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ABSTRACT

We study the geometry of higher dimensional algebraic varieties according to the di-

chotomy of Kodaira dimensions, negative or nonnegative, and the corresponding pictures

in the Minimal Model Conjecture.

On the one hand, according to the Minimal Model Conjecture, a variety with nonnega-

tive Kodaira dimension is birational to a minimal model, which has semiample canonical

class. This has been done if dimension is less than or equal to three and for varieties of

general type in any dimension. In general, the Minimal Model Conjecture is still open.

As the first result, we show that the Minimal Model Conjecture for varieties with nonneg-

ative Kodaira dimensions follows from the Minimal Model Conjecture for varieties with

Kodaira dimension zero. In particular, the Minimal Model Conjecture is reduced to the

Minimal Model Conjecture for varieties of Kodaira dimension zero and the Nonvanishing

Conjecture.

On the other hand, according to the Minimal Model Conjecture, Fano varieties of Picard

number one are the building blocks for varieties with negative Kodaira dimension. The

set of mildly singular Fano varieties of given dimension is expected to be bounded. As a

second result, we exhibit an effective upper bound of the anticanonical volume for the set

of ε-klt Q-factorial log Q-Fano threefolds with Picard number one. This result is related to

a conjecture open in dimension three and higher, the Borisov-Alexeev-Borisov Conjecture,

which asserts boundedness of the set of ε-klt log Q-Fano varieties.

In the end of this dissertation, we include some partial results of the Nonvanishing

Conjecture in the minimal model program. The minimal model program is developed to

attack the Minimal Model Conjecture. The Nonvanishing Conjecture is one of the most

important missing ingredient for completing the minimal model program.
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CHAPTER 1

INTRODUCTION

For the purpose of studying the classification problem of complex projective varieties,

the minimal model program aims to construct a good representative in the birational

class of a given variety X. The Minimal Model Conjecture predicts that this construction

works in all cases and is also used to describe the geometry of these good representatives.

According to the Minimal Model Conjecture, a good minimal model for a variety X with

κ(X) ≥ 0 has a semiample canonical class while a variety X with κ(X) < 0 is birational

to a variety Y with a Mori fiber space structure, i.e., there is a morphism Y → B with a

general fiber Yb a Fano variety of Picard number one. In this dissertation, we have two

main results related to two different aspects of the Minimal Model Conjecture.

The minimal model program is trivial for curves and has been done for surfaces by the

Italian school. In dimension three, it is established by S. Mori et al. In higher dimensions,

C. Birkar, P. Cascini, C. Hacon, and J. McKernan have established the existence of good

minimal models for varieties of general type. For a variety X of intermediate Kodaira

dimension, i.e., 0 < κ(X) < dim X, one uses the pluricanonical system to construct the

Iitaka fibration of X whose general fibers are varieties with Kodaira dimension zero. By

utilizing the structure of Iitaka fibrations and techniques developed in the minimal model

program, in this thesis we show that the existence of good minimal models for varieties

with Kodaira dimension zero implies the existence of good minimal models for varieties

with intermediate Kodaira dimension. In particular, the Minimal Model Conjecture is

reduced to the Nonvanishing Conjecture and the Minimal Model Conjecture for varieties

with Kodaira dimension zero. This answers a question of Mori concerning Iitaka fibrations

with fibers possessing good minimal models. As a corollary, we include an application to

the Iitaka’s Conjecture C on the subadditivity of Kodaira dimensions for algebraic fiber

spaces.

According to the Minimal Model Conjecture, Fano varieties are the building blocks for

varieties with negative Kodaira dimension. It is expected that the set of mildly singular
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Fano varieties satisfies certain boundedness properties. The precise statement is known

as the Borisov-Alexeev-Borisov Conjecture, which asserts boundedness of the set of ε-klt

log Q-Fano varieties of a given dimension. The B-A-B Conjecture relates to the conjectural

termination of flips of the minimal model program. The B-A-B Conjecture is established in

dimension two by Alexeev and for toric varieties by A. Borisov and L. Borisov. However,

the B-A-B Conjecture is still open in dimension three and higher. As a partial result of

the B-A-B Conjecture, we show that there is an effective upper bound of the anticanon-

ical volumes for the set of ε-klt log Q-factorial Q-Fano threefolds of Picard number one,

which depends only on ε. The existence of an upper bound of anticanonical volumes is a

necessary condition for the B-A-B Conjecture to hold.

A big question in the minimal model program is the Nonvanishing Conjecture, which

asserts that KX being pseudo-effective, a numerical condition, would imply that κ(X) ≥ 0.

The Nonvanishing Conjecture is known in dimensions less than or equal to three but still

open in higher dimensions. In the last part of this dissertation, we include two results

related to the Nonvanishing Conjecture. The first one attempts to find a conceptual proof

of the two-dimensional Nonvanishing Conjecture. Note that the Nonvanishing Conjecture

is established in dimension two by classification and a conceptual proof is demanded to

provide new insight for higher dimensional geometry. The second result is a Nonvanish-

ing theorem for irregular varieties.

This dissertation is organized as follow. In Chapter 2, we describe the minimal model

program and the Minimal Model Conjecture. In Chapter 3, we include the first main

result, a reduction theorem of the Minimal Model Conjecture. In Chapter 4, we establish

an effective upper bound for the anticanonical volumes for ε-klt Q-factorial log Q-Fano

threefolds of Picard number one. In Chapter 5, we present some partial results related to

the Nonvanishing Conjecture.



CHAPTER 2

MINIMAL MODEL PROGRAM

We would like to study the geometry of a complex projective variety X. By a theorem

of Nagata, we can always compactify X to be a complete variety. By Chow’s Lemma, a

complete variety is birational to a projective variety. Since Hironaka’s theorem on resolu-

tion of singularities applies over a field of complex numbers, we can assume that X is a

smooth projective variety. Hence we focus on smooth projective varieties.

We start from reviewing the classical theory of curves and surfaces where we describe

the complete minimal model program and the established Minimal Model Conjecture.

The generalized minimal model program and the Minimal Model Conjecture for higher

dimensional varieties are described in the sequel. In the second part of this chapter, we

review the results on the minimal model program from [8] and [30], which contain most

of the techniques we will use in the later chapters.

We follow the notations in [8] and [18].

2.1 Curves and surfaces

Let X be a smooth projective variety. There is a canonically associated line bundle

ωX = ∧dim XΩ1
X on X where Ω1

X = T∨
X is the holomorphic cotangent bundle. In particular,

there is a canonical divisor KX such that OX(KX) ∼= ωX. For a given line bundle L on X,

we can study the map X ��� P(|L|) defined by sections of L. The first question we ask is

whether there is a section or not for a given line bundle.

Definition 1 Let X be a smooth projective variety. The Kodaira dimension κ(X) is defined to

be −1 if H0(X, mKX) = 0 for all m ≥ 1. Otherwise, there is an integer m > 0 such that

H0(X, mKX) �= 0 and we say that κ(X) ≥ 0.

In case κ(X) ≥ 0, we define the canonical ring R(X) of X to be the graded C-algebra

R(X) =
⊕
m≥0

H0(X, mKX).
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We will see that the geometry of projective varieties is classified according to the sign

of Kodaira dimension. We start with a review of the geometry of curves and surfaces.

Let X = C to be a smooth projective curves, i.e., a Riemann surface. From the Riemann-

Roch formula for curves, we have deg(KC) = 2g − 2 where g = g(C) is the topological

genus of a compact oriented real two-dimensional manifold C.

• If κ(X) = −1, then deg(KC) is negative. Hence g = 0 and C ∼= P1;

• If κ(X) ≥ 0, then deg(KC) is non-negative and g ≥ 1. In this case, |mKC| is base point

free for some m > 0 and there is a canonical morphism Φ : C → Proj(R(C)). In fact,

if g = 1, then C is elliptic, OC(KC) ∼= OC, and Φ is a constant map. If g ≥ 2, then 3KC

is very ample and Φ is an isomorphism.

Assume that dim X = 2, i.e., X = S is a smooth projective surface. The geometry of

surface is more interesting due to the existence of blow-ups.

(i) Blowing up at a smooth point of S gives a morphism of smooth projective surfaces

μ : BlpS → S which is birational but not isomorphic. The exceptional set Exc(μ) is

a rational curve of first kind, i.e., a curve C ∼= P1 with KX.C < 0 and C2 < 0. The

numerical condition is equivalent to KS.C = C2 = −1 and we call such a curve a

(−1)-curve. We take S as a good substitution for studying the geometry of S′ since

blow-ups are well understood for surfaces. A natural question to ask is under which

conditions we can “simplify” a surface by blow-downs.

(ii) Castelnuovo’s Contraction Theorem asserts that if there exists a (−1)-curve C ⊆ S′,

then there exists a morphism π : S′ → S to a smooth projective surface S such that

π(C) = p is a smooth point of S and S′ ∼= BlpS with C = π−1(p) the exceptional

curve. This gives a positive answer to the question in (i).

(iii) The Kodaira dimension κ(S) is invariant under a contraction of (−1)-curve. This

is because sections H0(S, mKS) are holomorphic differentials and we can apply Rie-

mann’s Extension Theorem. In particular, we can study the birational geometry of

simplified algebraic surfaces according to the Kodaira dimensions.

(iv) A contraction of (−1)-curve drops the second Betti number b2(S) by one. Since b2(S)

is finite, after at most b2(S) steps we end up with a smooth projective surface that

contains no (−1)-curves. We call a surface with no (−1)-curves a minimal surface.
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Minimal surfaces are well studied in [6] and in summary we have the following results:

• If κ(S) = −1, then after blowing down all the (−1)-curves, one shows that a minimal

surface Smin is either P2 or a P1-bundle over a smooth curve B. In particular, Smin, as

well as S, is covered by rational curves.

• If κ(S) ≥ 0, then after blowing down all the (−1)-curves, one can show that by

classification |mKSmin | is base point free for some m > 0 and we get a canonical

morphism Smin → Proj(R(S)).

Since we have similar behavior for curves and surfaces, it is natural to ask if we can

generalize this dichotomy of geometry according to the Kodaira dimensions to higher

dimensional varieties. This generalizes to the Minimal Model Program and the Minimal

Model Conjecture in the next section.

We note here that in case κ(S) ≥ 0, KSmin being semiample is a highly nontrivial result.

However, it is easy to show that KSmin is nef: Since κ(S) ≥ 0, we can write KSmin ∼Q ∑ aiCi

for some irreducible curves Ci and some rational numbers ai > 0. If KSmin is not nef, then

there exists an irreducible curve C such that ∑i ai(Ci.C) = KSmin .C < 0. In particular, Ci = C

for some i and C2 < 0 as C.Ci ≥ 0 if C �= Ci. By adjunction formula, this implies that C is

a (−1)-curve on Smin, a contradiction. It is S. Mori who observes that nefness is the right

condition for developing a higher dimensional minimal model program. The minimal

model program for higher dimensional varieties is hence also called Mori’s program.

Another remark is that in case κ(S) = −1, blowing down (−1)-curves in different order

can lead to different minimal surfaces. However, each surface with κ(S) ≥ 0 does have a

unique minimal surface. This is due to the strong factorization property of birational maps

of smooth projective surfaces. We will see later that in higher dimensions a minimal model

Xmin of X, if exists, is not necessarily unique even when κ(X) ≥ 0.

2.2 Higher dimensional varieties

The Minimal Model Program (MMP) or Mori’s Program and the Minimal Model Con-

jecture (MMC) aim to generalize the dichotomy of geometry for curves and surfaces that

we have seen in the last section to higher dimensions. Let X be a smooth projective variety

with Kodaira dimension κ(X). The Minimal Model Conjecture states the following:

• If κ(X) = −1, then there exists a birational map φ : X ��� Y and a morphism

f : Y → B with dim Y > dim B such that a general fiber Yb of f is a Fano variety of



6

Picard number one. The morphism f : Y → B is called a Mori fiber space (MFS). The

variety Y, and hence X, is covered by rational curves.

• If κ(X) ≥ 0, then there exists a birational map ψ : X ��� Xmin such that |mKXmin | is

base point free for m > 0 sufficiently divisible and this defines a canonical morphism

Φ : Xmin → Xcan := Proj(R(X)).

Here are important features of the Minimal Model Conjecture:

(i) The birational map φ and ψ are a composition of KX-negative maps. The process of

producing these maps is known as the Minimal Model Program or Mori’s Program.

This procedure is not unique, e.g., for surfaces we can blow down (−1)-curves in a

diferent order. We say that a minimal model program is done if it terminates with a

Mori fiber space or a minimal model Xmin.

(ii) In fact, Castelnuovo’s Contraction Theorem is numerical in nature and is generalized

to the existence of KX-negative extremal contractions in higher dimensions via the

Cone and Contraction Theorem. A KX-negative extremal contraction is analogous to

“blow-down of a (−1)-curve.” It is divisorial if the contracting locus is of codimension

one, otherwise it is small. If f : X → Z is a small contraction, then KZ is not Q-Cartier

and we can not proceed since the numerical condition KZ.C is not well-defined.

In this case, we have to construct flips. A KX-negative map is either a divisorial

contraction or a flip.

(iii) A flip occurs only in dimension three or higher. It is a geometric surgery of codi-

mension two or higher (hence a birational map) and is illustrated in the following

diagram:

X X+

Z

−KX is f -ample KX+ is f+-ample

flip

where f and f+ are small birational morphisms and X+ is a normal projective Q-

factorial variety. Replacing by flips is the key making the higher dimension minimal

model program possible. Existence of flips is proved by C. Hacon and J. McKernan

in [17].
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(iv) In a minimal model program, there can be only finitely many divisorial contractions

since each time the Picard number drops by one. However, if flips occur, then it is

hard to show that there can be only finitely many flips in a minimal model program

since we also extract subvarieties. This problem is known as the Termination of flips.

Termination of flips is established in dimension three.

(v) A Mori fiber space is also given by a KX-negative extremal contraction, e.g., a P1-

bundle with fiber F is given by contracting the curve class [F] where KX.F = −2.

Since (mildly singular) Fano varieties are rationally connected, according to the Min-

imal Model Conjecture, varieties with negative Kodaira dimension are covered by

rational curves and vice versa.

(vi) Recall that in dimension two, nefness of KXmin is easier to establish than semiample-

ness. This is taken as part of the definition of a minimal model Xmin, i.e., we ask KXmin

to be nef.

(vii) To show that KX being nef implies that KX is semiample is known as the Abundance

Conjecture. This has been established up to dimension three and for varieties of

general type in any dimension.

(viii) It is an important theorem of [8] that the canonical ring R(X) of a smooth projective

variety is always a finitely generated C-algebra. In case κ(X) ≥ 0, the canonical

model Xcan = Proj(R(X)) is thus well-defined. The canonical ring R(X) is invariant

under KX-negative maps and hence Proj(R(Xmin)) ∼= Proj(R(X)). In particular, the

morphism Xmin → Proj(R(X)) is defined and is called the Iitaka fibration of X.

(ix) In case κ(X) ≥ 0, we can understand that a minimal model program aims to elimi-

nate the base locus of |mKX|. Divisorial contractions eliminate the divisorial part of

the stable base locus Bs(KX) = ∩m≥1Bs(mKX) while flips take care of codimension

two or higher stratum.

(x) Even though Xcan is unique, there can be more than one minimal model Xmin. Any

two minimal model are isomorphic in codimension one and are connected by a
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sequence of flops, cf. [22]. A flop is a small birational map similar to a flip and is

described in the following diagram:

X X+

Z

−KX is f -trivial KX+ is f+-trivial

flop

where f and f+ are small birational morphisms.

(xi) Singularities arise naturally in the minimal model program. In dimension three

or higher, a KX-negative map creates terminal singularities. It is then necessary to

include varieties with terminal singularities to complete the minimal model pro-

gram. The theory of singularities can be generalized to pairs and we also have the

generalized minimal model program for pairs. See Section 2.3.

A very important turning point in the higher dimensional minimal model program is

that the dichotomy according to the Kodaira dimensions has been replaced by pseudo-

effectiveness (PSEF) of KX. A divisor is pseudo-effective if numerically it is a limit of

effective divisors, a much weaker condition than being effective. It is conjectured that

KX being pseudo-effective is the same as having nonnegative Kodaira dimension. This is

known as the Nonvanishing Conjecture.

Conjecture 2 (Nonvanishing Conjecture) Let X be a smooth projective variety. If KX is PSEF,

then κ(X) ≥ 0.

The full Minimal model Conjecture is summarized in the following diagrams:

• If κ(X) = −1, then we have

X
κ(X) = −1

X
KX �=PSEF(⇐⇒)

Y

B

Nonvanishing Conjecture ∃ φ : birational

f

where φ is a composition of KX-negative maps and the morphism f : Y → B is a

Mori fiber space.
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• If κ(X) ≥ 0, then we have

X
KX =PSEF

X
κ(X) ≥ 0(⇐⇒)

Xmin

Xcan = Proj(R(X))

Nonvanishing Conjecture ∃ ψ : birational

Φ

where ψ is a composition of KX-negative maps and KXmin is semiample with Φ the

induced morphism.

There remain three main problems for completing the minimal model program and

hence the Minimal Model conjecture:

(N) Nonvanishing Conjecture: KX =PSEF=⇒ κ(X) ≥ 0;

(T) Termination of flips: There exists no infinite sequence of flips;

(A) Abundance Conjecture: Let X be a normal projective variety with at worst terminal

singularities. Then KX being nef implies that KX is semiample.

Remark 3 In the Abundance Conjecture (A), terminal singularities will be defined in Section 2.3.

Since the outcome of each KX-negative map may possess terminal singularities, it is natural to

impose the singularity condition in this conjecture. It is also known that this condition is necessary.

The Minimal Model Conjecture consists of two parts: The geometric picture of varieties

and the completion of full Minimal Model Program. If one only cares about the geometry

of varieties, we do not necessarily need to establish the full Minimal Model Program. We

have indicated in (i) that the construction of a sequence of KX-negative maps in a minimal

model program is not unique and hence it is difficult to determine whether this process

terminates. A technique introduced by V.V. Shokurov, called the minimal model program

with scaling, enables us to specify a sequence of KX-negative maps in a particular way

that has better chance to terminate. Hence one can establish the existence of minimal

models in certain cases without assuming the full minimal model program, or equivalently

the conjectural termination of flips. We will talk about the minimal model program with

scaling in Section 3.3.

We say that there exists a good minimal model for a given variety X if the Minimal

Model Conjecture is true for X. In particular, a variety X has a good minimal model if
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certain minimal model program ends up with a Mori fiber space or terminates with a

vareity where the Abundance Conjecture is true. Here are some known results about the

existence of good minimal models:

• For threefolds, the Minimal Model Conjecture is established by V.V. Shokurov, Y.

Kawamata, S. Mori, et al.

• By [8], the Minimal Model Conjecture is true if KX is not PSEF. In particular, the

Minimal Model Conjecture for varieties with negative Kodaira dimension is reduced

to the Nonvanishing Conjecture.

• There exist good minimal models for varieties of general type by [8].

• The existence of good minimal models for varieties of κ(X) = 0 implies the existence

of good minimal models for varieties of κ(X) ≥ 0 by [32].

Another observation is that Fano varieties show up as a significant part of the Minimal

Model Program:

(a) Fano varieties of Picard number one are the building blocks for varieties of negative

Kodaira dimension.

(b) The exceptional locus of a KX-negative extremal contraction is covered by rational

curves. According to the Minimal Model Conjecture, these subvarieties are also built

from Fano varieties (of Picard number one).

Remark 4 Since it is a general fact that Fano varieties (with mild singularities) are covered by

rational curves, this justifies saying that the geometry of varieties is complicated by the existence of

rational curves.

The above observation motivates the study of Fano varieties, especially the bounded-

ness problem. The precise question is the Borisov-Alexeev-Borisov Conjecture, which

asserts boundedness of ε-klt log Q-Fano varieties. Heuristically, boundedness of Fano

varieties would imply termination of flips by (b). A result of C. Birkar and V.V. Shokurov

says that the B-A-B conjecture together with the ascending chain condition of minimal log

discrepancies and the lower dimensional minimal model program implies termination of

flips. We will come back to the B-A-B conjecture in Chapter 4 where we study the upper

bound of the anticanonical volumes for ε-klt Q-factorial log Q-Fano threefolds of Picard

number one.
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2.3 Singularities of pairs

We have noted that from (xi) in Section 2.2, singularities arise naturally in the min-

imal model program. Also, pairs arise naturally in the study of geometry of varieties.

Surprisingly, we can combine these two ingredients, singularities and pairs, to establish

a theory of singularities of pairs. The theory of singularities of pairs is very important in

the minimal model program, which enables us to induct on dimensions via subadjunction,

inversion of subadjunction, and the canonical bundle formula.

The main tool for studying singularities is Hironaka’s theorem on the resolution of

singularities over algebraic closed field of characteristic zero, see [19]. As an application,

we can always assume the existence of log resolutions.

Definition 5 Let X be a normal quasi-projective variety and a ⊆ OX be an ideal sheaf. A log

resolution of (X, a) is a projective birational morphism f : Y → X such that

(i) Y is smooth and a · OY = OY(D) for some divisor D on Y;

(ii) the exceptional set Exc( f ) is of pure dimension one and the Supp(D) ∪ Exc( f ) is a simple

normal crossing divisor.

A log resolution f : Y → X always exists. In fact, we can construct a log resolution by a

composition of blow-ups along smooth centers of codimension greater than or equal to two.

We start with singularities of normal varieties.

Definition 6 Let X be a normal projective variety and assume that KX is a Q-Cartier divisor.

Let π : Y → X be a log resolution of X and write KY/X = KY − π∗(KX) = EY = ∑i aiEi as

Q-divisors. Then we say that

X has

⎧⎪⎪⎨
⎪⎪⎩

terminal
canonical

klt
log canonical

singularities if

⎧⎪⎪⎨
⎪⎪⎩

EY > 0 and Supp(EY) = Exc(π);
EY ≥ 0;
EY > −1;
EY ≥ −1.

Note that smaller a′is correspond to worse singularities.

Surfaces with at worst terminal singularities are smooth. Indeed, let X be a surface

with at worst terminal singularities. Let π : Y → X be a resolution of X and write

KY = π∗KX + ∑i aiEi, where Ei’s are irreducible π-exceptional curves and ai’s are positive

rational numbers. If E = ∑i aiEi, then ∑i ai(KY.Ei) = KY.E = E2 < 0 implies that KY.El < 0
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for some l. Since E2
l < 0, El is a (−1)-curve and by Castelnuovo’s contraction theorem

π : Y → X factors through the blow down μ : Y → Y′ of El . Note that Y′ is smooth and

hence π′ : Y′ → X is again a resolution where π = π′ ◦ μ. Inductively, we see that X is

smooth.

Example 7 For examples of singular surfaces, let Xg,d be the projective cone over a curve C of

genus g and degree d ≥ 2. Then Xg,d is a normal projective surface of Picard number one with

vertex O ∈ Xg,d the unique singularity. Blowing up the vertex O ∈ Xg,d is a log resolution

π : Y = BlOXg,d → Xg,d of Xg,d which has a unique exceptional divisor Eg,d
∼= C over P with

E2 = −d. It is easy to compute by adjunction formula on Y that

KY = π∗KXg,d + (−1 +
2 − 2g

d
)Eg,d.

Hence

Xg,d has

⎧⎨
⎩

canonical
klt

log canonical
singularities if and only if

⎧⎨
⎩

g = 0 and d = 2
g = 0 and d ≥ 2
g = 1.

If g ≥ 2, then Xg,d is not log canonical. When g = 0, the singularities get worse as d increases.

This justifies the last comment in the above definition.

From the examples below, we will see that pairs also arise naturally in the study of

geometry. The idea is that for a morphism f : X → Y of varieties, we want to relate the

canonical divisors KX and KY. If f is an closed embedding, then we get a (sub)adjunction

formula.

Example 8 (Adjunction) Let X be a smooth divisor of a smooth variety Y, then

(KY + X)|X = KX.

Here the pair is (Y, X) and we have a log canonical divisor KY + X.

In general, if f : X → Y is an embedding but neither X nor Y is smooth, then we get

only subadjunction, i.e., a correction term is necessary for the adjunction formula to hold.

Example 9 (Subadjunction) Let X be the projective cone over a quadratic curve in P2 and let

O ∈ X be the vertex of cone, the unique singularity of X. Let l be a ruling of X, then l is not

Cartier but 2l is Cartier. It is easy to see that l|l = 1
2 (2l|l) = 1

2O. If f : Y = BlOX → X is the
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cone resolution with unique exceptional divisor E and let l′ be the proper transform of l on Y, then

we get

( f |l)∗(Kl + Di f f )
(�)
= f ∗(KX + l)|l′ = (KY + l′ +

1
2

E)|l′ = Kl′ +
1
2

O

where (�) is true since we are using a log resolution. Since f |l : l′ → l is the identity, we must

define Di f f = 1
2O for the adjunction formula, i.e.,

(KX + l)|l = Kl +
1
2

O.

The following example considers the case where f : X → Y is an algebraic fiber space

with a general fiber F and KF ∼Q 0. In this case, we expect to have a canonical bundle

formula.

Example 10 (Canonical bundle formula) Let S be a minimal surface with κ(S) = 1. The Iitaka

fibration is a morphism p : S → B with dim B = 1 where a general fiber Sb is an elliptic curve. In

this case, we call S an elliptic surface. It can be shown that the canonical divisor KS is a fractional

combination of fibers and hence we can write

KS ∼Q p∗(KB + ΔB)

where ΔB is a Q-divisor on B, cf. [6, Proposition IX.3]. This is the canonical bundle formula for

elliptic surfaces that relates KS to the smaller dimensional pair KB + ΔB.

Now we combine these two ingredients and study the singularities of pairs.

Definition 11 Let X be a normal projective variety and Δ be a Q-divisor with coefficients in [0, 1]

so that KX + Δ is Q-Cartier. Let π : Y → X be a log resolution of (X, Δ) and let ΔY be a Q-divisor

on Y so that KY + ΔY = π∗(KX + Δ) as Q-divisors. Then we say that

(X, Δ) has

⎧⎪⎪⎨
⎪⎪⎩

terminal
canonical

klt
log canonical

singularities if

⎧⎪⎪⎨
⎪⎪⎩

multEΔY < 0 ∀ E ⊆ Exc(π);
multEΔY ≥ 0 ∀ E ⊆ Exc(π);
ΔY < 1;
ΔY ≤ 1.

These conditions generalize Definition 5 and can be verified on a single log resolution.

The divisor Δ in the definition with Δ ∈ [0, 1] is called a boundary. In general, we

can allow Δ to have arbitrary coefficients with KX + Δ being Q-Cartier when studying

singularities of pairs. Note that being log canonical implies that Δ ≤ 1. Also, we will
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always assume that Δ is a boundary in the study of minimal model program. We can

generalize the minimal model program to log pairs with mild singularities. Here are some

categories where people study the minimal model program:

• Min: Q-factorial normal projective varieties with at worst terminal singularities;

• Max: Q-factorial normal projective pairs with at worst log canonical singularities.

Because the minimal model program in dimension three and higher starts to produce

varieties with terminal singularities, we must enlarge the category of smooth varieties to

carry out the program. The category Min is the smallest category where we can carry out

the minimal model program when starting with smooth varieties. Most theorems related

to the minimal model program in the category Min generalize without much difficulty

to the category of Q-factorial normal projective pairs with at worst klt singularities. For

example, the Kawamata-Viehweg vanishing theorem for klt pairs is the generalization of

the classical Kodaira vanishing theorem for smooth projective varieties. Hence the mini-

mal model program naturally generalizes to the category of Q-factorial normal projective

pairs with at worst klt singularities. The category Max is the largest category where

people expect the minimal model program to be true. However, passing theorems from

klt singularities to log canonical singularities is typically technical. This is because actually

a log canonical singularity is not a limit of klt singularities as it seems to be from the

definition.

If we start with a smooth variety, or more generally a normal and Q-factorial variety,

then it is known that a variety as an outcomes of KX-negative map in a minimal model pro-

gram remains normal and Q-factorial. Hence normality and Q-factoriality are two natural

conditions to impose on varieties when we work with the minimal model program.

2.4 BCHM

The work [8] of C. Birkar, P. Cascini, C. Hacon, and McKernan (BCHM) on the minimal

model program is a great advance on the study of higher dimensional geometry. We

include here without proofs some main results in [8] that are relevant to this dissertation.

A main theorem proved in [8] is the following long standing conjecture:
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Theorem 12 Let X be a smooth projective variety, then the canonical ring

R(X) =
⊕
m≥0

H0(X,OX(mKX))

is a finitely generated graded C-algebra.

In particular, as we pointed out earlier in Section 2.2, this implies that there exists a canon-

ical model Xcan := Proj(R(X)) canonically associated to a given variety X.

It is known in [15] that by the canonical bundle formula the problem on finite gener-

ation of canonical rings for any smooth projective varieties can be reduced to the cases

where we have klt pairs of general type. Hence Theorem 12 is actually a corollary of the

following theorem in [8] and the base point freeness theorem in [30]:

Theorem 13 There exists a good minimal model for a klt pair with a big boundary. In particular,

there exist good minimal models for klt pairs of general type.

Another important question in the minimal model program is about the termination.

A global approach to solve the termination problem is to show that in a minimal model

program all the possible outcomes of KX-negative maps starting from a given variety are

finite. Since it is known that varieties appearing in a sequence of KX-negative maps do not

repeat, it follows that the minimal model program must terminate. Thus Theorem 13 can

be thought of as a formal consequence of the following result on finiteness of models.

Theorem 14 The set of weak log canonical models for a given log pair with big boundary is finite.

We do not define the technical term weak log canonical model here, but the key point is

that each outcome of a KX-negative map is a weak log canonical model. Also, in a minimal

model program with scaling of an ample divisor, each outcome of a KX-negative map is

a weak log canonical model for a log pair with big boundary. Hence, the minimal model

program with scaling of an ample divisor has a better chance to terminate.

A very important fact about the minimal model program and hence the Minimal Model

Conjecture is that we can generalize them to log pairs and also to a relative setting. This

is known as the relative log minimal model program. All the above theorems are true

in the relative log setting. This has significant applications to the moduli problem of

higher dimension varieties. Also, if one start with a birational morphism f : X → Y,

e.g., a log resolution, then a log pair is always relative big and we can apply results for
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pairs with big boundary from [8]. This enables us to create a better behaved birational

model for singular varieties, e.g., Q-factorial models or dlt models. Many studies of higher

dimension varieties rely on the existence of good birational models. For example, we will

use dlt models in Chapter 4.



CHAPTER 3

VARIETIES FIBERED BY GOOD MINIMAL

MODELS

In this chapter, I present my first result on a reduction theorem of the Minimal Model

Conjecture for varieties of intermediate Kodaira dimensions.

3.1 Kodaira dimension and Iitaka fibration

Let X be a projective Q-Gorenstein variety, i.e., KX is a Q-Cartier divisor. In Section 2.1,

we have defined the Kodaira dimension κ(X) to be −1 if H0(X, mKX) = 0 for all the m ≥ 1,

and κ(X) ≥ 0 if there is an integer m > 0 such that H0(X, mKX) �= 0. When κ(X) ≥ 0, we

also define the canonical ring R(X) of X to be the graded C-algebra

R(X) =
⊕
m≥0

H0(mKX).

In fact we can refine the definition of Kodaira dimension.

Definition 15 Assume that H0(X, lKX) �= 0 for some l > 0. Then the Kodaira dimension is the

unique integer 0 ≤ κ(X) ≤ dim X such that there are positive real numbers α, β with

α · mκ(X) ≤ Pm(X) = dimC H0(X,OX(mKX)) ≤ β · mκ(X)

for m > 0 divisible. An equivalent definition is that

κ(X) =

{ −1 if H0(mKX) = 0 for any m ≥ 1;
tr.degC(

⊕
m≥0 H0(mKX)) if H0(mKX) �= 0 for some m ≥ 1.

.

Geometrically, we associate for each integer m > 0 the map defined by the m-th pluri-

canonical system |mKX| �= ∅:

Φm : X ��� Φm(X) ⊆ P(|mKX|).

For m > 0 sufficiently divisible, the Kodaira dimension κ(X) is given by

κ(X) = dim Φm(X),



18

where we put κ(X) = −1 if |mKX| = ∅ for all m > 0. We say that X is of general type if

KX is big, i.e., the map Φm is birational for m > 0 sufficiently divisible. In general, we have

the Iitaka fibrations.

Theorem 16 ([33, Theorem 2.1.33]) Let X be a normal projective variety, Q-Gorenstein with

κ(X) ≥ 0. Consider the semigroup N(X, KX) = {m ∈ N|H0(X, mKX) �= 0}. For all sufficiently

large m ∈ N(X, KX), the rational maps Φm : X ��� Ym = φm(X) ⊆ P(|mKX|) are birationally

equivalent to a fixed algebraic fiber space Φ∞ : X∞ → Y∞ of normal varieties. Moreover, a very

general fiber of φ∞ has Kodaira dimension zero and dim Y∞ = κ(X).

We have seen that a minimal model program consists of KX-negative maps, i.e., di-

visorial contractions and flips. Since a flip is an isomorphism in codimension one, the

pluri-canonical system |mKX| is invariant under flips by the normality condition. Let

φ : X → X′ be a divisorial contraction. By the Negativity Lemma (Lemma 17), we can

write KX ∼Q KX′ + E for some effective φ-exceptional divisor E on X. In particular,

by the projection formula and Fujita’s lemma, we see that the pluri-canonical system is

also invariant under divisorial contractions. As a consequence, the Kodaira dimension

is invariant under the minimal model program, and we will study the outcomes of the

minimal model program accroding to different Kodaira dimensions.

Lemma 17 (Negativity of contraction) Let π : Y → X be a proper birational morphism of

normal quasi-projective varieties. Let L be an R-Cartier divisor on X such that π∗L ≡ M + G + E

where M is a π-nef R-Cartier divisor on Y, G ≥ 0, E is π-exceptional, and G and E have no

common components. Then E ≥ 0. Furthermore, if Ei is a component of E such that there is a

component Ej �= Ei of E with the same center on X as Ei and with the restriction of M to Ej not

numerically π-trivial, then the coefficient of Ei is strictly positive.

3.2 Good minimal models

A pair (X, Δ) over U consists of a Q-factorial normal projective variety X with an effec-

tive R-Weil divisor Δ such that KX + Δ is R-Cartier and a projective morphism X → U to

a quasi-projective variety U. We recall the definition of a minimal model.

Definition 18 For a log canonical pair (X, Δ) over U, a minimal model of (X, Δ) over U is

proper birational map φ : (X, Δ) ��� (X′, Δ′ = φ∗Δ) over U with the following properties:

(1) X′ is normal and Q-factorial,
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(2) φ extracts no divisors,

(3) KX′ + Δ′ is nef over U, and

(4) a(F, X, Δ) < a(F, X′, Δ′) for each φ-exceptional divisor F.

Moreover, we say that abundance holds on (X′, Δ′) if KX′ + Δ′ is semiample over U, i.e. KX′ + Δ′

is an R-linear sum of Q-Cartier divisors which are semiample over U. A good minimal model of

a pair (X, Δ) over U is a minimal model such that abundance holds.

Remark 19 A minimal model in this paper is a log terminal model as defined in [8].

Definition 20 Let X → U and Y → U be two projective morphisms of normal quasi-projective

varieties. Let φ : X ��� Y be a proper birational contraction (so that φ−1 contracts no divisors) over

U. Let D and D′ be R-Cartier divisors such that D′ = φ∗D. Then we say that φ is discrepancy-

negative with respect to D if and only if for any common resolution p : W → X and q : W → Y,

we may write

p∗D = q∗D′ + E,

where E ≥ 0 and the support of p∗E contains all the φ-exceptional divisors (cf. [8, Lemma 3.6.3]).

Remark 21 Note that if D′ in the above definition is nef over U and p∗E is effective, then E is

effective by the negativity lemma (cf. Lemma 3.5.2 [8]). Hence in this case φ is discrepancy-negative

with respect to D if and only if p∗E ≥ 0 and its support contains all the φ-exceptional divisors.

Condition (4) of Definition 18 is then equivalent to φ being discrepancy-negative with respect to

KX + Δ.

We start with some preliminary results on good minimal models.

Lemma 22 Let (Xi, Δi), i = 1, 2, be two klt pairs over U and α : (X1, Δ1) ��� (X2, Δ2) be a

birational map over U with α∗Δ1 = Δ2. Suppose that α satisfies the condition (4) of Definition 18

with respect to (X1, Δ1) and extracts no divisors. Then (X1, Δ1) has a good minimal model over U

if (X2, Δ2) does.

Proof. This is [8, Lemma 3.6.9].

Lemma 23 Let (X, Δ) be a terminal pair over U. For any resolution μ : (X′, Δ′) → (X, Δ) with

Δ′ := μ−1∗ Δ, a good minimal model of (X′, Δ′) is also a good minimal model of (X, Δ).
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Proof. Note that if we write KX′ + Δ′ = μ∗(KX + Δ) + E, then E is effective and its support

equals to the set of all μ-exceptional divisors. Hence the same argument as in [8, Lemma

3.6.10] applies (without adding extra any μ-exceptional divisors).

Theorem 24 Let φi : (X, Δ) ��� (Xi, Δi), i=1,2, be two minimal models of a klt pair (X, Δ)

over U with Δi = (φi)∗Δ. The natural birational map ψ : (X1, Δ1) ��� (X2, Δ2) over U can be

decomposed into a sequence of (KX1 + Δ1)-flops over U.

Proof. By [30, Theorem 3.52], (Xi, Δi) are isomorphic in codimension one, and hence the

argument in [22] applies.

Proposition 25 Let (X, Δ) be a klt pair over U. If (X, Δ) has a good minimal model over U, then

any other minimal model of (X, Δ) over U is also good.

Proof. Suppose that (Xg, Δg) is a good minimal model of (X, Δ) over U and (X̃, Δ̃) is

another minimal model of (X, Δ) over U. Let W be a common resolution of (Xg, Δg) and

(X̃, Δ̃) over U with maps p : W → Xg and q : W → X̃. Following from Lemma 17 (or [30,

Lemma 3.39]), we have p∗(KXg + Δg) = q∗(KX̃ + Δ̃) where KXg + Δg is semiample over U

as (Xg, Δg) is a good minimal model of (X, Δ) over U. By the projection formula KX̃ + Δ̃ is

then semiample over U, and hence (X̃, Δ̃) is also a good minimal model of (X, Δ) over U.

3.3 Minimal model program with scaling

A pair (X, Δ) over U consists of a Q-factorial normal projective variety X with an

effective R-Weil divisor Δ such that KX +Δ is R-Cartier and a projective morphism X → U

to a quasi-projective variety U

Start with a Q-factorial klt pair (X, Δ) over U and H an ample R-divisor over U.

Assume that KX + Δ + H is nef over U and let

λ = inf{t ≥ 0|KX + Δ + tH is nef over U}.

If λ = 0, then KX + Δ is nef over U and (X, Δ) is a minimal model over U. If λ > 0, then

for fixed 0 < λ′ < λ there are only finitely many (KX + Δ + λ′H)-negative extremal rays

over U. Let R be one of these extremal rays such that (KX + Δ + λH).R = 0. We consider

the corresponding contraction contR : X → Z over U. If dim Z < dim X, then we have a

Mori fiber space and we are done. Otherwise, we replace (X, Δ) by the corresponding flip
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or divisorial contraction φ : X ��� X′. Let H′ = φ∗H and Δ′ = φ∗Δ. Since KX + Δ + λH is

nef over U and (KX + Δ + λH).R = 0, it follows from the Cone and Contraction Theorem

that KX′ + Δ′ + λH′ remains nef and we can repeat the process. This is called a minimal

model program with scaling of an ample divisor.

This process terminates with a minimal model or a Mori fiber space unless we get an

infinite sequence of flips Xi ��� Xi+1. Let Δi and Hi be the strict transforms of Δ and

H on Xi. Then there is a sequence of real numbers λ = λ1 ≥ λ2 ≥ λ3 ≥ · · · 0 such that

KXn +Δn + λHn is nef over U. In particular, X ��� Xn is a minimal model for (X, Δ+ λnH)

over U.

Note that by the finiteness of models for klt pairs with big boundary in [8], eventually

we get a strictly decreasing sequence of real numbers λ = λ1 > λ2 > λ3 > · · · 0 with

limn λn = 0 for any minimal model program with scaling of an ample divisor.

Proposition 26 If a klt pair (X, Δ) over U has a good minimal model over U, then any (KX + Δ)

minimal model program scaling of an ample divisor A over U terminates.

Proof. Let φ : (X, Δ) ��� (Xg, Δg) with Δg = φ∗Δ be a good minimal model of (X, Δ) over

U and f : Xg → Z = ProjU(KXg + Δg) the corresponding morphism over U. Note that φ

contracts exactly the divisorial part of B(KX + Δ/U) (cf. [8, Lemma 3.6.3]).

Pick t0 > 0 such that (Xg, Δg + t0Ag) with Ag = φ∗A is klt and an ample divisor H

on Xg. By [8], the outcome of running a (KXg + Δg + t0Ag)-minimal model program with

scaling of H over Z exists and is a minimal model ψ : Xg ��� X′ of (Xg, Δg + t0Ag) over

Z. As KXg + Δg ≡Z 0, we have KX′ + Δ′ ≡Z 0 where Δ′ = ψ∗Δg. Hence those curves

contracted in each step of this minimal model program over Z have trivial intersection

with KXg + Δg and negative intersection with Ag. In particular, this shows that X′ is a

minimal model of (Xg, Δg + tAg) over Z for all t ∈ (0, t0]. Since Δ′ + t0A′ with A′ = ψ∗Ag

is big over U, there exists only finitely many (KX′ + Δ′ + t0A′)-negative extremal rays in

NE(X′/U) by [8, Corollary 3.8.2]. Hence by considering smaller t0 > 0, we can assume that

X′ is a minimal model of (Xg, Δg + tAg) over U for all t ∈ (0, t0]. Since being discrepancy-

negative is an open condition (cf. Definition 20), we may choose t0 > 0 sufficiently small

such that ψ ◦ φ is discrepancy-negative with respect to (X, Δ + tA) for all t ∈ (0, t0], and

hence X′ is a minimal model of (X, Δ + tA) over U for all t ∈ (0, t0]. This implies that

ψ ◦ φ contracts exactly the divisorial part of B(KX + Δ + t0A/U) which is contained in

B(KX +Δ/U) and is contracted by φ. Hence ψ contracts no divisors, and in particular ψ ◦ φ
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is discrepancy-negative with respect to (X, Δ + tA) for all t ∈ [0, t0]. This implies that X′ is

a minimal model of (X, Δ+ tA) over U for all t ∈ [0, t0]. Note that then B(KX +Δ+ tA/U)

has the same divisorial components for all t ∈ [0, t0].

Now choose 0 < t1 < t0 such that (X, Δ+ t1A) is klt and run a minimal model program

of (X, Δ + t1A) with scaling of A over U. By [8], the outcome φ : X ��� X̃ exists and is a

minimal model of (X, Δ + t1 A) over U. Since φ being discrepancy-negative with respect

to (X, Δ + tA) is an open condition and KX̃ + Δ̃ + tÃ := φ∗(KX + Δ + tA) is nef over U

for t ∈ [t1, t0], by picking t0 > 0 smaller if necessary we can assume that X̃ is a minimal

model of (X, Δ + tA) over U for all t ∈ [t1, t0]. Since B(KX + Δ + tA/U) has the same

divisorial components for all t ∈ [0, t0], X′ and X̃ are isomorphic in codimension one. For

each t ∈ [t1, t0], by Theorem 24 we may decompose the birational map X′ ��� X̃ over U

into possibly different sequences St of (KX′ + Δ′ + tA′)-flops over U as X′ and X̃ are both

minimal models of (X, Δ + tA) over U. Since Δ′ + tA′ is big over U for any t ∈ [t1, t0] and

each outcome of a (KX′ +Δ′ + tA′)-flop over U is also a minimal model of (X, Δ+ tA) over

U, by finiteness of models in [8] we can only have finitely many (KX′ + Δ′ + tA′)-flop over

U as t ranges in [t1, t0]. In particular, there is an uncountable subset T1 ⊆ [t1, t0] such that

for all t ∈ T1, the first (KX′ +Δ′+ tA′)-flops over U of the corresponding sequences St’s are

all the same. Note that those curves contracted by this flop then have trivial intersection

with A′ and hence this flop is a (KX′ + Δ′)-flop over U. As each sequence St is finite,

inductively we can find a t∗ ∈ [t1, t0] such that all the steps of the sequence St∗ connecting

X′ and X̃ are (KX′ + Δ′)-flops over U. Since X′ is a minimal model of (X, Δ) over U, we

then also have that X̃ is a minimal model of (X, Δ) over U. In particular, this shows that

the minimal model program of (X, Δ) with scaling of A over U terminates.

Corollary 27 Let (X, Δ) be a klt pair over U. Suppose that (X, Δ) has a good minimal model over

U, then there exists a t0 > 0 such that: if X̃ is a minimal model of (X, Δ + tA) over U for all

t ∈ [α, β] for some 0 ≤ α < β ≤ t0, then X̃ is a minimal model of (X, Δ + tA) over U for all

t ∈ [0, t0]. In particular, the set of all such minimal models X̃ is finite.

Proof. By Proposition 26, there exists a t0 > 0 and a birational map X ��� X′ over U

such that X′ is a minimal model of (X, Δ + tA) over U for all t ∈ [0, t0]. By the proof of

Proposition 26, there is a finite sequence of (KX′ + Δ′)-flops over U connecting X′ ��� X̃

which are also A′-trivial and hence (KX′ + Δ′ + tA′)-flops over U for all t ∈ [0, t0], where

Δ′ and A′ are the proper transforms of Δ and A on X′. Therefore the corollary follows.
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Note that X′ and the varieties given by (KX′ + Δ′)-flops over U appearing in the proof are

all minimal models of the big pair (X, Δ + t0A) over U and hence by [8] there can be only

finitely many of these.

A proper morphism f : X → Y of normal varieties is an algebraic fiber space if it is

surjective with connected fibers.

Proposition 28 Let f : X → Y be an algebraic fiber space of normal quasi-projective varieties

such that X is Q-factorial with klt singularities and projective over Y. Suppose that the general

fiber F of f has a good minimal model, then X is birational to some X′ over Y such that the general

fiber of f ′ : X′ → Y is a good minimal model.

Proof. Pick an ample divisor H on X and run a minimal model program of X with scaling

of H over Y. Suppose that contR : X → W is the contraction morphism corresponding to

an extremal ray R ∈ NE(X/Y). If R does not give an extremal contraction of F, then we

have contR|F = idF. Otherwise it is easy to see that contR and contR|F must be of the same

type (divisorial or small). However, note that contR|F may correspond to the contraction

of a face of NE(F) (instead of an extremal ray). Suppose that we have a sequence of

infinitely many flips which are nontrivial on the general fiber F with ti > ti+1 > 0 such that

KFi + tHi|Fi is nef for all t ∈ [ti+1, ti]. Since F has a good minimal model, by Corollary 27

the set of such Fi’s is finite (modulo isomorphisms) and each Fi is a good minimal model

of F. We get a contradiction by the same argument as in the last step of the proof of [8,

Lemma 4.2]. Hence after finitely many steps, we may assume that all flips are trivial on

the general fiber, and so we get an algebraic fiber space f ′ : X′ → Y such that the general

fiber is a good minimal model.

3.4 Main theorem

We start with a lemma concerning the negativity property of a “degenerate” divisor.

The following definition is taken from [41].

Definition 29 Let f : X → Y be a proper surjective morphism of normal varieties and let D be an

effective Weil R-divisor. Then

• D is f -exceptional if codim(Supp( f (D))) ≥ 2.

• D is of insufficient fiber type if codim(Supp( f (D))) = 1 and there exists a prime divisor

Γ � Supp(D) such that f (Γ) ⊆ Supp( f (D)) has codimension one in Y.
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In either of the above cases, we say that D is degenerate. In particular, a degenerate divisor is

always assumed to be effective.

Lemma 30 Let f : X → Y be an algebraic fiber space of normal projective varieties such that X is

Q-factorial. For a degenerate Weil divisor D on X, we can always find a component D̃ ⊆ Supp(D)

which is covered by curves contracted by f and intersecting D negatively. In particular, we have

D̃ ⊆ B−(D/Y), the diminished base locus of D over Y.

Proof. Write D = ΣriDi with ri > 0 and Di ∈ Div(X) prime.

Case 1: Suppose D is f -exceptional, and hence dim Y ≥ 2. Cutting by dim f (D) general

hyperplanes on Y and by dim X − dim f (D)− 2 general hyperplanes on X, we reduce to

a birational morphism of surfaces with E = ΣrjẼj, where Ẽj = Dj ∩ H1 ∩ ... ∩ Hn may be

nonreduced and reducible and E = D ∩ H1 ∩ ...∩ Hn. Note that we may assume P := f (E)

is a point, i.e. E is exceptional. By the Hodge index theorem (cf. [5, Corollary 2.7]), the

intersection matrix of irreducible components of f−1(P) is negative-definite. So E2 < 0,

and hence (Ẽj.D) = (Ẽj.E) < 0 for some j. In particular, (Ẽj.Dj) < 0 and Dj is covered by

curves intersecting D negatively.

Case 2: Suppose D is of insufficient fiber type. Cutting by dim Y − 1 general hyper-

planes on Y and then by dim X − 2 general hyperplanes on X, we reduce to a morphism

from a surface to a curve with E = ΣrjẼj supported on fibers, where Ẽj = Dj ∩ H1 ∩ ...∩ Hn

may be non-reduced and reducible and E = D ∩ H1 ∩ ... ∩ Hn. By [5, Corollary 2.6], we

have (E)2 ≤ 0. But Supp(E) cannot be the whole fiber. Hence we can find Γ an effective

divisor having no common components with E such that Supp(E + Γ) = f−1( f (E)). For

P := f ∗( f∗(E)), we can find a and b two positive real numbers such that aP ≤ E + Γ ≤ bP.

If E2 = 0, then E is nef and hence E.P = 0 implies E.(E + Γ) = 0. But we have E.Γ > 0

which implies E2 < 0, a contradiction. Thus E2 < 0 and the same argument as in case 1

applies.

To prove that Dj ⊆ B−(D/Y), we pick an ample divisor A on X and ε > 0 a small

rational number such that Ẽj.(D+ εA) < 0. Note that we also have Ẽj.(D + εA + f ∗R) < 0

for any R-Cartier divisor R on Y. In particular, this shows that Ẽj ⊆ B(D + εA/Y). As Ẽj

passes through a general point of Dj, we have Dj ⊆ B(D + εA/Y) ⊆ B−(D/Y).

Let f : X → Y be an algebraic fiber space. For an effective divisor Γ on X, we write

Γ = Γhor + Γver where Γhor and Γver are effective without common components such that

Γhor dominates Y and f∗Γver = 0 on Y, respectively.
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Theorem 31 Let X be a Q-factorial normal projective variety with nonnegative Kodaira dimension

and at most terminal singularities. Suppose the general fiber F of the Iitaka fibration has a good

minimal model. Then X has a good minimal model.

Proof. The theorem is certainly true for the case κ(X) = 0. For varieties of general type, the

theorem follows from [8] and the base point free theorem in [30]. Hence we may assume

0 < κ(X) < dim(X).

By [8], the canonical ring R(X) is a finitely generated C-algebra and hence there is an

integer d such that the truncated ring R[d](X) is generated in degree 1. Take a resolution

μ : X′ → X of X and |dKX|, then

• μ∗|mdKX| = |mM|+ mG with |mM| base point free and mG ≥ 0 the fixed divisor for

all m > 0,

• f := φ|M| : X′ → Y is birationally equivalent to the Iitaka fibration,

• KX′ = μ∗KX + E with E effective and μ-exceptional,

• dKX′ ∼ M + G + dE with G + dE effective and G + dE ⊆ B(KX′).

Write Γ := G + dE = Γhor + Γver with respect to f . By Proposition 28, after running a

minimal model program of X′ with scaling of an ample divisor over Y, we may assume

that the general fiber of f is a good minimal model. Moreover, we may assume that

B−(KX′/Y) contains no divisorial components. As the general fiber F of f has Kodaira

dimension zero, we have Γhor|F = (M + G + dE)|F ∼ (dKX′)|F ∼ dKF ∼Q 0 and hence

Γhor = 0. In particular, we may assume G + dE consists of only vertical divisors. Note that

the condition G + dE ⊆ B(KX′) still holds after steps of a minimal model program.

Consider T an effective divisor with Supp(T) ⊆ Supp(G+ dE) and the exact sequences

on Y

0 → f∗OX′((j − 1)T) → f∗OX′(jT) → Qj → 0,

with j ≥ 1 and Qj the cokernel. After tensoring with OY(k) for k sufficiently large, we

have Qj(k) is generated by global sections and H1(Y, f∗OX′((j − 1)T)⊗OY(k)) = 0. As

T ⊆ B(KX′) and OX′(M) = f ∗OY(1), we have for any j ≥ 0

H0(Y, f∗OX′(jT)⊗OY(k)) =H0(X′,OX′(kM + jT))

=H0(X′,OX′(kM)) = H0(Y,OY(k)).
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Hence the exact sequence of cohomological groups shows that H0(Y, Qj(k)) = 0 and then

Qj = 0. In particular, f∗OX′(jT) = OY for any j ≥ 0. Suppose that P := f∗(T)red is a

codimension one point on Y such that Supp(T) contains all divisors in X′ dominating P.

Note that we can find a big open subset U ⊆ Y such that the image of the exceptional

divisors contained in f ∗(P) is disjoint from U as it has codimension greater or equal to

two. Hence, there is a positive integer j such that f∗OX′(jT)|U ⊇ OY(P)|U . Since both

sheaves f∗OX′(jT) = OY and OY(P) are reflexive, we have an inclusion OY(P) ⊆ OY,

which is impossible. In particular, this shows that G + dE is of insufficient fiber type over

Y.

By Lemma 30, we can find a component of G + dE which is contained in B−(KX′/Y).

But this is impossible as B−(KX′/Y) contains no divisorial components. Then dKX′ ∼ M

with OX′(M) = f ∗OY(1) is base point free and hence X′ is a good minimal model of X by

Lemma 23 (as μ is a resolution of a terminal variety).

3.5 Iitaka’s Conjecture C

The original motivation of this work is Iitaka’s Conjecture C ([43, §11]).

Conjecture 32 If f : Xn → Ym is an algebraic fiber space of smooth projective varieties with

general fiber F, then we have

• Cn,m : κ(X) ≥ κ(F) + κ(Y), and

• C+
n,m : κ(X) ≥ κ(F) + Max{Var( f ), κ(Y)} if κ(Y) ≥ 0, where Var( f ) is the variation of f

(cf. [37, §6 and §7]).

Iitaka’s Conjecture C has been established in many cases. For example,

• C+
n,m holds if the general fiber F of f has a good minimal model by [20], and

• Cn,m holds if the general fiber F of f is of maximal Albanese dimension by [14].

A related conjecture, Viehweg’s Question Q(f) (cf. [37, §7]) asks whether f∗(ωk
X/Y) big for

some positive integer k, where f : X → Y is an algebraic fiber space of maximal variation,

i.e., Var( f ) = dim(Y)? It is known that a positive answer to Q( f ) implies C+
n,m. Kawamata

proved in [20] that Q( f ) holds when the general fiber F has a good minimal model. A

question of Mori in [37, Remark 7.7] then asks if Q( f ) holds by assuming that the general

fiber of the Iitaka fibration of F has a good minimal model. Hence as a corollary of the

Theorem 31, we obtain a positive answer to Mori’s question:
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Corollary 33 Let f : X → Y be an algebraic fiber space of normal projective varieties with general

fiber F. Suppose that the general fiber of the Iitaka fibration of F has a good minimal model. Then

Iitaka’s Conjecture C holds on f .



CHAPTER 4

BOUNDING VOLUMES OF SINGULAR FANO

THREEFOLDS

Throughout this chapter, we work over field of complex numbers C. We recall the

definition of singularities of pairs and log Q-Fano pairs.

Definition 34 A pair (X, Δ) consists of a normal projective variety X and a boundary Δ, i.e., a

Q-divisor Δ with coefficients in [0, 1], such that KX + Δ is Q-Cartier. Let π : Y → X be a log

resolution of (X, Δ), the discrepancy a(E, X, Δ) of a divisor E on Y with respect to the pair (X, Δ) is

defined by a(E, X, Δ) = multE(KY − π∗(KX + Δ)). We say that (X, Δ) has only terminal (resp.

canonical) singularities if a(E, X, Δ) > 0 (resp. ≥ 0) for any π-exceptional divisor E on Y. We

say that (X, Δ) is klt (resp. ε-klt for some 0 < ε < 1) if a(E, X, Δ) > −1 (resp. > −1 + ε) for

any divisor E on Y. Note that smaller ε corresponds to worse singularities.

A pair (X, Δ) is (weak) log Q-Fano if the Q-Cartier divisor −(KX + Δ) is ample (resp. nef and

big).

For a klt pair (X, Δ) with κ(KX + Δ) = −∞, according to the log minimal model

program, there exists a birational map φ : X ��� Y and a morphism Y → Z such that for

Δ′ = φ∗Δ, the pair (Yz, Δ′
z) is log Q-Fano with ρ(Yz) = 1 for general z ∈ Z. In particular,

log Q-Fano pairs are the building blocks for pairs with negative Kodaira dimension. It is

also expected that the set of mildly singular Q-Fano varieties is bounded.

Definition 35 We say that a collection of varieties {Xλ}λ∈Λ is bounded if there exists h : X → S

a morphism of finite type of Noetherian schemes such that for each Xλ, Xλ
∼= Xs for some s ∈ S.

For example, the set of all the n-dimensional smooth Fano manifolds is bounded by

[28]. Boundedness is also known for terminal Q-Fano Q-factorial threefolds of Picard

number one by [21] and for canonical Q-Fano threefolds by [29]. However, if one considers

the set of all klt Q-Fano varieties with Picard number one of a given dimension, [35] and

[39] have shown that birational boundedness fails. The problem is that the category of
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klt singularities is too big to be bounded since, for example, it contains finite quotients of

arbitrarily large order. To get boundedness, one restricts to a smaller class of singularities,

known as ε-klt singularities. Precisely we have the following conjecture due to A. Borisov,

L. Borisov, and V. Alexeev, which is still open in dimension three and higher.

Conjecture 36 (Borisov-Alexeev-Borisov Conjecture) Fix 0 < ε < 1, an integer n > 0, and

consider the set of all n-dimensional ε-klt log Q-Fano pairs (X, Δ). The set of underlying varieties

{X} is bounded.

A. Borisov and L. Borisov establish the B-A-B Conjecture for toric varieties in [10]. V.

Alexeev establishes the two-dimensional B-A-B Conjecture in [1] with a simplified argu-

ment given in [2]. Our original motivation for studying the B-A-B Conjecture is that it is

related to the conjectural termination of flips in the minimal model program. According

to [9], the log minimal model program, the a.c.c.1 for minimal log discrepancies, and the

B-A-B Conjecture in dimension ≤ d implies termination of log flips in dimension ≤ d + 1

for effective pairs.

The following questions concerning log Q-Fano pairs (X, Δ) are relevant to the B-A-B

Conjecture:

(i) The Cartier index of KX + Δ of an n-dimensional ε-klt log Q-Fano pair (X, Δ) is

bounded from above by a fixed integer r(n, ε) depending only on n = dim X and ε;

(ii) The volume Vol(−(KX + Δ)) = (−(KX + Δ))n of an n-dimensional ε-klt log Q-Fano

pair (X, Δ) is bounded from above by a fixed integer M(n, ε) depending only on

n = dim X and ε;

(iii) (Batyrev Conjecture) For given positive integers n and r, consider the set of all n-

dimensional klt log Q-Fano pairs (X, Δ) with r(KX + Δ) a Cartier divisor. The set of

underlying varieties {X} is bounded.

It is clear that the B-A-B Conjecture follows from (i) and (iii). Note that recently C. Hacon,

J. McKernan, and C. Xu have announced a proof of the Batyrev Conjecture (iii). In general

it is very hard to establish (i). Ambro in [4] has proved (i) for toric singularities when the

boundaries have standard coefficients {1 − 1
� |� ∈ Z≥1} ∪ {1}. A necessary condition for

1An a.c.c. (respectively d.c.c.) set is a set of real numbers satisfying the ascending (descending) chain
condition, i.e., it contains no infinite strictly increasing (decreasing) sequences.
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(i) to hold is that we need to restrict the coefficients of boundaries to be in a fixed d.c.c.

set. A counterexample for the general statement is given by the set of pairs (P1, 1
N{pt})

for N ≥ 1.

For the convenience of the reader, we include a well-known argument (to the experts)

establishing the B-A-B Conjecture via condition (i) and (ii) in the cases Δ = 0 or ρ(X) = 1.

Proposition 37 Suppose that Δ = 0 or ρ(X) = 1, then the B-A-B Conjecture holds if both (i)

and (ii) above are true.

Proof. Suppose that Δ = 0 and let X be any ε-klt Q-Fano variety of dimension n. The

following statements together imply the B-A-B conjecture in this case:

1. The divisor N(−KX) is a very ample line bundle for a fixed N depending only on n

and ε;

2. The set of Hilbert polynomials F = {P(t) = χ(OX(−NKX)
⊗t)} associated to all

n-dimensional ε-klt Q-Fano varieties is finite.

Indeed, statements (1) and (2) imply that the set of n-dimensional ε-klt Q-Fano varieties

is contained in a finite union of Hilbert schemes �P(t)∈F HP(t), where each HP(t) is Noethe-

rian.

From (i), there is an upper bound r(n, ε) of the Cartier index of KX depending only on

n and ε. It follows that rKX is a line bundle for r = r(n, ε). By [23], | − mrKX| is base point

free for any m > 0 divisible by a constant N1(n) > 0 depending only on n = dim X. Since

| − mrKX| is ample and base point free for m > 0 sufficiently divisible, it defines a finite

morphism. By [25, Theorem 5.9], the map induced by | − lrKX| is birational for any l > 0

divisible by a constant N2(n) > 0 depending only on n = dim X. Since a finite birational

morphism of normal varieties is an isomorphism, it follows that there exists an effective

embedding by |M(−rKX)| for some fixed M > 0 depending only on n = dim X. Take

N = Mr, we have (1).

By [27], the coefficients of the Hilbert polynomial P(t) = h0(OX(tH)) of a polarized

variety (X, H) with H an ample line bundle can be bounded by the intersection numbers

|Hn| and |Hn−1.KX|. Since by (i) there exists an integer r = r(n, ε) > 0 depending only on

n = dim X and ε such that −rKX is an ample line bundle, set H = −rKX and apply (ii). It

follows that there are only finitely many Hilbert polynomials for the set of anti-canonically

polarized ε-klt Fano varieties {(X,−rKX)}.
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If ρ(X) = 1, then −(KX + Δ) being ample implies that −KX is also ample. It is clear

that X is also ε-klt and hence boundedness follows from the same proof as above.

An effective upper bound in (ii) is obtained for smooth Fano n-folds in [28] and for

canonical Q-Fano threefolds in [29]. In this work, we obtain an effective answer to question

(ii) in dimension two, i.e., for log del Pezzo surfaces.

Theorem 38 (Theorem 55) Let (X, Δ) be an ε-klt weak log del Pezzo surface. The anticanonical

volume Vol(−(KX + Δ)) = (KX + Δ)2 satisfies

(KX + Δ)2 ≤ max{64,
8
ε
+ 4}.

Moreover, this upper bound is in a sharp form: There exists a sequence of ε-klt del Pezzo surfaces

whose volume grows linearly with respect to 1/ε.

Let (X, Δ) be an ε-klt weak log del Pezzo surface and Xmin be the minimal resolution

of (X, Δ). Alexeev and Mori have shown in [2, Theorem 1.8] that ρ(Xmin) ≤ 128/ε5. Also

from [2, Lemma 1.2] (or see the proof of Theorem 55), an exceptional curve E on Xmin over

X has degree 1 ≤ −E2 ≤ 2/ε. When Δ = 0, since the Cartier index of KX is bounded from

above by the determinant of the intersection matrix (Ei.Ej) of the exceptional curves Ei’s

on Xmin over X, it follows that the Cartier index bound r(2, ε) in the statement (i) satisfies

r(2, ε) ≤ 2(2/ε)128/ε5
. (♦)

An upper bound of (KX + Δ)2 is implicitly mentioned in [1] but not clearly written down.

It is also not clear if the upper bound (♦) is optimal. In view of Theorem A, this seems

unlikely.

As a second result, we also obtain an upper bound of the volumes for ε-klt Q-factorial

log Q-Fano threefolds of Picard number one. Recall that a variety X is Q-factorial if each

Weil divisor is Q-Cartier.

Theorem 39 (Theorem 72) Let (X, Δ) be an ε-klt Q-factorial log Q-Fano threefold of ρ(X) = 1.

The degree −K3
X satisfies

−K3
X ≤ (

24M(2, ε)R(2, ε)

ε
+ 12)3,

where R(2, ε) is an upper bound of the Cartier index of KS for S any ε/2-klt log del Pezzo surface

of ρ(S) = 1 and M(2, ε) is an upper bound of the volume Vol(−KS) = K2
S for S any ε/2-klt log
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del Pezzo surface of ρ(S) = 1. Note that M(2, ε) ≤ max{64, 16/ε + 4} from Theorem A and

R(2, ε) ≤ 2(4/ε)128·25/ε5
from (♦).

For a Q-factorial ε-klt log Q-Fano pair (X, Δ) of ρ(X) = 1, since −(KX + Δ)3 ≤ −K3
X

and X is also ε-klt, by Theorem B we get an upper bound of the anticanonical volume

Vol(−(KX + Δ)) = −(KX + Δ)3. However, it is not expected that the bound in Theorem B

is sharp or in a sharp form.

Note that Q-factoriality is a technical assumption. However, this condition is natural

in the sense that starting from a smooth variety, each variety constructed by a step of the

minimal model program remains Q-factorial. In dimension two, normal surfaces with

rational singularities, e.g., klt singularities, are always Q-factorial.

Instead of using deformation theory of rational curves as in [29], the Riemann-Roch

formula as in [21], or the sandwich argument of [1], we aim to create isolated non-klt

centers by the method developed in [36]. The point is that deformation theory for rational

curves on klt varieties is much harder and so far no effective Riemann-Roch formula is

known for klt threefolds.

The rest of this chapter is organized as follows: In Section 4.1, we study non-klt centers.

In Section 4.2, we illustrate the general method in [36] for obtaining an upper bound of

anticanonical volumes in Theorem A and B. In Section 4.3, we review the theory of families

of non-klt centers in [36]. In Section 4.4, we study weak log del Pezzo surfaces and prove

Theorem A. In Section 4.5, we prove Theorem B.

4.1 Non-klt centers

For the theory of the singularities in the minimal model program, we refer to [30].

Definition 40 Let (X, Δ) be a pair. A subvariety V ⊆ X is called a non-klt center if it is the

image of a divisor of discrepancy at most −1. A non-klt place is a valuation corresponding to a

divisor of discrepancy at most −1. The non-klt locus Nklt(X, Δ) ⊆ X is the union of the non-klt

centers. If there is a unique non-klt place lying over the generic point of a non-klt center V, then we

say that V is exceptional. If (X, Δ) is not klt along the generic point of a non-klt center V, then

we say that V is pure.

The non-klt places/centers here are the log canonical (lc) places/centers in [36].

A standard way of creating a non-klt center on an n-dimensional variety X is to find

a very singular divisor: Fix p ∈ X a smooth point, if Δ is a Q-Cartier divisor on X with
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multpΔ ≥ n, then p ∈ Nklt(X, Δ). Indeed, consider the blow up π : Y = BlpX → X and

let E be the unique exceptional divisor with π(E) = p, then the discrepancy

a(E, X, Δ) = multE(KY − π∗(KX + Δ)) = (n − 1)− multE(π
∗(Δ)) ≤ −1,

as n − 1 = multE(KY − π∗KX) and multE(π
∗Δ) = multpΔ ≥ n.

We can find singular divisors by the following lemma.

Lemma 41 Let X be an n-dimensional complete complex variety and D be a divisor with the

property that hi(X,O(mD)) = O(mn−1) for all i > 0, e.g., D is big and nef. Fix a positive

rational number α with 0 < αn < Dn. For m � 0 and any x ∈ Xsm, there exists a divisor

Ex ∈ |mD| with multx(Ex) ≥ m · α.

Proof. This is [33, Proposition 1.1.31].

We will apply Lemma 41 to the case where (X, Δ) is an n-dimensional log Q-Fano pair:

Write (−(KX + Δ))n > (ωn)n for some rational number ω > 0, then as the cohomology

hi(X,O(−m(KX + Δ))) = 0 for m > 0 sufficiently divisible by the Kawamata-Viehweg

vanishing theorem, we can find for each p ∈ Xsm an effective Q-divisor Δp such that

Δp ∼Q −(KX + Δ)/ω and multp(Δp) ≥ n. In particular, p ∈ Nklt(X, Δ + Δp).

The non-klt centers satisfy the following Connectedness Lemma of Kollár and Shokurov,

which is simply a formal consequence of the Kawamata-Viehweg vanishing theorem and

is the most important ingredient in this work.

Lemma 42 Let (X, Δ) be a log pair. Let f : X → Z be a projective morphism with connected

fibers such that the image of every component of Δ with negative coefficient is of codimension at

least two in Z. If −(KX + Δ) is big and nef over Z, then the intersection of Nklt(X, Δ) with each

fiber Xz = f−1(z) is connected.

Proof. For simplicity, we assume that Z = Spec(C) is a point and (X, Δ) is log smooth, i.e.,

X is smooth and Δ has simple normal crossing support. Then the identity map of X is a

log resolution of (X, Δ) and Nklt(X, Δ) = �Δ�. Consider the exact sequence

· · · → H0(X,OX) → H0(X,O�Δ�) → H1(X,OX(−�Δ�)) → · · · .

Since −�Δ� = KX + {Δ} − (KX + Δ) and (X, {Δ}) is klt, we have H1(X,OX(−�Δ�)) = 0

by the Kawamata-Viehweg vanishing theorem as −(KX +Δ) is nef and big. Since we know

H0(X,OX) ∼= C, we see that Nklt(X, Δ) = �Δ� is connected.
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For the general case, see [13, Theorem 17.4].

Here is an example showing that −(KX + Δ) being nef and big is necessary in the

Connectedness Lemma 42.

Example 43 Let X be P1 × P1 and denote by F (resp. G) the fiber of the first (resp. second)

projection to P1. Consider Δ1 = F1 + F2 the sum of two distinct fibers of the first projection to P1

and Δ2 = F + G the sum of two fibers with respect to the two different projections to P1. Then

Nklt(X, Δ1) = F1 + F2 is not connected while Nklt(X, Δ2) = F + G is connected. Note that

−(KX + Δ1) is nef but not big while −(KX + Δ2) is nef and big.

Later on, we will produce not only non-klt centers but isolated non-klt centers. The

following theorem is the main technique that allows us to cut down the dimension of

non-klt centers.

Theorem 44 ([25, Theorem 6.8.1]) Let (X, Δ) be klt, projective and x ∈ X a closed point. Let D

be an effective Q-Cartier Q-divisor on X such that (X, Δ + D) is log canonical in a neighborhood

of x. Assume that Nklt(X, Δ + D) = Z ∪ Z′ where Z is irreducible, x ∈ Z, and x /∈ Z′. Set

k = dim Z. If H is an ample Q-divisor on X such that (Hk.Z) > kk, then there is an effective

Q-divisor B ≡ H and rational numbers 1 � δ > 0 and 0 < c < 1 such that

(1) (X, Δ + (1 − δ)D + cB) is non-klt in a neighborhood of x, and

(2) Nklt(X, Δ + (1 − δ)D + cB) = W ∪ W ′ where W is irreducible, x ∈ W, x /∈ W ′ and

dim W < dim Z.

4.2 A guiding example

The idea in [36] for obtaining an upper bound for the anticanonical volumes is to create

isolated non-klt centers and then use the Connectedness Lemma 42: For simplicity, we

assume that Δ = 0. Write (−KX)
n > (ωn)n for a positive rational number ω. For each

p ∈ Xsm, we can find an effective Q-divisor Δp ∼Q −KX/ω such that multpΔp ≥ n

and hence p ∈ Nklt(X, Δp). The observation is that if ω � 0, then for general p ∈ X,

p ∈ Nklt(X, Δp) can not be an isolated point. Indeed, if this is not true, then for two

general points p, q ∈ X, the set Nklt(X, Δp + Δq) would contain {p, q} as isolated non-klt

centers. But the divisor KX + Δp + Δq ∼Q (1 − 2
ω )(−KX) is nef and big for ω > 2. By the

Connectedness Lemma 42, Nklt(X, Δp + Δq) must be connected; a contradiction.
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Therefore, for general p ∈ X the minimal non-klt center Vp ⊆ Nklt(X, Δp) passing

through p is typically positive dimensional. We would like to show that the restricted

volume Vol(−KX|Vp) on the minimal non-klt center Vp is large when ω � 0. Hence, we

can cut down the dimension of non-klt centers by Theorem 44. After doing this finitely

many times, we get isolated non-klt centers and we are done.

In general, it is hard to find a lower bound of the restricted volume Vol(−KX|Vp) on

the minimal non-klt center Vp. We illustrate McKernan’s method by studying families of

non-klt centers to obtain a lower bound of the restricted volumes on the non-klt center of

an ε-klt log Q-Fano variety via the following guiding example, cf. [36].

Example 45 Let X be the projective cone over a rational normal curve of degree d ≥ 2 with the

unique singular point O ∈ X. The blow up π : Y = BlOX → X is a resolution of X where Y is a

P1-bundle f : Y → P1 over P1:

X Y ⊇

P1 �

Ft ∼= P1

t.

π

f

It is easy to show that

(a) KY = π∗KX + (−1+ 2/d)E, where E is the unique exceptional divisor and hence X is ε-klt

for ε = 1/d;

(b) X is Q-factorial of Picard number one and −KX ∼Q (d + 2)l is an ample Q-Cartier divisor,

where l is the class of a ruling of X. Hence X is an ε-klt del Pezzo surface;

(c) Vol(−KX) = d + 4+ 4/d is a linear function of d = 1/ε and provides the required example

in Theorem A.

Let p ∈ X be a general point. Then p is not the vertex O and the unique ruling lp passing

through p is the non-klt center of the log pair (X, lp), i.e., lp = Nklt(X, lp). Moreover, the proper

transform Fp of lp on Y is a fiber of the P1-bundle f : Y → P1. In this case, the P1-bundle structure

of Y is a covering family of non-klt centers of X since the map π : Y → X is dominant.
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For p, q ∈ X two general points, let lp and lq be the rulings passing through p and q respec-

tively. Consider the pair KY + (1− 2/d)E = π∗KX. By the Connectedness Lemma 42, the non-klt

locus Nklt(KY + (1 − 2/d)E + π∗(lp + lq)) containing Fp ∪ Fq is connected as

−(KY + (1 − 2/d)E + π∗(lp + lq)) = −π∗(KX + lp + lq) ≡ dπ∗l

is nef and big. In fact, the fibers Fp and Fq are connected in Nklt(KY + (1− 2/d)E + π∗(lp + lq))

by E as

Fp ∪ Fq ⊆ Nklt(KY + (1 − 2/d)E + π∗(lp + lq)) ⊆ π−1(Nklt(KX + lp + lq)) = Fp ∪ Fq ∪ E,

where the second inclusion follows from the definition of non-klt centers. In particular,

multE(π
∗(lp + lq)) ≥ 2

d
= 2ε.

By symmetry, π∗lp must contribute multiplicity at least 1/d = ε to the component E (and in fact

is exactly 1/d in this case), i.e.,

π∗lp ≥ εE. (4.1)

Note that

lp ∼Q

−KX√
d · Vol(−KX)

. (4.2)

By intersecting both sides of (4.1) with a general fiber F of f : Y → P1, we get for the ruling

l = π∗(F),
1√

d · Vol(−KX)
degl(−KX) = π∗lp.F ≥ εE.F. (4.3)

Since F is a general fiber meeting the horizontal divisor E at a smooth point, E.F ≥ 1. (In this case

E.F = 1.) Combining all of these, we obtain a lower bound of the restricted volume degl(−KX),

degl(−KX) ≥ ε
√

d · Vol(−KX).

Note that since in this case degl(−KX) = −KX.l = −KY.π∗l ≤ 2, it follows that the anticaonical

volume Vol(−KX) = K2
X ≤ 4d = 4/ε.

In summary, the method of getting an upper bound of the anticanonical volumes is to

obtain a lower bound of the restricted volume Vol(−(KX + Δ)|Vp) on the non-klt centers

Vp, which can be outlined in the following steps:

• Suppose that Vol(−(KX + Δ)) = (−(KX + Δ))n > (ωn)n for a positive rational

number ω. We will show that ω > 0 can not be arbitrarily large.
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• For general p ∈ X, choose

Δp ∼Q

−(KX + Δ)
ω

,

so that p ∈ Nklt(X, Δ + Δp). Let Vp ⊆ Nklt(X, Δ + Δp) be the minimal non-klt center

containing p.

• Construct covering families of non-klt centers by “lining up” (part of the) non-klt

centers {Vp}, see Section 4.3. This is the generalization of the P1-bundle structure in

the Example 45 and is called a covering families of tigers in [36].

• Use the Connectedness Lemma 42 to obtain a lower bound of the restricted volume

Vol(−(KX + Δ)|Vp)) = (−(KX + Δ)|Vp))
dim Vp ,

on the non-klt center Vp in terms of ω and ε. This is the most technical part.

• If ω � 0, then we cut down the dimension of non-klt centers by Theorem 44. After

finitely many steps, we get isolated non-klt centers and hence a contradiction to the

Connectedness Lemma 42.

The difficulty of this argument arises in dimension three in many places. First of all, the

non-klt centers can be of dimension one or two and we have to deal with them case by

case. When we have one dimensional covering families of tigers, it is subtle to detect the

contribution of the ε-klt condition from some horizontal subvariety, which is analogous to

the exceptional curve E in Example 45. This is done by applying a differentiation argument

to construct a better behaved covering family of tigers, see 4.5.3. In case we have two-

dimensional non-klt centers, complications arise for computing intersection numbers as

the total space Y of a covering family of tigers is in general not Q-factorial. This can be

fixed by replacing Y with a suitable birational model. To finish the proof, we also need to

run a relative minimal model on the covering family of tigers and study the geometry of

all possible outcomes.

4.3 Covering families of tigers

The main reference for this section is [36].

Definition 46 ([36, Definition 3.1]) Let (X, Δ) be a log pair with X projective and D a Q-Cartier

divisor. We say that pairs of the form (Δt, Vt) form a covering family of tigers of dimension k

and weight ω if all of the following hold:
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1. there is a projective morphism f : Y → B of normal projective varieties such that the general

fiber of f over t ∈ B is Vt;

2. there is a morphism of B to the Hilbert scheme of X such that B is the normalization of its

image and f is obtained by taking the normalization of the universal family;

3. if π : Y → X is the natural morphism, then π(Vt) is a minimal pure non-klt center of

KX + Δ + Δt;

4. π is generically finite and dominant;

5. Δt ∼Q D/ω, where Δt is effective;

6. the dimension of Vt is k.

Note that by definition k ≤ dim X − 1 and π|Vt : Vt → π(Vt) is finite and birational. The

covering family of tigers is illustrated in the following diagram:

X Y

B

⊇

�

Vt

t.

π

f

We will sometimes also refer to Vt as the minimal non-klt center of (X, Δ + Δt).

For (X, Δ) a log Q-Fano variety, we will always assume that D = −λ(KX +Δ) for some

λ > 0. In particular, D is assumed to be big and semiample.

The existence of a covering family of tigers is achieved by constructing non-klt centers

at general points of X and then fitting a subcollection of them into a fiber space. In order

to fit the non-klt centers into a family, we use exceptional non-klt centers so that we patch

up the unique non-klt place associated to each of them. The following lemma allows us to

create exceptional non-klt centers.

Lemma 47 Let (X, Δ) be a log pair and let D be a big and semiample Q-Cartier divisor. Write

Dn > (ωn)n for some positive rational number ω. In order to find an upper bound of ω and

hence an upper bound of Vol(D) = Dn, for every p ∈ Xsm we may assume that there is a divisor

Δp ∼Q D/ω such that the unique minimal non-klt center Vp ⊆ Nklt(X, Δ + Δp) containing p is

exceptional.
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Proof. By Lemma 41, for any p ∈ Xsm we can find an effective divisor Δ′
p ∼Q

D
ω such that

multpΔ′
p ≥ n and hence p ∈ Nklt(X, Δ + Δ′

p).

Fix p ∈ Xsm, pick 0 < δp ≤ 1 the unique rational number such that (X, Δ + δpΔ′
p) is

log canonical but not klt at p. By [3, Proposition 3.2, Lemma 3.4], we can find an effective

divisor Mp ∼Q D and some rational number a > 0 such that for any rational number

0 < μ < 1, the pair (X, (1 − μ)(Δ + δpΔ′
p) + μΔ + μaMp) has a unique minimal non-klt

center Vp passing through p which is exceptional. If we write

Δp := (1 − μ)δpΔ′
p + μaMp ∼Q

1
ω′

p
D,

then

ω′
p =

ω

(1 − μ)δp + μaω
,

and (1 − μ)δp + μaω < 1 + 1/n for any n ≥ 1 if we pick 0 < μ � 1 sufficiently small.

Hence ω′
p > ω/(1+ 1/n). Since D is semiample, by adding a small multiple of D to Δp we

have Δp ∼Q D/ωn for ωn = ω/(1 + 2/n), and (X, Δ + Δp) has a unique minimal non-klt

center Vp passing through p which is exceptional. If there exists an upper bound of ωn

independent of n, then by taking n → ∞, we get the same upper bound of ω.

The following proposition is the construction of the covering family of tigers, see [36,

Lemma 3.2] or [42, Lemma 3.2].

Proposition 48 Let (X, Δ) and Δp be the same as in Lemma 47. Then there exists a covering

family of tigers π : Y → X of weight ω with Vp ⊆ Nklt(X, Δ + Δp) the unique minimal non-klt

center passing through p.

Proof. Choose m > 0 an integer such that mD/ω is integral and Cartier and let B be

the Zariski closure of points {mΔp|p ∈ Xsm} ∈ |mD/ω|. Replace B by an irreducible

component which contains an uncountable subset Q of B such that the set {p ∈ X|Δp ∈ Q}
is dense in X. This is possible since the Δp’s cover X. Let H ⊆ X × |mD/ω| be the universal

family of divisors defined by the incidence relation and HB → B the restriction to B. Take

a log resolution of HB ⊆ X × B over the generic point of B and extend it over an open

subset U of B. By assumption the log resolution over the generic point of B has a unique

exceptional divisor of discrepancy −1, since this is true over Q ⊆ B. Let Y be the image of

this unique exceptional divisor in X × B with the natural projection map π : Y → X. By

construction π : Y → X dominates X.
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Possibly taking a finite cover of B and passing to an open subset of B, we may assume

that any fiber Vt of f : Y → B over t ∈ B is a non-klt center of KX + Δ + Δt. Possibly

passing to an open subset of B, we may assume that f : Y → B is flat and B maps into the

Hilbert scheme. Replace B by the normalization of the closure of its image in the Hilbert

scheme and Y by the normalization of the pullback of the universal family. After possibly

cutting by hyperplanes in B, we may assume that π is generically finite and dominant. The

resulting family is the required covering family of tigers.

In fact, the original construction of covering families of tigers is carried out in a more

general setting. For a topological space X, we say that a subset P is countably dense if P is

not contained in the union of countable many closed subsets of X.

Corollary 49 Let (X, Δ) be a log pair and let D be a big Q-Cartier divisor. Let ω be a positive

rational number. Let P be a countably dense subset of X. If for every point p ∈ P we may find a

pair (Δp, Vp) such that Vp is a pure non-klt center of KX + Δ + Δp, where Δp ∼Q D/ωp for some

ωp > ω, then we may find a covering family of tigers of weight ω together with a countably dense

subset Q of P such that for all q ∈ Q, Vq is a fiber of π.

Proof. See [36, Lemma 3.2] or [42, Lemma 3.2].

As noted in Example 45, we can assume that the covering families of tigers under our

consideration are always positive dimensional.

Lemma 50 Let (X, Δ) be a projective klt pair and D = −(KX + Δ) be a big and nef Q-Cartier

divisor. A covering family of tigers (Δt, Vt) of weight ω > 2 is positive dimensional, i.e., we have

k = dim Vt > 0.

Proof. This is [36, Lemma 3.4] and we include the proof for the convenience of the reader.

Suppose that there exists a zero-dimensional covering family of tigers of weight ω > 2.

For p1 and p2 general, there are divisors Δ1 and Δ2 with Δi ∼Q D/ω such that pi is an

isolated non-klt center of KX + Δ + Δi. As p1 and p2 are general, it follows that Δ2 does not

contain p1 and Nklt(X, Δ + Δ1 + Δ2) contains p1 and p2 as disconnected non-klt centers.

But −(KX + Δ + Δ1 + Δ2) ∼ (1 − 2
ω )D is nef and big if ω > 2. This contradicts Lemma 42.

Recall that we want to cut down the dimension of non-klt centers via Theorem 44. To

do so, we study the associated covering families of tigers and obtain a lower bound of

restricted volumes on the non-klt centers. If the new non-klt centers after cutting down
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the dimension are still positive dimensional, then we have to create new covering families

of tigers associated to these new non-klt centers and repeat the process. The following

proposition enables us to create covering families of tigers of new non-klt centers after

cutting down the dimension.

Proposition 51 Let (X, Δ) be a log pair and let D be a Q-Cartier divisor of the form A + E where

A is ample and E is effective. Let (Δt, Vt) be a covering family of tigers of weight ω and dimension

k. Let At be A|Vt . If there is an open subset U ⊆ B such that for all t ∈ U we may find a covering

family of tigers (Γt,s, Wt,s) on Vt of weight ω′ with respect to At, then for (X, Δ) we can find a

covering family of tigers (Γs, Ws) of dimension less than k and weight

ω′′ =
1

1/ω + 1/ω′ =
ωω′

ω + ω′ .

Proof. This is [36, Lemma 5.3].

We will apply Proposition 51 with the ample divisor D = −(KX + Δ). In the process

of obtaining lower bound of the restricted volume on the non-klt centers, if we have

one-dimensional non-klt centers, then we can control the restricted volume of D, cf. [36,

Lemma 5.3].

Corollary 52 Let (X, Δ) be a log pair and let D be an ample divisor. Let (Δt, Vt) be a covering

family of tigers of weight ω > 2 and dimension one. Then deg(D|Vt) ≤ 2ω/(ω − 2).

Proof. Suppose that deg(D|Vt) > 2ω/(ω − 2). By Lemma 47 and Corollary 49, we may

find a covering family (Γt,s, Ws,t) of tigers of weight ω′ > 2ω/(ω − 2) and dimension zero

on Vt. By Proposition 51, there exists a covering family of tigers of dimension zero and

weight

ω′′ =
ωω′

ω + ω′ > 2,

for X. This contradicts Lemma 50.

4.4 Log Del Pezzo surfaces

Let (X, Δ) be an ε-klt weak log del Pezzo surface. The minimal resolution π : Y → X of

(X, Δ) is the unique proper birational morphism such that Y is a smooth projective surface

and KY + ΔY = π∗(KX + Δ) for some effective Q-divisor ΔY on Y. Note that minimal
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resolutions always exist for two-dimensional log pairs. It is easy to see that (Y, ΔY) is also

an ε-klt weak log del Pezzo surface with volume

Vol(Y, ΔY) = (KY + ΔY)
2 = (KX + ΔX)

2 = Vol(X, ΔX).

Replacing (X, Δ) by its minimal resolution, we can assume that X is smooth.

Write (KX + Δ)2 > (2ω)2. For a general point p ∈ X, let Δp ∼Q −(KX + Δ)/ω be an

effective Q-divisor constructed from Lemma 41 such that p ∈ Nklt(X, Δ + Δp). Assume

that ω > 2. By Lemma 50, the unique minimal non-klt center Fp of (X, Δ + Δp) containing

p is one dimensional. Note that for general p ∈ X, Fp ≤ Δp.

Lemma 53 For a very general point p ∈ X, the numerical class F := Fp on X is well-defined and

F is nef.

Proof. The effective integral one cycles Fp satisfy Fp ≤ Δp ∼Q −(KX + Δ)/ω and hence

form a bounded set in the Mori cone of curves. As C is uncountable, for p ∈ X a very

general point the numerical class F := Fp is well-defined. Since {Fp} moves, the class F is

nef.

The following lemma shows that if we assume the weight ω is large, then the non-klt

centers {Fp} on X already possess a nearly fiber bundle structure analogous to a covering

family of tigers.

Lemma 54 Assume that ω > 3, then F2 = 0, i.e. Fp ∩ Fq = ∅ for p, q ∈ X two very general

points.

Proof. Assume that Fp ∩ Fq �= ∅ for p, q ∈ X two very general points. We can assume that

p /∈ Δq as p ∈ X is very general. Since by Lemma 54 the curve class F = Fp is nef, for

H = −(KX + Δ)/ω we have

1 ≤ Fp.Fq = Fp.F ≤ Δp.F = deg(H|Fp),

where the first inequality is true since X is smooth. Since H is big and nef, we can cut

down the dimension of the non-klt centers by Theorem 442.

To be precise, pick 0 < δ1 ≤ 1 such that the pair (X, Δ + δ1Δp) is log canonical

but not klt at p. If (X, Δ + δ1Δp) = {p}, then this contradicts the Connected Lemma

2By adding a small multiple of −(KX + Δ), we may assume that the inequality deg(H|Fq ) ≥ 1 is strict with
a smaller modified ω and hence Theorem 44 applies.
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42 as p /∈ Δq and the non-klt locus Nklt(X, Δ + δ1Δp + Δq) containing p and Fq is dis-

connected, while the divisor −(KX + Δ + δ1Δp + Δq) is nef and big. Hence we may as-

sume that Nklt(X, Δ + δ1Δp) is one dimensional in a neighborhood of p. In particular,

Fp ⊆ Nklt(X, Δ + δ1Δp) is the minimal non-klt center containing p. By Theorem 44, there

exists rational numbers 0 < δ � 1, 0 < c < 1, and an effective Q-divisor Bp ≡ H such

that Nklt(X, Δ + (1 − δ)δ1Δp + cBp) = {p} in a neighborhood of p. It follows that the set

of non-klt centers Nklt(X, Δ + (1− δ)δ1Δp + cBp + Δq) containing p and Fq is disconnected

but the divisor −(KX + Δ + (1 − δ)δ1Δp + cBp + Δq) is nef and big as ω > 3. This again

contradicts the Connected Lemma 42.

Theorem 55 Let (X, Δ) be an ε-klt weak log del Pezzo surface. Then the anticanonical volume

Vol((−KX + Δ)) = (KX + Δ)2 satisfies

(KX + Δ)2 ≤ max{64,
8
ε
+ 4}.

Proof. Replacing (X, Δ) by its minimal resolution, we may assume that X is smooth. Write

(KX + Δ)2 > (2ω)2. For each general point p ∈ X, by Lemma 41, there exists an effective

Q-divisor Δp ∼Q −(KX + Δ)/ω such that p ∈ Nklt(X, Δ + Δp). From Lemma 50, we

may assume that ω > 2 and the unique minimal non-klt center Fp ⊆ Nklt(X, Δ + Δp)

containing p is one dimensional. Note that Fp ≤ Δp for general p ∈ X. By Lemma 53 and

54, we may assume that ω > 3 and for very general p ∈ X the numerical class F of Fp is

well-defined and nef with F2 = 0.

For two very general points p, q ∈ X, Δp.Δq > 0 and hence Fp = Supp(Fp) � Supp(Δp):

Otherwise Δq ≡ Δp ≤ NFp for some N > 0 and 0 < Δp.Δq ≤ N2F2
p = N2F2 = 0,

a contradiction. By the Connectedness Lemma 42, Nklt(X, Δ + Δp + Δq) ⊇ Fp ∪ Fq is

connected. Denote Ep = Supp(Δp)− Fp �= 0. By Lemma 54, Fp ∩ Fq = ∅ and hence Ep

must contain a connected curve E ≤ Ep such that Fp.E �= 0, Fq.E �= 0, and the set

Nklt(X, Δ + Δp + Δq) ⊇ Fp ∪ Fq ∪ E. Furthermore, we can assume that E is irreducible

since E.Fq �= 0 as Fq ≡ Fp for q ∈ X a very general point.

Suppose that E2 ≥ 0 and hence E is nef. Since Nklt(X, Δ + Δp + Δq) ⊇ Fp ∪ Fq ∪ E, we

have Δ + Δp + Δq ≥ E and (Δ + Δp + Δq − E).E ≥ 0. For H = −(KX + Δ)/ω, we see that

2 ≥ 2 − 2ga(E) ≥− (KX + E).E − (Δ + Δp + Δq − E).E

=− (KX + Δ + Δp + Δq).E

=(ω − 2)H.E.
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Write Δp = Δ′
p + αE where Δ′

p ∧ E = 0, Δ′
p ≥ Fp, and α > 0, we have

H.E = Δp.E = (Δ′
p + αE).E ≥ Fp.E ≥ 1.

The last inequality follows from the fact that X is smooth and Fp.E > 0. Combine the two

inequalities above, we obtain ω ≤ 4.

Hence we may assume that E2 < 0, and thus

−2 ≤ 2ga(E)− 2 = (KX + E).E

= (KX + Δ).E + (1 − ε − aE)E2 − Δ′.E + εE2 ≤ εE2,

where Δ = Δ′ + aEE with Δ′ ∧ E = 0 and aE ∈ [0, 1− ε) by the ε-klt condition. This implies

that 1 ≤ −E2 ≤ 2/ε, where the first inequality follows from the fact that E2 ∈ Z as X is

smooth. Since F2 = 0 for F the numerical class of Fp where p ∈ X is very general, by

Nakai’s criterion the divisor Hs = F + sE with 0 < s ≤ 1/(−E2) is nef and big. By the

Hodge index theorem (see [18, V 1.1.9(a)]), we get the inequality

(KX + Δ)2 ≤ (−(KX + Δ).Hs)2

H2
s

. (4.4)

From Δ.F ≥ 0 and F2 = 0, we have that

−(KX + Δ).F ≤ −(KX + F).F ≤ 2. (4.5)

Also for Δ = Δ′ + aEE with Δ′ ∧ E = 0 and aE ∈ [0, 1 − ε), we have that

−(KX + Δ).E =− KX.E − Δ′.E − aEE2

≤E2 + 2 − aEE2 = (aE − 1)(−E2) + 2 ≤ 2 − ε(−E2). (4.3)

Put s = 1/(−E2), all together we get

(KX + Δ)2 ≤ (−(KX + Δ).(F + sE))2

H2
s

≤ (2 + s(2 − ε(−E2)))2

2sE.F + s2E2

≤ (−E2)(2 − ε +
2

−E2 )
2

= (−E2)(2 − ε)2 + 4(2 − ε) +
4

−E2

≤ 2
ε
(2 − ε)2 + 4(2 − ε) + 4

=
8
ε
+ 4 − 2ε
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where the first inequality is (4.4), the second inequality follows from (4.5), (4.3), and F2 = 0,

the third inequality is given by ignoring the term sE.F ≥ 0, and the last inequality uses

1 ≤ −E2 ≤ 2/ε.

Remark 56 Note that by applying Corollary 52 one can only obtain an upper bound of order 1/ε2.

Hence Theorem 55 is a nontrivial result.

4.5 Log Fano threefolds of Picard number one

Let (X, Δ) be an ε-klt Q-factorial log Q-Fano threefold of Picard number ρ(X) = 1.

Note that by hypothesis X is ε-klt and −KX is ample. Moreover, we have the relation that

−K3
X ≥ Vol(−(KX + Δ)) = −(KX + Δ)3. Hence it is sufficient to assume that X is an

ε-klt Q-factorial Q-Fano threefold of Picard number ρ(X) = 1 and to find an upper bound

of Vol(−KX) = −K3
X. We will obtain an upper bound of the anticanonical volumes by

studying covering families of tigers. The weight of any covering families of tigers in our

study will always be the weight with respect to −KX.

Let X be an ε-klt Q-factorial Q-Fano threefold of Picard number ρ(X) = 1 and write

the anticanonical volume Vol(−KX) = −K3
X > (3ω)3 for some positive rational number

ω. Denote D = −2KX, we have D3 > (6ω)3. By Lemma 41, we can fix an affine open

subset U ⊆ X such that for each p ∈ U there exists an effective divisor Δp ∼Q D/ω with

multpΔp ≥ 6. We pick divisors Δp’s in the following systematic way so that we can control

their multiplicities uniformly.

4.5.1 Construction

Let ΔU ⊆ U × U be the diagonal and IZ be the ideal sheaf of Z = ΔU ⊆ X × U. For

each p ∈ U, by the existence of Q-divisor Δp ∼Q D/ω with multpΔp ≥ 6, there exists

mp > 0 such that Lmp = mpD/ω is Cartier and H0(X, Lmp ⊗ I⊗6mp
p ) �= 0. In particular,

we can write U = ∪Um where m > 0 runs through all sufficiently divisible integers such

that Lm = mD/ω is Cartier and Um = {p ∈ U|H0(X, Lm ⊗ I⊗6m
p ) �= 0}. Moreover, each

Um is locally closed in X by [18, III, Theorem 12.8] and X = ∪Um. Since the base field C

is uncountable, X can not be a countable union of locally closed subsets. Thus there exists

some m > 0 such that Um is dense in X.

Fix an m > 0 such that Lm = mD/ω is Cartier and Um = {p ∈ U|H0(X, Lm ⊗ I⊗6m
p ) �= 0}

is dense in X. Denote prX : X × U → X and prU : X × U → U the projection maps. Since
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prU : X ×U → U is flat, by [18, III,Theorem 12.11], after restricting to a smaller open affine

subset of U, we can assume that the map

(prU)∗(pr∗X Lm ⊗ I⊗6m
Z )⊗ C(p) → H0(X, Lm ⊗ I⊗6m

p ),

is an isomorphism for each p ∈ U where Ip is the ideal sheaf of p ∈ U. Since Um is dense

in U, the sheaf (prU)∗(pr∗X Lm ⊗ I⊗6m
Z ) �= 0 on U and hence H0(X ⊗ U, pr∗X L ⊗ I⊗6m

Z ) �= 0

as U is affine. Let s ∈ H0(X ⊗ U, pr∗X L ⊗ I⊗6m
Z ) be a nonzero section with F = div(s)

the corresponding divisor on X × U. For each p ∈ U, denote Fp = F ∩ (X × {p}) the

associated divisor on X ∼= X × {p}. Since multZ (F) ≥ 6m, by Lemma 57 below, the

Q-divisor Δp = Fp/m ∼Q D/ω on X satisfies multpΔp ≥ 6 for general p ∈ U.

Lemma 57 ([33, Lemma 5.2.11]) Let g : M → T be a morphism of smooth varieties, and suppose

that Z ⊆ M is an irreducible subvariety dominating T:

Z

T.

M

g

Let F ⊆ M be an effective divisor. For a general point t ∈ T and an irreducible component Z′
t ⊆ Zt,

multZ′
t
(Mt, Ft) = multZ (M, F), where multZ (M, F) is the multiplicity of the divisor F on M

along a general point of the irreducible subvariety Z ⊆ M and similarly for multZ′
t
(Mt, Ft).

For a given collection of Q-divisors {Δp = Fp/m ∼Q D/ω|p ∈ U general} associated

to a nonzero section in H0(X ⊗ U, pr∗X L ⊗ I⊗6m
Z ) as above, by Lemma 47, we can modify

the Δp’s so that the unique non-klt centers Vp ⊆ Nklt(X, Δp) passing through p are excep-

tional. By Lemma 48 (or in general Corollary 49), we can construct covering families of

tigers from these divisors.

In order to obtain an upper bound of ω, which is sufficient for bounding the anticanoni-

cal volumes, we will pick up a “well-behaved” nonzero section s ∈ H0(X ⊗U, p∗L⊗I⊗6m
Z )

and study the corresponding covering families of tigers.

4.5.2 Cases

By Section 4.5.1, there exists an open affine subset U ⊆ X and an integer m > 0 such

that H0(X ⊗ U, pr∗X L ⊗ I⊗6m
Z ) �= 0. Let s ∈ H0(X × U, pr∗X L × I⊗6m

Z ) be a nonzero section
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with divisor F = div(s) on X × U and {Δp = Fp/m ∼Q D/ω|p ∈ U} be the associated

collection of Q-divisors. We consider two cases:

1. (Small multiplicity) For each irreducible component W of Supp(F) passing through

Z , multW (F) ≤ 3m, i.e., for general p ∈ U we have multW(Δp) ≤ 3 for any irre-

ducible component W of Supp(Δp) passing through p. After differentiating F, we

will construct a “well-behaved” covering family of tigers of dimension one. We will

derive an upper bound of ω by studying this covering family of tigers. See Section

4.5.3.

2. (Big multiplicity) There exists an irreducible component W of Supp(F) passing

through Z with multiplicity multW (F) > 3m, i.e., for general p ∈ U we have

multW(Δp) > 3 for some irreducible component W of Supp(Δp) passing through

p. We will construct a covering family of tigers of dimension two and derive an

upper bound of ω by studying the geometry of this covering family of tigers. See

Section 4.5.4.

To pick a “well-behaved” nonzero section in H0(X ⊗ U, pr∗X L ⊗ I⊗6m
Z ), we will apply

the following proposition.

Proposition 58 ([33, Proposition 5.2.13]) Let X and U be smooth irreducible varieties, with U

affine, and suppose that Z ⊆ W ⊆ X × U are irreducible subvarieties such that W dominates

X. Fix a line bundle L on X, and suppose we are given a divisor F ∈ |pr∗X(L)| on X × U. Write

l = multZ (F) and k = multW (F). After differentiating in the parameter directions, there exists a

divisor F′ ∈ |pr∗X(L)| on X ×U with the property that multZ (F′) ≥ l − k, and W � Supp(F′).

4.5.3 Small multiplicity

Let X be an ε-klt Q-factorial Q-Fano threefold of Picard number one and write the

anticanonical volume Vol(−KX) = −K3
X > (3ω)3 for some positive rational number

ω. Denote D = −2KX, we have D3 > (6ω)3. By Section 4.5.1, there is an integer

m > 0 such that L = mD/ω is Cartier and an open affine subset U ⊆ X such that

H0(X × U, pr∗X L ⊗ I⊗6m
Z ) �= 0. We fix a nonzero section s ∈ H0(X × U, pr∗X L ⊗ I⊗6m

Z ) with

F = div(s) on X × U.
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Proposition 59 With the set up above. Assume that ω > 4. If we are in the case where all

the irreducible components W of Supp(F) passing through Z satisfy multW (F) ≤ 3m, then

ω < 8/ε + 4. In particular, there is an upper bound for the volume

Vol(−KX) = −K3
X ≤ (

24
ε

+ 12)3.

Proof. Let M be the maximum of multW (F) among all the irreducible components W
of Supp(F) passing through Z . Then M ≤ 3m by the hypothesis. For a fixed irreducible

component W of Supp(F) passing through Z , we can apply Proposition 58 to F. We obtain

a divisor F′ ∈ |pr∗X(L)⊗ I⊗6m−M
Z | with the property that

multZ (F′) ≥ (6m − M) ≥ 3m, and W � Supp(F′).

Since there are only finitely many irreducible components of Supp(F) passing through Z ,

by taking a generic differentiation, it follows that for general F′′ ∈ |pr∗X(L)⊗ I⊗6m−M
Z | we

have W � Supp(F′′) for any irreducible component W of Supp(F) passing through Z . In

particular, the base locus Bs(|pr∗X L ⊗ I⊗6m−M
Z |) contains no codimension one components

in a neighborhood of Z .

Let G be a general divisor in |pr∗X L ⊗ I⊗6m−M
Z | and Δp = Gp/m for p ∈ U general

the corresponding Q-divisors on X. It follows that p ∈ Nklt(KX + Δp) as multpΔp ≥ 3.

The minimal non-klt center Vp ⊆ Nklt(KX + Δp) passing through p must be positive

dimensional by Lemma 50 as the weight of Δp is ω/2 > 2. Note that we may replace

|pr∗X L ⊗ I⊗6m−M
Z | by |pr∗X L⊗k ⊗ I⊗k(6m−M)

Z | for any k ≥ 1 and hence we may assume that

m � 0. In particular, we have 0 ≤ multWΔp � 1 for W any irreducible component of

Supp(Δp), and Vp can be only one-dimensional.

Let π : Y → X and f : Y → B be a one dimensional covering family of tigers of weight

ω′ ≥ ω/2 constructed from the Δp’s above by Lemma 47 and Lemma 48. By abuse of

notation, we still denote Δp’s the divisors associated to this covering family of tigers.

Choose p, q ∈ U ⊆ X general. By Lemma 42, Nklt(π∗(KX + Δp + Δq)) ⊇ Vp ∪ Vq

on Y is connected and it contains a one-dimensional cycle Cp,q connecting Vp and Vq.

Since Y is normal, an irreducible component C of Cp,q intersecting Vq satisfies C ∩ Ysm �= ∅

for p, q ∈ X general. Since C is in Nklt(π∗(KX + Δp + Δq)), by symmetry, we have that

multC(π
∗(Δp)) > ε/2.

Suppose that Σ ⊆ Supp(π∗(Δp)) is an irreducible component containing C. If the

image f (Σ) = f (C) is a curve, then Vp ⊆ Σ = f−1( f (C)) as the general fiber of f : Y → B is
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irreducible. Moreover, we can assume that Σ is not π-exceptional as there are only finitely

many π-exceptional divisors and we choose p ∈ X, and hence Vp, general. Note that there

can only be one such Σ once we fix p ∈ X and C. In particular, Σ ⊆ Supp(π−1∗ (Δp)) is an

irreducible component containing Vp, and we can write π∗(Δp) = Δ′+λΣ with Δ′ ∧Σ = 0.

Moreover, λ ≤ 1/m, where m � 0 by our choice of Δp with 0 ≤ multWΔp � 1 for W any

irreducible component of Supp(Δp). Also, multCΣ = 1 since Σ is smooth along C as f (C)

passes through a general point of B and Y is smooth in codimension one.

Choose a general point b′ ∈ f (C), we have that Yb′ is a general fiber of f : Y → B and

2
ω
2 − 2

≥ 2
ω
(−KX.Vt) = π∗(Δp).Yb′ = (Δ′ + λΣ).Yb >

ε

2
− 1

m
,

where the first inequality follows from Corollary 52. The second inequality follows from

Σ.Yb ≥ 0 and multCΔ′ = multC(π
∗(Δp))− λmultCΣ. Since m � 0, we get ω ≤ 8/ε + 4.

Remark 60 In the proof of Proposition 59, the difficulty arises because in general the one cycle

C might be contained in Supp(π−1∗ (Δp)). In this case, one can not see the contribution of the

ε-klt condition from the intersection number π∗Δp.Yb for Yb a general fiber over f (C) ⊆ B as

Yb ⊆ Supp(π−1∗ (Δp)), cf., Example 45. The differentiation argument eliminates the contribution

of irreducible components of Supp(π−1∗ (Δp)) along Yb.

4.5.4 Big multiplicity

Again, let X be an ε-klt Q-factorial Q-Fano threefold of Picard number one. Write

Vol(−KX) = −K3
X > (3ω)3 for some positive rational number ω and denote D = −2KX.

As before, by Section 4.5.1, there is an integer m > 0 such that L = mD/ω is Cartier and an

open affine subset U ⊆ X such that H0(X ×U, pr∗X L⊗I⊗6m
Z ) �= 0. We fix a nonzero section

s ∈ H0(X × U, pr∗X L ⊗ I⊗6m
Z ) with F = div(s) on X × U. We now consider the case where

there exists an irreducible component W of Supp(F) passing through Z with multiplicity

multW (F) > 3m.

Lemma 61 If there exists an irreducible component W of Supp(F) passing through Z with

multiplicity multW (F) > 3m, then there exists a covering family of tigers of dimension two and

weight ω′ ≥ ω/2.

Proof. Fix W to be one of these irreducible components of Supp(F). We have the inclusions

Z ⊆ W ⊆ X × U with the projection map W → U. Cutting down by hyperplanes on U
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and restricting to a smaller open subset of U, we may assume that W → U factors through

a Hilbert scheme of X and W → X is generically finite. Replace U by the normalization

of the closure of its image in the Hilbert scheme and W by the normalization of universal

family. We obtain maps π : Y → X and f : Y → B. Note that a general fiber Yb is

two-dimensional. We claim that the pairs (Δb = π∗(Yb), Vb = Yb) is a two-dimensional

covering of tigers of weight ω′ ≥ ω/2.

Since X is Q-factorial and ρ(X) = 1, the integral divisor Δb = π∗(Yb) for any p ∈ B

on X is Q-linear equivalent to a multiple of −KX. Since W ≤ F, we have π∗(Yb) ≤ Fb

for general b ∈ B. In particular, π∗(Yb) ∼Q −KX/ω′ for some ω′ ≥ ω/2. Since any

two general divisors π∗(Ybi), i = 1, 2, on X are Q-linear equivalent as the base field is

uncountable, and it is clear that Vt = π(Yb) is the minimal non-klt center of Nklt(X, Δb),

and the lemma follows.

Let π : Y → X with f : Y → B be a covering family of tigers of dimension two and

weight ω′ ≥ ω/2 given by Lemma 61. We first deal with case where π : Y → X is not

birational.

Proposition 62 Suppose that the two dimensional covering family of tigers π : Y → X with

f : Y → B of weight ω′ ≥ ω/2 is not birational and assume that ω > 12, then ω ≤ 24/ε + 12.

In particular, there is an upper bound of volume

Vol(−KX) = −K3
X ≤ (

72
ε

+ 36)3.

Proof. Let d ≥ 2 be the degree of π : Y → X. Fix an open subset U ⊆ X such that for a gen-

eral point p ∈ U there are d divisors Δti
p , for some t1, ..., td ∈ B, with π(Yti) ⊆ Nklt(X, Δti

p)

the unique minimal non-klt center passing through p. Consider the collection of Q-divisors

{Δ′
p = 6

d ∑d
i=1 Δti

p |p ∈ U}, then multpΔ′
p ≥ 6, multW ′Δ′

p = 6
d ≤ 3 for W ′ ⊆ Supp(Δ′

p) any

irreducible component, and Δ′
p ∼Q

−KX
dω′/6 .

By the same construction as in Section 4.5.1, possibly after shrinking U to a smaller

open affine subset, there exists an integer m > 0 such that H0(X × U, pr∗X L ⊗ I⊗6m
Z ) �= 0

where L = 6m(−KX)/dω′ is Cartier. Let t ∈ H0(X ×U, pr∗X L⊗I⊗6m
Z ) be a general nonzero

section and G = div(t) be the associated divisor on X × U. Note that multZ (G) ≥ 6m and

multW (G) ≤ 6m/d ≤ 3m for any irreducible component W of Supp(G) passing through

Z . Indeed, we know that for general p ∈ U there is the divisor Δ′
p with multpΔ′

p ≥ 6 and

multW ′Δ′
p = 6

d ≤ 3 for any irreducible component W ′ ⊆ Supp(Δ′
p). Since t is a general

section, tp = t|X×{p} is also a general section for general p ∈ U. Using Lemma 57 to
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compute the multiplicity, we obtain multW (G) = multWp(Gp) ≤ m · multW ′Δ′
p ≤ 3m,

where Gp = div(tp) and Wp is any irreducible component of Supp(Gp).

By a differentiation argument and the same construction as in Proposition 59, there is

a covering family of tigers (Δt, Vt) of dimension one and weight ω′′ ≥ dω′/6 ≥ dω/12,

which satisfies the property that the base locus Bs(|pr∗X L ⊗ I⊗6m−M
Z |) contains no codi-

mension one components in a neighborhood of Z , where M is the maximum of multW (G)

amongst all the irreducible components W of Supp(G) passing through Z . Hence by

Corollary 52, we get

2
ω′′ − 2

≥ 1
ω′′ (−KX.Vt) = π∗Δp.Yb ≥ ε

2
.

In particular,

4
ε
+ 2 ≥ ω′′ ≥ dω

12
≥ ω

6
,

and ω ≤ 24/ε + 12.

Assumption: From now on, we assume that π : Y → X with f : Y → B is a birational cov-

ering family of tigers of dimension two and weight ω′ ≥ ω/2. Write KY + Γ − R = π∗KX

where Γ and R are effective divisors on Y with no common components.

Lemma 63 There is a π-exceptional divisor E on Y dominating B. In particular, π : Y → X is

not small.

Proof. Suppose that there is no π-exceptional divisors dominating B. Let AB be a suffi-

ciently ample divisor on B and AY = f ∗AB the pull-back. Since ρ(X) = 1, the divisor

AX = π∗AY on X is ample and π∗AX = AY + G for some effective π-exceptional divisor

G. By assumption f (G) ⊆ B has codimension one and hence AY + G ≤ f ∗H for some

divisor H on B. This is a contradiction since then AY + G is not big but π∗AX is.

The following lemma is crucial for computing the restricted volume. The key point is

that it allows us to control the negative part of the subadjunction −KX|Vt . Note that the

proof fails in higher dimensions, cf. [36, Lemma 6.2].

Lemma 64 Let E be a π-exceptional divisor dominating B. For general points p, q ∈ X we have

that E ⊆ Nklt(KY + Γ − R + π∗(Δp + Δq)). In particular, denote H = π∗(−KX). For any

π-exceptional divisor E dominating B we have

2
ω′ H ∼Q π∗(Δp + Δq) ≥ εE.
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Proof. Since the construction of covering families of tigers is done via the Hilbert scheme,

π is finite on the general fibers Vt of f : Y → B. Recall that π(Vt) ⊆ X is the minimal

non-klt center of (X, Δp(t)) for some Δp(t) passing through a general point p(t) ∈ X. We

denote Δp(t) by Δt for simplicity.

Let E be a π-exceptional divisor dominating B. Since E ∩ Vb is one-dimensional for

general b ∈ B and π|Vb is finite, dim π(E) > 0 as π(E) ⊇ π(E ∩ Vb). Since E is irreducible

and π-exceptional, π(E) is an irreducible curve. Fix t1, t2 ∈ B two general points. Pick a

general point x ∈ π(E) and consider its preimage on Vti . Since π is finite on the general

fiber Vt, π−1(x) ∩ Vti can be only a discrete finite set. Choose xi ∈ π−1(x) ∩ Vti over x for

i = 1, 2. Apply the Connectedness Lemma 42 to the pair (Y, Γ− R+π∗(Δt1 +Δt2)) over X.

There is a (possibly reducible) curve contained in π−1(x)∩ Nklt(Y, Γ − R + π∗(Δt1 + Δt2))

connecting x1 and x2. The component of this curve containing x1 cannot lie on Vt1 as the

map π is finite on Vt1 . As x ∈ π(E) is general, this curve deforms into a dimension two

subset of E by moving x ∈ π(E). Since E is irreducible, the closure of this two-dimensional

subset coincides with E and hence E ⊆ Nklt(KY + Γ − R + π∗(Δt1 + Δt2)). In particular,

multE(KY + Γ − R + π∗(Δt1 + Δt2)) ≥ 1. If E � Supp(Γ), then π∗(Δp + Δq) ≥ E. If

E ⊆ Supp(Γ), then π∗(Δp + Δq) ≥ εE since Γ ∈ [0, 1 − ε) as X is ε-klt.

To study the geometry of the covering family f : Y → B, we would like to run a

relative minimal model program of (Y, Γ) over B. However, Y is normal but possibly not

Q-factorial. To get a Q-factorial model of (Y, Γ), we adopt Hacon’s dlt models, cf. [26,

Theorem 3.1]. In fact, since the volume bound will be obtained by doing a computation on

a general fiber Yb, it suffices to modify Y over an open subset U ⊆ B.

Lemma 65 After restricting to an open subset U ⊆ B and replacing Y by a suitable birational

model, we can assume that Y is Q-factorial and (Y, Γ) is ε/2-klt. Moreover, we can assume for E

any π-exceptional divisor dominating U and p, q ∈ X general, we have that

2
ω′ H ∼Q π∗(Δp + Δq) ≥ ε

2
E. (4.6)

Proof. Fix p, q ∈ X general and consider the pair

KY + Γ − Rd + π∗(Δp + Δq)− Re ∼Q π∗(KX + Δp + Δq) (�)

where R = Rd + Re with (−)d the sum of components dominating B and (−)e the sum of

components mapping to points in B. Restricting Y to YU = f−1(U) for a suitable nonempty

open set U ⊆ B, we may assume that Re = 0 and (�) becomes
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KY + Γ − Rd + π∗(Δp + Δq) ∼Q π∗(KX + Δp + Δq).

We abuse the notation: Y is understood to be YU if not specified.

Denote Γp,q = Γ − Rd + π∗(Δp + Δq). Note that Γp,q ≥ 0 by Lemma 64. Let φ : W → Y

be a log resolution of (Y, Γp,q) and write

KW + φ−1∗ Γp,q + Q ∼Q φ∗(KY + Γp,q) + P,

where Q, P ≥ 0 are φ-exceptional divisors with Q ∧ P = 0. We aim to modify W by

running a relative minimal model program over Y with scaling of an ample divisor so that

it contracts Q<1−ε/2 + P, where (∑i aiQi)
<α := ∑ai<α aiQi. Note that we define (−)α≤·<β

and (−)≥α in the same way.

Consider F = ∑i Fi, where the sum runs over all the φ-exceptional divisors with log

discrepancy in (ε/2, 1] with respect to (Y, Γp,q), then

(F + P) ∧ Q≥1−ε/2 = 0, and Supp(F) ⊇ Supp(Q<1−ε/2).

Since (Y, Γ−R) is ε-klt, the divisor Γ on Y as well as φ−1∗ Γ on W has coefficients in [0, 1− ε).

For rational numbers 0 < ε < ε′ < 1 and 0 < δ, δ′ � 1, we have the following ε/2-klt pair

KW + φ−1∗ Γ + Q<1−ε/2 + δ′Q1−ε/2≤·<1 + (1 − ε′)(Q≥1)red + δF

∼Q φ∗(KY + Γp,q)− (φ−1∗ Γp,q − φ−1∗ Γ)− (1 − δ′)Q1−ε/2≤·<1 − (Q≥1 − (1 − ε′)(Q≥1)red)

+ P + δF

where (∑j bjGj)red := ∑bj �=0 Gj. We denote the above pair by (W, Ξ) where

Ξ = φ−1∗ Γ + Q<1−ε/2 + δ′Q1−ε/2≤·<1 + (1 − ε′)(Q≥1)red + δF.

By [8], a relative minimal model program with scaling of an ample divisor of the pair

(W, Ξ) over Y terminates with a birational model ψ : W ��� W ′ over Y with φ′ : W ′ → Y

the induced map. We obtain the following diagram,

X Y YU

B U

W ′ W

π
f

φ

ψ

φ′π′
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where π′ : W ′ → X is the induced map.

Write KW ′ + ΓW ′ − RW ′ ∼Q π′∗KX where π′ = φ′ ◦ π. Note that ΓW ′ ∈ [0, 1 − ε) by the

ε-klt condition and ΓW ′ − (φ′)−1∗ Γ ≥ 0 is φ′-exceptional. It follows by the construction that

ΓW ′ ≤ ψ∗Ξ. In particular, (W ′, ΓW ′) is ε/2-klt as the pair (W, Ξ) is ε/2-klt and the minimal

model program does not make singularities worse.

On W ′, the divisor

G = ψ∗(−(φ−1∗ Γp,q − φ−1∗ Γ)− (1 − δ′)Q1−ε/2≤·<1 − (Q≥1 − (1 − ε′)(Q≥1)red) + P + δF)

is φ′-nef with φ′∗G ≤ 0 since Γp,q ≥ Γ. By [30, Negativity Lemma 3.39], we have that G ≤ 0.

Since F + P is φ-exceptional and (F + P) ∧ Q≥1−ε/2 = 0, it follows that ψ∗(P + δF) = 0. In

particular, all the φ′-exceptional divisors on W ′ have log discrepancies less than or equal

to ε/2 with respect to (Y, Γp,q).

We now show that for any π′-exceptional divisor E′ on W ′ dominating U, E′ satisfies

the inequality

2
ω′ H′ ∼Q π′∗(Δp + Δq) ≥ ε

2
E′,

where H′ = π′∗(−KX). This easy to see. If E = φ′∗(E′) �= 0 on YU , then by Lemma 64,

E ⊆ Nklt(KY + Γ − R + π∗(Δp + Δq)) and E′ ⊆ Nklt(KW ′ + ΓW ′ − RW ′ + π′∗(Δp + Δq)).

The inequality then follows from the same argument as in Lemma 64. If φ′∗E′ = 0, then by

construction multE′(KW ′ + ΓW ′ − RW ′ + π′∗(Δp + Δq)) ≥ 1 − ε/2. Suppose that we have

E′ ⊆ Supp(RW ′), then

2
ω′ H′ ∼Q π′∗(Δp + Δq) ≥ E′ ≥ ε

2
E′.

If E′ ⊆ Supp(ΓW ′), then as ΓW ′ ∈ [0, 1 − ε) we get

2
ω′ H′ ∼Q π′∗(Δp + Δq) ≥ ((1 − ε

2
)− (1 − ε))E′ =

ε

2
E′.

It follows that W ′ satisfies the required properties.

Remark 66 Write Γ = π−1∗ Δ+ Γd + Γe and R = Rd + Re, where (−)d is the sum of components

dominating B and (−)e is the sum of components mapping to points in B. From the proof of Lemma

65, we deduce the following two inequalities :

2
ω′ H ∼Q π∗(Δp + Δq) ≥ Rd and

2
ω′ H ∼Q π∗(Δp + Δq) ≥ ε

2
Γd. (5.2)
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Now let π : Y → X with f : Y → U be the modified birational covering family of tigers

of dimension two and weight ω′ ≥ ω/2 given by Lemma 65, where Y is now Q-factorial.

Write KY + Γ − R ∼Q π∗KX, where Γ, R ≥ 0 are π-exceptional and Γ ∧ R = 0. The pair

(Y, Γ) is ε/2-klt with Γ ∈ [0, 1 − ε/2) and note that H = π∗(−KX) is semiample and big

on Y.

Recall that for a projective morphism φ : Z → U, a divisor D on Z is pseudo-effective

(PSEF) over U if the restriction of D to the generic fiber is pseudo-effective.

Lemma 67 Assume that ω′ > 2 and consider the pseudo-effective threshold of KY + Γ over U

with respect to H

τ := inf{t > 0|KY + Γ + tH is PSEF over B}.

Then 1 ≥ τ ≥ 1 − 2
ω′ > 0.

Proof. Since KY + Γ + H ∼Q R ≥ 0, the first inequality is clear. Restricting to a general

fiber Yu of Y over U, we have

(KY + Γ + τH)|Yu =(R − (1 − τ)H)|Yu

=(Rd − 2
ω′ H)|Yu − (1 − τ − 2

ω′ )H|Yu

which cannot be PSEF if ω′ > 2 and τ < 1 − 2
ω′ since the first term is nonpositive by (5.2)

and the second term is negative.

Now we run a relative minimal model program with scaling for the covering family of

tigers f : Y → U. Since (Y, Γ) is ε/2-klt and H is semiample and big, we may assume that

(Y, Γ+ τ′H) remains ε/2-klt for any rational number 0 < τ′ < τ. By [8], a relative minimal

model program of (KY + Γ+ τ′H) with scaling of H over U terminates with a relative Mori

fiber space Y′ → T over U with dim Y′ > dim T ≥ dim U. Denote the induced maps by

g : Y ��� Y′, ψ : Y′ → T, and φ : Y′ → U. We obtain the following diagram,

X Y Y′

U T.B ⊇

π

f

g

φ ψ

For a general fiber Y′
t of ψ : Y′ → T, by construction, the Picard number ρ(Y′

t ) = 1 and the

divisor −(KY′ + Γ′
d)|Y′

t
∼Q (H′ − Rd)|Y′

t
on Y′

t is ample.
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Lemma 68 There exists a divisor E′ on Y′ which is exceptional over X and dominates T.

Proof. Recall that there is a natural map T → U → B. We can extend ψ : Y′ → T to

ψ : Y′ → T over B where (−) stands for a projective compactification of (−). Take a

common resolution p : W → X and q : W → Y′ and let AT be a sufficiently ample divisor

on T. Let AY′ = ψ
∗AT, AW = q∗AY′ , and AX = p∗AW . Then there is an effective divisor E

on W which is exceptional over X such that p∗AX = AW + E = q∗AY′ + E = q∗ψ
∗AT + E.

Since ρ(X) = 1, it follows by the same argument as in Lemma 47 that one of the irreducible

components of E maps to a divisor E′ on Y′. By the same argument as in Lemma 47 again,

one of the irreducible components of the nonzero divisor q∗(E) dominates T.

Proposition 69 If dim T = 2, then ω′ ≤ 8/ε + 2.

Proof. By Lemma 68, there exists a divisor E′ on Y′ which is exceptional over X and

dominates T. Note that Y′ is normal and hence ψ(Sing(Y′)) is a proper subset of T. In

particular, a general fiber Y′
t of ψ : Y′ → T is a smooth projective curve and hence E′.Y′

t ≥ 1.

Since the divisor −(KY′ + Γ′
d)|Y′

t
∼Q (H′ − Rd)|Y′

t
is ample, a general fiber Y′

t is a smooth

rational curve P1. From (4.6), we know that

2
ω′ H′ − ε

2
E′ ∼Q effective.

Also from (5.2),

−(KY′ + Γ′).Y′
t = (H′ − R′).Y′

t =(1 − 2
ω′ )H′.Y′

t + (
2

ω′ H − R′).Y′
t

≥(1 − 2
ω′ )H′.Y′

t .

It follows that

2
ω′ ≥

1
ω′ (−(KY′ + Γ′).Y′

t ) ≥
1

ω′ (1 −
2

ω′ )H′.Y′
t

≥ (1 − 2
ω′ )

ε

4
E′.Y′

t

≥ (1 − 2
ω′ )

ε

4

where the first inequality follows by the adjunction formula on P1. Hence ω′ ≤ 8
ε + 2.
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Proposition 70 If dim T = 1, then

ω′ ≤ 4M(2, ε)R(2, ε)

ε
+ 2

where R(2, ε) is an upper bound of the Cartier index of KS for S any ε/2-klt log del Pezzo surface

of ρ(S) = 1 and M(2, ε) is an upper bound of the volume Vol(−KS) = K2
S for S any ε/2-klt log

del Pezzo surface of ρ(S) = 1.

Proof. Since f : Y → U has connected fibers, T ∼= U. Since −(KY′ + Γ′
d)|Y′

u
∼Q (H′ − Rd)|Y′

u

is ample and ρ(Y′
u) = 1 for a general point u ∈ U, we see that

−KY′
u
∼Q (H′ + Γ′

d − Rd)|Y′
u

is ample. By Lemma 68, let E′ be a divisor on Y′ exceptional over X, which dominates U,

then

−KY′
u
≡ (H′ + Γ′

d − Rd)|Y′
u
≥ (1 − 2

ω′ )H|Y′
u
≥ (1 − 2

ω′ ) ·
ω′ε

4
E′

u

where the second inequality follows by dropping Γ′
d and applying (5.2) while the last one

from (4.6). By intersecting with the ample divisor −KY′
u
, this implies that

(−KY′
u
)2 ≥ (ω′ − 2)

ε

4
E′

u.(−KY′
u
).

Now (Y′
u, Γ′

u) is an ε/2-klt log del-Pezzo surfaces of Picard number one. Hence Y′
u is an

ε/2-klt del-Pezzo surface of Picard number ρ(Y′
u) = 1. By Theorem 55, (−KY′

u
)2 is bounded

above by a positive number M(2, ε) satisfying

M(2, ε) ≤ max{64,
16
ε

+ 4}.

Also, by (♦) the Cartier index of KY′
u

has an upper bounded

R(2, ε) ≤ r(2,
ε

2
) ≤ 2(4/ε)128·25/ε5

.

It follows that

M(2, ε) ≥ (−KY′
u
)2 ≥ 1

R(2, ε)
(ω′ − 2)

ε

4
E′

u.(Ample Cartier) ≥ 1
R(2, ε)

(ω′ − 2)
ε

4

and hence we get an upper bound

ω′ ≤ 4M(2, ε)R(2, ε)

ε
+ 2.
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Remark 71 It has been shown in [7] that a klt log del Pezzo surface has at most four isolated

singularities. Also surface klt singularities are classified by Alexeev in [31]. Hence we expect that

it is possible to obtain a better upper bound for R(2, ε) and M(2, ε) in Proposition 70.

Theorem 72 Let (X, Δ) be an ε-klt log Q-Fano threefold of ρ(X) = 1. Then the degree −K3
X

satisfies

−K3
X ≤ (

24M(2, ε)R(2, ε)

ε
+ 12)3

where R(2, ε) is an upper bound of the Cartier index of KS for S any ε/2-klt log del Pezzo surface

of ρ(S) = 1 and M(2, ε) is an upper bound of the volume Vol(S) = K2
S for S any ε/2-klt log del

Pezzo surface of ρ(S) = 1. Note that we have M(2, ε) ≤ max{64, 16/ε + 4} from Theorem 55

and R(2, ε) ≤ 2(4/ε)128·25/ε5
from (♦).

Proof. Recall that ω′ ≥ ω/2. The theorem then follows from Propositions 59, 69 and 70.

The following example shows that the cone construction analogous to Example 45 only

provides ε-klt Fano threefolds with volumes of order 1/ε2.

Example 73 (Projective cone of projective spaces) For n ≥ 1 and d ≥ 2, let Pn ↪→ PN be

the embedding by |O(d)| and X be the associated projective cone. The projective variety X is

normal Q-factorial of Picard number one with unique singularity at the vertex O. Also, X admits

a resolution π : Y = BlOX → X with the unique exceptional divisor E ∼= Pn of normal bundle

OE(E) ∼= OPn(−d). The variety Y is the projective bundle μ : Y ∼= PPn(OPn ⊕OPn(−d)) → Pn

with tautological bundle OY(1) ∼= OY(E). We have:

• OE(E) ∼= OPn(−d) and hence En+1 = (−d)n;

• KY = π∗KX +(−1+ n+1
d )E and hence X is always klt. Also, X is terminal (resp. canonical)

if and only if n + 1 > d ≥ 2 (resp. n + 1 ≥ d ≥ 2);

• KY = μ∗(KPn + det(E))⊗OY(−rk(E)) ≡ −(n + 1 + d)F − 2E where the vector bundle

E = OPn ⊕OPn(−d) and F = μ∗On
P(1);

• Fn+1 = 0 and Fn+1−k.Ek = (−d)k−1 for 1 ≤ k ≤ n + 1;

• Kn+1
Y = Kn+1

X + (−1 + n+1
d )n+1En+1 and

Kn+1
Y =

−1
d

n+1

∑
k=1

(
n + 1 − k

k

)
(−1 +

n + 1
d

)n+1−k(2d)k

=
−1
d
((d − n − 1)n+1 − (−(d + n + 1)n+1));
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• In summary, −KX is ample with

(−KX)
n+1 =

(d + n + 1)n+1

d
.

If n = 2, then we have an ε-klt Fano threefold of Picard number one with ε = 1/d. The volume

Vol(X) = (−KX)
3 is of order 1/ε2.

In view of Theorem 72, it is then interesting to see whether ε-klt Fano threefolds with

big volumes exist.

Question 74 Can one find ε-klt Q-factorial Q-Fano threefolds X of ρ(X) = 1 with volume

Vol(X) = (−KX)
3 = O( 1

εc ) for c ≥ 3?



CHAPTER 5

NONVANISHING CONJECTURE

Here we provide some partial results toward the following conjecture in the log mini-

mal model program.

Conjecture 75 (Nonvanishing Conjecture) Let (X, Δ) be a Q-factorial projective klt pair. If

KX + Δ is pseudo-effective, then KX + Δ ∼Q D for some effective divisor D.

We will focus on the cases where Δ = 0 and X is a Q-factorial normal projective

variety with at worst terminal singularities. We would like to solve the following problem

introduced in Section 2.2:

Conjecture 76 Let X be a projective variety with at worst terminal singularities. If KX is pseudo-

effective, then κ(X) ≥ 0.

Here we include two results related to the Nonvanishing Conjecture. The first one

attempts to get a conceptional proof of Nonvanishing Conjecture in dimension two. The

second one is a nonvanishing theorem for irregular varieties.

5.1 Surfaces

In dimension two, a surface is terminal if and only if it is smooth. The Nonvanishing

Conjecture 76 is solved by classification of surfaces. However, people aim to find a con-

ceptional proof and expect from that we can understand better the same problem in higher

dimensions.

Here we discuss the idea coming from the study of Iitaka’s conjecture C (Section 3.5):

For an algebraic fiber space f : X → Y of smooth projective varieties with a general fiber

F, the Kodaira dimensions are related by

H0(X,OX(mKX)) = H0(Y,OY(mKY)⊗ f∗(ω⊗m
X/Y))

where for a general point p ∈ Y

f∗(ω⊗m
X/Y)⊗ C(p) ∼= H0(F,OF(mKF)).
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If κ(Y), κ(F) ≥ 0, then one expects to have κ(X) ≥ 0.

In general, for a given projective variety X one can construct a non-trivial algebraic

fiber space by taking a (sub)linear system, resolve the indeterminacy of the induced map,

and take a Stein factorization. Since pseudo-effectiveness and the Kodaira dimension of KX

are invariant under this construction, we get an extra structure for proving nonvanishing.

However, the base of this algebraic fiber space typically is a rational variety and it has

negative Kodaira dimension. Hence it is much harder to show that κ(X) ≥ 0. The key

point is that we need to establish a stronger positivity property for the sheaves f∗(ω⊗m
X/Y)

or f∗(ω⊗m
X ). We include a partial result on the positivity of sheaves f∗(ω⊗m

X ).

Let X be a smooth projective variety over C. Pick a very general pencil from a suffi-

ciently ample linear system, e.g., a Lefschetz pencil. This defines a rational map from X

to P1. We resolve the indeterminacy to get an algebraic fiber space π : X̃ → P1 whose

general fiber X̃p is a smooth variety with ample canonical divisor. Assume that KX is

pseudo-effective, then KX̃ is also pseudo-effective. Also κ(X) ≥ 0 if and only if κ(X̃) ≥ 0.

Since any torsion free sheaf on a smooth curve is locally free and any locally free sheaf

on P1 splits into line bundles, to show the nonvanishing κ(X̃) ≥ 0 is equivalent to say

that the vector bundle π∗(ω⊗m
X̃ ) contains a line bundle summand of nonnegative degree.

In general, it suffices to show that there is a nonnegative degree line bundle summand for

some 0 �= F ⊆ π∗(ω⊗m
X̃ ). We will use the sheaf

Fm := π∗
(

ω⊗m
X̃ ⊗J (‖(m − 1)KX̃ + επ∗OP1(1)‖)

)
,

for m ≥ 2. The point of using this sheaf is that it is related to the Nadel (or Kawamata-

Viehweg) vanishing theorem and hence we have the estimation of the degrees of its line

bundle decomposition.

From now on, we assume that X is a smooth projective surface, μ : X̃ → X is a

resolution of a Lefschetz pencil, and π : X̃ → P1 is the resulted algebraic fiber space.

Lemma 77 The divisor (m − 1)KX̃ + επ∗OP1(1) is big for ε > 0 sufficient small. In particular,

for m ≥ 2 the multiplier ideal sheaf

J ε
m := J (‖(m − 1)KX̃ + επ∗OP1(1)‖),

is defined.
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Proof. Since π∗OP1(1) ∼ l is a general fiber of the algebraic fiber space π : X̃ → P1, by

construction the divisor μ∗l is ample. As KX̃ = μ∗KX + E for some effective μ-exceptional

divisor E, the lemma follows from the projection formula.

Lemma 78 Let X be a smooth projective variety. Suppose {Dk} is a collection of effective Q-divisors

with k ∈ N such that the corresponding multiplier ideal sheaves Jk := J (Dk) satisfy Jk ⊆ Jk′

whenever k ≥ k′. If there exists a line bundle L such that L − Dk is nef and big for all k > 0, then⋂
i>0 Ji = Jk for k sufficiently large.

Proof. The proof is taken from [16, Proposition 5.1]. We reproduce the proof here for the

convenience of the reader. Take a sufficiently ample divisor H on X and consider the line

bundle M = L + (n + 1)H for n = dim(X), then

M − Dk − (iH) ≡ L − Dk + (n − i + 1)H

is nef and big for all k > 0 and 1 ≤ i ≤ n. Hence Hi(X,OX(KX + M − iH)⊗Jk) = 0 for

all i > 0 by Nadel vanishing, and then OX(KX + M)⊗ Jk is generated by global sections

by Mumford regularity. In particular, if Jk �= Jk′ for k ≤ k′, then we get a strict inclusion

H0(X,OX(KX + M)⊗ Jk) ⊆ H0(X,OX(KX + M)⊗ Jk′) of C vector spaces. But this can

not happen infinitely many times, hence the lemma follows.

Corollary 79 For a fixed m ≥ 2, the sheaf J ε
m stabilizes as ε goes to zero. In particular, the sheaf

Jm := J ε
m is well-defined by choosing ε = εm sufficiently small.

Proof. Take L = mKX̃ + π∗OP1(1) and apply Lemma 78.

Note that the asymptotic multiplier ideal sheaf Jm is defined via the multiplier ideal

sheaf J ( 1
q |q(m − 1)KX̃ + qεπ∗OP1(1)|) for q > 0 sufficiently divisible. For a fixed m ≥ 2,

let φ : X′ → X̃ be a log resolution of |q(m − 1)KX̃ + qεπ∗OP1(1)|. Then

φ∗|q(m − 1)KX̃ + qεπ∗OP1(1)| = Mq + Fq,

where Mq is big and semi-ample and Fq has simple normal crossing support.

Denote π̃ = φ ◦ π and consider the sheaf

ω⊗m
X̃ ⊗J ⊗ π∗OP1(1) = φ∗OX′(mφ∗KX̃ + KX′/X̃ − �1

q
Fq�+ π̃∗OP1(1)).
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The Cartier divisor

M =mφ∗KX̃ + KX′/X̃ − �1
q

Fq�+ π̃∗OP1(1)

=KX′ + φ∗(m − 1)KX̃ + π̃∗OP1(1)− �1
q

Fq�

≡KX′ +
1
q

Mq + π̃∗OP1(1 − ε) + {1
q

Fq}
=KX′ + (nef and big) + (fractional SNC)

and hence by Kawamata-Viehweg vanishings H1(X′, M) = 0. Since a nef and big divisor

on X′ is also π̃-nef and π̃-big, we have also the relative Kawamata-Viehweg vanishing

Rjπ̃∗OX′(M) = 0, ∀ j > 0.

In particular, the spectral sequence for computing H1(X′, M) degenerates and we get

H1(P1, π̃∗M) = H1(P1, π∗(ω⊗m
X̃ ⊗J )⊗OP1(1)) = 0, (♥)

where π̃∗M = π∗(ω⊗m
X̃ ⊗ J )⊗OP1(1). On P1, torsion free sheaves decompose into line

bundles. Hence we can write for any m ≥ 1, π∗(ω⊗m
X̃ ⊗ J ) = ⊕OP1(am

i ). Then the

vanishing cohomology (♥) implies that am
i ≥ −2 for all i.

We conclude with the following proposition.

Proposition 80 Let X be a smooth projective surface. Let π : X̃ → P1 be an algebraic fiber space

constructed from a Lefschetz pencil by resolving the indeterminacy. For each m ≥ 1, write

π∗(ω⊗m
X̃ ) = ⊕OP1(am

i ).

If KX is pseudo-effective, then cm
i ≥ −2 for all i.

It is easy to see that for some m ≥ 1, cm
i ≥ 0 for some i is sufficient to conclude the Non-

vanishing Conjecture in dimension two. However, from the weak-positivity of π∗(ω⊗m
X̃/P1),

one can only conclude that for each m ≥ 1, cm
i ≥ −2m for all i. Thus this is a nontrivial

result very close to what we expect.

5.2 Irregular varieties

Here we include a nonvanishing theorem of irregular varieties. The main ingredient is

the following theorem on the structure of cohomological loci Vm(KX).
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Theorem 81 Let X be a smooth projective variety. The cohomological loci

Vm(KX) := {P ∈ Pic0(X)| h0(X, ω⊗m
X ⊗ P) > 0}

for m a positive integer, if non-empty, is a finite union of torsion translates of abelian subvarieties

of Pic0(X).

Proof. If m = 1, then by a result of Simpson [40] the loci V1(KX) is a union of torsion

translates of abelian subvarieties of Pic0(X). In general, let P̃ ∈ Vm(KX). Since Pic0(X) is

divisible, we can write P̃ = mP for some P ∈ Pic0(X). Let μ : X′ → X be a log resolution

of |m(KX + P)|, and D ∈ μ∗|m(KX + P)| be a divisor with simple normal crossing support.

Consider the line bundle N := μ∗OX((m − 1)(KX + P))⊗OX′(−�m−1
m D�). It follows from

[12, Theorem 8.3] and [40] that the cohomological loci

V0(ωX′ ⊗ N) := {R ∈ Pic0(X′)|h0(ωX′ ⊗ R) > 0},

is a union of torsion translates of abelian subvarieties of Pic0(X′). Since X is smooth,

Pic0(X′) ∼= Pic0(X) and hence we may identify the elements in these two groups (via

pulling back by μ). It is easy to see that P ∈ V0(ωX′ ⊗ N), and hence there exists an

abelian subvariety T ⊆ Pic0(X) and a torsion element Q ∈ Pic0(X)tor such that

P ∈ T + Q ⊆ V0(ωX′ ⊗ N).

By pushing forward, it is also easy to see that

T + Q + (m − 1)P ⊆ Vm(KX).

Since rP ∈ rT for some positive integer r and rT is a group, we have that r(m − 1)P ∈ rT

and hence (m − 1)P ∈ T + Q′ for some torsion element Q′ ∈ Pic0(X)tor. In particular, we

have

P̃ = mP ∈ T + Q + (m − 1)P = T + Q + Q′ ⊆ Vm(KX),

and hence Vm(KX) is a union of torsion translates of abelian subvarieties of Pic0(X).

Let V be an irreducible component of Vm(KX) and denote Pic0(X) by A. Note that for

any general point of V, there is a torsion translate of an abelian subvariety of A contained

in V passing through it. It is well-known that if V is of general type, then there are no

nontrivial abelian subvarieties of A contained in V passing through general points of V. In
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this case, a general point of V must be torsion and hence dim V can only be zero since there

are only countably many torsion points in A. It follows that V is a torsion point. If V is not

of general type, then by [43, Theorem 10.9] there is an algebraic fiber space f : V → B with

general fiber A1 induced by π : A → A/A1, where A1 is an abelian subvariety of A and

B ⊆ A/A1 is a subvariety of general type. Since there are also torsion translate of abelian

subvarieties of A/A1 contained in B passing through general points of B, B is a torsion

point and so V is a torsion translate of an abelian subvariety of A. Hence we conclude

that the algebraic set Vm(KX), if non-empty, is a finite union of torsion translates of abelian

subvarieties of Pic0(X).

Recall that a variety X is irregular if H1(X,OX) �= 0.

Theorem 82 Let X be a smooth projective irregular variety with A := Alb(X) the Albanese

variety. Let α := albX : X → A := Alb(X) be the Albanese morphism and α′ : X → Y

with general fiber F be the Stein factorization of α : X → α(X) ⊆ A. Suppose κ(F) ≥ 0, then

κ(X) ≥ 0.

Lemma 83 With the assumptions as in Theorem 82, KX is pseudo-effective.

Proof. We have α′∗ωN
X/Y �= 0 and is weakly positive by [44]. Hence for any ε > 0 and H

ample on Y, α′∗ωN
X/Y ⊗ (εH) is big. As Y is finite over α(X), a subvariety in A, we have

κ(Y) ≥ 0 and hence α′∗ωN
X ⊗ (εH) is also big. In particular κ(KX + ε

N (α′)∗H) ≥ 0 for any

ε > 0, and hence KX is pseudo-effective.

For H an ample divisor on A and a nonnegative integer m, it follows from Lemma

78 by taking L to be mKX + α∗H on X, the multiplier ideal sheaf J (‖mKX + εα∗H‖) is

independent of ε ∈ Q for any ε > 0 sufficiently small. Hence we can define the sheaf

Fm := α∗(ωm
X ⊗J (‖(m − 1)KX + εα∗H‖)),

on A for ε > 0 a sufficiently small rational number.

Lemma 84 With the above setting, for L any sufficiently ample line bundle on the dual abelian

variety Â with L̂ the Fourier-Mukai transform of L on A, we have Hi(A,Fm ⊗ L̂∨) = 0 for all

i > 0. From [16, Corollary 3.2], we then have for any nonnegative integer m the inclusions:

V0(Fm) ⊇ V1(Fm) ⊇ ... ⊇ Vn(Fm).

In particular, V0(Fm) = φ implies Fm=0.
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Proof. The vanishing of cohomology follows from [16, Theorem 4.1] with a slight modi-

fication and hence we reproduce the argument here. Consider the isogeny φL : Â → A

defined by L, α̂ : X̂ → Â, and f : X̂ = X ×A Â → X. Then as φ∗
LL̂∨ = ⊕h0(L)L, we have

Hi(A,Fm ⊗ L̂∨) ⊆ Hi(A,Fm ⊗ L̂∨ ⊗ φL∗OÂ)

= Hi(Â, φ∗
LFm ⊗ φ∗

LL̂∨)

= ⊕Hi(Â, α̂∗ f ∗(ωm
X ⊗J (‖(m − 1)KX + εα∗H‖))⊗ L)

= ⊕Hi(Â, α̂∗(ωm
X̂ ⊗J (‖(m − 1)KX̂ + εα̂∗φ∗

LH‖))⊗ L),

where the last equality is the étale base change of multiplier ideal sheaves in [34, Theorem

11.2.16]. For i > 0, the cohomological groups above vanish by Nadel vanishing on X̂, or by

Kawamata-Viehweg vanishing theorem on a log resolution π : Y → X̂. The final statement

follows from [38, Theorem 2.2].

Proof.(of Theorem 82) For general point z ∈ Y and m sufficiently divisible, we have for the

sheaves defined by F′
m := α′∗(ωm

X ⊗J (‖(m − 1)KX + εα∗H‖)) on Y:

(F′
m)z = H0(F, ωm

F ⊗J (‖(m − 1)KX + εα∗H‖)|F)
⊇ H0(F, ωm

F ⊗J (‖(m − 1)KX + εα∗H‖F))

= H0(F, ωm
F ⊗J (‖(m − 1)KF‖))

⊇ H0(F, ωm
F ⊗J (‖mKF‖))

= H0(F, ωm
F ) > 0.

The first inclusion follows from the property of the restriction of multiplier ideal sheaves in

[34, Theorem 11.2.1]. The second equality follows from the explanation of semipositivity

in [24, Proposition 10.2], and the last inequality from κ(F) ≥ 0. Hence F′
m is nontrivial. In

particular, Fm is also nontrivial for m sufficiently divisible.

For m sufficiently divisible, Fm �= 0 and hence V0(Fm) �= φ by Lemma 84. This

shows that we can find an element P ∈ Pic0(X) with H0(X, ωm
X ⊗ P) �= 0. Following the

argument of [11, Theorem 3.2] (cf. Theorem 81), Vm(KX) is a union of torsion translates of

subvarieties in Pic0(X) for m ≥ 1 and in particular we can find an element P′ ∈ Pic0(X)tor

with H0(X, ωm
X ⊗ P′) �= 0. Then H0(X, ωmd

X ) �= 0 for d = ord(P′) in Pic0(X) and hence

κ(X) ≥ 0.



REFERENCES

[1] V. ALEXEEV, Boundedness and K2 for log surfaces, Internat. J. Math., 5 (1994), pp. 779–
810.

[2] V. ALEXEEV AND S. MORI, Bounding singular surfaces of general type, in Algebra, arith-
metic and geometry with applications (West Lafayette, IN, 2000), Springer, Berlin,
2004, pp. 143–174.

[3] F. AMBRO, The locus of log canonical singularities, 1998. arXiv:math/9806067.

[4] F. AMBRO, On the classification of toric singularities, in Combinatorial aspects of com-
mutative algebra, vol. 502 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2009,
pp. 1–3.
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[30] J. KOLLÁR AND S. MORI, Birational geometry of algebraic varieties, vol. 134 of Cam-
bridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1998. With
the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese
original.
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