
SUPPORTING SCALABLE DATA ANALYTICS ON

LARGE LINKED DATA

by

Wangchao Le

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computing

School of Computing

The University of Utah

December 2013

Copyright c© Wangchao Le 2013

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Wangchao Le

has been approved by the following supervisory committee members:

Feifei Li , Chair Aug 28
th

 2013

Date Approved

Suresh Venkatasubramanian , Member July 30
th

 2013

Date Approved

Piyush Kumar , Member Aug 26
th

 2013

Date Approved

Anastasios Kementsietsidis , Member July 30
th

 2013

Date Approved

Jeff M. Phillips , Member July 30
th

 2013

Date Approved

and by Alan L. Davis , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

Linked data are the de-facto standard in publishing and sharing data on the web. To

date, we have been inundated with large amounts of ever-increasing linked data in constantly

evolving structures. The proliferation of the data and the need to access and harvest

knowledge from distributed data sources motivate us to revisit several classic problems in

query processing and query optimization.

The problem of answering queries over views is commonly encountered in a number of

settings, including while enforcing security policies to access linked data, or when integrating

data from disparate sources. We approach this problem by efficiently rewriting queries

over the views to equivalent queries over the underlying linked data, thus avoiding the

costs entailed by view materialization and maintenance. An outstanding problem of query

rewriting is the number of rewritten queries is exponential to the size of the query and

the views, which motivates us to study problem of multiquery optimization in the context

of linked data. Our solutions are declarative and make no assumption for the underlying

storage, i.e., being store-independent. Unlike relational and XML data, linked data are

schema-less. While tracking the evolution of schema for linked data is hard, keyword search

is an ideal tool to perform data integration. Existing works make crippling assumptions

for the data and hence fall short in handling massive linked data with tens to hundreds of

millions of facts. Our study for keyword search on linked data brought together the classical

techniques in the literature and our novel ideas, which leads to much better query efficiency

and quality of the results. Linked data also contain rich temporal semantics. To cope with

the ever-increasing data, we have investigated how to partition and store large temporal or

multiversion linked data for distributed and parallel computation, in an effort to achieve

load-balancing to support scalable data analytics for massive linked data.

To My Beloved Family.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . viii

LIST OF TABLES . xi

ACKNOWLEDGEMENTS . xii

CHAPTERS

1. INTRODUCTION . 1

1.1 Motivation, Background, and Outline . 1
1.2 Dissertation Outline . 4

2. RDF-SPARQL PRELIMINARIES . 5

2.1 RDF Basics . 5
2.2 SPARQL Basics . 6

3. REWRITING QUERIES ON SPARQL VIEWS . 8

3.1 Introduction . 8
3.2 Query Rewriting in SPARQL . 14

3.2.1 Rewriting Algorithm . 14
3.3 Optimizing Rewritings . 19

3.3.1 Optimizing Individual Rewritings . 19
3.3.2 Pruning Rewritings with Empty Results . 21
3.3.3 Optimizing the Generation of Rewritings . 25

3.4 Experiments . 27
3.4.1 Experimental Results with 4Store . 28
3.4.2 Experimental Results from Jena TDB . 34
3.4.3 Concluding Remarks . 34

3.5 Related Work . 35
3.6 Conclusion . 36

4. SCALABLE MULTIQUERY OPTIMIZATION . 38

4.1 Introduction . 38
4.2 Problem Statement . 40
4.3 The Algorithm . 44

4.3.1 Bootstrapping . 44
4.3.2 Refining Query Clusters . 46
4.3.3 Generating Optimized Queries and Distributing Results 50
4.3.4 Cost Model for SPARQL MQO . 50

4.3.5 Completeness and Soundness of Our MQO Algorithm 52
4.4 Extensions . 52

4.4.1 Queries with Variable Predicates . 52
4.4.2 Handling TYPE 2 Queries . 52

4.5 Experimental Evaluation . 53
4.5.1 Experimental Results . 56

4.6 Related Work . 66
4.7 Conclusion . 67

5. KEYWORD SEARCH ON RDF DATA . 68

5.1 Introduction . 68
5.2 Preliminaries and Problem Statement . 70

5.2.1 Ontology in RDF Data . 70
5.2.2 Problem Statement . 71

5.3 The Baseline Method . 72
5.3.1 A Counter Example . 72
5.3.2 The Correct Termination . 73
5.3.3 The Termination Condition . 76

5.4 Type-Based Summarization . 76
5.4.1 The Intuition for Summarization . 76
5.4.2 Outline and Preliminaries . 77
5.4.3 Partition . 79
5.4.4 Summarization . 80
5.4.5 Auxiliary Indexing Structures . 82

5.5 Search with Summarization . 84
5.5.1 Bound the Shortest Path Length . 84
5.5.2 The Algorithm . 87

5.6 Accessing Data and Update . 91
5.7 Related Work . 93
5.8 Experiments . 94

5.8.1 Experiment Setups . 95
5.8.2 Evaluating Summarization Techniques . 95
5.8.3 Query Performance . 99

5.9 Conclusion . 101

6. OPTIMAL SPLITTERS IN TEMPORAL AND MULTIVERSION RDF

DATA . 103

6.1 Introduction . 103
6.2 Problem Formulation . 106
6.3 A Baseline Method . 109
6.4 Internal Memory Methods . 112
6.5 External Memory Methods . 118

6.5.1 Cost-t Testing . 120
6.5.2 Concurrent Cost-t Testing . 121
6.5.3 Solving the Static Interval Splitters Problem . 122

6.6 Queryable Interval Splitters and Updates . 123
6.6.1 Queryable Interval Splitters . 123
6.6.2 Dealing with Updates . 124

6.7 Experiments . 125
6.7.1 Experiment Setups . 125

vi

6.7.2 Results from Internal Memory Methods . 126
6.7.3 Results from External Memory Methods . 127
6.7.4 Optimal Point Splitters . 133
6.7.5 Final Remark . 133

6.8 Related Work . 135
6.9 Conclusion . 136

7. OTHER WORKS . 137

8. CONCLUSION . 139

REFERENCES . 141

vii

LIST OF FIGURES

1.1 Linked Open Data [39] . 2

2.1 An example of SPARQL query: (a) A SPARQL query, and (b) a part of the
variable bindings . 7

3.1 Continued . 11

3.2 Attempting a relational/SQL rewriting: (a) SQL translation of VF, VR, VFoF,
VRoR; (b) Secure predicate tables definitions; (c) SQL translation of query QU 13

3.3 Experimental setup 1 (a) Views templates and (b) Query template 29

3.4 SPARQL rewriting vs. SQL expansion (a) Rewritten queries over query size and
(b) Eval. time over query size . 30

3.5 Experimental setup 2 (a) Views templates and (b) Query template 30

3.6 SPARQL rewriting vs. SQL expansion (a) Rewritten queries over max CandV and
(b) Eval. time over max CandV . 31

3.7 Experimental setup 3 (a) Views templates and (b) Query template 32

3.8 Optimizing individual rewritings (a) Rewritten queries over query size and (b)
Eval. time over query size . 32

3.9 Experimental setup 4 (a) Views templates and (b) Query template 33

3.10 Pruning empty rewritings (a) Rewritten queries over max CandV and (b) Eval.
time over max CandV . 33

3.11 Optimizing rewriting generation (a) ASK queries over query size and (b) Eval.
time over query size . 34

3.12 SQR vs. OSQR on Jena TDB (a) Rewritten queries over query size and (b)
Eval. time over query size . 35

3.13 SQR vs. OSQR on Jena TDB (a) Rewritten queries over max CandV and (b)
Eval. time over max CandV . 35

4.1 An example (a) Input data D, (b) Example query QOPT and (c) Output QOPT(D) 41

4.2 A query graph . 42

4.3 Multiquery optimization examples (a) Query Qa, (b) Query Qb, (c) Query
Qc, (d) Query Qd, (e) Example query QOPT and (f) Structure and cost-based
optimization . 43

4.4 Multiquery optimization algorithm . 45

4.5 Examples for finding common substructures, (a)–(d) linegraphs for queries
Qa–Qd, (e) their common substructures . 48

4.6 Convert (a) A Type 2 query to (b) its equivalent Type 1 form 53

4.7 Predicate selectivity . 54

4.8 Three basic query patterns: (a) Star, (b) Chain, and (c) Circle 55

4.9 Clustering time . 57

4.10 Evaluation time . 57

4.11 Vary |Q|: |QOPT| . 58

4.12 Vary |Q|: time . 58

4.13 Clustering cost . 58

4.14 Parsing cost . 58

4.15 Vary |qcmn|: |QOPT| . 59

4.16 Vary |qcmn|: time . 59

4.17 Evaluating qcmn . 60

4.18 Vary κ: |QOPT| . 61

4.19 Vary κ: time . 61

4.20 Vary |Q|: |QOPT| . 61

4.21 Vary |Q|: time . 61

4.22 Vary αmin: |QOPT| . 61

4.23 Vary αmin: time . 61

4.24 Vary αmax: |QOPT| . 62

4.25 Vary αmax: time . 62

4.26 Varying |D| . 63

4.27 Vary |Q|: evaluation time (a) Virtuoso and (b) Sesame 64

4.28 Vary αmin(qcmn): evaluation time (a) Virtuoso and (b) Sesame 64

4.29 Vary αmax(Q): evaluation time (a) Virtuoso and (b) Sesame 64

4.30 Vary |qcmn|: evaluation time (a) Virtuoso and (b) Sesame 65

4.31 Vary |Q|: evaluation time (a) Virtuoso and (b) Sesame 65

4.32 Vary κ: evaluation time (a) Virtuoso and (b) Sesame . 65

5.1 Schema method in [109] . 69

5.2 Distance matrix method in [53] . 69

5.3 Keywords in a small sample from the DBpedia dataset 69

5.4 Condensed view: combining vertices . 71

5.5 Backward search . 73

5.6 Graph homomorphism across summaries . 78

5.7 Build a core (a) from (b) . 78

ix

5.8 Partitions P of the RDF data in Figure 5.3, α = 1 . 80

5.9 A tree structure for two partitions . 82

5.10 All the homomorphism in building S . 84

5.11 Homomorphic mappings . 85

5.12 An entry in M for the partition rooted at v . 88

5.13 A query to retrieve the targeted partition . 92

5.14 Time for the summary construction (a) LUBM and (b) Real datasets 96

5.15 Number of subgraphs: partitions vs. summaries S(G) (a) LUBM and (b) Real
datasets . 97

5.16 Number of triples: partitions vs. summaries S(G) (a) LUBM and (b) Real
datasets . 97

5.17 Impact of α to the number of summaries in S(G): (a) LUBM (b) Wordnet (c)
Barton and (d) DBPedia Infobox . 98

5.18 Size of the auxiliary indexes (a) LUBM and (b) Real datasets 99

5.19 Breakdown . 99

5.20 Index size . 99

5.21 Query performance (a) LUBM and (b) Real datasets . 101

6.1 Databases with intervals (a) Multiversion database and (b) Temporal database 104

6.2 An example . 108

6.3 The DP method . 112

6.4 Stabbing-count array . 114

6.5 Concurrent testing on permissible ranges . 123

6.6 Running time of internal memory methods: (a) Vary k and (b) Vary N 127

6.7 Results from the UCR datasets. 128

6.8 Effect of h in the second step of ct-jump: (a) Time and (b) IO 128

6.9 Static splitters, vary N : (a) Running time and (b) Total IO 129

6.10 Static splitters, vary k: (a) Running time and (b) Total IO 129

6.11 Index size . 130

6.12 Preprocessing cost: (a) Preprocessing time and (b) Preprocessing IO 131

6.13 Queryable splitters, vary k: (a) Update time and (b) Update IO 131

6.14 Queryable splitters, vary N : (a) Query IO and (b) Query time 132

6.15 The update cost for queryable splitters: (a) Update IO and (b) Update time . 133

6.16 Comparison with p-split method in [95] to find optimal point splitters 134

6.17 Balanced partitions produced by our algorithms on (a) Meme Data and (b)
Temp data . 134

x

LIST OF TABLES

3.1 Variable mapping example . 17

4.1 Parameter table . 55

5.1 Frequently used notations . 70

5.2 Number of distinct types in the datasets . 95

5.3 Sample query workload . 100

6.1 Number of intervals in real datasets tested . 126

6.2 Default datasets and default values of key parameters 126

ACKNOWLEDGEMENTS

Over the course of my PhD journey, my footprints in pursuit of knowledge have been

left across the country, from New York to California, from Gulf Stream waters to Great

Rocky mountains. As this journey is now about to end, it seems six years of days and

nights, full of joy, upset, and stress have flown away in the blink of an eye. Looking back

to this journey, I have been fortunate to have guidance from many people, without whom

I might not have reached this stage of my career.

Foremost, I am greatly indebted to my advisor Feifei for his excellent guidance and

generous support throughout this dissertation research. I have benefited a lot from his

insightful criticism and our countless discussions at various stages of my PhD journey, from

choosing a promising topic to correcting a tiny grammatical error. I would like to thank

Feifei for the time and effort he has invested on my training. In addition, I would like

to express my deepest gratitude to my great mentors Dr. Anastasios Kementsietsidis and

Dr. Songyun Duan at IBM T. J. Watson research center. During my internships at IBM,

we have together conducted pioneering research on RDF data, which eventually became

an important part of this dissertation. I am also very grateful to other members in my

supervisory committee. I would like to thank Prof. Suresh Venkatasubramanian and Prof.

Jeff Phillips, who have given me valuable feedback for my research and my presentation

skills in the group meetings. I would also like to offer my special thanks to Prof. Piyush

Kumar, who has been on my committee since I was at Florida State and has given me a lot

of support in my career development. I also want to thank all my other collaborators, Dr.

Min Wang, Prof. Yufei Tao, and Prof. Ke Yi, whose input has brought this dissertation to

a standard higher than what I can expect.

Finally, my sincere thanks goes to the people in the Lab for our friendships. I treasure

the joyful moments we have had in the past few years.

CHAPTER 1

INTRODUCTION

The goal of this dissertation research is to design, implement, and evaluate novel query

processing and query optimization techniques, in a vision to support scalable data analytics

for large linked data. To this end, we have conducted research on four closely related

problems: (I) how to efficiently rewrite queries on linked data views; (II) how to synthesize

the rewritten queries and perform multiquery optimization; (III) how to summarize the

linked data and use the summarization to answer keyword queries; and lastly, (IV) how to

partition multiversioned RDF data for supporting parallel and distributed processing.

1.1 Motivation, Background, and Outline

Our world is now awash with rapidly growing data from the world wide web in constantly

evolving structures. The overwhelming diversity and amounts of data on the web drive

the pressing need to efficiently understand the data out of the chaos. Just as the web has

radically changed the way we consume information, so can it revolutionize the way we access,

integrate, and discover knowledge from data. To this end, one of the fundamental challenges

is to effectively represent knowledge on the web. Linked data is a data model proposed by

W3C for publishing and sharing schema-free structure information on the web. The idea is

to encode data in a machine-readable format, in an effort to augment the human-readable

HTML documents that are hard to interpret by machines. At a larger scale, the linked data

model provides a publishing and sharing paradigm where data from different sources on the

web can be identified under a global data space (e.g., by URI), thereby enabling interlinking

across data sources on the web. Moreover, the linkages across applications, enterprises, and

domains allow machines to effectively consume, digest, and reason about the structure and

semantics in the data.

The foundation of linked data is built on W3C’s standard – the Resource Description

Framework (RDF) [8]. Recently, RDF data have been gaining strong momentum in numerous

applications, including building a large-scale knowledge base and enabling data sharing on

2

Web 2.0 platforms. Figure 1.1 shows the state of the Linked Open Data project [5] as of

September 2011. Each node in the data cloud stands for a data source, where the respective

RDF data are stored in an RDF store and queryable by using the HTTP protocol and the

standard query language for RDF data – SPARQL [9]. Thanks to the flexibility of RDF, the

Link Open Data project is able to integrate RDF data from more than 300 data sources and

applications of different domains and encodes billions of facts to date.

As the size of the data continues to grow, so is the concern for its efficient management

and querying evaluation. In an effort to push the vision of linked data, people soon realize

that the schema-free and the “pay-as-you-go” natures of RDF data put forward significant

challenges to the efficient and scalable querying and storage of the data.

One of the major challenges, which we are going to discuss in Chapter 3, is how to

systematically rewrite a SPARQL query over a set of data sources. This problem commonly

arises in a number of settings, including while enforcing access control policies over RDF

stores and querying RDF data from multiple different data sources. To guarantee equivalent

semantics, the rewriting process oftentimes generates an exponential number of rewritten

queries, which become extremely inefficient to execute. This motivates us to investigate

Figure 1.1: Linked Open Data [39]

3

new rewriting and optimization techniques that can make the query evaluation efficient

and tractable. The problems of query rewriting and its optimization have been extensively

studied in the literature for relational databases. The goal for this part of our dissertation is

to bring together the classic techniques from more than 30 years of research and development

in relational databases and our novel ideas to address the problems in the context of RDF

and SPARQL. Since the new queries from the rewriting procedure typically share overlapping

semantics, a related problem is how to perform multiquery optimization. In Chapter 4, we

revisited the classic problem of multiquery optimization, in an effort to achieve practical

performance for query rewriting. One design principle we have applied in tackling these

challenges is to keep our solutions store-independent. This design choice is very critical

for a practitioner to apply the proposed techniques to the off-the-shelf RDF stores, where

the implementations took drastically different approaches and architectures [12, 29, 80]. To

confirm the effectiveness of the proposed ideas, we have conducted extensive experimental

studies with benchmark data sets on all popular RDF stores.

Like SQL and other structured query languages, querying with SPARQL assumes users

have a good understanding for the schema of the RDF data. However, given the schema-free

nature of RDF, a more attractive way is to interact with the data by using keyword search.

Keyword search is a useful tool to explore the structure and/or the semantics of linked data,

which relieves the users from a steep learning curve of mastering a structured query language

like SPARQL, and tracking the constantly evolving schema of the underlining RDF data. In

light of its importance, we have extended our studies to keyword search over RDF data. The

problem of keyword search has been studied in various similar contexts, including relational,

XML, and graph databases. However, when it comes to dealing with massive RDF data sets

that have hundreds of millions of facts, the state-of-the-art keyword search techniques have

two notable shortcomings. They either rely on building distance matrices for the data, which

is hardly scalable nor efficiently updatable, or rely on crippling assumptions for the RDF

data model, which easily leads to incorrect interpretation for keyword queries in practice.

Existing solutions fall short one way or the other in evaluating keyword queries on real RDF

data sets, which motivates us to study efficient and scalable alternatives. In particular, our

approach constructs a summarization for the underlying RDF data from its ontology. By

leveraging on such an index of the data, the search algorithm can quickly navigate through

a large portion of the data that are irrelevant to the keyword query.

In addition to query processing and query optimization, new challenges also come from

the management of the constantly evolving linked data. Specially, as RDF data is known to

4

contain rich temporal semantics, applications often need to capture the changes of ontology

or temporal annotation on the RDF data. To see this, consider a simple example1 from

DBpedia [3] – a Linked Open knowledge base built from Wikipedia. In the long and varied

history of the city of Istanbul, it has been named Byzantium, New Rome, Constantinople

and Stamboul, each of which associates with a period of time. At various times, the

city has also been chosen as the capital for the Roman Empire, the Byzantine/Eastern

Roman Empire (twice), the Latin Empire, and the Ottoman Empire. These temporal or

multiversion properties are part of the RDF encoding for the city, so that temporal queries

such as “name of the city in the sixth crusade” can be correctly answered. Such temporal

or multiversion RDF data have attracted increasing attention recently [51, 107]. As the

amount of temporal or multiversion RDF data continues to grow, it might be no longer

feasible to store an entire RDF data set in a centralized database and still expect to query

the data efficiently. To improve query performance and scalability, there have been extensive

studies on storing and querying RDF data in a distributed and parallel fashion [81, 92, 104].

Therefore, a challenge here is how to partition and store the temporal or multiversion RDF

data for distributed and parallel computation. In Chapter 6, we have studied the problem of

finding optimal splitters for temporal and multiversion data, in an effort to create partitions

of balanced size, and eliminate the potential single bottleneck in a distributed system.

1.2 Dissertation Outline

The rest of this dissertation will be organized as follows. We first introduce the basics

of the RDF data and the SPARQL query language in Chapter 2. In Chapter 3, we study the

problem of rewriting (SPARQL) queries over SPARQL views and its optimization techniques.

One outstanding problem for the rewriting is that the number of rewritten queries could be

potentially exponential to the size of the query and the number of views. We investigated

the common semantics among the rewritten queries and propose an effective and efficient

multiquery optimization framework in Chapter 4. In Chapter 5, we study the problem of

answering keyword search in RDF, which is an indispensable tool to explore the structure

and semantics of large, real RDF data sets. Many large RDF data sets have rich temporal

semantics. This motivates us to study the problem of finding optimal splitters on temporal

and multiversion RDF data in Chapter 6, in an effort to support efficient and scalable

distributed and parallel processing of such data. Finally, we conclude and discuss some of

the promising open problems in Chapter 8.

1http://dbpedia.org/page/Istanbulhttp://dbpedia.org/page/Istanbul.

CHAPTER 2

RDF-SPARQL PRELIMINARIES

In this chapter, we introduce the basics of the RDF data and SPARQL query language.

More details for the data and the query language will be introduced in the upcoming

chapters as we proceed.

2.1 RDF Basics

The Resource Description Framework (RDF hereafter) [8] is the W3C’s recommendation

for expressing and exchanging semantic metadata and information on the web. It provides

mechanisms to uniquely describe logical or physical resources and model their relationships

in a machine-friendly way.

The fundamental building block for RDF data is a triple – (subject, predicate, object).

In order to give a formal definition for a triple, we first introduce three disjoint infinite sets

– the set of URIs U; the set of blank nodes B, and lastly, the set of literals L.

• The set of U contains an infinite number of Uniform Resource Identifiers (URIs).

Each URI is an ASCII string and uniquely identifies a resource. For instance, the

URI http://dbpedia.org/page/Utahhttp://dbpedia.org/page/Utah identifies the state

of Utah in the dbpedia data set.

• A blank node in B can be used to identify anonymous resources. In a nutshell, a blank

node usually serves as a wide card in representing a group of data sources.

• A literal in L represents strings, Boolean, or numerical values. Usually, a literal is

used for encoding a property of the resource that is described.

Definition 1 Formally, an RDF triple (s, p, o) is defined as

(s, p, o) ∈ {B ∪ U} × {U} × {B ∪ U ∪ L}

By convention, we also refer to the predicate as the property of the subject being de-

scribed. For the ease of presentation, we will ignore blank nodes in the rest the dissertation,

6

though the techniques we discuss can gracefully handle such an extension. Implicitly, a set

of triples forms a graph by joining on the subjects and/or objects. Therefore, an RDF data

set is also commonly referred to as an RDF data graph. In what follows, we use the two

terms interchangeably.

There is a lot of ongoing research studying how to store and index RDF data to support

efficient querying [12, 29, 80]. Popular RDF stores can be classified as either generic/native

stores or relational stores. Native RDF stores view RDF data as graphs and recent studies [23,

80] have proposed a full spectrum of techniques to efficiently index RDF data, for instance,

Jena TDB [4], 4store [1], Sesame native [30], and RDF3X [80]. On the other hand, relational

RDF stores use relational databases to process and store RDF data, to tap the power of

relational engines, for instance, OpenLink Virtuoso [11], Jena SDB [4], and IBM DB2 [29].

To the best of our knowledge, both generic and relational RDF stores are widely deployed

as a medium to access RDF data.

2.2 SPARQL Basics

Regardless of underlying implementation of the RDF stores, the standard media to

interact with RDF data is to express a user’s query in SPARQL, which is the recommendation

by W3C to query RDF data. SPARQL is a pattern matching language. The most common

SPARQL queries have the following form: Q := (SELECT |CONSTRUCT) RD WHERE GP

[OPTIONAL GPOPT]
∗, where GP are triple patterns, i.e., triples involving variables and/or

constants, and RD is the result description. Given an RDF graph G, a triple pattern on G

searches for a set of subgraphs of G, each of which matches the pattern (by binding pattern

variables to values in the subgraph). For SELECT queries, RD is a subset of variables in

the graph pattern, similar to a projection in SQL. An example for the selection query is

shown in Figure 2.1(a), where the variables are starting with ’?’. The query asks for all

the predicates and objects for the state of Utah, i.e., listing its properties. Evaluating the

query on the DBpedia data set will result in the (partial) answer as shown in Figure 2.1(b),

where each row represents a distinct pair of valid variable bindings. On the other hand,

for CONSTRUCT queries, RD is a set of triple templates that construct a new RDF graph by

replacing variables in GP with matched values. By doing so, a user can define new graphs

from the matchings of GP in the data.

7

SELECT * WHERE{ <http://dbpedia.org/page/Utah> ?p ?o }

(a)

?p ?o

name Utah
nickname Beehive State
motoo Industry
mineral Copper

(b)

Figure 2.1: An example of SPARQL query: (a) A SPARQL query, and (b) a part of the
variable bindings

A useful extension to specify the search pattern in the WHERE clause is to combine a GP

with one or more OPTIONAL clause(s), each of which is a graph pattern GPOPT. A subgraph

in the RDF data might match not only the pattern in GP but also the pattern (combination)

of GP and GPOPT. While more than one OPTIONAL clauses are allowed, the evaluation

process in the engine independently considers the combination of pattern GP with each of

the OPTIONAL clauses. Therefore, with n OPTIONAL clauses in query, the query returns two

sets of results. In more detail, the first set of the results contains the subgraphs that match

any of the n (GP + GPOPT) pattern combinations. The second set of the results contains the

subgraphs that match just the GP pattern. Finally, we consider Boolean SPARQL queries

of the form Q := ASK GP which indicate whether GP exists, or not, in G. Similar to SQL

where research considered set before bag semantics, for our non-Boolean SPARQL queries,

we assume set semantics, whose importance for SPARQL has already been noted [87].

CHAPTER 3

REWRITING QUERIES ON SPARQL

VIEWS

3.1 Introduction

In a number of settings, including access control [44, 45, 94, 113] or data integration [74,

111], users can only access data that are visible through a set of views. The views are

typically defined using a standard query language (SQL for relational data, XPath/XQuery

for XML, SPARQL for RDF) and commonly the same language is used by the users to express

the queries over the views. The process of answering these user queries is determined on

whether the views are virtual or materialized. For materialized views, evaluating the user

queries is straightforward, but the simplicity in query evaluation comes at a cost, both in

terms of the space required to save the views, and in terms of the time needed to maintain the

views. Therefore, view materialization is a viable alternative only when (i) there are a small

number of views; (ii) the views expose small fragments of base data; and (iii) the base data

are infrequently updated. Since most practical scenarios do not meet these requirements, the

other alternative is to use virtual view and rewrite the queries over the views to equivalent

queries over the underlying data. In relational databases, query rewriting over SQL views is

straightforward as it only requires view expansion, i.e., the view mentioned in the user SQL

query is replaced by its definition. However, in the case of RDF and SPARQL, view expansion

is not possible since expansion requires query nesting, a feature not currently supported by

SPARQL. In XML, XPath query rewriting is rather involved and the rewriting is exponential

to the size of the query and the view [45]. Query rewriting for RDF/SPARQL is inherently

more complex since (i) whereas XML/XPath is used for representing and querying trees,

RDF/SPARQL considers generic graphs; and (ii) in SPARQL, the query and view definitions

may use different variables to refer to the same entity, thus requiring variable mappings

when synthesizing multiple views to rewrite a given query. Therefore, query rewriting in

RDF/SPARQL raises distinct challenges from those in the relational or XML.

To illustrate these challenges, we use a Facebook-inspired example, and in Figure 3.1(a)

9

we consider RDF triples modeling common acquaintances (e.g., friend, related, and works). In

such a setting, we can use views to express access control (privacy) policies over Facebook

profiles. For instance, for each person (e.g., person0 with name “Eric”) we might have a

default policy that exposes from the social network only the person’s immediate friends

(e.g., for person0, person1, and person2), and relatives (e.g., for person0, person3), along with

friends-of-friends (FoF), and relatives-of-relatives (RoR), while not exposing the relatives-of-

friends, or the friends-of-relatives. Figure 3.1(b) shows four views to enforce this policy

(variables are prefixed by ‘?’ and constructed view predicates are prefixed with the letter

‘v’). The views hide any distinction between immediate friends (or relatives) and those at

a distance of two. Like [94], a parameter 〈Pi〉 specifies the name of the person for whom

the policies are enforced. Figure 3.1(c) shows the result VEric of materializing all four views

for “Eric”, with each triple annotated by the generating view(s).

Consider the query QU in Figure 3.1(b) over the triples for “Eric” (shown in Figure 3.1(c)).

QU identifies “Eric”’s friends and relatives who live in the same city. Instead of materializing

VEric just to evaluate QU, we would like to use the views to rewrite QU into a query over the

base data in Figure 3.1(a). The first challenge is to determine which views can be used in

this rewriting. Finding relevant views requires computing (variable) mappings between the

body of QU (its WHERE clause) and the return values (CONSTRUCT clause) of the views. An

example of a mapping between triples (?f0, vfriend, ?f1) in VF and (person0, vfriend, ?f5) in QU,

maps ?f0 to person0 and ?f1 to ?f5. The mapping indicates that VF can be used for rewriting

QU. How it will be used, is our next challenge.

In more detail, the second challenge is to determine how the views can be combined

into a sound and complete rewriting. Soundness guarantees that the rewritten query only

returns results that would have been retrieved should the user query have been executed

over the materialized view. Completeness guarantees that the rewritten query returns all

these results. Addressing the second challenge requires algorithms that (i) meaningfully

combine the views identified in the first step of the rewriting; and (ii) consider all such

possible combinations of the views. In our example, a sound and complete rewriting results

in a union of 64 queries, with each query being a result of one unique combination of views.

In more detail, each view combination is a result of combining 2 possible var. mappings

for each instance of vfriend and vrelated, and 4 possible var. mappings for each instance of

lives. Clearly, there is an exponential blowup in the size of the rewritten query, with respect

to the size of the input query and the number of views. Combining view directly generates

rewritings that have empty results, which provides optimization opportunities by removing

10

(person0, name, Eric)
(person1, name, Kenny)
(person2, name, Stan)
(person3, name, Kyle)
(person5, name, Jimmy)
(person6, name, Timmy)
(person9, name, Danny)
(person0, lives, NYC)
(person1, lives, LA)
(person2, lives, NYC)
(person3, lives, NYC)
(person5, lives, NYC)
(person6, lives, CHI)
(person9, lives, LA)
(person0, friend, person1)
(person0, friend, person2)
(person1, friend, person2)
(person1, friend, person5)
(person2, friend, person6)
(person3, friend, person8)
(person0, related, person3)
(person3, related, person9)
(person0, works, person4)
(person2, works, person7)

(a)

View VF

CONSTRUCT {
1 ?f0 vfriend ?f1,
2 ?f1 vname ?n1, 3 ?f1 vlives ?l1 }
WHERE {
?f0 name 〈P1〉, ?f0 friend ?f1,
?f1 name ?n1, ?f1 lives ?l1 }

View VFoF

CONSTRUCT {
1 ?f2 vfriend ?f4,
2 ?f4 vname ?n4, 3 ?f4 vlives ?l4 }
WHERE {
?f2 name 〈P2〉,
?f2 friend ?f3, ?f3 friend ?f4,
?f4 name ?n4, ?f4 lives ?l4 }

View VR

CONSTRUCT {
1 ?r0 vrelated ?r1,
2 ?r1 vname ?n1, 3 ?r1 vlives ?l1 }

WHERE {
?r0 name 〈P3〉, ?r0 related ?r1,
?r1 name ?n1, ?r1 lives ?l1 }

View VRoR

CONSTRUCT {
1 ?r2 vrelated ?r4,
2 ?r4 vname ?n4, 3 ?r4 vlives ?l4 }

WHERE {
?r2 name 〈P4〉,
?r2 related ?r3, ?r3 related ?r4,
?r4 name ?n4, ?r4 lives ?l4 }

Query QU

SELECT { ?f5, ?r5, ?l5 }
WHERE {
1 person0 vfriend ?f5, 2 ?f5 vlives ?l5,
3 person0 vrelated ?r5, 4 ?r5 lives ?l5 }

(b)

Figure 3.1: Motivating example (a) Base triples, (b) Views and user query, and (c)

Materialized triples in VEric

11

(person1, vname, Kenny) [VF]
(person2, vname, Stan) [VF, VFoF]
(person3, vname, Kyle) [VR]
(person5, vname, Jimmy) [VFoF]
(person6, vname, Timmy) [VFoF]
(person9, vname, Danny) [VRoR]
(person1, vlives, LA) [VF]
(person2, vlives, NYC) [VF, VFoF]
(person3, vlives, NYC) [VR]
(person5, vlives, NYC) [VFoF]
(person6, vlives, CHI) [VFoF]
(person9, vlives, LA) [VRoR]

(person0, vfriend, person1) [VF]
(person0, vfriend, person2) [VF, VFoF]
(person0, vrelated, person3) [VR]
(person0, vfriend, person5) [VFoF]
(person0, vfriend, person6) [VFoF]
(person0, vrelated, person9) [VRoR]

(c)

Figure 3.1: Continued

12

the empty rewritings from evaluation. For this particular example, only four of these

combinations need to be evaluated (the others are either subsumed by these four, or return

no results). Therefore, our third challenge is to optimize the rewriting and evaluate only a

subset of the view combinations without sacrificing soundness or completeness.

Given that relational algebra (and the corresponding SQL fragment) has the same

expressive power as SPARQL [20], one might be tempted to address the SPARQL rewriting

problem by considering the corresponding SQL setting and applying the solutions in SQL.

Although this seems promising since some RDF stores do use a relational back-end (e.g., Jena

SDB [4], Virtuoso [11], C-store [12], etc.), we show here that for a number of reasons, such

an approach does not reduce the complexity. To translate our setting to the relational case,

we use one of the most efficient relational storage strategies for RDF, namely, predicate

tables [12] (column-store style storage); our observations are independent of this choice.

So, we have a database with five tables: name(s, o), lives(s, o), friend(s, o), related(s,

o), and works(s, o), whose contents are easily inferred by the corresponding triples in

Figure 3.1(a). In Figures 3.2(a) and (c), we show the SQL translations of the views and

query of Figure 3.1(b). During this translation, we need to create the corresponding view

predicate tables of the base database tables. So, as shown in Figure 3.2(b), we need to create

the vfriend table which contains the friend subjects and objects returned by the VF-SQL and

VFoF-SQL views (similarly for vrelated and vlives). How can we rewrite QU-SQL to a query over

the base five tables? Since view expansion is supported in SQL, we can replace in QU-SQL the

vfriend, vrelated, and vlives tables with their definitions in Figure 3.2(b), and in turn replace

VF-SQL, VFoF-SQL, VR-SQL, and VRoR-SQL with their definitions in Figure 3.2(a). Finally, it

is not hard to see that the rewriting of QU-SQL results in a union of 64 queries, the same

blow-up in size as the one observed in SPARQL. So, moving from SPARQL to SQL does not

reduce the complexity of the problem (more exposition in Section 3.5); we will validate

this observation in Section 3.4. Such a move is also prohibitive as there is an increasing

number of stores (e.g., Jena TDB [4], 4store [1]) using native RDF storage. For these stores,

translation to SQL does not work. Therefore, it is necessary to have a native and efficient

SPARQL rewriting algorithm, which has the advantage of being generic since it works on

any existing RDF store irrespectively of the storage model used. Our contributions can be

summarized as follows:

1. We study the rewriting of SPARQL queries over virtual SPARQL views, and propose a

native SPARQL rewriting algorithm (Section 3.2), and prove that it generates sound and

complete rewritings.

13

VF-SQL

SELECT F.s, F.o, N’.s, N’.o, L.s, L.o
FROM name N, friend F, name N’, lives L
WHERE N.s =F.s AND N.o =〈P1〉 AND

N’.s =F.o AND L.s =F.o

VR-SQL

SELECT R.s, R.o, N’.s, N’.o, L.s, L.o
FROM name N, related R, name N’, lives L
WHERE N.s =R.s AND N.o =〈P3〉 AND

N’.s =R.o AND L.s =R.o

VFoF-SQL

SELECT F.s, F’.o, N’.s, N’.o, L.s, L.o
FROM name N, friend F,

friend F’, name N’, lives L
WHERE N.s =F.s AND N.o =〈P2〉 AND

F.o =F’.s AND N’.s =F’.o AND

L.s =F’.o

VRoR-SQL

SELECT R.s, R’.o, N’.s, N’.o, L.s, L.o
FROM name N, related R,

related R’, name N’, lives L
WHERE N.s =R.s AND N.o =〈P4〉 AND

R.o =R’.s AND N’.s =R’.o AND

L.s =R’.o

(a)

vfriend:

SELECT fs, fo FROM VF-SQL

UNION

SELECT fs, fo FROM VFoF-SQL

vrelated:

SELECT rs, ro FROM VR-SQL

UNION

SELECT rs, ro FROM VRoR-SQL

vlives:

SELECT ls, lo FROM VF-SQL

UNION

SELECT ls, lo FROM VFoF-SQL

UNION

SELECT ls, lo FROM VR-SQL

UNION

SELECT ls, lo FROM VRoR-SQL

(b)

QU-SQL:

SELECT F.o, R.o, L.o
FROM vfriend F, vlives L, vlives L’, vrelated R
WHERE F.s = person0 AND F.o = L.s AND R.s = person0 AND R.o = L’.s AND L.o = L’.o

(c)

Figure 3.2: Attempting a relational/SQL rewriting: (a) SQL translation of VF, VR, VFoF,
VRoR; (b) Secure predicate tables definitions; (c) SQL translation of query QU

2. We propose several optimizations of the basic rewriting algorithm to reduce the com-

plexity (Section 3.3.1) and size of the rewritten queries (Sections 3.3.2 and 3.3.3), while

employing novel optimization techniques customized for our needs.

3. We present extensive experiments on two RDF stores (Section 3.4) on the scalability and

portability of our algorithms. The optimizations result in order of magnitude improvements

in rewritten query sizes and evaluation times over our basic rewriting algorithm in SPARQL;

14

the latter is comparable to applying rewriting techniques in SQL after translating SPARQL

queries into SQL queries.

We survey the related work in Section 3.5 and conclude the chapter in Section 3.6.

3.2 Query Rewriting in SPARQL

SPARQL is a pattern-matching query language. In this part of the dissertation, we are

going to focus on two types of SPARQL queries. The most common SPARQL queries have

the following form: Q := (SELECT | CONSTRUCT) RD (WHERE GP), where GP are triple

patterns, i.e., triples involving variables and/or constants, and RD is the result description.

Given an RDF graph G, a triple pattern on G searches for a set of subgraphs of G, each of

which matches the pattern (by binding pattern variables to values in the subgraph). For

SELECT queries, RD is a subset of variables in the graph pattern, similar to a projection in

SQL. This is the case for query QU in Figure 3.1(b). For CONSTRUCT queries, RD is a set of

triple templates that construct a new RDF graph by replacing variables in GP with matched

values. This is the case for the views in Figure 3.1(b). Finally, we consider boolean SPARQL

queries of the form ASK GP which indicate whether GP exists, or not, in G. Similar to SQL

where research considered set before bag semantics, for our non-Boolean SPARQL queries,

we assume set semantics whose importance for SPARQL has already been noted [87].

The central technical problem in this chapter is the rewriting problem as follows: given

a set of views V = {V1,V2, . . . ,Vl} over an RDF graph G, and a SPARQL query Q over the

vocabulary of the views, compute a SPARQL query Q′ over G such that Q′(G) = Q(V(G)).

Like [113], we consider two criteria on the correctness of a rewriting, namely, soundness and

completeness.

1. The rewriting is sound iff Q′(G) is contained in Q(V(G)),

i.e., Q′(G) ⊆ Q(V(G))

2. The rewriting is complete iff Q(V(G)) is contained in

Q′(G), i.e., Q(V(G)) ⊆ Q′(G)

Soundness and completeness suffice to show that Q(V(G)) = Q′(G). We will prove our

rewriting meet the two criteria.

3.2.1 Rewriting Algorithm

The first challenge in query rewriting (as mentioned in the introduction) is to determine

which views can be used for the rewriting. In SPARQL, the crucial observation to address

this challenge is that if a variable mapping exists between a triple pattern (sv, pv, ov) in the

15

result description RD(Vj) of a view Vj and one of the triple patterns (sq, pq, oq) in the graph

pattern GP(Q) of query Q, then view Vj can be used to rewrite Q . Using this observation,

we present Algorithm 1 (SQR) to perform the rewriting in two steps. In the first step (lines

3-18), the algorithm determines, for each triple pattern pi(X̄i) in the user query, the set

CandVi of candidate views that have a variable mapping to this triple pattern. For ease of

presentation, we assume that in our SPARQL queries, the predicate in each triple pattern is

a constant (the subject and object can either be variables or constants). Even if a triple has

a variable in its predicate, we can simply substitute such a triple by a set of triple patterns,

each triple in the set binding the predicate variable to a constant predicate from the active

domain of predicates in the RDF store.

Algorithm 1: SPARQL Query Rewriting (SQR) Algorithm

Input: Views V, query Q with GP(Q)=(sQ1 , p
Q
1 , o

Q
1), . . . , (s

Q
n , p

Q
n , o

Q
n)

Output: a rewriting Q′ as a union of conjunctive queries
for each (sQi , p

Q

i , o
Q

i), 1 ≤ i ≤ n do1

Set CandVi to ∅.2

for each view Vj ∈ V do3

Let RD(Vj)=(s
Vj

1 , p
Vj

1 , o
Vj

1), . . . , (s
Vj
m, p

Vj
m, o

Vj
m)4

for each (s
Vj

k , p
Vj

k , o
Vj

k), 1 ≤ k ≤ m do5

if pQi = p
Vj

k then6

Set variable mapping Φijk to undefined7

for the pair (sQi , s
Vj

k) of subjects (similarly objects (oQi , o
Vj

k)) do8

if var. mapping φ : sQi → s
Vj

k exists then9

if φ maps two variables then Φijk(s
Vj

k) = sQi10

else Φijk(s
Vj

k) = s
Vj

k (s
Vj

k is a constant)11

if var. mapping φ : s
Vj

k → sQi exists then12

if φ maps a variable to a constant then Φijk(s
Vj

k) = sQi13

if Φijk is defined then14

For any variable v′ in RD(Vj) not in (s
Vj

k , p
Vj

k , o
Vj

k), Φijk maps v′15

to a fresh variable (a new variable)
Add (Vj ,Φijk) to CandVi16

Set the query rewriting result Q′ to ∅17

for each entry in Cartesian product CandV1 × . . .× CandVn do18

if Φ1j1k1 ,Φ2j2k2 , . . . ,Φnjnkn is compatible then19

RD(q′) = RD(Q)20

GP(q′) = GP(Φ1j1k1(Vj1), . . . ,Φnjnkn(Vjn))21

Q′ = Q′ ∪ q′22

return Q′
23

16

Computing variable mappings between triple patterns in SQR is similar to computing

substitutions between conjunctive queries [14]. Formally, a substitution is a mapping

between the corresponding elements (subject, predicate, and object) in a pair of triples

that maps: (i) a variable in the first triple to another variable or constant in the second

triple; or (ii) a constant in the first triple to the same constant in the second triple. Or,

conversely, a substitution cannot map a constant in the first triple to a variable in the

second, or map two different constants in the triples. For example, a substitution exists

from (?f0, vfriend, ?f1) to (person0, vfriend, ?f5), which maps the variable ?f0 to the constant

person0 and the variable ?f1 to the variable ?f5. There is no substitution from the second to

the first triple since we cannot map the constant person0 to the variable ?f0.

Unlike substitutions that are directional, i.e., the mapping is always from one triple to

another, the variable mappings computed here are more complex, since for their creation,

we need to compose the (partial) substitutions that exist between the two triples in both

directions. As an example, consider the triples (person0, vfriend, ?f5) and (?f6, vfriend, person1).

There is no substitution between the two triples in either of the directions. However,

the variable mappings used by our algorithm attempt to compute partial substitutions

between the two triples and use those to compute a variable mapping. In our example, our

algorithm computes a partial substitution from the first triple to the second that maps ?f5

to constant person1. It also computes a partial substitution from the second triple to the

first that maps ?f6 to constant person0. The combination of the two partial substitutions

constitutes a variable mapping. Eventually, this is used to compute a new triple of the form

(person0, friend, person1). The computed triple is such that a substitution exists from each of

the initial triples to it.

After the var. mapping computation, Algorithm SQR (lines 19-23) constructs in its

second step the rewriting as a union of conjunctive queries. Each query in the union is

generated by considering one combination from the Cartesian product of the sets CandVi (i ∈

[1, n]). While considering each combination, we need to make sure that the corresponding

variable mappings from individual predicates are compatible, i.e., they do not map one

variable in the query Q to two different constants (from the views). For the variables only

appearing in GP of the views, they are mapped to fresh (i.e., new) variables by default. For

each compatible combination, we generate one query in the union.

To illustrate this, consider triples tQU

1 = (person0, vfriend, ?f5) and tQU

2 = (?f5, vlives, ?l5),

from QU of Figure 3.1. For tQU

1 , CandV1 = {(VF,Φ111), (VFoF,Φ121)}, where both Φ111 and

Φ121 are shown in Table 3.1(a) (the subscripts of Φs are defined in Algorithm SQR and

17

labelled in Figure 3.1(b)). Similarly, Table 3.1(b) shows CandV2 for tQU

2 . To get Φ111,

SQR first considers tQU

1 with tVF

1 = (?f0, vfriend, ?f1) from VF (lines 3-8). Then, for the pair

of subjects (person0, ?f0) (line 10), a var. mapping φ exists (line 14) from ?f0 to person0.

Therefore, Φ111 assigns the constant to the variable (line 15). Next, the pair of objects

(?f5, ?f1) is considered (line 10) and as a result, Φ111 assigns ?f1 to ?f5 (lines 11-12). The

remaining variables (?n1 and ?l1) in VF are assigned to fresh/new variables, respectively

(?v0 and ?v1) (line 17). This concludes the computation of Φ111. Other Φ’s are computed

accordingly. To illustrate, we consider the (partial) query QU
part of QU consisting only

of triples tQU

1 and tQU

2 . Then, there are 8 rewritings of QU
part (lines 20-24), one for each

combination of Φ’s in CandV1 and CandV2. Table 3.1(c) shows the rewriting for QU
part,

using (VFoF,Φ121) in CandV1 and (VR,Φ233) in CandV2.

Theorem 1 The rewriting Q′ of SQR is sound and complete.

Proof. We first show the soundness and then prove the completeness.

Algorithm 1 generates a rewriting Q′ of the input query q(X̄) :- p1(X̄1), . . . , pn(X̄n) as a

union of conjunctive queries, i.e., Q′ = ∪q′, with one query q′ for each entry in the Cartesian

product of CandV1 × . . . × CandVn (lines 20-24 of the algorithm). To prove soundness, it

suffices to show that that q′(G) ⊆ q(V(G)), for each q′ of Q′.

Let q′ be the query corresponding to the (Φ1j1k1(Vj1), . . .Φnjnkn(Vjn)) entry of the

Cartesian product, and let V′
ji
= Φijiki(Vji), 1 ≤ i ≤ n, that is, V′

ji
is the view obtained by

applying the variable mapping Φijiki to view Vji . It is not hard to see that V′
ji
(G) ⊆ Vji(G).

Table 3.1: Variable mapping example

(VF,Φ111) : Φ111(?f0, ?f1, ?n1, ?l1) = (person0, ?f5, ?ν0, ?ν1)
(VFoF,Φ121) : Φ121(?f2, ?f4, ?n4, ?l4) = (person0, ?f5, ?ν2, ?ν3)

(a) CandV1 for triple (person0, vfriend, ?f5)

(VF,Φ213) : Φ213((?f1,?l1,?f0,?n1)) = (?f5,?l5,?ν4,?ν5)
(VFoF,Φ223) : Φ223((?f4,?l4,?f2,?n4)) = (?f5,?l5,?ν6,?ν7)
(VR,Φ233) : Φ233((?r1,?l1,?r0,?n1)) = (?f5,?l5,?ν8,?ν9)
(VRoR,Φ243) : Φ243((?r4,?l4,?r2,?n4)) = (?f5,?l5,?ν10,?ν11)

(b) CandV2 for triple (?f5, vlives, ?l5)

GP(q’)={ person0 name 〈P 〉, person0 friend ?f ′3, ?f
′
3 friend ?f5, ?f5 name ?ν2,

?f5 lives ?ν3, ?ν8 name 〈P 〉, ?ν8 related ?f5, ?f5 name ?ν9, ?f5 lives ?l5 }

(c) Rewritten body of QU
part

18

But then, ∪iV
′
ji
(G) ⊆ ∪iVji(G), and therefore, ∪iV

′
ji
(G) ⊆ V(G). Applying query q in

both sides of the containment relation, we get q(∪iV
′
ji
(G)) ⊆ q(∪iVji(G)) ⊆ q(V(G)). By

construction, query q′ considers one possible way of evaluating query q over ∪iV
′
ji
(G), the

one that considers the predicates pi(X̄i) in each V′
ji
(G) (remember that predicate pi(X̄i)

appears in the head of V′
ji

due to Φijiki). Thus, q′(G) ⊆ q(∪iV
′
ji
(G)), which implies that

q′(G) ⊆ q(V(G)).

To prove completeness, it suffices to show that Q(V(G)) ⊆ Q′(G). Consider q(X̄) :-

p1(X̄1), . . . , pn(X̄n) and let A(pi(X̄i), V(G)) = {T = (s, p, o)| T ∈ V(G) and there exists a

valuation φi such that φi(pi(X̄i)) = T}, that is, A(pi(X̄i), V(G)) contains all the triples in

V(G) satisfying pi(X̄i).

Now, consider a set of triples T1, . . . ,Tn such that (i) Ti ∈ A(pi(X̄i),V(G)); and (ii)

there exists a valuation φ (the composition of valuations φi, for each i) that maps the body

BD(q) of query q to the set of Ti triples. If no such valuation exists for any set of triples,

then Q(V(G)) = ∅ and completeness trivially holds. Now, each triple Ti is generated by a

predicate tki of some view Vji . This implies the existence of a valuation Ψji of view Vji over

G such that Ψji(tki) = Ti. It is not hard to see that due to the existence of valuations φi

between pi(X̄i) and Ti, and Ψji between Vji and Ti, Algorithm 1 constructs (in lines 9-17)

a variable mapping Φijiki for Vji . We show that Ti ∈ (Φijiki(Vji))(G). This is proven by

contradiction. If Ti 6∈ (Φijiki(Vji))(G), then variable mapping Φijiki assigns a variable v in

Vji (and in particular in tki) to a constant c (mappings between variables do not affect the

evaluation of Vji), which causes the exclusion of Ti from the results (c is not one of the

constants in Ti), a contradiction. Notice that in Algorithm 1 (lines 10-15), any binding of

variables in Φijiki is using constants from query q (and therefore from Ti).

Consider now query q′ constructed by considering all the Φijiki(Vji) corresponding to

triples Ti. Query q′ is constructed by Algorithm 1 since (a) the Φijiki(Vji) are compatible,

due to the existence of valuation φ; and (b) Algorithm 1 is exhaustive and considers

all possible combinations of variable mappings, and therefore, it will consider the above

combination. It is not hard to see then that for the triples Ti, evaluating q over the

triples is equivalent to evaluating q′(G). That is, for any set of triples satisfying q, there

exists a corresponding query q′ that produces the same result. By considering (the union

of) all possible sets of triples that satisfy q, we can infer that q(V(G)) ⊆ ∪q′(G), i.e.,

Q(V(G)) ⊆ Q′(G).

The cost of Algorithm SQR is influenced by the cost of computing variable mappings

O(|Q| ×
∑

j |RD(Vj)|), but is dominated by the generation of rewritings and is thus equal

19

to O((
∑

j |Vj |)
|Q|), where |Q| (resp. |Vj |) is the size of Q (resp. Vj).

In SQR, as long as a view predicate is mentioned in a query, the view automatically

becomes a candidate for rewriting the query (modulo an incompatibility check). The key

reason is that the RDF model is schema-less. This schema-less nature of the data model

is the main reason behind the exponential blow-up of the rewriting. As an example, using

SQR to rewrite query QU over the views of Figure 3.1 results in a rewriting Q′ that is a union

of 64 queries, all of which must be evaluated in principle for the rewriting to be sound and

complete. However, a number of these queries can either be (i) optimized and replaced

by more succinct and equivalent queries; or (ii) dropped from consideration altogether

because they result in an empty set. Going back to our motivating example, remember that

actually, only 4 queries suffice for the rewriting. Therefore, the challenge we address next

is to perform such optimizations without sacrificing soundness or completeness.

3.3 Optimizing Rewritings

In this section, we discuss a few optimization techniques that make the rewriting more

efficient and practical.

3.3.1 Optimizing Individual Rewritings

In the rewriting of QU, each rewriting q′ generated by Algorithm SQR joins four views

(one view from the CandV of each of the four predicates vfriend, vlives, vrelated, vlives in QU).

One such rewriting involves views VF for vfriend, VF for vlives, VR for vrelated, and VR for

vlives. That is, the rewriting uses two copies of both VF and VR. Since the join (e.g., vfriend

joined with vlives) in QU is done in a similar way as that in the view VF, there is redundancy

to have two copies of VF for this join; and similarly for VR. The question is whether it is

possible to get an equivalent rewriting by merging view copies, and thus generate a simpler

query to evaluate. Indeed, one copy from each view suffices: the two copies of VF are due to

predicates vfriend and vlives being joined on variable ?f5 in QU. However, in the CONSTRUCT

of VF, these two predicates are joined in a similar way. Therefore, one copy of VF suffices

since it already returns all the triples joinable by the two predicates (i.e., the view self-join

is equivalent to the view itself).

Algorithm 2 detects such situations by accepting as input two copies of a view V that

are used in rewriting a query, one as the candidate view for predicate p1 and the other for

its joinable predicate p2, with variable mappings Φ1 and Φ2, respectively. The algorithm

considers the variable mappings between the query and the views and attempts to construct

a new mapping Φmerge that merges the two input mappings. If Φmerge exists, the two copies

20

Algorithm 2: Candidate View Merging

Input: (V,Φ1) from CandV1, (V,Φ2) from CandV2

Output: (V,Φmerge)
Continue merge = false;1

for each triple pattern (s, p, o) in Φ1(RD(V)) do2

Let (s’, p, o’) be the corresponding pattern in Φ2(RD(V))3

if {s, o} ∩ {s′, o′} 6= ∅ then Continue merge = true;4

if Continue merge == false then return (V, ∅);5

for each triple pattern (s, p, o) in Φ1(RD(V)) do6

Let (s’, p, o’) be the corresponding pattern in Φ2(RD(V))7

Create corresponding merged pattern (sM, p, oM) for Φmerge8

if s is a fresh variable then sM = s′; goto 14;9

if s′ is a fresh variable then sM = s; goto 14;10

if s = s′ then sM = s else return (V, ∅)11

if o is a fresh variable then oM = o′; goto 8;12

if o′ is a fresh variable then oM = o; goto 8;13

if o = o′ then oM = o else return (V, ∅)14

return (V,Φmerge)15

of V can be merged to simplify the rewriting. During merging, should multiple occurrences

of the same predicate appear in the same V, they are treated as distinct predicates. A

key observation during the construction of Φmerge is that all the variables and constants

appearing in the query are treated as constants (thus, only fresh variables are treated as

variables for the purpose of merging the view copies). This ensures that views are merged

not only because they are copies of the same view, but also because their predicates are

joined in precisely the same way as in the query (lines 4-7). Each time view copies are

merged, we must also account for any variable mappings that have been applied to the views,

due to their relationships with the views used for rewriting other predicates. Algorithm 2

ensures that the effects of such variable mappings are also merged (lines 8-16). If Φmerge in

the output of Algorithm 2 is ∅, the two copies of V cannot be merged.

To illustrate, consider in the rewriting of QU the var. mapping (VF,Φ111) for predicate

vfriend and (VF,Φ213) for predicate vlives. Applying the two mapping functions respectively

on VF would result in two copies of VF joined on ?f5. Since in VF the triple patterns of

vfriend and vlives are joined in the same way as that in QU, Φ111 and Φ213 can be merged;

Φmerge(?ν4, ?f5, ?ν0, ?ν1) = (person0,?f5,?ν5,?l5). Therefore, the rewriting from Algorithm SQR

involving two copies of VF can be simplified into a rewriting with one copy.

Theorem 2 Query q′
merge

resulting from (i) replacing the two copies of view V in query

q′ with one; and (ii) applying Φmerge computed by Algorithm 2, in place of Φ1 and Φ2; is

21

equivalent to q′.

Proof. Without loss of generality, suppose user query QU is composed of two triple patterns

p1(X̄1) and p2(X̄2), and one rewriting q from Algorithm 1 is: HD(q) = p1(X̄1), p2(X̄2)

and BD(q) = BD(Φ1(V)) ∧ BD(Φ2(V)). Recall that Algorithm 2 tries to simplify q by

removing redundant triple patterns in q. If Φmerge returned from Algorithm 2 is null,

the rewriting q is retained (thus, the soundness and completeness of Algorithm 1 is not

affected); otherwise, q is replaced with a simplified rewriting q′: HD(q′) = p1(X̄1), p2(X̄2)

and BD(q′) = BD(Φmerge(V)). Since both Φ1(V) and Φ2(V) are conjunctive queries and

are joined (lines 4 ∼ 6 of Algorithm 2), q is also a conjunctive query. Note that only

fresh variables in q and q′ are treated as variables when constructing the variable mapping

function Φmerge; constants and variables appearing in the head of q are treated as constants.

To prove that q′ is equivalent to q, we first prove q′ is contained in q, i.e., q′ ⊆ q. The

way we construct Φmerge (lines 11 ∼ 16) guarantees that there is a homomorphism ϕ from

q to q′: ϕ(s) = sM , ϕ(s′) = sM , ϕ(o) = oM , and ϕ(o′) = oM , as s and s′ (correspondingly, o

and o′) are either fresh variables or identical to sM (correspondingly, oM). Since t(s, o) and

t(s′, o′) have the same predicate as t(sM , oM), it is easy to see that ϕ(q) = q′. Therefore, q′

is contained in q, i.e., q′ ⊆ q.

Next, we prove that q ⊆ q′. For any triple pattern t(sM , oM) in q′, in which both sM

and oM are not fresh variables (lines 13 and 16), at least one of the triple patterns t(s, o)

and t(s′, o′) is identical to t(sM , oM). For other triple patterns in q′ that involve fresh

variables, there must exist (at least one) isomorphism between these triple patterns and the

corresponding triple patterns in q. Therefore, q′ is equivalent to a subquery of q. Thus, we

have q ⊆ q′.

As both q′ ⊆ q and q ⊆ q′ hold, we have proved that q is equivalent to q′.

The cost of Algorithm 2 is O(|V|). Since, in the worst case, there can be as many view

copies of a view V as the size of the query, optimizing with Algorithm 2 each conjunctive

query generated at lines 22-23 of SQR costs O(|Q| × |V|).

3.3.2 Pruning Rewritings with Empty Results

Due to the schema-less nature of RDF, a sound and complete rewriting of an input query

requires that we construct rewritings by considering every possible combination of predicates

from the input views, which often results in a certain number of rewritings with empty

results. (This observation is unique to RDF/SPARQL, in comparison to the query rewriting

results in the relational or XML case.) For example, a sound and complete rewriting of query

22

QU
part (see Section 3.2.1) includes the rewriting q′ in Table 3.1(c). Rewriting q′ joins triples

from VFoF and VR and essentially looks for persons that are relatives of friends-of-friends of

person0. Looking at the triples in Figure 3.1, it is clear that no current base triples satisfy

the constraints of q′. The question is then how can we detect such empty rewritings, and

more importantly, how to do this efficiently.

Consider a simple case where a rewriting involves a join between two predicates (?y1, p1, ?y2)

and (?y3, p2, ?y4), where the join equates ?y2 and ?y3. Denote the value set of a variable ?x as

A(?x). If we store A(?x) for every variable in any triple pattern, this problem is trivial, i.e.,

we simply check whether A(?y2)
⋂
A(?y3) = ∅. Unfortunately, this straightforward solution

is expensive space-wise. In general, a negative result exists for the boolean set intersection

problem, i.e., given two sets A1 and A2, checking if A1 and A2 intersects requires linear

space, even if one is willing to settle to a constant success probability [18, 62]. However, we

can design a space-efficient heuristic that works well in practice.

The basic idea is to first determine the value set for each distinct variable involved in the

rewriting, and then construct a synopsis for each value set. In our example, we can estimate

the size of intersection of A(?y2) and A(?y3) based on their synopses. If the intersection size

is estimated to be above some preset threshold with a reasonable probability, we consider

the predicates as joinable; otherwise, we issue an ASK query to verify if the join is actually

empty; if it is, we remove this and other rewritings involving predicates (?y1, p1, ?y2) and

(?y3, p2, ?y4). Note that our pruning step does not affect the soundness and completeness of

our solution, as before pruning, we always issue an ASK query to make sure that rewriting

has an empty result. In general, an ASK query is much cheaper than the corresponding

SELECT query, especially when the graph pattern is nonselective, and the synopses are used

to avoid issuing unnecessary ASK queries (for those rewritings that are very likely to be

nonempty).

The synopses should satisfy two key requirements. First, we should be able to estimate

the size of intersection of multiple value sets (not just binary intersection) since a rewriting

might include a join of m predicates on m variables. Let ?x1, ?x2, . . . , ?xm denote these

variables. To simplify notation, we use Ai to denote A(?xi). Second, the synopses of each

variable should be able to estimate the distinct elements in its value set (as well as support

distinct elements estimation under the set intersection operator). This requirement comes

from the observation that we can estimate the size of an intersection |A1
⋂

A2| by simply

estimating the size of D(A1
⋂

A2) where D is the number of distinct elements in A1 and A2,

respectively. In what follows, we show that the KMV-synopsis[25] meets both requirements.

23

For a set A1, we denote its KMV-synopsis as σ(A1). The construction of σ(A1) is

as follows. Given a collision-resistant hash function h that generates (roughly) uniformly

random hash values in its domain [1,M], σ(A1) simply keeps the k smallest hash values from

all elements in A1, i.e., σ(A1) = {h(v1), . . . , h(vk)}, where vi ∈ A1, and h(v) ≥ max(σ(A1))

if v ∈ A1 and h(v) /∈ σ(A1). Then, D̂(A1) = k−1
max(σ(A1))/M

is an unbiased estimator for

D(A1) [25]. Furthermore, it is also possible to estimate the distinct number of elements in

a general compound set (produced based on A1, . . . , Am with set union, intersection, and

difference operators) [25]. In our case, we are only interested in estimating D(I) where

I = A1
⋂
A2 · · ·

⋂
Am. Specifically, inspired by the discussion in [25], we can obtain an

unbiased estimator D̂(I) as follows. Define σ(Ai) ⊕ σ(Aj) as the set consisting of the k

smallest values in σ(Ai)
⋃
σ(Aj), and let σ1...m = σ(A1)⊕σ(A2) · · ·⊕σ(Am). Furthermore,

let:

KI =
∣∣∣σ1...m

⋂
σ(A1)

⋂
· · ·
⋂

σ(Am)
∣∣∣ and,

D̂(I) =
KI

k

(
k − 1

max(σ1...m)/M

)
.

(3.1)

We can show that , by extending similar arguments from [25]:

Lemma 1 For k > 1, D̂(I) in Equation 3.1 is an unbiased estimator for D(I).

Proof. First, by Theorem 5 in [25] and discussion therein, we know that σ1...m is the size-k

KMV-synopsis for the union of sets A1, A2, . . . , Am, i.e., σ1...m = σ(A1
⋃

A2 · · ·
⋃

Am) =

σ(U), where U = A1
⋃

A2 · · ·
⋃
Am. Hence, k−1

max(σ1...m)/M is an unbiased estimator for D(U)

by the basic property of the KMV-synopsis (see Section 4.1 in [25]).

Next, we simply extend the similar arguments from Section 5.2 in [25] for the intersection

over two sets to the intersection over multiple sets. Let VU be the set of k values from the

original value sets A1 to Am that correspond to the hash values in σ1...m, then, by a trivial

extension of Lemma 1 in [25], we can show that for each v ∈ VU , we have v ∈ Ai if and

only if h(v) ∈ σ(Ai). This implies that v ∈ I, where I = A1
⋂

A2 · · ·
⋂

Am, if and only if

h(v) ∈ σ(A1)
⋂

σ(A2) · · ·
⋂

σ(Am). Hence:

K∩ = |v ∈ VU : v ∈ A1

⋂
A2 · · ·

⋂
Am| = KI , (3.2)

where KI is given by Equation 3.1.

Clearly, VU could be viewed as a random sample of k elements from D(U), where D(·)

represents the set of distinct elements from an input. Hence, ρ = D(I)/D(U) can be

estimated by ρ̂ = K∩/k, the fraction of sample elements in VU that also belong to D(I). As

a result, ρ̂ gives an unbiased estimator for ρ.

24

Finally, since D(I) = ρD(U), then E(ρ̂ · D̂(U)) = D(I) if D̂(U) is an unbiased estimator

of D(U). Since ρ̂ = K∩/k = KI/k (by Equation 3.2), it follows that D̂(U) = k−1
max(s1...m)/M

is an unbiased estimator of D(U) (from the first paragraph in this Section). We complete

the proof.

Lemma 2 If D(I) > 0, ǫ ∈ (0, 1) and k ≥ 1, let T = kD(I)/j, it follows:

Pr

(
|D̂(I)−D(I)|

D(I)
≤ ǫ
∣∣∣KI = j

)
= ∆(kD(I)/j, k, ǫ) = δ, (3.3)

∆(T, k, ǫ) =
T∑

i=k

(
T

i

)(
k − 1

(1− ǫ)T

)i(
1−

k − 1

(1− ǫ)T

)T−i

−
T∑

i=k

(
T

i

)(
k − 1

(1 + ǫ)T

)i(
1−

k − 1

(1 + ǫ)T

)T−i

Proof. The key observation is that for the intersection over multiple sets (more than 2),

the following arguments made for the intersection over two sets in Section 5.2 from [25]

still hold. VU is a uniform random sample of size k drawn from D(U), and K∩ is a random

variable representing the number of elements in VU that also belongs to D(I). Hence, similar

to Equation 9 in [25], for intersection over m sets, we also have:

Pr(K∩ = j) =

(
D(I)

j

)(
D(U)−D(I)

k − j

)/(
D(U)

k

)
, (3.4)

where K∩ is given in Equation 3.2. Hence, K∩ is a random variable with a hypergeometric

distribution, just as the same random variable defined for the intersection over two sets

in Section 5.2 from [25]. The rest of the proof for Pr
(
|D̂(I)−D(I)|

D(I) ≤ ǫ
∣∣∣KI = j

)
given in

Equation 3.3 of Lemma 2 follows exactly the same fashion as the proof of Theorem 6

in [25]. We omit the detailed derivations (simple substitution of parameters for several

functions defined in [25] in the proof of Theorem 6) that eventually lead to our Equation 2.

This completes the proof.

In practice, given the observation of D̂(I) and KI , we can set T = kD̂(I)/KI and substi-

tute T in Equation 3.3. Thus, we can obtain the confidence value δ for Pr
(
|D̂(I)−D(I)|

D(I) ≤ ǫ
)

for any error value ǫ. That said, our pruning technique works as follows.

We preset a small threshold value τ > 1, a probability threshold θ ∈ [0, 1), and a relative

error value ǫ ∈ (0, 1). For any m value sets of m variables to be joined in a rewriting, we

estimate their intersection size as D̂(I) by Equation 3.1, and δ = Pr
(

|D̂(I)−D(I)|
D(I) ≤ ǫ

)
as

above. Then, we check if D̂(I)/(1 + ǫ) > τ and δ > θ (i.e., if D(I) is larger than τ

with a probability ≥ θ). If this check returns false, we issue an ASK query to verify if the

25

corresponding rewriting is empty; if yes, we can safely prune this rewriting. Otherwise

(either the check returns true or the ASK returns nonempty), we consider that I is not

empty and keep the current rewriting. In practice, we observe that the above procedure

can be simplified by just checking if D̂(I) ≤ τ for a small threshold value τ > 1 (without

using δ, θ, and ǫ), which performs almost equally well.

To illustrate, consider again the rewriting in Table 3.1(c) of query QU
part. To detect

whether the rewriting is empty, we estimate the intersection size of the join in Table 3.1(c)

using Equation 3.1. For the example, the equation indicates that the intersection is not

larger than τ , and therefore, we issue an ASK query. The ASK query evaluates the rewriting

of Table 3.1(c) over the triples of Figure 3.1(a). Since there are no triples for persons that

are relatives of friends-of-friends of person0, the ASK query returns false. Thus, QU
part is

pruned.

The KMV-synopsis supports insertions (of a new item to the multiset from which the

synopsis was initially built) but not deletions (hence, it does not support the general update,

which can be modeled as a deletion followed by an insertion) [25]. However, we can still

use the KMV-synopsis to provide a quick estimation for pruning rewritings with empty

results in case of updates to RDF stores, by only updating the synopses with the insertions

and ignoring the deletions. Clearly, over time, this will lead to an overestimation of the

intersection size for multiple sets. However, such an overestimation only gives us false

positives but not false negatives, i.e., we will not mistakenly prune any rewritings that do

not produce an empty result. Of course, as the number of deletions increases, this approach

will lead to too many false positives (rewritings that do produce empty results cannot be

detected by checking their synopses) Hence, we can periodically rebuild all synopses after

seeing enough number of deletions w.r.t. a user-defined threshold.

3.3.3 Optimizing the Generation of Rewritings

The pruning technique presented in Section 3.3.2 considers rewritings in isolation, to

decide if a rewriting is empty or not. One way to integrate Algorithm SQR with the pruning

technique will be: generating all the possible rewritings in one shot followed by a pruning

step to remove empty rewritings from evaluation. However, such an integration ignores

some inherent relationships between the rewritings, i.e., that different rewritings share

similar subqueries. If we can quickly determine a common subquery (i.e., partial rewriting)

is empty, it will save time that otherwise is needed to determine whether the rewritings

contained in this subquery are empty or not. In what follows, we show how one can optimize

the rewriting by taking advantage of these common subqueries. To illustrate, consider our

26

running example and the rewriting of QU over the views in Figure 3.1(b). One generated

rewriting q′1 for QU involves views VF, VR, VR, VR with appropriate variable mappings since

each view is in the CandV of predicate friend, lives, related, and lives, respectively. Similarly,

another generated rewriting q′2 involves views VF, VR, VRoR, VR. The key observations

here are that (i) both rewritings involve a join of views VF and VR; and (ii) from the

optimization of the previous section, the join of views VF and VR is empty since the set of

friends of “Eric” (see Figure 3.1(c)) is disjoint from his relatives. Therefore, both rewritings

q′1 and q′2 can safely be removed (and every other rewriting involving a join of the two

views over the corresponding predicates). By detecting with a single check the empty join

between views VF and VR, the algorithm optimized SQR (OSQR, see Algorithm 3) terminates

immediately the branch of rewritings (including q′1 and q′2) involving these two views. To

remove them from consideration, Algorithm SQR must check each generated individual

rewriting independently. Algorithm OSQR addresses this shortcoming by building individual

rewritings in a step-wise fashion. This way, OSQR detects and terminates early any branch

of rewritings involving views whose join result is empty.

In a nutshell, Algorithm OSQR works as follows. The algorithm uses a structure STACK

where each element in STACK stores a subquery SubQ of Q along with a candidate view

combination for rewriting SubQ. Initially, STACK and SubQ are empty. The first subquery

considered corresponds to a triple pattern in Q, and we pick the pattern with the smallest

size of |CandV| (i.e., the number of views in CandV). Intuitively, this triple pattern is the

most selective and by considering the most selective predicates in order (in terms of their

|CandV|), we maximize the effects of early terminating a branch of rewritings once we detect

the rewriting for SubQ results in an empty set (a larger portion of the rewritings for Q that

contain this rewriting for SubQ is pruned earlier in this manner). After the first pattern, the

algorithm considers one pattern added at each step. The way the pattern is picked (line 14)

ensures that it can be joined with the current SubQ at the head of STACK, which increases

the chance of optimization with techniques described in Section 3.3.1 and Section 3.3.2.

Again, when more than one pattern is under consideration, the most selective one is picked.

After a pattern is added and a candidate view for the pattern is picked, the view redundant

with the existing view set for SubQ will be merged into the view set (lines 18-19). If the

current rewriting for SubQ has an empty result (lines 21-23), the rewriting is not extended

further and not pushed back into STACK.

We use CandV1 and CandV2 in Tables 3.1(a) and 3.1(b) to illustrate OSQR. Since |CandV1|

is smaller in size (line 6) , it first initializes STACK = {({vfriend},{VF}), ({vfriend},{VFoF})}

27

Algorithm 3: The Optimized SQR (OSQR) Algorithm

Input: Views V, query Q with GP(Q)=(sQ1 , p
Q
1 , o

Q
1), . . . , (s

Q
n , p

Q
n , o

Q
n)

Output: a rewriting Q′ as a union of conjunctive queries
Set the query rewriting result Q′ to ∅.1

Generate CandVi for each triple pattern (sQi , p
Q

i , o
Q

i), 1 ≤ i ≤ n.2

Set SubQ to ∅; initialize a stack STACK to store view combinations for SubQ.3

Pick a triple pattern (sQi , p
Q

i , o
Q

i), with the smallest size of |CandVi|.4

Add (sQi , p
Q

i , o
Q

i) into SubQ;5

push each combination (SubQ, {V,V ∈ CandVi}) into STACK.6

while STACK is non-empty do7

Pop a combination R from STACK; extract SubQ from R.8

if SubQ contains all triple patterns in user query then9

Generate a rewriting q from R’s view set (lines 21-23 in SQR).10

Q′ = Q′ ∪ q; goto line 9.11

Get all triple patterns that can be joined with SubQ but not in SubQ;12

Pick the triple pattern (sQj , p
Q

j , o
Q

j) with the smallest size of |CandVj |.13

for each view V in CandVj do14

Create a copy R′ of R and a copy SubQ
′ of SubQ.15

if V is redundant with existing views in R′ then16

Merge V with the view set of R′ (Sec. 3.3.1).17

else Add V into the view set of R′.18

if the estimated result of a rewriting from R′ is empty (Sec. 3.3.2) then19

Issue an ASK query corresponding to the rewriting.20

if ASK query confirms the result is empty then goto line 16.21

Add (sQj , p
Q

j , o
Q

j) in SubQ
′ to replace SubQ in R′;22

Push R′ in STACK.23

(line 8). OSQR processes CandV2 next (line 15). It iterates through CandV2 from (VR,Φ233)

and detects that VF in CandV1 cannot be merged with VR in CandV2 (line 18). Therefore,

OSQR adds (vlives,VR) to R′ (line 20). Assume OSQR detects an empty result (line 21), (e.g.,

the join of VF and VR for “Eric” is actually empty); OSQR issues an ASK query. If ASK returns

negative (i.e., empty), OSQR will skip lines 24-25 to avoid pushing ({vfriend, vlives},{VF, VR})

into STACK. The above procedure iterates until STACK is empty.

3.4 Experiments

We implemented our rewriting algorithms and optimization components in C++ and

evaluated them on two RDF stores, namely, 4store [1] and Jena TDB [4]. Our relational

database experiments were conducted using MySQL. For KMV synopsis, we set k=16 and

τ = 2 whenever the synopses were used (the simplified version of the checking procedure

from Section 3.3.2 was adopted).

28

Here, we report the experimental results that compare the basic SPARQL query rewriting

(SQR) algorithm with the optimized SQR (OSQR) algorithm, with detailed evaluation of the

impact of individual optimization components. We used two key performance metrics, i.e.,

the number of rewritings generated through query rewriting and the end-to-end evaluation

time, including query rewriting and execution. Also, we studied the scalability of our

algorithms along multiple dimensions, i.e., the size of query |Q|, views |V|, and |CandV|. In

experiments, we used the popular RDF benchmark LUBM [50] (which considers a setting in

the university domain that involve students, departments, professors, etc.) to generate a

dataset of 10M triples as the base data, over which views are defined using SPARQL queries.

We ran all experiments on a 64-bit Linux machine with a 2GHz Intel Xeon(R) CPU and

4GB of memory.

3.4.1 Experimental Results with 4Store

In the introduction, we claim that translating SPARQL queries/views to SQL does not

resolve the challenges addressed by our work. Here, we illustrate experimentally that this

is indeed the case. For the experiment, we use the setup shown in Figure 3.3. In more

detail, we use the seven view templates to instantiate 56 different views. Specifically, we

create 14 views using template V1 (each view with a different parameter in P1), 12 views

using template V2 (using the same first 12 of the 14 parameters used for V1), 10 views using

template V3 (using the same first 10 of the parameters used for V1 and V2), 8 views using

template V4 (using the same first 8 of the parameters used for V1, V2, and V3), 6 views

using template V5 (using the same first 6 of the parameters used for V1, V2, V3, and V4), 4

views using template V6 (using the same first 4 of the parameters used for V1, V2, V3, V4,

and V5), and 2 views using template V7 (using the same first 2 of the parameters used for

all the other views). Each view exposes some aspect of a student’s data (e.g., name, email).

In terms of the query, we execute a different query in each iteration of the experiment. In

iteration i, the query involves all the predicates in Figure 3.3(b) with an annotation j ≤ i.

So, the query initially has 3 predicates, and in each iteration we add one more predicate, up

to a size of 7. Given the above setup, it is not hard to see that (i) the CandV for predicate

name has 14 views, that for predicate email, it has 12, and finally for predicate worksFor, it

has only 2 views; and (ii) for any two predicates pi and pj , there are min(|CandVi|, |CandVj |)

nonempty joins between the two candidate views.

We also translate the SPARQL queries/views and the underlying RDF data to SQL and

relational data. For the relational representation of RDF data, we use (fully-indexed)

predicate tables [12], which provide one of the most efficient representations of RDF in

29

V1:CONSTRUCT { ?x1 name ?n1 } WHERE { ?x1 name ?n1, ?x1 worksFor 〈P1〉}
V2:CONSTRUCT { ?x2 email ?e2 } WHERE { ?x2 email ?e2, ?x2 worksFor 〈P2〉}
V3:CONSTRUCT { ?x3 degreeFrom ?d3 } WHERE { ?x3 degreeFrom ?d3, ?x3 worksFor 〈P3〉}
V4:CONSTRUCT { ?x4 phone ?p4 } WHERE { ?x4 phone ?p4, ?x4 worksFor 〈P4〉}
V5:CONSTRUCT { ?x5 teacherOf ?c5 } WHERE { ?x5 teacherOf ?c5, ?x5 worksFor 〈P5〉}
V6:CONSTRUCT { ?x6 interest ?i6 } WHERE { ?x6 teacherOf ?i6, ?x6 worksFor 〈P6〉}
V7:CONSTRUCT { ?x7 worksFor ?w7 } WHERE { ?x7 worksFor ?w7, ?x7 worksFor 〈P7〉}

(a)

Q:SELECT { 1 ?x, 1 ?n, 1 ?e, 1 ?d, 2 ?p, 3 ?c, 4 ?i, 5 ?w }

WHERE { 1 ?x name ?n, 1 ?x email ?e, 1 ?x degreeFrom ?d,
2 ?x phone ?p, 3 ?x teacherOf ?c, 4 ?x interest ?i, 5 ?x worksFor ?w }

(b)

Figure 3.3: Experimental setup 1 (a) Views templates and (b) Query template

terms of query performance. Then, we compare algorithms SQR and OSQR as well as the

corresponding relational/SQL-based representation (denoted as SQL in our figures). Figure

3.4 shows the comparison results. As the size of the input query increases, Algorithm OSQR

results in between one and four orders of magnitude less queries as part of the rewriting

process, while both algorithms SQR and the SQL view expansion result in the same number

of queries. Meanwhile, Algorithm OSQR is up to two orders of magnitude faster than both

SQR and SQL, in terms of the evaluation times for query rewriting and execution.

To illustrate that the above result holds for different queries and views, we perform the

same experiment with an alternative setup. In this setting, a query has three predicates and

retrieves the email, degree, and all the courses taken by each student (see Figure 3.5(b)). The

query is evaluated over views that have one of five view templates, denoted by Vi, 1 ≤ i ≤ 5

(shown in Figure 3.5(a)). The templates are defined so that CandVcourses = {V1, V2, V3,

V4, V5}, CandVdegree = {V3}, and CandVemail = {V1, V4, V5}. Notice that if each template

is instantiated only once, SQR results in 15 rewritings. Normally, one expects that only a

few of the rewritings are nonempty and hence we make 2 of the 15 rewritings nonempty,

those involving templates V3 and V4. To do this, we make sure that the same variable

P3 is used for both view templates V3 and V4 and thus both templates are instantiated

from the same university. Notice that definition-wise, view templates V1, V4, and V5 are

identical. However, we make sure that the three templates are instantiated from different

universities so that they are nonoverlapping in their contents. We create multiple instances

of view templates using students from different departments, and by always populating

pairs of instances of templates V3 and V4 from the same department, we make sure they

join. Figure 3.6 shows the number of rewritings and evaluation times for SQR, OSQR, and

30

3 4 5 6 7
0

15

30

45

60

75

|Q|

N
u
m

.
o
f
re

w
ri
ti
n
g
s
 (

×
1
0

4
)

SQR OSQR SQL

(a)

3 4 5 6 7
0

400

800

1200

1600

|Q|

T
im

e
 (

S
e
c
o
n
d
s
)

SQR OSQR SQL

(b)

Figure 3.4: SPARQL rewriting vs. SQL expansion (a) Rewritten queries over query size and
(b) Eval. time over query size

V1:CONSTRUCT { ?x1 email ?e1, ?x1 course ?c1 }
WHERE { ?x1 email ?e1, ?x1 course ?c1, ?x1 member ?u1, ?u1 subOrg 〈P1〉}

V2:CONSTRUCT { ?x2 phone ?p2, ?x2 course ?c2 }
WHERE { ?x2 phone ?p2, ?x2 course ?c2, ?x2 member ?u2, ?u2 subOrg 〈P2〉}

V3:CONSTRUCT { ?x3 degree ?d3, ?x3 course ?c3 }
WHERE { ?x3 degree ?p3, ?x3 course ?c3, ?x3 member ?u3, ?u3 subOrg 〈P3〉}

V4:CONSTRUCT { ?x4 email ?e4, ?x4 course ?c4 }
WHERE { ?x4 email ?e4, ?x4 course ?c4, ?x4 member ?u4, ?u4 subOrg 〈P3〉}

V5:CONSTRUCT { ?x5 email ?e5, ?x5 course ?c5 }
WHERE { ?x5 email ?e5, ?x5 course ?c5, ?x5 member ?u5, ?u5 subOrg 〈P5〉}

(a)

Q:SELECT { ?x, ?e, ?c, ?d } WHERE { ?x email ?e, ?x course ?c, ?x degreeFrom ?d }

(b)

Figure 3.5: Experimental setup 2 (a) Views templates and (b) Query template

the corresponding relational/SQL setting. In the experiment, we start by instantiating each

template twice (10 views in total), and proceed by picking a template and adding view

instances in a way that linearly increases the cardinality of CandVcourses (the largest CandV

set). Figure 3.6 shows that as the size of the largest CandV set increases, OSQR generates up

to an order of magnitude less rewritings than SQR and the SQL view expansion, resulting

in up to an order of magnitude savings in evaluation times.

In Section 3.3, we introduced three orthogonal optimizations and in algorithm OSQR,

we incorporated all of them into a single algorithm. It is interesting to see what are the

effects of each optimization in isolation, to the size of the rewriting and the evaluation

time of the rewritten query. In the next three experiments, we investigate exactly this,

starting here with an experiment that studies the effects of optimizing individual rewritings

31

10 12 14 16 18 20
0

200

400

600

800

1000

Max|CandV|

N
u
m

.
o
f
re

w
ri
ti
n
g
s

SQR OSQR SQL

(a)

10 12 14 16 18 20
0

150

300

450

600

Max|CandV|

T
im

e
 (

S
e
c
o
n
d
s
)

SQR OSQR SQL

(b)

Figure 3.6: SPARQL rewriting vs. SQL expansion (a) Rewritten queries over max CandV and
(b) Eval. time over max CandV

(presented in Section 3.3.1). To this end, we switch off in OSQR all other optimizations but

merging views (denoted as OSQR-M) and compare it with SQR. In terms of the experimental

setup, this is shown in Figure 3.7. We define 6 views over our base data, with each

view exposing some aspect of a student’s data (e.g., email, phone). As for the queries,

we execute 6 different queries, with each query increasingly bringing together data from the

views. The return values and predicates of the query executed in iteration i are marked

appropriately in Figure 3.7(b). Figure 3.8 shows the results of the comparison between SQR

and OSQR-M, as the input query size increases. Figure 3.8(a) shows that both algorithms

result in the same number of rewritings; note that merging does not influence the number of

generated rewritings (this is the focus of the other optimizations). Merging optimizes each

individual rewriting, and this becomes apparent in the evaluation time of the rewritings (see

Figure 3.8(b)). As the size of query |Q| increases, so is the potential for merging views (the

same view might appear in the candidate view set of more predicates), which is confirmed

in Figure 3.8(b) — savings in evaluation time of OSQR-M, compared to SQR, start from

10% to 70% for queries with 2 to 5 predicates. As |Q| increases, so is the size of each

rewriting (since the rewriting ultimately integrates the where clauses of candidate views).

In our experiments, when a (rewritten) query has approximately 16 predicates, the engine

of 4store crashes; therefore, it is impossible to execute a rewriting from SQR when |Q| ≥ 6.

Since merging results in smaller rewritings, OSQR-M can handle larger input queries.

As before, we switch off in OSQR all other optimizations but pruning empty rewritings

(denoted as OSQR-P) and compare it with SQR. The experimental setup used here is shown

in Figure 3.9. Using the view template in Figure 3.9(a), we generate 10 views, where

32

V1:CONSTRUCT { ?x1 name ?n1, ?x1 email ?e1, ?x1 takes ?c1 }
WHERE { ?x1 name ?n1, ?x1 email ?e1, ?x1 takes ?c1 }

V2:CONSTRUCT { ?x2 phone ?p2, ?x2 course ?c2, ?x2 member ?u2 }
WHERE { ?x2 phone ?p2, ?x2 course ?c2, ?x2 member ?d2 }

V3:CONSTRUCT { ?x3 phone ?p3, ?x3 course ?c3, ?x3 degree ?d3 }
WHERE { ?x3 phone ?p3, ?x3 course ?c3, ?x3 degree ?d3 }

V4:CONSTRUCT { ?x4 name ?n4, ?x4 email ?e4, ?x4 takes ?c4 }
WHERE { ?x4 name ?n4, ?x4 email ?e4, ?x4 takes ?c4 }

V5:CONSTRUCT { ?x5 phone ?p5, ?x5 course ?c5, ?x5 member ?u5 }
WHERE { ?x5 phone ?p5, ?x5 course ?c5, ?x5 member ?u5 }

V6:CONSTRUCT { ?x6 phone ?p6, ?x6 course ?c6, ?x6 degree ?d6 }
WHERE { ?x6 phone ?p6, ?x6 course ?c6, ?x6 degree ?d6 }

(a)

Q:SELECT { ?x, 1 ?e, 2 ?p, 3 ?c, 4 ?n, 5 ?u, 6 ?u′ }

WHERE { 1 ?x email ?e, 2 ?x phone ?p, 3 ?x takes ?c,
4 ?x name ?n, 5 ?x member ?u, 6 ?x degree ?u′ }

(b)

Figure 3.7: Experimental setup 3 (a) Views templates and (b) Query template

1 2 3 4 5 6
0

100

200

300

|Q|

N
u
m

.
o
f
re

w
ri
ti
n
g
s

SQR OSQR−M

(a)

2 4 6
0

50

100

150

200

|Q|

T
im

e
 (

S
e
c
o
n
d
s
)

SQR OSQR−M

Crash

(b)

Figure 3.8: Optimizing individual rewritings (a) Rewritten queries over query size and (b)
Eval. time over query size

each view has a different value for the variable 〈P 〉. Our instantiation is such that we use

ten different departments from the same university as the values for variable 〈P 〉. In this

manner, we make sure that the views are nonoverlapping. The experiment has 8 iterations.

The same query Q (shown in Figure 3.9(b)) is evaluated across all iterations over a set of i+2

views at iteration i. Notice that the CONSTRUCT statements of all views are identical to the

graph pattern of the Q. It is not hard to see that for SQR, the CandV for each predicate of

Q (name, email, course) contains all the views. Therefore, SQR will create (i+ 2)3 rewritings

33

V:CONSTRUCT {?x1 name ?n1,
?x1 email ?e1,?x1 course ?c1 }

WHERE { ?x1 name ?n1, ?x1 course ?c1,
?x1 email ?e1, ?x1 member 〈P 〉 }

(a)

Q:SELECT { ?x, ?n, ?e, ?c }
WHERE { ?x name ?n, ?x email ?e,

?x course ?c }

(b)

Figure 3.9: Experimental setup 4 (a) Views templates and (b) Query template

at iteration i. Contrarily, OSQR-P does not generate rewritings involving different views

since these lead to empty results; synopses and ASK queries, which are less expensive, are

executed to detect these empty results, and therefore, in each iteration i, essentially only

i+ 2 queries need to be executed by OSQR-P. Figure 3.10 shows the comparison. Through

synopses and ASK queries, OSQR-P produces an order of magnitude less rewritings than

SQR, resulting in an order of magnitude faster evaluation times for query Q.

Here, we investigate the influence of subquery (i.e., triple pattern) ordering to OSQR.

Since the objective of ordering is to improve the effectiveness of pruning, in OSQR, we

only switch off merging views; the algorithm is denoted as OSQR-R. We consider the same

experimental setup with the one used in our first experiment, shown in Figure 3.3. For

this setup, Figure 3.11 compares the performance of OSQR-R using 3 different reordering

strategies. The figure shows the number of ASK queries issued during query rewriting (to

detect empty rewritings), and the evaluation time of the rewritten query. Note that all

three reordering strategies result in the same number of nonempty rewritings, and only the

numbers of ASK queries issued during rewriting are different; the latter affects the evaluation

times, as shown in Figure 3.10. Using the proposed ordering on the size of CandV, OSQR-R

2 4 6 8 10
0

200

400

600

800

1000

|CandV|

N
u
m

.
o
f
re

w
ri
ti
n
g
s

SQR OSQR−P

(a)

2 4 6 8 10
0

200

400

600

|CandV|

T
im

e
 (

s
e
c
o
n
d
s
)

SQR OSQR−P

(b)

Figure 3.10: Pruning empty rewritings (a) Rewritten queries over max CandV and (b) Eval.
time over max CandV

34

3 4 5 6 7
0

100

200

300

400

|Q|

N
u
m

b
e
r

o
f
A

S
K

OSQR−R Random Worst

(a)

3 4 5 6 7
0

5

10

15

20

|Q|

T
im

e
 (

s
e
c
o
n
d
s
)

OSQR−R Random Worst

(b)

Figure 3.11: Optimizing rewriting generation (a) ASK queries over query size and (b)
Eval. time over query size

detects the optimal ordering (which considers p1, p2, . . . , p7 in order) and generates up to

an order of magnitude less ASK queries than either a random or the worst (p7, p6, . . . , p1)

ordering, resulting in nearly 60% savings in evaluation times.

3.4.2 Experimental Results from Jena TDB

Using the same query and view definitions, we have run the same set of experiments on

Jena TDB, to demonstrate the flexibility and the store-independent property of our algo-

rithms. In general, the results from Jena TDB are highly consistent with our observations

from 4store. As is evident from Figure 3.12, the overall performance in Jena TDB of OSQR

is several orders of magnitude better than the SQR in the first experiment using the setup

in Figure 3.3. The situation is similar when using the experimental setup of Figure 3.5 and

the results are shown in Figure 3.13. These trends are highly consistent with what we have

observed from their comparison in 4store (Figures 3.4 and 3.6, respectively).

3.4.3 Concluding Remarks

Our experiments clearly illustrate the advantages of OSQR over SQR. These results are

not limited to 4store but carry over to Jena. To summarize, our experiments show that:

we have realized the first practical rewriting solution (OSQR), which provides, in real time,

sound and complete access of RDF data, independent of underlying RDF stores, with good

efficiency in practice (to rewrite and evaluate a query over tens to hundred of views) and

without the need to materialize intermediate data.

35

3 4 5 6 7
0

200

400

600

|Q|

N
u

m
.

o
f

re
w

ri
ti
n

g
s
 (

×
1

0
3
)

SQR OSQR

(a)

3 4 5 6 7
0

200

400

600

800

|Q|

T
im

e
 (

×
1
0

2
 s

e
c
o
n
d
s
)

SQR OSQR

(b)

Figure 3.12: SQR vs. OSQR on Jena TDB (a) Rewritten queries over query size and (b)
Eval. time over query size

10 15 20
0

500

1000

Max(|CandV|)

N
u
m

.
o
f
re

w
ri
ti
n
g
s

SQR OSQR

(a)

10 15 20
0

50

100

150

Max(|CandV|)

T
im

e
 (

s
e
c
o
n
d
s
)

SQR OSQR

(b)

Figure 3.13: SQR vs. OSQR on Jena TDB (a) Rewritten queries over max CandV and (b)
Eval. time over max CandV

3.5 Related Work

Query rewriting over views, motivated by a view-based approach to access control, has

been well studied in relational databases (e.g., [94]) and XML (e.g., [44, 45]) databases.

However, to the best of our knowledge, our work is the first on native query rewriting in

SPARQL. SPARQL query rewriting combines the challenges that arise in the relational and

XML settings: like the relational case, SPARQL query rewriting needs to synthesize multiple

views; like the XML case, SPARQL query rewriting generates a query of exponential size.

Previous work on rewriting SPARQL queries typically adopted a rule-based approach. Cor-

rendo et al. [38] perform rewritings using predefined rewriting rules, whereas our rewriting

36

techniques can dynamically compose the right views to rewrite a user query. Similarly in

[32], the authors identify a set of tightest restrictions under which an XPath query can be

rewritten over multiple views in PTIME. Such restrictions are expressed as rules during the

rewriting; therefore, this approach is rule-based as well. Cautis et al. [33] present theoretical

results for rewriting a query over multiple data sources; the authors studied the rewriting

problem in the presence of embedded constraints from up to infinite data sources, and

focused on the problem of deciding the right data sources that satisfy integrity constraints

(i.e., the expressibility and the support for the sources). Unlike our work, the rewriting

algorithm in [33] does not guarantee completeness, and the optimization issue was not

addressed.

Although our proposed SPARQL query rewriting techniques face similar challenges as the

classical techniques for answering queries using views [52] and rewriting queries on semi-

structured data [85], the actual rewriting steps differ significantly. In particular, relational

techniques surveyed in [52] cannot efficiently address the problem in SPARQL. For example,

the pruning power of MiniCon [90] vanishes due to the fact that all the variables in SQL-

translated views (see Figure 3.2(b)) are distinguished variables [90]. Furthermore, our

computation of variable mappings and selection of candidate views are distinct from the

query containment techniques discussed in [90]. The exponential size of the rewriting is

also unique to our setting, which forces us to address new challenges not found in [52].

To address those challenges, we propose novel optimization techniques to remove empty

rewritings from execution.

Existing works on general query rewriting in RDF store [13] specify view definition in

customized high-level languages, and perform query rewriting in an ad-hoc manner. In

contrast, our work defines views in SPARQL, thus having more expressive power and wider

applicability; furthermore, our SPARQL rewriting techniques are principled and independent

of the underlying RDF stores.

3.6 Conclusion

We studied the classical problem of query rewriting over views in the context of SPARQL

and RDF data. We proposed the first sound and complete query rewriting algorithm

for SPARQL, with novel optimizations that (i) simplify individual rewritings by removing

redundant triple patterns coming from the same view; (ii) eliminate rewritings with empty

results based on a light-weight synopsis construction and efficient value-set intersection

computation to estimate the size of joined triple patterns; and (iii) prune out big portions

37

of the search space of rewritings (that lead to empty results) by optimizing the sequence of

subquery rewriting. Evaluation of our rewriting algorithm over two RDF stores showed its

portability and its scalability in terms of query and view size. This work opens the gate to

several interesting directions in future research, such as how to efficiently deal with variable

predicates (instead of enumerating all predicates in the data to replace them) in query and

view definition, how to partially materialize the views with the query rewriting in SPARQL

to further improve the efficiency, and also, how to include other SPARQL features such as

FILTER and OPTIONAL into the algorithm.

In the next chapter, we are going to study multiquery optimization, which further

improves the throughput for evaluating the rewritten queries.

CHAPTER 4

SCALABLE MULTIQUERY

OPTIMIZATION

4.1 Introduction

For many applications that need to perform query rewriting, e.g., data integration [91]

and fine-grained access control [71] on RDF data, a SPARQL query over views is often

rewritten into an equivalent batch of SPARQL queries for evaluation over the base data. As

the semantics of the rewritten queries in the same batch are commonly overlapped [57, 71],

there is much room for sharing computation when executing these rewritten queries. This

observation motivates us to revisit the classical problem of multiquery optimization (MQO)

in the context of RDF and SPARQL.

Not surprisingly, MQO for SPARQL queries is NP-hard, considering that MQO for rela-

tional queries is NP-hard [99] and the established equivalence between SPARQL and relational

algebra [20, 88]. It is tempting to apply the MQO techniques developed in relational systems

to address the MQO problem in SPARQL. For instance, the work by P. Roy et al. [96]

represented query plans in AND-OR DAGs and used heuristics to partially materialize

intermediate results that could result in a promising query throughput. Similar themes can

be seen in a variety of contexts, including relational queries [99, 100], XQueries [31], aggre-

gation queries [110], or more recently as full-reducer tree queries [64]. These off-the-shelf

solutions, however, are hard to engineer into RDF query engines in practice. The first source

of complexity for using the relational techniques and the like stems from the physical design

of RDF data themselves. While indexing and storing relational data commonly conform to a

carefully calibrated relational schema, many variances existed for RDF data; e.g., the giant

triple table adopted in 3store and RDF-3X, the property table in Jena, and more recently the

use of vertical partitioning to store RDF data. These, together with the disparate indexing

techniques, make the cost estimation for an individual query operator (the corner stone

for any MQO technique) highly error-prone and store-dependent. Moreover, as observed in

previous works [12, 81], SPARQL queries feature more joins than typical SQL queries – a

39

fact that is also evident by comparing TPC benchmarks [10] with the benchmarks for RDF

stores [28, 43, 50, 97]. While existing techniques commonly root on looking for the best

plan in a greedy fashion, comparing the cost for alternative plans becomes impractical in

the context of SPARQL, as the error for selectivity estimation inevitably increases when the

number of joins increases [80, 103]. Finally, in W3C’s envision [8], RDF is a very general

data model; therefore, knowledge and facts can be seamlessly harvested and integrated

from various SPARQL endpoints on the Web [2] (powered by different RDF stores). While

a specialized MQO solution may serve inside the optimizer of certain RDF stores, it is more

appealing to have a generic MQO framework that could smoothly fit into any SPARQL

endpoint, which would be coherent with the design principle of RDF data model.

With the above challenges in mind, in this chapter, we study MQO of SPARQL queries

over RDF data, with the objective to minimize total query evaluation time. Specifically,

we employ query rewriting techniques to achieve desirable and consistent performance for

MQO across different RDF stores, with the guarantee of soundness and completeness. While

the previous works consider alignments for the common substructures in acyclic query

plans [64, 96], we set forth to identify common subqueries (cyclic query graphs included)

and rewrite them with SPARQL in a meaningful way. Unlike [96], which requires explicitly

materializing and indexing the common intermediate results, our approach works on top

of any RDF engine and ensures that the underlying RDF stores can automatically cache

and reuse such results. In addition, a full range of optimization techniques in different

RDF stores and SPARQL query optimizers can seamlessly support our MQO technique. Our

contributions can be summarized as follows.

• We present a generic technique for MQO in SPARQL. Unlike the previous works that

focus on synthesizing query plans, our technique summarizes similarity in the structure

of SPARQL queries and takes into account the unique properties (e.g., cyclic query

patterns) of SPARQL.

• Our MQO approach relies on query rewriting, which is built on the algorithms for

finding common substructures. In addition, we tailored efficient and effective opti-

mizations for finding common subqueries in a batch of SPARQL queries.

• We proposed a practical cost model. Our choice of the cost model is determined

both by the idiosyncrasies of the SPARQL language and by our empirical digest of how

SPARQL queries are executed in existing RDF data management systems.

40

• Extensive experiments with large RDF data (close to 10 million triples) performed on

three different RDF stores consistently demonstrate the efficiency and effectiveness of

our approach over the baseline methods.

4.2 Problem Statement

We have introduced SPARQL in Chapter 2. In this chapter, we focus our discussion on

the selection query of SPARQL. In particular, we distinguish two types of selection queries

by the way in which the search patterns are specified:

Type 1: Q := SELECT RD WHERE GP

Type 2: QOPT := SELECT RD WHERE GP (OPTIONAL GPOPT)
+

Consider the data and SPARQL query in Figure 4.1(a) and (b). The query looks for

triples whose subjects (each corresponding to a person) have the predicates name and zip,

with the latter having the value 10001 as object. For these triples, it returns the object of

the name predicate. Due to the first OPTIONAL clause, the query also returns the object

of predicate mbox, if the predicate exists. Due to the second OPTIONAL clause, the query

also independently returns the object of predicate www, if the predicate exists. Evaluating

the query over the input data D (can be viewed as a graph) results in output QOPT(D), as

shown in Figure 4.1(c).

We associate with each query Q (QOPT) a query graph pattern corresponding to its

pattern GP (resp., GP (OPTIONAL GPOPT)
+). Formally, a query graph pattern is a 4-tuple

(V,E, ν, µ) where V and E stand for vertices and edges, ν and µ are two functions which

assign labels (i.e., constants and variables) to vertices and edges of GP, respectively. Vertices

represent the subjects and objects of a triple; gray vertices represent constants, and white

vertices represent variables. Edges represent predicates; dashed edges represent predicates

in the optional patterns GPOPT, and solid edges represent predicates in the required patterns

GP. Figure 4.2 shows a pictorial example for the query in Figure 4.1(b). Its query graph

patterns GP and GPOPTs are defined separately. GP is defined as (V,E, ν, µ), where V =

{v1, v2, v3}, E = {e1, e2} and the two naming functions ν = {ν1 : v1→?x, ν2 : v2→?n, ν3 :

v3→10001}, µ = {µ1 : e1→name, µ2 : e2→zip}. For the two OPTIONALs, they are defined as

GPOPT1 = (V ′, E′, ν ′, µ′), where V ′ = {v1, v4}, E
′ = {e3}, ν

′ = {ν ′1 : v1→?x, ν ′2 : v4→?m},

µ′ = {µ′
1 : e3→mbox}; Likewise, GPOPT2 = (V ′′, E′′, ν ′′, µ′′), where V ′′ = {v1, v5}, E

′′ =

{e4}, ν
′′ = {ν ′′1 : v1→?x, ν ′′2 : v5→?p}, µ′′ = {µ′′

1 : e4→www}.

41

subj pred obj

p1 name ”Alice”
p1 zip 10001
p1 mbox alice@home
p1 mbox alice@work
p1 www http://home/alice
p2 name ”Bob”
p2 zip ”10001”
p3 name ”Ella”
p3 zip ”10001”
p3 www http://work/ella
p4 name ”Tim”
p4 zip ”11234”

(a)

SELECT ?name, ?mail, ?hpage
WHERE { (?x, name, ?name), (?x, zip, 10001),

OPTIONAL {(?x, mbox, ?mail) }
OPTIONAL {(?x, www, ?hpage) }}

(b)

name mail hpage

”Alice” alice@home
”Alice” alice@work
”Alice” http://home/alice
”Bob”
”Ella” http://work/ella

(c)

Figure 4.1: An example (a) Input data D, (b) Example query QOPT and (c) Output
QOPT(D)

42

na
m
e

zip

mbox
www

?x

?n

10001

?m

?p

v1

v2

v3

v4

v5

e1
e2
e3
e4

Figure 4.2: A query graph

Formally, the problem of MQO in SPARQL, from a query rewriting perspective, is defined

as follows: Given a data graph G, and a set Q of Type 1 queries, compute a new set QOPT of

Type 1 and Type 2 queries, evaluate QOPT over G, and distribute the results to the queries in

Q. There are two requirements for the rewriting approach to MQO: (i) The query results of

QOPT can be used to produce the same results as executing the original queries in Q, which

ensures the soundness and completeness of the rewriting; and (ii) the evaluation time of

QOPT, including query rewriting, execution, and result distribution, should be less than the

baseline of executing the queries in Q sequentially. To ease presentation, we assume that

the input queries in Q are of Type 1, while the output (optimized) queries are either of Type 1

or Type 2. Our optimization techniques can easily handle more general scenarios where both

query types are given as input (section 4.4).

We use a simple example to illustrate the MQO envisioned and some challenges for

the rewriting approach. Figure 4.3(a)-(d) show the graph representation of four queries

of Type 1. Figure 4.3(e) shows a Type 2 query QOPT that rewrites all four input queries

into one. To generate query QOPT, we identify the (largest) common subquery in all four

queries: the subquery involving triples (?x, P1, ?z), (?y, P2, ?z) (the second largest common

subquery involves only one predicate, P3 or P4). This common subquery constitutes the

graph pattern GP of QOPT. The remaining subquery of each individual query generates an

OPTIONAL clause in QOPT. Note that by generating a query like QOPT, the triple patterns in

GP of QOPT are evaluated only once, instead of being evaluated for multiple times when the

input queries are executed independently. Intuitively, this is where the savings MQO could

be brought. As mentioned earlier, MQO must consider generic directed graphs, possibly with

cyclic patterns, which makes it hard to adapt existing techniques for this optimization. Also,

the proposed optimization has a unique characteristic in that it leverages SPARQL-specific

43

?z4?x4

?y4

P1

P2

v1

?z3?x3

?y3

P1

P2
P3

P5

v1

?z2?x2

?y2

P1

P2

P3

P5

?w1
v1

?z1?x1

?y1

P1

P2

P4

P3

(a) (b) (c) (d)

P4 P4

?w2

?t2

?w3

?u4

P4

?w4

P3

P6

v1

SELECT *
WHERE { (?x, P1, ?z), (?y, P2, ?z),

OPTIONAL {(?y, P3, ?w), (?w, P4, v1) }
OPTIONAL {(?t, P3, ?x), (?t, P5, v1), (?w, P4, v1) }
OPTIONAL {(?x, P3, ?y), (v1, P5, ?y), (?w, P4, v1) }
OPTIONAL {(?y, P3, ?u), (?w, P6, ?u), (?w, P4, v1) }

}

?z?x

?y

P1

P2
P3

v1

P5
P3

P4

?t

P3

P5

P3

P6

?w

?u

(e)

SELECT *
WHERE { (?w, P4, v1),

OPTIONAL {(?x1, P1, ?z1), (?y1, P2, ?z1),
(?y1, P3, ?w) }

OPTIONAL {(?x2, P1, ?z2), (?y2, P2, ?z2),
(?t2, P3, ?x2), (?t2, P5, v1) }

OPTIONAL {(?x3, P1, ?z3), (?y3, P2, ?z3),
(?x3, P3, ?y3), (v1, P5, ?y3) }

OPTIONAL {(?x4, P1, ?z4), (?y4, P2, ?z4),
(?y4, P3, ?u4), (?w, P6, ?u4) }

}

pattern p α(p)

(?x, P1, ?z) 15%
(?y, P2, ?z) 9%
(?y, P3, ?w) 18%
(?w, P4, v1) 4%
(?t, P5, v1) 2%
(v1, P5, ?t) 7%
(?w, P6, ?u) 13%

(f)

Figure 4.3: Multiquery optimization examples (a) Query Qa, (b) Query Qb, (c) Query Qc,
(d) Query Qd, (e) Example query QOPT and (f) Structure and cost-based optimization

features such as the OPTIONAL clause for query rewriting.

Note that the above rewriting only considers query structures, without considering query

selectivity. Suppose we know the selectivity α(p) of each pattern p in the queries, as shown

in Figure 4.3(f). Let us assume a simple cost model in which the cost of each query Q

or QOPT is equal to the minimum selectivity of the patterns in GP; we ignore for now

the cost of OPTIONAL patterns, which is motivated by how real SPARQL engines evaluate

queries (The actual cost model used in this work is discussed in Section 4.3-D.). So, the

cost for all four queries Q1 to Q4 is respectively 4, 2, 4, and 4 (with queries executed on

a dataset of size 100). Therefore, executing all queries individually (without optimization)

44

costs 4+2+4+4 = 14. In comparison, the cost of the structure-based only optimized query

in Figure 4.3(e) is 9, resulting in a saving of approximately 30%. Now, consider another

rewriting in Figure 4.3(f) that results in from optimization along the second largest common

subquery that just contains P4. The cost for this query is only 4, which leads to even more

savings, although the rewriting utilizes a smaller common subquery. As this simple example

illustrates, it is critical for MQO to construct a cost model that integrates query structure

overlap with selectivity estimation.

4.3 The Algorithm

Our MQO algorithm, shown in Figure 4.4, accepts as input a set Q = {Q1, . . ., Qn} of

n queries over a graph G. Without loss of generality, assume the sets of variables used in

different queries are distinct. The algorithm identifies whether there is a cost-effective way to

share the evaluation of structurally-overlapping graph patterns among the queries in Q. At

a high level, the algorithm works as follows: (1) It partitions the input queries into groups,

where queries in the same group are more likely to share common subqueries that can be

optimized through query rewriting; (2) it rewrites a number of Type 1 queries in each group

to their correspondent cost-efficient Type 2 queries; and (3) it executes the rewritten queries

and distributes the query results to the original input queries (along with a refinement).

Several challenges arise during the above process: (i) There exists an exponential number

of ways to partition the input queries. We thus need a heuristic to prune out the space of

less optimal partitioning of queries. (ii) We need an efficient algorithm to identify potential

common subqueries for a given query group. And (iii) since different common subqueries

result in different query rewritings, we need a robust cost model to compare candidate

rewriting strategies. We describe how we tackle these challenges next.

4.3.1 Bootstrapping

Finding structural overlaps for a set of queries amounts to finding the isomorphic sub-

graphs among the corresponding query graphs. This process is computationally expensive

(the problem is NP-hard [27] in general), so ideally we would like to find these overlaps

only for groups of queries that will eventually be optimized (rewritten). That is, we want

to minimize (or ideally eliminate) the computation spent on identifying common subgraphs

for query groups that lead to less optimal MQO solutions. One heuristic we adopt is to

quickly prune out subsets of queries that clearly share little in query graphs, without going

to the next expensive step of computing their common subqueries; therefore, the group of

queries that have few predicates in common will be pruned from further consideration for

45

Input: Set Q = {Q1, . . ., Qn}
Output: Set QOPT of optimized queries

// Step 1: Bootstrapping the query optimizer

Run k-means on Q to generate a setM = {M1, . . ., Mk} of k query groups based on1

query similarity in terms of their predicate sets;

// Step 2: Refining query clusters

for each query group M ∈ M do2

Initialize a set C = {C1, . . ., C|M|} of |M| clusters;3

for each query Qi ∈ M, 1 ≤ i ≤ |M| do Ci = Qi;4

while ∃ untested pair (Ci,Ci′) with argmax(J accard(Ci,Ci′)) do5

Let Qii′ = {Qii′

1 , . . . ,Qii′

m } be the queries of Ci ∪ Ci′ ;6

Let S be the top-s most selective triple patterns in Qii′ ;7

// Step 2.1: Building compact linegraphs

Let µ∩ ← µ1 ∩ µ2 . . . ∩ µm and τ = {∅};8

for each query Qii′

j ∈ Q
ii′ do9

Build linegraph L(Qii′

j) with only the edges in µ∩;10

Keep indegree matrix m−
j , outdegree matrix m+

j for L(Qii′

j);11

for each vertex e defined in µ∩ and µ∩(e) 6= ∅ do12

Let I=m−
1 [e] ∩. . .∩m−

m[e] and O=m+

1 [e] ∩. . .∩m+
m[e];13

if I=O=∅ then µ∩(e)
def
= ∅ and τ=τ ∪ {triple pattern on e};14

for L(GPj), 1 ≤ j ≤ m do15

Prune the L(GPj) vertices not in µ∩ and their incident edges;16

// Step 2.2: Building product graphs

Build L(GPp) = L(GP1)⊗ L(GP2)⊗ . . .⊗ L(GPm);17

// Step 2.3: Finding cliques in product graphs

{K1, . . . , Kr} = AllMaximalClique(L(GPp));18

if r = 0 then goto 22;19

for each Ki, i = 1, 2, . . . , r do20

find all K ′
i ⊆ Ki having the maximal strong covering tree in Ki;21

sort SubQ={K ′
1, . . . ,K

′
t} ∪ τ in descending order by size;22

Initialize K = ∅;23

for each qi ∈ SubQ, i = 1, 2, . . . , t+ |τ | do24

if S ∩ qi 6= ∅ then Set K = qi and break25

if K 6= ∅ then26

Let Ctmp = Ci ∪ Ci′ and cost(Ctmp)=cost(subquery for K);27

if cost(Ctmp) ≤ cost(Ci) + cost(Ci′) then28

Put K with Ctmp;29

remove Ci, Ci′ from C and add Ctmp;30

// Step 3: Generating optimized queries

for each cluster Ci in C do31

if a clique K is associated with Ci then32

Rewrite queries in Ci using triple patterns in K;33

Output the query into set QOPT;34

return QOPT.35

Figure 4.4: Multiquery optimization algorithm

46

optimization. We thus define the similarity metric for two queries as the Jaccard similarity

of their predicate sets. The rational is that if the Jaccard similarity of two queries is small,

their structural overlap in query graphs must also be small; therefore, it is safe to not

consider grouping such queries for MQO. We implement this heuristic as a bootstrap step

in line 1 using k-means clustering (with Jaccard as the similarity metric) for an initial

partitioning of the input queries into a setM of k query groups. Notice that the similarity

metric identifies queries with substantial overlaps in their predicate sets, ignoring for now

the common substructure and the selectivity of these predicates.

4.3.2 Refining Query Clusters

Starting with the k-means generated groups M, we refine the partitioning of queries

further based on their structure similarity and the estimated cost. To this end, we consider

each query group generated from the k-means clustering M ∈ M in isolation (since queries

across groups are guaranteed to be sufficiently different) and perform the following steps:

In lines 5–30, we (incrementally) merge structurally similar queries within M through

hierarchical clustering [59], and generate query clusters such that each query cluster is

optimized together (i.e., results in one Type 2 query). Initially, we create one singleton

cluster Ci for each query Qi of M (line 4). Given two clusters Ci and Ci′ , we have to

determine whether it is more cost-efficient to merge the two query clusters into a single

cluster (i.e., a single Type 2 query) than to keep the two clusters separate (i.e., executing

the corresponding two queries independently). From the previous iteration, we already

know the cost of the optimized queries for each of the Ci and Ci′ clusters. To determine

the cost of the merged cluster, we have to compute the query that merges all the queries

in Ci and Ci′ through rewriting, which requires us to compute the common substructure

of all these queries, and to estimate the cost of the rewritten query generated from the

merged clusters. For the cost computation, we do some preliminary work here (line 7) by

identifying the most selective triple patterns from the two clusters (selectivity is estimated

by [103]). Note that our refinement of M might lead to more than one queries: one for each

cluster of M, in the form of either Type 1 or Type 2.

While finding the maximum common subgraph for two graphs is known to be NP-

hard [27], the challenge here is asymptotically harder as it requires finding the largest

common substructures formultiple graphs. Existing solutions on finding common subgraphs

also assume untyped edges and nodes in undirected graphs. However, in our case, the graphs

represent queries, and different triple patterns might correspond to different semantics (i.e.,

47

typed and directed). Thus, the predicates and the constants associated with nodes must

be taken into consideration. This mix of typed, constant, and variable nodes/edges is not

typical in classical graph algorithms, and therefore, existing solutions can not be directly

applied for query optimization. We therefore propose an efficient algorithm to address these

challenges.

In a nutshell, our algorithm follows the principle of finding the maximal common edge

subgraphs (MCES) [93, 112]. Concisely, three major substeps are involved (steps 2.1 to

2.3 in Figure 4.4): (a) transforming the input query graphs into the equivalent linegraph

representations; (b) generating a product graph from the linegraphs; and (c) executing a

tailored clique detection algorithm to find the maximal cliques in the product graph (a

maximal clique corresponds to an MCES). We describe these substeps in details next.

The linegraph L(G) of a graph G is a directed graph built as follows. Each node in

L(G) corresponds to an edge in G, and there is an edge between two nodes in L(G) if the

corresponding edges in G share a common node. Although it is straightforward to transform

a graph into its linegraph representation, the context of MQO raises new requirements for

the linegraph construction. We represent the linegraph of a query graph pattern in a

4-tuple, defined as L(G) = (V, E , π, ω). During linegraph construction, besides the inversion

of nodes and edges for the query graph, our transformation also assigns to each edge in the

linegraph one of 4 labels (ℓ0 ∼ ℓ3). Specifically, for two triple patterns, there are 4 possible

joins between their subjects and objects (ℓ0 = subject-subject, ℓ1 = subject-object, ℓ2 =

object-subject, ℓ3 = object-object). The assignment of labels on linegraph edges captures

these four join types (useful for pruning and will become clear shortly). Figure 4.5 (a)-(d)

shows the linegraphs for the queries in Figure 4.3(a)-(d).

The classical solution for finding common substructures of input graphs requires building

Cartesian products on their linegraphs. This raises challenges in scalability when finding the

maximum common substructure for multiple queries in one shot. To avoid the foreseeable

explosion, we propose fine-grained optimizations (lines 8–16) to keep linegraphs as small

as possible so that only the most promising substructures would be transformed into

linegraphs, with the rest being temporarily masked from further processing.

To achieve the above, queries in Qii′ pass through a two-stage optimization. In the

first stage (lines 8–11), we identify (line 8) the common predicates in Qii′ by building

the intersection µ∩ for all the labels defined in the µ’s (recall that function µ assigns

predicate names to graph edges). Predicates that are not common to all queries can be

safely pruned, since by definition they are not part of any common substructure, e.g.,

48

P2

P1

P3

P4

ℓ3

ℓ3

ℓ0

ℓ0

ℓ1

ℓ2

P5

P1 P3

ℓ3

ℓ3
ℓ3

ℓ0

P2

ℓ3

ℓ1
ℓ2

ℓ1

ℓ2

(a) (b) (c) (d)

ℓ0

P2P1

P3 P5

P4

ℓ3

ℓ3

ℓ2 ℓ1

ℓ0

ℓ0

ℓ3ℓ3

P4

ℓ2 ℓ1

P1P2

P3 P6

P4

ℓ3

ℓ3

ℓ0 ℓ0

ℓ3

ℓ3

ℓ0ℓ0

(e)

ℓ3

ℓ3

P2
P1

L(GPp):

τ : P3 P4

Figure 4.5: Examples for finding common substructures, (a)–(d) linegraphs for queries
Qa–Qd, (e) their common substructures

P5 and P6 in Figure 4.3. In finding the intersection of predicates, the algorithm also

checks for compatibility between the corresponding subjects and objects, so that same-label

predicates with different subjects/objects are not added into µ∩. In addition, we maintain

two adjacency matrices for a linegraph L(GP): the indegree matrix m− storing all incoming,

and the outdegree matrix m+ storing all outgoing edges from L(GP) vertices. For a vertex

v, we use m−[v] and m+[v], respectively, to denote the portion of the adjacency matrices

storing the incoming and outgoing edges of v. For example, the adjacency matrices for vertex

P3 in linegraph L(Q1) of Figure 4.5 are m
+
1 [P3] = [∅, ℓ0, ∅, ℓ2, ∅, ∅], m

−
1 [P3] = [∅, ℓ0, ∅, ℓ1, ∅, ∅],

while for linegraph L(Q2), they are m+
2 [P3] = [ℓ2, ∅, ∅, ∅, ℓ0, ∅], m

−
2 [P3] = [ℓ1, ∅, ∅, ∅, ℓ0, ∅].

In the second stage (lines 12–16), to further reduce the size of linegraphs, for each

linegraph vertex e, we compute the Boolean intersection for the m−[e]’s and m+[e]’s from

all linegraphs, respectively (line 13). We also prune e from µ∩ if both intersections equal

∅ and set aside the triple pattern associated with e in a set τ (line 14). Intuitively, this

optimization acts as a look-ahead step in our algorithm, as it quickly detects the cases

where the common subqueries involve only one triple pattern (those in τ). Moreover, it

also improves the efficiency of the clique detection (step 2.2 and 2.3) due to the smaller

sizes of input linegraphs. Going back to our example, just by looking at the m−
1 , m

+
1 , m

−
2 ,

m+
2 , it is easy to see that the intersection ∩m+

i [P3] = ∩m
−
i [P3] = ∅ for all the linegraphs

of Figure 4.5(a)-(d). Therefore, our optimization temporarily masks P3 (so as P4) from the

expensive clique detection in the following two steps.

Next, we illustrate how to build a product graph. The product graph L(GPp) :=

(Vp, Ep, πp, ωp) of two linegraphs, L(GP1) := (V1, E1, π1, ω1) and L(GP2) := (V2, E2, π2, ω2),

is denoted as L(GPp) := L(GP1) ⊗ L(GP2). The vertices Vp in L(GPp) are defined on the

Cartesian product of V1 and V2. In order to use product graphs in MQO, we optimize the

49

standard definition with the additional requirement that vertices paired together must have

the same label (i.e., predicate). That is, Vp := {(v1, v2) | v1 ∈ V1∧v2 ∈ V2∧π1(v1) = π2(v2)},

with the labeling function defined as πp := {πp(v) | πp(v) = π1(v1), with v = (v1, v2) ∈ Vp}.

For the product edges, we use the standard definition, which creates edges in the product

graph between two vertices (v1i, v2i) and (v1j , v2j) in Vp if either (i) the same edges (v1i, v1j)

in E1, and (v2i, v2j) in E2 exist; or (ii) no edges connect v1i with v1j in E1, and v2i with v2j

in E2. The edges due to (i) are termed as strong connections, while those for (ii) as weak

connections [112].

Since the product graph for two linegraphs conforms to the definition of linegraph, we

can recursively build the product for multiple linegraphs (line 17). Theoretically, there

is an exponential blowup in size when we construct the product for multiple linegraphs.

In practice, thanks to our optimizations in Steps 2.1 and 2.2, our algorithm is able to

accommodate tens to hundred of queries, and generates the product graph efficiently (which

will be verified through Section 4.5). Figure 4.5(e) shows the product linegraph L(GPp) for

the running example.

A (maximal) clique with a strong covering tree (a tree only involving strong connections)

in the product graph equals to an MCES – a (maximal) common subquery in essence. In

addition, we are interested in finding cost-effective common subqueries. To verify if the

found common subquery is selective, it is checked with the set S (from line 7) of selective

query patterns.

In the algorithm, we proceed by finding all maximal cliques in the product graph (line

18), a process for which many efficient algorithms exist [68, 83, 108]. For each discovered

clique, we identify its subcliques with the maximal strong covering trees (line 21). For the

L(GPp) in Figure 4.5(e), it results in one clique (itself): i.e., K ′
1 = {P1,P2}. As the cost of

subqueries is another dimension for query optimization, we look for the substructures that

are both large in size (i.e., the number of query graph patterns in overlap) and correspond

to selective common subqueries. Therefore, we first sort SubQ (contributed by K ′s and

τ , line 22) by their sizes in descending order, and then loop through the sorted list from

the beginning and stop at the first substructure that intersects S (lines 22–25), i.e., P4

in our example. We then merge (if it is cost-effective, line 28) the queries whose common

subquery is reflected in K and also merge their corresponding clusters into a new cluster

(while remembering the found common subquery) (lines 26–30). The algorithm repeats

lines 5–30 until every possible pair of clusters have been tested and no new cluster can be

generated.

50

4.3.3 Generating Optimized Queries and Distributing Results

After the clusters are finalized, the algorithm rewrites each cluster of queries into one

query and thus generates a set of rewritings QOPT (lines 31–34). The result from evaluating

QOPT over the data is a superset of evaluating the input queries Q (more expositions in

Section 4.3.5). Therefore, we must filter and distribute the results from the execution of

QOPT. This necessitates one more step of parsing the result of QOPT (refer to Figure 4.1(c)),

which checks each row of the result against the RD of each query in Q. Note that the result

description RDOPT is always the union of RDis from the queries being optimized, and we

record the mappings between the variables in the rewritings and the variables in the original

input queries. As in Figure 4.1(c), the result of a Type 2 query might have empty (null)

columns corresponding to the variables from the OPTIONAL clause. Therefore, a row in the

result of RDOPT might not conform to the description of every RDi. The goal of parsing

is to identify the valid overlap between each row of the result and the individual RDi, and

return to each query the result it is supposed to get. To achieve this, the parsing algorithm

performs a Boolean intersection between each row of result and each RDi: if the columns

of this row corresponding to those columns of RDi are not null, the algorithm distributes

the corresponding part of this row to Qi as one of its query answers. This step iterates over

each row and each Qi that composed the Type 2 query. The parsing on the results of QOPT

only requires a linear scan on the results to the rewritten query. Therefore, it can be done

on-the-fly as the results of QOPT is streamed out from the evaluation.

4.3.4 Cost Model for SPARQL MQO

The design of our cost module is motivated by the way in which a SPARQL query is

evaluated on popular RDF stores. This includes a well-justified principle that the most

selective triple pattern is evaluated first [103] and that the GPOPT clause is evaluated on the

result of GP (for the fact that GPOPT is a left-join). This suggests that a good optimization

should keep the result cardinality from the common subquery as small as possible for two

reasons: 1) The result cardinality of a Type 2 SPARQL query is upper bounded by result

cardinality of its GP clause since GPOPTs are simply left-joins; 2) Intermediate result from

evaluating the GP clause is not well indexed, which implies that a nonselective GP will result

in significantly more efforts in processing the corresponding rewriting GPOPTs.

In [103], the authors discussed the selectivity estimation for the conjunctive Basic Graph

Patterns (BGP). In a nutshell, given a triple pattern t = ((s, p, o)), where each entry could

be bound or unbound, its selectivity is estimated by sel(t) = sel(s) × sel(p) × sel(o). sel

is the selectivity estimation function, whose value falls in the interval of [0, 1]. Specifically,

51

for unbound variable, its selectivity equals 1. For bound variables/constants, depending

on whether it is a subject, predicate, or object, different methods (e.g., [103]) are used to

implement sel. Notice that the formula implicitly assumes statistical independence for the

subject, predicate, and object; thus, it is an approximation. Precomputed statistics of the

dataset are also required. For a join between two triple patterns, independence assumption

is adopted [103]. However, in practice, such estimation is not accurate enough for optimizing

complex queries. The culprit comes from the fact that as the number of joins increases, the

accuracy of the estimated selectivity drops quickly, resulting in a very loose estimation [81].

With the above limitations in mind, we propose a cost function for conjunctive SPARQL

query. It has a simple design and roots on the well-justified principle in query optimization

that the selective triple patterns have higher priorities in evaluation. Our cost model is an

incarnation of this intuition, as in Formula 4.1:

Cost(Q) =

{
Min(sel(t)) Q is a Type 1 query, t ∈ GP

Min(sel(t)) + ∆ Q is a Type 2 query, t ∈ GP
(4.1)

For a Type 1 conjunctive query, Formula 4.1 simply returns the selectivity for the most

selective triple pattern in the query graph GP as the cost of evaluating Q. For a Type 2

query, the cost is the summation of the cost on evaluating the common graph pattern GP

and the cost on the evaluating the OPTIONALs, i.e., the cost denoted by ∆. We extrapolate

(backed by a comprehensive empirical study on three different RDF query engines) that

∆ is a hidden function of (i) the cost of GP; (ii) the number of OPTIONALs; and (iii) the

cost of the query pattern of each GPOPT. However, we observed empirically that when

the cost of GP is small (being selective), ∆ would be a trivial value and Cost(Q) is mostly

credited to the evaluation of GP. Hence, we can approximate Cost(Q) with the cost of

GP in such cases. We show (experimentally) that using our cost model to choose a good

common substructure can consistently improve the performance of query evaluation over the

pure structure-based optimization (i.e., without considering the evaluation cost of common

subqueries) on different RDF stores.

Finally, notice that the proposed cost function requires using the precomputed statistics

of the RDF dataset to estimate the selectivity of triple patterns. Therefore, a preprocessing

step should be performed to collect some statistics from the dataset. This mainly includes:

(i) building the histogram for distinct predicates in the dataset; and (ii) that for each

disparate predicate, we build histograms for the subjects and objects attached to this

predicate in the dataset. In practice, for some RDF stores, like Jena, part of such statistics

(e.g., the histogram of predicates) is provided by the SPARQL query optimizer and is

52

accessible for free; for the others (e.g., Virtuoso and Sesame), the statistics of the dataset

need to be collected in a preprocessing step.

4.3.5 Completeness and Soundness of Our MQO Algorithm

Suppose a Type 2 rewritten query QOPT optimizes a set of n Type 1 queries, i.e., Q =

{Q1,Q2, . . . ,Qn}. Without loss of generality, denote the common relation (i.e., the common

subquery) used in QOPT as GP and its outer join relations (i.e., the OPTIONALs) as GPi

(i = 1, 2, . . . , n). As we only consider conjunctive queries as input, by construction, Q =

∪ni=1GP ⋊⋉ GPi and QOPT = ∪ni=1GP GPi. By the definition of left outer join , GP ⋊⋉

GPi ⊆ GP GPi for any i. It follows Q ⊆ QOPT in terms of query results.

Soundness requires Q ⊇ QOPT. This is achieved by evaluating the results from QOPT

and distributing the matched results to correspondent queries in Q (Section 4.3.3). As such,

false positives are discarded and the remainings are valid bindings for one or more graph

patterns in Q. Therefore, Q ⊇ QOPT in terms of results after the refining step.

Completeness and soundness together guarantee that the final answers resulted by our

MQO techniques are equivalent to the results from evaluating queries in Q independently.

4.4 Extensions

For the ease of presentation, the input queries discussed so far are Type 1 queries using

constants as their predicates. It is interesting to note that with some minimal modifications

to the algorithm and little preprocessing of the input, the algorithm in Figure 4.4 can

optimize more general SPARQL queries. Here, we introduce two simple yet useful extensions:

(i) optimizing input queries with variables as the predicates; and (ii) optimizing input

queries of Type 2 (i.e., with OPTIONALs).

4.4.1 Queries with Variable Predicates

We treat variable predicates slightly differently from the constant predicates when

identifying the structural overlap of input queries. Basically, a variable predicate from

one query can be matched with any variable predicate in another query. In addition,

each variable predicate of a query will correspond to one variable vertex in the linegraph

representation, but the main flow of the MQO algorithm remains the same.

4.4.2 Handling TYPE 2 Queries

Our MQO algorithm takes a batch of Type 1 SPARQL queries as input and rewrites them

to another batch of Type 1 and Type 2 queries. It can be extended to optimize a batch of

53

input queries with both Type 1 and Type 2 queries.

To this end, it requires a preprocessing step on the input queries. Specifically, by the

definition of left-join, a Type 2 input query will be rewritten into its equivalent Type 1 form,

since our MQO algorithm only works on Type 1 input queries. The equivalent Type 1 form of

a Type 2 query GP (OPTIONAL GPOPT)
+) consists two sets of queries: (i) a Type 1 query solely

using the GP as its query graph pattern; and (ii) the queries by replacing the left join(s) with

inner join(s) between GP and each of the GPOPT from the OPTIONAL, i.e., ∪GP ⋊⋉ GPOPT.

For example, to strip off the OPTIONALs in the Type 2 query in Figure 4.6(a), applying the

above preprocessing will result in a group of three Type 1 rewritings as in Figure 4.6(b).

By applying the above transformation to all Type 2 queries in the input and then passing

the batch of queries to algorithm in Figure 4.4 for optimization, we can handle Type 2 queries

seamlessly. Finally, the result to the original Type 2 query can be generated through the

union of the results, from the transformed Type 1 queries after MQO.

4.5 Experimental Evaluation

We implemented all algorithms in C++ and performed an extensive experimental eval-

uation using a 64-bit Linux machine with a 2GHz Intel Xeon(R) CPU and 4GB of memory.

Our evaluation is based on LUBM benchmark. The popular benchmark models uni-

versities with students, departments, etc., using only 18 predicates [50]. This limits the

complexity of queries we can evaluate (similar limitations in [28, 97]), and results in queries

with considerable overlaps (which favors MQO but is not very realistic). Thus, we extended

the LUBM data generator, and added a random subset from 50 new predicates to each person

in the dataset, where predicate selectivity follows the distribution in Figure 4.7. Therefore,

given the number of triples N in a dataset D, the number of times that a predicate appears

in D (dubbed its frequency) is precisely its selectivity multiplied by N .

na
m
e

zip

mboxwww

?x

?n

10001

?m

?p

nam
e

zip?x

?n

10001

na
me

zip
mbox

?x

?n

10001

?m

na
me

zip
www

?x

?n

10001

?p

(a) (b)

GP GP GPopt0 GP GPopt1
︸ ︷︷ ︸

Figure 4.6: Convert (a) A Type 2 query to (b) its equivalent Type 1 form

54

1 5 10 15 20 25 30 35 40 45 50

10
−1

10
0

10
1

S
e

le
c
ti
v
it
y
 (

%
)

Predicate ID

Selective Non−selective

Figure 4.7: Predicate selectivity

We experimented with three popular RDF stores: Jena TDB 0.85, OpenLink Virtuoso

6.01, and Sesame Native 2.0. Here, we analyze mainly the experiments with Jena TDB.

Results for the other two stores are highly consistent with the results from Jena TDB and

will be reported at the end of this section. For all stores, we created full indexes using the

technique in [114]. For Virtuoso, we also built bitmap indexes as reported in [23].

For all experiments, we measure the number of optimized queries and their end-to-end

evaluation time, including query rewriting, execution, and result distribution. We compare

our MQO algorithm with the evaluation without any optimization (i.e., No-MQO), and the

approach with structure-only optimization (i.e., MQO-S). To realize the latter strategy

as a baseline solution, we need to turn off all the cost-based comparisons in Figure 4.4.

Specifically, in line 24 of Figure 4.4, instead of walking through the set of SubQ (which

correspond to different common substructures), structure-based optimization (i.e., MQO-S)

simply returns the the largest clique (i.e., the largest common subquery) for optimization.

Comparing MQO with MQO-S illustrates the benefits of blending structured-based with

the cost-based optimization versus a purely structural approach. In the algorithms, we use

the suffix -C to denote the cost by rewriting queries (e.g., MQO-C) and the suffix -P to

denote the cost by parsing and distributing the query results (e.g., MQO-P). For finding

cliques, we customized the Cliquer library [83], which is an efficient implementations for

clique detection. For selectivity estimation, we implemented the technique in [103]. All

experiments are performed using cold caches, and the bootstrapping parameter k in the

k-means algorithm is set to k = ⌈|Q|/40⌉. Table 4.1 provides the summary along with

55

Table 4.1: Parameter table

Parameter Symbol Default Range

Dataset size D 4M 3M to 9M
Number of queries |Q| 100 60 to 160
Size of query (num of triple patterns) |Q| 6 5 to 9
Number of seed queries κ 6 5 to 10
Size of seed queries |qcmn| ∼ |Q|/2 1 to 5
Max selectivity of patterns in Q αmax(Q) random 0.1% to 4%
Min selectivity of patterns in Q αmin(Q) 1% 0.1% to 4%

ranges and the default values used for various parameters in our experiments.

LUBM has only 14 SPARQL queries, which have limited variance in both structure and

evaluation cost. Therefore, we created a module to generate query sets Q with varying sizes

|Q|, where we generated queries that combine star, chain, and circle pattern structures. In

addition, we attached to each person (as a subject) in the LUBM data a (random) subset

of 50 new predicates P1 ∼ P50. In particular, we customized the data generator of LUBM

in such a way that whenever a triple ((s, Pi, ci)) is added to the data, ci is an integer value

serving as the object of this triple and it is set to the number of predicate Pi that has been

added in the dataset so far. Therefore, triples with different predicates could join on their

subjects or objects, so as the triple patterns in the query, which we will detail next.

Our query generator utilizes the aforementioned patterns in the customized data to

compose queries. Specifically, we ensure that the queries have reasonably high randomness

in structure (such that they are not replicas of limited query templates) and reasonable

variances in selectivity (such that any predicate could be part of a query regardless of the

structure). To this end, we first show how to compose three basic query patterns: star,

chain, and circle with a set of four basic triple patterns; see Figure 4.8 (a) – (c). The star

and the chain can be built with any number of triple patterns while the circle can only be

built with an even number of triple patterns.

To blend the three basic patterns into one query Q with |Q| triple patterns, the generator

S1

S1 S3

S2

S1 S2

P1

P2 P3

P4

c1
c2 c1

c3

P1

P2 P3

P4

P1

P2 P3

P4

c1 c2 c3 c4 c1 c4

c2 c3

(a) (b) (c)

Figure 4.8: Three basic query patterns: (a) Star, (b) Chain, and (c) Circle

56

first randomly distributes the set of triple patterns into k groups of subqueries (k is a

random integer, k ∈ (0, |Q|)), with each subquery randomly composing one of the three

basic patterns, i.e., star, chain, and if possible, circle. To ensure Q to be conjunctive, the

generator then makes equal the (randomly) chosen pairs of subjects and/or objects from

the k subqueries by unifying their variable names or binding them to the same constant.

This concludes composing the structure of Q. Finally, to ensure that Q conforms to the

selectivity requirement posed by a specific experiment (refer to Table 4.1), the generator

fills in the structure of Q with the predicates that would make Q a legitimate query.

In the experiments, a group of queries in Q were rendered to share a common seed

subquery qcmn. The generator first constructs qcmn and the remaining portion of the queries

independently. Then, by equaling the subjects and/or objects of these two subqueries, the

generator propagates qcmn over the group such that qcmn joins with each of the subqueries

in the group. In addition, individual query sizes |Q| can be varied where the probability

of a predicate being part of a query conforms to its frequency in the dataset. We ensure

that 90% of the queries in Q are amenable to optimization, while 10% are not. We use a

parameter κ to determine seed queries that will be used to generate the queries in this 90%.

For a given κ, κ seed-groups are generated, each corresponding to ⌈(90/κ)⌉% of queries in

Q. The seed in each seed-group is what our algorithm will (hopefully) discover.

In short, we generated datasets and queries with various size, complexity, and statistics

to evaluate the proposed MQO algorithm in a comprehensive way.

4.5.1 Experimental Results

The objective of our experiments is to evaluate: (i) how much each step of MQO

(from bootstrapping step to cost estimation) contributes to the optimization, i.e., drop

in performance due to omission of each step; (ii) whether the combination of structure

and cost-based optimization consistently outperforms purely structure-based optimizations;

(iii) how well Algorithm MQO optimizes its alternatives, including the comparison with the

baseline approach without any optimization, in every experimental setting; and (iv) whether

Algorithm MQO consistently works across RDF stores.

We start with an experiment to illustrate the benefit of bootstrapping MQO using

k-means. Figure 4.9 shows the cost of hierarchical clustering in Step 2 of MQO with (MQO-C)

and without (MQO-noKM-C) bootstrapping. The figure shows an order of magnitude differ-

ence between the MQO-C and MQO-noKM-C, since without bootstrapping, Step 2 of MQO

requires O((|Q|×|Q|)2) pairwise checks between all the queries in the input set Q. The next

experiment, in Figure 4.10, illustrates algorithm MQO-KM, which after Step 1 of MQO, finds

57

60 80 100 120 140 160

10
0

10
1

T
im

e
 (

s
e
c
o
n
d
s
)

MQO−noKM−C MQO−C

|Q|

Figure 4.9: Clustering time

10
0

10
1

10
2

200

220

240

260

T
im

e
 (

s
e
c
o
n
d
s
)

No−MQO MQO−KM

Number of k-means clusters

Figure 4.10: Evaluation time

the common substructures for the coarse-grained groups that are obtained from k-means

and then performs Step 3 (i.e., MQO-KM does not perform hierarchical clustering in Step 2).

The figure shows that the resulting optimization has limited (less than 10%) to no benefits in

evaluation time, when compared with the case of having no optimizations (No-MQO). This

is because k-means ignores query structures and relies solely on the predicate names to

determine groups. Therefore, the fine-grained groups that are produced by hierarchical

clustering (in Step 2) are necessary for the considerable savings (as illustrated in the

following experiments) in terms of evaluation times.

In the second set of experiments, we study scalability w.r.t. the cardinality |Q| of the

query set Q, for which we vary from 60 to 160 queries. As Figure 4.11 shows, both MQO and

MQO-S are successful in identifying common substructures, the former resulting in up to 60%

savings and the latter having up to 80% savings in terms of the number of queries, compared

to No-MQO. However, in terms of evaluation times (see Figure 4.12), MQO-S results in less

savings than MQO, with the former achieving up to 45%, and the latter up to 60% savings in

evaluation times, when compared to No-MQO. So MQO is more efficient, despite generating

a larger number of optimized queries than MQO-S. The following example, along with the

example in Figure 4.3, illustrates this situation. Consider a set of queries Q, such that

(i) predicate pcmn is common to all the queries in Q; (ii) predicate p1 is common to the

subset Q∞ ⊂ Q; and (iii) predicate p2 is common to the subset of queries in Q∈ ⊂ Q,

with Q∞ ∩ Q∈ = ∅. MQO-S looks only at the structure and thus, it may opt to generate

a single optimized query for Q with qcmn = pcmn. If predicate pcmn is not selective, while

predicates p1 and p2 are highly selective, then MQO will generate two different optimized

queries, one for set Q∞ and involving q1, and one for set Q∈ and involving p2. As this

example illustrates, MQO-S can generate fewer but cost-wise less optimized queries when

58

60 80 100 120 140 160
0

50

100

150

N
u
m

b
e
r

o
f
q
u
e
ri
e
s

No−MQO MQO−S MQO

|Q|

Figure 4.11: Vary |Q|: |QOPT|

60 80 100 120 140 160
0

100

200

300

400

T
im

e
 (

s
e
c
o
n
d
s
)

No−MQO MQO−S MQO

|Q|

Figure 4.12: Vary |Q|: time

compared with MQO, which is exactly the pattern in Figure 4.12.

Next, we further analyze the evaluating cost spent on clustering/rewriting the queries,

and distributing the final results. In Figure 4.13, we report the clustering time, which

includes both the bootstrapping k-means clustering and the hierarchical clustering that

relies on finding common substructures. Notice that MQO requires more time than MQO-S.

This is because (i) MQO involves an additional check on the selectivity; and (ii) queries with

nonselective common subqueries are recycled into the pool of clusters by MQO, leading to

more rounds of comparisons and thus a slower convergence. Contrarily, since the common

subqueries rewritten by MQO-S are on average less selective, parsing and distributing these

results inevitably requires more effort, as in Figure 4.14. Nevertheless, clustering and parsing

times are a small fraction of the total evaluating cost (less than 2% in the worst case). In

the remaining experiments, we only report the end-to-end evaluating cost.

Here, we study the impact on optimization of the size |qcmn| of the common subquery,

60 80 100 120 140 160
0

0.25

0.5

0.75

1

1.25

1.5

T
im

e
 (

s
e
c
o
n
d
s
)

MQO−S−C MQO−C

|Q|

Figure 4.13: Clustering cost

60 80 100 120 140 160
0

0.25

0.5

0.75

1

1.25

1.5

T
im

e
 (

s
e
c
o
n
d
s
)

MQO−S−P MQO−P

|Q|

Figure 4.14: Parsing cost

59

i.e., the size of seed queries. At iteration i we make sure that for the queries in the same

group of Q, we have |qcmn| = i. Figure 4.15 shows the number of optimized queries generated

by MQO-S and MQO. Notice that the number of optimized queries is reduced (optimization

improves) as |qcmn| increases. This is because, as the maximum size of each query is kept

constant, the more |qcmn| increases, the more the generated queries become similar (less

randomness in query generation). Therefore, more queries are clustered and optimized

together. Like before, MQO-S is more aggressive and results in less queries compared to

MQO. However, like before, Figure 4.16 shows that MQO is always better and results in

optimized queries whose evaluation time is half less than MQO-S and up to 75% less than

No-MQO. Notice that for small values of |qcmn|, MQO-S performs worse than No-MQO.

Intuitively, the more selective GP is in a Type 2 optimized query, the less work a SPARQL

query engine needs to do to evaluate the GPOPT terms in the OPTIONAL of the query. MQO-S

relies only on the structural similarity, while ignoring predicate selectivity, which negatively

influences the overall evaluation time for the optimized query to the point that any benefits

from the optimization are alleviated by the extra cost of evaluating the OPTIONAL terms.

MQO combines structured and cost optimization and does not suffer from these limi-

tations. This is evident in Figure 4.17, which plots the percentage of the evaluation time

of the optimized query that is spent evaluating qcmn. By carefully selecting the common

subquery qcmn, MQO results in optimized queries whose evaluation time goes mostly (more

than 90%) into evaluating qcmn (while less than 10% goes to evaluating OPTIONAL terms). In

contrast, MQO-S results in queries whose large extent of evaluation time goes into evaluating

OPTIONAL terms (when |qcmn| = 1 this is almost 30%). Things improve for MQO-S as the

size of qcmn increases, but still MQO retains the advantage of selecting substructures not

1 2 3 4 5
0

25

50

75

100

N
u
m

b
e
r

o
f
q
u
e
ri
e
s

No−MQO MQO−S MQO

|qcmn|

Figure 4.15: Vary |qcmn|: |QOPT|

1 2 3 4 5
0

100

200

300

400

T
im

e
 (

s
e
c
o
n
d
s
)

No−MQO MQO−S MQO

|qcmn|

Figure 4.16: Vary |qcmn|: time

60

1 2 3 4 5

60

80

100

P
e
rc

e
n
ta

g
e
 (

%
)

MQO−S MQO

|qcmn|

No−OPTIONAL− − −

Figure 4.17: Evaluating qcmn

just based on their size, but also on their selectivity, and therefore, overall evaluation times

are still much better.

In Figures 4.18 and 4.19, we analyze the impact of the number κ of seed queries on the

optimization, by varying κ from 5 to 10. Figure 4.18 shows that as κ increases, less queries

can be optimized by both MQO-S and MQO, which resulted in more rewritten queries. Not

surprisingly, a larger κ increases query diversity and reduces the potential for optimization.

This affects evaluation times, but MQO is still the best of the three.

In Figures 4.20 and 4.21, we study the impact of query size, which we increase from

5 to 9 predicates in GP of a query Q. For this experiment we keep the |qcmn|/|Q| a rough

constant and equal to 0.5. So, the increase in query size does not result in a significant

change in query overlap (or potential for optimization). Since the size of a query increases,

there is higher chance for the query generator to assign it a selective predicate, which in

turn affects the evaluation times. As a result, Figure 4.21 shows that the evaluation time

of No-MQO decreases with the query size. Clearly, MQO still provides savings in evaluation

time, ranging from 40% to 70%.

We study the impact of the minimum predicate selectivity in qcmn (seed query), by

varying αmin(qcmn) from 0.1% to 4%. As Figure 4.22 shows, selectivity has minimal

impact for MQO-S, which ignores evaluation costs, but noticeable impact in MQO. As

selectivity is reduced, the number of optimized queries increases (less optimization) since

MQO increasingly rejects optimizations that lead to more expensive (nonselective) com-

mon subqueries. While reduced selectivity increases the evaluation time of queries for all

algorithms (Figure 4.23), MQO still achieves between 10% and 50% savings in evaluation

61

times.

5 6 7 8 10
0

25

50

75

100

N
u
m

b
e
r

o
f
q
u
e
ri
e
s

No−MQO MQO−S MQO

κ

Figure 4.18: Vary κ: |QOPT|

5 6 7 8 9 10
0

100

200

300

T
im

e
 (

s
e
c
o
n
d
s
)

No−MQO MQO−S MQO

κ

Figure 4.19: Vary κ: time

5 6 7 8 9
0

25

50

75

100

N
u
m

b
e
r

o
f
q
u
e
ri
e
s

No−MQO MQO−S MQO

|Q|

Figure 4.20: Vary |Q|: |QOPT|

5 6 7 8 9
0

100

200

300

T
im

e
 (

s
e
c
o
n
d
s
)

No−MQO MQO−S MQO

|Q|

Figure 4.21: Vary |Q|: time

0.1 0.5 1 2 4
0

25

50

75

100

N
u
m

b
e
r

o
f
q
u
e
ri
e
s

No−MQO MQO−S MQO

αmin(qcmn) (%)

Figure 4.22: Vary αmin: |QOPT|

0.1 0.5 1 2 4
0

100

200

300

T
im

e
 (

s
e
c
o
n
d
s
)

No−MQO MQO−S MQO

αmin(qcmn) (%)

Figure 4.23: Vary αmin: time

62

While changing minimum selectivity has an impact on deciding the substructure that

forms qcmn, maximum selectivity mostly affects the cost of evaluating the (nonseed) OPTIONAL

terms. Here, we vary the maximum selectivity for predicates in a query, αmax(Q), from

0.1% to 4%. Like before, Figure 4.24 shows that the number of optimized queries is almost

unaffected for MQO-S. Unlike the previous experiment, this number is also unaffected for

algorithm MQO since the change in selectivity concerns OPTIONAL predicates and thus has

less of an effect in the generation of optimized queries. Figure 4.25 shows that both MQO-S

and MQO outperform No-MQO, with MQO achieving a minimum of 50% savings. Again,

notice that when MQO-S chooses nonselective predicates for optimization, evaluation times

quickly degrade to No-MQO as when αmax(Q) > 1%.

We investigate the impact of dataset size |D| on the optimization results, by varying

|D| from 3M to 9M triples. While this does not affect the number of rewritings of Q, it

clearly affects evaluation times, as shown in Figures 4.26. Notice that MQO consistently has

a minimum of 50% (achieving up to 65%) savings.

In Section 4.3, we extrapolate that the evaluation cost of a Type 2 query is inversely

correlated with the estimated cost of GP, i.e., the minimum selectivity of its triple patterns.

This is indeed a reasonable approximation in practice. As shown in Figure 4.23, reduced

minimum selectivity in the common subquery GP would incur higher evaluation cost for

Type 2 queries. Similarly, both the number of OPTIONALs and the cost of the query pattern

of each GPOPT are indispensable factors in determining the value of ∆, as shown respectively

in Figure 4.19 and Figure 4.16. However, we observed that when the cost of GP is small

(being selective), ∆ would be a trivial value and Cost(Q) is mostly credited to the evaluation

of GP. This is clearly shown in Figure 4.17 that when GP is selective, the dominant cost is

contributed by evaluating GP (more than 90%) with the rest factors being almost irrelevant.

0.1 0.5 1 2 4
0

25

50

75

100

N
u
m

b
e
r

o
f
q
u
e
ri
e
s

No−MQO MQO−S MQO

αmax(Q) (%)

Figure 4.24: Vary αmax: |QOPT|

0.1 0.5 1 2 4
0

100

200

300

T
im

e
 (

s
e
c
o
n
d
s
)

No−MQO MQO−S MQO

αmax(Q) (%)

Figure 4.25: Vary αmax: time

63

2 4 6 8 10
0

100

200

300

Data size (× 10
6
 triples)

T
im

e
 (

s
e
c
o
n
d
s
)

No−MQO MQO−S MQO

Figure 4.26: Varying |D|

This suggests that when dealing with a selective GP, a possibly good approximation of

Cost(Q) can set ∆ ≃ 0. This observation also motivates us to choose a selective GP in

rewriting. In practice, this simple cost model and its approximation give excellent cost

estimation in MQO.

Up to now, all results reported were performed with Jena TDB. Using the same queries

and parameters, we also ran the experiments on Virtuoso and Sesame native, to evaluate

the desired property of store independence. In general, the results from Virtuoso and

Sesame are consistent with what we observed in Jena TDB (see Figures 4.27–4.32), when

we used the same setup as that in the experiments for Jena TDB, and varied values of one

parameter while using default values for all other parameters. The proposed optimization

algorithm, MQO, significantly reduces the evaluation time of multiple SPARQL queries on

both stores. In particular, we consistently observed that the cost-based optimization can

remarkably improve the performance in almost all experiments, leading to a 40%–75%

speedup compared to No-MQO on both Virtuoso and Sesame. For example, using the same

setting and optimized queries as Figure 4.12 where we vary the number of queries in a batch

Q, Figures 4.27(a) and 4.27(b) report the results from Virtuoso and Sesame. It is clear that

MQO consistently outperforms MQO-S and No-MQO, leading to savings of 50%–60% across

engines. Similarly, in the experiment that studies the impact of minimum selectivity in qcmn,

i.e., Figure 4.28(a) and Figure 4.28(b), reducing the minimum selectivity of qcmn results in

increasing evaluation times for all algorithms. While MQO-S is sensitive to such variance

since it does not proactively take cost into account, MQO still achieves 40%–75% savings in

evaluation times.

64

60 80 100 120 140 160
0

30

60

90

120

150

T
im

e
 (

s
e
c
o
n
d
s
)

No−MQO MQO−S MQO

|Q|
(a)

60 80 100 120 140 160
0

40

80

120

160

200

T
im

e
 (

s
e
c
o
n
d
s
)

No−MQO MQO−S MQO

|Q|
(b)

Figure 4.27: Vary |Q|: evaluation time (a) Virtuoso and (b) Sesame

0.1 0.5 1 2 4
0

30

60

90

120

150

T
im

e
 (

s
e
c
o
n
d
s
)

No−MQO MQO−S MQO

αmin(qcmn) (%)
(a)

0.1 0.5 1 2 4
0

50

100

150

200

T
im

e
 (

s
e
c
o
n
d
s
)

No−MQO MQO−S MQO

αmin(qcmn) (%)
(b)

Figure 4.28: Vary αmin(qcmn): evaluation time (a) Virtuoso and (b) Sesame

0.1 0.5 1 2 4
0

50

100

150

T
im

e
 (

s
e
c
o
n
d
s
)

No−MQO MQO−S MQO

αmax(Q) (%)

(a)

0.1 0.5 1 2 4
0

50

100

150

200

T
im

e
 (

s
e
c
o
n
d
s
)

No−MQO MQO−S MQO

αmax(Q) (%)

(b)

Figure 4.29: Vary αmax(Q): evaluation time (a) Virtuoso and (b) Sesame

65

1 2 3 4 5
0

50

100

150

T
im

e
 (

s
e
c
o
n
d
s
)

No−MQO MQO−S MQO

|qcmn|
(a)

1 2 3 4 5
0

50

100

150

200

T
im

e
 (

s
e
c
o
n
d
s
)

No−MQO MQO−S MQO

|qcmn|
(b)

Figure 4.30: Vary |qcmn|: evaluation time (a) Virtuoso and (b) Sesame

5 6 7 8 9
0

50

100

T
im

e
 (

s
e
c
o
n
d
s
)

No−MQO MQO−S MQO

|Q|

(a)

5 6 7 8 9
0

50

100

150

200

T
im

e
 (

s
e
c
o
n
d
s
)

No−MQO MQO−S MQO

|Q|

(b)

Figure 4.31: Vary |Q|: evaluation time (a) Virtuoso and (b) Sesame

5 6 7 8 9 10
0

25

50

75

100

T
im

e
 (

s
e

c
o

n
d

s
)

No−MQO MQO−S MQO

κ

(a)

5 6 7 8 9 10
0

50

100

150

200

T
im

e
 (

s
e

c
o

n
d

s
)

No−MQO MQO−S MQO

κ

(b)

Figure 4.32: Vary κ: evaluation time (a) Virtuoso and (b) Sesame

66

4.6 Related Work

The problem of multiquery optimization has been well studied in relational databases [86,

96, 100, 102, 118]. The main idea is to identify the common subexpressions in a batch of

queries. Global optimized query plans are constructed by reordering the join sequences

and sharing the intermediate results within the same group of queries, therefore minimizing

the cost for evaluating the common subexpressions. The same principle was also applied

in [96], which proposed a set of heuristics based on dynamic programming to deal with

nested subexpressions. There has also been studies on identifying common expressions [46,

115] with complexity analysis of MQO; the general MQO problem for relational databases

is NP-hard. Even with heuristics, the search space for individual candidate plans and

their combinatorial hybrid (i.e., the global plan) is often astronomical [96]. In light of the

hardness, [96] proposed some heuristics that were shown to work well in practice; however,

those heuristics were proposed to work inside query optimizers (i.e., engine dependent),

and are only applicable when the query plans are expressible as AND-OR DAGs. Dalvi

et al. [41] considered pipelining intermediate results to avoid unnecessary materialization.

In addition, Diwan et al. [42] studied the issue of scheduling and caching in MQO. A

cache-aware heuristics was proposed in [82] to make maximal use of the buffer pool.

All of the above work focuses on MQO in the relational case. MQO has also been studied

on semistructured data. Hong et al. [55] considered concurrent XQuery join optimization

in publish/subscribe systems. Join queries were mapped to a precomputed tree structure,

called query template, for evaluation. Due to the limitation of the precomputed templates,

only basic join structures were supported. Another work by Bruno et al. [31] in XML studied

navigation and index-based path MQO. Unlike the MQO problem in relational and SPARQL

cases, path queries can be encoded into a prefix tree where common prefixes share the

same branch from the root. This nature provides an important advantage in optimizing

concurrent path queries. Nevertheless, the problem of multiquery join optimization was not

addressed. The work of Kementsietsidis et al. [64] considered a level-wise merging of query

trees based on the tree depth of edges in a distributed setting, with the main objective to

minimize the communication cost in evaluating tree-based queries in a distributed setting.

In summary, existing MQO techniques proposed in relational and XML cases cannot be

trivially extended to work for SPARQL queries over RDF data (which can be viewed as SPJ

queries over generic graphs), since relational techniques need to reside in relational query

optimizers, which cannot be assumed in the management of RDF data, and notions like

prefix-tree and tree depth do not apply to generic graphs. Also, there has been work on

67

query optimization for single SPARQL query [80, 98, 103], as well as single graph query

optimization for general graph databases [117]. However, to the best of our knowledge, our

work is the first to address MQO for SPARQL queries over RDF data.

4.7 Conclusion

We studied the problem of multiquery optimization in the context of RDF and SPARQL.

Our optimization framework, which integrates a novel algorithm to efficiently identify

common subqueries with a fine-tuned cost model, partitions input queries into groups and

rewrites each group of queries into equivalent queries that are more efficient to evaluate. We

showed that our rewriting approach to multiquery optimization is both sound and complete.

Furthermore, our techniques are store-independent and therefore can be deployed on top of

any RDF store without modifying the query optimizer. Useful extensions on handling more

general SPARQL queries are also discussed. Extensive experiments on different RDF stores

show that the proposed optimizations are effective, efficient, and scalable. An interesting

future work is to extend our study to generic graph queries over general graph databases.

So far, we have studied two closely related problems regarding SPARQL query rewriting

and optimization. Querying RDF data with SPARQL assumes users have good understandings

for the schema of the data. However, when interacting with massive RDF data sets that

are constantly evolving (for instance, DBpedia [3]), the schemas are not always available.

In such a scenario, a more attractive tool to investigate the semantics and the structure of

the data and perform data integration is keyword search. Next, we are going to study the

problem of keyword search on large linked data and address the new challenges arise in the

context of RDF data.

CHAPTER 5

KEYWORD SEARCH ON RDF DATA

5.1 Introduction

Keyword search is an important tool for exploring and searching large data corpuses

whose structure is either unknown, or constantly changing. So, keyword search has already

been studied in the context of relational databases [17, 35, 56, 78], XML documents [36, 105],

and more recently over graphs [53, 63] and RDF data [48, 109]. However, existing solutions

for RDF data have limitations. Most notably, these solutions suffer from: (i) returning

incorrect answers, i.e., the keyword search returns answers that do not correspond to real

subgraphs or misses valid matches from the underlying RDF data; or (ii) inability to scale

to handle typical RDF datasets with tens of millions of triples. Consider the results from

two representative solutions [53, 109], as shown in Figures 5.1 and 5.2. Figure 5.1 shows

the query results on three different datasets using the solution specifically designed for RDF

in [109], the Schema method. While this solution may perform well on datasets that have

regular topological structure (e.g., DBLP), it returns incorrect answers for others (e.g.,

LUBM [50] etc.) when compared to a naive but Exact method. On the other hand, classical

techniques [53] proposed for general graphs can be used for RDF data, but they assume a

distance matrix built on the data, which makes it prohibitively expensive to apply to a large

RDF dataset, as shown in Figure 5.2.

Motivated by these observations, we present a comprehensive study to address the

keyword search problem over big RDF data. Our goal is to design a scalable and exact

solution that handles realistic RDF datasets with tens of millions of triples. To address the

scalability issues, our solution builds a new, succinct, and effective summarization structure

from the underlying RDF graph based on its types. Given a keyword search query, we use the

summarization structure to prune the search space, which leads to much better efficiency

compared to approaches that process queries directly on the RDF graph. Figure 5.3 shows

a tiny fraction of the DBpedia data that we will use as a running example throughout this

chapter. To summarize, our contributions are as follows.

69

Q1(DBLP) Q2(Wordnet) Q3(LUBM)
0

2

4

6

8

10

N
u

m
b

e
r

o
f

m
a

tc
h

e
s

Exact Schema

No answers

Miss
answers

Figure 5.1: Schema method in [109]

10
5

10
6

10
7

0

1000

2000

3000

4000

5000

Data size (triple)

In
d

e
x
 s

iz
e

 (
M

B
)

Distance matrix

Figure 5.2: Distance matrix method in [53]

booster

Rocket

SpaceMission

ty
p
e

previousMission

”Apollo 11”

”Saturn-V” ”N. Armstrong”

URI1

URI3

URI2

string vertex type vertex entity vertex

n
a
m
e

Person

ty
p
e

SpaceMission

ty
p
e

URI5

”R. Chaffee”

URI6

n
a
m
e

Person

ty
p
e

crew bo
ost

er
”Apollo 1”

n
a
m
e

label ty
pe

URI7 URI4

ty
p
e

building

la
un
ch
pa
d launchpad ty

p
e

building

nam
e

URI8

SpaceMission

ty
p
e

”Apollo 10”
name

cr
ew

”M.C.”

URI9

n
a
m
e

cr
ew

Person type

Figure 5.3: Keywords in a small sample from the DBpedia dataset

• We identify and address limitations in the existing, state-of-the-art methods for

keyword search in RDF data [109]. We show that these limitations could lead to incomplete

and incorrect answers in real RDF datasets. We propose a new, correct baseline solution

based on the backward search idea.

• We develop efficient algorithms to summarize the structure of RDF data, based on

the types in RDF graphs, and use it to speed up the search. Compared to previous works

that also build summarization [48, 109], our new summarization leverages on completely

different intuitions, and it is scalable for large disk-resident RDF data and lends significant

pruning power without sacrificing the soundness of the result. Further, our summarization

is light-weight and updatable.

• Our experiments on benchmark and large real RDF datasets show that our techniques

are much more scalable and efficient in correctly answering realistic keyword search queries

70

than the existing methods.

In what follows, we formulate the keyword search problem on RDF data in Section

5.2, present our solutions in Sections 5.3 to 5.6, survey related work in Section 5.7, show

experimental results in Section 5.8, and conclude in Section 5.9. Table 5.1 lists the frequently

used symbols.

5.2 Preliminaries and Problem Statement

5.2.1 Ontology in RDF Data

We have given a brief overview for RDF data in Chapter 2. W3C has also provided a

set of unified vocabularies (as part of the RDF standard) to encode the rich semantics, e.g.,

RDFS/OWL. Among these, the rdfs:type predicate (or type for short) is particularly useful

to our problem (see Section 5.4), since it provides a classification of vertices and edges of

an RDF graph into different groups. For instance, in Figure 5.3, the entity URI3 has type

SpaceMission. Formally, we view an RDF dataset as an RDF graph G = (V,E) where

• V is the union of disjoint sets, VE , VT , and VW , where VE is the set of entity vertices

(i.e.,URIs), VT is the set of type vertices, and VW is a set of keyword vertices.

• E is the union of disjoint sets, ER, EA, and ET , where ER is the set of entity-entity

edges (i.e., connecting two vertices in VE), EA is the set of entity-keyword edges (i.e.,

Table 5.1: Frequently used notations

Symbol Description

G{V,E} the condensed view of an RDF graph.

A(q) top-k answers for a query.

r answer root.

wi the i-th keyword.

d(x, y) graph distance between node x and node y.

C(q) a set of candidate answers.

α used to denote the α-hop neighborhoods.

g an answer subgraph of G.

S the summaries of P.
Wi the set of nodes containing keyword wi.

P partitions.

M for bookkeeping the candidate answers.

h(v, α), h the α-hop neighborhoods of v, a partition.

ht(v, α), ht the covering tree of h(v, α), a covering tree.

S a path represented by a sequence of partitions.

dl, du the lower and upper bounds (for a path).

σ a one-to-many mapping in converting h to ht.

Σ a set of σ’s from a partition h.

71

connecting an entity to a keyword), and ET is the set entity-type edges (i.e., connecting an

entity to a type).

For example, in Figure 5.3, all gray vertices are type vertices while entity vertices are

in white. Each entity vertex also has associated keyword vertices (in cyan). The division

on vertices results in a corresponding division on the RDF predicates, which leads to the

classification of the edge set E discussed earlier. Clearly, the main structure of an RDF graph

is captured by the entity-entity edges represented by the set ER. As such, an alternative

view is to treat an entity vertex and its associated type and keyword vertices as one vertex.

For example, the entity vertices URI5, URI1, and URI3 from Figure 5.3, with their types and

keywords, can be viewed as the structure in Figure 5.4.

In general, for an RDF graph G = {V,E}, we will refer to this as the condensed view of

G, denoted as Gc = {V
′
E , ER}. While |V ′

E | ≡ |VE |, every vertex v′ ∈ V ′
E contains not only

the entity value of a corresponding vertex v ∈ VE , but also the associated keyword(s) and

type(s) of v. For ease of presentation, hereafter, we associate a single keyword and a single

type to each entity. Our techniques can be efficiently extended to handle the general cases.

Also for simplicity, hereafter, we use G = {V,E} to represent the condensed view of an RDF

graph.

5.2.2 Problem Statement

Given an RDF graph G = {V,E}, for any vertex v ∈ V , let w(v) be the keyword stored

in v. Formally, a keyword search query q in an RDF data G = {V,E} is defined by m unique

keywords {w1, w2, . . . , wm}. A set of vertices {r, v1, . . . , vm} from V is a qualified candidate

when:

• r ∈ V is called the root answer node, which is reachable by vi ∈ V for i ∈ [1,m]

• w(vi) = wi.

If we define the answer for q as A(q) and the set of all qualified candidates in G with

respect to q as C(q), then

A(q) = min
g∈C(q)

s(g), and s(g) =
∑

r, vi ∈ g, i =

1..m

d(r, vi) (5.1)

RocketboosterSpaceMission SpaceMissionURI1URI5 URI3

”Saturn-V””Apollo 1” ”Apollo 11”

booster

Figure 5.4: Condensed view: combining vertices

72

where d(r, vi) is the graph distance between vertices r and vi (when treating G as an

undirected graph). Intuitively, this definition looks for a subgraph in an RDF graph that

has minimum length to connect all query keywords from a root node r. In prior works

concerning keyword search in RDF data, the graph distance of d(v1, v2) is simply the shortest

path between v1 and v2 in G, where each edge is assigned a weight of 1 (in the case of general

graph [53], the weight of each edge could be different). Note that if v1 and v2 belong to

disconnected parts of G, then d(v1, v2) = +∞. Also note that this metric (i.e., Equation 5.1)

is proposed by [53] and has been used by prior work on keyword search in RDF data [48, 109].

This definition has a top-k version, where the query asks for the top k qualified can-

didates from C(q). Let the score of a qualified candidate g ∈ C(q) be defined as s(g) in

Equation (5.1); then we can rank all qualified candidates in C(q) in an ascending order of

their scores, and refer to the ith ranked qualified candidate as A(q, i). The answer to a

top-k keyword search query q is an ordered set A(q, k) = {A(q, 1), . . . , A(q, k)}. A(q) is a

special case when k = 1, and A(q) = A(q, 1). Lastly, we adopt the same assumption in the

prior works [53, 109] that the answer roots in A are distinct.

5.3 The Baseline Method

A baseline solution is based on the “backward search” heuristic on generic graphs [26, 61].

Intuitively, the “backward search” (for the root node r) starts simultaneously from each

vertex in the graph G that corresponds to a query keyword, and expands to its neighboring

nodes recursively until a candidate answer is generated. A termination condition is used to

determine whether the search is complete.

The state-of-the-art keyword search method on RDF graphs [109] has applied the back-

ward search idea. Their termination condition is to stop the search whenever the expansions

originating from m vertices {v1, . . . , vm} (each corresponding to a distinct query keyword)

meet at a node r for the first time, where {r, v1, . . . , vm} is returned as the answer. Unfor-

tunately, this termination condition is incorrect.

5.3.1 A Counter Example

Consider the graph in Figure 5.5(a) and a top-1 query q = {w1, w2, w3, w4}. The steps

for the four backward expansions performed on Figure 5.5(a) are shown in Figure 5.5(b).

Using the above termination condition, the backward expansions from the four vertices

{v1, v2, v6, v7} covering the query keywords {w1, w2, w3, w4} meet for the first time in the

second iteration, so the candidate answer g : −{r=v4, v1, v2, v6, v7} is returned and s(g) = 8.

However, if we continue to the next iteration, the four expansions will meet again at v3,

73

expansion step
1 2 3

v1

v2

v6

v3

v3

v5

v1 v4 v7

v4

v5

v5

v3

v1v2

v3

v4

v5

v6

w1w2

w3

4

v6

v6

v1 v2 v7

v8v10

v11

v12

v13

v14

w1w2

w3

v9

v7w4

v7

v2 v4 v7

v3 v1 v2 v4 v5 v6

v15

w4

(a) (b) (c)

Figure 5.5: Backward search

with g = {r=v3, v1, v2, v6, v7} and s(g′) = 6, which is the optimal answer. One may argue

that the subgraph covering the query keywords is still correctly identified even though

the procedure fails to enforce the cost metric defined in Equation (5.1). However, if we

augment the aforementioned RDF dataset by including the data graph in Figure 5.5(c), i.e.,

an RDF dataset with two disjoint graphs – Figure 5.5(a) and (c), then by applying the same

procedure, the (wrong) answer would be g′′ = {r=v12, v8, v10, v14, v15} (i.e., Figure 5.5(c))

with a score s(g′′) = 7 < s(g). This is clearly wrong as g′ (with a cost of 6) should have

been identified as the top-1 answer for q instead of g′. Furthermore, we will show that even

if we fix this error in the terminating condition, this method [109] may still return incorrect

results due to the limitations in the summary it builds, as shown in Figure 5.1.

5.3.2 The Correct Termination

We give the correct termination condition for the backward search on RDF graphs and

the complete algorithm is shown in Algorithm 4.

We first introduce the data structures. Given q = {w1, . . . , wm} and a (condensed) RDF

graph G = {V,E}, let Wi be the set of vertices in V containing the keyword wi (line 1). We

initialize m empty priority queues (e.g., min-heaps) {a1, ..am}, one for each query keyword

(line 1). We also maintain a set M of elements (line 2), one for each distinct node we have

explored so far in the backward expansion to track the state of the node, i.e., what keywords

are reachable to the node and their best known distances. In what follows, we use M [v] to

indicate the bookkeeping for the node v. Specifically, in each element of M , we store a list

of m (vertex, distance) pairs. A (vertex, distance) pair in the jth entry of M [v] indicates

a (shortest) path from vertex that reaches v in distance hops and it is the shortest possible

path starting from any instance of wj (recall that there could be multiple copies of wj in G).

Next, we also use M [v][j] to indicate the jth pair in M [v]. For instance, in Figure 5.5(a),

74

Algorithm 4: Backward

Input: q = {w1, w2, . . . , wm}, G = {V,E}
Output: top-k answer A(q)
Initialize {W1, ..Wm} and m min-heaps {a1, ..am};1

M ← ∅; // for tracking potential C(q)2

for v ∈Wi and i = 1..m do3

for ∀u ∈ V and d(v, u) ≤ 1 do4

ai ⇐ (v, p← {v, u}, d(p)← 1) ; // enqueue5

if u 6∈M then M [u]← {nil, ..(v, 1).., nil};6

else M [u][i]← (v, 1); ↑the ith entry7

while not terminated and A not found do8

(v, p, d(p))← pop(argminmi=1{top(ai)});9

for ∀u ∈ V and d(v, u) = 1 and u 6∈ p do10

ai ⇐ (u, p ∪ {u}, d(p) + 1);11

update M the same way as in lines 6 and 7;12

return A (if found) or nil (if not);13

consider an element M [v3] = {(v1, 1), (v2, 1), nil, (v7, 1)} in M . The entry indicates that v3

has been reached by three expansions from vertices v1, v2, and v7, containing keywords w1,

w2, and w4, respectively – each can reach v3 in one hop. However, v3 has not been reached

by any expansion from any vertex containing w3 yet.

With the structures in place, the algorithm proceeds in iterations. In the first iteration

(lines 3-7), for each vertex v from Wi and every neighbor u of v (including v itself), we add

an entry (v, p ← {v, u}, d(p)) to the priority queue ai (entries are sorted in the ascending

order of d(p) where p stands for a path and d(p) represents its length). Next, we look for

the newly expanded node u in M . If u ∈M , we simply replace M [u][i] with (v, d(p)) (line

7). Otherwise, we initialize an empty element for M [u] and set M [u][i] = (v, d(p)) (line 6).

We repeat this process for all Wi’s for i = 1..m.

In the jth (j > 1) iteration of our algorithm (lines 8-12), we pop the smallest top entry

of {a1..am} (line 9), say an entry (v, p = {v, . . . , u}, d(p)), from the queue ai. For each

neighboring node u′ of u in G such that u′ is not in p yet (i.e., not generating a cycle), we

push an entry (v, p ∪ {u}, d(p) + 1) back to the queue ai (line 11). We also update M with

u′ similarly as above (line 12). This concludes the jth iteration.

In any step, if an entryM [u] for a node u has no nil pairs in its list of m (vertex, distance)

pairs, this entry identifies a candidate answer and u is a candidate root. Notice that due

to the property of the priority queue (which implicitly enforces a BFS search from each

keyword instance) and the the fact that all edges have a unit weight, the paths in M [u] are

the shortest paths to u from m distinct query keywords. Let g be the graph pieced by the

75

list of shortest paths in M [u], and we have:

Lemma 3 g = {r=u, vℓ1 , . . . , vℓm} is a candidate answer with s(g) =
∑m

i=1 d(u, vℓi).

Proof. By our construction for entries in M , w(vℓi) = wi and d(u, vℓi) is the length for

shortest path from vℓi to u, which completes the proof.

A node v has not been fully explored if it has not been reached by at least one of the

query keywords. Let Vt be the set of all not fully explored vertices, and the top entries from

the m expansion queues (i.e., min-heaps) a1, . . . , am be (v1, p1, d(p1)), . . . , (vm, pm, d(pm)).

There are two cases to consider: (i) in order for an unseen vertex, i.e., v /∈ M , to be the

answer root, the best possible cost is bounded by:

Lemma 4 Let g1 be the best possible candidate answer, with v /∈ M being the answer root

of g1. Then s(g1) >
∑m

i=1 d(pi).

Proof. Since v is not in M , indicating that v has not yet been included in any expansion

path from any entries in these m queues, we need to expand at least one neighboring node

to the end node in a path from at least one of these top m entries to possibly reach v.

Furthermore, all m expansion queues sort their entries in ascending order of the distance

of the corresponding paths; hence, any candidate answer using v as the root node must

have at least a distance of d(pi) + 1 to reach a vertex v′ with w(v′) = wi. That shows

s(g1) >
∑m

i=1 d(pi), which completes the proof.

(ii) in the second case, consider v ∈ M that has at least one nil entry. Clearly, v ∈ Vt.

Let its list of M [v] be (vb1 , d1), . . . , (vbm , dm), and we have the following result:

Lemma 5 Suppose the best possible candidate answer using such a v (v ∈ M and v ∈ Vt)

as the answer root is g2, then

s(g2) >
m∑

i=1

f(vbi)di + (1− f(vbi))d(pi), (5.2)

where f(vbi) = 1 if M [v][bi] 6=nil, and f(vbi) = 0 otherwise.

Proof. When vbi is not nil, that means this vertex v has been reached by an expansion

from a vertex vbi where w(vbi) = wi (i.e.,, vbi ∈ Wi), and di = d(vbi , v). More importantly,

di is the shortest possible distance from any vertex in Wi to reach v, since we expand paths

in ai in the ascending order of their distances.

When vbi is nil, that means no expansions initiated from any vertices from Wi have yet

reached v. Following the same argument from the proof for Lemma 4, the shortest distance

to reach any vertex in Wi from v is at least d(pi) + 1.

76

Finally, by combining these two arguments, we can establish Equation (5.2).

Notice that in Lemma 5, if M [v][bi] 6= nil, then d(pi) ≥ di due to the fact that ai is a

min-heap. It follows that s(g2) ≤ s(g1).

5.3.3 The Termination Condition

These v’s represent all nodes that have not been fully explored. For case (i), we simply

let s(g1) =
∑m

i=1 d(pi); for case (ii), we find a vertex with the smallest possible s(g2) value

w.r.t. the RHS of (5.2), and simply denote its best possible score as s(g2).

Let g be the candidate answer we have identified so far in our algorithm with the kth

smallest score; our search can safely terminate when s(g) ≤ min(s(g1), s(g2)) = s(g2). We

denote this algorithm as the Backward method. By Lemmas 3, 4, 5, we have Theorem 3

as follows.

Theorem 3 The Backward method finds the top-k answers A(q, k) for any top-k keyword

query q on an RDF graph.

Proof. This is a straightforward result by Lemma 3 and the termination conditions stated

in Lemmas 4, 5.

5.4 Type-Based Summarization

The Backward method is clearly not scalable on large disk-resident RDF graphs. For

instance, the keyword “Armstrong” appears 269 times in our experimental DBpedia dataset,

but only one is close to the keyword “Apollo 11”, as in Figure 5.3. If we are interested in the

smallest subgraphs that connect these two keywords, the Backward method will initiate

many random accesses to the data on disk, and has to construct numerous search paths in

order to complete the search. However, the majority of them will not lead to any answers.

Intuitively, we would like to reduce the input size to Backward and apply Backward only

on the most promising subgraphs. We approach this problem by proposing a type-based

summarization on the RDF data. The idea is that, by operating our keyword search initially

on the summary (which is typically much smaller than the data), we can navigate and prune

large portions of the graph that are irrelevant to the query, and only apply Backward

method on the smaller subgraphs that guarantee to find the optimal answers.

5.4.1 The Intuition for Summarization

The idea is to first induce partitions over the RDF graph G. Keywords in query will be

first pieced up by partitions. The challenge lies on how to safely prune connections (of par-

77

titions) that will not result in any top-k answer. To this end, we need to calibrate the length

of a path in the backward expansion that crosses a partition. However, maintaining the

exact distance for every possible path is expensive, especially when the data are constantly

changing. Therefore, we aim to distill an updatable summary from the distinct structures in

the partitions such that any path length in backward expansion can be effectively estimated.

The key observation is that neighborhoods in close proximity surrounding vertices of the

same type often share similar structures in how they connect to vertices of other types. To

illustrate, consider the condensed view of Figure 5.3. The graph in Figure 5.6(a) is common

for the 1-hop neighborhoods of URI3 and URI5 with the type SpaceMission.

This observation motivates us to study how to build a type-based summarization for

RDF graphs. A similar effort can be seen in [109], where a single schema is built for all the

types of entities in the data. However, this is too restrictive as RDF data are known to be

schema-less [43], e.g., entities of the same type do not have a unified property conformance.

5.4.2 Outline and Preliminaries

Our approach starts by splitting the RDF graph into multiple, smaller partitions. Then,

it defines a minimal set of common type-based structures that summarizes the partitions.

Intuitively, the summarization bookkeeps the distinct structures from all the partitions. In

general, the keyword search can benefit from the summarization in two perspectives. With

the summarization,

• we can obtain the upper and lower bounds for the distance traversed in any backward

expansion without constructing the actual path (Section 5.5); and

• we can efficiently retrieve every partition from the data by collaboratively using

SPARQL query and any RDF store without explicitly storing the partition (Section 5.6).

Before defining the summarization, we introduce two notions from graph theory: graph

homomorphism and core.

We first consider homomorphism across partitions. As in Figure 5.6(a), type vertices

that are at close proximity are a good source to generate induced partitions of the data

graph. However, if we were to look for such induced partitions that are exactly the same

across the whole graph, we get a large number of them. Consider another type-based

structure in Figure 5.6(b), which is extracted from 1-hop neighbors around the vertex

URI3 in Figure 5.3. Notice that the two graphs are different; however, Figure 5.6(a) is

a substructure of Figure 5.6(b). We consider discovering such embeddings between the

induced partitions, so that one template can be reused to bookkeep multiple structures.

78

SpaceMission

Person

bo
os
te
r

building

la
u
n
ch
p
ad crew

SpaceMissionRocket

previousM
ission

SpaceMission

Person

b
o
o
ster

building

la
un
ch
pa
d crew

Rocket

(a) (b)

Person

crew

Figure 5.6: Graph homomorphism across summaries

Definition 2 A graph homomorphism f from a graph G = {V,E} to a graph G′ = {V ′, E′},

written as f : G → G′, is a mapping function f : V → V ′ such that (i) f(x) = x indicates

that x and f(x) have the same type; and (ii) (u, v) ∈ E implies (f(u), f(v)) ∈ E′ and they

have the same label. When such an f exists, we say G is homomorphic to G′.

Intuitively, embedding G to G′ will not only reduce the number of structures we need

to keep but also preserve any path from G in G′, as shown by the homomorphism in Figure

5.6 (more expositions in Section 5.5). Finally, notice that homomorphism is transitive, i.e.,

G→ G′ and G′ → G′′ imply that G→ G′′.

A core is a graph that is only homomorphic to itself, but not to any one of its proper

subgraphs.

Definition 3 A core c of a graph G is a graph with the following properties: there exists a

homomorphism from c to G; there exists a homomorphism from G to c; and c is minimal

(in the number of vertices) with these properties.

Intuitively, a core of a partition succinctly captures how different types of entities connect

to each other. For example, the partition in Figure 5.7(b) is converted to its core in

Figure 5.7(a) by eliminating one of its branches.

SpaceMission

Person

bo
os
te
r

building

la
u
n
ch
p
ad crew

SpaceMissionRocket

previousM
ission

Person

crew

SpaceMission

Person

b
oo
st
er

building

la
u
n
ch
p
a
d

cr
ew

SpaceMissionRocket

previousM
ission

(a) (b)

Figure 5.7: Build a core (a) from (b)

79

5.4.3 Partition

The summarization starts with splitting the data graph into smaller but semantically

similar and edge disjoint subgraphs. Given our observation that nodes with the same type

often share similar type-neighborhoods, we induce a distinct set of partitions for G based

on the types in G, using small subgraphs surrounding vertices of the same type. Our

partitioning algorithm treats an input RDF dataset as a directed graph G concerning only

the type information, i.e., we use the condensed view of an RDF graph. For any vertex that

does not have a type specified by the underlying dataset, we assign an universal type NA to

them. Notice that graph partitioning is a well-studied problem in the literature; here, we do

not propose any new technique in that respect but rather focus on how to build semantically

similar partitions for our purpose. The partitioning algorithm is shown in Algorithm 5.

Algorithm 5: Partition

Input: G = {V,E}, α
Output: A set of partitions in P
Let T = {T1, . . . ,Tn} be the distinct types in V ;1

P ← ∅;2

for Ti ∈ T do3

for v ∈ Vi do4

extract h(v, α), the α neighborhood of v;5

P ← P ∪ h(v, α);6

return P;7

In Algorithm 5, suppose G has n distinct number of types {T1, . . . ,Tn}, and we use

the set Vi to represent the vertices from V that have a type Ti (line 4). We define the

α-neighborhood surrounding a vertex, where α is a parameter used to produce a set of

edge disjoint partitions P over G. Formally, for any vertex v ∈ V and a constant α, the

α-neighborhood of v is the subgraph from G obtained by expanding v with α hops in a

breadth-first manner, denoted as h(v, α) (line 5), but subject to the constraint that the

expansion only uses edges that have not been included by any partition in P yet. We define

the i-hop neighboring nodes of v as the set of vertices in G that can be connected to v

through a directed path with exactly i directed edges. Note that since we are using directed

edges, it is possible the i-hop neighboring nodes of v is an empty set. Clearly the nodes in

h(v, α) are a subset of the α-hop neighboring nodes of v (since some may have already been

included in another partition).

To produce a partition P, we initialize P to be an empty set (line 2) and then iterate

through different types (line 3). For a type Ti and for each vertex v ∈ Vi, we find its

80

α-neighborhood h(v, α) and simply add h(v, α) as a new partition into P. The following

lemma summarizes the properties of our construction:

Lemma 6 Partitions in P are edge disjoint and the union of all partitions in P cover the

entire graph G.

Proof. The edge disjoint property trivially holds by our construction of h(v, α). By visiting

the vertices in each type, we have effectively included the α-neighborhoods of all vertices

in G into P, which leads to the conclusion that the union of the resulting partitions covers

G.

Note that the order in which we iterate through different types may affect the final

partitions P we build. However, no matter which order we choose, vertices in the same

type always induce a set of partitions based on their α-neighborhoods. For example, the

partitions P of Figure 5.3 (as condensed in Figure 5.4) are always the ones shown in Figure

5.8, using α = 1.

5.4.4 Summarization

We first outline our approach to summarize the distinct structures in a partition P.

Then, we discuss how to make it more practical by proposing our optimizations. Finally,

we discuss the related indices in Section 5.4.5. The general framework of our approach is

shown in Algorithm 6.

Given a partition P, Algorithm 6 retrieves all the distinct structures and stores them

in a set S. Algorithm 6 begins with processing partitions in P in a loop (line 2). For a

URI5 S

URI7 B

la
u
n
ch
p
a
d

URI1 RURI6 P

cr
ew

booster

URI3 S

URI4B

launchpad

URI8 SURI9P

cr
ew

b
o
o
ster

URI2 P

cr
ew

S: SpaceMission B:building R:Rocket P:Person

URI6 P URI2 P URI9 P URI4 B URI7 B URI1 R

URI8 S

URI1 R

previousM
ission

SpaceMission

Person Building Rocket

Figure 5.8: Partitions P of the RDF data in Figure 5.3, α = 1

81

Algorithm 6: Summarize structures in P

Input: P = {h(v1, α), h(v2, α), . . .}
Output: A set of summaries in S
S ← ∅;1

for hi ∈ P, i = 1, . . . , |P| do2

c← core(hi); //see discussion on optimization3

for sj ∈ S, j = 1, . . . , |S| do4

if f : c→ si then5

goto line 2; // also bookkeep f : c→ si6

else if f : si → c then7

S ← S − {si}; //also bookkeep f : si → c8

S ← S ∪ {c};9

return S;10

partition hi, we use its core c to succinctly represent the connections between different types

in hi (line 3). Once a core c is constructed for a partition, we scan the existing summary

structures in S to check (a) if c is homomorphic to any existing structure si in S; or (b) if

any existing structure si in S is homomorphic to c. In the former case, we terminate the

scan and S remains intact (without adding c), as in lines 5-6; in the latter case, we remove

si from S and continue the scan, as in lines 7-8. When S is empty or c is not homomorphic

to any of the structures in S after a complete scan on S, we add c into S. We repeat the

procedure until we exhaust all the partitions in P.

There are two practical problems in Algorithm 6. First, the algorithm requires testing

subgraph isomorphism for two graphs in lines 3, 5, and 7, which is very expensive due to

the NP-hard nature of problem. Second, we want to reduce |S| as much as possible so that

it can be cached in memory for query processing. The latter point is particularly important

for RDF datasets that are known to be irregular, e.g., DBpedia. Next, we address the two

problems by preprocessing the partitions in P.

The optimization is as follows. Before line 3 of Algorithm 6, consider each partition

h(v, α) in P, which visits the α-neighborhood of v in a breadth-first manner. We redo

this traversal on h(v, α) and construct a covering tree for the edges in h(v, α), denoted as

ht(v, α). In more detail, for each visited vertex in h(v, α), we extract its type and create

a new node in ht(v, α) (even if a node for this type already exists). By doing so, we build

a tree ht(v, α) that represents all the distinct type-paths in h(v, α). In the rest of the

algorithm (lines 3-10), we simply replace h(v, α) with ht(v, α).

We illustrate the previous discussion with an example. As in Figure 5.9, a tree ht(v1, 2)

is built for the partition h(v1, 2). Notice that the vertex v4 is visited three times in the

82

traversal (across three different paths), leading to three distinct nodes with type T4 created

in ht(v1, 2). In the same figure, a tree ht(v5, 2) is built from the partition h(v5, 2) and

isomorphic to ht(v1, 2).

There are two motivations behind this move. First, using the covering tree instead of the

exact partition potentially reduces the size of the summary S. As seen in Figure 5.9, two

partitions with distinct structures at the data level (e.g., h(v1, 2) and h(v5, 2)) could share

an identical structure at the type level. Taking advantage of such overlaps is the easiest

way to reduce the number of distinct structures in S. The second reason is efficiency.

Whereas testing subgraph isomorphism is computationally hard for generic graphs, there

are polynomial time solutions if we can restrict the testing on trees [101] – leading to better

efficiency. For instance, to find the core of a covering tree ht, it simply amounts to a

bottom-up and recursive procedure to merge the homomorphic branches under the same

parent node in the tree.

However, the improvements on efficiency and the size of S come with a cost, i.e., it leads

to a more dedicated design as to how to use the summaries in S for path-length estimation.

We will discuss this issue in Section 5.5. Here, we first introduce the indices we construct.

5.4.5 Auxiliary Indexing Structures

To facilitate the keyword search, along with the summary S, we maintain three auxiliary

(inverted) indexes.

A portal node ℓ is a data node that is included in more than one partitions (remember

that partitions are edge disjoint, not node disjoint). Intuitively, a portal node joins different

vertex id type

v1

v2 v3

v4

v5

v6 v7

v9v8

T1

T2 T3

T4

T1

T2 T3

T4 T4 T4

T1

T3T2

T4 T4

P1 P1 P1

P2
P2 P2

P3P3
P3 P3

P4 P4

P4

P3 P3

h(v1, 2) h(v5, 2)ht(v1, 2)/ht(v5, 2)

Figure 5.9: A tree structure for two partitions

83

partitions. A partition may have multiple portals but usually much less than the total

number of nodes in the partition. Portal nodes allow us to piece together different partitions.

In our first index, for each partition h(v, α), we assign it a unique id, and associate it with

the list of portals in the partition. In practice, since the partition root node v is unique

in each partition, we can simply use it to denote the partition h(v, α) when the context is

clear. Notice that the partition root is different from the answer root defined in section 5.2.2.

Recall that we use ht(v, α) to represent h(v, α), where a vertex in h(v, α) could corre-

spond to more than one vertex in ht(v, α). Let σ(vi) be such a one-to-many mapping from

a vertex vi in h(v, α) to at least two vertices in ht(v, α); clearly, all vertices mapped by σ(vi)

in ht are of the same type, as they are the same node on different paths. Therefore, to make

the bookkeeping efficient, we register in σ the type of vi instead of the node ids. W.l.g.,

let Σ = {σ(v1), σ(v2), . . .} be all the one-to-many mappings in a partition. For instance,

consider h(v1, 2) and ht(v1, 2) in Figure 5.9, Σ ← {σ(v4) = {T4}}. The second index is

to map the partition root v of h(v, α) to its Σ. Intuitively, this index helps rebuild from

ht(v, α) a graph structure that is similar to h(v, α) (more rigorous discussion in section 5.5).

Our third index maps data nodes in partitions to summary nodes in S. In particular,

we assign a unique id sid to each summary in S and denote each node in S with a unique

id nid. For any data node u in a partition h(v, α), this index maps the node u in h(v, α) to

an entry that stores the partition root v, the id sid of the summary, and the id nid of the

summary node that u corresponds to. Notice that since ht(v, α) is built in a BFS traversal,

we can easily compute the shortest path from v to any node in ht(v, α) using this index.

In order to obtain the homomorphic mappings from each ht(v, α) to a summary in S,

one needs to maintain a log for all the homomorphisms found during the construction of S,

as in lines 6 and 8 of Algorithm 6. Once S is finalized, we trace the mappings in this log to

find all the mappings from data to summaries in S. As each partition (represented by its

core) is either in the final S or is homomorphic to one other partition, the size of the log

is linear to G. An example for such a log is shown in Figure 5.10 (hit is the covering tree

for the ith partition). It shows sets of trees (and their homomorphic mappings); each set is

associated with one of the summaries in S that all trees in that set are homomorphic to. To

find the final mappings, we scan each set of trees in the log and map the homomorphisms of

each entry in a set to the corresponding entry from S, i.e., the blue arrows in Figure 5.10.

We remove the log once all the mappings to S are found.

84

h1

t
h2

t
h3

t
h4

tS(G) :

log:
h5

t
h6

t h8

t
h9

t h10

t
h11

t

h12

t
h13

t

Figure 5.10: All the homomorphism in building S

5.5 Search with Summarization

Next, we present a scalable and exact search algorithm by leveraging graph partitions

and the summarization introduced in Section 5.4. It performs a two-level backward search:

one backward search at the summary-level, and one at the data-level. Only for identified

connected partitions that are found to contain all the distinct keywords at the summary-level

and whose score could enter the top-k answers do we initiate a backward search at the

data-level on the selected partitions. Remember that path-length computation is at the

heart of backward search and pruning. While working at the summary-level, exact path

lengths are not available. Therefore, we first show how to estimate the path length of the

actual data represented by our summary. Then, we proceed to describe the algorithm in

detail.

5.5.1 Bound the Shortest Path Length

At the summary-level, any shortest path in the underlying RDF graph must go through

a number of partitions, and for each partition, the path includes two of its portals, i.e., an

entrance and an exit node. By construction, the shortest distance from the partition root v

of a partition to any vertex u in the same partition can be computed with the third index.

By triangle inequality, the shortest distance d(v1, v2) for any two vertices v1 and v2 in a

partition with a partition root v can be upper bounded by d(v1, v2) ≤ d(v, v1) + d(v, v2),

and lower bounded by d(v1, v2) ≥ |d(v, v1) − d(v, v2)|. Yet, a possibly tighter lower bound

can be found by using the correspondent summary of the partition that is rooted at v and

Lemma 7.

Lemma 7 Given two graphs g and h, if f : g → h, then ∀v1, v2 ∈ g and their homomorphic

mappings f(v1), f(v2) ∈ h, d(v1, v2) ≥ d(f(v1), f(v2)).

Proof. By definition, ∀(u, v) ∈ g, (f(u), f(v)) ∈ h. Since every edge in g is mapped to an

edge in h by homomorphism, the shortest path p that leads to d(v1, v2) in g can be mapped

85

to a path in h that starts at f(v1) and ends at f(v2) by applying f on each of the edges on

p. Thus, d(f(v1), f(v2)) is at most d(v1, v2).

The homomorphic mappings between a partition h, its covering tree ht, and its summary

s in S are shown in Figure 5.11(a). Notice that due to the optimization we employ in

Section 5.4, there is no homomorphism from h to s, so that we can not apply Lemma 7

directly. In order to obtain a lower bound for the distance of any two vertices in h, we need

to rebuild a homomorphic structure for h, using the second index and the correspondent ht.

To do so, we first define a join operator Join that combines all the nodes correspondent to

σ(x) of ht in a single node that has same type as x. Recall that a σ(x) registers the vertex

x that appears in more than one path in ht, i.e., its replicas. Applying the Join on each σ

of Σ for a partition, written as Join(ht,Σ), undoes such splits.

We illustrate the previous discussion with an example. Applying the Join operator on

ht(v1, 2) and the respective Σ rebuilds h(v1, 2) in Figure 5.9. On the other hand, applying

Join on ht(v5, 2) with its Σ cannot reconstruct h(v5, 2) but results in a structure that is

identical to h(v1, 2) in this example, which ht(v5, 2) is homomorphic to. More formally, we

have the following result.

Lemma 8 For a partition h and its covering tree ht, there is a homomorphism from h to

Join(ht,Σ).

Proof. We construct such a homomorphic function f : h→ Join(ht,Σ). Notice that by the

objective of summarization, we only consider the types of nodes. For a node v ∈ h, if it is

not registered by any mapping σ ∈ Σ, i.e., it does not appear in two different paths, then let

f(v) = v, since Join(ht,Σ) has no effect on v; else if a node v is registered by some σi ∈ Σ,

then by the property of Join, all vertices in ht that have the type σi(v) will be combined into

one node. Let this node be u, then f(v) = u. Now consider the edges in h, by construction,

ht records all the paths from the partition root in h to every other node in h and Join does

h
f1
←− ht

f2
−→ s

(a)

h
f1
←− ht

f2
−→ s

(b)

Join(ht,Σ)→ Join(s, f2(Σ))

↑ ↑↑

s: summaryht: treeh: partition

need d(v1,v2)

what we know

intermediate data
to build s, not kept

but h not kept

find the lower
bound by Lemma 5
using this structure

Figure 5.11: Homomorphic mappings

86

not add or delete edges or change their labels. Thus, if there is an edge (v1, v2) ∈ h, then

there is an edge in ht with the same label and the same types of the starting and ending

nodes in ht. Since Join will not alter the type of a node as well, it follows (f(v1), f(v2))

must be an edge in Join(ht,Σ) with the same label and the same starting and ending types.

In what follows, we show how to establish a homomorphism from Join(ht,Σ) to a

structure derived from the correspondent summary s of ht, such that Lemma 7 can be

applied.

By construction, every ht of a partition h in P is homomorphic to a summary s in S.

As shown in Figure 5.11(a), assume the homomorphism is: f2 : ht → s. Given the Σ of

h, define f2(Σ) = {f2(σ(v)) | σ(v) ∈ Σ} where f2(σ(v)) = {f2(u) | u ∈ σ(v) ∧ u ∈ ht},

i.e., the sets of correspondent mappings in the summary s by homomorphism. We have the

following result:

Lemma 9 For a partition h, its covering tree ht and its summary s that has f2 : ht → s,

there is a homomorphism from Join(ht,Σ) to Join(s, f2(Σ)).

Proof. Here, we will construct such a homomorphism by the function f : Join(ht,Σ) →

Join(s, f2(Σ)).

For a node v ∈ ht, consider the xcorrespondent f2(v) in s. If v is not registered by

any σ ∈ Σ, then Join(ht,Σ) has no effect on v and Join(s, f2(Σ)) has no effect on f2(v),

hence v ∈ Join(ht,Σ) and f2(v) ∈ Join(s, f2(Σ)). Define f = f2 for such v’s. If v is in some

σi ∈ Σ, all nodes in ht that have the same type as v will be combined into one node. Let

this node be u. On the other hand, by Join(s, f2(Σ)), all nodes that have the same type

as f2(v) will be combined into one node. Let this node be u′. Define f(u) = u′. Now

consider the edges. Notice that Join has no effect on edges and for every (v1, v2) ∈ ht,

(f2(v1), f2(v2)) ∈ s. This follows that for every (f(v1), f(v2)) ∈ Join(ht,Σ), there is an edge

(f(f2(v1)), f(f2(v2))) ∈ Join(s, f2(Σ)).

By Lemmas 8, 9 and the transitivity of homomorphism, a partition h is homomorphic

to Join(s, f2(Σ)), as shown in Figure 5.11(b). Notice f2 is a part of our third index, which

maps a vertex in data to a vertex in summary. Finally, given any two vertices in a partition

h, its shortest distance can be (lower) bounded by combining Lemmas 7, 8, 9 and using any

shortest path algorithm, e.g., Dijkstra’s algorithm, in finding the shortest distance between

the correspondent nodes on Join(s, f2(Σ)). In practice, we use the larger lower bound from

either the summary or the triangle inequality.

87

5.5.2 The Algorithm

The algorithm is shown in Algorithm 7. We denote this algorithm as the Summ method.

Algorithm 7: Summ

Input: q = {w1, w2, . . . , wm}, G = {V,E}
Output: top-k answer A
initialize {W1, ..Wm} and m min-heaps {a1, ..am};1

M ← ∅; // for tracking partitions2

for u ∈Wi and i = 1..m do3

if u ∈ h(v, α) then4

t← (u, {∅}, 0, 0);5

ai ⇐ (v, t); // enqueue6

if v 6∈M then M [v]← {nil, ..., t, ..., nil};7

else M [v][i]← t; ↑the ith entry8

while not terminated and A not found do9

(v, (u, S, dl, du))← pop(argminmi=1{top(ai)});10

let the last entry in S be (ℓ, vℓ) and L = {ℓ′1, ℓ
′
2, . . .} be the portals in the11

partition rooted at v;
for ∀ℓ′ ∈ L do12

compute dl and du for d(ℓ, ℓ′) or d(u, ℓ′);13

let t← (u, S ∪ (ℓ′, vr), dl + d′l, du + d′u);14

update M [v] with t; // see discussions15

if M [v] is updated and nil 6∈M [v] then16

ai ⇐ (vr, t); // enqueue17

for each new subgraph g incurred by t do18

retrieve g from data;19

use Backward on g and update A;20

return A (if found) or nil (if not);21

Similar to the Backwardmethod in section 5.3, we define {W1,W2, . . . ,Wm}, whereWi

is the set of vertices in G that contains the query keyword wi. We also initialize m priority

queues {a1, . . . , am} and maintain a set M of entries, one for each considered partition.

Each entry in M stores a unique partition root followed by m lists. The ith list records

all the reachable vertices found so far that contain keyword wi and through which other

partitions they connect to the current partition in the backward expansions. An entry is in

the form of quadruples – (u, S, dl, du). In the quadruple, the node u is the first vertex in

the backward expansion that contains the keyword wi; the expansion reaches the current

partition by routing through a sequence of the portals from some partitions, stored in S

as a sequence of (portal, partition root) pairs. A sequence S defines a path (of partitions)

that begins at u. We illustrate the previous discussion with an example. A subsequence

88

{(ℓ, va), (ℓ
′, vb)} of S indicates that the path enters the partition rooted at vb from the portal

ℓ (exiting from a partition rooted at va) and use ℓ′ as its exit portal. We are interested in

(lower and upper) bounding the shortest distance that connects two adjacent portals in S,

e.g., d(ℓ, ℓ′) in the partition rooted at vb.

In the quadruple, the lower and upper bounds for the path defined by the portals (and

the starting vertex u) in S are denoted as dl and du.

Here is another example. In Figure 5.12, assume m = 2 (i.e., the query has two

keywords) and an entry in M for a partition rooted at v is shown as below.

The entry records that there is a path (of partitions) from w1 that reaches the current

partition rooted at v. This path starts at va, enters the concerning partition at portal ℓ2,

and has a length of at least 5 hops and at most 7 hops. To reach the partition rooted at

v, the path has already passed through a partition rooted at v0. The same for w2, the

concerning partition is reachable from two paths starting at vb and vc, respectively; both

contain the keyword w2.

With the data structures in place, the algorithm proceeds in iterations, which can be

summarized as follows.

• In the first iteration. For each vertex u from Wi, we retrieve the partition root v that

u corresponds to, from the third index. Next, if there is an entry for v in M , we append

a quadruple t=(u, {∅}, 0, 0) to the ith list of the entry; otherwise, we initialize a new

entry for v in M (with m empty lists) and update the ith list with t, as in lines 7-8. We

also add an entry (v, t) to the priority queue ai (entries in the priority queue are sorted in

ascending order by their lower bound distances in t’s). We repeat this process for all Wi’s

for i = 1, . . . ,m, which completes the first iteration (lines 3-8).

• In the jth iteration. We pop the smallest entry from all ai’s, say (v, (u, S, dl, du)) (line

10). We denote the partition rooted at v as the current partition. Let the last pair in S be

(ℓ, vℓ), which indicates that the path leaves the partition rooted at vℓ and enters the current

partition using portal ℓ. Next, for the current partition, we find its portals L = {ℓ′1, ℓ
′
2, . . .}

from the first index. For each ℓ′ in L, we compute the lower and upper bounds for d(ℓ, ℓ′)

(or d(u, ℓ′) if ℓ=nil) in the current partition using the approach discussed in Section 5.5.1,

denoted as d′l and d′u (line 13). A portal ℓ′ can connect the current partition to a set P ′

w1 w2

t1=(va, {(ℓ2, v0)}, 5, 7) t2=(vb, {(ℓ1, v4), (ℓ0, v5)}, 3, 5)
t3=(vc, {(ℓ3, v2)}, 5, 6)

Figure 5.12: An entry in M for the partition rooted at v

89

of neighboring partitions. For each partition in P ′, denoted by its partition root vr, we

construct a quadruple t=(u, S ∪ (ℓ′, vr), dl + d′l, du + d′u) as in line 14. We also search the

entry for vr in M and update its ith list with t in the same way as in the first iteration.

However, if either of the following cases is satisfied, we stop updating the entry for vr in M :

(i) adding ℓ′ to S causes cycle; and (ii) dl + d′l is greater than the kth largest upper bound

in the ith list. Otherwise, we also push (vr, t) to the queue ai.

At any iteration, if a new quadruple t has been appended to the ith list of an entry

indexed by v in M , and all of its other m− 1 lists are nonempty, then the partition rooted

at v contains potential answer roots for the keyword query. To piece together the partitions

that contain all the query keywords, we find all the possible combinations of the quadruples

from the (m−1) lists, and combine them with t. Each combination of m quadruples denotes

a conjunctive subgraph that contains all the query keywords and the answer root.

To see a concrete example, consider the example in Figure 5.12. Let t1 be the new

quadruple just inserted to the first list of an entry in M . Since both of its lists are now

nonempty, two combinations can be found, i.e., (t1, t2) and (t1, t3), which leads to two

conjunctive subgraphs. Using the partition information in the quadruples, we can easily

locate the correspondent partitions. We will detail how to efficiently retrieve the instance

data for a partition by using its summary in Section 5.6. Once the instance data from the

selected partitions are ready, we can simply proceed to the second-level backward search by

applying the Backward method to find the top-k answers on the subgraph pieced together

by these partitions (line 20). In any phase of the algorithm, we track the top-k answers

discovered so far with a priority queue.

• Termination condition. The following Lemmas provide a correct termination condition

for the Summ method.

Lemma 10 Let (v, (u, S, dl, du)) be an entry in the priority queue, then for any v′ in the

partition rooted at v and for any path starting from u and using the portals in S, its length

d(u, v′) ≥ dl.

Proof. Let S={(ℓ1, v1), (ℓ2, v2), . . . , (ℓk, vk)}. It has d(u, v
′) ≥ d(u, ℓk)+d(ℓk, v

′) ≥ d(u, ℓk),

where ℓk is the portal in S that the path uses to enter the partition rooted at v and d(u, ℓk) is

the length for the subpath that reaches the portal ℓk from u. Let d(ℓi, ℓi+1) be the fragment

of the path that is in the partition rooted at vi+1 (i = 0, . . . , k − 1) and ℓ0 = u, we have

d(u, ℓk) = d(u, ℓ1)+d(ℓ1, ℓ2)+ . . .+d(ℓk−1, ℓk) ≥ dl(u, ℓ1)+dl(ℓ1, ℓ2)+ . . .+dl(ℓk−1, ℓk) = dl.

90

Lemma 11 Let (v, (u, S, dl, du)) be the top entry in the priority queue ai, then for any

explored path p from wi in the queue ai, the length of p, written as d(p), has d(p) ≥ dl.

Proof. Let (v′, (u′, S ′, d′l, d
′
u)) be any entry in ai that represents a path starting at u′

and reaches partition rooted at v′. Denote this path as p′ and its length as d(p′). From

Lemma 10, d(p′) ≥ d′l. By the property of priority queue (min-heap), d′l ≥ dl for any entry

in ai.

We denote the set of all unexplored partitions in P as Pt. For a partition h rooted at

v that has not been included in M , clearly, h ∈ Pt. The best possible score for an answer

root that can be found in the partition h is to sum the dl’s from all the top entries of the m

expansion queues, i.e., a1, . . . , am. Let these m top entries be (v1, (u1, S
1, d1

l
, d1

u
)), . . ., (vm,

(um, Sm, dm
l
, dm

u
)), respectively. We have the following results.

Lemma 12 Let g1 be the possible unexplored candidate answer rooted at a vertex in parti-

tion h, with h ∈ Pt,

s(g1) >
m∑

i=1

dil. (5.3)

Proof. Since h 6∈ M , in order to reach h, we need at least one expansion from some

partition to its neighboring partition from at least one of the top m entries in the priority

queues. By Lemma 11, the length for the shortest possible path from a keyword wi is lower

bounded by dil. Therefore, to reach partition h, it requires a distance of at least dil+1. This

shows s(g1) >
∑m

i=1 d
i
l.

Next, consider the set of partitions that have been included in M , i.e., the set P − Pt.

For a partition h ∈ P − Pt, let the first quadruple from each of the m lists for its entry

in M be: t1 = (û1, Ŝ1, d̂
1
l
, d̂1

u
), . . . , tm = (ûm, Ŝm, d̂m

l
, d̂m

u
) (note that due to the order of

insertion, each list has been implicitly sorted by the lower bound distance d̂l in ascending

order), where tj = nil if the jth list is empty. Then, we have:

Lemma 13 Let the best possible unexplored candidate answer as g2, which is rooted at a

vertex in the partition h, where h ∈ P − Pt, then

s(g2) >
m∑

i=1

f(ti)d̂
i
l + (1− f(ti))d

i
l, (5.4)

where f(ti)=1 if ti 6=nil otherwise f(ti)=0.

91

Proof. The candidate subgraph formed by (t1, . . . , tm) from the entry h in M has the

smallest (aggregated) lower bound from combining the lower bounds in all m lists, due to

the fact that each list is sorted in ascending order by the lower bound distance dl.

When some ti = nil, no expansion from any vertex associated with the keyword wi has

reached the partition h yet. Following the same argument from the proof for Lemma 12,

the shortest distance to reach a vertex in Wi is at least d
i
l+1. For the others where ti 6= nil,

the best possible unexplored path from any keyword wi to reach some node in h will have a

distance that is no less than d̂il due to the property of the priority queue and the fact that

it is a lower bound.

Finally, we can derive the termination condition for the search. We denote the score of

the best possible answer in an unexplored partition as s(g1), as defined by the RHS of (5.3);

and the score of the best possible answer in all explored partitions as s(g2), as defined by

the RHS of (5.4) . Let g be the candidate answer with the kth smallest score during any

phase of the algorithm. Then, the backward expansion on the summary level can safely

terminate when s(g) < min(s(g1), s(g2)). By Lemmas 12 and 13, we have:

Theorem 4 The Summ method finds the top-k answers A(q, k) for any top-k keyword

search query q on an RDF graph.

Proof. By combining Lemmas 12 and 13, it suffices to derive the termination condition.

Together with Theorem 3, it guarantees the correctness of the Summ method.

5.6 Accessing Data and Update

The Summ algorithm uses the summaries to reduce the amount of data accessed in the

Backward method. For the algorithm to be effective, we need to efficiently identify and

retrieve the instance data from selected partitions. One option is to store the triples by

partitions and index on their partition ids, i.e., adding another index to the algorithm.

However, whenever an update on the partition happens, we need to update the index.

Furthermore, the approach enforces a storage organization that is particular to our methods

(i.e., not general). In what follows, we propose an alternative efficient approach that has no

update overhead and requires no special storage organization. Our approach stores the RDF

data in an RDF store and works by dynamically identifying the data of a partition using

appropriately constructed SPARQL queries that retrieve only the data for that partition.

Since graph homomorphism is a special case of homomorphism on relational structure

(i.e., binary relations) [60] and SPARQL is equivalent to relational algebra [88], we can

92

use the Homomorphism Theorem [14] to characterize the results of two homomorphic and

conjunctive SPARQL query patterns.

Theorem 5 Homomorphism Theorem [14]. Let q and q′ be relational queries over the same

data D. Then q′(D) ⊆ q(D) iff there exists a homomorphism mapping f : q → q′.

Recall that f1 : ht → h (see Figure 5.11(a)) and for each ht, we extract a core c from ht.

By definition, c is homomorphic to ht, thus c is homomorphic to h (transitivity). Using c

as a SPARQL query pattern can extract h due to Theorem 5.

Here, we need to address two practical issues. First, there is usually a many-to-one

mapping from a set of ht’s to the same core c – leading to a low selectivity by using c as the

query pattern. To address this issue, we can bind constants from the targeted partition to

the respective variables in query pattern. These constants could include the root and the

portals of the targeted partition that are retrievable from the inverted indexes. The second

issue is that in our construction of S, we do not explicitly keep every c. Instead, a core c is

embedded (by homomorphism) to a summary s ∈ S, where c is a subtree of s. To construct

a SPARQL query from s, we first need to find a mapping for the partition root in s, then the

triple patterns corresponding to the subtree in s are expressed in (nested) OPTIONALs from

the root to the leaves. For example, the SPARQL query for the partition rooted at URI5 in

Figure 5.8 can be constructed by using the summary in Figure 5.7(a). Notice that URI5 is

bound to the root to increase selectivity. The query to retrieve to the respective portion of

data is shown in Figure 5.13.

One limitation of previous work on summarizing RDF data is their inability to handle

updates in an incremental way. Here, we show that our summaries can be incrementally

updated. We first discuss how to handle insertions. Insertions can be handled efficiently.

A new subgraph (a set of triples) is simply treated as a data partition that has not been

traversed. Indexing structures and the summarization can be updated accordingly.

Next, we discuss how to settle deletions. Let t be the triple deleted. Then all the

partitions that visit the subject/object of t will be updated. As a deletion only affects

SELECT * WHERE{URI5 name ”A1”. URI5 type S.
OPTIONAL{URI5 launchPad ?x. ?x type B.}
OPTIONAL{URI5 booster ?y. ?y type R}
OPTIONAL{URI5 crew ?z. ?z type C} .
OPTIONAL{URI5 previousmission ?m. ?m type S} . }

Figure 5.13: A query to retrieve the targeted partition

93

the nodes in the α-neighborhood of t’s subject and object, this can be done efficiently. To

update S, there are two cases to consider: (i) if the core of an updated partition is not

in S, i.e., it is homomorphic to a core in S, we simply rebuild its core and update the

corespondent inverted indexes; (ii) if the core of an updated partition is in S, this will lead

to a removal for the core in S. In addition, we retrieve all the partitions homomorphic to

the deleted core and summarize them (together with the updated partition) as if they are

new data. To access these partitions efficiently, we can leverage the technique discussed at

the beginning of this section and use the (to be) deleted core as the query pattern.

5.7 Related Work

For keyword search on generic graphs, many techniques [53, 63] assume that graphs fit

in memory, an assumption that breaks for big RDF graphs. For instance, the approaches

in [53, 63] maintain a distance matrix for all vertex pairs, and clearly do not scale for graphs

with millions of vertices. Furthermore, these works do not consider how to handle updates.

A typical approach used here for keyword-search is backward search. Backward search aims

to find a Steiner tree in the data graph, which is NP-hard. Therefore, in the past, a heuristic

was used for answering keyword queries on graphs that cannot guarantee the correctness

of the search result. Reference [53] outlined a tractable scoring function that enables the

backward search idea as a baseline solution. However, unlike our work, they did not provide

details, nor a rigorous analysis for the soundness of their backward search approach. In this

work, we extended this idea to big RDF graphs with rigorous soundness analysis.

Techniques for summarizing large graph data to support keyword search were also

studied [40]. They assumed edges across the boundaries of the partitions are weighted.

A partition is treated as a supernode and edges with minimal weights are superedges.

Recursively, a large graph can be summarized in this fashion and fit into memory for query

processing. This model is designed for generic graphs, and cannot be easily extended for

RDF data, as edges in RDF data encode important semantics and relationships that cannot

be ignored. Besides, such a summarization is not efficiently updatable.

Keyword search for RDF data has been recently studied in [109], with the same definition

as ours. Both approaches are schema-gnostic. A schema to represent the relations in

entities of distinct types is summarized from the RDF data. Keyword search in [48] also

used the same summarization, but with a different scoring function. Both works extended

the backward search method to RDF graphs as a baseline method for comparison; however,

as we will study in Section 5.3, their version of the backward search method is problematic,

94

and they did not rigorously analyze the correctness of their backward search method.

More importantly, the proposed summarization [109] has a serious limitation as we show

in this chapter: it bundles all the entities of the same type into one node in its summary,

which loses too much information. For instance, in Figure 5.3, URI6, URI7, and URI9 will be

represented by a single vertex as SpaceMission. As a result, this summarization generates

erroneous results (both false positives and negatives), as we have already illustrated in Figure

5.1.

As another example, consider Figure 5.3, where all vertices of type SpaceMission are

represented as one node in their summarization. Then, the edge previousMission connecting

URI3 and URI8 results in a self-loop over this node in their summarization, which is incorrect

since such a loop does not exist in the data. Furthermore, they do not support updates.

While we also built our summarization using type information, our summarization leverages

on completely different intuitions, which guarantee (a) the soundness of our results; and (b)

the support of efficient updates.

There are other works related to keyword search on graphs. In [76], a 3-in-1 method is

proposed to answer keyword search on structured, semistructured, and unstructured data.

The idea is to encode the heterogeneous relations as a graph. Similar to [53, 63], it also

needs to maintain a distance matrix. An orthogonal problem to keyword search on graph is

the study of different ranking functions. This problem is studied in [48, 49]. In this work,

we adopt the standard scoring function in previous work in RDF [109] and generic graphs

[53].

5.8 Experiments

We implemented the proposed Backward and Summ methods in C++. We also imple-

mented two representative approaches in keyword search on RDF/graph data, respectively,

proposed in [109] (which also built a summarization) and [53] (which used distance matrix).

We denote these two approaches as Schema and Blinks. All experiments were conducted

on a 64-bit Linux machine with 6GB of memory. Note that in addition to results from this

section, we have already shown the defects and limitations of these two methods in Figure

5.1 and Figure 5.2, respectively. In particular, the state-of-the-art method from [109] may

return incorrect answers due to the limitations from its summarization, as shown in Figure

5.1.

95

5.8.1 Experiment Setups

We used four RDF datasets. With LUBM generator, we created a default dataset of

5 million triples and varied its size up to 28 million triples. The other datasets are real

datasets: Wordnet, Barton, and DBpedia Infobox, which have about 2 million, 40 million,

and 30 million triples, respectively. The number of distinct types are shown in Table 5.2.

Notice that most RDF datasets are composed by less than a hundred types with DBpedia

being the only exception.

We used the disk-based B+-tree implementation from the TPIE library to build a

Hexstore-like [114] index on the RDF datasets, which is adopted by the mainstream RDF

engines. For the subgraph isomorphism tests in Algorithm 6, we used the VFLib. We

assume each entity in the data has a type. For an entity that has multiple types, we bind

the entity to its most popular type. To store and query RDF data with SPARQL, we use

Sesame [30]. In all experiments, if not otherwise noted, we built the summarization for

3-hop neighbors, i.e., α = 3, and set k = 5 for top-k queries.

5.8.2 Evaluating Summarization Techniques

We start with a set of experiments to report the time (in log scale) in building a

summarization. For LUBM, we vary the dataset size from 100 thousand triples to 28

million triples. In Figure 5.14(a), we plot the total time for building the summarization,

which includes: the time spent to find homomorphic mappings (i.e., performing subgraph

isomorphism tests) and the time spent for the rest of operations (e.g., partitioning the graph

and constructing the inverted indexes). The latter cost dominates the summarization for all

the cases in LUBM datasets. The same trend can also be observed in the three real datasets,

as shown in Figure 5.14(b). The summarization is built once and thereafter incrementally

updatable whenever the data get updated. By comparison, the summarization by the

Schema method cannot be incrementally updated, though it can be built faster.

As the Schema method generates one (type) node in the summarization for all the

nodes in the data that have the same type, the size of summarization (in terms of number

of nodes) is equal to the number of distinct types from the data, as specified in Table 5.2.

For our summarization, we plot the number of partitions and the number of summaries in

Figures 5.15(a) and 5.15(b). In Figure 5.15(a) for LUBM, the summarization results in at

Table 5.2: Number of distinct types in the datasets

LUBM Wordnet Barton DBpedia Infobox

14 15 30 5199

96

0 0.5 1 1.5 2 2.5 3

10
1

10
2

10
3

10
4

Data size (triple × 10
7
)

T
im

e
 (

s
e

c
)

Total Isotest Other

(a)

10
0

10
1

10
2

10
3

10
4

 WordNet Barton DBpedia Infobox

T
im

e
 (

s
e

c
.)

Total time Isotest Other

(b)

Figure 5.14: Time for the summary construction (a) LUBM and (b) Real datasets

least two orders of magnitude less distinct structures w.r.t. the number of partitions. Even

in the extreme case where the largest dataset is partitioned into about a million subgraphs,

the number of distinct summaries remains under 100. In fact, it remains almost a constant

after we increase the size of the dataset to 1 million triples. This is because LUBM data are

highly structured [43].

On the other hand, real RDF datasets are known to have a high variance in their

structuredness [43]. In Figure 5.15(b), we plot the number of distinct summaries for

real datasets after summarization. For Wordnet and Barton datasets, the summarization

distills a set of summaries that contains more than three orders of magnitude less structures

compared to the respective set of partitions. Even in the most challenging case of DBpedia

Infobox, the summarization achieves more than one order of magnitude less structures w.r.t.

the partitions, as in Figure 5.15(b).

In Figures 5.16(a) and 5.16(b), we compare the number of triples stored in the partitions

and in the summarization. Clearly, the results show that the distinct structures in the data

partitions can be compressed with orders of magnitude less triples in the summarization,

e.g., more than one order of magnitude less for DBpedia Infobox and at least three orders

of magnitude less for LUBM, Wordnet, and Barton. Since the summarization is small, this

suggests that we can keep the summarization in main memory to process keyword query.

Therefore, the upper and lower bounds for the distance traversed in a backward expansion

(as used by our Summ method) can be computed in memory.

In Figures 5.17(a) to 5.17(d), we report the impact of α (a parameter on the max number

of hops in each partition; see Section 5.4.3) on the size of summarization. Intuitively, the

smaller α is, the more similar the α-neighborhoods are, leading to less summaries in the

summarization. This is indeed the case when we vary α for all the datasets. The smallest

97

0 0.5 1 1.5 2 2.5 3

10
2

10
4

10
6

Data size (triple × 10
7
)

N
u
m

b
e
r

o
f
s
u
b
g
ra

p
h
s

Data partition Summarization

(a)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 WordNet Barton DBpedia Infobox

N
u

m
b

e
r

o
f

s
u

b
g

ra
p

h
s

Data partition Summarization

(b)

Figure 5.15: Number of subgraphs: partitions vs. summaries S(G) (a) LUBM and (b) Real
datasets

0 0.5 1 1.5 2 2.5 3

10
3

10
4

10
5

10
6

10
7

Data size (triple × 10
7
)

N
u
m

b
e
r

o
f
tr

ip
le

s

Data partition Summarization

(a)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 WordNet Barton DBpedia Infobox

N
u

m
b

e
r

o
f

tr
ip

le
s

Data partition Summarization

(b)

Figure 5.16: Number of triples: partitions vs. summaries S(G) (a) LUBM and (b) Real
datasets

summarizations are achieved when α = 1 in Figures 5.17(a) to 5.17(d). Notice that there

is a trade-off between the size of the summarization and the size of the auxiliary indexes.

A smaller partition implies that more nodes become portals, which increases the size of

auxiliary indexing structures. On the other hand, increasing α leads to larger partitions

in general, which adds more variance in the structure of the partitions and inevitably

leads to more summaries in the summarization. However in practice, since the partitions

are constructed by directed traversals on the data, we observed that most of the directed

traversals terminate after a few hops. For instance, in LUBM and Wordnet, most partitions

stop growing when α > 3. A similar trend is visible in Figures 5.17(c) and 5.17(d). When

we increase α, the number of distinct structures changes moderately.

In Figures 5.18(a) and 5.18(b), we study the size of the auxiliary indexes. Figure 5.18(a)

98

1 2 3 4 5
0

10

20

30

40

50

α

N
u

m
b

e
r

o
f

s
u

m
m

a
ri
e

s

Summarization

(a)

1 2 3 4 5
0

50

100

150

200

250

α

N
u

m
b

e
r

o
f

s
u

m
m

a
ri
e

s

Summarization

(b)

1 2 3 4 5
500

600

700

800

900

1000

α

N
u

m
b

e
r

o
f

s
u

m
m

a
ri
e

s

Summarization

(c)

1 2 3 4 5

4

6

8

10

12

14

x 10
4

α

N
u

m
b

e
r

o
f

s
u

m
m

a
ri
e

s

Summarization

(d)

Figure 5.17: Impact of α to the number of summaries in S(G): (a) LUBM (b) Wordnet
(c) Barton and (d) DBPedia Infobox

shows that for LUBM, the size of the auxiliary indexes is one order of magnitude less than

the data size. Similar trends can be observed in Figure 5.18(b) for the real datasets. The

reason for these results is that for all indexes, we do not explicitly store the edges of the RDF

data that usually dominate the cost in storing large graphs. In Figure 5.19, we report the

breakdown of the inverted indexes for all the datasets. The most costly part is to store the

mappings from the third inverted index (i.e., 3rd idx in the figure), whereas other mappings

are small in size. Thus, to efficiently process query, we can keep the first and the second

inverted indexes in main memory.

We also compare in Figure 5.20 the index overhead of different methods as we vary

dataset sizes. Notice that Blinks is the most costly method in terms of storage overhead

(i.e., demands one order of magnitude more space), as it builds a distance matrix, leading

to a quadratic blowup in indexing size. Blinks is no doubt the faster method for small

data, but it clearly does not scale with large RDF datasets. Therefore, we do not report

Blinks in the evaluation of query performance.

99

0 0.5 1 1.5 2 2.5 3

10
1

10
2

10
3

10
4

Data size (triple × 10
7
)

S
iz

e
 (

M
B

)

Data Index

(a)

10
1

10
2

10
3

10
4

10
5

 WordNet Barton DBpedia Infobox

S
iz

e
 (

M
B

)

Data Index

(b)

Figure 5.18: Size of the auxiliary indexes (a) LUBM and (b) Real datasets

10
0

10
1

10
2

10
3

 LUBM WordNet Barton DBpedia Infobox

S
iz

e
 (

M
B

)

3rd_idx others

Figure 5.19: Breakdown

0 0.5 1 1.5 2 2.5 3

10
1

10
2

10
3

10
4

Data size (triple × 10
7
)

S
iz

e
 (

M
B

)

BLINKS SUMM SCHEMA

Figure 5.20: Index size

5.8.3 Query Performance

In this section, we study the performance of top-k keyword search using Summ and

Backward. In particular, we compare the proposed methods with Schema, which is the

only existing method that can scale to large RDF datasets. To this end, we design a query

workload that has various characteristics. Table 5.3 lists 10 typical queries, together with

the number of keyword occurrences in the datasets. For the LUBM data, all the keywords

are selected from the first university in the dataset, except for keywords w.r.t. publications

17 and 18. For the two indicated keywords, we select one copy of each publication from

the first university and pick the rest of them randomly from other universities. This is to

simulate the cases in real datasets where not all the keywords in a query are close to each

other. For the three real datasets, we pick two representative queries for each of them for

evaluation. For long running queries, we terminate the executions after 1000 seconds. We

plot the response times in log scale.

100

Table 5.3: Sample query workload

Query # nodes Dataset

Q1 [Pub19, Lec13] (20,13) L
Q2 [Research5, FullProf9, Pub17] (9,4,83) L
Q3 [FullProf9, Grad0, Pub18, Lec6] (4,15,40,5) L
Q4 [Dep0, Grad1, Pub18, AssocProf0] (1,15,40,15) L

Q5 [Afghan, Afghanistan, al-Qaeda, al-Qa’ida] (6,3,3,2) W
Q6 [3rdbase, 1stbase, baseball team, solo dance] (14,13,17,4) W

Q7 [Knuth, Addison-Wesley, Number theory] (1,1,35) B
Q8 [Data Mining, SIGMOD, Database Mgmt.] (166,1,4) B

Q9 [M. Bloomberg, New York City, Manhatton] (1,7,108) I
Q10 [George W. Bush, Saddam Hussein, Iraq] (1,1,48) I

L:LUBM W:Wordnet B:Barton I:DBpedia Infobox

We first use Schema to answer the queries in Table 5.3. Schema generates a set of k

SPARQL queries for each keyword query consisting of multiple keywords. Evaluating these

queries is supposed to return the top-k answers w.r.t. the scoring function. Here, even

if we fix the incorrect termination condition in Schema (as discussed in Section 5.3), our

observation is that Schema still returns empty results for all of the queries, as we have

indicated in Figure 5.1. This can be explained by the way it summarizes the data, where

all nodes of the same type are indistinguishably mapped to the same type node in the

summarization. For instance, every FullProfessor has a publication in LUBM, whereas this

does not mean that FullProfessor9 has a Publication17 for Q2. Hence, the state-of-the-art

method Schema may return incorrect results for many queries. In what follows, we report

the query performance of the Backward and Summ methods, both of which have provable

guarantees on the correctness of the query results. The results are shown on Figures 5.21(a)

and 5.21(b), respectively.

The efficiency of a keyword search on graph is known to be determined by a collection

of factors [53], with no single factor being the most deterministic one. In particular, we

observe that for selective keywords (i.e., keywords that have few occurrences in the data)

and especially those that are close to each other, e.g., Q1, Q5, both Backward and Summ

can answer the queries efficiently. In some cases, e.g., Q5, Backward even outperforms

Summ due to the fact that Summ uses a lower bound to decide its termination condition.

This inevitably requires the Summ approach to access more data than what is necessary to

correctly answer the query.

However, being selective alone does not necessarily lead to better query performance,

especially if the selective keyword corresponds to a hub node that has a large degree, which

101

10
−1

10
0

10
1

10
2

10
3

 Q1 Q2 Q3 Q4

T
im

e
 (

s
e

c
)

BACKWARD SUMM

(a)

10
−2

10
−1

10
0

10
1

10
2

10
3

 Q5 Q6 Q7 Q8 Q9 Q10

T
im

e
 (

s
e

c
)

BACKWARD SUMM

(b)

Figure 5.21: Query performance (a) LUBM and (b) Real datasets

quickly increases the size of the priority queue, e.g., the Department0 in Q4. On the other

hand, as the keywords in the query become nonselective, e.g., Q3, or the keywords are

far away from one another, e.g., the solo dance and the baseball team in Q6, the Summ

approach generally performs much better than the Backward method.

For one thing, this is because only when connected partitions are found to contain all

the keywords does Summ need to access the whole subgraph on disk. This leads to savings

in dealing with keywords that will not result in any answer, e.g., most of the keyword nodes

for publications 17 and 18 in Q2–Q4. For the other, at the partition level, the backward

expansion in the Summ approach can be done almost completely in memory as the major

indexes for expansion are lightweight (as shown in Section 5.8.2) and therefore can be cached

in memory for query evaluation. In such cases, i.e., Q2–Q4 and Q6–Q10, we observe that

the Summ approach can result in much better performance.

5.9 Conclusion

After identifying the defects and limitations of existing methods, we studied the problem

of scalable keyword search on big RDF data, and proposed a new solution based on summary:

(i) we construct a concise summarization at the type level from RDF data; (ii) during

query evaluation, we leverage the summarization to prune away a significant portion of

RDF data from the search space, and formulate SPARQL queries for efficiently accessing

data. Furthermore, the proposed summarization can be incrementally updated as the data

get updated. Experiments on both RDF benchmark and real RDF datasets showed that

our solution is efficient, scalable, and portable across RDF engines. An interesting future

direction is to extend the summarization for optimizing generic SPARQL queries on large

RDF datasets.

102

So far, we have investigated two types of queries and studied their optimization tech-

niques for RDF data. Yet challenges also come from managing the constantly evolving RDF

data. RDF data are known to contain rich temporal semantics. To cope with the ever-

increasing temporal and multiversion data, an attractive way is to partition and store the

RDF data in a distributed and parallel framework. A paramount concern in the distributed

and parallel computation is to achieve load balancing. This naturally leads us to study an

efficient strategy to find good partitions for large temporal RDF data. In the next chapter,

we will present our work for finding the optimal splitters on large temporal and multiversion

RDF data.

CHAPTER 6

OPTIMAL SPLITTERS IN TEMPORAL

AND MULTIVERSION RDF DATA

6.1 Introduction

Increasingly, semantic web applications request the storage and processing of histori-

cal values in a database, to support various auditing, provenance, mining, and querying

operations for better decision making. RDF data are known to contain rich temporal

semantics. For instance, one of the popular datasets in the Linked Open Data project is

the LinkedSensorData [6], which is an RDF dataset containing the historical sensor readings

such as temperature, visibility, precipitation, etc. from about 20,000 weather stations in

the United States. These sensor data originated from the MesoWest project [7] within the

University of Utah, which has maintained the historical climate data since 1997. Together,

the LinkedSensorData has more than 1 billion triples – at a scale that is very inefficient to

store and process in a centralized database system [81].

Given the fast development in distributed and parallel processing frameworks, appli-

cations can now afford collecting, storing, and processing large amounts of multiversioned

or temporal values from a long running history. Naturally, it leads to the development of

multiversion databases and temporal databases for massive temporal RDF data. In these

databases, an object o is associated with multiple disjoint temporal intervals in the form

[s, e], each of which is associated with the valid value(s) of o during the period of [s, e].

Consider two specific examples as shown in Figure 6.1. Figure 6.1(a) shows a multiver-

sion database [24, 77], and Figure 6.1(b) shows a temporal database, where each object is

represented by a piecewise linear function. A multiversion database keeps all the historical

values of an object. A new interval with a new value is created whenever an update or an

insertion to an object has occurred. An existing interval with a (now) old value terminates

when an item has been deleted or updated.

On the other hand, for large temporal or time-series data, we can represent the value of a

temporal object as an arbitrary function f : R→ R (time to value). In general, for arbitrary

104

value

time
update

deletion

insertion

an object with three versions

(a)

value

time

a temporal object:
represented by a piecewise linear function
with 4 segments/intervals

intervals

(b)

Figure 6.1: Databases with intervals (a) Multiversion database and (b) Temporal database

temporal data, f can be expensive to describe and process. In practice, applications often

approximate f using a piecewise linear function g [19, 34, 66]. The problem of approximating

an arbitrary function f by a piecewise linear function g has been extensively studied (see

[19, 34, 66, 84] and references therein). Other functions can be used for approximation as

well, such as a piecewise polynomial function, for better approximation quality. The key

observations are: 1) more intervals lead to better approximation quality, but also are more

expensive to represent; 2) adaptive methods, by allocating more intervals to regions of high

volatility and less to smoother regions, are better than nonadaptive methods with a fixed

segmentation interval.

How to approximate f with g for a temporal or time series object is beyond the scope

of this dissertation, and we assume that the data have already been converted to a set

of intervals, where each interval is associated with a mapping function (piecewise linear,

or piecewise polynomial) by any segmentation method. In particular, we do not require

objects in a dataset to have the same number of intervals nor do we require intervals from

different objects to have aligned starting/ending points. Thus, it is possible that the data

are collected from a variety of sources after applying different preprocessing modules.

Lastly, large interval data may also be produced by any time-based or range-based

partitioning of an object, such as a log file or a spatial object, from a big dataset.

That said, we observe that in the aforementioned applications, users often have to

deal with big interval data. Meanwhile, storing and processing big data in a cluster

of (commodity) machines, to tap the power of parallel and distributed computation, is

becoming increasingly important. Therefore, storing and processing the large number of

intervals in a distributed store is a paramount concern in enabling the above applications

to leverage the storage space and the computation power from a cluster.

Since most analytical tasks and user queries concerning interval data in a multiversion

or temporal database are time-based, e.g., find the object ids with valid values in [50, 100] at

105

time-instance t, the general intuition is to partition the input dataset into a set of buckets

based on their time-stamps. Intervals from one bucket are then stored in one node and

processed by one core from a cluster of (commodity) machines. By doing so, user queries

or transactions concerning a time instance or a time range can be answered in selected

node(s) and core(s) independently without incurring excessive communication, which also

dramatically improves the spatial and temporal locality of caching in query processing.

A challenge is to achieve load-balancing in this process, i.e., no single node and core

should be responsible for storing and processing too many intervals. In particular, given

the number of buckets to create, the size of the maximum bucket should be minimized. This

is similar to the concept of optimal splitters in databases with points [95] or array datasets

[67, 79]. However, the particular nature of interval datasets introduces significant new

challenges.

Specifically, a partitioning boundary (known as a splitter) may split an interval into

two intervals. As a result, buckets on both sides of a splitter need to contain an interval

that intersects with a splitter; see examples in Figure 6.1 where the dashed line with a

cross represents a splitter. Furthermore, intervals from different objects may overlap with

each other, which complicates the problem of finding the optimal splitters. Finally, a good

storage scheme should also be capable to handle ad-hoc updates gracefully. In contrast, in

a point or array dataset, any element from the original dataset will only lead to one element

in one of the buckets, and elements do not overlap with each other.

Our contributions can be summarized as follows. Given n objects with a total of

N intervals from all objects, and a user-defined budget k for the number of buckets to

create, a baseline solution is a dynamic programming formulation with a cost of O(kN2).

However, this solution is clearly not scalable for large datasets. Our goal is to design I/O

and computation efficient algorithms that work well regardless if data fit in main memory

or not. A design principle we have followed is to leverage on existing indexing structures

whenever possible (so these methods can be easily adopted in practice). Specifically, we

make the following contributions:

• We formulate the problem of finding optimal splitters for interval data in Section 6.2.

• We present a baseline method using a dynamic programming in Section 6.3.

• We design efficient methods for memory-resident data in Section 6.4. Our best method

finds optimal splitters of a dataset for any budget values k in only O(N logN) cost.

• We investigate external memory methods for large disk-based data in Section 6.5.

Our best method finds optimal splitters of a dataset for any budget value k in only

106

O(NB logM/B
N
B) IOs, where B is the block size and M is the memory size.

• We extend our methods to work for the queryable version of the optimal splitters

problem in Section 6.6, where k is the query parameter. We also discuss how to make

our methods dynamic to handle ad-hoc updates in Section 6.6.

• We examine the efficiency of the proposed methods with extensive experiments in

Section 6.7, where large real RDF datasets with hundreds of millions of intervals were

tested.

We survey related work in Section 6.8, and conclude in Section 6.9. A part of this chapter

also appears in our work [73].

6.2 Problem Formulation

Let the database D be a set of objects. Each object has an interval attribute (e.g., time)

whose universe U is the real domain representable in a computer. An object’s interval

attribute contains a sequence of nonoverlapping intervals, as demonstrated in Figure 6.1.

Given an interval [s, e], we refer to both s and e as its endpoints, and s (e) as its starting

(ending) value. Although the intervals from one object are disjoint, the intervals of different

objects may overlap. Let N be the total number of intervals from all objects in D. Denote

by I the set of these N intervals.

The objective is to partition I into smaller sets so that they can be stored and processed

in a distributed and parallel fashion. A size-k partition P over I, denoted as P (I, k), is

defined as follows:

1. P contains m splitters, where 0 ≤ m ≤ k. Each splitter is a vertical line that is

orthogonal to the interval dimension at a distinct value ℓ ∈ U . We will use ℓ to denote

the splitter itself when there is no confusion. Let the splitters in P be ℓ1, . . . , ℓm in

ascending order, and for convenience, also define ℓ0 = −∞, ℓm+1 =∞. These splitters

induce m+ 1 buckets {b1, . . . , bm+1} over I, where bi (1 ≤ i ≤ m+ 1) represents the

interval [ℓi−1, ℓi].

2. If s 6= e, an interval [s, e] of I is assigned to a bucket bi (1 ≤ i ≤ m+1), if [s, e] has an

intersection of non-zero length with the interval of bi. That is, the intersection cannot

be a point (which has a zero length).

If s = e, [s, e] degenerates into a point, in which case we assign [s, e] to the bucket

whose interval contains it. In the special case where s = ℓi for some i ∈ [1,m] (i.e.,

the point lies at a splitter), we follow the convention that [s, e] is assigned to bi+1.

107

3. We will regard bi as a set, consisting of the intervals assigned to it. The size of bucket

bi, denoted as |bi|, gives the number of such intervals.

Define the cost of a partition P with buckets b1, . . . , bm+1 as the size of its maximum

bucket:

c(P) = max{|b1|, . . . , |bm+1|}. (6.1)

Since the goal is to partition I for storage and processing in distributed and parallel

frameworks, a paramount concern is to achieve load-balancing, towards which a common

objective is to minimize the maximum load on any node, so that there is no single bottleneck

in the system. The same principle has been used for finding optimal splitters in partitioning

points [95] and array datasets [67, 79]. That said, an optimal partition for I is formally

defined as follows.

Definition 4 An optimal partition of size k for I is a partition P ∗(I, k) with the smallest

cost, i.e.,

P ∗(I, k) = argmin
P∈P(I,k)

c(P) (6.2)

where P(I, k) is the set of all the size-k partitions over I.

P ∗(I, k) is thus referred to as an optimal partition. If multiple partitions have the same

optimal cost, P ∗(I, k) may represent any one of them. In what follows, when the context

is clear, we use P ∗ and P to represent P ∗(I, k) and P (I, k), respectively.

Note that it is an equivalent definition if one defines P (I, k) in step 2 such that bucket bi

gets assigned only the intersection of [s, e] with bi – namely, only a portion of [s, e] is assigned

to bi, instead of the entire [s, e]. This, however, does not change the number of intervals

stored at bi, which therefore gives rise to the same partitioning problem. Keeping [s, e]

entirely in bi permits conceptually cleaner and simpler discussion (because it removes the

need of remembering to take intersection). Hence, we will stick to this problem definition

in presenting our solutions.

Consider the example from Figure 6.2, where I contains 9 intervals from 3 objects.

When k = 2, the optimal splitters are {ℓ1, ℓ2}, which yields 3 buckets b1, b2, b3 with 3, 4,

and 3 intervals, respectively; hence, c(P ∗) = 4. An alternative partition of 2 splitters is also

shown in Figure 6.2 with dashed lines. It induces 3 buckets with 3, 4, and 5 intervals, so its

cost 5 is worse than the aforementioned optimal partition. Note that we use t∗ to represent

c(P ∗).

Depending on whether k is given apriori or not, there are two versions of the optimal

splitters problem. In the first case, k is fixed and given at the same time with the input

108

object

time

o1

o2

o3

optimal nonoptimal

b1 b2 b3

k = 2, t∗ = 4
ℓ1 ℓ2

Figure 6.2: An example

set I. This fits the scenario where the number of nodes/cores in a cluster available for

processing I is already known. In the second case, a user is not certain yet how many

nodes/cores should be deployed. Thus, he/she wants to explore the cost of the optimal

partition for different budget values of k. In this case, k is unknown, and we are allowed to

preprocess I in order to quickly find the optimal splitters for any subsequent queries over I

with different k values. Formally:

Problem 1 The static interval splitters problem is to find P ∗ and c(P ∗) for an interval set

I and a fixed budget value k.

Problem 2 The queryable interval splitters problem is to find P ∗ and c(P ∗) over an inter-

val set I, for any value k that is supplied at the query time as a query parameter.

Clearly, any solution to the queryable version can be applied to settle the static version,

and vice versa (by treating I and k as a new problem instance each time a different k is

supplied). However, such brute-force adaptation is unlikely to be efficient in either case.

To understand why, first note that, in Problem 2, the key is to preprocess I into a suitable

structure so that all subsequent queries can be answered fast (the preprocessing cost is

not a part of a query’s overhead). In Problem 1, however, such preprocessing cost must

be counted in an algorithm’s overall running time, and can be unworthy because we only

need to concentrate on a single k, thus potentially avoiding much of the computation in the

preprocessing aforementioned (which must target all values of k).

We investigate the static problem in Sections 6.3, 6.4, and 6.5, and the queryable problem

in Section 6.6. In the queryable problem, handling updates in I becomes an important issue,

109

and presents additional challenges, which are also tackled in Section 6.6.

6.3 A Baseline Method

Let us denote the N intervals in I as [s1, e1], . . . , [sN , eN]. Suppose, without loss of

generality, that s1 ≤ ... ≤ sN . Let S(I) = {s1, . . . , sN}, i.e.,, the set of starting values of

the intervals in I. When I is clear from the context, we simply write S(I) as S. For any

splitter ℓ, denote by ℓ(1) the splitter that is placed at the smallest starting value in S that

is larger than or equal to ℓ. If no such starting value exists, ℓ(1) is undefined. Note that if

ℓ itself is a starting value, ℓ(1) = ℓ. It turns out that, to minimize the cost of a partition

over I, it suffices to place splitters only at the values in S. This is formally stated in the

next two lemmas:

Lemma 14 Consider any partition P with distinct splitters ℓ1, . . . , ℓm in ascending order,

such that ℓm(1) is undefined. Let P ′ be a partition with splitters ℓ1, . . . , ℓm−1. Then, it

always holds that c(P ′) = c(P).

Proof. Let bm and bm+1 be the last two buckets in P (which are separated by ℓm), and b′m

be the last bucket of P ′ (which is to the right of ℓm). When ℓm(1) is undefined, there are no

new intervals starting to the right of ℓm. Hence, it is not hard to show that bm+1 ⊆ bm = b′m.

This proves the lemma because all the other buckets in P exist directly in P ′.

If smax is the largest starting value in S, the above lemma suggests that we can drop all

those splitters greater than smax without affecting the cost of the partition. Hence, it does

not pay off to have such splitters.

Lemma 15 Consider any partition P with distinct splitters ℓ1, . . . , ℓm in ascending order,

such that ℓm(1) exists. Let ℓi be the largest splitter that does not belong to S (i.e., ℓj ∈ S

for all j < i ≤ m). Define P ′ as a partition with splitters

• ℓ1, . . . , ℓi−1, ℓi(1), ℓi+1, . . . ℓm, if ℓi(1) 6= ℓi+1;

• ℓ1, . . . , ℓi−1, ℓi+1, . . . ℓm, otherwise.

Then, it always holds that c(P ′) ≤ c(P).

Proof. We consider only the first bullet because the case of the second bullet is analogous.

Let bi (bi+1) be the bucket in P that is on the left (right) of ℓi. Similarly, let b′i (b
′
i+1) be the

bucket in P ′ that is on the left (right) of ℓi(1). We will show that b′i ⊆ bi and b′i+1 ⊆ bi+1,

110

whose correctness implies c(P ′) ≤ c(P), because all the other buckets in P still exist in P ′,

and vice versa.

We prove only b′i ⊆ bi because a similar argument validates b′i+1 ⊆ bi+1. Given an

interval [s, e] assigned to b′i, we will show that it must have been assigned to bi, too. Note

that, by definition of ℓi(1), no starting value can exist in [ℓi, ℓi(1)). This means that s < ℓi

because s would not be assigned to b′i if s = ℓi(1).

If s = e, then s must fall in [ℓi−1, ℓi), which means that s is also assigned to bi. On

the other hand, if s 6= e, a part of [s, e] needs to intersect (ℓi−1, ℓi) so that [s, e] can have

intersection of non-zero length with b′i. This means that [s, e] also has non-zero-length

intersection with bi, and therefore, is assigned to bi.

This shows that if a partition has a splitter that is not in S, we can always “snap” the

splitter to a value in S, without increasing the cost of the partition (may decrease the cost

of the partition). Next, we introduce a solution based on dynamic programming. Given a

splitter ℓ, we define I−(ℓ), I+(ℓ), and Io(ℓ) as the subset of intervals in I whose starting

values are less than, greater than, and equal to ℓ, respectively:

I−(ℓ) = {[si, ei] ∈ I | si < ℓ}

I+(ℓ) = {[si, ei] ∈ I | si > ℓ}

Io(ℓ) = {[si, ei] ∈ I | si = ℓ}.

An interval [s, e] is said to strongly cover a splitter ℓ if s < ℓ < e (note that both inequalities

are strict). Let I×(ℓ) be the subset of intervals from I that strongly cover ℓ:

I×(ℓ) = {[si, ei] ∈ I | si < ℓ < ei}.

The following fact paves the way to a dynamic programming algorithm solving Problem 1:

Lemma 16 If k = 0, c(P ∗(I, k)) = |I|. For k ≥ 1, c(P ∗(I, k)) =

min
{
|I|, min

ℓ∈S
{max{c(P ∗(I−(ℓ), k − 1)), λ}}

}
. (6.3)

where λ = |Io(ℓ)|+ |I+(ℓ)|+ |I×(ℓ)|.

Proof. The case of k = 0 is obvious, so we concentrate on k ≥ 1. A partition of size-k over

I is allowed to use m splitters, where m ranges from 0 to k. If m = 0, then apparently the

partition has cost |I|. The rest of the proof considers m ≥ 1.

Lemmas 14 and 15 indicate that it suffices to consider partitions where all splitters fall

in S. Let us fix a starting value x ∈ S. Consider an arbitrary partition P (I, k) whose

111

last splitter ℓ is at position x. Let m ∈ [1, k] be the number of splitters in P (I, k). Let

P (I−(x), k − 1) represent the partition over I−(x) with the first m− 1 splitters of P (I, k).

Denote by b′1, ..., b
′
m the buckets of P (I−(x), k − 1) in ascending order.

Let b1, ..., bm+1 be the buckets of P (I, k) in ascending order. As P (I, k) shares the first

m − 1 splitters with P (I−(x), k − 1), we know bi = b′i for 1 ≤ i ≤ m − 1. Next, we will

prove:

• Fact 1: bm = b′m

• Fact 2: |bm + 1| = |Io(x)|+ |I+(x)|+ |I×(x)|.

These facts indicate:

c(P (I, k)) = max{|b1|, ..., |bm+1|}

= max{|b′1|, ..., |b
′
m|, |bm+1|}

= max{c(P (I−(x), k − 1)), |bm+1|}

≥ max{c(P ∗(I−(x), k − 1)), |bm+1|}

where the equality can be achieved by using an optimal partition P ∗(I−(x), k−1) to replace

P (I−(x), k − 1). Then, the lemma follows by minimizing c(P (I, k)) over all possible x.

Proof of Fact 1. We will prove only bm ⊆ b′m because a similar argument proves b′m ⊆ bm.

Let [x′, x] be the interval of bm. Accordingly, the interval of b′m is [x′,∞). Consider an

interval [s, e] of I that is assigned to bm. If s = e, then it must hold that x′ ≤ s < x

(note that s 6= x; otherwise, [s, e] is assigned to bm+1), which means that [s, e] ∈ I−(x), and

hence, [s, e] is assigned to b′m. On the other hand, if s 6= e, then [s, e] has a non-zero-length

intersection with [x′, x], implying that [s, e] intersects (x′, x). Hence, s < x, and [s, e] has a

non-zero-length intersection with [x′,∞). This proves that [s, e] is also assigned to b′m.

Proof of Fact 2. By definition, an interval [s, e] in I is assigned to bm+1 in three disjoint

scenarios: 1) s > x, 2) strongly covers x, and 3) s = x. The numbers of intervals in these

scenarios are given precisely by I+(x), I×(x), and Io(x), respectively.

We are now ready to clarify our dynamic programming algorithm, which aims to fill in

an N by k matrix, as shown in Figure 6.3. Cell [i, j] (at the ith row, jth column) records

the optimal cost for a subproblem c(P ∗(I(i), j)), where I(i) denotes the set of intervals in

I with ids 1, ..., i (we index intervals in I in ascending order of their starting values, break

ties first by ascending order of their ending values, and then arbitrarily). Thus, Cell [i, j]

represents the optimal cost of partitioning I(i) using up to j splitters.

112

N

k

[1, 1]

[N, k]

[1, k]

[N, 1]

. . .

. . .

[1, k − 1]

[N, k − 1]

.
.
.

.
.
.

.
.
.

Figure 6.3: The DP method

Specifically, we fill the matrix starting from the top-left corner to the bottom-right

corner. To fill the cost in Cell [i, j], according to Lemma 16, the last splitter in a partition

P (I(i), j) may be placed at any value in {s1, ..., si}. Hence, one needs to check i − 1 cells

from the (j − 1)th column, i.e., from [1, j − 1] to [i− 1, j − 1]. For instance, in Figure 6.3,

to find the value for the cell [N, k], we need to check N − 1 cells from the previous column

(the gray cells). We refer to this approach as the DP method.

The above algorithm can be slightly extended in the straightforward manner to remem-

ber also the partitions found, so that the DP method outputs both P ∗ and c(P ∗).

The cost of the dynamic programming method can be summarized as follows. Sorting

I by starting values takes O(N logN) time. Next, we focus on the cost of DP. Given a

splitter ℓj , using ideas to be explained in Section 6.4, we can determine λ in O(1) time

with the help of a structure that can be built in O(N logN) time. Hence, to fill in Cell

[i, j], it requires to check i− 1 cells in the preceding column plus O(1) cost for obtaining λ.

Completing an entire column thus incurs O(
∑N

i=1 i) = O(N2) time. As k columns need to

be filled, the overall running time is O(kN2).

6.4 Internal Memory Methods

The DP method clearly does not scale well with the database size N due to its quadratic

complexity. In this section, we develop a more efficient algorithm for Problem 1, assuming

that the database can fit in memory.

The decision version of our problem is what we call the cost-t splitters problem: determine

whether there is a size-k partition P with c(P) ≤ t, where t is a positive integer given as an

input parameter. If such P exists, t is feasible, or otherwise, infeasible. If t is feasible, we

define t̄ as an arbitrary value in [1, t] such that there is a size-k partition P with c(P) = t̄,

113

i.e.,

t̄ = an arbitrary x ∈ [1, t] s.t. ∃P ∈ P(k, I), c(P) = x. (6.4)

When t is infeasible, define t̄ = 0. An algorithm solving the cost-t splitters problem is

required to output t̄, and if t̄ > 0 (i.e., t is feasible), also a P with c(P) = t̄. The following

observation follows immediately the above definitions:

Lemma 17 If t is infeasible, then any t′ < t is also infeasible.

A trivial upper bound of t is N . Hence, the above lemma suggests that we can solve

Problem 1 by carrying out a binary search to determine the smallest feasible t in [1, N].

This requires solving O(logN) instances of the cost-t splitters problem. In the sequel, we

will show that each instance can be settled in O(k) time, using a structure constructable

in O(N logN) time. This gives an algorithm for Problem 1 with O(N logN + k logN) =

O(N logN) overall running time.

As before, we denote the intervals in I as [s1, e1], ..., [sN , eN] sorted in nondescending

order of their starting values, break ties by nondescending order of their ending values first,

and then arbitrarily. Interval [si, ei] is said to have id i. We consider that I is given in an

array where the ith element is [si, ei] for 1 ≤ i ≤ N .

In what follows, we introduce a concept named stabbing-count array. As will be clear

shortly, the key to attacking the cost-t splitters problem is to construct a stabbing-count

array A. For each i ∈ [1, N], define σ[i] as the number of intervals in I strongly covering

the value si, i.e.,

σ[i] = |I×(si)|. (6.5)

Furthermore, define δ[i] as the number of intervals in I with starting values equal to si but

with ids less than i. Formally, if Io<(si) = {[sj, ej] ∈ I | sj = si ∧ j < i}, then

δ[i] = |Io<(si)|. (6.6)

A stabbing-count array A is simply an array of sizeN where A[i] = (σ[i], δ[i]), 1 ≤ i ≤ N .

Figure 6.4 shows an example where I has N = 9 intervals, and the values of σ[i], δ[i] have

been shown under the interval with id i. For instance, σ[4] = 1 because there is one interval

[s3, e3] strongly covering s4, whereas δ[6] = 1 because one interval [s5, e5] has the same

starting value as [s6, e6], and yet, has a smaller id than [s6, e6].

114

o1

o2

o3

time

ℓ1 ℓ2

σ[4] = 1 σ[6] = 0

s1

s2

s3

s4

s5

s6 s7

s8

s9

δ[8] = 0

δ[9] = 1

σ[8] = 1

σ[9] = 1

ℓ3

δ[4] = 0 δ[6] = 1

δ[5] = 0
σ[5] = 0

σ[3] = 1
δ[3] = 0

σ[2] = 1
δ[2] = 0

σ[1] = 0
δ[1] = 0

σ[7] = 0
δ[7] = 0

Figure 6.4: Stabbing-count array

Lemma 18 The stabbing-count array can be built in O(N logN) time.

Proof. This is done with a sweeping technique. First, use O(N logN) time to sort in

ascending order the 2N endpoints (starting and ending values) of the N intervals in I,

breaking ties as follows:

• A starting value is always put before an ending value;

• If both endpoints are starting values, the one belonging to an interval with a smaller

id is put earlier (similarly, if both endpoints are ending values).

Denote by E the sorted list. For each endpoint x ∈ E, we associate it with the id i of the

interval where x belongs, and if x is an ending value, also with the starting value si of that

interval.

Next, we scan E once by its ordering. In this process, an interval [s, e] is alive if s has

been scanned, but e has not. At any moment, we keep track of 1) slast: the last starting

value scanned, 2) the number c of alive intervals, and 3) the number cδ of alive intervals

whose starting values equal slast. As we will see, all this information can be updated in

constant time per endpoint in E, and allows us to generate an entry of stabbing-count array

A in constant time after a starting value is scanned.

Specifically, at the beginning of the scan, c = cδ = 0 and slast = −∞. Let x be the

next endpoint to be scanned, and i the id of the interval to which x belongs. We proceed

as follows:

• Case 1: x is an ending value ei. Decrease c by 1. Furthermore, if si = slast, also

decrease cδ by 1.

115

• Case 2: x is a starting value. Increase c by 1. Furthermore, if x = slast, increase cδ

by 1; otherwise, set slast to x, and reset cδ to 1. We also generate an entry (σ[i], δ[i])

of A, where σ[i] = c− cδ, and δ[i] = cδ − 1.

The scan clearly takes O(N) time, thus completing the proof.

Given the stab-counting array A, we now describe an algorithm, called t-jump, for solving

the cost-t splitters problem in O(k) time. If t is feasible, our algorithm outputs t̄ and a

partition P with splitters ℓ1, ..., ℓm, where m is some integer between 0 and k, such that

c(P) = t̄ ≤ t. Each ℓj (1 ≤ j ≤ m) is a starting value of a certain interval in I. We denote

by p(j) the id of that interval, namely, ℓj = sp(j).

Algorithm 8 illustrates the details of t-jump. At a high level, the main idea is to place

the splitters in ascending order, and particularly, in such a way that the next splitter is

pushed as far away from the preceding one as possible, aiming to let the new bucket have

size exactly t (hence, the name t-jump). However, as we will see, due to the overlapping

among intervals, the aim is not always achievable. When it is not, we need to settle for a

bucket with a smaller size, by moving the next splitter backwards, but just enough to make

Algorithm 8: t-jump (I, k, t)

if t ≥ N then1

return t̄ = N , and an empty splitter set;2

p(1) = t+ 1− δ[t+ 1]; |b1| = t− δ[t+ 1];3

if |b1| = 0 then4

return t̄ = 0;5

t̄ = |b1|;6

for j = 2, . . . , k do7

xj = p(j − 1) + t− σ[p(j − 1)];8

if xj > N then9

|bj | = N − p(j − 1) + 1 + σ[p(j − 1)]; t̄ = max(t̄, |bj|);10

return t̄, and splitters sp(1), ..., sp(j−1);11

p(j) = xj − δ[xj];12

if p(j) = p(j − 1) then13

return t̄ = 0;14

/* p(j) < p(j − 1) cannot happen */15

|bj| = t− δ[xj]; t̄ = max(t̄, |bj|);16

|bk+1| = N − p(k) + 1 + σ[p(k)];17

if |bk+1| > t then18

return t̄ = 0;19

t̄ = max(t̄, |bk+1|);20

return t̄, and splitters sp(1), ..., sp(k).21

116

the new bucket’s size drop below t.

Now, let us walk through the algorithm. In the outset, lines 1-2 deal with the trivial

case where t ≥ N (such t is always feasible, even if no splitter is used). Lines 3-6 place the

first splitter ℓ1 at the largest starting value that guarantees |b1| ≤ t. The rationale of these

lines is from the next lemma:

Lemma 19 We have:

• For ℓ1 = sp(1) where p(1) is set as in line 3, |b1| = t− δ[t+1] ≤ t. On the other hand,

if ℓ1 > sp(1), |b1| > t.

• If |b1| as set in line 3 equals 0, t is infeasible.

Proof. To prove the first sentence in the first bullet, note that b1 does not include the

interval with id p(1). The bucket includes exactly the intervals with ids 1, ..., p(1) − 1,

namely, t− δ[t+1] of them. To prove the second sentence, if ℓ1 > sp(1), b1 includes at least

the first t+ 1 intervals, and hence, |b1| > t.

Now we show that the second bullet is also true. In fact, since t = δ[t+1], the intervals

with ids 1, ..., t + 1 all have the same starting values. These intervals will be assigned to

an identical bucket in any partition. This bucket must have a size at least t+ 1.

Hence, if |b1| = 0, the algorithm terminates at line 5, indicating that t is infeasible.

Otherwise (i.e., |b1| > 0), we know that the cost of the current partition is t̄ = |b1| (i.e.,

equals to the largest bucket, line 6).

For every j ∈ [2, k], lines 8-16 determine splitter ℓj , assuming ℓ1, ..., ℓj−1 are already

available. These lines set ℓj to largest starting value that guarantees |bj | ≤ t, based on the

next lemma:

Lemma 20 We have:
• For ℓj = sp(j) where p(j) is set as in line 12, |bj | = t− δ[xj] ≤ t. On the other hand,

if ℓj > sp(j), |bj | > t.

• If p(j) = p(j − 1) at line 13, t is infeasible.

Proof. Regardless of the position of ℓj , bj must contain σ[p(j − 1)] intervals, i.e., those in

I×(sp(j−1)) because they strongly cover sp(j−1), and hence, have non-zero-length intersection

with bj . If ℓj is placed at sp(j), then besides the intervals of I×(sp(j−1)), bj also includes

those intervals with ids p(j − 1), ..., p(j) − 1. By definition of the stabbing-count array,

|I×(sp(j−1))| = σ[p(j−1)]. Hence, bj contains in total |I×(sp(j−1))|+p(j)−p(j−1) = t−δ[xj]

intervals. This proves the first sentence of the first bullet.

117

If ℓj > sp(j), then besides I×(sp(j−1)), bj also includes at least the intervals with ids

p(j − 1), ..., xj (due to line 12 and the definition of the stabbing-count array for δ[i],

sp[j] = sx[j]). In this case, |bj | is at least xj − p(j − 1) + 1 + |I×(sp(j−1))| = t + 1. This

proves the second sentence of the first bullet.

Next, we show that the second bullet is also true. Notice that p(j) = p(j − 1) implies

δ[xj] = t − σ[p(j − 1)]. By the way xj is calculated, there are exactly t − σ[p(j − 1)] − 1

starting values between sp(j−1) and sxj
. Hence, since δ[xj] > t − σ[p(j − 1)] − 1, we know

that the interval with id p(j − 1) is counted by δ[xj] (i.e., the interval belongs to Io<(xj)).

This means that sp(j−1) = sxj
.

Now we have found σ[p(j − 1)] intervals of I strongly covering sp(j−1), in addition to

δ(xj) + 1 intervals whose starting values are sp(j−1) (the +1 is due to the interval with id

xj). These σ[p(j − 1)] + δ(xj) + 1 = t+ 1 intervals will always be assigned to an identical

bucket in any partition. Therefore, no partition can have cost at most t.

Hence, lines 13-15 declare t infeasible if p(j) = p(j − 1). Otherwise, line 16 correctly

sets |bj|, and updates the current partition cost t̄ if necessary.

Now let us focus on lines 9-11. They handle the scenario where less than k splitters are

needed to obtain a partition of cost at most t. Specifically, the final partition has only j−1

splitters. Line 10 determines the size of the last bucket, and adjusts the partition cost t̄

accordingly. The algorithm terminates at line 11 by returning the results.

At line 17, we have obtained all the k splitters, and hence, the last bucket bk+1 has been

automatically determined. The line computes its size, while lines 18-20 check its feasibility

(a negative answer leads to termination at line 19), and update the partition cost if needed.

Finally, line 21 returns the k splitters already found, as well as the cost t̄ of the partition.

We illustrate the algorithm with the example in Figure 6.4, setting t = k = 3. To

find the first splitter ℓ1, we compute p(1) = 4, and hence, place ℓ1 at s4. To look for the

second splitter ℓ2, line 8 calculates x2 = p(1) + t − σ[p(1)] = 4 + 3 − 1 = 6. However, as

δ[6] = 1 > 0, we move p(2) back to x2 − δ[x2] = 6 − 1 = 5. For the third splitter ℓ3, we

derive p(3) = p(2) + t − σ[p(2)] = 5 + 3 − 0 = 8. Finally, the algorithm checks the size of

the last bucket, which is N − p(3) + 1+ σ[p(3)] = 9− 8+ 1+ 1 = 3, namely, still within the

target cost t. Hence, t-jump outputs t̄ = 3, and splitters ℓ1 = s4, ℓ2 = s5, and ℓ3 = s8.

Lemma 21 If t-jump does not return t̄ = 0, then the splitters output constitute a partition

with cost t̄ ≤ t. Otherwise (i.e., t̄ = 0), then t must be infeasible.

Proof. The first sentence is easy to show, given that the sizes of all buckets have been

explicitly given in Algorithm 8. Next, we focus on the case where t̄ = 0. The algorithm

118

may return t̄ = 0 at three places: lines 5, 14, and 19. Lemmas 19 and 20 have already

shown that termination at lines 5 and 14 is correct. It thus remains to show that line 19

termination is also correct.

Assume, for the purpose of contradiction, that j-jump reports t̄ = 0 at line 19, but

there exists a size-k partition P ′ over I such that c(P ′) ≤ t. Suppose that P ′ has splitters

ℓ′1, . . . , ℓ
′
m in ascending order for some m ≤ k, which define m+1 buckets b′1, . . . , b

′
m+1 again

in ascending order. By Lemmas 14 and 15, we can consider that ℓ′1, ..., ℓ
′
m are all starting

values in S.

We will establish the following statement: for each j ∈ [1,m], t-jump always places

the jth smallest splitter ℓj in such a way that ℓj ≥ ℓ′j – referred to as the key statement

henceforth. This statement will complete the proof of Lemma 21. To see this, notice that

it indicates ℓk ≥ ℓm ≥ ℓ′m, which in turn means |bk+1| ≤ |b
′
m+1|. However, as line 19 tells

us |bk+1| > t, it thus must hold that |b′m+1| > t, thus contradicting the fact that c(P ′) ≤ t.

We now prove the key statement by induction. As the base step, ℓ1 = sp(1) ≥ ℓ′j because

if not, then by Lemma 19 |b′1| must be strictly greater than t, violating c(P ′) ≤ t.

Now assuming that the key statement is correct for j = z, next we show that it is also

correct for j = z + 1. In fact, if ℓz+1 = sp(z+1) < ℓ′z+1, then by Lemma 20, a bucket with

interval [ℓz, ℓ
′
z+1] will have a size greater than t. However, since ℓz ≥ ℓ′z, we know that the

interval [l′z, l
′
z+1] of bucket b

′
z contains [ℓz, ℓ

′
z+1], and therefore, |b′z+1| must also be greater

than t, contradicting c(P ′) ≤ t. This completes the proof of the key statement.

Algorithm t-jump in Algorithm 8 clearly runs in linear time to the number of splitters,

i.e., O(k) time. Putting everything in this section together, we have arrived at the first

main result of the chapter.

Theorem 6 The static interval splitters problem can be solved in O(N logN) time in

internal memory.

6.5 External Memory Methods

This section discusses how to solve the static interval splitters problem I/O-efficiently

when the input set I of intervals does not fit in memory. Our analysis will be carried out

in the standard external memory model of computation [16]. In this model, a computer

has M words of memory, and a disk has been formatted into blocks (a.k.a. pages) of size

B words. An I/O operation either reads a block from the disk to memory, or conversely,

writes a block in memory to the disk. The objective of an algorithm is to minimize the

119

number of I/Os. We assume M ≥ 3B, i.e., the memory is large enough to store at least 3

blocks of data.

Initially, the input set I is stored in a disk-resident array that occupies O(N/B) blocks.

When the algorithm finishes, we should have output them ≤ k splitters of the final partition

to a file of O(k/B) blocks in the disk. Define:

SORT (N) = (N/B) logM/B(N/B).

It is well-known that sorting a file of N elements entails O(SORT (N)) I/Os by the textbook

external sort algorithm. The rest of the section serves as the proof for the theorem below:

Theorem 7 The static interval splitters problem can be solved using O(SORT (N)) I/Os

in external memory.

As before, denote the intervals in I as [s1, e1], [s2, e2], ..., [sN , eN] in ascending order of si

(break ties by ascending order of their ending values first, and then arbitrarily), 1 ≤ i ≤ N ,

where [si, ei] is said to have id i. Henceforth, we consider that I is stored as a disk-resident

array where the ith element is [si, ei]. This can be fulfilled by simply sorting the original

input I, whose cost is within the budget of Theorem 7.

A trivial solution is to adapt the main-memory algorithm. The previous section has

settled the static interval splitters problem in O(N logN) time when the input I fits in

memory. Recall that our algorithm has two steps: it first creates the stabbing-count array

A in O(N logN) time, and then solves O(logN) instances of the cost-t splitters problem,

spending O(k) time on each instance.

In external memory, a straightforward adaptation gives an algorithm that performs

O(SORT (N) + min(k, NB) logN) I/Os. Recall from Section 6.4 that the computation of

the stabbing-count array A requires only sorting 2N values followed by a single scan of

the sorted list. Hence, the first step can be easily implemented in O(SORT (N)) I/Os in

external memory. The second step, on the other hand, trivially runs in O(min(k, NB) logN)

I/Os, by simply treating the disk as virtual memory.

This algorithm is adequate when k is not very large. The term min(k, NB) logN is

asymptotically dominated by O(SORT (N)) when k = O
(

N
B log2(M/B)

)
(note that the base

of the logarithm is 2). However, the solution falls short for our purpose of claiming a clean

bound O(SORT (N)) for the entire range of k ∈ [1, N] (as is needed for proving Theorem 7).

In practice, this straightforward solution can be expensive when k is large, which may

happen in a cluster. Note that k could be the total number of cores in a cluster, when each

120

core is responsible for processing one bucket in a partition. So it is not uncommon to have

k in a few thousand, or even tens of thousands in a cluster.

Next, we provide an alternative algorithm in the external memory that settles the the

problem of finding optimal splitters using O(SORT (N)) I/Os.

In what follows, we study how to find the cost-t splitters in external memory efficiently.

The cost-t splitters problem (defined in Section 6.4) determines whether there is a size-k

partition P with cost c(P) ≤ t; moreover, if P exists, an algorithm also needs to output

such a partition (any P with c(P) ≤ t is fine). Assuming that the stabbing-count array A

has been stored as a file of O(N/B) blocks, next we explain how to solve this problem with

O(N/B) I/Os.

The algorithm implements the idea of our main-memory solution by scanning the arrays

A and I synchronously once. Following the notations in Section 6.4, let ℓ1, . . . , ℓm be the

splitters of P (where 1 ≤ m ≤ k), and p(i) an interval id such that ℓi = sp(i), 1 ≤ i ≤ m.

We start by setting p(1) as in Line 3 of Algorithm 8, fetching the p(1)th interval of I, and

writing it to an output file. Iteratively, having obtained p(i), for 1 ≤ i ≤ m− 1, we forward

the scan of A to A[p(i)], and compute p(i + 1) according to Lines 8-16 in Algorithm 8.

Then, we forward the scan of I to retrieve the p(i+1)th interval of I, and append it to the

output file. Recall that the main-memory algorithm would declare the absence of a feasible

P under several situations. In external memory, when any such situation occurs, we also

terminate with the absence declaration, and destroy the output file.

The total cost is O(N/B) I/Os because we never read the same block of I or A twice.

The algorithm only requires keeping O(1) information in memory. In particular, among

p(1), . . . , p(i) (suppose p(i + 1) is not available yet), only p(i) needs to be remembered.

We will refer to p(i) as the front-line value of the algorithm. By definition, once p(i+ 1) is

obtained, it becomes the new front-line value, thus allowing us to discard p(i) from memory.

6.5.1 Cost-t Testing

Let us consider an easier variant of the cost-t splitters problem called cost-t testing,

which is identical to the former problem except that it does not require an algorithm to

output a partition in any case (i.e., even if P exists). An algorithm outputs only a Boolean

answer: yes (that is, P exists), or no.

Clearly, the cost-t testing problem can also be solved in O(N/B) I/Os. For this purpose,

we slightly modify our algorithm for cost-t splitter: (i) eliminate the entire part of the

algorithm dealing with the output file (which is unnecessary for cost-t testing), and (ii) if

121

the algorithm declares the absence of a feasible P , we return no for cost-t testing; otherwise,

i.e., the algorithm terminates without such a declaration, we return yes.

What do we gain from such a modification, compared to using the cost-t splitter algo-

rithm to perform cost-t testing directly? The answer is the avoidance of writing O(k/B)

blocks. Recall that the cost-t splitter algorithm would produce during its execution an

output file whose length can reach k. Doing away with the output file turns out to be

crucial in attacking a concurrent extension of cost-t testing, as discussed next, which is the

key to proving Theorem 7.

6.5.2 Concurrent Cost-t Testing

The goal of this problem is to solve multiple instances of the cost-t testing problem

simultaneously. Specifically, given h integers satisfying 1 ≤ t1 < t2 < . . . < th ≤ N , the

concurrent testing problem settles h instances of cost-t testing for t = t1, ..., th, respectively.

Following the result in Lemma 17, cost-t testing obeys the monotonicity that if cost-t testing

returns yes (or no), then cost-t′ with any t′ > t (or t′ < t, respectively) will also return

yes (no). Therefore, the output of concurrent testing can be a single value τ , equal to the

smallest tj (1 ≤ j ≤ h) such that tj-testing returns yes. Note that τ does not need to

always exist: the algorithm returns nothing if th-testing returns negatively (in which case,

the tj-testings of all j ∈ [1, h− 1] must also return no).

Assuming h ≤ cM where 0 < c < 1 is to be decided later, we can perform concurrent

testing in O(N/B) I/Os. We concurrently execute h cost-t testings, each of which sets t to

a distinct tj , 1 ≤ j ≤ h. The concurrency is made possible by several observations on the

cost-t testing algorithm we developed earlier:

1. Regardless of t, the algorithm scans I and A only forwardly, i.e., it never reads any

block that has already been passed.

2. The next block to be read from I (A) is uniquely determined by its front-line value

p(i). In particular, if p(i) is larger, then the block lies further down in the array I

(A).

3. As one execution of the algorithm requires only c′ = O(1) words of memory, by setting

c =
1

c′

(
1−

2B

M

)
(6.7)

we ensure that h concurrent threads of the algorithm demand at most cM ·c′ = M−2B

words of memory. This will always leave us with two available memory blocks, which

122

we deploy as the input buffers for reading I and A, respectively. Note that since

M ≥ 3B, we have c ≥ 1/(3c′), indicating that cM = Ω(M).

In memory, the algorithm uses a min-heap H to manage the front-line values of the h

threads of cost-t testing. At each step, it de-heaps the smallest value p from H. Suppose

without loss of generality that p comes from the thread of cost-tj testing, for some j ∈ [1, h].

We execute this thread until having obtained its new front-line value, which is then en-

heaped in H. This continues until all threads have terminated, at which point we determine

the output τ as explained before. A trivial improvement is to stop testing tj ’s for tj > ti

if the testing on ti returns that ti is feasible. The fact that it performs only O(N/B) I/Os

follows directly from the preceding observations about each thread of cost-t testing.

6.5.3 Solving the Static Interval Splitters Problem

Our I/O efficient algorithm for the static interval splitters problem has three steps:

1. Construct the stabbing-count array A.

2. Obtain the minimum t∗ such that cost-t∗ testing returns yes.

3. Solve the cost-t∗ splitters problem to retrieve the splitters of an optimal partition P ∗.

We refer to this algorithm as the concurrent t-jump method, or in short, ct-jump. The

correctness of the algorithm is obvious, noticing that Step 2 guarantees t∗ to be the cost of

an optimal partition.

We explained previously how to do Step 1 in O(SORT (N)) I/Os and Step 3 in O(N/B)

I/Os. Next, we will show that Step 2 requires only O((N/B) logM N) I/Os. This will

establish Theorem 7 because, for N ≥M , it holds that1

logN

logM
≤

logN − logB

logM − logB

Note that the left-hand side is logM N whereas the right-hand side is logM/B(N/B).

The rest of the section will concentrate on Step 2. It is easy to see that t∗ falls in the

range [1, N]. We will gradually shrink this permissible range until eventually it contains only

a single value, i.e., t∗. We achieve the purpose by launching multiple rounds of concurrent

testing such that, after each round, the permissible range will be shrunk to O(1/M) of the

original length. An example for performing concurrent testings to shrink the permissible

range is shown in Figure 6.5.

1Let x, y, z be positive values such that x ≥ y > z, then x

y
≤ x−z

y−z
.

123

r r
′

permissible range

tj−1 tj

permissible range
next

τ = tj

Figure 6.5: Concurrent testing on permissible ranges

Specifically, suppose that the permissible range is currently [r, r′] such that r′−r ≥ cM ,

where c is the constant given in (6.7). We choose h = cM integers t1, ..., th to divide [r, r′]

as evenly as possible, namely: tj = r + ⌈j(r′ − r)/(h+ 1)⌉, for j = 1, ..., h. Then, we carry

out concurrent testing with t1, ..., th. Let τ be the output of the concurrent testing. Then,

the permissible range can be shortened to:

• [th + 1, r′] if τ does not exist (i.e.,, the concurrent testing returned nothing).

• [r, t1] if τ = t1.

• [tj−1 + 1, tj] if τ = tj for some j > 1.

It is easy to verify that the length of the new permissible range is at most 2/(cM) = O(1/M)

that of the old one.

Finally, when the permissible range [r, r′] has length at most cM , we acquire the final

t∗ by one more concurrent testing with h = r′ − r + 1 values t1, ..., th, each of which is set

to a distinct integer in [r, r′]. The value of t∗ equals the output τ of this concurrent testing.

It is clear that we perform O(logM N) rounds of concurrent testing in total. As each

round takes linear I/Os, we thus have obtained an algorithm that implements Step 2 in

O((N/B) logM N) I/Os. In other words, the algorithm concurrent t-jump has IO cost

O(SORT (N)). This completes the proof of Theorem 7.

6.6 Queryable Interval Splitters and Updates

In this section, we tackle the challenges in solving the queryable interval splitters problem

(i.e., Problem 2 introduced in Section 6.2).

6.6.1 Queryable Interval Splitters

Our solutions for the static interval splitters problem also lead to efficient solutions to

the queryable interval splitters problem.

In internal memory, we can use the t-jump algorithm for answering any queries with

different k values. In a preprocessing step, we build the stabbing-count array A (which

124

occupies O(N) space) in O(N logN) time. For subsequent queries, each query with a

different k value takes O(k logN) time to answer, by solving logN cost-t splitters problems

and each taking O(k) time.

In external memory, the preprocessing cost of the t-jump method is O(SORT (N)) I/Os

to build and maintain the disk-based stabbing-count array A. The size of the index (which

is just A) is O(N/B), and the query cost is O(min{k,N/B} logN) I/Os.

The preprocessing step of the concurrent t-jump method is the same. Hence, it also takes

O(SORT (N)) I/Os, and its index also usesO(N/B) space. Each query takesO((N/B) logM N)

I/Os.

6.6.2 Dealing with Updates

In the queryable problem, another interesting challenge is to handle dynamic updates

in the interval set I. Unfortunately, in this case, update costs in both the t-jump and

concurrent t-jump methods are expensive. The indexing structure in both methods is the

stabbing-count array A. To handle arbitrary updates, in the worst case, all elements in A

need to be updated. Hence, the update cost is O(N) time in internal memory, and O(N/B)

I/Os in external memory. This is too expensive for large datasets.

This limitation motivates us to explore update-efficient indexing structures and query

methods for the queryable interval splitters problem. We again leverage the idea of solving

O(logN) instances of the cost-t splitters problems (the decision version of our problem),

in order to answer an optimal splitter query with any k value. The challenge boils down

to designing an update-friendly indexing structure for answering a cost-t splitters query

efficiently.

Observe that the key step in our algorithm for solving a cost-t splitters query in Section

6.4 is to figure out which starting value to use for placing the next splitter, which is given

by Lines 8 and 12 in Algorithm 8. The critical part is to find out:

1) the number of intervals in I that strongly cover a starting value s, which is where a

splitter has been placed, i.e., |I×(s)|.

2) the number of intervals in I that share the same starting values as an interval [si, ei]

(1 ≤ i ≤ N), but with smaller ids less than i, i.e., |Io<(si)|.

Hence, to solve a cost-t splitters problem instance, we just need to use an update-friendly

index that answers any stabbing-count query efficiently, i.e., an index that finds |I×(s)| and

|Io<(s)| for any point s efficiently. This can be done efficiently using a segment B-tree [116].

In internal memory, this structure occupies O(N) space, can be built in O(N logN) time,

125

answers a stabbing-count query in O(logN) time, and supports an insertion/deletion in

O(logN) time. In external memory, the space, construction, query, and update costs are

O(N/B), O((N/B) logM/B(N/B)), O(logB N), and O(logB N), respectively.

Finally, answering a cost-t splitters query requires answering k different stabbing-count

queries; and answering a queryable interval splitters problem then takes O(logN) cost-t

splitters problem instances. Hence, the overall query cost of this approach is O(k log2N)

time in internal memory, and O(k logB N · logN) I/Os in external memory. We denote this

method as the stabbing-count-tree method, or just sc-tree.

6.7 Experiments

We implemented all methods in C++. The external memory methods were implemented

using the TPIE-library [21]. All experiments were performed on a Linux machine with an

Intel Core i7-2600 3.4GHz CPU, a 4GB memory, and a 1TB hard drive.

6.7.1 Experiment Setups

We used several large real datasets. The first one Temp is from the LinkedSensorData

project (originated from the MesoWest project). It contains temperature measurements

from Jan 1997 to Oct 2011 from 26,383 distinct stations across the United States. There

are almost 2.6 billion total readings from all stations with an average of 98,425 readings

per station. For our experiments, we view each year of readings from a distinct station as

a distinct object. Each new reading in an object is viewed as an update and creates a new

version of that object. This leads to a multiversion database and every version of an object

defines an interval in the database. Temp has 145,628 objects with an average of 17,833

versions per object. So Temp has approximately 2.6 billion intervals in total.

The second real dataset, Meme, was obtained from the Memetracker project. It tracks

popular quotes and phrases which appear from various sources on the Internet. Each record

has the URL of the website containing the memes, the time Memetracker observed the

memes, and a list of the observed memes. We view each website as an object. Each record

reports a new list of memes from a website, and it is treated as an update to the object

representing that website, which creates a new version that is alive until the next update

(a record containing the same website). Meme has almost 1.5 million distinct websites and

an average of 67 records per website. Each version of an object in Meme also defines an

interval, and we have approximately 100 million intervals in total.

We have also obtained the popular time series datasets [65] from the UCR Time Series

website. In particular, we used three of the largest datasets from this collection, but they are

126

all much smaller than Temp andMeme as described above. All real datasets are summarized

in Table 6.1, with their number of intervals.

We primarily used Meme in internal memory and Temp in external memory. In order

to test the scalability, we randomly selected subsets from Meme and Temp to produce

data with different number of intervals. Unless otherwise specified, the default values for

important parameters in our experiments are summarized in Table 6.2. The page size is set

to 4096 bytes by default. The default fill factor in the sc-tree is 0.7. In each experiment,

we varied the value of one parameter of interest, while setting other parameters in their

default values. Since the UCR time series datasets are all relatively small in size compared

to Meme and Temp, we only used them for evaluating the internal memory methods.

6.7.2 Results from Internal Memory Methods

In this case, we focus on the results from the static interval splitters problem.

Figure 6.6 studies the effect of k andN . Clearly, the DPmethod is linear to k as shown in

Figure 6.6(a) and quadratic to N , as shown in Figure 6.6(b). DP is 4-5 orders of magnitude

more expensive than our t-jump method. On the other hand, even though the second step

in t-jump is to solve O(logN) instances of cost-t splitters problem and each instance takes

O(k) time, the dominant cost for t-jump is the sorting operation in its step, which is to

construct the stabbing-count array. Hence, its overall cost is O(N logN). As a result, its

running time is almost not affected by k, as seen in 6.6(a), but (roughly) linearly affected by

N as seen in 6.6(b). In conclusion, t-jump is extremely efficient for finding optimal splitters,

and it is highly scalable (as cheap as main memory sorting methods). It takes only about

1 second to find optimal splitters for size-40 partitions over 2.5 million intervals, when they

are not sorted. Note that t-jump will be even more efficient and scalable if data are already

Table 6.1: Number of intervals in real datasets tested

Temp Meme CMU Mallat NHL

2.6× 109 1.0× 108 1.57× 105 2.39× 106 1.41× 106

Table 6.2: Default datasets and default values of key parameters

Internal External

Dataset a subset of Meme a subset of Temp

Size ∼ 21 MB ∼ 4.1 GB

N ∼ 1 million ∼ 200 million

k 40 5000

h not applicable 5

127

20 40 60 80 100
10

−1

10
0

10
1

10
2

10
3

10
4

k

T
im

e
 (

s
e
c
o
n
d
)

DP t−jump sort

(a)

0.5 1 1.5 2 2.5
10

−3

10
−1

10
1

10
3

10
5

Number of intervals (× 10
6
)

T
im

e
 (

s
e
c
o
n
d
)

DP t−jump sort

(b)

Figure 6.6: Running time of internal memory methods: (a) Vary k and (b) Vary N

sorted; in that case, its cost reduces to only O(k logN).

In Figure 6.7, we report the experimental results on the datasets from the UCR time

series collection. The trend is similar to our observations from the Meme dataset. Our best

solution t-jump consistently performs 3-4 orders of magnitudes faster than the DP approach

in all three datasets. The dominant cost for t-jump is from sorting the input data, which is

clearly shown in Figure 6.7.

6.7.3 Results from External Memory Methods

We first present the results for the static interval splitters problem, then analyze the

results for the queryable interval splitters problem. In both problems, we need to study the

effect of h from the second step in our concurrent t-jump method. Hence, we first evaluate

the impact of h, as shown in Figure 6.8.

To isolate the impact of h, we show only running time from the second step of the

ct-jumpmethod, i.e., we assume that the stabbing-count array has already been constructed.

Therefore, we do not include its construction cost in Figure 6.8. We vary h between 1 to

10, and repeat the same experiment for k = 2, 000, k = 5, 000, and k = 10, 000. What is

interesting to observe from Figure 6.8(a) is that the running time initially deceases sharply

and then slightly increases (very slowly), when we increase h. The same trend (albeit being

less obvious and consistent) can also be observed for the number of IOs in Figure 6.8(b).

This is because that the initial increment in h helps quickly reduce the permissible range,

but subsequent increases in h lead to little gain (in shrinking the permissible range), but

require more unnecessary testings. These results show that a small h value is sufficient for

ct-jump to produce consistently good performance for a wide-range of k values. Hence, we

set h = 5 as the default value for the rest of the experiments.

128

CMU Mallat NHL
10

−3

10
−1

10
1

10
3

10
5

T
im

e
 (

s
e

c
o

n
d

)
Dataset

DP t−jump sort

Figure 6.7: Results from the UCR datasets.

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

h

T
im

e
 (

s
e
c
o
n
d
s
)

k=2000 k=5000 k=10000

(a)

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

12

14

16

18

h

N
u

m
b

e
r

o
f

I/
O

 (
×
 1

0
4
)

k=2000 k=5000 k=10000

(b)

Figure 6.8: Effect of h in the second step of ct-jump: (a) Time and (b) IO

Next, we show the results for finding the static interval splitters. Recall that in this

case, the overall cost includes the cost for building either the stabbing-count array or the

stabbing-count tree, and the cost for finding the optimal splitters with the help of such a

data structure. Also recall that the cost in this case, in terms of IOs, for ct-jump, t-jump,

and sc-tree is O(SORT (N)), O(SORT (N) + k logN), and O(SORT (N) + k logB N logN),

respectively.

Figure 6.9 studies the scalability of different methods by varying N from 50 million to

400 million. Not surprisingly, all methods have an almost linear dependence to N (i.e., the

number of intervals) in terms of both running time and IOs. But obviously, ct-jump achieves

the best overall running time in Figure 6.9(a), and both ct-jump and t-jump have clearly

outperformed the sc-tree method. The ct-jump method also has better IOs than t-jump,

but the difference is not clearly visible in Figure 6.9(b), because the dominant IO cost for

both methods is the external sort. Both methods have fewer IOs than sc-tree, especially

129

100 200 300 400
0

1000

2000

3000

4000

Number of intervals (× 10
6
)

T
im

e
 (

s
e
c
o
n
d
)

ct−jump
t−jump
sc−tree
sort

(a)

100 200 300 400
0

5

10

15

20

Number of intervals (× 10
6
)

N
u

m
b

e
r

o
f

I/
O

 (
×
 1

0
6
)

ct−jump
t−jump
sc−tree
sort

(b)

Figure 6.9: Static splitters, vary N : (a) Running time and (b) Total IO

for larger data. Overall, ct-jump is the best method that is almost as efficient and scalable

as external sorting. With N = 400 million intervals, ct-jump achieves a 30% speedup over

the sc-tree method and a 10% speedup over the t-jump method. Therefore, ct-jump is the

most scalable method in this experiment.

We also investigated the impact of k by varying k from 2, 000 to 10, 000. As k becomes

larger, both the running time and the number of IOs increase in all methods, especially for

the sc-tree method, as shown in Figure 6.10. A larger k value increases the cost of solving

a cost-t splitters problem, which is the essential step for all methods. However, the benefit

of concurrent testing in ct-jump is clearly reflected in Figure 6.10(a) for larger k values. Its

cost is still very much just the sorting cost, which is consistent with our theoretical analysis.

In contrast, the t-jump method displays a clear increase in running time over larger k values.

The ct-jump method is more than 2 times faster than sc-tree, and about 20-30% faster than

the t-jump method, as we increase k.

2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

3000

k

T
im

e
 (

s
e

c
o

n
d

)

ct−jump
t−jump
sc−tree
sort

(a)

2000 4000 6000 8000 10000
3

4

5

6

7

8

9

10

11

k

N
u

m
b

e
r

o
f

I/
O

 (
×
 1

0
6
)

ct−jump t−jump sc−tree sort

(b)

Figure 6.10: Static splitters, vary k: (a) Running time and (b) Total IO

130

In conclusion, ct-jump is the best method for the static interval splitters problem in

external memory.

In what follows, we investigate the results for finding the queryable interval splitters.

We first study the preprocessing cost to construct the indices for different external memory

methods, which is to construct either the stabbing-count array in ct-jump and t-jump, or

the stabbing-count tree in sc-tree. Figure 6.11 compares the size of the indices in different

methods when we increase N from 50 million to 400 million. Both stabbing-count array

and stabbing-count tree are linear to N , however, a stabbing-count tree does require much

more space, almost by a factor 2 when N becomes 400 million. The stabbing-count array

in both ct-jump and t-jump is the same in size as the size of all intervals. This means that

it will be much smaller than the size of the dataset, which contains other values than just

an interval for each record.

In terms of the construction cost of indices in these methods, Figure 6.12 shows that

building a stabbing-count array is slightly cheaper than building a stabbing-count tree.

But both are dominated by the external sorting cost, and obviously the ct-jump and the

t-jump methods share the same preprocessing cost. All three methods have an almost linear

construction cost to N .

We next study the query cost. Figure 6.13 investigates the impact of k when it changes

from 2, 000 to 10, 000. The query time for all three methods increase, as shown in Fig-

ure 6.13(a), but the cost of ct-jump increases at the slowest rate. Specifically, we observe

that ct-jump answers a query 3-4 times faster than sc-tree, and about 1-2 times faster

than t-jump. A similar trend can be observed in the IO cost, as shown in Figure 6.13(b).

However, in this case, the IO difference between ct-jump and t-jump appears to be much

smaller, compared to their difference in query time.

100 200 300 400
0

5

10

15

Number of intervals (× 10
6
)

In
d
e
x
 s

iz
e
 (

G
B

)

ct−jump
t−jump
sc−tree
interval−size

Figure 6.11: Index size

131

0 100 200 300 400
0

500

1000

1500

2000

2500

Number of intervals (× 10
6
)

T
im

e
 (

s
e
c
o
n
d
)

ct−jump
t−jump
sc−tree
sort

(a)

100 200 300 400
0

5

10

15

20

Number of intervals (× 10
6
)

N
u

m
b

e
r

o
f

I/
O

 (
×
 1

0
6
)

ct−jump
t−jump
sc−tree
sort

(b)

Figure 6.12: Preprocessing cost: (a) Preprocessing time and (b) Preprocessing IO

2000 4000 6000 8000 10000
0

500

1000

1500

k

T
im

e
 (

s
e

c
o

n
d

)

ct−jump t−jump sc−tree

(a)

2000 4000 6000 8000 10000
0

2

4

6

8

10

k

N
u
m

b
e
r

o
f
I/
O

 (
×
 1

0
5
)

ct−jump t−jump sc−tree

(b)

Figure 6.13: Queryable splitters, vary k: (a) Update time and (b) Update IO

So one may wonder why the query time of ct-jump is much better than t-jump, when

the difference in terms of the number of IOs is not so significant. This is explained by

the (much) better caching behavior in ct-jump. Recall that ct-jump performs concurrent

testing of several cost-t testing instances. As a result, it makes very small leaps while

scanning through the stabbing-count array, compared to the big leaps made by t-jump over

the stabbing-count array. These small leaps result in much better hit rates in buffer and

cache, leading to much better running time.

Next, we examine the scalability of our query methods when we increase the size of

the data from 50 million to 400 million. Figure 6.14(a) reports the query cost in terms of

number of IOs. Not surprisingly, larger N values only increase the query IOs by a small

amount. In contrast to the linear dependence on k, the query cost of ct-jump and t-jump

only depends on N by a O(logN) factor, and the query cost of sc-tree only depends on

N by a O(logB N logN) factor. On the other hand, the increases in running time for all

132

100 200 300 400
0

1

2

3

4

5

Number of intervals (× 10
6
)

N
u

m
b

e
r

o
f

I/
O

 (
×
 1

0
5
)

ct−jump t−jump sc−tree

(a)

100 200 300 400
0

500

1000

1500

Number of intervals (× 10
6
)

T
im

e
 (

s
e
c
o
n
d
)

ct−jump t−jump sc−tree

(b)

Figure 6.14: Queryable splitters, vary N : (a) Query IO and (b) Query time

three methods are more significant when N increases, as shown in Figure 6.14(b). This

is because as N becomes larger, for a fixed k value, the distance between two consecutive

splitters also becomes larger. Since all three methods essentially make k jumps over the

data to solve a cost-t splitters problem instance, a larger jump in distance leads to poorer

caching performance, which explains the more notable increase in query time than that in

query IO when N increases. Nevertheless, ct-jump outperforms sc-tree by about 60% and

t-jump by about 30% in time on average.

Lastly, updates to the data may happen for the queryable splitters problem. When

dealing with updates is important, as we have analyzed earlier in Section 6.6, sc-tree

becomes a much more attractive method than ct-jump and t-jump. The fundamental

reason is that a stabbing-count tree is a dynamic indexing structure with an update cost

of O(logB N) IOs, while a stabbing-count array is not with an update cost of O(N/B) IOs.

Of course, the update-friendly property in a stabbing-count tree comes with the price of

having more expensive query cost, as we have already shown.

That said, we generate a number of updates by randomly issuing a few insertions/deletions

on the initial set of intervals. We report the average cost in IOs and time from 10 updates,

as shown in Figure 6.15(a) and Figure 6.15(b). Clearly, the sc-tree method is much more

efficient in handling updates than t-jump and ct-jump.

In summary, for the queryable splitter problem in external memory, when data are static

(which is often the case for big data), the ct-jumpmethod is the most efficient method. When

dealing with dynamic updates is important, sc-tree works the best. Nevertheless, all three

methods have excellent efficiency and scalability on big data, and the key idea behind all

three methods is our observation on solving O(logN) cost-t problem (or testing) instances.

133

1 2 3 4 5
10

0

10
2

10
4

10
6

10
8

Number of updates

N
u
m

b
e
r

o
f
IO

s

ct−jump t−jump sc−tree

(a)

1 2 3 4 5
10

−5

10
−2

10
1

10
4

Number of updates

T
im

e
 (

s
e
c
o
n
d
)

ct−jump t−jump sc−tree

(b)

Figure 6.15: The update cost for queryable splitters: (a) Update IO and (b) Update time

6.7.4 Optimal Point Splitters

A special case of our problem is when all intervals degenerate to just points, where each

interval starts and ends at one same time instance.

Our solution can gracefully handle such special case, i.e., to find the optimal splitters for

a point set. The state-of-the-art method for finding the optimal splitters in a point set runs

in O(k log2N) time [95], assuming the set of input points has already been sorted. We dub

this approach the p-split method. The details of this study will be surveyed in Section 6.8.

In contrast, t-jump runs in only O(k logN) time, saving a O(logN) factor compared to the

state-of-the-art on a point dataset. Note that the investigation from [95] focuses only on

the RAM model, i.e., p-split is an internal memory method. Therefore, in this experiment,

we compare p-split against our internal memory method t-jump by using all the internal

memory datasets. In particular, we represent each interval only by its starting value and

report the running time for finding the optimal point splitters. The results are shown in

Figure 6.16. Not surprisingly, t-jump performs 3-4 times faster than the state-of-the-art

method p-split across all datasets.

6.7.5 Final Remark

It is also interesting to point out our algorithms, t-jump, ct-jump, and sc-tree also

produce very balanced buckets while minimizing the size of the maximum bucket. This

is due to the fact that they all use our algorithm for solving the cost-t splitters (or cost-t

testing) problem as a basic building block. And the way we solve the cost-t splitters (or

cost-t testing) problem is to attempt to produce each bucket with a size t. When this is

not possible, our algorithm finds a bucket with a size that is as close as possible to t, before

producing the next bucket. In other words, in the optimal partition P ∗ that our algorithms

134

CMU Mallat NHL MEME
0

1

2

3

x 10
−4

T
im

e
 (

s
e
c
o
n
d
)

Dataset

p−split t−jump

Figure 6.16: Comparison with p-split method in [95] to find optimal point splitters

find with the maximum bucket size being equal to t∗, the size of each bucket in P ∗ is in

fact very close to t∗.

Figure 6.17 verifies this claim over both real datasets, when we vary k and show the

average and the standard deviation for the sizes of all buckets in the optimal partition P ∗

produced by our algorithms, along with t∗ = c(P ∗), the size of the maximum bucket in

P ∗. In all cases, the average bucket size is very close to t∗, and the standard deviation

is very small (hundred to a thousand, compared to tens of or hundred thousand for the

average bucket size). Furthermore, note that the average size of a bucket is not necessarily

N
k+1 in our problem, since an interval may span over multiple buckets. In fact, it is always

≥ N
k+1 and varies for different partitions depending on the dataset I, the budget k, and the

partitioning algorithm used. Nevertheless, all three of our methods, t-jump, ct-jump, and

sc-tree, produce the same P ∗ for a given k and I.

20 40 60 80 100
0

2

4

6

8

10

12
x 10

4

k

S
iz

e
 o

f
a
 b

u
c
k
e
t

average
std deviation
max=t*
N/(k+1)

(a)

2000 4000 6000 8000 10000
0

2

4

6

8

10

12
x 10

4

k

S
iz

e
 o

f
a
 b

u
c
k
e
t

average
std deviation
max=t*
N/(k+1)

(b)

Figure 6.17: Balanced partitions produced by our algorithms on (a) Meme Data and (b)
Temp data

135

6.8 Related Work

To the best of our knowledge, this is the first work that investigates the problem of

finding optimal splitters for large interval data.

Ross and Cieslewicz studied the problem of finding optimal splitters for a set of one-

dimensional points [95]. In their problem, a partition consists a set of disjoint buckets over

the point dataset. The buckets are produced by k splitters. However, a set of k splitters will

produce (2k+1) buckets instead of just (k+1) buckets: they count all points that have values

equal to a splitter as a separate bucket, so k splitters form k distinct buckets by themselves

(which we refer to as the splitter buckets), plus the other (k+1) buckets formed by any two

neighboring splitters (which we refer to as the nonsplitter buckets). Their goal, however,

is to minimize the size of the maximum bucket from only the (k + 1) nonsplitter buckets.

Their motivation was to disregard buckets that contain only a single (but many duplicates)

value. This finds applications in incremental sorting, distributed and parallel processing (of

some applications), etc., as they argued in [95]. They have proposed a O(k log2N) method

for memory-resident point sets. Clearly, their problem is fundamentally different from the

interval splitters problem. Interestingly, it is possible to extend our stabbing-count array

based methods, namely, t-jump and concurrent t-jump, to solve this problem in internal

and external memory, respectively. In that case, our solution leads to a O(k logN) method,

which improves the results in [95] by a O(logN) factor for the point splitters problem.

On the other hand, the array partitioning problem is as follows. The input is an

one-dimension array E of N non-negative numbers, and a weight function w that maps

a contiguous segment of A to a non-negative integer. The k-partition of E is a division of E

into (k+1) contiguous segments, that is, setting dividers ℓ0 = 0 < ℓ1 < · · · < ℓk < ℓk+1 = N .

Here, the ith segment is E[ℓi−1 + 1 · · · ℓi]. The MAX norm of a partition over E is

maxk+1
i=1 w(E[ℓi−1 + 1 · · · ℓi]. The goal is to find a partition of size k that minimizes the

MAX norm of any size-k partitions over E. Typical weight function includes addition and

Hamming weight function [67, 79] among others. This problem can also be extended to 2-

dimensional arrays, where a partition consists of a number of disjoint but complete-covering

2-dimensional blocks over the 2-dimensional array E. Khanna et al. studied this problem

and gave an O(N logN) algorithm for memory resident arrays in 1d for arbitrary k. This

problem is NP-hard in 2d and they gave approximation methods instead. More efficient

and effective approximations were then given in [79]. This problem is related but certainly

very different from our work. An interesting open problem is the interval array partitioning

problem, which is defined similarly as the array partitioning problem, except that each

136

element in the array is an interval of values (e.g., those from an uncertain object).

Our study may find interesting applications in parallel interval scheduling problems [47],

where each job has a specified interval within which it needs to be executed. Each machine

has a busy interval that contains all the intervals corresponding to the jobs it processes.

Given the parallelism parameter g ≥ 1, which is the maximal number of jobs that can be

processed simultaneously by a single machine. The goal is to assign the jobs to machines

such that the total busy time of the machines is minimized. This problem is known to be

NP-hard for g ≥ 2. Nevertheless, it is an intriguing future work to explore if our techniques

can help design efficient approximate solutions for such problems.

Lastly, the DP method follows the general intuition of bucketization that finds applica-

tion in optimal histogram constructions, e.g., the DP method for constructing a V-optimal

histogram [58, 89]. The construction of the stabbing count array is somewhat related to the

prefix sum array that finds applications in data warehouses and histogram constructions,

e.g., [54, 69]. Our study is also generally related with the management of interval and

temporal data [15, 22, 37, 70, 70, 106].

6.9 Conclusion

Temporal and multiversion RDF databases often generate massive amounts of data.

Therefore, it becomes increasingly important to store and process these data in a distributed

and parallel fashion. This work makes an important contribution in solving the optimal

splitters problem, which is essential in enabling efficient distributed and parallel processing

of such data. An interesting open problem is to extend our study to higher dimensions.

CHAPTER 7

OTHER WORKS

A theme that threads up this dissertation is efficient query processing and optimization

for RDF data. Apart from this theme, we have also conducted research on other emerg-

ing problems, which include (I) ranking large temporal data; (II) security issues in data

outsourcing. In what follows, we summarize the main ideas of these works.

We have studied the problem of ranking queries on large temporal data [75]. Temporal

data arise in a large number of domains, such as time series data, transactional databases,

spatio-temporal trajectories, and many others. The database community has devoted exten-

sive amount of efforts to indexing and querying temporal data in the past decades. However,

insufficient amount of attention has been paid to temporal ranking queries, arguably one

of the most important query types. More precisely, given any time instance t, the query

asks for the top-k objects at time t with respect to some score attribute. Some generic

indexing structures based on R-trees do support ranking queries on temporal data, but as

they are not tailored for such queries, the performance is far from satisfactory. To this end,

we present the Seb-tree, a simple indexing scheme that supports temporal ranking queries

much more efficiently than the R-tree-based generic methods in both theory and practice.

The Seb-tree uses the B-tree as the only building block and hence is especially appealing

in practice due to its simplicity.

We have also conducted research to investigate how to audit a database server’s effort

in evaluating clients’ queries – an emerging problem arise under the database-as-a-service

model [72]. We show that extending the classic techniques in the literature to outsourced

databases with multiple data owners is highly inefcient. To cope with lazy servers in the

distributed setting, we propose query access assurance (QAA) that focuses on IO-bound

queries. The goal in QAA is to enable clients to verify that the server has honestly accessed

all records that are necessary to compute the correct query answer, thus eliminating the

incentives for the server to be lazy if the query cost is dominated by the IO cost in accessing

these records. We formalize this concept for distributed databases, and present two efcient

138

schemes that achieve QAA with high success probabilities. Our design employs a few

number theory techniques and successfully address the limitation in the classic techniques.

CHAPTER 8

CONCLUSION

In this dissertation, we have studied several emerging topics with regards to the manage-

ment of linked data and its query optimization techniques, in an effort to support scalable

data analytics and integration for large linked data.

A common observation during the dissertation research is that techniques from rela-

tional, XML, and graph databases oftentimes fall short in handling large, real RDF data sets

and SPARQL queries. This is in part due to the facts that large RDF data are schema-less,

distributed, and constantly evolving, which has put forward new challenges in building

scalable RDF data management systems and necessitated significant research effort. To this

end, we have revisited the classic problem of query rewriting over views in the context of

SPARQL and RDF. We proposed the first sound and complete query rewriting algorithm

for SPARQL, with novel optimizations. A follow-up problem we have addressed in this

dissertation is how to perform multiquery optimization for SPARQL in a principled and

declarative manner. Our study opens the gate to several interesting future researches, such

as how to efficiently deal with variable predicates in query and view definition, how to

partially materialize the view with the query rewriting in SPARQL to further improve the

efficiency, and also how to include other SPARQL features such as FILTER and OPTIONAL into

the algorithm. Beyond the structured query language SPARQL, we have studied keyword

search for RDF data, which is an indispensable tool in data integration for the schemaless

data. After identifying the defects and limitations of existing methods, we studied how to

leverage the ontology of RDF data to optimize the query evaluation, which led to promising

experimental results in answering keyword queries on real RDF data sets. An interesting

future work is to optimize general SPARQL queries with the ontology of the data, e.g.,

pruning empty rewritten queries from the query rewriting.

A few techniques we have proposed in this dissertation research can be seamlessly

generalized beyond RDF and SPARQL. For instance, we have studied efficient solutions to find

the optimal splitters for temporal and multiversion RDF data. The techniques we proposed

140

can also be applied to a more general setting for distributed and parallel computation.

Interesting future work includes taking heavy hitters into consideration and extending our

techniques to higher dimensions.

REFERENCES

[1] 4store - scalable RDF storage. http://4store.org/.

[2] Currently Alive SPARQL Endpoints. http://www.w3.org/wiki/SparqlEndpoints.

[3] DBpeida. http://dbpedia.org.

[4] Jena semantic web framework. http://jena.sourceforge.net.

[5] The link open data. http://linkeddata.org/.

[6] Linked sensor data. http://wiki.knoesis.org/index.php/LinkedSensorData.

[7] The mesowest project. http://mesowest.utah.edu.

[8] Resource Description Framework. http://www.w3.org/RDF/.

[9] SPARQL query language for RDF. http://www.w3.org/TR/rdf-sparql-query/.

[10] The TPC Benchmarks. http://www.tpc.org/.

[11] Virtuoso universal server. http://virtuoso.openlinksw.com.

[12] Abadi, D. J., Marcus, A., Madden, S. R., and Hollenbach, K. Scalable
semantic web data management using vertical partitioning. In VLDB (Vienna,
Austria, 2007).

[13] Abel, F., Coi, J. L. D., Henze, N., Koesling, A. W., Krause, D., and

Olmedilla, D. Enabling advanced and context dependent access control in RDF
stores. In ISWC (Busan, Korea, 2007).

[14] Abiteboul, S., Hull, R., and Vianu, V. Foundations of databases. Addison-
Wesley, 1995.

[15] Agarwal, P. K., Arge, L., and Yi, K. An optimal dynamic interval stabbing-max
data structure. In SODA (Vancouver, Canada, 2005).

[16] Aggarwal, A., and Vitter, J. S. The input/output complexity of sorting and
related problems. Communications of the ACM 31, 9 (1988), 1116–1127.

[17] Agrawal, S., Chaudhuri, S., and Das, G. DBXplorer: enabling keyword search
over relational databases. In SIGMOD (Madison, Wisconsin, 2002).

[18] Alon, N., Matias, Y., and Szegedy, M. The space complexity of approximating
the frequency moments. In STOC (Philadelphia, USA, 1996).

142

[19] Anagnostopoulos, A., Vlachos, M., Hadjieleftheriou, M., Keogh, E., and

Yu, P. S. Global distance-based segmentation of trajectories. In KDD (Philadelphia,
USA, 2006).

[20] Angles, R., and Gutierrez, C. The expressive power of SPARQL. In ISWC
(Karlsruhe, Germany, 2008).

[21] Arge, L., Procopiuc, O., and Vitter, J. S. Implementing I/O-efficient data
structures using TPIE. In ESA (Rome, Italy, 2002).

[22] Arge, L., and Vitter, J. S. Optimal external memory interval management.
SIAM Journal on Computing 32, 6 (2003), 1488–1508.

[23] Atre, M., Chaoji, V., Zaki, M. J., and Hendler, J. A. Matrix ”bit” loaded:
A scalable lightweight join query processor for RDF data. In WWW (Raleigh, USA,
2010).

[24] Becker, B., Gschwind, S., Ohler, T., Seeger, B., and Widmayer, P. An
asymptotically optimal multiversion b-tree. The VLDB Journal 5, 4 (1996), 264–275.

[25] Beyer, K., Haas, P. J., Reinwald, B., Sismanis, Y., and Gemulla, R.

On synopses for distinct-value estimation under multiset operations. In SIGMOD
(Beijing, China, 2007).

[26] Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., and Sudarshan,

S. Keyword searching and browsing in databases using banks. In ICDE (San Jose,
USA, 2002).

[27] Biggs, N., Lloyd, E., and Wilson, R. Graph Theory. Oxford University Press,
1986.

[28] Bizer, C., and Schultz, A. The Berlin SPARQL benchmark. International
Journal on Semantic Web and Information Systems 5, 2 (2009), 1–24.

[29] Bornea, M. A., Dolby, J., Kementsietsidis, A., Srinivas, K., Dantressan-

gle, P., Udrea, O., and Bhattacharjee, B. Building an efficient RDF store
over a relational database. In SIGMOD (New York, USA, 2013).

[30] Broekstra, J., Kampman, A., and Harmelen, F. V. Sesame: A generic
architecture for storing and querying RDF and RDF schema. In ISWC (Sardinia,
Italy, 2002).

[31] Bruno, N., Gravano, L., Koudas, N., and Srivastava, D. Navigation- vs.
index-based XML multiquery processing. In ICDE (Bangalore, India, 2003).

[32] Cautis, B., Deutsch, A., and Onose, N. XPath rewriting using multiple views:
Achieving completeness and efficiency. In WebDB (Vancouver, Canada, 2008).

[33] Cautis, B., Deutsch, A., and Onose, N. Querying data sources that export
infinite sets of views. In ICDT (St. Petersburg, Russia, 2009).

[34] Chen, Q., Chen, L., Lian, X., Liu, Y., and Yu, J. X. Indexable PLA for efficient
similarity search. In VLDB (Vienna, Austria, 2007).

[35] Chen, Y., Wang, W., and Liu, Z. Keyword-based search and exploration on
databases. In ICDE (Hannover, Germany, 2011).

143

[36] Chen, Y., Wang, W., Liu, Z., and Lin, X. Keyword search on structured and
semistructured data. In SIGMOD (Providence, USA, 2009).

[37] Chomicki, J., Toman, D., and Böhlen, M. H. Querying ATSQL databases with
temporal logic. ACM Transactions on Database Systems 26, 2 (2001), 145–178.

[38] Correndo, G., Salvadores, M., Millard, I., Glaser, H., and Shadbolt,

N. SPARQL query rewriting for implementing data integration over linked data. In
EDBT (Lausanne, Switzerland, 2010).

[39] Cyganiak, R., and Jentzsch, A. The LOD diagram. http://lod-cloud.net.

[40] Dalvi, B. B., Kshirsagar, M., and Sudarshan, S. Keyword search on external
memory data graphs. In VLDB (Auckland, New Zealand, 2008).

[41] Dalvi, N. N., Sanghai, S. K., Roy, P., and Sudarshan, S. Pipelining in
multiquery optimization. In PODS (Santa Barbara, USA, 2001).

[42] Diwan, A. A., Sudarshan, S., and Thomas, D. Scheduling and caching in
multiquery optimization. In COMAD (Delhi, India, 2006).

[43] Duan, S., Kementsietsidis, A., Srinivas, K., and Udrea, O. Apples and
oranges: a comparison of RDF benchmarks and real RDF datasets. In SIGMOD
(Athens, Greece, 2011).

[44] Fan, W., Chan, C.-Y., and Garofalakis, M. Secure XML querying with security
views. In SIGMOD (Paris, France, 2004).

[45] Fan, W., Geerts, F., Jia, X., and Kementsietsidis, A. Rewriting regular XPath
queries on XML views. In ICDE (Istanbul, Turkey, 2007).

[46] Finkelstein, S. Common expression analysis in database applications. In SIGMOD
(Orlando, USA, 1982).

[47] Flammini, M., Monaco, G., Moscardelli, L., Shachnai, H., Shalom, M.,

Tamir, T., and Zaks, S. Minimizing total busy time in parallel scheduling with
application to optical networks. In IPDPS (Rome, Italy, 2009).

[48] Fu, H., and Anyanwu, K. Effectively interpreting keyword queries on RDF
databases with a rear view. In ISWC (Bonn, Germany, 2011).

[49] Golenberg, K., Kimelfeld, B., and Sagiv, Y. Keyword proximity search in
complex data graphs. In SIGMOD (Vancouver, Canada, 2008).

[50] Guo, Y., Pan, Z., and Heflin, J. LUBM: A benchmark for OWL knowledge base
systems. Journal of Web Semantics 3, 2 (2005), 158–182.

[51] Gutierrez, C., Hurtado, C., and Vaisman, A. Temporal RDF. In ESWC
(Paris, France, 2005).

[52] Halevy, A. Y. Answering queries using views: A survey. The VLDB Journal 10, 4
(2001), 270–294.

[53] He, H., Wang, H., Yang, J., and Yu, P. S. Blinks: ranked keyword searches on
graphs. In SIGMOD (Beijing, China, 2007).

144

[54] Ho, C.-T., Agrawal, R., Megiddo, N., and Srikant, R. Range queries in
OLAP data cubes. In SIGMOD (Tucson, USA, 1997).

[55] Hong, M., Demers, A. J., Gehrke, J., Koch, C., Riedewald, M., and

White, W. M. Massively multiquery join processing in publish/subscribe systems.
In SIGMOD (Beijing, China, 2007).

[56] Hristidis, V., Gravano, L., and Papakonstantinou, Y. Efficient IR-style
keyword search over relational databases. In VLDB (Berlin, Germany, 2003).

[57] Ianni, G., Krennwallner, T., Martello, R., and Polleres, A. Dynamic
querying of mass-storage RDF data with rule-based entailment regimes. In ISWC
(Washington D.C., USA, 2009).

[58] Jagadish, H. V., Koudas, N., Muthukrishnan, S., Poosala, V., Sevcik,

K. C., and Suel, T. Optimal histograms with quality guarantees. In VLDB (New
York, USA, 1998).

[59] Jain, A. K., Murty, M. N., and Flynn, P. J. Data clustering: a review. ACM
Computing Survey 31, 3 (1999), 264–323.

[60] Jeavons, P. On the algebraic structure of combinatorial problems. Theoretical
Computer Science 200, 1 (1998), 185–204.

[61] Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., and

Karambelkar, H. Bidirectional expansion for keyword search on graph databases.
In VLDB (Trondheim, Norway, 2005).

[62] Kalyanasundaram, B., and Schintger, G. The probabilistic communication
complexity of set intersection. SIAM Journal on Discrete Mathematics 5, 4 (1992),
545–557.

[63] Kargar, M., and An, A. Keyword search in graphs: Finding r-cliques. In VLDB
(Seattle, USA, 2011).

[64] Kementsietsidis, A., Neven, F., de Craen, D. V., and Vansummeren, S.

Scalable multiquery optimization for exploratory queries over federated scientific
databases. In VLDB (Auckland, New Zealand, 2008).

[65] Keogh, E., Xi, X., Wei, L., and Ratanamahatana., C. The UCR timeseries
datasets. http://www.cs.ucr.edu/~eamonn/time_series_data/.

[66] Keogh, E. J., Chu, S., Hart, D., and Pazzani, M. J. An online algorithm for
segmenting time series. In ICDM (San Jose, USA, 2001).

[67] Khanna, S., Muthukrishnan, S., and Skiena, S. Efficient array partitioning. In
ICALP (Bologna, Italy, 1997).

[68] Koch, I. Enumerating all connected maximal common subgraphs in two graphs.
Theoretical Computer Science 250, 1 (2001), 1–30.

[69] Koudas, N., Muthukrishnan, S., and Srivastava, D. Optimal histograms for
hierarchical range queries. In PODS (Dallas, USA, 2000).

[70] Kriegel, H.-P., Pötke, M., and Seidl, T. Managing intervals efficiently in
object-relational databases. In VLDB (Cairo, Egypt, 2000).

145

[71] Le, W., Duan, S., Kementsieditis, A., Li, F., and Wang, M. Rewriting queries
on SPARQL views. In WWW (Hyderabad, India, 2011).

[72] Le, W., and Li, F. Query access assurance in outsourced databases. IEEE
Transactions on Services Computing 5, 2 (2012), 178–191.

[73] Le, W., Li, F., Tao, Y., and Christensen, R. Optimal splitters for temporal
and multiversion databases. In SIGMOD (New York, USA, 2013).

[74] Lenzerini, M. Data integration: A theoretical perspective. In PODS (Madison,
USA, 2002).

[75] Li, F., Yi, K., and Le, W. Top-k queries on temporal data. The VLDB Journal
19, 5 (2010), 715–733.

[76] Li, G., Ooi, B. C., Feng, J., Wang, J., and Zhou, L. EASE: Efficient and
adaptive keyword search on unstructured, semistructured and structured data. In
SIGMOD (Vancouver, Canada, 2008).

[77] Lomet, D., Hong, M., Nehme, R., and Zhang, R. Transaction time indexing
with version compression. In VLDB (Auckland, New Zealand, 2008).

[78] Luo, Y., Wang, W., and Lin, X. SPARK: A keyword search engine on relational
databases. In ICDE (Cancun, Mexico, 2008).

[79] Muthukrishnan, S., and Suel, T. Approximation algorithms for array partition-
ing problems. Algorithms 54, 1 (2005), 85–104.

[80] Neumann, T., and Weikum, G. RDF-3X: a RISC-style engine for RDF. In VLDB
(Auckland, New Zealand, 2008).

[81] Neumann, T., and Weikum, G. Scalable join processing on very large RDF graphs.
In SIGMOD (Providence, USA, 2009).

[82] O’Gorman, K., Agrawal, D., and Abbadi, A. E. Multiple query optimization
by cache-aware middleware using query teamwork. In ICDE (San Jose, USA, 2002).

[83] Österg̊ard, P. R. A fast algorithm for the maximum clique problem. Discrete
Applied Mathematics 120, 1 (2002), 195–205.

[84] Palpanas, T., Vlachos, M., Keogh, E., Gunopulos, D., and Truppel, W.

Online amnesic approximation of streaming time series. In ICDE (Boston, USA,
2004).

[85] Papakonstantinou, Y., and Vassalos, V. Query rewriting for semistructured
data. In SIGMOD (Philadelphia, USA, 1999).

[86] Park, J., and Segev, A. Using common subexpressions to optimize multiple
queries. In ICDE (Los Angeles, USA, 1988).

[87] Pérez, J., Arenas, M., and Gutierrez, C. Semantics and complexity of
SPARQL. ACM Transactions on Database Systems 34, 3 (2009), 1–45.

[88] Polleres, A. From SPARQL to rules (and back). In WWW (Banff, Canada, 2007).

146

[89] Poosala, V., Ioannidis, Y. E., Haas, P. J., and Shekita, E. J. Improved
histograms for selectivity estimation of range predicates. In SIGMOD (Montreal,
Canada, 1996).

[90] Pottinger, R., and Halevy, A. MiniCon: A scalable algorithm for answering
queries using views. The VLDB Journal 10, 2 (2001), 182–198.

[91] Preda, N., Suchanek, F. M., Kasneci, G., Neumann, T., Yuan, W., and

Weikum, G. Active knowledge: Dynamically enriching RDF knowledge bases by
web services. In SIGMOD (Singapore, 2010).

[92] Quilitz, B., and Leser, U. Querying distributed RDF data sources with SPARQL.
In ESWC (Tenerife, Spain, 2008).

[93] Raymond, J. W., and Willett, P. Maximum common subgraph isomorphism
algorithms for the matching of chemical structures. Journal of Computer-Aided
Molecular Design 16, 7 (2002), 521–533.

[94] Rizvi, S., Mendelzon, A., Sudarshan, S., and Roy, P. Extending query
rewriting techniques for fine-grained access control. In SIGMOD (Paris, France,
2004).

[95] Ross, K. A., and Cieslewicz, J. Optimal splitters for database partitioning with
size bounds. In ICDT (St. Petersburg, Russia, 2009).

[96] Roy, P., Seshadri, S., Sudarshan, S., and Bhobe, S. Efficient and extensible
algorithms for multiquery optimization. In SIGMOD (Dallas, USA, 2000).

[97] Schmidt, M., Hornung, T., Lausen, G., and Pinkel, C. SP2Bench: A SPARQL
performance benchmark. In ICDE (Shanghai, China, 2009).

[98] Schmidt, M., Meier, M., and Lausen, G. Foundations of SPARQL query
optimization. In ICDT (Lausanne, Switzerland, 2010).

[99] Sellis, T., and Ghosh, S. On the multiple-query optimization problem. IEEE
Transactions on Knowledge and Data Engineering 2, 2 (1990), 262–266.

[100] Sellis, T. K. Multiple-query optimization. ACM Transactions on Database Systems
13, 1 (1988), 23–52.

[101] Shamir, R., and Tsur, D. Faster subtree isomorphism. Journal of Algorithms 33,
2 (1999), 267–280.

[102] Shim, K., Sellis, T. K., and Nau, D. Improvements on a heuristic algorithm for
multiple-query optimization. Data and Knowledge Engineering 12, 2 (1994), 197–222.

[103] Stocker, M., Seaborne, A., and Bernstein, A. SPARQL basic graph pattern
optimization using selectivity estimation. In WWW (Beijing, China, 2008).

[104] Stuckenschmidt, H., Vdovjak, R., Houben, G.-J., and Broekstra, J. Index
structures and algorithms for querying distributed rdf repositories. In WWW (New
York, USA, 2004).

[105] Sun, C., Chan, C. Y., and Goenka, A. K. Multiway SLCA-based keyword search
in xml data. In WWW (Banff, Canada, 2007).

147

[106] Tao, Y., and Papadias, D. MV3R-Tree: A spatio-temporal access method for
timestamp and interval queries. In VLDB (Rome, Italy, 2001).

[107] Tappolet, J., and Bernstein, A. Applied temporal RDF: Efficient temporal
querying of RDF data with SPARQL. In ESWC (Heraklion, Greece, 2009).

[108] Tomita, E., and Seki, T. An efficient branch-and-bound algorithm for finding a
maximum clique. In DMTCS (Dijon, France, 2003).

[109] Tran, T., Wang, H., Rudolph, S., and Cimiano, P. Top-k exploration of
query candidates for efficient keyword search on graph-shaped (RDF) data. In ICDE
(Shanghai, China, 2009).

[110] Trigoni, N., Yao, Y., Demers, A. J., Gehrke, J., and Rajaraman, R.

Multiquery optimization for sensor networks. In DCOSS (Marina del Rey, USA,
2005).

[111] Ullman, J. D. Information integration using logical views. In ICDT (Delphi,
Greece, 1997).

[112] Vismara, P., and Valery, B. Finding maximum common connected subgraphs
using clique detection or constraint satisfaction algorithms. In MCO (Metz, France,
2008).

[113] Wang, Q., Yu, T., Li, N., Lobo, J., Bertino, E., Irwin, K., and won Byun,

J. On the correctness criteria of fine-grained access control in relational databases.
In VLDB (Vienna, Austria, 2007).

[114] Weiss, C., Karras, P., and Bernstein, A. Hexastore: sextuple indexing for
semantic web data management. In VLDB (Auckland, New Zealand, 2008).

[115] Yang, H. Z., and Larson, P. Query transformation for PSJ-queries. In VLDB
(Brighton, England, 1987).

[116] Yang, J., and Widom, J. Incremental computation and maintenance of temporal
aggregates. The VLDB Journal 12, 3 (2003), 262–283.

[117] Zhao, P., and Han, J. On graph query optimization in large networks. In VLDB
(Singapore, 2010).

[118] Zhao, Y., Deshpande, P., Naughton, J. F., and Shukla, A. Simultaneous
optimization and evaluation of multiple dimensional queries. In SIGMOD (Seattle,
USA, 1998).

