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ABSTRACT

The algebraic multigrid (AMG) method is often used as a preconditioner in Krylov

subspace solvers such as the conjugate gradient method. An AMG preconditioner

hierarchically aggregates the degrees of freedom during the coarsening phase in order

to efficiently account for lower-frequency errors. Each degree of freedom in the coarser

level corresponds to one of the aggregates in the finer level. The aggregation in

each level in the hierarchy has a significant impact on the effectiveness of AMG as a

preconditioner. The aggregation can be formulated as a partitioning problem on the

graph induced from the matrix representation of a linear system.

The contributions of this work are as follows: first, a GPU implementation of a

“bottom-up” partitioning scheme based on maximal independent sets (MIS), including

an efficient conditioning scheme for enforcing partition size constraints; second, three

novel topological metrics, convexity, eccentricity, and minimum enclosing ball, for

measuring partition quality; third, empirical test results comparing our MIS-Based

aggregation methods with the MeTis graph partioning library, showing that the metrics

correlate more strongly with AMG performance than the commonly used edge-cut

metric, and that for finer aggregations, MIS-based aggregation is better suited for

AMG coarsening than is the “top down” MeTis graph partitioning library, but that

for coarser aggregations, MeTis performs better.
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PREFACE

This thesis is the culmination of a larger body of work which began with my

initial work implementing aggregation for algebraic multigrid (AMG) coarsening, on

Nvidia GPUs, as a component of the finite element method (FEM) pipeline detailed

in Fu et al. [4]. We observed that our AMG implementation performed better using

aggregators based on k-maximal independent sets (MIS(k)), compared with using

the MeTis graph partitioning library [6] for aggregation. Our serial implementation

of the FEM solver using an aggregator based on the flood-fill MIS(k) algorithm

converged to a solution in fewer iterations than the GPU implementation using an

aggregator based on the randomized MIS(k) algorithm. In addition, while the serial

aggregator produced aggregations of sufficient regularity to meet the size constraints

of the GPU-based AMG solver, the GPU-based aggregator did not. This required

implementing conditioning techniques to enforce size constraints on the aggregations.

This motivated further investigation into MIS(k) algorithms, and the properties

of aggregations produced using them, detailed in my bachelor’s thesis [8]. Through

that work, it became apparent that a commonly used measure of graph-partitioning

performance, edge-cut, did not seem to capture the observed difference in AMG

performance; the metrics of average internal valence and internal to external nodes

ratio introduced also failed to measure the observed qualitative differences effectively.

Using the node exchange conditioner developed for the FEM solver to enforce tighter

constraints on aggregate size revealed that it did not always maintain the validity

of the aggregation being conditioned, the modifications required to guarantee the

aggregation remained valid made the conditioner unnacceptably slow.

In this work, I build on the foundations of my previous work and introduce

three novel metrics of aggregation quality, based on adapting the geometric concepts

of convexity and eccentricity for application to graph topology, a more advanced
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CHAPTER 1

INTRODUCTION

In numerical simulation of physical systems, there is a constant demand for

increased computational efficiency, as any increase in computational efficiency allows

the simulation of systems in greater detail, or the simulation of more complicated

systems. The finite element method (FEM) is a widely used numerical method for

approximating the solution of partial differential equations over irregular domains. A

significant portion of the work in the finite element method is finding the solution of

a large, sparse system of linear equations.

Numerical solutions of large, sparse linear systems are commonly obtained using

iterative relaxation algorithms such as the Jacobi method. Such techniques typically are

highly effective at reducing high-frequency errors in the solution, but for removing lower

frequency errors, these techniques are rather inefficient, motivating the development

of hierarchical methods such as multigrid.

Algebraic multigrid (AMG) is an iterative, hierarchical method for solving systems

of linear equations. In AMG, a hierarchy of smaller linear systems is constructed, each

of which approximates the original system, along with prolongation and restriction

operators to transfer vectors from one level to another. AMG works because smooth,

low-frequency, errors in the original system become higher frequency errors in the

coarser systems, or grids, and can be effectively removed in the coarse level by simple

relaxation operators.

One variant of AMG, smoothed aggregation multigrid (SAMG), constructs the

hierarchy of linear systems by aggregating the degrees of freedom of the fine level

linear system together into connected disjoint aggregates. The coarser level system

is then composed with a degree of freedom corresponding to each aggregate. In

smoothed aggregation multigrid, the aggregation chosen uniquely defines the linear
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system, prolongator, and restrictor, for each level of the hierarchy. This implies that

the number of iterations required to reach a solution depends only on the aggregation

given, so finding a “good” aggregation is critical. It has been observed that AMG

methods are very efficient when used as a preconditioner for the linear conjugate

gradient solver (PC-AMG) [12] and other Krylov subspace methods. The AMG

method is explained in more detail in Chapter 2.

A maximal independent set (MIS) is a set of pairwise disconnected nodes, in

a graph which is maximal, meaning no other nodes may be added to it without

breaking the independence property. An MIS(k) generalizes an MIS to have a radius

of independence of k; that is, two nodes are considered connected if there exists a

path between them of length k or less. A more detailed treatment of MIS and MIS(k)

is included in Chapter 2.

The motivation for this work, as well as that in Lewis [8], came about from the

investigation of SAMG, as part of an FEM pipeline, as detailed in Fu et al.[4]. The

problem of finding an aggregation was treated as a graph partitioning problem, in

which the degrees of freedom in the linear system are nodes in the graph, and the

edges between nodes correspond to non-zero entries in the matrix. Using the general

graph partitioning library MeTis [6] for aggregation, we observed that when specifying

a desired number of partitions large enough to produce an optimal coarsening for

multigrid, the convergence rate did not improve as predicted by the mathematical

theory. This led us to implement a partitioning scheme based on maximal independent

sets (MIS), similar to that described in Tuminaro et al. [13]. This strategy significantly

improved the number of AMG cycles required, leading us to conclude that the

aggregation produced was better suited for SAMG than the partition produced with

MeTis.

Visually comparing aggregations produced by our MIS method with those produced

using MeTis shows noticeable qualitative differences, which become more pronounced

at each level in the hierarchy. Figure 1.1 shows hierarchies of aggregations of an

irregular triangular mesh, for both an MIS-based aggregator (Figure 1.1 a, b, c) and

MeTis (Figure 1.1 d, e, f). Nodes of the mesh are drawn as colored balls, the color
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(a)

(d)

(b)

(c)

(e)

(f)

Figure 1.1. MIS and MeTis aggregation hierarchies: MIS(2) level 1,(a), level 3,(b),
and level 4,(c). MeTis level 1,(d), level 3,(e), level 4(f).
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indicating the aggregate they belong to. For higher levels in the hierarchy, the coloring

of the induced mesh is projected back to the original mesh nodes. The first (Figure

1.1 a, d), third (Figure 1.1 b, e), and fourth levels (Figure 1.1 c, f) of the hierarchies

are shown. Qualitatively, the aggregates produced with the MIS method appear

rounder and more compact compared to those in the MeTis-based aggregation, with

the boundaries between aggregates smoother. The MIS-based aggregator maintains

the smooth shape of the aggregates through each successive aggregation, while the

MeTis aggregator does not.

While the MIS-based aggregations are composed of more regularly shaped ag-

gregates, they differ more in size than those produced with MeTis. This can cause

issues in applications where there are strict size constraints. In Fu et al. [4], the node

exchange conditioning method was introduced for adjusting the aggregate sizes in

an aggregation, and examined in more detail in Lewis [8], where it was found to be

lacking in robustness and general applicability.

This thesis addresses the following questions:

a) How does one evaluate the quality of an aggregate, i.e., are there heuristic

metrics to determine if an aggregate positively affects the performance of the

PCG-AMG method?

b) How are the metrics correlated with the solution time and the number of

iterations?

c) How can an aggregation which does not meet aggregate size constraints be

conditioned to do so efficiently?

To answer these questions, we employ two kinds of techniques to aggregate the

graph nodes: a) Maximal independent set (MIS)-based and b) MeTis-based method.

The aggregation methods are described in Chapter 3. We use the FEM and PCG-AMG

solver with each aggregator to solve the elliptic Helmholtz equation, on four meshes,

and compare the solution times, PCG-AMG iterations, and metric scores.

The testing methodology and description of our aggregation quality metrics are

provided in Chapter 4. In practical applications, note that the linear solver may be
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used multiple times on the same mesh. Consequently, improvements in solution times

have a very significant impact on the total time required for a real-world simulation.

The results from our numerical experiments show that our quality metrics do correlate

with the solution time and the total number of iterations. These results are provided

in Chapter 5. Conclusions and future research directions are given in Chapter 6.



CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we provide some background information on the MeTis graph

partioning library, maximal independent sets, the finite element method, and multigrid

methods.

2.1 MeTis

MeTis [6] is a graph partitioning library that uses a multilevel algorithm involving

three distinct phases: a) coarsening, b) initial partitioning, and c) uncoarsening. In

the coarsening phase, the graph nodes are aggregated together hierarchically until the

coarsened graph is small. Then, initial partitions are computed using very efficient

methods such as spectral partitioning [5], matching, or clustering. These partitions

are then projected back to finer graphs while simultaneously being optimized for the

number of edges that cross from one partition to another. The optimization is carried

out using the Kernighan-Lin method [7], the Fiduccia-Mattheyses method [3], or other

methods. We consider this a “top-down” approach because the partitioning phase

occurs at the coarsest level and is then projected back on to the finer levels. MeTis is

designed to optimize the number of edges crossing the partitions. For our purpose,

we use kMeTis, which uses a recursive bipartitioning technique to compute as many

partitions as specified by the user.

For our application, we observe that MeTis does not perform well when used

to create aggregations composed of very small groupings because is it based on the

recursive bipartitioning technique. As many recursive calls are needed to produce

the large number of small aggregates, and each call introduces more variability in

partition size, we obtained aggregates with large variations in their sizes. In some

cases, the aggregates were disconnected.
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2.2 Maximal Independent Sets

We now proceed to a description of maximal independent sets. For purposes of

illustration, we introduce a simple graph (Figure 2.1), which is the nodal graph of a

simple mesh that might be obtained by the triangularization of an irregular point set

on a planar domain. This is an example of the type of mesh commonplace in FEM.

While we choose a 2D example as a visualization tool, all the concepts presented

extend to 3D tetrahedral meshes, as well as more general graphs.

A maximal independent set (MIS) is a set of nodes x in a graph G(v, e) that

are independent, that is, no pair of nodes in the set is connected by an edge. More

formally, for all (a, b) where a ∈ x and b ∈ x, (a, b) /∈ e. The set is also maximal,

meaning that for every node n ∈ v, n /∈ x adding n to the set x would break the

independence property. Examples of an MIS in our simple graph are shown in Figure

2.2.

In this work, as in Bell et al. [1], we generalize the idea of MIS to MIS(k) where

the parameter k specifies the required radius of independence. This changes the

independence condition from there being no pair of nodes in the set connected by an

edge to no pair of nodes in the set that has a shortest path between them of length

k. For a set x of nodes to be a valid MIS(k) of a graph G(v, e), it must be true that

for every (a, b) where a ∈ x and b ∈ x the shortest path between a and b is greater

than k. The condition for maximality remains the same. Examples of a 2-MIS in our

simple graph are shown in Figure 2.3.1

2.3 Finite Element Method

The finite element method (FEM) is a technique for numerically approximating

solutions of partial differential equations (PDEs). It restricts the problem to a finite

dimensional function space and finds the best approximation of the unknown function

within that space. A significant advantage of FEM is that it works on unstructured

meshes discritizing the spatial domain, rather than a structured grid or lattice, which

1The material in this section is reproduced from the previous work of Lewis [8]
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Figure 2.1. The simple graph used for illustration, which is the nodal graph of a
triangular mesh.

(a) (b)

Figure 2.2. Examples of two different MIS(1) in the same graph. Vertices in the
MIS are colored red. Note that the MIS(1) on the left contains six nodes, while that
on the left contains only four.

(a) (b)

Figure 2.3. Examples of two different MIS(2) in the same graph. Vertices in the
MIS are colored red. Note that the 2-MIS on the left contains three nodes, while that
on the left contains only two.



9

makes it naturally suited for handling complex geometries, as the elements in the

mesh can be chosen to conform to the boundaries of the geometry. Many disciplines,

such as continuum mechanics, biophysics, and fluid dynamics, utilize FEM to simulate

physical phenomena. The general FEM pipeline consists of three main tasks, the

computation of the elemental local operator matrices, assembly of the local operator

matrices into a global system of linear equations, and solving the linear system to

determine approximation of the unknown function (see Fu et al. [4]). This work is

focused on the linear solve step of the FEM pipeline, but that it occurs in the context

of FEM is occasionally significant.2

2.4 Multigrid Methods

Here we describe the geometric multigrid method, which is a well-established

method to solve linear systems associated with regular grids or lattices. We then

discuss the algebraic multigrid method, an adaptation of the geometric multigrid

method to solve linear systems arising from irregular domains, or meshes. We focus

specifically on the smoothed aggregation multigrid variant of algebraic multigrid, the

method used in this paper, and how it is commonly used as a preconditioner for other

linear solvers.

Consider a sparse linear system, A0x0 = b0, which is a discrete approximation

of Dx = b, where D is a differential operator and x, b are functions, sampled at a

set of points Ω0. Iterative techniques such as the Jacobi method, Gauss-Seidel, and

successive over-relaxation exhibit fast convergence during the early iterations, which

slows dramatically in the later stages. This can be easily observed by plotting the

residual, rh = Ahx̃
k
h − bh, where x̃kh is the approximate solution after k iterations.

The stalled convergence in the later stages occurs because, while these techniques are

effective at removing high-frequency error, they are inefficient at reducing “smooth”

or low-frequency errors.

Multigrid methods are based on the idea that low-frequency components of

error in a fine discretization appear as higher frequency components in a coarser

2The material in this section is reproduced from the previous work of Lewis [8]
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discretization, where they can effectively be removed by iterative methods. Let A1 be

some approximation of A0 defined at points Ω1, |Ω0| > |Ω1|, R1
0 be a restrictor which

transfers vectors from Ω0 to Ω1, and P 0
1 be a prolongator which transfers vectors from

Ω1 to Ω0. For an approximate solution x̃0 of A0x0 = b0, the error e0 = x̃− x satisfies

A0e0 = r0, and can be approximated by ẽ0 = P 0
1 e1, where A1e1 = R1

0r0, if A1 on Ω1

approximates A0 sufficiently well, and R0
1, P

1
0 accurately transfer vectors between

levels. Multigrid methods accelerate convergence of an iterative method by applying

corrections from coarser levels, x̃0 ← x̃0 + ẽ0, to the approximate solution on the finer

level. At each level, an approximate solution to the linear system is found by applying

a relaxation method, and the residual is restricted to the next coarser level to solve

for the correction. A direct solver is used to solve the linear system at the coarsest

level. Each level of the hierarchy efficiently removes different frequency components

from the error.

In geometric multigrid methods, {Ω0,Ω1, ...,Ωn} are chosen to be regular grids or

lattices, usually with each coarser grid a subset of the points in the previous level.

The regular geometry of the grids simplifies definition of the operators needed to

construct the multigrid hierarchy. While geometric multigrid is highly effective, it is

limited to solving problems on regular domains. For unstructured domains, algebraic

multigrid (AMG) methods [10] were developed in order to accelerate linear solvers

for systems arising from unstructured meshes. As the name indicates, the coarse grid

hierarchy is constructed using only algebraic properties of the linear system itself, and

does not explicitly use the geometry of the underlying mesh. Many strategies exist

for constructing the coarse grid hierarchy in algebraic multigrid methods. Generally,

some compromise must be made between finding AMG hierarchies which approximate

error very accurately, and quickly computing a reasonable one [12].

The smoothed aggregation multigrid method is described in detail in [12], [14],

and [2]. Consider the graph G0 with nodes corresponding to degrees of freedom

in A0, and edges corresponding to non-zero values in A0. The coarse levels of the

multigrid hierarchy are constructed by partitioning G0 into disjoint aggregates, which

are internally connected. The goal is to obtain an aggregation with fairly uniform
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sizes and shapes of aggregates. A tentative prolongator P̃ is constructed as a matrix

with a row for each degree of freedom and a column for each aggregate:

P̃ij =

{
1 if ith degree of freedom in jth aggregate,

0 otherwise.
(2.1)

The final prolongator P is obtained by applying a smoothing operator to P̃ , for

example, damped Jacobi:

P = (I − ωD−1A)P̃ . (2.2)

The restrictor is then taken to be R = P T and the coarse level operator as Ac = P TAP

[13].

In this work, we mainly consider the aggregation portion of the smoothed aggrega-

tion multigrid method. Since the definition of P , R, and Ac depend only on the choice

of aggregation, it follows that how well ẽ = Pec, where Acec = Rr, approximates the

error e = x̃− x in Ax = b also depends entirely on the aggregation chosen.

The AMG method can also be used as a preconditioner in Krylov subspace solvers

such as the linear conjugate gradient, biconjugate gradient, and generalized minimum

residual solvers [11]. It has been observed that the efficiency of PCG-AMG is greater

than PCG with other preconditioners or the AMG method alone. It is heuristically

explained in [12] that this is because AMG preconditioners try to eliminate all error

components when compared with other preconditioners. Also, with the AMG method,

some very specific error components may not be computed easily, or at all, due to

imperfect interpolation from the solution of the coarser linear system, but Krylov

subspace solvers are not affected by such issues.3

3The material in this section is reproduced from the previous work of Lewis [8]



CHAPTER 3

AGGREGATION METHODS

We use the term aggregation to refer to a labeling of the nodes of a graph such

that all nodes with the same label form a connected subgraph, all graph nodes are

labeled, and the values of labels are integers from one to the number of distinct labels.

In this chapter, we review several algorithms that are employed to compute an MIS(k)

and to aggregate nodes of a graph through the use of the computed MIS(k).

3.1 General Process

All MIS-based aggregation methods presented in this paper are similar in their

general structure, which can be described as follows:

1. Select k such that the number of nodes obtained from the MIS(k) generation is

roughly equal to the number of aggregates required. Use one of the algorithms

described below to generate an MIS(k) of the graph.

2. Assign non-MIS(k) nodes to the aggregate rooted by the nearest MIS node. The

distance is defined as the length of a shortest path between two nodes. There

may be nodes that are equidistant from multiple root nodes, and one of many

strategies may be used for breaking ties.

3. Apply conditioning operations to improve qualities (size etc.) of the aggregation

or to enforce constraints that the initial aggregation does not meet.

Below, the MIS(k) algorithms in Step 1 are described in Section 3.2, the initial

aggregation in Step 2 is described in Section 3.3, and the conditiong in Step 3 is

described in Section 3.4.
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3.2 MIS(k) Algorithms

For any given graph, there may exist many sets that are maximally independent,

and these sets may have different cardinalities. We observed that the cardinality of

MIS(k) used for aggregation has an effect on the quality of the resulting aggregation.

In general, for k fixed, an MIS(k) of higher cardinality produces aggregations that

perform better when used for AMG coarsening. We discuss three algorithms for finding

an MIS(k) of a graph. In these algorithms, the nodes are classified as in if they are in

the MIS(k) being constructed, out if they cannot be in the MIS(k) being constructed

(due to conflicts with other nodes), and free otherwise. Initially, all nodes are marked

as free.

1. Lexicographic.

The nodes of the graph are examined in a sequential order. If a node is marked as

free when being examined, it is marked as in, and all nodes with a shortest path

of k or less are marked as out. Thus, the set produced is uniquely determined

by the indexing of the graph nodes.

2. Flood-Fill.

Initially, a node is chosen arbitrarily and marked as in, and all nodes with a

shortest path of k or less to it are marked as out. Then, the set of all free nodes

with a shortest path of distance k + 1 to an in node is found. The node in this

set with the most adjacent nodes marked as out is chosen and marked as in, and

all nodes with a shortest path of k or less to it are marked as out. The process

is repeated until all nodes are marked as either in or out.

3. Randomized Parallel.

This method is a variation of that proposed by Luby [9]. All free nodes are

assigned a positive integer value at random. All in and out nodes are assigned

the value zero. All free nodes with a value greater than the value of each node

with a shortest path less than or equal to k from it are marked as in, and the

nodes with a shortest path less than or equal to k from them are marked as out,

i.e., each unassigned node is added to the MIS(k) if it has a value greater than
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all nodes in its k-neighborhood. This process repeats until all nodes are marked

as in or out.

The lexicographic algorithm and the flood-fill algorithm are both difficult to parallelize

effectively; the lexicographic algorithm is faster than the flood-fill algorithm, but the

flood-fill algorithm usually produces significantly larger MIS(k). The randomized

parallel version is easily implemented in parallel and its GPU implementation is faster

than the CPU version of the flood-fill or lexicographic algorithm. It usually produces

an MIS(k) of cardinality that is in between that of the flood-fill and Lexicographic

algorithms. For a more detailed description of these algorithms and comparison of

them, see Lewis [8].

3.3 Aggregation

An MIS(k) of the input graph is used to allocate graph nodes to aggregates. The

MIS(k) nodes are each assigned to its own sequentially numbered aggregate, becoming

the root nodes of the aggregates. The remaining nodes are then allocated to the

aggregate of the closest root node. This is accomplished iteratively by having each

unassigned node check its neighbors to see if they have been allocated to an aggregate.

If an unassigned node has allocated neighbors, which are all allocated to the same

aggregate, the node allocates itself to the same aggregate. If an unassigned node

has allocated neighbors, which do not all belong to the same aggregate, the node is

allocated to the aggregate to which it has the most neighbors belonging. The process

repeats until all nodes have been assigned to an aggregate.

We chose to break ties using connectivity in order to preference aggregates with

higher internal connectivity, which should result in reduced communication costs in

the PCG-AMG solver for improved efficiency.

3.4 Conditioning

Our motivation for conditioning the aggregations was to make them suitable for

use in a GPU-based AMG preconditioner. The primary constraint for this application

is the size of the aggregates. Evenly sized aggregates result in a balanced workload

for each GPU thread block, improving efficiency. Only a limited amount of resources
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can be allocated to a GPU thread block; this places a limit on the maximum size of

an aggregate.

The sizes of aggregates produced with MIS(k) methods vary with k, as higher

values of k result in fewer root nodes. In general, the aggregate size distribution is

a normal distribution, and the vast majority of aggregates are very close in size to

the average size, but there are a few outlying aggregates whose sizes significantly

differ from the average size (see Lewis [8]). Since there are relatively few outliers, it is

reasonable to devise heuristics for improving the size regularity.

In Fu et al. [4], conditioning by exchanging nodes between adjacent aggregates was

introduced. Since it only transfers a single node from or to each aggregate, it could

take a large number of cycles to correct a single aggregate, which was much too large.

While this approach was effective in eliminating very large aggregates, in Lewis [8],

it was found to produce aggregations with disconnected partitions, which are invalid

for AMG coarsening, when tighter size constraints were specified. Checking to ensure

a node exchange will not disconnect an aggregate is expensive to implement on the

GPU, and makes the method unnacceptably slow.

To more efficiently enforce size constraints, we present a conditioning method

which uses the following operations:

1. Two adjacent aggregates may merge into one.

2. An aggregate may split into two new aggregates.

3. Two adjacent aggregates may first merge into one, and then split into two

(Merge-Splitting).

Merging two aggregates is implemented by simply assigning all nodes from one

aggregate into the other, and renumbering the aggregates.

Splitting is implemented by finding the pair of nodes, within the aggregate, with

the longest path distance between them. These nodes become root points for the new

aggregates. The remaining nodes are assigned one at a time, with each new aggregate

alternately being assigned the unassigned node closest to its root point. This results in
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an as even a split as possible. Splitting an aggregate is accomplished by a single GPU

thread block using shared memory to store the adjacency of the aggregate subgraph.

The merging and splitting operations affect the size distribution more significantly

than exchange of single nodes, so fewer operations need to be applied to achieve the

same results.

Merging, splitting, and merge-splitting operations are used in the fixed ratio

methods detailed below, which condition aggregations to have a specified average

aggregate size (coarsening ratio), and for all aggregates to be within a specified size

range.

3.5 Implementations of Methods

We have implemented and tested the following methods for aggregation in the

AMG coarsening phase:

1. Fixed Ratio GPU produces an initial aggregation using an MIS(k) produced

with the randomized method, and conditions it to enforce the specified coarsening

ratio, and size constraints.

2. Fixed Ratio CPU is a CPU implementation of the GPU method described

above, using an MIS(k) produced with the flood-fill method.

In both methods, it is necessary to find the most desirable merges, splits, and

merge-splits that are possible. We define a desirability rating of merges, splits, and

merge-splits, which gives the highest score to the operations that reduce the standard

deviation of the part sizes by the greatest amount. Given the mean size of aggregates,

µ, two adjacent aggregates A and B, and notation |X| to denote the number of nodes

contained in the aggregate X, we define the desirability of merging of A and B as:

DM(A,B) ≡ (|A|+ |B| − µ)2 − (|A| − µ)2 + (|B| − µ)2, (3.1)

and the desirability of A and B merge-splitting as:

DMS(A,B) ≡ 2((|A|+ |B|)/2− µ)2 − (|A| − µ)2 + (|B| − µ)2. (3.2)

To achieve the specified coarsening ratio, the number of aggregates the aggregation

should have is found; if the current aggregation should have more aggregates the
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most desirable splits are performed until it has the appropriate number of aggregates;

similarly, if it should have fewer aggregates, the most desirable merges are performed

until it has the appropriate number of aggregates. Then, the most desirable merge-splits

are performed until the aggregation meets the specified size range.



CHAPTER 4

TESTING METHODOLOGY

4.1 FEM Solver

For testing the performance of the aggregation methods for multigrid coarsening,

we used the FEM application described in [4] as a testbed. The application solves the

elliptic Helmholtz equation over an irregular domain using a preconditioned conjugate

gradient solver with an algebraic multigrid preconditioner in order to solve the resulting

linear system from the discretized form of the PDE and the unstructured mesh. As the

smoothing steps in the multigrid method can be performed independently, multiple

iterations of smoothing are performed on partitions of the elements without global

synchronization. The smoothing step on each of these partitions is handled by an

individual GPU thread block. For the solver to efficiently use available resources,

these partitions must be large enough that each block does as much work as possible,

while not being so large as to require more resources than are available to a block. In

order to accommodate this requirement, the aggregation phase of the multigrid setup

must not only aggregate the fine mesh for the next AMG level, but also provide a

partitioning of the fine-level aggregates into groups containing many aggregates. Each

partition must contain all the nodes of all the aggregates present in the partition.

We will refer to these two levels of aggregation as the “fine aggregation” and the

“coarse aggregation” of a level, hereafter. There are two strategies for producing such

a two-level aggregation: “bottom-up” and “top-down”. In the “bottom-up” approach,

the fine aggregation is created first, the graph induced by the fine aggregation is

aggregated next, and the aggregation projected onto the input graph to form the

coarse aggregation. The “top-down” approach is to create the coarse aggregation by

partitioning the input graph first. Then, each partition of the input graph is partitioned

individually to create fine aggregates. The MIS-based methods are naturally suited for
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the bottom-up approach. Metis, as a general purpose graph partitioning library, can

be used in either fashion. In our preliminary numerical experiments, we found that

the use of the top-down approach had a very negative effect on the iteration count of

the solver, as well as the solution time. In order to have an equitable comparison of

the suitability of the different aggregation methods for AMG coarsening, we use the

“bottom-up” approach for the Metis-based aggregator. Since only the fine aggregation

determines the AMG level coarsening, using the same approach for coarse aggregations

for both methods is appropriate for comparing their effectiveness as a coarsener for

AMG.

4.2 Adaptations to MeTis

In our experiments, we used MeTis version 4.0.3. Since MeTis is designed for

graph partitioning, but not for aggregation in the AMG method, there were two issues

observed: a) large memory allocation when large number of partitions were specified

and b) disconnected or empty partitions. When specifying more than about 20,000

partitions, MeTis fails because it attempts to allocate more memory than is possible.

To correct for this issue, when more than 16,000 partitions are needed, we first call

MeTis to partition the graph into four parts, and then, for each resulting subgraph,

call Metis to partion into one-fourth the number of partitions originally required.

Disconnected partitions were treated as separate aggregates and empty partitions

were removed. The time taken for these postprocessing steps was not recorded in our

timing results.

4.3 Metrics of Aggregation Quality

Graph partitions are typically optimized for the number of edges crossing from

one partition to another while holding the number of nodes within a partition to be

close to the mean. The edge-cut is defined as the ratio of the number of edges that

have end points in different partitions to the number of edges that have both end

points in the same partition. Graph partitioning is carried out in the context of load

balancing for parallel scientific computing. The edge-cut corresponds to the volume

of communication in such applications. Thus, the edge-cut is a good metric for such
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purposes. For AMG aggregations, as we shall demonstrate further in the next section,

it is not an ideal metric to improve the performance. In this section, we describe

the following three novel topology-informed metrics for measuring the quality of an

aggregation: convexity, eccentricity, and minimum enclosing ball (MEB) metrics.

As described in the introduction, MIS-based aggregations have aggregates which

appear more regularly shaped and round than those of MeTis aggregations. Our

hypothesis is that the difference in AMG performance seen for the different aggregation

methods is due to the difference in the shape of the aggregates and that quantifying

the shape of an aggregate would lead to a metric which correlates with the performance

of the PCG-AMG solver. Shape is a geometric concept, and in a continuous space,

the ideal shape of our aggregate is a sphere (our hypothesis), which is convex and

has zero eccentricity. The metrics we define apply these geometric concepts to sets

of vertices in a graph. Our metrics intuitively measure to what extent an aggregate

differs from a sphere. Further, we also define a metric to measure the quality of a set

of aggregates when the quality of the individual aggregate in the set are given, i.e.,

we combine the metric values for each aggregate to produce an overall score for an

aggregation.

Consider a graph G(V,E) composed of a set of vertices V and edges E, where

each edge consists of a unordered pair of vertices, (e1, e2). An aggregation of G is a

collection of sets of vertices a = {a1, a2, ..., an} such that all vertices in V are in one

of the sets and the sets are disjoint, i.e.,

n⋃
i=0

ai = V and
n⋂

i=0

ai = ∅. (4.1)

A quality metric for an aggregation is a function m(G, a), which takes a graph and an

aggregation of the graph as input and returns a scalar value. We denote the length of

the shortest path distance between vertices v1 and v2 (v1, v2 ∈ G) as p(G, v1, v2) and

use Br(v1) to denote the set of all nodes vi such that p(G, v1, vi) ≤ r. For a set of

vertices s ⊂ V , we use Gs to mean the subgraph of G consisting of the nodes contained

in s and the set of edges {(ei, ej) ∈ E : ei ∈ s and ej ∈ s}, i.e., the edges of G which

have both endpoints contained in s.
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4.3.1 Convexity

A set of points in a continuous space is convex if the shortest line connecting

any pair of points lies within the set. The graph analog of a straight line connecting

two nodes is a shortest path between them. Whereas a line in a continuous space

is unique, there may exist multiple distinct shortest paths between two nodes in a

graph. We define a set of nodes as convex if for every pair of nodes in the set there

exists a shortest path consisting only of the nodes in the same set. Thus, s ⊂ V is

convex if ∀vi, vj ∈ s, p(Gs, vi, vj) ∈ Gs. An aggregate ai in G may or may not be

convex. In order to measure the convexity of an aggregate, we define the aggregate

convexity score of ai as |ai|/|c|, where c ⊂ V is the smallest convex set which contains

ai. In practice, finding c may require checking all possible combinations of nodes in

V which contain ai as a subset. Since it is not feasible to combinatorially explore all

possibilities, we use a heuristic algorithm to find a minimal convex set containing ai,

which we use as an approximation of c.

The algorithm finds a minimal convex set containing ai by solving the boolean

satisfaction problem: Let paths(s, e) be the set of all shortest paths between nodes s

and e, and ext(p) be the set of node indices of all nodes in path p not contained in

ai. Let ni be a boolean variable which is true if node i is added to ai. The cost of

ni is 1 if true and zero if false. Then the algorithm finds a minimum cost satisfying

assignment of: ∏
s,e∈ai

∑
p∈paths(s,e)

∏
e∈ext(p)

ne. (4.2)

The nodes forming the minimum assignment are added to ai and the process is

repeated until no nodes are added. The algorithm terminates, and ai is convex.

4.3.2 Eccentricity

An ellipsoid in a continuous space has eccentricity equal to
√

1− a2/b2, where a

is the maximum distance from the centroid of the ellipsoid to the surface and b is the

minimum distance from the centroid to the surface. For a graph aggregate, we define the

centroid of a set of vertices s as {x ⊂ s :
∑

v∈s p(Gs, x, v) = minvi∈s
∑

v∈s p(Gs, vi, v)},

i.e., the set of vertices in s where the sum of all shortest paths from the vertex to all
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others in s is minimum. The centroid c may not be a single vertex. Thus, we define

the path distance p(G, c, v) to be the average of all p(G, ci, v), ci ∈ c. A vertex v ∈ ai
is on the boundary of ai if v is adjacent to a vertex that is not in ai. We define the

eccentricity score of an aggregate ai (with ci being the smallest convex set containing

ai) as the ratio of the minimum distance from the centroid of ci to a boundary node of

ci divided by the maximum distance from the centroid of ci to a boundary node of ci.

4.3.3 Minimum Enclosing Ball

A sphere of radius r centered at a point c in a continuous space is the set of all

points whose distance to c is less than or equal to r. The analogue in a graph is the ball

Br(v) around vertex v, which is the set of all nodes in the graph with path distance

to v less than or equal to r. An object in continuous space approaches a sphere as

its volume approaches that of the smallest sphere that fully contains it. The size of

the minimum enclosing ball (MEB) of an aggregate ai, minBall(ai) is minx∈V |Br(x)|

such that ai ⊂ Br(x). We define the aggregate MEB metric as |ai|/minBall(ai) and

compute the aggregation MEB metric as the arithmetic mean of all aggregate MEB

scores. This metric measures, in a sense, how far from being a sphere an aggregate is.
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EXPERIMENTAL RESULTS

In this chapter, we give details about how the experiments were run and the

meshes used, and then present the results from our numerical experiments. We

examine the correlation between our quality metrics and solution time, as well as

iterations. We examine the correlation between our quality metrics and the solution

time (the time required to numerically solve the linear system that arises from the mesh

and discretization of a PDE, with AMG levels and operators defined) to verify if higher

quality aggregations are helpful in obtaining the solution more efficiently (shorter

amount of time). We also examine the computational context in which the MIS-based

techniques provide higher quality aggregations than MeTis-based techniques.

For our numerical experiments, we used four meshes: blob mesh, brain mesh,

unstructured mesh on a cube, and a structured mesh on a cube. All the meshes

are composed of tetrahedral elements. These meshes were chosen in order to have a

variety of domains. Table 5 provides further details. Our experiments were carried

out on a Pentium Xeon X5650 (2.67GHz) server with 12GB of main memory that is

equipped with an NVidia Tesla C2070 compute unit. The Tesla C2070 unit has 448

CUDA cores and 6 GB memory.

Table 5.1. Statistics for all meshes used: The
node count, element count, minimum vertex valance
(Min), and maximum vertex valance (Max).

Mesh Nodes Elements Min Max
Blobs 277,657 1,650,105 5 46
Brain 322,497 1,805,242 6 34

Structured 274,625 1,572,864 3 18
Unstructured 197, 561 1,122,304 3 25
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Each experiment consists of running the FEM Solver, specifying the aggregation

method, coarsening ratio, and mesh. The initial values used were fixed for each mesh

over all experiments. We record the elapsed time for performing the aggregations

required to construct the AMG hierarchy (aggregation time), and the elapsed time for

performing the linear system solve using the constructed AMG hierarchy (solution

time). We also record the number of iterations required for the solver to converge to

the solution (iteration count), the Convexity, Eccentricity, and MEB results for each

aggregate in every aggregation, and the edge-cut ratio for every aggregation.

We consider coarsening ratios in {15, 20, 25, 30, 35}, and for each combination of

aggregation method, mesh, and coarsening ratio, repeat the experiment 20 times,

reporting average value over the 20 iterations for all results. Since the MIS aggregation

methods may produce different aggregations given the same input in different test

runs, there is more variation seen in the results than for MeTis.

We present results for solution time, aggregation time, and iteration count in Figure

5.1. In many cases, we see that MeTis-based aggregations take significantly more

iterations than MIS-based aggregations, while when the MeTis-based aggregations

take fewer iterations, the margin is usually smaller. This possibly indicates that the

preconditioner is not as efficient due to the aggregation technique. We clearly see that

MeTis takes the longest time for aggregation time, followed by MIS-CPU method

and then the MIS-GPU method. It is also notable that aggregation time dominates

solution time by a wide margin, and that in all cases, the MIS-based methods are

significantly faster than the MeTis-based methods for aggregation, for both the GPU

and serial implementations. The fact that our algorithm can be implemented on a

GPU makes it an attractive option for aggregation.

For each aggregate metric, we compute the arithmetic mean, median, first quartile,

and last quartile of the aggregate metrics in each aggregation, as candidate metrics on

an aggregation. We then compute the Pearson product moment correlation coefficient

of each candidate metric with solution time in Figure 5.2 and with iteration count in

Figure 5.3. We also compute the Pearson product moment correlation coefficient of

edge-cut with solution time and with iteration count and include it in the plots for
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Figure 5.1. Solution time, aggregation time, and iteration count results. Each
subplot shows the average value by coarsening ratio and aggregation method. The
labels along the top indicate the metric score shown in that column, the labels on the
left show the mesh used, bar color denotes the aggregation method used, and bars are
positioned by coarsening ratio.

comparison.

Clearly, the convexity first quartile aggregation metric is most correlated with

both solution time and iteration count and shows significantly more correlation with

AMG performance than does edge-cut. All of the metrics introduced show more

correlation with solution time than does edge-cut; however, the eccentricity metrics

are less correlated with iteration count.

It is clear that the strongest predictor of AMG performance is the convexity first

quartile metric. AMG performance seems to be more affected by small amounts of

aggregates with very low scores than by large amounts of aggregates with very high

scores. This is indicated by the low correlation of the convexity third quartile metric

with iteration count and with solution time, relative to the other convexity metrics.

In Figure 5.4, we show a scatter plot of convexity first quartile metric scores against

iteration count over all our experimental results. The aggregation method used is
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Figure 5.2. Pearson correlation coefficient of each metric with solution time

Figure 5.3. Pearson correlation coefficient of each metric with iteration count

indicated by the marker shape, the coarsening ratio by the marker size, and the mesh

by marker color. The markers are rendered as mostly transparent so the amount of

overlap can be seen. Figure 5.5 shows a similar plot for convexity first quartile metric

scores against solution time. The scatter plots show visible correlation, with the

results for each mesh observed seperately showing higher correlation than all results

together. In general, a poorer convexity metric indicates that the solution time for

AMG-PCG linear solver is high. This trend also holds for each mesh taken indidually,

i.e., for circles of the same color, the correlation is high. We should add that this

trend is absent when we control for both the mesh and coarsening ratio. We believe
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that the reason for the absence of the trend is due to lack of sufficient data points. It

is very difficult to obtain many aggregations whose quality vary enough to observe a

trend when we are restricted to use only a handful of techniques. Thus, we leave the

examination of the correlation for constant coarsening ratios as future work.

We visualize the quality of aggregations produced by each of the techniques using

a cumulative distribution plot of the convexity aggregate metric scores, shown in

Figure 5.6. Each of the figures plot the normalized number of aggregates in an

aggregation whose convexity metric is poorer than a certain value. Just as any

Figure 5.6. Cumulative distribution of aggregate convexity metric scores. Each curve
corresponds to a coarsening ratio. The plot is similar to a cumulative probability
distribution curve, i.e., each point indicates the percentage of aggregates whose quality
is below a certain value. The row and column labels indicate the mesh and aggregation
method, respectively, of the plots.
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cumulative probability distribution plot, it is a nondecreasing curve. In the figures,

the cumulative aggregate distribution is plotted for each combination of aggregation

method and mesh, and separate lines, within each plot, indicate the coarsening ratio.

Visually, if the area under the curve is greater, there are more poor quality

aggregates. It can be seen in the figures that the quality of the aggregation is

poorer for the MeTis-based aggregation technique, i.e., there are more aggregations

with poorer quality. For the MeTis-based aggregations, we see that the quality of

aggregations generally decreases from coarsening ratio of 10 to 30. For a coarsening

ratio of 35, however, the quality of aggregations drastically improves to the best value.

This may be due to an effect of the recursive partitioning algorithm employed by

MeTis. For a large coarsening ratio, since the number of partitions is small, MeTis

may be as effective as, or more effective than, the bottom-up MIS-based techniques at

producing high-quality aggregations. For the MIS-based CPU and GPU algorithms,

the quality of aggregates is generally the best when the coarsening ratio is around

20-25. This is because the MIS computation naturally provides a coarsening ratio of

around 23 without conditioning. As the effect of the conditioning steps to achieve the

desired coarsening ratio are not significant, the quality of aggregations produced by

an application of MIS algorithms is very good.

In Figure 5.7 we show the metric scores for each metric, for each combination of

mesh, aggregation method, and coarsening ratio. For lower coarsening ratios, the

convexity of the aggregations are generally best for the MIS-CPU-based technique,

followed by the MIS-GPU-based technique, and finally the MeTis-based aggregation

technique. For the highest coarsening ratios used, MeTis-based aggregations have

the lowest solution time. This is because the quality of aggregates is better, for

larger coarsening ratios, with MeTis-based techniques. For smaller coarsening ratios,

MIS-based techniques produce better quality aggregates and result in lower solution

time. This also indicates that the conditioning steps significantly affect the quality of

the aggregates. We leave the development of quality-aware conditioning techniques as

future work.
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Figure 5.7. Comparison of metric scores. Each subplot shows the average metric
score by coarsening ratio and aggregation method. The labels along the top indicate
the metric score shown in that column, the labels on the left show the mesh used, bar
color denotes the aggregation method used, and bars are positioned by coarsening
ratio. All plots are at the same scale.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this thesis, we discussed two main approaches for aggregation of degrees of

freedom for AMG-preconditioned Krylov subspace-based linear solvers: (a) the top-

down approach and (b) the bottom-up approach. We used the Metis graph partitioner

for the top-down approach, and we used MIS-based aggregators for the bottom-up

approach. We compared the relative merits and demerits of the two approaches in

a series of numerical experiments. We designed several metrics that were used to

evaluate the quality of the aggregations. These metrics were designed based on our

hypothesis that a “good” aggregate is roughly convex and spherical in shape. We

also solved the Helmholtz equation using the PCG-AMG solver and reported the

time it took to compute the solution. Based on the quality of aggregations and the

solution time, we found that the top-down approach is suitable when the number of

aggregations required is small, i.e., when the coarsening ratio required by the AMG

preconditioner is large. On the other hand, the bottom-up approach is suitable when

the number of partitions required is large, i.e., when the coarsening ratio is small.

In general, the bottom-up MIS-based CPU and GPU techniques produced better

quality aggregates when measured using the convexity metric that we designed. For

large coarsening ratios, the top-down Metis-based technique was able to produce

higher-quality aggregations. We also found that the solution time and the convexity

of the aggregation had a reasonably good correlation. The correlation of the solution

time with other metrics, however, was not strong.

In our MIS-based technique, we have used conditioning steps to generate aggrega-

tions of the desired size from the initial aggregation by merging and splitting aggregates

and exchange of nodes from one aggregate to another. Our heuristic algorithm does

not take the convexity metric into account. A possible future research direction is to
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develop both CPU and GPU algorithms that take these metrics into account. Our

metrics are only a function of the topology of the mesh, but the geometry of the

aggregates may also be important for some applications. More research is needed to

evaluate the quality of aggregates for solving other PDEs where the geometry may

play an important role. There are applications where anisotropic meshes may be

needed to solve the problem. In such cases, the topology-based metrics may need to

be modified to account for the anisotropy in the geometry. Future research is needed

to answer such questions as well. Finally, a top-down approach that optimizes the

convexity metric may need to be developed for use in AMG preconditioners. Current

techniques optimize the number of edge-cuts between aggregates. We hope that our

paper influences research into many of these open questions.
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