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ABSTRACT

Functional magnetic resonance imaging (fMRI) measures the change of oxygen consump-

tion level in the blood vessels of the human brain, hence indirectly detecting the neuronal

activity. Resting-state fMRI (rs-fMRI) is used to identify the intrinsic functional patterns

of the brain when there is no external stimulus. Accurate estimation of intrinsic activity is

important for understanding the functional organization and dynamics of the brain, as well

as differences in the functional networks of patients with mental disorders.

This dissertation aims to robustly estimate the functional connectivities and networks

of the human brain using rs-fMRI data of multiple subjects. We use Markov random field

(MRF), an undirected graphical model to represent the statistical dependency among the

functional network variables. Graphical models describe multivariate probability distribu-

tions that can be factorized and represented by a graph. By defining the nodes and the edges

along with their weights according to our assumptions, we build soft constraints into the

graph structure as prior information. We explore various approximate optimization meth-

ods including variational Bayesian, graph cuts, and Markov chain Monte Carlo sampling

(MCMC).

We develop the random field models to solve three related problems. In the first problem,

the goal is to detect the pairwise connectivity between gray matter voxels in a rs-fMRI

dataset of the single subject. We define a six-dimensional graph to represent our prior

information that two voxels are more likely to be connected if their spatial neighbors are

connected. The posterior mean of the connectivity variables are estimated by variational

inference, also known as mean field theory in statistical physics. The proposed method

proves to outperform the standard spatial smoothing and is able to detect finer patterns of

brain activity. Our second work aims to identify multiple functional systems. We define

a Potts model, a special case of MRF, on the network label variables, and define von

Mises-Fisher distribution on the normalized fMRI signal. The inference is significantly

more difficult than the binary classification in the previous problem. We use MCMC to

draw samples from the posterior distribution of network labels. In the third application, we

extend the graphical model to the multiple subject scenario. By building a graph including



the network labels of both a group map and the subject label maps, we define a hierarchical

model that has richer structure than the flat single-subject model, and captures the shared

patterns as well as the variation among the subjects. All three solutions are data-driven

Bayesian methods, which estimate model parameters from the data. The experiments show

that by the regularization of MRF, the functional network maps we estimate are more

accurate and more consistent across multiple sessions.
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CHAPTER 1

INTRODUCTION

The human brain is organized into distributed functional modules that work indepen-

dently for specific cognitive tasks, and also interact with each other. It has been shown that

the spontaneous fluctuation of the blood oxygenation level dependent (BOLD) signal, as

measured by functional magnetic resonance imaging (fMRI), is a valuable data source for

delineating the functional network organization. More recently, the spontaneous activity

of human brain has gained more attention because of its potential in helping understand

the baseline patterns of cognitive activity as well as the cause of some cognitive diseases.

Resting-state fMRI (rs-fMRI) is accordingly widely used for exploring such activities.

The analysis of rs-fMRI data is a challenging task, due to the scanner noise, physio-

logical noise, head motion, and subject’s random thoughts during data acquisition. Single

subject’s data are typically unreliable and inconsistent for the statistical inference of the

whole population’s intrinsic activity patterns. On the other hand, combining data from

multiple subjects and jointly estimating the common functional networks is more robust.

In group analysis of rs-fMRI data, one typically assumes that all subjects in the group

share common functional connectivity patterns, These group networks can be estimated

more accurately because the noise introduced in each subject is canceled by averaging. In

practice, it is a major challenge to summarize the consistent patterns across subjects, as each

subject’s network patterns appear similar but have slight variation due to the anatomical

and functional difference across subjects.

Recent years have seen substantial interest in estimating functional networks of indi-

vidual subjects during group analysis. An accurate estimate of an individual’s network is

an important step towards understanding of brain-behavior relationships on a per-subject

basis. The intersubject variation must be accounted for in order to obtain a good estimation

of the networks of individual subjects as well as the group. Current methods [157, 39] either

do not estimate individual functional network maps, or do not have an explicit statistical

model on the intersubject variations [27, 28]. Among the methods that do estimate subject
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functional networks, some have one or more of the drawbacks.

First, some methods map a common group functional network by concatenating the

BOLD signal from all subjects. By doing this, one implicitly assumes that the voxels

across subjects map to the same anatomical structure after coregistration, and share the

same functional connectivity patterns. These assumptions are often violated due to the

anatomical inhomogeneity between subjects, and also due to the imperfect alignment of

the existing coregistration routine. In addition, the simple concatenation does not take

into account the possible different variance across subjects. In particular, some participants

may experience spontaneous, but active cognition during the scan even in the resting-

state. These activities modulate each subject’s functional network in a different way and

to a different extent, and hence tamper the estimation of the group’s functional networks.

Such subject-specific confounding factors are less likely to be negligible by simple averaging

compared to other sources of noise such as scanner noise, subject motion and coregistration.

Second, group analysis are often conducted in a one way procedure. In some scenar-

ios [143, 38, 72, 70, 135, 110], each subject’s functional network is estimated independently,

and a group map is simply summarized by averaging the subjects’ connectivity maps. The

estimates of subject maps by these procedures do not use other subjects’ information and

are robust to noise. The group summary map extracted from these subject maps is hence

suboptimal. In other scenarios [27], a group map is estimated first from the concatenated

data, then is back-reconstructed to obtain the subject network maps. More recently, the

subject network maps are estimated from the averaged group map using a dual regression

approach [52, 11]. Such methods treat voxel intensity from all subjects the same way

for group map estimation, ignoring that they may have subject specific variances. Both

classes of approach do not iteratively refine the initial group or subject estimates, and the

estimation of one subject’s connectivity does not benefit from the information obtained

from other subjects. Figure 1.1 gives an illustration of the various methods and their order

of estimations.

Last, spatial smoothing is often used during preprocessing in order to address the issue

of imperfect intersubject alignment. Although spatially blurring the time series increases

the signal-to-noise ratio, the choice of the smoothing kernel size has a big impact on the

estimated functional maps. Over-smoothing inevitably results in the loss of fine structures of

the functional maps. In practice, the random field theory of statistical parametric mapping

(SPM) [59] requires a smoothing kernel even larger than the anticipated region of interest.

One needs a model that uses the spatial dependency and the intersubject similarity of the



3

rs-fMRI signals, without losing the finer details of the functional patterns.
A data-driven, unified probabilistic framework will help in solving the above issues. The

model should integrate both group’s and subjects’ connectivity variables into this model.

One can make inference from the posterior distribution of the variables in both subject and

group levels given the observed BOLD signal.
In this dissertation we present a series of statistical methods for identification of the

human brain’s functional networks by using rs-fMRI data. All the methods aim to model

the spatial dependency within a single subject in a principal way without the naive spatial

smoothing, and model the intersubject similarity and variations for a more accurate group

and subject network estimation. The main mathematical tools are Markov random fields

(MRF) — an undirected graphical model, and Bayesian method. We use various methods

including Markov chain Monte Carlo (MCMC) sampling and variational inference for solving

the statistical inference problem in high dimensional space.

1.1 Disserattion statement
Here is the statement of this dissertation:

A multilevel Markov Random Field model improves the reliability of the
functional network estimation in rs-fMRI group study by taking into account
context information as a prior. The data-driven Bayesian model can jointly
estimate both population and subjects’ connectivity networks, as well as
drawing inference on the uncertainty in the estimation, and on the variability
across subjects.

The word Context has two meanings: 1) The functional patterns of the human brain

are spatially coherent. Neighboring voxels have larger probability of being in the same

functional network. 2) The network that a voxel belongs to in one subject is dependent

on the networks of the same voxels in other subjects. The patterns of functional networks

from the rs-fMRI study are to some extent shared by multiple subjects, while the variability

across subjects must be taken into account.
By reliability we mean the decrease in the variance of the functional networks that we

estimate with different subsets of all subjects. The reliable estimates will be closer to the

true network in the simulation test, where we know the true answer.
To test our statement, we propose the following contributions:

• Full airwise connectivity with spatial coherence. We propose a method that

estimates pairwise functional connectivity in the whole brain of a single subject,

without a priori knowledge of the seed region. The model needs to take into account

the spatial context information, and learn the strength of the coherence from the data.
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• Identify consistent, spatially coherent multiple functional networks. We

propose a data-driven, generative model that can cluster the gray matter voxels of a

single subject’s brain into disjoint multiple functional networks, while respecting the

spatial coherence of the voxels.

• Hierarchical model for group study. We propose a hierarchical model that can

estimate functional networks from a group of subjects. The model will estimate an

overall group’s network map as well as individual subjects network maps at the same

time. When clustering the voxels into different networks, spatial neighbors both within

and across subjects will be used in a prior distribution of a Bayesian framework. The

variability of each subject’s connectivity due to noise and artifact will be reduced to

the extent that is to be determined automatically from the data.

• Variability of resting-state functional network. Based on the hierarchical

MRF model proposed above, we will draw inference on the variance and the confidence

intervals of the functional network. We will test the variability of the network by using

a subset of the data and perform bootstrap sampling. We also explore and visualize

the modes of spatial variability of the functional network patterns.

1.2 Outline and contributions
The remainder of the dissertation is organized in the following chapters.

In Chapter 2, we will give a survey of the existing methods of modeling the brain’s

functional connectivities using rs-fMRI, as well as the statistical inference methods. we will

describe the similarities and differences across these varied statistical approaches, evaluate

their advantages and disadvantages, and relate them with our model.

Chapter 3 gives a general introduction of the mathematical tools that will be used in

the following chapters. These tools include graph, graphical models and MRF, and various

statistical inference methods including sampling, variational Bayesian, graph cuts and other

approximation methods.

Chapter 4 will discover the first method that estimates a single subject’s functional

networks. This chapter is an application of the graphical model and MRF that we introduce

in Chapter 3. In this particular case, the MRF is in a high dimensional space to model the

prior distribution of the pairwise connectivity variables. Also, we use variational inference

to solve the problem. The inference is implemented on graphical processing unit (GPU) to

speed up such a problem with N2 complexity.
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In Chapter 5, we apply the graphical model in different settings. Here the model is

defined on the voxels in an original image domain instead of on the higher dimensional

domain defined in previous chapter. Together with a mixture model and Bayesian method,

we estimate all functional networks of a single subject dataset with spatial regularization.

Chapter 6 extends the concept of the graph to multiple subjects, and estimate the

functional patterns with a group of rs-fMRI data. Both group and subject functional

networks are estimated with higher accuracy, better consistency than standard methods.

This chapter will also cover the validation of the hierarchical model. Besides the estimation

accuracy, we focus on the consistency of the method across multiple sessions, and also under

data perturbation.

Chapter 7 concludes the dissertation with a general discussion, and some future work

that is worthy to explore.
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CHAPTER 2

BACKGROUND AND RELATED WORKS

The human brain is organized into distributed functional modules that work indepen-

dently but also interact with one another during cognitive activity. There appears two

principles of how the brain function is organized: functional integration and functional

specialization [59]. Functional specialization assumes the modules that process a particular

cognitive activity can be localized to an anatomical region in the brain. In functional

specialization, one studies the relationship of specific anatomical regions and cognitive

activity. However, the brain regions or functional modules do not work alone. They

interact with each other in a complex and dynamic way. Functional integration focuses

on such interactions.

This chapter provides background information about the current research exploring

brain’s functional network using rs-fMRI. I will begin with the relationship between brain

activity and fMRI, and give the definitions of functional connectivity and functional net-

work. Then I will survey various classes of methods for estimating functional connectivity

and networks.

2.1 Resting-state functional networks
The interactions among various functional modules of the brain can be represented

by the connectivity among anatomical regions. Two sets of MRI techniques are widely

used for mapping the in vivo connectivity of the human brain. Diffusion MRI, or more

specifically, diffusion tensor imaging (DTI), as a structural imaging technique, detects the

anisotropy of the neural axons in the brain’s white matter by measuring the diffusion of

water molecules. Such anisotropy is used for identifying the anatomical connectivities

between two regions in the brain’s white matter [87]. Functional MRI (fMRI) imaging,

in contrast, serves to explore the functional links between two regions of interest in brain’s

gray matter. The functional connections are the actual flow of information through the

anatomical links represented by the DTI. Researchers have demonstrated the correlation
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between the anatomical and functional connections. Such correlation is an indication

that functional connectivity is physically constrained and modulated by the structural

connectivity [80]. However, functional and structural connectivity are not exactly equal,

suggesting the dynamic characteristics of the functional patterns depend on the brain’s

state. The work in this dissertation is focused on functional connectivity.

Information is transferred in axons between neurons by the release of neurotransmitter

molecules at synapses. The interactions between neurotransmitter and receptors consume

energy. Because energy is produced by oxidative metabolism, increased synaptic activity

will also increase local demand for delivery of oxygen. This, counter intuitively, increase

the local blood flow, and increases the T ∗2 image intensity [97, 140]. Even deoxygenated

hemoglobin decreases during neural activity, MR signal increases. This is because more

oxygen is supplied to the brain region than is consumed.

Haemoglobin have different magnetic property when it is bound to oxygen. This changes

the local distortions of a magnetic field, which can be detected by MRI scanner. The

relaxation times depends on the level of blood oxygenation, and the MRI signal depends on

the relaxation time, and is called blood oxygenation level-dependent (BOLD) signal.

To understand the response of BOLD signal to a general stimulus signal, we need to

know its response to a very short impulse signal, namely, a δ function. It is noted that the

BOLD signal have about two seconds lags after the onset of stimulus. This initial dip is

attributed to the transient increase of deoxygenated hemoglobin. After 4 to 6 seconds, the

demand due to increase neuro activity results in an increased inflow of oxygenated blood,

and it reaches the highest point. After the neuro activity stops, the BOLD goes below the

baseline level. It takes about twenty seconds for the BOLD to go back to the baseline in

this poststimulus undershot. The balloon model [25] is used to explain this extended period.

The response function to a δ function is called the Hemodynamic response function (HRF).

The response of a general boxcar function, would be the convolution of the boxcar function

and the HRF.

Because the resolution of fMRI is much higher than the single cell or neuron, the BOLD

signal reflects the energy demands of neuropopulation that fire together with a common

functional purpose [84, 121]. Besides fMRI, other techniques are also used for mapping the

functions of the brain. They differ in terms of both their temporal and spatial resolution.

In general, electrophysiological methods, such as electroencephalography (EEG) or the

associated magnetic version magnetoencephalography (MEG), record the neural events in

real time; hence, these methods have relatively high temporal resolution. On the other
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hand, fMRI and positron emission tomography (PET) detect the change of blood flow due

to neuronal information processing, and have high spatial resolution (1-5 mm), but lower

temporal resolution because of the delayed haemodynamic changes.

fMRI was initially discovered as a tool to map the brain’s activity for subjects in specific

cognitive experiments. One compares the BOLD signal at a specific region in the brain with

the paradigm task signal. Because of the nature of the haemodynamics of the blood, the

paradigm task signal is the convolution of the original paradigm function (for example,

a boxcar function) with the haemodynamic response function (HRF). Later, researchers

found that the BOLD signals can be used not only to detect the functional patterns in

stimulus-guided experiments, but also to explore the co-activation of the brain when the

subjects are not performing cognitive tasks [17]. In such experiments, the primary goal

is to identify the functional connectivity between pairs of regions in the brain. Functional

connectivity is defined as the temporal dependence of neuronal activity patterns of spatially

remote (or anatomically separated) brain regions [61, 155, 60]. The temporal dependence is

typically measured by the linear correlation across all time points. Although the temporal

correlation within the BOLD signal of a single region or voxel violates the independence

assumption of the time point samples, this temporal correlation is often safely ignored.

Alternatively, one can also identify functional connectivity by transforming the signals into

the frequency domain and using the coherence of two signals at a certain frequency band.

The coherence as similarity measurement is equivalent to band pass filtering the original

BOLD signal and computing the linear correlation [36, 35].

The pairwise correlation or coherence only measure the functional connectivity between

regions as a local measurement. As the whole brain is organized as a complex system

with many such pairwise interactions, it is of interest to find out those regions with similar

patterns of neuronal activity. A functional network, or functional system (hereafter used

interchangeably), is a collection of separate anatomical regions that have similar patterns of

activity measured by BOLD signal. The regions within a functional system may have direct

or indirect information flow among them. Together the system serves one or more cognitive

tasks. An anatomical region may participate in different functional systems during different

cognitive tasks.

The correlated fluctuation of multiple brain regions not only occurs in stimulus-evoked

experiments, but also in experiments where the participants rest passively without any

cognitive activity. Therefore, the resting-state fMRI (rs-fMRI) becomes a powerful tool for

probing such intrinsic activity in a resting brain [124, 54]. The original name of the rs-fMRI



10

is not accurate, since the brain is not truly in a resting state even without any cognitive

activity. The resting brain consumes about 20 percent of the energy of the whole body,

but it occupies about only 5 percent of the body mass [56]. The study of the functional

organization of the resting brain provides new insights into how functional connectivity

relates to cognitive psychology and neurodegenerative diseases. Because the pathologic

conditions appear to be reflected by the interactions within or between the functional sys-

tems, the rs-fMRI study also holds valuable diagnostic and prognostic information towards

various neurological or psychiatric diseases including Alzheimer’s diseases, depression, and

schizophrenia [54, 70, 71], etc. The reason for this spontaneous activity is largely unknown,

although some researchers reasonably postulate that it is a predictive intrinsic response to

the unknown events in the outside environment [40].

2.2 Preprocessing fMRI data
Due to the noise and artifacts in fMRI data, multiple preprocessing steps are typically

taken before the real analysis starts. The preprocessing steps include motion correction,

slice timing correction, spatial and temporal filtering, registration between structural images

and functional images, registration to the standard template, and removing physiological

noise, etc.
Because of a subject’s head movements during the scan, the volumes at various time

points are usually not perfectly aligned. A rigid body registration is usually done between

the volumes at different time points, with either the first volume or the middle volume as a

reference. This is called motion correction. After correction, the same voxel coordinate is

assumed to map to the same brain structure across all time points, although the correction

is often not perfect. The motion correction parameters of each volume are often used as

independent variables for a regression in order to remove the motion effect. The first few

time points are usually discarded in case the scanner is not in a stationary state.
Slice timing correction is needed because each slice of fMRI volume is not scanned at the

same time. Figure 2.3 shows the shifted time of scans for different slices and the method of

interpolation. The shifted time will give suboptimal experiment results during the analysis,

especially for the event-based experiments. One typically uses an interpolation step to

obtain a volume in which all slices are at the same time point. Care must be taken for the

ordering of the slices as the ordering is scanner dependent.
Because of the physiological process of the BOLD signal, most of the interesting in-

formation is concentrated at the low frequency range of the signal (0.01 – 0.1 Hz). The

temporal band-pass filter is usually applied to remove the very low frequency (below 0.01
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Hz) and higher frequency (above 0.1 Hz). Also, due to the spatial process of fMRI data

acquisition, neighboring voxels typically have similar signal patterns. The statistical para-

metric mapping method [59] makes use of this spatial dependency by applying a spatial

Gaussian filter, and further enforces the smoothness of the signal on the spatial domain.

This filtering increases the SNR, but inevitably discards finer patterns with size smaller

than the smoothing kernel. Chapter 4 and Chapter 5 will discuss more principal methods

that model this spatial dependency with no spatial smoothing, or very small, conservative

smoothing.

In order to report the experiment results in a standard way such that others can

understand, the structural images and functional images are both registered to a standard

template, such as the MNI 152 template 1. The functional images are first registered

to structural images of the same subject by a rigid body transformation. The structural

images are then transformed to the standard template by affine transformation. Because of

the plasticity of the brain anatomy, the registration of the subject’s structural image may

need nonlinear transformation to register to the template [86]. After the structural images

are registered to the template, the functional images will also be brought to the template

space by the same transformation. The last step is the nuisance parameter regression.

The nuisance parameters include the six motion correction parameters that are estimated

in the previous motion correction step, and also the mean signal of the white matter and

cerebrospinal fluid (CSF). The motion correction parameters are taken into account because

even though the fMRI data are motion corrected at the first step of preprocessing, the

motion may still have an impact on the estimation of the general linear model (GLM) of

task-based fMRI, or the correlation for the rs-fMRI. The mean of white matter and CSF is

regressed out as these average signals are assumed to consist of physiological noise. Since

there is no information of the physiological signal such as heart beating and breathing, the

mean of white matter and CSF is used as surrogates for such confounding signals.

With completion of the above preprocessing steps, the data are ready for analysis. The

above preprocessing steps may vary depending on the specific experiments. For example, the

slice timing shifting is not a severe issue for rs-fMRI analysis and can be skipped. Besides,

the preprocessing steps may not have consistent impact on the fMRI processing pipeline.

For example, Zhang [160] pointed out that slice timing correction and global intensity

normalization have little consistent impact, but spatial smoothing, temporal detrending,

1http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009
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high-pass filtering and motion correction significantly improve the pipeline performance

across all subjects.

2.3 Related methods
The temporal dependence of the spatial regions can be represented in multiple ways.

Depending on whether one is interested in a specific region or a full brain’s functional

patterns, one can select the seed-based method or the full brain method. For the class of

full brain methods, there are methods that define the region of interest (ROIs) and build a

functional network by estimating the edges of the graph with nodes defined by the ROIs.

Also, the parcellation defines an image segmentation problem where the regions with higher

functional connectivities are grouped into a single cluster. In this section, I will give a short

survey of the various methods, show their advantages and disadvantages, and the similarities

and differences with our methods.

2.3.1 Seed-based methods
Depending on the specific experiment goal, functional networks may be represented in

various ways. A straightforward yet statistically powerful method is to compute the linear

correlation between a priori given seed regions and all other regions in the brain [17, 21, 22].

The correlation values are typically Fisher transformed in order to meet the normal distri-

bution assumption in the following hypothesis test. Those transformed correlation values

with p value less than a certain threshold are regarded as the existence of the functional

connectivity. All voxels or regions that are functionally connected to the seed regions

belong to the same functional system. The seed-based methods are useful when a user asks

a straightforward question and knows what functional system is of interest. The result is

easy to interpret compared to other more complex methods. The advantage of seed-based

methods is their simplicity and relatively ease of extention to multiple subjects. A user

simply computes the average correlations across subjects for a given pair of regions. When

users are interested in the connectivity to multiple regions, they can define more than one

seed.

However, this method has a limitation: the user has to know the location of the seed in

advance. The seed as a priori information is an advantage when it accurately represents

the functional patterns of interests. However, a functional system cannot be identified if the

seed region falls out of the system. Despite this limitation, researchers frequently use this

method, sometimes with better visualization by dynamically moving the seed and showing

the real-time functional system associated with the current seed region [157].
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2.3.2 ICA and other decomposition methods
Because functional networks are in a large scale over the whole brain, and in a distributed

manner, a multivariate analysis is a better way to explore the full brain’s functional organi-

zation. A large class of multivariate methods use the signal-decomposition concept from the

signal processing community and decompose the BOLD signal at each region or voxel into

various independent components, each of which is part of one functional system. The signal

and the weight coefficients of these independent signals represent how much of the current

voxel belongs to certain functional network component. One widely accepted method in this

class is the independent component analysis (ICA). ICA was originally introduced in the

signal processing field to separate various sources of signals from samples of mixed signals

and later was applied to rc-fMRI data [115, 9, 39]. The central limit theorem states that

the sum of two independent signals is more like Gaussian, than any of the original signals.

Therefore, maximizing the non-Gaussianity gives us the original independent components.

Besides the maximization of non-Gaussianity, the independent components can also be

estimated by minimization of mutual information, or by maximum likelihood [85].

There are two varieties of ICA method when applying to rs-fMRI dataset. Spatial ICA

assumes all the voxel intensities at a certain time point as one mixed signal sample. There-

fore, the mixed signals are independent across all spatial voxels. Alternatively, temporal

ICA treats each BOLD time series at a voxel as a mixed signal; hence the source signals

are independent across the time point [28]. Notice the functional map we are interested

in is the rows of source signal matrix S for spatial ICA, and is the weight coefficients

matrix Ã for temporal ICA (see Figure 2.4 for an illustration). Because of the large

number of voxels compared to the number of time points, the spatial ICA is typically

used for rs-fMRI analysis. Compared to seed-based methods, ICA is purely data-driven,

and can identify networks over the whole brain, including the already well-known cognitive

processing systems such as motor [17], visual [39], attention [55] executive control and

salience network [136, 135].

However, because ICA needs to estimate both the independent components and mixing

coefficients, it is a significantly more difficult task. Before applying ICA, the data usually

needs a whitening step with principal component analysis, and is thus rotated such that

it has unit variance in terms of the covariance matrix, which greatly simplifies the ICA

problem. The estimated independent components are usually z transformed and thresh-

olded for visualization purpose. Because the resting-state brain functional patterns are

unpredictable, the output independent components need to be visually inspected in order to
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identify physiologically meaningful components. The iterative optimization also introduces

variability between multiple runs of ICA with different initial states. In addition, the

dimensionality in the preprocessing step of principal component analysis (PCA) is typically

chosen arbitrarily, adding more variation in the results. A recent test on the reliability of

ICA [162] shows how the choice of the dimension and the number of components have an

impact on the consistency of the results.

2.3.3 Segmentation-based methods
The functional networks estimated from ICA are represented by continuous numbers

and have to be normalized to the z score and thresholded to give a binary map. The

thresholding adds ambiguity to the consistency of the results. An alternative class of

methods formulate the problem of identifying functional patterns as an image segmentation

problem. The image segmentation problem can be also viewed as a data clustering problem

in general data mining. However, since the data points are indeed voxels in the fMRI

images, the spatial context information is also useful for the clustering. Therefore, we

name this class of methods as image segmentation, to indicate the possible usage of spatial

information. Once the fMRI images are segmented into various disjoint sets of regions,

the voxels in the same regions have a higher correlation, and hence are believed to be

functionally connected. Compared to ICA, the segmentation problem typically has a binary

map for each functional network, i.e., the clusters, although some soft segmentation methods

exist. The methods used for segmentation include hierarchical clustering [134, 32, 34, 12],

partitioning clustering [12] and spectral clustering [143, 38]. The early works of fMRI image

segmentation [34] are limited to a few slices due to the computation cost. Even within a few

slices, the segmentation method is still able to identify the major functional components,

and they shows that the results are robust to the confounds due to the subject motion and

physiological noise. One interesting property of the hierarchical clustering technique is the

potential of detecting the hierarchy of the brain’s functional organization. Since the brain’s

functional patterns are widely believed to be also hierarchical [157], a computational method

will be very useful if it can naturally identify the subclusters within a certain cluster. Notice

that the hierarchical clustering method is different from the hierarchical MRF method in

the following chapter. The former builds a hierarchy on the clusters, whereas our method

builds the hierarchy on the group and subjects’ functional network maps.
Among the segmentation methods, Mezer et al. [106] use the windowed Fourier transform

and the spectrum below 0.2 Hz on the frequency domain, as well as the BOLD time series

in the original image domain as features for the K-Means clustering. To test if the clusters



15

estimated by K-Means are significantly different, they used a repeated measure ANOVA

test between each pair of clusters. The experiments in Mezer’s work showed strong links

between the functional patterns and the tissue architecture, suggesting the possibility that

the rs-fMRI signal may include the contributions from physiological and artifact noise factors

that cannot be easily separated. In Figure 2.1, we did a simple experiment for using spectral

coherence as the similarity measure and use spectral methods for segmentation. From the

figure, we can identify the visual area (the green) and the functional regions at temporal

lobes (blue). Since we define each voxel as a node on the graph, the total number of data

points is big, and the computation of the similarity matrix takes long time. The example

here uses only 10 z slices for illustration.

To decide the number of clusters in the functional network map is a difficult problem

of model selection. Most of the methods use seven clusters, since the clustering into seven

networks has a good match with the existing cognitive network configuration [157]. Other

choices are possible if the goal is to identify the functional patterns at a finer scale.

Another reason of choosing large number of clusters is to have a finer parcellation in

the local scale. In a local parcellation, only the locally coherent functional regions are

grouped into the same cluster. The remote functional regions may not be grouped into

the same cluster eventhough they belong to the same functional network [106]. Such a

local grouping approach is similar to the super-pixel approach widely used in the computer

vision community [96, 1], where researchers group similar pixels into small regions as a

preprocessing step for higher-level vision analysis. The grouping procedure is conservative

in that only the spatially neighboring pixels are grouped. The super-pixels are used for

the higher level image understanding problem in order to save computation time. One

example of such functional network parcellation is Thiron [142], where the primary goal is

to find spatially coherent clusters that are connected. Therefore, the spatially remote regions

cannot be classified into the same cluster. The advantage of such parcellations is the small

regions modeled as groups of voxels better represent true regions of activity in task-based

fMRI data, and are less sensitive to the misregistration across subjects. The parcellation also

reduces the multiple comparison problem that is typically found in the statistical parametric

mapping method. Thiron et al. uses a spectral clustering approach with multidimensional

scaling (MDS) representation of the dataset, and the C-Means method for clustering. The

method is able to estimate a spatial coherent group clustering from the subject parcellations.

Another example of finer parcellation is found in Craddock et al. [38]. The goal of their

work is to evaluate the suitability of a few parcellation schemes on a group of subjects’
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rs-fMRI data. The authors use the normalized cut method [138] to segment the brain

into a large number of spatial and functional homogeneous regions. A graph is defined

by adding edges only between spatial neighbors, with the weights on the edges defined by

the linear correlation between BOLD signals. This definition of edges and weights means

the functionally homogeneous voxels may be in different clusters if they are not spatially

adjacent. Since the number of clusters in their experiments is relatively large (50 - 400), the

estimated parcellation map will not be easily interpreted as functional networks, but will

be used for further analysis. For group parcellation, Craddock et al. use second-level group

clustering similar to the work of Van den Heuvel [143]. The estimated adjacency matrix

estimated from subject parcellation was averaged across subjects, and the average matrix

was used for a second-level normalized cut algorithm.
The segmentation of functional network is not necessarily limited on rs-fMRI data. It

can also be used for the task-based fMRI. The work of Michel et al [107] is one example

in this range. Michel et al. use a generalized hierarchical clustering based on the Ward

algorithm to build a tree of hierarchical clusters. The leaves of the tree are individual

voxels, and the root includes all voxels. The authors compute the optimal pruning of the

tree by fitting the average signals of the leaves at each pruning depth to a general linear

model. The clusters of optimal trees are able to predict the behavior variables. Varoquaux

et al. from the same research group use the methods of Michel et al. [107] for solving an

active region detection problem of task-based fMRI data [145]. Whereas the goal of Michel

et al. is to identify the functional network patterns using the supervised clustering method

with clinical variables, the goal of Varoquaux et al. [145] is to detect active regions when the

observation is small and the number of predictors is large. By grouping spatially adjacent

voxels with similar BOLD signals into clusters and using the clusters as the independent

variables, varoquaux et al. solve the problem of large number of predictors, and are able to

identify the functional patterns when there are more voxels than the number of observations.
Some of the methods we proposed in Chapters 5 and 6 belong to the class of seg-

mentation. However, we defined the additional structures based on the spatial context

information, and the intersubject coherence assumption, so the model is more complex

than the above works, and therefore requires more advanced statistical inference methods.

2.3.4 Methods based on graph theory
Functional networks can also be represented by graph [23, 2, 139]. Our improved

understanding of the complex systems and the increasing availability of large datasets of

systems have led to the insight that these complex systems share similar behaviors that
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can be represented by the same parameters [23]. To build an abstract graph from the

fMRI data, one typically chooses some ROIs as the node of the graph, and estimates the

existence or lack of edges between the nodes. The signal on each node is computed by

averaging the BOLD signals of all the voxels within a certain radius of the ROI, usually a

few millimeters (see Figure 2.2 for an illustration). The edge is estimated by computing

the linear correlation or the frequency coherence between two ROIs. Once the functional

network is represented by a graph, a rich class of methods in graph theory can be used to

explore the global property of the graph. For example, the high degree of a node indicates

its role as a hub in the network, and the distribution of the degrees is used to explore

the vulnerability of the graph when some hubs are removed from the network. Various

measures of the network topology are estimated from the graph to explore the similarities

and differences between the functional network of the brain and other complex networks

such as social networks and wireless networks. The graph property can also be used to

explore how the functional system is configured to allow maximum flow of information with

minimal wiring. For example, the small-worldness attribute is shared by many real-world

networks including the functional networks of the human brain, and it is hypothesized that

the small-worldness is chosen by evolution for high efficiency of information transfer between

nodes at low connection cost [2, 23, 24].
The network estimation results depend on how we define the nodes of the graph. Nodes

should be defined as brain regions with homogeneous functional and anatomical patterns.

The comparison of functional and structural networks is meaningful only when they share

the same definition of graph nodes [130]. Due to the limits on the available methods and

the computation resources of estimating networks with continuous edge weights, typically

one constructs a binary network by thresholding the similarity matrix. How to choose the

optimal thresholding parameter is an open question. More importantly, there is no principal

method for combing the networks from a group of subjects.

2.3.5 Group analysis
The analysis fMRI data is challenging, due to the scanner noise, physiological noise

such as blood vessel and heart beat, and subject’s head motion. Sometimes subjects have

random thoughts even when specifically instructed not to think of anything during the

data acquisition. The functional connectivity and network estimation is still not accurate

and consistent even when various preprocessing techniques are used. On the other hand,

because rs-fMRI experiments have much lower requirements for the patient subjects or

control subjects compared to paradigm design experiments, it is possible to collect the
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rs-fMRI data from a big group of subjects. The functional networks detected by either

model-based methods such as seed-based correlation, or data-driven methods such as ICA,

are highly reproducible across participants and scans. The more accurate and consistent

functional networks can be estimated by using the statistical power of the group analysis.

With the initiative of 1000 Functional Connectomes Project, a large cohort of data are

available for researchers to explore the relationship of functional networks to the subjects’

age, gender, etc.

Compared with single-subject analysis, the methods for multiple-subject functional

network analysis are not yet established. The seed-based methods typically compute the

correlation or regression coefficients between regions independently for each subject. The

correlations or regression coefficients are treated as a statistic of each subject and go into a

second-level analysis. The second level can be either fixed-effect analysis or a random-effect

analysis with a standard hypothesis testing. The population-based z-score maps have to be

corrected for multiple comparisons [56].

Group ICA is used as an extension of single-subject ICA in order to seek a set of

independent components shared across multiple subjects [28]. In a typical group ICA study,

all subjects are registered to a common atlas and are assumed to share a common spatial

component map but have distinct time courses. The BOLD signals from all subjects are

concatenated temporally, followed by a single-subject ICA. The subject component maps

are then obtained by a back-reconstruction procedure.

Alternatively, a single-subject ICA is applied on each subject first, and a group summary

is estimated from the estimates of subject functional patterns. Some methods that we have

introduced such as the segmentation-based approach [12, 38] are in this range. If the ICA

is used for estimating the spatial patterns at the subject level, it is not straightforward to

conglomerate the spatial maps of multiple subjects and derive an optimal set of group

maps. Such difficulty of matching the network label maps is because the component

maps of subjects are not perfectly aligned with each other, and it is difficult to find the

correspondence between subject A’s component i and subject B’s component j. To solve

this problem, Esposito et al. [49] propose a self-organizing method for the group map

estimation. A series of spatial component maps are estimated by the regular ICA method

for each subject, and these maps are all put in a single pool. The similarity between each

pair of component maps in this pool is defined and calculated. Then, Esposito et al. did

a clustering on the pool of component maps. The cluster center of the maps is believed to

be the group component map. Neither of the above approaches iteratively refines group (or
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subject) maps once the subject (or group) maps are estimated.

Varoquaux et al. [146] give an extension of ICA method for group analysis. The

authors define a generative model, in which the subject component maps are assumed

to be generated from a group component map. In particular, the subject map is a weighted

group map with an additive noise term, and the observed BOLD signal of each subject is a

linear combination of the subject’s components with additive noise. The estimation takes

two steps. At the subject level, each subject’s data are decomposed by principal component

analysis (PCA) and an estimate of the subject component map is obtained. At group level,

the authors use canonical correlation analysis (CCA) to find a common subspace among

the estimated subject component maps. Such an approach is in the class of bottom-up

methods that we introduced in Figure 1.1, since the group component map estimate is not

used to iteratively refine the subject estimation. Besides, there seems to be a discrepancy

between the group map definition and estimation. That is, the author [146] did not provide

any justification for CCA giving an optimal estimate of the generate model defined on the

group level.

Another interesting study by Varoquaux et al. [144] uses dictionary learning for the

group analysis. Dictionary learning is in the class of linear signal decomposition, with

ICA as a special case. In this work, the authors again defined a generative model, where

the observed subject data matrix is the product of the loading matrix (i.e., the weighting

coefficients) and a signal matrix (also called the code in the dictionary). The loading matrix

is the subject-specific spatial map, and is generated from a population spatial map with an

additive noise term. The objective function can be written as a nonhierarchical form, and

is a function of the subject component map and group component map. The optimization

is done by a coordinate descent approach. Overall, the model is similar to what we will

propose in Chapter 6 in that a hierarchical map is defined and estimated. In addition, it is

different from previous work [146] as the group and subject maps are estimated iteratively in

the coordinate descent framework. So, the Varoquaux et al. method is indeed a counterpart

to our hierarchical Markov random field model, but in the linear signal decomposition fields.

Despite the promising future of using large populations for studying the functional

network and its relationship to the underlining structural patten, the group study also poses

new challenges when putting all datasets together. The folding patterns of the cortical

surface, and the structure and size of brain regions, are all different across individual

subjects. Because of such structural variation, the intersubject registration is often not

accurate enough to map the same anatomical structures to the same coordinates in standard
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space. Such inaccurate registration may be due to the imperfect coregistration algorithm

itself, or due to the difference of individual subjects’ cortical structures. Even if the

anatomical structures are aligned among multiple subjects, the functional patterns of each

subject are not the same. Although numerous studies have shown the relationship of the

functional connectivity is related to the structural connectivity [80, 78, 81], it is less well

known how and to what extent this relationship is reflected by the variation of functional

connectivity.

2.3.6 MRF and spatial constraints
Because of the univariate characteristic of the statistic parametric mapping (SPM) [59]

method, the spatial context information is not taken into account in the model. That is,

if one arbitrarily permutes the location of the voxels in the brain, the resultant activation

map in a task-based experiment does not change, i.e., the original activated voxels are still

activated. To take the spatial information into account, one typically forces the spatial

homogeneity by applying a Gaussian filter on the spatial domain as a preprocessing step.

The filter increases the signal-to-noise (SNR) ratio but inevitably has a blurring effect that

sometimes results in the loss of finer structures of the functional patterns.
Markov random field (MRF), as a principal method of modeling spatial context, has

been brought into image processing fields by Geman [65]. The first application of MRF

to fMRI analysis was by Descombes et al. [43]. Although this is an early work of MRF’s

application, I give some details of their work because of its novelty. In their work, the

authors propose to use MRF for two purposes. First, they used a spatiotemporal MRF

to restore the noisy BOLD signal instead of a general temporal filter and spatial Gaussian

filter. Second, they compared the restored BOLD signal with the stimulus haemodynamic

response function for detecting the activation map, which is modeled by a spatial MRF. For

the first goal of BOLD signal restoration, the authors defined a graph, whose nodes or voxels

have 12 neighbors: 8 as spatial neighbors, and 4 as temporal neighbors. A hidden continuous

variable was defined at each node of each time point to represent the true BOLD signal’s

intensity. To preserve the discontinuity, another line process MRF was defined on the dual

lattice to model the existence or lack of edge between spatial neighbors. The statistical

inference of this spatiotemporal MRF is solved by simulated annealing (SA). For activity

detection, a second MRF was defined on the activation variables, and the MRF included

only spatial neighbors. Although the work was applied on the fMRI data in paradigm

design, the concept of spatial regularization and Bayesian method is also applicable to the

rs-fMRI data.
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Another early work of Hartvig et al. [77] aims at using the spatial context information

for activation detection of task-based fMRI experiments. The authors’ inductive bias is that

the activation region should not be too big or to small. According to this assumption, they

define a hidden activation variable taking value in {−1, 0, 1} to represent negative-active,

no-activation, and activation state. In addition, the estimated activation coefficients from

the standard SPM are assumed to be Gaussian given the hidden variable is no-activation,

and Gamma distribution given the hidden variable is activated. The prior distribution of a

small set of neighboring voxels’ hidden variables is defined to reflect the inductive bias, and

the goal is to estimate the posterior of the hidden activation variable given the observed

activation coefficients from SPM. The Hartvig et al. model is not MRF strictly speaking,

although the model represents the authors’ assumption of the spatial context.

A recent work of application of MRF to task-based fMRI data is by Ou et al. [118].

In their work, the authors define a MRF on the activation variables, and the MRF prior

favors spatially coherent activated regions. The conditional probability of the observed

data is defined by a general linear model (GLM) with the hidden activation variables as

parameters. One important characteristic of the work of Ou is the parameter estimation,

including both the GLM’s parameter and the MRF’s parameter. The authors define the

MRF prior such that the samples drawn from the prior agree with the spatial properties of

the true activation map in fMRI experiments. Therefore, they use the frequency counts to

set the pairwise potentials with an additional parameter to control the overall sharpness of

the joint component of the prior. This method is similar to the work of Boykov et al. [20]

and Rother et al. [129], where a parameter is estimated from the data by counting over

the whole image. The additional parameter is also estimated from the data in simulated

experiments. The Ou et al. method is for single subjects.

Penny et al. [120] define a MRF on the regression coefficients of the general linear model

on a task-based experiment. Because the regression coefficients are continuous, the authors

model the prior distribution by the multivariate Gaussian distribution, with the precision

matrix represented by a Laplacian operator. This Laplacian operator penalizes differences

between the coefficients of neighboring voxels. In the generative model, the sample of this

prior distribution can be generated by first draw independent samples from Gaussian, and

then applying the Laplacian operator mapping.

Overall, the methods of functional network estimations have been ranged from the basic

seed-based approach to more advanced multivariate, full brain analysis, and from single-

subject analysis, to a pooled summary of multiple subject analysis, to the more complex joint
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analysis of both population and individuals. In the following chapters, we will introduce

our contribution to the methods by combining MRF and a hierarchical model. It should be

noted that the more complex method will achieve better results only when the model fits

the data well, and the statistical inference will successfully find the optimum or reasonably

approximate the optimum solution.
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Figure 2.1: Segmentation map of a rs-fMRI volume. The spectral coherence between 0.01
to 0.1 Hz is used for similarity between pairs of voxels. A spectral clustering method [147]
is used for dimension reduction followed by a K-Means clustering. We choose 12 clusters
and 10 slices on z direction to save computation time.

Figure 2.2: Using a graph to represent functional networks. A series of ROIs are chosen
based on what questions asked. Tthe signal at each ROI is computed by averaging the
BOLD signals of all voxels within the sphere. The edge of the graph is estimated using the
similarity of the signals between the ROIs.
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Figure 2.3: Slice timing correction. The data at temporally adjacent slices are resampled
and interpolated to obtain a data point at the same time with the reference slices.
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Figure 2.4: Spatial ICA versus temporal ICA for BOLD series of length T at N voxels. In
spatial ICA, all the voxel intensity at a single time point is assumed to be a mixed signal of P
independent signals, and there are T such mixed signals. The decomposition is in the form
of X = A ·S, where A is the weight coefficient and each row of S is the independent source
signal. We are interested in the S since each row is regarded as a functional component.
In temporal ICA, the BOLD time series of each voxel is the mixed signals, and there are
N such mixed signals. The decomposition is X̃ = Ã · S̃, with Ã the weights, and rows in S̃
the independent signal. Here we are interested in the columns of Ã as they are regarded as
representations of the functional networks.



CHAPTER 3

MATHEMATICAL TOOLS

In this chapter I will discuss some general graphical model concepts and inference

methods. These mathematical tools will be used in the subsequent chapters, with various

changes depending on the specific applications.

3.1 Graphical model
The main methodology we used in this work is statistical, and more precisely, the

Bayesian method. Whether we define random variables on voxels of the fMRI image,

on ROIs, or on pairwise connectivities between voxels or regions, the problems involve

multivariate probability distribution. The variables in this collection interact in a complex

way. Graphical models are tools for representing the dependency among the multivariate

randomn variables, and the conditional independence among them. We begin the introduc-

tion of graphical models from the concept of the graph. A graph G is defined by a collection

of nodes V and a collection of edges E ∈ V × V. For node i, j ∈ V, if (i, j) ∈ E , there is an

edge between i and j. Otherwise, there is no edge between them. A graph can be either

directed or undirected, depending on the statistical relationship of the random variables

under consideration. The neighbors of a node i are the set of all nodes in G having an edge

to node i,

N (i) = {j ∈ V : (i, j) ∈ E}. (3.1)

A directed graph is often used for modeling the causal relationship of variables. In

this dissertation, we focus on the connectivity between pairs of variables without inference

about causality, so we use undirected graphs to model the soft constraints between the

variables that we are interested in. However, since we use a generative model, where the

observed data are regarded to have been generated from hidden, unknown variables, the

links between the hidden variables or the parameters and the observed data are directed.

We use chain graph that includes both directed graphs and undirected graphs as special

cases [94].
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In statistics, the basic probability rules apply to either continuous or discrete variables,

regardless how many dimensions the random variables have. Although the probabilistic

inference and the learning can be addressed by applying the sum and the product rule of

probability, it is advantageous to use a diagram for representing the probabilistic distri-

butions. A probabilistic graphical model is a collection of random variables that factorize

according to the structure of a graph. Graphical model is an intuitive way to visualize

the structure of the probabilistic distribution. Because of the correspondence between the

distribution and the graph, the conditional independence properties can be inferred by

inspection of the graph [16].

To create a graph to represent an existing multivariate probabilistic distribution, we

start by defining a graph and adding a node for each random variable in the distribution. If

there is a conditional dependency between two variables, we add a link between the nodes

associated with them. With this setting, the statistical dependency can be visually read

from the graph. Furthermore, the conditional independence can also be read out from the

graph.

3.2 Markov random field
A major class of undirected graphical model is the Markov random field (MRF). MRF

is used extensively in this dissertation for modeling spatial constraints, and the constraints

among the functional networks between subjects. Before introducing MRF, it is helpful to

introduce a simplified one-dimensional version of MRF: Markov chains.

Definition 1. A Markov chain is a sequence of random variables x1, x2, x3, . . . with the

Markov property that given the present state, the future and past states are conditionally

independent.

P (xn+1|x1, x2, . . . , xn) = P (xn+1|xn) (3.2)

The joint probability of the sequence X is given by

P (X) = P (x1)
N∏
n=2

P (xn|xn−1) (3.3)

The joint distribution of a Markov chain can be represented by a linear directed graph

in Figure 3.1. In this graphical model, the nodes are arranged in a one-dimensional space.

The Markov property is equivalent to the conditional independence property, which states

that nodes xi and xj are conditionally independent given other variables if there is no direct

link between them. The directed graph can be used to represent physical processes such as
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time series, where the dependency only happens on one direction as current events should

not depend on future events. In other situations such as spatial statistics, an undirected

linear graph may better represents bidirectional dependency.

When the nodes and their associated variables are defined in a multiple dimensional

space, the bidirectional dependency of the variables defined on the undirected graph becomes

a MRF. More specifically,

Definition 2. X is called a random field if X = {X1, . . . , XN} is a collection of random

variables defined on a undirected graph G = (V, E), where for each s ∈ V, xs takes a discrete

value in L = {1, . . . , L}. A set of values of X = {x1, . . . , xN} is called a configuration of

the field.

The set of edges in the undirected graph G again represents the dependency between the

variables associated with the nodes, without directional information on such dependency.

The neighbor system N (s) is the set of nodes that are connected to node s by an edge.

With the above definition of nodes and the neighbor system N , the graph also gives the

independence information between variables. The MRF is defined as:

Definition 3. X is said to be a Markov random field on the graph G with respect to a

neighborhood system N if for all s ∈ V,

P (xs|x−s) = P (xs|xN (s)). (3.4)

The Markov property has three equivalent statements [132]. First, the node xi and xj

are conditionally independent given all other variables if there is no edge between xi and xj .

This is called the pairwise property. Second, given xi’s neighbors N (s), xi is independent

of the remaining variables. This is the local property of MRF. Third, the set of nodes

xA and xB are conditionally independent given set xC , if C separates A and B. This

is the global property. Usually one or the other properties are useful depending on the

specific applications. Because of the lack of directions on the graph’s edges, MRF is indeed

a multidimensional Markov chain with isotropic statistical dependency between each node

and its neighbors. Figure 3.2 gives an illustration of a MRF defined on a regular lattice,

and a MRF defined on a general graph.

MRF is defined via the conditional independency property, which is a local property

with regard to only a node and its neighbors on the graph. During the statistical inference

of the marginal probability of certain variable xs or a subset of variables XA, where A ∈ V,

a global property will help infer the probability of X since we are interested in the joint
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distribution of the variables. The Hammersley-Clifford theorem [31] builds the relationship

between the local property P (xs|xN (s)) and the global property P (X). Before introducing

the theorem, we give the definition of the clique and Gibbs distribution (or Gibbs random

field). A clique C is a complete subgraph of G, such that within the clique, each node in

C is linked to all other nodes. A maximal clique is a clique to which one cannot add a

new node and still keep the subset a clique [92]. The clique is useful to rewrite the joint

distribution P (X) in a factorized form. More formally, a set of random variables X is said

to be a Gibbs random field (or is in Gibbs distribution) on the graph G if and only if its

probabilistic distribution takes the form of

P (X) = 1
Z

exp {−U(X)} .

Here Z is a normalized constant to guarantee the function integrate to 1 and be a proba-

bilistic density function. The exponential U(Y ) =
∑
c∈C Vc(Y ) is called the energy function.

Each clique potential function Vc depends only on the variables in the corresponding clique

c. The Hammersley-Clifford theorem states that Y is a MRF if and only if it distributes as

a Gibbs distribution.
Unlike the joint probabilistic distributions represented by a directed graph, the clique

potential functions in MRF do not have any probabilistic interpretation. One can convert

a directed graph into an undirected graph and derive the clique potential from this conver-

sion. A more direct way, however, is to define the clique potential function to reflect our

constraints on the relationships between the variables. When the variable xs,∀s ∈ V takes

values from L = {0, 1}, and only pairwise neighbors are defined on a regular lattice, we

obtain the Ising model [119]:

P (X) = 1
Z

exp {−U(X)} , U(X) = β
∑

(r,s)∈V
ψ(xr, xs) (3.5)

ψ(xr, xs) =
{

1 xr 6= xs
0 xr = xs.

(3.6)

Because a realization of X with the same states between neighboring nodes has a lower

energy according to the definition, such realization (also called configuration) has a higher

probability and is therefore preferred. As the simplest MRF, the Ising model has all the

important properties of a general MRF. The clique includes only two nodes and hence

represents the pairwise relationship. When the variables have more than two possible states,

we have a Potts model [122]. The Potts model will be extensively used in the following

chapters when we apply MRF to the hidden labels of the brain functional networks and the

number of networks is greater than two.
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When xs takes a value in a continuous domain, and is in a conditional Gaussian

distribution given the remaining variables, the random field is called a Gaussian random

field (GRF) [132]. GRF is an important model of spatial process, although we will not

discuss it further.

3.3 Simulation of MRF
It is often important to draw samples from a multivariate distribution. A general usage

of samples is the Monte Carlo integration. Consider the generic problem of evaluating

the integral Ef(x)[h(x)] =
∫
X h(x)f(x)dx, we can use a set of samples (x1, . . . , xM ) drawn

from the density f(x) to approximate the above integral by the empirical average h =

(1/M)
∑M
m=1 h(xm). In imaging related problems, the samples are also used for model

validation. By comparing the observed data with the samples drawn from the probability

distribution assumed in our model, we can tell if our assumption of the distribution is valid.

In our MRF model, thanks to the equivalence of the MRF and Gibbs distribution, we can

simulate a MRF image by drawing samples from the corresponding Gibbs distribution.

3.3.1 Metropolis and Gibbs sampling
To draw a sample from a distribution in the form of P (X) = (1/Z) exp{−U(X)}, one can

use either Metropolis sampling [105] or Gibbs sampling [65]. Both methods are in the class of

Markov chain Monte Carlo (MCMC) methods. In general, MCMC method draws samples

from high-dimensional distributions by iteratively drawing a univariate sample given the

other fixed variables, thus converting a multivariate sampling problem into a univariate

one. The multivariate variable X with a single node changed at each step consists of a

series of Monte Carlo samples, as illustrated in Figure 3.3. The algorithm of Metropolis

sampling is shown in Algorithm 1.

It is noted that Algorithm 1 is slightly different from the general Metropolis sam-

pling [105]. Here we compute the difference of the energy instead of the ratio of the density

at Xm and candidate W . The difference of the energy is calculated because for MRF

and Gibbs distribution, computing the ratio of two densities is equivalent to computing

the difference of exponential terms, i.e., the energy function. Although both Xm and the

candidate W are high-dimensional, they are different at only one node s. Therefore, we can

sample xs given all other variables are fixed, and construct W with the candidate w and the

remaining variables. Now we have a univariate sampling problem that is significantly easier

than the previous multivariate one. In practice, the proposal distribution can be a uniform

distribution, and 4E(W ) can be computed just by looking at the cliques that involve xs
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Algorithm 1: Metropolis sampling algorithm for MRF.
Data: Definition of P (X)
Result: Samples of P (X)
Start with any initial value X0 with P (X0) > 0;
while Not converged do

Given current state Xm, pick a node s and generate a new candidate w from
proposal distribution Q(x). Construct a new candidate random vector W with
the new w and the remaining nodes in Xm; Compute 4E(W ) = P (W )/P (Xm);
if 4E(W ) < 0 then

Accept W : Xm+1 = W ;
else

Accept Xm+1 = W with probability exp{−4E(W )};
Reject W with probability 1− exp{−4E(W )};
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since the energy of all other cliques does not change.

Figure 3.4 gives a simulated result from the Ising model in the form of (3.6). A binary

image with resolution 256 × 256 is initialized with random states of 0 and 1. Each pixel

is then updated in a raster scan order according to the procedures in Algorithm 1 with

a uniform distribution as a proposal distribution. The order of the pixels for updating

does not matter to the results as long as the sampling reaches stationary distribution of

the Markov chain. We call it a scan once all pixels are visited just once, no matter if

they are updated or not. Each of the subplots in Figure 3.4 has been scanned 1000 times

to guarantee the sampling routine’s convergence to stationary distribution. We show the

simulated sample image with various values of β. In statistical physics a similar definition of

Ising model has a parameter T , i.e., the temperature. The β in our definition is indeed the

reciprocal of T . It has been shown [89] that the Ising model has a critical temperature with

a corresponding βc, such that the sampled image exhibits an unordered state with β < βc,

and exhibits an ordered state (either towards all zero or towards all one) with β > βc.

The advantage of Metropolis sampling method is we do not need to sample from P (xs|x−s).

Instead we sample from the proposal distribution, which is an easier problem than sampling

from the original P (xs|x−s). As long as 4E is easy to compute, the sampler will work.

However, the convergence rate depends on the acceptance rate of the proposal distribu-

tion. For example, when the variables have more than two states, the same procedure in

Algorithm 1 can be used to draw samples from the Potts model. Because of the greater

number of states, the candidate label has a much larger probability of not being equal to its

neighbors if we choose uniform distribution as a proposal. Therefore, the rejection rate will

be higher than the two-class Ising model, and it may take more scans for the sampling of

the Potts model to converge to the stationary distribution. Figure 3.5 shows the simulation

of a 128 × 128 image from the Potts model with different values of β. A sample from a

stationary Potts model distribution is a piecewise constant label map given β > βc.

The Gibbs sampler is a special case of the Metropolis sampler in that the proposed

candidates are always accepted. We use Gibbs sampling also in the multivariate problem and

construct a Markov chain whose stationary distribution equals the target distribution P (X).

As in Metropolis sampling, we use the Gibbs sampler to draws samples from P (xs|x−s),

i.e., the univariate distribution of just one variable given the other variables are fixed.

However, here the univariate distribution is a known distribution such that we can directly

draw samples from it. This is different from Metropolis, where it may be difficult to draw

samples from the univariate distribution conditioned on remaining variables, and we use
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an easier proposal distribution as a surrogate. Once it is drawn, the sample is accepted

with probability 1, and the sampler moves to the next variable. The procedure of Gibbs

sampling is given in Algorithm 2. Compared to Metropolis sampling, the Gibbs sampler

typically needs fewer iterations for convergence. However, that does not always mean less

computation time compared to the Metropolis. If the direct sampling from P (xs|x−s) takes

more time than sampling from the proposal distribution in the Metropolis sampler, the

overall time may still be more than Metropolis sampling.

3.3.2 Swendsen-Wang sampling
Metropolis sampling and Gibbs sampling can be slow, especially when there are strong

interactions between the neighboring nodes on the graph. When the sampler is not ini-

tialized correctly (i.e., the initial sample is far from the mode of the target distribution),

the sampling may take an exponential number of steps to reach convergence [7]. The

Swendsen-Wang algorithm [148] is proposed to address this issue. To understand the

Swendsen-Wang (SW) algorithm, some background information is needed. There is a

fundamental theorem [128] that underlies the slice sampler and also the SW algorithm.

Assuming f is the pdf from which we want to draw samples, f(x) can be written as

f(x) =
∫ f(x)

0
1du

f(x) can be seen as the marginal distribution of joint variables (x, u)

(x, u) ∼ U{(x, u) : 0 < u < f(x)}, (3.7)

where U is the uniform distribution, and u is usually named as the auxiliary variable. Thus,

instead of drawing samples from f(x) directly (which might be difficult), we can draw

samples (x, u) from their uniform joint distribution on the constrained set {(x, u) : 0 < u <

f(x)}. Once we have the samples, we can discard u, and x will be in the original target

distribution. This is the basic idea of a slice sampler.
In a slice sampler, we can generate a Markov chain with the stationary distribution equal

to the joint uniform distribution of (3.7). We can generate x and u from their conditional

distribution iteratively in a random-walk style: 1) generate u from U({u : u ≤ f(x))}, and

2) given the new sample u, generate x from U({x : f(x) ≤ u)}. Robert and Casella [128]

prove this Markov chain’s stationary distribution is indeed (3.7).
When f(x) is a complex function, finding the set of x such that f(x) ≤ u can be difficult

(step 2 in the above procedure), which can happen when the x is of large dimension (as in

our fMRI study). The general slice sampler solves this problem by using multiple slices. In
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Algorithm 2: Gibbs sampling for MRF.
Data: Definition of P (X)
Result: Samples of P (X)
Start with any initial value X0 with P (X0) > 0;
while Not converged do

Given current state Xm, pick a node xn and generate a new candidate wn from
P (xn|x−n);
Accept wn with probability 1;
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short, f(x) can be factorized into the products of fi(x), and each fi is associated with an

auxiliary variable ui. In this way, the support of the conditional distribution p(x|u) in step

2 can easily be found. The SW sampler can be seen as one of such general slice samplers.
The settings of the SW algorithm are as follows: To sample from the Potts model in

the form of (3.6) using the SW algorithm, we introduce a set of augmented binary random

variables U as we do in the slice sampler. The variable urs corresponds to the bonds between

spatially adjacent nodes xr and xs. For each urs, there are two states open or close denoted

by urs = 1 or uij = 0. Conditioned on X, the urs are independent. Each urs is a uniform

distribution on the interval [0, ars], with ars = exp(−βψ(xr, xs)) ≤ 1. So the conditional

pdf of u = {urs} given X is

f(U |X) =
∏
(r,s)

1(urs≤ars)
ars

=

∏
(r,s)

1urs≤ars

 exp

β∑
(r,s)

ψ(xr, xs)


The reason we define the distribution of U in this way is the joint distribution P (X,U) can

be written simply as

P (X,U) = P (X) · P (U |X) ∝
{

1 if urs ≤ ars, ∀(r, s) ∈ V
0 otherwise.

Therefore the P (X,Y ) is uniformly distributed. More importantly, P (X|U) ∝ P (X,Y ) is

also uniformly distributed over the set A = {X : urs ≤ ars}. Now either urs ∈ [0, e−β] or

urs ∈ (e−β, 1). If urs ∈ [0, e−β], it is impossible to tell if xr = xs since such values of u can

happen either xr = xs or xr 6= xs. If, however, urs ∈ (e−β, 1), there must be xr = xs.
Therefore, the sites r and s for which urs ∈ [e−β, 1] can be gathered into clusters, and

within each such cluster the x of all the nodes must be the same, and the value of x is

uniformly distributed. The xr and xs values for those urs ≤ e−β are not constrained to

be the same and can be an arbitrary value. These values are also uniformly distributed.

Therefore, we can generate samples of X given U , and generate samples of U given X. We

can even further simplify the sampling by noting the exact value of urs is not required.

We can simply record if urs > e−β by a binary variable v [131]. The variable v is in the

Bernoulli distribution Ber(1 − e−β) such that vrs = 1 if urs > e−β, and vrs = 0 otherwise.

Then the SW algorithm iterates between the two steps:

• Given X, set vrs = 0 if xi 6= xj . When xi = xj , set urs = 1 with probability 1− e−β,

and set vrs = 0 with probability e−β. After this step, we have multiple connected

components, each being a subset of the nodes on the graph.

• Given U , set all the nodes in a randomly chosen cluster (i.e., a connect component)

with the same label. The label is drawn from a uniform distribution.
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The stationary distribution of this Markov chain, like the slice sampler, is the joint distri-

bution of U and X, which is again a uniform distribution [131]. It can be proved [150]

that the marginal distribution P (X) is exactly (3.6). So the joint model is consistent with

the original marginal distribution. If we sum out X and get the marginal distribution of the

augmented variable P (U), we have a distribution called random cluster model [74]. After

the sampling, we obtain samples of (X,U). We ignore the augmented variable U , and X

will be the samples from the original target distribution.

The SW sampling is more efficient than Gibbs sampling, because at each step it changes

the labels of the whole cluster, instead of only a single site. Even in low temperatures, the

sampler flips the labels for larger clusters. Figure 3.6 gives a comparison of the samples

of the Potts model in (3.6) drawn from Gibbs sampling and SW sampling. To show the

difference between the two samplers, we choose a small burn-in period (100) and initialize

the image with all-zero values. The all-zero initialization is far from the mode of the Potts

model. Gibbs sampler has difficulty reaching the stationary distribution in a short burn-in

period. On the other hand, the SW sampler converges during this short interval.

The mixing time of the sampling is polynomial in a regular lattice. Barbu et al. [7]

discussed the convergence rate of SW algorithm on the Potts model. Huber [83] developed

a new bounding chain algorithm to diagnose the convergence of Swendsen-Wang sampling.

The number of steps to reach perfect sampling (which means convergence to stationary

distribution) is in the order of O(log |E|), where |E| is the total number of edges. This

running time applies when the temperature is far below or far above critical temperature.

Cooper [33] shows the mixing time (or convergence time) is polynomial if the number of

neighbors of each node does not increase with |V|, the size of the nodes. The polynomial

mixing time is good for the regular lattice where the number of adjacent nodes is a constant

regardless of image size. Compared with the super-exponential rate of increase for the

iteration number in standard Gibbs sampling, the SW algorithm is a big improvement for

the convergence rate. These theoretical analysis are appropriate for cases without external

fields, i.e., the data likelihood term.

3.4 Hidden Markov model
The main purpose of MRF in this dissertation is a prior distribution on the hidden vari-

ables to enforce the piecewise constant constraint for discrete variables, and the smoothness

constraint for the continuous variables. In real-world applications, we are often provided

with some noised data Y , and the goal is the inference of the true structures X behind
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the observations. The true structures can be the true image pixels in an image denoising

problem, or they can be the class labels in an image segmentation problem or a data

clustering problem. Because the latent variables we are interested in are not observed, we

call them hidden variables. The identification of hidden variables from the observations is

often difficult, because multiple hidden variables can fit the data depending on the criteria. If

we have some prior knowledge of the value of the hidden variables, such as whether they will

be smooth or a piecewise constant on the image domain, such knowledge should be included

in the estimation process. This prior knowledge or assumption is called inductive bias in

machine learning. Inductive bias is the assumption of the learner to predict outputs that

it has not encountered, given input data [109]. Although we are not in the training-testing

framework here, the piecewise constant or continuity prior also applies as an assumption of

the unseen hidden variables.
There are two classes of approaches of introducing the prior knowledge in the hidden

variables. One is a Bayesian approach that is called the hidden Markov model (HMM). In

this model, we define a MRF as an a priori distribution on the hidden variables X. Given

X, we define another conditional probability P (Y |X) and assume Y is generated from the

conditional distribution given X. This probability is also called the likelihood function of

Y . Figure 3.7 gives an illustration of this model. Then the question to be answered is the

posterior distribution of X given the data Y . According to the Bayesian rule,

P (X|Y ) = P (X)P (Y |X)
P (Y ) ∝ P (X) · P (Y |X) (3.8)

The ∝ is because we are not interested in P (Y ) when looking at X as a variable, so P (Y )

is a constant that can be ignored. Various methods exist for the inference in the form of

(3.8), and we will discuss some of these methods in Section 3.5.
Another class of approaches to model both the observed data and hidden variables is

conditional random field (CRF). In contrast to the HMM where P (X|Y ) is decomposed

into two separate parts P (X) and P (Y |X) by Bayesian method, CRF does not have such

an explicit decomposition [93]. Instead, in CRF model, one assumes given the observed

data Y , that X obeys the Markov property with respect to the graph G. CRF directly

defines a distribution on P (X|Y ) such that the variables xs at node s depend on other

nodes. To put it another way, CRF’s prior P (X) also depends on the observed data. This

dependence is a violation of the Bayesian rule. However, the dependence does make sense in

some situations. For example, the smoothness constraint should be relaxed if the observed

data at two nodes are too different such that the underlying variables are impossible to

be piecewise constant or smooth. In such cases, one cannot rewrite the P (X|Y ) into the
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product of P (X) and P (Y |X) up to a constant, and nor is it always necessary to do so.

We give an example of the CRF model that is used in [20, 129]. Here the task is image

segmentation with MRF defined on the hidden region labels. The clique potential function

used in the MRF is defined as

V (X,Y ) = γ
∑

(m,n)∈E
dis(m,n)−1[xm 6= xn] exp{(ym − yn)2}, (3.9)

where the [c] takes 1 if the conditional c is true, yn and ym are observed pixel intensities,

and dis(m,n) is the distance between pixel m and n. We can see the clique potential, as

part of the prior distribution’s energy function, is also a function of the data Y .

3.5 Inference of graphical model and MRF
Given the definition of the graph and the observed data on some nodes, our goal is

the statistical inference of the unknown variables. The graph inference addresses the issue

of computing the posterior distribution or its expectation of the unknown variables given

the observed data. The difficulty of the inference depends heavily on the structure of the

graph. For example, a chain graph is the simplest graph structure, and the exact inference

can be achieved by passing local messages on the chain. The time is linear in the number

of nodes. Such methods can be generalized to trees without losing the linear computation

time property [16, 113]. For an undirected graph, a tree is a graph that has no loops. For

more general graphs, whether these existing inference methods work in a reasonable amount

of time depends on the extent that the graph is like tree graph structures, measured by the

tree width of the graph. The MRF mode defined in our work is different from a tree, so the

exact inference is often intractable. However, we will look at some approximate inference

methods that can find a good approximation to the optimal solution within reasonable

computation time. These approximate methods will be applied to the specific problems in

the following chapters, with some modifications.
To see why the exact inference is often not available on a general graph, we note for a

graph with N nodes, and the variable xs at each node s takes discrete values in {1, . . . L},

the total number of possible realizations is Ln, an exponential function of the data points

N . Because of the interactions among the variables, the inference of each variable cannot

be factorized, therefore searching for an optimal solution in a big space will be difficult.

3.5.1 Iterated conditional modes
One method of finding the discrete random vectors X that maximizes the posterior

P (X|Y ) in the early year of MRF study is the iterated conditional Modes (ICM). Besag [15]
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proposed this greedy strategy update each single node xs that maximizes the conditional

distribution P (xs|x−s, Y ) given other nodes that are fixed. Algorithm 3 gives the procedures

of the ICM algorithm. In practice, the results depend on the initial values of X and a

typical choice of initialization is the maximum likelihood, i.e., an initialization of X that

maximizes the likelihood function P (Y |X). The algorithm updates each data point in a

prescheduled order until no more nodes are changed. The final result is a local optimal

solution. The neighboring solutions in the search space would be the set of X that has

only one node difference to the current solution. Therefore, the search region of ICM is

small compared to the exponential large full space. In Section 3.5.5, we will see that a

criterion to evaluate the performance of approximate algorithms is the size of the space

within which the approximate solution is optimal. Compared to other modern methods

such as the graph cuts method [20, 19], the neighboring space of the solution derived by

ICM is small. Despite its limitations, ICM is widely used in practice due to its simplicity,

and sometimes it achieves good results [161].

3.5.2 Sampling
In Section 3.3.1 we have shown that sampling techniques can be used to draw samples

from complex distributions such as the Ising and Potts models. For the probabilistic

inference from the posterior P (X|Y ), we can again draw samples from this posterior by

using Metropolis or Gibbs sampling. We want to do this for two reasons: First, since

the ICM method tends to be stuck in the local minima if not initialized correctly, we can

instead draw many samples from P (X|Y ), and use Monte Carlo averaging to approximate

the random functions we are interested in, such as the posterior mean. With a good design

of samplers, the samplers can jump out of the local minima and the averaging of the samples

is a good approximation of the posterior mean. Second, with the samples available, we are

not only able to perform a point estimation, but also can estimate the confidence of the point

estimates, i.e., the variance of such estimates. The set of samples has all the information of

the posterior P (Y |X) as long as the number of samples is big enough and the samples are

indeed from the target distribution.

The sampling procedure from the posterior P (X|Y ) is similar to that of the prior

P (X) for both Gibbs and Metropolis, except that now the local distribution that we

draw univariate sample xs from is also conditioned on the observed data ys. For exam-

ple, if we define P (X) as an Ising model, and the likelihood function is Gaussian, i.e.,

P (ys|xs) ∼ N (µ(x), σ(x)2), the conditional probability of xs will be
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Algorithm 3: Iterated conditional modes (ICM) for finding approximate posterior of
discrete random vector given data

Data: Definition of P (X|Y )
Result: A realization of X that maximize P (X|Y )
Start with a realization X0 = argmaxX P (Y |X);
while Not converged do

foreach s ∈ V do
xs ← argmaxxs

P (xs|xN (s), ys);
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logP (xs|xN (s), ys) = −β
∑

r∈N (s)
ψ(xr, xs)−

(ys − µ(xs))2

2σ2(xs)
− σ(xs). (3.10)

With a slight modification based on Algorithm 2, the Gibbs sampling routine is given in

Algorithm 4.

The original SW sampling applies only to Ising and Potts models. The generalized SW

sampling algorithm proposed by Barbu and Song-Chun Zhu [7] can be applied when there

is data likelihood and we seek sampling from the posterior distribution of P (X|Y ). In

addition, the generalized SW algorithm makes use of the observed data when sampling the

cluster labels from the proposal distribution, and this specialized proposal function makes

the convergence faster than the standard SW algorithm. The last strength of the generalized

SW sampler is to adaptively increase or decrease the number of labels.

There are two significant changes from standard SW to generalized SW. First, the

probability of turning on the edges (bonds) at step 1 is changed from q0 = 1 − e−β to

qe = −g(hi, hj), where h is the observed data (or features). g(hi, hj) would take a larger

value when the observed data at i and j are similar. The similarity is represented by

the KL divergence [7], but can be defined differently in other applications. Second, the

sampling of labels in step 2 can have an acceptance rate smaller than one, instead of the

100% acceptance in the original SW algorithm. The acceptance probability to move to new

labels also depends on posterior probability given the observed data, as shown in theorem 2

in the work of Barbu et al. [7]. The third version SWC-3 of the generalized SW replaces the

Metropolis-Hasting sampling in step 2 with a Gibbs sampler and achieves the acceptance

rate of 1. The Gibbs sampler draws labels from the posterior probability given the data.

Relating the generalized SW sampling to the fMRI application, there are two issues to

address in order to use SW sampling. First we need to define a function g(hi, hj) to replace

the KL divergence in eq (12) of Barbu and Song-Chun Zhu [7]. The function will be plugged

into the acceptance probability when sampling the augmented variable U (edge variables).

One straightforward solution is to use the correlation between the BOLD signal of two

voxels or two ROIs. An edge will be open with larger probability if two voxels connecting

the edge have a higher correlation. More work needs to be done to find the relationship

between the acceptance probability qe and the posterior probability p(X|Y ).

3.5.3 Simulated annealing
Depending on whether we are interested in a point estimation or a full Bayesian analysis,

the statistical inference of the problem of P (X|Y ) aims either at the full posterior distri-
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Algorithm 4: Gibbs sampling for the posterior distribution.
Data: Definition of P (X|Y )
Result: Samples of P (X|Y )
Initialize X by maximum likelihood estimates: X0 = argmaxP (Y |X);
while Not converged do

Pick a node xn;
Draw sample w from P (xn|x−n, Y ). Construct a new candidate vector W with
the existing Xm and the new w;
Accept W with probability 1;



42

bution, or a maximum a posterior (MAP) estimation. When the latter is of the interest,

one makes use of the sampling technique, together with the simulated annealing method to

find the mode of the posterior distribution.

Simulated annealing (SA) optimization is a method originally introduced in statistical

mechanics and later used by Kirkpatrick [90] for optimization. The goal of finding the

mode of P (X|Y ) is indeed a combinatorial optimization problem that cannot be solved

in polynomial time. Given the definition of a probability distribution function P (x) =

(1/Z) exp(−E(X)), we can introduce a new temperature parameter T and construct a new

distribution P (x) = (1/Z) exp(−E(X)/T ). When T is high, all the possible states of the

variables have similar probabilities, and the sampling will be in a near-random state. When

T is low, only the most probable samples will happen. The annealing process is similar to

the fact that material solidifies at lower temperature [65].

The SA algorithm with Metropolis or Gibbs sampling is fundamentally different from

the iterative method such as ICM. In the iterative gradient descent method, one iteratively

moves each variable in the system towards the descent direction of the gradient. Further-

more, the system may get stuck in a local minimum. Figure 3.8 gives an illustration of the

difference of the coordinate descent and SA method.

3.5.4 Variational inference
Another major class of approximation methods is variational inference. Here the goal is

to find the best posterior distribution from a subset of all possible distributions. Although

the original variational methods address the issue of finding a derivative with respect to a

function, we can use this concept to find the approximate solutions of the P (X|Y ). Instead

of optimizing the objective functional over the whole space of possible P (X|Y ), we can

search in the restricted set of the posterior function. For our specific problem with MRF

as the prior P (X), a typical restriction is that P (X|Y ) must be able to be factorized into

the form

Q(X) =
S∏
s=1

qs(xs),

where each xs is a disjoint subgroup or a single variable in the original random vector X.

The task now is to look for a best Q(X) within the subset with the above factorized form.

Next, we need to define an objective function of X. The marginal likelihood function of Y ,

or equivalently the logP (Y ) can be written as the sum of two terms [16]:

logP (X) = LB(Q) + KL(q‖p) (3.11)
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LB(Q) =
∑
X

Q(X) log
{
P (X,Y )
Q(X)

}
(3.12)

KL(Q‖P ) = −
∑
X

Q(X) log
{
P (X|Y )
Q(X)

}
. (3.13)

where P is the true posterior distribution P (X|Y ) we look for. Because the second term

KL(Q‖P ) is the KL divergence between distribution Q and true posterior distribution P ,

it is always greater than or equal to zero. The first term LB(Q) is essentially the lower

bound of P (X). Therefore, in order to maximize P (X), we instead maximize its lower

bound. If we search Q in the full possible space, we will end up with Q = P (X|Y ) and the

KL divergence will be zero. In practice, since it is intractable to search the full space, we

search an approximate solution within a subspace. Because of the factorization of Q(X),

we optimize the KL divergence with respect to each factor Qs(xs) in turn. Bishop [16] and

Murphy [113] have shown that within this restricted search space, the optimal Qs(xs) has

the following property

logQs(xs) = Er 6=s[logP (X,Y )] + const (3.14)

This property means we can compute the optimal factor Qs(xs) by computing the log of

joint distributions of all hidden variables and observed variables, and then take expectations

with respect to all the hidden variables excluding xs. The terms will be absorbed into the

constant term unless they are functions of xs. Because xs is a discrete variable in our

problem, we can compute Qs(xs) by taking the exponential of both sides of (3.14), repeat

this for all possible values of xs, and then normalize such that Qs(xs) sums to 1.

To apply the variational inference to our model P (X|Y ) with X a MRF, we first assume

P (X) is a MRF in the form of

P (X) = 1
Z

exp

β ∑
(r,s)∈V

〈xr, xs〉

 . (3.15)

Here, for convenience, we rewrite x as a vector of length L, with L the number of possible

discrete values. Each element of x, denoted by xk, is a binary indicator variable. The angle

bracket computes the dot product of two vectors. We see that although this definition of

MRF takes a different form to (3.6), it is also a valid MRF that prefers smoothness within

the neighbors on the graph. For example, if xr and xs are equal, their dot product will be

1, and hence has greater probability. We further define P (ys|xs) a Gaussian distribution for

the convenience. It can be any other distribution in other applications and does not change

our derivation of the variational methods. Then we follow the assumption of variational
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inference and assume the posterior has to be in the form of (3.5.4). By using the property

of (3.14), we can write the log of the posterior at node s as

logQ∗s(xs) = Er 6=s[logP (X,Y )] + const (3.16)

= Er 6=s[β
∑

(r,s)∈V
〈xr, xs〉 − logZ] + Er 6=s[logP (Y |X)] + const (3.17)

= Er∈N (s)[β
∑

r∈N (s)
〈xr, xs〉] + Er∈N (s)[logP (ys|xs)] + const (3.18)

= β
∑

r∈N (s)
〈xr, xs〉+ logP (ys|xs) + const. (3.19)

In the above derivation, xr = Exr [xr]. We note in (3.17), because of the MRF property,

current node xs is conditionally independent of the remaining nodes given its neighbors

xr,∀r ∈ N (s). Therefore the expectation can be simplified to those nodes neighboring

xs. Furthermore, logZ and logP (yr|xr),∀r 6= s are not functions of xs, so they can be

absorbed into the constant term. From (3.18) to (3.19), the expectation goes inside of the

dot product because of the linearity of expectation, and the expectation of logP (ys|xs)

with respect to r ∈ N (s) is just itself since it is not a function of xr. Finally, we got a

simplified form, and it is just the original clique potential functions with neighbors replaced

by their expectations, plus a log-likelihood term. This updating is called mean field theory

in statistical physics [159], and here we derive it by the variational method, with the only

assumption that the target posterior P (X|Y ) must be factorized.

Because the solution includes the expectation of other nodes that are also unknown,

this is not a closed-form solution. We will adopt an iterative approach here. With an

appropriate initialization of x, we update each factor xs in a scheduled order, given the

expected value of its neighboring nodes fixed. A crux of the mean field theory for MRF

with number of labels |L| > 2 is, the kth element xk of the variable x’s is a binary variable,

therefore the posterior probability of xk is just equal to its expectation. To see that, by the

definition of expectation, Exk
[xk] = 1 · P (xk = 1|·) + 0 · P (xk = 0|·) = P (xk = 1|·), where

P (xk|·) means the posterior of xk given the neighboring nodes. Therefore, the posterior

estimated at xs is used as xs when updating its neighbors xr. The cycling continues until

convergence where no more node change its expectation value.

One of the advantage of using variational inference approximation to interpret the

standard mean field theory is we can build a full Bayesian model that integrated MRF

and other prior knowledge on the parameters, and still use variation inference to solve it.

This is because variational inference treats the parameters the same way as the hidden
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variable once we assume a distribution on the parameters. So both the hidden variable and

parameters are just one factor Qs(xs) in the variational approximation.

3.5.5 Graph cut optimization
If the goal is the mode of the posterior distribution P (X|Y ), graph cut segmentation is

an alternative algorithm that can achieve global optimum in a polynomial time when there

are only two possible states for each node. The earliest connection of graph cut and the

combinatorial optimization of computer vision problem is found by Greig et al. [73], and

later re-introduced to multiple labels segmentation by Boykov et al. [19]. The function that

is being optimized by this class of methods is of the form

E(X) =
∑

(r,s)∈E
Urs(xr, xs) +

∑
s∈V

Ds(xs). (3.20)

The function E(X) has two terms, a pairwise smoothness term, where U is the clique

potential function of the pairwise nodes, and a data term, where Ds represents how the

label xs match the observed data ys (not shown since it is a given constant). We can verify

that this objective function is indeed the negative log likelihood of P (X|Y ) in our model

(3.6), so a maximum a posteriori estimation is equivalent to minimizing the E(X) in (3.20).

Greig [73] pointed out that we can construct a graph with all the variables defined on the

nodes, and pairwise constraints defined on the edges. We further define two additional

nodes, a source node s and a sink node t. There are edges between each regular node and s,

t, and the weights of the edges are defined according to the data term Ds. Between regular

nodes xr and xs, an edge is added if they are neighbors in the original image domain, and

the weights of the edges are defined by the clique potential functions of the MRF. Given

the above settings, finding the minimal value of E(X) is equivalent to finding a cut, i.e.,

a subset of edges that has minimal total weights, because the sum of the weights is equal

to E(x) up to an additive constant. According to Ford and Fulkerson [53], the minimum

of E(X) is the maximum flow through the graph from the source node s to the sink node

t subject to the edge capacities (weights), and there is efficient algorithm for solving this

problem. Figure 3.9 shows the segmentation of images with MRF prior to using graph cut

algorithm.
Boykov et al. [19] generalize the graph cut algorithm to multiclass segmentation. Opti-

mizing the general form of (3.20) is a combinatorial optimization and a NP-hard problem.

Boykov et al. still use a greedy algorithm to search the locally optimal configuration. The

difference to the standard greedy algorithm is the search space is much larger. Note in

standard greedy algorithm such as ICM, the algorithm only searches the optimal label
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configuration with one voxel distance of the current configuration. That is, only one voxel

move at a time to find the better solution. Boykov et al. define two types of moves: α

expansion and αβ swap, such that a large number of voxels change labels simultaneously

within a single move. The local minium solution under such movement is much closer to

the global minimum. Actually the α expansion move is a strong one such that the local

optimal labeling with respect to this moves is within a known factor of the global minimum.

The α expansion and αβ swap moves both have an exponential number of possible

moves of voxels. The authors convert the problem of finding optimal solution within one

α expansion or one αβ swap moves, to the problem of a binary-label graph cut problem.

Because graph cut is able to find the optimal solution efficiently by max-flow algorithm, the

α expansion move can also be solved efficiently.

The graph cut algorithm and its extension is used not only in HMM but also in CRF.

For HMM, the log of data likelihood includes part of the data term in (3.20), together with

the unitary prior term in MRF. For CRF, the prior also includes the data, but can also

be used as the smoothness term in (3.20). Therefore, the definition of the prior term is

transparent to graph cut algorithm, as long as the objective function has the form of (3.20).

To show an example of using graph cut for segmentation of binary images, we generate

a true label map of resolution 200 × 200 using the Ising model in (3.6) with β = 0.7, and

scan 100 times on each pixel. The Gaussian noise of zero mean and σ2 = 9 is added to the

label map in order to obtain a noisy observed image. We then use the graph cut to segment

the image, given the correct β and σ2. Figure 3.10 shows the generated true label map, the

noisy image, and the recovered label map by graph cut. From the histogram of the observed

image’s intensity, it is difficult to find an optimal threshold to separate two classes as the

two Gaussian components are heavily overlapped. By using the spatial soft constraints

modeled by the MRF prior, and the graph cut for global optimal solution, we can recover

most of the label map. Some finer structures are lost, though, as can be seen from the

circled region in the true label map in Figure 3.10. This is believed to be one disadvantage

of graph cut, i.e., the global criteria of energy minimization often is achieved at the price of

losing local structure. Because of that disadvantage, the label map estimated by graph cut

mostly has blob-like patterns, even the original image does not have such patterns. This

makes it difficult to apply graph cut for segmentation of thin structures such as blood vessel

and trees. Also because of the preference of blob-like shapes, if we use the the estimated

label map for parameter estimation, the estimated parameter will tend to be larger than

the true value. This is the reason we did not choose graph cut as the optimization method
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in our expectation maximization framework introduced in Section 3.6.2.

3.6 Parameter estimation
Functional MRI data include multiple sessions of one subject, and multiple subjects

in one site, and even the data from multiple sites. The heterogeneous nature of the data

acquisition process means the model parameters are probably different across sites and

even subjects. A data-driven model does not need the user to give the model parameters.

Instead, the estimation process includes both the hidden variable inference and parameter

estimation. In this section, we will address an easier question: Given the observed data and

also the values of the hidden variables, we seed to estimate the parameters in our hidden

Markov model.

More specifically, we will study the parameters in the model P (X|Y ) with the prior

defined by (3.6) and the likelihood P (Y |X) defined in any appropriate form. One possible

model is that X is modeled by a MRF, and each ys is in a univariate Gaussian given xs,

as shown by a graphical model in Figure 3.11. There are various criteria and methods

to estimate the parameters in such a model, and in this work we give one method that

we use extensively in the following chapter, i.e., the maximum likelihood (ML) estimation.

For ML estimation, we aim to find a set of parameters θ that maximize the likelihood (or

equivalently, log-likelihood) of the form P (X) ·P (Y |X). Furthermore, the set of parameters

θ may include the set of parameters θP in the prior distribution P (X), and the set of

parameters θL in the conditional distribution P (Y |X). Because the factorization of P (X)

and P (Y |X), the optimal parameters should be

θ∗P = argmax
θP

logP (X; θp),

θ∗L = argmax
θL

logP (Y |X; θL).

Depending on the specific form of the conditional probability P (Y |X), the estimation of θL
could be either closed form, or through iterative refinement. For example, the estimation

of µ and σ2 in the model of Figure 3.11 is in closed form given X and Y . Here we will

focus on the estimation of θP . Since the logarithm is monatomic function, we just need

to optimize logP (X; θL) = −U(X; θL)− log(Z(θL)). The normalization constant Z is also

a function of θL. The evaluation of Z is intractable given the combinatorial nature of X.

Therefore, one has to resort to approximate the likelihood function. One simple method is

the pseudo-likelihood [14]. The likelihood function is approximated by the product of the

distribution at each node. For the Ising model in (3.6), the approximation is
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P̃ (X;β) =
∏
s∈V

P (xs|xN (s)) =
∏
s∈V

1
Zs

exp

−β ∑
(r,s)∈V

ψ(xr, xs)

 .
Because Zs is the summation over a univariate xs, it is easily computed. The pseudo-

likelihood is the sum of the conditional probability of each variable assuming other variables

are given. This approximation is, in spirit, similar to the variational inference approximation

in Section 3.5.4, as both use factorized univariate distributions to approximate the original

multivariate distribution. However, they serve different goals. In variational approximation,

the factorization defines a restricted space in which the approximate solution is found. Here

the approximation is used to convert an intractable function to one that can be easily

evaluated. Once the likelihood is represented by pseudo-likelihood, the optimization can be

solved by the standard gradient descent method. We will defer the estimation in specific

applications to the following chapters.

Other estimation methods include coding method and least squares estimation. In

coding method, the variables are split into K disjoint subset. With the subset, the variables

are independent with each other given all other subsets. The number K depends on the

neighborhood definition of the original graph structure. For 8-neighborhood system of a

two-dimensional image, the pixels can be split into four groups, as shown in Figure 3.12.

For a single group, the parameter θ can be estimated by optimizing the joint likelihood of

the variables
∏
s∈Vk

P (xs|x−s; θk), where Vk is the set of nodes for kth group. The joint

likelihood does not have the normalization constant Z thanks to the independence of the

variables and is therefore tractable. Once θk is estimated from group k, a final estimate of

θ is computed by averaging θk.

3.6.1 Expectation maximization
Often we face the problem that both the hidden variables and the parameters need

estimation. In such a situation, the expectation maximization (EM) is the standard ap-

proach. EM was proposed for maximum likelihood parameter estimation when the likelihood

function is too difficult to evaluate or take derivatives [42]. By introducing a hidden variable

xs for each data point ys, the EM algorithm takes two steps to estimate the parameters: 1)

Given the current parameter values θold, estimate the posterior distribution of the hidden

variables P (X|Y ; θold). 2) Given the posterior P (X|Y ; θold) estimated from previous step,

optimize parameters by maximizing the so called Q function

θ = argmax
θ

Q(θ) = argmax
θ

EP (X|Y ) logP (X,Y ; θ). (3.21)
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The expectation is required in (3.21) because the hidden variables are random. We need to

marginalize the hidden variables when estimating the parameters. It has been shown that

the expectation step maximizes a lower bound of the likelihood function P (Y ; θ), and the

maximization step maximizes the actual P (Y ; θ)[16]. In some situations (as in our work),

the hidden variables are actually the variable we are interested in, as well as the parameters,

and the EM framework is still a valid method to simultaneously estimate both. When the

parameters are also defined as random variables, the inference can be done by variation

inference that we discussed in Section 3.5.4. In such a case, there is no difference between

the hidden variables and the parameters as both are random variables.

The EM is significantly more difficult when the prior of X is a MRF. There are mainly

two difficulties. First, the expectation of the logP (X,Y ; θ) is difficult to evaluate. This is

in contrast to the standard Gaussian mixture model (or other mixture model), where the

hidden variables at each data point are independent, and the expectation with respect to

P (X|Y ) can be factorized into the expectation with each individual variable. Second, the

normalization constant Z (also called partitioned function) in P (X) again is intractable

to evaluate, and that makes logP (X,Y ; θ) also difficult to evaluate. We will give two

approximate solutions for these issues.

3.6.2 Monte Carlo EM
We replace the expectation step in EM algorithm with a sampling step. Given the

current state of the parameters and the observed data, we draw samples from the posterior

P (X|Y ; θ), and get a series of samples Xm,m = 1, · · · ,M , where M is the number of

samples. Then we can use Monte Carlo averaging to approximate

EP (X|Y )[logP (X,Y ; θ)] ≈ 1
M

M∑
m=1

logP (Xm, Y ; θ), Xm ∼ P (X|Y ; θold). (3.22)

This method is indeed the Monte Carlo EM (MCEM) that was first introduced by Wei

and Tanner [149]. The general idea of the MCEM is to modify the EM algorithm where

the expectation in the E-step is computed numerically through Monte Carlo simulations.

There are other variants of this class of methods such as stochastic EM [50], where we

only draw one sample of X from the posterior P (X|Y ; θold) and use that in place of

the expectation EP (X|Y ;θ). While the stochastic EM asymptotically converges to the local

maximum of the likelihood, we prefer the Monte Carlo EM in our work. This is because

the average of (1/M)
∑M
m=1 logP (X,Y ; θ) is a better approximation of the target function

EP (X|Y ) logP (X,Y ; θ) when the number of M is large.
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The numerical approximation of the expectation by sample average also introduces

another source of variance, and the variance of the averaged log likelihood function depends

on the number of samples M . Large M will reduce the variance, but inevitably increase

computation time. To reduce the computation time on sampling, Levine and Casella

proposed a method that uses important sampling instead of draw samples of X at each

E-step [95]. The authors only draw samples Xm from P (X|Y ; θ0), once with an initial set

of parameters θ0. The log likelihood function is approximated by the weighted averaging of

the initial samples

EP (X|Y [logP (X,Y ; θ)] ≈ 1∑M
m=1wm

M∑
m=1

wm logP (Xm, Y ; θ).

The original sample Xm is reused with weights wm. At each E-step, no new samples of X

are generated. Instead, the w is updated such that if the newly estimated θ increases the

likelihood of a sample Xm, the wm is accordingly increased to reflet the importance of Xm.

The update of w takes less time compared to generating new samples of X. Therefore, the

total computation time is less than standard MCEM.

Caffo [26] solves the convergence problem form a different view. Since the goal of the EM

is to iteratively maximize the expectation of the joint likelihood, i.e., the Q function of (3.21)

that is approximated by the MC sample averages of (3.22), we can use the approximated

Q function as a criteria of the sample quality. For ascent-based EM, a lower bound is

calculated for

B(θ, θold) = Q(θ)−Q(θold), (3.23)

where θold is the parameters at previous EM iteration. If the B(θ) is positive, the new

parameter is accepted and the algorithm continues. Otherwise, the θ is rejected. However,

the generated samples at this iteration are kept. We then generated another MC sample,

append it to the existing set of samples and obtain a new parameter estimate by using

the new MC sample set. The process is repeated until B(θ, θold) reaches positive. This

algorithm is different from the regular convergence of the MCMC sampling. Here, whether

the MC samples are from the target distribution is not a important factor. Instead, the

samples are believed good as long as the approximated Q function is maximized. Therefore,

we can start the EM with a small number of samples, since the early stage of EM can often

easily increase the Q function. With more EM iteration, the Q tends to converge, and we

increase the sample size to guarantee the convergence of the Q. Caffo has proved that when

the lower bound is positive, there is sufficient evidence to conclude that the new parameter
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θ increases the likelihood. When B is negative, the estimate of Q is deemed swamped with

MC error and a large sample size is required to estimate a more accurate Q.

3.6.3 Convergence of MCEM
If the staring point of the Markov chain is poorly chosen, the burn-in period will

increase dramatically. The rule of thumb is choosing the starting sample close to the

center of the distribution, i.e., the mode of the probability density function (pdf). The

proposal distribution of the Metropolis-Hasting sampling also has a big impact on the steps

needed to reach stationary distribution. For example, the random walker, a special case

of Metropolis-Hasting sampler, has a symmetric proposal distribution (either uniform, or

Normal distribution) with a tunable variance parameter. Increasing this variance parameter

will have larger movement, which is good to explore the whole support space, but at the risk

of low acceptance rate and high correlation between samples. If the variance is too small,

there is higher probability of accepting the candidates, but less opportunity to explore all

modes of the target distribution, and the samples are also highly correlated. In such a case,

the chain will converge too slowly.

For the convergence test of the sampling from univariate distribution, perhaps the single

most popular approach is that of Gelman [64]. To use their method, we need to run multiple

parallel MCMC chains with different starting points. These chains must be overdispersed

initially with respect to the posterior. Each chain has length 2N and the first half of

points are discarded. If we use ϕmn to represent the statistics of chain m at time n.

The Gelman-Rubin method computes the between- and within-sequence variances of the

statistics ϕ

B = N

M − 1

M∑
m=1

(ϕm − ϕ)2,

ϕm = 1
N

N∑
n=1

ϕmn, ϕ = 1
M

M∑
m=1

ϕm,

s2
m = 1

N − 1

N∑
n=1

(ϕmn − ϕm)2,

W = 1
M

M∑
m=1

s2
m.

We can estimate the marginal posterior variance of the statistics ϕ by a weighted average

of W and B

V̂ ar(ϕ|data) = N − 1
N

W + 1
N
B. (3.24)
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This estimator overestimates the marginal variance when the staring points of the chain

are overdispersed, but is unbiased when n → inf. On the other hand, the within-variance

W will under-estimate the variance of ϕ and converge to V ar(ϕ) when n→ inf. So we can

compare the value of (3.24) with W . If they are very different, that means the chain is not

converged yet. The Gelman-Rubin algorithm uses the estimated potential scale reduction

R̂ =

√
V̂ ar(ϕ|data)

W
,

which declines to 1 as n→ inf.

One issue with this method is getting overdispersed starting points, one needs to have

some knowledge of the pdf of interest, for example, the modes and shape of high density

regions. If multiple chains all start from a single mode of the density function, they may

take long steps (if ever possible) to explore other modes. In such cases, multiple chains do

not help much compared to a single long chain, and the Gelman-Rubin method can not

verify the convergence to the stationary distribution.

The Gelman-Rubin method is difficult to apply to sampling of high dimensional random

vectors, because saving multiple independent chains will require large memory, and sampling

these chains also has high computation cost.

The second test for convergence is a nonparametric test. It is applied to the single

chain. Assume θ(t) is the statistics derived from the chain of 1, . . . , t. When the chain

reaches stationary, θ(t1) and θ(t2) have the same marginal distribution for any t1 and t2.

Given a MCMC chain θ(1), · · · , θ(T ), we can compare the empirical distributions of two

half chain (θ(1)
1 , . . . , θ

(T/2)
1 ) and (θ(T/2)

2 , . . . , θ
(T )
2 ). The Kolmogorov-Smirnov statistics are

defined as the supremum of the absolute value on the difference of two empirical distribution

functions

K = sup
η
|F1(η)− F2(η)| = 1

M
sup
η

∣∣∣∣∣
M∑
m=1

11(η)−
M∑
m=1

12(η)
∣∣∣∣∣ ,

where F1 and F2 is θ’s empirical distribution for two half chains, and 1 is an indicator

function. It is noted that because of the correlation between adjacent samples in MCMC,

the half chain θ is sampled in a batch mode, i.e., θm1 and θm+1
1 are separated by a interval

to make a quasi-independent chain.

Under the stationary assumption, the limiting distribution of
√
MK has the cumulative

distribution functions (cdf) [128]

R(x) = 1−
∞∑
k=1

(−1)k−1 exp{−2k2x2}.
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Now we can construct a hypothesis, with the null hypothesis that the two chains are from

the same distribution (i.e., the MCMC chain reaches stationary). The null hypothesis is

rejected if
√
MK > Kα, where Kα is computed from Pr(x < Kα) = 1− α.

It is not straightforward to generalize the Kolmogorov-Smirnov test into higher dimen-

sion, especially for the Ising model with dimension as the number of image voxels. This

is because the maximum difference between two joint cdf is not generally the same as the

maximum difference of any of the complementary distribution functions. One solution is

to compare the cdfs of the two samples with all possible orderings, and take the largest of

the set of resulting K-S statistics. In d dimensions, there are 2d−1 such orderings, which is

intractable for Ising model.

To test the convergence of a Gibbs sampler on a simple MRF such as an Ising model,

we can instead compute the upper bound of the number of samplings. One method is

to use the coupled sampled paths to study the convergence property [88]. Two coupled

processes have the same transition kernel but different starting point. The coupled paths

reach the same state after a certain number of iterations. The iteration is defined as the

sweep of all the data points in the mode. By examining the distribution of the iterations

need for coupling, convergence properties of the sampling can be established. Johnson [88]

uses a 64 × 64 regular lattice and assumes an Ising model on the binary variables on the

lattice. He tried to look for the relationship between the number of required sampling

iterations and the Ising parameter β. Figure 3.13 shows that when β is small, the required

number of iterations is also small. However, because the growth of the iteration number

is super-exponential, a large value of β will need much more iterations to converge. When

β = 0.9, the 95th and 99th quantile of the iterations distribution reached 1 million.

Gibbs [67] also gave a upper bound of the iterations of Gibbs sampling on a one-

dimensional Ising model. His upper bounds, however, are also a function of the square

of data points, and of a tolerance ε, on the variation distance. Similar to [88], the upper

bound increases fast with β. For ε = 0.01, β = 0.5 gives an upper bound of 128N2, while

β = 1.5 gives 6162N2, where N is number of points in the lattice. Gibbs [67] noted that

there is no phase transition in this one-dimensional model. For higher dimensional Ising

model, his upper bounds only apply to small β, and convergence is slow when β > β0, where

β0 is the reciprocal of the critical temperature. For a higher dimension of Ising model such

that the number of neighbors of each data point increases, the convergence upper bounds

increase even faster. Actually, the upper bound is a function of n, the number of neighbors

of each node, and will increase when n increases.
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As a side note, Barbu et al. [7] talked about the convergence rate of Swendsen-Wang

algorithm on a Potts model. Huber [83] developed a new bounding chain algorithm that

can diagnose the convergence of Swendsen-Wang sampling. The number of steps to reach

perfect sampling (which means convergence to stationary distribution) is in the order of

O(log |E|), where E is the set of edges. This running time applies when the temperature

is far below or far above critical temperature. Cooper [33] showed that the mixing time

(or convergence time) is polynomial if the number of neighbors of each node does not

increase with |V|, the size of the nodes. This is good for regular lattice where the number of

adjacent nodes is fixed, regardless of image size. Compared with the super-exponential rate

of increase for the iteration number in standard Gibbs sampling, Swendsen-Wang algorithm

is a big improvement for convergence rate. One thing that needs to be noted is that these

theoretical analysis are for the cases without external fields (data likelihood term).

3.6.4 Variational inference with EM a.k.a mean field theory
Because the variational inference is an approximate method to compute the posterior

distribution of the hidden variables, it can naturally be used in the EM methods for

approximating EP (X|Y ;θold) logP (X,Y ; θ). However, depending on which parameter we

want to estimate from EP (X|Y ;θold) logP (X,Y ; θ), it may or may not be possible to use

variational methods for parameter estimation. In the remaining parts of this section, we

choose the definition of equation (3.15) for the convenience of variation inference approxi-

mation. Suppose the conditional distribution of P (Y |X) is Gaussian with unknown mean

µ and Σ. In this case, we can estimate parameters in P (Y |X), i.e., the µ and Σ by the

variational methods. Suppose we have already computed the posterior of the indicator

variable xs by using equation (3.19) and the mean field update converged, and we use

γsk = P (xsk = 1|Y ) = EP (X|Y )xsk, the estimates of µ and Σ take the following form

µ̂k = 1
Nk

∑
s

γsk · ys

Σ̂k = 1
Nk

∑
s

γsk(ys − µ̂k)(ys − µ̂k)>.

This is essentially the same update equation for standard EM algorithm on the Gaussian

mixture model. Such equivalence is necessary since the standard EM can be interpreted by

the variational methods. On the other hand, the variational inference method is not able

to estimate some parameters. For example, if we want to estimate the β parameter in the

MRF prior, we will try to compute the EP (X|Y ) logP (X,Y ) by the following two steps.
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First, we observe that the partition function Z in (3.15) is still difficult to compute due

to the combinatorial nature of X, we use the pseudo-likelihood to approximate it

P (X) ≈ P̃ (X) =
∏
s∈V

1
Zs

exp

β ∑
r∈N (s)

〈xs, xr〉


log P̃ (X) = β

∑
r∈N (s)

〈xs, xr〉 − logZs

= β
∑

r∈N (s)
〈xs, xr〉 − log

∑
xs,k=1,xs,−k=0

exp

β ∑
r∈N (s)

〈xs, xr〉

 . (3.25)

The P̃ (X) is the pseudo likelihood ofX. Then we observe that first term β
∑
r∈N (s)〈xs, xr〉 is

a linear function of xs and xr, so the expectation operator directly goes into the term. That

is, E[β
∑
r∈N (s)〈xs, xr〉] = β

∑
r∈N (s)〈x̄s, x̄r〉, where x̄s = E[xs], x̄r = E[xr]. However, the

log of partition function log
∑
xs,k=1,xs,−k=0 exp

{
β
∑
r∈N (s)〈xs, xr〉

}
is a nonlinear function

of xr, so we cannot just use E[xr] to replace the xr in this term in order to compute

the term’s expectation. Therefore, in such case it is not possible to estimate β with the

variational inference method.

There is an alternative approximation by using the traditional mean field theory for

estimating the β parameter in the MRF prior. Zhang [159] proposed to use the mean field

approximation in place of the expectation

EP (X|Y ;θ)[P (X,Y )] ≈
∏
s∈V

EP (xs|ys)[P (xs|x−s) · P (ys|xs)]. (3.26)

Note that (3.26) is not exactly the same with the Q function of EM. In the Q function, we

take the logarithm first, then take the expectation of the log likelihood, while (3.26) takes

the expectation first. The ML estimation of β is hence done by maximizing (3.26) with

respect to β, or equivalently, the log likelihood of (3.26). Note because of the factorization,

the normalization constant of P (xs|x−s) is tractable to compute.
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x1 x2 x3 x4

Figure 3.1: A graph model that represents the Markov chain.

conditional
indepedent

Figure 3.2: Two graphical models represented by graphs. A graphical model representing
a MRF can either be a regular grid or a general graph. For the regular grid, the node in
blue color is conditional independent of the white node given its adjacent neighbors (which
are colored gray). For the general graph example, the two nodes in blue are conditional
independent given the remaining nodes.

Figure 3.3: A simulation of MRF. When a new candidate w is accepted to replace current
xs, we get a new set of variables Xm+1 that differs from the current variable X at only s.
The set of variable Xm and Wm+1 is a sample of a Markov chain, since Xm+1 depends only
on the previous Xm. Upon convergence, X will be a sample from the target distribution
P (X).
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Simulating Ising model with various values of β. For each simulation, the
image is initialized with random states, and then scanned 1000 times. Notice when β is
small, the image is less spatially coherent. When β is large, the image has more spatial
coherent regions. (a) Sample of β = 0.8, (b) sample of β = 0.88, (c) sample of β = 1.0, (d)
sample of β = 1.5, (e) sample of β = 2.0, (f) sample of β = 0.88, zoomed in.

(a) (b) (c)

Figure 3.5: Simulating Potts model of four states with various values of β. For all
simulations, the image was initialized with random states, and then was scanned 1000
times. (a) Sample of β = 0.88, (b) sample of β = 1.2, (c) sample of β = 2.0.
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(a)

(b)

Figure 3.6: Consecutive samples of Potts model with β = 1.1 using SW and Gibbs
sampling. Both samplers initialize the sample image with all-zero values, have 100 burn-in
sampling and then save three consecutive samples. Note for the SW samples, multiple voxel
labels have been changed between the consecutive sample images. Such multiple updates
speed up convergence. For Gibbs, the three sample images are similar due to the strong
interactions (relatively large β) between the neighboring nodes. (a) Gibbs samples, (b) SW
samples.
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Figure 3.7: A graphical representation of the hidden Markov model(HMM). X is defined
on a regular lattice graph and is given a MRF prior to represent our knowledge of the
smoothness or piecewise constant. Y is the observed data that is generated from the
likelihood function given the hidden X.

local minimum
global minimum

gradient
descent

annealing

Figure 3.8: Simulated annealing samples one variable at a time. Unike coordinate descent
that always moves in the gradient descent direction (blue color arrow), the SA algorithm
updates the variable based on a certain probability, which depends on the difference of the
function value of two configurations (red arrow).
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Figure 3.9: Graph cut segmentation. Each voxel is defined as a node on a graph.
Neighboring voxels have edges between them with weights given by MRF. A source node
s and a sink node t are added. All nodes have links to both sources and sink nodes with
weights depend on the likelihood function (data term). Graph cut algorithms find a cut,
i.e., a set of edges whose overall weights are minimized. In the figure, edges with solid lines
are kept, and edges with dashed lines are removed after the cut. Red think links are the
cut. Node is assigned to source or sink label if they are connected to either of them.

(a) (b) (c)

−10 −5 0 5 10

0
40

0
80

0
12

00

voxel intenstity

(d)

Figure 3.10: Recovering noise image by graph cut. Top row from left to right: a) Observed
noised image, b) ground truth label map, c) recovered label map. Bottom d) histogram of
the observed image intensity. Note the region in blue circle of the true map is misclassified.
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Figure 3.11: A hidden Markov model with X in MRF, and each ys is independent Gaussian
given xs. The parameters are black dots, the hidden variables are circles, and the observed
data are grayed circles. The MRF structure on X is not shown in this diagram. Instead a
box is on X and Y to represent that there are N such nodes.

code 1

code 2

code 3

code 4

conditional
independent

Figure 3.12: Coding scheme for parameter estimation. For four-neighbors system of
two-dimensional image, the voxels are separated into four groups. The voxels in the same
group are conditionally independent given other groups.

Figure 3.13: Percentile of coupling iterations for Ising model of size 64 × 64. Top curve
shows the 99% and bottom shows the 95% percentile from the distribution of the iterations
needed for coupling, as a function of β parameter. The percentiles are estimated using 1000
repetitions of Gibbs sampling initialized with all-white and all-black value. (adapted from
Johnson [88].



CHAPTER 4

FULL PAIRWISE CONNECTIVITY WITH
SPATIAL COHERENCE

In this chapter, we present a new method for spatial regularization of functional con-

nectivity maps based on MRF priors. The high level of noise in fMRI leads to errors in

functional connectivity detection algorithms. A common approach to mitigate the effects

of noise is to apply spatial Gaussian smoothing, which can lead to blurring of regions

beyond their actual boundaries and the loss of small connectivity regions. Recent work has

suggested MRF as an alternative spatial regularization in the detection of fMRI activation in

task-based paradigms. We propose to apply MRF priors to the computation of functional

connectivity in resting-state fMRI. Our Markov priors are in the space of pairwise voxel

connections, rather than in the original image space, resulting in a MRF whose dimension

is twice that of the original image. The high dimensionality of the MRF estimation problem

leads to computational challenges. We present an efficient, highly parallelized algorithm on

the graphics processing unit (GPU). We validate our approach on a synthetically generated

example as well as real data from a resting state fMRI study.

4.1 Motivation
To show the noise level and the impact of spatial smoothing on the functional connec-

tivity estimation, we take a seed voxel at the MNI coordinate (42, 16, 25) and compute the

correlation between this seed region and every other voxel’s BOLD signal in the same volume

of the spatially smoothed rs-fMRI volume, and show the correlation map at Figure 4.1. The

seed signal is computed by averaging the BOLD signal of voxels within 5 mm distance from

the seed voxel. Following standard seed-based functional connectivity methods, we average

the BOLD signal of the voxels within r = 5 mm from the seed voxel, and use the averaged

signal as a surrogate of the BOLD signal at this coordinate. We then compute the sample

correlation between this average signal and every other voxel’s BOLD signal in the full

volume. For display purposes, we only show the correlation map of one slice where the
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seed region is located. Figure 4.1a shows the first time point of the original BOLD signal.

As expected, it is impossible to see any meaningful patterns from this image, since the

functional connectivity is not represented by a voxel’s intensity at a single time point, but

the average effect across all time points. Figure 4.1b shows the linear correlation map with

the seed regions, with the red dot giving the location of the seed region. We can see the

symmetric location of the seed region on the other hemisphere shows higher intensity of

correlation, suggesting these voxels are more positively correlated with the seed. In Figure

4.1c, we show the correlation map thresholded at 0.3. Since the seed region belongs to the

default model network (DMN), an important component in the intrinsic functional system,

we expect to see other spatially remote regions in the same network have higher correlation

in 4.1c, We observe one region on the same location of the opposite hemisphere, and also

one region at the prefrontal lobe remains after thresholding. However, overall the spatial

patterns are hard to identify, and there are also some false-positive detections. One reason

for the difficulty in detecting the connectivities is the large amount of noise in the data,

and the spatial smoothing in the preprocessing step. We aim to address this problem in

this chapter.

In both task-based and rs-fMRI the impact of imaging noise can be reduced by taking

advantage of the spatial correlations between neighboring voxels in the image. A common

approach used for instance in statistical parametric mapping (SPM)[155] is to apply a spatial

Gaussian filter to smooth the signal prior to statistical analysis. However, this can lead to

overly blurred results, where effects with small spatial extent can be lost and detected

regions may extend beyond their actual boundaries. An alternative approach to spatial

regularization that has been proposed for task activation paradigms is to use a Markov

random field (MRF) prior [117, 43, 44, 152, 37], which models the conditional dependence

of the signals in neighboring voxels.

In this chapter we propose to use MRF models in rs- fMRI to leverage spatial correlations

in functional connectivity maps. Unlike previous MRF-based approaches, which use the

neighborhood structure defined by the original image voxel grid, the neighborhoods in

functional connectivity must take into account the possible relationships between spatially

distant voxels. Therefore, we define the neighborhood graph on the set of all voxel pairs.

This results in a Markov structure on a grid with twice the dimensions of the original

image data, i.e., the pairwise connectivities for three-dimensional images results in a six-

dimensional MRF. The neighborhood structure is defined so that two voxels are more likely

to be connected if they are connected to each other’s spatial neighbors.
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We combine the Markov prior on functional connectivity maps with a likelihood model

of the time series correlations in a posterior estimation problem. Furthermore, we solve

for the unknown parameters of the MRF and likelihood using the EM algorithm that we

discussed in Section 3.6.1. In the estimation step the posterior random field is sampled using

Gibbs sampling and estimated using mean field theory, also known as variational inference.
In the next section we describe our MRF model of functional connectivity maps. In

Section 4.2 we give the details of the algorithm to estimate the functional connectivity

probabilities, including implementation details for the GPU solver. Finally, in Section 4.4

we demonstrate the advantages of our approach on a synthetically generated data set as

well as on real rs-fMRI data.

4.2 Methods
Our framework for functional connectivity is a Bayesian approach in which we estimate

the posterior distribution of the connectivity between voxels, conditioned on the fMRI

data. Let X = {xij} denote the functional connectivity map, i.e., a map denoting whether

each pair of voxels i, j is connected, and let Y denote the original fMRI data, or some

measurement derived from the fMRI. In this work we take Y to be the map of correlations

between pairs voxel time series. The posterior distribution is then proportionally given by

P (X |Y ) ∝ P (X) · P (Y |X). (4.1)

In this work we model P (X), the prior on the connectivity map, using a MRF, and the

likelihood P (Y |X) using Gaussian models of the Fisher transformed correlation values. We

now give details for both of these pieces of the model.

4.2.1 Markov prior
Conventional image analysis applications of MRFs [99] define the set of sites of the

random field as the image voxels, with the neighborhood structure given by a regular lattice.

Because we are studying the pairwise connectivity between voxels, we need to define a MRF

in the higher-dimensional space of voxel location pairs. Thus, if Ω ⊂ Zd is a d-dimensional

image domain, then the sites for our connectivity MRF form the set S = Ω × Ω. Let

i, j ∈ Ω be voxel locations, and let Ni,Nj denote the set of neighbors of voxel i and j,

respectively, in the original image lattice. Then the set of neighbors for the site (i, j) ∈ S

is given by Nij = ({i} × Nj) ∪ (Ni × {j}). In other words, two sites are neighbors if they

share one coordinate and their other coordinates are neighbors in the original image lattice.

This neighborhood structure will give us the property in the MRF that two voxels i, j in
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the image are more likely to be connected if i is connected to j’s neighbors or vice-versa.

Equipped with this graph structure, S is a regular 2d-dimensional lattice. With the node

set X and neighboring system N , we define a graph G that we call the connectivity graph.

Figure 4.2 gives an illustration of how this connectivity graph is defined.

We next define a multivariate random variable X = {xij} on the set S, where each xij

is a binary random variable that denotes the connectivity (xij = 1) or lack of connectivity

(xij = −1) between voxel i and j. If A ⊂ S, let XA denote the set of all xij with (i, j) ∈ A,

and let X−ij denote the collection of all variables in X excluding xij . For X to be a MRF

it must satisfy

P (xij |X−ij) = p(xij |xNij ).

According to the Hammersley and Clifford theorem [13], X is a Markov random field if and

only if it is also a Gibbs distribution, defined as

P (X) = 1
Z

exp (−U(X)) , (4.2)

where U is the energy function U(X) =
∑
c∈C Vc, with potentials Vc defined for each clique c

in the clique set C. The partition function Z =
∑
X exp(−U(X)) is a normalizing constant,

where the summation is over all possible configurations of X. We use a particular form

of MRF—the Ising model—a commonly used model for MRFs with binary states. In this

model the energy function is given by

U(X) = −β
∑

(ij,mn)
xijxmn, (4.3)

where the summation is over all edges (ij,mn) on the graph G, i.e., all adjacent voxel pairs

(i, j), (m,n) in the connectivity graph. When β > 0, this definition favors similarity of

neighbors. An alternative definition is to make the MRF prior also contain the data term,

such as the strength of the connection between neighboring nodes also depends on the data.

Where the observed correlation value of two nodes are different, the strength of the MRF

prior will be decreased. This is the conditional random field we have discussed in Section

3.4.

4.2.2 Likelihood model
We now define the likelihood model, P (Y |X), which connects the observed data Y to

our MRF. Because we are interested in the functional connectivity between pairs of voxels,

we compute the correlation between the time courses of each pair of voxels, and get a

correlation matrix Y = {yij}. Just as in the case of the random field X, the correlation
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matrix Y is also defined on the 2d-dimensional lattice S. Linear correlation is not the

only choice for Y . We can use any statistic, as long as it indicates the affinity between

two voxel time series. Another possibility could be frequency domain measures, such as

the coherence [112], although the definition of likelihood function is not straightforward

for such similarity measurement. On the other hand, simple linear correlation has the

advantage that after the Fisher transformation, the correlation statistics have a well defined

distribution. If the original variables yi and yj ’s intensities across all time points are

Gaussian, then the sample correlation estimated from the intensities are also Gaussian after

Fisher transformation. Therefore, the conditional distribution of P (yij |xij) is a well-defined

Gaussian distribution.

Before defining the full data likelihood, we start with a definition of the emission function

at a single site sij ∈ S. This is defined as the conditional likelihood, P (yij |xij), and is

interpreted as the probability of the observed correlation, given the state of the connectivity

between voxels i and j. We model the emission function as a Gaussian distribution with

unknown mean and variance on the Fisher transformed correlation yij , that is,

P (yij |xij = k) = 1√
2πσk

exp
(
−(F (yij)− µk)2

2σ2
k

)
, (4.4)

where F denotes the Fisher transform. Notice that each correlation yij on site sij only

depends on the latent variable xij on the same site, and does not depend on neighbors of

xij . Alternative definitions exist. For example, the observed correlation data yij can also

depend on the neighbors of xij , similar to the work of Geman et al. [65]. This is equivalent

to adding more edges on the graphical model, and therefore the posterior inference will be

more complicated. In this work, we use a simple model that has a one-to-one correspondence

between xij and yij . Given the above setting, the full likelihood is given by

P (Y |X) =
∏
sij∈S

P (yij |xij). (4.5)

4.3 Estimation via expectation maximization
Having defined the data likelihood and MRF prior in the previous section, we are now

ready to describe the maximization of the posterior given by (4.1). For this we need to

determine the model parameters, β in (4.3) and (µk, σ2
k) in (4.4). Rather than arbitrarily

setting these parameters, we estimate them using the EM algorithm. Exact computation

of the full posterior (4.1) is intractable, due to the combinatorial number of terms in the
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partition function Z. Therefore, we instead maximize the approximate posterior given by

the pseudo-likelihood function [99, 13],

PL(X,Y ) =
∏
ij

P (xij |xNij )P (yij |xij). (4.6)

In the E-step, the parameters are held fixed and we compute the posterior probability

for each xij , and sample xij from the posterior distribution using Gibbs sampling. We

then compute the expected value of each connectivity node by mean field theory. After

we compute the posterior of current point xij , we update xij with its expected value 〈xij〉.

The equivalence of posterior probability and the expectation of binary random variable is

discussed in Section 3.6.4.

In the M-step, the complete data {〈X〉, Y } are available, and the parameters can be

estimated by maximizing the joint pseudo-likelihood given by (4.6) using Newton’s method.

After several iterations of this EM algorithm, we get parameters as our MAP estimates.

During parameter estimation, the joint likelihood can be factorized into two separate terms

of the prior and the conditional likelihood, and the parameter β can be estimated by

maximizing the MRF prior (equivalently the pseudo-likelihood) by Newton’s method. The

estimation of µ and σ2 can be done in closed from just like the standard Gaussian mixture

model, as shown in Section 3.6.

4.3.1 GPU implementation
The whole algorithm involves updating a high dimensional connectivity matrix X iter-

atively, and hence it has high computation cost. We designed a parallel Markov random

field updating strategy on a graphics processing unit (GPU). The algorithm takes only a

few minutes compared with more than 1 hour on the CPU counterpart.

To fit the algorithm into GPU’s architecture, we use some custom strategies. First,

because GPU only support three-dimensional array, we need to reshape X and Y defined

originally on a higher dimensional graph by linear indexing their original subscripts. This is

especially difficult for brain fMRI data because the gray matter voxels reside in an irregular

three-dimensional lattice. Specific data structures are used for mapping between original

voxel subscripts and their linear index i and j. Second, to update each site of the MRF

in parallel, we have to make sure a site is not updated simultaneously with its neighbors,

otherwise the field tends to be stuck in a checkerboard-like local maximum, as indicated

by Figure 4.3. Our strategy is to divide all the sites of the field into several subgroups,

such that a site is not in the same subgroup with its neighbors. We then can update the
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subgroup sequentially, while the data in subgroups are updated simultaneously. The whole

procedure is summarized in Algorithm 5.

It is noted this updating scheme is closely related to the coding method of parameter

estimation of MRF that we discussed in Section 3.6. Both approaches split the variables

into multiple subgroups. They differ in that for coding methods, the separation is used

to get independent variables within the subgroup, while here the voxels in subgroups are

independent so we can update them in parallel.

4.4 Results
In this section, we give the experimental results for both simulated data and real fMRI

data. We compare the results of various methods on simulated data with the ground truth

to show the proposed method’s performance. In the real data experiment, we compare the

results with the functional connectivity map of other literatures.

4.4.1 Synthetic data
We first construct a synthetic data set consisting of a 100 × 1 one-dimensional image,

with each pixel a 300-point time course signal. The one-dimensional image will guarantee

the connectivity map be in two-dimensional space and can be visualized easily. The time

course was constructed with a baseline DC signal of 800, plus additive Gaussian noise of zero

mean and variance 50. We then added a sine wave signal of frequency 0.2 and amplitude

20 to two distant regions of the image. The goal is to detect the connectivity between these

two distant regions. The true connectivity value will be one between those pixels containing

the sine wave signal, otherwise it is defined as −1 for lack of connectivity between signal and

noise, and between noise time series. The true connectivity map is shown in Figure 4.4a.

To compare our MRF model with conventional Gaussian blurring of the correlation

map, we applied both approaches to the synthetic data (Figure 4.4). On the correlation

map in the top row, we see smoothing does remove noise and results in a correlation map

that looks more like the true connectivity map. However, it also creates several errors,

most noticeably false positives around the diagonal (Figure 4.4e). This is because without

prior knowledge of the scale of the patterns we are interested in, the choice of smoothing

kernel size is arbitrary. Therefore, a large kernel size will enforce the signals of many voxels

to look similar, and the following correlation map will have more false-positive detections.

Figure 4.4f shows the proposed MRF method better detects the true connectivity regions

while removing most false positives.
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Algorithm 5: MAP estimation by EM
Require: Sample correlation matrix Y.

Init posterior matrix by maximizing conditional likelihood P (yij |xij).
while ∆{β, µ, σ2} > ε do

E step:
(a) Based on the current parameters, compute the posterior by (4.6).
(b) Repeatedly Do Gibbs Sampling until the field stabilizes.
(c) Based on current value of xij , iteratively compute the mean field for all nodes in S
until the field is stable.
M step:
(d) With complete data {X,Y}, estimate β , µ and σ2 by maximizing (4.6).

end while
return posterior matrix X.
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4.4.2 Resting-state fMRI
Next we tested our method on real data from healthy control subjects in a resting-state

fMRI study. BOLD EPI images (TR= 2.0 s, TE = 28 ms, GRAPPA acceleration factor = 2,

40 slices at 3 mm slice thickness, 64 x 64 matrix, 240 volumes) were acquired on a Siemens

3 Tesla Trio scanner with 12-channel head coil during the resting state, eyes open. The data

was motion corrected by SPM software and registered to a T2 structural image. We used

a gray matter mask from an SPM tissue segmentation so that only gray matter voxels are

counted in the connectivity analysis. We do not spatially smooth the data, in order to see

the benefit of replacing spatial smoothing with our MRF method. Before computing the

correlations, the time series at all voxels are linearly detrended by least squares regression.
Figure 4.5 compares the real data results using no spatial regularization, Gaussian

smoothing, and the proposed MRF model. Though the posterior connectivity of the MRF

is computed between every pair of voxels within a slice, for visualization purposes, only the

posterior of the connectivity between one voxel and the slice is shown. We chose to visualize

the connectivity to a voxel in the posterior cingulate cortex (PCC) because this is known

to be involved in the default mode network [125], with connections to the medial prefrontal

cortex (MPFC). The results show that Gaussian smoothing is able to remove noise, but is

unable to find a clear connection between the PCC and the MPFC. Our proposed MRF

model (4.5c and 4.5f) is able to remove spurious connections, and also clearly shows a

connection to the MPFC.
To show the strongest connections found by each method, Figure 4.6 shows the thresh-

olded connectivity maps overlaid on T2 structural image. Images in the first two columns

are thresholded such that the top 5% voxel correlations are shown. For the MRF in 4.6c

and 4.6f, the MAP estimate is shown.

4.5 Discussion
Functional connectivity is a key step of understanding the human brain’s functional

networks, since it contains all the information of how each functional region interacts with

other regions. There are multiple ways of modeling functional systems. One is defining some

regions of interest (ROI) as the nodes on the graph, and estimate the connectivities among

these ROIs. The ROI definition has no standard to follow. One can either define them

according to the anatomical structure, or by a parcellation on the functional data. The

other way of representing functional networks is to cluster the full brain volume (indeed the

gray matter voxels) into small regions. Regions in the same cluster are highly connected

even if they are spatially remote. Our method outputs a posterior matrix that includes
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all the connectivity information between each pair of voxels. One potential usage of the

full connectivity matrix is exploring the connectivity given a single seed coordinate. That

is, given the seed, one can explore the posterior connectivity between the seed voxel and

the full brain volume in real time. Such full connectivity will be dynamically shown with

the changing seed’s location. Such a dynamic, and potentially user-interactive functional

connectivity exploratory concept has been partly realized by Yeo et al. [157], though they

did not use MRF to model the spatial constraints of the connectivity variables. Instead, Yeo

et al. use a large group of subjects and obtained a highly consistent population functoinal

connectivity network. The network can be visualized given a seed region and also the change

of the network patterns when the seed changes.

On the optimization side, the MCEM algorithm, and the wider class of sampling methods

are potentially good candidates for the application of GPU. Although theoretically the

computation on GPU needs independence between the data points, the order of voxels

being sampled have no effect on the quality of the samples once the sampling reaches

stationary distribution. Therefore, even at each scan, the order, or the schedule of the data

points change in an undetermined way within the GPU cores, we can still get samples in the

target distribution give enough burn-in time. Alternative optimization methods other than

MCEM exist, such as graph cut. However, in our experiments with graph cuts, we found the

local finer patterns are sometimes ignored by graph cut. The estimated hidden variables

are accordingly mostly blob-like patterns with small boundary-area ratio. So graph cut

optimization is more suitable for the recognition of blob-like patterns. Such preference does

not necessarily reflect the true structure in our fMRI data. As a result, the estimation of

the parameters β in (4.3) is also biased towards a larger value than the true value, since

the true X is not as smooth as the estimated one. Therefore, we choose to use MCEM in

our EM procedure for unbiased estimation of parameters.

One weakness of the pairwise connectivity estimation routine is lack of visualization for

all the functional networks as spatial maps. Only when the input image is one-dimensional,

such as the synthetic data example we used in Section 4.4.1, can the connectivity map

be visualized on a two-dimensional plane. In general three-dimensional volume image as

input, the connectivity matrix is in a six-dimensional space and cannot be shown in a

straightforward way. Once the posterior connectivity matrix is computed, we still need to

give a seed region in order to map all the functional systems that are connected to the seed.

We will discuss methods of estimating multiple functional networks and show them in a

single volume image in the next chapter.
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(a) (b) (c)

Figure 4.1: An example of correlation map with a seed in the default model network on
the rs-fMRI data set. (a) One slice of a resting-state fMRI dataset at z = 25, (b) correlation
map between a seed and the current slice, (c) the correlation map thresholded at 0.3.
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Figure 4.2: MRF prior of the connectivity variables. Each node of the graph represents a
pairwise connectivity variable between voxel i and j. An edge is added between two nodes
xij and xik if k is the neighbor of voxel j. The graph where the MRF is defined is twice the
dimensions of the original image domain, i.e., six dimensions. Given the hidden variable
X, the observed sample correlation values are assumed to be generated from a Gaussian
distribution with unknown parameter N (yij |xij ;µ, σ2).
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all flipped

Figure 4.3: Ideally the update of each voxel is independent of other voxels in order to be
used on the GPU. In our Gibbs sampling, although the sampling of each voxel depends on
its neighbors, the order of the voxels being updated does not matter. Upon convergence,
the image will be a sample of the target Gibbs distribution. However, numerically, the
sampling tends to be stuck in this local minimum of checkerboard image. At the current
state, each voxel has a neighbor with a different state, and the sampling flips the color of
all voxels in the next stage.

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Test of synthetic data by using correlation and MRF method proposed in
this work. (a) Ground truth connectivity map, (b) connectivity based on smoothed data,
(c) correlation of Gaussian-smoothed data, (d) connectivity based on noisy correlations,
(e) connectivity based on smoothed data, (f) connectivity computed using proposed MRF
model.
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: Threshold correlation map and posterior connectivity map between seed voxel
and the current slice, overlaid to T2 image. (a) Subject 1 correlation without smoothing,
(b) subject 1 correlation with smoothing, (c) subject 1 posterior estimated from MRF,
(d) subject 2 correlation without smoothing, (e) subject 2 correlation with smoothing, (f)
subject 2 posterior estimated from MRF.
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: Correlation map and posterior connectivity map between seed voxel and
slice containing the seed. (a) Subject 1 correlation without smoothing, (b) subject 1
correlation with smoothing, (c) subject 1 posterior estimated from MRF, (d) subject 2
correlation without smoothing, (e) subject 2 correlation with smoothing, (f) subject 2
posterior estimated from MRF.



CHAPTER 5

CONSISTENT AND SPATIALLY
COHERENT FUNCTIONAL NETWORKS

The pairwise functional connectivity estimation method in Chapter 4 estimates the

connections between each pair of voxels, and outputs a symmetric matrix with element

(i, j), the connectivity of voxel i and j. However, in order to explore functional networks,

we still need a seed. Moreover, only those regions connected to the selected seed region

can be identified. If a seed is incorrectly chosen, it may fall outside of the functional

networks that we are interested in, the resulting network map will not be informative. In

this chapter, we propose a new data-driven method to partition the brain’s gray matter

into disjoint partitions of functional networks. Unlike the previous chapter, the proposed

algorithm does not require specification of a seed, and there is no ad hoc thresholding or

parameter selection. The algorithm identifies all of the functional network maps in a single

run. To achieve the above properties, we define the model in the original image space and

cluster the voxels with higher connectivity into the same class. This is indeed an image

segmentation problem, or an unsupervised clustering problem in data mining. The proposed

approach is, in spirit, similar to the functional parcellation work that has been proposed by

Yeo et al. [157].

We make a natural assumption that functionally homogeneous regions should be spa-

tially coherent. Our method incorporates spatial information through a MRF prior on voxel

labels, which models the tendency of spatially-nearby voxels to be within the same functional

network. Here we use a MRF to model the network label’s spatial soft constraint, such that

the network component maps are spatially coherent with a piecewise constant labeling.

The BOLD time course at each voxel is first normalized to zero mean and unit norm,

which results in data lying on a high-dimensional unit sphere. We then model the normalized

time-series data as a mixture of von Mises-Fisher (vMF) distributions [6]. Each component

of the mixture model corresponds to the distribution of time series from one functional

network. Solving for the parameters in this combinatorial model is intractable, and we
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therefore use a MCEM algorithm, which approximates the expectation step using Monte

Carlo integration. The stochastic property of MCEM makes it possible to explore a large

solution space, therefore it performs better than a standard mode approximation method

such as iterated conditional modes (ICM). Finally, we demonstrate on real fMRI data that

our method is able to identify visual, motor, salience, and default mode networks with

considerable consistency between subjects.

The vMF distribution was first introduced in the machine learning community by

Banerjee et al. [6] to address the parametric clustering problem on the dataset of doc-

uments. In such data, the similarity of two data samples is better represented by the

inner product of normalized feature vectors. By normalization, the feature vector has zero

mean and unit variance, which is equivalent to being projected onto a high-dimensional

sphere. Original usage of the inner product as distance metric is by Dhillon and Modha’s

spkmeans algorithm [45], where the cosine similarity is used for clustering. When the features

have high dimensions, the spkmeans is superior to standard K-Means algorithm in terms

of speed and classification accuracy. The extension of spkmeans to vMF [6] is similar to

the extension of Gaussian mixture model to the standard K-Means, except that vMF has a

simplified definition of variance (or, precision) such that the distribution is isotropic. The

vMF distribution is indeed a generalization of the lower dimensional von Mises distribution,

which is discussed by Mardia [103] in the context of directional statistics.

5.1 Hidden Markov models of functional networks
We use a Bayesian statistical framework to identify functional networks of the gray

matter in fMRI data. We formulate a generative model, which first generates a spatial

configuration of functional networks in the brain, followed by an fMRI time series for each

voxel based on its network membership. We employ an MRF prior to model network

configurations, represented by the hidden network label variables. Given a label, we assume

that the fMRI time series, normalized to zero mean and unit norm, are drawn from a von

Mises-Fisher distribution.

Let V be the set of indices for all gray-matter voxels. We assume that the number of

networks L is a known free parameter. Let L = {1, 2, · · · , L} be the set of labels, one

for each network. We denote a label map for functionally-connected networks as a vector

X = (x1, . . . , xN ), xs ∈ L. Let X = LN be the set of all possible X’s configurations.
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5.1.1 A Markov prior model
Functional networks should consist of few, reasonably-sized, possibly distant regions. We

model such networks X using a special case of MRF model that we discussed in Chapter 3,

i.e., the Potts [99]:

P (X) = 1
Z

exp

−β ∑
(r,s)∈E

ψ(xr, xs)

 ,
where the function ψ takes 1 if its argument is not equal and 0 otherwise; (r, s) is the set of

voxel pairs that are spatial neighbors on the graph; β > 0 is a model parameter controlling

the strength of label-map smoothness; Z is a normalization constant that is the sum of

P (X) over all possible configuration of X. The Markov-Gibbs equivalence [99] implies that

the conditional distribution of xs at site s is:

P (xs|X−s) = P (xs|XNs) =
exp

{
−β

∑
r∈Ns

ψ(xs, xr)
}∑

l∈L exp
{
−β

∑
r∈Ns

ψ(xr, l)
} , (5.1)

where X−s is the collection of all variables in X excluding site s. The neighborhood is the

usual six adjacent voxels, which does not overly smooth across boundaries. Previous works

[149, 43] have demonstrated the advantages of MRFs over Gaussian smoothing in preserving

segment boundaries.

5.1.2 Likelihood model
We observe that in order to make the analysis robust to shifts or scalings of the data, one

typically normalizes the time series at each voxel to zero mean and unit length. This results

in the data being projected onto a high-dimensional unit sphere. After normalization, the

sample correlation between two time series is equal to their inner product, or equivalently,

the cosine of the geodesic distance between these two points on the sphere. Thus, we

reformulate the problem of finding clusters of voxels with high correlations to the problem

of finding clusters with small within-cluster distances on the sphere. Figure 5.1 shows this

equivalence.

In the previous chapter, the observed data are the linear correlations between a prior

of voxels BOLD signal. Since the correlation is a scalar, the emission function, i.e., the

conditional probability of P (Y |X) can be easily modeled by the Gaussian distribution once

the correlation has been Fisher-transformed. In the model of this chapter, the observed data

are the BOLD signal itself, so we need a multivariate distribution to model its conditional

probability. We use the notation Y = {(y1, . . . , yN ) | ys ∈ Sp−1} to denote the set of

normalized time series. Observe that given X ∈ X , the random vectors ys,∀s ∈ V are
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conditional independent. Thus, the likelihood logP (Y |X) =
∑
s∈V logP (Ys|xs). We model

the emission function P (ys|xs) using the von Mises-Fisher (vMF) distribution

f(ys;µl, κl|xs = l) = Cp(κl) exp(κlµ>l ys), ys ∈ Sp−1, l ∈ L. (5.2)

For the cluster labeled l, µl is the mean direction, κl ≥ 0 is the concentration parameter,

and the normalization constant Cp(κ) is given by

Cp(κ) = κ
p
2−1

((2π)
p
2 I p

2−1(κ))
,

where Iν denotes the modified Bessel function of the first kind with order ν. The larger

the κ, the greater is the density concentrated around the mean direction. When κ = 0,

f(ys;µ, κ) reduces to the uniform distribution on Sp−1. If κ → inf, ys will be in a point

density. Since (5.2) depends on y only by µ>y, the vMF distribution is unimodal and

rotationally symmetric around µ.
In the Bayesian framework, we also define distributions on parameters. We assume

that ∀l ∈ L, κl ∼ N (µκ, σ2
κ) with hyperparameters µκ and σ2

κ that can be set empirically.

This prior enforces constraints that the clusters should not have extremely high or low

concentration parameters. We empirically tune the hyperparameters µκ and σ2
κ and have

found the results to be robust to specific choices of the hyperparameters.

5.1.3 Monte Carlo EM
The model of the functional network variables can be illustrated by Figure 5.2. Given

the definition of the prior and likelihood function, our goal is the statistical inference of

the posterior probability of X given the observed data y. Because of both the hidden

variables X and the model parameters µ, κ, β are unknown, we use EM method to estimate

them in an iterative way. To estimate the model parameters and the hidden labels, we

use the MCEM [149] algorithm. The standard EM algorithm maximizes the expectation

of the log-likelihood of joint PDF of Y and the hidden variable X with respect to the

posterior probability P (X|Y ), i.e., EP (X|Y )[logP (X,Y ;θ)]. The combinatorial number

of configurations for X makes this expectation intractable. Thus, we use Monte Carlo

simulation to approximate this expectation as

Q̃(θ;X,Y ) ≈ 1
M

M∑
m=1

logP (Xm;β) + logP (Y |Xm;θL), (5.3)

where Xm is a sample from P (X|Y ), θL = {µl, κl : l ∈ L} is the parameter vector of the

likelihood, and θ = {β,θL} is the full parameter vector of the model. Computing the MRF
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prior in (5.3) is still intractable due to the normalization constant, and we instead use a

pseudo-likelihood approximation [99], which gives

Q̃ ≈ 1
M

M∑
m=1

∑
s∈V

logP (xs|xNs ;β) + 1
M

M∑
m=1

∑
s∈V

logP (ys|xs;θL) = Q̃P + Q̃L.

We use Q̃P to denote the log-pseudo-likelihood of the prior distribution, and use Q̃L to

denote the log-likelihood distribution. Now the prior term Q̃P is in a tractable form for

evaluation, and we can estimate β by optimization of Q̃P with a Newton-Raphson method,

initialized by β = 0. Because of the separation of the parameters in Q̃P and Q̃L, we

can estimate the parameter θL by optimizing QL. There is an approximated closed form

solution for this estimation, and we will discuss it in Section 5.1.5.

5.1.4 Sampling from the posterior
Given the observed data Y and parameter value θ = {β,θL}, we sample from the

posterior distribution P (X|Y ;θ) using Metropolis sampling. We define the posterior energy,

which is to be minimized, as the negative log of the posterior P (xs|Ys). Thus, Bayesian rule

implies:

U(xs = l|X) = β
∑
r∈Ns

ψ(xs, xr)− logCp(κl)− κlµ>l ys + const, (5.4)

which is the sum of the prior energy, the conditional energy, and a parameter-independent

quantity. Then, given a current configuration Xm, Metropolis sampling generates a new

candidate label map w as follows: (i) Draw a new label l′ at site s with uniform distribution;

W has value l′ at site s, with other sites remaining the same as Xm; (ii) compute the change

of energy ∆U(W ) = U(W |Y ) − U(Xm|Y ) = U(xs = l′|Y ) − U(xs = l|Y ); (iii) accept

candidate W as Xm+1 with probability min(1, exp{−∆U(W )}); (iv) after a sufficiently

long burn-in period, generate a sample of size M from the posterior distribution P (X|Y ).

This is indeed the Metropolis sampling algorithm (Algorithm 1) that we have introduced

in Chapter 3.

5.1.5 Parameter estimation
In order to estimate µ and κ of the vMF distribution, we need to maximize Q̃L with

the constraint ||µl|| = 1 and κ > 0. For one sample label map, the maximum likelihood

maximization of the mean vector µl for label l is [6, 46]

µl = argmax
µl

∏
s∈Vl

P (ys;µl, κl|X)

= argmax
µl

∑
s∈Vl

logP (ys;µl, κl|X)
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= argmax
µl

∑
s∈Vl

N logCp(κl) + κlµ
>
l Rl, (5.5)

where Vl = {s ∈ V : xs = l} is the set of data points in cluster l, and Rl =
∑
s∈Vl

ys. We

maximize (5.5) with the constraints µ>l µ by introducing a Lagrangian multiplier and obtain

µ̂l = R/‖Rl‖. (5.6)

In MCEM, instead of having one label map, we have M maps sampled from P (X|Y ).

The M sample maps are not independent since they were obtained in a consecutive time

point. But for the purpose of parameter estimation, we can safely assume the independence

and pool them into same dataset, where we extract the subset of label l to estimate µl. We

can estimate µ as

Rl =
M∑
m=1

∑
s∈Vl

ys, µ̂l = Rl
||Rl||

, (5.7)

We have no a priori knowledge for µl, so a maximum likelihood estimation in (5.7) is the

best we can do. For κl we maximize the posterior distribution P (κl|Y,X1, . . . , XM ). Since

Q̃P is not dependent on κ, we maximize Q̃L(κl) + logP (κl;µκ, σ2
κ) and get [6]

Ap(κ̂l) + κ̂l − µκ
Nlσ2

κ

= Rl, (5.8)

where Ap(κ̂l) = I p
2
(κ̂l)/I p

2−1(κ̂l) and Nl = |Vl| is the number of data points in cluster

l. Because (5.8) contains the ratio of two modified Bessel functions, an analytic solution

is unavailable and we have to resort to a numerical solution. We use Newton’s method

for solving g(κ̂l) = Ap(κ̂l) − (κ̂l − µκ)/(Nlσ
2
κ) − Rl = 0. The choice of initial value for

Newton’s algorithm depends on the strength of the prior on κl (i.e., the σκ value). For a

noninformative prior, κ̂l = (pRl − R3)/(1 − R2) is a good a good initial value [6]. For a

strong prior, a reasonable initial value is the current value of κl.

To estimate β, we again rely on Newton’s method to find the solution numerically. The

derivatives ∂Q̃P /∂β and ∂2Q̃P /∂β
2 for the pseudo-likelihood approximation of the MRF

prior are easily computed. With all the settings above, we give the steps of the E step and

M step iterations in Algorithm 6.

Given the methods for sampling and parameter estimation, we estimated the hidden

MRF model by iteratively using (i) MCEM to learn model parameters and (ii) using ICM

to compute optimal network labels. In the expectation (E) step, we draw samples from the

posterior P (X|Y ), given current estimates for parameters θ. In the maximization (M) step,

we use these samples to update estimates for the parameters θ.
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Algorithm 6: MCEM-ICM Algorithm for Hidden-MRF Model Estimation
input : Preprocessed 4D fMRI data; number of clusters
output: Labeled functional network map
Initialization: Run k-means clustering a few times and choose z with the smallest
sum-of-square errors; estimate θL and set β to a small value;
while MCEM not converged do

E step: Given current θ, for m← 1 to M do
foreach s ∈ V do Draw sample xms from P (xs|Ys) using (5.4);
;

M step: Given (X1, . . . , XM ), estimate β and θL;
Estimate labels with ICM using the current estimates for β and θL ;
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5.2 Experiment results
In this section, we give preliminary test results on simulated fMRI dataset, in order to

show its accuracy under large noise. We then apply our MCEM method on the in vivo

data.

5.2.1 Synthetic data
We first simulate low-dimensional time series (two-dimensional 64×64 image domain;

three time points, for visualization on sphere S2) to compare the (i) proposed method using

MCEM with (ii) the mode-approximation approach that replaces the E step in EM with a

mode approximation. We simulate a label map by sampling from a MRF having β = 2 and

number of labels L = 4. Given the label map, we simulate vMF samples on the sphere S2.

The method we used to simulate samples from vMF distribution is from Dhillon [46] and

Wood [151]. Figure 5.3 gives the simulated data and the estimation by the two methods. We

note the simulated network label map is piecewise constant, with occasional small regions

scattered between large patches. This is similar to the estimated functional network maps

from the real data. Although there are only three time points, it is difficult to visualize the

dynamic change of the voxel intensity over time, so we choose to show only the volume at

the first time point on the second image of Figure 5.3. Both the ICM and MCEM model

are initialized with a K-Means clustering. We observe that ICM easily converges to a local

minimum of the energy function within a few iterations, and its estimated labels are less

accurate compared with our MCEM approach. The MCEM solution is close to the ground

truth, while the mode-approximation solution is stuck in a local maximum.

5.2.2 Real rs-fMRI
We evaluated the proposed method on real data obtained from healthy control subjects,

in a resting-state fMRI study. BOLD EPI images (TR = 2.0 s, TE = 28 ms, 40 slices at

3 mm slice thickness, 64 x 64 matrix, 240 volumes) were acquired on a Siemens 3 Tesla

Trio scanner. The data was preprocessed in SPM, including motion correction, registration

to T2 and T1 structural MR images, spatial smoothing by a Gaussian filter, and masked

to include only the gray-matter voxels. We used the conn software to regress out signals

from the ventricles and white matter, which have a high degree of physiological artifacts. A

bandpass filter was used to remove frequency components below 0.01 Hz and above 0.1 Hz.

We then projected the data onto the unit sphere by subtracting the mean of each time series

and dividing by the magnitude of the resulting time series. We then applied the proposed

method to estimate the functional network labels with the number of clusters set to L = 8.
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Figure 5.4 shows the optimal label maps, produced by the proposed method for 3 of all

16 subjects in the dataset. We note that among the eight clusters, one cluster, with the

largest κ value and largest number of voxels, corresponds to background regions with the

weakest connectivity and is not shown in the figure. Among the clusters shown, we can

identify the visual, motor, dorsal attention, executive control, salience, and default mode

networks (DMN) [125]. Four networks: the visual, motor, executive control, and DMN,

were robustly found across all subjects. More variability was found in the dorsal attention

network (notice that it is much larger in subject 3) and salience network (notice that it is

missing in subject 2). We found that changing the number of clusters, although leading

to different label maps, preserves the four robust networks. For instance, we also ran the

analysis with the number of clusters set to 4 or 6 (results not shown) and were able to

recover the same four robust networks.

The next experiment compares our results with ICA. A standard ICA toolbox (GIFT;

mialab.mrn.org) was applied on the same preprocessed data of each subject independently,

which we call “Individual ICA”. We also applied standard Group ICA, using all data from the

16 subjects simultaneously. In both ICA experiments the number of components are set to

16. The component maps are converted to z score and thresholded at 1. For each method we

computed an overlap map for each functional network by adding the corresponding binary

label maps of all 16 subjects. The results in Figure 5.5 show our method can detect the

motor, attention, and visual network with accuracy comparable with Group ICA. Besides,

our method also detects DMN with posterior cingulate cortex (PCC) and medial prefrontal

cortex (MPFC), while Group ICA split the DMN into two components, one with the MPFC

and another with the PCC (not shown).

To see the consistency of the label map between subjects for all three methods, we look

at each method’s overlapped label map and count the number of voxels whose value are

greater than 8. Table 5.1 shows that our method exhibits better consistency than both

Individual and Group ICA.

5.3 Discussion
We proposed a segmentation algorithm and applied it on single subject rs-fMRI data.

The output of the algorithm is a label map, in which voxels of the same functional network

are assigned the same labels. The label of each voxel has a spatial dependency on its

neighbors, and we use a MRF to model the interdependency, and accordingly define a

prior distribution of the label map. The posterior inference is an intractable problem due
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to the complex dependency of multiple variables. We use MCEM to draw samples from

the posterior distribution and use the samples for parameter estimation. The Metropolis

sampling uses a uniform distribution as a proposal distribution. Because there are L possible

labels in this uniform distribution, there is a higher chance that the uniform does not propose

the best label value during the first few scans. When L is large, we accordingly need more

scans for the proposal distribution to catch the best label. Therefore, the burn-in times are

longer than the binary case in Chapter 4.
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Table 5.1: The number of voxels with value greater than 8 in the overlapped label map.

DMN Motor Attention Visual
MCEM 5043 7003 3731 5844
Individual ICA 114 167 228 134
Group ICA 3075 5314 3901 3509

(a) (b)

Figure 5.1: Data points with Von Mises-Fisher distribution. (a) Two vectors on 1-D
sphere, (b) time series data on high-D sphere.

Figure 5.2: A generative model of the functional network. The network variable X is a
multivariate variable defined on a MRF. Given X, Y is seen as being generated from a vMF
distribution whose parameter µ and κ are functions of X.



87

(a) (b) (c) (d)

Figure 5.3: Synthetic example. (a) True labels, (b) first time point of observed time series,
(c) time series plot on sphere, (d) label map estimated by mode-approximation, and label
map estimated by MCEM.

Figure 5.4: Functional networks detected by the proposed method for 3 subjects overlaid
on their T1 images. The clusters are the visual (cyan), motor (green), executive control
(blue), salience (magenta), dorsal attention (yellow), and default mode (red) networks.
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MCEM single subject ICA group ICA.

(a)

(b)

(c)

(d)

Figure 5.5: Comparison of the overlap of the label maps estimated by our MCEM
approach, group ICA and single subject ICA on 16 subjects. Color map ranges from 8
(red) 16 (yellow). (a) DMN, (b) motor, (c) visual, (d) attentive.



CHAPTER 6

HIERARCHICAL MODEL FOR GROUP
ANALYSIS

In this chapter, we will apply the graphical model and MRF to one of the core problems

in functional network analysis: estimation of networks from a group of subjects. To study

the brain’s intrinsic activity with rs-fMRI data, one either models the data of a single subject

or a group of subjects. The BOLD signals of a single subject are often contaminated with

the noise of various sources, and the results are typically unreliable for the inference of the

whole population. On the other hand, combining data from multiple subjects and jointly

estimating the common functional networks is more robust. In group analysis of rs-fMRI

one assumes that all subjects in the group share common functional connectivity patterns

and that the group networks can be estimated more accurately because the noise from each

subject is canceled by averaging. In practice, it is a major challenge to summarize the

consistent patterns across subjects, as each subject’s network structure appears similar but

has slight variations.

In this chapter we propose a Bayesian hierarchical model for estimating the functional

networks by using the rs-fMRI data from a group of subjects. The hierarchy comes from an

additional level of group map defined on top of the conventional subject functional network

maps. The group effect goes into the subject network label’s probabilistic distribution as

a parameter. Both group and subject networks are jointly estimated in an iterative way.

We give a natural interpretation of the regularization with a Bayesian perspective. Once

the group’s network map is known, it can help the individual subject’s estimation as a

prior probability. Because the group map combines the information from all subject maps,

this prior distribution is equivalent to using other subjects’ data for the current subject’s

inference. Besides, a subject’s network estimates also help to iteratively refine the group

map estimates. We model the intersubject variability by balancing between a common map

for all subjects (no variability, maximal shared information) and a separate map for each

subject (no shared information, maximal variability). We achieve the optimal balance in the
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Bayesian sense by computing the subject network label’s posterior density. This posterior

density combines the prior information from the group map and the data likelihood from

the subject-specific BOLD signal. We further model the within-subject spatial coherence

by a Markov random field (MRF). In the remaining part of the paper, we refer to our model

a hierarchical Markov random field (HMRF).

A classical occurrence of hierarchical modeling in fMRI is the inclusion of random

effects in a general linear model (GLM) [10], which is later extended to a full Bayesian

framework [153]. The multilevel model has richer structures and can capture the structures

in multiple-group, multiple-session data, and distinguish between the influence of the fixed

effect and that of the random factors. In our model, the hierarchy is defined on a latent

variable mixture representation.

A Markov random field is a multivariate distribution defined on an undirected graph

to represent the soft constraints between the variables. In fMRI analysis, it is a principal

regularization method of obtaining a spatially coherent solution. Depending on the context,

previous works have defined MRF on different variables. They have been used for the

regularization priors on the coefficients of the general linear model (GLM) [120], on the

parameters of a spatiotemporal auto-regression model [154], and on the hidden activation

variables in task-based experiments [77]. In this article, we define MRF on the latent

network label variables of hidden Markov model (HMM), to represent our prior knowledge

of the spatial coherence of the network patterns within a subject. There is a key difference

between our model and conventional HMMs, though. We generalize the conventional

concept of spatial regularization by defining a joint graph that includes the network variables

of both the group and subject levels. In our model, the neighbors of each node on the

graph include the corresponding nodes at another level, as well as the spatially adjacent

voxels in the same level. The new graph introduces our additional assumption that one

subject’s functional networks should share similar patterns with another subject’s, implicitly

represented by the group. With this definition, we map all the variables in a hierarchical

model on to a single graph, and formulate a problem conceptually appealing and feasible

in practice.

The exact inference of MRF is a combinatorial optimization of discrete variables, hence

it is computationally infeasible except in special cases [73, 114]. The iterated conditional

mode (ICM) is typically used to obtain a local optimum of the mode of the posterior

density [15]. In this work we are interested in the posterior variance of the network label

variables as well as the mode, and we use MCEM sampling algorithm for the inference of
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both group and subject label maps. MCEM is data-driven in that the model parameters

are estimated together with the network label variables. The only parameter that needs

special treatment is the link strength between the group and subjects. MCEM integrates

the Markov chain Monte Carlo sampling in the expectation-maximization loop. The price

to pay is the longer computation time than in other approximate inference methods such

as variational Bayes.

We show our HMRF model is able to recover both group and subject functional networks

in simulated group fMRI data. While HMRF’s group estimates are comparable or more

accurate than the two other methods under comparison, we are especially interested in

the higher accuracy of the individual subjects’ estimates. We further show the strength

of the model by a real multiple-session dataset, where we achieve significantly higher

intersession consistency by using our joint-estimation model. The method also proves to

be more stable under the data perturbation in a bootstrap experiment. This paper is

based on our earlier work [101], and we extend previous work to redefine the model in

an integrated graphical model context. The new simulated data experiments explore the

performance of the algorithm under various levels of spatial smoothing. In the real data

experiments, we added a new intersession consistency test and the algorithm stability test

with bootstrapping. We also improved the parameter estimation by using the Bayesian

posterior predictive distribution of the test subjects in a cross-validation framework.

In the remainder of this chapter, we define the model in Section 6.2, and give the approx-

imate inference procedure in Section 6.3. We compare the accuracy and consistency of our

method, together with other methods by testing on synthetic and real data experiments in

Section 6.4 and Section 6.4.2 and discuss the model and algorithm performance in Section

6.5.

6.1 Related works
ICA is a powerful tool for identifying functional networks by using rs-fMRI of a single

subject [28]. ICA is used to recover the statistically independent functional components

without a priori knowledge of the regions of interest. See Figure 2.4 for how spatial and

temporal ICA methods are defined. Group ICA is used as an extension of single-subject ICA

in order to seek a set of independent components shared across all subjects [28]. In a typical

group ICA study, all subjects are registered to a common atlas and assumed to share a

common spatial component map but have distinct time courses. The BOLD signals from all

subjects are concatenated temporally, followed by a single-subject ICA analysis. The subject
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component maps are then obtained by a back-reconstruction procedure. Alternatively,

single-subject ICA is applied on each subject first, and a self-organized clustering algorithm

applies to all subjects’ components such that similar components are assigned into one

cluster. The group ICA components are represented by the centers of the clusters [49].

Neither of the above approaches iteratively refine group (or subject) maps once the subject

(or group) maps are estimated.

ICA as a signal decomposition method obtains overlapped spatial components and needs

ad-hoc thresholding. Such ambiguity makes interpreting the results difficult. On the other

hand, functional networks estimation can also be defined as an image segmentation problem.

The region-of-interest (ROI), or even the whole brain voxels can be partitioned into disjoint

spatial patches. The patches with the same network labels, even when spatially remote

from each other, belong to the same functional networks. To extend the segmentation

method to a group of subjects, segmentations are performed first on individual subjects.

The connectivity maps are averaged to obtain a group affinity matrix. A second level

segmentation is performed on this affinity matrix [12, 143]. Again, subject network maps

are not refined from the estimates of the group network.

It is worth noting that Ng et al. [114] also use MRF for group study. The spatial neigh-

borhood is extended to cross-subject voxels, in order to address the imperfect anatomical

alignment and functional correspondence. Our model is different from Ng’s group MRF

model in that 1) a group level is defined in our model, whereas in Ng’s work, a combined

structure including all subjects is defined without a group level. In such a flat model, a

voxel directly uses the information of the corresponding voxels of other subjects. Instead, we

expect a second level enriches the model and better decomposes the fixed and random effects

in the subject network map. 2) Ng et al. define the MRF prior on the GLM coefficients

in task-based experiments so the posterior inference is a two-class problem (active versus

inactive), and an exact solution can be obtained by a graph-cuts algorithm. Our model

applies to the network labels in a rs-fMRI study, and hence is a multiclass segmentation

problem that is significantly more difficult to solve. 3) The unary potential function in

the model of Ng et al. is defined via the posterior probability of the label variable given

the GLM’s coefficients, and there is no explicit splitting between the MRF prior and the

likelihood. This modeling method is essentially a conditional random field [93]. In our

model, the unary potential in the MRF prior is defined as the links between group and

subject level, and thus is separated from the data likelihood, so our model is a variant of

the hidden Markov model. Thanks to the Bayesian perspective of our hierarchical model,
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the trade-off between prior and likelihood is accounted for automatically. 4)The MRF model

of Ng et al. is built on certain regions of the brain, while ours is built on the whole brain’s

gray matter voxels.

Another class of methods identifies the functional spatial patterns by decomposing the

BOLD signal, which can be seen as generalizations of ICA [146, 144] methods. The authors

of both works introduce generative models that include a population level and subject level.

Each subject’s mixing weight coefficients are regarded as being generated from population

level latent factors, and the population and subject level’s mixing matrices are solved jointly

as a convex optimization problem [144]. With regard to the joint estimation of both levels

of the hierarchy, we can see such methods as a counterpart of our model in the class of

signal decomposition methods.

6.2 Hierarchical MRF For modeling group fMRI
We begin by defining each subject’s network label map as a Markov random field (MRF)

with the neighborhood structure given by a regular lattice. The statistical dependency

between adjacent voxels acts as a prior model favoring spatial coherence of estimated

functional regions. To generalize the MRF to a hierarchical setting, an additional group

label map is defined in addition to all subject label maps. The group label map has the

same number of voxels and the same Markov structure as the individuals’ maps, again to

encourage spatial coherence of the functional regions in the group level. In addition, each

voxel in the group map is connected to the corresponding voxel in each subject map. These

connections model the relationships between the group and the individuals. The subjects’

functional network labels are regarded as generated from the group labels, and the rs-fMRI

time courses are regarded to be generated from a mixture of high-dimensional distributions

given the subject network labels. All voxels of subjects and group label map are jointly

connected into a single MRF. The functional network estimation is the inverse problem of

the above data generation process, as the labels are inferred from their posterior distribution

given the data. See Figure 6.1 for an illustration.

More specifically, we follow the notation in Chapter 3 and define an undirected graph

G = (V, E). The set of vertices V = (VG,V1, · · · ,VJ) is the union of the gray matter voxels

Vj for all J subjects as well as those in the group volume VG. An edge (s, t) ∈ E is defined

in one of three types: (1) s ∈ VG, t ∈ Vj and s, t have the same physical coordinates, (2)

s, t ∈ VG, and s, t are spatial neighbors, or (3) s, t ∈ Vj , and s, t are spatial neighbors. In

our model we use a 26-neighbor system in a three-dimensional volume image (a voxel at
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the boundary of the gray matter may have ¡ 26 neighbors). We will refer to the first type of

link as between-level links, and the second and third types of links as within-subject links.

On each node s ∈ V, a discrete random variable xs ∈ L = {1, · · · , L} is defined to represent

the functional network label. We use −s for the set of nodes excluding node s, and N (s)

for the set of neighboring nodes of s. Last we define clique c as a complete subgraph of

c, such that every pair of nodes in c has a link between them, and define C the set of all

cliques in G.

6.2.1 MRF prior
MRF is a principal regularization method for modeling spatial context information. In a

Bayesian setting, we use it as a prior distribution of the network label variables X = {xs ∈

L|s ∈ V}. Formally, with the definition of the graph G and neighbor system N (s), ∀s ∈ V

above, X is said to be a MRF on G if P (xs|x−s) = P (xs|xN (s)), i.e., a variable is conditional

independent of the variables on the remaining nodes of the graph given its neighbors [99].

This local conditional independence property is difficult to apply to the inference of the joint

distribution. Thanks to the equivalence of MRF and Gibbs fields [13], one can transform the

local property into a global property. A Gibbs random field or Gibbs distribution takes the

form of P (X) = (1/Z) exp{−U(X)}, where Z is a normalization constant called partition

function in order to guarantee the function integrates to 1, and U(X) =
∑
c∈C Vc(Xc) is

called the energy function. Each clique potential function Vc only depends on the variables

in the corresponding clique c. The Hammersley-clifford theorem [31] states that X is a MRF

if and only if it obeys a Gibbs distribution. In this specific problem, the energy function

takes the following form:

U(X) =
∑

s,r∈VG

βψ(xs, xr) +
J∑
j=1

 ∑
s∈VG,s̃∈Vj

αψ(xs, xs̃) +
∑
s,r∈Vj

βψ(xs, yr)

 . (6.1)

The binary function ψ takes zero if the two inputs are equal and takes 1 otherwise. Pa-

rameters α and β determine the strength of the links. The pair of voxels (s, r) is spatially

adjacent within the subject volume or the group volume (the type two and type three links),

and (s, s̃) is a pair of neighboring voxels at a different level in the hierarchy, but sharing

the same physical coordinates (type one link).

This regularization encodes two physiologically meaningful a priori assumptions on the

functional networks under investigation: (1) The networks are spatially coherent within

the single subject map and within the group map. This spatial coherency is modeled by

the β potential term. (2) The subject’s intrinsic functional activity must share similar
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patterns, regardless of the possible confounding of the noise and subject-specific effect.

This between-subject constraint is modeled by the α potential term. The proposed energy

function represents both priors without introducing blurring artifacts. As for the inference,

although appearing different in the image domain, the three types of links are no different

when looking from the abstract graph layer, and can be treated equivalently in the inference

procedure. Our MRF prior is essentially a Potts model with different weights defined on

three types of edges [122]. However, we extend the Potts model such that the cliques in

a graph include both within-subject links and between-level links, so the model favors not

only spatial coherence but also the intersubject coherence. Figure 6.2 gives an alternative

view of the same graphical model that are illustrated in Figure 6.1.

6.2.2 Likelihood model
In the generative model, for any individual subject, the observed time course at each

voxel is assumed to be generated from a distribution conditioned on the network label at

that voxel. In fMRI analysis the BOLD signal is typically normalized to be zero mean

and unit norm, so the analysis is invariant of shifting or scalings of the data [68]. The

normalization results in the data being projected onto a high-dimensional unit sphere, and

the sample correlation between the two time series is equal to their inner product. The

rs-fMRI segmentation aims at a clustering such that within-cluster voxels have a high

correlation, and between-cluster voxels have a low correlation. The equivalence of the

correlation and inner product makes it possible to reformulate the original problem into a

new one. Now we can find a clustering where voxels with a larger inner product are put

into one cluster. The new problem can be modeled and solved using a mixture of the von

Mises-Fisher (vMF) distribution.
We use Y = {(y1, . . . , yN ) | ys ∈ Sp−1} to denote the set of normalized time series on

the p-sphere, where p is the number of time points in the original BOLD signal, and N is

the total number of gray matter voxels of all subjects. Given X, the random vectors ys
are conditionally independent, hence logP (Y |X) =

∑
j

∑
s∈Vj

logP (ys|xs). The likelihood

function P (ys|xs) is naturally modeled by a vMF distribution

f(ys|xs = l;µl, κl) = Cp(κl) exp
(
κlµ

ᵀ
l ys
)
, ys ∈ Sp−1, l ∈ L, (6.2)

where for the network cluster label l, µl is the mean time course, κl ≥ 0 is the concentration

parameter, and Cp is the normalization constant. The larger the κl, the greater the density

concentrated around the mean. Since eq. (6.2) depends on x only through µᵀx, the vMF

distribution is unimodal and rotationally symmetric around µ.
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6.3 Bayesian inference
The exact inference of P (X|Y ) is computationally intractable due to the pairwise in-

teraction of MRF prior distribution. Various approximate solutions exist for such types of

undirected graphical model inference problems, including Gibbs and Metropolis sampling,

expectation-propagation, and some variation inference methods such as mean field approx-

imation and message-passing methods. In this work, we choose Gibbs sampling because of

its simple formulation and straightforward implementation in a multiprocessor system. In

addition, compared to a point estimate such as maximum a posteriori (MAP) framework,

the samples of the label map can be used to approximate the full posterior density, and to

help understand the confidence of the point estimates such as posterior mean or modes.

6.3.1 Gibbs sampling
The Gibbs sampler, as a special case of the Metropolis-Hastings sampler, solves a

multivariate sampling problem using iterative univariate sampling. When all the random

variables but one are fixed, the transition probabilities depend only on the local conditional

distributions. The resultant equilibrium density of the Markov chain is exactly the target

density P (X|Y ). In general MCMC sampling, the variables are visited either at random,

or according to a predefined order. As a way of incorporating domain-specific information

in the design of our Gibbs sampler, we schedule the sampling order also in a multilevel

fashion. At the image level, we draw the mth sample of the group label map Xm
G given all

the previous subject label maps {Xm−1
j , j = 1 . . . J}. Next, we draw a sample of subject j’s

label map Xm
j given the current group map sample Xm

G (Figure 6.3). At the voxel level,

we sample and update xs given the rest of the nodes are fixed (Figure 6.4). We call it a

scan when each xs,∀s ∈ V is updated once. The conditional distribution used to generate

samples at the group and subject voxels can be derived from equation (6.1) and are given

as

P (xs|x−s, Y ) = 1
Zs

exp
{
−Up(xs|xN (s), ys)

}
where,

∀s ∈ VG, Up = α
J∑
j=1

ψ(xs, xjs̃) + β
∑

r∈N (s)
ψ(xs, xr), (6.3)

∀s ∈ Vj , Up = αψ(xs, xs̃) + β
∑

r∈N (s)
ψ(xs, xr)− κlµᵀl ys − logCp, (6.4)

where −s is the set of all the nodes excluding node s, Zs is the partition function of xs,

Up is the posterior energy, and N (s) is the set of neighbors of s. The xjs̃ in (6.3) is the

network label of subject j’s voxel with the same physical coordinates with s, and the xs̃
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in (6.4) is the label of the group map’s voxel with the same physical coordinates as s.

Note the evaluation of Zs is easy since it is in a univariate distribution and is the sum of

only L terms. Because of the dependency on previous samples, the sequence of label map

samples {Xm,m = 1 . . . ,M} is indeed a Markov chain; hence our method falls into Markov

chain Monte Carlo (MCMC) sampling. After a sufficient burn-in period, a series of samples

{Xm,m = 1, · · · ,M} is saved. The samples have all the information of P (X|Y ) and can

be used for approximating the expectation EP (X|Y )[logP (X,Y ; θ)] as well as estimating the

posterior variance.

6.3.2 Parameter estimation
The parameters {β, κ, µ} in our model are data-dependent, and manual assignment can

easily result in over-fitting. For example, β’s optimal value depends on the number of

neighbors of a voxel and also on the number of subjects in the group. In this data-driven

model, we propose to estimate the parameters θ from the data using an expectation max-

imization (EM) algorithm, with the network labels X as the hidden variable. However,

the high-dimensionality and dependency between spatially adjacent voxels in MRF make it

infeasible to obtain a closed form solution of the expectation of logP (X,Y ; θ) with respect

to P (X|Y ). Here we propose to approximate the expectation using Monte Carlo EM

(MCEM) algorithm. The set of samples, (X1, · · · , XM ) generated from density P (X|Y ) is

used to approximate the expectation by the empirical average (1/M)
∑M
m=1 logP (Y,Xm; θ).

Furthermore, in order to evaluate logP (Y,Xm; θ) = logP (Xm; θ) + logP (Y |Xm; θ) as a

function of θ, we face the difficulty of evaluating the partition function Z in P (Xm). In

practice the likelihood function P (X; θ) is approximated by pseudo-likelihood [13], which

is defined as the product of the conditional likelihoods P (xs|x−s; θ),∀s ∈ V. Therefore the

label map’s log-likelihood can be written as

logP (X; θ) ≈
∑
s∈V
−U(xs|x−s; θ)− logZs, (6.5)

where Zs =
L∑
l=1

exp{−U(xs = l|x−s)}, (6.6)

∀s ∈ VG, U(xs|x−s) = α
J∑
j=1

ψ(xs, xjs̃) + β
∑

r∈N(s)
ψ(xs, xr);

∀s ∈ Vj , U(xs|x−s) = αψ(xs, xs̃) + β
∑

r∈N (s)
ψ(xs, xr);

where xjs̃ and xs̃ have the same definition as in equation (6.3) and (6.4). With the pseudo-

likelihood approximation, there is no need to compute the original Z. Instead we compute
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Zs for each voxel s, just like what we do in the Gibbs sampling.

6.3.3 HMRF algorithm using MCEM
With all the preparation above, parameter estimation can be done by maximizing

(1/M)
∑M
m=1 logP (Y,Xm). More specifically, β exists only in the prior, and can be esti-

mated by maximizing 1
M

∑M
m=1 log p(Xm) with the Newton-Raphson method. Since {µ, κ}

exist only in the data likelihood, the normalization constant Z in the prior is not a problem,

hence {µ, κ} are estimated by maximizing (1/M)
∑M
m=1 logP (Y |Xm). The α parameter is

treated differently and will be discussed in Section 6.3.4. In order for MCMC sampling to

converge quickly to the posterior, we need a reasonably good initial network label map.

Here the K-Means clustering on a concatenated group dataset is used for the initial maps

of both the group and subjects. After the EM iteration converges, we save M Monte Carlo

samples as output. The Monte Carlo samples have all the information of the posterior

distribution of network labels, and will be used in postprocessing for inference. Putting this

all together, the HMRF method to estimate the group and individual label maps is given

in Algorithm 7.

6.3.4 Estimating α parameter by cross-validation
The parameter α in our model represents the strength of the links between the group

and subject network label maps. The parameter implicitly represents the extent to which

the functional patterns are shared among the subjects. Unfortunately, this parameter

cannot be estimated in a MCEM framework by a Newton-Raphson method, as such a

direct optimization will result in a collapsed solution. A solution of α = 0 would minimize

the energy associated with the between-level links, and the group map VG would degenerate

into a constant label map because such a map would minimize the energy associated with

the links within the group map. We instead use the posterior predictive distribution [62] of

a test subject’s BOLD signal Yt, defined as

P (Yt|Y ;α, θt) =
∫
P (Yt|Xt; θt)P (Xt|Y ;α) dXt, (6.7)

where θt = {µt, κt, βt} is the parameter set of the test subject. With a leave-one-out

procedure, the same as that in the standard cross-validation, we pick one subject as the

test subject Yt, and the remaining J − 1 subjects as the training data. We then compute

the average P (Yt|Y ;α, θt) across all test subjects given a list of prespecified α values, and

choose α with the highest average predictive distribution.
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Algorithm 7: HMRF: Monte Carlo EM algorithm for network label inference and
parameter estimation

Data: Normalized rs-fMRI, initial group label map
Result: MC samples of label maps {Xm,m = 1, . . . ,M}, parameters {β, µ, σ}
while EP (Y |X)[logP (Y,X; θ)] not converged do

repeat
foreach s ∈ VG do Draw sample of xs from P (xs|x−s, ys; θ) using (6.3) ;
foreach j = 1 . . . J do

foreach s ∈ Vj do Draw sample of xs from P (xs|x−s, ys; θ) using (6.4) ;
Save sample Xm after B burn-ins;

until B +M times;
foreach l = 1 · · ·L do

Estimate {µl, κl} by maximizing (1/M)
∑M
m=1 logP (Y |Xm; θ);

Estimate β by maximizing (3.25);
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The test subject’s predictive distribution in (6.7) for a chosen α can be evaluated through

a Monte-Carlo approximation

P (Yt|Y ;α; θt) ≈
1
M

∑
m

P (Yt|Xm
t ;α, θt), Xm

t ∼ P (Xt|Y ;α). (6.8)

One economical way of generating sample {Xm
t ,m = 1 . . . ,M} can be done within the

MCEM loop of Algorithm 7. After the current group map is generated in E step, one sample

Xm
t can be generated from P (Xt|Y ;α, θ). The corresponding posterior energy function at

voxel s is Up(xs|xN(s)) = αψ(xs, xs̃) + β
∑
r∈N(s) ψ(xs, xr). This energy is the same as

equation (6.4), except that there is no time series data term κlµ
ᵀ
l ys − logCp since the test

subject data Yt are not given in this distribution. For one sample map Xm
t , the test subject

parameter set θt is obtained by optimizing P (Yt|Xm
t ). As a simple reasoning of why we can

use the equation (6.7) for estimating α, when α is too small, most of the Xm
t will depend

less on the group map XG and tend to be random clusterings, which will have low data

likelihoods in (6.8). When α is too big, Xm
t will be almost the same as XG, again resulting

in a suboptimal value for (6.8). Only with an appropriate α, could Xm
t sufficiently explore

the sampling space including the regions where the predictive distribution is maximized.

In practice, we evaluate eq. (6.8) for a fixed set of α values, and choose α with the largest

predictive density value P (Xt|Y ;α).

6.4 Experiments on simulated data
Given the lack of ground truth of the functional network of the in vivo rs-fMRI data,

we begin the experiments with a simulated dataset. We focus primarily on the estimation

accuracy on the simulated dataset, and on the estimation consistency on the in vivo data.
We compare our method with two other clustering methods – K-Means and normalized-

cuts (N-Cuts) – as well as two degenerated versions of the HMRF algorithm: HMRF-A and

HMRF-B. The K-Means algorithm, as a simple and fast clustering method, is applied to

the paradigm fMRI study in Baumgartner et al. [8], and is later used by Bellec et al. [12]

for bootstrap analysis of the rs-fMRI group study. In our experiment, the distance metric

of K-Means is defined as 1 − xᵀsxr. To estimate an individual subject’s network, we apply

K-Means on each subject’s BOLD signal 20 times, and choose the segmentation map with

the minimal ratio of the sum of the intercluster distance and the sum of the intracluster

distance. For the group study, we construct a group dataset by concatenating all subjects’

time courses and run K-Means 20 times also on this group’s dataset to estimate a group

network label map. The initial cluster centers for both subject and group clustering are

chosen randomly while at the same time maximizing the between-center distance [5].
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N-Cuts formulates the fMRI image segmentation as a graph partitioning problem. A

global criterion is used to find a subset of edges to remove from a full-connected graph,

and the voxels are partitioned into multiple disjoint sets [138]. N-Cuts is used by Heuvel et

al. [143] and Craddock et al. [38] for the group rs-fMRI study. Following Heuvel et al. [143],

we also apply N-Cuts in two stages. First, N-Cuts is run on each subject’s affinity matrix, as

computed from the pairwise correlation between time courses. A second N-Cuts is applied

on a group affinity matrix, computed by summing all subjects’ binarized affinity matrices

derived from their segmentation maps. We use the same toolbox Ncutclustering 9 [138] as

in Heuvel et al. [143], as well as the same parameter setting.

Both HMRF-A and HMRF-B, as simplified versions of HMRF, serve to check whether

a reduced model would be able to achieve the same or better performance compared to

the proposed full model. Both models are the same as HMRF except α = 0 for HMRF-A,

and β = 0 for HMRF-B. The model HMRF-B indeed amounts to defining a MRF on each

single subject and estimating each subject’s networks independent of other subjects. Such

a strategy is equivalent to the hidden Markov model we proposed in Liu et al. [100].

For HMRF, we skip the first 500 burn-in samples before saving 100 samples of the

label map at each EM iteration. The convergence testing of MCMC sampling, especially

in high-dimensional space is an open question and there is no widely accepted method

to address this issue. We empirically choose the number of burn-in and MC samples by

observing that the posterior probability estimated from samples has no significant change.

The β parameter is estimated by the M step, as well as the µ and κ for each vMF component.

As an optional postprocessing step, the discrete label map is obtained by running a iterated

conditional mode [15] algorithm based on the last MCMC sample map.

Before a discussion of synthetic data generation, we briefly discuss how to measure

the data quality of rs-fMRI. The separability of a data set for the purpose of clustering

depends on both the within-cluster variance and between-cluster variance. In this specific

rs-fMRI dataset, the signal-to-noise ratio (SNR) is represented by the ratio of the average

between-cluster distance (defined as 1− µᵀi µj , where µi and µj are the cluster’s mean time

series), and the average within-cluster variance (defined by 1/κ).

We generated synthetic rs-fMRI data in two steps. First, a group network map with five

network labels is generated by drawing samples from a Potts model with β = 2.0 and 500

scans. Given the group map, a subject map is generated according to equation (6.1) with

α = 0.5 and β = 2.0. The subject map generation procedure is repeated 25 times to obtain

a group of 25 subjects. To simulate the BOLD signal given the network label map, we
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first generate mean time courses µl, l = {1, . . . , 5} from a first-order auto-regressive process

xt = ϕxt−1 + ε, with ϕ = 0.8 and ε = 0.1. The sample correlations between the mean time

series are in the range of (−0.15, 0.3). Then, we add independent Gaussian white noise on

each cluster’s mean time course. The variance of the white noise is chosen such that the

simulated BOLD signals have SNR=24, which is close or slightly lower than that of the

real rs-fMRI data used in our experiments. Once the time series are generated, they are

spatially smoothed with a Gaussian filter. Because the size of the smoothing filter may have

interactions with our HMRF model and hence have an impact on the estimation accuracy,

we spatially smoothed the generated BOLD signals with three levels of scale: FWHM = 0,

FWHM = 1.88 mm, and FWHM = 4.7 mm. Furthermore, the synthetic data are generated

randomly, so the experimental results from the data may also vary. To take account of the

variability of the results, we repeated the above data generation process 100 times. For

each generated data set, we run the five methods on the BOLD signals preprocessed by

three levels of Gaussian filters, respectively, and compare the Monte Carlo average of the

estimated label maps with the ground truth.

6.4.1 Synthetic data results
Among the 100 Monte Carlo runs of the data generation and estimation procedure,

we choose one dataset smoothed at FWHM = 1.88 mm. The corresponding estimates

are shown in Figure 6.5. We use the Rand index [126] to measure the similarity between

simulated ground truth subject maps and the true group map. Rand index (RI) ranges in

[0, 1], and takes 1 if the two maps under comparison are the same. The RI value for this

particular simulated dataset is 0.88 (similar values for other generated datasets), which we

find is empirically close to the real data. From the figure, all methods appear to estimate the

group map well (except HMRF-B, which does not allow a group map estimate), but perform

differently on the subjects. K-Means tries to identify the finer details of the individual

subject’s spatial patterns but fails due to the high noise level. N-Cuts and HMRF-A can

detect the large patterns but lose some detail; HMRF-B does estimate the smooth subject

map thanks to the within-subject smoothness links but the maps do not match the ground

truth well. Finally, the HMRF is able to recover subjects’ network maps with good matching

to the ground truth.
To quantitatively evaluate the accuracy of the segmentation map from various methods,

we calculate the RI values between the true map and the estimated map. The boxplot in

Figure 6.6 shows the RI across all Monte Carlo runs and subjects. In all three settings

of smoothing kernel size, HMRF achieves higher accuracies compared to other methods.
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In addition, for individual subjects’ estimation, our model performs best at a moderate

smoothing size of FWHM = 1.88 mm, which is smaller than the typical 5-8 mm smoothing

size. This is because the HMRF model benefits from the reduced noise variance resulting

from the moderate smoothing, but avoids losing finer details due to excessive smoothing.

In practice, this means when applying HMRF, the BOLD signal should be smoothed by a

small-kernel Gaussian filter, and we choose FWHM = 1.5 mm in the following real data

experiments. We also note that the K-Means optimal smoothing kernel size is larger than

that of HMRF, because it lacks the spatial coherence regularization and hence needs more

smoothing in preprocessing stage. Last, we found that the two reduced models HMRF-A

and HMRF-B do not perform as well as the full model, indicating that the hierarchy in

the full model is indeed necessary. For all possible smoothing sizes, HMRF’s estimation

accuracy is comparable or moderately better than the other four methods on the group

label map, and significantly higher on subject maps.

6.4.2 Real data experiments
In this work we test our methods on the publicly available NYU test-retest (TRT) dataset

that has been used previously [137, 162]. While the original goal of the above works was to

verify the voxel-wise intra- and intersession TRT reliability, our goal is to verify whether the

methods under consideration are able to estimate consistent functional network maps across

sessions, given the fair amount of intersession consistency in the data set [39, 30, 104, 57].

We present two experiments with the NYU-TRT datasets. The first experiment aims at

demonstrating the intersession consistency of the estimated subject network maps, and the

second one evaluates how the algorithms behave under the perturbation of the data by

using bootstrap sampling. We compare three methods, HMRF, K-Means, and N-Cuts, in

both experiments. The other two methods, HMRF-A and HMRF-B, are not taken into

account in this section since they are a simplified version of HMRF and have been shown

to be suboptimal compared to the full model.

6.4.3 Preprocessing
Twenty-six healthy control participants (11 males, mean age 20.5 ±4.8 years) were

scanned three times. The participants had no history of psychiatric or neurological illness.

BOLD EPI images (TR = 2 s, TE = 25 ms, flip angle = 90, 39 slices at 3 mm slice thickness,

64×64 matrix, field of view = 192 mm, 197 volumes) were acquired on a Siemens Allegra

3.0 Tesla scanner. Scans 2 and 3 were conducted in a single session, 45 minutes apart, and

were 5-16 months after the first scan. The subjects were asked to relax and remain still with
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their eyes open during the scan. A high resolution T1-weighted image was also obtained

(MPRAGE with TR = 2.5 s, TE = 4.35 ms, TI = 900 ms, flip angle = 8◦, 176 slices, FOV

= 256 mm).
The fMRI data was preprocessed using the scripts of the 1000 functional connectomes

projects, as well as FMRIB’s FSL toolset and the Medical College of Wisconsin’s AFNI tool.

The volumes are motion corrected by aligning to the mean volume with a six-parameter

rigid body transformation. The BOLD signals were bandpass filtered to 0.01 to 0.1 Hz,

and nuisance variables were regressed out including white matter, CSF mean time courses

and six motion parameters. The signal is then filtered by a FWHM = 1.5 mm Gaussian

filter for spatial smoothness. The small kernel size of spatial smoothing guarantees that

noise is canceled by averaging neighboring voxels while keeping the finer functional network

patterns (see the simulated test and Figure 6.6). The functional images are first registered

to the corresponding T1 images, and both functional and T1 images are registered to

MNI152 (Montreal Neurological Institute) space with a 12-parameter affine transformation.

Finally, after masking out white matter and CSF voxels, we have 39,080 gray matter voxels

remaining in each subject. We construct a joint graph with over one million nodes including

all subjects and the group map.

6.4.4 Choosing parameters
In this work we do not address the problem of how many functional networks exist in the

human brain. Instead, we use existing reports [157] and choose seven functional networks for

segmentation throughout the real data experiments. With this setting, we expect to identify

the following typical functional networks: visual and primary motor [39], attention [55],

default mode network (DMN) [72], saliency, and executive control system [136], regardless

of the segmentation methods used. The K-Means is repeated 20 times with random

initialization [5] for segmentation of both the subject and group maps. For N-Cuts, we

threshold each subject’s correlation matrix at 0.4 before applying N-Cuts on a single subject.

After the individual segmentation, we average all subjects’ binary segmentation matrices,

and threshold the averaged matrix at 0.3. The result represents the group correlation

matrix. Both cut-off thresholds are suggested by Heuvel et al. [143]. Our implementation is

different with from Heuvel et al. [143] only in that we partition the subject map into seven

clusters instead of 20. This is because we need to compare the subject maps estimated

by N-Cuts with those estimated by the HMRF method at the same number of networks.

We also run N-Cuts with 20 clusters on subject maps to compare with our seven-cluster

configuration (results now shown), and find the group level segmentation has not been
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impacted by our lack of over-segmentation at the subject level. For HMRF, we initialize

both the group and subject label maps with the group label map estimated from K-Means.

The sampling routine (E-step of MCEM algorithm) skips 500 burn-in samples before saving

100 MC samples. The parameters {β, µ, κ} are estimated from the data. With α estimated

from the posterior predictive distribution (see Section 6.3.4), we found the similarity between

estimated group and subject maps measured is around 0.85 measured by RI value.

6.4.5 Intersession consistency
Since the TRT dataset and the general rs-fMRI data have been shown to share consistent

functional networks across all sessions [39, 30, 104, 57], we verify the consistency of the

HMRF algorithm by applying it to all three sessions of data. A method is said to be

consistent if it is able to derive similar network estimates across sessions. We compare

three pairs of sessions’ consistency: S1 vs S2, S1 vs S3 and S2 vs S3. For each subject in

each pair of sessions, we compute the consistency score between this subject’s network map

estimates in two sessions. The similarity is again represented by the RI values. We expect

the proposed HMRF algorithm has higher average similarity compared with other methods.

The consistency scores of all subjects are summarized in a boxplot as in Figure 6.7. For

comparison, the same boxplots are also drawn for K-Means and N-Cuts. From the figure,

the subject network label maps estimated from HMRF have significant higher intersession

consistency scores compared to the other two methods. This indicates that our algorithm is

able to capture the common functional patterns across sessions. In addition, both K-Means

and HMRF have higher intersession consistency scores between session two and session

three, compared to the other two intersession comparisons. This is consistent with the fact

that sessions two and three have a smaller interval (45 minutes apart), compared to session

one and two (5-16 months). K-Means has slightly better between-session consistency than

N-Cuts, probably because we have run K-Means multiple times and have chosen the best

solutions.
The RI values in Figure 6.7 only give a single number of similarity between two network

label maps, rather than a voxel-wise consistency map. To visualize the consistency at the

voxel level, we first match session two and session three’s segmentation maps to session

one’s by permuting the cluster labels (this is not needed for the between-session RI, which

is invariant to label permutation). Then we define a variance map as follows: the variance

at certain voxels takes the value zero if the estimates of all three sessions have the same

labels. The variance takes 1 if two of the three sessions have the same labels, and takes 2 if

none of the estimates are the same. We then average the variance map across all subjects
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and obtain a mean variance map. This map shows how the algorithm performs in term

of consistency at the voxel level across all subjects. The results are shown in Figure 6.8.

Image visualizaiton is done by using nipy, a python package for neuroimaging data. We

note that although K-Means and N-Cuts have low variance at the visual cortex, they have

larger variance in most voxels of dorsal attention and the DMN. These findings confirm the

different level of consistency between the functional networks, as has been shown in the

original work of Zuo et al. [162]. Overall, the HMRF method’s estimates have the lowest

level of variance and hence the highest level of consistency.

6.4.6 Bootstrapping
In these experiments we aim to evaluate the performance of the three algorithms with

bootstrapping. In the bootstrapping method, one covers the whole distribution of the

estimator with the independent samples drawn from the original dataset with replacements,

and estimates the stability of an algorithm [48]. An approximate solution of an algorithm is

stable if the solution is not highly sensitive to the input data. It is unstable if a slight change

in the data can cause the predicted values to change significantly. In this experiment, the

bootstrapped samples can be seen as a small perturbation of the input data and will be

used to test the algorithm stability.
There are various approaches for resampling the available data. One may resample the

subjects from the original dataset [39]. Here for each voxel of each subject in session one,

we sample with replacement from the 197 time points of preprocessed data, and obtain a

bootstrap sample volume with the same BOLD signal length and number of subjects with

the original dataset. The sampling is similar to the circular block bootstrap in Bellec et

al. [12], except that we do not model the temporal correlation between time points. Since

all methods under comparison here do not model temporal correlation, the shuffling of the

time points has no effect on the segmentation results. After repeating the sampling 100

times, we obtain a set of 100 bootstrap samples, each of which includes all subjects’ time

series data. Then, all three segmentation methods are applied on each of the bootstrap

datasets. We estimate group and subject level maps from each bootstrap dataset by using

the three methods. All the estimated label maps are postprocessed by a label permutation

routine to guarantee that the same networks have the same labels.
Figure 6.9 shows seven average group-level functional network maps across all bootstrap

sampled data. For each network, we extract a binary map with voxel intensity taking

1 in that network and 0 outside. This binary map is then averaged over all bootstrap

samples. We also show the variance of this binary label map over all samples in Figure
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6.10. Small variance indicates more stability under bootstrap sampling. All three methods

have moderate to high stability across bootstrap samples. For visual, motor, and DMN

networks, K-Means and N-Cuts have reasonably high stability, although some voxels at the

boundary of the network regions are labeled differently across bootstrap samples. For the

attention, salience and executive control networks estimated by K-Means and N-Cuts, the

ambiguity not only happens on the boundary of the network regions, but also on some bigger

regions inside the networks. For example, in some bootstrap runs, K-Means incorrectly

assigns the posterior cingulate cortex (PCC) to the attentive network (see the red regions

in dorsal attentive in Figure 6.9), whereas PCC has been shown to be part of the DMN [71].

K-Means also miss part of the primary motor network. K-Means even in a few runs merges

the brain stem into the DMN. For N-Cuts, the dorsal attentive, salience, and executive

control networks have larger variance under this data perturbation. Compared to the other

two methods, HMRF has the smallest variance, and hence the highest stability in all seven

networks including the brain stem. A small number of voxels in motor and DMN still shows

unstable assignments.

To demonstrate the stability of the estimates on each of the subject functional networks,

we first pick 3 subjects from the 25 subjects in the dataset. For each subject, we show the

average network patterns over all bootstrap samples. See Figure 6.11. We show only six

physiologically meaningful networks, excluding the one corresponding to the brain stem.

For each network, one representative slice is shown. From the figure, all three subjects’

mean network maps have lower stability compared to their corresponding group networks.

Certain subjects’ networks are significantly less stable than other subjects, due to the

various degree of perturbation by the random sampling even using the same bootstrapping

procedure. Among the six networks, attentive networks exhibit the most dramatic change

under bootstrap sampling. Some voxels of salience and executive control networks are

absorbed into attentive networks. This misclassification happens most on subject 2, and

also happens a moderate amount on subjects 1 and 3. Compared to the other two methods,

HMRF is able to estimate reasonably stable functional networks even with data resampling.

Attentive networks and executive control networks tend to change more than other networks,

but still less than K-Means and N-Cuts.

Another way to show the stability of the subject label maps is the variance map. Since

we are interested in comparing among three methods the variance of the networks across

all subjects, we show the variance not for each single subject, but an average variance over

all subjects. See Figure 6.12. Because of the averaging over all subjects, the variance is
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more spread over the voxels. Again, HMRF shows significantly smaller variance than the

other two methods, indicating its subject map estimates are more stable under bootstrap

sampling.

6.4.7 Between-level links estimation
We also run the cross-validation and use the posterior predictive distribution in equation

(6.7) for estimating the optimal α parameter. Figure 6.13 gives a plot of the average

predictive density with alpha ranging in [0.15, 0.5], with interval 0.05. We found that with

too small α, the model has low prediction values on the test data, and too large α values

improve the prediction but are still not the optimal. The best α value is around 0.3 to 0.35.

6.5 Discussion
We proposed a new hierarchical model for identifying functional networks of the human

brain from a group of rs-fMRI dataset. The model assumes a group functional network map

is shared among all subjects in the population, and individual subjects’ functional patterns

are generated as variations from this group level network. If we see the functional network

pattern as a clustering of the fMRI data, we actually assume the subject maps are samples

from an unknown distribution of the clusterings, with its mean given by the group map.

We reformulate the distribution of clusterings as a distribution of network labels, where a

subject’s labels at each voxel are seen as generated from the group’s network labels. While

the intersubject statistical dependency is defined by the links between group and subject

labels, the spatial coherence of the functional networks is guaranteed by the within-subject

MRF. All the network label variables at both levels with their links, and the parameters, are

defined in an integrated graph, and the general techniques of graphical models can be used

for (approximate) inference. This multilevel view is typically used in general statistical

analysis when the individuals are grouped into units, and the variance of the variables

is decomposed into the group-specific and subject-specific terms. We borrow this idea

and apply it in a clustering problem where the intensities of voxels at each time point are

grouped into units (subjects), and the vMF’s κ parameter represents the individual subject’s

variance. The α parameter is equivalent to the pooling factor in the standard hierarchical

linear model [63], and controls the degree to which the estimates of subject label maps are

pooled together.

We use the MCMC sampling for the inference because of its good approximation of the

posterior density. An alternative class of methods is variational inference, including mean

field approximation and expectation propagation. Both variational methods and MCMC
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are the approximation of the true posterior distribution. The former approximate the target

distribution by the product of factorized distributions, and the latter achieve the approx-

imation by Monte Carlo averaging. Both classes of methods depend on initial conditions.

However, with Gibbs sampling, we obtain a full posterior density estimate of the network

variables, while variational methods usually have point estimates. Besides, the derivation of

the conditional expectation used for updating of variational methods would be cumbersome

in our multilevel model. On the other hand, the Gibbs sampling is straightforward as the

conditional probability is easy to compute in our Bayesian setting. Therefore, we choose

Gibbs sampling due to its simplicity, as well as the fact that the application does not require

real time computation. An additional critical property of the MCMC sampling is that its

convergence does not depend on the dimension of the variables [128]; thus we can achieve

reasonable compute time even in this million-dimensional problem. The whole Monte Carlo

expectation maximization procedure uses 45-50 cores on a multiprocessor machine, and

takes about 2 hours for a group of 25 subjects.

As a practical guide for applying HMRF, the introduction of within-subject MRF is not

meant to replace the spatial smoothing in the preprocessing steps. This is one step further

from what we found in our previous work [101], where no spatial smoothing is conducted

when the HMRF model is used. In the simulated experiments, we found a moderate spatial

smoothing, plus our HMRF model can achieve the best estimation accuracy. The best

accuracy of the combined model is because moderate smoothing does help to decrease the

noise, without overly impacting the signal at finer spatial scales. The MRF regularization

further favors spatial coherence and intersubject coherence.
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J

group level

subject level

Observed 
time courses

Figure 6.1: We define a MRF on a graph that includes the voxels of all subject maps as
well as the group map. The set of edges includes the between-level links with weight α, and
within-subject links with weight β. The square box on the subject level and time courses
repeats J times the nodes in the square, representing all the subjects. Only the central
voxels connection is shown for the between-level links, whereas in practice the links exist
on all other voxels. The BOLD signal variables are shaded, meaning they are set to the
observed value.

sub1 sub2 sub3

group

sub1 sub2 sub3

data

network mapbetween-level links
Within-subject links

Figure 6.2: An alternative representation of the graphical model of the HMRF. A regular
MRF is defined on the network variables within subject, and within group label maps. Then
between-level links are added between the group voxel and each subject voxel at the same
anatomical location. The added edges, together with the original edges, consist of a new
graph which integrates two levels of variables.
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group

sub1 sub2

Sampling Order

Figure 6.3: Gibbs sampling schedule on a high level view. The sampling scan of all voxels
in the group before updating each subject. This schedule repeats until convergence.

Sampling group labels Sampling subject labels

Figure 6.4: Gibbs sampling iterates between group and subjects. On the voxel-level, the
sampler draws samples of one voxel given its neighbors that includes both with-subject and
between-level neighbors.

Figure 6.5: The estimated group and subject functional network label maps from various
methods, as well as the ground truth maps. Only two are shown among the 25 subjects.
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Figure 6.6: Box-and-whiskers plots of the estimation accuracies of all methods for three
levels of spatial smoothing. The accuracies of subject labels are across all subjects and
MC samples. The group map accuracies are across all MC samples. The upper and
lower “hinges” correspond to the 25th and 75th percentiles. The asterisk on top of
each box indicates the p-value of the standard two-tailed T test between HMRF and the
corresponding method. No asterisk: significant p > 0.05; ∗: significant at p < 0.05; ∗∗:
significant at p < 0.01; ∗ ∗ ∗: significant at p < 0.001. The group map is not applicable to
HMRF-B due to its lack of between-level links.
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Figure 6.7: Box-and-whiskers plots of the RI value between each pair of sessions over the
all subjects’ label map. The bottom and top of the boxes are the 25th and 75th percentile,
and the whiskers extend to the whole range of the data except the outliers.

Figure 6.8: The intersession variance maps for three segmentation methods. The variance
maps are obtained for each subject, averaged across subjects, and finally normalized to [0,
1]. A few voxels with intensity above 0.8 are rendered the same as those with intensity
0.8. This single map covers all seven functional networks, and we selectively show the slices
corresponding to the three major networks. The image left is the subject’s left, and we use
the same convention in the following figures.
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Figure 6.9: The group level’s mean functional networks estimated from all bootstrapped
data by three segmentation methods. The binary map of each network is averaged over all
bootstrap samples. The average intensity ranges from 0 to 1.
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Figure 6.10: The group variance map estimated from all bootstrap data by the three
segmentation methods. The variance ranges from 0 to 0.25.
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Figure 6.11: The three subjects’ average network label maps estimated from all bootstrap
samples. One representative slice is shown for each of the seven networks for each subject
(row) and each method (column), excluding brain stem component. The average values
range from 0 to 1.
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Figure 6.12: The subjects’ variance maps estimated from all bootstrap samples. The maps
are averaged across all subjects, and their values range from 0 to 0.25. The color map is in
[0, 0.15] since most of the variance values fall into this range.
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Figure 6.13: Estimation of parameter α with the average predictive distributions using the
leave-one-out cross-validation. We use the data from only the first session of the NYU-TRT
dataset but find similar patterns in the other two sessions. α are sampled between 0.15 and
0.5, with interval 0.05.



CHAPTER 7

GENERAL DISCUSSION

In this chapter we will give a summary of the dissertation work, with some discussions

on the models we have used. We will also discuss the possible extension of our models in

the future, and other general promising approaches of rs-fMRI study.

7.1 Summary of dissertation work
The analysis of functional networks using rs-fMRI is a difficult problem, due to various

sources of noise, the artifact introduced by the preprocessing, and the variations between the

subjects in the same group. In this dissertation we proposed a hypothesis that a hierarchical

MRF model is able to describe the within-subject spatial coherence and the between-subject

similarity, with higher estimation accuracy on simulated data and higher consistency on real

data. The three applications of our models proved our hypothesis. More specifically:

• We proposed a high-dimensional MRF model to depict our prior information on the

pairwise connectivity variables of a single subject rs-fMRI dataset. The MRF enforced

similar values of the adjacent variables, where the adjacency is defined by the MRF

structure. We are able to identify finer functional patterns without resorting to spatial

smoothing.

• We also presented a maximum a posteriori framework for estimating multiple func-

tional networks of a single subject, by using MRF in original image space, and a vMF

distribution as likelihood function. Again, with the proposed method, we identified

functional networks that are spatially coherent, and more consistent across subjects

compared to other standard methods.

• Last, we extended the MRF model to a hierarchical setting, where both the within-

subject spatial coherence and between-subject similarity are modeled by a single

graphical model. By sampling from the posterior distribution of the network variables,
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we are able to show that the network maps are more accurate for synthetic data, and

more consistent for real data compared to the flat model of group analysis.

Here, we give a brief comparison of the three methods that we discussed in Chapters

4, 5 and 6. The pairwise connectivity estimation method in Chapter 4 is a lower level

information extraction compared to other methods. The algorithm aims to estimate the

functional connectivities between voxel pairs, without knowledge of the functional system.

Because the connectivity variables we are interested in only have two states, connected or

not connected, we deal with a unsupervised binary classification problem. We define a model

similar to the standard Gaussian mixture (GMM) model, and estimate the posterior of the

hidden variables. Our model is different from the regular GMM in that we define a prior

distribution on the hidden variables, the connectivity. The prior distribution is indeed a

MRF, or equivalently, Gibbs distribution, defined on a high-dimensional graph to represent

our knowledge of the spatial soft constraints. The inference, as a result of this additional

prior model, is significantly more difficult than GMM, since the inference of each pairwise

connectivity cannot be factorized like standard GMM due to the statistical dependency on

other variables. We use variational inference to approximate the posterior distribution of

the connectivity variables and solved the intractable optimization problem.

The second method we discussed in Chapter 5 is in a higher level than the pairwise

connectivity estimation in Chapter 4. The algorithm outputs a three-dimensional label

map, and the labeling represents the functional systems. Compared to Chapter 4, here we

are able to detect all functional systems without defining a seed region, and show them

in a single spatial map. The algorithm is aware of the functional system, as each cluster

represents one system. Although the ability to identify multiple systems is a strength

compared to the previous pairwise connectivity estimation, it is hard to state the multiple

network detection method is superior to the pairwise connectivity estimation method, as

the two methods are at different levels. The lower-level pairwise connectivity estimated can

be used in other models as input. For example, it can be used to define the ROIs for the

graph-based analysis. Or, the prior distribution of the connectivity variables can be modified

to include an additional parameter for multisubject analysis. The current prior distribution

of the connectivity variables are defined by a MRF including only smoothing constraints.

In the case of multiple subjects, we can assume the same pairwise connectivity variable

for all subjects are random variables from a population distribution. By redefining the

six-dimensional graph and including other subjects, and a group layer, we have a hierarchical

model for the pairwise connectivity variables, much like what we have done in the HMRF
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model in Chapter 6.
Both the algorithms in Chapters 4 and 5 deal with single subject. By contrast, the

hierarchical MRF model in Chapter 6 explores the functional patterns from the rs-fMRI

of a group of subjects. It turns out if we integrate our knowledge of the within-subject

smoothness and the between-subject similarity into the graph structure, we can convert

the group inference problem into a standard inference of the posterior distribution. So we

defined an abstract layer of the graph including all the gray matter voxels in the subject

volumes, and a virtual volume of the group. Below this layer is the image voxels of the

subjects and groups volume. Above the layer, we have a standard graph and we are able

to apply a standard optimization algorithm on it. The single-subject MCEM method we

proposed in Chapter 5 is a special case of our extended HMRF model. We have shown

that the extended model is able to enforce the similarity of the functional patterns across

subjects, as well as estimating a group map. Because a single subject can borrow statistical

power from other subjects via the group level, we can estimate a reasonable map even from

noisy single-subject data.
A classical occurrence of hierarchical models is the inclusion of the random-effects in the

linear model [127]. For a simple example, suppose we randomly choose M schools from all

the schools in the country, and randomly choose N students from each school and record

their scores on an exam. We use yij to denote the score of the student n from school m.

The score can be modeled by a linear model with random-effects ynm = β + θm + wnm,

where β is the average score of the population, θm is the school-specific random effect that

represents the difference between the population’s average score β and school m’s score,

and wnm is the individual student’s deviation from the school’s average score. Both θm and

wnm are random variables since the schools and the students are randomly chosen. The

above linear model can be decomposed into a hierarchical model as

ynm = um + wnm

um = β + θm.

Here, um is the average score for the school m, and is further decomposed into the fixed

effects β and random effects θm. In our multilevel model for the rs-fMRI group analysis,

the BOLD time series correspond to the student score y, the subject network label maps

correspond to the average score u of the school, and the group label map corresponds to the

population’s average score β. vMF distribution denotes the random effects of the BOLD

signals, hence is similar to the w in the above example. Because the parameters (called

hidden variables in our model) are discrete values, there is no direct counterpart of θ in our



121

model, but the MRF and its equivalent Gibbs distribution represent the random properties

of the group and subject label maps.
There are reasons of this decomposition and the formulation by Bayesian rules [127].

First, the two levels of models represent the prior knowledge of the metapopulation. The

hierarchical models naturally appeared in the metaanalysis. In the case of fMRI study,

the results of the analysis on other subjects can be used as a prior of current subjects.

Second, the hierarchical model can separate the priors into two components. One component

corresponds to the soft constraints applied on the subject level parameters (subject network

label map), and the other component represents the uncertainty of such constraints, i.e., the

distribution of the group label map, as well as the unknown weight parameters between the

subject and the group. Also, the decomposition can often simplify the posterior inference

of the hidden variable, at least on the concept level.

7.2 HMM versus CRF
The MRF, as a extension of the one-dimensional hidden Markov model (HMM), is a

model that does not depend on the observed data. The conditional random field (CRF),

on the contrary, has a regularization energy function that depends on the data. One of

the reasons that the prior energy should be dependent on the data is that the smoothness

assumption is often violated at the discontinuities, i.e., the edges in the image, be it natural

scene images or fMRI images. When the BOLD signal at certain voxel is significantly

different from one of its spatial neighbor’s, we have reason not want to borrow information

from this neighbor. Intuitively this makes sense, although in such a definition, the separation

of the prior P (X) and the conditional probability P (Y |X) would not be possible, since P (X)

also involves the data Y . The CRF is called adaptive smoothing in some literature [98].
Historically, the existence or lack of links between spatially adjacent nodes on a regular

lattice is modeled by a line process by Geman [65]. The inference is iterated between

estimating the MRF with image pixels at nodes, and estimating line process. At last, when

both the MRF and the line process converge, we just discard the line process estimation but

keep the estimation of the nodes in MRF. The estimated nodes will be from the marginal

distribution according to the original MRF. However, even the links are modeled as a

line process, the hidden variable X is still in a distribution that does not include Y . So

fundamentally such model is the same with regular MRF, rather than a CRF. It is the

optimization methods that differ.
CRF is a reasonable model in some situations, when the disparity of the neighboring

voxels represents the discontinuity of the images. In some cases, if a voxel is very noisy, such
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that its signal looks significantly different than its neighbors, while in fact the difference is

due to large noise, the CRF may assume the discontinuity at this edge, and does not define,

or defines a weak interaction. Therefore, the noisy voxel may not be correctly classified. In

such situations, the data Y is essentially used twice, once in the prior distribution P (X),

and the other in the likelihood function P (Y ). Because we increase the weight of the data

term, the CRF will fail to estimate the correct hidden variables when the data are noisy.

In practice, in a multimodality image segmentation problem, we used CRF and found some

noisy voxels were not labeled correctly because the CRF removed the edge between the

noisy voxels and their neighbors due to the large intensity difference. One possible solution

of this incorrect edge determination is to use a larger neighborhood when computing the

discontinuity, thus decreasing the influence of the single noisy pixel [141].

In our model, we choose to use HMM instead of CRF with the belief that a simple

Bayesian model will conceptually fit our problem and have good generalization power. It

is worth applying the CRF model to our hierarchical MRF framework. Because of its

Bayesian concept, HMM is easier to understand than the CRF. However, in some situations

if the CRF outperforms HMM and Bayesian-based models, it will be an open question if

we are willing to give up a little performance in order to obtain a simple model that we can

understand.

7.3 Convergence rate of MCMC
One of the main disadvantages of the MCMC algorithm, or the general Monte Carlo

sampling algorithm, is the slow convergence and long computation time. Although, the

computation time is not a critical issue in the fMRI study, this is an interesting and actively

evolving topic that is worth discussion. With the high-level data parallel frameworks such as

MapReduce, the processing of large-scale data is greatly simplified. These data processing

frameworks do not support the core data mining and machine learning algorithms. Many

datasets have variables that are interdependent with each other, and a graphical model is

a good abstract representation for these multivariate data. The statistical inference often

involves computing the posterior probability of the variables given the observation. When

the prior distribution and likelihood function cannot be defined as a conjugate distribution,

one alternative method will be sampling from the posterior and use Monte Carlo averaging

for the inference. In this parallel framework, it is natural to run the sampling on the parallel

machine for faster convergence. The state-of-the-art method implemented in the GraphLab,

the parallel graph abstract library [102], uses the graph coloring technique to divide the
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nodes in the original graph into K subsets. Within the subsets, the nodes have the same

color, and are updated in parallel. Between different colors of subsets, the nodes are updated

in sequential. Such strategy is exactly the same with our implementation in Section 4.3,

where we also divide the nodes into four subsets to avoid the checkerboard local minium.

Without multiple-core machines, a common method of accelerating the mixing of the

Gibbs sampler is to update the variables in a batch mode, i.e., in a block. The Swendsen-

Wang algorithm [148] and its extension [7] are in this category. The key to the block

update is to find those variables that are strongly coupled with each other and can be

updated together. A recent development along this line is by Hamze and Freitas [76].

In their work, the authors divide the nodes into two subsets such that each subset of

nodes is a tree. A tree, as a special case of general graph, does not have a loop of edges,

and it is therefore significantly easier to compute the posterior distribution. By using

the Rao-Blackwell transformation, they give an algorithm that combines analytical and

sampling steps. Given a sample of one tree, the algorithm uses belief propagation [156]

to compute the exact distribution of the other tree conditioned on the sample. This block

update scheme is proved to have better convergence property than stand Gibbs sampling.

The algorithm of Gonzalez et al. [69] also uses a similar concept.

7.4 Future works
Graphical model and its undirected variants of MRF are powerful tools for modeling

multivariate random variables and their uncertainty. Here we give possible extensions of

our computational models to dynamical settings, to specific mental health disorders and to

the integrated spatiotemporal models.

7.4.1 Dynamics of the functional network
In conventional brain connectivity analysis one assumes that the connections between

regions are static and do not change with time. The functional connectivity may not be

in a stationary state. Not like structural connectivity measured by DTI, the functional

connections depend on the the cognitive activity of the human brain, and may change over

time. For example, the most active regions during resting-state seem to be the regions that

shows the greatest deactivation during external cognitive challenges. Besides, functional

links can persist even without direct anatomical connection.

Zalesky et al. [158] tested the variation of the fMRI time series by splitting the time

series into two parts, and used paired T test to test any difference between the two halves

with respect to the various statistical measures, including variance, maximum and minimum
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amplitude. They did not identify a significant difference. This suggests that there is no

long-term variation on the time series, but this is not sufficient to suggest that the functional

network is static.

One interpretation of the intrinsic activity, especially the dynamics of the patterns is

an inner state of exploration where the brain generates predictions about the best possible

network patterns that would be optimal for an impending future external event [40]. If that

is the case, it will be beneficial to study the dynamics of the functional network for better

understanding how the brain predicts external events and prepares for them. There have

been works that model the complex network’s dynamics with time delay, mostly notably

the models proposed by Honey et al. [81], Deco et al. [41], Ferguson et al. [51] and Ghosh

et al. [66]. In Honey et al. [81], the structure connectivity matrix is first computed, and

neural dynamical potential signal is simulated. The neural potential has a high sampling

rate. The functional connectivity is computed from this simulated time course signal at

different temporal scales. BOLD signal is also simulated from the neural potential signal

by the balloon model. The simulated BOLD signal has coarser spatial resolution compared

the neural potential signal, i.e., BOLD is simulated per region. The authors concluded that

functional connectivity estimated from whole neural potential signals are more consistent

with structural network, while the network estimated from a segment of neural signals have

more transient network patterns. In Ghosh et al. [66], the low level neural signal is also

simulated similar to Honey et al. [81], and BOLD signal is computed from these simulated

signals. The difference from the work of Honey et al. is that the authors added time delay

between the regions, and the delay is proportional to the distance between the regions. For

the study of fMRI, we do not have to assume a model for neural potential signal and simulate

it. An direct way is to define a dynamic model for BOLD signal. To model the dynamics

of the network, we can either explicitly model the time delay due to the transmission of the

neural signal in the fibers, or we can choose not model this time delay. Honey et al. [81] do

not model the time delay, which is reasonable due to the low temporal resolution of BOLD

signal. The time delay, compared to the TR of BOLD signal, can be ignored.

These models mainly explore the dynamic patterns of a single subject, with the anatom-

ical constraints applied on the possible functional structure. Although the dynamics may

differ across subjects, it would intriguing to study a group of subjects’ network dynamics

and see if some patterns are shared among them. It would be a reasonable assumption that

the parameters of the dynamic model are similar across subjects. For instance, if we assume

a ROI swith between mental states with certain probability, the probability as a parameter
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on the Markov chain, might be shared across subjects with some variation. Along this line of

thought, we can even model the common parameters across subjects in a hierarchical way.

To model the dynamics of the functional networks, some new techniques about network

dynamics [18, 79, 91, 4, 111] are required besides our hierarchical model.

7.4.2 Functional connectivity in clinical study
The intrinsic activity, as the baseline signal for task-based analysis not only helps

understanding subject’s functional patterns for specific tasks, but also in studying mental

disorders such as autism spectrum disorders (ASDs), attention deficit hyperactivity disorder

(ADHD) and Alzheimer’s [22, 82, 108, 3, 116]. For instance, in a review of an ADHD

study [29], the author found the default model network has less anticorrelation for ADHD

patients. Since the strong anticorrelation is believed to be related to better behavioral

performance, such findings help the understanding and treatment of ADHD patients.
One particular interesting application of functional connectivity is the classification

of ASDs and typical developing group. The classification of autism and control groups

can be cast into a regression problem by defining the pairwise functional connectivity as

independent variables and the autism diagnostic scores as the dependent variables. By this

definition, we aim to use rs-fMRI data to predict autism patients. The correct prediction

of autism patients is not the only goal. By solving the linear regression problem, it

becomes possible to pinpoint one or more functional connectivity variables that are strongly

correlated to autism clinical scores, and even the anatomical regions that are involved in

these important connectivity variables. Because of connectivity variables are pairwise, the

number of such variables is large. For a set of ROIs defined by Power et al. [123] with

264 nodes, the number of pairwise connectivity variables will be 264 × 263/2 = 34, 716.

For the denser ROIs used By Anderson et al. [3], there are 7,266 seed regions, and the

number of pairwise connectivity variables will be 26, 397, 378. On the contrary, the number

of observations (subjects) for such types of studies is much smaller. Therefore, we face the

typical curse of dimensionality problem. Rich literature in the machine learning commu-

nity are available for addressing such problems. An early and simple solution is feature

selection, i.e., selecting only a subset of the independent variables and discarding others.

The regression is performed between those chosen variables and the dependent variables.
To select k features with good predictability from n features is an intractable opti-

mization problem due to the combinatorial number of choices. One can use univariate

methods with a hypothesis test to tell if a feature can significantly separate apart the

training sample set, or use more advanced methods taking into account the interactions of
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the features [75, 133]. More modern methods integrates feature and variable selection and

classification in a single framework, such as the L1 regularization methods, least absolute

shrinkage and selection operator (LASSO) [58].
With the autism brain imaging data exchange (ABIDE) repository open to the pub-

lic [47], thousands of rs-fMRI datasets of both autism patients and control groups from

various sites are available for analysis. This data sharing initiative is an opportunity

to explore the relationship between the functional connectivity and the ASDs in a large

data cohort. However, due to the different source of fMRI data, a simple pooling of all

the subjects in a one layer model may not work well, as has been shown by Nielsen et

al. [116]. The authors use 964 subjects from 16 separate international sites and use the

pairwise connectivity variables of all the subjects to predict the autism variable, with the

age variable taken into account. Nielson et al. show the classification accuracy significantly

outperformed chance but is much lower than their previous results on single site [3]. One

possible reason is the heterogeneity of the datasets due to the different sites, scanner

parameters and practitioners. We can extend our HMRF model to this problem by defining

a hierarchical regression and classification problem. By the hierarchy, we assume the

regression coefficients are also random variables, instead of fixed unknown parameters. The

coefficients are from a prior distribution with hyper-parameters. With the hierarchical

model, the regression is balanced between the estimation purely from the data, and the

estimation of other sites. For example, if for one site, the training data has good quality

and the variance of the regression coefficients are small, the posterior distribution of the

coefficients of subjects in this particular site will be closer to the value that fits the data,

i.e., a estimate from standard regression. If the data of one site is highly overlapped and

nonseparable, the variance of the regression coefficients will be larger, so the posterior mean

of the coefficients will be closer to the population’s coefficients, which is estimated from

other sites. In this way, each site has its own parameter to model the data quality, and we

may achieve an overall higher rate of classification, and find more reliable correspondence

between the function regions and Autism disorder.

7.4.3 Spatiotemporal modeling
One interesting model that can be used for this spatio-temporal analysis is the Gaussian

process (GP). GP originates from linear regression problem y = w>φ(x) with arbitrary

basis function φ(x). When the weight parameters w are unknown fixed constants, the

estimation of w can be solved be least square estimation, or equivalently, maximum like-

lihood estimation when the data are Gaussian distributed. We can define the w also as
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random variables, and accordingly the response variable y will also be random. When

w is of Gaussian distribution, the joint probability P (y,w), the conditional probability

P (w|y), and the predictive distribution of y′ for a new data point x′ are also Gaussian, and

therefore the statistical inference of y and y′ can be done in a closed form. The standard

linear regression with prior distribution defined on w is solved in parameter space, i.e., by

searching the optimal parameter w in a space that can maximize the posterior distribution

of w. GP adopts a function view in that we define a distribution on the function y(x). The

variance of the functional value y(xn) and y(xm) can be represented by the inner product

of the basis function φ(xn) and φ(xm), which can be defined directly by a kernel function

of xn and xm. Most of the kernel function is defined such as the predicted value y′ depends

more on data points x that are closer to x′, although the estimation of y′ uses the y value

of all the x in the training dataset. We can, however, make use of the Markov property and

assume that y′ only depends on the nearby y. In one-dimensional case, the auto-regressive

(AR) model is a special case where the variable y only depends on the limited number of

values of y in the past. In such a model, the covariance matrix of the function value y

is dense, but the inverse covariance matrix, i.e., the precision matrix, is sparse, since it

represents the conditional independence.

The extension to the spatiotemporal model has two possible options. We can either start

from a time series model for each spatial data point, such as auto-regressive (AR), moving

average (MA), or ARMA models, and assume the model parameters depend on their spatial

neighbors. Or, we can assume a spatial model such as MRF, or Gaussian random field, and

allow the parameters to change over time instead of being fixed. Such a model would

be helpful for the analysis of fMRI data. For now, the spatial and temporal properties of

BOLD signal of fMRI data are typically addressed separately. The temporal model is either

represented by a frequency filter with the assumption of the interested frequency band, or

by using a explicit model such as AR process. The spatial dependency is either enforced by

a spatial Gaussian filter as a preprocessing step, or modeled by MRF such as the HMRF in

our work. A unified spatiotemporal model will help the denoising, estimation, interpolation

and prediction of the fMRI data.
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Slic superpixels compared to state-of-the-art superpixel methods. IEEE Transactions
on Pattern Analysis and Machine Intelligence (2012), 2274–2282.

[2] Achard, S., Salvador, R., Whitcher, B., Suckling, J., and Bullmore, E.
A resilient, low-frequency, small-world human brain functional network with highly
connected association cortical hubs. The Journal of Neuroscience 26, 1 (2006), 63–72.

[3] Anderson, J. S., Nielsen, J. A., Froehlich, A. L., DuBray, M. B., Druzgal,
T. J., Cariello, A. N., Cooperrider, J. R., Zielinski, B. A., Ravichandran,
C., Fletcher, P. T., et al. Functional connectivity magnetic resonance imaging
classification of autism. Brain 134, 12 (2011), 3742–3754.

[4] Arenas, A., D́ıaz-Guilera, A., Kurths, J., Moreno, Y., and Zhou, C.
Synchronization in complex networks. Physics Reports 469, 3 (2008), 93–153.

[5] Arthur, D., and Vassilvitskii, S. k-means++: The advantages of careful
seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (2007), Society for Industrial and Applied Mathematics, pp. 1027–1035.

[6] Banerjee, A., Dhillon, I., Ghosh, J., and Sra, S. Clustering on the unit
hypersphere using von Mises-Fisher distributions. J. Machine Learning Res. 6, 2
(2006), 1345.

[7] Barbu, A., and Zhu, S. Generalizing Swendsen-Wang to sampling arbitrary pos-
terior probabilities. Pattern Analysis and Machine Intelligence, IEEE Transactions
on 27, 8 (2005), 1239–1253.

[8] Baumgartner, R., Windischberger, C., and Moser, E. Quantification in
functional magnetic resonance imaging: fuzzy clustering vs. correlation analysis.
Magnetic Resonance Imaging 16, 2 (1998), 115–125.

[9] Beckmann, C., and Smith, S. Tensorial extensions of independent component
analysis for multisubject FMRI analysis. Neuroimage 25, 1 (2005), 294–311.

[10] Beckmann, C. F., Jenkinson, M., and Smith, S. M. General multilevel linear
modeling for group analysis in FMRI. Neuroimage 20, 2 (2003), 1052–1063.

[11] Beckmann, C. F., Mackay, C. E., Filippini, N., and Smith, S. M. Group
comparison of resting-state FMRI data using multi-subject ICA and dual regression.
Neuroimage 47, Suppl 1 (2009), S148.

[12] Bellec, P., Rosa-Neto, P., Lyttelton, O., Benali, H., and Evans, A. Multi-
level bootstrap analysis of stable clusters in resting-state fMRI. Neuroimage 51, 3
(2010), 1126–1139.



129

[13] Besag, J. Spatial interaction and the statistical analysis of lattice systems. Journal
of the Royal Statistical Society. Series B (Methodological) 36, 2 (1974), 192–236.

[14] Besag, J. Statistical analysis of non-lattice data. The Statistician (1975), 179–195.

[15] Besag, J. On the statistical analysis of dirty pictures. Journal of the Royal Statistical
Society. Series B (Methodological) (1986), 259–302.

[16] Bishop, C. Pattern recognition and machine learning. Information science (2006).

[17] Biswal, B., Zerrin Yetkin, F., Haughton, V. M., and Hyde, J. S. Functional
connectivity in the motor cortex of resting human brain using echo-planar MRI.
Magnetic Resonance in Medicine 34, 4 (1995), 537–541.

[18] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D.-U.
Complex networks: structure and dynamics. Physics Reports 424, 4 (2006), 175–308.

[19] Boykov, Y., Veksler, O., and Zabih, R. Fast approximate energy minimization
via graph cuts. Pattern Analysis and Machine Intelligence, IEEE Transactions on
23, 11 (2001), 1222–1239.

[20] Boykov, Y. Y., and Jolly, M.-P. Interactive graph cuts for optimal boundary
& region segmentation of objects in nd images. In Computer Vision, 2001. ICCV
2001. Proceedings. Eighth IEEE International Conference on (2001), vol. 1, IEEE,
pp. 105–112.

[21] Buckner, R. L., Andrews-Hanna, J. R., and Schacter, D. L. The brain’s
default network. Annals of the New York Academy of Sciences 1124, 1 (2008), 1–38.

[22] Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H.,
Hedden, T., Andrews-Hanna, J. R., Sperling, R. A., and Johnson, K. A.
Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of
stability, and relation to alzheimer’s disease. The Journal of Neuroscience 29, 6
(2009), 1860–1873.

[23] Bullmore, E., and Sporns, O. Complex brain networks: graph theoretical
analysis of structural and functional systems. Nature Reviews Neuroscience 10, 3
(2009), 186–198.

[24] Bullmore, E., and Sporns, O. The economy of brain network organization.
Nature Reviews Neuroscience 13, 5 (2012), 336–349.

[25] Buxton, R., Wong, E., and Frank, L. Dynamics of blood flow and oxygenation
changes during brain activation: the balloon model. Magnetic Resonance in Medicine
39, 6 (1998), 855–864.

[26] Caffo, B. S., Jank, W., and Jones, G. L. Ascent-based monte carlo expectation–
maximization. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology) 67, 2 (2005), 235–251.

[27] Calhoun, V., Adali, T., Pearlson, G., and Pekar, J. A method for making
group inferences from functional MRI data using independent component analysis.
Human Brain Mapping 14, 3 (2001), 140–151.



130

[28] Calhoun, V., Adali, T., Pearlson, G., and Pekar, J. Spatial and temporal
independent component analysis of functional MRI data containing a pair of task-
related waveforms. HBM 13, 1 (2001), 43–53.

[29] Castellanos, F., and Proal, E. Large-scale brain systems in ADHD: beyond the
prefrontal–striatal model. Trends in Cognitive Sciences (2011).

[30] Chen, S., Ross, T. J., Zhan, W., Myers, C. S., Chuang, K.-S., Heishman,
S. J., Stein, E. A., and Yang, Y. Group independent component analysis
reveals consistent resting-state networks across multiple sessions. Brain Research
1239 (2008), 141.

[31] Clifford, P. Markov random fields in statistics. Disorder in physical systems
(1990), 19–32.

[32] Cohen, A. L., Fair, D. A., Dosenbach, N. U., Miezin, F. M., Dierker,
D., Van Essen, D. C., Schlaggar, B. L., and Petersen, S. E. Defining
functional areas in individual human brains using resting functional connectivity MRI.
Neuroimage 41, 1 (2008), 45–57.

[33] Cooper, C., and Frieze, A. Mixing properties of the Swendsen-Wang process on
classes of graphs. Random Structures and Algorithms 15, 3-4 (1999), 242–261.

[34] Cordes, D., Haughton, V., Carew, J. D., Arfanakis, K., and Maravilla, K.
Hierarchical clustering to measure connectivity in fMRI resting-state data. Magnetic
Resonance Imaging 20, 4 (2002), 305–317.

[35] Cordes, D., Haughton, V. M., Arfanakis, K., Carew, J. D., Turski, P. A.,
Moritz, C. H., Quigley, M. A., and Meyerand, M. E. Frequencies contributing
to functional connectivity in the cerebral cortex in ”resting-state” data. American
Journal of Neuroradiology 22, 7 (2001), 1326–1333.

[36] Cordes, D., Haughton, V. M., Arfanakis, K., Wendt, G. J., Turski, P. A.,
Moritz, C. H., Quigley, M. A., and Meyerand, M. E. Mapping functionally
related regions of brain with functional connectivity mr imaging. American Journal
of Neuroradiology 21, 9 (2000), 1636–1644.

[37] Cosman, E. R., Fisher, J. W., and Wells, W. M. Exact MAP activity detection
in fMRI using a GLM with an Ising spatial prior. In MICCAI (2004), pp. 703âĂŞ–710.

[38] Craddock, R. C., James, G. A., Holtzheimer, P. E., Hu, X. P., and
Mayberg, H. S. A whole brain fmri atlas generated via spatially constrained spectral
clustering. Human Brain Mapping 33, 8 (2012), 1914–1928.

[39] Damoiseaux, J., Rombouts, S., Barkhof, F., Scheltens, P., Stam, C.,
Smith, S. M., and Beckmann, C. Consistent resting-state networks across
healthy subjects. Proceedings of the National Academy of Sciences 103, 37 (2006),
13848–13853.

[40] Deco, G., Jirsa, V., and McIntosh, A. Emerging concepts for the dynamical
organization of resting-state activity in the brain. Nature Reviews Neuroscience 12,
1 (2010), 43–56.



131

[41] Deco, G., Jirsa, V., McIntosh, A., Sporns, O., and Kötter, R. Key role of
coupling, delay, and noise in resting brain fluctuations. Proceedings of the National
Academy of Sciences 106, 25 (2009), 10302–10307.

[42] Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series
B (Methodological) (1977), 1–38.

[43] Descombes, X., Kruggel, F., and Cramon, D. V. Spatio-temporal fMRI
analysis using Markov random fields. Medical Imaging, IEEE Transactions on 17,
6 (1998), 1028–1039.

[44] Descombes, X., Kruggel, F., and von Cramon, D. Y. fMRI signal restoration
using a spatio-temporal Markov random field preserving transitions. NeuroImage 8,
4 (Nov. 1998), 340–349.

[45] Dhillon, I. S., Fan, J., and Guan, Y. Efficient clustering of very large document
collections. Data Mining for Scientific and Engineering Applications (2001), 357–381.

[46] Dhillon, I. S., and Sra, S. Modeling data using directional distributions. Tech.
rep., Technical Report TR-03-06, Department of Computer Sciences, The University
of Texas at Austin., 2003.

[47] Di Martino, A., Yan, C., Li, Q., Denio, E., Castellanos, F., Alaerts, K.,
Anderson, J., Assaf, M., Bookheimer, S., Dapretto, M., et al. The autism
brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain
architecture in autism. Molecular Psychiatry (2013).

[48] Efron, B., and Tibshirani, R. J. An introduction to the bootstrap, vol. 57. CRC
press, 1994.

[49] Esposito, F., Scarabino, T., Hyvarinen, A., Himberg, J., Formisano, E.,
Comani, S., Tedeschi, G., Goebel, R., Seifritz, E., Di Salle, F., et al.
Independent component analysis of fMRI group studies by self-organizing clustering.
Neuroimage 25, 1 (2005), 193–205.

[50] Feodor Nielsen, S. The stochastic EM algorithm: estimation and asymptotic
results. Bernoulli 6, 3 (2000), 457–489.

[51] Ferguson, M. A., and Anderson, J. S. Dynamical stability of intrinsic connec-
tivity networks. Neuroimage 59, 4 (2012), 4022–4031.

[52] Filippini, N., MacIntosh, B. J., Hough, M. G., Goodwin, G. M., Frisoni,
G. B., Smith, S. M., Matthews, P. M., Beckmann, C. F., and Mackay, C. E.
Distinct patterns of brain activity in young carriers of the apoe-ε4 allele. Proceedings
of the National Academy of Sciences 106, 17 (2009), 7209–7214.

[53] Ford, D., and Fulkerson, D. R. Flows in networks. Princeton University Press,
2010.

[54] Fox, M., and Raichle, M. Spontaneous fluctuations in brain activity observed with
functional magnetic resonance imaging. Nature Reviews Neuroscience 8, 9 (2007),
700–711.



132

[55] Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., and Raichle,
M. E. Spontaneous neuronal activity distinguishes human dorsal and ventral at-
tention systems. Proceedings of the National Academy of Sciences 103, 26 (2006),
10046–10051.

[56] Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C.,
and Raichle, M. E. The human brain is intrinsically organized into dynamic,
anticorrelated functional networks. Proceedings of the National Academy of Sciences
of the United States of America 102, 27 (2005), 9673–9678.

[57] Franco, A. R., Pritchard, A., Calhoun, V. D., and Mayer, A. R. Interrater
and intermethod reliability of default mode network selection. Human Brain Mapping
30, 7 (2009), 2293–2303.

[58] Friedman, J., Hastie, T., and Tibshirani, R. Sparse inverse covariance estima-
tion with the graphical lasso. Biostatistics 9, 3 (2008), 432–441.

[59] Friston, K., Ashburner, J., Kiebel, S., Nichols, T., and Penny, W.
Statistical Parametric Mapping: the analysis of functional brain images. Statistical
Parametric Mapping The Analysis of Functional Brain Images 8 (2007).

[60] Friston, K., Jezzard, P., and Turner, R. Analysis of functional mri time-series.
Human Brain Mapping 1, 2 (1994), 153–171.

[61] Friston, K. J. Functional and effective connectivity in neuroimaging: a synthesis.
Human Brain Mapping 2, 1-2 (1994), 56–78.

[62] Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. Bayesian data
analysis. CRC press, 2003.

[63] Gelman, A., and Pardoe, I. Bayesian measures of explained variance and pooling
in multilevel (hierarchical) models. Technometrics 48, 2 (2006), 241–251.

[64] Gelman, A., and Rubin, D. Inference from iterative simulation using multiple
sequences. Statistical Science 7, 4 (1992), 457–472.

[65] Geman, S., and Geman, D. Stochastic relaxation, gibbs distributions, and the
Bayesian restoration of images. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 6 (1984), 721–741.

[66] Ghosh, A., Rho, Y., McIntosh, A., Kötter, R., and Jirsa, V. Noise during
rest enables the exploration of the brain’s dynamic repertoire. PLoS Computational
Biology 4, 10 (2008), e1000196.

[67] Gibbs, A. Bounding the convergence time of the gibbs sampler in Bayesian image
restoration. Biometrika 87, 4 (2000), 749–766.

[68] Golland, P., Lashkari, D., and Venkataraman, A. Spatial patterns and
functional profiles for discovering structure in fMRI data. In Signals, Systems and
Computers, 2008 42nd Asilomar Conference on (2008), IEEE, pp. 1402–1409.

[69] Gonzalez, J., Low, Y., Gretton, A., and Guestrin, C. Parallel gibbs
sampling: from colored fields to thin junction trees. In International Conference
on Artificial Intelligence and Statistics (2011), pp. 324–332.



133

[70] Greicius, M. D., Flores, B. H., Menon, V., Glover, G. H., Solvason,
H. B., Kenna, H., Reiss, A. L., and Schatzberg, A. F. Resting-state functional
connectivity in major depression: abnormally increased contributions from subgenual
cingulate cortex and thalamus. Biological Psychiatry 62, 5 (2007), 429–437.

[71] Greicius, M. D., Krasnow, B., Reiss, A. L., and Menon, V. Functional
connectivity in the resting brain: a network analysis of the default mode hypothesis.
Proceedings of the National Academy of Sciences 100, 1 (2003), 253–258.

[72] Greicius, M. D., Srivastava, G., Reiss, A. L., and Menon, V. Default-mode
network activity distinguishes alzheimer’s disease from healthy aging: evidence from
functional MRI. Proceedings of the National Academy of Sciences 101, 13 (2004),
4637–4642.

[73] Greig, D., Porteous, B., and Seheult, A. H. Exact maximum a posteriori
estimation for binary images. Journal of the Royal Statistical Society. Series B
(Methodological) (1989), 271–279.

[74] Grimmett, G. The random-cluster model, vol. 333. Springer Verlag, 2006.

[75] Guyon, I., and Elisseeff, A. An introduction to variable and feature selection.
The Journal of Machine Learning Research 3 (2003), 1157–1182.

[76] Hamze, F., and de Freitas, N. From fields to trees. In Proceedings of the 20th
Conference on Uncertainty in Artificial Intelligence (2004), AUAI Press, pp. 243–250.

[77] Hartvig, N. V., and Jensen, J. L. Spatial mixture modeling of fMRI data. Human
Brain Mapping 11, 4 (2000), 233–248.

[78] Hermundstad, A. M., Bassett, D. S., Brown, K. S., Aminoff, E. M.,
Clewett, D., Freeman, S., Frithsen, A., Johnson, A., Tipper, C. M.,
Miller, M. B., et al. Structural foundations of resting-state and task-based
functional connectivity in the human brain. Proceedings of the National Academy
of Sciences 110, 15 (2013), 6169–6174.
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