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ABSTRACT

Image segmentation is the problem of partitioning an image into disjoint segments that 

are perceptually or semantically homogeneous. As one of the most fundamental computer 

vision problems, image segmentation is used as a primary step for high-level vision tasks, 

such as object recognition and image understanding, and has even wider applications in 

interdisciplinary areas, such as longitudinal brain image analysis. Hierarchical models have 

gained popularity as a key component in image segmentation frameworks. By imposing 

structures, a hierarchical model can efficiently utilize features from larger image regions 

and make optimal inference for final segmentation feasible.

We develop a hierarchical merge tree (HMT) model for image segmentation. Motivated 

by the application in large-scale segmentation of neuronal structures in electron microscopy 

(EM ) images, our model provides a compact representation of region merging hypotheses 

and utilizes higher order information for efficient segmentation inference. Taking advantage 

of supervised learning, our model is free from parameter tuning and outperforms previous 

state-of-the-art methods on both two-dimensional (2D) and three-dimensional EM image 

data sets without any change. We also extend HMT to the hierarchical merge forest (HMF) 

model. By identifying region correspondences, HMF utilizes inter-section information to 

correct intra-section errors and improves 2D EM segmentation accuracy.

HMT is a generic segmentation model. We demonstrate this by applying it to natural 

image segmentation problems. We propose a constrained conditional model formulation 

with a globally optimal inference algorithm for HMT and an iterative merge tree sampling 

algorithm that significantly improves its performance. Experimental results show our 

approach achieves state-of-the-art accuracy for object-independent image segmentation.

Finally, we propose a semi-supervised HMT (SSHMT) model to reduce the high demand 

for labeled data by supervised learning. We introduce a differentiable unsupervised loss term 

tha t enforces consistent boundary predictions and develop a Bayesian learning model that 

combines supervised and unsupervised information. We show that with a very small amount 

of labeled data, SSHMT consistently performs close to the supervised HMT with full labeled 

data sets and significantly outperforms HMT trained with the same labeled subsets.
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CHAPTER 1

INTRODUCTION

This dissertation focuses on developing learning-based frameworks for hierarchical image 

segmentation. Image segmentation considers an image as a set of pixels and seeks to 

find a partition of this set into multiple disjoint subsets, such tha t pixels in each subset 

share certain visual or semantic characteristics. General image segmentation is widely used 

as a preprocessing step for solving high-level vision problems, such as object recognition 

and image understanding [1, 2]. In many interdisciplinary areas, such as biological and 

medical image analysis, image segmentation also plays an important role in helping scientists 

quantify and analyze image data [3, 4].

There are two perspectives of image segmentation [5]: edge detection and region seg

mentation. Edge detection aims at finding edges between different perceptual pixel groups. 

Region segmentation partitions an image into disjoint regions. Usually, edge detection 

focuses on assigning a binary label to each pixel with certain confidence, indicating if it 

belongs to an edge or not, and does not guarantee closed object contours. Though closed 

contours and the regions they encircle can be recovered from edges, such transformation 

with high accuracy is usually nontrivial. On the other hand, region segmentation seeks 

to find the cluster membership of each pixel, and closed contours of an object can be 

trivially generated as the outmost points of a region. Many region segmentation methods 

take advantage of the edge detection outputs as boundary cues to help with the search 

for correct partitioning. The works in this dissertation belong to the region segmentation 

category.

Region segmentation is a pixel clustering problem subject to the connectivity constraint 

tha t there must exist a connected path between any pair of pixels in the same cluster. The 

first question is at what granularity we do the clustering. Pixel-based methods have been 

proposed in early works [6, 7, 8] and suffer from two major problems. First, the compu

tational complexity of such methods is usually very high as in the order of the number of 

all pixels. Second, individual pixel intensities are usually unable to describe image context.
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For example, it is not possible to segment neuron cells in the electron microscopy image 

shown in Figure 1.1a by looking only at each pixel, because the intracellular structures, 

such as mitochondria and vesicles, have intensities very similar to those of the membranes. 

The use of superpixels offers a solution. Superpixels, with an example shown in Figure 1.1c, 

are (small) perceptually or semantically homogeneous image regions tha t are near-complete: 

they presumably always preserve image structures and do not undersegment desirable image 

objects [9]. Therefore, segmenting image objects becomes correctly identifying and cluster

ing their superpixels. Using superpixels as segmentation primitives largely reduces the 

computational complexity to the order of the number of superpixels. Moreover, informative 

nonlocal features can be extracted to guide the segmentation process.

Another im portant question is how to do the clustering based on image context. There 

is a trade-off between the utilization of higher order image information and tractability. A

(c) (d)

F ig u re  1.1: Example of (a) an original EM image, (b) a ground tru th  segmentation, (c) an 
initial superpixel segmentation, and (d) a proposed final segmentation as a combination of 
initial superpixels. Different colors indicate individual connected components.
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common approach is to consider segmentation as a planar graph labeling problem, which can 

be solved efficiently under the Markov assumption [10, 11, 12]. Such approaches, however, 

can use features only from initial superpixels, which may not be meaningful given their small 

sizes. On the other hand, an exhaustive search over all possible superpixel combinations is 

intractable. As a trade-off solution, greedy region agglomeration [13] can use features from 

larger regions by updating them after each merge, but the merging termination is based on 

local criteria and may not be accurate. Hierarchical segmentation, inspired by hierarchical 

clustering [14], provides a way to incorporate higher order information and infer final 

segmentation in a globally optimal manner by imposing structures on the region merging 

process. In this dissertation, we introduce a tree-like hierarchical image segmentation model 

and its variants that take advantage of supervised/semi-supervised learning techniques. We 

apply them to two-dimensional (2D) and three-dimensional (3D) electron microscopy image 

segmentation for neural circuit reconstruction and 2D natural image segmentation problems 

and demonstrate state-of-the-art results. Examples of results are shown in Figure 1.1 and 

1.2.

(c) (d)

F ig u re  1.2: Example of (a) an original natural image, (b) a contour hierarchy image, (c) a 
segmentation at threshold 0.6, and (d) a segmentation at threshold 0.1. Region boundaries 
are thickened for visualization purposes.
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1.1 Neural Circuit Reconstruction
Our works are motivated by the applications of neural circuit reconstruction in con- 

nectomics research. Connectomics [15] is drawing attention in neuroscience as an impor

tant method for studying neural circuit connectivity and the implied behaviors of nervous 

systems [16, 17, 18]. It has also been shown tha t many diseases are highly related to 

abnormalities in neural circuitry. For instance, changes in the neural circuitry of the 

retina can lead to corruption of retinal cell class circuitry, and therefore retinal degenerative 

diseases can be found by ultrastructural cell identity and circuitry examination, which at 

the same time implies certain strategies for vision rescue [19, 20, 21, 22].

To study the connectivity of a nervous system, image analysis techniques are widely 

adopted as an important approach. For image acquisition, electron microscopy (EM) 

provides sufficiently high resolution on nanoscale to image not only intracellular structures 

but also synapses and gap junctions tha t are required for neural circuit reconstruction. The 

EM image data sets we use for neuron segmentation are acquired, respectively, using serial 

section transmission electron microscopy (SSTEM) [23, 24], serial block-face scanning elec

tron microscopy (SBFSEM) [25], serial section scanning electron microscopy (SSSEM) [26], 

and focused ion beam scanning electron microscopy (FIBSEM) [27]. Depending on the 

type of technique, the imaging resolutions range from 2 to 50 nm/pixel, and the EM image 

data sets for even very small tissue specimens are on terabyte scale [28]. Dense manual 

analysis is thus extremely laborious and can take decades to complete [29]. Therefore, 

automatic image-based connectome reconstruction techniques that can extensively reduce 

human workloads are required. Currently, fully automatic EM image segmentation and 

connectome reconstruction remain a challenging problem because of the complex ultra- 

structural cellular textures and the considerable variations in shape and physical topologies 

within and across image sections [30, 31]. Our work focuses on neuron segmentation as a 

first step for automating connectomics and can be extended to segmentation of intracellular 

structures, such as mitochondria.

Our goal is to transform an EM image section/volume into a 2D/3D label map, in which 

pixels belonging to the same neuron cell have identical labels. Our proposed methods take 

advantage of ground tru th  data labeled by human experts and build tree-like structures 

for supervised hierarchical segmentation of unlabeled image data. We also develop a 

semi-supervised model tha t can be accurately trained with very little labeled data. Our 

supervised methods set new marks on the state-of-the-art performance and achieve even 

close-to-human segmentation accuracy on certain data sets. Our semi-supervised method
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enables accurate segmentation of neuronal structures with very sparse human labeling. 

Our methods promise a great potential to facilitate the process of reconstructing neuronal 

structures from EM images and help neuroscientists understand structures and functions of 

nervous systems.

1.2 Natural Image Segmentation
Different from image segmentation problems for specific tasks tha t always have one gold 

standard answer, such as neuron segmentation in EM images, segmentation of a natural 

image can have multiple “true” answers, each of which describes the image content at a 

different level of perceptual granularity or semantic organization. For example, when seg

menting an image of a keyboard, one segmentation considers the entire keyboard as a single 

segment, whereas another segmentation labels every key as an individual segment. Both 

segmentations are “correct.” Then, the question becomes how to measure the “correctness” 

of the segmentations of a natural image. Although opinion exists tha t segmentation quality 

can be evaluated only in the context of a specific task [32], the argument by Martin et al. is 

widely accepted tha t a segmentation per se can be evaluated via comparisons with multiple 

ground tru th  answers generated by human observers [33]. Instead of producing one single 

label map, a hierarchy of closed contours with different magnitudes should be proposed for 

an image, which can be trivially transformed to label segmentations at different granularity 

levels via thresholding.

The content of a natural image can be arbitrary. It ranges from a still animal to 

a moving car, or from portraits of a single human to views of a crowded street, etc. 

Moreover, photographs from cameras, a major modality for imaging natural scenes, are 

subject to inconsistent qualities and various issues, such as noises, chromatic aberrations, 

image distortions, unfocused exposures, etc. Therefore, natural image segmentation is in 

general a much more difficult problem than segmentation of specific types of images, and 

the performance of state-of-the-art methods is still less than satisfactory after years of active 

research.

We reformulate and extend our hierarchical model for EM segmentation to cope with 

the issues imposed by the difficult nature of natural image segmentation and to generate the 

contour hierarchies suggested by [33]. Our model requires no semantic information about an 

image. We show on a variety of publicly available natural image data sets that our method 

achieves state-of-the-art performance and is very competitive in general object-independent 

image segmentation. An example of the resulting contour hierarchy and segmentations at



6

two threshold levels to capture different details is shown in Figure 1.2.

1.3 Contributions
The contributions of this dissertation include:

1. Development of a hierarchical merge tree (HMT) model for EM image segmentation. 

The main advantage of this model is tha t the merge tree structure provides a most 

efficient representation of potential merging of initial superpixels and is capable of 

incorporating higher order information to infer final segmentations. Moreover, the 

proposed model uses supervised learning to take advantage of ground tru th  data 

and is almost parameter-free given the initial superpixels. The model is independent 

of image dimensionality and can thus be applied to both 2D and 3D segmentation 

without any change. This work is discussed in detail in Chapter 2.

2. Development of a hierarchical merge forest (HMF) model for 2D EM image segmen

tation. The HMF model improves the performance of the HMT model by utilizing 

inter-section information. By identifying correspondences between pairs of 2D regions 

that belong to the same 3D neuron cell, the HMF model couples individual HMT 

models for each 2D section into a joint model and globalizes the inference of final 

segmentations of each 2D section in a 3D image volume. This work is discussed in 

detail in Chapter 3.

3. Development of a constrained conditional model formulation for the HMT model 

(CCHMT) and an iterative merge tree sampling and segmentation accumulation 

algorithm for natural image segmentation. The constrained conditional model formu

lation of HMT enables fast computation of a globally optimal solution. The iterative 

algorithm efficiently explores the merge tree space and diversifies the merge tree gen

eration. The segmentation accumulation procedure emphasizes accurate boundaries 

and phases out nonsystematic errors. This work is discussed in detail in Chapter 4.

4. Development of a semi-supervised hierarchical merge tree (SSHMT) model. Learning 

the boundary classification function is essential to the performance of the HMT model. 

We propose a differentiable unsupervised loss term to exploit structural information 

and limit the search space for such functions by expressing the consistency constraint 

imposed by the merge tree structure in a relaxed disjunctive normal form. We 

then propose a Bayesian framework that can incorporate unsupervised information 

and a very small amount of supervised samples to accurately learn the boundary
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classification function. We demonstrate tha t SSHMT can be trained with significantly 

less labeled data to segment EM images, for which the ground tru th  generation 

requires extensive human effort and expertise. This work is discussed in detail in 

Chapter 5.

1.4 Software
We have released our code to help other researchers understand and build upon our 

works. All of our code is written in C + +  with dependencies on the Insight Toolkit [34], 

Eigen [35], and the Boost Libraries [36]. Most of our implementations are highly effi

cient. For example, it takes less than 4 minutes to run a holistic experiment (including 

data generation, training, and testing) with the HMT model (Section 2.2) over the entire 

Drosophila VNC data set [37, 38] for the ISBI 2012 EM Segmentation Challenge [39] 

(Section 2.3.1) on an Apple MacBook Pro laptop computer with 2 GHz Intel Core i7 CPU 

using one core with single thread and limited memory. The code repository is available at 

h t t p s : / /g i th u b .c o m / t in g l iu /g l ia .

1.5 Overview
Chapter 2 gives a mathematical overview of the image region segmentation problem and 

explains the motivation for using superpixels. We then summarize the related works on EM 

image segmentation and introduce the HMT model in detail. The superior performance of 

the HMT model is demonstrated on three EM image data sets.

Chapter 3 introduces the HMF model. We first review the related segmentation methods 

tha t use inter-section information for EM image segmentation. Then, we describe the HMF 

model in detail and show its improvement compared to the HMT model on two EM image 

data sets.

Chapter 4 first reviews the existing methods for general image segmentation. We then 

introduce the CCHMT and the optimal inference algorithm. Next, we propose the iterative 

training and testing algorithm that can be used to diversify merge tree generation and 

improve the overall results. We show the state-of-the-art performance of our approach on 

six publicly available natural image segmentation data sets.

Chapter 5 discusses the SSHMT model. We first review learning-based methods for EM 

image segmentation and discuss the relation between our method and another very recent 

active learning framework for the same task. We then introduce the SSHMT learning model 

with the novel unsupervised loss term. On three EM image data sets, we demonstrate the 

effectiveness of our approach with a very limited amount of supervised data.

https://github.com/tingliu/glia


CHAPTER 2

HIERARCHICAL MERGE TREE MODEL

Hierarchical image segmentation methods impose structures to incorporate higher order 

information about shapes and image appearance. Meanwhile, supervised learning-based 

methods utilize ground tru th  data and learn to make decisions for complex situations. We 

combine the merit of hierarchical segmentation and supervised learning and propose the hi

erarchical merge tree (HMT) model that uses tree structures and boundary classification for 

region-based image segmentation, which is also presented in [40, 41]. We focus on applying 

the HMT model to neuron segmentation in EM images in this chapter and will extend it to 

solve general image segmentation problems later. Starting with a cell boundary detection 

confidence map, we generate initial superpixel segmentation of the image and build a merge 

tree structure to represent the region merging hierarchy. A boundary classifier is learned to 

predict likelihood scores for potential merges in the tree based on nonlocal image features. 

We then define a potential score for each tree node and infer the final segmentation from the 

tree merge under a consistency constraint. We validate our approach with three EM image 

data sets and demonstrate tha t our approach can achieve close-to-human 2D segmentation 

accuracy and is highly competitive among various other state-of-the-art methods for both 

2D and 3D segmentation. Independent of image dimensionalities and classification models, 

our approach proposes a general framework for efficient hierarchical image segmentation.

2.1 Introduction
There are two general approaches to fully automatic 3D neuron segmentation and 

reconstruction using EM images. One approach focuses on segmenting neurons in 2D images 

and making inter-section linkings for 3D reconstruction. As for 2D neuron segmentation, 

several unsupervised attem pts have been made. Anisotropic directional filtering is applied 

to enhance membrane continuity [42, 43], but fails to detect membranes with sufficient 

accuracy, and it cannot remove intracellular structures. Kumar et al. [44] introduced 

radon-like features to suppress undesirable intracellular structures, but this approach can
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achieve only moderate accuracy performance. On the other hand, supervised learning 

methods have proven successful in detecting membranes and segmenting neurons in 2D. 

Mishchenko [45] uses neural networks with one hidden layer and Hessian eigenspace features 

to classify pixels as membrane or nonmembrane. Deep neural networks [30, 46, 47, 48, 49] 

have been widely used for membrane detection and achieved remarkable results. Laptev 

et al. [50] use SIFT flow to align adjacent image sections and incorporate both intra- and 

inter-section pixel information for membrane detection. Seyedhosseini et al. [51] propose 

a multiclass multiscale series contextual model tha t utilizes both intra- and interobject 

information within a serial classifier framework for the detection of membranes and other 

cellular structures simultaneously. Membrane detection results in cell boundary confidence 

probability maps, which can be simply thresholded [39] to acquire region segmentation. 

Other more sophisticated methods are proposed to improve the region accuracy. Kaynig 

et al. [52] propose a graph-cut framework with perceptual grouping constraints to enhance 

the closing of membrane gaps. For 3D linking given 2D segmentation, Yang and Choe [53] 

propose a graph-cut framework to trace 2D contours in 3D. Kaynig et al. [54] exploit 

geometrical consistency constraints and use the expectation maximization algorithm to 

optimize the 3D affinity matrix. Vitaladevuni and Basri [55] consider the 3D linking as 

coclustering each pair of adjacent sections and formulate it as a quadratic optimization 

problem.

The other group of methods seeks to achieve 2D segmentation and 3D reconstruction at 

the same time. Andres et al. [56] propose a graphical model framework to incorporate both 

supervoxel face and boundary curve information for 3D supervoxel merging. Vazquez-Reina 

et al. [57] generate multiple 2D segmentation hypotheses and formulate the 3D segmenta

tion fusion into a Markov random field framework. Similarly, Funke et al. [58] use tree 

structures to represent 2D segmentation hypotheses and achieve 2D segmentation and 3D 

reconstruction simultaneously by solving a constrained integer linear programming problem. 

Jain et al. [59] and Nunez-Iglesias et al. [60] use reinforcement learning frameworks to learn 

merging policies for superpixel agglomeration.

We develop a hierarchical segmentation approach that is independent of image dimen

sionalities, which is suitable for segmenting both 2D and 3D images. Independent of a 

specific membrane detection algorithm, our method takes membrane probability maps as 

input for superpixel generation and uses a hierarchical merge tree structure to represent 

the merging of multiple region hypotheses. We use supervised classification techniques to 

quantify the likelihoods of the hypotheses, based on which we acquire region segmentation
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via constrained optimization. We show that our method achieves results highly competitive 

with other state-of-the-art methods. Our 2D segmentation performance on the public 

EM 2D segmentation challenge data set is even on the human level. Compared with the 

other region merging method by Nunez-Iglesias et al. [60], the use of node potential in our 

method (see Section 2.2.4) utilizes higher order information to make merging decisions rather 

than only thresholding boundary classifier output. In addition, our merge tree framework 

makes it convenient to incorporate prior knowledge about segmentation, which may further 

improve the performance.

2.2 Methodology
Given an image I  consisting of pixels P , a segmentation is a partition of P , denoted as 

S =  £ 2P | Ujsi =  P ; Vi =  j, sin Sj =  0} , where 2P is the power set of P . A segmentation 

assigns every pixel an integer label tha t is unique for each image object. Each si , which is a 

connected subset of pixels in P , is called a segment or region. All possible partitions form 

a segmentation space S p . A ground tru th  segmentation Sg £ Sp is usually generated by 

humans and considered as the gold standard. The accuracy of a segmentation S  is measured 

based on its agreement with Sg. In a probabilistic setting, solving a segmentation problem 

is formulated as finding a segmentation that maximizes its posterior probability given the 

image as

S * =  argm ax P (S  11). (2.1)
sesv

2 .2 .1  In i t ia l  s e g m e n ta t io n

The current trend to alleviate the difficulty in the pixelwise search for S * is to start 

with a set of oversegmenting superpixels. A superpixel is an image segment consisting of 

pixels tha t have similar visual characteristics. A number of algorithms [7, 13, 61, 62, 63] can 

be used to generate superpixels. Our methods use, but are not limited to, the watershed 

transform [64, 65] over some boundary confidence maps generated by membrane detection 

algorithms [46, 66]. The basic idea of the watershed transform is to consider an image as 

a terrain map with pixel intensities representing heights. As the rain falls onto the terrain, 

water flows down along the steepest path and forms lakes in the basins, which correspond 

to regions or segments of the image, and the borders between the lakes are called watershed 

lines. In terms of implementation, local minima of the image are used as seeds, from 

which regions are grown based on intensity gradients until the region boundaries touch. 

Figure 1.1c shows an example of an initial superpixel segmentation. Our goal is to combine
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those superpixels into a final segmentation, shown in Figure 1.1d. In practice, we blur the 

membrane detection probabilities with a Gaussian filter and ignore the local minima with 

dynamics below threshold 0w to avoid too many initial regions. Meanwhile, by using a small 

value of dw, we can ensure oversegmentation.

Let So be the initial oversegmentation given by the superpixels. The final segmentation 

consisting only of merged superpixels in So can be represented as S =  (s^ e  2P | U  si =  

P ; Vi =  j , s j  H sj =  0 ; Vi, 3S' e  2So, s.t. si =  Us/.eS' s j }. Therefore, the search space for Sj j
is largely reduced to S  C S p . Even so, however, an exhaustive search is still intractable, 

and some kind of heuristic has to be injected. We propose to further limit S  to a set of 

segmentations induced by tree structures and make the optimum search feasible.

2 .2 .2  M e rg e  t r e e

First, we define the boundary between two regions si and sj as the set of pixels tha t are 

in connected neighborhoods of pixels from both regions

B(sj, s j ) =  Nnc (si) n  Nnc (sj), (2.2)

where Nnc(s .) represents the set of pixels tha t are n c-connected to any pixel in region s.. 

The choice of nc may differ by implementations. In our work, we use nc =  4 for 2D pixel 

connectivity and nc =  6 for 3D pixel connectivity. If B(si ,s j-) is not the empty set, we 

say tha t regions si and sj are neighbors. We then define the merge of N m disjoint regions 

(s i}N=m as the union of their pixels, which results in a region s =  U ^ s i . As an example 

shown in Figure 2.1, the merge of region s 1 and s2 forms region s3. Clearly, merging regions 

eliminates the boundaries between them.

We define a merging saliency function f s : S Nm ^  R tha t takes a set of m regions 

and uses pixel information from the original image and/or boundary confidence maps to 

determine the merging saliency of the regions as a real scalar. Higher saliency indicates the 

regions are more likely to merge. In practice, we consider merging only two regions (Nm =  

2) each time. To determine the merging saliency, we find tha t the boundary confidence 

performs more accurately and consistently than the original image intensity. As an example 

shown in Figure 2.1a, some intracellular structures, e.g., mitochondria, look even darker 

than the membranes in the original image, and thus using these original intensities could 

give false indications about region merging saliency. In the membrane detection probability 

map (Figure 2.1b), however, the strengths of such pixels are suppressed and the membrane 

pixels are distinguished. Also, we find tha t the median of the membrane probabilities of the 

boundary points between two regions is a good indication of region merging saliency and
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F ig u re  2.1: Example of (a) an original EM image (zoomed-in), (b) a membrane detection 
confidence map, (c) two merging regions s 1 (red) and s2 (blue), and (d) their merging result 
region s3 (gold). All regions are overlaid to the ground tru th  segmentation. The membrane 
detection confidence map is histogram-equalized for visualization purposes.

gives a more robust boundary measure than other statistics, such as minimum or mean. 

Thus, the merging saliency function is specified as

f s(si, Sj; Pb) =  1 — median({Pb(k) | k e  B(si, Sj)}), (2.3)

where Pb(k) is the value of the k-th pixel on a boundary confidence map Pb. We define 

f s(si , s j ) =  —̂  if B(si , s j ) is the empty set.

In practice, some regions in the initial superpixel segmentation can be too small to 

extract meaningful region-based features (see Section 2.2.3), so we optionally conduct a 

premerging step to merge initial regions smaller than a certain threshold of Oa  pixels to 

one of its neighbor regions tha t yields the highest merging saliency according to (2.3). We 

also premerge a region if its size is smaller than a certain threshold of Oa  pixels, and its
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average intensity from the membrane detection probability map of all its pixels is above a 

certain threshold 9pb as an artifact due to thick membranes.

Consider a graph in which each node corresponds to a superpixel and an edge is defined 

between two nodes that are neighbors. Starting with the initial oversegmentation So, finding 

a final segmentation, which is essentially the merging of initial superpixels, can be considered 

as combining nodes and removing edges between them in the graph. This superpixel merging 

can be done in an iterative fashion: each time a pair of neighboring nodes is combined in the 

graph with corresponding edges updated, and this process is repeated until only one node 

is left in the graph. The merging priority can be determined using the merging saliency 

function f s. Each time, we combine two nodes whose corresponding regions yield the highest 

merging saliency,

( s ^ , Sj*) =  arg max fs ( s i ,s j ; Pb). (2.4)
Si,S j GS

To represent the order of such merging, we use a full binary tree structure, which we 

call the merge tree. In a merge tree T r  =  (V, E), a node vi e  V represents an image region 

Si e  2P . Leaf nodes correspond to initial superpixels in So. A nonleaf node corresponds 

to an image region formed by merging superpixels, and the root node corresponds to the 

whole image as one single region. An edge ei,c e  E between node vi and its child vc exists 

if sc C si , and a local structure ({vi ,vc1 ,vc2}, {ei,c1, ei,c2}) represents tha t region si is the 

merge of region sc1 and sc2. Figure 2.2c shows a merge tree example with initial superpixels 

shown in Figure 2.2a. Region si to s 14 correspond to the leaf nodes vi to v14 in the merge 

tree. The nonleaf nodes are the merging result of their descendant regions. For example, 

region s 15 is the merge of region s4 and s 10. The root node v27 corresponds to the whole 

image. It is noteworthy tha t a merge tree defined here can be seen as a dendrogram in 

hierarchical clustering [14] with each cluster being an image region.

Given the merge tree, finding a segmentation of the image becomes finding a subset of 

nodes. We call a segmentation formed by a subset of tree nodes a tree-derived segmentation. 

Among all possible tree-derived segmentations, we call the one tha t best aligns with the 

ground tru th  segmentation the best-effort tree-derived segmentation. Our goal is to select 

a subset of nodes tha t form a segmentation tha t is as close to the best-effort tree-derived 

segmentation as possible.

2 .2 .3  B o u n d a r y  c la ss ifie r

We use a binary label yi e  {0,1} to indicate if the region merging at node vi should 

occur ( “merge” , yi =  1) or not ( “split” , yi =  0). We would like to assign a likelihood score
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F ig u re  2.2: Example of (a) an initial segmentation, (b) a consistent final segmentation, 
both overlaid on the original EM image, and (c) a corresponding merge tree. Each leaf node 
has the same label as its corresponding initial region, and the colored nodes correspond to 
regions in the final segmentation. As an example of node potential computation described 
in Section 2.2.4, the potential of node v24 is equal to the probability tha t node v20 and v2i 
merge to node v24 (the blue box), while node v2 and v24 do not merge to node v26 (the red 
box).

P ( y  =  1) in order to select the best segments from the merge tree. One possible solution 

is to use the merging saliency function output. However, it relies only on the boundary 

cues and cannot utilize the abundant information from the two merging regions. Instead, 

we use a binary classification function, named boundary classifier. We take advantage of 

ground tru th  data and train the boundary classifier with (X ,y ), where X  =  (xj}j is a 

collection of feature vectors generated at each merge in training images, and y =  (yi}i is 

their corresponding labels. The classifier is then used to predict P (y  | x) e  [0,1] for any 

testing case x.

We use nonlocal features computed from each pair of merging regions, including re

gion geometry, image intensity, and texture statistics from both original EM images and
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membrane detection probability maps, and merging saliency information. Appendix A.1 

summarizes the categories of features used by boundary classifiers. One advantage of our 

features over the local features commonly used by pixel classifiers [46, 66] is tha t our features 

are extracted from regions instead of pixels and thus can be more informative. For instance, 

we use geometric features to incorporate region shape information for the classification, 

which is not feasible for pixel classifiers.

We use ground tru th  segmentations to generate true merge labels y for training. We 

compare the errors under a certain metric for both merging (em) and keeping split (es) 

against the ground truth. Either case with smaller error deviates less from the ground 

tru th  and should thus be adopted. In the example shown in Figure 2.1, region s3 aligns 

better with the ground truth, so region s 1 and s2 should be combined. The training label 

is determined automatically as

f1 if £m <£s , .
Vk = j o  otherwise. ( )

The error metric can be chosen to reflect favor of certain segmentation quality. We use the 

adapted Rand F-error (Section 2.3.2) for EM image segmentation.

The boundary classifier is not limited to a specific classification model. We use the 

random forest [67] and the logistic disjunctive normal network in practice. For random 

forest, we assign different weights to positive (y =  1) and negative (y =  0) training samples 

to balance their contributions. The weights w f for positive samples and w0f for negative 

samples are determined as

w i =  I 1 if >  NO (2 6)
rf \  N “ / N f  otherwise, ' ' '

w»( =  ( NA/ N f  NA > Nf  (2.7)
I 1 otherwise,

where N f  and Nr0f are the number of samples with y =  0 and y =  1, respectively.

2 .2 .4  In fe re n c e

After creating the merge tree, the task of generating a final segmentation of the image 

becomes choosing a subset of nodes in the merge tree. It is equivalent to finding a complete 

binary label assignment z =  {zi}i=|1 for every node being a final segment (z =  1) or 

not (z =  0). The labeling must preserve the pixel consistency of the final segmentation. 

The pixel consistency requires that any pixel should be labeled exactly once in the final 

segmentation for belonging to one unique connected component. In a merge tree, the pixel
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consistency requires tha t if a node is selected, all of its ancestors or descendants cannot be 

selected; if a node is not selected, one of its ancestors or a set of its descendants must be 

selected. In other words, exactly one node should be selected on any path from a leaf node 

to the root node. Figure 2.2c shows an example: the colored nodes are picked to form a 

consistent final segmentation in Figure 2.2b. The other nodes cannot be picked, because 

we cannot label any pixel more than once. For example, if node v4 (or v10) is also picked 

along with node v15, the pixels in region s4 (s10) would be labeled as both 15 and 4 (or 10), 

which violates the pixel consistency by definition.

Let p(i) be a query function that returns the index of the parent of node vi . The k-th 

(k =  1, . . .  di) ancestor of vi is denoted as pk(i) with di being the depth of vi in the tree, and 

p0(i) =  i. We refer to the constraint mentioned above as the region consistency constraint:

di
^  V  (i) =  1, (2.8)
k=0

which we enforce for every leaf-to-root path starting at node vi .

Based on the boundary classifier predictions, we assign a potential to each node as the 

likelihood tha t the node represents a best-effort segment. Considering 1) a region exists in 

the final segmentation because it neither splits into smaller regions nor merges into others, 

and 2) the Markov assumption tha t each prediction the classifier makes depends only on 

the local merge structure, we define the potential for a node vi as

Ui =  P (yi =  1) ■ P (Vp(i) =  0). (2.9)

Intuitively, the node potential Ui is the probability tha t the children of node vi should be 

combined, but node vi should not be combined with its sibling into its parent vp(i). As an 

example shown in Figure 2.2c, the necessary condition for region s24 being a final segment 

is tha t the merge below it (the blue box) happens and the merge above it does not (the red 

box), so the potential of node v24 is U24 =  P (y24 =  1) ■ P (y26 =  0). Since a leaf node vi has 

no children, its potential is computed as P (yp(i) =  0)2. Similarly, the potential for the root 

node vr is computed as P  (yr =  1)2.

Under the region consistency constraint, we apply a greedy optimization algorithm to 

infer the label assignments z. First, we label an unlabeled node tha t has the highest 

potential in the merge tree with z =  1. Then, the ancestors and descendants of this node 

are labeled z =  0 as inconsistent choices. This procedure is repeated until every node in the 

merge tree is labeled. The set of nodes with z =  1 forms a consistent final segmentation.
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2.3 Results
We validate our proposed method using three EM image data sets.

2 .3 .1  D a ta  s e ts

2 .3 .1 .1  D r o s o p h i la  V N C  d a t a  s e t

The Drosophila melanogaster first instar larval ventral nerve cord (VNC) data set [37, 38] 

contains 60 512 x 512 images acquired using SSTEM at the resolution of 4 x 4 x 50 nm/pixel. 

This data set was used in ISBI 2012 EM Segmentation Challenge [68] with ground tru th  

2D segmentations of 30 consecutive images as the training set and the other 30 consecutive 

images as the testing set. We target 2D segmentation for this data set. We train our 

algorithm with the 30 training images, test on the 30 testing images, and submit the results 

to the challenge website for evaluation due to the unavailability of ground tru th  for the 

testing images.

2 .3 .1 .2  M o u se  n e u ro p i l  d a t a  s e t

The whole mouse neuropil data set [69] is a stack of 400 images of size 4096 x 4096 

acquired using SBFSEM. The resolution is 10 x 10 x 50 nm/pixel. A subset of 70 700 x 700 

images is cropped and the 2D ground tru th  segmentations are annotated by a human expert 

for performance evaluation. We target 2D segmentation for this data set. A subset of 14 

images is randomly selected to train our algorithm, and the remaining 56 images are used 

for testing.

2 .3 .1 .3  M o u se  c o r te x  d a t a  s e t

Also known as the AC4 data set, the whole mouse cortex data set is a stack of 1850 

images of 4096 x 4096 pixels acquired by SSSEM at the resolution of 3 x 3 x 30 nm/pixel. 

The images were down-sampled by a factor of 2 in the x-y plane, resulting in 6 x 6 x 30 

nm/pixel resolution. Two subsets of 1024 x 1024 x 100 pixels were cropped and used in ISBI 

2013 SNEMI3D Challenge [70] as the training and the testing sets, respectively. We target 

3D segmentation. We train our algorithm on the training stack, test on the testing stack, 

and submit the results to the challenge website for evaluation due to the unavailability of 

ground tru th  for the testing images.

2 .3 .2  E v a lu a t io n  m e tr ic s

We use the adapted Rand F-error [39] as the metric for both training label generation and 

result evaluation. Unlike traditional pixel classification error metrics, the Rand F-error is
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sensitive to incorrect region separation but less sensitive to minor shifts of region boundaries. 

It is used as the standard error metric by the public EM segmentation challenges [68, 70].

Similar to Rand index [71], the Rand F-error is based on pairwise pixel metric that 

examines the labels of every pair of pixels from the proposed segmentation S and the 

ground tru th  segmentation Sg and classifies it as one of the four categories: true positive 

(TP), true negative (TN), false positive (FP), and false negative (FN). Specifically, the 

number of pixel pairs in each category is computed as

N tp  =  £  I(S(i) =  S(j)  A Sg(i) =  Sg(j)), (2.10)
i<j

Ntn =  ^  I(S(i) =  S (j) A Sg(i) =  Sg(j)), (2.11)
i<j

NFp =  £  I(S(i) =  S (j) A Sg (i) =  Sg ( j )), (2.12)
i<j

N fn =  ^  I(S(i) =  S (j) A Sg (i) =  Sg ( j )), (2.13)
i<j

where S(i) is the label of the i-th pixel in S, and I(-) is an indicator function that returns 1 

if the input proposition is true or 0 otherwise. Intuitively, TP and TN pixel pairs are those 

tha t are correctly combined or separated in the proposed segmentation. FP pixel pairs are 

those tha t are incorrectly combined and lead to undersegmentation error. FN pixel pairs 

are those tha t are incorrectly separated and lead to oversegmentation error.

W ith precision and recall defined as

NtpPrecision =  —------- —— , (2.14)
Ntp +  Nfp

Ntp
Recall =  —------- —— , (2.15)

Ntp +  Nfn

the Rand F-error is computed as

^  ^  2 x Precision x Recall
Rand F-score =  — -------------- ----- — , (2.16)

Precision +  Recall
Rand F-error =  1 — Rand F-score. (2.17)

The values of precision, recall, Rand F-score, and the Rand F-error are all in the range 

between 0 and 1. High precision indicates low undersegmentation error, and high recall 

indicates low oversegmentation error. Zero Rand F-error indicates a perfect segmentation.

Since minor shifts of region boundary pixels are not important in the applications of EM 

segmentation, the actual Rand F-error we use is adapted to tolerate such errors by ignoring 

pixels tha t have the membrane (background) label in ground tru th  segmentations. We refer 

to the Rand F-error evaluated in this adaptive way as the adapted Rand F-error.
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2 .3 .3  E x p e r im e n ts

2 .3 .3 .1  D r o s o p h i la  V N C  d a t a  s e t

For the Drosophila VNC data set, we use both the membrane detection probability 

maps generated using the Cascaded Hierarchical Model (CHM) [66] and deep convolutional 

neural networks (DNN) [46] trained with 30 training images. The watershed local minimum 

dynamic threshold Ow is used as 0.03 and 0.01 for the CHM and the DNN probability maps, 

respectively. The precisions and recalls of the initial segmentations of training images are 

shown in Table 2.1. The high precisions and relatively low recalls indicate we ensured initial 

oversegmentation. For both data sets and probability maps, we apply the premerging step 

with parameters OpJ1 =  50, OpJ2 =  200 and 9pb =  0.5. For the random forest used as our 

boundary classifier, we use Of =  255 trees with Of =  70% of all training samples randomly 

selected to train each tree, and at each decision tree node, the square root of the number 

of features is examined for the most informative one for branching.

The testing results are shown in Table 2.2 along with the results of other state-of-the-art 

methods from various groups for comparison. All the results are also available on the ISBI 

2012 EM Segmentation Challenge online leader board [68], which currently still accepts 

submissions for evaluation after the challenge. Note tha t the challenge evaluation system 

thresholds the resulting images at 11 thresholds uniformly distributed between 0 and 1 and 

selects the best result. Therefore, the resulting images as probability maps are thresholded 

at the best thresholds, whereas other resulting images as hard segmentations, such as ours, 

yield identical results with different thresholds. The “Human” entries are generated by two 

individual human observers.

In Table 2.2, entries with group name “IDSIA” use the DNN membrane detection [46] 

probability maps; Entry 7 is the result by applying HMT to the CHM membrane detec

tion [66] probability maps; Entries 3, 5, and 9 are from multigroup collaborations, in which 

the first groups provide membrane detection results and the latter groups apply region-based 

segmentation methods afterwards. We can see that applying our approach consistently 

improves the adapted Rand F-error from membrane detection results (comparing Entry 11

T able 2.1: Precisions and recalls of initial segmentations of the Drosophila VNC data set 
training images using different probability maps. The watershed threshold Ow is 0.03 for 
the CHM and 0.01 for the DNN probability maps.

Method Precision Recall

CHM [46] 0.9967 0.5054
DNN [66] 0.9971 0.9704
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T able 2.2: 2D segmentation results (adapted Rand F-error) of the Drosophila VNC data 
set. “Human 1” and “Human 2” represent manually labeled results by two human observers. 
The results are also available on the ISBI 2012 EM Challenge online leader board. Our 
results are under the group name “SCI.” The “+ ” in group names indicate multigroup 
collaborations.

Rank Group Adapted Rand F-error

- Human 1 0.002109
1 Heidelberg/HCI 0.01155
2 CUHK 0.02318
3 ODU +  SC I 0.02377
4 JHU/APL 0.02522
5 IDSIA +  SC I 0.02698
6 Freiburg 0.02724
7 SC I 0.02856
8 “Masters” 0.02989
- Human 2 0.02995
9 IDSIA +  Rutgers 0.03010
10 IDSIA 0.03101
11 ODU 0.03143
12 IDSIA (LSTM) 0.03233
13 “Connectome” 0.03799
14 ETH/INI 0.03910
15 MIT 0.03928
- Thresholding 0.2755

vs. Entry 3 and Entry 10 vs. Entry 5). Using either probability maps, our approach yields 

even smaller errors than a human observer ( “Human 2”). Based on the results, we claim 

tha t HMT can improve 2D segmentation accuracy from thresholding membrane probability 

maps with the best thresholds independent of the membrane detection algorithms. It is 

noteworthy tha t Entry “IDSIA-SCI” led the challenge since 2013 until the emergence of 

recent submissions, especially the current leader “Heidelberg/HCI,” which made the most 

significant improvement seen in years.

Figure 2.3 shows four example testing results of both pixelwise membrane detections and 

HMT 2D segmentation. Our approach closes boundary gaps in the membrane detection, 

which may lead to undersegmentation errors by thresholding. Our approach also removes 

some undesirable intracellular structures.

2 .3 .3 .2  M o u se  n e u ro p i l  d a t a  s e t

For the mouse neuropil data set, since the membrane detection results using DNN [46] 

are not available, we experiment only with the probability maps generated by CHM [66].
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F ig u re  2.3: Examples of 2D segmentation results (four sections) of the Drosophila VNC 
data set, including (in rows) (a) original EM images, (b) DNN membrane detection, 
(c) HMT segmentation using the DNN results, (d) CHM membrane detection, and (e) HMT 
segmentation using the CHM results. The resulting cell boundaries are thickened for 
visualization purposes. The red boxes show examples of missing boundaries fixed by HMT.
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The membrane detection classifier is trained with 14 images tha t are randomly selected. 

We train our algorithm with the same 14 images and test on the rest of the stack. We 

use 6w =  0.02 to threshold the watershed local minima, and the same parameters for the 

premerging (0^ =  50, =  200 and 6pb =  0.5) and the random forest (6£f =  255, 6^ =  0.7) 

as in the Drosophila VNC experiments. The adapted Rand F-errors of the training and 

testing set are shown in Table 2.3, which we also compare with thresholding the membrane 

detection probability maps at the best value.

In general, the mouse neuropil data set is a more difficult data set, because of its 

larger variations of cell shapes and more complex intracellular structures. HMT again 

has a significant 0.073 improvement over thresholding the membrane detection probabilities. 

Figure 2.4 shows four example testing images of HMT compared with membrane probability 

maps. We can see that our method is able to close gaps on the membranes detected by the 

pixelwise algorithm.

2 .3 .3 .3  M o u se  c o r te x  d a t a  s e t

For the mouse cortex data set, we use the membrane detection probability maps gen

erated using DNN [46] trained with 100 2D images. We use 3D watershed transform over 

stacks of 2D probability maps with 6w =  0.005 to generate 3D superpixels, which we 

use HMT to combine for final segmentations. The premerging parameters are 6a  =  500, 

6pa2 =  3000, and 6pb =  0.5. For the boundary classifier, we use the logistic disjunctive normal 

network [72] with 6 ^ NN =  10 groups and $nDNN =  10 discriminants per group. The testing 

results are submitted to the ISBI 2013 SNEMI3D Challenge [70] website for evaluation. 

The adapted Rand F-errors are computed for the whole 3D testing stack. Table 2.4 shows 

the top entries on the current challenge leader board. Visualization of selected testing 3D 

neuron segmentation is generated using TrakEM2 [38] in Fiji [73] and shown in Figure 2.5.

When developed, our algorithm was one of the state-of-the-art methods until the very 

recent emergence of the top entry under group name “Heidelberg/HCI.” It is noteworthy 

tha t applying HMT to directly merge 3D superpixels (Entry 3) outperforms using a two-step

T able 2.3: 2D segmentation results (adapted Rand F-error) of the mouse neuropil data set. 
“Thresholding” refers to the region segmentation result by labeling connected components 
from thresholded membrane detection confidence maps at a globally best value.

Method Training Testing

Thresholding 0.07298 0.2023
HMT 0.04128 0.1288
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F ig u re  2.4: Examples of 2D segmentation results (four sections) of the mouse neuropil data 
set, including (in row): (a) original EM images, (b) CHM membrane detection, (c) HMT 
segmentation results, and (d) ground tru th  images. The resulting cell boundaries are 
thickened for visualization purposes. The red boxes show examples of missing boundaries 
fixed by HMT.
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T able 2.4: 3D segmentation results (adapted Rand F-error) of the mouse cortex data set. 
“Human” represents manually labeled results by a human observer. The results are also 
available on the ISBI 2013 SNEMI3D Challenge online leader board. Our results are under 
the group name “SCI.” The “+ ” in group names indicates multigroup collaborations.

Rank Group Adapted Rand F-error

- Human 0.05998
1 Heidelberg/HCI 0.07432
2 Janelia Farm +  Princeton 0.1004
3 SC I 0.1083
4 MIT 0.1136
5 ODU 0.1146
6 Janelia Farm 0.1250
7 SCI (2D HMT +  3D Linking) 0.1315
8 Harvard 0.1484
9 Singapore ASTAR 0.1665
10 Heidelberg/MPI 0.2044

approach [41] tha t uses HMT to segment each individual 2D section and identifies inter

section links using a section classifier (Entry 7). This is because 2D segmentation errors 

can be propagated to affect inter-section linking in the two-step approach. Also, the section 

classifier can predict only the similarity between a pair of regions and cannot handle the 

cases of neuron merging or branching. On the contrary, the boundary classifier for 3D HMT 

is trained with 3D features and is better at characterizing spatial region combinations. In 

addition, since HMT makes no assumption about region shapes and topology, the merging 

and branching of neurons are handled naturally in the HMT framework.

2.4 Conclusion
We developed a fully automatic approach to hierarchical segmentation of EM images. 

According to the experimental results, the HMT model improves neuron segmentation 

accuracy substantially compared with thresholding the membrane probability maps at all 

levels. By using superpixels instead of pixels as the unit element, we are able to compute 

richer region-based features. Also, the use of the merge tree structure presents the most 

plausible segmentation hypotheses in a more efficient way than using a general graph 

structure, and it transforms the problem of final segmentation inference from considering 

all possible superpixel combinations to choosing from a set of given answers. The way the 

node potentials are evaluated incorporates information from both lower and higher merging 

levels, and thus the impact of single boundary classification error can be alleviated. As 

we can see so far, one major concern about using the automated algorithm based on the
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F ig u re  2.5: Examples of 3D neuron segmentation results of the mouse cortex data set. 
Different colors indicate individual segments.

merge tree structure is its inability to fix incorrect region merging orders. According to 

the experimental results, however, we argue tha t boundary median probability is a robust 

merging saliency metric, which helps generate the correct merging order for most cases. 

Also, with further improvement of membrane detection algorithms, we will have more 

consistent membrane probability maps as input, and occurrences of incorrect merging orders 

tha t actually lead to incorrect segmentation will be further suppressed.



CHAPTER 3

HIERARCHICAL MERGE FOREST 
MODEL

When we segment 2D EM images using HMT (Chapter 2), one missing factor is the inter

section information. Despite the anisotropy of image volumes, substantial region similarities 

can be observed across consecutive sections. Corresponding regions on adjacent sections may 

provide important clues about segmenting a current section. This is in fact what human 

experts do when a 2D segmentation decision is difficult to make: adjacent sections are looked 

at for corresponding regions that belong to the same neuron, and the geometric and/or 

textural information from such corresponding regions is used for assistance. In this chapter, 

we propose a simulation to this procedure, which is also presented in [74]. We extend the 

HMT model by introducing a section classifier to identify region correspondence between 

adjacent sections. Then, all trees, each representing one section, are combined with their 

node potentials updated according to inter-section correspondences. Instead of resolving 

one single tree at a time, we infer the final segmentation of each section simultaneously 

from jointly from all trees. In this way, we take advantage of inter-section information and 

improve the overall 2D segmentation accuracy as demonstrated by the experimental results 

on two EM image data sets.

3.1 Introduction
Most current EM modalities generate anisotropic image volumes. The lower vertical 

resolution makes direct 3D neuron segmentation difficult, and two-step approaches tha t first 

segment profiles of neuron cells in each 2D image section and then link them across sections 

to reconstruction 3D neuron models are widely used [24, 53, 54, 41]. In these methods, 

2D segmentation error can be propagated during the linking procedure and deteriorate 

3D reconstruction quality. Therefore, improving 2D segmentation accuracy is our focus in 

this chapter. Because of the high resolutions of EM images, most neurons appear in more 

than one image sections. Despite the potential variations in appearance between pairs of



27

2D profiles of the same 3D neuron, abundant information usually exists that helps human 

experts identify the correspondences of such profile pairs. For instance, two consecutive 

image sections of the Drosophila VNC data set (Section 2.3.1.1) are shown in Figure 3.1. 

In spite of the 4 x 4 x 50 nm/pixel anisotropic resolution and considerable coordinate shift 

between the two sections, we can still clearly see the cell correspondences indicated by 

visual similarity. Such correspondences are usually used in turn  to fix 2D annotation errors 

in manual analysis as well as semi-automatic and fully automatic neuron segmentation 

methods [24, 52, 57, 58, 41, 75]. For example, segmenting the image area in the red box 

in Figure 3.1a is difficult. However, it can be resolved by looking at the same location in 

the next section (Figure 3.1b). In order to use such correspondences in fully automatic 

algorithms, we need algorithms tha t are able to detect region correspondences reliably 

under complex situations, such as considerable image deformation, misregistration, quality 

difference, etc.

In this chapter, we extend our HMT model and propose a fully automatic method to 

utilize inter-section information for neuron segmentation in EM 2D image stacks, which 

we call the hierarchical merge forest (HMF) model. We build a merge forest structure by 

combining merge trees that represent the region merging hierarchy of each 2D section in 

the stack. A section classifier is learned to identify the most likely region correspondences 

between adjacent sections. The inter-section information from such correspondences is

F ig u re  3.1: Examples of two consecutive 2D image sections of the Drosophila VNC data 
set. The red boxes are placed at the same location in the two sections.
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incorporated to update the potentials of tree nodes. We resolve the merge forest using 

these potentials together with consistency constraints to acquire the final segmentation of 

each 2D section in the stack. We demonstrate tha t our method leads to segmentation 

accuracy improvement by experimenting with two types of EM image data sets.

Most of the works on segmenting EM images tha t explicitly use inter-section information 

are for simultaneous 2D segmentation and 3D reconstruction [52, 57, 58]. The most related 

work is proposed by Funke et al. [58]. They use a similar tree structure to represent the 

organization of segmentation hypotheses for each image and combine them into a forest. 

Their approach considers features only from regions located in different sections but not 

from regions within a section. In addition, it optimizes only inter-section connections to 

acquire 2D segmentation with no respect to 2D segmentation quality. On the contrary, our 

framework utilizes both nonlocal image features from individual 2D sections for learning the 

boundary classifier and similarity features between spatially adjacent region pairs in different 

sections for learning the section classifier. We then combine intra-section region merging 

and inter-section region correspondence likelihood predictions from the two classifiers to 

infer 2D segmentation of each section in the stack.

It is noteworthy tha t a group of methods called cosegmentation in the computer vision 

community jointly segment similar objects in a set of images by utilizing the shared features 

between objects in the same class [76, 77, 78]. These methods usually need object-dependent 

semantic information, such as specific shapes and texture appearances, about the objects 

tha t are being segmented. Also, they usually work only for one-to-one correspondence and 

do not handle multicorrespondence or uncorresponded objects. Therefore, they are not 

directly suitable for neuron segmentation in EM images, for which it is common that 3D 

merging/branching of neurons cause merges/splits of their 2D profiles, and neuron terminals 

result in missing correspondence between adjacent 2D sections.

3.2 Methodology
3 .2 .1  M e rg e  fo re s t

Since the region merging hierarchy of one section can be represented by a merge tree, it 

is straightforward tha t we can use a series of merge trees, or in other words a merge forest, 

to represent an image stack consisting of consecutive sections. To compute how probable 

a node should be in the final segmentation, we not only consider the node potential from 

the boundary classifier, but also refer to corresponding nodes in adjacent sections, which 

we call reference nodes. Connections to all possible reference nodes can be considered as



29

directed edges between nodes in different trees, which we call reference edges. The most 

likely corresponding node is called the best reference node and the corresponding edge is 

called the best reference edge (explained in detail in Section 3.2.3). We use v(m,i) to denote 

the i-th node in section m. Figure 3.2 shows an example: node V(m1) has node V(m-1,2), 

V(m-1,3), V(m-1,4), V(m+1,5), V(m+1,6), and V(m+1,7) as possible reference nodes, and thus 

there are reference edges from node V(m1) to these nodes. Suppose node V(m-13) is the 

best reference node of node V(m1), then the edge from node V(m1) to V(m-13) is the best 

reference edge. We denote a reference edge from node V(m i) in section m to its reference 

node V(mr,ir) in an adjacent section m r as e(m,i),(mr,ir).

Regions tha t are too large or too far away are eliminated as very unlikely reference node 

choices, and therefore, the number of reference nodes/edges is linearly proportional to the 

number of nodes in a forest. Due to the anisotropic nature of most EM image data sets 

with which we experiment, we use mr =  m ±  1 in practice.

3 .2 .2  S e c tio n  c la ss ifie r

Reference edges do not always represent true region correspondences. On one hand, 

two consecutive 2D profiles of the same 3D neuron usually have relatable looks, so the 

correspondence between two similar-looking regions is more likely to be true. On the 

other hand, the veracity of a reference edge should not be determined merely based on 

the similarity between the region pair, because there can be cases in which the two regions 

are not best-effort segments but have a very similar appearance. Uplifting the likelihood of 

their correspondence may lead to confusion. Therefore, we define a reference edge is true

F ig u re  3.2: Example of a merge forest consisting of three merge trees with reference edges. 
The arrows are reference edges of node V(m1), and their end nodes are its reference nodes. 
Node V(m-13) is the best reference node of V(m1).
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only if both its end nodes belong to the same 3D object and also correspond to best-effort 

image segments. To identify true correspondences, we introduce a section classifier. Let 

U(m,i),(mr,ir) e  {0,1} denote whether a reference edge e(m,i),(mr,ir) is true (u(m,i),(mr,ir) =  1) 

or not (u(m,i),(mr,ir) =  0). The section classifier is designed to predict P(u(m,i),(mr,ir) =  1).

The section classifier takes a set of features computed from a pair of potentially corre

sponded regions, including geometric features (region area/perim eter/compactness differ

ences, centroid distance, overlapping, etc.), image intensity statistics features (region and 

boundary pixel intensity statistics from both Gaussian denoised EM images and membrane 

detection maps), and textural features (texton statistics). Appendix A.2 summarizes the 

categories of features used by section classifiers. We train a random forest classifier [67] with 

class weights reversely proportional to numbers of positive/negative examples to handle the 

data imbalance.

3 .2 .3  In fe re n c e

The section classifier predicts how likely each reference edge is true, based on which 

we choose the best correspondence to update our knowledge about a current node. First, 

we identify the best reference node based on the section classifier output edge veracity 

likelihood for each reference edge as

(m*r , i *r) =  arg max P  (u(m,i),(m r ,ir) =  1). (3.1)
(mr ,ir)

Then, each node potential is updated with the likelihood score of its best reference edge 

and its best reference node potential as

V(m,i) U(m,i) ' P (u (m,i),(m*,i*) 1) ' U(m*,i*), (3.2)

where U(m i) and U(m*,i») are computed using (2.9) within each tree. W ith (3.2), we associate 

the potential of this node with its best reference node, and therefore correlate the chances 

of existence of the two nodes in the final segmentation. Zero edge weights are set to a 

minimal positive value ee tha t is smaller than the minimum nonzero edge weight overall, 

because otherwise, the corresponding node potentials would all be punished to exactly zero. 

If a node has no reference edge, its potential is updated by multiplying ee and 0.25 as a 

reference node potential that represents random merge/split decisions from the boundary 

classifier according to (3.2). In practice, we use ee =  10-4 .

The next step is to resolve the merge forest, which selects a subset of nodes from each 

tree. The region consistency constraint (Section 2.2.4) still applies: any pixel should be 

labeled only once. Therefore, if a node is selected, its ancestors and descendants must be
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removed. Instead of resolving each merge tree independently, we resolve the whole merge 

forest simultaneously using a greedy approach. The node with the highest potential in 

the forest is picked. Then, all of its ancestors and descendants within the tree, which 

are inconsistent choices, are removed, and all reference edges directed to these removed 

inconsistent nodes are removed as well. Next, all node potentials are recomputed, and this 

procedure is repeated until no nodes are left in the forest. The set of selected nodes in each 

tree forms a consistent final segmentation for all sections.

3.3 Results
We validate our methods using two data sets. One is the mouse neuropil data set 

(Section 2.3.1.2). Since HMF needs to perform on consecutive sections, we use a different 

setting from Section 2.3.3.2 in which the last 25 sections are used for training, and the first 

45 sections are for testing. The other one is the training stack of the Drosophila VNC data 

set (Section 2.3.1.1). We also use a different setting from Section 2.3.3.1 in which the first 

20 sections are used for training and the rest for testing. The ground tru th  2D intra-section 

segmentation and 3D inter-section region correspondence are manually annotated. The 

hypothetical regions from either the initial segmentation or the region merging are matched 

to the 2D ground tru th  regions with respect to symmetric difference in order to generate 

the training labels for the section classifier.

We use a random forest implementation [79]. The pixelwise membrane detection random 

forest uses 200 trees. The initial watershed threshold is 6w =  0.01 and 0.05 for the mouse 

neuropil and the Drosophila VNC data set, respectively. Reference edges are considered 

between regions smaller than =  200000 and 40000 pixels and within a centroid distance 

of 6<mf =  45 and 30 pixels for the mouse neuropil and the Drosophila VNC data set, 

respectively, based on their different resolutions and cell sizes. For both the boundary 

and the section classifier, we use Of =  255 trees and 6̂ f =  70% of all samples to train each 

tree.

We use the adapted Rand F-error [39] as the evaluation error metric (Section 2.3.2). 

The results for the two data sets via thresholding pixelwise membrane detection results at 

best threshold, HMT (Chapter 2), and the HMF model in this paper are shown in Table 3.1 

for comparison. Figure 3.3 shows zoomed-in examples of the testing images from both data 

sets.

We can see from Figure 3.3 tha t HMF can correct node selection mistakes in a section 

by utilizing information from adjacent sections that are easier to segment. Therefore, it can 

fix both the oversegmentation and the undersegmentation errors from HMT. The testing
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T able 3.1: 2D segmentation results (adapted Rand F-error) of the mouse neuropil and 
the Drosophila VNC data sets by optimally thresholding membrane detection probability 
maps, HMT and HMF.

(a) Mouse neuropil

Method Training Testing

Thresholding 0.1942 0.2946
HMT 0.06768 0.2010
HMF 0.04917 0.1632

(b) Drosophila VNC

Method Training Testing

Thresholding 0.1542 0.2449
HMT 0.02656 0.1173
HMF 0.01937 0.08129

results of the two data sets are improved significantly by over 0.0360 compared with the 

merge tree results and over 0.131 compared with the thresholding results. Considering 

this method is meant to be applied to large-scale data sets, the improvement may save a 

substantial amount of manual work for biologists and neuroscientists.

3.4 Conclusion
In this chapter, we presented an effective extension to our previous HMT model that 

utilizes inter-section information to improve intra-section neuron segmentation accuracy. 

In addition to cell continuation as the major type of region connection, we argue that 

our reference model works for most cell terminations and branchings as well. Since cells 

appear almost always in more than one section, even if a cell terminates in the next section, 

correspondence should still be found in the previous section. Also, when a cell branches, 

its profile often splits unevenly to a similarly sized region and some other much smaller 

regions, so we expect to find informative reference nodes for most branching cases as well. 

In future work, we will introduce new features to further improve the section classifier and 

address the inter-section neuron reconstruction problem.
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F ig u re  3.3: Examples of 2D segmentation results of two image regions on two consecutive 
sections (zoomed-in) from the mouse neuropil (the first and the second column) and the 
Drosophila VNC data set (the third and the fourth column), including (in rows) (a) original 
EM images, (b) initial superpixel segmentations, (c) HMT segmentation results, (d) HMF 
segmentation results, and (e) ground tru th  images. Different colors indicate individual 
segments.



CHAPTER 4

CONSTRAINED CONDITIONAL 

HIERARCHICAL MERGE 
TREE MODEL

In this chapter, we propose an extension to our HMT framework (Chapter 2) for object- 

independent natural image segmentation, which is also presented in [80]. First, we propose 

to formulate our merge tree as a constrained conditional model. We associate each clique 

tha t represents potential region merging with a likelihood score predicted using an ensemble 

boundary classifier. Final segmentations can then be efficiently inferred by finding the 

globally optimal labeling of the model. We call this model CCHMT. We also develop an 

iterative training and testing algorithm tha t generates various tree structures and combines 

them to emphasize accurate region boundaries. Experiment results and comparisons with 

other very recent methods on six public data sets demonstrate tha t our approach achieves 

state-of-the-art region accuracy and is very competitive in image segmentation without 

semantic priors.

4.1 Introduction
First, we briefly summarize edge detection works for general image segmentation. Early 

edge detections are mostly based on image derivatives [81, 82] or filter banks responses [83, 

84]. More recent works utilize richer information such as colors and textures. One of 

the most notable works, gPb [5], combines multiscale local cues and globalized cues via 

spectral clustering and sets up a benchmark for edge detection and region segmentation 

research. Supervised learning techniques are a recent trend in edge detection. Ren and 

Bo [85] train a classifier with sparse codes on local neighborhood information and improve 

the edge detection performance. Dollar and Zitnick [86] propose a novel structured-learning 

framework using modified random decision forest for efficient edge detection. Seyedhosseini 

and Tasdizen [66] propose a hierarchical model to capture multiscale contextual information 

and achieve state-of-the-art edge detection performance.
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As another category of approaches to solving image segmentation problems, early works 

on region segmentation seek to directly group image pixels in an unsupervised manner. 

Belongie et al. [6] fit Gaussian mixture models to cluster pixels based on six-dimensional 

color and texture features. Mean shift [8] and its variant [87] consider region segmentation as 

a problem of density-mode searching. A number of works belong to graph partitioning cate

gory, which regards an image as a graph with pixels being nodes and edge weights indicating 

dissimilarity between neighbor pixels. Normalized cuts [7] takes the image affinity matrix 

and partitions an image by solving eigenvalue problems. Felzenszwalb and Huttenlocher [13] 

greedily merge two connected components if there exists an intercomponent edge weight that 

is less than the largest edge weights in the minimum spanning trees of both components. 

Arbelaez et al. [5] propose a variant of watershed transform to generate a hierarchy of closed 

contours.

As in edge detection, supervised learning-based methods for region segmentation have 

gained popularity in recent years. This trend leads to and is further promoted by a number 

of publicly available computer vision data sets with human-labeled ground truth [33, 5, 88, 

89, 90, 91]. Learning segmentation models from training data enables much more capability 

and flexibility over hand-designed/tuned unsupervised models and leads to many more 

interesting works.

Following the classic foreground/background segmentation, object-independent segmen

tation methods seek to partition an image based only on its appearance and do not uti

lize underlying semantics about the scene or specific information about target objects. 

Kim et al. propose a hypergraph-based correlation clustering framework [92] that uses 

structured SVM for learning the structural information from training data. Arbelaez et 

al. develop the multiscale combinatorial grouping (MCG) framework [93] that exploits 

multiscale information and uses a fast normalized cuts algorithm for region segmentation. 

Yu et al. [94] present a piecewise flat embedding learning algorithm and report the best 

published results so far on Berkeley Segmentation Data Set using the MCG framework. Two 

other recent superpixel-merging approaches are ISCRA [95] and GALA [60]. Starting with 

a fine superpixel oversegmentation, ISCRA adaptively divides the whole region merging 

process into different cascaded stages and trains a respective logistic regression model 

at each stage to determine the greedy merging, whereas GALA improves the boundary 

classifier training by augmenting the training set via repeatedly iterating through the 

merging process. Moreover, impressive results in the extensive evaluations on six public 

segmentation data sets are reported in [95].
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Object-dependent or semantic segmentation is another branch of region segmentation. 

Object-dependent prior knowledge is exploited to guide or improve the segmentation pro

cess. Borenstein and Ullman [96] formulate object segmentation as a joint model that 

uses both low-level visual cues and high-level object class information. Some other object 

segmentation methods first generate object segmentation hypotheses using low-/mid-level 

features and then rank segments with high-level prior knowledge [97, 98]. A recent work, 

SCALPEL [99], incorporates high-level information in the segmentation process and can 

generate object proposals more efficiently and accurately. There is also a group of methods, 

called cosegmentation, that utilizes the homogeneity between different target objects and 

jointly segments multiple images simultaneously [76, 77, 78].

Our method falls into the object-independent hierarchical segmentation category. The 

contributions of this chapter include:

• Reformulation of the HMT model (Chapter 2) as a constrained conditional model 

with global optimal solutions defined and an efficient inference algorithm developed, 

instead of the greedy tree model.

• An iterative approach to diversify merge tree generation and improve results via 

segmentation accumulation.

• Experiments with state-of-the-art results on six public data sets for general image 

segmentation.

Compared with recent competitive hierarchical segmentation methods, ISCRA [95] and 

GALA [60], which use a threshold-based greedy region merging strategy, our model has two 

major advantages. First, the tree structure enables the incorporation of higher order image 

information into segmentation. The merge/split decisions are made together in a globally 

optimal manner instead of by looking only at local region pairs. Second, our method does 

not require the threshold parameter to determine when to stop merging as in ISCRA and 

GALA, which may be so important to the results that need carefully tuning. Furthermore, 

our method is almost parameter-free given the initial superpixel oversegmentation. The 

only parameter is the number of iterations, which can be fixed as shown in the experiments 

on the six data sets.
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4.2 Methodology
4.2 .1  C o n s tra in e d  c o n d itio n a l m o d e l

We formulate the merge tree as a constrained conditional model. It is essentially a factor 

graph for the merge tree, in which the node set aligns identically with V, and each merge in 

the merge tree that involves three nodes ({Vi, VC1, Vc2}, {ei,ci, ei,c2}) is considered as a clique 

Pi in the factor graph. We define:

• Clique pi is at node Vi.

• Clique pci and pc2 at Vci and Vc2, respectively, are the child cliques of pi , and clique 

pi is the parent clique of pci and pc2.

• If Vi is a leaf node, pi =  ({Vi}, 0 ) is a leaf clique.

• Clique pi is a nonleaf/root/nonroot clique if Vi is a nonleaf/root/nonroot node.

Figure 4.1d shows an example of the constrained conditional model factor graph of a 

merge tree in Figure 4.1c. The red box in Figure 4.1d shows a clique. We use the boundary 

label (Section 4.2.3) to indicate whether the merge at a clique happens. By assigning y =  1 

to all leaf nodes, we denote a complete label assignment to every node in the merge tree as 

y =  {yi}i=1. Figure 4.1d shows the set of label assignment y that corresponds to the final 

segmentation shown in Figure 4.1b.

Using the parent node index query function p(-) (Section 2.2.4), we define the merge 

consistency constraint for nonroot cliques:

yi > yp(i), Vi. (4.1)

Clearly, for a given merge tree, a set of node labeling z (Section 2.2.4) subject to the region 

consistency constraint (2.8) can be transformed to a consistent y by assigning y =  1 to 

the cliques at the nodes with z =  1 and their descendant cliques and y =  0 to the rest. A 

consistent y can be transformed to z by assigning z =  1 to the nodes in {Vi e V | Vi, s.t. yi =

1 A (Vi is the root V yp(i) = 0)}  and z =  0 to the rest.

We use the boundary classifier (Section 2.2.3) to predict the likelihood score P(y | x) 

for each clique. An ensemble version of the boundary classifier will be introduced in 

Section 4.2.2. We associate each clique pi with energy with respect to its label as

Ei(yi) =  -  log P(yi), yi e {0,1}. (4.2)
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(a) (b)

Figure 4.1: Example of (a) an initial segmentation, (b) a consistent final segmentation, 
(c) a merge tree, and (d) the corresponding conditional model factor graph with correct 
labeling. In (c), the leaf nodes have labels identical to those of the initial regions. The red 
nodes correspond to regions in the final segmentation. The red box in (d) indicates a clique.

Under the Markov assumption, we formulate our labeling problem as a constrained 

optimization problem

min V  Ei(yi), yi e {0,1},
y Vi&y

s.t. yi =  1, Vi,vi is a leaf node, (4.3)

Vi > yP(j), Vi,vi is a nonroot node, 

for which we will introduce a globally optimal inference algorithm in Section 4.2.3.

4 .2 .2  E n sem b le  b o u n d a ry  c lassifier

To score each clique, we train a boundary classifier to predict the probability of each 

merge. To generate training labels that indicate whether the boundary between two regions 

exists or not, we compute the variation of information (VI) [100, 101] for both merge and 

split against the ground truth. The case with smaller VI deviates less from the ground 

truth and is adopted. See Section 2.2.3 for details about generating boundary classification 

labels and Section 4.3.2 for details about VI.
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Boundary features and region features are extracted for classification. For a pair of 

merging regions, boundary features provide direct cues about how it is likely the boundary 

truly exists, and regional features measure geometric and textural similarities between the 

two regions, which can both be informative to boundary classification. We choose features 

mostly following [95] for comparison purposes. A summary of features is provided in 

Appendix A.3. The boundary classifier is not limited to any specific supervised classification 

model. We use random forest [67] in our experiments.

The boundary classification problem is highly nonlinear, and learning one universally 

accurate boundary classifier for all merging cases is essentially difficult. The size of merging 

regions affects the feature representativeness in classification. For instance, textural features 

in the form of averaged histograms among patches may not be informative when the merging 

regions are too small, because textural features can be extracted only from a very limited 

number of image patches and thus is noisy. On the other hand, when two regions are so big 

that they contain undersegmentation from different perceptual groups, the features again 

may not be meaningful, but for a different reason, that is, the histogram averaging is not 

able to represent the variation of textures. It is worth noting that for the same reason, 

different classifiers have to be learned at different merging stages in [95].

We categorize the classification problem into subproblems, train a separate subclassifier 

for each subproblem, and use the ensemble of the subclassifiers as the boundary classifier. 

We compute the median size |s |med of all regions observed in the training set and assign a 

category label to a training sample that involves regions si and Sj based on their sizes as 

in (4.4). Three subclassifiers are then trained separately using only samples with identical 

category labels.

!1 if max(| Si |, |Sj |) < |s|med,
2 if min(|si|, |sj|) < |s|med < max(|si|, |sj|), (4.4)

3 otherwise.

At testing time, a sample is categorized based on its region sizes and assigned to 

the corresponding subclassifier for prediction. Since all the subclassifiers are always used 

adjointly, we refer to the set of all subclassifiers as the boundary classifier in the rest of this 

chapter.

4 .2 .3  In fe ren ce

Exhaustive search to solve (4.3) has exponential complexity. Given the tree structure, 

however, we can use a bottom-up/top-down algorithm to efficiently find the exact optimal
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solution under the region consistency constraint. The fundamental idea of the bottom- 

up/top-down algorithm is dynamic programming: in the bottom-up step, the minimum 

energies for both decisions (merge/split) under the constraint are kept and propagated from 

leaves to the root, based on which the set of best consistent decisions is made from the root 

to leaves in the top-down step. It is noteworthy that our bottom-up/top-down algorithm 

is only for inference and conceptually different from the top-down/bottom-up framework 

in [96], which seeks to combine high-level semantic information and low-level image features. 

On the other hand, the two-way message passing algorithm used in [96] and our algorithm 

both belong to the Pearl’s belief propagation [102, 103] category, except that our inference 

algorithm explicitly incorporates the consistency constraint into the optimization procedure.

In the bottom-up step, a pair of energy sums are kept track of for each node vi with 

children vCl and vc2: the merging energy E™ of node vi and its descendants all being 

labeled y =  1 (merge), the splitting energy E? of it that vi is labeled yi =  0 (split), and 

its descendants are labeled optimally subject to the constraint. Then, the energies can be 

computed bottom-up recursively as

For any leaf node vi, we assign E™ = 0 and E? =  to to enforce their being labeled yi =  1. 

Algorithm 1 describes the bottom-up algorithm in pseudocode.

In the top-down step, we start from the root and do a depth-first search: if the merging 

energy of a node is lower than its splitting energy, label this node and all its descendants 

y =  1; otherwise, label this node y =  0 and search its children. Algorithm 2 describes the 

top-down algorithm in pseudocode.

Eventually, we select the set of the nodes, such that its label is y =  1 and its parent 

is labeled y =  0, to form an optimal final segmentation. In both algorithms, each node is 

visited exactly once with constant operations, and we need only linear space proportional 

to the number nodes for TE and y, so the time and space complexity are both O(|V|).

The performance upper bound of the hierarchical merge tree models is determined by 

the quality of the tree structure. If all true segments exist as nodes in the tree, they 

may be picked out by the inference algorithm using predictions from well-trained boundary 

classifiers. However, if a desirable segment is not represented by any node in the tree, the 

model is not able to recover the segment. Hence, the merging saliency function, which is

E™ = Em + Em +  Ei(yi =  1),

E? =  min(Ecm, E ? ) +  min(Em, E ? ) +  E i(y  =  0).

(4.5)

(4.6)

4 .2 .4  I te ra t iv e  m erg e  t r e e  sam p lin g
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A lgorithm  1: Bottom-up energy computation.

Inpu t: A list of energy {Ei(yi)}i=|1 for each clique
O u tp u t: A list of energy tuples TE =  {(E™,E|)}i=1

1 Te  M }
2 C om puteE nergyTuples(vr), where vr is the root node
3 /* Helper function that recursively computes energy terms */
4 function  C om puteEnergyTuples(vi):
5 if vi is a leaf node th en
6 E™ ^  0
7 ES ^
8 else
9 (E™, ES1) ^  C om puteEnergyTuples(vCl)

10 (E ^ , ES2) ^  C om puteEnergyTuples(vC2)
11 E ™ ^  EH  +  E™ +  Ei(yi =  1)
12 ES ^  min(E™, E SCl) +  min(EC22, E SC2) +  E i(y  =  0)
13 end if
14 Te ^ T e U{(Ei™,ES)}
15 re tu rn  (Ei™, Eis)
16 end  function

A lgorithm  2: Top-down label assignment.

Inpu t: A list of energy tuples TE =  {(E™, Ef)}i=1
O u tp u t: A complete label assignment y =  {yi}i=|1

1 y ^  {}
2 A ssignN odeLabels(vr), where vr is the root node
3 /* Helper function that recursively decides node labels */
4 function  A ssignN odeLabels(vi):
5 if E i™ < Eis th en
6 y ^  y U {yi =  1} U {y^ =  1 1 Vi', s.t. 3k, pk(i') =  i}
7 else
8 y ^  y U {yi =  0 }
9 A ssignN odeLabels(vCl)

10 AssignN odeLabels(vC2)
11 end if
12 end function

used to determine merging priorities, is critical to the entire performance. With a good 

merging saliency function, we can push the upper bound of performance and thus improve 

segmentation accuracy.

Statistics over the boundary strengths can be used to indicate merging saliency. We use 

the negated median of boundary pixel strengths as the initial representation of saliency, as 

mentioned in Section 2.2.2. Since a boundary classifier is essentially designed to measure the
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likelihood of region merging, and it has advantages over simple boundary statistics because 

it takes various features from both boundary and regions, we propose to use the merging 

probabilities predicted by boundary classifiers as the merging saliency to construct a merge 

tree.

As described in Section 4.2.2, the training of a boundary classifier requires samples 

generated from a merge tree, but we would like to use a boundary classifier to construct a 

merge tree. Therefore, we propose an iterative approach that alternately collects training 

samples from a merge tree for the training of boundary classifiers and constructs a merge 

tree with the trained classifier. As illustrated in Figure 4.2a, we initially use the negated 

median of boundary strengths to construct a merge tree, collect region merging samples, and 

train a boundary classifier. Then, the boundary classifier is used to generate a new merge 

tree, from which new training samples are generated. We next combine the samples from 

the current iteration and from the previous iterations, remove duplicates, and train the next 

classifier. This process is repeated for a fixed number of iterations or until the segmentation 

accuracy on a validation set no longer improves. In practice, we fix the iteration number to

10 for all data sets. Eventually, we have a series of boundary classifiers from each training 

iteration. The training algorithm is described in Algorithm 3.

At testing time, we take the series of trained classifiers and iterate in a way similar to the 

training process, as shown in Figure 4.2b: at each iteration t, we take the previous boundary 

classifier f b-1 to construct a merge tree and use the current classifier f  to predict each 

merge score in the merge tree, based on which a final segmentation S* is inferred. Finally, 

we transform each segmentation into a binary closed contour map by assigning boundary 

pixels 1 and others 0 and average them for each image over all iterations to generate a

A lgorithm  3: Iterative training algorithm.

Inpu t: Original images {/i}N=;l, boundary maps {P6% }N=r1, and iteration number T
O u tp u t: Boundary classifiers {fb}J=0

1 Generate initial superpixels {Soi}i=tl
2 for t : 0 ,1 ,. . . ,  T do
3 if t = =  0 th en
4 Generate {Tr0}N=;1 from { S ^ } ^  using {P6i}N=;r1
5 else
6 Generate {Tr*}^! from { S ^ } ^  using f t -1
7 end if
8 Generate samples {(X*, y*)}N=t1 from {Tr*}^!
9 Train /* using U*'=i {(X ' , y | ' )1N=1

10 end for
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F igure 4.2: Illustrations of (a) training and (b) testing procedure of iterative merge 
tree sampling. Starting with fixed initial superpixels ( “Init Seg”), the first iteration uses 
boundary probability ( “Pb”) statistics for merge tree generation, and the training procedure 
iteratively augments the training set by incorporating new samples from merge trees and 
trains a new boundary classifier (“BC”), which is used for merge tree generation in the next 
iteration. At testing time, boundary probability statistics and boundary classifiers learned 
at each iteration are used to generate merge trees, and each boundary classifier is used to 
score merge parts in the previous iteration; segmentations are generated from each merge 
tree and accumulated to generate the final contour hierarchy. In both figures, the black 
lines show the use of initial superpixels, the red lines show the use of boundary classifiers, 
and the blue lines show the flow of sample data collected from tree structures.

segmentation hierarchy in the form a real-valued contour map. The testing algorithm is 

described in Algorithm 4.

The explanation for the iterative approach is two-fold. First, by collecting samples that 

were not seen in previous iterations, we can explore the merge sample space and in turn 

explore the space of merge trees generated by the classifiers trained using the augmented 

sample set towards the “correct” merge tree. Second, like a bagging algorithm, segmen

tation averaging through iterations tends to emphasize accurate boundaries by phasing 

out nonsystematic errors due to incorrect tree structures or classifier mispredictions. The 

accumulation alleviates the difficulty of training one good classifier to generate accurate 

segmentations by improving via averaging.
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A lgorithm  4: Iterative testing algorithm.

Inpu t: Original images {/i}N=;1, boundary maps {PhiV . ,  boundary classifiers { / } t l 0 
O u tp u t: Hierarchical segmentation contour map { C ^ . l  

1: Generate initial superpixels {Soi}N=;|
2: for t : 0 ,1 ,. . . ,  T do 
3: if t = =  0 th en
4: Generate {Tr0} ^  from { S ^ } ^  using {Phi}N=;!
5: else
6: Generate {T r* } ^  from { S ^ } ^  using f -1
7: end if
8: Score merges with /  and infer segmentations {£*}£=!
9: Binarize {Sl}^!;^ to contour maps { C l} .!

10: end for
11: {C-’i ) £ l  = {ET.0 C |/(T  +1)}f=1_______________________________________________

4.3 Results
We conduct experiments with two validation goals. First, we evaluate the performance 

of our hierarchical merge tree models with different combinations of settings. Second, we 

compare our method with other state-of-the-art methods.

4.3 .1  D a ta  se ts

We experiment with six publicly available data sets for image segmentation:

1. Berkeley Segmentation Data Set 300 (BSDS300) [33]: 200 training and 100 testing 

natural images of size 481 x 321 pixels. Multiple ground truth segmentations are 

provided with different labeling of details.

2. Berkeley Segmentation Data Set 500 (BSDS500) [5]: an extension of BSDS300 with 

200 new testing images of the same size, with multiple ground truth segmentations 

for each image.

3. MSRC Object Recognition Data Set (MSRC) [88]: 591 320 x 213 natural images with 

one ground truth per image. A cleaned-up version [104] is used, in which “void” 

regions are removed, and disconnected regions that belong to the same object class 

are assigned different labels in a single image.

4. PASCAL Visual Object Classes Data Set (VOC12) [90]: 1449 validation images with 

one ground truth per image for PASCAL VOC 2012 Challenge. The average image 

size is 496 x 360. We use the ground truth for object segmentation and treat the 

object boundary pixels as background.
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5. Stanford Background Data Set (SBD) [89]: 715 320 x 240 images of outdoor scenes 

with one ground truth per image.

6. NYU Depth Data Set v2 (NYU) [91]: 1449 indoor scene images with one ground 

truth per image. Down-sampled versions (320 x 240) [85] are used with frame pixels 

cropped. Only RGB channels are used in our experiment; the depth maps are not 

used.

In order to compare with the other state-of-the-art methods, we follow [95] and train 

our boundary classifiers with the 200 training images in BSDS300. Five ground truth 

segmentations are selected for each image in the order of increasing details as indicated by 

the number of true segments. The training and the testing are done for each detail level, and 

the results are combined into a segmentation hierarchy. In our performance evaluation of 

different configurations of the merge tree model, we test on the testing images in BSDS500. 

For comparisons with other methods, we test on all six data sets.

4 .3 .2  E v a lu a tio n  m e tric s

Following [5], we use the segmentation covering [90], the probabilistic Rand index [105], 

and the variation of information [100, 101] for segmentation accuracy evaluation. Here, we 

summarize the three evaluation metrics. For more details, please refer to [5].

The segmentation covering measures averaged matching between proposed segments 

with a ground truth labeling, defined as

where P  is the set of all pixels in an image. It matches each proposed segment to a true 

segment, with which the proposed segment has the largest overlapping ratio, and computes 

the sum of such optimal overlapping ratios weighted by relative segment sizes.

The Rand index, originally proposed in [71], measures pairwise similarity between two 

multilabel clusterings. It is defined as the ratio of the number of pixel pairs that have 

identical labels in S and Sg or have different labels in S and Sg, over the number of all pixel 

pairs.

RI(S, Sg) =  - - L  E I  (S(i) =  S(j) A Sg(i) =  Sg(j)), (4.8)
I 2 ) i<j

where S(i) is the label of the i-th pixel in S, and I(-) is an indicator function that returns 

1 if the input condition is met or 0 otherwise. The probabilistic Rand index is the Rand 

index averaged over multiple ground truth labelings if available.
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The variation of information measures the relative entropy between a proposed segmen

tation and a ground truth labeling, defined as

V /(S ,Sg ) =  H (S | Sg) +  H (Sg | S ), (4.9)

where H (S | Sg) and H(Sg | S) are conditional image entropies. Denoting the set of all labels 

in S as and the set of all labels in Sg as , we have

H(S | Sg) =  V  P(Mg)log , (4.10)
, P  (Mg)

eLsg

where P(lg) is the probability that a pixel in Sg receives label lg, and P(l, lg) is the joint 

probability that a pixel receives label l in S and label lg in Sg. H(Sg | S ) can be defined 

similarly by switching S and Sg in (4.10).

For each data set, segmentation results are evaluated at a universal fixed scale (ODS) 

for the entire data set and at a fixed scale per testing image (OIS), following [5]. The 

evaluated numbers are averaged over all available ground truth labelings. As pointed out 

in [95], since we focus on region segmentation, the pixelwise boundary-based evaluations 

for contour detection results [5] are not relevant, and we use only the region-based metrics.

4 .3 .3  E x p e r im e n ts

We use the watershed algorithm for superpixel generation, for which the water level 

needs to be specified. In general, lowering the water level reduces undersegmentation by 

producing more superpixels, which gives us sets of high-precision superpixels to start with, 

but also increases the computation cost. We fixed the water level at dw =  0.01 for all five 

data sets (BSDS300/500, MSRC, SBD, and VOC12), except the NYU data set. For the 

NYU data set of indoor scene images, we observe the decrease in gPb boundary detection 

strength, so we lower the water level to dw =  0.001. We also premerge regions smaller 

than =  20 pixels to their neighboring regions with the lowest boundary barrier, i.e.,the 

median of boundary detection probabilities on the boundary pixels between the two regions. 

We train 0£f =  255 fully grown decision trees for the random forest boundary classifier. To 

train each decision tree, =  70% of training samples are randomly drawn and used. 

The number of features examined at each node is the square root of the total number of 

features. In the experiments, the training data are usually imbalanced. The ratios between 

the number of positive and negative samples are sometimes considerably greater than 1. 

Therefore, we assign to each class a weight reciprocal to the number of samples in the class



47

to balance the training. We fix the number of iterations to 10 for all data sets for the 

iterative merge tree sampling.

Appendix A.3 summarizes the features used for boundary classification.

4 .3 .3 .1  E n sem b le  vs. sing le  b o u n d a ry  c lassifier a n d  
c o n s tra in e d  c o n d itio n a l m o d e l vs. g reed y  
t r e e  m o d e l

We evaluate the performance of using single ( “SC”) or ensemble boundary classifiers 

( “EC”) (Section 4.2.2) compared with our hierarchical merge tree models. We also compare 

the proposed constrained conditional model (“CCM”) formulation and greedy tree model 

( “Greedy”) in HMT (Chapter 2). The training is done using the 200 training images in 

BSDS300 as described in Section 4.3.1, and we show the testing results on the 200 testing 

images in BSDS500 in Table 4.1.

A comparison between the first two rows in Table 4.1 shows that using ensemble bound

ary classifiers outperforms using only a single boundary classifier among all metrics, which 

supports our claim that the classifier ensemble is better able to capture underlying merging 

characteristics of regions at different size scales.

Comparing the first and the third row, we can see that CCM significantly outperforms 

the greedy model in terms of VI, which is preferred over the other metrics for segmentation 

quality evaluation [60]. It appears that CCM is outperformed by the greedy tree model 

in terms of PRI, but this is because both models are trained using the labels determined 

based on VI (Section 4.2.2). We perform another experiment where both are trained using 

the labels determined based on the Rand index, and CCM outperforms the greedy model

0.829 vs. 0.826 in terms of ODS PRI and 0.855 vs. 0.848 in terms of OIS PRI.

The fourth row shows the results using the HMT model. It is clear that the proposed

Table 4.1: Segmentation results of BSDS500 using the constrained conditional model 
(CCM) formulation or greedy tree model (Greedy) in combination with the ensemble 
boundary classifier (EC) or single boundary classifier (SC). The segmentation covering 
(Covering), the probabilistic Rand index (PRI), and the variation of information (VI) are 
reported for optimal data set scale (ODS) and optimal image scale (OIS).

Covering PRI VI

HMT variant ODS OIS ODS OIS ODS OIS

CCM+EC 0.594 0.607 0.804 0.809 1.682 1.556
CCM+SC 0.573 0.581 0.779 0.781 1.690 1.617

Greedy+EC 0.587 0.620 0.821 0.834 1.737 1.589
Greedy+SC [41] 0.582 0.601 0.805 0.812 1.748 1.639
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constrained conditional model and ensemble boundary classifier (CCHMT) are an improve

ment over our previous approach without including the iterative segmentation merge tree 

sampling.

4 .3 .3 .2  C C H M T  w ith o u t  vs. w ith  i te ra tiv e  m erg e  t r e e  
sam p lin g

We evaluate the performance of the CCHMT model with or without iterative merge 

tree sampling (Section 4.2.4). The experimental setting follows the previous experiments 

in Section 4.3.3.1. The constrained conditional model formulation and ensemble boundary 

classifiers are adopted. The testing results at each iteration are shown in Table 4.2.

We can see that despite occasional oscillations, the results are improved through itera

tions. The rate of improvement slows down as more iterations are included in the averaging 

process. More sophisticated ways of choosing segmentations to average over can be used, 

such as to average segmentations only from the iterations that achieve the top accuracy on 

some validation set. In our experiment, since we would like to compare our method with 

other methods, we keep the same setting for training and testing data sets and do not use a 

separate validation set. We fix the iteration number to 10 and only report the results from 

averaging all the segmentations.

Table 4.2: Segmentation results of BSDS500 using CCHMT without (Iteration 0) and 
with (Iteration 1 to 10) iterative merge tree sampling and segmentation accumulation. The 
segmentation covering (Covering), the probabilistic Rand index (PRI), and the variation 
of information (VI) are reported for optimal data set scale (ODS) and optimal image scale 
(OIS).

Covering PRI VI

Iteration ODS OIS ODS OIS ODS OIS

0 0.594 0.607 0.804 0.809 1.682 1.556
1 0.601 0.637 0.825 0.841 1.661 1.498
2 0.612 0.654 0.829 0.853 1.596 1.432
3 0.618 0.666 0.834 0.860 1.564 1.407
4 0.624 0.671 0.834 0.864 1.545 1.391
5 0.624 0.676 0.836 0.865 1.544 1.378
6 0.626 0.678 0.835 0.867 1.539 1.374
7 0.628 0.679 0.835 0.868 1.532 1.373
8 0.628 0.679 0.835 0.869 1.534 1.370
9 0.628 0.680 0.835 0.869 1.530 1.371
10 0.629 0.679 0.835 0.869 1.526 1.375
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4 .3 .3 .3  C o m p a riso n s  w ith  o th e r  m e th o d s

In this section, we compare our proposed iterative CCHMT (CCM + ensemble boundary 

classifier + iteration) with various other state-of-the-art region segmentation methods and 

benchmarks [5, 95, 60, 93, 106, 92, 94] in very recent years on the public data sets. The 

testing results are shown in Table 4.3. Note that [92] generates a single segmentation instead 

of contour hierarchies for each image. The OIS evaluations are therefore essentially the same 

as the ODS results, so we exclude the OIS entries for the sake of clarity.

From Table 4.3, we can see that our method is highly competitive and outperforms very 

recent state-of-the-art methods on some data sets, including BSDS500, which is the most 

used data set for image segmentation evaluation. It is noteworthy that the generalization of 

our method is almost as good as ISCRA [95] by being trained only on BSDS (general natural 

photos) and achieving competitive results on the NYU data set (indoor scene photos). It 

is also worth pointing out that our hierarchical segmentation framework can be used in 

combination with other features that can better guide the boundary classification. For 

example, using the most recent piecewise flat embedding (PFE) [94], we expect the results 

to be further improved in a manner similarly to the results from “MCG” to “PFE-MCG” 

on BSDS500 in Table 4.3. Figure 4.3 shows sample testing segmentation results for each 

data set.

4.4 Conclusion
In this chapter, we proposed a constrained conditional formulation to the HMT model 

for natural image segmentation. Globally optimal solutions can be efficiently found under 

constraints to generate final segmentations thanks to the tree structure. We also intro

duced a modification to the model that iteratively trains a new boundary classifier with 

accumulated samples for merge tree construction and merging probability prediction and 

accumulates segmentation to generate hierarchical contour maps. For further improvement, 

the combination of merge trees from each iteration as one single model and its global 

resolution can be investigated. Furthermore, it would be interesting to study the application 

of our method to semantic segmentation with the introduction of object-dependent prior 

knowledge.
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Table 4.3: Segmentation results of (a) BSDS300, (b) BSDS500, (c) MSRC, (d) VOC12, 
(e) SBD, and (f) NYU data set, using different methods. The segmentation covering 
(Covering), the probabilistic Rand index (PRI), and the variation of information (VI) are 
reported for optimal data set scale (ODS) and optimal image scale (OIS).

(a) BSDS300

Covering PRI VI

Method ODS OIS ODS OIS ODS OIS

gPb-OWT-UCM [5] 0.59 0.65 0.81 0.85 1.65 1.47
ISCRA [95] 0.60 0.67 0.81 0.86 1.61 1.40
HOCC [92] 0.60 - 0.81 - 1.74 -
MCG [93] 0.61 0.67 0.81 0.86 1.55 1.37

Ours 0.61 0.67 0.82 0.86 1.58 1.40

(b) BSDS500

Covering PRI VI

Method ODS OIS ODS OIS ODS OIS

gPb-OWT-UCM [5] 0.59 0.65 0.83 0.86 1.69 1.48
ISCRA [95] 0.59 0.66 0.82 0.86 1.60 1.42
GALA [60] 0.61 0.67 0.84 0.86 1.56 1.36
HOCC [92] 0.60 - 0.83 - 1.79 -
DC [106] 0.59 0.64 0.82 0.85 1.68 1.54
MCG [93] 0.61 0.66 0.83 0.86 1.57 1.39

PFE-mPb [94] 0.62 0.67 0.84 0.86 1.61 1.43
PFE-MCG [94] 0.62 0.68 0.84 0.87 1.56 1.36

Ours 0.63 0.68 0.84 0.87 1.53 1.38

(c) MSRC

Covering PRI VI

Method ODS OIS ODS OIS ODS OIS

gPb-OWT-UCM [5] 0.65 0.75 0.78 0.85 1.28 0.99
ISCRA [95] 0.67 0.75 0.77 0.85 1.18 1.02

Ours 0.67 0.77 0.79 0.86 1.23 0.93
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Table 4.3: (Continued).

(d) VOC12

Covering PRI VI

Method ODS OIS ODS OIS ODS OIS

gPb-OWT-UCM [5] 0.46 0.59 0.76 0.88 0.65 0.50
ISCRA [95] 0.50 0.58 0.69 0.75 1.01 0.93

Ours 0.49 0.63 0.77 0.91 0.60 0.44

(e) SBD

Covering PRI VI

Method ODS OIS ODS OIS ODS OIS

gPb-OWT-UCM [5] 0.58 0.64 0.86 0.89 1.88 1.62
ISCRA [95] 0.62 0.68 0.87 0.90 1.73 1.49

Ours 0.61 0.67 0.86 0.90 1.72 1.48

(f) NYU

Covering PRI VI

Method ODS OIS ODS OIS ODS OIS

gPb-OWT-UCM [5] 0.55 0.60 0.90 0.92 1.89 1.89
ISCRA [95] 0.57 0.62 0.90 0.92 1.82 1.63

Ours 0.57 0.61 0.90 0.92 1.83 1.66
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(i) Original (ii) Contours (iii) ODS (iv) OIS

(a) BSDS300

(i) Original (ii) Contours (iii) ODS (iv) OIS

(b) BSDS500

Figure 4.3: Examples of segmentation results of (a) BSDS300, (b) BSDS500, (c) MSRC, 
(d) VOC12, (e) SBD, and (f) NYU data set, including (in columns) (i) original images, 
(ii) hierarchical contour maps, (iii) ODS covering segmentations, and (iv) OIS covering 
segmentations. The training uses BSDS300 training images. Contours are thickened for 
visualization purposes.
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(i) Original (ii) Contours (iii) ODS

(c) MSRC

(iv) OIS

(i) Original (ii) Contours (iii) ODS

(d) VOC12

(iv) OIS

F ig u re  4.3: (Continued).



54

(i) Original (ii) Contours (iii) ODS (iv) OIS

(e) SBD

(i) Original (ii) Contours (iii) ODS (iv) OIS

(f) NYU

F ig u re  4.3: (Continued).



CHAPTER 5

SEMI-SUPERVISED HIERARCHICAL 
MERGE TREE MODEL

Given initial superpixels and structures, the performance of HMT (Chapter 2) as well 

as most other superpixel-merging image segmentation methods largely depends on accurate 

boundary predictions, which are determined by a boundary classification function. Such 

functions are usually learned with supervised algorithms that demand considerable ground 

truth data. In this chapter, we propose a semi-supervised learning-based HMT model, 

named SSHMT, to reduce this demand. We focus on the application of SSHMT to EM 

image segmentation, for which the collecting of ground truth data is extremely laborious 

and requires expertise. Based on the merge tree structure, we develop a differentiable 

unsupervised loss term that enforces consistent boundary predictions. We then propose 

a Bayesian model that combines the supervised and the unsupervised information for 

probabilistic learning of the boundary classification function. The experimental results 

on three EM data sets demonstrate that by using a subset of only 3% to 7% of the entire 

ground truth data, SSHMT consistently performs close to fully supervised HMT with full 

labeled data sets, and significantly outperforms fully supervised HMT with the same labeled 

subset.

5.1 Introduction
Similar to the boundary detection/region segmentation pipeline for natural image seg

mentation [5, 95, 93, 80], most recent EM image segmentation methods use a membrane 

detection/cell segmentation pipeline. First, a membrane detector generates pixelwise confi

dence maps of membrane predictions using local image cues [107, 46, 66]. Next, region-based 

methods are applied to transform the membrane confidence maps into cell segments. It 

has been shown that region-based methods are necessary for improving the segmenta

tion accuracy from membrane detections for EM images [39]. A common approach to 

region-based segmentation is to transform a membrane confidence map into oversegmenting
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superpixels and use them as “building blocks” for final segmentation. To correctly combine 

superpixels, greedy region agglomeration based on certain boundary saliency has been shown 

to work [60]. Meanwhile, structures, such as loopy graphs [108, 109] or trees [41, 110, 111], 

are more often imposed to represent the region merging hierarchy and help transform the 

superpixel combination search into graph labeling problems. To this end, local [41, 109] or 

structured [110, 111] learning-based methods are developed.

Most current region-based segmentation methods use a scoring function to determine 

how likely it is that two adjacent regions should be combined. Such scoring functions are 

usually learned in a supervised manner that demands a considerable amount of high-quality 

ground truth data. Obtaining such ground truth data, however, involves manual labeling 

of image pixels and is very labor intensive, especially given the large scale and complex 

structures of EM images. To alleviate this demand, Parag et al. have recently proposed 

an active learning framework [112, 113] that starts with small sets of labeled samples and 

constantly measures the disagreement between a supervised classifier and a semi-supervised 

label propagation algorithm on unlabeled samples. Only the most disagreed samples are 

pushed to users for interactive labeling. The authors demonstrate that by using 15% to 20% 

of all labeled samples, the method can perform similar to the underlying fully supervised 

method with a full training set. One disadvantage of this framework is that it does not 

directly explore the unsupervised information while searching for the optimal classification 

function. Also, retraining is required for the supervised algorithm at each iteration, which 

can be time consuming especially when more iterations with fewer samples per iteration 

are used to maximize the utilization of supervised information and minimize human effort. 

Moreover, repeated human interactions may lead to extra cost overhead in practice.

In this chapter, we propose a semi-supervised learning framework for region-based 

neuron segmentation that seeks to reduce the demand for labeled data by exploiting the 

underlying correlation between unsupervised data samples. Based on the merge tree struc

ture [41, 110, 111], we redefine the labeling constraint and formulate it into a differentiable 

loss function that can be effectively used to guide the unsupervised search in the function 

hypothesis space. We then develop a Bayesian model that incorporates both unsupervised 

and supervised information for probabilistic learning. The parameters that are essential to 

balancing the learning can be estimated from the data automatically. Our method works 

with a very small amount of supervised data and requires no further human interaction. We 

show that by using only 3% to 7% of the labeled data, our method performs consistently 

close to the state-of-the-art fully supervised algorithm with entire supervised data sets
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(Section 5.3). Also, our method can be conveniently adopted to replace the supervised 

algorithm in the active learning framework [112, 113] and further improve the overall 

segmentation performance.

5.2 Methodology
5.2.1 M erg e  co n sis te n cy  c o n s tra in t

Following the HMT notations, we define a clique path of length L that starts at clique 

pi as an ordered set n L =  { p ^ )} ^ -1. Based on the merge consistency constraint (4.1), we 

have

T heorem  1 Any consistent label sequence y L =  { y ^ )} 1 -  for n L under the merge con

sistency constraint is monotonically nonincreasing.

Proof: Assume there exists a label sequence y L subject to the merge consistency constraint 

that is not monotonically nonincreasing. By definition, there must exist k > 0, s.t. ypk(i) < 

ypk+i(i). Let j  =  pk(i), then pk+1 (i) =  p (j), and thus yj < yp(j). This violates the merge 

consistency constraint (4.1), which contradicts the initial assumption that y L is subject to 

the merge consistency constraint. Therefore, the initial assumption must be false, and all 

label sequences that are subject to the merge consistency constraint must be monotonically 

nonincreasing.
□

Intuitively, Theorem 1 states that while moving up in a merge tree, once a split occurs, 

no merge shall occur again among the ancestor cliques in that path. As an example, 

a consistent label sequence for the clique path {p8,p n ,p 13} in Figure 4.1c can only be 

{y8,y11 ,y13} =  {0,0,0}, {1,0,0}, {1,1,0}, or {1,1,1}. Any other label sequence, such as 

{1, 0,1}, is not consistent. In contrast to the region consistency constraint (2.8), the merge 

consistency constraint is a local constraint that holds for the entire leaf-to-root clique paths 

as well as any of their subparts, which allows certain computations to be decomposed as 

shown later in Section 5.3.2.

Let f i be a predicate that denotes whether yi =  1 for clique pi . We can express the 

nonincreasing monotonicity of any consistent label sequence for n L in disjunctive normal 

form (DNF) as
L f j - 1  L-1 \

FL  =  V I A  f Pk(i) A A —f Pk (i) I , (5.1)
j=0 \k=0 k=j J

which always holds true  according to Theorem 1. We approximate FiL with real-valued 

variables and operators by replacing true with 1, fa lse  with 0, and f  with real-valued f .  A
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negation - f  is replaced by 1 — f ; conjunctions are replaced by multiplications; disjunctions 

are transformed into negations of conjunctions using De Morgan’s laws and then replaced. 

The real-valued DNF approximation is

= 1 -  n  ( 1 -  n  ■ n  ( 1 —./> « ) ) , (5.2)
j=o \  fc=o fc=j y

which is valued 1 for any consistent label assignments. Observing f  is exactly a binary 

boundary classifier (Section 2.2.3), we further relax it to be a classification function that 

predicts P(y =  1 1 x) e [0,1]. The choice of f  can be arbitrary as long as it is (piecewise) 

differentiable (Section 5.2.2). In this work, we use a logistic sigmoid function with a linear 

discriminant

f(x; w) =  ----------1-----=r —, (5.3)
J 1 + exp(—wTx) v 7

which is parameterized by w.

We would like to find an f  so that its predictions satisfy the DNF (5.2) for any path 

in a merge tree. We will introduce the learning of such f  in a semi-supervised manner in 

Section 5.2.2.

5 .2.2 B ay esian  sem i-su p e rv ised  le a rn in g  m odel

To learn the boundary classification function f , we use both supervised and unsupervised 

data. Supervised data are the clique samples with labels that are generated from ground 

truth segmentations. Unsupervised samples are those for which we do not have labels. They 

can be from the images for which we do not have the ground truth or wish to segment. We 

use X s to denote the collection of supervised sample feature vectors and y s for their true 

labels. X is the collection of all supervised and unsupervised samples.

Let f w = [fj1 , . . . , f jNs ]T be the predictions about the supervised samples in X s, and 

F w =  [FL, . . . ,  FL  ]T be the DNF values (5.2) for all paths from X. We are now ready to 

build a probabilistic model that includes a regularization prior, an unsupervised likelihood, 

and a supervised likelihood.

The prior is an i.i.d. Gaussian N (0,1) that regularizes w to prevent overfitting. The 

unsupervised likelihood is an i.i.d. Gaussian N (0, au) on the differences between each 

element of F w and 1. It requires the predictions of /  to conform the merge consistency 

constraint for every path. Maximizing the unsupervised likelihood allows us to narrow 

down the potential solutions to a subset in the classifier hypothesis space without label 

information by exploring the sample feature representation commonality. The supervised 

likelihood is an i.i.d. Gaussian N (0, ) on the prediction errors for supervised samples to
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enforce accurate predictions. It helps avoid consistent but trivial solutions of f , such as the

ones that always predict y — 1 or y — 0, and guides the search towards the correct solution. 

The standard deviation parameters and a s control the contributions of the three terms. 

They can be preset to reflect our prior knowledge about the model distributions, tuned 

using a holdout set, or estimated from data.

By applying Bayes’ rule, we have the posterior distribution of w as

where Nu and Ns are the number of elements in F w and f w, respectively; 1 is a Nu- 

dimensional vector of ones.

5 .2 .3  In fe ren ce

We infer the model parameters w, au, and a s using maximum a posteriori estimation. 

We effectively minimize the negative logarithm of the posterior

Observe that the DNF formula in (5.2) is differentiable. With any (piecewise) differ

entiable choice of fw , we can minimize (5.5) using (sub-) gradient descent. The gradient 

of (5.5) with respect to the classifier parameter w is

Since we choose f  to be a logistic sigmoid function with a linear discriminant (5.3), the 

j-th  (j — 1 , . . . ,  Ns) row of Vwfw is

P (w  | X, Xs, ys, as) a  P (w) ■ P (1 | X, w, aM) ■ P (ys | Xs, w, )

(5.4)

s

(5.5)

y s — f w
T

(5.6)

(5.7)

where xj is the j-th  element in X s.
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Defining gj =  nk= 0 f  pk(i) ■ n j  - f  pk(i)), j  =  0 , . . . , l  we write (5.2) as ^  =
1 — nt=o(1 — gj) as the i-th (i =  1, . . . ,  Nu) element of -Fw. Then, the i-th row of VwF w is

Vw F L =  V
j=0

(  \L
gj n(1 — gk)

k=0 /k=j

V  Vwfpk(i) — V  Vwfpk(i) I (5 8)
,k=0 fpk(i) k=j 1 — f Pk (i)

where Vwfpk(i) can be computed using (5.7).

We also alternately estimate au and as along with w. Setting VCTu J  =  0 and VCTs J  =  0, 

we update au and as using the closed-form solutions

II1 — F w ||2 tr
ffu = ~ 7 N T ~  (5.9)

ffs = • (5' 10)

At testing time, we apply the learned f  to testing samples to predict their merging 

likelihood. Eventually, we compute the node potentials with (2.9) and apply the greedy 

inference algorithm to acquire the final node label assignment (Section 2.2.4).

5.3 Results
We validate the proposed algorithm for 2D and 3D segmentation of neurons in three EM 

image data sets. For each data set, we apply SSHMT to the same segmentation tasks using 

different amounts of randomly selected subsets of ground truth data as the supervised sets.

5.3.1 D a ta  se ts

5 .3 .1 .1  M o u se  n e u ro p il d a ta  se t

The mouse neuropil data set we use here is the same as that in Section 2.3.1.2. We also 

follow the same splitting setting in Section 2.3.1.2 that uses 14 images with ground truth as 

the whole supervised data set and the other 56 images for testing. We test our algorithm 

using 14 (100%), 7 (50%), 3 (21.42%), 2 (14.29%), 1 (7.143%), and half (3.571%) ground 

truth image(s) as the supervised data. We use all 70 images as the unsupervised data for 

training. We target 2D segmentation for this data set.

5 .3 .1 .2  M o u se  c o r te x  d a ta  se t

The mouse cortex data set we use here is the 1024 x 1024 x 100 training stack of that 

in Section 2.3.1.3. We use the first 1024 x 1024 x 50 substack as the supervised set and the 

second 1024 x 1024 x 50 substack for testing. There are 327 ground truth neuron segments
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that are larger than 1000 pixels in the supervised substack, which we consider as all the 

available supervised data. We test the performance of our algorithm by using 327 (100%), 

163 (49.85%), 81 (24.77%), 40 (12.23%), 20 (6.116%), 10 (3.058%), and 5 (1.529%) true 

segments. Both the supervised and the testing substack are used for the unsupervised term. 

Due to the unavailability of the ground truth data, we did not experiment with the original 

testing image stack from the challenge. We target 3D segmentation for this data set.

5 .3 .1 .3  D ro s o p h ila  n e u ro p il d a ta  se t

The Drosophila melanogaster larval neuropil [27] is a 500 x 500 x 500 FIBSEM image 

volume at 10 x 10 x 10 nm/pixel resolution. We divide the whole volume evenly into eight 

250 x 250 x 250 subvolumes and do eight-fold cross validation using one subvolume each 

time as the supervised set and the whole volume as the testing data. Each subvolume has 

from 204 to 260 ground truth neuron segments that are larger than 100 pixels. Following 

the setting in the mouse cortex data set experiment, we use subsets of 100%, 50%, 25%, 

12.5%, 6.25%, and 3.125% of all true neuron segments from the respective supervised 

subvolume in each fold of the cross validation as the supervised data to generate boundary 

classification labels. We use the entire volume to generate unsupervised samples. We target 

3D segmentation for this data set.

5 .3 .2  E x p e r im e n ts

To generate initial superpixels, we use the watershed algorithm [64] over the membrane 

detection confidence maps generated using CHM [66]. For the boundary classifier, we 

use features including shape information (region size, perimeter, bounding box, boundary 

length, etc.) and image intensity statistics (mean, standard deviation, minimum, maximum, 

etc.) of region interior and boundary pixels from both the original EM images and membrane 

detection confidence maps.

We use the adapted Rand F-error metric [39] to generate boundary classification labels 

using whole ground truth images (Section 2.2.3) for the 2D mouse neuropil data set. For the 

3D mouse cortex and Drosophila neuropil data set, we determine the labels using individual 

ground truth segments instead. We use this setting in order to match the actual process 

of analyzing EM images by neuroscientists. Details about label generation using individual 

ground truth segments are provided in Appendix B.

We can see in (5.2) and (5.8) that computing F L and its gradient involves multiplications 

of L  floating point numbers, which can cause underflow problems for leaf-to-root clique 

paths in a merge tree of even moderate height. To avoid this problem, we exploit the local
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property of the merge consistency constraint and compute F L for every path subpart of 

small length L. In this work, we use L =  3 for all experiments. For inference, we initialize 

w by running gradient descent on (5.5) with only the supervised term and the regularizer 

before adding the unsupervised term for the whole optimization. We update au and as in 

between every 100 gradient descent steps on w.

We compare SSHMT with the fully supervised HMT [41] as the baseline method. To 

make the comparison fair, we use the same logistic sigmoid function as the boundary 

classifier for both HMT and SSHMT. The fully supervised training uses the same Bayesian 

framework only without the unsupervised term in (5.5) and alternately estimates as to 

balance the regularization term and the supervised term. All the hyperparameters are 

kept identical for HMT and SSHMT and fixed for all experiments. We use the adapted 

Rand F-error [39] following the public EM image segmentation challenges [68, 70]. Due to 

the randomness in the selection of supervised data, we repeat each experiment 50 times, 

except in the cases in which there are fewer possible combinations. We report the mean 

and standard deviation of testing errors for each set of repeats on the three data sets in 

Table 5.1.

Examples of 2D segmentation testing results from the mouse neuropil data set using fully 

supervised HMT and SSHMT with 1 (7.143%) ground truth image as supervised data are 

shown in Figure 5.1. Examples of 3D individual neuron segmentation testing results from 

the Drosophila neuropil data set using fully supervised HMT and SSHMT with 12 (6.25%) 

true neuron segments as supervised data are visualized using TrakEM2 [38] in Fiji [73] and 

shown in Figure 5.2.

From Table 5.1, we can see that with abundant supervised data, the performance of 

SSHMT is similar to HMT in terms of segmentation accuracy. When the amount of 

supervised data becomes smaller, SSHMT significantly outperforms the fully supervised 

method with accuracy close to the HMT results using the full supervised sets. Moreover, 

the introduction of the unsupervised term stabilizes the learning of the classification function 

and results in much more consistent segmentation performance, even when only very limited 

(3% to 7%) label data are available. Increases in errors and large variations are observed in 

the SSHMT results when the supervised data become too scarce, because the few supervised 

samples are incapable of providing sufficient guidance to balance the unsupervised term, 

and the boundary classifiers are biased to give trivial predictions.

Figure 5.1 shows that SSHMT is capable of fixing both over- and undersegmentation 

errors that occur in the HMT results. Figure 5.2 also shows that SSHMT can fix over-
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Table 5.1: Means and standard deviations of the adapted Rand F-errors of HMT and 
SSHMT segmentations for the three EM data sets. The left table columns show the amount 
of used ground truth data, in terms of (a) the number of images, (b) the number of segments, 
and (c) the percentage of all segments. Bold numbers in the tables show the results of the 
higher accuracy under comparison. The figures on the right visualize the means (dashed 
lines) and the standard deviations (solid bars) of the errors of HMT (red) and SSHMT 
(blue) results for each data set.

(a) Mouse neuropil

HMT SSHMT

#G T Mean Std. Mean Std.

14 0.1135 - 0.1196 -
7 0.1382 0.03238 0.1208 0.004033
3 0.1492 0.04851 0.1205 0.001383
2 0.1811 0.07346 0.1217 0.004116
1 0.2035 0.1029 0.1210 0.002206

0.5 0.2505 0.1062 0.1365 0.1079

(b) Mouse corte

HMT SSHMT

#G T Mean Std. Mean Std.

327 0.1101 - 0.1104 -

163 0.1344 0.03660 0.1189 0.01506
81 0.1583 0.06909 0.1215 0.01661
40 0.1844 0.1019 0.1198 0.01690
20 0.2205 0.1226 0.1238 0.01466
10 0.2503 0.1561 0.1219 0.01273
5 0.4389 0.2769 0.2008 0.2285

(c) Drosophila neu

HMT SSHMT

%GT Mean Std. Mean Std.

100% 0.06044 - 0.05504 -
50% 0.09004 0.04476 0.05602 0.005550
25% 0.1240 0.07491 0.05803 0.007703

12.5% 0.1418 0.1055 0.05835 0.007797
6.25% 0.1748 0.1389 0.05756 0.008933
3.125% 0.2017 0.1871 0.06213 0.03660
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(a) Original (b) HMT (c) SSHMT (d) Ground tru th

Figure 5.1: Examples of 2D segmentation results (five sections) of the mouse neuropil data 
set, including (in columns) (a) original EM images, segmentation results using (b) HMT 
and (c) SSHMT with one ground truth image as supervised data, and (d) the corresponding 
ground truth images. Different colors indicate individual segments.
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(a) HM T (b) SSHMT (c) Ground tru th

Figure 5.2: Examples of five individual neurons from 3D segmentation results of the 
Drosophila neuropil data set, including segmentation results (in columns) using (a) HMT 
and (b) SSHMT with 12 (6.25%) 3D ground truth segments as supervised data, and (c) the 
corresponding ground truth segments. Different colors indicate individual segments.
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segmentation errors and generate highly accurate neuron segmentations. Note that in our 

experiments, we always randomly select the supervised data subsets. For realistic uses, we 

expect supervised samples of better representativeness to be provided with expertise and 

the performance of SSHMT to be further improved.

5.4 Conclusion
In this chapter, we proposed a semi-supervised method that can consistently learn 

boundary classifiers with a very limited amount of supervised data for region-based image 

segmentation. This method dramatically reduces the high demands for ground truth data 

by fully supervised algorithms. We applied our method to neuron segmentation in EM 

images from three data sets and demonstrated that by using only a small amount of ground 

truth data, our method performs close to the state-of-the-art fully supervised method with 

full labeled data sets. In our future work, we will explore the integration of the proposed 

constraint-based unsupervised loss in structural learning settings to further exploit the 

structured information for learning the boundary classification function. Also, we may 

replace the current logistic sigmoid function with more complex classifiers and combine our 

method with active learning frameworks to improve segmentation accuracy.



CHAPTER 6

DISCUSSION AND FUTURE WORK

This dissertation focused on the development of learning-based hierarchical models for 

image region segmentation. Our work was motivated by the segmentation problem of 

neuronal structures in EM images required by connectomics research. We proposed the 

HMT model and the HMF model for EM image segmentation. We also extended the HMT 

model to solve general image segmentation problems. We demonstrated that the HMT 

model and its variants achieve state-of-the-art performance on segmenting both types of 

images. We also proposed a semi-supervised learning algorithm that can be used based on 

the HMT model to achieve competitive segmentation performance with only very limited 

labeled data.

As the center of our work, the HMT model uses a tree structure to represent the hierarchy 

of region merging and provides a learning-based framework for efficient image segmentation. 

The main advantage of using the merge tree structure is three-fold. First, compared 

with modeling segmentation as a planar graph problem, richer features can be effectively 

extracted from larger regions instead of using only features from initial superpixels. Second, 

different from greedy region agglomeration methods that make merging decisions locally, the 

final segmentation inference in the HMT model can be done with consideration of the whole 

merging process, which effectively reduces the impact of inaccurate local predictions to the 

entire segmentation result. Third, thanks to the tree structure, both greedy and globally 

optimal inference can be done efficiently in polynomial time. In other words, the HMT model 

provides a balanced solution to the trade-off between utilization of higher order information 

and tractability. The HMT model itself requires no parameter that needs manually tuning. 

Also, it makes no assumption about image dimensionality and can be applied to solving 

multidimensional image segmentation problems without any change. Furthermore, as a 

generic framework, the HMT model can work for any type of merging-based decision-making 

problem as long as the combination of separate objects can be defined and its likelihood 

can be quantified.
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In the future work, there are unresolved and new questions we would like to answer:

1. Can multiple trees for the same image be jointly used to improve segmentation? One 

major concern about the merge structure is it is not able to fix incorrect merging 

orders. This motivated the development of the iterative merge sampling algorithm 

(Section 4.2.4) for natural image segmentation, and we have shown that the segmenta

tion accuracy of the final contour hierarchy can be significantly improved by averaging 

individual segmentation from each tree. In the case of single-shot segmentation that 

targets generating one hard label map per image, such as EM image segmentation, 

it would be interesting to see if multiple tree structures for a single image can be 

combined for joint inference of the final segmentation. Following this idea, we have 

worked on developing a greedy optimization algorithm, similar to the one in HMT 

(Section 2.2.4), that iteratively selects the best node in the multiple trees and removes 

all the nodes in each tree that share identical initial superpixels with the selected node 

until every node is processed. We have also developed a globally optimal inference 

algorithm similar to the bottom-up/top-down algorithm (Section 2.2.4), except that 

the energy tuples are propagated such that the energy for each case is minimized 

across all trees. We did not draw conclusive results from both algorithms and will 

investigate the reason.

2. Can the boundary detection/region segmentation pipeline be unified into a joint model? 

The commonly used boundary detection/region segmentation pipeline has its problem 

that the two steps essentially target different goals. A pixelwise boundary detector is 

trained to reduce pixel error, which can be suboptimal in achieving accurate region 

segmentation. Also, it uses image context within a fixed window around the pixel, 

which can be inefficient in incorporating more targeted region information, especially 

when different regions have large variations in size such as neuron cells in EM images. 

On the other hand, current region-based methods, such as the HMT model, usually 

use boundary detection confidence as a very important indication about region merg

ing. Thus, they can be severely affected by boundary mistakes and are not able to 

recover from large false positive or false negative boundary detections. In this sense, 

developing a joint model that incorporates both the two steps and unifies their targets 

would be of great interest. Following this idea, we have conducted a preliminary work 

that incorporates a type of tree-derived pixel loss in training the CHM algorithm to 

generate boundary confidence maps that are less prone to causing incorrect merging
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orders, but the results are inconclusive. We will further look into this problem in our 

future work.

3. Can the proposed hierarchical frameworks be applied in other applications? It would 

be interesting to see if and how the proposed HMT framework and its variants can be 

applied in other applications. For example, the HMT model is designed for full image 

segmentation, and it needs to be modified to solve foreground/background segmen

tation problems, such as segmentation of intracellular structures (e.g., mitochondria) 

in EM images or of specific objects in natural images. In addition, we may be able 

to apply the HMF model to segmenting consecutive image sequences, such as videos. 

The SSHMT model can be generalized for learning to either segment or detect under 

the tree structure. We are working on applying it to cell detection using other imaging 

modalities.



APPENDIX A

SUMMARY OF CLASSIFICATION 

FEATURES 

A.1 Boundary Classification Features for EM 
Image Segmentation

The categories of features used for boundary classification for EM images (Section 2.2.3) 

are summarized as follows. Note that for the texton features, 7 x 7 patches are used and 

k-means clustering is used for learning the texture dictionary of 100 words. Specific feature 

choices may differ in different implementations.

1. Shape: Region areas, perimeters, and compactness; boundary length and curvatures 

(2D only).

2. Image appearance (of original EM images and membrane detection confidence maps): 

Boundary pixel intensity histogram (10-bin) and statistics; region pixel intensity 

histogram (10-bin) and statistics; region texton histogram (100-bin, 2D only).

3. Merging saliencies.

A.2 Section Classification Features for EM 
Image Segmentation

The categories of features used for section classification for EM images (Section 3.2.2) 

are summarized as follows. Note that for the texton features, 7 x 7 patches are used and 

k-means clustering is used for learning the texture dictionary of 100 words. Specific feature 

choices may differ in different implementations.

1. Shape: Region areas, perimeters, compactness, centroid distance, and overlap.

2. Image appearance (of original EM images and membrane detection confidence maps): 

Boundary pixel intensity histogram (10-bin) and statistics; region pixel intensity 

histogram (10-bin) and statistics; region texton histogram (100-bin).
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A.3 Boundary Classification Features for Natural 
Image Segmentation

We use 55 features from region pairs to train the boundary classifiers, including:

1. Geometry (5-dimensional): Areas of two regions normalized by image area and perime

ters and boundary length of two regions normalized by the length of the image 

diagonal.

2. Boundary (4-dimensional): Means and medians of boundary pixel intensities from 

gPb and UCM [5]. Boundary detector gPb generates probability maps that describe 

how likely each pixel belongs to an image boundary. UCM is the result from postpro

cessing gPb probability maps that depicts how boundary pixels contribute to contour 

hierarchies in images. The boundary pixels follow the definition in (2.2).

3. Color (24-dimensional): Absolute mean differences, L1 and x 2 distances, and absolute 

entropy differences between histograms (10-bin) of LAB and HSV components of the 

original images.

4. Texture (8-dimensional): L1 and x 2 distances between histograms of texton [114] 

(64-bin) and SIFT [115] dictionary of 256 words. The SIFT descriptors are computed 

densely, and 8 x 8 patches are used on gray, A, and B channels of the original images.

5. Geometric context (14-dimension): L1 and x 2 distances between histograms (32-bin) 

of the probability maps of each of the seven geometric context labels. The geometric 

context labels indicate orientations of the surfaces in the images, which are predicted 

by a fixed pretrained model provided by [116].



APPENDIX B

BOUNDARY CLASSIFICATION LABEL 
GENERATION USING INDIVIDUAL  

GROUND TRUTH SEGMENTS

Assume we have only individual annotated image segments instead of entire image 

volumes as ground truth. Given a merge tree, we generate the best-effort ground truth 

classification labels for a subset of cliques as follows:

1. For every region represented by a tree node, compute the Jaccard indices of this region 

against all the annotated ground truth segments. Use the highest Jaccard index of 

each node as its eligible score.

2. Mark every node in the tree as “eligible” if its eligible score is above a certain threshold 

(0.75 in practice) or “ineligible” otherwise.

3. Iteratively select a currently “eligible” node with the highest eligible score; mark it 

and its ancestors and descendants as “ineligible,” until every node is “ineligible.” This 

procedure generates a set of selected nodes.

4. For every selected node, label the cliques at itself and its descendants as y — 1 

(“merge”) and the cliques at its ancestors as y — 0 (“split”).

Eventually, the clique samples that receive merge/split labels are considered to be the 

supervised data.
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