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ABSTRACT

Two-dimensional (2-D) and three-dimensional (3-D) seismic surveys are conducted across

the Washington fault zone of northern Arizona, with the purpose of imaging the fault-related

structures to a depth of 30 m by 3-D traveltime tomography and 2-D poststack migration.

The scientific objective is to use the seismic methods instead of a trenching log to deduce

the paleoseismic characters of this fault zone, and to guide paleoseismologists in the optimal

placement of a future trenching survey. The first-arrival traveltimes of the data are picked

and inverted for the P-wave velocity distribution. Tomographic results delineate two large

low-velocity zones (LVZ), which are interpreted as two colluvial wedge packages. To detect

the fault structures, which have more observable reflection energy than the 3-D data, the

2-D seismic data are migrated. Four faults are recovered in the migration image, including

the main fault, and possible antithetic fault. The fault location is identical to that in the

tomogram and raypath density image. The main fault in the tomogram is also consistent

with the results from the geomorphology survey. These results demonstrate that seismic

imaging methods (3-D traveltime tomography and 2-D reflection imaging) can delineate

the shape and depth of LVZs associated with colluvial wedges. Although these LVZ images

cannot unambiguously delineate different rupture events in a colluvial package, they can

be used to optimally design a follow-on trenching survey. Combining the paleoseismic data

with the fault slip inferred by tomography, the age of the fault is speculatively estimated

to be younger than 16 kyr. Future work should compare my interpreted tomogram with

the trench log soon to be excavated by personnel of the Utah Geological Survey (UGS),

and analyze the validity of my geological interpretation. This trench was designed using

the results of this survey, which is partial justification for seismic surveys over normal fault

scarps.



To my family.
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CHAPTER 1

INTRODUCTION

A colluvial wedge is geophysically characterized as a low-velocity zone (LVZ) surrounded

by alluvial deposits, where colluvial material is deposited after a surface earthquake rupture

(Morey and Schuster, 1999). Various properties of buried colluvial wedges, such as their

location, size, and organic content, can record the rupture history of a fault. To study the

subsurface structures over a fault zone with seismic methods, several seismic surveys over

the Wasatch and Oquirrh fault zones were carried out by University of Utah personnel, and

the seismic data were processed with a traveltime tomography method to detect the LVZs;

in addition, reflection processing was used to delineate the fault locations. Their results

showed that seismic imaging techniques can provide deeper and wider, but less resolved

images of faults and colluvial wedges than the standard excavation and logging of trenches

across faults (Buddenseik et al., 2007; Morey and Schuster, 1999; Sheley et al., 2003). The

purpose of this thesis research is to reconstruct the shallow fault structures and colluvial

wedges (0 < Z < 30 m) along a portion of the Washington fault zone, northern Arizona,

with 2-D and 3-D seismic imaging techniques. These results are used to guide the optimal

placement of an excavated paleoseismic trench along the Washington fault.

The Washington fault zone lies along the western margin of the Colorado Plateau,

extending northward from the Shivwits Plateau in Arizona into the St. George basin of

southwestern Utah. Southwestern Utah and northwestern Arizona are within the inter-

mountain seismic belt of North America, a tectonically active area with several faults that

could generate large earthquakes. The Washington fault is a relatively active normal fault in

this region, although it has not experienced any earthquakes of magnitude larger than 6.5.

However, geological studies indicate that faults in the region could produce earthquakes of

magnitude 7 to 7.5 (Arabasz et al., 1992), which is of strong concern to the residents of the

rapidly growing population center of St. George, Utah. The most recent large earthquake

was a magnitude 5.8 event in September 1992, with the epicenter located in the Washington

Dome quadrangle (Pechmann et al., 1995). The Washington fault is estimated to be 10,000
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-25,000 years old based on evidence from soil profiles exposed in trenches in the area west of

Warner Ridge (Earth Science Associates, 1982), and the dip of the Washington fault varies

from 80 degrees west to nearly vertical (Higgins, 1998).

This thesis is organized into five sections. Section 1 is the introduction and Section

2 describes details about data acquisition and processing. The third and fourth sections

present the results of synthetic tests and field data processing, respectively. The final section

contains the conclusions.



CHAPTER 2

SEISMIC SURVEYS AND PROCESSING

METHODS

This chapter describes the acquisition parameters and geometry of the 2-D and 3-D

seismic experiments conducted across the Washington fault scarp in northern Arizona.

The data-processing methods (traveltime tomography, reflection stacking, and poststack

migration) are briefly explained.

2.1 Seismic Surveys

2.1.1 2-D Seismic Survey

In March 2008, UTAM researchers carried out a 2-D high-resolution seismic survey

perpendicular to the Washington fault scarp near the Arizona-Utah border. Figure 2.1

shows the seismic survey site and the proposed trench site. The 2-D seismic data were

collected using 96 vertical-component geophones spaced 1 m apart for a total line length of

95 m. Figure 2.2 shows the source and receiver lines, and the fault strike direction. Seismic

sources, using a 16-lb sledgehammer striking a small metal plate, were initiated at every

second geophone and stacked five times for each hammer (i.e., shot) position to improve the

signal-to-noise ratio of each record. Recording of traces was carried out with a 120-channel

Bison data recorder. Table 2.1 summarizes the acquisition and source-receiver parameters

of the 2-D and 3-D seismic surveys.

2.1.2 3-D Seismic Survey

A 3-D seismic survey was carried out at the same location as the 2-D survey in October

2008 in order to obtain higher-resolution images of the subsurface. The 3-D acquisition

geometry consisted of six parallel lines, where there were 80 in-line receivers with a 1 m

spacing near the fault scarp and a 2 m spacing far away from the fault scarp. The cross-line

spacing was 1.5 m. Shots were also activated at every other geophone, and the experiment

geometry is shown in Figure 2.3.
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Figure 2.1. The map of the Washington fault and the survey site (provided by Utah
Geological Survey). The location of the survey site is 5 km south of the Utah-Arizona
border.
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Figure 2.2. View of the Washington fault scarp and 2-D seismic survey line. The yellow
line represents the fault strike direction, and the green line represents the 2-D seismic survey
line.
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Table 2.1. Parameters for the 2-D and 3-D seismic surveys.

Surveys 2-D 3-D

Sources 16-lb sledgehammer 10-lb sledgehammer

Recording instruments one 120-channel BISON two 120-channel BISONs

Number of shots 48 40/line (6 lines)

Number of receivers 96 80/line (6 lines)

Shot spacing 2 m shown in Figure 2.3

Receiver spacing 1 m shown in Figure 2.3

Survey length 95 m 119 m

Number of traces 4,608 115,200

Sampling interval 0.25 ms 0.25 ms

Record length 1.0 sec 1.0 sec
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Figure 2.3. Survey geometry for the 3-D experiment. The open circles denote the locations
of sources, the solid dots denote the locations of receivers, and the dashed blue line denotes
the location of the fault scarp. The crossline spacing is 1.5 m, the inline spacing of coarsely
spaced receivers (far from the fault scarp) is 2 m, and that of finely spaced receivers (near
the fault scarp) is 1 m. The sources are activated at every other receiver.
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2.2 Traveltime Tomography

2.2.1 Methodology

Traveltime tomography is a standard methodology for reconstructing the subsurface

velocity distribution from first-arrival traveltimes (Aldridge and Oldenburg, 1993; Ammon

and Vidale, 1993; Lutter et al., 1990; Nemeth et al., 1997; Nolet, 1987 and many others),

where velocities are updated by an iterative method such as the SIRT technique (Gilbert,

1972). The tomography method consists of a number of steps. First, an initial velocity

model is estimated from the x-t slope of the first-arrival in the seismograms. The traveltimes

are then computed from the starting model by a finite-difference solution to the eikonal

equation (Qin et al., 1992). In this case, the data misfit function can be defined as:

ǫ =
1

2

∑

i

(tobs
i − tcal

i )2, (2.1)

where the summation is over the ith raypaths, tobs
i is the associated first-arrival traveltime

pick, and tcal
i is the calculated traveltime. The jth gradient γj of the misfit function is

defined as:

γj =
δǫ

δsj

=
∑

i

δti
δti

δsj

=
∑

δtilij , (2.2)

where δti is the traveltime residual, δsj is the slowness in the jth cell and lij is the segment

length of the ith ray that visits the jth cell. The slowness model is iteratively updated by

a gradient-optimization method (i.e., steepest descent). The details of the 3-D traveltime

tomography algorithm are described in the Appendix.

2.2.2 Traveltime Picking and Quality Control

The first step in tomography processing is to pick first-arrival traveltimes. Approxi-

mately 4,608 and 115,200 traveltimes are picked, respectively, from the original 2-D and

3-D Washington fault data using ProMAX software. A sample shot gather of the 2-D data

with the picked first-arrival traveltime is shown in Figure 2.4.

Before computing the traveltime tomogram, a quality control of the traveltime picks is

required for a reliable inversion. An important method for the quality control of traveltime

picks is a reciprocity test. For traveltime pairs tij and tji , where tij represents the first-arrival

traveltime pick for a source at the ith position and a receiver at the j th position, and tji

represents the reciprocal traveltime pick of tij , if the reciprocity condition tij = tji is not

satisfied to within a tolerance of 3 milliseconds, the traveltime pairs are rejected. For the
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Figure 2.4. A common shot gather from 2-D Washington fault data set and first-arrival
traveltime picks are denoted by the red star.
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3-D data, 29,750 traveltime picks are rejected by failing the reciprocity test. The remaining

traveltimes are inverted using the SIRT algorithm described in Section 2.2.1.

2.2.3 Smoothing Filter

Due to irregular raypath coverage in some parts of the velocity model, a rectangular

smoothing filter is applied after each iteration in the inversion process (Nemeth et al.,

1997). Table 2.2 gives a listing of smoothing schedules for the synthetic data and field data

in this paper. The reconstructed velocity model is initially smoothed with a 20 × 10 × 10

smoothing filter. After six iterations the smoothing filter size is halved, which results in a

better spatial resolution. The final smoothing filter is iteratively reduced to a volume of 4

× 2 × 2.

2.3 2-D CDP Reflection Processing

The goal of common depth point (CDP) reflection processing is to transform the seismic

reflection data into an approximate reflectivity image of the subsurface. Because near-

surface scattering, statics, and surface waves are dominant in the shallow seismic data,

the following processing flow (Figure 2.5) is required to obtain reflectivity images (Yilmaz,

1987).

2.3.1 Data Sorting and Geometry Defining

The first step in CDP data processing is to convert the data format from Bison seismo-

graph format to SEG-Y format so processing can be performed with ProMAX. Then the

survey geometry is defined according to the field survey, including the shot and receiver

locations, shot and receiver offsets, CDP locations, and other known parameters that affect

the data processing.

2.3.2 Elevation Statics

The statics problem is defined to be static time shifts introduced into the traces by,

e.g., near-surface velocity anomalies and/or topography. These time shifts distort the true

geometry of deep reflectors. For the Washington experiment, large static time shifts are

introduced by the large elevation changes in the topography. Thus, an elevation statics

correction is applied to the data, so that the data appear to have been collected on a flat

datum plane. The final datum elevation is the same as the highest topographic point, and

the replacement velocity is 500 m/s for correcting the traces to the new datum.
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Table 2.2. Smoothing schedule for synthetic and field data.

Seismic surveys 2-D synthetic 3-D synthetic 2-D field 3-D field
data data data data

Grid size 0.5 m 0.5 m 0.5 m 0.5 m

Number of unknowns 4,800 72,000 4,800 72,000

Number of traveltimes 3,200 115,200 2,687 85,450

Smoothing size 1 20 × 10 20 × 10 × 10 20 × 10 20 × 10 × 10

Smoothing size 2 12 × 6 12 × 6 × 6 12 × 6 12 × 6 × 6

Smoothing size 3 8 × 4 8 × 4 × 4 8 × 4 8 × 4 × 4

Smoothing size 4 4 × 2 4 × 2 × 2 4 × 2 4 × 2 × 2
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Figure 2.5. Flowchart for reflection processing of the 2-D Washington fault data set. Here,
AGC = automatic gain control, NMO = normal moveout correction, CMP = common
midpoint.
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2.3.3 Bandpass Filter

To remove the low-frequency noise (such as surface waves), 40-200 Hz bandpass filtering

was applied to the traces. The low-frequency surface waves are mostly suppressed by this

filter.

2.3.4 NMO and Stacked Section

The seismic data are sorted into 190 common midpoint gathers (CMG) with 0.5 meter

spacing. Two or three near-zero-offset traces of each CMG were selected for stacking.

2.3.5 Poststack Migration

In order to move dipping reflectors into their correct positions and collapse diffractions,

poststack migration was applied to the stacked data, where the maximum dip angle is limited

to no more than 30 degrees. The migration method selected was Kirchhoff migration.



CHAPTER 3

NUMERICAL RESULTS FOR SYNTHETIC

DATA

The migration and tomographic images for synthetic data are presented in this chapter.

The results suggest that the faults and LVZs can be clearly imaged by seismic methods,

and 3-D tomograms are more accurate and have fewer artifacts than 2-D tomograms in

delineating fault structures.

3.1 Traveltime Tomography of Synthetic Data

To understand the sensitivity of the tomography method in delineating fault structures,

both 2-D and 3-D synthetic tests are carried out. The input model is a 3-D fault model, and

has the same dimension as the area investigated with the 3-D Washington fault experiment.

The model was constructed by defining the background velocity to be similar to that of the

actual 3-D Washington fault tomogram. The velocity at the ground surface is defined to

be 500 m/s and the vertical velocity gradient is assigned as 110 m/s, and the depth of

bedrock is about 15 m below the surface, with the velocity 2,400 m/s. There is no variation

of velocity in the Y direction. An X-Z velocity slice of the fault model is shown in Figure

3.1(a). The source and receiver geometry for the synthetic test are identical to that of the

3-D Washington fault experiment, shown in Figure 2.3. Approximately 115,200 first-arrival

traveltimes are generated by solving the 3-D eikonal equation with a finite-difference method

(Qin et al. 1992), and the traveltimes taken from the first source line and receiver line (Y=0

m) are used for 2-D traveltime inversion. Table 3.1 summarizes the model and acquisition

parameters for the synthetic tests.

The first-arrival traveltimes are inverted to obtain the P-wave velocity distribution, and

a gradient model with velocities ranging from 500 m/s at shallow depths to 2,400 m/s at

depth are used for the initial model. The reconstructed velocity model is initially smoothed

with a 20 × 10 × 10 smoothing filter, and the smoothing filter is iteratively reduced to a

volume of 4 × 2 × 2.



15

Offset (m)

D
ep

th
 (

m
)

(b) X−Z Slice of 3−D Traveltime Tomogram 
m/s

F1
F2

F3

0 20 40 60 80 100

0

10

20

30

500

1000

1500

2000

Offset (m)

D
ep

th
 (

m
)

(a) X−Z Slice of 3−D Velocity Model
m/s

F1
F2

F3

0 20 40 60 80 100

0

10

20

30

500

1000

1500

2000

Offset (m)

D
ep

th
 (

m
)

(c) 2−D Traveltime Tomogram
m/s

F1
F2

F3

0 20 40 60 80 100

0

10

20

30

500

1000

1500

2000

Offset (m)

D
ep

th
 (

m
)

(d) 2−D Raypath Density Image #rays
F1

F2
F3

0 20 40 60 80 100

0

10

20

30
50

100

150

200

250

Figure 3.1. Results of 2-D and 3-D traveltime tomography test. (a): an X-Z slice of the
linear gradient velocity model with 3 normal faults. (b): an X-Z slice of the 3-D tomogram
along the first receiver line (Y = 0 m). (c): 2-D traveltime tomogram along the first receiver
line (Y = 0 m). (d): raypath density image obtained from 2-D traveltime inversion.
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Table 3.1. Model and acquisition parameters for the synthetic tests.

Surveys 2-D 3-D

Model size 117 m × 30 m 117 m × 7.5 m × 30 m

Grid size 0.5 m 0.5 m

Number of shots 40 240

Number of receivers 80 480

Shot/receiver spacing Shown in Figure 2.3 Shown in Figure 2.3

Survey length 117 m 117 m

Number of traveltimes 3,200 115,200
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A comparison between the 2-D and 3-D tomograms is shown in Figures 3.1(b) and Figure

3.1(c). Both of the tomograms are along the first receiver line (Y=0 m), and the images

obtained from 2-D and 3-D tomography are comparable at low wavenumbers. The fault

surfaces in the model are characterized by a smooth down drop of the velocity contours in

both of the tomograms. This is not surprising, since previous studies (Buddenseik, et al.,

2007) empirically showed that the tomogram is a smoothed version of the actual velocity,

where faults are characterized by a smooth downdrop in tomographic velocities. Another

observation is that the 3-D tomogram seems to have fewer artifacts than the 2-D tomogram.

This should not be too surprising, because rays in the the 3-D survey are characterized by

a greater diversity of ray angles, which leads to better model resolution. In addition,

the ratio of unknowns to traveltime equations (shown in Table 2.2) is smaller for the 3-D

tomogram and suggests a more stable and overdetermined solution. In Figure 3.2, the

velocity and gradient profiles at X=26 m (Fault 1), X=48 m (Fault 2) and X=74 m (Fault

3) are compared. The faults are identified as large positive gradient values of velocity, and

the fault structures delineated in the 3-D tomogram are more accurate than those in the

2-D tomograms. Figure 3.1(d) depicts the 2-D raypath density image, which displays the

number of rays visiting each cell of the tomogram. For the normal-slip fault (F1, F2 and

F3), the rays focus near the fault plane, which results in fewer raypaths visiting the hanging

wall side, and the LVZ (48 m<X<75 m) has lower raypath coverage than other regions.

To assess the convergence of the iterative solution, a plot of RMS traveltime residual

vs. iteration number is shown in Figure 3.3. It demonstrates that the iterative solutions

converge within ten iterations. The final traveltime residual is about 0.3 ms, which is close

to 0, since no picking errors are added.

3.2 CDP Reflection Processing of the Synthetic Data

To locate the fault positions, CDP reflection processing is carried out. The velocity

model is the same as the 2-D model in Section 3.1, and Figure 3.4(a) shows the reflectivity

image computed from the velocity model. To make the processing simple, the sources and

receivers are distributed evenly at 1 m spacing for a total line length of 117 m. A 2-4

finite-difference solution to the acoustic wave equation is used to generate the zero-offset

seismograms, and Table 3.2 gives the model and acquisition parameters for the synthetic

tests. Figure 3.4(b) shows the stacked seismic section with the horizontal axis in offset and

the vertical axis in time. Figures 3.4(c) and 3.4(d) show the migration images using the

true velocity and the velocity obtained from the tomogram, respectively. Although there
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Figure 3.2. Velocity and gradient profile comparison at 3 different locations for the
synthetic test. Left panels are the velocity profiles, and right panels are the velocity gradient
profiles. In the velocity gradient profiles, the faults are identified by large positive gradient
values and LVZs are identified by large negative gradient values.
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Figure 3.3. 2-D and 3-D RMS traveltime residual vs. iteration number. The iterative
solutions converge after about ten iterations. The final traveltime residual is about 0.3 ms,
which is close to 0, since no picking errors are added.
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Figure 3.4. Stack and migration images. (a): the reflectivity image computed from the
velocity model. (b): the stacked seismic section with the horizontal axis in offset and the
vertical axis in time. (c): the migration images using the true velocity. (d): the migration
images using the inverted velocity from tomography.
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Table 3.2. Model and acquisition parameters for the CDP reflection processing.

Model size 117 m × 30 m

Grid size 0.25 m

Number of shots 118

Number of receivers 118

Shot/receiver spacing 1 m

Source 100 Hz Ricker wavelet

Recording length 0.2 s

Sampling interval 0.02 ms
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are some artifacts in the migration image using the tomographic velocity, where the layers

around X<15 m are tilted and the layers around X>90 m undulate, the fault locations are

clearly identified with the correct dip angles.



CHAPTER 4

NUMERICAL RESULTS FOR FIELD DATA

The 2-D and 3-D tomographic results and the 2-D migration images are computed for

data recorded from the Washington fault experiment and analyzed in this chapter. My

interpretation suggests that there are four faults and two large LVZs. These LVZs are likely

to be colluvial wedge packages, as they appear to be associated with the faulting.

4.1 Tomographic Results

4.1.1 2-D Tomographic Results

One 2-D survey line is taken from the original 3-D data. The first-arrival traveltimes

are picked from 3,200 traces, where 513 traveltime picks were rejected because they did

not satisfy the reciprocity condition within a tolerance of 3 milliseconds. The remaining

traveltimes are inverted to obtain the P-wave velocity distribution. Figure 4.1(a) depicts

the velocity tomogram presented as contours of seismic velocity in depth along the profile,

and Figure 4.1(b) displays the raypath density through each cell in the tomogram. Based on

the synthetic tests in Chapter 3, two criteria are used to identify a fault in the tomogram:

(1) Focusing of rays in the raypath density image (the fault is not exactly located at the

greatest raypath density area, but is located at the low-density side near the plane (Figure

3.1). (2) A sharp change in the velocity gradient (Figure 3.2). Combining the tomogram,

velocity gradient profile, raypath density distribution, and migration image (discussed in

Section 4.2) together, four faults are interpreted, numbered from F1 to F4. Four LVZs

are outlined with ellipses in the traveltime tomogram. In the raypath density, the LVZs

correspond to the zones of low raypath density, marked with ellipses as well. A plot of RMS

traveltime residual vs. iteration number is shown in Figure 4.2. The final RMS traveltime

residual is about 2.4 ms, which is slightly smaller than the estimated picking error of 3 ms.
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Figure 4.1. 2-D traveltime tomogram and raypath density image. (a): the 2-D traveltime
tomogram with the fault interpretation. (b): the raypath density image.
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Figure 4.2. RMS traveltime residual vs. iteration number. The solution converges after
about twenty iterations, and final RMS traveltime residual is about 2.4 ms.
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4.1.2 3-D Tomographic Results

The first-arrival traveltimes are picked from 115,200 traces in the original data set,

where 29,750 traveltime picks are rejected because they failed the reciprocity test or were

deemed unpickable. The 3-D velocity tomogram is inverted from these picks and is shown in

Figure 4.3. Four X-Z slices spaced every 2 m along the Y direction are shown in Figure 4.4.

This tomogram clearly delineates three large LVZs. The one denoted as LVZ1 is located at

X=20∼35 m, LVZ2 is located at about X=50∼65 m, and LVZ3 is located along the near

surface at X=35∼65 m. All of the LVZs are parallel to the fault scarp. The main fault, F3,

interpreted from the migration image and the raypath density image, is located at the offset

of 45 m, and suggests that LVZ2 is possibly the colluvial wedge generated by surface rupture

events on the Washington fault. The LVZ3 is possibly another colluvial wedge package and

is the youngest of the LVZs. Comparing the 2-D tomogram with the 3-D tomogram, both

have similar structures at low wavenumbers; but, the 3-D tomogram has fewer artifacts

than the 2-D tomogram. To access the accuracy of the predicted traveltimes, a plot of RMS

traveltime residual is shown in Figure 4.5. The final RMS traveltime residual is about 3.2

ms, which is almost the same as the estimated picking error of 3 ms.

4.2 Reflection Results

The 3-D Washington fault data have less observable reflection energy seen in the seis-

mogram. This is because only a 10-lb sledgehammer was used in the 3-D experiment,

compared to the 16-lb sledgehammer in the 2-D experiment; and the 2-D experiment had

a shorter survey length. Here, only the 2-D seismic data are used for reflection stacking.

The common shot gathers (CSGs) are sorted into 190 common midpoint gathers (CMGs)

with 0.5 m spacing, and two or three near-zero-offset traces of each CMG were selected for

stacking.

Figure 4.6 shows the stacked seismic section with the horizontal axis in offset and the

vertical axis in time. It shows more than two shallow horizons, which are mostly continuous,

except for the region around X=14 m. From the stacked profile, it is difficult to determine

the locations of the fault planes. To delineate the fault structures clearly, the stacked data

are migrated. Figure 4.7 shows the final migration image, and using the migration images

of the synthetic data as a guide, the layered horizons are discontinuous at the fault plane.

Here, four faults (F1∼F4) are interpreted, combined with the tomogram and raypath density

image, where F3 is possibly the main fault, and F4 is the antithetic fault. The dip angles of

the four faults are estimated from the migration image to be about 80+/-10 degrees. This



27

Figure 4.3. The volume of the 3-D velocity tomogram. Two large LVZs are clearly
delineated in the tomogram.
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Figure 4.4. X-Z slice of 3-D velocity tomogram. (a): slice at Y = 0 m. (b): slice at Y =
2 m. (c): slice at Y = 4 m. (d): slice at Y = 6 m.
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Figure 4.5. RMS traveltime residual vs. iteration number. The solution converges after
about fifteen iterations, and the final traveltime residual is about 3.2 ms.
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is consistent with the description of the Washington fault by Higgins (1998).

4.3 Interpretations

Figure 4.8 presents a summary of the tomographic results and the migration image.

From the 2-D and 3-D traveltime tomograms and 2-D migration images, we can identify

the following features:

(1) Three LVZs (LVZ1, LVZ2 and LVZ3) have been imaged with both 2-D and 3-D

traveltime tomography. To establish their identity, age, and the estimated frequency of

past earthquake occurrence, a much cheaper alternative than trenching is to drill a well

over the areas ( 20 m< X <35 m and 50 m< X <65 m).

(2) F3 is likely to be the main fault, which is consistent with geomorphology data, and

F4 is a possible antithetic fault.

(3) The depth of the bedrock is estimated to be about 15 m, with the velocity larger

than 2200 m/s.

(4) The four faults have an apparent dip of approximately 70-80 degrees.

(5) From the 3-D tomogram, the thickness of the LVZ1 and LVZ2 is about 5 m, and the

thickness of LVZ3 is about 2 m.

Four faults and three LVZs are interpreted in Figure 4.9 finally. Table 4.1 summarizes

the features interpreted from Figure 4.8 and Figure 4.9. The thickness of LVZs can be

considered as an approximation of the fault vertical slip. Combining the fault slip rate

from paleoseismic data with the fault slip inferred by tomography, the age of the fault can

be speculatively estimated. Earth Sciences Associates (1982) state that the slip rates for

the Washington fault are 0.003 mm/yr for the past 1.5 kyr, and a minimum slip rate of

0.03∼0.12 mm/yr for the past 10 to 25 kyr. If these estimates are correct, then I estimate

that the fault activity started later than 16 kyr.
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Figure 4.8. Summary of tomographic results and migration image, and interpretation.
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Figure 4.9. Final interpretation.
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Table 4.1. List of the features from the interpretation of Figures 4.8 and 4.9. The letters
‘h’, ‘d’, and ‘w’ indicate the thickness, depth and width of the LVZs, respectively.

Location Features

F1 15 m 80 degrees

F2 35 m 80 degrees

F3 42 m 80 degrees (main fault)

F4 76 m 70 degrees (antithetic fault)

LVZ1 20∼35 m h=5 m, d=3 m, w=15 m

LVZ2 50∼65 m h=5 m, d=7 m, w=15 m

LVZ3 35∼65 m h=2 m, d=0 m, w=30 m



CHAPTER 5

CONCLUSIONS

Seismic experiments were conducted across the Washington fault with the goal of imag-

ing the shape and location of faults and colluvial wedges. The 3-D data consisted of 115,200

traces, of which 85,450 traveltimes were picked and inverted to estimate the 3-D velocity

structure of the Washington fault over a volume of 116 m x 7.5 m x 30 m. Reflectivity

images from the 2-D seismic data provided information on the fault zone that was used, in

conjunction with information from the 3-D tomogram, to estimate fault and colluvial wedge

package locations associated with prehistoric earthquakes along the Washington fault.

The results of processing the 2-D and 3-D seismic surveys over the Washington fault

show consistent images that appear to be faults and LVZs to a depth of about 30 m. From

the 2-D and 3-D traveltime tomograms and the 2-D migration images, we can identify the

following consistent features:

(1) Three LVZs (LVZ1, LVZ2 and LVZ3) are imaged with both 2-D and 3-D traveltime

tomography.

(2) F3 is likely to be the main fault, which is consistent with geomorphology data, and

F4 is the possible antithetic fault.

(3) The depth of the bedrock is estimated to be about 15 m, with the velocity larger

than 2200 m/s.

(4) The four faults have an apparent dip of approximately 70-80 degrees.

(5) From the 3-D tomogram, the thickness of the LVZ1 and LVZ2 is about 5 m, and the

thickness of LVZ3 is about 2 m.

(6) Combining the fault slip rate from paleoseismic data with the fault slip inferred by

tomography, the age of the fault is estimated to be younger than 16 kyr.

I have demonstrated that seismic tomographic images can reveal the shape and depth of

LVZs, which are possibly colluvial wedge packages associated with normal-fault earthquakes.

This result was used by UGS personnels to optimally design a trenching survey over this

area. A much cheaper alternative is to drill into the LVZs to establish their identity and age,
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and to estimate the frequency of past earthquake occurrence. A future task is to compare

the tomogram with the trench log, and analyze the accuracy of my interpretation.



APPENDIX

3-D TRAVELTIME TOMOGRAPHY

ALGORITHM

Traveltimes associated with direct and turning rays were inverted by a nonlinear in-

version method, where the traveltimes were computed by a finite-difference solution to the

eikonal equation (Qin et al., 1992). The model velocities are updated each iteration by a

simultaneous iterative reconstruction technique (SIRT) (Gilbert, 1972). In this scheme the

data misfit function is defined as:

ǫ =
1

2

∑

i

(tobs
i − tcal

i )2, (A.1)

where the summation is over the ith raypaths, tobs
i is the associated first-arrival traveltime

pick, and tcal
i is the calculated traveltime. The gradient of the misfit function is given by:

γj =
δǫ

δsj

=
∑

i

δti
δti

δsj

, (A.2)

where δti is the traveltime residual and δsj is the slowness in the jth cell. Equation A.2

can be written as:

γj =
∑

δtilij ≈ l
∑

δti, (A.3)

where lij is the segment length of the ith ray that visits the jth cell, and l is the width of

a square cell. By assuming that all the ray segments within a cell are of equal length, the

model updating direction is given by the normalized formula:

γj = −
1

Nj

∑

i=1

δti, (A.4)

where γj is the negative gradient of the misfit function in the jth cell, Nj is the number

of rays that visit the jth cell, δti is the traveltime residual and the summation is over the

indices associated with raypaths that visit the jth cell.



38

If a cell has no raypaths passing through, i.e., Nj = 0, it is assigned the same gradient

value as the cell just above it. This is called gradient downward extrapolation, because

it extends the gradient field downward from the deepest point where rays can reach for a

given survey geometry. This technique is based on the fact that we do not have information

below the maximum depth of ray penetration, so we assume a downward continuation of

known velocities. This point must be kept in mind when interpreting an image, because the

edges of the image will display vertical striping associated with shallow ray penetration.
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