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ABSTRACT

The abundance of data from the Earthscope U.S. Transportable Array (TA) 

eliminates observational barriers such as data paucity and station sampling bias that have 

in the past hindered our understanding of the processes involved in dynamic triggering. 

The price of data abundance is that strategies must be developed to automate the 

systematic recovery of earthquake information. Optimized amplitude threshold detectors 

in the time-domain used to automate the process of earthquake detection with the TA data 

result in databases dominated by site-specific noise contributions. To increase the 

accuracy of detection databases, we develop a frequency-domain detection algorithm that 

employs spectral characteristics to distinguish earthquakes from other band-limited noise 

sources. This spectral filtering algorithm doubles the accuracy rate compared to time- 

domain methods. Despite the improvements in detection accuracy, we find that false 

detections in single-station pick databases still comprise a majority of all detections from 

the TA data. Leveraging frequency-domain processing techniques to develop array 

visualizations enables robust earthquake detection to magnitudes at or below M2. We use 

this array method to explore 18 global mainshocks (M>7) exhibiting the highest surface 

wave amplitudes during the TA deployment. Of the 18 mainshocks studied, none show 

strong evidence of instantaneous dynamic triggering and only one offers limited evidence 

for delayed dynamic triggering. These results suggest that prolific triggering in the U.S. is 

a rare phenomenon, requiring amplitudes outside the range observed here and/or that



additional conditions (fluids, tectonic environment, frequency, or duration of shaking) 

within the amplitude ranges explored here play a primary role in dynamic triggering.
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CHAPTER 1

INTRODUCTION

1.1 Previous Dynamic Triggering Research

Following the Landers (M7.3, 1992) earthquake in California, seismologists 

noticed that significant increases in seismicity levels sometimes follow large earthquakes, 

but at distances beyond the reach of the traditional aftershock zone (Hill et al., 1993; 

Prejean et al., 2004). In the near-field, the redistribution of static stresses resulting from 

slip along a fault can alter the stress states of nearby faults such that fault strength is 

exceeded and an earthquake occurs. Beyond several fault rupture lengths, static stress 

changes decay to levels well below low-level earth forcing such as lunar tides, and 

therefore, a different physical explanation is needed for far-field observations. Surface 

waves are able to carry large energy transients to far greater distances than 3D 

propagating body waves and are hypothesized to be the physical mechanism for 

triggering remote earthquakes (Freed, 2005; Hill, 2008). Understanding when and where 

aftershocks are likely to occur is a significant aspect of analysis and mitigation following 

large earthquakes. Accordingly, the potential for a worldwide aftershock zone, through 

dynamic triggering, necessitates an understanding of the driving parameters of this 

process.
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In the past decade, observations linking large global earthquakes to increases in 

seismicity rates at distant locations have increased significantly and, notably, an 

increasing number of these observations make this link following a delay in the passage 

of the surface waves, from hours to weeks (Brodsky, 2006; Freed & Lin, 2010; Jugla, 

2011). Abundant physical models have been proposed for both instantaneous 

(Belardinelli et al., 2003; Brodsky et al., 2003; Hill et al., 1993) and delayed dynamic 

triggering (Johnson et al., 2005; Manga & Brodsky, 2006; Parsons, 2005; Shelly et al., 

2011). Additionally, studies have reported a range of driving mechanisms, including 

amplitude (Feltzer & Brodsky, 2006; Trugman, 2013; van der Elst & Brodsky, 2010; Wu 

et al., 2012;), frequency dependence (Brodsky & Prejean, 2005), and structural 

orientation (Gonzales & Velasco, 2011).

While it is clear that a significant number of questions remain unanswered 

regarding the underlying physics of dynamic triggering, it is also true that first order 

questions persist. Understanding whether dynamic triggering is a rare occurrence that 

requires highly specific conditions (Parsons et al., 2014), or a ubiquitous process that 

occurs independent of tectonic environment (Gomberg and Sherrod, 2014; Velasco et al., 

2008) can offer guidance to this quickly evolving field.

With the current expanse of global coverage, our understanding of the 

fundamental processes involved in dynamic triggering is no longer necessarily limited by 

lack of observations. Indeed, one new challenge in the last decade has been to develop 

strategies for systematic processing of large datasets. The expectation is that these 

datasets can elevate our understanding of the behavior of earthquakes and the factors 

driving their occurrence, from guesswork to verifiable scientific understanding.
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1.2 Focus and Objectives

The large array aperture and dense (70 km) station spacing make the Transportable 

Array (TA), a branch of the EarthScope project, one of the most significant seismic 

deployments in the U.S. to date. While this makes possible unprecedented opportunities 

for probing the crust, it also poses significant challenges related to data abundance and 

fidelity. The focus of the following work is to develop a framework within which 

detecting dynamically triggered earthquakes from the TA dataset is both viable and 

robust.

Two specific benefits of using the TA are high station density and grid spacing. 

High station density enables the recovery of events smaller in magnitude than are routinely 

reported in seismic event catalogs. Parsons et al. (2014) suggest that small earthquakes 

(smaller than M3) are preferentially triggered by transient stress perturbations from large 

earthquakes. This is one way to reconcile the rarity of dynamic triggering in earthquake 

catalogs with the expectation of ubiquity from other methods. Preferential triggering of 

smaller magnitudes is also supported by the observation that only very limited cases of 

moderate to large dynamically triggered earthquakes have been reported. Pollitz et al. 

(2012) offers the one notable exception to this in reporting a global increase in M>5 

following the Sumatra, 2012 events. If dynamic triggering occurs preferentially in the 

smaller magnitudes, this assumption should be validated by observation.

The second advantage, grid spacing, allows us to probe for crustal responses from 

zones that are rarely scrutinized, owing to their assumed quiescence. There are several 

cases in which dynamically triggered events are reported in areas distinctly different from 

background seismicity (Pankow et al., 2004; Parsons et al., 2014). These observations, in
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addition to the prospect of capturing observations capable of demonstrating true ubiquity, 

make these unexplored areas particularly valuable.

To summarize, the first main objective of this investigation is to develop new 

methods to efficiently process the preponderance of available data from the TA. The 

larger goal is to use the method on a global mainshock database to systematically 

evaluate the occurrence of dynamic triggering within range of the TA, especially: 1) in 

areas previously unscrutinized, 2) to levels below typical catalog values, and 3) with 

sufficient evidence that associated rate increases are nonrandom and above background 

variation.



CHAPTER 2

DATA SOURCES

2.1 Array Network Facility (ANF) Catalog

The TA spans the continental U.S. occupying roughly 6° longitude bins, or 

approximately the width of New Mexico, at any given time. Since the aim of this study is 

to observe the local crustal response following a large earthquake, we are concerned only 

with earthquakes local to the array. As an exploratory tool and a basis for comparison, we 

use the seismic event catalog produced through traditional network-based (Antelope) 

analysis for TA data by the Array Network Facility (ANF,

http://anf.ucsd.edu/tools/events/). Once parsed, this catalog provides an unfiltered version 

of seismic events reported within the footprint of the array. This represents the highest 

resolution event catalog available for the U.S. and is a direct product of the waveform 

data publicly available from TA stations. By comparison, event catalogs such as the 

Advanced National Seismic System (ANSS) typically limit reporting to tectonic 

earthquakes. This distinction is important considering rates of seismic events related to 

energy extraction typically exceed the significant variation in tectonic rates by more than 

two times the standard deviation (Astiz et al., 2013).

http://anf.ucsd.edu/tools/events/


2.2 Transportable Array Waveform Data

All waveform data used in this study are downloaded from the IRIS/DMC data 

repository and pushed into a local continuous waveform buffer (CWB), which is 

managed by the University of Utah Seismograph Stations (UUSS). For all time periods 

investigated (see section 3.2 for a discussion on determining mainshocks and sections 3.3 

for determining time windows) all network code ‘TA’ data for vertical channels (unless 

text explicitly states additional channels are used) are stored in the local data repository. 

This allows more seamless interaction with the data through internal programs without 

requiring other communication methods such as the java-based IRIS webservices.

6



CHAPTER 3

DETECTION ALGORITHMS

3.1 Method Justification

Time-domain picking algorithms, as implemented in many regional networks 

(i.e., those using Earthworm or Antelope software) use a short-term average/long-term 

average (STA/LTA) filter for phase picking and generally rely on secondary binding 

programs to associate individual picks into legitimate seismic events (see review in 

Allen, 1978). This method is based on having a reasonable sized array wherein more than 

one station can be used to identify a coherent wave-front across the network. This method 

allows for a small number of false alarms and if properly tuned, a robust framework for 

earthquake detection. The most significant drawback to using detections on multiple 

stations to identify coherent signal is that smaller events will not generate sufficient 

radiated seismic energy to be detected and associated on the required number of stations. 

Moving away from catalog and network processing to more independent methods such as 

single-station detection resolves these dependencies; wherever there is a seismometer, a 

rate increase can be determined. The cost of this independence is the associated need to 

account for nonnegligible noise contributions that are not reflected in catalog event data.
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Noise contributions are an inevitable part of single-station detection owing to the 

practical relationship between sensitivity (the number of false detections a system can 

reasonably permit) and resolution (the lowest magnitudes recoverable). The performance 

of amplitude threshold detectors (STA/LTA detectors) is thus highly dependent on tuning 

(Figure 3.1). Even so, analysis of results from the Antelope EV2 detector optimally tuned 

for local earthquake detection on datasets for the Chile (2/27/2010, M8.8) and Japan 

(3/11/2011 M9.0) events demonstrates that array-wide detections are more reflective of 

noise local to each site rather than earthquakes (Figure 3.2).

False detections from the amplitude threshold detectors described above can often 

be the result of high amplitude signals within limited frequency bands (Figure 3.3). 

Conversely, earthquakes generate high amplitude signal at a broad range of frequencies, 

suggesting that amplitude threshold detection using spectral constraints can successfully 

increase the accuracy of single-station detection algorithms (Figure 3.4). Increased 

accuracy is a mandatory part of identifying statistically meaningful increases in tectonic 

events across the TA because these increases will otherwise be too subtle to resolve. The 

following sections in this chapter outline the development of exploratory methods based 

on frequency-domain earthquake detection for both single-station and array approaches.

3.2 Single-station Detection Algorithm

The basis of single-station detection in the frequency-domain is that by limiting 

picks to signals that include significant contributions above the background level from a 

broad range of frequencies, spurious high frequency detections can be avoided and the 

overall number of false picks in each station database reduced. For this method, 3 hours
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of post-mainshock continuous waveform data is considered for 3 mainshock events; 

Chile (2/27/2010, M8.8), Japan (3/11/2011, M9.0), and Baja (4/11/2010, M7.9). 

Processing steps are outlined below.

3.2.1 Preprocessing and Short-Time Fourier Transform

Each mainshock is recorded by between 300-450 active TA stations. To begin, 3 

hours of continuous waveform data is pulled from the UUSS CWB. To remove the 

obscuring long periods associated with the surface waves from each mainshock the traces 

are highpass filtered using Seismic Analysis Code (SAC) at 5 Hz (hp n 4 p 1 c 5), the 

mean and trend are removed, and the ends are tapered to avoid edge effects during 

subsequent transforms. Using the data from each station, x(n), where n is the number of 

samples each representing ground velocity, we divide into overlapping segments 

specified by a window length and type, w(n). For each segment, the discrete Fourier 

transform is computed. This short-time Fourier transform (STFT) remaps the input as a 3

dimensional signal with time, frequency, and amplitude parameters. The resultant output 

is compiled into a matrix (referenced as the B matrix in following text), which represents 

an estimate of the frequency content at a series of discrete time-steps for a vector of 

frequencies (zero-to-nyquist).

N

STFT{x [n]} (m, w) = [u]m [n — m] e ~l“n (3.1)_ |^ |n  — m\e
n = l

For these short (3 hour) samples, we used a Hanning window length of 28 with an overlap 

of 27 (typically done to reduce spectral leakage, using the ideal overlap for Hanning at 

50%, Heinzel et al., 2002).
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3.2.2 Noise Deconvolution

Because we wish to analyze only transient signals, such as earthquakes, we 

explicitly remove the stationary signal systematically from every record. To accomplish 

this, we normalize each array value by the median signal amplitude at each frequency 

increment (index i in our notation, j  index corresponds to time),

B (w h i t e ) iJ = Z ; ! ,  ”  (3.2)
Zii=i Di

where n is the number of discrete time samples along each row. Taking the median has 

essentially the same result as taking the mean after removing the outliers using the 

Thompson Tau method (Ripley, 1989), but is significantly faster.

Throughout our code, and especially noteworthy when determining threshold 

values, we opted to use the median of our distributions because this value is considerably 

less sensitive to outliers and computationally more efficient than explicitly removing 

them (Leys et al., 2013, Figure 3.5). By normalizing the values for each entry within our 

frequency vector, we are able to distill the remaining information down to relevant 

analyzable content. In most cases, the resulting spectrogram offers a clear picture of the 

variation with minimal loss of relevant content.

This process is successful because, although over the length of the observational 

window, an individual trace may experience significant variation within a single 

frequency bin, the overall scale of the input is short compared to the temporal variation in 

background levels. In later tests, as the observation window is pushed to greater lengths 

(4 days), although not necessary, it became useful to introduce a level of sophistication 

into the noise deconvolution, namely, the normalizing values became a function of



distance along the time vector. This method allowed us to remove signals longer than 

typical earthquake duration for each record and results in significantly less background 

noise. Independent of static or dynamic noise normalization, the resulting matrix 

represents the time-localized values above the local noise level for each site over a range 

of frequencies between 0 and the nyquist frequency (1/2 the sample rate, or 20 Hz).

3.2.3 Developing Detection Thresholds

Detections are based on three frequency-stacked time-series. This is accomplished 

by summing the amplitudes over a limited range of frequencies and represents a time- 

series of the band-limited power estimate for each trace. We calculate one empirical 

threshold from each series. The first (k, 4-12 Hz) is used to verify that signals of interest 

sustain high power over a wide range of midband frequencies. The lowest (ks, 3-7 Hz) is 

to ensure at least some component of that energy is contained within the lower 

frequencies, and the highest (kh, 11-20 Hz) ensures a high-frequency contribution. This 

ratio was developed following the observation that some instrumental or ambient noise 

sources can be semibroadband without extending into the lower or higher frequencies, 

while for earthquakes, this is generally not true; most events contain at least a minimum 

amount of power in these ranges (Figure 3.6). Theoretically, this introduces a limit on the 

smallest magnitudes we are able to recover. Very small earthquakes are poor generators 

of low frequency energy. Conversely, there exists a class of low frequency earthquakes 

which, unless sizeable, these thresholds will exclude. In the implementation of any 

algorithm, there exists a balance between resolution and accuracy. Understanding this, we

11



choose to maintain a higher magnitude of completeness for the process and therefore also 

a higher level of confidence in the fidelity of our detections.

For short records (< 3 hours), it is suitable to use static threshold values in which 

the main threshold (k) is calculated based on signal median. Ks and kh are similarly 

determined but explicitly exclude portions of the trace that do not represent relevant 

contributions to local detection (the tapered tails and low frequency contributions 

coincident with the mainshock where the timing is predicted using TauP, 

http://www.seis.sc.edu/taup/). This method is successful when tested on records for an 

earthquake swarm in Yellowstone National Park. For these cases, threshold values can be 

many times greater than the standard deviation while still reliably capturing events below 

magnitude 1.

For longer records and because the TA dataset contains a more challenging noise 

distribution than typical regional networks, the detections in this study are based on the 

basic STA/LTA concept. As implemented here, the threshold values are determined from 

a running mean within a window prior to the index sample. Similar to tuning STA/LTA 

pickers in the time-domain, window length matters. By setting our window too short, we 

loose a realistic baseline. Windows too long make excluding protracted increases in 

signal strength very difficult. This issue becomes doubly important when we consider the 

time period coincident with the incoming energy from a distant mainshock in the low 

frequency bands. There is a specific window around the mainshock within which we do 

not escape the decay envelope for often greater than 10 minutes and therefore, this period 

is especially susceptible to false detections if set too low, and misses detections if set too 

high. Because understanding the time delay of dynamic triggering following a transient

12

http://www.seis.sc.edu/taup/


stress perturbation is important for unraveling the underlying physical processes, signals 

within this time period are especially valuable, albeit the most difficult to detect. 

Empirical windows for threshold detection are related to the STFT window parameters 

and are on the order of tens of seconds in length (LTA) and define a threshold at 2.9, 2.9, 

and 3.5 above the median of k, ks, and kh, respectively.

The stacked time-series is then converted into a binary signal, based on whether it 

meets the criteria of being at or above all detection thresholds within a given time-step. 

For a typical tectonic earthquake, if the fft window is short compared to the duration of 

the earthquake, there will be a large number of swaps between time-steps coincident with 

the P and S wave phases and the amplitude decay will follow the decay envelope 

represented in the associated seismogram. In order to capture a unique detection from a 

single event, we sacrifice resolution in the time-domain, which merges values above k; in 

addition, we consider only the first entry from a run within the binary signal on all k 

values. We allow ks values to lag behind k values by up to three time-steps to allow for 

the later arrival of long period energy or precede it by one to allow for an apparent delay 

when the k threshold is high compared to the ks for that time window. We also require 

that a consecutive series of triggers drop below the k values within a 3-minute window to 

qualify as a detection. In the event that the threshold value k is exceeded every 512 

samples over some duration (a 1, followed by a 0, followed by a 1, and so forth), the 

value in the middle is set to 1 (so that the string is 111) and therefore, only one detection 

will trigger. This eliminates the cases of a saw-type signal resulting in more than one 

detection. Amplitudes are additionally required to retain at least 15% of their value for 

the first three samples following a detection. This is aimed at eliminated detections from

13



telemetry drop-outs, which often produce high amplitude broadband spikes, which then 

return to background levels within one sample. In most cases this successfully yields one 

detection for each event with an approximate event time (Figure 3.7).

3.2.4 Performance and Review

An inescapable part of algorithm design is the inherent relationship between false 

detections and capture threshold. The optimal algorithm necessarily recovers the highest 

level of legitimate events, the lowest number of false picks, and includes events at a 

sufficiently low magnitude of completeness. For this study, we desire events smaller than 

catalog values can provide, thus M < 2.0. The basic time-domain STA/LTA, Antelope, 

and frequency-domain pickers operate on a continuum between brute force methods and 

highly selective, tuned algorithms. The basic STA/LTA end member will pick every high 

frequency signal just barely above the noise level; it will capture nearly 100% of events 

to a level of completeness equal to a trained analyst and in doing so, it will have typical 

false detection rates well above 98%. The performance of the Antelope EV2 detector 

reveals that even optimal tuning of STA/LTA time-domain algorithms do not result in 

robust event databases for TA stations. The frequency detector improved upon the false 

detection rate of the Antelope picker (5-10%), at very minimal cost to detection levels. 

Therefore, single-station detection databases for TA stations built with frequency 

detection will include a larger percentage of legitimate seismic events than those built 

with even optimally tuned traditional methods.

Implementation of the algorithm outlined above lowers the number of waveforms 

that require review (any with an earthquake detection) down to a process that is more

14



tractable. In a test case for the March, 2011 Japan earthquake, total detections decreased 

by more than 50%, while true pick counts remained the same, effectively doubling pick 

accuracy. Therefore, I submit that it provides a reliable and practical way of filtering the 

desired results from single records within a large data-set and represents a more reliable 

way of building pick databases than traditional time-domain methods.

3.3 Array Detection

Although increases in accuracy from the method outlined above are significant, 

array wide, they represent only a modest gain in eliminating noise sources as the 

dominant constituent. For any given mainshock, the false detection rates from frequency 

methods persist above 80% array wide. This remains problematic due to the non- 

stationary nature of background noise (for discussion on diurnal noise variation across 

TA, see section 4.2). Because one of our primary goals is to capture seismicity below 

catalog levels, it makes sense to leverage the frequency-domain processing techniques 

outlined above to include array processing. The objective for this is to drastically 

decrease the number of false detections by requiring energy fronts across the array to be 

coherent in order to be called an event. This is similar in principle to the association 

programs implemented in regional seismic networks.

3.3.1 Method

In section 3.2.3, the process of stacking the sum of the signal amplitude over a 

limited band is explained. This time-series is produced for each station and is the basis 

upon which single-station detections and thresholds are built. For array detections, we use

15



the same noise-limited amplitude stacks to build signal amplitude distribution 

visualizations for the active array through time. The process includes four steps: 1) 

Choosing a band range, 2) Sorting the stacks by distance based on a reference latitude or 

longitude, 3) Stacking each time-series to create an image, and 4) Saturating the image at 

a level which highlights the features of interest.

3.3.2 Choosing a Band Range

The direct control of frequency content for each stack allows the user to highlight 

specific features of interest. For example, in earthquake studies, the band range 4-12 Hz 

presents a clear picture of the desired frequencies for local seismicity. 4 Hz (rather than 

~1 as is typical) is a reasonable low frequency cut-off because this limits contributions 

from long period energy high enough in amplitude to persist through the roll off in the 

high pass filter (5 Hz, 4 poles, 1 pass) as in the event of large amplitude surface waves 

from a temporally coincident global mainshock (e.g., dynamic triggering studies). In 

general, limiting the band range is a highly efficient way to display time-dependent 

signals and can be tuned for a number of elastic strain release phenomenon in the crust 

(e.g. tremor, cryostudies, VLF events, etc).

3.3.3 Distance Sorting

In order to visualize this multidimensional dataset in a single image, it is 

necessary to translate absolute spatial location to a relative distance via the formula:

16
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where A and B are the latitude and longitude positions for each station and the reference 

value is the closest station to the mainshock based on either latitude or longitude 

indexing.

3.3.4 Stacking

The summed amplitude values for each indexed station at each time-step 

determined during the STFT processing is looped into an array where the rows are the 

station, indexed by our distance vector, and the columns are time-steps. For an STFT 

window length of 28 and overlap of 5, you down-sample from 40 samples per second 

(sps) to .15 sps, or ~ 1 sample every 6 seconds. A window of 26 with the same overlap 

yields 1 sample every ~ 1.5 seconds.

3.3.5 Image Mapping

The stacked array is displayed as an image with pixel location corresponding to 

row^, column^, and each pixel hue determined by the normalized B(ij) value (Figure 

3.8). Typically, record glitches (most often associated with telemetry drop-outs and other 

electronic noise) exist in the records. If a static whitening process is used, saturating the 

pixel at a value within the range of the expected amplitude of your signal is mandatory. 

Empirically, for local earthquakes, this value is between 200-700 db.

3.3.6 Performance and Review

The image produced by the process outlined above presents us with a powerful 

tool for understanding how power distribution across the array changes through time. We

17



are able to robustly characterize seismic content from distance move-out based on logical 

seismic velocities. Additionally, characteristic noise patterns across the array become 

apparent as do specific low-quality data sites.

There are several notable limitations of this method. Timing resolution degrades 

according to the parameters of our frequency transformations. The price of this ultimately 

is that we are unable to pick specific wave phases and thus can no longer use event 

detections directly for earthquake location. We get around this by identifying the closest 

station to the epicenter based on first arrivals. Therefore, when determined, our 

earthquake centers are constrained to general regions rather than specific locations. 

Likewise, event origin times are limited by down-sampling constraints. Also, our distance 

criterion does not consider the location of the event a priori; therefore, the differential 

distance does not account for true spatial clustering. This is a sacrifice we make in 

exchange for visual efficiency; however, we recognize it is not a truly accurate portrayal 

of the 4-dimensional dataset. Lastly, unlike the methods discussed above for single

station detection, this method requires analyst review. The array image method is more 

analogous to picker/binder routines for seismic networks where temporally coincident 

picks get associated into events and then verified by an analyst. Unlike network routines, 

however, these detections are manual. This manual processing becomes more 

cumbersome the longer the input time for each image. If the image is not highly 

compressed (> 10 hours displayed in one frame), events demonstrating signal at 4 

stations or more will be clearly identifiable. To demonstrate the potency of this method, 

we choose an hour of data from the Haida Gwaii, 2013 M7.8 mainshock and compare the 

number of events found in the ANF event catalog with the events our method detects for
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the same time period. The ANF catalog contains 4 events where we recover 14. The 4 

ANF events spatio-temporally correspond to the 4 largest events on our image. Further, if 

time-domain picks are mapped by the same method as our images, so that latitude, 

longitude, and time of the pick are related in the same way, and the two images are 

overlain, it becomes clear that if an event is reliably picked by single-station methods on 

at least 3 stations, it will be identified in our image on a number of stations >3 and 

therefore highly visible (Figure 3.9). For quantitative backing, we observe that only 

between 23-53% of stations out of the total number of stations demonstrating clear 

association respond with a detection. This means that with a mean pick rate of 35%, for 

every one earthquake detection from single-station methods, the array method will 

provide three. This demonstrates that our method is capable of robustly identifying 

seismicity across the array to a level much lower than any existing catalog and 

comparable to single-station detectors, the main difference being that the number of false 

picks we include in this high resolution seismicity database is near zero.
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Picking Algorithm Comparisons for station YHB, April 5,2010
i i i i i i i r i i i r

23:00 23:20

i i i i i i i i i i i i r
BASIC STA/LTA PICKS

ANTELOPE EV2 PICKS 

FREQUENCY PICKS

23:40 00:00 00:20 00:40 01:40 02:00 02:20 02:40 03:00 03:20
Time (UTC)

Figure 3.1 STA/LTA tuning differences. Blue represents a basic STA/LTA from the Earthworm distribution. Green picks are from the 
Antelope Ev2 detector tuned for TA data and the magenta lines are from a firequency-domain picking algorithm developed here. In the 
zoom panel (top) all algorithms pick on the small earthquake while the basic STA/LTA picks all signal increase and the antelope picks 
on the higher amplitude signal increases and the frequency method picks only the earthquake.
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Tohoku Earthquake M 9.0
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Figure 3.2 False vs. true detections for Tohoku, 2011 magnitude 9.0 
earthquake. Array wide the percentage of false detections is very high (grey 
dots) compared to the number of true detections (gold dots)
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TA Station: C30A Mainshock: Baja, 2010

Figure 3.3 A significant number of false picks from the EV2 detector are the result of band-limited (between 
8-12 Hz) noise sources.
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Figure 3.4 Two earthquakes in the spectrogram of station V23 A are clearly visible as time-limited broadband 
signals.
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Figure 3.5 The effect of mean vs. median values for choosing static amplitude thresholds 
from signal amplitude distributions. The difference between these two values becomes the 
greatest, and therefore the most meaningful for earthquake detection, in the presence of 
extremely high signal amplitudes, such as from large local earthquakes. The shaded region 
indicates 2a for each distribution.
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TA Station: Y12C
Mainshook: Japan i

1
| Frequency detections
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06:00:00 07:00:00 08:00:00
Time, UTC

Figure 3.6 Spectral constraints for earthquake detection. Across TA, there are a 
number of semi-broadband noise sources that can be excluded from earthquake 
detections by requiring a minimum amount of signal in the 1-6 Hz range.
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TA Station 123A: Southern New Mexico
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Figure 3.7 Frequency-domain picking on a noisy record in southern New Mexico. The 
magenta line (top panel) indicates where the frequency method is able to discriminate 
a small earthquake signal based on spectral character.
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Figure 3.8 Frequency array method. Top: 4 days of energy distribution across the active 
array. Middle: 1 day (timing indicated by black bar on x-axis above). Bottom: several 
minutes of data around a magnitude 2 earthquake. The distance move-out makes it 
possible to discriminate as an earthquake source.The y-axis for each panel is the 
amplitude time series for each station, sorted by distance from the mainshock.
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Figure 3.9 Frequency detection on a M3.5 earthquake in the Samoa, 2009 mainshock coda. 
Magenta circles indicate frequency detections. The number of stations with clearly visible 
coherent energy exceeds the number of stations that successfully capture a detection. There 
are three earthquakes in the inset panel. For the largest event, the middle, we show the farthest 
stations from the epicenter (nearest station J23A, distance between J23A and A-H > 300km).



CHAPTER 4

ALGORITHM IMPLEMENTATION ON A GLOBAL 

MAINSHOCK DATABASE

4.1 Which Mainshocks to Use

In order to identify instances of dynamic triggering across TA, we choose a 

database of mainshocks that exhibit the largest array averaged amplitudes between 2004

2013. There is some evidence to suggest that amplitude plays a role in the occurrence of 

dynamic triggering (Feltzer, 2006; Trugman, 2013; van der Elst & Brodsky, 2010; We et 

al., 2012). Alternatively, other researchers have concluded that amplitude is unlikely to 

be a dominant driver (Parsons et al., 2014). In the absence of clear catalysts in the 

literature, we chose to evaluate the most significant events that occurred during the TA 

deployment on the basis of surface wave amplitudes. Array averaged amplitudes for each 

mainshock were determined by first rotating the north and east channels of each 

seismogram into the radial (R) and transverse (T) components using the backazimuth to 

the mainshock. Next, the highest velocity for a segment of the record 3 hours following 

the mainshock origin time was picked for all three channels (R, T, and vertical (Z)) using 

SAC. For each station, the 20 largest R, T, and Z averages for all mainshocks were 

considered (Figure 4.1).



The TA reached > 200 stations starting in 2007. There were 5 events in the initial 

top 20 between 2004 and 2007. An additional 3 overlapped in time within a 2-day 

window. Choosing only the first of the overlapping sequences and excluding events 

thatoccurred without sufficient station coverage for the array visualization method results 

in a mainshock database containing 18 events covering a diverse range of geographic 

locations and source types (Figure 4.2). Most of the events are above magnitude 8. The 

remaining 7 events are from M7 or greater events that occurred relatively close to the 

array. For referencing below, each mainshock is referred to by its corresponding 

alphabetic character (Table 4.1).

4.2 Background Noise Levels Across TA

Before exploring the seismic response following a specific mainshock, it is useful 

to develop an understanding of the background signal across the array. We process each 

mainshock with the array method described above. The most obvious and ubiquitous 

signal that emerges is a clear diurnal variation in high frequency signal across the array. It 

is clear from Figure 4.3 that the increase in signal amplitude during daylight hours is a 

combination of uncorrelated anthropogenic activity and correlated signal from events 

related to extraction activities. This result is significant because for simple picking 

algorithms implemented across the TA, the pick rate is driven by noise (see section 

above). Furthermore, if we are able to develop a picker which successfully picks only 

signal (100% accuracy), relying on stationary background rates to determine rate 

increases will still lead to grossly inaccurate conclusions.
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Understanding this, and that our frequency-domain algorithm identifies 

characteristically different noise than the EV2 detector, we make an effort to understand 

the effect of diurnal noise on the single-station picking algorithm outlined above (section 

3.2). We verify our seismic event picks by a comparison for the active TA footprint with 

the ANF database; this tells us that the events we capture follow very closely to the 

reviewed events, and therefore, our databases likely vary only in the magnitudes we are 

able to recover (Figure 4.3). As expected, there are clear diurnal noise contributions 

above that can be attributed to pick rate increases, but are unrelated to event rate 

increases (Figure 4.4).

4.3 Calculating Significant Rate Increases (95 and 99% Confidence)

Rate increases are typically considered significant if they exhibit a sufficiently 

low probability of occurring randomly. To calculate the probability, we assume 

earthquakes follow a Poissonian distribution. In this distribution, events are assumed to 

occur at a constant rate. For this study, probabilities lower than 5% are considered. These 

values are based on the number of events within the postevent window as compared with 

a pre-event window (see below for discussion on window parameters). We define Npre as 

the number of events in the pre-event window of a specific duration (usually 2 days). 

Likewise, Npost is the equivalent window after the mainshock for the same duration. 

Therefore, for a Poissonian distribution:

d =Npre 

8 =Npost

and the standard deviation is calculated by:
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CT = T d  (4.1)

Thus, Npost rates are significant at the 95% confidence level above 1.98 standard 

deviations (Taylor, 1982):

8 > d  +1.98 ct (4.2)

and 99% rates are significant when:

8 > d  +2.58 ct (4.3)

This is a typical method used in dynamic triggering studies (Velasco et al., 2008) 

and represents an approximation of the more robust binomial process (Pankow, et al., 

2004). Although we recognize there are inherent complications (i.e., these are often small 

sample sets and therefore, significance is overestimated, and the method assumes a 

population of independent events that occur at a constant rate), we propose that this 

statistical approach is permissive of, although not sufficient evidence alone for, a 

significant rate increase linked to dynamic triggering.

4.4 Choosing Window Length

Time dependence in both the background noise rate and seismic event rate require 

that our observational windows either span whole day multiples, or that background rates 

are completely accounted for. The predictable result of relying on inappropriate 

windowing around the mainshock can be clearly illustrated by considering a 10-hour 

window that spans (+/- 5 hours) each mainshock. Observing event rates with these 

windows results in statistically significant rate increases for three events, G, N, and O 

(see Appendix). All three of these mainshocks have origin times in the early to mid

morning. The repercussion of having an origin time within this specific window is that
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triggered rate increases will be indistinguishable from the large midday rate hike 

determined from ANF records for these regions. As a definitive illustration, if the 

equivalent 10-hour window is shifted by 24 hours to the day prior to the mainshock, 

event rate counts result in the same statistically significant increase in seismicity. Clearly, 

the timing of our windows matter.

4.5 Four Day Window (+/- 2 Days Around Mainshock)

To evaluate the occurrence of both instantaneous and delayed triggering up to 2 

days, a 4-day window spanning the mainshock origin time is evaluated. To begin, the 

number of events is tallied separately for day and night. The mean daily rate for all 

included mainshocks is ~ 24 and the night rate is ~ 8. The ratio of day/night events 

increases to the east. There is no clear weekday/weekend trend for these data. Comparing 

total pre-event and postevent rates sheds light on any cases that may exhibit prolific or 

extended triggering at the 95% and 99% confidence levels. Because of the large 

difference in average number of events between the day and night, mainshocks which 

happen at night and induce earthquakes during the passage of their surface waves may do 

so at a significant level, but be obscured due to the large diurnal variation. This can 

happen because a significant night increase is still below the mean day rate. Therefore, 

bulk rate changes must be evaluated judiciously.

4.6 Instantaneous Triggering

In order to evaluate rate increases following the passage of surface waves for each 

event, we use a simple test. The test results in a TRUE outcome if the number of events
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for the day or night window during which the passage of surface waves occurred exceeds 

the equivalent window minus 24 hours, by a significant level. No events meet the criteria 

at the 99% confidence level. One mainshock has a rate increases (Npre = 25, Npost = 39) 

at or above 95% confidence (Table 4.2.).

4.7 Delayed Triggering

Every mainshock has a related surface wave window that occurred either during 

the day or at night. Instantaneous triggering was determined using this initial window. To 

evaluate the occurrence of delayed dynamic triggering for each mainshock, we subject 

mainshocks A-P to two tests. The first test compares the day/night window following the 

instantaneous window. This test results in TRUE if either of these windows (comparison 

of day and night rates) results in a rate increase at or above the 95% confidence level. The 

second test is meant to assess both the robustness of the increase and identify protracted 

increases over the entire observational window (2 days). This second test simply sums the 

events that occurred during either daylight or nighttime hours and compares them with 

the number of events that happened during the hours corresponding to the same time of 

day before the mainshock. For the first test, event M is TRUE during the night and events 

B and N are TRUE during the day. For test two, N persists as TRUE during daylight 

hours (events G, M, and O are added at the 95% confidence level). Event B no longer 

passes. For night rates -  M persist at the 99% confidence level (see Appendix for event 

counts).
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4.8 Summary of Identified Dynamic Triggering

The events identified in sections 4.6 and 4.7 represent the maximum possible 

number of mainshocks that are likely to have caused triggering. A closer look at each 

potential mainshock is required to credibly report potential triggering based on spatio- 

temporal clustering. In the cases where instantaneous triggering is suspected, there are no 

demonstrated cases of widespread prolific triggering. The single event showing marginal 

increases in seismicity (95% confidence level) is event G, the 2009, Samoa event. In this 

case, the majority of the seismicity occurred in NE Wyoming with limited contributions 

from New Mexico and Colorado. All event increases were limited to daylight hours.

For delayed triggering, the nighttime rate increase following mainshock M offers 

strong evidence for a delayed effect with respect to the mainshock. This increase in 

events during the following night was sufficiently high to carry the rate increase at a 

significant level to pass the second test. The observational window for this mainshock is 

complicated because the postevent window includes two mainshocks greater than 

magnitude 8, and one magnitude 7 that occurred very close to the array margin (Baja 

California). Despite this, the seismicity response was very simple with nearly all events 

not related to Baja occurring in northern Arkansas. The waveform similarity of the 

Arkansas sequence indicates that all events have similar locations.

The remaining mainshock demonstrating evidence for delayed dynamic triggering 

for both tests is N. This is the Costa Rica, 2012 mainshock. Most potentially triggered 

events occur in regions of known surface or underground coal and iron extraction, 

including Marquette, MI, NW Alabama (coal), E Missouri (iron), and north central 

Tennessee (coal and metals). There is no evidence for nighttime rate increases. To
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explore the temporal robustness of the rate increase for this mainshock, we evaluate 

ambient rate variation for a 12-day window, prior to the mainshock. We find event counts 

for the first 2 days after the mainshock (42 and 57 events) to be well within the natural 

variation (min:3, max:61) seen in the prior week. The large natural variation exceeds the 

rate increase determined significant. By this analysis, there is no legitimate basis for 

triggering from this mainshock.

The remaining three events that show an increase in event count are B, G, and O. 

B, in 2007, does so exclusively during the day. The highest number of events 

contributing to the rate increase is a group of off-array or array-border events between 

northern Mexico and southern Arizona near known surface copper mine operations. G 

events are predominantly in the active coal region of northeast Wyoming, as discussed 

earlier, and demonstrate no nighttime activity. The last event, O, in 2012, has daylight 

only increases, most occurring near active coal operations in eastern Kentucky.
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Median Array Amplitudes

Mainshock Index

Figure 4.1 Median array amplitudes. A mainshock database was built by 
evaluating the 20 largest array averages for all earthquakes M > 7 that 
occurred during the deployment of TA (2004-2013). The vertical line 
indicates our cut-off for the top 20 events based on median array 
amplitudes for the radial, transverse, and vertical components.
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Figure 4.2 Mainshock database sorted by event type and year. 
Red dots indicate the active array locations for the first year of 
the time interval on each map.
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Table 4.1 Mainshock date and magnitude. Ten events occurred during daylight 
hours (7am -7pm local time). Eight events occurred at night

Index Date Time Magnitude
A 1/13/2007 4:23:21 8.1
B 4/1/2007 20:39:58 8.1
C 8/15/2007 23:40:37 8.0
D 9/12/2007 11:10:26 8.5
E 5/12/2008 6:28:01 7.9
F 5/28/2009 2:24:45 7.3
G 9/29/2009 17:48:10 8.1
H 1/12/2010 21:53:00 7.0
I 2/27/2010 6:34:14 8.8
J 4/4/2010 22:40:43 7.2
K 3/11/2011 5:46:23 9.0
L 3/20/2012 18:02:47 7.4
M 4/11/2012 8:38:37 8.6
N 4/11/2012 10:43:09 8.2
O 9/5/2012 14:42:00 7.6
P 11/7/2012 16:35:47 7.4
Q 10/28/2012 3:04:08 7.8
R 2/6/2013 1:12:27 8.0
S 4/12/2012 7:15:48 7.0

*Day
**Night
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Table 4.2 Instantaneous triggering showing event counts for Npre and Npost windows. 
See text for discussion on the potential triggering indicated by the gray shading. Blue 
boxes indicate the mainshock happened during local nighttime hours (7:00 pm -  7:00 am)

Mainshock Ordinal Day/Year mu or Npre
sqrt(mu) or 

standard deviation
number counted or 

Npost
95% Threshold 

(assume Gaussian)
99% Threshold 

(assume Gaussian) Pass/Fail Pass/Fail
a* 132007 4 2.00 6 8.00 10.00 FALSE FALSE
b#* 912007 14 3.74 16 21.48 25.22 FALSE FALSE
c 2272007 5 2.24 8 9.47 11.71 FALSE FALSE
d 2552007 11 3.32 12 17.63 20.95 FALSE FALSE
e 1332008 23 4.80 18 32.59 37.39 FALSE FALSE
f 1482009 7 2.65 3 12.29 14.94 FALSE FALSE
9 2722009 25 5.00 39 35.00 40.00 95 FALSE
h 122010 38 6.16 37 50.33 56.49 FALSE FALSE
i 582010 11 3.32 6 17.63 20.95 FALSE FALSE
. 942010 23 4.80 21 32.59 37.39 FALSE FALSE
k 702011 31 5.57 19 42.14 47.70 FALSE FALSE
1 802012 23 4.80 26 32.59 37.39 FALSE FALSE

m 1022012 2 1.41 3 4.83 6.24 FALSE FALSE
n 2492012 31 5.57 42 42.14 47.70 FALSE FALSE
0 3122012 26 5.10 32 36.20 41.30 FALSE FALSE

P 3022012 9 3.00 5 15.00 18.00 FALSE FALSE

*Night
**Day
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Figure 4.3 Energy distribution for 4 days of data from 305 active stations spanning the 
September, 2007 mainshock (top) compared with event counts from the frequency array 
method (grey) and the ANF database (black) for events within the active TA footprint. The 
histogram is from our frequency array event database and indicates that event increases are 
temporally coincident with daylight noise increases (lighter vertical bars, top panel). The x- 
axis for all panels is the same.
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Figure 4.4 Earthquake vs. pick count. Earthquake distribution is nonstationary for 
windows > 1 day. It is also apparent that morning event rates differ from midday event 
rates (which are by far the highest) or early evening event rates. Because pick counts do 
not mirror earthquakes, there is clearly an effect from diurnal, nonearthquake noise 
sources for pick databases.



CHAPTER 5

DISCUSSION

5.1 Background Rates

One of the major accomplishments of this study has been the development of an 

efficient tool with which we are able to evaluate ambient seismic noise conditions across 

the array. Published analysis of ANF catalogs give us an idea of the variation in 

background seismicity, while IRIS quality assurance products, power spectral density 

(PSD) plots specifically, confirm the persistence of diurnal noise patterns. Our method 

merges these disparate observations and offers rapid visualization of the ambient noise 

and correlated signal across the array. This capacity is vital for triggering studies 

intending to use the TA data, and specifically single-station methods, because 

understanding the variation in background event rates and noise contributions is a vital 

part of interpreting seismicity rate changes at any given time. A clear understanding of 

the variation in these two parameters, background noise and background events, is the 

foundation for dynamic triggering studies reliant on these data.

One unforeseen insight gained from the ability to view transient signal 

distributions across the array is that there exists a host of secondary signals that hint at 

real earth processes previously uncharacterized, but present, in seismic data. We observed



this by looking at signal within frequency bands specifically meant to highlight local 

earthquakes. In general, however, the direct spectroscopic tuning inherent in the method 

make it a valuable tool for systematic search of any number of these band-limited 

phenomena.

To relate these findings to broader single-station dynamic triggering studies, it is 

useful to highlight conditions specific to TA. In general, seismic stations are carefully 

sited to avoid signal contamination related to the hours and activities of productive 

societies. This is a luxury that low density, long-term arrangements can afford. TA, 

conversely, has very specific spacing (70 km) and timing constraints, specifically those 

related to the practicality of permitting and installing 400 serviceable stations whose 

residence time will be 2 years. Practically speaking, this means that TA stations are not 

sited on bedrock, or typically very far from inhabited residence. As a result, the sites are 

easily accessible and remain safely in the care of specific property owners for the 

duration of their installment. The tradeoff is in the higher frequency bands where 

dynamic triggering studies necessarily probe; these bands are highly contaminated in a 

nonstationary way. Some of this contamination may represent signal content from 

unknown sources that will offer future insight into solid earth-atmospheric coupling, for 

example. As a whole though, these energy sources represent significant interpretational 

barriers for both STA/LTA and frequency-domain detection algorithms.

5.2 On the Found Instances of Dynamic Triggering

The mainshock database compiled for this study provided us with the most likely 

global events to trigger seismicity rate increases in the U.S. based on the premise of
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amplitude as a driver. Temporal distribution and coherent station spacing allowed repeat 

sampling of sections of the crust to levels of scrutiny rarely before accomplished on this 

scale. Despite this, clear cases of instantaneous dynamic triggering are absent, and cases 

of delayed triggering are relatively rare. When present, these cases almost exclusively 

occur for daylight-only seismicity (areas that are seismically prolific during the day and 

comparatively silent at night). The one exception to this is the night rate increase 

following the Sumatra, 2012 8.6 and 8.2 events. N7otably, this sequence occurred as a set 

of repeating events centered in central Arkansas suggestively near active coal operations.

Daylight-only events are problematic within the context of dynamic triggering 

because their occurrence can be largely independent of the ambient stress state.

Therefore, one logical conclusion would be that these rate changes directly reflect the 

daily operations of extraction related industry in those areas. This conclusion gains 

traction from the observation that typical weekly variation in event rates can be 

significantly greater than within the subwindows under observation. It is further 

supported by the absence of any increase in nighttime activity within these same areas 

after daytime rate increases are detected. It is nonphysical to assume that tectonic strain 

release would behave this way. Considering the demonstrated lack of understanding 

regarding rate changes as part of weekly or even quarterly cycles, it is hard to maintain a 

solid claim for rate increase during daylight hours for any of the mainshocks observed 

here. Another interpretation is that human industrial activity alters the local state of stress 

in a way that increases sensitivity to small (.02 cm/s and above) stress perturbations. This 

second case is reasonable only for subsurface operations. Because within the resolution 

of our locations, it is possible to make a general correlation with both known surface and
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underground extraction operations for nearly every potentially triggered site, it is difficult 

to carry this conclusion further. In the end, the Sumatra 2012 sequence, which contained 

three qualifying mainshocks within our amplitude cut-off in the postevent window, was 

the only mainshock demonstrating modest evidence for potential triggering. This 

potential triggering is limited to one source area, lasts for several hours, and is not 

invigorated, or even present within the surface waves of any of the three large 

mainshocks that occur during the observation window.
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CHAPTER 6

CONCLUSION

6.1 Summary of Conclusions

The development of a frequency-domain detection algorithm is based on the 

concept that band-limited contributions to earthquake detections can be minimized using 

the STA/LTA concept from traditional time-domain algorithms while encoding specific 

spectral information into the amplitude time-series. We pass our STA/LTA picker over 

three separate band limits, requiring that it meet all three criteria to signal a detection. It 

is then subject to additional criteria, which requires it to possess characteristics of a real 

earthquake, such as adherence to typical decay envelops and limited signal duration. 

While this method increases the accuracy of earthquake detection databases compared to 

highly tuned STA/LTA algorithms in the time-domain, false detections are still the 

dominant constituent of these databases. This method may represent a useful tool for 

earthquake picking as implemented on long-term regional networks. Although this 

avenue is unexplored in the material above, the observation that the characteristic noise 

picked by this method is greater across the TA due to typical station siting than seen on 

other regional networks gives this idea promise.



For this study, in order to diagnose the crustal response to energy transients, we 

capitalize on the station density and uniform coverage in previously under-sampled 

regions that are unique to the TA dataset. Further development of the frequency detection 

method to include array-wide signal visualizations provides a framework wherein 

earthquake detections can be made at levels comparable to single-station detection 

methods, but with virtually no noise contributions. This provides a robust framework 

wherein the occurrence of dynamic triggering following the largest earthquakes affecting 

the crust during the occupation of the TA can be evaluated.

From this, we find that the 18 largest earthquakes based on surface wave 

amplitude across TA, and therefore the group most likely to trigger far-field aftershocks 

based on amplitude as a driver, show almost no evidence of dynamic triggering either 

instantaneously with the passage of the highest amplitude surface waves, or within 2 days 

following the mainshock. The limited evidence for rate increases is restricted to daylight 

hours, except in the case of the Sumatra event, which affected seismicity at night, at a site 

specifically known for earthquakes driven by anthropogenic influence (fluid injection or 

extraction related seismicity). This evidence suggests that either extraction/injection sites 

are more sensitive to small earthquake transients, or that our ability to accurately 

parameterize rate increases is limited based on a lack of information regarding the 

anthropogenic patterns at these specific sites, i.e., weekend and weekday well site 

practices. Overall, we note a conspicuous lack of dynamic triggering for most cases 

explored.

We conclude that dynamic triggering is unambiguously rare for both large and 

small magnitude earthquakes (as small as is typically recovered by human analysts).
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Furthermore, locations that correspond to significant increases in seismicity following 

global mainshocks occur without exception in regions considered “active” because there 

is a history of significant tectonic activity at that site, or industrial or energy sector 

activities generate consistent seismic energy there. We conclude that dynamic triggering 

is a limited phenomenon requiring highly specific conditions (phases, orientations, 

duration of shaking, in addition to amplitude) and/or that amplitude is not a viable driver 

for these far-field processes at the amplitudes observed in this study.

6.2 Future Work

One of the most significant limitations to the frequency array method developed 

above is that it requires an analyst to review the array image. When the total image 

contains a relatively short time (< 5 hours), manual processing is trivial because 

determining event counts, locations, and times is a rapid exercise. In general, window 

length is proportional to processing time, and inversely proportional to accuracy. This 

effort also scales with computing resources. For a 4-day record, this processing reaches a 

reasonable upper limit for computing resources and analyst patience (Matlab on a 3.4 

GHz i7 assuming ample available memory and maximized Java heap allocations).

To ensure an event database is populated by true events, an event associator, or 

binding algorithm, is required. These algorithms associate related picks into legitimate 

events while discarding uncorrelated noise. We accomplish this by eye with our 

frequency array method, and although unsophisticated, it is an efficient and accurate way 

to process small datasets. However, we now know that background rates are the most 

important part of understanding rate increases, and longer time windows than can be
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comfortably processed manually are required to fully characterize these rates for a given 

site.

Making associations between picks requires some form of spatio-temporal 

clustering. Picks from single-station detections by design yield the necessary parameters 

to accomplish this (latitude, longitude, and time). Therefore, finding earthquakes within a 

pick cloud should reasonably be a matter of parameterizing a density function for this 

purpose. Preliminary temporal clustering suggests this method will be highly successful 

at filtering out uncorrelated picks.

This increased level of automation can greatly enhance the value of the resultant 

databases because they can be populated with events to be evaluated objectively based on 

a users desired resolution (up to the minute scale) for any window. Statistically, this can 

have much greater potency than the analysis performed above. However, the price of 

binding programs is often resolution. By requiring a minimum number of stations, you 

limit the minimum recoverable event size. In the analysis above, we circumvent this issue 

by observing that signal distribution patterns are far more telling than binary picks, and 

therefore, it is possible to capture related seismic energy to a level nearly comparable to 

single-station detection. Reliance on a pick database to determine detections will require 

more robust quantification and analysis of recoverable magnitudes and false detection 

rates for single-station detections in the future.
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APPENDIX

Earthquake event counts for pre- and postevent windows

Mainshock Ordinal Day/Year
mu or 
Npre

sqrt(m u) or 
standard 
deviation

number 
counted or 

Npost

95%  Threshold 
(assume 

Gaussian mu >9)

99%  Threshold 
(assume 

Gaussian mu > 9) Pass/Fail Pass/Fail
a 132007 5 2.24 5 9 47 11.71 FALSE FALSE
b 912007 5 2.24 3 9.47 11.71 FALSE FALSE
c 2272007 23 4.80 1 32.59 37.39 FALSE FALSE
d 2552007 5 2.24 9 9.47 11.71 FALSE FALSE
e 1332008 6 2.45 6 10.90 13.35 FALSE FALSE
f 1482009 2 1.41 0 4.83 624 FALSE FALSE
' 2722009 9 3.00 23 15.00 18.00 95 99

h 122010 26 5.10 12 36.20 41.30 FALSE FALSE
i 582010 2 1.41 4 4.83 6.24 FALSE FALSE
j 942010 11 3.32 3 17.63 20.95 FALSE FALSE
k 702011 5 2.24 9 9.47 11.71 FALSE FALSE
1 802012 14 3.74 13 21.48 25.22 FALSE FALSE

m 1022012 2 1.41 0 4.83 6.24 FALSE FALSE
n 2492012 9 3.00 27 15.00 18.00 95 99
0 3122012 8 2.83 26 13.66 16.49 95 99
P 3022012 1 1.00 2 3.00 4.00 FALSE FALSE

rates for 10 hour window (+/- 5 hours around mainshock) 99

a 132007 5 2.24 9 9.43 10.77 FALSE FALSE
b 912007 15 3.87 9 22.75 26.62 FALSE FALSE
c 2272007 5 2.24 7 9.47 11.71 FALSE FALSE
d 2552007 6 2.45 9 10.90 13.35 FALSE FALSE
e 1332008 23 4.80 19 32.59 37.39 FALSE FALSE
f 1482009 7 2.65 6 12.29 14.94 FALSE FALSE

■ 2722009 12 3.46 6 18.93 22.39 FALSE FALSE
h 122010 13 3.61 12 20.21 23.82 FALSE FALSE
i 582010 11 3.32 4 17.63 20.95 FALSE FALSE
i 942010 6 2.45 7 10.90 13.35 FALSE FALSE
k 702011 31 5.57 11 42.14 47.70 FALSE FALSE
I 802012 4 2.00 1 8.00 10.00 FALSE FALSE

m 1022012 1 1.00 17 3.00 4.00 95 99
n 2492012 2 1.41 3 4.83 6.24 FALSE FALSE
0 3122012 3 1.73 5 6.46 8.20 FALSE FALSE

3022012 9 3.00 5 15.00 18.00 FALSE FALSE
rates for nighttime windows (avg night rate before mainshock and night of or after)

a 132007 12 3.46 8 18.93 22.39 FALSE FALSE
b 912007 14 3.74 26 21.48 25.22 95 99
c 2272007 25 5.00 22 35.00 40.00 FALSE FALSE
d 2552007 30 5.48 37 40.95 46.43 FALSE FALSE
e 1332008 23 4.80 29 32.59 37.39 FALSE FALSE
f 1482009 33 5.74 29 44.49 50.23 FALSE FALSE
9 2722009 25 5.00 31 35.00 40.00 FALSE FALSE
h 122010 38 6.16 47 50.33 56.49 FALSE FALSE
i 582010 36 6.00 28 48.00 54.00 FALSE FALSE
i 942010 23 4.80 23 32.59 37.39 FALSE FALSE
k 702011 30 5.48 24 40.95 46.43 FALSE FALSE
I 802012 23 4.80 22 32.59 37.39 FALSE FALSE

m 1022012 12 3.46 14 18.93 22.39 FALSE FALSE
n 2492012 31 5.57 57 42.14 47.70 95 99
0 3122012 26 5.10 20 36.20 41.30 FALSE FALSE

3022012 4 2.00 5 8.00 10.00 FALSE FALSE
rates for day window (avg day rate before and day of or after)
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Earthquake event counts for pre- and postevent windows continued

Mainshock Ordinal Day/Year mu or 
Npre

sqrt(mu) or 
standard 
deviation

number 
counted or 

Npost

95% Threshold 
(assume 

Gaussian mu >9)

99% Threshold 
(assume 

Gaussian mu > 9)
Pass/Fail Pass/Fail

a 132007 26 5.10 18 36.20 41.30 FALSE FALSE
b 912007 24 4.90 32 33.80 38.70 FALSE FALSE
c 2272007 54 7.35 44 68.70 76.05 FALSE FALSE
d 2552007 54 7.35 62 68.70 76.05 FALSE FALSE
e 1332008 50 7.07 61 64.14 71.21 FALSE FALSE
f 1482009 60 7.75 57 75.49 83.24 FALSE FALSE
9 2722009 52 7.21 72 66.42 73.63 95 FALSE
h 122010 64 8.00 78 80.00 88.00 FALSE FALSE
i 582010 59 7.68 35 74.36 82.04 FALSE FALSE
i 942010 47 6.86 52 60.71 67.57 FALSE FALSE
k 702011 59 7.68 46 74.36 82.04 FALSE FALSE
1 802012 39 6.24 46 51.49 57.73 FALSE FALSE

m 1022012 19 4.36 29 27.72 32.08 95 FALSE
n 2492012 42 6.48 90 54.96 61.44 95 99
0 3122012 43 6.56 57 56.11 62.67 95 FALSE
P 3022012 60 7.75 40 75.49 83.24 FALSE FALSE

day time rates for 4 day window (all day events pre vs all day events post)

mu or 
Npre

sqrt(mu) or 
standard deviation

number 
counted or 

Npost

95% Threshold 
(assume Gaussian 

mu >9)

99% Threshold 
(assume Gaussian 

mu > 9)
a 132007 12 3.46 13 18.93 22.39 FALSE FALSE
b 912007 22 4.69 22 31.38 36.07 FALSE FALSE
c 2272007 15 3.87 15 22.75 26.62 FALSE FALSE
d 2552007 14 3.74 20 21.48 25.22 FALSE FALSE
e 1332008 34 5.83 27 45.66 51.49 FALSE FALSE
f 1482009 11 3.32 9 17.63 20.95 FALSE FALSE
g 2722009 20 4.47 10 28.94 33.42 FALSE FALSE
h 122010 22 4.69 21 31.38 36.07 FALSE FALSE
i 582010 15 3.87 11 22.75 26.62 FALSE FALSE
i 942010 12 3.46 12 18.93 22.39 FALSE FALSE
k 702011 44 6.63 28 57.27 63.90 FALSE FALSE
1 802012 11 3.32 8 17.63 20.95 FALSE FALSE

m 1022012 6 2.45 19 10.90 13.35 95 99
n 2492012 4 2.00 3 8.00 10.00 FALSE FALSE
0 3122012 6 2.45 7 10.90 13.35 FALSE FALSE
P 3022012 8 2.83 11 13.66 16.49 FALSE FALSE

night time rates for 4 day window (all night events pre vs all nightevents post)
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