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ABSTRACT

Electrically and Optically detected magnetic resonance (EDMR and ODMR) spec-

troscopy allows investigation of the microscopic nature of paramagnetic centers which

influence the electrical or optoelectronic properties of semiconductors. Traditionally, EDMR

and ODMR have been conducted as adiabatic magnetic field sweep spectroscopies under

continuous wave (cw) application of electromagnetic fields. It is shown here that information

about the dynamics of spin–dependent processes obtained from cwEDMR and cwODMR is

determined by many electronic- and spin-relaxation parameters, which make the interpreta-

tion of experimental data quantitatively ambiguous. In contrast, it is shown that transient

EDMR and ODMR experiments, so called pulsed (p)EDMR and pODMR, are significantly

less ambiguous. For spin-dependent processes based on intermediate pairs of paramagnetic

states, the cwEDMR and cwODMR as well as pEDMR and pODMR dynamics are derived

analytically and the application of these results for the interpretation of experimental data

is discussed for two examples: (i) The pEDMR study of spin-dependent recombination in

silicon rich hydrogenated amorphous silicon nitride (a-SiNx:H) which showed the presence of

a variety of mechanisms such as dangling bond recombination through weakly spin-coupled

paramagnetic states but also recombination through band tail states which were strongly

dipolar or exchange coupled. These processes had previously been observed in hydrogenated

amorphous silicon (a-Si:H). However, while in a-Si:H, these processes took place solely as

geminate recombination, they were of nongeminate nature in the a-SiNx:H. (ii) The pODMR

study of excitonic recombination in a π-conjugated polymer, namely, poly[2-methoxy-5-(20-

ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV). The presence of magnetic resonance

induced spin–beat oscillations in the fluorescence intensity was confirmed. Based on the

existing polaron–pair recombination model, previously pEDMR–detected beat signals seen

here with pODMR in an identical manner. Two types of MEH-PPV, one fully hydrogenated

and one partially deuterated were subjected to pODMR. The deuterated materials showed a

different beat oscillation dependence of the driving field power pattern which was indicative

of smaller hyperfine fields in the deuterated material.



To my wife, Seoyoung Paik.
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CHAPTER 1

INTRODUCTION

Properties of electron spins such as the Landé g-factor or the magnetic resonance

linewidth are highly dependent on their microscopic environment and local interaction

such as with neighbor electron spins, adjacent nuclear magnetic moments, and even their

own motion which can result in spin-orbit coupling [1]. One of the most frequently used

methods to detect electron spin properties is Electron Spin Resonance (ESR). An electron

spin subjected to a static magnetic field (B0 field) can be in one of two eigenstates which are

degenerate in the absence of a magnetic field but nondegenerate due to Zeeman interaction

in the presence of a magnetic field. Resonance occurs when the electron absorbs or emits

electromagnetic waves whose energy is equal to the energy difference between the split

states. Many charge carrier recombination centers in semiconductors possess a spin, they are

paramagnetic. Because of this, they are detectable by ESR and since their ESR signals are

affected by surrounding environments, ESR has widely been used to study their microscopic

nature [2–7].

Most electronic and optoelectronic devices use properties such as charge transport,

photoconductivity, photo- and electro-luminescence, or quantum efficiency for technical

applications. For many of these materials, the electron spin degree of freedom is not of

significance, because of the minute energy scales of electron spin states. However, in some

materials with weak spin-orbit coupling, spin properties can determine macroscopic electri-

cal or optical materials properties due to spin-selection rules [8–11]. For these materials, an

understanding of the properties of paramagnetic centers as well as their spin- and electronic

dynamics is of profound importance for the understanding of the materials behavior.

The first ESR experiment, which also happened to be the first ever magnetic resonance

experiment, was reported by Zavoisky [12] in 1945. Since then, many related techniques

have been developed: nuclear magnetic resonance spectroscopy (NMR) [13, 14], pulsed

ESR [15], pulsed NMR [16, 17], spin echo techniques [15, 16], double magnetic resonance

methods such electron-electron double resonance (ELDOR) [18], electron nuclear double

resonance (ENDOR) [19] and many others. All these methods follow a common detection
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scheme which is based on the emission or absorbtion of electromagnetic radiation from a

given spin system. Due to the weak polarization of both electron and nuclear spin systems,

magnetic resonance is therefore a comparatively insensitive approach: Conventional ESR

is typically limited to a detection limit of 1010 spins. Moreover, when electronic processes

involving paramagnetic centers are investigated using ESR, it is oftentimes hard to figure

out whether an observed ESR signal actually represents the paramagnetic centers involved

in the investigated processes or whether it represents other spins under which the signal of

interest is buried. For instance, the ESR spectroscopy of bulk crystalline silicon without

an extensive surface preparation reveals almost no information about the paramagnetic

centers in these materials because any ESR spectrum obtained from a small silicon crystal

will be dominated by very strong signals from crystalline silicon surface states [20]. In

addition to this problem, pure ESR spectroscopy is also oftentimes not sensitive enough

for semiconductor samples, especially when the investigated materials are available only as

thin films. The inherent volume sensitivity of magnetic resonance spectroscopy is a great

detriment for the investigation of low dimensional materials systems.

The disadvantages of conventional magnetic resonance spectroscopy can be overcome by

direct observation of those macroscopic observables which are influenced by spin-dependent

processes. By combining conventional ESR with the detection of luminescence, absorption

or electric conductivity, a vast amount of information about localized paramagnetic states

and the way they influence optical and electrical properties is obtained. These methods

are referred to as optically (ODMR) and electrically (EDMR) detected magnetic resonance.

First ODMR experiment were carried out by Geschwind et al. in 1959 [21]. A few years

thereafter, in 1965, the first EDMR experiment was carried out by Maxwell and Honig [22].

Since then, EDMR and ODMR experiments were performed on many different electronic

systems in a broad range of materials systems [23–46]. Most of these studies have been

carried out as continuous wave (cw) ODMR or EDMR experiments which are adiabatic

field sweep experiments where the spin spectrum is obtained by a gradual sweep of a

magnetic field in presence of continuously irradiated electromagnetic radiation with constant

frequency and intensity. This experimental approach is simple and it allows us to obtain

Landé g-factors of paramagnetic states contributing to luminescence and conductivity. It

also gives access to magnetic resonance lineshapes which contain information about disorder,

spin-interactions, as well as electronic- and spin relaxation times. This broad range of

experimental parameters influencing ODMR and EDMR measurement, is at the same time

the origin of the limitations of these methods: Significant uncertainty typically arises for
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most cw ODMR and EDMR spectra, because there are too many factors influencing the line-

shapes and resonance positions of ESR spectra. Therefore, lineshape analysis can frequently

provide ambiguous information especially when complex superpositions of lineshapes due

to many overlapping spin signals with a distribution of electron- and spin-dynamics are

present in a given semiconductor sample.

Conventional ODMR and EDMR are traditionally performed as magnetic field or radia-

tion field modulated experiments, with subsequent Lock-in detection. This approach allows

for an optimized noise suppression yet it also implies, that only one particular frequency

component of the investigated spin-dependent processes is detected, namely the compo-

nent whose frequency is equal to the experimentally chosen modulation frequency. This

aspect can be utilized to gradually scan the entire dynamics of ODMR or EDMR detected

spin-dependent signals, simply by a gradual measurement of the modulation frequency

dependence of an observed spin-dependent signal.

Similar to the modulation frequency dependence scan for cw ODMR and EDMR exper-

iments, the dynamics of spin-dependent processes can also be observed by a direct transient

(broad band) measurement. Similar to conventional magnetic resonance spectrocopies, this

time dependent measurement approach has evolved in recent years towards so called pulsed

(p) ODMR and EDMR spectroscopies. PODMR and pEDMR are not just the time domain

equivalent of cw ODMR and cw EDMR. In contrast to those techniques, pODMR and

pEDMR employ very strong electromagnetic pulses in order to manipulate the investigated

spin states on very short times scales, much shorter than any spin- or electronic relaxation

time of the excited species. On these time scales, the spins will therefore propagate

coherently, which means they will propagate deterministically in a way that depends on

their Hamiltonians. The observation of coherent spin motion therefore opens up direct

access to a spins’ Hamiltonian and, thus, a broad range of information about its nature.

This dissertation consists of four main parts, which represent, (i) a study of the exper-

imental limitations of the conventional cw ODMR and cw EDMR techniques, (ii) a study

of how the pODMR and pEDMR techniques can overcome these limitations as well as

applications of pEDMR (iii) and pODMR (iv) to disordered materials spectroscopy which

demonstrated how these modern experiments can lead to new insights into the nature of

macroscopic optical and electronic properties of an amorphous inorganic semiconductor and

an organic semiconductor, respectively.

The results of the work presented in the following led to the first all-analytical de-

scription of cw ODMR and EDMR experiments which revealed that fits of experimentally
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observed modulation frequency dependence measurements determined by electronic and

spin-relxation parameters are profoundly ambiguous and that previously made assignments

based on this approach may not be accurate. In contrast, the investigation of the dynamics

of pODMR and pEDMR experiments showed that due to the enhanced access to experimen-

tal parameters, these methods are inherently less ambiguous. The application of pEDMR for

the investigation of hydrogenated silicon rich amorphous silicon nitride then showed that a

broad range of qualitatively and quantitatively different spin-dependent processes is present

in this material and that the observation of these processes gives important insight into the

optoelectronic properties of this material and their potential applicability for photovoltaic

and photoelectrochemical device applications. Finally, the application of pODMR to the in-

vestigation of spin-dependent processes in a π-conjugated polymer confirmed the previously

reported [47] but at the same time disputed [44] spin-dependent exciton formation process,

namely the so called polaron pair process which describes the formation of strongly exchange

coupled excitonic states through initial formation of weakly spin-coupled excitonic precursor

states, so called polaron pairs. This insight is of significance due to the extraordinary

technological importance of exciton processes in organic semiconductors for light emitting

and photovoltaic devices.
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[4] D. J. Lépine. Physical Review B, 2:2429, 1970.

[5] M. H. Brodsky and R. S. Title. Physical Review Letters, 23:581, 1969.

[6] P. A. Thomas, M. H. Brodsky, D. Kaplan, and D. Lepine. Physical Review B, 18:3059,

1978.

[7] M. Stutzmann, W. B. Jackson, and C. C. Tsai. Physical Review B, 32:23, 1985.

[8] M. Reufer, M. J. Walter, P. G. Lagoudakis, A. B. Hummel, J. S. Kolb, H. G. Roskos,

U. Scherf, and J. M. Lupton. Nature Materials, 4:340 – 346, 2005.

[9] M. Wohlgenannt and Z. V. Vardeny. Journal of Physics: Condensed Matter, 15:R83,

2003.

[10] J. S. Wilson, A. S. Dhoot, A. J. A. B. Seeley, M. S. Khan, A. Kohler, and R. H. Friend.

Nature, 413:828–831, 2001.

[11] K. Held, E. Eisenberg, and B. L. Altshuler. Physical Review Letters, 90:106802, 2003.

[12] E. Zavoiski. Journal of Physics USSR, 9:211, 1945.

[13] F. Bloch, W. W. Hansen, and M. Packard. Physical Review, 70:474, 1946.

[14] E. M. Purcell, H. C. Torrey, and R. V. Pound. Physical Review, 69:37, 1946.

[15] R. J. Blume. Physical Review, 109:1867, 1958.

[16] E. L. Hahn. Physical Review, 80:580, 1950.

[17] R. R. Ernst and W. A. Anderson. Review of Scientific Instruments, 37:93–102, 1966.

[18] K. D. Bowers and W. B. Mims. Physical Review, 115:285, 1959.



6

[19] G. Feher. Physical Review, 103:834, 1956.

[20] P. M. Lenahan and J. J. F. Conley. Journal of Vacuum Science and Technology B,

16:2134–2153, 1998.

[21] S. Geschwind, R. J. Collins, and A. L. Schawlow. Physical Review Letters, 3:545, 1959.

[22] R. Maxwell and A. Honig. Physical Review Letters, 17:188, 1966.

[23] D. K. Biegelsen, J. C. Knights, R. A. Street, C. Tsang, and R. M. White. Philosophical

Magazine Part B, 37:477–488, 1978.

[24] K. Morigaki, D. J. Dunstan, B. C. Cavenett, P. Dawson, J. E. Nicholls, S. Nitta, and

K. Shimakawa. Solid State Communications, 26:981–985, 1978.

[25] D. J. Dunstan and J. J. Davies. Journal of Physics C: Solid State Physics, 12:2927–

2944, 1979.

[26] B. C. Cavenett. Advances in Physics, 30:475–538, 1981.

[27] R. A. Street. Physical Review B, 26:3588–3604, 1982.

[28] F. Boulitrop. Physical Review B, 28:6192, 1983.

[29] E. v. Oort, N. B. Manson, and M. Glasbeek. Journal of Physics C: Solid State Physics,

21:4385, 1988.

[30] L. S. Swanson, J. Shinar, and K. Yoshino. Physical Review Letters, 65:1140, 1990.

[31] L. S. Swanson, J. Shinar, A. R. Brown, D. D. C. Bradley, R. H. Friend, P. L. Burn,

A. Kraft, and A. B. Holmes. Physical Review B, 46:15072, 1992.

[32] B. Stich, S. Greulich-Weber, and J. M. Spaeth. Journal of Applied Physics, 77:1546–

1553, 1995.

[33] E. R. Glaser, T. A. Kennedy, K. Doverspike, L. B. Rowland, D. K. Gaskill, J. A.

Freitas, M. Asif Khan, D. T. Olson, J. N. Kuznia, and D. K. Wickenden. Physical

Review B, 51:13326, 1995.

[34] V. Dyakonov, G. Rösler, M. Schwoerer, and E. L. Frankevich. Physical Review B,

56:3852, 1997.



7

[35] E. Lifshitz, L. Bykov, M. Yassen, and Z. Chen-Esterlit. Chemical Physics Letters,

273:381–388, 1997.

[36] M. S. Brandt, M. W. Bayerl, M. Stutzmann, and C. F. O. Graeff. Journal of Non-

Crystalline Solids, 227-230:343–347, 1998.

[37] V. Dyakonov and E. Frankevich. Chemical Physics, 227:203–217, 1998.

[38] T. Eickelkamp, S. Roth, and M. Mehring. Molecular Physics: An International Journal

at the Interface Between Chemistry and Physics, 95:967–972, 1998.

[39] E. Lifshitz, A. Glozman, I. D. Litvin, and H. Porteanu. The Journal of Physical

Chemistry B, 104:10449–10461, 2000.

[40] M. Stutzmann, M. S. Brandt, and M. W. Bayerl. Journal of Non-Crystalline Solids,

266-269:22, 2000.

[41] A. P. Nizovtsev, S. Y. Kilin, C. Tietz, F. Jelezko, and J. Wrachtrup. Physica B:

Condensed Matter, 308-310:608–611, 2001.

[42] L. Langof, E. Ehrenfreund, E. Lifshitz, O. I. Micic, and A. J. Nozik. Journal of Physical

Chemistry B, 106:1606–1612, 2002.
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CHAPTER 2

UNDERSTANDING THE MODULATION

FREQUENCY DEPENDENCE

OF CONTINUOUS WAVE

EDMR AND ODMR

SPECTROSCOPIES

Electron spin resonance (ESR) is a useful tool for the investigation of microscopic proper-

ties of paramagnetic states in a wide variety of materials. In conventional ESR experiments,

the total polarization of the investigated spin ensemble is observed by the measurement

of microwave absorption. In some materials, there are other observables which can be

used to detect electron spin states. For instance, when electron spins control electronic

transitions such as transport or recombination, macroscopic materials properties such as

photoluminescence, electroluminescence or conductivity can change under spin resonance.

The advantage of these electrically detected magnetic resonance (EDMR) and optically

detected magnetic resonance (ODMR) spectroscopies is that they are significantly more

sensitive than conventional ESR (spin polarization is usually low and single microwave pho-

tons can not be detected), and these methods provide a direct insight into how paramagnetic

states in semiconductors affect some of the technologically most widely used electrical and

optical materials properties. ODMR has been used in a wide range of research areas since its

first invention [1, 2]. ODMR and EDMR are about 8 to 9 orders more sensitive than ESR,

they both are proven to have single spin sensitivity ESR [3–7], and they both can directly

link a paramagnetic center to a specific luminescence center [3–5, 8]. Thanks to these

advantages, ODMR can be used to deconvolute unresolved, overlapping luminescence bands

in semiconductors [9]. EDMR provides information about electronically active paramagnetic

centers in a similar way, again with higher sensitivity than ESR [7, 10]. In the early

stage (until about the 1980s), ODMR was mainly conducted on inorganic semiconductors

to identify paramagnetic recombination centers and to investigate their spin-dependent

processes [3, 11]. ODMR played an important role in investigating spin-dependent processes
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especially in amorphous silicon (a-Si) and revealed a variety of defect states which influence

recombination in a-Si [4, 5, 9, 12–15].

Continuous wave ODMR and EDMR (cwODMR and cwEDMR) have been used in a

wide range of research fields: They have been used to investigate spin-dependent tran-

sitions involving phosphorous donors in crystalline silicon [10, 16], trapping centers and

their recombination dynamics in nanocrystals [6, 17–19], transport and recombination in

microcrystalline hydrogenated silicon [20], GaN [21, 22], and SiC [23], and spin-dependent

recombination in nitrogen vacancy centers in diamond [24–26]. Because cwODMR and

cwEDMR can be used to distinguish overlapping recombination bands and their dynamics

in disordered materials, they have also been used to investigate (usually amorphous) or-

ganic semiconductors: cwODMR and cwEDMR have provided information about spin-pairs

dominating electronic processes and their transitions in conducting polymers [27–38], small

molecules [39–41], and polymer or small molecule/fullerene blends [42, 43]. The effect

of isotopic modification on magnetic field effects in organic semiconductors also has been

observed by ODMR [44], and the intersystem-crossing time has been extracted from the

modulation frequency dependence [45].

Experimentally, cwODMR and cwEDMR are similar to conventional ESR except that lu-

minescence intensity and electric current are picked up instead of the microwave absorption.

Two magnetic fields, a static field B0 and oscillating field B1, are applied to a sample with

B0 ⊥ B1. The frequency of the sinusoidal B1 field is matched with the Larmor frequency of

the paramagnetic center to satisfy the resonance condition. As for most ESR spectrometers,

X-band (≈ 9.7GHz) is used, a frequency in the microwave (MW) range. In the case of

cwODMR, to allow for optical detection, optical or electrical excitation of electronic states

is necessary. Depending on the excitation method, photoluminescence detected magnetic

resonance (PLDMR) or electroluminescence detected magnetic resonance (ELDMR) can

be performed. In the case of PLDMR, constant optical excitation is applied using, for

example, a Laser, and the resulting photoluminescence (PL) is detected. To increase the

signal to noise ratio, lock-in detection is oftentimes employed. Two different modulation

methods can be used. One method involves modulation of the static magnetic field, B0,

as used for conventional cwESR. The other approach is based on the modulation of the

MW amplitude. Experimentally, B0 modulation has been found to give weaker signals than

MW amplitude modulation [3]. Square modulation of the microwaves at a fixed reference

frequency is generally used. The PL intensity reflecting the varying MW amplitude is then

fed into a lock-in amplifier, and both in-phase and out-of-phase signals are obtained. In
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some studies found in the literature [20, 29, 37, 40, 46], the out-of-phase signal are ignored.

However, doing so can result in the loss of important information, as will be explained later.

When the optical excitation is modulated with the same reference frequency as the MW,

a double modulated PLDMR (DM-PLDMR) becomes possible [37]. An experimental setup

for a MW modulated ODMR experiment is shown in Fig. 2.1. For EDMR, the optical

detection is replaced by a current measurement. The metallic contacts needed for this

require a design that prevents the distortion of the MW field.

In both cwEDMR and cwODMR, the responses of the observables to the induced

magnetic resonances are determined by the underlying electronic processes. The time

scales on which these processes occur depend on various experimental parameters, such

as excitation density [4, 5, 12, 40, 47, 48] (or an injection current for EDMR [29, 40]),

temperature [4, 9, 29, 40], and MW power (equivalently B1 field strength) [4, 5, 11, 16–

19, 25, 39, 42, 45, 49–52]. The dependencies of cwODMR and cwEDMR signals on these

parameters can allow us to distinguish overlapping transitions and to understand their

dynamics. For cwODMR, spectral information also can provide additional information to

distinguish overlapping luminescence bands [4, 9, 25].

Another experimental parameter that can influence the observed cwODMR and cwEDMR

signals is the modulation frequency, as the lock-in detected signals depend on the transient

responses to the modulated MW [4, 9, 12, 19, 53]. Modulation frequency effects have often

been ignored in the literature, and, as a result, studies often reported results obtained

using only one (or a small number of) modulation frequencies (usually the one which

maximized the obtained signal). One can, however, find a number of reports showing

modulation frequency dependence. Different signals at different modulation frequencies

were reported for the first time by Biegelsen et al. [50]. Other investigators have noticed

that modulation frequency effects play an important role in the observed signal, which can

change drastically as a function of the modulation frequency [3, 9, 12]. Qualitative reports

of modulation frequencies dependencies can be found in the early ODMR and EDMR litera-

ture [3, 9, 13] which were sometimes used to identify the overlap of separate spin-dependent

signals [5]. Even so, very little systematic research into modulation frequency effects was

undertaken before the late 1990s, when research into this question became more common

[18, 19, 25, 30, 36–38, 45, 47, 48].

A number of researchers have attempted to understand modulation frequency effects by

developing rate models. Dunstan and Davies were the first to develop solutions for ODMR

transients [11]. Next, Street and Depinna et al. developed rate models and found transient
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solutions [4, 12]. Lenahan et al. explained their observed modulation frequency dependence

using a simple rate model described by only one time constant [14]. A number of studies

based on the steady-state solutions of such rate models have been reported [16, 17, 47,

49, 51]. However, to understand the modulation frequency effects the exact solutions for

the frequency dependence are necessary. There have been a number of efforts to find the

solutions for modulation frequency dependence [6, 19, 30, 36–38, 42, 45, 48]. However, no

closed form analytical solutions have been reported, and important aspects of modulation

frequency effects remain not well understood. This has led to a number of debates regarding

the underlying physical mechanisms of cwODMR and cwEDMR signals, because modulation

frequency dependencies observed by different groups on similar systems have sometimes led

to completely different spin-dependent transition models. For example, the source of the

signal seen in organic semiconductors has been attributed to both a spin-dependent polaron

model [38, 45, 54] and a triplet exciton-polaron quenching model [36, 37, 53].

Lock-in detected cwODMR and cwEDMR signals can be either positive or negative

depending on the shapes of transient responses [4, 9, 12, 19, 53]. A variety of spin-dependent

models have been developed based on the observed signs of cwODMR and cwEDMR signals

as well as experimental parameters, like pair generation rates, temperature, MW power, and

modulation frequency. Examples for such studies exist for a-si [4, 5, 7, 9, 9, 11–13, 15, 50, 55],

InP nanocrystal [19], II-IV semiconductor quantum dots [18], PbI2 nanoparticles [17], and

organic semiconductors [29, 30, 33, 34, 36, 38, 41, 43, 47, 48]. For instance, it has been

generally accepted that radiative and nonradiative recombination result in enhancement

and quenching of cwODMR signals, respectively [5, 7, 17, 56], and all recombination

processes and all detrapping processes result in quenching and enhancement of cwEDMR

signals, respectively [7, 56]. The qualitative explanation for signs of cwODMR signals is

as follows: spin resonance induces mixing between triplet and singlet pairs, and because

initial states are generally dominated by triplet pairs due to the fast recombination of

singlet pairs, the number of singlet pairs is increased at resonance. Thereby, the overall

transition rate increases [7]. Some studies even conclude that a certain channel is radiative

or nonradiative, based on the sign of the ODMR signal [4, 9, 12, 55]. The idea here is

that when a nonradiative recombination process is enhanced under spin-resonance, the

competing optically detected radiative channels must be quenched.

The above examples show how critical it is to understand how MW modulation affects

the observed cwODMR and cwEDMR signals. In this report, we employ the widely accepted

spin-dependent transition model based on weakly coupled electron-hole pairs [57], and find
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its closed-form analytical solutions. We then use this solution to explain how a broad

range of electronic transitions, including recombination, dissociation, intersystem-crossing,

pair generation, and spin-flip can affect the cwODMR and cwEDMR signals. We show how

serious ambiguities related to the modulation frequency dependencies can arise, which make

it difficult to determine the fundamental physical processes responsible for the observed

cwEDMR or cwODMR frequency dependence. For example, extensive ODMR studies have

been conducted on organic semiconductors to determine their dominant recombination

processes. A variety of models have been suggested based on the observations of the

signs of cwODMR and cwEDMR such as the singlet exciton quenching model [34, 36, 47],

the triplet-triplet annihilation model [48], the polaron-to-bipolaron decay [29, 33], and

the polaron pair recombination [38]. We show that most in many cases, the modulation

frequency dependence cannot be used for such assignments, since the sign of these signals

can be negative or positive for both radiative or nonradiative processes. This ambiguity

is one of the reasons why cwODMR and cwEDMR spectroscopies have been increasingly

substituted by transient, pulsed EDMR and ODMR techniques which will be discussed in

the following chapters [58–66].

2.1 Models for the description of spin-dependent
transition rates

The first quantitative model explaining spin-dependent recombination was suggested by

Lepin [67] who described a thermal polarization model which predicted a relative change

in photoconductivity of less than 10−6 at 300 K for X-band ESR. Microwave frequency

and temperature dependencies were also predicted. However, it turned out that this model

could neither explain the signal intensity of more than 10−3 that was observed in undoped

a-Si:H at R.T. [67], and the very weak dependencies on microwave frequency [68] and

temperature [15, 69]. These problems were soon resolved by another model developed

by Kaplan, Solomon and Mott (KSM model) [57]. In the KSM model, intermediate pair

states exist prior to a spin-dependent transition and the spin pair states may recombine or

dissociate. In addition, it is assumed that spin pairs in the triplet state can be annihilated

only when one of pair partners is flipped by the spin-lattice relaxation process or the induced

ESR otherwise pairs dissociate. Thus, the recombination of triplet pairs happens only when

they experience a transition to the singlet state.

In the past decades, a number of refinements were introduced to the KSM model, in

which spin-spin interactions such as exchange and dipolar interactions exist within the pair,

and spin-orbit coupling that is weak but not negligible is permitted such that weak triplet
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transitions become possible [59]. Because the intermediate pairs, consisting of two spins

with s=1/2, can experience spin-spin interactions, the pair eigenbasis consists in general

of two parallel states (|T+⟩ and |T−⟩) and two mixed states (|2⟩ and |3⟩) which change

continuously from | ↑↓⟩ and | ↓↑⟩ to |S⟩ and |T0⟩, respectively, as the spin-spin interaction

increases. ESR can induce transitions of |T+⟩ ↔ | ↑↓⟩, |T−⟩ ↔ | ↑↓⟩, |T+⟩ ↔ | ↓↑⟩, and

|T−⟩ ↔ | ↓↑⟩. Thus, when the spin-spin interaction is weak, there can appear transitions

among all four eigenstates, and the transition probabilities are functions of the spin-spin

interaction strength. Note that transitions of | ↓↑⟩ ↔ | ↑↓⟩ are ESR forbidden but possible

due to T1 relaxation, and |2⟩ ↔ |3⟩ transitions are possible via mixed relaxation processes.

To understand the change of spin pair densities by ESR induced transitions, a mathematical

approach will be given. Boehme and Lips have found the effective changes of spin densities

by solving a Louville equations describing the propagation of a spin ensemble during an

ESR excitation [59]. The density changes of each spin state are then given by,

ρ1,4(τ) = ρ01,4∆
u(τ),

ρ2,3(τ) = ρ02,3∆
v(τ)± ρ02,3

J +D

~ω∆
∆w(τ) (2.1)

where indices 1 and 4 represent the states |T+⟩ and |T−⟩, respectively, ρ0i is the initial density,

J and D are the exchange and dipolar coupling constant, respectively, ω∆ represents the

half of the frequency separation between the states |2⟩ and |3⟩. ∆u(τ), ∆v(τ), and ∆w(τ)

represent the ESR duration time (τ) dependencies. When the Larmor separation (which is

the difference of the two Larmor frequencies within a pair) is larger than the applied B1

field strength, only one pair partner can be flipped. In this case the τ dependencies become,

∆v(τ) =
γ2B2

1

Ω2
sin2(

Ωτ

2
) ≡ ∆(τ),

∆u(τ) = 1−∆(τ),

∆w(τ) = 0 (2.2)

where Ω = 2πf represents the Rabi frequency of the flipped pair partner. Therefore, the

density changes of each eigenstates become

ρ1,4(τ) = ρ01,4(1−∆(τ)),

ρ2,3(τ) = ρ02,3∆(τ). (2.3)

Because either one of the states 2 or 3 is always involved in a possible transition among four

eigenstates, any transition will cause a decrease or increase of ρ2 or ρ3. Density changes in

state 2 and 3 are equivalent to density changes of singlet and triplet pair states. Therefore we
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don’t need to deal with four state problems. Instead two pair densities of singlet and triplet

pairs are enough to describe recombination processes as long as any coherent spin motion is

not of interest. Note that this is a valid statement because modulation frequency is typically

not faster than the time scale of coherent spin motions so that all coherent phenomena will

be averaged out. An illustration of the resulting spin pair rate model is given in Fig. 2.2.

Prior to a spin pair transition to a singlet state, it is in the intermediate pair state. This pair

is created with a certain rate, Gs for a singlet pair and Gt for a triplet pair. If this process is

due to optical generation of electron-hole pairs and spin-orbit coupling is infinitely small, Gt

can be considered to be infinitely small. In the other case, if pair generation is achieved due

to electrical injection of an electron and hole, Gt/Gt becomes three, because a pair will be

created with a random spin configuration. The pair can recombine to an excitonic state with

a recombination rate, rs for a singlet pair and rt for a triplet pair. This pair may dissociate

into two free charge carriers without recombination. This happens at a dissociation rate,

ds for a singlet pair and dt for a triplet pair. Before a pair recombines or dissociates, it

can change its spin configuration from singlet to triplet or vice versa. This transition is

possible via two spin mixing processes. One is intersystem-crossing, which is equivalent to

a longitudinal spin relaxation process which can be defined as a “radiationless transition

between two electronic states having different spin multiplicities” [70]. Intersystem-crossing

rate is described by kISC . The other process is ESR induced spin-mixing as can be seen from

eq. (2.2) and (2.3). This ESR-induced transition rate is given by α which is proportional to

the microwave power (∝ B2
1) and dependent on the spin-spin interaction controlled oscillator

strength of the pair [71].

In the following section, a large number of quantitative models will be tested with

analytical solutions for the observables of cwEDMR and cwODMR. Using realistic values

for each transition probability, we consider experimentally relevant values for the cwODMR

experiment. A wide range of transition rates have been reported. Examples include PL

lifetimes in a-Si which span 11 decades from 10−9 s to 102 s [72]; bound pair decay (e-h

pair dissociation) life times of 5× 10−5 s in polymer-fullerene blends [73]; fluorescence life

times of 2 × 10−7 s and phosphorescence life times of 10−4 s in conjugated polymers [74];

microsecond-millisecond time scales of recombination in nanocrystalline TiO2 thin films

[75]; radiative decay rates of 106 ∼ 107 s−1, nonradiative decay rates of 109 ∼ 1010 s−1, and

dissociation rates of 107 s−1 in organic semiconductors [76], and a lower limit of intersystem-

crossing time of 10−5 s in organic semiconductors [77]. In the following work, we vary the

electronic transition rates, including recombination, dissociation, intersystem-crossing, and
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flip-flop, in the range between 10−4 and 109s−1 to cover as wide a range of experimentally

observed parameters as possible.

2.1.1 Rate equations

CwODMR is fundamentally similar to conventional ESR spectroscopy - the one major

modification is that the observable of ODMR is not the magnetization but the changes in

the number of photons induced by ESR. Generally, a lock-in detected modulation of the B0

or the B1 field is used to enhance the resulting ODMR signal. For the B1 field modulation,

a square modulated microwave is continuously applied, and the responses to this excitation

contain various harmonic frequency components. We will focus in the following on this kind

of experiment.

Based on the rate model explained in Sec. 2.1, two coupled rate equations for the singlet

and triplet pair densities can be written as below,

dns

dt
= Gs − Csns + α(nt − ns)− kISC(ns − ρns) + kISC(nt − (1− ρ)nt), (2.4)

dnt

dt
= Gt − Ctnt + α(ns − nt)− kISC(nt − (1− ρ)nt) + kISC(ns − ρns), (2.5)

where ρ is the Fermi-Dirac distribution function, ρ = (1 + e
∆E
kT )−1, which approaches zero

at low temperature and 1/2 at high temperature. It should be noted that α is turned

on and off for each half cycle because of the square modulated microwave with frequency

of 1/T. Cs and Ct are singlet and triplet pair annihilation rate coefficients, respectively.

They consist of recombination and dissociation rate coefficients, Cs,t = rs,t + ds,t. Some

aspects with regard to radiative and nonradiative recombination rate coefficients should be

mentioned: For radiative recombination, the spatial correlation between the electron and the

hole affects the transition probability so rt and rs are dependent on separation between an

electron and hole [20, 78]. Therefore, because higher generation rate causes less separation,

the radiative recombination probability is also a function of generation rate. However,

this effect will not be considered in this report, as we assume that the average separation

is larger than the localization radii of electrons and holes. Note that this transition

corresponds to the radiative tunneling in hydrogenated amorphous silicon [78]. Nonradiative

recombination includes all recombination processes which are not mediated by emission

of photons, but phonons and hot carriers: phonon emission, Auger processes, surface

and interface recombination, and recombination through defect states [79]. Nonradiative

processes quench radiation efficiency in both organic semiconductors [80] and inorganic

semiconductors [79]. As treated by List et al. [47] and Dyakonov et al. [46], we consider
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both radiative and nonradiative recombination processes, and thus Cs = (rs + rs,nr + ds)

and Ct = (rt + rt,nr + dt) where the subscript nr indicates nonradiative recombination.

Given the above definitions, the PL intensity and electric conductivity become

I ∝ rsns + rtnt, (2.6)

σ ∝ dsns + dtnt. (2.7)

It should be noted that nonradiative recombination behaves as pair annihilation process as

other radiative recombination and dissociation, but they do not appear as proportionality

constants in eq. 2.6 and eq. 2.7. In this section, only radiative recombination will be con-

sidered (rs,nr, rt,nr = 0) for simplicity and the contributions of nonradiative recombination

will be discussed in Sec. 2.6.

Rate equations similar to eq. (2.4) and (2.5) can be found throughout the literature.

However, usually only steady state solutions were found for the consideration of cwODMR

and cwEDMR experiments [16, 47, 81]. In some cases, only the time dependence was

considered [11, 12, 42]. Modulation frequency dependence solutions also have been reported,

but there have been no reports of closed-form analytical solutions. Some solutions reported

in the literature were obtained from a simplified rate model [14, 30, 48], some solutions were

based on the steady state [36, 37], some solutions based on the rate model reported here

were solely reported as numerical solutions [6, 19, 38, 45, 54], or the described observable

was not the number of photons or electrons but total spin densities [30, 38, 45]. One solution

given by Hiromitsu et al. was based on an assumed steady state for the half cycle where

the MW is off [42].

The rate equations corresponding to eq. (2.4) and (2.5) are solved for the two separated

time regions where the pulse is on and off, and the closed-form solutions can be explicitly

expressed as:

ns1 (t) = A11e
−m11t +A21e

−m21t + n0
s1, (2.8)

nt1 (t) = B11e
−m11t +B21e

−m21t + n0
t1, (2.9)

ns2 (t) = A12e
−m12(t−T

2 ) +A22e
−m22(t−T

2 ) + n0
s2, (2.10)

nt2 (t) = B12e
−m12(t−T

2 ) +B22e
−m22(t−T

2 ) + n0
t2, (2.11)

where ns1 and nt1 are the singlet and triplet populations when the MW pulse is on, and ns2

and nt2 are the singlet and triplet populations when the MW pulse is off. Those solutions

consist of double exponential functions as is often found in the literature regarding pulsed

experiments [58, 59, 63, 77].
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The introduced constants in the above solutions are summarized below,

m1j =
Cs + w1j + Ct + w2j −

√
(Cs + w1j − Ct − w2j)

2 + 4w1jw2j

2
, (2.12)

m2j =
Cs + w1j + Ct + w2j +

√
(Cs + w1j − Ct − w2j)

2 + 4w1jw2j

2
, (2.13)

n0
sj =

w2jGt + (Ct + w2j)Gs

(Cs + w1j) (Ct + w2j)− w1jw2j
, (2.14)

n0
tj =

w1jGs + (Cs + w1j)Gt

(Cs + w1j) (Ct + w2j)− w1jw2j
, (2.15)

w11 = α+ kISC(1− ρ), w21 = α+ kISC · ρ,

w12 = kISC(1− ρ), w22 = kISC · ρ, (2.16)

where j=1 or 2. It should be noted that the exponents, m1j and m2j , are independent on

either the generation rates or the modulation frequency. It can be easily seen that m2j is

decided by the fastest rate coefficient, but it is difficult to predict m1j . However, it is clear

that m2j is always larger than m1j . Two constant terms, n0
sj and n0

tj , are the steady-state

solutions which the system assumes for very low modulation frequency [16, 38, 45, 47, 81].

It should also be noted that the singlet and triplet pair populations will approach values

at the end of each half cycle which are at the same time as initial values of the following

half cycle. Therefore, the frequency dependence might be able to be explained in terms of

the differences between the populations at the end of each half cycle [38, 45], ns1(T/2) −

ns2(T ) and nt1(T/2)− nt2(T ). However, lock-in detected signals are not simply decided by

these quantities. The observables are not the population changes, but the changes in the

number of photons, which incoprorates both the population change and the recombination

probability.

2.1.2 Boundary conditions

Because the spin populations assume the steady state only for a modulation frequency

f=0, the time dependent solutions must be solved to explain the transient behavior at

arbitrary modulation frequencies. To find the exact solution, the expressions for the eight

unknown coefficients Aij and Bij (i, j=1 or 2) in eqs. 2.8, 2.9, 2.10, and 2.11 must be derived

by application of eight boundary conditions.
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Four of the boundary conditions can be easily found from the periodicity of the solution:

ns1 (0) = ns2 (T ), nt1 (0) = nt2 (T ), ns1

(
T
2

)
= ns2

(
T
2

)
, and nt1

(
T
2

)
= nt2

(
T
2

)
. From these

boundary conditions, we obtain

A1 +A2 + n0
s1 = A3e

(−m12T/2) +A4e
(−m22T/2) + n0

s2 (2.17)

B1 +B2 + n0
t1 = B3e

(−m12T/2) +B4e
(−m22T/2) + n0

t2 (2.18)

A1e
(−m11T/2) +A2e

(−m21T/2) + n0
s1 = A3 +A4 + n0

s2 (2.19)

B1e
(−m11T/2) +B2e

(−m21T/2) + n0
t1 = B3 +B4 + n0

t2 (2.20)

After each half cycle, the number of each singlet and triplet pair is decreased or increased.

These changes depend on the given rate coefficients: the number of singlet or triplet pair is

either decreased or increased by spin mixing and increased by pair generation, decreased by

the dissociation and recombination processes. From this condition, the other four equations

can be found as

ns1

(
T

2

)
− ns1 (0) = Gs

T

2
+

∫ T
2

0
(w21nt1 − (Cs + w11)ns1) dt, (2.21)

ns2 (T )− ns2

(
T

2

)
= Gs

T

2
+

∫ T

T
2

(w22nt2 − (Cs + w12)ns2) dt (2.22)

nt1

(
T

2

)
− nt1 (0) = Gt

T

2
+

∫ T
2

0
(w11nt1 − (Ct + w21)nt1) dt, (2.23)

nt2 (T )− nt2

(
T

2

)
= Gt

T

2
+

∫ T

T
2

(w12nt2 − (Ct + w22)nt2) dt (2.24)

By plugging the eqs. 2.8, 2.10, 2.9, and 2.11 into the above eight equations, we obtain

A1(e
(−m11T/2) − 1) +A2(e

(−m21T/2) − 1)

= −w21B1 − (Cs + w11)A1

m11
(e(−m11T/2) − 1)

−w21B2 − (Cs + w11)A2

m21
(e(−m21T/2) − 1) (2.25)

A3(e
(−m12T/2) − 1) +A4(e

(−m22T/2) − 1)

= −w22B3 − (Cs + w11)A3

m12
(e(−m12T/2) − 1)

−w22B4 − (Cs + w12)A4

m22
(e(−m22T/2) − 1) (2.26)

B1(e
(−m11T/2) − 1) +B2(e

(−m21T/2) − 1)

= −w11A1 − (Ct + w21)B1

m11
(e(−m11T/2) − 1)

−w11A2 − (Ct + w21)B2

m21
(e(−m21T/2) − 1) (2.27)
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B3(e
(−m12T/2) − 1) +B4(e

(−m22T/2) − 1)

= −w12A3 − (Ct + w22)B3

m12
(e(−m12T/2) − 1)

−w12A4 − (Ct + w22)B4

m22
(e(−m22T/2) − 1). (2.28)

Note that the terms Gs + w21n
0
t1 − (Cs + w11)n

0
s1 = 0, Gs + w22n

0
t2 − (Cs + w12)n

0
s2 =

0, Gt + w11n
0
s1 − (Ct + w21)n

0
t1 = 0, Gt + w12n

0
s2 − (Ct + w22)n

0
t2 = 0 are used here, which

are obtained from eqs. 2.14 and 2.15.

Solving eq. (2.17)-(2.20), (2.25)-(2.28), and by introducing the parameters βij =
Cs+w1j−m1j

w2j
,

∆n0
s = n0

s2 − n0
s1, ∆n0

t = n0
t2 − n0

t1, and γij = e−mij
T
2 , we realized that Bij = Aijβij and

four simplified equations
1 1 −γ12 −γ22
β11 β21 −β12γ12 −β22γ22
γ11 γ21 −1 −1

β11γ11 β21γ21 −β12 −β22




A11

A21

A12

A22

 =


∆n0

s

∆n0
t

∆n0
s

∆n0
t

 . (2.29)

are obtained for Aij .

Equation 2.29 is a fully determined system of linear equation, which can be

A22 = (((β21 − β11) · (∆n0
s − γ11∆n0

s)− (∆n0
t − β11∆n0

s) · (γ21 − γ11))

·((β21 − β11) · (β11γ11γ12 − β12)− (β11γ12 − β12γ12) · (β21γ21 − β11γ11))

−((β21 − β11) · (γ11γ12 − 1)− (β11γ12 − β12γ12) · (γ21 − γ11))

·((β21 − β11) · (∆n0
t − β11γ11∆n0

s)− (∆n0
t − β11∆n0

s) · (β21γ21 − β11γ11)))

/(((β21 − β11) · (γ11γ22 − 1)− (β11γ22 − β22γ22) · (γ21 − γ11))

·((β21 − β11) · (β11γ11γ12 − β12)− (β11γ12 − β12γ12) · (β21γ21 − β11γ11))

−((β21 − β11) · (γ11γ12 − 1)− (β11γ12 − β12γ12) · (γ21 − γ11))

·((β21 − β11) · (β11γ11γ22 − β22)− (β11γ22 − β22γ22) · (β21γ21 − β11γ11))),

(2.30)

A12 = ((β21 − β11) · (∆n0
s − γ11∆n0

s)− (∆n0
t − β11∆n0

s) · (γ21 − γ11)

−((β21 − β11) · (γ11γ22 − 1)− (β11γ22 − β22γ22) · (γ21 − γ11)) ·A22)

/((β2 − β11) · (γ11γ12 − 1)− (β11γ12 − β12γ12) · (γ21 − γ11)), (2.31)

A21 = ((∆n0
t − β11∆n0

s) · (β21γ21 − β11γ11)

−(β11γ12 − β12γ12) · (β21γ21 − β11γ11) ·A12

−(β11γ22 − β22γ22) · (β21γ21 − β11γ11) ·A22)

/((β21 − β11) · (β21γ21 − β11γ11)), (2.32)
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A11 = ∆n0
s −A21 + γ12 ·A12 + γ22 ·A22. (2.33)

Equations 2.30, 2.31, 2.32, 2.33 represent exact and general analytical solutions for the

singlet and triplet density functions during a cwODMR modulation cycle. We are thus in

a position to determine the temporal evolution of the cwODMR observable.

2.2 Transient behavior of cwODMR

The observable in cwODMR is the emission rate of photons, and, as described in eq. 2.6,

the time dependence can be obtained by adding the contribution from the singlet and

triplet pair populations multiplied by the singlet and triplet recombination rate coefficients,

respectively

I1 = (rsA11 + rtB11) e
−m11t + (rsA21 + rtB21) e

−m21t + rsn
0
s1 + rtn

0
t1, (2.34)

I2 = (rsA12 + rtB12) e
−m12(t−T

2 ) + (rsA22 + rtB22) e
−m22(t−T

2 ) + rsn
0
s2 + rtn

0
t2. (2.35)

Here, I1 and I2 are the photon emission rate due to recombination of both singlet and

triplet pairs when the pulse is on and off, respectively. The dash-dotted curve in Fig. 2.3

is a numerical example of the time dependence. Because m1j and m2j are always positive

and m2j > m1j , the first and second terms in both eq. 2.34 and eq. 2.35 determine the

faster and slower decay, respectively. It is difficult to predict which response will show an

enhancement or quenching behavior because the overall response depends not only on m1j

and m2j but also on rsAij + rtBij . Since the coefficients of all exponential terms have very

complicated dependencies on a variety of parameters (see eqs. 2.30, 2.31, 2.32, and 2.33),

it is clear that sign predictions depend on the magnitudes of many parameters at the same

time. Using the above solution, we have been able to reproduce a wide variety of cwODMR

transients reported in the literature [4, 9, 11, 12, 19].

2.3 Modulation frequency dependence

The time dependence solutions, eqs. 2.34 and 2.35, are the collective responses to the

modulated B1 field over all frequency ranges. However, in experimental implementations

which utilize a lock-in technique, only the component of the transient signal which has

the same frequency as the reference will be obtained. With lock-in quadrature detection,

both the in- an out-of-phase components are available. While the out-of-phase components

have often been ignored in the literature [20, 29, 37, 40, 46], we note that the out-of-phase

components contain important information.
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To find the in-phase and out-of-phase components at the given modulation frequency,

it is better to find the Fourier series of eqs. 2.34 and 2.35, and the frequency responses will

be decided from the Fourier coefficients according to the definition of the Fourier series as

below,

IFs (t) =
I0
2

+
∞∑
l=1

(
Ic cos

(
2lπ

T
t

)
+ Is sin

(
2lπ

T
t

))
, (2.36)

Ic =
2

T

∫ T

0
I (t) cos

(
2lπ

T
t

)
dt, (2.37)

Is =
2

T

∫ T

0
I (t) sin

(
2lπ

T
t

)
dt. (2.38)

Then the obtained two coefficients as well as the zero frequency component are:

Ic =
2m11

T
(rsA11 + rtB11)

(
1− e−m11T/2 cos (lπ)

m11
2 + 4l2π2/T 2

)

+
2m21

T
(rsA21 + rtB21)

(
1− e−m21T/2 cos (lπ)

m21
2 + 4l2π2/T 2

)

+
2m12

T
(rsA12 + rtB12)

(
cos (lπ)− e−m12T/2

m12
2 + 4l2π2/T 2

)

+
2m22

T
(rsA22 + rtB22)

(
cos (lπ)− e−m22T/2

m22
2 + 4l2π2/T 2

)
, (2.39)

Is =
4lπ

T 2
(rsA11 + rtB11)

(
1− e−m11T/2 cos (lπ)

m11
2 + 4l2π2/T 2

)

+
4lπ

T 2
(rsA21 + rtB21)

(
1− e−m21T/2 cos (lπ)

m21
2 + 4l2π2/T 2

)

+
4lπ

T 2
(rsA12 + rtB12)

(
cos (lπ)− e−m12T/2

m12
2 + 4l2π2/T 2

)

+
4lπ

T 2
(rsA22 + rtB22)

(
cos (lπ)− e−m2

22T/2

m22
2 + 4l2π2/T 2

)

+
(
rs∆n0

s + rt∆n0
t

)(cos (lπ)− 1

lπ

)
, (2.40)

I0 =
2

T
(rsA11 + rtB11)

(
1− e−m11T/2

m11

)
+

2

T
(rsA21 + rtB21)

(
1− e−m21T/2

m21

)

+
2

T
(rsA12 + rtB12)

(
1− e−m12T/2

m12

)
+

2

T
(rsA22 + rtB22)

(
1− e−m22T/2

m22

)
+rs(n

0
s1 + n0

s2) + rt(n
0
t1 + n0

t2). (2.41)
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The Fourier series in eq. 2.36 can be simplified by introducing V0 =
√

Ic
2 + Is

2 and φ =

tan−1
(
Ic
Is

)
as below,

IFs (t) =
I0
2

+

∞∑
l=1

V0 sin (2lπft+ φ) , (2.42)

where f is the frequency of the square modulation, 1/T. A Lock-in amplifier multiplies

the input signal by its own internal reference signals, sin(ωLt + θL) and cos(ωLt + θL), to

detect in-phase and out-of-phase signals, respectively. At this moment, the in-phase Vin

and out-of-phase Vout signals are

Vin =
I0
2
VL sin (ωLt+ θL)

+

∞∑
l=1

VLV0

2
(cos ((2lπf − ωL) t+ φ− θL)− cos ((2lπf + ωL)t+ φ+ θL))

(2.43)

Vout =
I0
2
VL sin (ωLt+ θL)

+

∞∑
l=1

VLV0

2
(sin ((2lπf + ωL) t+ φ+ θL) + sin ((2lπf − ωL)t+ φ− θL))

(2.44)

where VL is the amplitude of the reference signals. After these signals pass through a low

pass filter, only the nonAC signals will remain. And the frequency of the internal reference

signal is fixed such that it has a phase which is the same as the phase of the external

reference signal. Thanks to this condition, ωL ≈ 2πf , and the in-phase and out-of-phase

signals become

Vin =
V01

2
cos (φ1) =

1

2
Is1, (2.45)

Vout =
V01

2
sin (φ1) =

1

2
Ic1 (2.46)

where V01 = V0, Is1 = Is, Ic1 = Ic, and φ1 = φ at l = 1, and, θL is usually set to zero.

Thus the in-phase and out-of-phase cwODMR signals are the Fourier coefficients of the

lowest frequency sine and cosine terms of the Fourier series solution (eq. 2.36), respectively.

Examples are shown in Fig. 2.3 to explain the decomposed in-phase and out-of-phase

components of the time response. It should be noted that the cwEDMR solutions also

can be obtained in a similar way by replacing rs and rt in front of the exponential functions

in eqs. 2.34 and 2.35 with ds and dt, respectively, as shown in eq. 2.7.

Similarly the solutions for B0 field modulated cwODMR and cwEDMR can be found in

the same way as for microwave modulated cwODMR and cwEDMR. While the difference
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between these two modulation techniques is that the spin resonance is modulated by a

square function and a harmonic function, the lock-in detected observables are identical

since the lock-in technique is sensitive to the lowest harmonic component in either case.

2.3.1 At low modulation frequency

We use the low modulation frequency limit to check the solution of our model, by

varifying that these solutions can explain the cwODMR response. From the solutions above,

the low frequency behavior is seen to be

Vin,lf =
(rs + rt)(Gt +Gs)α+ (rtrs + rsw22 + rtw12)(Gt +Gs) + rtdsGt + rsdtGs

(Cs + Ct)α+ (Cs + w12)(Ct + w22)− w12w22
· 2
π

−(rtrs + rsw22 + rtw12)(Gt +Gs) + rtdsGt + rsdtGs

(Cs + w12)(Ct + w22)− w12w22
· 2
π
, (2.47)

Vout,lf = 0. (2.48)

The out-of-phase component vanishes since the transient response can easily follow the

slow modulation. The in-phase component shows a typical microwave power dependence:

it vanishes at small power (when α → 0) and it becomes saturated at high power (i.e., it has

a nonzero constant value). MW power dependence of eqs. 2.47 and 2.48 will be explained

in the section 2.4.

2.3.2 Ambiguity of cwODMR measurements

To understand the modulation frequency dependence of cwODMR, we inspected a large

number of quantitative models. There is an extremely large number of possible qualitative

and quantitative relationships betwen the model parameters. To limit the number of cases

that we inspected, we chose a number of relationships between these parameters. We

considered that i) the triplet recombination coefficient is the smallest one among all the

recombination and dissociation rate coefficients (rt < rs, ds, dt) (unless otherwise noted),

and ii) the singlet dissociation rate coefficient is smaller than the triplet dissociation rate

coefficient (ds < dt) which means that the singlet intermediate state is assumed to be

energetically lower than the triplet intermediate state (unless otherwise noted). Under

these assumptions, a large number of quantitative models were investigated by varying rt,

rs, ds, dt, kISC , and α in the range from 10−4 to 109 s−1. We investigated almost a thousand

different variations of the relationship between different parameters.

After looking through these cases, we find that it is almost impossible to distinguish

some of the quantitative models based on their modulation frequency behaviors. Fig. 2.4

illustrates this ambiguity. Figure 2.4 (a), (b), and (c) show nearly identical frequency
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dependencies of three very different quantitative models. The frequencies at which the

in-phase signals have their maximum slope and the out-of-phase signals show their local

maximum values are almost identical, and their shapes are also indistinguishable. The

patterns shown in Fig. 2.4 represent in fact the most common frequency dependency that we

have found out by the tested quantitative models. This illustrates the difficulty in extracting

correct values for the corresponding coefficients from a simple frequency dependence - one

can find a wide range of values which can reproduce it. This ambiguity is the most serious

disadvantage of using the cwODMR or cwEDMR frequency dependence to determine the

rate of underlying physical processes and the realization of their ambiguity puts many

interpretations of cwODMR data reported in the literature in questions.

Of the nearly thousand models we tested, we were able to describe them all with only

four different frequency dependency patterns. These are shown in Fig. 2.5. We find that

those patterns are determined mostly by the recombination rate coefficients, the microwave

power, the spin mixing rates, as well as the generation rates. How each parameter influences

the frequency dependence will be discussed in the following sections. The most trivial cases,

seen in Fig. 2.5 (a) and (c), will be discussed first.

2.3.3 Trivial case (small spin mixing rates)

To understand the behavior of the response to the modulation frequency, the trivial

patterns will be discussed. “Trivial” means that the spin mixing rates, both kISC and

α are negligible when compared to all the other rates. In this case, only the spin pair

annihilation processes determined by the recombination and dissociation rate coefficients

become dominant. All the patterns in Fig. 2.4 as well as the patterns in Fig. 2.5 (a) and

(c) are obtained under the assumption of insignificant spin mixing rates, kISC and α. The

pattern in Fig. 2.5 (c) is identical to the one in (a), but inverted due to different ratios

between Gs and Gt. We found that the sign of the lock-in detected signal depends on

almost all transition processes as one can deduce from Table 2.1.

The most often seen patterns in Fig. 2.5 (a) and (c) are easily described qualitatively:

at low frequencies, the in-phase signal has a constant nonzero value with no out-of-phase

component. This is because approach to the steady-state takes place on a time scale

much faster than the modulation period, and the recorded transient response looks like

the applied microwave pulse train shown in Fig. 2.6 (a). These in-phase and out-of-phase

responses are not seriously changed until the modulation frequency approach the slowest

time constant, m−1
1j , and this can be confirmed by the low-frequency responses in Fig. 2.4.

For all cases in Fig. 2.4 and in Fig. 2.6, m1j and m2j are in the ranges of 102 ∼ 104 and
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104 ∼ 106, respectively. As the modulation frequency approaches m1j , the system begins

to lag behind the applied MW modulation, and the overall response ceases to resemble the

simple harmonic function. This results in a decrease of the in-phase signal and an increase

of the out-of-phase signal as seen in Fig. 2.6 (b). At very high frequencies, much faster than

than the fastest time constant, m−1
2j ∼ 10−6, both the in- and out-of-phase components

tend to approach zero. This behavior is explained by the exponential decay functions which

become linear with small arguments and thus, they become constants (no change) when

T → 0 [14, 48].

2.3.4 Recombination, dissociation, and flip-flop

Because cwODMR measures emission rates of photons, which are usually determined

by the dominant singlet recombination rate rsns, one might expect that rs should have a

dominant role in determining the frequency dependence pattern. In general, this is not the

case though: other rate coefficients, especially spin mixing rates, can be most significant

for the behavior of an cwODMR signal. Fig. 2.7 shows one of the most frequently observed

examples of the frequency dependence patterns influenced by both rs and α.

When α is small, an increasing rs changes little in the observed frequency dependence

(Fig. 2.7 (a) and (b)). The most significant effect is a shift of the frequencies where both the

in-phase and the out-of-phase components show their maximum rate changes. This is due

to the the increase of the time constants, m−1
ij , from m1j ∼ 104 and m2j ∼ 106 to m1j ∼ 106

and m2j ∼ 107, due to very fast rs. It should be noted that dt is 106 in all examples in

Fig. 2.7 and rs is 107 in Fig. 2.7 (b) and (d). The frequency dependence also shows little

change when rs remains small and α is increased (Fig. 2.7 (c)). This corresponds to Fig. 2.5.

However, when α becomes fast enough to compete with the slower time constant, m−1
1j , or

even faster than m−1
2j , and rs becomes faster than any dissociation rate coefficients, a more

complicated frequency dependence emerges. The in-phase signal does not show the simple

behavior as it has a local extremum. The out-of-phase signal does not only show the local

extremum (as in the simple pattern) but also a zero-crossing point, due to a sign change

(Fig. 2.7 (d)). This pattern corresponds to Fig. 2.5 (b) and (d). It should be noted that the

intersystem-crossing rate, kISC , has been assumed to be small to investigate the influence

of α, and this pattern also appears when kISC becomes large with a small α. This aspect

will be explained further in the following section. Note that for cwODMR experiments this

pattern appears only when rs becomes faster than any dissociation rate coefficient and α

or kISC is fast too. It can also be seen only for cwEDMR experiment when the dissociation

rate coefficients and α or kISC are fast (not shown here). We can thus infer that the effect
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of dissociation in cwEDMR is very similar to that of recombination in cwODMR.

2.3.5 The influence of intersystem-crossing
on cwODMR experiments

Because the intersystem-crossing rate, kISC , also represents a spin mixing processes, it

acts in a similar way as α even though kISC is always on, in contrast to α which turns on

and off periodically. To investigate the influence of kISC , α is assumed to be small in this

section.

When kISC is slow, very little change of the frequency dependence as a function of rs is

seen, similar to the behavior described in the previous section. In contrast to the case of a

large α and small rs, a major change in the frequency dependence pattern can be seen at

fast kISC and slow rs (Fig. 2.8 (c)). A second local extremum appears in the out-of-phase

component and a small bump at high frequency in the in-phase component. When both

kISC and rs increase enough to compete with each other, a new pattern appears (Fig. 2.8

(d)). Note that this pattern is similar to Fig. 2.7 (d). But they become similar to the

pattern in Fig. 2.5 (e) and (f) when Vin,lf → 0 at small α (eq. (2.47)).

2.3.6 Pair generation

Due to spin-selection rules, optically generated electron-hole pairs are formed in singlet

states and remain in this configuration unless strong spin-orbit coupling is present [82].

Thus, we can assume Gs ≫ Gt. Figure 2.5 (a) corresponds to this case in which the in-phase

and the out-of-phase components are always negative and positive, respectively. This case

represents the frequency dependence of photoluminescence detected ODMR (PLDMR).

Used parameters are rs = 106, rt = 10−2, ds = 102, dt = 104, kISC = 1, α = 10−3, ρ =

0.75, Gs = 1024, Gt = 1020. In contrast to optical generation, spin configuration of electron-

hole pairs formed electrically, i.e., via electrical injection, is determined by spin statistics and

we can assume 3Gs ≈ Gt. All parameters in Fig. 2.5 (a) and (c) are the same except that

3Gs = Gt = 1020 in Fig. 2.5 (c). We can see from these calculations that electroluminescence

detected ODMR (also called ELDMR) can show the opposite sign compared to PLDMR,

for very similar underlying physical processes. It should be noted that this inversion could

be found only for certain parameter sets, and this inversion can also happen when 3Gs ̸= Gt

but Gs > Gt. For example, the sign of the in-phase component also becomes positive (not

shown here) if every parameter remains the same except for Gs = 10×Gt. Thus, cwODMR

can result in a positive in-phase and negative out-of phase signal even though Gt can be

orders of magnitude but not many orders of magnitude smaller than Gs. This is because
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the sign inversion is also determined by rate coefficients and not just the generation rates.

These cases will be discussed in Section 2.6.

2.4 Power dependence

The spin flip rate coefficient, α, is proportional to the applied microwave power [71].

Thus we can calculate the power dependence of cwODMR signals. Examples are shown in

Fig. 2.9. For low modulation frequencies, (see Fig. 2.9 (a)), a simple saturation behavior

is predicted by eqs. 2.47 and 2.48. Note that the out-of-phase is not always zero, but

approaches zero at low frequencies, as expected from eq. 2.48. The saturation characteristics

become more complicated as the modulation frequency increases. At 104 Hz, the in-phase

component shows a local extremum before it returns to a saturation value (Fig. 2.9 (b)).

Similar behavior has been reported recently for low magnetic field cwEDMR on crystalline

silicon interface defects [16]. At high modulation frequency, the in-phase component shows

the usual saturation behavior (even though its saturation occurs at much higher power)

but the out-of-phase component shows a local extremum before it approaches a saturation

value. It also has a different sign than at lower frequencies (Fig. 2.9 (c)). This shows that

one can find opposite signs of in-phase and out-of-phase signals at high MW power and

high MW modulation frequencies.

2.5 Signal sign dependencies on the
modulation frequency

Sign changes of cwEDMR and cwODMR signal have been found in InP nanoparticles [19]

and organic semiconductors [38, 45]. The sign change of cwODMR response in organic

semiconductor has been attributed to the imbalance between changes in the numbers of

singlet and triplet pairs when the pulse is on and off, which are equivalent to ns1(T/2) −

ns2(T ) and nt1(T/2) − nt2(T ) in our model. The zero-crossing point of the modulation

frequency dependence function has also been used to estimate the intersystem-crossing

time [38, 45]. According to those reports, the zero-crossing can appear at a certain frequency

where the increase in the number of singlet pairs is matched with the decrease of the number

of triplet pairs so that the change in the total number of pairs is zero. However, we show here

that the zero-crossing can be due to not only the imbalance of changes between singlet and

triplet pairs but also to other more complicated relationships betwen physical parameters.

As can be seen in the solutions of the rate equations given above, the frequency de-

pendence is not simply obtained from ns1(T/2) − ns2(T ) and nt1(T/2) − nt2(T ), but has

a complicated dependence on various parameters. Among the quantitative models tested
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here , zero-crossing behavior is rarely seen. Fig. 2.10 shows one example: no zero-crossing

is observed for small rt, but when rt becomes larger and very close to rs, zero-crossing is

observed (Fig. 2.10 (a), (b)). It should be noted that the origin of this zero-crossing is not

obvious because of the complexity of the solutions, although we note that ns1(T/2)−ns2(T )

and nt1(T/2) − nt2(T ) do not meet each other at the zero-crossing point in this case, in

contrast to the model described elsewhere [38, 45]. Thus the imbalance between changes

in ns and nt cannot be the reason for the observed zero-crossing. We note that zero-

crossing also can appear due to an overlap of two different spin-dependent recombination

mechanisms whose signs are opposite (e.g., in cwODMR of a radiative and a nonradiative

channel). Note however that all zero-crossing effects demonstrated here are obtained from a

single recombination process. The existence of zero-crossing indicates that one can observe

different signs of cwODMR and cwEDMR signals from the identical sample at different

modulation frequencies.

2.6 The interpretation of cwEDMR and cwODMR
signal signs

The signs of the cwEDMR and cwODMR signals have long been considered important

indicators for the natures of electronic transitions. For example, it has been generally

accepted that radiative recombination results in positive ODMR in-phase signal [5, 7, 17].

However, the recent observations of sign changes [19, 38, 45] at certain frequencies suggest

that signs may depend on complicated processes and the interpretation based soley on the

sign of a modulated cwODMR or cwEDMR signal is not possible.

CwEDMR and cwODMR signal signs are determined by the transient responses of

optical or electrical observables to a repeated change between on- and off-resonance, as

described in Section 2.3. Because the time constants and prefactors of the double expo-

nential functions in eq. (2.8), (2.9), (2.10), and (2.11) are functions of all the transition

rate coefficients, there are many scenarios which can produce quenching and enhancement

signals for both radiative and nonradiative ODMR signals as well as for EDMR signals.

Many transitions are competing with each other. For instance, recombination as well

as dissociation are pair annihilation processes but only recombination causes PL while

dissociation does not. Thus when a radiative recombination process is slow but dissociation

is faster the resonant response may lead to quenching. This example shows that the following

qualitative description of the sign of cwODMR signals is important.

The study of the cwODMR signal the sign change as functions of all individual parame-

ters is beyond the scope of this work. Instead, only the low modulation frequency behavior
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will be discussed. This is a reasonable restriction because the sign does not change as long

as there is no zero crossing.

The solution for the in-phase cwODMR signal at low modulation frequency is given in

eq. (2.47). A quantitative analysis has been done by calculating Vin,lf while changing some

parameters, for an example shown in Fig. 2.11 for which it is assumed that both singlet

and triplet dissociation probabilities are not distinguishable, two mixing rate coefficients,

kISC and α, are slower than any other recombination and dissociation, and total generation

rate, Gs +Gt is fixed to 1016, rt to 1, and ρ to 0.75. Fig. 2.11 (a) shows the zero frequency

in-phase cwODMR signal, Vin,lf , as a function of the relative ratio of the triplet generation

rate to the singlet generation rate, Gt/Gs, and the ratio of the dissociation rate coefficient

to the singlet recombination rate coefficient which is fixed to rs = 104. Color reflects the

normalized intensity of Vin,lf . It should be noted that positive and negative values are

intentionally placed in different scales to make them clearly distinguishable. One can find

two noticeable features. (i) The intensity tends to increase as Gt/Gs becomes larger and

becomes negative at low Gt as in Fig. 2.11 (b). (ii) The intensity also depends on the

dissociation rate coefficients: when d is larger or smaller than the singlet recombination

rate coefficient rs, Vin,lf becomes very small, and shows an extremum and sign change.

Fig. 2.11 (a), (b), and (c) show that the signs are positive at high triplet generation rates

and low dissociation rates or, equivalently, high recombination rates. When dissociation

is not fast, signs are positive as long as triplet generation is not too much slower than

singlet generation rate. This means that changing the pair generation method between

optical and electrical methods can induce a sign change in cwODMR. This behavior can

be more easily understood by means of competing singlet and triplet pairs. In Fig. 2.11

(d) and (e), the differences n0
s1 − n0

s2 and n0
t1 − n0

t2, are calculated and plotted as the same

parameters as (a). Note that the low-frequency solution for the in-phase cwODMR signal,

Vin,lf , is proportional to rt(n
0
s1 − n0

s2) + rs(n
0
t1 − n0

t2). Both plots show different behavior

compared to Vin,lf but the boundaries dividing positive and negative values are very similar.

When the pair annihilation is dominated only by singlet recombination process, one can

infer that the number of singlet pairs quickly decreases in the steady-state offresonance

condition. Thus, the steady-state is dominated by triplet pairs. Consequently a resonant

MW converts triplet pairs to singlet pairs, it increases the number of singlet pairs which

results in an enhancement of cwODMR signal.

This qualitative pictures applies to the region where n0
s1−n0

s2 is positive and n0
t1−n0

T2 is

negative, in the upper left regions in Fig. 2.11 (a), (d), and (e) for example. In contrast, if
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the triplet generation is too low (Gt <
rt+dt
rs+ds

Gs), (lower-left corners in Fig. 2.11 (a), (d), and

(e)), only a small number of triplet pairs forms during the off resonance steady-state, and

the steady-state at offresonance is dominated by singlet pairs. In this case spin resonance

induced changes to the number of singlet pairs can become negative.

The statements above are based on the assumption of low kISC and α. When kISC

becomes larger than the other rates, patterns of Vin,lf (not shown here) similar to the pattern

in Fig. 2.11 are found, but the slight shifts of boundaries dividing positive and negative can

exist as well. Similar shifts have been found at different ρ. Consequently, cwODMR and

cwEDMR signs also depend on intersystem-crossing rate kISC and the temperature (Note

that ρ is a function of temperature). We could not identify a shift of boundaries due to a

change of α but this does not exclude the possible case that α can also cause sign changes.

We note again that sign changes can also occur at a certain modulation frequency as already

explained above.

Therefore, we conclude that dissociation, recombination, relative ratio between singlet

and triplet generation, intersystem-crossing, temperature, and modulation frequency are

the factors which all can change the sign of cwODMR signals.

Finally, we want to address the question of whether radiative and nonradiative recombi-

nation results in opposite cwODMR signal signs. We have checked a number of quantitative

models and two examples are shown in Fig. 2.12. In contrast to all other cases discussed

above, the nonradiative singlet recombination coefficients, rs,nr is taken into account. In

Fig. 2.12 (a) and (c), rs,nr is assumed to be smaller than rs to simulate the modulation

frequency dependence in which radiative recombination is dominant. In Fig. 2.12 (b) and

(d), rs,nr is assumed to be the larger than rs to investigate the nonradiative process. It

should be mentioned again that rs,nr contributes to the pair annihilation process but it does

not contribute to the radiative emission rate term as explained in Section 2.1.1. Note that

Fig. 2.12 (a) shows one of the modulation frequency dependence patterns that are discussed

above. The in-phase signal is negative even though rs is most dominant because Gs ≫ Gt.

Fig. 2.12 (b) shows a zero-crossing behavior. Thus, the in-phase component can be

positive and negative even though rs,nr is dominant. In contrast to the cwODMR cases,

the signs of the cwEDMR in-phase signals are positive in both cases as shown in (c) and

(d). To summarize, our results show that cwODMR signals can be negative and positive

for both, radiative and nonradiative recombination processes. Any conclusion about the

nature of a spin-dependent recombination process from the sign of an observed cwODMR

signal is therefore prohibitive.
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2.7 Summary and conclusion

A set of rate equations based on an intermediate pair recombination model are presented

and generalized analytical solutions have been obtained. These solutions have been used

to calculate modulation frequency dependencies of cwEDMR and cwODMR signals. It

has then been investigated how experimental parameters affect these modulation frequency

dependencies which revealed that a large number of quantitatively different models show

nondistinguishable modulation frequency dependence patterns. This implies that the in-

terpretation of cwODMR and cwEDMR experiments can be very ambiguous. It is further

shown that signs of cwODMR and cwEDMR signals depend on most rate coefficients as

well as experimental parameters such as temperature and modulation frequency. Thus,

there are many variables which can reverse the sign of cwEDMR and cwODMR signals

and consequently, conclusions about the radiative or nonradiative nature of an observed

spin–dependent transition solely based on the sign of an observed spin–dependent process

or its modulation frequency dependence is not possible.
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Figure 2.1. Sketch of a setup of cwODMR. The basic principle of cwODMR is the same as
that of conventional ESR. Square microwave modulation can be used instead of continuous
B0 field modulation and a lock-in amplifier is employed to increase the signal-to-noise ratio.



33

rs

Singlet

ds

rt

Triplet

dt

energy

Intermediate

spin pairs

free charge carrier state

kISC

a

Spin mixing

Gt
Gs

nsnt

Figure 2.2. The intermediate pair recombination model (KSM) as relevant for cwODMR
and cwEDMR. Triplet and singlet pairs are formed with two constant generation rates
Gt and Gs, respectively. Those pairs can dissociate into free charge carrier states with
certain probabilities dt and ds (dissociation rates) or can recombine to excitonic state with
recombination rates rt and rs. A spin mixing process can be introduced by ESR externally
and this rate is described by α. Another spin mixing process, intersystem-crossing process
is described by kISC . Note that nt and ns represent triplet and singlet pair densities,
respectively. They do no necessarily correspond to eigenstate densities.
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Figure 2.3. A time transient calculated from a numerical model described by a combination
of parameters as rs = 104, rt = 100, ds = 102, dt = 106, kISC = 10−2, α = 105, ρ = 0.75,
Gs = 1023, and Gt = 1020. The dash-dotted curve shows the overall response obtained
from eqs. 2.34 and 2.35. The blue solid and red dashed curves are the in-phase and the
out-of-phase components described by Is1 sin(

2π
T t) and Ic1 cos(

2π
T t), respectively. See detail

in text.
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Figure 2.4. Three different quantitative models result in indistinguishable frequency
dependencies. Each quantitative model is determined by a different set of parameters.
Refer to Table 2.1 for all used values.
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Figure 2.5. Seven distinguishable patterns of the modulation frequency dependence of
cwODMR have been found out of almost a thousand quantitative models. (b), (d), and (f)
are equivalent with (a), (c), and (e), respectively, but with opposite signs. Note that the
parameters used for these data are listed in Table 2.1.
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Figure 2.6. Calculated transient behaviors at different modulation frequencies. Black
dash-dot line is overall response and blue solid line and red dashed line are in-phase and
out-of phase components of it. Parameters are the same as those in Fig. 2.4 (a). The three
graphs are normalized by the same scaling factor. Thus the relative intensities among three
graphs can be compared.



38

Figure 2.7. Role of the singlet recombination rate, rs. When rs is small, no significant
change in the frequency dependence pattern is found when α is increased (from (a) to (c)).
But for large rs, a pattern change is observed when α is increased (from (b) to (d)). All four
quantitative models have same combinations of parameters but (a) rs = 102, α = 10−3, (b)
rs = 107, α = 10−3, (c) rs = 102, α = 108, and (d) rs = 107, α = 108. Values for the other
parameters used for these data are listed in Table 2.1.
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Figure 2.8. Role of the intersystem-crossing rate, kISC . At small rs, it has been observed
that there appear bumps on both in-phase and out-of-phase signal at high frequency region
when kISC becomes large (from (a) to (c)). At large rs, different pattern change also has
been found. The in-phase shows local extrema and out-of-phase shows change of sign as
kISC being increased (from (b) to (d)). All four quantitative models have same combinations
of parameters but (a) rs = 102, kISC = 10−2, (b) rs = 107, kISC = 10−2, (c) rs = 102,
kISC = 108, (d) rs = 107, kISC = 108. The other parameter values used for these data are
listed in Table 2.1.
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Figure 2.9. MW power dependence. All four quantitative models have the same combi-
nations of parameters but (a) f = 103, (b) f = 104, (c) f = 107. At low modulation
frequencies, typical saturation curves can be found. At high modulation frequency, a
nontrivial saturation behavior occurs. Refer to Table 2.1 for the values used for the other
parameters.
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Figure 2.10. Example of a modulation frequency dependence function showing a change
from nonzero-crossing pattern to a zero-crossing pattern. The only difference between the
two quantitative models can be found in the triplet recombination rate coefficients. (a)
rt = 100, (b) rt = 106. Values for the other parameters are listed in Table 2.1.
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Figure 2.11. Sign changes due to various rate coefficients. (a) In-phase intensities of the
zero modulation frequency component as a function of Gt/Gs and d/rs. To distinguish
positive values and negative values, different color scales are used (positive in upper left
corner, and negative in lower right corner). The black dotted line describes the boundary
separating positive values and negative values. (b) and (c) are two randomly chosen
two dimensional subsets of the data in (a) representing a generation rate ratio slice and
dissociation rate ratio dependencies. These slices are shown as white dashed lines in (a).
Intensities in (a), (b), and (c) are normalized but in the same scale. (d) Changes in the
numbers of singlet pairs, n0

s1 − n0
s2 as a function of the same parameters as in (a). (e)

Changes in the number of triplets pairs, n0
t1−n0

t2 as a function of the same parameters as in
(a). Intensities in (d) and (e) are normalized but in the same scale. All calculations in this
figure are obtained from the same condition of rs = 104, rt = 1, kISC = 1, α = 1, ρ = 0.75,
Gs +Gt = 1016.
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Figure 2.12. The sign of cwODMR signals can be negative when radiative recombination
is dominant as in (a), and positive when nonradiative recombination is dominant as in (b).
In contrast the signs of cwEDMR are not different, (c) and (d). Used common values for
each rate parameters can be found in Table 2.1. (a) and (c) rs = 104, rs,nr = 1. (b) and
(d) rs = 1, rs,nr = 104.
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Table 2.1. Parameters used for calculation of all plotted data in this chapter. All values
have a unit of s−1 except for ρ which is arbitrary.

rs rs,nr rt ds dt kISC α ρ Gs Gt f

2.3 104 0 1 102 106 10−2 105 0.75 1023 1020 -

2.4

(a) 102 0 1 104 106 10−2 103 0.75 1023 1020 -
(b) 104 0 10−1 10 102 10−2 10−1 0.75 1025 1020 -
(c) 104 0 1 102 106 10−2 103 0.75 1020/3 1020 -

2.5

(a) 104 0 1 102 103 10−2 10−3 0.75 1024 1020 -
(b) 106 0 1 102 104 10−2 107 0.75 1022 1020 -
(c) 104 0 1 102 103 10−2 10−3 0.75 1020/3 1020 -
(d) 106 0 1 102 104 10−2 107 0.75 1020/3 1020 -
(e) 106 0 104 1 102 104 10−3 0.75 1024 1020 -
(f) 106 0 104 1 102 104 10−3 0.75 1020/3 1020 -
(g) 1 0 10−1 102 104 106 10−3 0.75 1020/3 1020 -

2.7

(a) 102 0 1 104 106 10−2 10−3 0.75 1022 1020 -
(b) 107 0 1 104 106 10−2 10−3 0.75 1022 1020 -
(c) 102 0 1 104 106 10−2 108 0.75 1022 1020 -
(d) 107 0 1 104 106 10−2 108 0.75 1022 1020 -

2.8

(a) 102 0 1 104 106 102 101 0.75 1022 1020 -
(b) 107 0 1 104 106 10−2 101 0.75 1022 1020 -
(c) 102 0 1 104 106 108 101 0.75 1022 1020 -
(d) 107 0 1 104 106 108 101 0.75 1022 1020 -

2.9

(a) 106 0 1 102 104 10−2 - 0.75 1022 1020 103

(b) 106 0 1 102 104 10−2 - 0.75 1022 1020 104

(c) 106 0 1 102 104 10−2 - 0.75 1022 1020 107

2.10
(a) 106 0 1 102 104 10−2 101 0.75 1022 1020 -
(b) 106 0 106 102 104 10−2 101 0.75 1022 1020 -

2.11 104 0 1 - - 1 1 0.75 Gs +Gt = 1016 -

2.12

(a) 104 1 10−1 10 102 10−2 10−1 0.75 1025 1020 -
(b) 104 1 10−1 10 102 10−2 10−1 0.75 1025 1020 -
(c) 1 104 10−1 10 102 10−2 10−1 0.75 1025 1020 -
(d) 1 104 10−1 10 102 10−2 10−1 0.75 1025 1020 -



45

2.8 References

[1] S. Geschwind, R. J. Collins, and A. L. Schawlow. Physical Review Letters, 3:545, 1959.

[2] J. Brossel, G. Geschwind, and A. L. Schawlow. Physical Review Letters, 3:548–549,

1959.

[3] B. C. Cavenett. Advances in Physics, 30:475–538, 1981.

[4] R. A. Street. Physical Review B, 26:3588–3604, 1982.

[5] S. Depinna, B. C. Cavenett, I. G. Austin, T. M. Searle, M. J. Thompson, J. Allison,

and P. G. L. Comberd. Philosophical Magazine B, 46:473 – 500, 1982.

[6] E. Lifshitz, L. Fradkin, A. Glozman, and L. Langof. Annual Review of Physical

Chemistry, 55:509–557, 2004.

[7] M. Stutzmann, M. S. Brandt, and M. W. Bayerl. Journal of Non-Crystalline Solids,

266-269:22, 2000.

[8] W. M. Chen. Thin Solid Films, 364:45–52, 2000.

[9] F. Boulitrop. Physical Review B, 28:6192, 1983.

[10] D. R. McCamey, H. Huebl, M. S. Brandt, W. D. Hutchison, J. C. McCallum, R. G.

Clark, and A. R. Hamilton. Applied Physics Letters, 89:182115–3, 2006.

[11] D. J. Dunstan and J. J. Davies. Journal of Physics C: Solid State Physics, 12:2927–

2944, 1979.

[12] S. Depinna, B. C. Cavenett, I. G. Austin, T. M. Searle, M. J. Thompson, J. Allison,

and P. G. L. Comberd. Philosophical Magazine B, 46:501 – 513, 1982.

[13] K. Morigaki, D. J. Dunstan, B. C. Cavenett, P. Dawson, J. E. Nicholls, S. Nitta, and

K. Shimakawa. Solid State Communications, 26:981–985, 1978.

[14] P. M. Lenahan and W. K. Schubert. Physical Review B, 30:3, 1984.

[15] H. Dersch, L. Schweitzer, and J. Stuke. Physical Review B, 28:4678, 1983.

[16] H. Morishita, L. S. Vlasenko, H. Tanaka, K. Semba, K. Sawano, Y. Shiraki, M. Eto,

and K. M. Itoh. Physical Review B, 80:205206, 2009.



46

[17] E. Lifshitz, L. Bykov, M. Yassen, and Z. Chen-Esterlit. Chemical Physics Letters,

273:381–388, 1997.

[18] E. Lifshitz, A. Glozman, I. D. Litvin, and H. Porteanu. The Journal of Physical

Chemistry B, 104:10449–10461, 2000.

[19] L. Langof, E. Ehrenfreund, E. Lifshitz, O. I. Micic, and A. J. Nozik. Journal of Physical

Chemistry B, 106:1606–1612, 2002.

[20] P. Kanschat, K. Lips, and W. Fuhs. Journal of Non-Crystalline Solids, 266-269:5, 2000.

[21] E. R. Glaser, T. A. Kennedy, K. Doverspike, L. B. Rowland, D. K. Gaskill, J. A.

Freitas, M. Asif Khan, D. T. Olson, J. N. Kuznia, and D. K. Wickenden. Physical

Review B, 51:13326, 1995.

[22] E. R. Glaser, J. A. Freitas, B. V. Shanabrook, D. D. Koleske, S. K. Lee, S. S. Park,

and J. Y. Han. Physical Review B, 68:195201, 2003.
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CHAPTER 3

UNDERSTANDING PULSED EDMR AND

ODMR SPECTROSCOPIES

CwODMR and cwEDMR provide information about the Landé g-factor of param-

agnetic centers which influence luminescence and conductivity through spin-dependent

transitions. Line shape analysis can in principle also provide information about the nature

of a spin-dependent process (spin- and electronic relaxation rates, dissociation rates etc.),

however, for many experimentally observed cwODMR and cwEDMR spectra, this approach

is oftentimes extremely ambiguous due to strong convolution of several resonances which

are usually all centered around g = 2.

The ambiguity of cwODMR and cwEDMR spectra can be overcome by time domain

measurements especially on very short, coherent time scales. Similar as for coherent (so

called pulsed, “p”) ESR and pNMR experiments, the observation of coherent spin motion

allows a much less ambiguous reconstruction of the Hamiltonian and thus, an extraction

of spin-spin coupling parameters (e.g., exchange and dipolar coupling), or hyperfine fields

caused by surrounding nuclei [1–4]. In addition, similar to the cw methods discussed in

the previous chapter, pEDMR and pODMR can also reveal direct information about the

dynamics of the spin-dependent electronic processes which are involved in these signals. This

will be discussed in the following and an experimental setup for a pODMR and pEDMR

experiment is shown in Fig. 3.1.

Some of the following sections are based on a journal article published in Physical

Review B in the year 2010 coauthored by Dane R. McCamey, Seoyoung Paik, and Christoph

Boehme.1 The original article is written in the context of polaron pair recombination

dynamics. A number of the sections in this chapter are not part of this article and

those which have been extended towards a more general description of spin-dependent pair

processes in semiconductors.

1D. R. McCamey, S. Y. Lee, S. Y. Paik, J. M. Lupton and C. Boehme, Physical Review B 82 (12), 125206
(2010). Copyright 2010 by the American Physical Society.
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3.1 History of development of pEDMR
and pODMR

After the first ESR experiment was demonstrated by by Zavoisky [5] in 1945, the first

NMR experiment was demonstrated by Bloch and Purcell et al. [6, 7] in 1946. Shortly

after these demonstrations, the development of pulsed magnetic resonance experiments

began: Nuclear spin echoes were observed for the first time by Hahn [8] in 1950 and Fourier

transform NMR was developed after 1966 by Ernst and Anderson [9]. Many sophisticated

experiments became possible thanks to the development of pulse techniques: for instance,

Hahn echo pulse sequence allows very accurate spin relaxation time measurements compared

to conventional linewidth analysis. The first electron spin echo was reported by Blume in

1958 [10]. In contrast to NMR, pulse ESR techniques always followed pulsed NMR by one to

two decades because the dynamics of coherent spin motion of electrons typically takes place

on a several orders of magnitude faster time scale than the nuclear spin dynamics. Electron

spin relaxation times are orders of magnitude shorter than nuclear spin relaxation times [11].

Thus, an extremely accurate detection method is required for pESR and, therefore, pulsed

ESR had not been widely used until mid 1980s.

While the development of pESR progressed, first pODMR experiments were conducted,

too. The first optical detection of coherent electron spin echos as well as transient nutations

(Rabi nutations) using pODMR was presented by Breiland et al. [12]. Electron spin echo

envelope modulation (ESEEM) by pODMR was reported later by Weis et al. for the first

time [13]. While pODMR had been established around the early 1980s and has since been

used to investigate the recombination dynamics of many spin-dependent processes [13], the

development of pEDMR did not take place until almost three decades later.

The most demanding technical challenge for pEDMR is to prevent the very powerful

electromagnetic fields used for the coherent spin excitation (the B1 fields are usually in

the microwave rage) from distorting the measured spin-dependent electric currents. In

order to achieve this, a special contact design must be used on pEDMR samples. Another

requirement for a pEDMR experiment is the availability of a fast detection setup for very

small current changes. First time domain EDMR experiments were reported by Hiromitsu

et al. in 1999. These experiments were conducted on organic semiconductors [14], yet

with a time resolution which did not allow the electrical detection of coherent spin motion.

The first electrical detection of coherent electron spin motion was reported by Boehme

and Lips in 2002 [15]: the echo induced by the abrupt phase change during a resonant

microwave pulse was detected via detection of a change in the photocurrent in hydrogenated

microcrystalline silicon. This first electrically detected coherent electron spin experiment
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was followed shortly thereafter by the first demonstration of electrically detected coherent

nuclear spin motion as reported by Machida et al. [16].

Since first pEDMR experiments were performed, a variety of theoretical work on pEDMR

signals have been reported. Boehme and Lips reported the first theoretical description in

2003 by providing analytical solutions for (i) the photocurrent change on an incoherent time

scale induced by a short resonant pulse, (ii) electrically detected coherent Rabi oscillation

under consideration of wide a range of spin-spin interactions, and (iii) electrically detected

rotary echoes [1]. For the calculation of the Liouville operator, they did not use the Liouville

equation but instead, they directly applied rotation operators to an initial state. This

approach allowed them to obtain analytical solutions for weakly coupled spin pairs on

resonance. These results were applicable to a broad variety of experimental systems [17–21],

including systems with relevant effects of inhomogeneous broadening on Rabi oscillation [3,

22], and Rabi frequency doubling due to small Larmor separation [2, 3, 23]. One of the

surprising outcomes of these studies is that a doubling of an observed electrically detected

Rabi frequency is seen under strong excitation where power broadening exceeds the Larmor

separation (= the difference of the Larmor frequencies within a spin pair). This effect is also

visible with pODMR experiments, yet it is not visible with pESR detected transient nutation

experiments. A further theoretical investigation of this effect was conducted by Rajevac et

al. who solved the Liouville equation numerically, again under assumption of weak exchange

and dipolar coupling but for both the on-resonant and off-resonant (detuned) case [24].

Gliesche et al. continued this research by considering the presence of strong exchange

coupling [4] which revealed that a Rabi frequency doubling effect can also occur due to

exchange interaction. This exchange induced electrical detected Rabi frequency doubling

has been verified experimentally since then in amorphous silicon-rich silicon nitride [25]

(this work is part of this dissertation) after it had been observed previously by pODMR on

amorphous silicon [26–28]. Finally, the influence of structural inhomogeneities on electrically

and optically detected electron spin nutation was investigated theoretically by Michel et

al. [29].

The Observation of pEDMR and pODMR in the incoherent time domain provides infor-

mation about the spontaneous transition rates to which the spin-pairs are subjected. These

include electronic transition rates, intersystem-crossing rates and other spin-relaxation

processes. While a first, simple analytical solution for the current change induced by

a resonant pulse, based on the intermediate pair recombination model, was reported by

Boehme and Lips in 2001 [30], a more detailed solution was reported by McCamey et al.
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in 2008 [18]. Both solutions were based on the intermediate pair recombination model in

which spins in a pair are assumed to be weakly coupled, and they could explain the double

exponential behavior of the transient current detected by pEDMR and pODMR [17–21].

However, there was a limit to the applicability of these solutions for the extraction of

exact rates because the spin mixing processes due to any possible intersystem-crossing were

assumed to be negligible in both solutions. This limit can be overcome by solving rate

equations including intersystem-crossing process analytically, similar as it has been done

for cwEDMR and cwODMR transients in the previous chapter. The following sections

outline the results of this work.

3.2 Incoherent pEDMR and pODMR

First, the steady state solutions of the rates that determine pEDMR and pODMR signals

will be discussed before analytical solutions for different spin-pair scenarios will be presented.

3.2.1 Rate model

We use the same rate model that was discussed in Chapter 2 for the description of

cwODMR and cwEDMR experiments. In contrast to the cw experiments, the spin-mixing

rate now does not depend on a microwave anymore, as any spin-excitation is pulsed and

considered to be infinitely short while the subsequent transition of the spin ensemble takes

place in absence of any resonant excitation (α = 0). Thus,

dns

dt
= Gs − Csns − kISC(ns − ρns) + kISC(nt − (1− ρ)nt), (3.1)

dnt

dt
= Gt − Ctnt − kISC(nt − (1− ρ)nt) + kISC(ns − ρns), (3.2)

and similarly to Chapter 2, the solutions for these rate equations

nsp (t) = A1pe
−m12t +A2pe

−m22t + n0
s2, (3.3)

ntp (t) = B1pe
−m12t +B2pe

−m22t + n0
t2, (3.4)

are biexponential decay functions which correspond to eqs. 2.10 and 2.11 except that the

coefficients, A1p, A2p, B1p, B2p, in front of exponential terms are different due to different

boundary conditions.

3.2.1.1 Steady-state solutions

In the following we will briefly discuss the properties of the steady-state solutions, n0
s2

and n0
t2 (eqs. 2.14 and 2.15), as a function of the intersystem-crossing rate, kISC , and the
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Fermi-Dirac distribution ρ. The steady-state values for the two limiting cases, kISC → 0 and

kISC → ∞, are shown in Table 3.1. When kISC is small, we obtain the simple steady-state

values, Gs/Cs and Gt/Ct for singlet and triplet pair densities, respectively.

These terms reflect that the relaxation of each of the two permutation symmetry densities

are determined only by the spin pair annihilation process, Cs and Ct, and their behavior

becomes independent on ρ. When kISC becomes fast, the steady state terms become more

complex. When ρ → 1/2, the two steady-state values become indistinguishable because

fast kISC minimizes the different permutation symmetry densities. However when ρ → 1,

for example at very low temperatures, the two steady state densities remain distinguishable

even when kISC is fast: The triplet density becomes very low while the singlet density

becomes very high. Note that this behavior comes from an assumed energetically lower

singlet pair state. If the triplet pair state is lower, the densities will behave in an opposite

way. The behaviors of the permutation symmetry densities are plotted in Fig. 3.2. In

Fig. 3.2 (a), n0
s < n0

t at slow kISC , because steady-state values are determined only by

Gs/Cs and Gt/Ct, respectively, and Cs/Ct ≃ 4 while Gt/Gs = 3.

Thus when both triplet and singlet generation rates are comparable, the steady-state

values are mostly determined by the pair annihilation rates, so the steady-state value of

the singlet pair density is lower when the singlet annihilation rate is faster. This behavior

becomes opposite when the triplet generation rate is low, as it is the case for the examples

treated in Fig. 3.2 (c). These differences between the two pair densities disappear when

kISC becomes larger as for the examples presented in Fig. 3.2 (a) and (c), because kISC

tends to equalize both densities. Note that the steady state behavior is quite similar with

the cw case discussed in the previous chapter. However, when the thermal distribution of

singlet and triplet densities are not symmetric, kISC increases the differences between the

two pair densities because intersystem-crossing does not simply equalize densities of states

but it drives the system towards the thermal equilibrium as one can see from a comparison

of Fig. 3.2 (a) and (c) with Fig. 3.2 (b) and (d).

It must be noted that the steady-state values for spin-dependent recombination discussed

above may only be of limited use for the interpretation of experimental data since spin-

dependent currents in most materials are superimposed by spin-independent offset currents,

which become indistinguishable from the spin-dependent currents when the latter remain in

the steady state. This problem actually is the reason why pEDMR and pODMR experiments

are performed. By selectively bringing the spin-dependent processes into a nonsteady state,

spin-dependent and spin-independent processes become distinguishable. Note however, that
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while the steady state solutions given above are of limited use for the interpretation of

experimental data, they are necessary for finding general solutions for the transient behavior.

3.2.1.2 Boundary conditions and solutions

In order to find the transient solutions for the permutation symmetry densities, we

need to consider next the boundary conditions of the given system of differential equations:

First, at t=0, nsp(0) = A1p + A2p + n0
s2 and ntp(0) = B1p + B2p + n0

t2. If we define

∆n as the change in the singlet density induced by the resonant pulse, then we obtain

∆n ≡ ns(0) − n0
s = −(nt(0) − n0

t ). Thus A2p = ∆n − A1p and B2p = −(∆n + B1p). This

boundary condition is still not enough to find the solutions for the four unknown coefficients,

A1p, A2p, B1p, B2p.

Similarly as in Chapter 2.1.2, singlet and triplet pair densities experience pair generation,

annihilation through recombination and dissociation, and spin mixing due to intersystem-

crossing and the external magnetic resonance field. As mentioned above, for the pulsed

experiment, we are interested only in the propagation after a short resonant resonance

pulse. Thus both densities don’t experience spin mixing due to external excitation, and both

densities relax back to the steady state value as long as the repetition time is sufficiently

long. Changes of the pair densities introduced by the pulse can be obtained by integration

of the rate equations 3.1 and 3.2 which yields

nsp(∞)− nsp(0) =

∫ ∞

0
(Gs − Csns − kISC(ns − ρns) + kISC(nt − (1− ρ)nt))dt, (3.5)

ntp(∞)− ntp(0) =

∫ ∞

0
(Gt − Ctnt − kISC(nt − (1− ρ)nt) + kISC(ns − ρns))dt. (3.6)

In these expressions, “0” denotes the time right after the pulse. Before solving these terms,

we can simplify by plugging eqs. 3.3 and 3.4 into the integrals, which leads to

n0
sp − nsp(0) =

∫ ∞

0
((−(Cs + w12)A1p + w22B1p)e

(−m12t)

+(−(Cs + w12)(∆n−A1p)− w22(∆n+B1p)e
(−m22t))dt, (3.7)

n0
tp − ntp(0) =

∫ ∞

0
((−(Ct + w22)B1p + w12A1p)e

(−m12t)

+((Ct + w22)(∆n+B1p) + w12(∆n−A1p)e
(−m22t))dt. (3.8)

Note that we use here that Gs = (Cs + w12)n
0
s − w22n

0
t and Gt = (Ct + w22)n

0
s − w12n

0
s.

Again, solving the resulting two equations reveals

−∆n = −Cs + w12

m11
A1p +

w22

m11
B1p −

Cs + w12

m21
(∆n−A1p)−

w22

m21
(∆n+B1p), (3.9)
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∆n = −Ct + w22

m11
B1p +

w12

m11
A1p +

Ct + w22

m21
(∆n+B1p) +

w12

m21
(∆n−A1p). (3.10)

Finally by resolving these equations for the wanted prefactors of our exponential transients,

we obtain

A1p = −(Cs + w12)(Ct + w22)− w12w22 − Ctm22

(Cs + w12)(Ct + w22)− w12w22
· m12

m22 −m12
·∆n

= − m12 − Ct

m22 −m12
∆n, (3.11)

B1p =
(Cs + w12)(Ct + w22)− w12w22 − Csm22

(Cs + w12)(Ct + w22)− w12w22
· m12

m22 −m12
·∆n

=
m12 − Cs

m22 −m12
∆n. (3.12)

Note that the parameter ∆n in these equations represents the amount of singlet density

that is transformed into the triplet density during the pulsed excitation. It is therefore

determined by the coherent spin motion during the brief coherent excitation pulse. Note

that ∆n does not affect the time dependence itself because is a common scaling factor in

all coefficients that determine the exponential decay transients.

3.2.2 The transient behavior of the pEDMR and
pODMR observables

In this section, the time-dependent behavior of observables after perturbation of the

singlet and triplet pair densities induced by a resonant pulse will be explored by using the

solutions obtained in previous section. The transients of pEDMR and pODMR signals are

determined decided by two sets of important parameters: Two decay rates, m12 and m22

(the inverse of the decay constants), and the two coefficients, A1p and B1p. We consider the

nature of the two decay constants first.

3.2.2.1 Characteristics of the biexponential decay

The two biexponential decay constants, m12 and m22, are determined by the recom-

bination, dissociation, and intersystem-crossing rate coefficients, which all compete with

each other. According to eqs. 3.1 and 3.2, it is clear that these constants depend only on

their respective spin-pair annihilation process as long as intersystem-crossing is weak. Thus,

singlet and triplet rates become mutually independent and they will decay with Cs = ds+rs

and Ct = dt + rt, respectively. When intersystem-crossing becomes significant (kISC ̸= 0),

a more complicated scenario evolves. For large kISC , one of the decay constants will

asymptotically approach kISC , while the other decay constant will approach (1−ρ)Cs+ρCt.

These behaviors are summarized in Table 3.2.
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Fig. 3.3 shows plots of the two exponential decay rates as a function of kISC for two

different values of ρ. Note that the displayed functions are independent of the generation

rates. When kISC → ∞, m22 approaches kISC . This means that m22 > kISC always holds

true for any value of kISC . Thus, TISC > 1/m22. This is an important insight because

it implies that as long as a biexponential decay is detectable in a pEDMR or pODMR

experiment and both exponential functions belong to the same spin-dependent process (this

can be verified by lineshape comparison), a lower limit for intersystem-crossing times is given

by the decay constant of the the faster decaying exponential function. It should be noted

that m22 > kISC is also true for the cw case (eqs. 2.13 and 2.16). And because the lower

limit of TISC is decided by only m22, which is also the faster time constant of a double

exponential response of cwODMR and EDMR in the cycle where the pulse is off, the same

interpretation is possible for the cwODMR and EDMR data measured in time-domain.

3.2.2.2 Modeling observable

There are various qualitatively different classes of spin-dependent mechanism which

influence conductivity. Examples are spin-dependent trapping [31], spin-dependent scatter-

ing [32], spin-dependent transport through localized states [33] and spin-dependent recombi-

nation [34, 35]. The most widely studied class of spin-dependent mechanisms are transport

and recombination processes through weakly coupled intermediate pair systems. Spin-

dependent recombination can be found in many semiconductors including silicon [15, 21, 34]

and some organic materials [2, 3, 18, 36, 37]. Similar as for the discussion of cwEDMR and

cwODMR in the last chapter, we can describe conductivity as a superposition

σ = σ0 + σs + σt, (3.13)

of spin-independent conductivity σ0 and spin-dependent conductivity from the singlet pairs

σs and triplet pairs σt, respectively. The singlet and triplet conductivities are given by

σs(t) = (µe + µh)eτdsnsp(t), (3.14)

σt(t) = (µe + µh)eτdtntp(t), (3.15)

where µe and µh are the mobilities of electrons and holes respectively, e is the elementary

charge, and τ is the free charge carrier life time. The above equations illustrate that the spin-

dependent conductivity is dependent on the spin-pair dissociation rate. The conductivity

change due to spin-dependent recombination depends solely on σs(t) + σt(t) and thus, the

transient change of conductivity is
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∆σ(t) = σ − σ0

= µeτ(dsnsp(t) + dtntp(t))

= µeτ(ds(A1pe
−m12t + (∆n−A1p)e

−m22t) + dt(B1pe
−m12t − (∆n+B1p)e

−m22t))

= µeτ{(dsA1p + dtB1p)e
−m12t + [ds(∆n−A1p)− dt(∆n+B1p)]e

−m22t}

= µeτ{σ1e−m12t + σ2e
−m22t}. (3.16)

For simplicity, µe + µh is replaced here by µ = µe + µh, while σ1 = dsA1p + dtB1p and

σ2 = ds(∆n − A1p) + dt(∆n + B1p). Similar as to cwODMR transients discussed in the

last chapter, it is clear that pEDMR transients follow a double exponential behavior. Note

again that the above expression for the transient conductivity change is pair-generation rate

independent as long as the induced conductivity changes are small. Whether the transient

in eq. 3.16 causes an initial enhancement or quenching can be inferred from

∆σ(0) = µeτ∆n(ds − dt) (3.17)

whose sign is determined only by ∆n and ds − dt.

The magnitudes and the time constants of the two exponential decay functions provide

further insights into the nature of the observed spin pair system. The constants σ1 and

σ2 depend on all rate coefficients but not the generation rate. If the signs of σ1 and σ2

are opposite, the observed biexponential decay transient shows quenching-enhancement or

enhancement-quenching behavior. We consider two limits of kISC based on the asymptotic

values of the two coefficients, A1p and B1p, which are summarized in Table 3.3.

Using these limiting values we obtain a conductivity transient

∆σ(t) = µeτ∆n(dse
−Ctt − dte

−Cst) (3.18)

for kISC → 0 and

∆σ(t) = µeτ∆n(dse
−kISCt − dte

−((1−ρ)Cs+ρCt)t) (3.19)

for kISC → ∞. The transients for both extremal cases show enhancement-quenching or

quenching-enhancement because of the negative sign before the second term. Whether for

any transient the enhancement or the quenching comes first depends on the sign of ∆n and

while for both cases, the signal intensities are equal, the first term decays very quickly for

kISC → ∞.
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Similarly as for pEDMR, we obtain for pODMR, an expression

I = I0 + Is + It (3.20)

for the transient of the total luminescence intensity. Here I0 is the intensity of spin-

independent luminescence, while

Is(t) = rsnsp(t), (3.21)

It(t) = rtntp(t), (3.22)

are the intensities of singlet and triplet pair recombination respectively. The transient of

the luminescence change therefore becomes

∆I(t) = I(t)− I0

= (rsnsp(t) + rtntp(t))

= (rs(A1pe
−m12t + (∆n−A1p)e

−m22t) + rt(B1pe
−m12t − (∆n+B1p)e

−m22t))

= (rsA1p + rtB1p)e
−m12t + [rs(∆n−A1p)− rt(∆n+B1p)]e

−m22t

= I1e
−m12t + I2e

−m22t (3.23)

Again, we can find the transient solutions of pODMR

∆I(t) = ∆n(rse
−Ctt − rte

−Cst) (3.24)

for kISC → 0 and

∆I(t) = ∆n(rse
−kISCt − rte

−((1−ρ)Cs+ρCt)t) (3.25)

for kISC → ∞. And at t=0,

∆I(0) = ∆n(rs − rt). (3.26)

The considerations made above illustrate that the same arguments apply to pODMR and

pEDMR rate transients except that the recombination rate coefficients, rs and rt, replace

the dissociation rate coefficients in pODMR description made above. Fig. 3.4 shows plots

of the coefficients, A1p and B1p, as well as the magnitudes I1 and I2 (see Table 3.4) of the

two exponential decays as functions of kISC . A1p shows an extremum at

kISC = Cs − Ct. (3.27)

Similarly both I1 and I2 show extrema at

kISC = −rt(1− ρ)− rsρ

rt(1− ρ) + rsρ
(Cs − Ct). (3.28)

While A1p and B1p can not be measured with real pODMR experiments, I1 and I2 can

be measured even though this is difficult since both dependent on ∆n. However, the ratio
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between I1 and I2 can be determined exactly from experimental data. Fig. 3.4 (c) shows

−I2/I1 as a function of kISC . This curve converges to rs/rt for small kISC and diverges

to kISC
rs−rt

((1−ρ)rs+ρrt)(Cs−Ct)
for large kISC . Again, these insights into the nature of pODMR

transients are equally applicable to pEDMR transients as long as rs and rt are replaced by

ds and dt.

In conclusion, the transient behavior of pODMR and pEDMR signals caused by spin-

dependent intermediate pair processes has been explained. It was found that these transients

always follow a biexponential decay behavior where both exponential functions exhibit

opposite signs. Limits for large and small intersystem-crossing rates kISC have been dis-

cussed. For slow intersystem-crossing, the slower exponential decay component is small

while the faster component is determined by electronic transition rate coefficients. When the

intersystem-crossing process is very fast, only the fast exponential decay will be determined

by the intersystem-crossing-rate, so that the slower component remains slow. For the illus-

tration of this behavior, a plot of pODMR transients (the relative PL change as a function

of time after a pulsed resonant spin excitation) as a function of the intersystem-crossing

rate kISC is shown in Fig. 3.5.

Even though the dynamics of pEDMR and ODMR is rather simple compared with

cwEDMR and ODMR (compare eqs. 2.31 and 2.30 with eqs. 3.11 and 3.12), interpretation

of pEDMR and ODMR still has an ambiguity: equations 3.17 and 3.26 explain that it is

difficult to figure out what spin-dependent transition is dominant only from a single time

transient measurement of pEDMR and ODMR. This is because the sign of the transient

signal is determined by not only two transition rate coefficients but also ∆n which cannot

be determined from a transient measurement. This means than even if rs > rt is true

for example, a transient of pODMR can show quenching-enhancement behavior if ∆n is

negative. Thus it is still difficult to obtain the exact information about the spin-dependent

transition processes in a tested sample by only doing a single transient experiment of either

pEDMR and ODMR. If one can conduct both pEDMR and ODMR at the same condition

and only if both electrically and optically detected dynamics are identical, four equations

for m12, m22, I1/I2, and σ1/σ2 can be obtained. Then, because the lower limit of TISC

can be obtained from m22, estimation for all rate parameters including rs, rt, ds, and dt is

possible. This estimation can become more accurate if TISC is determined by a coherent

experiment such as spin Hahn-echo experiment.
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3.3 Coherent pEDMR and pODMR

After more than three decades of pODMR spectroscopy and more than one decade of

pEDMR spectroscopy, a broad range of pEDMR and pODMR pulse sequences is available

today allowing the measurement of a broad range of information such as electronic and spin

relaxation times, coupling strengths and hyperfine parameters. The most simple pEDMR

and pODMR experiment is the electrical and optical detection of spin-Rabi nutation which

is conducted by application of a single ESR pulse [2–4, 18, 22, 24, 25, 28, 29, 38, 39].

Rabi nutation of electron spins can also be detected via electron-electron double resonance

(ELDOR) [40] and electron nuclear double resonance(ENDOR) [41, 42]. Electrical detection

of nuclear spin oscillations has been achieved recently, an important breakthrough for the

development of electrical nuclear spin-quantum readout devices [43, 44]. Furthermore,

electrically detected spin Hahn-echoes [21], inversion recovery [31], Carr-Purcell [45] and

Carr-Purcell-Meiboom-Gill [46] pulse sequences have been demonstrated. Electrical de-

tection of electron-spin-echo envelope modulation (ESEEM) has been done to sensitively

study the Si\SiO2 interface defect states in phosphorus-doped crystalline silicon [43]. Rotary

echoes also have been detected both electrically [47] and optically [27].

Electron spin resonance occurs when a spin-induced magnetic moment µBgS⃗ is exposed

to a circularly polarized electromagnetic radiation with field strength B1 while this field has

a frequency ω that is equal to the Larmor frequency ωL at which the spin precesses due to

the presence of an additional constant magnetic field B0. Note that for magnetic resonance

to occur, the circularly polarized microwave field must be perpendicular to the direction

of the B0 field. From the viewpoint of a reference frame which rotates with frequency ω

around the direction of B0 (the so called rotating frame), the electromagnetic field appears

like a constant magnetic field. Under spin resonance, the spin is at rest in the rotating

frame, too and thus, the B0 field is not present. Consequently, magnetic resonance can be

described as a spin-precession around the B1 field. In the laboratory frame, this propagation

is perceived as a flip of the spin from one direction parallel to B0 (down) into the opposite

direction (up). Spin-flips between up- and down and vice versa will repeatedly occur for as

long as a spin is in magnetic resonance. This periodic flipping is called a Rabi-oscillation.

When the resonance condition is not perfectly satisfied, ω ̸= ωL an additional magnetic

field ∆B0 appears perpendicular to B1 in the rotating frame. Due to this additional field,

the rotation axis for the spin precession becomes slightly tilted and thus, the spin flip does

not encompass a full 180 range. Hence, off- magnetic resonance, spins can not be flipped

as efficiently, and when ω − ωL becomes large, not at all. Rabi oscillation does not happen
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anymore under such conditions. This principle of magnetic resonance is explained in great

detail in book by Atherton for electron spins [48] or Slichter for nuclear spins [49].

For the description of EDMR and ODMR experiments, the description of magnetic

resonance must be combined with the spin-pair model which has been discussed in detail

above. As permutation symmetry governs the observables, the mutual orientation between

two spins becomes important. For example, when two weakly coupled spins with s = 1/2

are aligned parallel, they occupy a triplet-state and the probability for the transition to

a singlet state is zero (when spin-orbit coupling is weak), but it becomes 1/2 when they

are antiparallel. Thus, exposing one of the two spins to magnetic resonance varies the

transition probability and observables like recombination current, photoluminescence, etc.

reflect this change of the spin-pair state. When a continuous Rabi oscillation is induced on

a short time scale, one can observe a harmonically oscillating current or luminescence rate.

The frequencies of these oscillations depend on the microscopic magnetic environment the

neighboring electron spins. For example, exchange interaction or nuclear spins in proximity

of the electron spin pair can drastically affect how spin-Rabi oscillation (or any other

coherent spin propagation) takes place and the measurement of this effect will therefore

reveal information about the microscopic nature of the given pair system. In the following,

it is discussed how electrical and optical detection of spin Rabi nutation differs from the

observation of spin-Rabi oscillation with conventional ESR (an experiment which is called

transient nutation) and it is discussed what information can be obtained from the electrical

or optical detection of these effects.

3.3.1 Hamiltonian of spin pairs

The most straightforward approach for the description of coherent spin-motion during

pEDMR or pODMR experiments is to consider the Hamiltonian of those systems which

are involved in spin-dependent processes. Similar as for the previous chapters, we consider

intermediate pairs of two electron spin. In the presence of a static magnetic field, B0, the

Hamiltonian Ĥ0 is given by

Ĥ0 = gaµBŜa + gbµBŜb + JŜa · Ŝb + Ŝa ·D · Ŝb. (3.29)

The first two terms explain the Zeeman interaction of each spin pair partners, with ga and

ga being the Landé g-factors of the pair partners a and b and µB being the Bohr magneton.

The third and forth terms explain exchange interaction with coupling constant J and dipolar

interaction with the dipolar spin-spin coupling tensor, D, respectively. When the magnetic

resonant radiation is turned on, a time-dependent Hamiltonian
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Ĥ1 = gaµBŜa · B̂1 + gbµBŜb · B̂1 (3.30)

has to be added to Ĥ0 in which B1 = x̂B1e
−iωt. If ensembles of identical spin pairs are

present, the time-dependent Liouville ρ̂(t) operator must be used to described the ensemble

propagation. Solutions for ρ̂(t) can be found by solving the Louville equation. In the

following, the work that has been conducted in the past decade in order to finding adequate

descriptions of pEDMR experiments is summarized in the following.

3.3.2 Electrically and optically detected
spin Rabi oscialltion

In this section, we will consider spin-dependent rates, R(t), based on spin s = 1/2 pairs,

which have been discussed extensively in the pEDMR and pODMR literature [18, 20, 21].

As pointed out by Boehme and Lips [1], R(t) should be the summation of both singlet and

triplet recombination as below,

R(t) = rsTr[|S⟩⟨S|ρ̂(t)] + rt

1∑
i=−1

Tr[|Ti⟩⟨Ti|ρ̂(t)] (3.31)

where rs and rt are singlet and triplet recombination probabilities respectively. The time-

dependent solutions for the density operator ρ(t) can be found by solving a stochastic

Louville equation given by

∂ρ̂

∂t
=

i

~
[ρ̂, Ĥ] +S[ρ̂] +R{ρ̂− ρ̂0}. (3.32)

The commutator in the first term of this equation describes the ensemble dynamics that

is determined by Ĥ0 + Ĥ1. The second and third terms describe spontaneous changes of

the ensemble due to random spin-pair annihilation (e.g., recombination) and generation as

well as spin-relaxation. If we consider the spin-pair dynamics on time scales faster than any

spontaneous transitions when the resonance microwave pulse is being applied, only the first

term needs to be solved. For weak coupling, when J and D are small, the can described

by the unitary rotation transformations. Boehme and Lips have used this method and

found the relative density changes of weakly coupled spin pairs for a variety of situations

determined by Larmor separation and electromagnetic radiation strength [1]. First, when

the Larmor separation is larger than the given radiation field strength, the relative density

change ∆(τ) of weakly coupled spins becomes

∆(τ) =
γ2i B

2
1

2Ω2
i

[1− cos(Ωiτ)] (for |ωa − ωb| ≫ γB1) (3.33)

where ωa and ωb are the Larmor frequencies of each pair partners, γ is the electron

gyromagnetic ratio, and Ωi is the Rabi oscillation frequency of one of pair partners given by
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√
γ2i B

2
1 + (ω − ω2

i ). When the resonant condition is exactly satisfied, Ωi = γiB1. When the

Larmor separation is smaller, ωa and ωb can be considered to be the same, ωa ≃ ωb ≡ ωL,

so that Ωa = Ωb = Ω =
√

γ2B2
1 + (ω − ω2

L). In addition, if the measurement is done around

the resonant frequency (ω − ωL ≪ γB1), the relative density change becomes

∆(τ) =
γ2B2

1

2Ω2
[1− cos(2Ωτ)] (for |ωa − ωb| ≪ γB1). (3.34)

This result shows that the oscillating frequency is doubled when a weakly coupled spin pair

is excited by very strong resonant radiation. The doubling of the measured precessiong

frequency is due to a beating effect of the two spin Rabi oscillations. The above results are

only valid for weakly coupled spins where D + J ≪ ωa,b. If g-factor inhomogeneities are

taken into account, the effective relative density change becomes

∆eff(τ) =

∫ ∞

−∞
Φ(ωL)

γ2B2
1

γ2B2
1 + (ω − ωL)2

sin2(κτ
√

γ2B2
1 + (ω − ωL)2)dωL (3.35)

where τ is the length of the resonant pulse radiation, κ becomes 1/2 for large Larmor

separation and 1 for small larmor separation, and Φ(ωL) represents the Landé g-factor

distribution. Aside from the distribution function and sinusoidal function, there is another

term, γ2B2
1/(γ

2B2
1 + (ω − ωL)

2) in this expression, which described the Lorentzian line-

shape of the pEDMR or pODMR signal due to power broadening. According to Levitt [50],

this line-shape can also be derived from the off resonance-pulse propagator for a single spin

when a π-pulse is applied along the +x-axis, which then becomes

R̂off = R̂z(0)R̂y(θ)R̂z(π)R̂y(−θ)R̂z(0) (3.36)

where R̂ represents a rotation operator, and θ = arctan( γB1

ω−ωL
). Then, the transition

probability for a spin from spin-up state to spin-down state can be obtained by

P↑→↓ = |⟨↓ |R̂off (ω − ωL)| ↑⟩|2 (3.37)

which becomes exactly the Lorentzian function, γ2B2
1/(γ

2B2
1 + (ω − ωL)

2).

3.3.3 Effects of inhomogeneous broadening

Equation 3.35 explains the spin-Rabi nutation transient in presence of inhomogeneous

broadening. Fig. 3.6 (a) and (b) show the Fourier transformation of simulated ∆(τ) as a

function of the excitation frequency as obtained from eq. 3.35. Note that the pulse length

dependencies are obtained first from eq. 3.35 then converted into the frequency domain by

fast Fourier transformation. When the spin ensemble is not significantly influenced by inho-

mogeneity, one can easily find that the dominant frequency components are described by the
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hyperbola
√

γ2B2
1 + (ω − ω2

L) as shown Fig. 3.6(a). However when strong inhomogeneous

broadening is assumed (that means the width of the distribution is larger than γB1), the

signals around Ω = γB1 smear out and the hyperbolic patterns cannot be found anymore.

Instead off-resonant components appear around Ω = γB1 and signals at the distribution

tails also can be found. Note that the data in Fig. 3.6 were obtained using eq. 3.35. It is

in excellent agreement with data obtained from numerical solutions [29] using the Liouville

equation. In contrast to numerical data, analytical expression (as given in eq. 3.35) can be

utilized for the analysis of the experimental data. This will be used in Chapter 5. In the

following it is discussed how this function is used to for the analysis of experimental data.

3.3.4 Method to analyze band-limited spin-Rabi nutations

When the expression in eq. 3.35 is used to fit experimental data, coherence decay as well

as the Nyquist effect must be taken into acocunt: Experimental data are always recorded

at a finite sampling rate. Fig. 3.7 (a) displays plots of three calculated Rabi nutations

in time domain. The Black curve is obtained from a sinusoidal function (see eq. 3.33)

with a finite sampling rate of 0.1ns and a maximum excitation pulse length of 511.9 ns.

The Fourier transformation of this data has a finite frequency resolution of 1.953 MHz

determined by the longest pulse length, and a finite spectral width as determined by the

sampling rate. The Fourier transformed curve appears as a black curve in Fig. 3.7 (b).

Note that this data represents spins which are not influenced by any kind of inhomogeneous

broadening. From the black curve in Fig. 3.7 (b), one can easily pick up the peak intensity

and the Rabi frequency. For realistic experimental situations, spin ensembles are usually

under the influence of large inhomogeneous broadening and sometimes, exposed to the

influence of short coherence times. Both of these effects lead to a fast decay of the observed

Rabi oscillation, and when the maximum pulse length of detectable Rabi oscillation is

shortened, the frequency resolution of the Fourier transform increases. A simulation of this

situation is represented by the red curves in Fig. 3.7 (a) and (b). These data have been

obtained from eq. 3.35 combined with the same sampling rate as the black curve. The

effect of this shortening of the Rabi oscillation measurement leads to a broadening of the

frequency resolution to 3.906 MHz. Note that Fig. 3.7 (b) shows that one can still find

the experimentally obtained spin Rabi nutation peak, which, due to the introduced changes

shows longer tails in both the high- and the-low frequency range. The broadening of the

frequency distribution can be quite substantial since the Fourier transformed functions are

not of Gaussian or Lorentzian nature but Fourier transforms of modified Bessel functions.
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This effect can lead to significant overlap between two nutation signals and because of this,

fits of experimental Rabi oscillation data with frequencies, intensities, width etc. is best done

by the exact function given by eq. 3.35 [38]. For this procedure one needs to first determine

the g-factor distribution from the B0-dependence of the observed Rabi oscillation data

and then fit the Rabi oscillation peaks with analytical functions given by eq. 3.33. Another

problem associated with the fit of Rabi-nutation data is the oftentimes limited-sampling rate

of experiments. The blue curves in Fig. 3.7 illustrate this problem: Using from eq. 3.35,

the same data as discussed above were calculated, yet only at 4 ns sampling rate. One

can quickly notice that in the Fourier transformation of these data, offsets appear over a

very broad frequency range which even make it more difficult to fit when more than one

nutation signal is present. Furthermore, due to the reduced sampling rate, a decrease of

detection bandwidth can be noticed, too. According the sampling theorem (or Nyquist

theorem) [51], the sampling rate should be faster than the Nyquist rate which is double

the highest frequency of a nonzero signal or the original signal cannot be reconstructed

perfectly. It means that if the sampling rate is not fast enough, then the main frequency

component of the Rabi nutation cannot be detected.

Both the influences of the finite sampling rate as well as the finite detection length of

Rabi oscillastion must be taken into account when experimental data is analyzed. To do

this, one should carry out fits with calculated numerical obtained from a convolution of

eq. 3.35 with the sampling functions as well as the available frequency resolution. The

technical aspects of this procedure will be discussed more in detail in Chapter 5.

3.4 Summary

A rate model has been developed to describe the transient responses of spin-dependent

charge carrier pair transition rates on long (incoherent) time scales after a magnetic resonant

excitation. The calculations show that independent of the rate of intersystem-crossing

between the singlet and triplet pairs, the transient response exhibits a double exponential

decay behavior that had already been known from systems without intersystem-crossing [18,

30]. It has also been found that the faster of two time constants of the biexponential decay

is always faster than the intersystem-crossing rate. This realization provides a very simple

and straightforward method to find a lower limit on the intersystem-crossing time which

has been applied to the interpretation of experimental results as shown in the following

chapters.

For the description of spin-dependent recombination rates on coherent time scales, the
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existing literature has been discussed and an analytical function which can explain Rabi

nutation of spin ensembles under the influence of strong inhomogeneous broadening was

given. Furthermore, a data analysis procedure for electrically and optically detected Rabi

oscillation was outlined which addresses the proper handling of coherence decay effects and

Nyquist effects on the experimental data during the fit procedures. For the fit of Rabi

oscillation data, eq. 3.35 should be used under consideration of experimental band-width

limitations and the given experimental sampling rate.
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Figure 3.1. Experimental setup for the pEDMR and ODMR. An optics setup for the PL
detection and an electrical setup for the photocurrent detection are shown as examples.
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Figure 3.2. Plots of the steady-state pair densities, n0
s and n0

s as a function of kISC .
Each pot shows different quantitative models: (a) ρ = 0.5, Gs = 109s−1, Gt = 3 ×Gs, (b)
ρ = 0.99, Gs = 109s−1, Gt = 3×Gs, (c) ρ = 0.5, Gs = 109s−1, Gt = Gs/100, (d) ρ = 0.99,
Gs = 109s−1, Gt = Gs/100. Parameters used identically for all simulations are rs = 2×104,
rt = 2× 102, ds = 4× 104, dt = 4/3× 104. For details see text.
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Figure 3.3. Plot of two cwEDMR and ce ODMR decay rates, m12 and m22, as a function of
intersystem-crossing rate for two different temperatures (a) ρ = 0.5 and (b) ρ = 0.99. The
parameters used identically for both simulations are rs = 2×104, rt = 2×102, ds = 4×104,
dt = 4/3× 104, Gs = 109, Gt = Gs/100.
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Figure 3.4. kISC dependencies of the coefficients of the double exponential transient
functions. (a) Plots of the coefficients A1p and B1p as defined by eqs. 3.11 and 3.12 as a
function of kISC . (b) Plots of the coefficients I1 and I2 as defined by eq. 3.23 as a function
of kISC . (c) Plot of the ratio of −I2/I1. Note that ∆n > 0 is assumed for (a) and (b), but
no assumption for ∆n is necessary for (c). For a plots, the same parameters were used as
for the data in Fig. 3.2 and ρ = 0.5.
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Figure 3.5. Simulated pODMR transients based on the same parameters as in Fig. 3.4
as a function of the intersystem-crossing-rate kISC . As kISC becomes large, the transient
becomes essentially single exponential because the fast relaxation component is not visible
on this time scale.
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Figure 3.6. Calculation of a pEDMR or pODMR rate changes due to a single excitation
pulse. The plot shows the Fast Fourier transform of the calculated data as a function of the
excitation frequency in presence of inhomogeneous broadening. The data represent a plot
of eq. 3.35 with B1=1.08 mT and FWHM of (a) 0.94 mT and (b) 1.93 mT. The oscillation
components represent Rabi’s frequency formula

√
γ2B2

1 + (ω − ωL)2 for the case of small
inhomogeneity (a). For inhomogeneities large than γB1, the hyperbolic feature vanishes
and it is replaced by a broad peak (b).
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Figure 3.7. Plots of calculated Rabi oscillation data with (black) no inhomogeneous
broadening, a short sampling time, and an infinite decay time, (red) a short sampling
time but a shorter maximum pulse length, and (blue) a long sampling time (small sampling
rate) and the same pulse length as red. (a) Plot of the time domain, (b) Plot of the data
in (a) in the frequency domain (Fourier transformed). All data sets are calculated with the
same Rabi frequency, but the different sampling rates and frequency resolutions. Black:
Sinusoidal with 0.1 ns sampling time and 1.953 MHz frequency resolution. Red: Calculated
according to eq. 3.35 with the same sampling rate as black curve but 3.906 MHz frequency
resolution. Blue: Calculated according to eq. 3.35 with the same frequency resolution as
the blue curve but a sampling rate of 4 ns. The highest frequency of the Fourier transforms
of the black and red curves is 9 GHz but only data up to 200 MHz are plotted. All curves
are normalized by their respective maximum intensities.
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Table 3.1. Steady state pair densities at two limiting cases

kISC → 0 kISC → ∞
n0
sp

Gs
Cs

ρ·(Gs+Gt)
ρ·Cs+(1−ρ)·Ct

n0
tp

Gt
Ct

(1−ρ)·(Gs+Gt)
ρ·Cs+(1−ρ)·Ct
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Table 3.2. Rates at two limiting cases

kISC → 0 kISC → ∞
m12 Ct (1− ρ)Cs + ρCt

m22 Cs kISC
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Table 3.3. Coefficients at two limiting cases

kISC → 0 kISC → ∞
A1p 0 0
B1p −∆n 0
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Table 3.4. Intensities of pODMR at two limiting cases

kISC → 0 kISC → ∞
I1 −rt 0
I2 rs rs − rt
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CHAPTER 4

SPIN-DEPENDENT PROCESSES IN

A SILICON-RICH AMORPHOUS

SILICON-NITRIDE

SOLAR CELL

Hydrogenated amorphous silicon nitride (a-SiNx:H) has been used widely as dielectric

for thin-film transistors [1], solar cell antireflection- and passivation-layers [2] or as trapping

matrix in memory applications [3]. In recent years, nonstoichiometric silicon-rich a-SiNx:H

(x ≪ 1.33) has also attracted attention as material for tunable light emitting diodes [4]

and photoelectrochemical (PEC) hydrogen production [5]. For these applications, charge

transport and recombination are of great significance [5, 6]. Transport and recombina-

tion in disordered silicon materials involve many kinds of localized, paramagnetic defect

states. Because of this, electron paramagnetic resonance has been used extensively for

their investigation [7, 8]. With regard to silicon nitride, most of these studies are focused

on stoichiometric or nearstoichiometric a-SiNx:H. Here, we report on a pulsed electrically

detected magnetic resonance (pEDMR) study of silicon rich a-SiNx:H that aimed to answer

the question of whether spin-dependent transitions are similar to the stoichiometrically and

morphologically very similar hydrogenated amorphous silicon (a-Si:H) or whether small

amounts of nitrogen lead to differences in transport and recombination.

This chapter is based on a journal article published in Applied Physics Letters in

20101 coauthored by Seoyoung Paik, Dane R. McCamey, and Christoph Boehme from the

University of Utah, and Jian Hu, Feng Zhu, and Arun Madan from the MVsystems, in

Golden, Colorado. PIN stacks of a-SiNx:H sample are kindly provided by MVsystems at

Colorado, U.S.A.

1Reprinted with permission from [S.-Y. Lee, S.-Y. Paik, D. R. McCamey, J. Hu, F. Zhu, A. Madan, and
C. Boehme, Applied Physics Letters 97 (19), 192104 (2010)]. Copyright 2010, American Institute of Physics.
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4.1 Experimental

The pEDMR experiments were carried out in a photovoltaic mode, similar to experi-

ments previously reported on organic light emitting diodes [9] and a-Si:H solar cells [10]. Fol-

lowing coherent manipulation of paramagnetic centers, transient changes to the steady-state

short-circuit photocurrent, due to the perturbation of spin-dependent conductivity channels,

were recorded. For the experiments, a 300 nm thick a-SiN0.3:H film was prepared by plasma

enhanced chemical vapor deposition on top of a ZnO coated glass substrate. The top

and bottom of the a-SiN0.3:H layer were n-doped (10nm) and p-doped (7nm), respectively.

Fig. 4.1 (d) illustrates a qualitative band diagram for the device. The bandgap of a-SiN0.3:H

is about 2 eV, deduced from Tauc’s plots [11] from measured transmission data since the

optically induced transition in a-SiNx:H is direct. The density of states of a-SiN0:3:H has

been calculated to be similar to that of a-Si:H [12], however, based on the observation of

significantly different Urbach tails (with photothermal deflection spectroscopy, not shown

here) we conclude that the density of states of our material differs significantly from a-Si:H.

The p-i-n device was capped with a thin Al layer. Details of this 2mm×2mm pEDMR

compatible sample are given elsewhere [10]. Optical excess charge carrier injection took

place by shining IR and UV filtered spectral light (TLAMP = 3000K), with integrated

intensity of 5 W/cm2. The excitation frequency was 9.742GHz (X-Band), TSAMPLE = 15K.

Dark and illuminated IV curves of the p-i-n devices were measured at room temperature and

T = 15K (Fig. 4.1 (h) and (i), respectively). Note the low current densities of a-SiN0.3:H due

to the large Pool-Frenkel transport barrier height for the given stoichiometry [13]. While

this makes a-SiN0.3:H an inferior material for pure photovoltaic applications, it is not a

fundamental drawback for PEC applications [5].

4.2 pEDMR transients and I-Vs

Fig. 4.1 (b) displays the change of the photocurrent ∆Iph(t) as function of time t and

the applied magnetic field (expressed as Landé-factor g). The data show that for g ≈ 2,

a temporary photocurrent change occurs after the pulse at t = 0. Fig. 4.1 (a),(c), and

(e),(f),(g) are plots of time and magnetic field slices taken from Fig. 4.1 (b), respectively.

They reveal that ∆Iph(t) exhibits enhancement (t ≤ 50µs) and quenching (t > 50µs)

contributions as expected from signals caused by spin-selection rules [9, 14]. Due to weak

spin-orbit coupling, all spin-dependent processes produce photocurrent changes at g ≈ 2.

Deconvolution of the magnetic field spectra by resonance line fits is therefore ambiguous.

Thus, whilst it is clear that there are spin dependent processes in this material, little
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information regarding their physical nature can be obtained from the data in Fig. 4.1.

4.3 Electrically detected spin Rabi nutation

In order to separate the different contributions contained in the spectrum of Fig. 4.1,

we measured electrically detected spin-Rabi nutations as a function of the applied mag-

netic field B0. We followed the measurement approach of previous pEDMR [10, 15] and

pODMR [10, 14] studies - we integrated the current transient ∆Iph(t) into a charge ∆Q

after pulsed excitation, repeatedly to measure ∆Q(τ) as a function of the pulse length

τ . PEDMR detected spin-Rabi nutation allows us to distinguish pair correlation effects

(spin-beating) [15, 16] and spin coupling effects [14, 17] from the various nutation frequency

components. The two-dimensional map of g-factors versus nutation components enables sig-

nificantly better discrimination of the various signal components contained in the observed

transition rates.

Fig. 4.2 (a) to (c) displays ∆Q(B0, τ) revealing oscillatory behavior. (a) and (c) are

nutation slices that show different nutation frequencies and dephasing times at different

g-factors. This indicates the presence of different electronic transitions. Fig. 4.2 (d) to (f)

displays the Fast Fourier Transform of the data sets displayed in (a) to (c). Fig. 4.2 (e)

shows nutation frequencies (in units of the spin s = 1
2 nutation frequency γB1, with γ the

gyromagnetic ratio and B1 the radiation field strength) as a function of g. It reveals a

number of recognizable frequency components (2πfRabi ≈ γB1,
√
2γB1, 2γB1 and others)

whose g-dependence is plotted in Fig. 4.3 (a) to (c). Detailed discussions about the origins

of different frequency components will be discussed in the following sections.

4.3.1 Weakly coupled spin pairs

The γB1-signal plotted in Fig. 4.3 (a) can be attributed to pairs of weakly coupled

spins consisting of one broad and one narrow Gaussian resonance at g = 2.0111(2) and

g = 2.0047(1), respectively. We assign the g ≈ 2.01-signal to valence band tail states,

as known from a-Si:H [10, 14]. However, it is difficult to exactly determine the origin of

the narrow peak. Silicon dangling bond and conduction band tail states in a-Si:H, are

at g ≈ 2.0055 and g ≈ 2.004, respectively [10, 14]. In a-SiNx:H, the Si dangling bond

surrounded by three N atoms (K-center) has g ≈ 2.003 [7]. Using these literature values,

all three electronic centers could be the origin of the narrow peak.
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4.3.2 Dipolar coupled spin pairs

The very broad signal plotted in Fig. 4.3 (b) is associated with the frequency of
√
2γB1.

This frequency has been assigned to the Rabi frequency of dipolar coupled spins in a-

Si:H [10, 14]. However this assignment has been based on the theoretical prediction for the

transient nutation of magnetic polarization, and there has been no theoretical prediction

for
√
2γB1 Rabi frequency detected by pEDMR and pODMR. Recently, Wang et al. have

solved the Louville equation for spin pairs mediated via dipolar coupling, and found that the

Rabi nutation of the total recombination rate is associated with a distinctive frequency [18].

This frequency is larger than γB1 as long as the dipolar coupling strength is larger than the

Larmor separation and never exceeds
√
2γB1 no matter how strong the dipolar coupling

strength is. This means that the Rabi nutation frequency detected by pODMR and pEDMR

converges to
√
2γB1 as the dipolar coupling strength increases. It also has been found

that there is another frequency component whose frequency is always lower than the first

component. In Fig. 4.2 (e), one can find frequency components whose frequencies are

lower than γB1. However, these signals should not be confused with the signals of the

dipolar coupled spin pairs because these signals do not have imprints of Pake doublet which

should always appear if spin pair partners are dipolar coupled [19]. These lower frequency

components of dipolar coupled spin signals may not be visible because they appear outside

the detected g-factor range. This explanation is valid if strong exchange interaction exists

because these low frequency dipolar signals are from singlet to triplet state transitions.

As will be explained later, the separation of the Pake doublet from the lower frequency

component is determined by the exchange coupling constant.

According to Atherton [20], the Hamiltonian of dipolar coupled spin pairs is

Hd = S ·D · S, (4.1)

where D, the dipolar spin-spin coupling tensor. which becomes for S=1 and uniaxial

symmetry system

Hd = D{S2
z −

1

3
S(S + 1)}. (4.2)

When an external B0 field along +z direction is present, the eigenvalues can be obtained as

summarized in Table 4.1 where D = D0(1− 3cos2θ) with θ showing the angle between the

+z direction and the line connecting two spins in the pair. Note that the exchange coupling

constant J is added to consider the singlet-triplet splitting due to exchange interaction.

The transition energies required for each transitions shown in Fig. 4.4 are summarized in

Table 4.2. One can find that triplet-to-triplet transitions are not affected by the nonzero
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exchange coupling but triplet-to-singlet transitions are affected. The latter corresponds

to the lower Rabi frequency signals of dipolar coupled spins in pEDMR and pODMR

experiments. In addition, the resonance frequency shifts are ∆ν = ±ν0(1 − 3cos2θ) for

triplet to triplet transitions and ∆ν = ±ν0
3 (1 − 3cos2θ) for triplet-to-singlet transitions.

They are plotted in Fig. 4.5. It should be noted that the width of the Pake peak of

triplet-to-singlet transition is one third of the width of triplet-to-triplet transition. Thus,

the lower frequency signals of dipolar coupled spin pairs have narrower linewidth and their

separation is determined by the exchange coupling strength while the separation of the

higher frequency signals is not affected by the exchange coupling.

Thus we can attribute the broad
√
2γB1-signal plotted in Fig. 4.3 (b) to spin-dependent

transitions between spin-dipolar coupled charge carrier pairs. The Pake-spectrum expected

for dipolar coupling [14] is buried under the high frequency tails of the strong signals of

weakly coupled pairs (see Fig. 4.2 (f) which shows the asymmetric frequency distribution).

A fit of the Pake spectrum should be combined with an additional broad Gaussian peak

to consider contributions of the high frequency tails of the weakly coupled spin pairs.

The Pake doublet of the fit is obtained by consideration of line broadening due to the

power broadening, inhomogeneous distribution of g-factors, and distribution of the distance

between pair partners of dipolar coupled pairs. Because D0 =
µ0gagbµ

2
B

4πh
1
r3
, the average

distance between pair partners can be obtained from the fit result. Good fit results were

achieved for distance distributions between 6.0 and 6.7 Å. The solid line in Fig. 4.3 (b)

displays the best result for rav = 6.2± 0.2Å.

4.3.3 Strongly exchange coupled spin pairs

Fig. 4.3 (c) shows the spectrum of the 2γB1 contribution which is fit by a single Gaussian

line centered at g = 2.0094(3). It is known that the pEDMR detected doubling of the spin

s = 1
2 nutation frequency can be explained by quantum beats of the spin pairs. There

are two known origins for these beats: (i) Double excitation of the pair partners by the

magnetic resonant pulse [16], and (ii) beating due to strong exchange coupling within the

spin pair [17]. The two cases differ in that the double excitation requires a radiation field

strength (B1) in excess of the pair partners Larmor frequency difference, while the exchanged

coupled pairs display beating at any excitation strength. Thus, measuring the beat signals

intensity as function of B1 allows the beatings origin to be determined. Fig. 4.6 displays

the B1-dependence of the spin-Rabi nutation frequencies as well as the ratio of the beat

signal intensity over the nutation signal intensity [15]. The data do not exhibit a significant

dependence on B1 and we thus attribute the observed beat signal to exchange coupled
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pairs. Note that the beat signal Landé-factor g = 2.0094 is close to the average of the

weakly coupled resonance peaks. We conclude from this that the valence band states are

not only involved in weakly coupled pairs but also strongly exchange coupled pairs. The

inter pair distance, and thus coupling strength, between the pair partners appears to be

broadly distributed in the disordered network.

The measurements presented above show that spin-dependent charge carrier transitions

of a-SiN0.3:H and a-Si:H are very similar as both involve valence and conduction band tail

states as well as silicon dangling bonds. In spite of this similarity, the measurements also

show that, in contrast to a-Si:H, the photocurrent of a-SiN0.3:H is significantly influenced

by charge carrier pairs with strong exchange and dipolar coupling. The detection of charge

carrier transitions between predominantly dipolar coupled states with separation of only 6Å

(about a third of what is seen in a-Si:H using optical measurements [14]) implies that these

states are highly localized and therefore likely deep in the band gap. Previous experiments

on a-Si:H showed that strongly spin-coupled charge carriers are predominantly correlated

(geminate) pairs that can be observed only through optical detection while spin-dependent

effects on photoconductivity in a-Si:H have been observed only with weakly spin-coupled

pairs [10]. In contrast, for a-SiN0.3:H, uncorrelated (nongeminate) charge carriers are

likely to form strongly spin-coupled pairs. Since illumination always produces geminate

excess charge carrier pairs, the nongeminate pairs must form from previously dissociated

geminate pairs. We therefore conclude that a-SiN0.3:H allows a greater fraction of optically

induced excess charge carrier pairs to dissociate than a-Si:H. This enhanced charge carrier

separability may be of significance for increased internal quantum efficiencies of a-SiNx:H

in PEC applications.

4.4 Summary

In summary, we have used pEDMR in order to map spin-dependent transition rates in

a-SiN0.3:H p-i-n devices according to g-factors and spin coupling-types and -strengths. The

results confirm the hypothesis that Si rich a-SiNx:H exhibits qualitatively similar processes

to a-Si:H. However, in contrast to a-Si:H, highly localized, strongly spin-coupled electronic

states are involved in transitions affecting photoconductivity. This is indicative that the

material enhances the conversion of geminate to nongeminate charge carrier pairs. We note

the potential significance of this for the suitability of Si rich a-SiNx:H for PEC electrode

applications.
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Figure 4.1. Transient measurements of spin-controlled currents following a τ = 172ns long
excitation pulse applied at t = 0. (b) Current change ∆Iph(t) as a function of time t and
the excited g-value (corresponding to the static magnetic field applied to the sample). (a)
and (c) are two time slices from panel (b) for g = 2.031 and g = 2.008, respectively. Panels
(e),(f) and (g) are g-factor (magnetic field) slices from panel (b) for different times after the
pulse. (d) Sketch of the p-i-n structure with a-SiN0.3:H bandgap of ∼ 2 eV [12] (not to scale
geometrically). (h,i) I-V curves with (top) and without (bottom) illumination measured at
room temperature and T = 15K.
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Figure 4.2. Measurement of spin-Rabi nutation with B1 = 1.4 mT. (b) Plot of integrated
photocurrent changes ∆Q after pulsed excitation as a function of the applied g-factor and
pulse length τ . (a), (c) Pulse length slices from (b) for g = 2.008 and g = 2.031. (e) Fast
Fourier transform of the data in (b) plotted as function of g and the Rabi frequency fRabi

in units of γB1. (d), (f) Frequency slices from (e) for g = 2.008 and g = 2.031.
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Figure 4.3. Landé g-factor dependence of spin-Rabi nutation with B1 = 1.4 mT. Landé
g-factor slices obtained from Fig. 4.2 at (a) fRabi = γB1 (weakly coupled spins), (b)
fRabi = 1.4γB1 (predominantly dipolar coupled spins) and (c) fRabi = 2γB1 (predominantly
exchange coupled spins). Green curves are final fit results. In (a), red and blue lines are
two Gaussian peaks. Assignments of these peaks can be found in text. In (b), red curves
are Pake doublet fit and blue curve is broad Gaussian peak representing contribution of
high frequency tail of weakly coupled spin pair signal.
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Figure 4.4. The energies of four s=1/2 pair system eigenstates as a function of the magnetic
field. For simplicity, splitting due to dipolar interaction is shown only. Arrows indicate
∆m = 1 transitions.
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Figure 4.5. Pake patterns for triplet-to-triplet transition (blue solid curves) and triplet–
to-singlet transition (red dotted curves). Width of blue solid curve is 3D0 and width of red
dotted curve is D0.

-V) 

+" o-

s::::: 
::::s . 
.c ... 
co -> 
+" 
0-

.c 
CO 
.c 
o ... 
c. 

I I 
I 

0.0 ~-..... - - ... -I.-. 

-2 -1 o 

freq./D 

1 2 

o 



96

Figure 4.6. Electrically detected Rabi nutations at various B1 field strength. (a) Nutation
spectra measured for g = 2.0047 (B0 = 347.2mT) as a function of the applied B1 field.
(b) Plot of the ratio of the beat signal intensity Ibeat and nutation signal intensity Inut as
a function of B1 for three different magnetic fields around g = 2.0047. The solids lines
represent the expected B1-dependence of exchange coupled (constant) and weakly coupled
(sloped) pairs.
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Table 4.1. Eigenenergies of the four spin s=1/2 pair states.

|s,m⟩ eigenvalue

|1,+1⟩ 1
3D + J + gµBB0

|1, 0⟩ −2
3D + J

|1,−1⟩ 1
3D + J − gµBB0

|0, 0⟩ 0
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Table 4.2. Transition energy required for triplet-to-triplet transition and triplet-to-singlet
transition.

transition transition energy

1) from T0 to T+ hν = gµBB0 +D
2) from T− to T0 hν = gµBB0 −D
3) from S to T+ hν = gµBB0 +

1
3D + J

4) from T− to S hν = gµBB0 − 1
3D − J
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CHAPTER 5

SPIN-DEPENDENT RECOMBINATION

OF POLARON PAIRS IN MEH-PPV

Organic semiconductors are used for various optoelectronic devices like organic light

emitting diodes, flat panel displays and solar cells. Aside from their color brilliance and me-

chanical flexibility, these materials also provide significant advantage in cost and fabrication.

In spite of these properties, there is still an insufficient understanding of the fundamental

processes that limit quantum- and energy conversion-efficiencies. While spin-dependent

electronic transitions (mostly recombination) are an important factor for efficiency (as

only charge carrier pairs in a singlet state fluoresce), it is not known how fast the triplet

to singlet intersystem crossing rate can be and thus our knowledge of the fundamental

efficiency limitations of OLEDs is limited. In order to enhance our understanding of

spin-dependent recombination we conducted pulsed Optically Detected Magnetic Resonance

(pODMR) measurement on poly[2-methoxy-5-(20-ethyl-hexyloxy)-1,4-phenylene vinylene]

(MEH-PPV) based organic light emitting diodes.

This chapter is based on a journal article published in Journal of the American Chemical

Society in the year 20111 coauthored by Seoyoung Paik, Dane R. McCamey, John M.

Lupton, and Christoph Boehme at the University of Utah, U.S.A., and Justin Yu and Paul

L. Burn at the University of Queensland, Australia. Deuterated MEH-PPV samples were

provided by Justin Yu and Paul L. Burn.

We analyzed the time dependence of photo fluorescence rates via magnetic resonant spin

manipulation which changes spin-dependent photoluminescence rates. Using a rate model

for the description of exciton precursor pair generation, dissociation, recombination and

intersystem crossing we were able to give estimates for various rate coefficients including the

intersystem crossing time which is of profound relevance for the efficiency limits of OLEDs

and also for the understanding of organic magnetoresistance effects. We also observed

1Reprinted with permission from [S.-Y. Lee, S.-Y. Paik, D. R. McCamey, J. Yu, P. L. Burn, J. M. Lupton
and C. Boehme, Journal of the American Chemical Society 133 (7), 2019-2021 (2011)]. Copyright 2011,
American Chemical Society.
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coherent spin effects using pODMR such as spin-Rabi nutation signals. The results of

these measurements give information about the mutual coupling of the polarons within

the precursor pairs as well as the hyperfine-coupling to surrounding hydrogen nuclei. The

results show that polaron pairs are coupled remarkably weakly as both the spin-dipolar

coupling and exchange coupling within the pairs is weak and spin-orbit coupling is also

observed to be small.

One of the most appealing promises of organic semiconductors is the ability to tune

a particular material property by synthetic means. While this approach has been ex-

plored widely, for example, in the context of color control for organic light-emitting diodes

(OLEDs), there are some important material parameters relating to the spin degree of

freedom which have received virtually no attention at all. Organic semiconductors typically

consist of low atomic-order number atoms and are characterized by weak spin-orbit coupling,

giving rise to exceptional spin lifetimes. In addition, exchange correlations and the high

degree of localization of excitations give rise to a distinct splitting of excitations into the

singlet and triplet manifold. This splitting controls crucial material properties through

spin-dependent dissociation and recombination of charge carriers [1–16]. Although the

resulting spin-dependent transport phenomena have been studied for decades, it was recently

realized that the electron spin can itself be used as the information carrier in an organic

spintronics device [17, 18]. Such devices promise new avenues towards information storage

and processing, and sensing and imaging, highlighting the need for a more systematic

understanding and control of material characteristics relating to spin [19–21].

In the following sections, we also demonstrate direct control over the hyperfine field

strength experienced by charge carriers in a conjugated polymer, and explore the influence

of deuteration on spin-dependent device characteristics. By comparing pulsed electrically

and optically-detected magnetic resonance (pEDMR and ODMR), we are able to show

the equivalence of spin-dependent observables under optical and electrical excitation. The

hyperfine field strength controls the coupling between spins, leading to the pronounced effect

of spin beating which is detected directly in the photoluminescence (PL) of the polymer.

5.1 Experimental

For pODMR, solution of MEH-PPV (poly[2-methoxy-5-(2’-ethylhexyloxy)-1,4-phenylene-

vinylene) was drop-cast and a fiber bundle consisting of several detection fibers and one

excitation fiber (at the bundle center) was placed on top of the substrate. Both the substrate

and the fiber bundle were fixed by a surrounding quartz tube. A blue light laser(Ar+
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ion laser, wavelength 488 nm, power 10 W/cm2) was used to illuminate the sample and

to therefore to establish a steady state electron-hole pair generation rate. The PL was

measured by an Si-PIN photodiode detector. B1-field pulses with a frequency of 9.6817

GHz were then applied in presence of a variable B0 field. In order to determine the exact

B1 field strength, spin-Rabi nutations of MEH-PPV were recorded for various microwave

powers and the slope of the plot of Rabi frequency as a function of the squareroot of the

microwave power was determined as power to B1 field conversion factor. All measurements

were done at T ≃ 10K

5.2 Polaron pair recombination model

To understand the transient PL change of an organic semiconductor after a microwave

pulse, we consider a simple statistical rate picture based on the Kaplan-Solomon-Mott

model [22, 23] illustrated in Fig. 5.1 following the discussions in Chapter 2 and 3. Here, the

intermediate pairs consist of strongly Coulombically coupled but at the same time, weakly

spin-spin coupled pairs of electron- and hole-polarons. Triplet and singlet polaron pairs can

form triplet and single excitons, with rates kt and ks, respectively. Recombination of singlet

exciton pairs creates photons. Polaron pairs can not only recombine into exciton states,

they can also dissociate without recombination. This process increases the sample current

and is statistically described by rate coefficients dt and ds for triplet and singlet polaron

pairs, respectively. The rate picture in Fig. 5.1 also covers the possibility of longitudinal

spin relaxation of polaron spins which transform singlet polaron pairs into triplet polaron

pairs and vice versa. Spin process, also referred to as spin-mixing, occurs randomly with

a rate coefficient kSL. However, by application of magnetic resonance to one or both spin

within the polaron pair, one can increase spin-mixing rates [23]. Note that this model

in Fig. 5.1. is very similar to the rate model described by McCamey et al. [24], except

that in the latter, kISC considered negligible. Also in contrast to McCamey’s work, we

use this rate model to make predictions about the number of photons as observable (as

needed for pODMR experiments) instead of the number of electrons (as needed for pEDMR

experiments). Thus, the model used for the description of the experiments presented in the

following is essentially the pODMR rate model discussed in Chapter 3.

In order to extract the rate constants from the measured exponential decay transients,

fully analytical solutions for time transient including all rate coefficients and a spin-lattice

relaxation time are required. According to Chapter 3, no matter what strength of kISL

is involved in the transition processes, time transients always possess double exponential
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functions. We consider the solution shown in the previous chapter (eq. 3.23) as below,

∆PL/PL0 = I1e
−m12t + I2e

−m22t

where ∆PL/PL0 is the change in PL, relative to the steady state value, I1 and I2 are

prefactors of each exponential decay function, and m12 and m22 are the rate coefficients of

fast and slow relaxing parts, respectively. Note that the prefactors and rate coefficients are

functions of rs, rt, ds, dt, and kISC . They always show enhancement and quenching or vice

versa, but their relative intensities and time constants are decided by contribution of all

rate coefficients. If the intersystem crossing rate, kISC = 1/TISC , is much larger than other

rate coefficients, the enhancement signal relaxes extremely fast, and its decay constant is

dominantly determined by 1/TISC . But when the quenching relaxes very slowly, the time

transient shows a quick drop below zero after a pulse and slowly relaxes back to a steady

state. As kISC becomes smaller, the enhancement signal relaxes slower, and, when kISC is

very small so that it can be negligible, the behavior of time transient will be decided only

by ks, kt, ds, and dt.

5.3 Finding a lower limit on the intersystem-crossing
time from a pODMR transient

Fig. 5.2 shows the relative photoluminescence (PL) change ∆PL/PL0 in an MEH-PPV

sample as a function of the time t, right after a 128 ns long microwave pulse with B1=0.55

mT, at 10 K. An abrupt increase of the singlet pair density due to a resonant pulse results

in the increase of the PL which quickly relaxes back to the steady state at around 200 µs.

At some point, the increase changes into a quenching signal due to the prevalence of the

slower relaxation of the triplet pair density. The experiments represented in Fig. 5.2 were

repeated then inresonance (B0=345.5mT) with a measured transient of 4ms.

Fig. 5.3 displays these data along with a fit result of a double exponential decay function

which produced 107(1) µs and 840(20)µs for the fast and slow decay constants, respectively.

This double exponential decay behavior is identical to the previously reported transients

in many other organic [24–27] and inorganic semiconductors [28–34]. It confirms the

intermediate pair model discussed intensively for pEDMR and pODMR experiments in

Chapter 3. Applying the analytical solutions obtained in this chapter, the lower limit of the

intersystem crossing time TISC=107(1) µs can be obtained.This is in agreement with the

value extracted from cwODMR data by Yang et al. [35]. and another previously reported

lower limit of 10 µs [36].
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5.4 Polaron pair recombination dynamics
in MEH-PPV

Fig. 5.4 displays the plot of the pODMR spectrum of MEH-PPV at 40 µs after a brief

pulse was imposed onto the sample. Similar as for the pEDMR spectrum of MEH-PPV [26],

the pODMR spectrum can be decomposed into two Gaussian peaks. These spectra cannot

be fit with only either one Gaussian or with a Lorentzian peak. Both peaks have almost

the same g-values, 2.0021(1) and 2.0018(2), respectively, but different peak width (FWHM)

of 1.67(6) mT and 3.5(2) mT, respectively. The existence of these two peaks has been

repeatedly confirmed before [1, 26, 27, 37–39]. Similar as in these previous studies, we

assign these two peaks as distinct distributions belonging to two different pair-partners

within the excitonic precursor pairs. It is not known though which peak corresponds to

the electron and which to the hole. McCamey et al. have discussed this question with

regard to pEDMR data [26]. Note that the experimental data of both pEDMR as well

as pODMR spectra of MEH-PPV could also be fit excellently by three Gaussian peaks:

One strong peak at symmetry center of the spectrum and two weaker satellites, with the

same peak widths, intensities and separation from the spectral center. This fit approach

corresponds to exchange coupled pairs, and it exhibited excellent agreement with both

pEDMR and pODMR data. If this second scenario was correct, one would anticipate for

spin-Rabi oscillation experiments a strong and B1 field-independent presence of Rabi-beat

oscillation [40] strength. In contrast to this expectation for strongly exchange coupled

pairs, McCamey et al. found that any pEDMR observed beat oscillation was strongly B1

dependent and thus, the fit with two Gaussians representing weakly coupled spin pairs is

consistent with the observed data.

5.5 Optically detected spin Rabi nutations of
weakly coupled spin pairs

In order to scrutinize the hypothesis that the ODMR detected signals in MEH-PPV

originate from the same processes as previously detected EDMR detected signals, spin-Rabi

oscillation was measured for a variety of microwave field strength. The goal of these

measurements was to verify that for weak B1-fields, only a spin s = 1/2 nutation was

detectable in order to confirm the weakly spin-spin coupled character of the excitonic

precursor pairs. Previous cwEDMR and cwODMR studies have arrived at this conclusion

based on the observation of g-factors around 2 that only weakly coupled spins with s = 1/2

are involved in these processes [1, 37–39]. However, it is possible that spin resonances

appear at the same g-factor in presence of, for instance strong exchange coupling.
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When B1 is smaller than the Larmor separation (= difference of Larmor frequencies in

the pair), a Rabi nutation with frequency γB1 (γ = gyromagnetic ratio) is expected for

weakly coupled spin pairs. When B1 exceeds the Larmor separation, both pair partners

nutate and the observed Rabi frequency will double due to a beating effect within the spin

system [23, 40, 41]. In contrast, when a pair is strongly spin-spin coupled, the presence

of a beat signal is expected under any applied B1. Thus, measuring the B1-dependence

allows the discrimination between spin-pairs whose coupling strength exceeds an applied

B1 field or not. In MEH-PPV, the Larmor separation within the excitonic precursor pairs

is determined by hyperfine coupling and, thus, it is broadly distributed. For a pODMR

detected nutation signal, this means that there will always be the γB1-nutation signal as

well the 2γB1 beat signal at the same time. However, with increasing B1-field, the nutation

component will decrease in intensity while the beat component will rise.

The pulse length dependencies of spin Rabi nutations were measured by integrating the

enhancement part of the pODMR transient over 16 µs at B1=0.55 mT. The fast Fourier

transformation of these data, FFT[N(τ)](B0), is plotted in Fig. 5.5(a) and (b) for different

B1-fields, respectively. In Fig. 5.5 (a), a signal is present at B0= 345.5 mT and fRabi=16(1)

MHz. Fig. 5.5(a) also shows a hyperbola structure (white curve) that represents the values

of Rabi’s frequency formula [23],

2πfRabi,i =
√

(γiB1)2 + (γiB0 − 2πfmw)2

where 2πfRabi,i is the Rabi frequency of one pair partner, B0 the resonance field of the

excited spin, γi the gyromagnetic ratio, and fmw is the frequency of the microwave. When

the Larmor separation is larger than B1, one of pair partners will have the Rabi frequency

of γiB1 at γiB0 = 2πfmw while the other one has a frequency a little larger than γjB1

due to the offresonance contribution, (γjB0 − 2πfmw)
2. For small Larmor separation, both

pair partners can be flipped together so that they form one two-spin system and a beat

frequency appears with 2πfRabi,beat = 2πfRabi,i ± 2πfRabi,j ≃ 4πfRabi,i or 0 because their

g-values are almost the same. The expected beat frequencies for small Larmor separation

as a function of B0 are shown as white dotted curve in Fig. 5.5(a).

When an ensemble of spins contributes to an observed Rabi-oscillation and g-values

are very homogeneous (the g-distribution is a delta-function), the Rabi-frequency versus

B0-field plot should follow Rabi’s frequency formula [40–42]. In contrast, when the g-

distribution is very broad due to disorder,the Rabi-frequency pattern is “smeared out” and

the Rabi frequency will not follow Rabi’s frequency formula anymore. Instead, it is pinned

at γB1 throughout the resonant line [42]. This effect can be seen in Fig. 5.5 (a). The
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hyperbola-like signal cannot be observed but instead, a broad signal around B0=345.5 mT

is seen with γB1=97(1) MHz. Thus, the data in Fig. 5.5 (a) represent an ensemble with a

broad distribution of Larmor frequencies.

As previously reported in numerical studies [40, 41], when two spins in a pair have

a Larmor separation which is larger than γB1, two distinguishable hyperbola-like signals

appear which have a minimum Rabi frequency at 2πfRabi = γB1, as shown in Fig. 2 (c) of

Ref. [40] and Fig. 2.(a) iii) and iv) of Ref. [41]. For the data of Fig. 5.5 (a), the B1 field

strength is only 0.55 mT and the Larmor separation is 1.36(1) mT. Two hyperbola curves

are not distinguishable in Fig. 5.5 (a). This is because the resolution of B0 is limited by a

few Gauss and also due to the inhomogeneous broadening.

The expectation value of the Larmor separation within the spin pairs can be calculated

with,

|∆g| =
∫ ∫ ∞

−∞
Gb(g

c
b , δgb)Gn(g

c
n, δgn)|gb − gn|dgbdgn (5.1)

where Gb and Gn are Gaussian distribution functions, δgb and δgn are the FWHMs, gcb

and gcn are the peak center positions of the spin pair partners for broad and narrow peaks,

respectively. For the presented data, this calculation was done by plugging all parameters

obtained from the peak fit results in Fig. 5.4. The results reveal |∆g|= 1.36(1) mT at

X-band. This is larger than B1=0.55 mT in Fig. 5.5 (a). Note that the beat frequency

for small Larmor separation (see eq. 3.34) should be roughly 32 MHz, and the broad and

“smeared out” signals can be found in the range from 28 MHz to 48 MHz in Fig. 5.5

(a). Even though the Larmor separation is still larger than the excitation bandwidth 2B1,

FWHMs of the two peaks 1.67(6) and 3.5(2) mT are still larger than the Larmor separation.

In spite of this, a nonnegligible number of pair partners still can be excited simultaneously

by a small B1 field. This is illustrated in Fig. 5.6 where δg is the correlation distance. It

is assumed that the spectral data obtained from Fig. 5.4 are from noncorrelated spin pairs.

If the spectral data obtained by pODMR are originated from correlated spin pairs, the

calculation of |∆g| is not possible as long as the correlation relation is not known. Thus we

have to figure out if the spins in a pair in this sample are correlated.

It has been predicted that in spin ensembles where two correlated pair partners have

broad Larmor frequency distributions, the spin beat signal intensity is always bigger than

the spin one half signal as long as the spin distribution due to disorder is not infinitely

broader than the applied B1 field [42]. However, in the case of ensembles of noncorrelated

spin pairs, the intensity of the spin beating signal is smaller than the spin one half signal
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when the width of spin distribution is larger than B1. This explanation is in agreement

with the nonnegligible but very weak signals around the beat frequency in Fig. 5.5 (a).

It should be emphasized that if spins in a pair are strongly exchange coupled, the 2γB1

signal will still appear at low B1 fields. In contrast, if spin pairs are weakly coupled, the beat

frequency is predicted to be larger than 2γB1 [41] and the intensity is predicted to be small in

disordered and noncorrelated systems at low B1 fields [42]. Because of the limited frequency

resolution in Fig. 5.5 (a), it is hard to identify the second harmonic component at the low

B1 field. Fig. 5.5 (b) shows the Fourier transform of spin-Rabi nutations, FFT[Q(τ)](B0)

as a function of B0, for stronger B1 (=1.5 mT). In contrast to the weakly coupled spins

excited by small B1 [Fig. 5.5 (a)], not only the γB1 signal but also the 2γB1 signal is visible.

Here, B1 is comparable to, or larger than, the calculated Larmor separation. A plot of the

onresonance Rabi frequencies as a function of B1 is shown in Fig. 5.5 (c). The solid blue line

is a linear fit of γB1 signals, and the blue dashed line is a guide to the eye for 2γB1 signals.

The linear slope of the maxima of the low frequency component signals is 1.77(1)× 1011

rad/T · s which is in agreement with the measured gyromagnetic ratio, γ=1.7607(3) × 1011

rad/T · s. At high B1, the beat frequency is predicted to be close to 2γB1 and the intensity

of the signal will increases due to power broadening. This prediction is in agreement with

the measured onresonance B1 dependence of FFT[Q(τ)] as in Fig. 5.5 (c). In this figure, the

spin one half components are always visible but the beat frequency components are visible

only at large B1 fields, and the corresponding beat frequencies are quite close to 2γB1.

Based on the discussion above, it is concluded that excitonic precursor spin pairs found

in MEH-PPV (the so called polaron pairs), are weakly spin-spin coupled and they have

noncorrelated resonance frequencies. As shown in the following section, these properties

can be used to explore the hyperfine interactions of polarons in this material.

5.6 Tuning hyperfine fields in organic
semiconductor

Most investigations to date on spin-dependent processes in organic semiconductors have

been carried out under static conditions, where it is not possible to coherently manipulate

the spin orientations [1–14]. We recently reported applying pEDMR to OLEDs, which

enables coherent manipulation of the spin polarization, leading to striking coherent features

in macroscopic observables such as the device current [24, 26]. We now use this sensitive

technique to correlate materials chemistry with intrinsic spin dynamics. However, instead

of measuring a current we detect spin-dependent recombination by a change in PL intensity

under resonance.
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Fig. 5.7 (a), (b) illustrates our experimental approach. We measure the dynamics of

electron and hole spins in a film of MEH-PPV. Optical excitation of the polymer leads to the

formation of tightly-bound excitons, which subsequently decay under emission of a photon.

However, a small percentage of these excitons may dissociate to form electrostatically-

correlated weakly spin-spin coupled electron-hole pairs which typically reside on different

chains in the bulk film. We can tune the local hyperfine field by varying the side groups of

the polymer backbone (marked in green). Under electron spin resonance (ESR) conditions,

a spin flip occurs within the carrier pair, shuttling it reversibly between the singlet and

triplet spin manifold. For reasons of energy conservation and wavefunction symmetry, it

is easier for a carrier pair in the singlet configuration to form a singlet exciton than for a

triplet pair to relax to a triplet exciton [7]: Carrier recombination is spin-dependent and

can be monitored by recording the singlet exciton PL yield [13].

5.7 Spin beating induced by hyperfine interaction

The resonance condition can occur either for an individual charge or for both spins

together, depending on the intrinsic ESR linewidth of each carrier. The hyperfine field, the

random magnetic field originating primarily from the hydrogen nuclei in the polymer, consti-

tutes the dominant ESR line broadening mechanism [1]. As electron and hole wavefunctions

need not have precisely the same shape on a polymer chain, it is unlikely that both carrier

types will experience the same hyperfine field strength [26]. The hyperfine broadening

of the resonance must be seen in conjunction with the intensity of the microwave field,

which itself contributes a time-varying magnetic field B1. Once B1 exceeds the difference

in hyperfine field strengths acting on the two carriers, electron and hole resonances become

indistinguishable and both carriers experience resonance. This situation is sketched in

panels c), d) of Fig. 5.7: at low driving fields (microwave intensities), only one carrier

spin precesses, leading to a spin- type resonance. As the B1 amplitude is raised to exceed

the difference in local hyperfine field of electron and hole, the two spins precess together.

The nutation frequency between singlet and triplet configurations is doubled: spin beating

occurs.

We recently described this effect in EDMR [26]. Identical behavior is observable here

using optical detection, as illustrated in panels e) and f). Such ODMR is much simpler to

perform than EDMR as it does not require the incorporation of conductive leads into the

ESR resonator, which can potentially distort the local microwave field. A drop-cast sample

mounted in a cryostat at 15 K was excited using a c.w. laser at 488 nm, and the PL was
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detected by a silicon photodiode. The inset of Fig. 5.7 (e) shows the dependence of the

differential PL on the duration of the microwave pulse. As the pulse length is increased,

the electron or hole spin precesses further, generating a triplet carrier pair from a singlet

carrier pair, and vice versa. This precession leads to an oscillation in the singlet and triplet

population density with pulse length, giving rise to Rabi flopping in the PL intensity. The

curve can be accurately fit by a single-frequency transient function [23] as will be explained

later. The Fourier transformation, the green curve in the main panel of Fig. 5.7 (e), of the

time dependent data as well as a fit with two Fourier transformed transient functions (red,

blue) reveals only a single frequency component, as expected for a spin-1/2 resonance. At

high microwave powers, panel (f), the Rabi frequency increases (inset). In addition, now

both the Fourier analysis of the data and the fit to both the time domain and frequency

domain data reveal a distinct harmonic component to the resonance: spins either precess on

their own or together. The fit curves (green, blue, and red) in Fig. 5.7 (e), (f) are obtained

not only to separate two Rabi nutation curves from experimental data but also to quantify

the contributions of each curves. These quantities are later used to estimated the difference

in hyperfine field experienced by electron and hole.

The fit curves in Fig. 5.7 (e), (f) are obtained as follows. Optically-detected spin Rabi

nutation under the influence of inhomogeneity in the spin distribution can be described by

the transient function, introduced in previous chapter (eq. 3.35), derived originally in Ref.

[23]. Let’s recall this function as below

∆eff =

∫ ∞

−∞
Φ(ωL)

γ2B2
1

γ2B2
1 + (ω − ωL)2

sin2(κτ
√

γ2B2
1 + (ω − ωL)2)dωL (5.2)

where τ is the length of the resonant pulse radiation, κ becomes 1/2 for large Larmor

separation and 1 for small larmor separation, and Φ(ωL) represents the Landé g-factor dis-

tribution. Φ(ωL) can be replaced, if we assume that electron-hole pairs are weakly coupled

and noncorrelated, by the superposition of two Gaussian density distribution functions of

which peak parameters, widths and center positions, are obtained from the resonance lines

in Fig. 5.8 (c) and (d). Note that Fig. 5.8 (c) is the same as Fig. 5.4. Exact values for

B1 could be obtained from the Rabi frequencies of spin-1/2 nutation components of fast

Fourier transformed spin Rabi nutations. Note that this function should be used as a fit

function for the data collected at high microwave power, and this can be approximated

to the integral of zeroth order first-kind Bessel function at low microwave power [25]. For

data analysis in time domain spectroscopy, the obtained raw data transients were Fourier

transformed and the resulting frequency domain data are then subjected to fits with Fourier

transformed transients, obtained from eq. 5.2, for a quantitative analysis of the different
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oscillation components. As a control procedure, we also carried out direct fits of the time

domain data (the raw data) with eq. 5.2, for the two known harmonic components which

led to identical results for the fraction of spins.

Practical challenges for the fit process arise because of the limited frequency resolution

and limited sampling rate. The frequency resolution is determined by the longest pulse

duration, 498 ns in this experiment. This definite value for the longest pulse length increases

the uncertainties in the fit results. In addition, all sampled data with a finite sampling

rate are band-limited and this is usually negligible as long as the sampling rate is faster

than Nyquist rate [43]. Note that the Nyquist frequency is the double of the highest

frequency of a nonzero signal of the real transient. If the spin Rabi nutation transient arises

from nonpower broadened isolated single spins, it can be described by a simple harmonic

function. In this case, full recovery of the real transient is possible as long as the sampling

frequency is larger than twice the most dominant harmonic frequency because the simple

harmonic function consists of only a single frequency component. However, the real Rabi

nutations in our sample were influenced by power broadening, and in addition the transient

function is not a simple harmonic function: this function consists of a dominant harmonic

component and other components in a wide frequency range. Because of this situation,

the required Nyquist rate should be orders of magnitude higher than both the nutation

and beat frequencies, which is experimentally not implementable. Refer to Fig. 3.7. To

overcome this problem, the experimental data were fit with a frequency-resolution-limited

and band-limited fit function using a 4 ns sampling time (as used for the data collection)

and limiting the longest pulse lengths to the real values.

In Fig. 5.7 (e) and (f), plots are presented of Fourier transforms of the raw data, along

with the fit result for two peaks as well as the two individual fit components. The fit

function shows an excellent agreement with the Fourier transform of the experimental data.

As mentioned above, fitting the time domain data directly leads to identical fit results for

the magnitude of both oscillation components (for both the absolute values as well as their

errors) compared to the fits of the Fourier transformed raw data.

5.8 Effect of deuteration on |Bhyp|
The magnitude of the microwave field at which the beat oscillation signal dominates

provides an estimate of the difference in hyperfine field experienced by electron and hole,

|Bhyp|. This value can also be estimated by fitting to the resonance lines [26] as long as

hyperfine fields within the individual pairs are not correlated. However, without a route to
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direct control of the hyperfine field, a model fit alone is not sufficient proof that the intrinsic

spin properties really are dominated by nuclear fields: other broadening mechanisms such

as spin-orbit coupling or dipolar interactions could also contribute. To conclusively probe

for hyperfine effects, we compare conventional MEH-PPV to a deuterated compound in

Fig. 5.8. Here, only the polymer side groups are deuterated (panels a, b). The differential

PL in panels c) and d) can be described by a superposition of two Gaussians, attributed to

electron and hole carrier spin-1/2 resonances [26]. As expected, the resonance is narrower

for the deuterated compound with a smaller hyperfine coupling constant [19]. From the

line fits we extract |Bhyp|=1.36(1) mT (1.31(3) mT) for the hydrogenated (deuterated)

sample. With such a small difference, it is difficult to confirm, based on linewidth change

alone, that deuteration really influences |Bhyp|. However, the direct time-domain analysis

of hyperfine-field-mediated spin beating, which is not prone to error by hyperfine field

correlation between the two pair partners, provides clear support for the influence of

deuteration(supporting info). Fig. 5.8 (e), (f) plots the fractions of the numbers of spin

pairs that produce beat oscillation signals (red) and pure spin-1/2 nutation signals (blue)

for both materials, extracted from the Rabi-flopping curves like Fig. 5.7 (e), (f). Those

fractions were obtained as follows.

The goal of the experiments presented is to measure the ratio of the number Ibeat of

spin pairs which produce an optically detectable spin-beating signal and the number Inut of

spin pairs which produce optically detectable spin-1/2 Rabi nutations for a given applied

microwave power. This ratio is referred to as “ratio of spins” or ‘fraction of spins’

fraction =
2× Ibeat

Inut + 2× Ibeat
(5.3)

where the factor 2 arises because the beating signal requires twice as many spins to nutate

for the same signal intensity as a spin-1/2 nutation signal [23, 41].

For a given pair of two spins with s=1/2, B1 and the difference of the pair partners’

Larmor frequencies ∆ω determine whether the pairs’ spin-dependent decay probability will

oscillate with Ωn or Ωb, called the nutation and beat frequencies, respectively. When B1 <

∆ω, spin 1/2 Rabi nutation will take place. When B1 > ∆ω, beat oscillations will become

dominant [41]. Since ∆ω is randomly distributed due to the hyperfine fields, a measurement

of the ratio of spins as a function of B1 reveals information about the expectation value

of the difference of the hyperfine fields |Bhyp| which is equal to B1 when Ibeat = Inut [26].

In order to determine the ratio of spins experimentally, transient nutation data must be

analyzed with regard to the two harmonic components with frequency ratio Ωb/Ωb = 2. The

obtained crossover point through this procedure (1.38(10) mT hydrogenated; 1.15(8) mT
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deuterated; confidence level 95%) in Fig. 5.8 (e), (f) reveals a significant difference between

the two materials.

Values are derived for |Bhyp| for the protonated and deuterated MEH-PPV. For each

material, two values are obtained, one from line-shape analysis and one from the spin-beat

signals. The |Bhyp| obtained from the line shape analysis is an estimate based on the

assumption that the Larmor separation of the spin pairs is determined by two independent

Gaussian probabilities that are described by the resonance lines shown in Fig. 5.8 (c),(d)

[see Supporting Information of Ref. [26]]. This assumption may be wrong and if so, the

inaccurate value obtained from the spectral data may be different from the true value. This

deviation is part of the problem of using simple ODMR spectra (continuous wave or pulsed)

for the determination of hyperfine field strengths, as is commonly done [19]. In contrast, if a

correlation exists between the Larmor frequency distributions of the two pair partners (the

electron and hole polarons), the spin-beat experiment will accurately reflect this. Thus,

when the spin-beat experiment reveals lower values for than the spectral data as is the case

in our study, the spin-beat data must be correct and therefore provides evidence that some

correlation between the Larmor frequencies of the two individual charge carriers exists.

5.9 Conclusion

Deuteration of the polymer reduces the hyperfine field [19–21] so that electron and hole

experience simultaneous resonance at lower microwave intensities. Thus, a sample in which

line broadening is not dominated by hyperfine fields should display spin beating even at

low microwave driving fields. As a next step, the entire backbone of the polymer should be

deuterated, and the effect of symmetric versus asymmetric backbone substitution explored.

Suffice to note that the present effect of deuteration (∼ 20% change) is significantly weaker

than expected for an isotropic system. A quantitative comparison of the hyperfine effects

seen here and in the recent study by Nguyen et al. [19] is not possible since exact charge

carrier wavefunctions are not known in either one of the materials. In our study, the

sidegroups were deuterated and not the backbone, whereas Ref. [19] reports deuteration

of the backbone alone. The carriers appear to only weakly penetrate the sidegroups.

Controlled deuteration thus offers a route to map the location and extent of the carrier

wavefunction.
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Figure 5.1. Illustration of spin-dependent excitonic charge carrier recombination in organic
semiconductors. Upon encounter, electrons and hole (which are usually polaronic states)
form weakly spin- but strongly Coulomb-coupled intermediate pairs. The pairs can exist
in parallel and antiparallel configurations with pure triplet character or singlet/triplet
mixtures, respectively. Triplet polaron pair will either thermally dissociate or recombine
into triplet excitons. Singlet state will either dissociate at a different dissociation rate or
recombine into singlet states. Changes of the precursor spin states with magnetic resonance
can change netdissociation or netrecombination rates, which then influence conductivity or
optical emission, respectively.
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Figure 5.2. Photoluminescence change of MEH-PPV as a function of the time after a
short (128ns) microwave pulse and a function of the magnetic field B0. One can recognize
an enhancement signal right after pulse for magnetic fields around B0=345.5mT followed
by slowly relaxing weak quenching signal.
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Figure 5.3. Transient behavior of PL change at onresonance B0 fields, 345.5 mT. Double
exponential function can explain enhancement-quenching behavior very well and two time
constants can be extracted.
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Figure 5.4. PODMR spectrum obtained at a time t = 40µs after a pulsed excitation
of MEH-PPV with the magnetic field expressed as g-values. A fit function consisting two
Gaussian peaks, one narrow(FWHM=1.68(6) mT) and the other broad(FWHM=3.6(1)
mT), is in good agreement with the data. For details see text.
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Figure 5.5. Intensity of pODMR signals of MEH-PPV as a function of the applied B0 and
spin-frequency. The displayed data are obtained from a FFT[N(τ)](B0) of a pulse length
dependence measurement. The measurements were carried out at (a) at B1=0.55 mT and
(b) at B1=1.54 mT. (c) FFT of opticalled detected Rabi nutations at an on resonance B0

field measured at various B1 strengths. The curves in (a) and (b) are predictions of Rabi
frequencies (solid) and spin Rabi-beat frequencies (dotted) as a function of B0, based on
Rabi-frequency formula (see Chapter 3). The red solid line in (c) is the linear fit of 2πfRabi

vs. B1 whose slope is 1.77× 1011 rad/sT. This is very close to the gyromagnetic ratio. The
blue dashed line is a guide to the eye showing 2πfRabi = 2γB1.
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Figure 5.6. Larmor frequency distribution of noncorrelated spin pair partners expressed in
g-factors. gcn and gcb are Landé g-factors of the narrow and broad peaks, respectively, and,
δgn and δgb are the FWHM of two peaks, respectively. δg is the correlation length. The
red dotted curve indicates the excitation bandwidth determined by the B1 field strength.
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Figure 5.7. Coherent spin manipulation in organic semiconductors monitored by PL-de-
tected spin resonance. (a) Charge carrier pairs are formed in MEH-PPV by optical
excitation. (b) Under spin resonance conditions, a spin flip can occur, which is recorded by
a change in singlet exciton emission intensity. (c) At low microwave intensities, only one
spin precesses at a time, whereas both spins precess together at high intensities (d). (e)
Inset: Rabi flopping in the polymer PL is dominated by a single frequency component at low
intensities as shown by the Fourier transform in the main plot (X-band 9.8 GHz radiation).
(f) At high intensities, spin beating occurs, leading to a harmonic appearing in the Fourier
transform. The green lines in the time domain and frequency domain plots correspond to
fits of the experimental raw data and its Fourier transform, respectively. Blue lines show
the fundamental contribution in the oscillation, red lines indicate the beat signal. The data
analysis procedure is outlined in main text.
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Figure 5.8. Effect of deuteration of the polymer side groups on the ODMR resonance
spectrum and on spin beating [cf. Fig. 5.7 (f)]. (a), (b) Structures of the polymers studied.
(c), (d) The differential PL resonance spectrum is accurately described by a superposition
of two Gaussians, representing electron and hole resonances. (e), (f) Fourier analysis of
the beating transients [see Fig. 5.7 (e), f)] allows the extraction of the spin-1 and spin-
contributions to the resonance. The crossing point of the two as a function of microwave
field strength B1 offers an estimate of the difference in local hyperfine fields experienced by
a carrier pair. The dotted curves in (e) are the predictions. See details in text.
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