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ABSTRACT 

 High-count microelectrode arrays implanted in peripheral nerves could restore 

motor function after spinal cord injury or sensory function after limb loss via electrical 

stimulation. The same device could also help restore volitional control to a prosthesis-

using amputee, or sensation to a Spinal cord Injury (SCI) patient, via recordings from the 

still-viable peripheral nerves. 

 The overall objective of these dissertations studies is to improve the usefulness of 

intrafascicular electrodes, such as the Utah Slanted Electrode Array (USEA), for 

neuroprosthetic devices for limb loss or spinal cord injury patients. Previous work in cat 

sciatic nerve has shown that stimulation through the USEA can remain viable for months 

after implant.  However, stimulation parameters were not stable, and recordings were lost 

rapidly and were subject to strong contamination by myoelectrical activity from adjacent 

muscles. 

 Recent research has shown that even when mobility is restored to a patient, either 

through prosthesis or functional electrical stimulation, difficulties in using the affected 

limbs arise from the lack of sensory input. In the absence of the usual proprioceptive and 

cutaneous inputs from the limb, planning and executing motions can be challenging and 

sometimes lead to the user's abandonment of prostheses.  To begin to address this need, I 

examined the ability of USEAs in cat hindlimb nerves  to activate primary sensory fibers 

by monitoring evoked potentials in somatosensory cortex via skull-screw electrodes.  I 



 

 iv   
 

also monitored evoked EMG responses, and determined that it is possible to recruit 

sensory or motor responses independently of one another.   

In the second study of this dissertation, I sought to improve the long-term stability 

of USEAs in the PNS by physically and electrically stabilizing and protecting the array. 

To demonstrate the efficacy of the stabilization and shielding technique, I examined the 

recording capabilities of USEA electrodes and their selectivity of muscle activation over 

the long term in cat sciatic nerve.  

 In addition to long-term viability, clinically useful neuroprosthetic devices will 

have to be capable of interfacing with complex motor systems such as the human hand. 

To extend previous results of USEAs in cat hindlimb nerves and to examine selectivity 

when interfacing with a complex sensorimotor system, I characterized EMG and cortical 

somatosensory responses to acute USEA stimulation in monkey arm nerves. Then, to 

demonstrate the functional usefulness of stimulation through the USEA. I used multi-

array, multi-electrode stimulation to generate a natural, coordinated grasp. 
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CHAPTER 1 

INTRODUCTION 

The use of the hand and arm are integral to the way most people interact with the 

world. The loss of the use of any limb, but particularly the hand, is an immense 

psychological and physical challenge. Though recording and stimulating from neural 

tissue holds great promise for creating a two-way man-machine interface, current 

technologies offer far less than the natural intuitive movement achievable by the intact 

limb. Natural physiological movement, which involves the response of thousands of 

independent motor units in each muscle, is impossible to mimic perfectly without an 

electrode system with a similar number of independent channels. Though no such system 

exists, greater selectivity allows muscle contractions to be more coordinated, smooth, and 

fatigue resistant, and enables sensory stimulation to be focal and uni-modal. In this 

dissertation, I explore the use of selective intrafascicular electrode stimulation and 

recording through USEA implants in the Perepherial Nervous System (PNS) as a 

potential component of a bi-directional man-machine interface. The introduction begins 

with an examination of the motivation behind the use of electrical stimulation. Next, the 

motor and sensory systems that are disrupted by limb loss or Spinal Cord Injury (SCI) 

will be described, followed by a review of current and emergent treatment technologies 

for patients with those conditions. Finally, I will describe the research plan of this 

dissertation.  
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Sources and Impact of Loss of Arm Function 

Paralysis, including Spinal Cord Injury (SCI) and limb loss, though seemingly 

quite different, are both disruptions of neural tissue that leave nerves in the body still in 

contact with either the brain or body, but not both. Because of this similarity, recording 

and stimulating microelectrodes in conjunction with software and robotics can be used, in 

both conditions, to bridge the neural block between the user’s desire and the execution of 

an action (Moritz et al. 2008). Electrical stimulation could conceivably be used for 

restoring function to any limb affected by limb loss or paralysis. This work will pay 

special attention to the challenges of the loss of hand function, due to the enormous role 

hand function plays in the everyday life of normal individuals.  

 

Spinal Cord Injury 

Some form of paralysis affects between four and five million people in the United 

States. Of the many different causes of paralysis, SCI receives the most attention due to 

its disproportionately high cost of treatment and adverse affects on quality of life. The 

population of 250,000 SCI patients in the United States consists mainly of young men 

(mean age of 33 years) and grows by approximately 11,000 patients a year (NASS; BRPF 

2009). The relative youth of SCI patients contributes to the astronomical cost of treating 

them; the lifetime treatment cost of a 25-year-old tetraplegic, for example, approaches 

$2.4 million. Total annual cost estimates for treating SCI range from $4 billion to $10 

billion. Much of the cost of treatment for SCI comes not from the initial injury, but from 

the many subsequent complications that result from lack of mobility, including pressure 

sores, cardiovascular compromise, and reduction of bone and muscle mass. In addition to 
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the monetary costs of treatment, many patients suffer emotional problems related to their 

lack of environmental access and impaired ability to interact with others.  

 

Limb Loss 

Approximately 1.7 million Americans have lost a limb; over half a million have 

lost a hand or arm. As medical technology and emergency care standards advance, many 

patients with traumatic limb injuries are able to survive as a result of careful surgical 

amputation. The population of amputees is expected to double by 2050 (Ziegler-Graham 

et al. 2008). Limb loss, especially loss of a hand or arm, can greatly compromise a 

patient’s ability to interact with the environment. For an arm amputee, everyday tasks 

like eating and driving can become difficult or impossible without some sort of 

prosthetic. Eighty percent of limb loss patients also suffer from phantom pain syndrome, 

a condition which causes the patient to experience painful sensations from the missing 

limb (Flor 2008) (Kern et al. 2009). Phantom pain does not typically respond to 

treatments for pain, but ongoing research suggests the possibility of using somatosensory 

or motor stimulation to prevent this condition from developing (Roux et al. 2001; Saitoh 

and Yoshimine 2007; Ray et al. 2009). 

 

The Motor and Sensory Structures of the Hand and Foot 

Motor and sensory neural systems are linked by a host of complex feedback and 

feed-forward mechanisms. The interplay between sensory information to inform the 

brain's decision making and correct errors, and motor commands to execute and refine 

movements, is an integral part of coordinated movement (Kandel et al. 2000). Though the 
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same nerve may carry the sensory and motor neurons from a limb, the sensory and motor 

nerve fibers do not interface until they reach the spinal cord. The information density in 

the nerve is thus very high. Almost all the information the somatosensory cortex can ever 

receive about a limb must come through the nerves of the limb or an artificial source. 

Likewise, any muscle movement in the limb must be evoked by an action potential 

through the nerves or an artificial source. Conversely, in the brain's cortex, the motor 

response of even a single muscle is represented in a widely spread network of nerve cells 

that are distributed throughout the frontal lobe. At the cortex, sensory information, which 

started out as the firing of only a few cells, can cause widely divergent activity in the 

frontal and parietal areas. The two reversed information processing schemes (motor 

cortex converging to motoneurons, and sensory neurons diverging to sensory cortex) both 

result in a widespread representation involving many neurons at the CNS, and a more 

focused representation involving relatively few neurons in the PNS.  

Motor and sensory systems cannot fully be discussed in isolation. Therefore, this 

section will begin with a review of the motor pathway descending from the brain, the 

mechanisms of muscle activation and movement, and associated physiology. The next 

section will examine the generation and propagation of a sensory signal from the distal 

sensors to the brain. Finally, the relationship between sensory and motor systems will be 

more fully described.  

 

Motor System of the Distal Limbs 

Motor planning begins with complex processes involving the prefrontal 

association areas in the frontal lobe of the brain, areas that have been shown to be 
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involved in decision making, prediction of outcomes, and other executive functions. 

Because of the complexity of such a decision making process, it would be outside the 

scope of this dissertation to review the process in its entirety (see (Goldman-Rakic 1996; 

Anderson et al. 1999; Fuster 2000; Miller et al. 2002; Yang and Raine 2009). Local 

regions of the CNS, including the motor cortex, basil ganglia, thalamus, midbrain, spinal 

cord and cerebellum, are all specialized for motor and association functions, and are more 

directly involved with the production of movement. Neurons in the premotor area, 

Brodmann area 6, fire strongly before a movement in a specific direction, sometimes as 

long as one to two seconds before a movement, indicating the intent to make a particular 

movement (Kandel et al. 2000). This area receives many inputs that will be discussed 

later during the review of motor and sensory integration. Input sources to premotor cortex 

include sensory inputs, feedback connections from the cerebellum, and thalamic nuclei. 

The premotor neurons involved in planning a movement project to neurons in primary 

motor cortex as well as directly to the corticospinal tract, indicating that they play a direct 

role in generating and modulating movement as well as planning. Interestingly, the 

premotor areas that project directly to the corticospinal tract also project primarily to the 

arm area of the primary motor cortex (Dum and Strick 1991).  

Most neurons from the premotor area project to primary motor cortex (M1), 

Brodmann area 4 (the precentral gyrus), where, since the mid 1900s, it has been known 

that there is a gross map of the body where body parts are more-or-less grouped as they 

are on the body, a mapping often referred to as a motor homunculus (Penfield and Welch 

1951). Many of the neurons in primary motor cortex project directly down the spinal cord 
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(corticospinal neurons), though some make additional connections in brainstem and 

midbrain nucleui (vestibulospinal, oliviospinal, rubrospinal, reticulospinal, or 

colliculospinal neurons, Figure 1.1) before continuing on to the cerebellum or spinal 

cord. However, research has also shown that the comparatively straightforward 

organization of the primary of movement in motor cortex is far more complex than 

originally thought (Meyer 1987; Porter and Izraeli 1993; Schieber 2001). Axons of 

corticomotor cells are known to branch out and innervate multiple muscles through 

different spinal motoneuron pools (Fetz et al. 1980; Shinoda et al. 1981; Cheney and Fetz 

1985; Fetz et al. 1989). Corticomotor cells associated with a single muscle can be widely 

distributed throughout primary motor cortex (Rathelot and Strick 2006). Movement of a 

single finger muscle may be controlled by cells spread across multiple regions, each of 

which is three square mm or larger (Rathelot and Strick 2006). Further complicating the 

mapping of the motor cortex is the fact that cortical representation of different muscles 

overlaps extensively (Schieber and Hibbard 1993; Schieber 1999; Beisteiner et al. 2001). 

Axons exiting the motor cortex, the projections of cells known as upper motor neurons or 

Betz cells, travel to either brain nuclei, which give rise to the extrapyramidal tracts, or to 

the corticospinal tract. The corticospinal tract proceeds down the spinal cord in the lateral 

or ventral columns and ultimately converges on either interneurons or motoneurons in the 

ventral horn that communicate with the rest of the body's muscles. The extrapyramidal 

tracts are mostly associated with modulation and integration of sensory and motor 

function and will be returned to in the section of motor-sensory integration. As 

corticomotor axons descend the spinal cord, neurons controlling progressively more  
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Figure 1.1: Descending and ascending spinal tracts. 

Descending spinal tracts are largely associated with different classes, or kinds, of 

movement. 

1. Corticospinal tracts arise from pyramidal neurons in the premotor and motor 

cortices. 

a. Lateral corticospinal neurons control voluntary motor impulses, 

particularlly ipsilateral limb muscles 

b. Anterior corticospinal neurons control voluntary motor impulses, 

particularly central axial and girdle muscles  

2. Vestibulospinal neurons modulate movement through interneurons by 

conducting information from the inner ear regarding balance and body 

position.  

3.  Olivospinal neurons integrate proprioceptive input to influence muscle 

activity. 

4.  Rubrospinal neurons mediatie arm and leg movement. 

5.  Reticulospinal neurons coordinate stereotypical movements of locomotion 

and posture, as well as modulate voluntary  and invoulntary muscle tone 

6. Colliculospinal/ tectospinal neurons mediate reflex movements of the head in 

response to visual or auditory sensory information.  

Image used under Creative Commons 3.0 unported (Polarlys and Mikael Häggström) 
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distal muscles synapse with ventral horn cells, also called α-motoneurons, exit the spinal 

cord to form a nerve innervating one or more muscles. The second type of motoneuron, 

the γ-motoneuron, is also controlled in this fashion, and will be discussed in the section 

on sensory-motor cortical connections. The α-motoneurons are further modulated by 

interneuron feedback and reflex connections, such as the negative feedback that arises 

from Renshaw cells (Renshaw and Rosenbaum 1948; Eccles et al. 1954; Hultborn 2006). 

As the axons of the α-motoneurons exit the spinal cord and pass through ventral spinal 

roots, they become nerves. Many nerves, particularly those associated with limbs, are 

reorganized through splitting and recombination of the spinal nerves into plexuses and, 

subsequently, into true peripheral nerves. For instance, the median nerve is comprised of 

fibers that exit the spinal cord at spinal roots C6-C8 and T1. It is important to note the 

implication such convergence has on somatotopy; the spatial organization of nerve fibers 

going to locally adjacent body parts becomes more and more pronounced as the neurons 

travel distally. The information to produce a movement is repeatedly converging to fewer 

and fewer neurons. Furthermore, those neurons that will innervate the same muscles get 

closer and closer to one another through organization into fascicles as the motorneuron 

courses distally (Sunderland 1945).  

Ultimately, individual α-motoneurons synapse with a group of muscle fibers, 

collectively known as a motor unit (Mines 1913; Eccles and Sherrington 1930). Each 

motor unit is composed of one type of muscle fiber (Burke and Tsairis 1973), either Type 

I, Type IIA or IIB (Figure 1.2). Type I motor units are small, aerobic, slow twitch fibers 

capable of maintaining a force over a long period, innervated by small diameter axons. 
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Figure 1.2: The path from spinal cord to skeletal muscle. 

A motoneuron and all the muscle fibers it innervates comprise one motor unit. The 

axons innervating a single muscle at a neuromuscular junction are bundled together as 

the nerve root reaches the muscle. Muscle fibers of a single motor unit are always of 

the same type of the three subtypes of motor unit. Adapted from work under Creative 

Commons 3.0 unported (EUSKALANTO). 
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Type II fibers are larger, faster, stronger fibers that maintain force for much shorter 

periods of time innervated by large axons; Type IIA motor units are aerobic, somewhat 

fatigue-resistant fibers, whereas Type IIB motor units are glycolic, rapidly-fatiguing 

muscle fibers (Eccles and Sherrington 1930; Burke et al. 1973; Buchthal and 

Schmalbruch 1980; Bodine-Fowler et al. 1990; Ounjian et al.). The work of Henneman 

(Henneman and Olson 1965; Henneman et al. 1965; Somjen et al. 1965) shows that the 

motor units are physiologically recruited on the basis of motorneuron diameter, smaller 

neurons first, largest last. Simply put, this means that the smallest diameter nerves that 

control the most fatigue-resistant fibers are recruited first and the faster, stronger type-II 

fibers are recruited later, which minimizes fatigue (Monster and Chan 1977). This has 

important implications for artificial stimulation, which we will return to in the later 

section on electrical stimulation. The final synapse of the α-motoneuron is the 

neuromuscular junction where the release of acetylcholine begins the complex cascade of 

events in the muscle cell, resulting in the cycling of actin-myosin cross-bridges that lead 

to muscle contraction (Kandel et al. 2000) (Huxley and Niedergerke 1954; Huxley and 

Hanson 1954). The contraction of the muscle represents the end of the neural pathway 

from the motor cortex; however, a neural signal returning to the brain associated with the 

movement in progress has already begun in the sensory system. 

 

Sensory System of the Distal Limbs 

Sensory signals start in the distal limb in specialized neural cells and accessory 

structures that are designed to detect one specific type of stimuli. For instance, a tactile 
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stimulus begins as mechanoreceptors in the skin fire in response to movement. The 

specialized structures around the neurons alter what mechanical stimulus activates them, 

such as Merkel disks that enhance response to pressure, or Pacinian corpuscles, which 

detect vibration and texture but not pressure (Kandel et al. 2000; Bensmaia and Hollins 

2005). These and other submodalities of touch are carried in parallel to the central 

nervous system where they are hierarchically processed, involving an ever-increasing 

number of neurons; this is the inverse path of the information descending in the motor 

system.  

Sensory nerve cell bodies lie in the dorsal root ganglia near the spinal cord. Cells 

in a dorsal ganglion, also known as pseudounipolar cells, have axons that extend both 

centrally and peripherally. Peripherally, many of these cells are surrounded by accessory 

cells that shape the response of the neuron (Table 1.1). Each neuron encodes a specific 

stimulus which is transduced into neural action potentials through either the accessory 

structures in Table 1.1 or transient receptor protein channels (ion channels specialized to 

detect one of a variety of touch, pain, or temperature modalities). 

 As the axons in the nerve follow their course toward the cell bodies in a dorsal root 

ganglion, neurons with sensory structures in the same area remain more-or-less in close 

proximity, giving the nerve as a whole a somatotopic structure (Jabaley et al. 1980; 

Schady et al. 1983). There is evidence that as axons travel centrally they split and 

recombine, rearranging themselves to bring neurons encoding the same modality in 

neighboring regions together to traverse the nerve in close proximity (Dykes et al. 1982; 

Hallin et al. 1991; Wu et al. 1998; Hallin and Wu 2001). 
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 Combined, these findings indicate the beginning of the change from the map of the 

body formed by the physical positions of sensory structures to the more complex map, 

based only partially on modality (Bensmaia 2008), that exists in the cortex, begins in the 

nerve even before the neurons reach the dorsal ganglia. The central processes of the 

dorsal horn cells enter the spinal cord and synapse with either local interneurons (to form 

reflexes) or those ascending to the medulla.  

Table 1.1: Sensory accessory structures 

 
Name of structure Structure Modality Fiber type 

Ruffini corpuscle 
Nerve endings in connective 

sheath 

Tension in 

skin 
Aβ 

Meissener 

corpuscle 

Neuron coiled within laminar 

structures 

Mechanical 

deflection 
Aβ 

Pacinian 

corpuscle 

Nerve ending in a large 

corpuscle 

Vibration 

(250 Hz) 
Aβ 

Merkel disk 
Specialized disk cells abutting 

nerve endings 

Pressure and 

texture 
Aβ 

Bulboid 
Nerve endings in connective 

sheath 

Low-

frequency 

vibration 

Aβ 

Golgi tendon 

organ 

Nerve endings spiral around 

strands of collagen in a tendon 

Stretch, 

muscle force 
Aα 

Muscle spindle Muscle spindle Stretch Aα 

Chemceptors 

Nociceptor 

Thermoceptors 

Distinct repertoires of ion 

channels and receptors 

Pain 

Temperature 
Aδ / C 

No accessory 

structure None 
Polymodal 

Touch/pain 
Aβ / Aδ 
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It is important to note the continuing alteration of somatotopy forced by the 

arrangement of neural fibers and how they enter the spinal cord. The neurons that join the 

spinal cord most distally ascend in the middle of the spinal cord, near the midline. The 

closer to the brain that the sensory neurons enter the spinal cord, the more lateral they are 

while coursing to toward the brain. The spinal cord is not a direct routing system, but is a 

complex, intertwined, multi-level neural processing system that can function 

independently of the brain (i.e., postural reflexes) (Sherrington 1898, 1910); this will be 

discussed further in the section on motor and sensory integration. In the spinal cord, 

neurons separate into tracts primarily based on their sense modality (Figure 1.1), 

sometimes making synapses on the dorsal horn cells in the spinal cord (crude touch, pain 

and temperature) or with second-order neurons in the medulla in the gracile (dorsal) and 

cuneate (posterior) nuclei. Somatotopy is largely maintained for each separate touch 

modality in these nuclei with neurons separated into those from the lower body and upper 

body in distinct nuclei, the gracile and cuneate respectively. These second-order neurons 

then cross the midline and synapse in the ventral nuclei group in the thalamus, again 

maintaining some degree of somatotopy, mapping the lower body to the lateral thalamus 

and the upper body to the medial thalamus. Connections in the thalamus are subjected to 

substantial excitatory and inhibitory inputs from both local connections (intrathalamic) 

and feedback from the brain's distant structures. From the thalamus, tertiary neurons 

route sensory signals to the somatosensory cortex. Most neurons relaying somatic 

information terminate in the primary somatosensory cortex (S1) in a fairly somatotopic 

manner, originally described as a second homunculus (Penfield and Welch 1948; Penfield 
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1972; Metman et al. 1993). However, there are at least four representations of the body in 

primary somatosensory cortex, roughly corresponding to Brodmann areas 3a, 3b, 1, & 2 

(Penfield and Welch 1948, 1951; Kaas et al. 1979). Neurons in S1 have more complex 

encoding of sensory stimulus than the periphery, combining the responses of slowly 

adapting and rapidly adapting neurons of different sensory modalities into a unified 

percept (Pei et al. 2009). Most tertiary sensory neurons synapse to area 3b (Iwamura 

1998) before being routed to the other, secondary areas mentioned, but there is also 

evidence for direct connections to the secondary areas (Edell et al. 1992; Iwamura et al. 

1993; Ploner et al. 1999), particularly for nociception (area 1) and proprioception 

(Brodmann area 3a). As the information received by the cortex diverges to additional 

areas of cortex, the encoding of sensory information grows more complex. The primary 

and secondary somatosensory areas make synapses to many other areas of the brain, 

including multi-modal sensory areas, the hippocampus, and, most importantly, motor and 

premotor cortex. The close linkage through a large number of neurons in sensory and 

motor cortex indicates the important role sensory information plays in shaping movement 

(Oscarsson and Uddenberg 1965; Kandel et al. 2000). 

 

Integration of Sensory and Motor Systems 

At every level of the nervous system, from muscle to the cortex, the motor and 

sensory systems are integrated neutrally (Sherrington 1910; Strick and Preston 1978; 

Kakei et al. 2003). Motor commands are constantly modulated by sensory information, 

some from primary afferents which have not even passed information onto the brain. 

Likewise, sensory signals are modulated by motor commands, such that sensation may be 
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depressed in one phase of a cyclic movement, such as stepping, and facilitated in another 

(Clarac et al. 1992). The integration of the motor and sensory systems is fairly easily 

understood at the level of the spinal cord, through monosynaptic reflexes that connect 

sensory afferents directly to motor efferents (Eccles and Sherrington 1930) or feed-

forward connections from the brain. Within the brain however, there is a great deal of 

distributed connectivity linking the motor and sensory systems to each other as well as 

many other common brain areas. These areas, in turn, project back to the somatosensory 

and motor cortices, as well as many other areas, creating a complex web of neural 

pathways that is difficult to unweave (Iuppino et al. 1986; Matelli et al. 1986; Barbas and 

Pandya 1987; Dancause et al. 2006).  

Many of the connections between tertiary structures, such as the basil ganglia and 

the cerebellum, to somatosensory or motor cortex are well understood (Delong et al. 

1984; Schell and Strick 1984) (Malis et al. 1953; Kornhuber 1971; Blakemore et al. 

1998b), and a significant amount of research has been done on those that involve decision 

making, consciousness, and memory (Deiber et al. 1991; Shibasaki et al. 1993; Hikosaka 

et al. 1996; Middleton and Strick 1996; Humberstone et al. 1997; Ikeda et al. 1999). 

Although a complete review of the many networks that contribute to both the generation 

of motion and the interpretation of somatic sensation is outside the scope of this work, I 

will briefly address the most direct connections between motor and sensory systems 

(Mountcastle and Powell 1959).  

Motor commands are principally modulated by 1) cerebellar feedback, 2) basal 

ganglia projections, 3) corticocortal connections, and 4) spinal synapses and interneurons 
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(Asanuma 1981; Asanuma and Arissian 1984; Kandel et al. 2000). The cerebellum and 

basil ganglia are involved with extensive error correction and moto-sensory modulation; 

they receive sensory inputs and send outputs to motor structures, but do not involve any 

direct, monosynaptic connections. Connections between the cerebellum and the motor 

and sensory systems have been studied for years (Allen et al. 1974; Ito 1984; Gao et al. 

1996; Ito 2006), and are primarily implicated in timing and motor learning, specifically 

supervised learning (Ito 1984; Fine et al. 2002; Ito 2002, 2008). Basil ganglia connections 

have also been investigated extensively and are implicated in reinforcement learning 

(Montague et al. 1996; Houk 1997; Brown et al. 1999; Houk et al. 2007). Recently a 

number of researchers have suggested that these structures are more appropriately 

considered learning structures and that their large number of motor and sensory 

connections are essential to cognitive processing and memory (Leiner et al. 1993; Kim et 

al. 1994; Middleton and Strick 1994; Raymond et al. 1996; Allen et al. 1997; Parsons et 

al. 2000) (Hikosaka et al. 1999).  

Many corticocortical connections directly link sensory cortex outputs to motor 

and premotor cortex (Porter and Sakamoto 1988; Tokuno and Tanji 1993) and other 

elements of the motor system (Yumiya and Ghez 1984; Ikeda et al. 2000; Tsujimoto et al. 

2009). Direct connections between S1 and M1 have been shown in monkeys (Boudreau 

et al. 2001) (Rizzolatti et al. 1981; Tanji and Wise 1981; Strick and Preston 1982b, 

1982a; Picard and Smith 1992) and humans (Moore et al. 2000). Thus, the first brain area 

associated with processing sensory information (where the crudest information is 

received) and the last motor area of the brain (where the finalized motor plan is sent to 
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the periphery) are linked monosynapticly, bypassing much of the brain's processing. 

Interestingly, the corticocortical connections from S1 to M1 maintain the separation of 

modalities, with proprioceptive inputs synapsing rostrally but cutaneous inputs synapsing 

caudally, and are especially associated with the hand and limb representations 

(Stepniewska et al. 1993; Schieber and Poliakov 1998; Schieber 1999; Kim and Cruse 

2001; Stepniewska et al. 2009). Lesions in the caudal area of M1 result in very similar 

deficits in precision movement to those caused by S1 (3b) lesions (Xerri et al. 1998; Friel 

et al. 2005), indicating that these areas play similar roles in forming motor plans. The 

direct connections between the primary cortices are important for motor skill learning 

(Pavlides et al. 1993), and are still under wide investigation (Witham et al.; Widener and 

Cheney 1997; Friel et al. 2005; Dancause et al. 2008).  

Spinal motoneurons, i.e. α-motoneurons, are activated by the upper motor neurons 

of the brain. These spinal motoneurons are all parts of spinal reflex circuits that contain 

several linked circuits including negative feedback from the motor system itself, 

inhibition of antagonist muscles, and sometimes even monosynaptic reflexes directly 

linking a sensory output to a motor input. There are several well-studied reflex circuits 

that depend upon direct sensory modulation of the motor system through only a few 

neurons (Eccles and Sherrington; Eccles et al. 1957; Lundberg et al. 1962; Fetz and 

Cheney 1979; Lundberg et al. 1987; Kandel et al. 2000). In the simplest reflex, a 

monosynaptic reflex, stretch receptors coming from a tendon activate muscles resisting 

the stretch. Although this reflex appears simple, it is subject to further modulation 

through a network of spinal interneurons that receives connections from upper 
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motoneurons and primary sensory afferents (Eccles and Lundberg 1959; Lundberg and 

Voorhoeve 1962; Kandel et al. 2000). A more typical arrangement of a spinal reflex 

circuit (Figure 1.3) includes interneurons, either excitatory or inhibitory, that receive 

synapses from primary sensory afferents, feed-forward connections from the brain, and 

other spinal circuits (Grillner et al. 1969; Baldissera et al. 1971; Rudomin et al. 1975; 

Shik and Orlovsky 1976; Grillner and Jessell 2009). These reflex circuits are integral 

components of both the path from motor cortex to muscle and the pathway from sensory 

structure to the brain, and as such they must be taken into account by the motor cortex 

when generating a motor plan. However, these reflex circuits can simplify the motor plan, 

because the cortex can use the reflexes as components of any given motion. for example, 

in the reflex shown in Figure 1.3, antagonist muscles will be inhibited automatically by 

descending motor commands that activate the agonist muscle, freeing the motor cortex 

from having to send descending commands to do the same (Illert et al. 1976). By the 

same token, the motor system must also use these circuits to generate all muscle states, 

such as static limb position, through activation of both the agonist and antagonist. This 

requires additional motor and sensory inputs to the spinal interneurons, creating yet more 

overlapping reflex networks. 

The sensory system, like the motor system, receives modulation at every level 

from the brain to the spinal cord. In the brain, the sensory system receives modulatory 

inputs from the motor system through cortical inputs to tertiary sensory neurons in the 

thalamus (Palmeri et al.; Lee et al. 2008), cerebellar connections to S1 (Blakemore et al. 

1998a; Bays et al. 2005; Bays et al. 2006), or corticocortical connections (Blakemore et  
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al. 1998a; Doya 2000; Kandel et al. 2000; Witham et al. 2007; Legon et al. 2008). As in 

the motor system, the complex network of modulatory connections in the cerebellum, 

frontal or parietal cortex, and thalamus preclude a full examination. However, we must 

note that there are reciprocal modulatory inputs at nearly every synapse of the motor and 

sensory systems. In the sensory system these connections are involved with the 

sensorimotor integration of movement for posture and error correction (Lee et al. 2008), 

Figure 1.3: A spinal reflex circuit. 

In this example of a spinal reflex circuit, α-motoneuron activation excites a Renshaw cell. 

The Renshaw cell then inhibits the same α-motoneuron that initially fired, as well as 

disinhibits an antagonist α-motoneuron. In an intact spinal cord both of these effects are 

modulated by descending control from the cortex.  

 

 

α- α- 
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suppressing expected responses, and with enhancing sensory input during exploratory 

movement (Kandel et al. 2000). 

Primary motor cortex plays a direct role in modulating sensory information 

through the activation of γ-motoneurons (Kandel et al. 2000). Some neurons from M1 

travel down the spinal cord to the ventral horn and connect with this second type of motor 

fiber, which is not used to generate movement. The γ-motoneurons activate muscle 

spindle intrafusal muscle fibers, adjusting the tension in the muscle spindle (see Table 

1.1). This allows the muscle spindle to detect stretch in a muscle across a wide range of 

lengths (Boyd et al. 1979). The muscle spindle afferent is involved in the stretch reflex, a 

well studied monosynaptic reflex that flexes the muscle that contains the muscle spindle 

(Clarac et al. 1992).  

Upper motor neurons in the spinal cord can also enhance or inhibit other sensory 

responses by supplying feed-forward information about a planned movement (Seki et al. 

2003). This inhibition happens in most, but not all, of primary sensory afferents 

(Carpenter et al. 1963b; Carpenter et al. 1963a; Eguibar et al. 1994; Seki et al. 2003). 

Because this inhibition happens at the presynaptic terminal of the first synapse in the 

sensory system, the CNS, by way of motor cortex, has very specific control over what 

information it receives about planned motions. Suppressing primary afferents has the 

functional consequence of eliminating inappropriate reflex actions that would act against 

a planned movement (Ranck 1975; McNeal 1976; Fretz and Fravel 1985; Fang and 

Mortimer 1991b; Durand et al. 2004; Haensel et al. 2004).  
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Neuroprosthetic Motor Replacement or Restoration Systems 

Because of the voltage sensitive nature of the neuron, specifically the ion 

channels that initiate or propagate the action potential, electrodes of all kinds can be used 

to artificially generate neural signals. Any method which transfers charge across a neural 

membrane applies a voltage across that membrane, and can cause an action potential 

(Burke et al. 1973; Monster and Chan 1977; Fang and Mortimer 1991b, 1991a; Kilgore et 

al. 1997; Fisher et al. 2008). Electrodes in appropriate locations can also detect the 

changes in the flow of ions caused by natural action potentials, both from muscles and 

neurons. Muscle action potentials are large potentials that can be detected at some 

distance; however, neural events are not detectable at great distances. Many different 

electrodes types and shapes have been used to stimulate or record from neural or 

muscular tissue in a wide variety of locations. All electrodes have advantages and 

disadvantages for different applications but can be analyzed in terms of their: 1) safety, 2) 

invasiveness, 3) size (proportional to the number of neurons the electrode will interact 

with), and 4) long-term stability. 

 

Mechanisms of Neural Stimulation 

During cathodic stimulation, the negative charge of an electrode causes 

redistribution of charge on and around the cell membrane. The positive charge in the cell 

is drawn to the membrane near the cathodic electrode, causing a membrane 

depolarization, and possibly an action potential. Although many factors contribute to the 

effectiveness and safety of electrical stimulation of neurons, including stimulation 

waveform used, stimulation history, current paths, and electrode material, all electrodes 
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induce action potentials in a similar manner by forcing a current across the cell 

membrane. This mechanism has the disadvantage of reliably recruiting larger diameter 

neurons before smaller neurons due to the interaction of Ohm's law and the extracellular 

current source. Ohms law states that the voltage drop across the membrane (which will 

trigger the cascade of ion channel openings that will create an action potential) is 

proportional to the resistance of the membrane for any given current. Because large and 

small axons are made of the same materials (myelin and cell membrane), their electrical 

resistance is inversely related to their surface area. To stimulate smaller neurons requires 

greater charge injection, which will in turn recruit more large-diameter neurons.  

Many different electrode types and shapes have been used to stimulate neural 

tissue in a wide variety of applications, from cochlear electrodes to restore hearing 

(Brown and Buchwald 1973; Novak and Wheeler 1988; Hallin 1990) to peripheral nerve 

electrodes to restore movement in the limbs (Kuiken et al. 2004; Kilgore et al. 2006; 

Kilgore et al. 2008). Early studies involved large electrodes that stimulated many neurons 

as group. As electrode design and manufacturing technologies advance, the focus of 

stimulation gets ever smaller, allowing newer microelectrodes to interact with fewer 

neurons in a smaller area. It is important to note that all of these strategies to restore 

function, frequently referred to as Functional Electrical Stimulation (FES) strategies, face 

some similar problems matching physiological muscle activation. The smooth and 

powerful movements generated by the motor system are the result of many independent 

motor units activating asynchronously, the slow twitch muscles, with the smallest 

associated neural fibers being recruited first, followed by fast twitch muscles as force is 
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required (Kuiken et al. 2009). Square wave stimulation applied across any extraneural 

electrode recruits nearby neurons in the reverse of physiological order, making it difficult 

to simulate natural force recruitment in a muscle (Popovic 2003). By manipulating 

stimulation waveforms and electrode position, Fang and Mortimer (Saxena et al. 1995; 

Popovic 2003; Fisher et al. 2009) show that a tripolar cuff can stimulate smaller neurons 

while blocking stimulation in larger neurons (associated with faster fatiguing motor 

units); however, this technique has not been tested in a chronic situation.  

 

Principles of Neural Recording 

Using recordings of action potentials from either single cells (single unit) or many 

adjacent cells (multi-unit or local field potentials), researchers have been able to 

determine the function and connectivity of neurons in vivo for many years (Peckham et 

al. 2001). Surface electrodes, large electrodes placed on the outside of the brain or around 

a nerve, can detect the synchronous activity of millions of cells. Smaller electrodes are 

sensitive to the activity of fewer cells; however, the higher resolving power to detect 

individual neurons comes at the cost of detecting activity across a smaller distance, 

requiring the electrodes to be very close to a cell. Research has also shown that micro-

electrodes in proximity to certain cell structures, specifically the cell body's axon hillock 

or the nodes of Ranvier in the axon (Peckham et al. 2001; Kilgore et al. 2008), can detect 

the small extracellular component of action potentials of single neurons (<1 mV). 

Because smaller microelectrodes must be close to the cells they record from (less than 

250 um), they are often more invasive than the larger electrodes that record activity from 

a group of neurons.  
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Limb Loss Prostheses 

Limb replacement prosthesis technology available today takes electromyographic 

(EMG) signals from either the remnant limb's muscles or muscles innervated with 

remnant limb nerves surgically redirected to still-existent muscles (Davis et al. 2001). 

These EMG-based solutions all suffer from the same drawback: the remnant limb 

muscles being recorded from need to be remapped into control signals for the prosthetic 

device. The new operations the muscles have to perform need to be learned by the user. 

This process is often complicated by the possibility of there being few muscles to use, 

such as in the case of a high arm amputation. Targeted reinnervation, wherein remnant 

nerves are surgically attached to separated muscles, takes advantage of the fact that the 

PNS is still carrying signals of intent to the missing limb by remapping it to a new muscle 

(Veraart et al.; Grill and Mortimer 1996; Lago et al. 2005; Brill et al. 2009). When 

attached to a new muscle, the nerve grows synapses and integrates itself; to the PNS the 

new muscle appears as part of the original nerve location due to the labeled-line 

principle. EMG signals from the newly-innervated muscle are mapped to the motions of 

the prosthetic, allowing for more natural control over the prosthetic device (Fang and 

Mortimer 1991a; Durand et al. 2004; Polasek et al. 2009). However, each new connection 

between the remnant limb's nerve and the patient's muscle requires a surgeon to attach a 

portion of the nerve to a suitable muscle that the patient is not already using for each 

desired control signal. 
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Electrode Technologies for SCI 

Many electrode types have been used to elicit muscle movement in clinical FES 

systems. In general, electrodes trade invasiveness for specificity. Initial systems used 

electrodes on the surface of the skin to elicit functional muscle movement for standing 

and walking (Polasek et al. 2009). Though they are minimally invasive, these systems 

have low selectivity, reliability, and acceptance by patients (Branner and Normann 2000; 

McDonnall et al. 2004a; Normann et al. 2005; Zheng et al.). With similar electrodes 

implanted under the skin, on the surface of the muscles to be stimulated, the amount of 

current needed to stimulate the muscle is reduced and the between muscle specificity is 

increased. These electrodes, called epimysial electrodes, require minimal surgery but 

have specificity only at the muscle level (i.e., they recruit an entire muscle) and are hard 

to place in some deep muscles (Wilder et al. 2009). Intramuscular electrodes inserted into 

the belly of a muscle provide greater specificity and control over muscles than epimysial 

electrodes, as in the second-generation Freehand system; however, the electrodes are 

subject to high forces and large motions in the muscle and their long-term stability.  

Neural electrodes are more invasive than any of the muscle stimulation 

technologies but provide better selectivity, lower effective stimulus currents, and offer 

the potential of recording naturally occurring action potentials through the same kind of 

device that can be used for stimulation. The least invasive neural electrode is an epineural 

electrode, an electrode that lies on a neural surface but does not cause any damage to the 

nervous system. Epineural electrodes can take the form of simple single contact 

electrodes to complex spiral or helix cuffs that wrap around peripheral nerves with many 
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individual electrodes (Thoma et al. 1989). Stimulation through multicontact epineural 

electrodes has been shown to selectively activate portions of nerve, most likely entire 

fascicles. When placed appropriately, fascicle stimulation can be selective for a single 

muscle; however, larger, highly fasciculated nerves (such as the hand and arm nerves) 

present problems for epineural electrodes. Fascicles in the center of these nerves are 

difficult to selectively stimulate. To counter this limitation, the flat interface nerve 

electrode (FINE) has been developed. This electrode system alters the physical 

organization of the nerve, making individual fascicles easier to stimulate by moving them 

closer to the surface (Tyler and Durand 2002). Using this system with up to eight 

electrodes, researchers have been able to show selective activation of multiple muscles in 

animal (Brill et al. 2009) and human experiments (Fisher et al. 2009). Although this 

electrode system can recruit muscle activity in a graded fashion from few muscles to 

whole nerve activation, it has limited subfascicular specificity (Leventhal and Durand 

2003) which would be required to emulate a natural muscle recruitment strategy.  

 

Intrafascicular Electrodes 

Intrafascicular stimulation may overcome the problems of current treatment 

technologies for SCI or limb loss by providing highly selective stimulation and recording 

capabilities (Nannini and Horch 1991; Zheng et al. 2008; Rossini et al. 2010). The USEA 

(Figure 1.4), for example, has been used to selectively activate muscles to produce stance 

in felines (McDonnall et al. 2004a). More selective stimulation could benefit both SCI 

and limb loss patients by increasing the patient’s control and the prosthetic’s range of 

abilities. In addition to the stimulation capabilities offered by an intrafascicular electrode,  
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such a device could also allow for recording of neural signals, thereby opening the door 

for two-way communication. This ability to record could allow SCI prostheses to return 

sensation from a reanimated limb or read intention directly from the remnant limb of an 

amputee without the need for a prosthetic in the motor cortex to detect the user’s intent. 

The advantages that intrafascicular electrodes have over other prosthetics come with 

accompanying challenges. Electrodes arrays may require specialized software and 

 
 

Figure 1.4: A Utah Slanted Electrode Array (USEA). 

 

Each USEA consists of a 10 x 10 grid of electrodes with 0.4 mm spacing and shaft lengths 

varying between 1.5 mm and 0.5 mm. Each electrode has a metalized iridium oxide tip 

and is isolated from all other electrodes. When implanted, the electrodes cover the width 

and breadth of the nerve such that most nerve fibers will be less than 200 μm away from 

an active electrode tip. Copyright © 2001, The American Physiological Society (Branner 

et al., 2001. 
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hardware to take maximum advantage of the microelectrode array architecture. for 

complete control over stimulation of one-hundred electrodes, including intrastimulation  

timing and pulse delivery, a multichannel amplifier is required. A quick and effective 

assay of all electrode responses is also necessary if we plan to build our prosthesis on the 

interactions and responses of array stimulation.  

 

Research Outline 

 In this work I will suggest solutions to the complex problems of long-term 

stimulation, recording, and device stabilization. Chapter 2 will investigate our ability to 

stimulate sensory fibers to give modern prosthetics the ability to provide proprioceptive 

and tactile feedback to users of artificial limbs. The long-term stability of USEA implants 

for stimulation and recording will be investigated in Chapter 3. The UINTA stimulator 

has been used to selectively stimulate nerve fascicles with very fine control that allows 

for multi-muscle-group control. Although these experiments have had success generating 

stance maneuvers via hind limb nerve stimulation cats, Chapter 4 aims to determine 

whether this technology can maintain high selectivity in the more complex motor system 

of the hand.  

 This work will enhance the abilities and techniques used in neuroprosthetic 

applications by stabilizing selectivity and long-term performance and providing the 

potential for real-time feedback from prosthetics or paralyzed limbs.  
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CHAPTER 2 

DIRECT STIMULATION OF PRIMARY SENSORY  

AFFERENTS VIA THE USEA IN A  

FELINE NERVE INJURY OR  

LIMB LOSS MODEL 

 

Abstract 

Restoring lost sensory function in limbs through artificial sensory input for limb 

loss patients may be possible with the Utah Slanted Electrode Array (USEA) implanted 

in peripheral nerves. As proof of concept, we implanted 100-electrode USEAs in the 

sciatic nerve of anesthetized felines (n = 6). We assessed the ability of electrical 

stimulation through USEAs to elicit sensory responses by monitoring the cortex for 

Somatosensory Evoked Potentials (SSEPs) recorded via skull screws placed over 

somatosensory cortices. Muscle activation was monitored via evoked myoelectric 

responses recorded from wire pairs implanted in four muscles in the lower leg. To 

confirm direct activation of primary sensory afferents, the sciatic nerve was crushed and 

cut distal to the implanted array; electrical stimulation was then performed again to 

evaluate the SSEP. Comparisons of the pre-cut and post-cut cortical potentials confirm 

that we can activate primary sensory fibers directly in both circumstances with similar 

latency and amplitude. Additionally, at lower intensities, most electrodes were selective 

for either sensory or motor responses, implying that USEA stimulation could be used to 
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evoke motor or sensory responses without engaging undesired modalities. These results 

indicate that stimulation via USEAs implanted in peripheral nerves could be used to 

restore sensation analogous to cutaneous and proprioceptive sensation in individuals with 

a prosthesis.  

 

Introduction 

Although there have been recent promising advances in prosthetics and intuitive 

prosthetic control, including targeted reinnervation or Functional Electrical Stimulation 

(FES), users often find it difficult to use their prosthetic limb without any form of sensory 

feedback (Ziegler-Graham et al. 2008). Electrical stimulation in the Perpherial Nervous 

System (PNS) could enhance the usability of prosthetic devices and increase user 

satisfaction by providing proprioceptive feedback and tactile sensation. Because the 

USEA has been used previously to activate motor units selectively in a Spinal Cord 

Injury (SCI) model (Branner et al. 2001), the USEA can also likely be used to stimulate 

individual sensory fibers, or small groups of sensory fibers, given that the sensory and 

motor neurons are not fundamentally different in terms of activation mechanisms and 

properties.  

The loss of a limb affects 1.7 million Americans, with one-third of them having 

lost a hand or arm. These numbers are expected to double by 2050 despite advances in 

vascular repair and other emergency care (Ziegler-Graham et al. 2008). Limb loss is also 

an increasingly common injury for soldiers facing modern explosive weapons; soldiers’ 

lives are often saved with body armor and rapid medical care, but saving limbs damaged 

by explosives is quite difficult (Fox et al. 2005). 
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Prosthesis abandonment has been reported as high as 20%, with as many as one 

third of prosthesis users describing themselves as unsatisfied (Pezzin et al. 2004). One of 

the abandoners’ primary complaints was that lack of tactile and proprioceptive 

information makes manipulating objects or responding to changes during movement 

difficult (Biddiss and Chau 2007). Because stimulation of micro-wire electrode arrays 

implanted in the PNS with as few as 25 electrodes have successfully conveyed sensory 

information to the human nervous system (Warwick 2005), the USEA, a 100 channel 

intrafascicular electrode, should be capable of doing so as well. By combining an 

advanced prosthesis that has tactile sensors with electrodes to deliver sensation, one 

could close the loop within the body and allow for a more natural and intuitive control of 

the limb. 

Limb-loss patients could benefit from the restoration of sensation even if they 

choose not to use a prosthesis, because stimulation might also reduce the incidence of 

phantom pain syndrome. Phantom pain syndrome, the chronic feeling of pain from 

missing or paralyzed limbs, has been closely linked to the remapping of somatosensory 

cortex that results from long-term cessation of sensation from the injured area and, 

specifically, lack of action potentials from the damaged nerves. This remapping and the 

referred pain sensation have been shown in some studies to be reduced by stimulation of 

the remnant limb muscles or nerves (Flor et al. 1995; Lotze et al. 1999; Moore et al. 

2000; Flor 2008). USEA stimulation of sensory fibers could likewise be used to prevent 

or reverse the cortical remapping and the associated pain.  

Even a neuroprosthetic device to be used for restoring sensation to limb-loss 
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patients will need to avoid unintentional activation of lower motor axons, through 

unspecific stimulation of the nerve. Lower motor axons in an amputee may terminate in 

intact muscles that have limited or lost functionality, such as the extrinsic hand muscles, 

which are located in the forearm, in a hand-loss patient. Alternatively, the lower motor 

axons could no longer be associated with muscles, as would be the case in an elbow-level 

amputee. In either case, the lower motor neurons may still be associated with reflex 

circuits that could induce unwanted, unplanned, corrective movements from the body in 

response to movements the body is not actually making. When the muscles are intact in 

these patients, contractions will induce sensory responses from stretch receptors that 

could engage reflexes despite the lack of an actual limb movement. In patients where the 

α-motoneurons terminate without connecting to muscle, there is still a possibility of a 

reflexive action through the central synapse of the α-motoneurons with Renshaw cells 

that may disinhibit antagonist muscles through Ia interneurons. Although these reflexes 

may be functionally harmless, especially if the muscles involved are missing or impaired 

in function, they are still undesirable because they may complicate the use of a neurally-

controlled prosthesis or cause discomfort.  

In SCI patients, where the same types of electrodes can be used to stimulate motor 

fibers to generate movements, this problem will be exacerbated by a total lack of feed-

forward control from the brain that results in intact reflex circuits that are hypersensitive. 

Additionally, in cases of partial paralysis, the activation of intact sensory afferents would 

cause sensation in the still-functional portions of the limb.  

Thus, an additional aim of this study was to examine the relationship between 
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muscle twitch thresholds and sensory response thresholds on each electrode by 

monitoring EMG responses in the muscles innervated by the implanted nerve. Although 

it is not strictly necessary to have exclusive access to one modality or another to create 

viable prosthetics, such selectivity would facilitate the functionality of the device. 

 

Methods 

Because previous work has been successful in selective muscle stimulation in 

feline sciatic nerve, the same model was chosen to test the selectivity of sensory 

stimulation. Each feline in the study (females, n = 6) was examined per University of 

Utah Institutional Animal Care And Use Committee protocols. Anesthesia was initialized 

with an intramuscular injection of 10 mg/kg Telazol (fort Dodge Animal Health) and 

maintained through a respirator mixture of 1-3% by volume isoflurane. To maintain a 

stable depth of anesthesia, vital signs including heart rate, rectal temperature, expired 

CO2 partial pressure, and blood oxygen saturation were monitored and recorded at regular 

intervals. The respiration rate, tadal volume, and isoflurane percentage were adjusted to 

maintain vital signs within normal surgical ranges. 

 

Surgery 

The sciatic nerve was exposed at mid-thigh via an incision parallel to the femur at 

the fascicle connection of the biceps femoris. The biceps femoris was then reflected and 

the sciatic nerve was exposed and separated from surrounding tissues through blunt 

dissection. We then implanted a 100-electrode USEA (10 x 10 electrodes) in the sciatic 

nerve using a high-speed insertion system as described in previous work (Rousche and 
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Normann 1992; McDonnall et al. 2004a). The implant was then protected with a silicone 

cuff, and the leg was closed for the duration of the experiment (Figure 2.1 A). 

 

Sensory Cortex Monitoring 

To monitor Somatosensory Evoked Potentials (SSEPs), the skull was exposed by 

an incision along the midline of the skull, and the temporalis muscle was reflected to 

allow skull screws (Veterinary Orthopedic Implants 10 mm 316L Cx screws) to be placed 

over primary sensory cortex (S1) based on skull landmarks (Figure 2.1 B) (Dykes et al. 

1980). Each skull screw was monitored against an occipital reference and recorded and 

filtered at (10-7500 Hz) on a Cerebus data acquisition system (Blackrock Microsystems, 

Salt Lake City, UT). Each screw's location relative to the specific animal’s cortex was 

confirmed posthumously through dissection.  

 

Muscle Response Monitoring 

Muscle activity was monitored on the Cerebus data acquisition system through 

pairs of fine-wire EMG electrodes (California Fine Wire Company) inserted into the 

bellies of the Medial and Lateral Gastrocnemius (MG & LG), Tibialis Anterior (TA), and 

Soleus (Sol). To ensure appropriate placement, we stimulated through EMG wires 

directly; the motions generated were used to confirm activity in the expected muscle 

through palpitation and action of the limb. The differential signal in each EMG pair was 

used to quantify muscle response. 
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 Electrophysiology 

After implantation of all electrodes and monitoring equipment, we stimulated 

through USEA electrodes using either the UINTA stimulation system or a GRASS SD-9, 

using pulse-width modulated (between 0.1 µs and 1024 µs), constant-voltage waveforms 

at 1–7 Volts. The UINTA system delivered stimulation pulses to every electrode 

individually according to a binary search routine controlled by the UINTA system. The 

maximal EMG response and the maximal cortical response were calculated by the 

UINTA system as part of its automated recruitment curve routine and were used to 

determine the pulse width of the next pulse delivered. In this way, every electrode was 

stimulated through at a variety of pulse widths such that the EMG of the maximally 

A 

 

B 

 
Figure 2.1: Neural and cortical electrodes implanted in an animal. 

 

A. The USEA implanted in the sciatic nerve. The array was implanted pneumatically 

while being supported from below by a Teflon platform. Sutures, indicated with white 

arrows, were used to tie the cuff closed after array implantation.  

 

B. Skull screw electrodes placed over S1 cortex. Stainless steel screws were advanced 

through the skull to make contact with the cortex; recording leads were soldered 

directly to the skull screws. 
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responsive muscle was saturated and the EMG recruitment of that muscle was well 

characterized. Stimulation trains were also delivered through the SD-9 at either high (50-

Hz) frequency, to generate fused muscle trains, or low (4-Hz) frequency to collect SSEP 

data. Between 16 and 64 stimuli were delivered to each tested USEA electrode, and 

cortical responses were averaged, similar to other SSEP studies (Lesnick et al. 1986; 

Highland et al.; Shokunbi and Gelb 1990). Averaged cortical recordings were examined 

for short-latency responses likely to be caused by action potentials in primary afferents. 

Due to the time required to collect SSEP data, only some electrodes were selected to run 

the low-frequency Input Output (IO) curves that are necessary for SSEP averaging. 

Electrodes were chosen for collection of SSEP IO curves on the basis of their response to 

a test train of low-frequency stimulation of 500-µs pulses (half of the maximum pulse 

width used in the experiment) at 5 volts, or their ability to stimulate either muscle or 

cortex at the lowest pulse widths, typically less than 10 µs at 5 volts, as determined by the 

UINTA stimulator. Pulse widths were adjusted by 10% for each step of the SSEP IO 

curves.  

After the responses of the array electrodes to stimulation were characterized, the 

nerve was crushed and transected distal to the implant, severing the connection between 

the nerve and lower leg. Stimulation was then repeated on electrodes that evoked SSEPS 

before the severing of the nerve. With the nerve severed, stimulation cannot cause muscle 

twitching, eliminating the possibility that SSEPs are generated by normal somatosensory 

pathways through movement of the leg.  
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Results 

 

Somatosensory Evoked Potentials 

On average, across all animals (n = 6), SSEPs with latencies of 10 ms and 20 ms, 

known as the P10 and N20 components, were reliably evoked by low-frequency test 

trains on approximately 53% of USEA electrodes tested (84 electrodes, 6 animals). The 

full array was not characterized in every preparation. Short-latency SSEP waves were 

largest in medial cortex, anterior of the ansate sulcus and posterior of the cruciate sulcus, 

consistent with studies that have used whole-nerve stimulation to generate SSEPs from 

the hindlimb nerves (Davenport et al.) (Figure 2.2). The magnitude of the response fell 

off in the lateral and posterior directions, and as distance from the ansate and cruciate 

sulci increased, in a fashion consistent with electrotonic spread from a localized source. 

Thus, EPs exhibited appropriate location and spatial selectivity. 

Cortical responses varied with stimulus intensity for all USEA electrodes that 

evoked a potential. Skull-screw electrodes consistently showed a sigmoid response to 

pulse-width modulated stimuli (Figure 2.2 B) delivered through USEA electrodes, 

indicating stronger stimuli recruited the activity of more sensory neurons. Additionally, 

on electrodes that caused a cortical response prior to nerve transaction, SSEPs persisted 

with little change in the shape of short latency waveforms when the nerve was severed 

distal to the implant, indicating that primary afferent activity was evoked in either case.  

 

Muscle Responses 

Muscle responses to USEA stimulation were similar to those in previous studies 

in that more than 50% of USEA electrodes evoked muscle responses (72.3%, n = 6  
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 Figure 2.2: Cortical responses evoked by USEA stimulation. 

A. Skull screws' positions shown in relation to the cortex as determined by posthumous 

examination. B. Recordings from 12 skull screw electrodes, positions as in A. Medial 

electrodes anterior of the ansate sulcus showed the largest response, with response 

magnitude increasing as pulse width increased. C. Cortical responses were detected without 

EMG responses on some electrodes. D. EMG responses from the same stimulation event as 

in C. E. Cortical recordings showed no response during an evoked muscle twitch (shown in 

F). F. EMG responses from the same event as shown in E.  
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animals, 84 electrodes). As in previous studies, electrodes that activated the same muscle 

were somatotopically organized, meaning they were usually near one another physically 

(Branner et al. 2001; McDonnall et al. 2004a; Dowden et al. 2009). Stimulation was 

selective for each of the muscles monitored on some electrodes, as in previous studies 

(Dowden et al. 2009).  

 

Motor and Sensory Relative Thresholds 

On 29 USEA electrodes that could evoke an SSEP, extensive IO curves of low- 

frequency stimulation were recorded to determine the relative thresholds of motor and 

sensory stimulation. Not all electrodes could be characterized in this fashion due to the 

time involved in generating an IO curve for SSEPs with low-frequency stimulation. 

Of those 29 USEA electrodes capable of evoking potentials in S1, 41% evoked 

SSEPs at pulse widths that did not cause muscle twitches while the nerve was intact 

(mean SSEP threshold of 62.5 µs ± 23.3 µs, Figure 2.2 C, D); whereas 47% recruited 

muscle twitches before sensory responses (mean twitch threshold 68.5 µs ± 37.4 µs, 

Figure 2.2 E, F). Thus, importantly, it was possible to activate either sensory or motor 

fibers selectively, at least with low stimulus strengths. For most USEA electrodes, the 

motor and sensory thresholds were very similar, varying by only a few µs, and were not 

statistically different. 

 

Discussion 

Depending on the circumstances, it may be desirable to activate sensory fibers 

without activating motor fibers (e.g., to provide cutaneous and proprioceptive input after 
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limb loss), or to activate motor fibers without activating sensory fibers (e.g., to reanimate 

paralyzed limbs after SCI). Because motor fibers are often large-diameter fibers, they 

may be likely to be activated by extracellular electrical stimulation (Szlavik and de Bruin 

1999). However, some sensory fibers associated with muscle and tendon stretch or tactile 

sensation are as large or larger, and hence may be as likely to be activated as are motor 

fibers. Furthermore, there is a wide range of fiber sizes associated with each modality, 

meaning that any given stimulation could stimulate either motor or sensory fibers, and 

possibly even both simultaneously. With intrafascicular stimulation, the proximity of the 

electrode tip to the given fibers is also an important determinant of which fibers are 

activated. 

In an intact nerve, stimulation of motor fibers could affect the sensory cortex 

through secondary mechanisms caused by foot movement, principally the stretching or 

force of contraction of the muscles involved. Even in an amputee there will likely be 

residual muscles that could be activated in this fashion, though they may not cause any 

movement about a joint. The simplest way to avoid this problemin our animal model is to 

sever the nerve distal to the implant. This solution not only eliminates the possibility of 

secondary effects being measured, but also replicates more accurately the circumstances 

in an amputee. However, in the intact nerve there also exists an opportunity to determine 

the relative thresholds of neurons of different modalities. Motor fiber activation is fairly 

easily detectable through EMG electrodes. Even single motor units, which represent the 

activity of a single neural fiber, can be detected with an appropriately placed EMG 

electrode pair due to the large potentials produced by muscle cells. However, it is 
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possible that muscle activity in a muscle that was distant from any EMG electrode would 

go undetected.  

Somatosensory potentials are not amplified in a similar fashion, and thus are 

harder to detect. By using SSEPs, which require the averaging of many responses, as an 

assay of sensory stimulation, we were probably limited to detecting the concurrent 

activity of many sensory neurons. A second difficulty with using SSEPs to detect sensory 

activation is that SSEP amplitude and latency can change due to anesthesia, nerve 

damage, and even animal temperature. Because these factors were relatively stable during 

recording sessions, there is little chance that they were significant contributors to the 

changes seen in SSEPs during the generation of an IO curve. Recordings of the SSEPs 

were also collected multiple times on some individual electrodes to determine that the 

responses were consistent. 

 Selective recruitment of both sensory and motor fibers in this experiment indicate 

that microelectrodes in vivo can elicit potentials in a small enough area to interact with 

either a uni-modal region of a fascicle or a purely sensory or purely motor fascicle. As 

fasciculation of the nerve changes along its length (Stewart 2003), the ability of 

penetrating microelectrodes to activate solely sensory or motor responses may change 

with implantation site. Some studies have shown that nerves begin clustering by sensory 

modality very early in the nerve (Ekedahl et al. 1997; Wu et al. 1998; Hallin and Wu 

2001). The implants in this study were placed in the sciatic nerve just proximal to the 

knee; it is possible that more proximal implants, closer to the separation of the dorsal and 

ventral roots, could have greater specificity for sensory/motor modality. There is 
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evidence that the changes in fasciculation trend to fewer fascicles at the proximal end of 

the nerve, which could reduce specificity in terms of the number of neurons; however, 

not all nerves have significant fascicular joining (Stewart 2003; Gustafson et al. 2009). 

The clustering of similar modality sensory fibers seen in the work of Hallin et al., 

combined with the ability of the USEA to elicit SSEPs without eliciting muscle twitches 

strongly implies that there are microzones within the nerve where there is a dense 

clustering of fibers associated with a either sensory or motor function. This organization 

of nerve fibers within the nerve is consistent with the plexiform model of nerve 

organization.  

The clustering of nerve fibers by modality and proximity of receptive field has 

implications for both stimulation and recording through intrafascicular electrodes. Fiber 

type clustering creates microzones where nearby neurons encode information addressing 

similar stimulus features. Stimulation of such a microzone could produce a response that 

is highly selective in terms of muscle/sensory response. Individual electrodes may only 

be able to elicit small percepts due to the close thresholds of the sensory and motor 

responses seen in this study. However, stimulation through multiple electrodes capable of 

selective sensory activation could be combined to create a bigger percept without 

engaging muscles simultaneously. Additionally, recordings made from an electrode 

situated in such a microzone would be useful for decoding sensation (or motor command) 

even if the recordings have a low signal-to-noise ratio or are multiunit recordings because 

the neighboring neurons would convey similar information.  

Hence, we propose that single unit recordings are not strictly necessary for use in 
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PNS prosthesis development, because the multiunit activity in such a microzone could be 

used to accurately decode what region and modality were being activated. Threshold 

crossings of multiple unit recordings and local field potentials in the CNS have already 

been used by several researchers to accurately decode data in the cortex (Carmena et al.; 

Chestek et al. 2009; Fraser et al. 2009). 

Motoneurons may cluster in a similar fashion, as evidenced by the musculotopic 

organization of stimulation maps in this and previous experiments (McDonnall et al. 

2004a) (Dowden et al. 2009). Similar to the argument for intrafascicular stimulation and 

recording in the sensory system, motoneuron clustering would be advantageous 

selectively stimulating motor fibers in a SCI patient, or for decoding intent in a limb-loss 

patient.  

In this study, we were able to determine only the areas of cortex activated, but not 

the sensory modality, or modalities, being engaged. Sensory modalities such as touch and 

proprioception are useful in prosthetics; in contrast, we desire to avoid recruiting pain 

fibers. Although it is not possible to determine the modalities engaged from an SSEP, it is 

unlikely that pain fibers will be common responders because they are, on average, much 

smaller than cutaneous mechanoreceptors and stretch receptors.  

The SSEP response onset latencies in this study were short, from 5–10 ms, 

indicating primary afferent activation. Relative thresholds of motor and sensory fibers 

vary by electrode. The close thresholds of motor and sensory responses on many 

electrodes likely relate to similar fiber sizes for several sensory modalities and motor unit 

types. This implies that the electrode position is most important in determining the 
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specific fibers accessed. Both muscle and cortex could be recruited on some electrodes 

which could not recruit the other modality, indicating high specificity for USEA 

stimulation.  
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CHAPTER 3 

LONG-TERM EMG-FREE RECORDING AND  

SELECTIVE MUSCLE ACTIVATION WITH  

 UTAH SLANTED ELECTRODE ARRAYS  

IN A FELINE MODEL
1
 

 

Abstract 

Recording and stimulation via high-count penetrating microelectrode arrays 

implanted in peripheral nerves may help restore precise motor and sensory function after 

nervous system damage or disease. Here we report successful long-term in-vivo recording 

and muscle activation through the Utah Slanted Electrode Arrays (USEAs) implanted in 

cat sciatic nerve. Although previous work had demonstrated safety and the ability to 

activate muscles with similar long-term implants (Branner et al., 2004), several major 

challenges remained: 1) to maintain stable electrode impedances; 2) to maintain viable 

recordings of nerve action potentials; 3) to overcome contamination of unit recordings by 

myoelectric (EMG) activity in awake, moving animals; and 4) to maintain selectivity and 

functionally useful long-term muscle activation. In conjunction with improvements to 

USEAs themselves, we redesigned our USEA containment and connector systems to 

minimize relative motion between the array and connector, avoid wires' crossing of 

joints, include an on-array reference, and provide electrical isolation and physical 

protection for the array. In contrast to earlier work, electrode impedances remained 

                                                           
1
 Portions of this chapter reprinted with permission from IEEE, Copyright © 2011, IEEE (Clark et al., 2011)  
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relatively stable for periods up to 4 months (the terminal experimental time point). 

Further, we successfully recorded unit activity from USEAs and effectively eliminated 

EMG contamination of unit recordings in the moving animal via our containment system. 

As an example of functional usefulness, broadband or spike-threshold data were acquired 

during imposed limb movements in an anesthetized animal using a wireless recording 

integrated circuit attached to implanted USEAs. These data were then decoded blindly to 

drive a virtual prosthetic limb in real time up to 127 days after implantation of the USEA 

(r = 0.91 in cross validation tests). Chronic stimulation indicated that selectivity of 

muscle activation (the ability to recruit one particular muscle without other muscles) was 

also maintained. Demonstrating functionality, multi-electrode, multi-USEA interleaved 

stimulation through USEAs chronically implanted in femoral, sciatic, and muscular 

sciatic nerves produced fatigue-resistant sit-to-stand behavior up to 2 months after 

implantation (ongoing experiments). These results support the possibility of using 

USEAs in peripheral nerves to provide motor control and cutaneous or proprioceptive 

sensory feedback in individuals after limb loss or spinal cord injury.  

 

Introduction 

The upper and lower limbs and digits exhibit high innervation densities, thereby 

allowing fine motor control and high-resolution, multi-modal sensory input. 

Consequently, to restore motor and sensory function effectively after limb loss or spinal 

cord injury, peripheral nerve interfaces will need to record from and stimulate a large 

number of different sites in a highly selective manner. for example, because residual 

nerves remain viable after limb amputation, recordings obtained from motor fibers could 
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provide natural, intuitive control signals for a highly dexterous prosthetic arm, and 

stimulation of sensory nerves could evoke cutaneous and proprioceptive percepts. 

Similarly, after spinal cord injury (SCI), recordings from sensory fibers could provide 

cutaneous and proprioceptive information that could be used to evoke percepts (e.g., via 

stimulation of somatosensory cortex), and stimulation of the intact motor nerve could 

evoke muscle contractions. These first-order requirements strongly imply the need for 

multiple intrafascicular electrodes whose active tips closely abut small subsets of motor 

or sensory nerve fibers. 

 

Current Technologies 

Of the many different causes of paralysis, SCI receives the most research 

attention due to its disproportionately high cost of treatment and adverse affects on 

quality of life. Clinically usable systems, such as Parastep, can restore stance to paralyzed 

individuals, but they rapidly fatigue the muscles involved and have limited acceptance 

due to the high physical effort required by the patient (Brissot et al. 2000; Spadone et al. 

2003). The strong benefit from exercise of paralyzed limbs gives us additional reasons to 

explore better stimulation paradigms that could extend the time a patient could exercise. 

With relatively nonselective stimulation of paralyzed limbs, current clinical systems also 

face the possibility of stimulating antagonist muscles that work against the planned 

movement.  

Limb loss, especially the loss of a hand or arm, can greatly compromise a 

patient’s ability to interact with the environment. Eighty percent of limb loss patients also 

suffer from phantom pain syndrome, a condition that causes the patient to experience 
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painful sensations from the missing limb (Flor 2008). Phantom pain does not typically 

respond to treatments for pain, but ongoing research suggests the possibility of using 

somatosensory or motor stimulation to prevent this condition from developing (Roux et 

al. 2001; Saitoh and Yoshimine 2007; Ray et al. 2009). 

Prosthesis technology available today takes electromyographic (EMG) signals 

from either the remnant limb's muscles or muscles innervated with remnant limb nerves 

surgically redirected to still-existent muscles (Kilgore et al. 2006; Kilgore et al. 2008). 

Targeted reinnervation, wherein remnant nerves are surgically attached to separated 

muscles, takes advantage of the fact that the Peripheral Nervous System (PNS) is still 

carrying signals of intent to the missing limb by remapping it to a new muscle (Kuiken et 

al. 2004); (Kuiken et al. 2009).  

Intrafascicular stimulation could build upon the advantages of current treatment 

technologies for SCI or limb loss by providing highly selective stimulation and recording 

capabilities in the PNS. The USEA (Figure 1.4), for example, has been used to selectively 

stimulate muscles to produce stance in felines (McDonnall et al. 2004a; Normann et al. 

2005). In addition to the stimulation capabilities offered by an intrafascicular electrode, 

such a device could also allow for recording of neural signals, thereby allowing for two-

way communication (Branner and Normann 2000 Branner, 2004). This ability to record 

could allow an SCI prosthesis to return sensation from a reanimated limb, or infer 

intention directly from the remnant limb of an amputee without the need for a prosthetic 

in the motor cortex.  
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Proposed Advantages of the USEA 

Among its advantages, the USEA provides ~100 independent sites of stimulation 

and recording a high degree of selectivity and ease of implantation (Rousche and 

Normann 1992; Nordhausen et al. 1996; Branner et al. 2004; McDonnall et al. 2004a, 

2004b; Clark et al. 2008; Dowden et al. 2009). The 100 microelectrodes are spaced 400 

μm apart on a 10 x 10 grid, with lengths from 0.5 to 1.5 mm. A single USEA thus 

provides almost complete coverage of both the width and depth of the cat sciatic nerve. 

The USEA provides highly selective stimulation and recording for multiple different 

motor and sensory fibers in cat hind limb nerves (Branner et al. 2001; Branner et al. 

2004; McDonnall et al. 2004a, 2004b; Clark et al. 2008; Wilder et al. 2009), and, more 

recently, in monkey arm nerves (Chapter 4). A similar Utah Electrode Array (UEA) with 

equal-length electrodes has been used successfully for years in motor cortex of paralyzed 

humans (Simeral et al.) and has been implanted chronically in the median nerve of one 

individual without pain or loss of hand function (Warwick et al. 2003). 

The work of Branner (Branner et al. 2004) first examined chronic USEAs and 

containment systems to protect and stabilize the array in cat sciatic nerve. These 

important initial studies demonstrate that long-term USEA implants are relatively benign 

and cause little or no behavioral locomotor deficits. The ability to evoke motor responses 

remained for the life of the implant. However, in general it was not possible to record 

single units long term, and recordings were contaminated by myoelectric (EMG) activity 

during movement. Additional challenges included large, rapid drops in electrode 

impedances, increasing stimulation thresholds, and failure of connectors and electrodes 
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(perhaps due to broken lead wires), particularly in early implant systems. 

Here we report substantial progress toward addressing these remaining 

challenges, including in particular the ability to obtain long-term, EMG-free unit 

recordings from USEAs implanted in cat sciatic nerve. Further, to demonstrate their 

functional utility, we recorded neural signals via a 100-channel wireless integrated circuit 

(Harrison et al. 2009) and used the wirelessly transmitted spike-threshold data to drive a 

virtual prosthetic limb in real time. 

 

Materials and Methods 

Six purpose-bred adult female cats were used in this study. All experimental 

procedures were approved by the University of Utah Institutional Animal Care and Use 

Committee. All animals were chronically implanted with a Utah Slanted Electrode Array 

(USEA) in the sciatic nerve in the left leg. Five USEAs were implanted proximal to the 

nerve’s bifurcation into the tibial and fibular nerves, and, in one case, USEAs were 

chronically implanted in both the femoral nerve and the high sciatic, proximal to the 

bifurcation of the muscular branch of the sciatic nerve. The data provided herein will 

relate only to implants in the sciatic nerve. The six implants are further distinguished by 

whether the transcutaneous connector system was implanted in a single stage (one-stage 

implant) or in two stages (two-stage implant). Details of the implants are provided on an 

individual-animal basis in Table 3.1. 
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Table 3.1: Feline connector systems 
 

Cat Number Connector Type 
2 stage set-in time 

(days) 

Duration of implant 

(days) 

F08-029 
TDT Cat Bone Mount in 

2 stages 
69 70 

F08-048 
TDT, bone mount in 1 

stage 
0 33 

F08-059 

TDT, bone mount in 1 

stage, bone cement 

assist 

0 127 

F08-062 
TDT, bone mount in 2-

stage 
167 127 

F09-029* 
TDT, bone mount in 2-

stage 
190 >365 

F09-063** 
TDT, bone mount in 2-

stage 
96 65 

* additional implants in the femoral nerve and muscular branch of the sciatic  

**50 electrode USEA, implanted in high sciatic, additional implant in the femoral nerve 

 

 

Implantation Surgery 

Two to 6 hours prior to induction, analgesia was initiated with buprenorphine 

(Buprenex®, 5 µg/kg, IM). Anesthesia was induced with a cocktail of Tiletamine and 

Zolazepam (Telazol®, 6 to 13 mg/kg IM) and maintained with isoflurane (0.5 to 3%). 

While under the induction anesthesia, the animal was intravenously cannulated and 

tracheally intubated. Following cannulation, a single injectable dose (2.5 to 5 mg/kg, IM 

injection) of the antibiotic enroploxacin (Baytril®) and atropine (0.02 to 0.074 mg/kg, IV), 

to control tracheal secretions, were administered. Lactated Ringer’s solution was 
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administered intravenously at a rate of 8-12 mL/kg/hr. The animal was artificially 

ventilated (20 to 40 breathes per minute, 75 to 150mL tidal volume) with oxygen-

augmented air. The heart rate, SAO2, ETCO2, and rectal body temperature were monitored.  

The minute volume, proportion of oxygen augmentation, and isoflurane levels were 

adjusted to maintain a heart rate of 120 to 200 beats per minute, a SAO2 percentage above 

90%, and ETCO2 of between 20 and 40 mm-Mg. A warmed water blanket and a heat lamp 

were used to maintain a core body temperature between 37 and 39 °C. After a stable level 

of anesthesia was established under isoflurane, the connector system and/or the USEA were 

implanted. 

For one-stage surgeries, the array and entire connector system was implanted 

during a single surgery. For two-stage surgeries, a mounting plate was implanted during a 

first surgery, and the array and the remainder of the connector system were implanted 

during a second surgery. The second surgery followed the first surgery by at least 2 

months.  

For all implants, a long, thin Titanium plate (50 mm by 5 mm by 1.5 mm thick) was 

attached to the femur via Titanium self-tapping bone screws (VOI). For one-stage 

surgeries, the remainder of the connector system was immediately attached to the 

implanted plate, and the USEA was implanted. For two-stage surgeries, the incisions were 

closed with suture, and the animal was recovered (as described below). During a second 

surgery, the remainder of the connector system was attached to the implanted plate ,and the 

USEA implanted. 
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To expose the sciatic nerve for USEA implantation (and to expose the femur for the 

femur connector system), a 5-6 cm long incision was made from the knee towards the iliac 

crest, and the biceps femoris muscles were separated and retracted. After freeing the sciatic 

nerve from the surrounding connective tissue, a rigid plate, with the gold mesh screen of 

the containment system (described below), was slid under nerve at the site of USEA 

implantation. The USEA was positioned on the sciatic nerve 1-3 cm proximal to the 

nerve’s branching into the tibial and fibular nerves and implanted using the pneumatic 

impulse inserter technique (Rousche and Normann 1992). After USEA implantation, a 

containment system was wrapped around the nerve and array to help keep the array in 

place. All Pt/Ir reference wires (20IR2T, Medwire®) were placed in the tissue adjacent to 

the nerve. 

After implantation of the connector system and/or the USEA, the incisions were 

closed with suture, and the animal was recovered by termination of the isoflurane 

anesthesia. Following recovery from the survival surgery, oral doses of enroploxacin were 

administered (one 22.7 mg Baytril ® tablet administered once a day) for the three days 

following the surgery. Continual analgesia was provided by an adhesive, transdermal 

Fentanyl patch (25 µg/hour) attached to the animal in the area overlying the shoulder 

blades. Prior to attaching the patch, skin was closely clipped, and this region was cleaned 

with a damp cloth and allowed to air dry. The patch was attached approximately 2 to 3 

hours before the end of the surgery and removed when depleted (approximately 3 days). 

Between 7 and 14 days following the surgery, all skin closure sutures were removed. 
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USEA Manufacturing 

To address the previously observed drops in impedance, electrode or wire shunting, 

and de-insulation, changes in the processes of array manufacturing were made that included 

improved precision in electrode geometry, SIRIOF tip metallization, and encapsulation of 

electrode shanks and wires with Parylene C (Bhandari et al.; Hsu et al. 2009), and wire 

bonding, instead of soldering, of the wires from the array to the electrical connector. In 

vitro testing of these improvements indicates that the electrodes will be better insulated 

against saline leakage and tip degradation. (Negi et al.; Sharma et al.). Before implantation 

of the USEA, an Automatic Impedance Tester (AIT) (Gunalan et al. 2009) measured the 

individual electrode impedances, both conventionally and at the electrode tip (in the 

absence of shunting on any electrode). Four near-corner long electrodes with large 

exposed tips and low impedances converged to common bus and served as an on-array 

electrical reference, in addition to conventional Pt/Ir wire references. Electrodes 

measuring over 2 MΩ were assumed to be broken, and rejected from analysis. 

 

Transcutaneous Connector 

Connector and containment systems were modified from previous designs to 

improve skin closure around transcutaneous portions of the system and to increase array 

stability. All versions of the connector were made from medical grade titanium and 

designed to make the transcutaneous portion of the connector as small as possible to limit 

tissue insult. Additionally, the transcutaneous portions of the connectors were surface 

treated to increase the surface area and roughness of the skin-interface surfaces. The 

connector systems were surface treated by Orchid Coating (Southfield, MI). 
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Initial implant systems, for which data are not reported here, were back mount 

systems based on previously reported designs (Branner et al. 2004). Because of previous 

history with similar designs our pilot back mount system was designed to protect wires 

inside of the transcutaneous connector and routed wires from the transcutaneous connector 

on the animal's back to the implant site in the distal sciatic nerve. Because of wire breakage 

at the hip, most likely due to repetitive stress where the wires crossed the hip joint, the 

connector system was redesigned to be placed on the femur, which reduced the relative 

motion between the transcutaneous connector system and the implanted array. This also 

was anticipated to provide a more stable base for a two-stage implant due to the bone 

integrating with the connector’s base-plate (Figures 3.1, 3.2). ). Both one-stage (n = 2) and 

two-stage (n = 4) implants of the femur-mounted connector system were performed. The 

electrical connector for the femur mount connector system was designed to attach to a ZIF-

Clip 96 (TDT) active headstage. The transcutaneous portion of the connector was a 

rounded 5 mm by 20.5 mm rectangle, and the extracorporeal portion was a rounded 16-mm 

by-28.5 mm rectangle that was 35.25 mm tall. The height from the bone to the 

extracorporeal portion was 18 mm, which was sufficient to traverse intervening muscle and 

to clear the outer surface of the skin. Two cats in the study also received additional USEA 

implants in the femoral nerve or muscular branch of the sciatic nerve (Table 3.1). 

 

Containment System 

To protect the array after implantation, we enclosed the array in a custom-made 

containment system composed of gold and silicone. A 13-mm by 19-mm gold mesh screen 

(#52 gold mesh, Alfa Aesar, Ward Hill, MA) whose edges had been coated with Parylene- 
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A  B 

Figure 3.1: The connector and containment system around an in vivo implant. 

 

A. The gold mesh containment system in place under the nerve  

B. Containment and connector system with silicone encapsulation 

(Clark et al., 2011) Copyright © 2011, IEEE  

 

   

 

Figure 3.2: Connector and containment system for femur-mounted implants. 

 

A. The transcutaneous connector system designed for mounting on the femur consists of 

a bone plate and a separate transcutaneous portion holding the PCB of the array that can 

be implanted in a subsequent surgery. B. A schematic of the containment system 

components shown before it is closed around the array and nerve. (Clark et al., 2011) 

Copyright © 2011, IEEE  
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C to prevent unraveling of the screen and to minimize snagging on tissue was initially 

placed under the portion of the sciatic nerve exposed, prior to implantation of the USEA 

(Rousche and Normann 1992). After implantation of the USEA, the gold mesh was  

wrapped around the array and nerve. To create as close a fit as possible, a fast-curing 

silicone (Kwik-Cast) was used to fill gaps under the mesh and to join the edges of the gold 

mesh to one another (Figure 3.1 B). A wire connected the mesh to the titanium connector to 

provide a path to ground during recording sessions.  

 

Postsurgical Physiological and Behavioral Testing 

Chronically implanted animals were followed for a period of one to five months 

(Table 3.1), at which time all but one animal was sacrificed for quantitative histological 

analyses (data to be reported separately). Each animal’s locomotive behavior was 

assessed after surgery and subsequently throughout the study to confirm normal leg 

function. 

We obtained four different physiological measures in postsurgical tests at frequent 

intervals immediately following USEA implantation, and subsequently at successively 

longer intervals. The four measures are: (1) electrode impedance (both conventional and 

tip) with the AIT under anesthesia, (2) sensory unit recordings when the animal was 

anesthetized while the experimenter manually manipulated the limb, (3) sensory and 

motor unit recordings when the animal was awake while the animal was stationary and 

moving, and (4) the ability of electrical stimulation of electrodes to evoke motor 

responses under anesthesia. Neural signals and EMG were captured on a Cerebus 



76 
 

 
 

 

recording system. During each recording session, the thresholds for unit detection were 

set to 6 times each channel's root mean square. 

Individual electrode impedances were measured by the AIT using a 1-kHz, 10-

mV sine wave in the traditional fashion as well as in the absence of shunting to other 

electrodes (which presumably represents the impedance at the tip of a single electrode) as 

described in Gunalan et al 2009 (Gunalan et al. 2009). During electrical stimulation, 

motor responses were sensed with either EMG signals recorded with fine-wire electrodes 

acutely implanted in the Medial and Lateral Gastrocnemius (MG & LG), Tibialis 

Anterior (TA), Soleus (Sol), and the Peronial muscles (Per) or ground reaction force 

measured with a 6-axis force plate. The motor response signal was used as feedback to 

generate automated input/output curves between the stimulus duration, of a constant 

voltage stimulus, and the motor response. All anesthetized recordings were performed 

after induction with Telazol® (6 to 13 mg/kg IM) and maintenance with isoflurane (0.5% 

to 1%). 

 

Results 

General 

As in previous work (Branner et al. 2004), USEA implants appeared behaviorally 

benign. Cats showed little or no signs of locomotor deficits shortly after recovery from 

surgery. They used the implanted hindlimb fully in a weight-bearing manner. Animals 

were allowed to move freely around their enclosures and would bump into objects with 

the connector during locomotion, subjecting it to mechanical stress. Although the small 

sample sizes preclude definitive conclusions, the two-stage implants (n = 4), in which the 
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bone plate was first implanted separately to allow time for osseointegration, were 

mechanically more stable than the one-stage implants, both of which loosened at the bone 

attachment site. In one case, we repaired the loosened connector with bone cement, and it 

remained stable for 3 weeks before ultimately failing. The implant in the second one-

stage cat was strengthened with bone cement at the time of implantation. Even with this 

added initial support, after 127 days it ultimately loosened as well. To the contrary, none 

of the two stage implants came loose from the femur.  

 

Impedances Stable 

Conventionally measured electrode impedance and tip impedance remained 

relatively stable across the lifetime of the implant. There was a small rise in impedance 

immediately after implantation (Mean increase of 26 KΩ ± 11.4 KΩ, for tip impedance, 

14 KΩ ± 6.7 KΩ for conventional impedance), presumably because tissue impedances 

were higher than impedances of saline test solutions. Impedances remained relatively 

constant for several weeks or months thereafter (Figure 3.3). Additionally, shunting of 

electrodes, as measured by the AIT did not increase over the lifetime of the implant. In 

most cases there was little apparent lead-wire or electrode breakage evidenced by 

impedances (> 2 Mohm).  

 

Unit Recordings 

 Multiple electrodes recorded either single or multiple units in each long-term 

animal. Unit activity from anesthetized animals often showed clear units that strongly 

responded to specific experimenter stimuli. Stimuli delivered included toe dorsiflexion  
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and plantarflexion, ankle dorsiflexion and plantarflexion, ankle abduction and adduction, 

and hair brushing of the hindlimb (Figure 3.4). The functional usefulness of these types 

of recordings was tested by performing a real-time decode of limb position from the 

recordings of USEA electrodes with an accuracy of R = 0.91. 

Shortly after implantation, across all animals 40 + 7 (mean ± SEMn = 6) units 

were recorded in these anesthetized sessions. There was a drop in unit activity over the 

course of the first month. Thereafter, the number of units recorded stabilized or increased 

(depending on the animal) for a period of weeks or months, until animal sacrifice (Figure  

 
 

 

Figure 3.3: In vivo impedances over time. 

 

USEA electrode impedances (mean + SEM) remained relatively stable across time. 

Day 0 to 3 weeks, n = 6. At 2 months, n = 4. At 3 and 4 months, n = 3. (Clark et al., 

2011) Copyright © 2011, IEEE  

0

100

200

300

Im
p

e
d

a
n

c
e

 (
K
Ω
)

Time after Implant

Tip Mean Impedance

N = 5 N = 4 N = 3



79 
 

 
 

 

 
 

Figure 3.4: Anesthetized recordings. 

 

Stimulus driven (channels 3, 13, and 15), spontaneously active (channel 11 units from a 

single session are shown. Stimulus marker (in red) indicates toe dorsiflexion. Isolated 

unit traces (which passed the threshold indicated in red on the left trace) shown to the 

right for each channel. (Clark et al., 2011) Copyright © 2011, IEEE  

 

 

3.5, at 4 months, 33 + 9 units recorded per USEA, n = 3). Histological examinations of 

cats with similar sciatic implants (Christensen 2011) indicate that active neuron growth & 

repair occurs as late as 160 days after implantationaround the electrode shanks, implying 

that it may be possible for the number of axons near an electrode to increase over time. 

 

Containment Effectiveness 

To examine the ability of the containment system to shield neural recordings from 

contamination by myoelectric activity, we also recorded from awake, moving animals. In  
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conjunction with use of on-array references, the shield dramatically reduced 

contamination by EMG (Figure 3.6).  

Recordings in awake animals showed a greater number of electrodes with units, 

both multiple and single units, than did recording in anesthetized animals, suggesting that 

USEAs recorded motor as well as sensory discharges. USEA electrodes, using the 

shielded reference, were thus able to record unit activity for up to 4 months (Figure 3.7),  

 

 
 

 

Figure 3.5: Mean number of electrodes recording neural activity per array. 

 

The number of single/multi-unit channels recorded through USEAs chronically implanted 

in sciatic nerve remained relatively stable for several months (the terminal experimental 

time point). Number of cats as indicated in Figure 3.3. (Clark et al., 2011) Copyright © 

2011, IEEE  
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     A B 

Figure 3.7: Long-term single unit recordings in an awake animal. 

 

A. Single units on channels 10 and 94 (on-array reference). Multi-unit activity is visible 

on channel 11. Red line indicates cat transitioning from sit to stand. B. Single units on 

channels 60 and 61 (on-array reference). (Clark et al., 2011) Copyright © 2011, IEEE  

 
 

Figure 3.6: EMG-free chronic recordings from sciatic nerve in an awake cat. 

 

Left: Recordings obtained using the on-array reference within the containment-system shield 

were nearly entirely free of EMG contamination even during movement (bottom marker 

trace). Right: Recordings obtained with reference wires outside the containment-system 

shield showed large myoelectric contamination on all channels. (Clark et al., 2011) 

Copyright © 2011, IEEE  

 

 



82 
 

 
 

 

the terminal experimental time point for histological purposes. Even at the late time 

points of the experiment, the units recorded in awake animals were often correlated with 

specific animal movements, such as sit to stand.  

 

Muscle Activation 

Stimulation through individual USEA electrodes evoked contractions in the 

muscles necessary for stance and gait in sessions throughout the study. The number of 

effective stimulating electrodes reduced in number at the outset, before returning to near-

initial levels, similar to the trend observed with unit recordings (Figure 3.8). Similar to 

results in previous experiments (Branner et al.), absolute threshold to evoke a motor 

response increased over time for most electrodes. However, even at the longer pulse-

widths of voltage pulses delivered in later sessions, single-electrode selectivity for single 

muscles remained on many electrodes (Figure 3.8, dashed line).  

 Selectivity Index (SI) of the motor responses was quantified using the formula: 

 

 

(Dowden et al. 2009). Electrodes showed some similarity in the muscles they could 

recruit from session to session but were not reliably the same across sessions. 

Musculotopy was observed in every implant at the time of implantation, as in previous 

studies (Branner et al.; McDonnall et al.); however, the musculotopy of the nerve 

changed over time (Figure 3.9). The previously mentioned histological results 

(Christensen 2011) indicating axons continue to grow in and around the electrodes could 

effect selectivity as well as recording. 
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Figure 3.8: In vivo stimulation and selectivity over time. 

 

SEM bars shown. The solid line indicates the mean SI of all electrodes, across all 

implants for each time point. An SI of one would indicate recruitment of a single muscle 

with no recruitment of other muscles. The dashed line indicates the proportion of 

electrodes on the array capable of evoking any motor response using a maximum pulse-

width of 512 µs at 5 V. (Clark et al., 2011) Copyright © 2011, IEEE  
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Figure 3.9: USEA motor response maps across time for one animal. 

Each square in a grid represents the response of a muscle to stimulation of an electrode. 

The responding muscle is represented by the symbol in the square. Muscle responses for 

individual electrodes changed over time. (Clark et al., 2011) Copyright © 2011, IEEE  
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In two animals, the motor responses were also used to generate sit-to-stand 

behavior while the animal was under anesthesia, further validating the functional 

usefulness of the long-term motor responses. The stance generated by stimulation through 

the USEA was made fatigue resistant as in (Frankel et al.) by interleaving multiple 

electrodes activating the same muscles. By using this technique of stimulating multiple 

electrodes capable of activating the same muscle in a non-synchronous fashion, the motor 

units associated with a specific electrode were not rapidly fatigued. 

 

Discussion 

 

These data show the successful long-term recording of multiple and single unit 

activity from the PNS in an awake animal with a high-channel count penetrating 

electrode in the challenging environment of the PNS. The persistent recordings in this 

study show the effectiveness of stabilizing the implant physically with some kind of 

protective system. Physically coupling the array and the nerve into which it is implanted 

minimized the array backing out of the nerve, as seen in Branner (2004) and minimized 

movement of the electrodes within the nerve (Christensen 2011). Late recording sessions 

showed some single units that strongly encoded specific stimuli even in an awake and 

moving animal. Additionally, we could record a number of units with threshold crossing 

data sufficient to accurately decode limb position (using only threshold crossings in 

cross-validation, r = 0.91) as late as 4 months. Both of these results indicate that long-

term PNS implants can record activity that will be useful for the control of prosthetic 

devices.  

By attaching the containment system to earth ground during recordings and using 
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a reference electrode within the containment system, we were able to eliminate much of 

the contamination of non-neural signals. This strategy may be complicated in a clinical 

prosthesis for a mobile patient, where an earth ground is not available. Even in this case, 

a circuit ground should be effective in removing electrical interference introduced from 

the outside of the recording system. Recordings taken with the grounded containment 

show that extra-neural noise can be removed by simple noncomputational methods. Such 

considerations are important as scientists try to reduce the size and power consumption of 

all elements of a prosthesis in their attempts to make such a device wearable and long-

lasting.  

Neural interfaces may be implanted for decades in clinical use. Therefore, it is 

important to demonstrate viability lasting many years. Although the work herein follows 

intraneural implants only over the course of a few months, it represents important 

progress toward that goal. Unit counts increasing at later time-points most likely indicates 

the recording of new fibers growing close to the electrode tips (Christensen 2011). If this 

process continues (Ceballos et al. 2002; Lago et al. 2007), we can expect performance of 

the array to continue to change over the life of the implant.  

Rising stimulation threshold levels were seen in this study as in previous studies 

on the USEA (Branner et al. 2004). Threshold increases and reductions in the number of 

responsive electrodes could be due to tissue encapsulation of electrodes, or neurons near 

the electrodes dying or changing positions. Although thresholds increased, selectivity 

largely remained in all muscles necessary for coordinated stance. The long-term selective 

muscle activation achieved in this study was successfully used to generate fatigue-
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resistant muscle contractions, confirming that the previous results of McDonnall et al 

extend into the chronic time frame (McDonnall et al. 2004b; Dowden et al. 2009). The 

generation of coordinated multijoint stance in these and related experiments is an 

important step toward natural motor restoration prostheses. These initial results achieving 

selective stimulation are good, but improvements to the selectivity of stimulation are still 

possible. Current steering through the USEA is a promising possibility that may give 

experimenters even more focal stimulation.  

The changes in musculotopy observed in this study have important implications 

for the long-term implantation of USEAs for FES. The timescale of the changes in 

musculotopy will determine how useful such a device can be for creating a prosthesis 

designed for daily use. Rapid changes in the electrode-muscle relationships, such as that 

caused by movement of the array relative to the nerve, would complicate the 

development and use of a neural interface by requiring frequent recalibration. Slower 

changes in the electrode-muscle relationships, such as that caused by neural growth near 

the electrodes, may not have a major impact on the day-to-day operation of a neural 

interface, because the device would need less frequent recalibration.  

The nature of the day-to-day changes in musculotopy could not be examined with 

this experimental design because repeated anesthetization of an experimental animal can 

cause health problems. Thus, to acquire more regular information about the success and 

selectivity of muscle activation through the USEA will require a stimulation paradigm 

that can be used in an awake animal. Chronically implanted EMG electrodes would make 

day-to-day EMG comparisons possible and allow for stimulation to be easily quantified 
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in an awake animal. In an awake animal, it will be difficult to determine evoked EMG 

activity from volitional EMG activity. However, a nerve block proximal to the array 

implantation, achieved by injection of Lidocane or a similar drug, would eliminate the 

generation of volitional EMG activity, and allow researchers to assess EMG function in 

an awake animal at more frequent timepoints than could be done with a repeatedly 

anesthetized animal.  

Multiple improvements to the array manufacturing and the design of the 

transcutaneous connector have contributed to improved electrode stability. New USEA 

and lead wire insulation may have reduced previously seen drops in impedance, and 

together with SIROF tips, improved unit recording capabilities. Stable impedances, 

particularly tip impedances, indicate that electrode tips are not changing over time. Stable 

shunting values indicate that no fluid leakage occurred in either the array or the wire 

bundle.  

The femur-mount connector allowed lead wires to avoid crossing moving joints, 

thereby reducing wire bending and potential breakage. Further, the bone mount and the 

two-stage surgical approach allowed for osseointegration and good connector stability. 

High-density 96-pin connectors provided access to almost all 100 USEA electrodes and 

allowed for a reduction in overall connector size. Nonetheless, the skin never fully closed 

around the transcutaneous post, most likely due to the large movements of the biceps 

femoris very near the surface of the transcutaneous post. Though the skin continued to 

separate from the implant, the wound remained small and did not become infected with 

preventative topical antibiotics.  
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Because wound closure remained one of the most obvious problems to a 

comfortable long-term implant, we additionally investigated wireless technology and 

decoding via only threshold crossings. The recent, successful development and 

implementation of wireless technologies presages further enhancements of long-term 

reliability and performance (Harrison et al. 2008). Enhancements to overall array stability 

and electrode functionality are largely independent of the connector system used and will 

benefit either wired or wireless recordings. A fully wireless device may require a 

different containment system, to accommodate signal transmission. 

Future improvements to the design of the connector could include alternative 

surface treatment to enhance skin adhesion, smaller connectors using either higher-

density plugs, on-board ICs to digitize signals, or further wireless technology to replace 

the connector entirely. 

Although further increases in unit yield and long-term stability remain desirable, 

the present results support the possibility of using USEAs in peripheral nerves to provide 

motor control and cutaneous or proprioceptive sensory feedback in individuals after limb 

loss or spinal cord injury. 
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CHAPTER 4 

INTRAFASCICULAR STIMULATION OF MONKEY 

ARM NERVES EVOKES COORDINATED GRASP 

AND SENSORY RESPONSES
2
 

 

Abstract 

High-count microelectrode arrays implanted in peripheral nerves could restore 

motor function after spinal cord injury or sensory function after limb loss. In this study, 

we implanted Utah Slanted Electrode Arrays (USEAs) intrafascicularly in arm nerves of 

anesthetized rhesus monkeys (n = 4) at the elbow or shoulder. Input-output curves 

indicated that pulse-width-modulated single-electrode stimulation in each arm nerve 

could recruit single muscles with little or no recruitment of other muscles. Stimulus trains 

evoked specific, natural, hand movements, which could be combined via multielectrode 

stimulation to elicit coordinated power or pinch grasp. Stimulation also elicited short-

latency evoked potentials (EPs) in primary somatosensory cortex, which might be used to 

provide sensory feedback from a prosthetic limb. Recordings from sensory afferents 

showed units that responded to changes in finger and wrist position, which might be used 

to provide sensory feedback from paralyzed limbs for SCI patients. These results 

demonstrate a high-resolution, high-channel-count, bidirectional interface to the 

peripheral nervous system for restoring hand function after neural injury or disruption.

                                                           
2
  Portions of this chapter are reprinted with permission from the Journal of Neurophysiuology (Ledbetter, 

et al. 2013) 
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Introduction 

Disruptions of neural transmission resulting in paralysis—primarily from spinal 

cord injury (SCI), but also from lesions, stroke, head injuries and acute nerve injury—

leave the patients’ limbs and other affected body parts intact, but partially or totally 

unable to move. One emerging treatment for paralyzed individuals is Functional 

Electrical Stimulation (FES) (e.g., ParaStep I, Freehand, Vocare, and IST-12) (Martens et 

al.; Brissot et al. 2000; Fromm et al. 2001; Kilgore et al. 2008). FES-based prostheses can 

enable paralyzed individuals to grasp objects with a few simple grips, or even enable 

paraplegics to walk a short distance in conjunction with external support. However, FES 

systems can be fatiguing and relatively difficult to use because they typically activate 

near-maximal contractions, preferentially activate fatigable motor units, and provide no 

somatosensory or proprioceptive sensory feedback (Popovic et al. 1993; Spadone et al. 

2003).  

The 100-electrode Utah Slanted Electrode Array (USEA) provides a prime 

candidate for restoring hand function in paralyzed patients by activating motor fibers, and 

may ameliorate some of the challenges associated with full-muscle FES or extraneural 

stimulation. The USEA electrodes are arranged in a 10 x 10 configuration, spaced at 400-

µm intervals, with electrode lengths ranging from 0.5 mm to 1.5 mm (Branner and 

Normann 2000), thereby providing relatively complete coverage of a nerve. Because the 

electrodes penetrate directly into the nerve fascicles, their tips closely abut different 

populations of motor or sensory axons, allowing multiple, selective sites for stimulation 

or recording. The USEA has been used previously to activate cat hindlimb muscles 

selectively and independently, and in a fatigue-resistant manner via interleaved activation 
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of multiple different motor units for a single muscle, each at a relatively low frequency 

(McDonnall et al. 2004b; Frankel et al.). Thus, intrafascicular nerve stimulation with 

USEAs may also provide an improved level of hand movements, compared with 

conventional FES. Among other advantages, a USEA may access multiple muscles with a 

single implant site and independent access to multiple different motor units within the 

same muscle, thereby also allowing more graded force control, and more fatigue-resistant 

movements via interleaved stimulation (Normann et al. 2012). It may also allow access to 

intrinsic hand muscles, which is difficult to achieve with conventional extraneural nerve 

stimulation. Finally, intrafascicular electrodes, such as those of the USEA, can also 

record single-unit action potentials, opening the possibility of detecting afferent signals 

from sensory receptors in intact limbs distal to the neural disruption (Branner et al. 2004). 

Similarly, amputees also could benefit from the selective stimulation and 

recording capabilities of intrafascicular electrodes which would allow the patients’ 

nervous system to communicate with computer-controlled prostheses, such as robotic 

hands or knees. In this instance, implanted electrodes would be used to record from 

efferent motor fibers to obtain motor command signals, and to activate small populations 

of sensory afferents in order to restore discrete sensations. However, the electrodes' 

functionality with respect to selective stimulation and recording would remain the same.  

Previous studies have shown, at a gross level, motor fibers do cluster according to 

their function (Gustafson et al. 2009), and some motor fibers may be part of more than 

one nerve (Badia et al.). However, these studies do not address the relationship between 

the sensory and motor fibers within a single fascicle, and it remains unclear whether 
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fibers innervating a given body region tend to cluster together, or if the nerve fibers 

organize separately into sensory and motor bundles within the fascicle.  

The human hand is a complex mechanical system with 27 degrees of freedom that 

is difficult to emulate. Monkeys have opposable thumbs, independent finger control 

(Schieber 1991), and intrinsic and extrinsic muscles controlling the hand and arm similar 

in number to that in humans (Liu et al. 1996). Monkeys thus provide an attractive model 

for testing the ability of the USEA to restore human hand function. The muscles used for 

generating power grip and precision grip are innervated by the median, ulnar, and radial 

nerves in both humans and monkeys. Selective activation of monkey hand muscles has 

also been reported with the use of flat interface nerve electrodes (FINEs) (Brill et al. 

2009).  

In the present study, we examined the feasibility and potential advantages of 

USEAs for activation of motor and sensory fibers in the median, radial, and ulnar nerves 

of nonhuman primates, using acute, anesthetized preparations. Although the commercial 

version of a single Utah Electrode Array (with equal-length electrodes) has been 

previously implanted in the median nerve of one human subject with success (Warwick et 

al. 2003), the data set from that study was limited. Aside from that somewhat anecdotal 

report, there have been no previous investigations of USEAs in nonhuman primates, or in 

any of the forelimb nerves of any species. Here we examined the ability of different 

USEA electrodes to provide access to different extrinsic and intrinsic hand muscles and 

the selectivity of that activation. We also examined the ability to activate multiple motor 

groups via multiple nerves so as to achieve coordinated gripping sequences that could 

restore clinically useful hand movements after paralysis. In addition to motor responses, 
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we examined stimulation-evoked responses centered around primary somatosensory 

cortex that could be useful for restoration of cutaneous and proprioceptive sensation in 

amputees. The combination of sensory and motor responses was also examined to 

determine whether fibers from a single body region lie together, or if the nerve fibers 

organize separately into sensory and motor regions within the fascicle. Finally, we also 

recorded discharges of afferent sensory fibers in response to cutaneous stimulation or 

experimenter-imposed manipulation of joint angles. 

 

Materials and Methods 

Surgery 

These experiments were performed in nonrecovery surgical procedures on four 

monkeys that were being euthanized following a series of unrelated studies. All 

procedures were performed under deep surgical levels of anesthesia, using isoflurane gas 

anesthetic following premedication with Buprenorphine as approved by the Institutional 

Animal Care and Use Committee of Northwestern University. Experiments lasted 

approximately 30 hours. Differences in procedures across animals are summarized in 

Table 4.1. 

Table 4.1: Procedures performed on each monkey 

Name I/O curves Pulse-Train ECoG Skull-Screw 

NHP1 x x  x (Lesion) 

NHP2  x  x 

NHP3 x x  x 

NHP4 x x x  

 



98 
 

 
 

ECoG Electrode Grid and Skull Screws 

The anesthetized monkey was placed in a stereotaxic frame. In three monkeys, 

skull screws were placed according to steretotaxic coordinates and skull landmarks so as 

to lie primarily over postcentral cortex for cortical monitoring. The skull screws’ 

positions in relation to the cortex were confirmed posthumously. In the fourth monkey, a 

craniotomy was performed, and an ECoG grid was placed over somatosensory cortex and 

adjacent cortices.  

 

EMG Wires 

Fine-wire EMG electrodes were placed in forearm, finger, and wrist muscles, and 

electrical potentials were recorded on a Cerebus recording system (Blackrock) at 10,000 

samples per second with a low-pass filter at 7.5 KHz. Bipolar recordings were made with 

intramuscular electrodes inserted into each muscle, including, in some cases, separate 

compartments in a single muscle. In all experiments, the main muscles used in grasp were 

monitored, including flexor carpi radialis (FCR), flexor digitorum superficialis (FDS), 

flexor carpi ulnaris (FCU), medial head of flexor digitorum profundus (FDPm), ulnar 

head of flexor digitorum profundus (FDPu), flexor pollicis brevis (FPB), brachioradialis, 

extensor carpi radialis (ECR), extensor digitorum communis (EDC), extensor carpi 

ulnaris (ECU), pronator teres (PrT), flexor digitorum profundus (FDP), the dorsal 

interossicles, and lumbricals. In some monkeys additional electrodes were inserted in 

triceps lateralis, triceps longus, abductor pollicis brevis (AdP), and palmaris longus. 

Additionally, separate compartments in EDC and ECR were monitored in two monkeys.  

 

http://www.eatonhand.com/mus/mus040.htm
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Nerve Exposure 

Nerves in the arm were then exposed at the elbow and shoulder for subsequent 

implantation of USEAs. First, a longitudinal incision was made just posterior to the 

location of the brachial artery in the proximal arm at the mid-humeral level and continued 

distally beyond the antecubital fossa. Hemostasis was achieved using Bovie 

electrocautery. 

The median nerve lies adjacent to the brachial vessels and was dissected distally 

toward the elbow. The fibers of the bicipital aponeurosis were cut in order to gain better 

access to the median nerve just distal to the elbow crease. The pronator teres muscle was 

reflected medially, and the brachioradialis muscle was reflected laterally in order to 

dissect the median nerve free just proximal to its branch point in the proximal forearm. 

In order to gain access to the ulnar nerve, the medial antebrachial cutaneous nerve 

was severed at the elbow, and the ulnar nerve was dissected free just proximal to the 

elbow. To expose the radial nerve, the arm was turned over, exposing the dorsal aspect of 

the forearm. A longitudinal incision was made between the brachioradialis and extensor 

carpi radialis longus (ECRL) muscles, exposing the radial nerve just proximal to its 

branch points to the brachioradialis and forearm extensor muscles. Alternatively, the 

radial nerve was exposed from the volar side of the arm by continuing the dissection of 

the muscles deep to median and ulnar nerves. 

All three nerves were also exposed at the plexus to allow implantation of USEAs 

in multiple locations in each nerve and to examine the effectiveness of different implant 

locations. The incision in the arm was extended proximally, and in order to fully expose 

the nerves of the brachial plexus, the pectoralis minor and pectoralis major muscles were 
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incised and retracted out of the way. The median and ulnar nerves were followed 

proximally from the mid-humeral level to their origins from the medial and lateral cords 

of the brachial plexus. Care was taken to not disrupt the axillary artery and vein at this 

level, which can be difficult because of their intimate anatomic relationship with the 

brachial plexus. At this level, the musculocutaneous nerve was dissected out anterior to 

the median nerve. The radial nerve could then be dissected out as it branched off of the 

posterior cord of the brachial plexus. 

 

USEA Implantation 

USEAs were implanted in nerves just distal to the brachial plexus (Figure. 4.1A) 

and near the elbow (Figure. 4.1B) by means of a high-speed insertion system (Rousche 

and Normann 1992). Arrays were connected to stimulation and recording systems via a 

modified ICS or TDT96-pin connector and adapter board. 

 

USEA-Evoked Motor Responses 

Electrical stimulation was delivered through the USEA electrode tips via either a 

Grass SD-88 stimulator or a custom-built, 300-channel "UINTA" stimulation system 

(Wilder et al. 2009). We generated EMG stimulus-response curves individually for all 96 

electrodes on each of 11 USEAs using pulse-width-modulated (0.1 µs -1026 µs), single-

pulse, constant-voltage (3V ± 2 V) stimuli controlled by custom software. Stimulation 

thresholds, plateaus, and intermediate stimulus-response functions were determined 

through a closed-loop binary search using the evoked EMG signals for feedback. 

Individual muscle responses were analyzed to determine which electrodes 

provided access to appropriate hand muscles. After muscle access had been determined  
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by the delivery of single-pulse stimulation, pulse trains were delivered in an attempt to 

generate prolonged, useful, movements of the hand and wrist. Frequency of stimulation 

for pulse trains was between 30 Hz and 50 Hz. Cortical activation was monitored during 

all nerve stimulation. Somatosensory evoked potentials were computed using 64 

averaged trials for each pulse on each electrode. 

Before inferential statistical analyses of evoked EMG activity were conducted, 

EMG values were normalized to the largest response from the maximum of either bipolar 

stimulation through nerve cuffs, or single-, or multi-electrode stimulation through the 

 
Figure 4.1. USEAs implanted in arm nerves. 

Surgical access to all three target nerves was achieved through a single surgical site at 

either the elbow or shoulder. In both images, the more proximal limb is at the top, the 

more distal limb at the bottom, and the volar (palm-side) surface of the arm is depicted. R, 

Radial nerve; M, Median nerve; U, Ulnar nerve; *, olecranon process at the elbow. A, Left 

shoulder-level radial, median, and ulnar nerves, each shown implanted with a 100-

electrode USEA. Insertion support (subsequently removed) seen below the median nerve. 

B, Right elbow-level arm nerves, just proximal to the elbow. USEA implants are shown 

protected by a custom containment system composed of metal mesh and Kwik-cast 

silicone (World Precision Instruments, Inc.). (Ledbetter et al., 2013), © The American 

Physiological Society. 
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USEA. The EMG values for each run were divided by the maximum evoked EMG to 

produce a normalized EMG value (nEMG).  

A muscle stimulation selectivity index (SI) was calculated for each electrode at 

specific normalized electromyographic (nEMG) value, by use of the following formula 

(Dowden et al. 2009): 

 

 

 

We analyzed SI values statistically with an overall analysis of variance (ANOVA) 

with monkey number, nerve implanted (median, radial, or ulnar), and level of implant 

(elbow or shoulder) as factors using a hierarchical sum of squares, followed by multiple-

comparison tests with a Scheffe correction as appropriate. Unequal group sizes were 

adjusted via weighted means. Multiple-factor interactions with incomplete terms were not 

analyzed.  

 

Recording of Cortical Somatosensory Evoked Potentials (SSEPs) 

Electrical potentials from each screw or grid electrode were recorded in relation to 

a distal reference by a Cerebus recording system (Blackrock) at 10,000 samples per 

second with a low-pass filter at 10 KHz. 

We also compared selectivity of cortical activation for USEAs implants at the 

elbow and shoulder. Biologically, it is unknown whether the degree of musculotopic 

organization of motor nerve fibers (i.e., their anatomical arrangement, corresponding to 

their target muscles) remains constant throughout the nerve length. Thus, from a practical 

perspective, it was unclear whether both implant sites would work equally well, which 
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was particularly important given that only relatively proximal nerve sites would be 

available after high-level transhumeral amputations. To address the relationship of motor 

and sensory fibers within the nerve, we investigated whether different USEA electrodes 

that activated a given muscle also would evoke responses on a given ECoG electrode, 

which would imply that sensory and motor fibers travel in the same fascicle in a mixed 

nerve. We first examined whether the amplitude of the SSEP recorded on a given ECoG 

electrode was statistically correlated with the pulse width of the stimuli delivered through 

a given USEA electrode during the recruitment curve that had also been used for muscle 

activation. For USEA electrodes that could drive cortical activity, we then determined 

which muscle responded most strongly to that electrode. Finally, for each ECoG 

electrode, we averaged the correlations across different USEA electrodes that had 

activated each muscle to determine the mean correlation between muscles activated by 

USEA electrodes and somatosensory cortical response location.  

 

  Results 

Implants in all nerves, across all implant levels were capable of evoking muscle 

contractions in nerve-appropriate muscles that were detectable through EMG or visual 

inspection. Currents to evoke these contractions were not directly measured (given the 

use of constant-voltage stimulation at 3V), but lie below levels that could damage tissue 

with short-term stimulation sessions, between 5 and 50 uA, as documented in cat, 

including for short-term stimulation across multiple sessions (Branner et al. 2004; 

Frankel et al.; Normann et al. 2012).  
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Single-Pulse, Single-Electrode Stimulation: Muscle Activation and Selectivity 

Recruitment curves. We first examined the ability to recruit responses in 

individual muscles by delivering single-pulse stimulation through individual USEA 

electrodes (typically using a series of varying stimulus-pulse durations) while measuring 

the evoked EMG responses. As in previous work, the muscle responses to USEA 

stimulation were graded across the range of pulse widths, peri-threshold pulse widths had 

a mean of 15.4 ± 0.5. Calculated SI values indicated that single-electrode, single-pulse 

intrafascicular nerve stimulation could often activate individual extrinsic muscles to 

functionally useful levels without activating other muscles (Figure. 4.2A), and that 

different muscles could be recruited selectively by different USEA electrodes (Figure 

 

Figure 4.2: Muscle activation shows selectivity and musculotopy. 

A. Selectivity. Stimuli of increasing pulse width evoked successively larger responses in 

FDS with little or no activation of other muscles. B. Musculotopy. Each tile in the 10-by-

10 grid represents an electrode on the USEA, the symbol indicating the activated muscle. 

Electrodes are shown as in a cross-section of the nerve with the most superficial aspect of 

the nerve at the top of the picture. Responses in a given muscle tend to be recruited by 

adjacent USEA electrodes, whereas responses in other muscles are recruited by other 

USEA electrodes, indicating a musculotopic arrangement of nerve fibers. FDS, flexor 

digitorum superficialis; ABP, abductor pollicis brevis; FDPm, flexor digitorum 

profundus; FCR, flexor carpi radialis; Pal, palmaris longus; PrT, pronator teres; Lu1, 1st 

lumbrical; Lu2, 2nd lumbrical; OpP, opponens pollicis; FPB, flexor pollicis brevis; ADP, 

abductor pollicis brevis. (Ledbetter et al., 2013), © The American Physiological Society. 

http://www.eatonhand.com/mus/mus079.htm
http://www.eatonhand.com/mus/mus079.htm
http://www.eatonhand.com/mus/mus003.htm
http://www.eatonhand.com/mus/mus078.htm
http://www.eatonhand.com/mus/mus078.htm
http://www.eatonhand.com/mus/mus027.htm
http://www.eatonhand.com/mus/mus052.htm
http://www.eatonhand.com/mus/mus056.htm
http://www.eatonhand.com/mus/mus081.htm
http://www.eatonhand.com/mus/mus081.htm
http://www.eatonhand.com/mus/mus050.htm
http://www.eatonhand.com/mus/mus040.htm
http://www.eatonhand.com/mus/mus003.htm
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4.2B). Intrinsic muscles could also be activated by USEA stimulation, although they were 

usually co-activated with other intrinsic muscles.  

Of a possible 1056 electrodes across 11 implants, 462 (43%) evoked at least low-

level responses (defined as 0.2 nEMG) at pulse widths less than 512 µs. Many electrodes 

presumably ended in extrafascicular, non-neuronal tissue, and hence would not have 

evoked responses except at very strong stimulus levels. In the three monkeys in which 

input-output curves were generated, the mean SI across all implants at 0.2 nEMG was 

0.44 ± 0.01 (mean ± standard error of the mean reported for all selectivity measures). The 

mean number of electrodes per array that activated muscles at 0.2 nEMG was 42, and it 

dropped to 34 at 0.5 nEMG and 18 at 0.9 nEMG. However, some selectivity was 

maintained at the stronger activation values, 0.5 nEMG (0.43 ± 0.01) and 0.9 nEMG ( 

0.31 ± 0.02). A single USEA thus provided selective activation of multiple muscles 

innervated by a single nerve, at a variety of activation levels. At the elbow (672 total 

electrodes, 7 implants) and the shoulder (384 total electrodes, 4 implants) in all three 

nerves, 382 of the electrodes (36% of all electrodes) elicited strong EMG responses 

(defined as 0.5 nEMG) in the same muscles in which they elicited weaker responses. At 

the elbow, all implants could reach 0.9 nEMG in some muscles (178 electrodes, 26.5% of 

elbow electrodes), whereas at the shoulder only the median nerve implants were capable 

of evoking contractions at 0.9 nEMG (23 electrodes, 5.9%). Because data for values 

above 0.2 nEMG are incomplete, the selectivity analysis was confined to 0.2 nEMG 

(Figure 4.3), data are summarized for selectivity at higher nEMG values in Table 4.2. 
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Figure 4.3. Selectivity of muscle activation for all USEA electrodes and implant sites. 

 The number of electrodes that recruited responses at a given level of selectivity is 

depicted across all levels and nerves. Left column: results for USEA implants near the 

elbow for median nerve (top row), radial nerve (second row), ulnar nerve (third row), and 

across all nerves (bottom row). Middle column: results for USEA implants in nerves near 

the shoulder. Right column: results summated for USEAs at both the elbow and shoulder. 

The bottom right panel indicates group results across all nerves at both levels. For each 

panel, the large number in the top right indicates how many different muscles could be 

preferentially activated at that particular level-implant combination across all SIs. The 

smaller numbers in parentheses below the number of muscles indicate the number of 

implants and number of electrodes used in the analyses, respectively. (Ledbetter et al., 

2013), © The American Physiological Society. 
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Table 4.2: Selectivity of muscle responses at multiple strength levels.  

Selectivity at different stimulus strengths 

nEMG 

Mean 

SI SEM 

Arrays 

(of 11) 

Elbow 

electrodes 

Shoulder 

Electrodes 

Total  

(of 1056 ) 

0.2 0.44 0.01 11 356 106 462 

0.5 0.43 0.01 11 296 86 382 

0.9 0.31 0.02 6 178 23* 201 

* median nerve only 

 

 

Muscle Selectivity at the Elbow and Shoulder 

An ANOVA of the SI calculated at 0.2 nEMG for the factors of nerve, primate, 

and implant level indicated that the implant level (elbow or shoulder) was not a 

significant factor, whereas the individual animal, and nerve implanted were significant 

factors (Table 4.3). The mean SI calculated at 0.2 nEMG of all elbow implants tended to 

be lower than the mean of all shoulder implants (0.42 ± 0.01 vs. 0.52 ± 0.03 (elbow: 356 

electrodes, 7 arrays, shoulder: 106 electrodes, 4 arrays), due primarily to results from the 

ulnar nerve; however, in the median and radial nerves, this trend was reversed. Specific 

comparisons regarding implant level for the different nerves were not analyzed for 

statistical significance, because there was only a single shoulder-level implant done in the 

radial and ulnar nerves, and because the implant level was not a statistically significant 

factor. Descriptively, however, within-nerve comparisons of elbow- and shoulder-level 

SIs in the median nerve (0.54 ± 0.02 vs. 0.47 ± 0.03; 153 and 73 electrodes, 3 and 2 

arrays, respectively), and radial nerve (0.32 ± 0.02 vs. 0.26 ± 0.06; 120 and 13 electrodes, 

2 and 1 arrays) showed that selectivity tended to be higher at the elbow than at the  

shoulder, whereas in the ulnar nerve at the elbow, selectivity tended to be lower than at 

the shoulder (0.26 ± 0.02 vs. 0.78 ± 0.05; 84 and 20 electrodes, 2 and 1 arrays). Multiple- 
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Table 4.3: Statistical analysis of selectivity index .  

ANOVA of SI 

Factor Sum 

Sq. 

d.f. Mean Sq. F Prob>F 

Implant level 0.04 1 0.04 0.76 3.83E-01 

Animal# 2.02 2 1.01 17.30 5.71E-08 

Nerve 3.15 2 1.58 27.07 7.79E-12 

Error 26.57 456 0.06 

  Total 32.17 461 

    

comparison tests with a Scheffe correction indicated that SI was statistically different 

across all nerve pairings (P's < 0.05), with population-normalized-mean-values as 

follows: median, 0.56 ± 0.02; ulnar 0.44 ± 0.03; radial 0.36 ± 0.02.  

Musculotopic arrangement of nerve fibers. To evaluate the musculotopic 

arrangement of fibers within a nerve, we examined the extent to which neighboring 

USEA electrodes evoked responses in the same muscle. For all implants, electrode sites 

that recruited the same muscle or close synergist muscles were usually in close proximity 

to one another, suggesting a musculotopic arrangement (Figure. 4.2B). To quantify 

musculotopy, for each USEA electrode we first calculated the expected number of 

neighboring (adjacent) electrodes that would activate the same muscle if nerve fibers 

were randomly distributed, based on the number of responses evoked in each muscle for 

each given USEA. We then compared the number expected from chance with the number 

of neighboring electrodes that had actually recruited the same response as the given test 

electrode. Significantly more neighboring electrodes recruited the same motor response 

than expected from chance alone ( x = 0.98± 0.07 electrodes, P<0.05) (Figure 4.4), 

indicating that motor fibers were organized musculotopically within the nerve.  
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Single-Electrode Pulse Trains Also Recruited Selective Movements 

 Functionally useful movements require stimulus trains, rather than single-pulse 

activation of motor nerve fibers. To test our ability to generate individuated and 

coordinated movements using the USEA, we applied pulse trains (30-50 Hz, 1.8-3 V) to 

particular electrodes. Pulse widths used in the functional muscle contraction sequences 

were higher than peri-threshold values. We monitored movements at the hand, elbow and 

shoulder, as well as rotation of the forearm. Motions were observed and categorized in 

terms of the joint at which the movement occurred and its direction, together with the 

 
 

Figure 4.4: Quantification of musculotopic arrangement of motor fibers.  

 

We assessed the musculotopic organization of nerve fibers by comparing the muscle 

activated by each USEA electrode with the muscles activated by neighboring USEA 

electrodes. For each electrode capable of activating a muscle, we calculated the 

probability that a neighboring electrode would activate the same muscle from chance 

alone. The actual number of neighboring electrodes that preferentially activated the same 

muscle was consistently higher than the number expected from chance (i.e., the actual – 

expected difference was greater than zero), indicating a musculotopic arrangement in 

which motor fibers to a given muscle were close together within the nerve. This pattern 

held for muscles of all types, and each nerve individually. (Ledbetter et al., 2013), © The 

American Physiological Society. 
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muscles that showed EMG activity. Across all subjects, median nerve stimulation 

generated 6-9 visually different movements across different combinations of joints 

(Figure. 4.5). These movements approximately corresponded to the activation of different 

individual muscles associated with each movement in various combinations (e.g., flexor 

carpi radialis (FCR) for wrist flexion; FDS and FDP for finger flexion; the intrinsic 

muscles and FPB for small finger and thumb movements; and pronator teres for arm 

pronation). The ability of the different USEA electrodes to elicit distinct movements and 

different EMG responses indicates that selective stimulation was partially maintained 

during pulse-train delivery, such that even with the low-level activation of additional  

 

Figure 4.5: Single channel stimulation elicits multiple motions. 

USEA single-electrode pulse-train stimulation of median nerve recruits specific digit and 

wrist movements (pronation not shown). White arrows indicate fingers/joints in motion. 

Different USEA electrodes evoked different movements. A. Rest. B. Wrist flexion. C. 

Digits 3-5 flexion (in shadow). D. Digit 2 tip flexion; notice the different fingers engaged 

in C and D. E. Digits 2-5, flexion at metacarpophallangeal joints. F. Digits 2-5 tip 

extension, with flexion at MCP joints. Note the relative straightening of the finger tips in 

F compared with the extent of finger flexion in E, demarcated by white lines in E and F. 

(Ledbetter et al., 2013), © The American Physiological Society. 
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muscles the motions evoked were clearly related to the muscle which was selectively 

activated through single-pulse stimulation.  

 

Multielectrode, Multi-USEA Pulse Trains Evoked Coordinated Grasp 

In order to produce a coordinated grasp, muscles must not only be selectively 

activated, but must also contract and relax in specific patterns (Long et al. 1970; Maier 

and Hepp-Reymond 1995b). To test the ability to evoke these more complex types of 

movements, between three and nine electrodes were selected that activated the muscles 

necessary for power grip through the UINTA stimulation system custom software. The 

monkey’s hand was unconstrained during all stimulation. A two-second movement 

sequence was programmed consisting of finger extension to open the hand; finger flexion 

to grasp an object; and, finally, finger extension to release the object. Activation of 

extrinsic finger flexors that span the wrist typically caused undesired secondary wrist 

flexion along with flexion of the fingers. In these cases, wrist extensors were also 

activated to counteract the undesirable flexion forces, a combination that is necessary 

under normal conditions as well. A 50g ball was placed in the animal’s palm as it was 

initially opened. When the hand closed, it held the ball until the program instructed the 

fingers to extend (Figure 4.6). The shown movement was evoked with 6 electrodes with 

pulse-widths of 10, 100, 10, 50, 100, 500 µs (average 128 µs). Once programmed, the 

control sequence reliably produced the desired movement sequence for the duration of 

the experiment. Via this technique, the anesthetized monkey's hand also engaged a 

variation of power grip sometimes called bucket grip. In addition, electrodes associated  
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Figure 4.6: Coordinated, sequential grasp-and-release movements produced by 

multielectrode, multi-USEA stimulation. 

USEA stimulation generated grip sufficient to hold a ball. Under each panel, the 

electrodes used in the grip sequence are shown for the three implanted nerves; filled dots 

indicate electrodes active at the time of the picture. A. Rest position. B, Wrist extension. 

C. One-second hand opening and forearm supination to accept the ball. The experimenter 

introduces the ball to the anesthetized primate’s hand. D. One-second power grip. E. The 

wrist and fingers extend again, releasing the ball. F. The wrist flexes and forearm 

pronates to drop the ball. (Ledbetter et al., 2013), © The American Physiological Society. 
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with intrinsic hand muscles were combined with the extrinsic muscles to generate a pinch 

grip between the thumb and forefinger . 

 

USEA Recordings of Sensory Fiber Discharges 

To test the USEA’s suitability for providing sensory feedback to an SCI patient, 

we recorded sensory afferent signals from the median nerve in two monkeys. Single-unit 

activity was recorded on several electrodes while experimenters manipulated the 

monkey’s hand (Figure 4.7). Thus, intrafascicular USEAs also potentially provide the 

ability to obtain cutaneous and proprioceptive sensory information that could be 

incorporated into a more complete closed-loop control system. 

 

USEA Activation of Sensory Fibers 

To examine our ability to evoke sensory signals in an anesthetized monkey 

model, as would be necessary in a limb-loss prosthesis that restores sensation, we 

monitored (SSEPs) using either skull screws (n = 3) or an electrocorticography (ECoG) 

grid (n = 1) during USEA stimulation (Allison et al. 1991). Stimulation produced short-

latency (~5 ms to onset) SSEPs in and around primary somatosensory cortex on 52% of  

 
Figure 4.7: Recording from a USEA electrode implanted in the median nerve at 

the elbow. 

The grey line indicates the approximate time the thumb was extended. The neural 

response occurred at the end of digit extension, suggesting that it was driven by thumb 

flexion. (Ledbetter et al., 2013), © The American Physiological Society. 
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tested stimulating electrodes. To avoid the possibility of indirect sensory activation (e.g., 

H or F reflexes), the analysis of SSEP data was limited to the first 20 ms after stimulation 

(Figure 4.8). The short latency of these responses indicates that they are likely due to 

direct afferent fiber activation, not indirect sensory responses due to movement caused by 

concurrent muscle activation (Cheron and Borenstein 1987; Halonen et al. 1988). Low- 

level stimulation applied to USEAs in the monkey with the ECoG grid (n = 3 USEAs) 

recruited cortical responses at a pulse duration that did not activate muscles in 32% of 

electrodes, providing further evidence that direct sensory fiber activation was achieved. 

 

Relationship Between Somatotopic and Musculotopic Organizations 

We next examined whether afferent nerve fibers were organized somatotopically 

and the relationship between somatotopic and musculotopic organizations.  

Different USEA electrodes evoked different cortical responses. Consistent with a 

somatotopic organization, different electrodes on the same USEA, or on different 

 

Figure 4.8: Primary somatosensory cortex (blue shading) was activated through 

USEA peripheral nerve stimulation of sensory nerve fibers. 

 

Anterior to the left, medial on the top in all panels. A. ECoG electrode positions shown in 

relation to the cortex. B-C. Cortical recording pattern associated with B. electrodes in the 

median nerve that activated thumb and index finger intrinsic muscles, or C. electrodes in 

the radial nerve that activated brachioradialis, an elbow flexor. Cs, central sulcus; Ips 

intraparietal sulcus. (Ledbetter et al., 2013), © The American Physiological Society. 
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USEAs, evoked responses in different cortical regions in three monkeys. (Upon post-

mortem dissection, NHP1 was found to have an S1 lesion from previous work that 

precluded cortical analyses for the present work.) for monkeys with skull screws (n = 2) 

rather than the ECoG electrode grid, different patterns of cortical activation were 

discernable only with stimulation via USEAs on different nerves, presumably because of 

the relatively coarse resolution provided by skull-screw recordings. For example, the 

cortical responses to median nerve stimulation were different from responses for radial 

nerve stimulation. Additionally, for the one monkey with the ECoG grid, different USEA 

electrodes on a single USEA in a given nerve evoked responses in discernibly different 

cortical regions. 

 Somatotopic and musculotopic maps covary. Results showed that the amplitude of 

the SSEP on some cortical electrodes was significantly correlated with stimulation 

strength on USEA electrodes that activated muscles with similar function (Figure 4.9). In 

addition, adjacent cortical electrodes showed similar correlations, whereas cortical 

electrodes distant to one another did not. Instead, responses on distal cortical electrodes 

were correlated with stimulus strength on USEA electrodes that activated other muscles. 

For example, stimulation strengths on USEA electrodes implanted in the median nerve 

that activated wrist flexor muscles were correlated (0.45 r or greater, P < 0.05 ) with 

response magnitudes on ECoG electrode 18, whereas stimulus strengths on USEA 

electrodes that activated finger flexor muscles were correlated (0.45 or greater) with 

response magnitudes on ECoG electrodes 1 and 2 (Figure 4.9). 

  

 
 

 

 

 

Figure 2 
A) Selective muscle activation of FCR shown on a log 
scale. 
B) Tiles indicate electrodes; colors indicate which muscle 
was stimulated first in an IO curve in the median nerve at 
the shoulder. The arrangement of electrodes and the 
muscles they stimulated in cross-section indicate 
musculotopic arrangement of the nerve even when 
fascicles are not clearly defined. 
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Figure 4.9: Co-registration of musculotopic and somatotopic maps. 

 

Different USEA electrodes that evoked responses in a given muscle, via activation of 

motor nerve fibers, also evoked responses on the same cortical ECoG electrodes, via 

activation of sensory nerve fibers. Each grid displays a color map for the 32 ECoG 

electrodes for a given muscle, indicated by the label above the grid (e.g, Brd, ECR, etc.). 

Colors correspond to the correlation between the variation in stimulus pulse width and 

the variation in the amplitude of the evoked cortical response. ECoG electrodes within 

each grid are numbered from 1 to 8 from left to right on the bottom row, extending 

through 25 to 32 on the top row. USEA electrodes that evoked responses in a given 

muscle or similar muscles, e.g., wrist extensors, also evoked responses in a similar set of 

cortical electrodes, for example, USEA electrodes that activated extensor muscles ECU 

and ECR also evoked responses on ECoG electrodes 10 and 11, as indicated by the high 

correlation between stimulus pulse width and the amplitude of the evoked SSEP on those 

ECoG electrodes. In contrast, USEA electrodes that activated the flexor muscle FDS 

evoked responses in more anterior-lateral cortical regions (ECoG electrodes 1 and 2). 

Muscles are grouped according to their dominant innervation, e.g., radial nerve (top 

group), median nerve (middle group), and ulnar nerve (bottom group).  

(Ledbetter et al., 2013), © The American Physiological Society. 
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 These results imply that somatosensory fibers and motor fibers for a given body 

region travel closely together within the nerve. Given that USEA-evoked motor 

selectivity appears to hold even at the subfascicular level, it is plausible that the motor-

sensory co-organization occurs at the subfascicular level as well. These findings 

complement earlier work demonstrating that somatosensory fibers of the same 

submodality and receptive field region cluster together within the nerve (Hallin 1990; 

Ekedahl et al. 1997). 

 

Discussion 

Here we report the first USEA implantation in the peripheral nerves of a 

nonhuman primate, the first attempt to quantify the efficacy and selectivity of the USEA 

in activating extrinsic and intrinsic hand muscles, and the first recordings of cortical 

sensory responses evoked through USEA stimulation of arm nerves. The results here 

demonstrate that intrafascicular electrodes can provide excellent access to multiple 

muscles, including intrinsic hand muscles not typically accessed in conventional FES. 

The different electrodes of a single USEA could activate multiple different muscles, and 

the combination of just three USEAs in the median, radial, and ulnar nerves could access 

nearly all forearm and hand muscles. Although the procedure to implant USEAs for 

clinical applications would be invasive, it is less invasive and would require less recovery 

time than, for example, targeted reinnervation approaches presently used successfully for 

control of prosthetic limbs (Kuiken et al. 2009). 
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Recruitment of Motor Responses via USEA Stimulation of Motor Fibers 

Activation of motor fibers provided fine-resolution control of forearm 

movements. Selective activation of the muscles used to grip objects was achieved with 

both the elbow-level and shoulder-level implants, indicating that both locations have 

potential uses for PNS-based prostheses. Although shoulder-level implants had a 

comparable mean SI to elbow-level implants, the low sample size makes determining the 

strength of that trend difficult. However, the greater number of usable electrodes suggest 

that the elbow may be a more desirable implant location when available. Nonetheless, 

shoulder-level implants would be useful in cases of high-humeral amputation, or for 

recruiting muscles of the upper arm after SCI, given that some electrodes at the shoulder 

level were selective (40 electrodes with an SI > 0.5).  

Single-pulse activation of individual muscles was often selective, particularly for 

extrinsic hand muscles. Although the intrinsic muscles with similar functions (such as the 

lumbricals) were usually recruited together, the intrinsic muscles in different groups 

(thenar, interossi and lumbrical) were often recruited separately. On some electrodes (in 

elbow-level implants in the median nerve), the index lumbrical was recruited alone, 

without activity on the other lumbricals, further indicating the specificity of muscle 

stimulation possible through intrafascicular electrodes. From previous work with 

intrafascicular electrodes, it is known that it is possible to evoke a response from only a 

portion of a fascicle. In the present study, it was not directly demonstrated whether the 

selectivity seen is principally due to a similar level of subfascicular selectivity, or a more 

segregated set of fascicular bundles; however, the high impedance of the endoneurium 

surrounding each fascicle substantially limits current spread from one fascicle to another. 
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In either case, under the assumption the nerve is musculotopically and somatotopically 

organized, current spread would cause physically close muscles and sensory areas to be 

activated together. Moreover, current spread cannot fully account for the musculotopy (or 

somatopy) observed here. Current spread from a given electrode to the neural tissue at an 

adjacent electrode might indeed active some fibers there; but such current spread could 

not fully explain why the dominant normalized EMG response at the given electrode was 

the same as that at the adjacent electrode. The strongest activation at the given site will 

reflect activation of the greatest number of nerve fibers, which probabilistically would 

occur in close proximity to the given electrode tip. Our data indicate that the selectivity of 

muscle activation was highly variable among different nerves and individuals. However, 

the overall musculotopic arrangement of fibers across the broad distribution of SIs likely 

indicates that, independent of the degree to which the selectivity seen in this study is due 

to fasciculation or instead to subfascicular organization, there is a strong tendency for 

axons to particular muscles to group together, in agreement with other recent studies of 

nerve organization (Badia et al. 2010; Brill, Polasek et al. 2009).  

Pulse-train stimulation of selective electrodes generated smooth and distinct 

movements. Furthermore, different movements evoked by pulse-train stimulation were 

combined into functional grip-and-release sequences by activating several electrodes 

simultaneously or in sequence, and multiple types of grip (power, bucket, and pinch) 

could be reliably generated. These results all indicate the feasibility of using a penetrating 

electrode in the PNS as a prosthesis for limb reanimation in paralyzed patients. In the cat 

hindlimb, contractions produced by stimulation through multiple USEA electrodes that 

activate different motor units of the same muscles can be combined and interleaved to 
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produce fatigue-resistant movements and stable static positions (Normann et al. 2005). So 

long as stimulation through the USEA electrodes can evoke responses in independent, 

non-overlapping motor units, the same approach may work for monkey arm nerves, and 

presumably for human nerves as well. However, the time constraints of the present acute 

studies precluded systematic investigations of the overlap of USEA electrode responses, 

and the effects of interleaved stimulation on fatigue resistance (see Normann, Dowden et 

al. 2012, for details of the overlap and fatigability tests).  

Studies of precision grip indicate that the intrinsic hand muscles, particularly the 

1st dorsal interosseous and the muscles in the thenar group, are important for stabilizing 

the thumb and finger metacarpophalangeal (MCP) joints (Maier and Hepp-Reymond 

1995b). Unfortunately, present FES-based solutions do not fully access the hand muscles 

required for grasp, particularly the intrinsic hand muscles. Although direct stimulation of 

extrinsic hand muscles does provide functional power grip, the same intramuscular 

electrodes cannot easily be used for control of intrinsic hand muscles, largely due to their 

small size and the difficulty of surgical access. Because of these limitations, additional 

surgeries such as tendon transfers are sometimes necessary to achieve strong, stable grip 

force (Kilgore et al. 2008). In contrast, our three implanted USEAs allowed access to all 

the instrumented hand muscles, including all extrinsic and intrinsic muscles implicated in 

grip (Maier and Hepp-Reymond 1995a; Schieber 1995). The activation of intrinsic and 

extrinsic hand muscles in a coordinated fashion allows for versatile hand posturing and 

gripping. Thus, for example, we were able to encode a stimulation sequence with four 

electrodes that brought the thumb and forefinger together.  
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Recordings from Sensory Fibers 

Additionally, we have demonstrated here that intrafascicular USEAs might also 

provide sensory feedback for the upper limb after either SCI or limb loss, via recording 

from or stimulating sensory fibers, respectively. 

In the absence of sensory feedback, gripping objects with appropriate force levels 

is sometimes difficult (Warwick 2005). Therefore, restoring full arm function in an SCI 

patient will require the ability to use sensory information recorded from the paralyzed 

limb. To this end, stimulation of the patient’s intact sensory cortex, based on the 

recordings from afferent nerve fibers, could be used to evoke cutaneous and 

proprioceptive percepts. Alternately or additionally, sensory information recorded from 

electrodes in the PNS could be used in conjunction with algorithms to control the limb 

directly (Pezzin et al. 2004; Biddiss and Chau 2007).  

Here, we recorded action potentials evoked by cutaneous and proprioceptive 

stimuli generated by manipulation of the hand, indicating that the implanted USEAs can 

record neural signals useful for detection and decoding of sensory afferent information. 

These recordings represent the first use of USEAs for obtaining somatosensory and 

proprioceptive information from monkey arm nerves. Ultimately, combining sensory 

afferent recording with muscle stimulation might provide closed-loop, neuroprosthetic 

control for SCI patients.  

 

Stimulation of Sensory Fibers 

Lack of sensory feedback is also a major challenge for users of a limb-

replacement prosthesis. Without normal somatosensory feedback, many patients 

complain that their prosthetic limb is unwieldy and difficult to use (Anani et al. 1977; 
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Dhillon et al. 2004; Dhillon and Horch 2005; Warwick 2005; Rossini et al.). 

Intrafascicular electrode arrays, such as the USEA, should be capable of selectively 

activating multiple, independent subsets of sensory fibers, just as they can for motor 

fibers. Motor and sensory nerves remain functional long after limb amputation, and 

stimulation of sensory fibers can elicit sensation (Schady et al. 1983; Chaudhuri et al.). 

Hence, it may be possible to stimulate sensory fibers through USEAs and thereby evoke 

graded and varied sensory responses, including proprioception and pressure, to aid in 

gripping and reaching tasks. 

Here, stimulation through individual USEA electrodes generated a variety of 

patterns of somatosensory cortical activation. In principle, such differentiable sensory 

signals could be used to provide cutaneous and proprioceptive sensory feedback from a 

neuroprosthetic artificial limb. Further, the responses on a given cortical electrode were 

associated with stimulation on USEA electrodes that were also associated with specific 

muscles or classes of muscles (e.g., finger flexors). Because motor axons are organized 

musculotopically, and USEA electrodes that stimulate muscles with similar function are 

often near one another (e.g., Fig. 2B, FDP and FDS, or FCR and PrT), we can conclude 

that the somatotopic and musculotopic maps in the nerve are in approximate register with 

one another. Because muscle activity could often be evoked on an electrode that also 

evoked sensory responses, it is likely that individual fascicles are mixed sensory-motor, 

consistent with previous studies (Brill et al. 2009).  

The modality of sensory responses is difficult to determine from recordings from 

the cortical surface with the electrodes used in this study, especially given that there is 

some overlap in the representation of body space in the cortex. However, activity from 



124 
 

 
 

stretch receptors in a given muscle would be expected to lie in close proximity to motor 

fibers associated with the same muscle, indicating a high likelihood that the evoked 

potentials could convey some proprioceptive feedback for use in a prosthetic application. 

Such feedback might provide both intuitive, closed-loop prosthetic control and enhanced 

integration of the artificial limb with the user’s own internal body image. 

 

Considerations for Long-Term Intrafascicular Electrode Implants 

In SCI patients, the lower motoneurons remain mostly intact within the spinal 

cord. However, their chronic deinnervation can cause secondary degeneration, 

disassembly or disorganization of the neuromuscular junction, changes in muscle 

excitability, and muscle atrophy. Thus, in a chronic implantation in a paralyzed 

individual, the initial conditions of the muscle and neuromuscular junction might be quite 

different from those in the intact animals in the present study. However, the initial 

peripheral changes that occur after SCI are largely reversible through FES, which, over 

time, can restore the neuromuscular junction’s natural arborization and can improve the 

efficacy of muscle activation (Biran et al. 2005). Indeed, the ability to return the 

neuromuscular system toward its normal preinjury conditions may constitute an 

additional benefit of the intrafascicular electrode technology. However, without early 

intervention SCI-induced hypertonia and spasticity can cause permanent changes to the 

functionality of muscles. All potential therapies, including the proposed USEA, PNS-

based prosthesis, thus give the most benefit when provided immediately after injury.  

Neurons may undergo important changes at the sites of chronic electrode implants 

that could affect electrode functionality. Fibrosis around electrodes and a continuing 

foreign body response can push axons away from the electrode tips, hampering their 
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ability to record and stimulate neurons selectively (Simeral et al. 2011). Although all 

neural implants face the problems associated with tissue response, CNS implants of Utah 

Electrode Arrays (UEAs) are subjected to less motion than nerve implants, and 

traditionally have been more reliable (Branner et al. 2004) than long-term USEA 

implants in initial studies (Clark 2011; Clark et al. 2011a; Frankel et al. 2011; Normann 

et al. 2012). However, recent and ongoing research has demonstrated substantive 

improvements in both long-term recording and stimulating capabilities of USEAs in cat 

sciatic nerve (Pohlmeyer et al. 2007), which may translate to comparable success for 

USEAs in monkey arm nerves, and ultimately for clinical applications.  

 

Issues of Muscle Control for the Design of the Motor Program 

Strategies for motor restoration that are based on nerve stimulation explicitly 

involve the activation of lower motor neurons, which can engage spinal reflexes that can 

operate independently of the brain. For example, Renshaw reflexes involve negative 

feedback circuits in which a motoneuron inhibits itself (among other neurons). However, 

synaptic inhibition that occurs at the motoneuron soma many space constants away will 

have almost no effect on the direct activation of motor fiber axons at the USEA 

stimulation site.  

Because sensory and motor fibers are mixed within the nerve, activation of 

proprioceptive, cutaneous, or even nociceptive reflex pathways might be engaged 

coincidently with motor fiber stimulation in the awake animal. In principle, effects of 

these might need to be incorporated into our artificial motor program. However, such 

considerations have not proven to be overly problematic in other clinical applications of 

FES with extraneural stimulation. Given the high selectivity and relatively low currents 
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associated with intrafascicular stimulation, these considerations also seem unlikely to be 

overly problematic for USEAs. Further, because the Aδ fibers involved in the withdrawal 

reflexes are smaller than α-motor fibers, they require higher extracellular stimulation 

levels to activate, and thus would be some of the last fibers to be activated by any given 

USEA electrode. 

 

Brain-Controlled Activation of Motor Nerve Fibers and Behavior 

In a closely related project, we have demonstrated that recordings from similar 

Utah electrode arrays implanted in the primary motor cortex of monkeys can provide 

accurate information about muscle activity during normal or intended movement (Moritz 

et al. 2008; Pohlmeyer et al. 2009; Ethier et al. 2012). The information can be used to 

restore simple voluntary movement to monkeys during peripheral nerve block, used as a 

temporary paralysis model of spinal cord injury.  

During this nerve-block paralysis, stimulation through intramuscular electrodes is 

used to evoke the intended movement, as inferred from the cortical recordings in real-

time (Popovic et al. 1993; Lee et al. 2008; Legon et al. 2008). Potentially, in future work, 

USEA-based stimulation of motor fibers could be controlled in a similar manner, 

providing the monkey—and ultimately, a paralyzed person—volitional control of more 

dexterous and coordinated hand movements than can be achieved with intramuscular or 

extraneural electrodes. 
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CHAPTER 5 

 

DISCUSSION 

 

Summary of Major Findings from Chapters 2, 3, and 4 

Chapter 2 

In Chapter 2, this work showed that an intrafascicular electrode can be used to 

selectively stimulate sensory fibers by using constant voltage, monophasic, square-wave 

stimulation to evoke SSEPs with low latency in and around S1, sometimes in the absence 

of any muscle response. The demonstrated activation of sensory responses without the 

activation of muscle responses, and vice-versa, are an important capability for electrodes 

to be used for neuroprostheses (Branner et al. 2001; McDonnall et al. 2004a). The 

relatively close stimulation thresholds of the two different modalities are likely due to the 

mixing of the two types of fibers within a fascicle. Purely sensory fascicles and purely 

muscular fascicles would likely cause electrodes within the fascicle to have very high 

thresholds for the out-of-fascicle modality.  

 

Chapter 3 

In Chapter 3, I presented advances in the electrical isolation and physical 

protection of electrode arrays implanted in the PNS for enhancing the functional lifetime 

of a long-term implant (Clark et al. 2011b). This work shows that by stabilizing and 

protecting the array within the nerve from movement and exogenous signals, long-term 

implants can function in the challenging environment of the PNS. Intrafascicular 
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electrodes implanted for long periods of time retain the muscle stimulation selectivity that 

has been demonstrated in acute studies; intrafascicular electrodes also maintain the ability 

to record multi-unit activity and single unit activity across chronic timeframes of up to 4 

months. Improvements to the connector system, array electrodes, and the containment 

system around the implant were essential to this success. The long-term implants in this 

study were ultimately used to decode limb position form neural signals and generate 

stance in an anesthetized animal, demonstrating the functional usefulness of such a long-

term implant system.  

 

Chapter 4 

In Chapter 4, this work showed that intrafascicular electrodes provide sufficient 

selectivity to evoke a coordinated grasp in the complex system of the hand. Although 

previous work shows selective activation of large muscles in individual nerves with 

relatively few fascicles (Ledbetter et al. 2013), the present work extended those findings 

to the more complicated motor system of the hand where the co-activation of muscles is 

common and nerve fasciculation is more complex (Burns et al. 2007). This chapter also 

extended the previous work of primate researchers who have used relatively low-

selectivity electrodes to generate grasping motions. Additionally, this chapter 

demonstrated that individual electrodes can evoke different cortical responses, implying 

that the percepts evoked through different electrodes could be qualitatively different. 
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Limitations of Results 

Sensory Specificity 

 Precise measures of specificity for sensory stimulation are difficult in a non-

verbal animal. Although short-latency SSEP generation does indicate sensory fiber 

activation, the specificity for different sensory modalities as well as motor-sensory 

specificity is difficult to determine. The generation of SSEPs without the generation of 

muscle twitches (as determined by an absence of EMG activity) strongly indicates 

selective stimulation of sensory fibers, though it is impossible to eliminate entirely the 

possibility of low-level twitches in muscles that were not monitored. Likewise, the 

generation of twitches without the generation of SSEPs is an indicator of selective 

activation of motor fibers, though sensory stimulation could easily occur without 

generating cortical potentials that are detectable by our skull screw or ECoG electrodes. 

The lack of certainty regarding the motor-sensory selectivity, particularly the lack of a 

direct assay of sensory stimulation in the nerve, will always remain without a verbal 

experimental subject. A well-trained animal does provide the possibility of having a more 

direct assay of sensory stimulation; however, determining the specificity and modality of 

sensory stimulation would require an extremely complex training paradigm.  

 

Challenges of Long-Term Work 

 The work in Chapter 3 represents some of the first successful long-term 

peripheral nerve implants with a penetrating electrode array. Although this work was 

successful in recording and selectively stimulating over the period of many months, many 

improvements in performance and stability remain necessary for neural prosthetic devices 

to be clinically useful. Although the containment system described in chapter three did 
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protect and immobilize the array, further improvements to the fit of the containment 

around the nerve would further enhance nerve-array coupling. Additionally, material 

changes in the components of the containment system may reduce the tissue response and 

enhance the stability and efficacy of the implant and its ability to function in a noisy 

environment.  

 

Coordinated Grasping 

 The work on hand function presented herein involves short-term studies in a 

single anesthetized session. Though this work provided strong evidence that the muscle 

selectivity and specificity via USEA stimulation is sufficient to evoke coordinated grasp 

in an intact limb, the translation of this work to long-term studies, or studies of an actual 

paralyzed limb, involve many complications not present in our model system. 

Specifically, motoneuron degeneration and deefferentation of muscles will change the 

usability of any nerve implant. In SCI patients, lower motoneurons remain intact; 

however, they have greatly reduced excitability due to the degeneration of upper 

motoneurons (Taylor et al. 2002; Kirshblum 2004; Zinck and Downie 2006). In turn, the 

low, essentially zero, firing rate of these deinnervated lower motoneurons leads some 

(though not all) NMJs to atrophy or sprout in a disorganized manner. Although the 

altered innervations of the muscles will change the ability of nerve stimulation to produce 

forceful contractions and may alter selectivity, there is strong evidence that stimulation of 

the nerve through any means will reverse the process of degeneration caused by chronic 

removal of the efferent excitation (Maier and Hepp-Reymond 1995b, 1995a; Winges et 

al. 2008).  
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The success this work showed in generating power grip is only the beginning of 

functionality necessary for the natural, intuitive use of the hand. A myriad of different 

hand postures are used by most people every day to engage a wide variety of power and 

precision grips. Though power grip is important in many ways, its usefulness pales in 

comparison to the precision grips, which are used for all fine manipulations. We 

succeeded only in generating a partial precision grip, without any extension of the thumb 

and forefinger to release the grip. Additionally, the thumb and forefinger did not align 

reliably across multiple attempts, indicating the importance of replicating the function 

and activation patterns of intrinsic hand muscles necessary for holding the hand in a 

posture useful for a grasp (Kozin et al. 1999).  

 

Future Work 

Sensory Assays 

 A better test for sensory stimulation is necessary to determine how effective 

USEA stimulation is at activating sensory fibers. Evoked potentials, such as the SSEPs 

used in Chapter 2, represent the activation of many neurons near-simultaneously. It is 

likely that the activation of a single primary afferent fiber would not generate an SSEP 

detectable through skull screws. Smaller electrodes in closer proximity to the brain, such 

as ECoG or microECoG, could be used to detect smaller numbers of concurrently 

activated neurons, however only small penetrating electrodes have been shown to record 

from individual neurons.  

 



137 
 

 
 

Connector Design 

 The wound closure around the transcutaneous portion of the implant requires 

further improvement to be useful for long-term use. The skin around the transcutaneous, 

bone-mounted implants in Chapter 3 eventually separated from the implant. The surface 

treatments applied to the titanium did enhance the connection of the skin to the device, 

but the relative movement of the skin of the leg above eventually caused abrasions and 

separation of the skin and implant. Alterations in the geometry of the connector, 

combined with a surface treatment, could prevent skin separation. An alternative 

connector shape could distribute the forces acting on the skin-connector interface by 

increasing the surface area and changing the angle at which that force is applied. 

Specifically, by changing the connector to have a surface parallel to the skin via a flange 

on the connector, the skin would contact the connector over a much larger area. 

Preliminary work (not reported here) supports this possibility.  

 

Containment Redesign 

 By stabilizing the array physically, the containment system used in Chapter 3 was 

able to record signals over the period of many months in the nerve. The design of the 

containment, and the necessity to build it in vivo, resulted in it being approximately 0.5 

cm wider than the nerve. Reducing the size of the containment around the nerve, as well 

as making it more conformal to the implant and nerve, could further improve the stability 

of the array. Material changes to the containment system could also enhance the physical 

protection provided or improve shunting of contaminant signals to ground. Silicone-

based compounds are obvious materials to explore as an alternative to the Kwik-Cast 

used in this study. Silicone has the advantage of being a common biocompatible implant 
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material that can be mixed with other materials, such as an electroconductive material, to 

combine the properties of the two materials. Material combinations such as this could 

eliminate the need for the gold mesh in the current design of the containment system. The 

silicone in this containment design was used primarily to fill gaps and create a close fit 

around the array and nerve to limit relative array-nerve movement, while the gold mesh 

provided a semi-rigid protective sheath around the nerve. If a single material could be 

used for both purposes, this would simplify the creation of the containment in-vivo. 

 

Chronic Studies for Grasping 

 Monkeys can be trained to perform complex tasks that give researchers insight 

into what sensations are evoked by electrical stimulation. Although there are some 

aspects of complex, multi-modal, sensation that are difficult to determine from a training 

paradigm, simple responses to specific physical stimuli can be learned by most primates. 

Replacing the physical stimuli with electrical stimuli then allows researchers to determine 

if they can deliver an analogous sensation to the initial, physical, sensation. Future long-

term stimulation studies could be done on animals trained to respond to specific somatic 

stimulation. A primate could be trained to respond differently to proprioceptive 

stimulation, tactile stimulation, and other touch modalities in a specific region. Though 

this technique is promising, the combinations of different stimuli in different regions 

quickly add up to a large list of complex responses to be made by an animal, which 

would require extensive and complex training. For this reason it is important that any 

future sensory stimulation work should also include the implantation of an ECoG grid, or 

other cortex monitoring technology. By mapping the animal’s cortical responses to a 

variety of delivered sensations and electrical stimulation during behavioral training and 
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testing, researchers will have a better sense of how closely matched the physical and 

electrical stimuli are matched.  

The power grip achieved in this study is only one of many desired grip styles 

desired for use in a clinically useful prosthesis. One of the hand’s most useful features is 

its ability to perform a huge variety of grips anywhere in a person’s peripersonal space 

regardless of body position or posture. To create a useful reanimation prosthesis for 

paralysis patients, future work must focus on generating additional grasps, such as the 

support grips used for bearing weight (i.e. bucket grip), or the pinch grips (lateral pinch, 

or pulp-to-pulp). Generating either appropriate power grip or pinch grips requires 

excitation of intrinsic and extrinsic hand muscles in specific patterns. In natural power 

grip, intrinsic and extrinsic muscles are synchronously activated, whereas in pinch grip 

the intrinsic muscles position the fingers and thumb before the extrinsic muscles are 

activated . Replicating the complex timing and synergy of these muscles during a natural 

grip will require high specificity of stimulation and precise timing of stimulus delivery. 

Although the USEA showed specificity for some muscles, future work could improve 

upon the specificity achievable through the array by using current steering between 

electrodes. The use of local return electrodes, within the nerve, would cause a much 

smaller excitation volume, potentially giving greater control to experimenters. 

 

Conclusion 

A neurally-integrated prosthesis for limb replacement or restoration should allow 

a user intuitive, natural control that is as close to a normal intact limb as possible. This 

dissertation focuses on the use of micro-electrode technology to decode the intention or 

experience of a human subject by recording the electrical discharges of the nervous 
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system or inducing discharges in the neurons. Current technologies for sensing the 

activity of neurons or activating them cannot rival the density of the cells in the nervous 

system, and therefore density of information being conveyed within the neurons. Many 

researchers have looked to the brain, where all intentions and sensations are known to be 

experienced, as the location to record or deliver this information. This dissertation 

discusses an alternative approach wherein the computer-nervous system interface is as 

distal as possible in the nervous system. This approach takes advantage of the simple 

representation of the information within the nervous system in the nerve and spinal cord 

when compared with the representation of the same information in the brain.  

High-channel-count intraneural electrode arrays, such as the USEA, can provide 

the access to many neural channels necessary to approximate natural limb function. To be 

useful in a clinical context for patients who have lost the use of their limbs, such an 

electrode array will have to be stable and safe for decades, sensitive enough to detect 

small numbers of neurons, non-invasive enough to be accepted by users, and effective 

enough to outperform traditional prosthetics. This dissertation shows the development of 

systems designed to make USEA electrode technology stable for the long term, as well as 

showing what selectivity such an electrode array can provide. Although the work herein 

shows some success in achieving functional electrostimulation and creating a long-term 

implant, there are many remaining challenges to overcome before a neuroprosthetic 

system can be put into practice. The synergistic effects of foreign body response, physical 

motion, electrode material and design, as well as other factors make the contribution of 

each factor to device failure difficult to determine. For this reason, the continued 
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improvement of all aspects of a neuroprosthetic system are necessary to advance the field 

of creating a man-machine interface.  

Although the task of creating a device capable of replicating the functionality of 

an intact limb is daunting, the development of multiple electrode technologies that 

provide ever-more refined access to the nervous system gives us hope that it is possible. 

Innovations from all corners of the field of bioengineering, from biomaterial design to the 

modeling of complex neural networks, come together to create devices that minimize the 

body's foreign body response, read information from the nervous system with ever-

increasing accuracy, and deliver stimuli that effect more and more precise targets. The 

USEA is an electrode that can be refined and modified to take advantage of advances in 

materials science, information processing, and wireless technology to provide the kind of 

access necessary to create a useful, intuitive interface between a patient and a 

computerized assistive prosthetic. The experiments presented in this dissertation show 

that the basis for this technology can work, and continue to work, over a chronic 

timeframe.  
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