
PERFORMANCE MODELING FOR

ARCHITECTURAL AND

PROGRAM ANALYSIS

by

Yu Jung Lo

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science

School of Computing

The University of Utah

May 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276265716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright © Yu Jung Lo 2015

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF THESIS APPROVAL

The thesis of Yu Jung Lo

has been approved by the following supervisory committee members:

Mary W. Hall , Chair March 19, 2015

Date Approved

Samuel Williams , Member March 19, 2015

Date Approved

Rajeev Balasubramonian , Member March 19, 2015

Date Approved

and by Ross Whitaker , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

To address the need of understanding and optimizing the performance of complex

applications and achieving sustained application performance across different architectures,

we need performance models and tools that could quantify the theoretical performance

and the resultant gap between theoretical and observed performance. This thesis proposes

a benchmark-driven Roofline Model Toolkit to provide theoretical and achievable perfor-

mance, and their resultant gap for multicore, manycore, and accelerated architectures.

Roofline micro benchmarks are specialized to quantify the behavior of different archi-

tectural features. Compared to previous work on performance characterization, these micro

benchmarks focus on capturing the performance of each level of the memory hierarchy, along

with thread-level parallelism(TLP), instruction-level parallelism(ILP), and explicit Single

Instruction, Multiple Data(SIMD) parallelism, measured in the context of the compilers and

runtime environment on the target architecture. We also developed benchmarks to explore

detailed memory subsystems behaviors and evaluate parallelization overhead. Beyond on-

chip performance, we measure sustained Peripheral Component Interconnect Express(PCIe)

throughput with four Graphics Processing Unit(GPU) memory managed mechanisms.

By combining results from the architecture characterization with the Roofline Model

based solely on architectural specification, this work offers insights for performance pre-

diction of current and future architectures and their software systems. To that end, we

instrument three applications and plot their resultant performance on the corresponding

Roofline Model when run on a Blue Gene/Q architecture.

To those who had given me dreams to look forward to.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vii

LIST OF TABLES . ix

ACKNOWLEDGMENTS . x

CHAPTERS

1. INTRODUCTION . 1

1.1 Roofline Performance Model . 2
1.1.1 Performance Metrics . 2
1.1.2 Arithmetic Intensity . 2
1.1.3 Basic Roofline Model . 3

1.2 Empirical Roofline Toolkit Overview . 4
1.3 Thesis Contributions . 5
1.4 Thesis Outline . 6

2. RELATED WORK . 7

2.1 Performance Modeling . 7
2.2 Performance Analysis Tool . 8
2.3 Benchmarking . 8

3. EMPIRICAL ROOFLINE MODEL . 11

3.1 Memory and Cache Bandwidth . 11
3.1.1 Bandwidth Code . 11
3.1.2 Specialized CUDA Bandwidth Kernel . 13

3.2 Floating-Point Compute Capability . 13
3.3 Experimental Setup . 14

3.3.1 Architectural Platforms . 15
3.3.2 Programming Models and Compilation . 17
3.3.3 Benchmark Execution . 18

3.4 Benchmarking Results . 18
3.4.1 Bandwidth Results . 19
3.4.2 Floating-Point Performance . 21

3.5 Empirical Roofline Model Construction . 23
3.6 Summary . 23

4. EMPIRICAL ROOFLINE MODEL: PERFORMANCE CEILINGS . . . 25

4.1 Architecture Compute Capability . 25
4.1.1 SIMDize Floating-Point Benchmark . 25
4.1.2 Optimization Results . 26
4.1.3 L1 Arithmetic Intensity Performance . 28

4.2 Computation Ceilings . 29
4.3 Parallelization Overheads . 30

4.3.1 OpenMP/MPI Overhead Benchmark . 31
4.3.2 Results . 32

4.4 Memory Locality Performance Characterization . 33
4.4.1 Memory Locality Benchmark . 34
4.4.2 Results . 35

4.5 Bandwidth Ceilings . 38
4.6 Summary . 38

5. GPU BENCHMARKING . 40

5.1 CUDA’s Parallelization Overhead . 40
5.2 GPU’s Memory Locality . 41

5.2.1 GPU’s Memory Locality Benchmark . 41
5.2.2 Result . 41

5.3 CUDA’s Unified Memory . 43
5.3.1 CUDA Managed Memory Benchmark . 43
5.3.2 Results . 44

5.4 Summary . 46

6. APPLICATION ANALYSIS . 47

6.1 HPGMG-FV . 47
6.2 GTC . 48
6.3 MiniDFT . 48
6.4 Summary . 49

7. CONCLUSION AND FUTURE WORK . 51

7.1 Summary and Conclusions . 51
7.2 Future Work . 52

REFERENCES . 53

vi

LIST OF FIGURES

1.1 A conventional Roofline Model: the two lines intersect at the machine balance. 3

1.2 Arithmetic Intensity in HPC. 4

1.3 Overview of the Empirical Roofline Toolkit. 4

3.1 Bandwidth code comparison. (left) STREAM facsimile. (right) Roofline
Bandwidth Benchmark. 12

3.2 CUDA bandwidth computation kernel. 13

3.3 Roofline Floating-Point Benchmark . 14

3.4 Architecture layouts for four platforms. (a) Edison. (b) Mira. (c) Babbage
(MIC only). (d) Titan (GPU only). 15

3.5 Roofline Bandwidth Benchmark results on our four platforms. Please note the
log-log scale. On the GPU, the syntax is Kernel(# threads per thread block,
of thread blocks per kernel). (a) Edison. (b) Mira. (c) Babbage (MIC
only). (d) Titan (GPU only). 20

3.6 Basic GFlops C code compared to theoretical GFlops on four platforms. (a)
Edison. (b) Mira. (c) Babbage (MIC only). (d) Titan (GPU only). 22

3.7 Roofline Models for four platforms. (a) Edison. (b) Mira. (c) Babbage (MIC
only). (d) Titan (GPU only). 24

4.1 GFlops code: (up left) Reference C version. (up right) AVX version optimized
for Edison. (bottom left) QPX version optimized for Mira. (bottom right)
AVX-512 version optimized for Babbage. 26

4.2 Performance disparity between compiled code and optimized code in which
thread-, instruction-, and data-level parallelism have been made explicit. (a)
Edison. (b) Mira. (c) Babbage (MIC only). 27

4.3 Basic GFlops code and optimized SIMDized unrolling GFlops code compared
to theoretical GFlops on four platforms. (a) Edison. (b) Mira. (c) Babbage
(MIC only). (d) Titan (GPU only). 28

4.4 A suggestive ILP micro benchmark. (left) No ILP. (right) ILP = 3. 29

4.5 Empirical Roofline Models with computation performance ceilings. (a) Edison.
(b) Mira. (c) Babbage (MIC only). (d) Titan (GPU only). 30

4.6 OpenMP Overhead Benchmark comparison. (left) EPCC facsimile. (right)
Roofline OpenMP Overhead Benchmark. 31

4.7 OpenMP parallel region launch and barrier overhead on Edison, Mira, and
Babbage. (a) Edison. (b) Mira. (c) Babbage (MIC only). 32

4.8 MPI barrier overhead on Edison, Mira, and Babbage. (a) Edison. (b) Mira.
(c) Babbage (MIC only). 34

4.9 Memory Locality Benchmark code: (left) Synchronize outside the REUSE
loop. (right) Synchronize within the REUSE loop. 35

4.10 Effective bandwidth on Edison, Mira, and Babbage by comparing locality
affect and fine-grained/coarse-grained synchronization. (a) Edison, sync at
every REUSE point. (b) Edison, sync outside the REUSE loop. (c) Mira,
sync at every REUSE point. (d) Mira, sync outside the REUSE loop. (e)
Babbage, sync at every REUSE point. (f) Babbage, sync outside the REUSE
loop. 36

4.11 Mira’s theoretical bandwidth based on Equation 4.1. 37

4.12 Empirical Roofline Models with bandwidth ceilings. (a) Edison. (b) Mira. (c)
Babbage (MIC only). 39

5.1 CUDA’s parallelization overhead on Titan. 40

5.2 GPU’s Memory Locality Benchmark code: (left) Synchronize within the CUDA
kernel. (right) Synchronize outside the CUDA kernel. 41

5.3 GPU locality of memory reference impact on Titan. (a) Global memory,
REUSE outside the kernel. (b) Global memory, REUSE within the kernel.
(c) Shared memory, REUSE outside the kernel. (d) Shared memory, REUSE
within the kernel. 42

5.4 CUDA Unified Memory Benchmark quantifies the ability of the runtime to
manage locality on the device . 44

5.5 Effective bandwidth as a function of GPU temporal locality (reuse) and work-
ing set size for four different GPU device memory management mechanisms.
(a) Pageable host with explicit copy between CPU and GPU. (b) Page-locked
host with explicit copy between CPU and GPU. (c) Page-locked host with
zero copy. (d) Unified (Managed) Memory. 45

6.1 HPGMG-FV’s resultant performance on Mira. Legends denote “benchmark:
number of MPI tasks x number of OpenMP threads.” 48

6.2 GTC’s resultant performance on Mira. Legends denote “benchmark: number
of MPI tasks x number of OpenMP threads.” . 49

6.3 MiniDFT’s resultant performance on Mira. Legends denote “benchmark:
number of MPI tasks x number of OpenMP threads.” (a) MPI Only. (b)
MPI+OpenMP. 50

viii

LIST OF TABLES

3.1 Architectural characteristics of four evaluation platforms. 1One GPU per
node. 2CUDA cores. 3 without TurboBoost. 17

3.2 Compilation flags for each platform. 18

3.3 Execution mode for each platform. 19

ACKNOWLEDGMENTS

First of all, I want to thank my thesis advisor, Mary Hall, for her valuable guidance,

patience, and long-term career and life advice. She is the one who had given me dreams to

look forward to. Without her, the dream of further contributing my knowledge to the field

of Computer Science would not be realized.

Second, I’d like to thank Samuel Williams, my idol in the field of Computer Science, for

his valuable guidance and patience. Without him, this thesis work would not be possible.

I want to extend my gratitude to my committee member, Rajeev Balasubramonian, for

agreeing to sit on my thesis committee and giving me valuable feedback to polish my thesis

work.

I’d like to thank scientists from Lawrence Berkeley National Laboratory — Leonid

Oliker, Terry Ligocki, Brian Van Straalen, and Matthew Cordery, for their valuable col-

laboration.

Finally, I’d like to thank my parents and my brother, Jesse, for their love and support.

Authors from Lawrence Berkeley National Laboratory were supported by the DOE Office

of Advanced Scientific Computing Research under contract number DE-AC02-05CH11231.

Partial support for this work was provided through the Scientific Discovery through Ad-

vanced Computing (SciDAC) program funded by the U.S. Department of Energy Office

of Advanced Scientific Computing Research under award number DE-SC0006947. This

research used resources of the National Energy Research Scientific Computing Center, which

is supported by the Office of Science of the U.S. Department of Energy under contract

DE-AC02-05CH11231. This research used resources of the Argonne Leadership Computing

Facility, which is supported by the Office of Science of the U.S. Department of Energy under

contract DE-AC02-06CH11357. This research used resources of the Oak Ridge Leadership

Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science

of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725

CHAPTER 1

INTRODUCTION

The growing complexity of high-performance computing architectures makes it difficult

for users to achieve sustained application performance across different architectures. Worse,

quantifying the theoretical performance and the resultant gap between theoretical and

observed performance is becoming increasingly difficult. Without automating performance

data acquisition, performance modeling will continue to require extensive involvement by

one of very few performance experts. As such, performance models and tools that facilitate

this process are crucial. Such performance models need not be complicated, but should be

practical and intuitive. A model should provide upper and lower bounds on performance

for a given computation on a particular target architecture and be suggestive of where

optimization would be profitable. Additionally, the model should provide an indication of

the fundamental bottlenecks and inherent challenges associated with improving a specific

kernel’s performance on the target architecture.

An exemplar of such modeling capability is the Roofline Model [37, 36, 3]. The Roofline

Model combines arithmetic intensity, memory performance, and floating-point performance

together into a two-dimensional graph using bound and bottleneck analysis. However, it is

time consuming and difficult and requires a human to manually analyze an architecture to

determine the machine characteristics needed for populating the Roofline Model. Worse,

even if the machine characteristics can be manually estimated, the real issue is achievable

performance. These theoretical maximums give a developer no guidance as to what opti-

mization is necessary to achieve maximum performance. As such, we wish to automate that

process.

This thesis presents a benchmark-driven Roofline Model Toolkit to automatically and

empirically determine the machine characteristics that are needed to generate the Roofline

graph and do Roofline analysis. The core of the Roofline Model Toolkit is a processor

architecture characterization engine, and a collection of portable instrumented micro bench-

marks. These micro benchmarks are implemented with a Message Passing Interface(MPI)

2

to decompose a domain across multiple processors, and OpenMP to express thread-level

parallelism. In addition, this thesis extends the Roofline formalism to address the emerging

challenges associated with accelerators such as Graphics Processing Units(GPUs). To that

end, we constructed five benchmarks designed to drive empirical Roofline-based analysis.

The first two present the conventional memory hierarchy bandwidth and floating-point

computation aspects of the Roofline Model. The third estimates the parallelization over-

heads. The fourth benchmark is a novel and visually intuitive approach to quantify the

performance relationship between spatial and temporal locality on a CPU or GPU. The

last benchmark is designed to quantify the effective Peripheral Component Interconnect

Express(PCIe) bandwidth and effects of different caching strategies on a GPU. We will

evaluate these benchmarks on four platforms — Edison (Intel Ivy Bridge CPU), Mira (IBM

Blue Gene/Q), Babbage (coprocessor only, Intel MIC Knights Corner), and Titan (GPU

only, Nvidia Tesla K20x), and use the resultant Empirical Roofline Model to analyze three

HPC benchmarks — HPGMG-FV, GTC, and miniDFT.

1.1 Roofline Performance Model

Roofline is an insightful visual performance model that combines arithmetic intensity,

memory performance, and floating-point performance into a two-dimensional graph. This

graph bounds the performance of individual algorithms or entire applications running on

multicore, manycore, or accelerated architectures. Figure 1.1 represents a conventional

Roofline Model. In this section, we define the performance metrics that are used to form a

Roofline Model.

1.1.1 Performance Metrics

Performance metrics measure the different aspects of an algorithm or application perfor-

mance. One can quantify the communication performance by defining the measurement of

the data transfer rate as bytes transferred per second (B/s) or billions of bytes per second

(GB/s). One can also quantify the computational performance by counting the number of

operations. A common performance metric used to determine computational performance

is floating-point operations per second (FLOPs) or billions of floating-point operations per

second (GFLOPs).

1.1.2 Arithmetic Intensity

Arithmetic Intensity is defined as the ratio of the number of floating-point operations

performed to the number of bytes per memory transferred. Take a simple triad as an

3

1e+01

1e+02

1e+03

1e+04

1e-01 1e+00 1e+01 1e+02

A
tta

in
ab

le
 G

Fl
op

s

Arithmetic Intensity (Flops/Bytes)

Roofline Model

Peak Floating-Point Performance

Peak Memory Bandwidth

Figure 1.1. A conventional Roofline Model: the two lines intersect at the machine balance.

example. A triad kernel (a[i] = b[i] + scalar * c[i]) requires arithmetic intensity of 0.0625

(2N Flops / 32N bytes) which is lower than the conventional wisdom design point of 1 Flop

per byte. One could estimate the theoretical arithmetic intensity of a certain application

by hand or by automatic and static analysis at compile time. Another approach is to use

performance counters to acquire the performance of the application on a given machine

at runtime. Runtime data collection is the easiest way to calculate total memory traffic.

However, the limitations of performance counters might not give us detailed and accurate

runtime data. Figure 1.2 presents the Arithmetic Intensity of HPC kernels.

1.1.3 Basic Roofline Model

Equation 1.1 bounds attainable architectural performance. Figure 1.1 plots Equation 1.1

on a log10-log10 scale.

GFlops = min

{
Peak GFlops

Memory Bandwidth × Arithmetic Intensity
(1.1)

This formula drives the two performance limits — peak floating-point performance,

and peak memory bandwidth. The two ceilings could be used to determine application

performance characteristics and to guide which optimization strategies to perform. Beyond

estimating application performance bottlenecks, this model could be used to evaluate the

parallelism and cache locality issues within a single Roofline Model.

4

Sp
M

V
B

L
A

S
1

,2

Arithmetic Intensity

Sten
cils (P

D
E

s)

L
a

ttice

B
o

ltzm
a

n
n

F
F

T
s,

Sp
ectra

l M
eth

o
d

s

D
ense L

in
ear

A
lg

e
b

ra
 (B

L
A

S
3

)

P
article M

eth
o

d
s

(N
b

o
d

y)

O(1) O(log(n))O(log(n)) O(n)

< 1 flops per byte < 2 flops per byte O(10) flops per byte

Figure 1.2. Arithmetic Intensity in HPC.

1.2 Empirical Roofline Toolkit Overview

The Empirical Roofline Toolkit is a downloadable set of tools that anyone can use

to help application development and optimization by getting machine and application

performance/characteristics, and a completed Roofline Model graph to do Roofline analysis

(a beta-release of the Empirical Roofline Tool, ERT, is in Lawrence Berkeley National

Laboratory [19]). A high-level description of toolkit structure and functional components

is shown in Figure 1.3. The three primary parts of this toolkit are described here.

• Architecture Characterization Engine:

Pre-run

Source Codes

Executables

Architecture
Characterization Engine

Performance Bound
Static Analysis

Runtime Performance
Measurement

Database
Graphical Analysis

Interface

Inputs

Runtime Post-run

Architecture
characteristics

estimation

Program
characteristics

collections

Figure 1.3. Overview of the Empirical Roofline Toolkit.

5

The architecture characterization engine, a collection of portable instrumented micro

benchmarks running on the target architecture, can be used to determine machine charac-

teristics and performance. Each micro benchmark is specialized to highlight the multicore,

manycore, and accelerated architecture features. This thesis focuses on this part. Our

benchmark-driven Roofline Model Toolkit will be integrated into this engine.

• Program Performance Analysis:

There are two primary components for the program performance analysis — performance

bound static analysis and runtime performance measurement. The goal here is to describe

the position within the Roofline landscape correlated with the program call stack. For

performance bound static analysis, there is an existing tool — PBound (a tool based on

the ROSE compiler infrastructure), which was created at Argonne [28]. PBound can gather

performance-relevant data by examining the source code of an application, and can be used

for computing realistic, parameterized performance estimates based on source analysis and

transformation.

In combination with empirical performance data obtained as described here and ar-

chitecture characteristics produced by the architecture characterization engine in part 1,

this approach can construct a predictive performance model that can be used to gauge an

algorithm’s performance given different types of potential future architecture configurations

and to gain valuable insight into different aspects of software optimization strategies.

• Query Database and Graphical User Interface:

The database query system will be augmented to support all kinds of queries required

for the Roofline analysis. For advanced users, rapid evaluation and diagnosis of an appli-

cation can be done programmatically by using the API to interact with the performance

database. These queries can be shared across many applications. There will be a graphical

user interface to this query system. The interface can be used to present the resultant

performance model graphically and relate performance back to their source code. This will

allow analysis artifacts to be stored and retrieved from the database, helping a user evaluate

and diagnose application performance on the target machine.

1.3 Thesis Contributions

The following are the primary contributions of the thesis.

• We have created Roofline Benchmarks that can be used to capture the attainable

bandwidth and floating-point performance of each level of the memory hierarchy,

6

along with thread-, instruction- and data-level parallelism. We have also created

benchmarks to evaluate parallelism, locality issues, and software managed cache tech-

nologies in CUDA to provide in-depth characterization of the memory subsystems.

• We have developed an architectural characterization engine. This can be used both to

provide the achievable performance and its resultant gap between reality and theory on

current architectures, and also to predict performance on potential new architectures,

enabling informed algorithm design and implementation.

• Finally, we use the toolkit to benchmark four leading HPC systems: Edison, Mira,

Babbage, and Titan. Edison’s Empirical Roofline Model, with sufficient parallelism, is

very close to its theoretical model. Conversely, we see substantial differences between

theory and reality on other architectures.

1.4 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 discusses related work. Chapter

3 discusses two basic benchmark designs, experimental setup, and Empirical Roofline Model

construction. The benchmark discussion includes our design principle and functionality

description. The experimental setup includes the description of four leading HPC platforms

as well as details of programming models, compilers, and execution methodology. Chapter

4 extends the basic Empirical Roofline Model by adding performance ceilings as well as

describing advanced benchmarks. These benchmarks can be used to evaluate various

performance issues and perform sensitivity analysis in which we examine the impact on

effective bandwidth and in-core performance. Chapter 5 discusses GPU benchmarking to

provide an in-depth understanding of a GPU’s memory subsystems. Chapter 6 integrates

the performance results from three HPC applications and analyzes them using the Empirical

Roofline Model. Finally, Chapter 7 concludes this thesis with a summary of contributions

and ideas for possible future work.

CHAPTER 2

RELATED WORK

Performance modeling and benchmarking has put enormous effort in the area of perfor-

mance analysis and optimization. This research area can be divided into two key subareas

— architecture performance analysis and prediction, in which one wishes to understand

achievable performance on an existing machine and predict the performance of a future

architecture, and application performance analysis and prediction, in which one attempts

to predict and analyze the application performance on a target architecture. The work

presented in this thesis is focused on understanding a machine’s achievable performance,

and analyzing an application within the resultant architectural performance model.

The architecture community has developed software simulators to predict performance

for potential architectures before a real machine is built. However, simulators only provide

theoretical numbers that offer no insights into architecture capability and productivity. To

rectify this, one could use accurate performance counters to provide information as to how

well the machine and application is performing [29]. However, performance collection from a

real machine only provides a flood of data, and performance data accuracy should be verified.

Hence, in this thesis, we analyze hardware performance by creating a series of benchmarks

to address the need of quantifying achievable performance and reliable performance data.

The following section presents related research on performance modeling and bench-

marking, and compares the differences with our approaches.

2.1 Performance Modeling

A performance model can provide a path to understand the past and current trend as well

as predict the future trend to show you whether you are trending toward or away from the

performance objects. Parallel random-access machine (PRAM), a shared memory abstract

machine, is an exemplar of parallel computation models [30, 24]. PRAM can be used to

model sequential and parallel algorithmic performance. Algorithm cost is estimated by using

two parameters, O(time) and O(time×number of processor). However, this model neglects

8

memory access latency, synchronization, or communication issues, and cannot reflect the

trends underlying parallel computers. To rectify this, Culler, et al. proposed a parallel

machine model, LogP [14], for quick prototyping and developing fast, portable parallel

algorithms and offering guidelines to architecture designers. LogP is described by four

parameters: L (communication latency), o (overhead of sending and receiving message),

g (processor to processor bandwidth), and P (the number of processing units). However,

LogP is still not simple and intuitive for users. Williams, et al. proposed a higher-level

abstraction, the Roofline Model [37, 36, 3]. This visually-intuitive performance model can

be used to bound the performance of various numerical methods and operations running

on multicore, manycore, or accelerated architectures. This thesis is based on the Roofline

Model.

2.2 Performance Analysis Tool

Performance modeling cannot be accurate without actual performance statistics. To

measure and analyze program performance, one could use HPCToolkit that collects accurate

measurements of a program’s work and resource consumption [22]. Alternatively, one could

choose Tuning and Analysis Utilities (TAU) that is capable of gathering performance infor-

mation through instrumentation of functions, statements, and event-based sampling [34].

Both support access to hardware performance counters using PAPI (Performance Applica-

tion Programming Interface [29]). One can also choose Vampir to diagnose the application

performance [35]. Vampir is able to collect aggregated performance information on total

processors and threads or per process/thread. This can also be used to profile and trace

an application. These tools help to highlight inefficient parts of code. User may find these

tools are useful to understand their program performance.

Although these tools can identify which part of an application is inefficient, they cannot

provide insights into different aspects of software optimization strategies. As such, com-

bined with the bounds gained from the theoretical Roofline Model, this thesis proposes a

benchmark-driven Roofline Model Toolkit to determine machine characteristics and address

the need of understanding application performance on target architectures.

2.3 Benchmarking

STREAM (included in the HPC Challenge Benchmark (HPCC)) is a simple and popular

benchmark that is used to measure data movement [31]. Typically, it measures the data

movement between DRAM and the cache hierarchy and is structured as a streaming memory

accesses. The STREAM benchmark has become the de-facto solution for benchmarking the

9

ultimate DRAM bandwidth of a multicore processor. STREAM uses OpenMP threads

and will perform a series of experiments designed to quantify the memory subsystem’s

performance as a function of common array operations, such as copy, add, and triad. Un-

fortunately, all these operations write to the destination array without reading it. As such,

the hidden data movement necessitated by a write-allocate operation effectively impedes the

bandwidth. Today’s instruction set architectures (ISA) often provide a means of bypassing

this write allocate operation. Unfortunately, it is rare for a compiler to generate this

operation appropriately on real applications. As such, we are motivated to augment stream

with read-only (sum or dot product) or read-modify-write (increment) benchmarks in order

to cleanly quantify this hidden data movement.

When DRAM bandwidth no longer dominates the computation, cache bandwidth often

becomes the bottleneck to on-node application performance. CacheBench part of LLCBench

(Low Level Architectural Characterization Benchmark Suite) can be used to understand the

capacities and bandwidths of the cache hierarchy [26]. Unfortunately, CacheBench is not

threaded with OpenMP or parallelized with MPI. As such, it cannot measure contention at

any level of the cache hierarchy (including DRAM like STREAM), nor can it provide the

attainable machine limit at each level of memory hierarchy. Rather than taking this purely

empirical approach, one can, with sufficient documentation, create an analytical model of

the cache hierarchy using the Execution Cache Memory model [21]. This analytic model is

based on the assumptions that single core execution time is composed of in-core execution

and data transfers in the memory hierarchy. Then it scales single-thread performance by

adding cores until the first bottleneck is reached to model latency effect.

Both the STREAM and LLCBench benchmarks are structered as pure data streaming

accesses and hardware stream prefetchers can often speculate the cache line to hide mem-

ory latency. The performance of these prefetchers is highly dependent on architectures.

It has been observed that bandwidth is highly correlated with the number of elements

accessed contiguously [25]. Short “stanzas” of memory access see substantially degraded

performance. Stanza Triad was created to quantify this effect [15]. Unfortunately, it is not

threaded. As such, it cannot identify when one has transitioned from a concurrency-limited

regime to a throughput-limited regime when running on multicore processors.

To provide a more in-depth understanding of memory subsystem performance, several

benchmarks for measuring the memory performance of HPC systems along dimensions of

spatial and temporal locality have been proposed. Apex-MAP is a synthetic benchmark that

directly tackles the locality concept by performing data movement operations in accordance

10

with parameterized degrees of spatial and temporal locality [32, 33, 1]. The guiding principle

in the design of Apex-MAP is to characterize the performance behavior of a scientific

application by using a small set of performance factors — regularity, data set size, spatial

locality, and temporal locality. However, this benchmark does not consider the influence of

synchronization in an application.

Synchronization can be the key factor of overhead in all parallel architectures. The

EPCC OpenMP micro benchmark suite is perhaps the de-facto solution for benchmarking

OpenMP overheads [18, 5, 6]. However, the OpenMP barrier time estimation does not

accurately eliminate the effect of creating an OpenMP parallel region, and EPCC is only

designed to quantify the OpenMP parallelism issues in a CPU. As such, we are motivated

to design a parallelization overhead benchmark that could quantify the synchronization and

parallel region launching time in multicore, manycore, and accelerated architectures. One

can also use the CLOMP benchmark to characterize the aspect of OpenMP implementa-

tions [4]. CLOMP complements the EPCC benchmark suite to provide simple measurements

of OpenMP overheads in the context of real application scenarios.

Accelerated architectures have been typically used as an accelerator with dedicated

memory attached to a conventional system through a PCIe or similar bus. The performance

might be dominated by the data transfer between GPU and CPU over the PCIe. One could

measure the PCIe bandwidth by using the OpenCL PCIe bandwidth test, or other scientific

applications [7]. However, these benchmarks do not analyze the importance of locality

on accelerated architectures like GPUs, and do not quantify the benefits of the emerging

software managed cache technologies in CUDA.

Perhaps the most similar work to ours is encapsulated in the benchmarks used to drive

the Energy Roofline Model [8]. In that work, a series of experiments were constructed

that vary arithmetic intensity to understand the architectural response in terms of both

performance and power. When combined with a cache benchmark, one can infer the energy

requirements for various computational and data movement operations. Whereas their goal

was focused heavily on power and energy, we are focused on performance.

CHAPTER 3

EMPIRICAL ROOFLINE MODEL

In this chapter, we create bandwidth and floating-point benchmarks as primary motiva-

tors to construct a basic Empirical Roofline Performance Model. Section 3.1 and Section 3.2

discuss the bandwidth benchmark and floating-point benchmark design philosophy. Then

we discuss the four leading HPC platforms evaluated in this thesis. Benchmarking results

and analysis are presented in Section 3.4. Then Section 3.5 synthesizes bandwidth and

floating-point performance results into a two-dimensional performance graph using bound

and bottleneck analysis — a basic Empirical Roofline Performance Model. Finally, we

summarize the chapter in Section 3.6.

3.1 Memory and Cache Bandwidth

The peak performance and the throughput of a processor have increased significantly

over the last couple decades. However, bandwidth and data movement are still the paramount

performance bottleneck on scientific applications. Unfortunately, as discussed in the related

work, most existing benchmarks fail to proxy the contention, locality, or execution envi-

ronment associated with real applications. To rectify this, we have created a Roofline

Bandwidth Benchmark that uses a hybrid MPI+OpenMP model to explore bandwidths

across all scales. We also created a CUDA bandwidth benchmark to address the need of

getting achievable bandwidth in the sophisticated GPU’s memory subsystem.

3.1.1 Bandwidth Code

We use a hybrid MPI+OpenMP model to create this benchmark. Thus, developers

could proxy a flat MPI model or run in hybrid mode to understand the performance on

NUMA architectures. Rather than using the work-share construct, the Roofline Bandwidth

driver (Fig. 3.1 (bottom right)) creates a single parallel region and statically assigns threads

to a range of array indices. All initialization, synchronization, and computation take place

within this parallel region.

12

Like CacheBench, the bandwidth computation kernel (Fig. 3.1 (upper right)) is designed

to quantify the available bandwidth at each level of the memory hierarchy using a simple

unit-stride streaming memory access pattern. However, unlike CacheBench, it includes

the effects of contention arising from thread parallelism and finite Network-on-Chip(NoC)

bandwidth. In that regime, it is similar to STREAM code (Fig. 3.1 (left)) which uses the

OpenMP work-share constructs to split loop iterations across multiple threads. Unfortu-

nately, STREAM code writes to the destination array without reading it. As such, the

hidden data movement necessitated by a write-allocate operation effectively impedes the

performance. To that end, we used a simple array increment kernel that can read and write

to the same destination.

The benchmark may thus be used to quantify the capacity of each level of the memory

hierarchy as well as the bandwidths between levels. Moreover, by adjusting the parameters,

one can estimate the overhead for an MPI or OpenMP barrier. As the benchmark is

MPI+OpenMP, one can explore these bandwidths and overheads across all scales.

void STREAM(TYPE scalar){

ssize_t j;

#pragma omp parallel for

for (j = 0; j <SIZE; j++)

B[j] = scalar * A[j];

}

int main() {

scalar = 3.0;

for (k = 0; k < TIMES; k++) {

// start timer here

STREAM(scalar);

// stop timer here

}

}

void KERNEL(uint64_t size, uint64_t trials,

double * __restrict__ A){

double alpha = 0.5;

uint64_t i, j;

for (j = 0; j < trials; ++j) {

for (i = 0; i < size; ++i) {

A[i] = A[i] + alpha;

}

alpha = alpha * (1-1e-8);

}}

int main() {

...

#pragma omp parallel private(id)

{

uint64_t n, t;

initialize(&A[nid]);

for (n = 16; n < SIZE; n *= 1.1) {

for (t = 1; t < TRIALS; t *= 2) {

// start timer here

KERNEL(n, t, &A[nid]);

// stop timer here

#pragma omp barrier

#pragma omp master

{

MPI_Barrier(MPI_COMM_WORLD);

}

double bytes = 2 * sizeof(double) *

(double)n * (double)t;

}}}}

Figure 3.1. Bandwidth code comparison. (left) STREAM facsimile. (right) Roofline
Bandwidth Benchmark.

13

3.1.2 Specialized CUDA Bandwidth Kernel

For many developers, the most difficult part of creating a high-performance application

that leverages GPUs is managing the bandwidth bottleneck of different types of memory.

To help programmers better understand the GPU’s memory subsystem, we have created a

CUDA’s bandwidth benchmark to provide the achievable bandwidth of different types of

GPU memory.

We found it illustrative to run three slightly different kernels designed to quantify

the effects of explicit and implicit reuse within the GPUs memory hierarchy. Both Ker-

nel global trialInside (global tInside on Fig. 3.2) and Kernel global trialOutside

(global tOutside) use global memory, but with the trials loop inside and outside the

CUDA kernel call, respectively. Kernel sharedMem copies global memory data to shared

memory, performs a trials loop inside the kernel, and copies back to global memory. The

CUDA kernels block-stride loop over a one-dimensional array to guarantee memory coalesc-

ing.

3.2 Floating-Point Compute Capability

Although many applications are limited by memory bandwidth, on-chip computation

and in-core performance are also important aspects of performance on scientific applications.

The common features of high-performance architectures are deep pipelines, significant

instruction-level and data-level parallelism, and sophisticated branch prediction schemes.

Compilers claim to be capable of performing low-level optimizations on these architectures.

Hence, we are motivated to create a floating-point benchmark to attain the flops limit with

dim3 gpuThreads(64);

dim3 gpuBlocks(224);

#if defined (GLOBAL_TRIAL_INSIDE)

global_trialInside <<<gpuBlocks, gpuThreads>>> (nsize, trials, d_buf);

#elif defined(GLOBAL_TRIAL_OUTSIDE)

for (uint64_t t = 0; t < trials; ++t) {

global_trialOutside <<<gpuBlocks, gpuThreads>>> (nsize, d_buf, alpha);

alpha = alpha * (1 1e-8);

}

#else

sharedMem <<<gpuBlocks, gpuThreads>>> (nsize, trials, d_buf);

#endif

Figure 3.2. CUDA bandwidth computation kernel.

14

compilers’ aggressive optimization.

The floating-point computation kernel modified from the bandwidth benchmark uses

a processor macro to vary the degree of the polynomial. Doing so allows one to change

the balance between loads/stores and floating-point operations from L1-limited to flops-

limited. Figure 3.3 presents an example of this benchmark. As one can see, the degree

of parallelism per thread in this routine is O(nsize). An in-order processor would deliver

performance limited by the floating-point latency if the compiler failed to sufficiently unroll

and reorder. Hence, a compiler could unroll this loop to hide floating-point latency and

express instruction-level parallelism to avoid bubbles in the pipeline and/or SIMDize the

unrolled code to exploit data-level parallelism. Alternately, an out-of-order processor, with

a sufficiently deep reorder buffer, could find the inherent instruction-level parallelism and

attain high performance.

3.3 Experimental Setup

The diversity of existing and emerging hardware and programming models makes con-

struction of generalized benchmarks particularly difficult. This section provides the back-

ground materials on four leading HPC platforms and programming models used throughout

this work. In Section 3.3.1, we discuss the four fundamentally different architectures —

a conventional superscalar out-of-order Intel Xeon multicore processor (Edison), a low-

power dual-issue in-order IBM Blue Gene/Q multicore processor (Mira), a high-performance

in-order Intel Xeon Phi manycore processor (Babbage), and a high-performance NVIDIA

Kepler K20x GPU accelerated system (Titan) used for benchmarking. Section 3.3.2 and

void KERNEL(uint64_t size, uint64_t trials, double * __restrict__ A) {

for (j = 0; j < trials; ++j) {

for (i = 0; i < nsize; ++i) {

double beta = 0.8;

#if FLOPPERITER == 2

beta = beta * A[i] + alpha;

#elif FLOPPERITER == 4

beta = beta * A[i] + alpha;

beta = beta * A[i] + alpha;

#elif FLOPPERITER == 8

...

#endif

A[i] = beta;

}

alpha = alpha * (1 - 1e-8);

}

Figure 3.3. Roofline Floating-Point Benchmark

15

Section 3.3.3 provide some background on programming models and compilation options,

and execution on our selected platforms.

3.3.1 Architectural Platforms

In this thesis, we used four HPC platforms as a testbed for our benchmarking ex-

periments. We believe that benchmarking these four leading HPC systems can help the

scientific community that uses these systems throughout their work. Figure 3.4 illustrates

the memory subsystems for the four platforms.

• Edison (Intel Ivy Bridge Multicore Processor):

Edison is an MPP at NERSC [17]. Each node includes two 12-core Xeon E5 2695-V2

processors nominally clocked at 2.4GHz (TurboBoost can increase this substantially). Each

core is a superscalar, out-of-order, 2-way HyperThreaded core capable of performing two

1600 MHz DDR3
DIMM (x4)

1600 MHz DDR3
DIMM (x4)

Q
P

I
co

n
n

e
ct

io
n

s

64
 K

B
 L

1
25

6K
B

 L
2

C
o

re
 P

#0

30MB L3

64
 K

B
 L

1
25

6K
B

 L
2

C
o

re
 P

#1

...

...
...

64
 K

B
 L

1
25

6K
B

 L
2

C
o

re
 P

#1
1

Socket P#1Socket P#0

64
 K

B
 L

1
25

6K
B

 L
2

C
o

re
 P

#0

30MB L3

64
 K

B
 L

1
25

6K
B

 L
2

C
o

re
 P

#1

...

...
...

64
 K

B
 L

1
25

6K
B

 L
2

C
o

re
 P

#1
1

x4 x4

(a)

DDR3

crossboar

P
CIe

Exp
ress

5D Torus
Network

DMA

DDR3 Controller

Core P#16

32KB L1

Core P#0 Core P#1 ... Core P#15

32KB L1 32KB L1 32KB L1 32KB L1

2MB L2 ... L2 Cache2MB L2

DDR3 Controller

DDR3

(b)

PCIe
Client
Logic 512KB L2

64 KB L1
Core P#0

...

...

...

512KB L2

64 KB L1
P#29

Tag Dir
Tag Dir Tag Dir Tag DirGDDR MC

GDDR MC Tag Dir Tag Dir

512KB L2

64 KB L1
P#59

...

...

...

512KB L2

64 KB L1
P#30

GDDR MC

GDDR MC

(c)

Register File (65536 x 32 bit)

Interconnect Network

Threads Cluster Threads Cluster

64 KB Shared / L1 Cache

48 KB Read-Only Data Cache

Tex x4 Tex x4 Tex x4 Tex x4

Warp
Dispatch

x2

Instruction Cache

Warp Warp Warp
Dispatch

x2
Dispatch

x2
Dispatch

x2

SMX #0

PCI Express 3.0 Host Interface

L2 Cache

PCI Express 3.0 Host Interface

Giga Thread Engine

M
em

o
ry C

o
n

tro
lle

r

(d)

Figure 3.4. Architecture layouts for four platforms. (a) Edison. (b) Mira. (c) Babbage
(MIC only). (d) Titan (GPU only).

16

four-way AVX SIMD instructions (add and multiply) per cycle in addition to loads and

stores. Each core has a private 32KB L1 data cache and a private 256KB L2 cache. The

12 cores on a chip share a 30MB L3 cache and a memory controller connected to four

DDR3-1600 DIMMs. The 2 sockets are connected by quick path interconnections. Extensive

stream prefetchers are designed to saturate bandwidth at each level of the cache hierarchy.

Theoretically, the superscalar and out-of-order nature of this processor should reduce the

need for optimized software and compiler optimization. Among the four architectures,

Edison is the only out-of-order 2-socket processor and delivers the highest clock rate.

• Mira (IBM Blue Gene/Q Multicore Processor):

Mira is an IBM Blue Gene/Q system installed at Argonne National Lab [11]. Each

node includes one 16-core BGQ SOC. Each of the 16 A2 cores is a four-way SMT dual-issue

in-order core capable of performing one ALU/Load/Store instruction and one four-way

FMA per cycle. However, to attain this throughput rate, one must run at least two threads

per core. Each core has a private 16KB data cache and the 16 cores share a 32MB L2 cache

connected by a crossbar. Ideally, the SMT nature of this architecture should hide much of

the effects of large instruction and cache latencies. However, the dual-issue nature of the

processor can impede performance when integer instructions are a significant fraction of the

dynamic instruction mix.

• Babbage (Intel Xeon Phi Knights Corner (KNC) Manycore coprocessor):

Babbage is a Knights Corner (KNC) Manycore Integrated Core (MIC) testbed at NERSC [2,

10]. The KNC processor includes 60 dual-issue in-order four-way HyperThreaded cores.

Each core includes a 32KB L1 data cache, a 512KB L2 cache, and an 8-way vector unit.

L2 caches are conneted by a bidirectional ring interconnect. Although L2 caches are

coherent, the ring NoC topology coupled with the coherency mechanism may impede

performance. Unlike the aforementioned multicore processors, this manycore processor

uses very high-speed GDDR memory which provides a theoretical pin bandwidth of over

350GB/s. To proxy the future Knights Landing (KNL) MIC processor that will form the

heart of the NERSC8 Supercomputer Cori [9], we conduct all experiments in “native” mode.

As such, the host processor, the host memory, and the PCIe connection are not exercised.

• Titan (Nvidia K20 GPU):

Titan is a Cray accelerated MPP system at the Oak Ridge National Lab. Each node

includes a 16-core AMD Interlagos CPU processor and one NVIDIA K20x GPU [12]. Each

17

GPU includes 14 streaming multiprocessors (SMX) each of which can schedule 256 32-thread

warps and issue them four at a time to their 192 CUDA cores. Each SMX has a 256KB

register file, a 64KB SRAM that can be partitioned into L1 cache, and shared memory

(scratchpad) segments. Each chip includes a 1.5MB L2 cache shared among the SMX and is

connected to high-speed GDDR5 memory with a pin bandwidth of 232GB/s. Unfortunately,

software on the production system Titan tends to lag behind NVIDIA releases. As such,

we used a similar K20xm within the Dirac testbed at NERSC [16] to evaluate the CUDA

unified virtual address and Unified (managed) Memory. For our purposes, the K20x and

K20xm GPUs are identical.

Table 3.1 summarizes the key architectural characteristics of these platforms. Please

note that the peak GFlop/s and bandwidths shown are theoretical.

3.3.2 Programming Models and Compilation

In this section, we provide the compiler flags that were used on different platforms

(Table 3.2). Note that the table only provides the best performing compiler and compiler

options for each architecture in our benchmark experiments. Nominally, all our codes are

(MPI+)OpenMP or (MPI+)CUDA. Although for the most part compilation is straightfor-

ward, there are some variations across the three compilers.

First, Edison and Babbage both use the Intel C compiler. However, as MIC is run

in native mode, it requires the “-mmic” option while Edison is compiled with “-xAVX”.

The Intel and IBM compilers enable OpenMP differently. On the Intel platforms, one

uses “-openmp” while on XL/C, one uses “-qsmp=omp:noauto”. To instruct the compilers

that there is no aliasing, we use the “-fno-fnalias” and “-qalias=ansi:allptrs” flags on the

Intel and IBM compilers, respectively. Finally, it should be noted that depending on the

Table 3.1. Architectural characteristics of four evaluation platforms. 1One GPU per node.
2CUDA cores. 3 without TurboBoost.

Platform Edison Mira Babbage Titan

MPU Intel Xeon IBM Xeon Phi Nvidia
E5-2695v2 BGQ KNC K20x

Clock rate (GHz) 2.4 1.6 1.053 0.732

Processors per Node 2 1 1 11

Cores per Processor 12 16 60 26882

Total Threads 48 64 240 28672

Peak GFlops 460.83 204.8 1011 1310

L1 Bandwidth (GB/s) 1843 819.2 4043 1310

DRAM Pin Bandwidth (GB/s) 102.6 42.66 352 232.46

18

Table 3.2. Compilation flags for each platform.

Platform Compiler Flags

Edison Intel C -O3 -xAVX -openmp -fno-alias -fno-fnalias

Mira IBM XL/C -O5 -qsimd=auto -qalias=ansi:allptrs -qsmp=omp:noauto

Babbage Intel C -O3 -mmic -fno-alias -fno-fnalias -liomp5

Titan Nvidia CC -O3 -arch=sm 35 -lcudart

benchmark and platform, we either use CUDA 5 (Titan) or CUDA 6 (Dirac). The NVIDIA

compiler requires that one specify the “-arch=sm 35 ” flag to build the benchmark for the

K20x series.

3.3.3 Benchmark Execution

Unlike simple desktop systems, the MPP supercomputers at NERSC, ALCF, and OLCF

might launch jobs from one node and run them on another set of nodes. As such, the

benchmark application launch routines vary somewhat from one platform to the next.

Table 3.3 shows the relevant options used in our experiments.

On Edison, the Cray system at NERSC, one uses the aprun command to run programs

on the compute nodes. To that end, we run the benchmark using two MPI tasks and bind

each to one NUMA node with strict memory containment via the “-S 1 -ss -cc numa node”

options. On Mira, we evaluate both a fully threaded and a hybrid mode of 4 processes of

16 threads. We recommend “BG THREADLAYOUT=1” to balance these threads within

cores (scatter affinity) if the total MPI process * OpenMP threads is smaller than 64. On

Babbage, which uses the Intel MPI implementation, one uses the “-ppn” option to control

the number of MPI tasks per card and the “-n” option to control the total number of MPI

tasks. Unlike Edison where aprun controls affinity, one must use the “KMP AFFINITY”

environment variable on Babbage. We set it to “balanced” to distribute threads across the

chip if the total MPI process * OpenMP threads is smaller than 240. On Titan, we once

again use the aprun options. However, as we do not use the CPU cores, there was no need

to control CPU thread affinity or NUMA bindings.

3.4 Benchmarking Results

This section discusses results gained from the two benchmarks running on the four

platforms described in Section 3.3.

19

Table 3.3. Execution mode for each platform.

Platform Application Execution command

Edison aprun -n 2 -d 12 -N 2 -S 1 -ss -cc numa node [benchmark]

Mira qsub -n 1 –proccount 1 –mode c1 –
env BG SMP FAST WAKEUP=YES:
BG THREADLAYOUT=1: OMP PROC BIND=TRUE:
OMP NUM THREADS=64: OMP WAIT POLICY=active
[benchmark]

Babbage mpirun.mic -n 1 -ppn 1 [benchmark]

Titan aprun -n 1 [benchmark]

3.4.1 Bandwidth Results

Figure 3.5 presents the results of our Roofline Bandwidth Benchmark running on our four

platforms. Note, the x-axis represents the total working set summed across all concurrent

units of execution. The blue line marks the theoretical bandwidth and capacities for each

level of the memory hierarchy. On the CPU architectures, the red line presents resultant

bandwidth.

On Edison, we run two processes per node (launch two MPI tasks), while all other

machines run with a single process. We observe that the hardware is capable of achieving

its theoretical performance at each level of the cache hierarchy. The only exception is that

Edison fails to attain the DRAM pin bandwidth. This is not surprising since few machines

can have such high bandwidth and ever attain the pin bandwidth. Moreover, although

the read-modify-write memory access pattern performs at higher bandwidth than read-only

memory, it may be still suboptimal for this architecture. We can also observe that the

transitions are at expected cache capacities. The smooth transitions in bandwidth at cache

capacities suggest that the cache replacement policy may not be a true LRU or FIFO but

a pseudo variant.

The performance on Mira was consistently below the theoretical bandwidth limits and

the transitions seemed to indicate reduced effective cache capacities. The cache replacement

policy obtained from BGQ’s technical specification is LRU. The particularly surprising low

L1 bandwidth may indicate the presence of a write-through or store-through L1 architecture.

On the highly-multithreaded MIC (Babbage), we found it was necessary to operate on

working sets exceeding 1 MB (over 4KB per thread) in order to obtain good performance.

As the architecture can load 64 bytes per cycle, it is not unreasonable to think 64 loads

were necessary to amortize any loop overheads within the benchmark. For smaller working

sets, performance was degraded, indicating an underutilization of resources. Generally

20

1e+01

1e+02

1e+03

1e+04

1e+03 1e+04 1e+05 1e+06 1e+07 1e+08 1e+09

T
ot

al
 B

an
dw

id
th

 (
G

B
/s

)

Working Set Size (bytes)

Maximum Bandwidth Measurements, Edison

empirial bandwidth
theoretical bandwidth

(a)

1e+01

1e+02

1e+03

1e+04

1e+03 1e+04 1e+05 1e+06 1e+07 1e+08 1e+09

T
ot

al
 B

an
dw

id
th

 (
G

B
/s

)

Working Set Size (bytes)

Maximum Bandwidth Measurements, Mira

empirial bandwidth
theoretical bandwidth

(b)

1e+01

1e+02

1e+03

1e+04

1e+03 1e+04 1e+05 1e+06 1e+07 1e+08 1e+09

T
ot

al
 B

an
dw

id
th

 (
G

B
/s

)

Working Set Size (bytes)

Maximum Bandwidth Measurements, Babbage

empirial bandwidth
theoretical bandwidth

(c)

1e+00

1e+01

1e+02

1e+03

1e+04

1e+03 1e+04 1e+05 1e+06 1e+07 1e+08 1e+09

T
ot

al
 B

an
dw

id
th

 (
G

B
/s

)

Working Set Size (bytes)

Maximum Bandwidth Measurements, Titan

theoretical bandwidth
global_tInside(64, 224)
global_tInside(32, 224)

global_tOutside(64, 224)
global_tOutside(32, 224)

sharemem(64, 224)
sharemem(32, 224)

(d)

Figure 3.5. Roofline Bandwidth Benchmark results on our four platforms. Please note the
log-log scale. On the GPU, the syntax is Kernel(# threads per thread block, # of thread
blocks per kernel). (a) Edison. (b) Mira. (c) Babbage (MIC only). (d) Titan (GPU only).

speaking, the benchmark correctly identified the L1 and L2 cache capacities, but the

attained bandwidths were far less than the theoretical number. Low L2 bandwidth can be

attributed to the lack of an L2 stream prefetcher like on Edison and Mira. If the compiler

fails to insert software prefetches perfectly, memory latency will be exposed. Conversely,

low DRAM bandwidth is a known issue on this machine and requires hardware solutions

to rectify. On the highly-multithreaded MIC (Babbage), we found it was necessary to

operate on working sets exceeding 1 MB (over 4KB per thread) in order to obtain good

performance. As the architecture can load 64 bytes per cycle, it is not unreasonable to

think 64 loads were necessary to amortize any loop overheads within the benchmark. For

smaller working sets, performance was degraded, indicating an underutilization of resources.

21

Generally speaking, the benchmark correctly identified the L1 and L2 cache capacities, but

the attained bandwidths were far less than the theoretical number. Low L2 bandwidth can

be attributed to the lack of an L2 stream prefetcher like on Edison and Mira. If the compiler

fails to insert software prefetches perfectly, memory latency will be exposed. Conversely,

low DRAM bandwidth is a known issue on this machine and requires hardware solutions to

rectify.

On Titan, “global trialOutside” is perhaps the most similar to the CPU implemen-

tations. The entire working set is parallelized across thread blocks and the summation

(reuse) occurs at the CUDA kernel level. That is, there is one kernel call per iteration of

the geometric sum. We explore performance as a function of the thread block size (32 or

64) with a constant 224 thread blocks. As on Babbage, we see substantial underutilization

coupled with large CUDA kernel overheads at small working set sizes, but performance

eventually saturates at the DRAM limit, although this is well below the theoretical pin

bandwidth. “global trialInside” restructures the summation loop to increase locality within

a thread block and as such, exercises the L1 cache for the per thread-block working set

(note, there are 7168 or 14336 threads in all). We see much better performance at the small

scale (fewer CUDA kernel calls) and performance can hit the L1 and L2 limits before settling

at the DRAM limit. Finally, “sharedMem” restructures the loop once again and exploits

shared memory in a blocked manner. As such, it can reach the theoretical performance

limit of about 1.3TB/s for shared memory.

Overall, the trends in bandwidth performance on manycore and accelerators are a little

disturbing. That is, the only way to get high performance is with massive parallelism

on large working sets. For real applications, this observation will make it difficult to use

accelerators or manycore processors to solve existing problems faster. Rather, one will

be able to run larger problems in comparable time. Nevertheless, this benchmark can be

used to help guide programmers as to when it will be viable to migrate to a manycore or

accelerated architecture.

3.4.2 Floating-Point Performance

Figure 3.6 presents the floating-point performance as a function of L1 Arithmetic In-

tensity expressed as Flops per Element (FPE) — essentially the degrees of the FPE. The

blue line marks the microarchitecture performance model that takes into account the issue

rate of loads/stores compared to floating-point instructions given the mix demanded by

the kernel. We run the GFlops benchmark with different degree of FPE until reaching the

theoretical peak performance.

22

1e+01

1e+02

1e+03

1e+04

1e+00 1e+01 1e+02 1e+03

T
ot

al
 G

F
lo

ps

Flops per element

Maximum GFlops Measurements, Edison

theoretical gflops
c-code gflops

(a)

1e+01

1e+02

1e+03

1e+04

1e+00 1e+01 1e+02 1e+03

T
ot

al
 G

F
lo

ps

Flops per element

Maximum GFlops Measurements, Mira

theoretical gflops
c-code gflops

(b)

1e+01

1e+02

1e+03

1e+04

1e+00 1e+01 1e+02 1e+03

T
ot

al
 G

F
lo

ps

Flops per element

Maximum GFlops Measurements, Babbage

theoretical gflops
c-code gflops

(c)

1e+01

1e+02

1e+03

1e+04

1e+00 1e+01 1e+02 1e+03

T
ot

al
 G

F
lo

ps

Flops per element

Maximum GFlops Measurements, Titan

theoretical gflops
c-code gflops

(d)

Figure 3.6. Basic GFlops C code compared to theoretical GFlops on four platforms. (a)
Edison. (b) Mira. (c) Babbage (MIC only). (d) Titan (GPU only).

Figure 3.6 demonstrates that Edison can quickly reach its peak performance and that

performance tracks well with the theoretical model. Generally speaking, at low FPE,

performance is diminished due to the fact that the core can perform 8 flops per cycle, but

can only sustain loading and storing 2 elements per cycle. Interestingly, the performance

of the reference C code falls at high FPE. This is presumably a limit of the reorder buffer

and the desire to continually find 5 independent floating-point instructions.

Mira’s performance on compiled code is shifted to the right. Generally speaking, this

suggests that additional instructions are consuming the same issue slots as loads or stores.

On the dual issue A2 architecture, this could very well be integer or branch instructions.

This effect was not present on Edison as it is a superscalar processor and can issue integer

or branch instructions from ports other than those used for floating-point or load/store.

23

With sufficient FPE, performance is pegged to peak.

Babbage shows a third behavior — asymptotically approaching peak performance. This

behavior suggests that additional instructions (e.g. integer or branch) are consuming the

same issue slot as floating-point instructions. As such, performance behaves like FPE/(FPE+

k) where k is the number of extra instructions impeding performance.

Finally, we constructed a similar CUDA C benchmark to run on the GPU. The theoret-

ical bound is based on the assumption that each load/store unit can sustain loading 4 bytes

per cycle (128 bytes per SMX) from memory. We observe that the GPU’s performance seems

to embody characteristics of both BGQ and MIC. That is, one lacks the issue bandwidth to

fully drive the core and the SMX cannot sustain loading/storing 128 bytes per cycle from

memory.

3.5 Empirical Roofline Model Construction

Now that we have benchmarked the bandwidth and compute characteristics on each of

our four platforms, we may construct Empirical Roofline Models for each. Figure 3.7 shows

the resultant models using L1/L2/L3 and DRAM bandwidths as well as the theoretical

Roofline Model for each platform. An ideal architecture is one that can fully exploit the

technology on which it is built. We see that in general, Edison’s empirical performance is

very close to its theoretical limits. Conversely, on Mira and Babbage, we see substantial

differences between theory and reality. The extreme multithreading paradigm allows the

GPU to deliver a high fraction of its theoretical bandwidth when running on the device.

3.6 Summary

In this chapter, we discussed two basic benchmark designs and four leading HPC plat-

forms. As discussed in Section 3.1 and 3.2, our benchmarks are able to proxy contention, lo-

cality, and execution environment associated with real applications by using OpenMP+MPI

model. The bandwidth benchmark is designed to quantify available bandwidth at each level

of memory hierarchy; the floating-point benchmark is designed to find the highest achievable

performance by varying the degree of FPE. In Section 3.4, we benchmarked the four leading

platforms: Edison, Mira, Babbage, and Titan, that have been described in Section 3.3.

Results show that Edison is able to come close to its theoretical performance while we see

large overheads at small working set size on Babbage and Titan. Overall, the only way to

get high performance on manycore architectures and accelerators is with massive parallelism

on large working sets. That is, one can run larger problems in comparable time. These

benchmarks can be used to help guide when it will be viable to migrate to a manycore or

24

1e+01

1e+02

1e+03

1e+04

1e-01 1e+00 1e+01 1e+02

A
tta

in
ab

le
 G

F
lo

ps

Arithmetic Intensity (Flops/Bytes)

Roofline Model, Edison

theoretical L1
theoretical L2
theoretical L3

theoretical RAM
empirical L1
empirical L2
empirical L3

empirical RAM

(a)

1e+01

1e+02

1e+03

1e+04

1e-01 1e+00 1e+01 1e+02

A
tta

in
ab

le
 G

F
lo

ps

Arithmetic Intensity (Flops/Bytes)

Roofline Model, Mira

theoretical L1
theoretical L2

theoretical RAM
empirical L1
empirical L2

empirical RAM

(b)

1e+01

1e+02

1e+03

1e+04

1e-01 1e+00 1e+01 1e+02

A
tta

in
ab

le
 G

F
lo

ps

Arithmetic Intensity (Flops/Bytes)

Roofline Model, Babbage

theoretical L1
theoretical L2

theoretical RAM
empirical L1
empirical L2

empirical RAM

(c)

1e+01

1e+02

1e+03

1e+04

1e-01 1e+00 1e+01 1e+02

A
tta

in
ab

le
 G

F
lo

ps

Arithmetic Intensity (Flops/Bytes)

Roofline Model, Titan

theoretical RAM
empirical RAM

(d)

Figure 3.7. Roofline Models for four platforms. (a) Edison. (b) Mira. (c) Babbage (MIC
only). (d) Titan (GPU only).

accelerated architecture. Finally, in Section 3.5, we synthesized the results to construct an

Empirical Roofline model compared with theoretical Roofline. We see Edison’s Empirical

Roofline is very close to its theoretical one. However, we see substantial difference between

theory and reality on the other architectures.

CHAPTER 4

EMPIRICAL ROOFLINE MODEL:

PERFORMANCE CEILINGS

In this chapter, we expand the Empirical Roofline Model by adding bandwidth and

computational performance ceilings. We perform various sensitivity analysis in which we

satisfy less and less in-core parallelism and memory concurrency by creating advanced

benchmarks to provide in-depth knowledge into memory subsystems.

4.1 Architecture Compute Capability

When performance is on the balance between compute-bound and memory-bound per-

formance, proper exploitation of instruction-, data-, and thread-level parallelism can ensure

the code is not artificially flop-limited. Unfortunately, there are relatively few benchmarks

that accurately measure the importance of these facets of parallelism on modern many-

core and accelerated architectures. To address this deficiency, we constructed a SIMDize

floating-point benchmark.

4.1.1 SIMDize Floating-Point Benchmark

Figure 4.1 presents the original floating-point kernel and other explicitly optimized

implementations. An in-order processor could unroll the loop and SIMDize the code to

exploit data-level parallelism and/or express instruction-level parallelism. Conversely, an

out-of-order processor could reorder the instruction stream, but it can never automatically

SIMDize the instruction stream. Hence, we are motivated to design an optimized floating-

point benchmark to quantify the disparity between the performance that can be obtained by

the architecture on compiled code and the true performance capability of the architecture.

We implemented three explicitly unrolled and SIMDized (via intrinsics) implementations

of the floating point benchmarks — AVX, AVX-512, QPX. We use 2 flops per element and

unrolling by 8 as examples here.

26

void KERNEL(uint64_t size,

uint64_t trials, double * __restrict__ A){

for (j = 0; j < trials; ++j) {

for (i = 0; i < nsize; ++i) {

double beta = 0.8;

#if FLOPPERITER == 2

beta = beta * A[i] + alpha;

#elif FLOPPERITER == 4

...

#endif

A[i] = beta;

}

alpha = alpha * (1 - 1e-8);

}}

void AVX_KERNEL(uint64_t size,

uint64_t trials, double * __restrict__ A){

for (j = 0 ; j < ntrials; ++j) {

for (i = 0 ; i < nsize ; i += 8) {

bv1 = _mm256_set1_pd(0.8);

v1 = _mm256_load_pd(&A[i]);

bv1 = _mm256_mul_pd(bv1, v1);

bv1 = _mm256_add_pd(bv1, v1);

_mm256_store_pd(&A[i], bv1);

// repeat above operations for A[i+4]

}

alpha = alpha * (1e-8);

av = _mm256_set1_pd(alpha);

}}

void QPX_KERNEL(uint64_t size,

uint64_t trials, double * __restrict__ A){

for (j = 0 ; j < ntrials ; ++j){

for (i = 0 ; i < nsize ; i += 8){

bv1 = vec_splats(0.8);

v1 = vec_ld(0L, &A[i]);

bv1 = vec_madd(bv1,v1,av);

vec_st(bv1, 0L, &A[i]);

// repeat above operations for A[i+4]

}

alpha = alpha * (1e-8);

vec_splats(alpha);

}}

void AVX512_KERNEL(uint64_t size,

uint64_t trials, double * __restrict__ A){

for (j = 0 ; j < ntrials ; ++j) {

for (i = 0 ; i < nsize ; i += 8) {

bv1 = _mm512_set1_pd(0.8);

v1 = _mm512_load_pd(&A[i]);

bv1 = _mm512_fmadd_pd(bv1,v1,av);

_mm512_store_pd(&A[i], bv1);

}

alpha = alpha * (1e-8);

av = _mm512_set1_pd(alpha);

}}

Figure 4.1. GFlops code: (up left) Reference C version. (up right) AVX version optimized
for Edison. (bottom left) QPX version optimized for Mira. (bottom right) AVX-512 version
optimized for Babbage.

4.1.2 Optimization Results

On today’s processors, thread- and data-level parallelism must be explicit in the code

generated by a compiler. As auto-parallelizing and auto-vectorizing compilers are rarely

infallible, these forms of parallelism must often be explicit in the source code as well.

Figure 4.2 presents the performance of these implementations on Edison, Mira, and Babbage

as a function of thread-level parallelism and unrolling (explicit instruction-level parallelism).

Note, each implementation used a different number of flops per element (FPE).

We observe that Edison attains a little less than half the advertised peak with compiled

C code. However, when using an optimized implementation, performance improves sig-

nificantly and can actually exceed the nominal peak performance of 460 GFlop/s. The

faster-than-light effect is due to the fact that TurboBoost is enabled on this machine.

With a maximum frequency of 2.8GHz with 12 cores, the true peak performance is about

537 GFlop/s — quite close to the observed performance. To verify this, we use the aprun

--p-state option to peg the frequency at the advertised 2.4GHz and performance is as

27

12 24 48 48 (2.4GHz)
0

100

200

300

400

500

600

700

800

900

1000

1100

Turbo Boost Disabled

Turbo Boost Enabled

Explicit SIMD & TLP Study, Edison, 8 Flops per Element

Number of Threads

G
F

lo
ps

c code
unroll by 4 & SIMD
unroll by 8 & SIMD
unroll by 12 & SIMD
unroll by 16 & SIMD

(a)

16 32 48 64
0

100

200

300

400

500

600

700

800

900

1000

1100
Explicit SIMD & TLP Study, Mira, 16 Flops per Element

Number of Threads

G
F

lo
ps

c code
unroll by 4 & SIMD
unroll by 8 & SIMD
unroll by 16 & SIMD

(b)

60 120 180 240
0

100

200

300

400

500

600

700

800

900

1000

1100
Explicit SIMD & TLP Study, Babbage, 16 Flops per Element (FPE)

Number of Threads

G
F

lo
ps

c code
unroll by 8 & SIMD
unroll by 16 & SIMD
unroll by 32 & SIMD
256 FPE, unroll by 16 & SIMD

(c)

Figure 4.2. Performance disparity between compiled code and optimized code in which
thread-, instruction-, and data-level parallelism have been made explicit. (a) Edison. (b)
Mira. (c) Babbage (MIC only).

expected. Although the machine is sensitive to instruction-level parallelism (unrolling), it

generally does not require HyperThreading to attain good performance.

Running a similar set of experiments on Mira (BGQ), we see a very different outcome.

First, compiled code delivers very good performance. This indicates that the XL/C compiler

was able to effectively SIMDize and unroll the code sufficiently to hide the floating-point

latency. Using explicitly unrolled code, we observe that significant unrolling (2-4 SIMD

instructions per thread) is required to reach peak performance. Unlike Edison, Mira clearly

requires two threads to attain peak performance.

Finally, Babbage presents a mix of characteristics similar to both Edison and Mira. The

compiler clearly fails to make full use of the architecture on even this simple kernel. With

sufficient unrolling (4 SIMD instructions per thread), performance begins to saturate after

two threads. Only with extremely high intensity (256 flops per element) does performance

28

approach peak.

4.1.3 L1 Arithmetic Intensity Performance

Even when one can maintain a working set in the L1 cache , performance will be depen-

dent on the dynamic instruction mix and the issue capability of the core. In this section, we

leverage the Roofline Floating-Point Benchmark to quantify performance as a function of L1

Arithmetic Intensity expressed as Flops per Element (FPE) — essentially the degree of the

polynomial. For each architecture, we run both the reference C code quantifying the ability

of the architecture as well as the best performing SIMDized and unrolled implementation.

Figure 4.3 presents the true performance capability of the architecture (in green) compared

1e+01

1e+02

1e+03

1e+04

1e+00 1e+01 1e+02 1e+03

T
ot

al
 G

F
lo

ps

Flops per element

Maximum GFlops Measurements, Edison

theoretical gflops
c-code gflops

optimized gflops

(a)

1e+01

1e+02

1e+03

1e+04

1e+00 1e+01 1e+02 1e+03

T
ot

al
 G

F
lo

ps

Flops per element

Maximum GFlops Measurements, Mira

theoretical gflops
c-code gflops

optimized gflops

(b)

1e+01

1e+02

1e+03

1e+04

1e+00 1e+01 1e+02 1e+03

T
ot

al
 G

F
lo

ps

Flops per element

Maximum GFlops Measurements, Babbage

theoretical gflops
c-code gflops

optimized gflops

(c)

1e+01

1e+02

1e+03

1e+04

1e+00 1e+01 1e+02 1e+03

T
ot

al
 G

F
lo

ps

Flops per element

Maximum GFlops Measurements, Titan

theoretical gflops
c-code gflops

(d)

Figure 4.3. Basic GFlops code and optimized SIMDized unrolling GFlops code compared
to theoretical GFlops on four platforms. (a) Edison. (b) Mira. (c) Babbage (MIC only).
(d) Titan (GPU only).

29

with Figure 3.6.

We observe that on Edison, with appropriate parallelism, performance can sustain a

high FPE. On Mira, we see the performance trend of optimized code is almost overlapped

with the compiled code. On Babbage, although the trend of performance of optimized code

behaves like the reference C code, the performance is rapidly approaching its peak.

4.2 Computation Ceilings

Now we leverage the GFlops Benchmark again to perform a sensitivity analysis in which

we examine the impact on performance as we satisfy less and less of the in-core parallelism

(data-parallelism, and floating-point functional units). Every time we remove one of these

forms of parallelism, performance is diminished. To explore the impact of data-level par-

allelism, we could disable the SIMD flag at compile-time. For GPU architectures, there is

no compiler option to simply disable SIMD. To examine floating-point functional units, we

perform only multiplications with the same flops. We do not examine ILP impact on the

GFLops Benchmark. However, one could create another micro benchmark like the code

snippet shown on Figure 4.4 to study the ILP impact.

Figure 4.5 presents an expanded Empirical Roofline Model where all the computation

performance ceilings are shown. The blue line marks the theoretical Roofline. The peak

performance that can be obtained by the architecture on compiled code and the true

performance capability of the architecture are marked in pink and red, respectively. The

cyan line marks performance without using SIMD units, and finally, the yellow line marks

performance without balancing add and multiply operations. As we can see, without

exploiting SIMD units sufficiently by either the compiler or the programmer, the perfor-

mance loss is around 78% on Edison, Mira, and Babbage. If kernels cannot always exploit

fused multiply-add or achieve balance between multiplies and adds, performance would

decrease by 50% at most. In conclusion, performance diminishes if in-core parallelism is not

expressed across machines. The performance loss can be up to 91% compared to achievable

#pragma unroll UNROLLNUM

for (int i = 0; i < ITER; ++i)

{

a = a * b + c;

}

#pragma unroll UNROLLNUM

for (int i = 0; i < ITER; ++i)

{

a = a * b + c;

d = d * b + c;

e = e * b + c;

}

Figure 4.4. A suggestive ILP micro benchmark. (left) No ILP. (right) ILP = 3.

30

1e+01

1e+02

1e+03

1e+04

1e-01 1e+00 1e+01 1e+02

A
tta

in
ab

le
 G

F
lo

ps

Arithmetic Intensity (Flops/Bytes)

Roofline Model, Edison

Theoretical L1
Peak GFlops (Optimized)

C code peak
w/o SIMD

Mul/Add imbalance

(a)

1e+01

1e+02

1e+03

1e+04

1e-01 1e+00 1e+01 1e+02

A
tta

in
ab

le
 G

F
lo

ps

Arithmetic Intensity (Flops/Bytes)

Roofline Model, Mira

Theoretical L1
Peak GFlops (Optimized)

C code peak
w/o SIMD

Mul/Add imbalance

(b)

1e+01

1e+02

1e+03

1e+04

1e-01 1e+00 1e+01 1e+02

A
tta

in
ab

le
 G

F
lo

ps

Arithmetic Intensity (Flops/Bytes)

Roofline Model, Babbage

Theoretical L1
Peak GFlops (Optimized)

C code peak
w/o SIMD

Mul/Add imbalance

(c)

1e+01

1e+02

1e+03

1e+04

1e-01 1e+00 1e+01 1e+02

A
tta

in
ab

le
 G

F
lo

ps

Arithmetic Intensity (Flops/Bytes)

Roofline Model, Titan

Theoretical RAM
Peak GFlops

mul/add imbalance

(d)

Figure 4.5. Empirical Roofline Models with computation performance ceilings. (a) Edison.
(b) Mira. (c) Babbage (MIC only). (d) Titan (GPU only).

peak performance. This in-core performance sensitivity analysis can provide insights into

optimization strategies.

4.3 Parallelization Overheads

The time required to create a parallel region or synchronize threads can become an

impediment for performance. As we observe in the bandwidth results, parallel overheads

dominate for small working set sizes. The goal for this benchmark is to quantify the time

required for these operations in OpenMP and MPI on multicore and manycore architectures.

31

4.3.1 OpenMP/MPI Overhead Benchmark

Given a serial program and a parallel program, let Ts be the execution time of the serial

program and Tp be the execution time of the parallel program by using p OpenMP threads.

Hence, we could define the “Overhead” of a parallel program as Tp− Ts/p.

To measure the overhead of OpenMP directives, like EPCC [18, 5, 6], we compare the

time taken for a section of code executed sequentially, to the time taken for the same code

executed in parallel.

The EPCC benchmark measures the overhead of an OpenMP barrier by measuring

the time taken to perform a routine testbar on total OpenMP threads outerreps times

(Fig. 4.6 (left)). The testbar routine performs a small kernel delay on a single thread

innerreps times. By applying the above “Overhead” methodology, we could get the

OpenMP barrier overhead.

However, unlike EPCC, our OpenMP benchmark eliminates the time to launch a parallel

region. It can therefore more accurately estimate the OpenMP barrier overhead (Fig. 4.6

(right)). We also create a similar benchmark to measure MPI barrier overhead.

void testbar() {

int j;

#pragma omp parallel private(j)

{

for (j = 0; j < innerreps; j++) {

delay(delaylength);

#pragma omp barrier

}

}

}

void benchmark() {

for (k = 0; k <= outerreps; k++) {

start = getclock();

testbar();

times[k] = (getclock() - start) *

1.0e6 / (double) innerreps;

}

}

void barrierOve(uint64_t nsize, int nthreads,

double *time) {

for (i = 0; i < INNER; ++i) {

#pragma omp parallel

{

int id = omp_get_thread_num();

#pragma omp barrier

if (id == 0)

start = getTime();

work(nsize);

#pragma omp barrier

if (id == 0)

*time += (getTime() - start) * 1e6;

}

}

*time = *time / (double)INNER;

}

int main() {

for (i = 0; i < OUTER; ++i) {

barrierOve(nsize, nthreads, &barrier_time);

total_barrier_time += barrier_time;

}

}

Figure 4.6. OpenMP Overhead Benchmark comparison. (left) EPCC facsimile. (right)
Roofline OpenMP Overhead Benchmark.

32

4.3.2 Results

Figure 4.7 presents the OpenMP overhead on multicore and manycore architectures

by comparing different thread affinities. The black line marks the OpenMP parallel region

launch overhead and the red line marks the OpenMP barrier synchronization overheads with

different thread affinity. Thread affinity can restrict execution of certain threads to a subset

of the physical processing units. Depending upon the topology of the architecture, thread

affinity can have a dramatic effect on the execution speed of a program. First, scatter affinity

evenly distributes the threads in a round-robin fashion across the entire system, assuring

that threads do not share local cache. Second, compact affinity bounds consecutive threads

as close as possible so that communication overhead, cache line invalidation overhead, and

5 10 15 20
0

5

10

15

20

25

30
OpenMP Barrier Overhead, Edison

Number of OpenMP threads

O
ve

rh
ea

d
(m

ic
ro

se
co

nd
s)

Launch, Scatter
Launch, Compact
Barrier, Scatter
Barrier, Compact

(a)

16 32 48 64
0

5

10

15

20

25

30
OpenMP Barrier Overhead, Mira

Number of OpenMP threads

O
ve

rh
ea

d
(m

ic
ro

se
co

nd
s)

Launch, Scatter
Launch, Compact
Barrier, Scatter
Barrier, Compact

(b)

1 20 40 60 80 100 120 140 160 180 200 220 240
0

5

10

15

20

25

30
OpenMP Barrier Overhead, Babbage

Number of OpenMP threads

O
ve

rh
ea

d
(m

ic
ro

se
co

nd
s)

Launch, Scatter
Launch, Compact
Launch, Balance
Barrier, Scatter
Barrier, Compact
Barrier, Balance

(c)

Figure 4.7. OpenMP parallel region launch and barrier overhead on Edison, Mira, and
Babbage. (a) Edison. (b) Mira. (c) Babbage (MIC only).

33

page thrashing are minimized. Thirdly, balanced affinity (a uniquely useful mode available

to the MIC coprocessor) evenly distributes threads among the cores. However, unlike

scatter, it will spread out threads to all cores before assigning multiple threads to a given

core and keep thread numbers close to one another. The way to place threads can increase

the probability that threads on the same core are using nearby data.

Among the three architectures, we can observe that overheads of creating a parallel

region is around two times more than the overhead of barrier synchronization, and the

time to create a parallel region is more sensitive to the number of threads than the time

to synchronize. On Edison, the overhead is quite small and performance that uses compact

affinity to place threads is slightly better than scatter affinity.

On Mira, the overhead is around two times Edison’s overhead. We see that using

different affinity does not affect performance significantly. Conversely, on Babbage, we see

affinity affects performance dramatically. Due to the compensatory hardware threading and

L2 cache layout, affinity is important on the MIC. We could observe that scatter affinity

has the highest overheads and compact affinity has the lowest overheads. However, if we

can not use the full 240 threads on Babbage, using compact affinity is unlikely to produce

benefits on the MIC architecture as it tends to leave cores completely unused for thread

counts below chip maximum. Conversely, one could use balanced affinity to fully utilize

cores and cache efficiently.

Figure 4.8 presents the MPI overhead on Edison, Mira, and Babbage. We see the MPI

barrier synchronization overhead is quite small on Edison and Mira. On Babbage, we see a

similar performance trend when using different affinity but the MPI overhead is two times

higher than the OpenMP overhead.

4.4 Memory Locality Performance Characterization

Reducing data communication over memory has been an optimization issue for scien-

tific applications. Most current cache memory architectures work efficiently if subsequent

memory accesses exhibit good locality of references. Hence, we are motivated to design a

benchmark to quantify the performance of high-performance computing architectures along

dimensions of spatial and temporal memory locality. This benchmark can be used to explore

a software-hardware co-design to be able to leverage the inherent locality of programs and

reduce data motion in the system.

34

5 10 15 20
0

10

20

30

40

50

60

70
MPI Barrier Overhead, Edison

Number of MPI tasks

O
ve

rh
ea

d
(m

ic
ro

se
co

nd
s)

(a)

1 2 4 8 16 32 64
0

10

20

30

40

50

60

70
MPI Barrier Overhead, Mira

Number of MPI tasks

O
ve

rh
ea

d
(m

ic
ro

se
co

nd
s)

(b)

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
0

10

20

30

40

50

60

70
MPI Barrier Overhead, Babbage

Number of MPI tasks

O
ve

rh
ea

d
(m

ic
ro

se
co

nd
s)

Scatter
Compact
Core

(c)

Figure 4.8. MPI barrier overhead on Edison, Mira, and Babbage. (a) Edison. (b) Mira.
(c) Babbage (MIC only).

4.4.1 Memory Locality Benchmark

To quantify the impact of spatial and temporal memory locality, we define two working

sets — a total working set and an active working set, both shared among all threads

and processes on a node. That is, one divides the AWS into AWS per thr and TWS into

TWS per thr, and creates appropriate pointers nid. Each thread loops over the small chunk

of an active working set REUSE times. Then the start loop jumps by AWS per thr step

and stops by condition start < TWS per thr. By doing this, we can sample through a two-

dimensional heatmap of active working sets (spatial memory locality) and reuse (temporal

memory locality). By reusing the active working set, we could increase the temporal locality

of references.

35

We implemented two versions of synchronization. The first synchronizes when the

reusing loop is done (Fig. 4.9 (left)). The second synchronizes at every reuse point (Fig. 4.9

(left)). By doing this, we can see how fine-grained/coarse-grained synchronization influences

effective bandwidths within an application.

4.4.2 Results

We characterize spatial locality by the size of contiguous memory locations accessed in

succession (active working set size). Temporal locality quantifies the amount of reuse of

the same memory location during application execution. Figure 4.10 presents the effective

bandwidth as a function of active working set size and amount of temporal reuse. We observe

that on Edison when active working set size fits into L1 cache capacity, the machine can

attain peak performance with high enough reuse (high temporal locality) and coarse-grained

synchronization (Fig. 4.10(a)). Conversely, with fine-grained synchronization, we see the

highest performance occurs when the active working set size fits into L2 cache (Fig. 4.10(b)).

We can see a similar outcome on Mira and Babbage. Comparing Edison and Babbage

(Fig. 4.10(a)(e)), with fine-grained synchronization, we observe that Edison’s performance

is better than Babbage if the active working set size fits into cache capacity. That is,

with fine-grained locality, only when the active working set size fits into ultimate memory

capacity, we will gain performance benefits from manycore architectures. Hence, one wishing

#pragma omp parallel private(id)

{

nid = TWS_per_thr * id;

double * __restrict__ A = &buf[nid];

// start timer here...

for (start = 0; start < TWS_per_thr;

start += AWS_per_thr) {

alpha = 0.5;

for (r = 0; r < REUSE; ++r) {

for (i = 0; i < AWS_per_thr; ++i) {

A[start + i] = A[start + i] + alpha;

}

alpha = alpha * (1 - 1e-8);

}

#pragma omp barrier

#pragma omp master

{

MPI_Barrier(MPI_COMM_WORLD);

}

}

// stop timer here...

}

#pragma omp parallel private(id)

{

nid = TWS_per_thr * id;

double * __restricti__ A = &buf[nid];

// start timer here...

for (start = 0; start < TWS_per_thr;

start += AWS_per_thr) {

alpha = 0.5;

for (r = 0; r < REUSE; ++r) {

for (i = 0; i < AWS_per_thr; ++i) {

A[start + i] = A[start + i] + alpha;

}

#pragma omp barrier

#pragma omp master

{

MPI_Barrier(MPI_COMM_WORLD);

}

alpha = alpha * (1 - 1e-8);

}}

// stop timer here...

}

Figure 4.9. Memory Locality Benchmark code: (left) Synchronize outside the REUSE
loop. (right) Synchronize within the REUSE loop.

36

1

10

100

1000

64 KB 384 KB 768 KB 3 MB 6 MB 30 MB 60 MB 120 MB

C
P

U
 M

em
or

y
R

eu
se

s
T

im
es

Active Working Set Size

CPU Memory Locality Study, Edison
Within Reuse Loop, 4GB Working Set

 10

 100

 1000

 10000

E
ffe

ct
iv

e
B

an
dw

id
th

 (
G

B
/s

)

40 56 41 65 77 77 79 79

61 135 288 384 409 259 170 74

65 316 456 756 765 591 206 80

62 320 479 842 840 627 211 80

(a)

1

10

100

1000

64 KB 384 KB 768 KB 3 MB 6 MB 30 MB 60 MB 120 MB

C
P

U
 M

em
or

y
R

eu
se

s
T

im
es

Active Working Set Size

CPU Memory Locality Study, Edison
Outside Reuse loop, 4GB Working Set

 10

 100

 1000

 10000

E
ffe

ct
iv

e
B

an
dw

id
th

 (
G

B
/s

)

42 74 63 79 77 79 34 64

337 471 571 363 242 244 188 80

1506 1865 1797 1046 909 636 284 79

1852 1890 1864 1087 1046 642 365 80

(b)

1

10

100

1000

64 KB 128 KB 256 KB 3 MB 32 MB 64 MB

M
em

or
y

R
eu

se
s

T
im

es

Active Working Set Size

CPU Memory Locality Study, Mira
Within Reuse Loop, 4 GB Working Set

 10

 100

 1000

 10000

E
ffe

ct
iv

e
B

an
dw

id
th

 (
G

B
/s

)

17 17 18 25 23 24

44 62 74 106 89 24

52 81 99 153 124 24

53 84 103 160 129 24

(c)

1

10

100

1000

64 KB 128 KB 256 KB 3 MB 32 MB 64 MB

M
em

or
y

R
eu

se
s

T
im

es

Active Working Set Size

CPU Memory Locality Study, Mira
Outside Reuse Loop, 4 GB Working Set

 10

 100

 1000

 10000

E
ffe

ct
iv

e
B

an
dw

id
th

 (
G

B
/s

)

17 18 18 25 23 24

100 102 106 116 103 25

192 194 193 180 159 25

210 214 210 191 168 25

(d)

1

10

100

1000

480 KB 960 KB 1920 KB 3 MB 30 MB 300 MB

M
em

or
y

R
eu

se
s

T
im

es

Active Working Set Size

CPU Memory Locality Study, Babbage
Within Reuse Loop, 4 GB Working Set

 10

 100

 1000

 10000

E
ffe

ct
iv

e
B

an
dw

id
th

 (
G

B
/s

)

44 64 52 96 107 63

53 102 160 246 283 135

58 101 201 282 351 136

56 110 200 288 357 135

(e)

1

10

100

1000

480 KB 960 KB 1920 KB 3 MB 30 MB 300 MB

M
em

or
y

R
eu

se
s

T
im

es

Active Working Set Size

CPU Memory Locality Study, Babbage
Outside Reuse Loop, 4 GB Working Set

 10

 100

 1000

 10000

E
ffe

ct
iv

e
B

an
dw

id
th

 (
G

B
/s

)

43 65 52 96 107 137

369 523 436 549 443 142

1469 1741 1567 1048 695 143

2046 2279 2108 1155 673 142

(f)

Figure 4.10. Effective bandwidth on Edison, Mira, and Babbage by comparing locality
affect and fine-grained/coarse-grained synchronization. (a) Edison, sync at every REUSE
point. (b) Edison, sync outside the REUSE loop. (c) Mira, sync at every REUSE point.
(d) Mira, sync outside the REUSE loop. (e) Babbage, sync at every REUSE point. (f)
Babbage, sync outside the REUSE loop.

37

to use a manycore architecture to accelerate their applications should use coarse-grained

synchronization to avoid large parallelism overhead.

One could combine the results gained from the parallelization benchmarks in Section

4.3 and bandwidth benchmark in Section 3.1 to calculate theoretical bandwidth by using

Equation 4.1.

Bandwidth =
AWS ×REUSE

A + (reuse− 1) × B + barrier overhead

if L2 cache capacity ≤ AWS ≤ L3 cache capacity then

A =
AWS

DRAM bandwidth
and B =

AWS

L3 cache bandwidth

(4.1)

Figure 4.11 presents theoretical bandwidth on Mira by using Equation 4.1. The result

shows that the theoretical bandwidth is higher than the resultant bandwidth gained from

the locality benchmark. The effect may be due to the memory latency effect. This also

indicates that the locality benchmark contains more information than the individual cache

bandwidth and the OpenMP overhead benchmarks.

Overall, this benchmark can quantify the impact of spatial and temporal locality, and

also guide developers as to what optimization is necessary to move an application from

multicore to manycore architectures.

1

10

100

1000

64 KB 128 KB 256 KB 3 MB 32 MB 64 MB

M
em

or
y

R
eu

se
s

T
im

es

Active Working Set Size

CPU Memory Locality Study, Mira
Using Equation 4.1

 10

 100

 1000

 10000

E
ffe

ct
iv

e
B

an
dw

id
th

 (
G

B
/s

)

18 22 24 26 26 26

104 113 119 117 118 26

194 197 199 180 180 26

213 213 214 190 190 26

Figure 4.11. Mira’s theoretical bandwidth based on Equation 4.1.

38

4.5 Bandwidth Ceilings

We have expressed deficiencies in locality in Section 4.4. In this section, we perform a

sensitivity analysis in which we examine the impact on effective bandwidth as we satisfy

less and less memory concurrency. Figure 4.12 presents an expanded empirical Roofline

model where all the bandwidth ceilings are shown. The blue line marks the theoretical

L1 bandwidth. The red line marks the achievable L1 bandwidth, the pink line marks the

performance without exploiting appropriate locality of memory reference, and the cyan line

marks the performance when allowing remote memory access (not uniformly utilizing all

memory controllers).

As we remove spatial and temporal locality optimizations, effective bandwidth dimin-

ishes among the three architectures. Since Edison is the only dual-sockets architectures,

this machine should uniformly distribute memory traffic among the memory controllers both

within a socket and across sockets. Failing to satisfy uniformly memory traffic distribution

will result in idle cycles on one or more of the memory controllers. We can observe that,

on Edison (Fig. 4.12 (a)), removing the -ss aprun option to allow remote memory access

will expose the limited bandwidth.

4.6 Summary

In this chapter, we discussed three benchmark designs and expanded Empirical Roofline

Models by adding bandwidth and computational ceilings. The SIMDize Floating-point

benchmark can provide the true performance capability of the architecture and quantify

the performance disparity with the compiled code. Results show that Edison can exceed

the nominal peak performance due to the TurboBoost effect. Second, the XL/C compiler

on Mira was able to effectively SIMDize and unroll the code to attain peak GFLops. On

the manycore architecture, only with extremely high arithmetic intensity, the machine can

approach its peak performance with sufficient parallelism.

In Section 4.3, we constructed a parallelization overhead benchmark to quantify the time

required to create a parallel region or synchronize threads on multicore and manycore archi-

tectures. Result shows that the manycore architecture has higher parallelization overheads

and is more sensitive to different thread affinity strategies.

In Section 4.4, we constructed a CPU locality benchmark to quantify the impact of

spatial and temporal locality with the effect of fine-grained/coarse-grained synchronization,

enabling hardware-software co-design to reduce data motion in the system. This benchmark

can also be used to evaluate what degree of spatial and temporal locality is necessary to

port an application to manycore architectures.

39

1e+01

1e+02

1e+03

1e+04

1e-01 1e+00 1e+01 1e+02

A
tta

in
ab

le
 G

F
lo

ps

Arithmetic Intensity (Flops/Bytes)

Roofline Model, Edison

Theoretical L1
Peak Bandwidth

Allow remote memory access
without exploiting appropriate locality

(a)

1e+01

1e+02

1e+03

1e+04

1e-01 1e+00 1e+01 1e+02

A
tta

in
ab

le
 G

F
lo

ps

Arithmetic Intensity (Flops/Bytes)

Roofline Model, Mira

Theoretical L1
Peak Bandwidth

without exploiting appropriate locality

(b)

1e+01

1e+02

1e+03

1e+04

1e-01 1e+00 1e+01 1e+02

A
tta

in
ab

le
 G

F
lo

ps

Arithmetic Intensity (Flops/Bytes)

Roofline Model, Babbage

Theoretical L1
Peak Bandwidth

without exploiting appropriate locality

(c)

Figure 4.12. Empirical Roofline Models with bandwidth ceilings. (a) Edison. (b) Mira.
(c) Babbage (MIC only).

Finally, the benchmark-driven Roofline Model is further enhanced by performing mul-

tiple sensitivity analyses in which we examine the performance as we progressively exploit

the in-core parallelism and memory concurrency. Such a formulation can be very useful in

modeling, predicting, and analyzing application performance.

CHAPTER 5

GPU BENCHMARKING

Accelerated architectures are becoming increasingly popular to offer dramatically better

performance for scientific applications. The accelerated architecture differs significantly

from multicore and manycore architectures. Hence, understanding the strengths and weak-

nesses of accelerated architectures, like Nvidia’s GPU, is important for the high-performance

computing community. In this chapter, we discuss some GPU’s benchmark designs and use

them to evaluate the performance capability of Nvidia K20 GPUs.

5.1 CUDA’s Parallelization Overhead

To quantify the time required to launch a CUDA kernel or synchronize threads, one

could create a serial and a parallel program to quantify the overhead like the CPU version

we described in Section 4.3. Alternatively, one could simply run an empty CUDA kernel

and record the elapsed time by using the CUDA event record “cudaEventElapsedTime”.

Figure 5.1 presents the overhead results by using the latter approach. The black line

marks the overhead of launching a CUDA kernel. The red line marks the overhead of thread

synchronization. We observe that creating threads is relatively cheap on a GPU as using

488 blocks only increases 1 microsecond compared with 244 blocks. Moreover, the overall

overhead is not large.

32 64 128 256 512
0

5

10

15

20

25

30
CUDA Synchronization Overhead, Titan

Number of threads per block

O
ve

rh
ea

d
(m

ic
ro

se
co

nd
s)

Launch, 224 blocks
Launch, 448 blocks
Barrier, 224 blocks
Barrier, 448 blocks

Figure 5.1. CUDA’s parallelization overhead on Titan.

41

5.2 GPU’s Memory Locality

We have shown that locality of memory references is important for CPUs. In this section,

we want to know whether the same conclusion holds for GPUs.

5.2.1 GPU’s Memory Locality Benchmark

Like the CPU’s memory locality benchmark described in Section 4.4, we define two

working sets and divide them into AWS per thr and TWS per thr by total number of

threads (total threads per thread block × total thread blocks per kernel). Each thread

performs a routine “sharedMem”. This routine simply increments a one-dimensional array.

We also implemented two versions of synchronization. The first one puts the REUSE loop

within the CUDA kernel to increase locality within a thread block (Fig. 5.2 (left)). The

second approach puts the REUSE loop outside the CUDA kernel call (Fig. 5.2 (right)).

5.2.2 Result

Figure 5.3 presents the effective bandwidth as a function of the active working set size

and an amount of temporal reuse. We operated on a one-dimensional array on global

#define BSIZE 224

#define TSIZE 32

__global__ void sharedMem(uint64_t size,

double *A, int REUSE) {

__shared__ double As[BSIZE];

for (i = 0; i < size; ++i)

As[i] = A[i];

double alpha = 0.5;

for (r = 0; r < REUSE; ++r) {

for (i = 0; i < size; ++i) {

As[i] = As[i] + alpha;

}

alpha = alpha * (1 - 1e-8);

}

for (i = 0; i < size; ++i)

A[i] = As[i];

}

int main() {

dim3 threads(TSIZE);

dim3 blocks(BSIZE);

TWS_per_thr = TWS/TSIZE/BSIZE;

// start timer here...

for (i = 0; i < TWS_per_thr; i += BSIZE)

sharedMem <<<blocks, threads>>> (BSIZE,

&d_buf[i], REUSE);

// stop timer here...

}

#define BSIZE 224

#define TSIZE 32

__global__ void sharedMem(

uint64_t size, double *A, double alpha) {

__shared__ double As[BSIZE];

for (i = 0; i < size; ++i)

As[i] = A[i];

for (i = 0; i < size; ++i)

As[i] = As[i] + alpha;

for (i = 0; i < size; ++i)

A[i] = As[i];

}

int main() {

dim3 threads(TSIZE);

dim3 blocks(BSIZE);

TWS_per_thr = TWS/TSIZE/BSIZE;

// start timer here...

for (i = 0; i < TWS_per_thr; i += BSIZE) {

alpha = 0.5;

for (r = 0; r < REUSE; ++r)

sharedMem <<<blocks, threads>>> (BSIZE,

&d_buf[i], alpha);

alpha = alpha * (1e-8);

}

// stop timer here...

}

Figure 5.2. GPU’s Memory Locality Benchmark code: (left) Synchronize within the
CUDA kernel. (right) Synchronize outside the CUDA kernel.

42

1

10

100

1000

392 KB 784 KB 1568 KB 3136 KB6.125 MB12.25 MB24.5 MB

G
P

U
 M

em
or

y
R

eu
se

s
T

im
es

Active Working Set Size

GPU Memory Locality Study, Titan
Reuse outside the kenel, Global Memory

 1

 10

 100

 1000

E
ffe

ct
iv

e
B

an
dw

id
th

 (
G

B
/s

)

16 23 41 109 189 212 115

17 23 41 107 191 213 116

16 23 41 106 191 213 116

16 23 41 106 191 213 116

16 23 41 109 189 212 115

17 23 41 107 191 213 116

16 23 41 106 191 213 116

16 23 41 106 191 213 116

(a)

1

10

100

1000

392 KB 784 KB 1568 KB 3136 KB6.125 MB12.25 MB24.5 MB

G
P

U
 M

em
or

y
R

eu
se

s
T

im
es

Active Working Set Size

GPU Memory Locality Study, Titan
Reuse within the kenel, Global Memory

 1

 10

 100

 1000

E
ffe

ct
iv

e
B

an
dw

id
th

 (
G

B
/s

)

16 23 41 108 189 211 115

41 57 99 212 256 234 119

51 60 115 224 266 237 119

52 59 117 225 267 238 119

16 23 41 108 189 211 115

41 57 99 212 256 234 119

51 60 115 224 266 237 119

52 59 117 225 267 238 119

(b)

1

10

100

1000

392 KB 784 KB 1568 KB 3136 KB6.125 MB12.25 MB24.5 MB

G
P

U
 M

em
or

y
R

eu
se

s
T

im
es

Active Working Set Size

GPU Memory Locality Study, Titan
Reuse outside the kenel, Shared Memory

 1

 10

 100

 1000

E
ffe

ct
iv

e
B

an
dw

id
th

 (
G

B
/s

)

34 73 155 107 55 24 4

35 75 157 108 55 24 4

35 76 157 108 55 24 4

35 76 157 108 55 24 4

34 73 155 107 55 24 4

35 75 157 108 55 24 4

35 76 157 108 55 24 4

35 76 157 108 55 24 4

(c)

1

10

100

1000

392 KB 784 KB 1568 KB 3136 KB6.125 MB12.25 MB24.5 MB

G
P

U
 M

em
or

y
R

eu
se

s
T

im
es

Active Working Set Size

GPU Memory Locality Study, Titan
Reuse within the kenel, Shared Memory

 1

 10

 100

 1000

E
ffe

ct
iv

e
B

an
dw

id
th

 (
G

B
/s

)

34 71 150 105 53 24 4

139 279 576 397 209 96 16

204 388 812 546 297 137 23

214 406 852 566 311 143 24

(d)

Figure 5.3. GPU locality of memory reference impact on Titan. (a) Global memory,
REUSE outside the kernel. (b) Global memory, REUSE within the kernel. (c) Shared
memory, REUSE outside the kernel. (d) Shared memory, REUSE within the kernel.

memory (Fig. 5.3(a)(b)) and shared memory (Fig. 5.3(c)(d)).

We could observe that, with appropriate spatial and temporal locality of memory ref-

erence, the machine can come close to its bandwidth limit like CPUs. However, unlike

multicore and manycore architectures, we see increasing temporal locality will not improve

the effective bandwidth significantly when using fine-grained synchronization. That is,

presumably putting the REUSE loop outside the CUDA kernel will not achieve temporal

locality. The surprisingly low bandwidth at the 24.5MB active working set size on Fig-

ure. 5.3(c)(d) is due to the overhead of copying data between global and shared memory.

With fine-grained synchronization, this overhead increases by the amount of temporal reuse.

43

5.3 CUDA’s Unified Memory

To date, accelerated architectures have been typically used as an accelerator with dedi-

cated memory attached to a conventional system through a PCIe or similar bus. Not only

does this dedicated memory have its own unique address space, but programmers were

forced to explicitly copy data to and from the device via a library interface. Doing so is not

only unproductive, but also exposes the performance disparity between the PCIe bandwidth

and device bandwidth.

Recently, CUDA introduced two memory concepts — the Unified Virtual Address (UVA)

space, and Unified Memory (i.e. managed memory) [13]. As the name suggests, UVA unifies

the CPU and GPU address spaces and ensures (at the program level) that programs may

transparently load and store memory without worrying about the locality of data (for

correctness). As data remain pinned to host or device, there are strong NUMA effects.

Unified (Managed) Memory extends this process by migrating data between the host and

the device. As such, device memory can be viewed as a cache on the CPU memory. Ideally,

this would address many of the productivity and performance challenges. In this section, we

evaluate the performance of these approaches as a function of spatial and temporal locality.

5.3.1 CUDA Managed Memory Benchmark

Our initial approach to this benchmark was to create a benchmark that thrashes data

back and forth between host and device. To that end, we reuse the Roofline Bandwidth

Benchmark by having the GPU perform k − 1 iterations of the summation and the CPU

perform 1. As the net reuse k increases, we expect the cost of moving the data between

host and device to be amortized.

Please note, this benchmark is not an unreasonable scenario in practice as many ap-

plications may package some data for the GPU, copy it to the device, operate on it a few

times, then return it to the host. If written using Unified Memory, the data would thrash

back and forth between host and device.

We evaluate performance using four different approaches to controlling the locality of

data on the device. First, we evaluate the conventional explicit copy (cudaMemcpy) approach

using either a paged array or a page-locked array allocated on the host. Next, we evaluate

the performance of zero copy memory. In this scenario, data are allocated and pinned on

the host and it is the responsibility of the CUDA run time to map load and store requests

to PCIe transfers. Finally, we evaluate the performance of the Unified (Managed) Memory

construct in which the CUDA run time may migrate data.

44

Figure 5.4 presents these implementations. As one can see, increased locality is af-

fected via multiple CUDA kernel invocations. The macros “ CUDA ZEROCOPY” and

“ CUDA UM” select the use of page-locked host with zero copy and unified memory manage-

ment, respectively. Page-locked host memory uses a normal malloc() function to allocate

memory on the host, and then uses cudaHostRegister() to register a device pointer on the

host memory address space. For unified memory, one uses cudaMallocManaged to allocate

both host and device memory.

5.3.2 Results

As Titan does not support CUDA 6 yet, all of our experiments were run on a similar

K20xm in the Dirac cluster1.

Figure 5.5 presents the resultant effective bandwidth for the four technologies as a

function of working set size and temporal reuse. For small working set sizes, CUDA kernel

launch time dominates and effective bandwidth is abysmal. This simply reinforces the

conventional wisdom not to use the GPU for small operations. Comparing Figure 5.5(a)

and (b), we see that it is possible to approach the device bandwidth limit, but only for

1GPU driver version: 331.89; CUDA toolkit version: 6.0beta.

int main()

{

// start timer here...

for (uint64_t j = 0; j < trials; ++j) {

#if defined(_CUDA_ZEROCPY) || defined(_CUDA_UM)

cudaDeviceSynchronize();

#else

cudaMemcpy(d_buf, h_buf, SIZE, cudaMemcpyDefault);

#endif

for (uint64_t k = 0; k < reuse; ++k) {

GPUKERNEL <<<blocks, threads>>> (n, d_buf, alpha);

alpha = alpha * (1e-8);

}

#if defined(_CUDA_ZEROCPY) || defined(_CUDA_UM)

cudaDeviceSynchronize();

#else

cudaMemcpy(h_buf, d_buf, SIZE, cudaMemcpyDefault);

#endif

CPUKERNEL(n, h_buf, alpha);

}

// stop timer here...

double bytes = 2 * sizeof(double) * (double)n *(double)trials * (double)(reuse + 1);

}

Figure 5.4. CUDA Unified Memory Benchmark quantifies the ability of the runtime to
manage locality on the device

45

1

10

50

100

1 KB 16 KB 256 KB 4 MB 64 MB 1 GB

G
P

U
 M

em
or

y
R

eu
se

s
T

im
es

Working Set Size

Memory Ping-Pong Study, Dirac
Pageable Host (Explicit Copy)

 1

 2

 4

 8

 16

 32

 64

 128

E
ffe

ct
iv

e
B

an
dw

id
th

 (
G

B
/s

)

0.10 1.13 3.50 5.48 6.16 6.18

0.23 2.84 9.33 12.36 12.54 12.50

0.30 4.60 41.30 86.35 81.49 85.73

0.30 4.99 54.58 124.2 129.6 127.9

0.10 1.13 3.50 5.48 6.16 6.18

0.23 2.84 9.33 12.36 12.54 12.50

0.30 4.60 41.30 86.35 81.49 85.73

0.30 4.99 54.58 124.2 129.6 127.9

(a)

1

10

50

100

1 KB 16 KB 256 KB 4 MB 64 MB 1 GB

G
P

U
 M

em
or

y
R

eu
se

s
T

im
es

Working Set Size

Memory Ping-Pong Study, Dirac
Page-locked Host (Explicit Copy)

 1

 2

 4

 8

 16

 32

 64

 128

E
ffe

ct
iv

e
B

an
dw

id
th

 (
G

B
/s

)

0.10 1.19 5.76 7.51 7.64 7.70

0.21 2.74 11.46 13.78 13.71 13.70

0.29 4.72 50.66 111.7 112.6 113.0

0.30 4.95 60.18 157.1 157.7 156.4

0.10 1.19 5.76 7.51 7.64 7.70

0.21 2.74 11.46 13.78 13.71 13.70

0.29 4.72 50.66 111.7 112.6 113.0

0.30 4.95 60.18 157.1 157.7 156.4

(b)

1

10

50

100

1 KB 16 KB 256 KB 4 MB 64 MB 1 GB

G
P

U
 M

em
or

y
R

eu
se

s
T

im
es

Working Set Size

Memory Ping-Pong Study, Dirac
Page-locked Host (Zero Copy)

 1

 2

 4

 8

 16

 32

 64

 128

E
ffe

ct
iv

e
B

an
dw

id
th

 (
G

B
/s

)

0.15 2.07 6.76 8.27 8.46 8.55

0.23 2.50 4.45 5.00 5.03 5.04

0.26 3.08 5.45 6.19 6.26 6.41

0.27 3.07 5.43 6.17 6.23 6.37

0.15 2.07 6.76 8.27 8.46 8.55

0.23 2.50 4.45 5.00 5.03 5.04

0.26 3.08 5.45 6.19 6.26 6.41

0.27 3.07 5.43 6.17 6.23 6.37

(c)

1

10

50

100

1 KB 16 KB 256 KB 4 MB 64 MB 1 GB

G
P

U
 M

em
or

y
R

eu
se

s
T

im
es

Working Set Size

Memory Ping-Pong Study, Dirac
Unified Memory Management (Zero Copy)

 1

 2

 4

 8

 16

 32

 64

 128

E
ffe

ct
iv

e
B

an
dw

id
th

 (
G

B
/s

)

0.08 0.82 1.70 1.71 1.63 1.60

0.20 2.44 5.95 6.41 6.24 6.05

0.29 4.35 26.00 36.59 36.13 32.19

0.30 4.80 38.33 64.28 63.24 52.72

(d)

Figure 5.5. Effective bandwidth as a function of GPU temporal locality (reuse) and
working set size for four different GPU device memory management mechanisms. (a)
Pageable host with explicit copy between CPU and GPU. (b) Page-locked host with explicit
copy between CPU and GPU. (c) Page-locked host with zero copy. (d) Unified (Managed)
Memory.

large working sets that are reused 50-100 times. Thus, offloading iterative solvers to

the GPU is a viable option if one expects it to take hundreds of iterations to converge.

Conversely, for large working sets with minimal reuse, we see that page-locked memory

provides substantially better PCIe bandwidth.

As Zero Copy memory provides no caching benefit, we see no performance benefit in

Figure 5.5(c) from increased locality. Conversely, Figure 5.5(d) presents the performance

benefit from using Unified Memory to automate the management of data locality on the

device. Broadly speaking, performance is qualitatively similar to the performance with

explicitly managed locality. Unfortunately, the raw performance is substantially lower. For

applications which could guarantee 1000-way reuse on the device, Unified Memory would

provide a productive and high-performance solution. One can only hope that advances in

46

hardware and runtime can bridge the performance gap at lower temporal locality.

5.4 Summary

In this chapter, we discussed advanced GPU benchmarks designed to quantify the

parallelization overheads and memory locality effect within GPUs. Results show that

one wishing to accelerate their applications on GPUs should optimize for locality and use

coarse-grained synchronization.

In Section 5.3, we constructed a novel benchmark to evaluate four CUDA’s memory

management technologies. Generally speaking, the only way to come close to the PCIe

performance limit is to operate on a large working set, explicitly copy the data between the

host and the device, and reuse the data on device. Although a programmer could ease their

burden by using the unified memory, the unified memory construct does not really quantify

how much data movement between the host and the device will be needed.

CHAPTER 6

APPLICATION ANALYSIS

This chapter discusses the fundamentals of three HPC applications — the finite-volume

High-Performance Geometric Multigrid (HPGMG-FV) benchmark [23], the Gyrokinetic

Toroidal Code (GTC) [20], and miniDFT [27]. We use the Empirical Rooflines for Mira

to analyze observed performance on three HPC applications. All applications were run

on Mira (Blue Gene/Q system) where the performance counters (BGPM API) have been

verified.

6.1 HPGMG-FV

High-performance geometric multigrid (HPGMG) is a new and standard benchmark

based on geometric multigrid methods as an alternate Top500 benchmark. This benchmark

includes two implementations — finite element and finite volume. We focus on the finite

volume method in this thesis.

HPGMG-FV is a highly optimized multigrid benchmark that solves a constant- or

variable-coefficient Poisson’s equation on a structured grid using Full Multigrid (FMG).

Geometric Multigrid is a specialization in which the linear operator (e.g. the operator A

in Ax = b) is simply a stencil on a structured grid. Thus this benchmark implemented

with a portable MPI+OpenMP model uses a distributed “V-Cycle” that allows restriction

of a trillion cells distributed across a hundred thousand processes down to one cell, and its

data are decomposed level-by-level. Generally speaking, Multigrid has three components

that dominate performance. First, data movement within DRAM and flops to perform each

stencil is constrained by DRAM and flop rates. Second, MPI data movement for halo/ghost

zone exchanges is limited by MPI point-to-point bandwidth. Finally, MPI/OpenMP/CUDA

parallelism may result in latency/overhead for each operation.

• Application Analysis:

48

We use the Mira’s Empirical Roofline Model to analyze memory bandwidth-intensive

HPGMG-FV. Figure 6.1 shows that it has low compute intensity, but it delivers performance

very close to its DRAM bandwidth limit either using flat MPI or OpenMP.

6.2 GTC

The gyrokinetic toroidal code (GTC) is a turbulent transport fusion simulation, a

massively parallel code implemented with a hybrid MPI+OpenMP model, that uses the

particle-in-cell (PIC) method. Particle-grid interpolation is a known performance bottle-

neck in several PIC applications. In GTC, its two dominant kernels are particle-to-grid

interpolation (chargei) and grid-to-particle interpolation (pushi). Theoretically, these

kernels are moderately compute intensive (pushi slightly more) but involve random access

to a structured grid.

• Application Analysis:

Figure 6.2 shows the resultant GTC’s performance on Mira. We could clearly observe

that the performance of both chargei and pushi routines is well below the Roofline

bandwidth bound, and the overall GTC’s performance sits between two routines. As we

expected, pushi is relatively close to its computational performance bound.

6.3 MiniDFT

The MiniDFT code, implemented with OpenMP and MPI, uses plane-wave density

functional theory (DFT) to compute the Kohn-Sham equations that performs only LDA

1e+00

1e+01

1e+02

1e+03

1e+04

1e-01 1e+00 1e+01 1e+02

A
tta

in
ab

le
 G

F
lo

ps

Arithmetic Intensity (Flops/Bytes)

Roofline Model, Mira

Theoretical L1
theoretical RAM

Peak GFlops (Optimized)
empirical RAM

C code peak
w/o SIMD

Mul/Add imbalance
HPGMG-FV:1x64
HPGMG-FV:8x8

HPGMG-FV:64x1

Figure 6.1. HPGMG-FV’s resultant performance on Mira. Legends denote “benchmark:
number of MPI tasks x number of OpenMP threads.”

49

1e+00

1e+01

1e+02

1e+03

1e+04

1e-01 1e+00 1e+01 1e+02

A
tta

in
ab

le
 G

F
lo

ps

Arithmetic Intensity (Flops/Bytes)

Roofline Model, Mira

theoretical L1
theoretical RAM

Peak GFlops (Optimized)
empirical RAM

C code peak
w/o SIMD

Mul/Add imbalance
GTC:1x64

GTC-Pushi:1x64
GTC-Chargei:1x64

GTC:64x1
GTC-Pushi:64x1

GTC-chargei:64x1

Figure 6.2. GTC’s resultant performance on Mira. Legends denote “benchmark: number
of MPI tasks x number of OpenMP threads.”

exchange-correlation functions, part of the general-purpose Quantum Espresso (QE) code

for modeling materials. This can be used to explore new parallelization schemes and pro-

gramming models, and evaluate their suitability for plane-wave DFT calculations. MiniDFT

is a compute-intensive code, dominated by dense linear algebra and 3D FFTs.

• Application Analysis:

Figure 6.3 presents the resultant performance on Mira compared with DGEMM and

ZGEMM routines (C := alpha × op(A) × op(B) + beta × C). Although miniDFT uses

matrix-matrix multiplications, the application performance is far less than peak DGEMM

or ZGEMM performance. This is likely an artifact of the inherent performance differences

between square multiplications and the block vector multiplications used in miniDFT. We

can observe that flat MPI performance generally tracks the Roofline well. Conversely, the

performance of the threaded code was orders of magnitude less than ideal although the

arithmetic intensity of threaded code reaches the computational bound. Perhaps it is due

to limited parallelism in any one dimension.

6.4 Summary

In this chapter, we discussed our observations and insights derived from analyzing three

HPC applications, HPGMG-FV, GTC, and MiniDFT on Mira’s Empirical Roofline Model.

We believe that developers wishing to understand their applications’ performance will find

the Empirical Roofline Model is extremely useful to effectively find optimization benefits

from the target architecture.

50

1e+00

1e+01

1e+02

1e+03

1e+04

1e-01 1e+00 1e+01 1e+02

A
tta

in
ab

le
 G

F
lo

ps

Arithmetic Intensity (Flops/Bytes)

Roofline Model, Mira

Theoretical L1
theoretical RAM

Peak GFlops (Optimized)
empirical RAM

C code peak
w/o SIMD

Mul/Add imbalance
MiniDFT:64x1

DFT-Zgemm:64x1
DFT-FFT_2XY:64x1

(a)

1e+00

1e+01

1e+02

1e+03

1e+04

1e-01 1e+00 1e+01 1e+02

A
tta

in
ab

le
 G

F
lo

ps

Arithmetic Intensity (Flops/Bytes)

Roofline Model, Mira

Theoretical L1
theoretical RAM

Peak GFlops (Optimized)
empirical RAM

C code peak
w/o SIMD

Mul/Add imbalance
MiniDFT:1x64

DFT-Zgemm:1x64
DFT-FFT_2XY:1x64

ZGEMM:1x64
DGEMM:1x64

(b)

Figure 6.3. MiniDFT’s resultant performance on Mira. Legends denote “benchmark:
number of MPI tasks x number of OpenMP threads.” (a) MPI Only. (b) MPI+OpenMP.

CHAPTER 7

CONCLUSION AND FUTURE WORK

This chapter summarizes this thesis and primary contributions. Also, it discusses the

future work to generalize the Roofline Model concept.

7.1 Summary and Conclusions

This thesis proposed the benchmark-driven Roofline Model Toolkit that not only pro-

vides performance expectations for each target architecture, but also offers insights into the

capabilities and efficiency associated with each architecture. Beyond conventional Roofline

analysis, these Roofline micro benchmarks could help one to get extensive knowledge of

memory subsystems.

This thesis’s contributions include:

• In Chapter 3, we have described the Roofline Benchmarks that use a hybrid MPI and

OpenMP model. These benchmarks focus on capturing the attainable bandwidth

and the floating-point performance of each level of the memory hierarchy, along

with thread-level, instruction-level, and explicit SIMD parallelism. In Chapter 4,

we proposed the other advanced benchmarks to evaluate parallelism and locality is-

sues, enabling hardware-software co-design to reduce data motion within applications.

Finally, in Chapter 5, we benchmarked GPUs to evaluate parallelism and locality

issues like we observed in CPUs. Moreover, we also created a novel benchmark to

evaluate software managed cache technologies in CUDA to provide in-depth knowledge

in memory subsystems.

• The architecture characterization engine can not only provide the achievable per-

formance and its resultant gap between reality and theory on current architectures,

but also be used to predict performance on potential new architectures, enabling

informed algorithm design and implementation. In Chapter 4, we also extended

52

the Roofline Model by adding computation performance and bandwidth ceilings to

diagnose performance problems on existing architectures.

• We use this toolkit to benchmark four leading HPC systems: Edison, Mira, Babbage,

and Titan. Edison’s Empirical Roofline Model, with sufficient parallelism, is very close

to its theoretical model. On Mira, although the XLC compiler is able to effectively

SIMDize and unroll the code sufficiently to hide floating-point latency, the low L1

bandwidth issue results in the large gap between theory and reality. On Babbage and

Titan, the extreme multithreading paradigm allows the MIC or GPU to deliver a high

fraction of its theoretical bandwidth when running on the device. Finally, we leveraged

the Empirical Roofline Model to analyze three HPC applications — HPGMG-FV,

GTC, and MiniDFT, to offer observations and insights into performance benefits to

optimize application performance or redesign architectures.

7.2 Future Work

There is a beta-release of the Empirical Roofline Tool, ERT, in Lawrence Berkeley

National Laboratory [19]. Future work will continue to generalize this ERT tool, design

other benchmarks to generalize the Roofline Model, as well as continue instrumentation,

benchmarking, and analysis of HPC applications to explore performance and parallelism

issues on emerging HPC platforms. We summarize potential benchmarking efforts here:

• A benchmark for characterizing short-stanza memory performance to express more

memory-level parallelism.

• A benchmark for characterizing MPI performance, including point-to-point messaging

and collectives (one-to-all, all-to-one, all-to-all).

• A benchmark for characterizing more parallelization overhead issues, including OpenMP

critical section, etc.

• A benchmark for characterizing Network-on-Chip performance.

We believe that the use of Empirical Roofline Tool will help understand current and

future design points of architectures as well as algorithms/applications.

REFERENCES

[1] Application Performance Characterization Benchmarking (APEX). http://crd.lbl.
gov/departments/computer-science/performance-and-algorithms-research/

research/previous-projects/apex/.

[2] Babbage Testbed. www.nersc.gov/users/computational-systems/testbeds/

babbage.

[3] Bailey, D. H., Lucas, R. F., and Williams, S. W. Performance Tuning of
Scientific Applications. CRC Press, New York, 2011.

[4] Bronevetsky, G., Gyllenhaal, J., and de Supinski, B. R. Clomp: Accurately
characterizing openmp application overheads. International Journal of Parallel Pro-
gramming, Volume 37, Issue 3 (2009).

[5] Bull, J. M. Measuring synchronisation and scheduling overheads in openmp. Pro-
ceedings of the First European Workshop on OpenMP, Lund, Sweden (1999).

[6] Bull, J. M., and D, I. A microbenchmark suite for openmp 2.0. SIGARCH
Computer Architecture News (2001).

[7] Bull, J. M., and D, I. On the efficacy of a fused cpu+gpu processor (or apu)
for parallel computing. Symposium on Application Accelerators in High-Performance
Computing (SAAHPC’11) (2011).

[8] Choi, J., Bedard, D., Fowler, R., and Vuduc, R. A roofline model of energy.
IEEE IPDPS (May 2013).

[9] Cori Cray XC30. www.nersc.gov/users/computational-systems/

nersc-8-system-cori.

[10] Corporation, I. Intel xeon phi corprocessor system softeare developers guide. Intel
(June 2012).

[11] Corporation, I. Ibm system blue gene solution: Blue gene/q application develop-
ment. IBM (June 2013).

[12] Corporation, N. Kepler gk 110: The fatest, most efficient hpc architecture ever
built. Nvidia v1.0 (2012).

[13] Corporation, N. Cuda c programming guide. Nvidia PG-02819 v6.0 (Feb. 2014).

[14] Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K. E., Santos,
E., Subramonian, R., and v. Eicken, T. Logp: Towards a realistic model of
parallel computation. ACM SIGPLAN Notices 28 (1993).

54

[15] Datta, K., Kamil, S., Williams, S., Oliker, L., Shalf, J., and Yelick,
K. Optimization and performance modeling of stencil computations on modern
microprocessors. SIAM Review (2009).

[16] Dirac Testbed. www.nersc.gov/users/computational-systems/testbeds/dirac.

[17] Edison Cray XC30. www.nersc.gov/systems/edison-cray-xc30.

[18] EPCC OpenMP micro-benchmarkSuite. https://www.epcc.ed.ac.uk/

research/computing/performance-characterisation-and-benchmarking/

epcc-openmp-micro-benchmark-suite.

[19] Empirical Roofline Tool website. http://crd.lbl.gov/departments/

computer-science/performance-and-algorithms-research/research/

roofline/.

[20] Gyrokinetic Toroidal Code Website. http://phoenix.ps.uci.edu/GTC.

[21] Hager, G., Treibig, J., Habich, J., and Wellein, G. Exploring performance
and power properties of modern multicore chips via simple machine models. CoRR
abs/1208.2908 (2012).

[22] HPCToolkit website. http://hpctoolkit.org/.

[23] HPGMG website. http://hpgmg.org.

[24] Immerman, N. Expressibility and parallel complexity. Siam Journal on Computing,
vol. 18, no. 3, pp. 625-638 (1989).

[25] Kamil, S., Husbands, P., Oliker, L., Shalf, J., and Yelick, K. Impact of
modern memory subsystems on cache optimizations for stencil computations. ACM
MSP (2005).

[26] LLCBench - Low Level Architectural Characterization Benchmark Suite. http://icl.
cs.utk.edu/projects/llcbench/index.htm.

[27] QEforge website: MiniDFT. qe-forge.org/gf/project/minidft.

[28] Narayanan, S. H. K., Norris, B., and Hovland, P. D. Generating performance
bounds from source code. In Proceedings of the First International Workshop on
Parallel Software Tools and Tool Infrastructures (PSTI) (September 2010).

[29] Performance Application Programming Interface (PAPI). http://icl.cs.utk.edu/

papi/.

[30] Stockmeyer, L., and Vishkin, U. Expressibility and parallel complexity. Siam
Journal on Computing, vol. 13, pp. 409-422 (1984).

[31] STREAM benchmark. www.cs.virginia.edu/stream/ref.html.

[32] Strohmaier, E., and Shan, H. Architecture independent performance charac-
terization and benchmarking for scientific applications. International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(October 2004).

55

[33] Strohmaier, E., and Shan, H. Apex-map: A global data access benchmark to
analyze hpc systems and parallel programming paradigms. Supercomputing, 2005.
Proceedings of the ACM/IEEE SC 2005 Conference (November 2005).

[34] Tuning and Analysis Utilties. http://www.cs.uoregon.edu/research/tau/home.

php.

[35] Performance Analysis Tools: Vampir, VampirTrace, and Score-P. http://www.

paratools.com/Vampir.

[36] Williams, S. Auto-tuning Performance on Multicore Computers. PhD thesis, EECS
Department, University of California, Berkeley, December 2008.

[37] Williams, S., Watterman, A., and Patterson, D. Roofline: An insightful
visual performance model for floating-point programs and multicore architectures.
Communications of the ACM (April 2009).

