 136

Caucasian CC 9.39 6.49 3
CT 18.78 . 1
TT 8.40 4.41 331
Total 8.44 4.45 335

Total CC 8.50 5.64 13
CT 8.43 4.82 47
TT 8.44 4.40 411
Total 8.44 4.47 471

TCN2_rs9606756 M SD N
African American GG 8.61 4.98 9

GA 7.93 3.90 28
AA 8.55 4.75 99
Total 8.42 4.58 136

Caucasian GG 7.81 4.15 15
GA 7.59 4.23 47
AA 8.59 4.48 271
Total 8.41 4.44 333

Total GG 8.11 4.39 24
GA 7.72 4.09 75
AA 8.58 4.55 370
Total 8.41 4.47 469
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Table 25 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs740234 M SD N
African American CC 8.81 6.20 4

TC 8.41 4.41 16
TT 8.56 4.55 117
Total 8.55 4.55 137

Caucasian CC 9.58 5.07 24
TC 8.77 4.44 87
TT 8.05 4.30 223
Total 8.35 4.41 334

Total CC 9.47 5.12 28
TC 8.72 4.42 103
TT 8.22 4.39 340
Total 8.41 4.44 471

TCN2_rs35915865 M SD N
African American CC 8.90 . 1

CT 16.25 . 1
TT 8.43 4.53 137
Total 8.49 4.55 139

Caucasian CC 5.79 3.38 3
CT 6.28 3.06 11
TT 8.45 4.43 321
Total 8.35 4.40 335

Total CC 6.57 3.17 4
CT 7.11 4.10 12
TT 8.44 4.46 458
Total 8.39 4.44 474
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Table 25 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs11703570 M SD N
African American AA 7.64 5.56 10

AT 9.21 4.35 37
TT 8.35 4.45 87
Total 8.53 4.50 134

Caucasian AA 7.81 4.40 33
AT 8.09 4.33 86
TT 8.58 4.49 212
Total 8.38 4.43 331

Total AA 7.77 4.63 43
AT 8.43 4.35 123
TT 8.51 4.47 299
Total 8.42 4.45 465

TCN2_rs35838082 M SD N
African American TT 8.30 6.07 9

CT 8.27 4.37 39
CC 8.45 4.36 87
Total 8.39 4.46 135

Caucasian CT 7.26 1.85 3
CC 8.40 4.43 331
Total 8.39 4.41 334

Total TT 8.30 6.07 9
CT 8.20 4.24 42
CC 8.41 4.41 418
Total 8.39 4.42 469
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Table 25 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs2267163 M SD N
African American TT 9.43 5.13 10

TC 9.24 3.85 38
CC 7.96 4.66 86
Total 8.43 4.49 134

Caucasian TT 8.17 4.13 72
TC 8.46 4.47 119
CC 8.37 4.45 131
Total 8.36 4.38 322

Total TT 8.32 4.25 82
TC 8.65 4.33 157
CC 8.21 4.53 217
Total 8.38 4.41 456

TCN2_rs1801198 M SD N
African American GG 10.22 5.22 12

CG 9.10 3.93 41
CC 7.86 4.68 83
Total 8.44 4.55 136

Caucasian GG 8.33 4.37 80
CG 8.40 4.39 138
CC 8.29 4.55 119
Total 8.35 4.43 337

Total GG 8.58 4.50 92
CG 8.56 4.29 179
CC 8.11 4.60 202
Total 8.37 4.46 473
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Table 25 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820021 M SD N
African American AT 8.62 4.15 5

TT 8.49 4.56 134
Total 8.50 4.54 139

Caucasian AA 9.06 3.79 8
AT 8.60 4.19 49
TT 8.38 4.49 272
Total 8.43 4.43 329

Total AA 9.06 3.79 8
AT 8.60 4.15 54
TT 8.41 4.51 406
Total 8.45 4.45 468

TCN2_rs9621049 M SD N
African American TT 7.96 0.70 5

CT 7.12 4.06 34
CC 9.00 4.74 99
Total 8.50 4.55 138

Caucasian TT 8.97 6.14 8
CT 7.74 4.00 52
CC 8.38 4.41 271
Total 8.29 4.39 331

Total TT 8.58 4.74 13
CT 7.50 4.01 86
CC 8.54 4.51 370
Total 8.35 4.44 469
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Table 25 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820886 M SD N
African American GG 6.53 2.45 3

GT 6.93 3.54 34
TT 9.04 4.73 99
Total 8.45 4.50 136

Caucasian GG 9.77 5.08 7
GT 7.63 4.12 54
TT 8.49 4.47 273
Total 8.38 4.43 334

Total GG 8.80 4.58 10
GT 7.36 3.90 88
TT 8.64 4.54 372
Total 8.40 4.45 470

TCN2_rs4820887 M SD N
African American AA 7.86 0.90 3

GA 7.24 4.48 15
GG 8.72 4.61 117
Total 8.53 4.55 135

Caucasian AA 9.59 6.01 5
GA 8.00 4.45 42
GG 8.38 4.39 282
Total 8.35 4.41 329

Total AA 8.94 4.65 8
GA 7.80 4.43 57
GG 8.48 4.45 399
Total 8.41 4.45 464



 364 
Table 25 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820888 M SD N
African American GG 8.35 4.07 26

AG 9.28 4.69 64
AA 7.59 4.53 47
Total 8.52 4.56 137

Caucasian GG 8.75 4.90 85
AG 8.20 4.27 131
AA 8.29 4.23 118
Total 8.37 4.42 334

Total GG 8.66 4.70 111
AG 8.55 4.43 195
AA 8.09 4.31 165
Total 8.42 4.45 471

TCN2_rs2301955 M SD N
African American TT 6.03 3.40 9

CT 9.01 4.73 55
CC 8.28 4.52 73
Total 8.43 4.57 137

Caucasian TT 8.66 4.70 87
CT 8.18 4.34 122
CC 8.32 4.19 130
Total 8.36 4.37 339

Total TT 8.41 4.64 96
CT 8.44 4.47 177
CC 8.31 4.30 203
Total 8.38 4.43 476



 365 
Table 25 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs2301958 M SD N
African American CC 5.61 1.96 5

CG 9.27 4.82 46
GG 8.34 4.57 87
Total 8.55 4.62 138

Caucasian CC 8.72 4.61 23
CG 8.13 4.56 101
GG 8.45 4.30 217
Total 8.37 4.39 341

Total CC 8.17 4.40 28
CG 8.49 4.66 147
GG 8.42 4.37 304
Total 8.42 4.45 479

TCN2_rs1131603 M SD N
African American TT 8.51 4.59 142

Total 8.51 4.59 142
Caucasian CC 6.84 3.47 2

TC 8.38 4.53 24
TT 8.34 4.42 320
Total 8.33 4.41 346

Total CC 6.84 3.47 2
TC 8.38 4.53 24
TT 8.39 4.47 462
Total 8.38 4.46 488



 366 
Table 25 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820889 M SD N
African American AA 8.31 2.57 4

GA 9.36 4.58 20
GG 8.20 4.56 112
Total 8.38 4.51 136

Caucasian AA 3.36 . 1
GA 7.10 3.04 13
GG 8.44 4.45 328
Total 8.38 4.41 342

Total AA 7.32 3.14 5
GA 8.47 4.14 33
GG 8.38 4.48 440
Total 8.38 4.44 478

TCN2_rs2072194 M SD N
African American GG 7.91 5.27 4

GA 9.96 4.00 28
AA 7.96 4.47 102
Total 8.38 4.44 134

Caucasian GG 8.14 4.12 71
GA 8.61 4.41 132
AA 8.03 4.51 126
Total 8.28 4.38 329

Total GG 8.12 4.15 75
GA 8.84 4.36 160
AA 8.00 4.48 228
Total 8.31 4.40 463



 367 
Table 25 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs173665 M SD N
African American TT 7.55 6.08 5

CT 8.04 4.36 21
CC 8.79 4.66 110
Total 8.63 4.64 136

Caucasian TT 9.31 4.64 7
CT 9.31 4.64 44
CC 8.24 4.40 274
Total 8.41 4.44 325

Total TT 8.57 5.10 12
CT 8.90 4.55 65
CC 8.40 4.48 384
Total 8.48 4.50 461

CD320_rs250510 M SD N
African American TT 9.74 4.77 3

CT 11.51 5.13 12
CC 8.01 4.29 115
Total 8.38 4.46 130

Caucasian TT 6.70 . 1
CT 7.16 2.69 4
CC 8.37 4.45 314
Total 8.34 4.42 319

Total TT 8.98 4.18 4
CT 10.43 4.95 16
CC 8.27 4.40 429
Total 8.35 4.43 449
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Table 25 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2232787 M SD N
African American AA 7.04 . 1

AG 10.86 4.49 2
GG 8.46 4.57 135
Total 8.49 4.54 138

Caucasian AA 6.44 . 1
GG 8.40 4.43 320
Total 8.39 4.42 321

Total AA 6.74 0.42 2
AG 10.86 4.49 2
GG 8.41 4.46 455
Total 8.42 4.45 459

CD320_rs2227288 M SD N
African American CC 7.00 3.05 10

GC 8.01 4.60 36
GG 8.91 4.70 90
Total 8.53 4.59 136

Caucasian CC 5.45 3.55 6
GC 9.77 4.93 59
GG 7.99 4.25 250
Total 8.27 4.43 315

Total CC 6.42 3.22 16
GC 9.10 4.86 95
GG 8.23 4.39 340
Total 8.35 4.48 451



 369 
Table 25 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2336573 M SD N
African American TT 9.24 3.17 16

TC 7.99 4.37 52
CC 8.98 4.98 65
Total 8.62 4.56 133

Caucasian TT 8.07 3.57 8
TC 8.24 4.30 21
CC 8.36 4.46 293
Total 8.35 4.41 322

Total TT 8.85 3.28 24
TC 8.06 4.33 73
CC 8.47 4.55 358
Total 8.43 4.46 455

CD320_rs2232779 M SD N
African American TT 5.10 1.26 2

CT 6.15 3.14 12
CC 8.82 4.65 127
Total 8.54 4.58 141

Caucasian TT 6.52 2.47 5
CT 5.68 1.08 2
CC 8.37 4.38 338
Total 8.33 4.35 345

Total TT 6.11 2.20 7
CT 6.08 2.91 14
CC 8.50 4.46 465
Total 8.39 4.42 486
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Table 25 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2927707 M SD N
African American CC 10.96 5.37 13

CT 8.40 4.21 32
TT 8.34 4.53 88
Total 8.61 4.57 133

Caucasian CC 7.43 3.56 40
CT 8.77 4.54 107
TT 8.38 4.52 168
Total 8.39 4.42 315

Total CC 8.29 4.30 53
CT 8.69 4.45 139
TT 8.37 4.52 256
Total 8.46 4.46 448

CD320_rs3760680 M SD N
African American TT 9.51 4.64 21

CT 8.23 4.56 55
CC 8.44 4.70 55
Total 8.52 4.62 131

Caucasian TT 7.22 3.98 52
CT 8.87 4.69 121
CC 8.37 4.29 144
Total 8.38 4.42 317

Total TT 7.88 4.28 73
CT 8.67 4.65 176
CC 8.39 4.40 199
Total 8.42 4.48 448



 371 
Table 25 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs8100119 M SD N
African American CC 8.67 3.46 15

CT 7.78 4.73 48
TT 8.76 4.78 75
Total 8.41 4.63 138

Caucasian CC 10.99 5.18 5
CT 7.65 3.56 23
TT 8.36 4.47 305
Total 8.35 4.43 333

Total CC 9.25 3.94 20
CT 7.74 4.36 71
TT 8.43 4.53 380
Total 8.36 4.48 471



 372 
Table 26

Hand Grip Strength

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs16988828 M SD N
African American GG 28.75 5.85 4

GA 21.61 6.65 31
AA 23.61 6.05 127
Total 23.36 6.24 162

Caucasian GG 19.89 7.62 9
GA 22.08 4.86 80
AA 21.74 5.84 420
Total 21.76 5.73 509

Total GG 22.62 8.09 13
GA 21.95 5.40 111
AA 22.17 5.94 547
Total 22.14 5.89 671

TCN2_rs7289549 M SD N
African American CC 23.94 6.58 18

CG 22.98 6.14 57
GG 23.33 6.24 90
Total 23.28 6.21 165

Caucasian CC 16.20 7.98 10
CG 21.75 5.41 85
GG 21.91 5.64 423
Total 21.77 5.70 518

Total CC 21.18 7.92 28
CG 22.25 5.72 142
GG 22.16 5.77 513
Total 22.13 5.86 683
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Table 26 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs7286107 M SD N
African American CC 25.80 6.16 10

CT 22.94 5.91 52
TT 23.25 6.37 103
Total 23.31 6.21 165

Caucasian CC 18.33 2.52 3
CT 16.00 . 1
TT 21.72 5.72 518
Total 21.69 5.71 522

Total CC 24.08 6.34 13
CT 22.81 5.93 53
TT 21.97 5.85 621
Total 22.08 5.87 687

TCN2_rs9606756 M SD N
African American GG 18.63 2.67 8

GA 23.60 6.57 42
AA 23.53 6.17 116
Total 23.31 6.22 166

Caucasian GG 20.04 5.89 24
GA 21.65 5.66 79
AA 21.84 5.74 417
Total 21.73 5.74 520

Total GG 19.69 5.27 32
GA 22.32 6.04 121
AA 22.21 5.87 533
Total 22.11 5.89 686



 374 
Table 26 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs740234 M SD N
African American CC 23.75 4.11 4

TC 24.79 7.40 28
TT 22.96 5.96 134
Total 23.29 6.19 166

Caucasian CC 20.61 4.13 33
TC 22.06 5.43 146
TT 21.71 5.93 343
Total 21.74 5.69 522

Total CC 20.95 4.19 37
TC 22.50 5.85 174
TT 22.06 5.96 477
Total 22.11 5.85 688

TCN2_rs35915865 M SD N
African American CC 27.00 . 1

CT 24.00 2.83 2
TT 23.16 6.30 164
Total 23.20 6.26 167

Caucasian CC 24.75 4.57 4
CT 23.50 6.95 18
TT 21.68 5.64 502
Total 21.77 5.69 524

Total CC 25.20 4.09 5
CT 23.55 6.61 20
TT 22.05 5.84 666
Total 22.11 5.86 691



 375 
Table 26 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs11703570 M SD N
African American AA 26.92 5.26 12

AT 22.21 6.55 42
TT 23.22 6.08 110
Total 23.23 6.22 164

Caucasian AA 21.26 5.66 39
AT 21.96 5.74 137
TT 21.72 5.72 341
Total 21.75 5.71 517

Total AA 22.59 6.02 51
AT 22.02 5.92 179
TT 22.08 5.84 451
Total 22.11 5.86 681

TCN2_rs35838082 M SD N
African American TT 24.22 6.69 9

CT 22.91 5.92 46
CC 23.26 6.27 110
Total 23.22 6.17 165

Caucasian CT 22.57 7.48 7
CC 21.68 5.70 518
Total 21.70 5.72 525

Total TT 24.22 6.69 9
CT 22.87 6.07 53
CC 21.96 5.83 628
Total 22.06 5.86 690



 376 
Table 26 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs2267163 M SD N
African American TT 22.14 7.26 14

TC 22.98 6.71 46
CC 23.55 5.88 103
Total 23.27 6.22 163

Caucasian TT 21.47 6.06 115
TC 22.38 5.43 209
CC 21.24 5.47 184
Total 21.76 5.61 508

Total TT 21.54 6.17 129
TC 22.49 5.67 255
CC 22.07 5.72 287
Total 22.13 5.79 671

TCN2_rs1801198 M SD N
African American GG 22.25 6.78 16

CG 24.02 6.82 55
CC 23.15 5.65 94
Total 23.35 6.16 165

Caucasian GG 21.48 6.23 124
CG 22.06 5.59 233
CC 21.47 5.47 167
Total 21.73 5.71 524

Total GG 21.57 6.27 140
CG 22.43 5.88 288
CC 22.07 5.58 261
Total 22.12 5.85 689
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Table 26 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820021 M SD N
African American AT 20.67 7.74 6

TT 23.39 6.10 162
Total 23.29 6.15 168

Caucasian AA 22.43 8.27 14
AT 22.50 6.00 88
TT 21.54 5.52 417
Total 21.73 5.69 519

Total AA 22.43 8.27 14
AT 22.38 6.09 94
TT 22.06 5.74 579
Total 22.11 5.84 687

TCN2_rs9621049 M SD N
African American TT 22.86 6.36 7

CT 23.55 5.21 44
CC 23.22 6.51 117
Total 23.29 6.15 168

Caucasian TT 21.42 5.33 12
CT 21.71 5.52 92
CC 21.70 5.72 417
Total 21.70 5.67 521

Total TT 21.95 5.60 19
CT 22.30 5.47 136
CC 22.04 5.93 534
Total 22.09 5.82 689
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Table 26 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820886 M SD N
African American GG 21.75 2.63 4

GT 23.49 5.39 43
TT 23.27 6.58 118
Total 23.29 6.21 165

Caucasian GG 21.70 5.70 10
GT 21.60 5.60 93
TT 21.74 5.73 419
Total 21.72 5.70 522

Total GG 21.71 4.91 14
GT 22.20 5.59 136
TT 22.08 5.96 537
Total 22.10 5.86 687

TCN2_rs4820887 M SD N
African American AA 19.00 4.58 3

GA 25.17 4.91 23
GG 23.08 6.39 139
Total 23.30 6.22 165

Caucasian AA 20.86 6.62 7
GA 21.68 5.77 77
GG 21.75 5.69 433
Total 21.73 5.70 517

Total AA 20.30 5.89 10
GA 22.48 5.75 100
GG 22.07 5.89 572
Total 22.11 5.86 682
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Table 26 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820888 M SD N
African American GG 23.35 5.73 34

AG 23.44 6.82 78
AA 23.02 5.58 54
Total 23.28 6.19 166

Caucasian GG 21.98 5.93 117
AG 21.77 5.47 216
AA 21.52 5.79 184
Total 21.73 5.68 517

Total GG 22.29 5.89 151
AG 22.21 5.89 294
AA 21.86 5.77 238
Total 22.11 5.84 683

TCN2_rs2301955 M SD N
African American TT 24.13 5.57 15

CT 23.75 6.37 60
CC 22.86 6.27 91
Total 23.30 6.23 166

Caucasian TT 21.49 5.32 111
CT 22.16 5.67 212
CC 21.47 5.89 204
Total 21.75 5.69 527

Total TT 21.80 5.40 126
CT 22.51 5.86 272
CC 21.90 6.04 295
Total 22.12 5.85 693
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Table 26 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs2301958 M SD N
African American CC 25.22 5.38 9

CG 23.18 6.39 50
GG 23.08 6.22 108
Total 23.23 6.21 167

Caucasian CC 21.59 5.77 29
CG 22.08 5.70 159
GG 21.50 5.71 341
Total 21.68 5.70 529

Total CC 22.45 5.82 38
CG 22.34 5.87 209
GG 21.88 5.87 449
Total 22.05 5.86 696

TCN2_rs1131603 M SD N
African American TC 32.00 . 1

TT 23.15 6.16 169
Total 23.20 6.18 170

Caucasian CC 19.50 6.36 2
TC 22.66 5.64 44
TT 21.65 5.70 491
Total 21.72 5.69 537

Total CC 19.50 6.36 2
TC 22.87 5.75 45
TT 22.03 5.85 660
Total 22.08 5.84 707
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Table 26 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820889 M SD N
African American AA 23.60 4.39 5

GA 24.21 7.26 28
GG 23.07 6.04 133
Total 23.28 6.20 166

Caucasian AA 20.50 9.19 2
GA 23.82 6.28 22
GG 21.57 5.63 506
Total 21.66 5.67 530

Total AA 22.71 5.41 7
GA 24.04 6.79 50
GG 21.88 5.74 639
Total 22.04 5.84 696

TCN2_rs2072194 M SD N
African American GG 17.33 3.79 3

GA 22.79 7.07 38
AA 23.55 5.84 121
Total 23.25 6.15 162

Caucasian GG 21.38 6.23 106
GA 21.92 5.40 220
AA 21.67 5.78 184
Total 21.72 5.71 510

Total GG 21.27 6.20 109
GA 22.05 5.67 258
AA 22.41 5.87 305
Total 22.09 5.85 672
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Table 26 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs173665 M SD N
African American TT 25.00 9.47 6

CT 23.93 6.75 28
CC 22.98 5.98 132
Total 23.22 6.23 166

Caucasian TT 21.25 5.04 8
CT 21.96 5.34 72
CC 21.68 5.73 432
Total 21.71 5.65 512

Total TT 22.86 7.20 14
CT 22.51 5.80 100
CC 21.99 5.81 564
Total 22.08 5.83 678

CD320_rs250510 M SD N
African American TT 19.00 5.00 3

CT 25.14 5.11 22
CC 23.02 6.45 135
Total 23.24 6.30 160

Caucasian TT 18.00 . 1
CT 23.80 4.49 5
CC 21.80 5.64 500
Total 21.81 5.62 506

Total TT 18.75 4.11 4
CT 24.89 4.95 27
CC 22.06 5.83 635
Total 22.15 5.82 666
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Table 26 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2232787 M SD N
African American AG 26.00 5.66 2

GG 23.13 6.31 165
Total 23.16 6.29 167

Caucasian AA 22.00 . 1
GG 21.79 5.67 507
Total 21.79 5.67 508

Total AA 22.00 . 1
AG 26.00 5.66 2
GG 22.12 5.86 672
Total 22.13 5.85 675

CD320_rs2227288 M SD N
African American CC 23.83 6.95 12

GC 23.37 5.68 41
GG 22.63 6.32 111
Total 22.90 6.19 164

Caucasian CC 20.42 5.92 12
GC 21.75 5.62 91
GG 21.82 5.76 394
Total 21.77 5.73 497

Total CC 22.13 6.55 24
GC 22.25 5.67 132
GG 22.00 5.89 505
Total 22.05 5.86 661
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Table 26 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2336573 M SD N
African American TT 22.59 4.06 17

TC 22.47 6.34 62
CC 23.99 6.53 85
Total 23.27 6.26 164

Caucasian TT 21.44 7.26 9
TC 21.91 5.42 34
CC 21.77 5.65 472
Total 21.78 5.66 515

Total TT 22.19 5.27 26
TC 22.27 6.01 96
CC 22.11 5.84 557
Total 22.14 5.84 679

CD320_rs2232779 M SD N
African American TT 31.00 . 1

CT 25.00 5.90 15
CC 23.06 6.21 153
Total 23.28 6.21 169

Caucasian TT 24.80 3.96 5
CT 17.00 7.07 2
CC 21.73 5.71 529
Total 21.74 5.70 536

Total TT 25.83 4.36 6
CT 24.06 6.38 17
CC 22.03 5.85 682
Total 22.11 5.86 705
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Table 26 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2927707 M SD N
African American CC 23.50 7.88 16

CT 23.43 6.37 47
TT 23.10 6.02 100
Total 23.23 6.28 163

Caucasian CC 21.11 4.54 54
CT 21.99 5.98 186
TT 21.84 5.78 266
Total 21.82 5.73 506

Total CC 21.66 5.51 70
CT 22.28 6.07 233
TT 22.18 5.86 366
Total 22.16 5.90 669

CD320_rs3760680 M SD N
African American TT 21.96 4.89 27

CT 22.92 6.00 64
CC 24.30 6.83 70
Total 23.36 6.24 161

Caucasian TT 21.68 6.46 74
CT 22.05 5.85 207
CC 21.55 5.44 222
Total 21.78 5.76 503

Total TT 21.75 6.06 101
CT 22.26 5.89 271
CC 22.21 5.91 292
Total 22.16 5.92 664
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Table 26 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs8100119 M SD N
African American CC 21.90 6.74 20

CT 23.96 6.27 54
TT 22.98 6.02 91
Total 23.17 6.19 165

Caucasian CC 19.40 9.91 5
CT 22.79 4.53 33
TT 21.77 5.72 481
Total 21.81 5.70 519

Total CC 21.40 7.31 25
CT 23.52 5.68 87
TT 21.96 5.78 572
Total 22.14 5.84 684



 387 
Table 27

Walking Speed

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs16988828 M SD N
African American GG 0.68 0.22 5

GA 0.61 0.26 34
AA 0.63 0.31 132
Total 0.62 0.29 171

Caucasian GG 0.77 0.37 10
GA 0.76 0.32 83
AA 0.81 0.35 430
Total 0.80 0.35 523

Total GG 0.74 0.32 15
GA 0.72 0.31 117
AA 0.77 0.35 562
Total 0.76 0.34 694

TCN2_rs7289549 M SD N
African American CC 0.54 0.22 19

CG 0.56 0.31 62
GG 0.67 0.28 93
Total 0.62 0.29 174

Caucasian CC 0.92 0.30 10
CG 0.83 0.34 86
GG 0.79 0.35 437
Total 0.80 0.35 533

Total CC 0.67 0.31 29
CG 0.71 0.35 148
GG 0.77 0.34 530
Total 0.75 0.34 707
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Table 27 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs7286107 M SD N
African American CC 0.55 0.26 10

CT 0.54 0.30 57
TT 0.67 0.28 105
Total 0.62 0.29 172

Caucasian CC 0.56 0.23 3
CT 0.33 . 1
TT 0.80 0.35 532
Total 0.80 0.35 536

Total CC 0.55 0.24 13
CT 0.54 0.30 58
TT 0.78 0.34 637
Total 0.76 0.34 708

TCN2_rs9606756 M SD N
African American GG 0.49 0.22 8

GA 0.67 0.34 43
AA 0.62 0.27 123
Total 0.62 0.29 174

Caucasian GG 0.72 0.37 26
GA 0.81 0.36 83
AA 0.80 0.34 422
Total 0.80 0.34 531

Total GG 0.66 0.35 34
GA 0.76 0.36 126
AA 0.76 0.33 545
Total 0.75 0.34 705



 389 
Table 27 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs740234 M SD N
African American CC 0.70 0.33 4

TC 0.67 0.28 29
TT 0.61 0.30 140
Total 0.62 0.29 173

Caucasian CC 0.74 0.28 32
TC 0.83 0.37 153
TT 0.79 0.34 351
Total 0.80 0.35 536

Total CC 0.73 0.28 36
TC 0.80 0.36 182
TT 0.74 0.34 491
Total 0.75 0.34 709

TCN2_rs35915865 M SD N
African American CC 0.74 . 1

CT 0.70 0.12 2
TT 0.62 0.30 172
Total 0.62 0.29 175

Caucasian CC 0.81 0.29 4
CT 0.88 0.45 18
TT 0.80 0.34 516
Total 0.80 0.34 538

Total CC 0.80 0.25 5
CT 0.87 0.43 20
TT 0.75 0.34 688
Total 0.75 0.34 713
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Table 27 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs11703570 M SD N
African American AA 0.65 0.21 13

AT 0.61 0.27 45
TT 0.62 0.32 113
Total 0.62 0.30 171

Caucasian AA 0.76 0.34 43
AT 0.78 0.33 139
TT 0.81 0.35 348
Total 0.80 0.35 530

Total AA 0.73 0.31 56
AT 0.74 0.32 184
TT 0.77 0.35 461
Total 0.76 0.34 701

TCN2_rs35838082 M SD N
African American TT 0.61 0.23 9

CT 0.56 0.32 51
CC 0.65 0.29 113
Total 0.62 0.30 173

Caucasian CT 0.94 0.29 6
CC 0.80 0.35 532
Total 0.80 0.35 538

Total TT 0.61 0.23 9
CT 0.60 0.33 57
CC 0.77 0.34 645
Total 0.76 0.34 711
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Table 27 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs2267163 M SD N
African American TT 0.67 0.22 13

TC 0.65 0.36 48
CC 0.60 0.27 109
Total 0.62 0.29 170

Caucasian TT 0.79 0.35 118
TC 0.82 0.37 209
CC 0.77 0.32 195
Total 0.80 0.35 522

Total TT 0.78 0.34 131
TC 0.79 0.37 257
CC 0.71 0.31 304
Total 0.75 0.34 692

TCN2_rs1801198 M SD N
African American GG 0.63 0.23 15

CG 0.67 0.34 57
CC 0.59 0.28 101
Total 0.62 0.29 173

Caucasian GG 0.80 0.35 128
CG 0.82 0.37 232
CC 0.76 0.31 178
Total 0.80 0.35 538

Total GG 0.78 0.35 143
CG 0.79 0.36 289
CC 0.70 0.31 279
Total 0.76 0.34 711
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Table 27 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820021 M SD N
African American AT 0.57 0.19 6

TT 0.62 0.30 170
Total 0.62 0.29 176

Caucasian AA 0.79 0.37 14
AT 0.83 0.36 90
TT 0.79 0.35 429
Total 0.80 0.35 533

Total AA 0.79 0.37 14
AT 0.81 0.36 96
TT 0.74 0.34 599
Total 0.75 0.34 709

TCN2_rs9621049 M SD N
African American TT 0.62 0.20 7

CT 0.66 0.34 46
CC 0.60 0.28 123
Total 0.62 0.29 176

Caucasian TT 0.78 0.34 14
CT 0.80 0.39 98
CC 0.80 0.34 421
Total 0.80 0.35 533

Total TT 0.73 0.31 21
CT 0.76 0.38 144
CC 0.75 0.33 544
Total 0.75 0.34 709
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Table 27 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820886 M SD N
African American GG 0.58 0.15 4

GT 0.67 0.34 46
TT 0.60 0.28 124
Total 0.62 0.29 174

Caucasian GG 0.80 0.36 12
GT 0.79 0.38 98
TT 0.80 0.34 424
Total 0.80 0.34 534

Total GG 0.75 0.33 16
GT 0.75 0.37 144
TT 0.76 0.33 548
Total 0.75 0.34 708

TCN2_rs4820887 M SD N
African American AA 0.56 0.13 3

GA 0.70 0.31 24
GG 0.61 0.29 145
Total 0.62 0.29 172

Caucasian AA 0.84 0.39 9
GA 0.79 0.39 81
GG 0.80 0.34 439
Total 0.80 0.35 529

Total AA 0.77 0.36 12
GA 0.77 0.37 105
GG 0.75 0.34 584
Total 0.76 0.34 701



 394 
Table 27 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820888 M SD N
African American GG 0.66 0.27 36

AG 0.61 0.28 81
AA 0.60 0.32 58
Total 0.62 0.29 175

Caucasian GG 0.77 0.30 122
AG 0.80 0.36 220
AA 0.80 0.35 190
Total 0.79 0.34 532

Total GG 0.74 0.30 158
AG 0.75 0.35 301
AA 0.75 0.36 248
Total 0.75 0.34 707

TCN2_rs2301955 M SD N
African American TT 0.69 0.23 16

CT 0.62 0.29 64
CC 0.61 0.31 94
Total 0.62 0.30 174

Caucasian TT 0.76 0.31 114
CT 0.82 0.35 218
CC 0.80 0.36 208
Total 0.80 0.35 540

Total TT 0.75 0.30 130
CT 0.77 0.35 282
CC 0.74 0.36 302
Total 0.76 0.34 714
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Table 27 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs2301958 M SD N
African American CC 0.72 0.21 10

CG 0.59 0.26 52
GG 0.63 0.31 114
Total 0.62 0.29 176

Caucasian CC 0.72 0.32 32
CG 0.79 0.33 160
GG 0.81 0.36 349
Total 0.80 0.35 541

Total CC 0.72 0.30 42
CG 0.74 0.33 212
GG 0.77 0.36 463
Total 0.76 0.34 717

TCN2_rs1131603 M SD N
African American TC 0.85 . 1

TT 0.62 0.29 178
Total 0.62 0.29 179

Caucasian CC 0.73 0.20 2
TC 0.79 0.34 47
TT 0.80 0.35 501
Total 0.80 0.35 550

Total CC 0.73 0.20 2
TC 0.79 0.34 48
TT 0.75 0.34 679
Total 0.75 0.34 729
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Table 27 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

TCN2_rs4820889 M SD N
African American AA 0.64 0.25 5

GA 0.66 0.30 30
GG 0.61 0.30 139
Total 0.62 0.29 174

Caucasian AA 1.11 0.39 2
GA 0.86 0.41 22
GG 0.80 0.34 517
Total 0.80 0.35 541

Total AA 0.77 0.34 7
GA 0.75 0.36 52
GG 0.76 0.34 656
Total 0.76 0.34 715

TCN2_rs2072194 M SD N
African American GG 0.38 0.48 3

GA 0.65 0.33 38
AA 0.62 0.28 128
Total 0.62 0.30 169

Caucasian GG 0.79 0.34 110
GA 0.81 0.36 222
AA 0.79 0.34 192
Total 0.80 0.35 524

Total GG 0.78 0.35 113
GA 0.79 0.36 260
AA 0.72 0.33 320
Total 0.76 0.34 693
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Table 27 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs173665 M SD N
African American TT 0.56 0.21 6

CT 0.60 0.25 29
CC 0.63 0.31 138
Total 0.62 0.29 173

Caucasian TT 0.55 0.27 8
CT 0.78 0.33 77
CC 0.81 0.35 440
Total 0.80 0.35 525

Total TT 0.56 0.23 14
CT 0.73 0.32 106
CC 0.76 0.35 578
Total 0.75 0.34 698

CD320_rs250510 M SD N
African American TT 0.55 0.18 3

CT 0.70 0.31 21
CC 0.62 0.29 144
Total 0.63 0.29 168

Caucasian TT 0.47 . 1
CT 0.91 0.36 6
CC 0.80 0.35 509
Total 0.80 0.35 516

Total TT 0.53 0.16 4
CT 0.75 0.33 27
CC 0.76 0.34 653
Total 0.76 0.34 684
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Table 27 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2232787 M SD N
African American AA 0.06 . 1

AG 0.77 0.19 2
GG 0.62 0.29 172
Total 0.62 0.29 175

Caucasian AA 1.05 . 1
GG 0.80 0.35 518
Total 0.80 0.35 519

Total AA 0.56 0.70 2
AG 0.77 0.19 2
GG 0.75 0.34 690
Total 0.75 0.34 694

CD320_rs2227288 M SD N
African American CC 0.64 0.23 12

GC 0.70 0.31 42
GG 0.60 0.28 118
Total 0.63 0.29 172

Caucasian CC 0.94 0.41 11
GC 0.80 0.37 94
GG 0.80 0.34 403
Total 0.80 0.35 508

Total CC 0.78 0.36 23
GC 0.77 0.35 136
GG 0.75 0.34 521
Total 0.76 0.34 680



 399 
Table 27 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2336573 M SD N
African American TT 0.68 0.36 20

TC 0.62 0.33 68
CC 0.62 0.23 83
Total 0.62 0.29 171

Caucasian TT 0.66 0.15 8
TC 0.83 0.26 32
CC 0.80 0.35 487
Total 0.80 0.35 527

Total TT 0.67 0.32 28
TC 0.68 0.33 100
CC 0.78 0.35 570
Total 0.76 0.34 698

CD320_rs2232779 M SD N
African American TT 0.59 0.04 2

CT 0.57 0.19 16
CC 0.63 0.30 159
Total 0.62 0.29 177

Caucasian TT 0.67 0.24 4
CT 1.28 0.32 2
CC 0.80 0.35 543
Total 0.80 0.35 549

Total TT 0.64 0.19 6
CT 0.65 0.30 18
CC 0.76 0.34 702
Total 0.76 0.34 726
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Table 27 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs2927707 M SD N
African American CC 0.63 0.25 14

CT 0.64 0.29 47
TT 0.61 0.30 109
Total 0.62 0.29 170

Caucasian CC 0.78 0.32 55
CT 0.81 0.37 191
TT 0.81 0.34 273
Total 0.80 0.35 519

Total CC 0.75 0.31 69
CT 0.77 0.36 238
TT 0.75 0.34 382
Total 0.76 0.34 689

CD320_rs3760680 M SD N
African American TT 0.63 0.35 28

CT 0.63 0.32 71
CC 0.62 0.23 70
Total 0.62 0.29 169

Caucasian TT 0.78 0.27 75
CT 0.83 0.38 209
CC 0.79 0.34 232
Total 0.80 0.35 516

Total TT 0.74 0.30 103
CT 0.78 0.38 280
CC 0.75 0.32 302
Total 0.76 0.34 685
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Table 27 Continued

Means, Standard Deviations, and Sample Sizes by Race and SNP

CD320_rs8100119 M SD N
African American CC 0.58 0.37 20

CT 0.65 0.30 61
TT 0.61 0.27 93
Total 0.62 0.29 174

Caucasian CC 0.68 0.24 5
CT 0.81 0.27 30
TT 0.80 0.35 499
Total 0.80 0.35 534

Total CC 0.60 0.34 25
CT 0.70 0.30 91
TT 0.77 0.35 592
Total 0.75 0.34 708


