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ABSTRACT

Control-flow analysis of higher-order languages is a difficult problem, yet an important

one. It aids in enabling optimizations, improved reliability, and improved security of

programs written in these languages.

This dissertation explores three techniques to improve the precision and speed of a

small-step abstract interpreter: using a priority work list, environment unrolling, and strong

function call. In an abstract interpreter, the interpreter is no longer deterministic and

choices can be made in how the abstract state space is explored and trade-offs exist. A

priority queue is one option. There are also many ways to abstract the concrete interpreter.

Environment unrolling gives a slightly different approach than is usually taken, by holding

off abstraction in order to gain precision, which can lead to a faster analysis. Strong function

call is an approach to clean up some of the imprecision when making a function call that is

introduced when abstractly interpreting a program.

An alternative approach to building an abstract interpreter to perform static analysis is

through the use of constraint solving. Existing techniques to do this have been developed

over the last several decades. This dissertation maps these constraints to three different

problems, allowing control-flow analysis of higher-order languages to be solved with tools

that are already mature and well developed. The control-flow problem is mapped to pointer

analysis of first-order languages, SAT, and linear-algebra operations. These mappings allow

for fast and parallel implementations of control-flow analysis of higher-order languages.

A recent development in the field of static analysis has been pushdown control-flow

analysis, which is able to precisely match calls and returns, a weakness in the existing

techniques. This dissertation also provides an encoding of pushdown control-flow analysis

to linear-algebra operations. In the process, it demonstrates that under certain conditions

(monovariance and flow insensitivity) that in terms of precision, a pushdown control-flow

analysis is in fact equivalent to a direct style constraint-based formulation.
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CHAPTER 1

INTRODUCTION

In higher-order languages, it is not always clear from the syntax which functions are

being called at which call sites. This is because a higher-order language allows functions as

arguments, and also allows functions to return other functions.

Take for example the simple Racket program that implements Turner’s tautology checker

and invokes it two times [19]. The details of the example are not important, just the

illustration it gives. The function taut takes a curried function f that represents a boolean

expression. The function taut then checks if all possible assignments of either #t or #f to

the parameters of f result in f evaluating to #t.

(define (taut f n)

(if (= n 0) f

(and (taut (f #t) (- n 1))

(taut (f #f) (- n 1)))))

(define g (lambda (x)

(lambda (y)

(or (and x (not y))

(or (not x) y)))))

(define h (lambda (z) z))

(taut g 2)

(taut h 1)

Because functions are passed around as arguments, it might not be immediately clear

which functions can flow to f and thus what functions are invoked when calling f. There

are two call sites which recursively invoke taut, but the first argument is the result of
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invoking f itself. In order to answer the question of which functions can flow to f, we need

a control-flow analysis. A higher-order control-flow analysis conservatively bounds the set

of functions that are applied at a higher-order call site.

A control-flow analysis is also needed for determining which methods are called in an

object-oriented setting.

1.1 Thesis

Increases in speed and precision are feasible for control-flow analyses of higher-order

languages—including pushdown analyses—via management of the abstract heap and by

reduction to problems for which efficient implementations exist, such as pointer analysis,

SAT, and linear-algebra operations.

1.2 Overview

A control-flow analysis determines the control-flow of a program. This is a difficult

problem in higher-order languages, because data flow affects control flow and control flow

affects data flow. To address this issue, much work has been done. Midtgaard surveys work

on control-flow analysis of functional languages over the last 30 years, citing almost two

hundred works [35].

A popular family of algorithms for solving control-flow of higher-order languages is

k-CFA [49]. It is a family of algorithms where the chosen value of k determines the precision

of the analysis. A higher value of k gives greater precision but at the cost of a greater

runtime. In creating k-CFA, Shivers’ original hope was to create an analysis that would

allow programs written in higher-order languages to be as efficient as those written in C [49].

Might continued this line of work by solving the environment problem, enabling even more

powerful optimizations when compiling higher-order languages [37].

However, k-CFA is an exponential algorithm [54], and even the most efficient polynomial

formulation when k = 0, more commonly known as 0CFA, remains cubic [55]. Almost linear

formulations exists, but maybe at the cost of too much precision [4].

Building further upon these works, Vardoulakis and Shivers developed a context-free

approach to control flow analysis, CFA2, that allows for matching calls and returns more

precisely [57]. Even though CFA2 results in an order of magnitude reduction in analysis

time and an order of magnitude in precision, the algorithm remains exponential naively im-

plemented, and remains polynomial with widening. Earl et al. developed their own approach

to solving the problem of properly matching function calls and returns via abstracting the

stack with a pushdown system [11].
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This dissertation demonstrates that the cost of running these analyses can be brought

down even further.

1.3 Contributions

First, this dissertation makes three contributions in carefully managing the abstract

heap in a small-step abstract interpreter framework.

• Prioritizing the Work List

In general, how the state space is explored for an abstract interpretation of higher-

order languages is unimportant. The final result will be the same. However, when

you use global store widening and subsumption testing, the way you explore the state

space matters. Each transition contributes values to the store, but some transitions

contribute more values than others. Thus, whether we explore the work list in a

bread-first manner or depth-first manner can affect how many states we visit before

we reach a fixed point.

However, neither of these two search strategies may be optimal, but it is unlikely that

the optimal search strategy can be known a priori. Nevertheless, cheap heuristics exist

that will be closer to optimal than either breadth-first or depth-first searches [32].

• Environment Unrolling

Generally, the state space of an abstract-machine for the lambda calculus is infinite

because environments refer to closures and closures refer to environments [49]. Model

checkers for imperative languages will often apply loop unrolling to make their state

space finite in the presence of loops and recursion. Environments in higher-order

languages can be handled in a similar fashion by putting a bound on the number of

environments to which a given closure can transitively refer [30].

• Strong Function Call

In an abstract interpretation, after a function call, we know which abstract closure

was called and can deduce that any other values found at the same abstract address

in the abstract store could not possibly exist in the corresponding concrete state [31].

Thus they can be removed from the abstract store without loss of soundness. However,

this technique requires that we use abstract counting [39] to ensure that our abstract

address is only abstracting one concrete address. Otherwise, the analysis would be

unsound. This approach is similar to that of strong update [20].
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Second, this dissertation makes three contributions in describing how to map a constraint

based formulation of control-flow analysis into three unique problems.

• Pointer Analysis

Mapping to a pointer analysis allowed us to achieve one of the main goals of this

dissertation, parallelizing a control-flow analysis. Tools exist which both parallelize

pointer analysis on the GPU and on multicore CPUs. Through this encoding, we can

run our control-flow analysis in parallel on both of these platforms [27].

• SAT

This dissertation demonstrates an encoding for a control-flow analysis of higher-order

programs to SAT [29]. It shows that in some cases, modern SAT solvers, using this

encoding, can perform better than an optimized solution.

• Linear Algebra

Mapping the constraints to linear-algebra operations shows how it is possible to

solve the constraints on the GPU, but also helps with an important result on how

a pushdown control-flow analysis can be equivalent to a constraint-based formulation

of the direct style lambda calculus.

Third, this dissertation makes the contribution of giving a linear algebra encoding of

pushdown control-flow analysis [28] and shows how the previous encodings can also be used

to perform the same analysis.

One of the original goals of this dissertation was to parallelize a pushdown control-flow

analysis. However, the path to get there was a little circuitous. First, we map a control-flow

analysis to a pointer analysis. Then, we demonstrate that the mapped control-flow analysis

is actually equivalent to a pushdown control-flow analysis. To do this, this dissertation

presents a linear encoding of pushdown control-flow analysis which makes it suitable to

be run on a GPU, but also gives intuition on how to run the program. The style of this

encoding takes a similar approach as that of EigenCFA [46].

1.4 Outline

This dissertation demonstrates the thesis as follows.

Chapter 2 gives a brief overview of abstract interpretation. It gives a brief overview of the

language used for a majority of this dissertation, continuation-passing style lambda calculus.

It gives a concrete semantics and then an abstract semantics. The subsequent sections then
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present techniques for adjusting the abstract interpretation. It describes choices that can

be made while exploring that abstract state space, which have consequence on the amount

of memory used and the speed of the analysis. It also describes how to soundly change the

abstract domains to achieve greater precision. It also describes how to soundly prune the

search space when decisions are made in the abstract interpretation.

Chapter 3 reviews an alternative formulation to performing a control-flow analysis using

constraints. It shows the constraints that are generated, how to solve them, and outlines

how the traditional abstract small-step interpreter when made flow insensitive produces the

same results. The chapter continues by showing how to map these constraints to a pointer

analysis, how to map these constraints to a SAT solver, and finally gives a linear-algebra

encoding of these constraints.

Chapter 4 outlines a pushdown control-flow analysis, gives a linear-algebra encoding,

and outlines how the results it produces are equivalent to the results of a linear encoding

of the direct style constraints.

Chapter 5 reviews work in parallelizing static analyses, while Chapter 6 concludes the

dissertation.



CHAPTER 2

IMPROVING SMALL-STEP ABSTRACT

INTERPRETERS

One approach to determining the control-flow of a program is through abstract inter-

pretation [9]. One well-known approach by Van Horn and Might is to take the semantics

of a programming language and abstract them using a systematic approach [56]. However,

this produces inefficient abstract machines. Some work has been done to improve these

machines [21], but this chapter explains three more techniques that can also be used to

improve the abstract interpreters that are built using this approach.

2.1 Concrete Semantics

Continuation-passing style (CPS) lambda calculus is the higher-order language over

which the forthcoming developments operate. In order to understand the ideas presented in

this chapter, an understanding of continuation-passing style lambda calculus and abstract

interpretation is needed. Brief descriptions of both will be given. After presenting CPS,

we will first quickly recall what a concrete small-step semantics looks like for lambda

calculus in continuation-passing style. We will then proceed to demonstrate how this can

easily be changed into an abstract interpreter with only a few small changes [56]. The

original formulation of a popular abstract interpretation framework, k-CFA, operates on

CPS lambda calculus and this work operates on the same language.

2.1.1 Continuation-Passing Style

In CPS, all expression are either call sites, variables, or lambda terms, like in the original

lambda calculus, but with the additional restrictions that the body of a lambda terms must

be a call site and that the function and arguments at a call site must be atomic, meaning

that they can only be a variable or lambda term. Unlike the pure lambda calculus, we

allow lambda terms to have multiple arguments. This language form has been shown to

be a suitable intermediate representation for compilers of higher-order languages [3]. It
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also has the benefit that its semantics can be described in a single transition relation.

CPS is similar to the untyped lambda calculus but with additional constraints: functions

never return, all calls are tail calls; where a function would normally return, the current

continuation is invoked on the return value; and when calling a function, the caller must

supply a continuation procedure.

The grammar for CPS lambda calculus is as follows.

call ∈ Call ::= (f æ1 . . .æn)

f,æ ∈ AExp ::= v | lam

lam ∈ Lam ::= (λ (v1 . . . vn) call)

v ∈ Var is a set of identifiers

We will now describe a small-step operational semantics using an abstract machine

that can be used to evaluate a program. This machine will be very similar to the CESK

machine of Felleisen [13]. However, it does not have a continuation component, because the

continuations are explicit in the expressions. This is also slightly a nonstandard state space

because we have environments mapping to addresses rather than values. This is to facilitate

the abstraction of the machine using the Abstracting Abstract Machines approach [56].

We use a CES style abstract machine and provide a transition relation (⇒) ⊆ Σ × Σ.

The state space of this abstract machine is as follows. A control state contains a control

expression, environment, and store.

ς ∈ Σ = Call× Env × Store

ρ ∈ Env = Var ⇀ Addr

clo ∈ Clo = Lam× Env

σ ∈ Store = Addr ⇀ Clo

a ∈ Addr is an infinite set

In order to evaluate atomic expressions, we introduce an auxiliary function, A : Atom×

Env × Store ⇀ Clo. In the case of a variable, it looks up the address of the variable in the

environment and then looks up the value at that address in the store. In the case of a lambda

term, it produces a closure by closing the lambda term with the current environment.

A(v, ρ, σ) = σ(ρ(v))

A(lam, ρ, σ) = (lam, ρ)

In defining the transition relation (⇒), we find one of the main benefits of using CPS.

The transition relation can be defined with a single rule. It starts by atomically evaluating
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the function. It proceeds by allocating a new address for each argument. In the concrete

semantics, a unique address is used that will never be used again. It then extends the

environment of the closure and binds the values of the arguments to those addresses in the

store.

ς︷ ︸︸ ︷
([[(f æ1 . . .æn)]], ρ, σ)⇒ (call , ρ′′, σ′), where

([[(λ (v1 . . . vn) call)]], ρ′) = A(f, ρ, σ)

ρ′′ = ρ′[vi 7→ ai]

σ′ = σ[ai 7→ A(æi, ρ, σ)]

ai = alloc(vi, ς)

Given a program, we must be able to inject it into an initial state. Using I : Call → Σ

we pair a program with an empty environment and empty store.

I(call) = (call , [], [])

Given the initial state, the program is executed by generating successor states using the

transition relation (⇒) ⊆ Σ× Σ. The halt continuation can be simulated by having a free

variable in the program. The transition relation will not have any closure bound to the free

variable and thus cannot generate a successor state. Execution terminates when the halt

continuation is applied. The meaning of the program is whatever value gets passed to the

halt continuation.

2.2 Abstract Semantics

We will now explore how we can take this concrete semantics and make it abstract.

Our abstract semantics will be guaranteed to terminate given any program. We begin by

first abstracting the state space. Looking at the original concrete state space, the source of

unboundedness is that addresses are unbounded. However, we can abstract the state space

by making the number of addresses finite [56].

Besides this small change, the abstract state space looks very similar to the concrete

state space, with the notable exception that the addresses are now finite and stores now

map addresses to a set of abstract closures.



9

ς̂ ∈ Σ̂ = Call× Ênv × Ŝtore

ρ̂ ∈ Ênv = Var ⇀ Âddr

ĉlo ∈ Ĉlo = Lam× Ênv

σ̂ ∈ Ŝtore = Âddr ⇀ P
(

Ĉlo
)

â ∈ Âddr is a finite set

However, having a finite set of addresses means that in the abstract interpretation some

addresses will be reused. This means that the store must be able to handle having more

than one value, so we now map to a set of closures rather than a single closure. These sets

cannot grow arbitrarily large because there are only a finite number of closures. This is

why the indirection of the store was introduced. Having environments point to values rather

than addresses would introduce structural recursion, because values contain environments.

However, with the introduction of the store the cycle is broken [56].

The abstract transition relation (;) ⊆ Σ̂ × Σ̂ changes slightly from the concrete one

in order to handle multiple closures. It now joins (t) values in the store. This means it

takes the union of the set of closures that previously existed at that address and the set of

closures that are being added and store the union at the address.

ς̂︷ ︸︸ ︷
([[(f æ1 . . .æn)]], ρ̂, σ̂) ; (call , ρ̂′′, σ̂), where

([[(λ (v1 . . . vn) call)]], ρ̂′) ∈ Â(f, ρ̂, σ̂)

ρ̂′′ = ρ̂′[vi 7→ âi]

σ̂′ = σ̂ t [âi 7→ Â(æi, ρ̂, σ̂)]

âi = âlloc(vi, ς̂)

We also have an abstract atomic evaluator that performs the same operations as its

concrete counterpart Â : Atom× Ênv × Ŝtore ⇀ P
(

Ĉlo
)

. The difference being that it now

returns a set of abstract closures, rather than a single value.

Â(v, ρ̂, σ̂) = σ̂(ρ̂(v))

Â(lam, ρ̂, σ̂) = {(lam, ρ̂)}

The abstract transition relation is also very similar to its concrete counterpart. The

main difference lies in that the atomic evaluator may return multiple values. This results

in branching in the abstract transition graph.
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To perform the analysis, we must then compute all the reachable states using the abstract

transition relation (;) ⊆ Σ̂× Σ̂, generating successor states until a fixed point is reached.{
ς̂ : Î(call) ;∗ ς̂

}
2.2.1 Context Sensitivity

We can recover the original k-CFA analysis given these semantics by adding a time

component to a state.

ς̂ ∈ Σ̂ = Call× Ênv × Ŝtore × T̂ime

ρ̂ ∈ Ênv = Var ⇀ Addr

σ̂ ∈ Ŝtore = Âddr → P
(

Ĉlo
)

ĉlo ∈ Ĉlo = Lam× Ênv

â ∈ Âddr = Var × T̂ime

t̂ ∈ T̂ime = Callk

The abstract allocation function âlloc : Var× âState → Âddr is implemented as pairing

the variable with the time component.

âlloc(v, (call , ρ̂, σ̂, t)) = (v, t)

Also, on every transition, the function t̂ick : Σ → T̂ime is called and the time is

advanced. However, it just takes the last k call sites.

t̂ick(call , ρ̂, σ̂, t̂) =

first k values︷ ︸︸ ︷
call : t̂

We still need to inject the program into an initial abstract state Î : Call → Σ̂, but it is

still paired with an empty environment, empty store, and empty time.

Î(call) = (call , [], [], ())

2.3 Priority State Exploration

Choices exist when exploring states in a small-step abstract interpreter. When generat-

ing the abstract transition graph while computing k-CFA, the order in which we generate

successor states is not important. However, if we are using store widening, the order in which

we generate successor states matters because some states will help us jump to the minimum

fixed point faster than others. The order in which states are explored is controlled by the
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work list. The states can be explored in depth-first or breadth-first fashion. However, these

are not the only options available. We can also use a priority queue to intelligently explore

states which will help us reach a fixed point faster than either of these two approaches. In

this section, we evaluate the different options that exist for a work list.

While control-flow analysis of higher-order languages is complex, the machinery under-

neath is actually quite simple. However, in these simple mathematics, there are several

nuances that can affect the precision of the analysis. In the past, the primary focus has

been the allocation function, which controls the address of the variables we are binding [17].

With this seemingly simple function, the polyvariance, complexity, and precision of the

analysis is controlled. However, this is not the only source of nuance in a small-step abstract

framework.

This section discusses the particulars of a possible implementation of k-CFA. The

abstract interpreter from Section 2.1.1 can be made to run quickly by using global widening

in an algorithm known as the time-stamp algorithm [49].

Once an understanding of the time-stamp algorithm is attained, we can dive into the

meat of this section. It will be shown that it is important how exactly we handle the work

list in the algorithm. The order in which we visit states and generate successor states

matter.

The main contribution of this section is to point out and demonstrate the idea that the

order of exploration matters when iterating over the work list.

Our second contribution is to demonstrate that using a priority queue for the work list

can increase the speed of the analysis and also decrease the amount of memory required for

the analysis. We demonstrate with empirical evidence the efficacy of this idea, even though

the gains might not be substantial.

2.3.1 Implementing k-CFA

The simplest way to compute k-CFA is to construct the set of all reachable states

over the transition relation, starting at the initial state. Any graph-searching algorithm is

sufficient for finding this set. This will give us the desired result because every state in the

concrete execution has an approximation in the set of abstract states generated by k-CFA.

This means that any behavior that occurs in the concrete execution will be captured by the

abstract execution.

Shivers devised two techniques for more quickly computing the set of reachable states:

the aggressive-cutoff algorithm and the time-stamp algorithm [49].
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We will give a short description of these two algorithms shortly and then will describe

the algorithm in more detail.

2.3.2 The Aggressive-Cutoff Algorithm

While exploring the state space and generating the abstract transition relation, we only

ever add information, we never take any away. We can exploit this monotonicity while

exploring the state space. If a state we are about to explore is weaker than (v) a state

that we have already visited, we know that we have already captured the behavior of that

state and do not need to generate its successor states again. This is the essence of the

aggressive-cutoff algorithm.

2.3.3 The Time-Stamp Algorithm

The time-stamp algorithm is a form of the aggressive-cutoff algorithm. In the time-stamp

algorithm, we modify the state-space search by joining the store of the state just pulled from

the work list with the least upper bound of all the stores seen so far.

States contain a large environment and store that to compare requires a deep traversal.

These states are sizable structures. To combat this issue, we perform the following steps.

We keep around a single-threaded store that we update after each transition. The store

grows monotonically, so this is safe to do. We might add additional values that would not

occur in the concrete execution, but this is always sound. Whenever we update the store

with a new value, we increment a time-stamp. Then in our states, we no longer keep a

reference to the store but to a time-stamp. A time-stamp with a lesser value is weaker than

a time-stamp of a greater value. Thus, we can do subsumption testing based on the value

of the time-stamp. The larger time-stamp approximates the smaller time-stamp.

This technique implements the aggressive cutoff algorithm while at the same time low-

ering the storage overhead. The original implementation of the time-stamp algorithm [49]

showed that it did not cost too much precision.

2.3.4 Detailed Algorithm

Putting together the two above techniques, exploiting configuration monotonicity for

early termination and configuration-widening, leads to an algorithm for computing Shivers’

original k-CFA.

This algorithm in Figure 2.1 is taken directly from Might, but adapted slightly to fit the

notation of this chapter [37].
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Ŝ ← ⊥ Seen time-stamps, Call× Ênv × T̂ime → N.

Σ̂todo ←
{
Î(pr)

}
The work list.

σ̂∗ ← ⊥ The global store.
n∗ = 1 The generation of the global store.
procedure Search()

if Σ̂todo = ∅
return

remove ς̂ ∈ Σ̂todo

(call , ρ̂, σ̂, t̂)← ς̂

n← Ŝ[call , ρ̂, t̂] The latest generation seen with this context.
if n ≥ n∗

return Search() Done—by monotonicity of ;.

ς̂ ← (call , ρ̂, σ̂ t σ̂∗, t̂) Install the widened store.

Σ̂next ← {ς̂ ′ : ς̂ ; ς̂ ′} Explore successors.

Ŝ[call , ρ̂, t̂]← n∗ Mark the current generation of the store as seen.

σ̂next ←
⊔{

σ̂ : (call , ρ̂, σ̂, t̂) ∈ Σ̂next

}
Check each successor for changes.

if σ̂next = σ̂∗

n∗ ← n∗ + 1 Bump up the generation of the global store.
σ̂∗ ← σ̂next Widen the global store.

Σ̂todo ← Σ̂todo ∪ Σ̂next

return Search()

Figure 2.1: State-space search algorithm using the time-stamp algorithm for computing
k-CFA: Search



14

Using a side-effected global table, Ŝ, we map the latest evaluation context (call , ρ̂, t̂) to

the latest generation of the store that has been explored with that context:

Ŝ : Call× Ênv × T̂ime → N

During the search, if the current state was explored with a generation of the store that

is greater than or equal to the current generation of the global store, then that branch of

the search has terminated. The monotonicity of the abstract transition relation guarantees

that the behavior has already been approximated.

Otherwise, we widen the store of the state with the global store and generate successors,

updating Ŝ to reflect that we have explored it with the current generation of the global

store.

From the successor states, we see if they have contributed any changes to the global

store. If they have, we widen the global store and bump its generation.

2.3.5 The Work List

Traditionally, when executing a work list algorithm, the order in which we explore states

is not important. However, when we use the time-stamp algorithm, since each state can

possibly contribute different values to the global store, the order does have an effect on the

number of states that are explored. It has this effect because the quicker we can reach a

fixed point of our global store, the quicker we can stop exploring states.

The work list is generally implemented using a list, with new states being appended to

the front. This results in a depth-first search. However, we can explore these states in any

order we wish. In the next section, we will discuss possible ordering schemes on this list,

where we examine the contents of states in order try and guess which ones will help us reach

the fixed point of the global store the quickest.

2.3.6 Priority Queue

There are four components to a state which we can use to guess if it will help us climb

the lattice quicker: the expression, the environment, the store, and the time stamp.

ς̂ ∈ Σ̂ = Exp× Ênv × Ŝtore × T̂ime

In addition to the properties of these components, we can also take advantage of temporal

properties that arise during the execution of the abstract analysis.

We will now explore what properties of each of these components we could possibly use

to help us order them in our work list. The abbreviations in the parenthesis are used in the

evaluation section.
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2.3.6.1 Expression

These are possible priority schemes based on the expression component of a state.

• The type of the expression. If our language was richer and allowed for more language

forms such as if or set!, we could prioritize a given form over another (CTP).

• The number of subexpressions. It might be the case that more subexpressions means

that more values will be bound; thus, we should prioritize larger expressions over

smaller ones (CSZ).

• Where the expression appears in the program. We could explore expressions that

appear deeper in the program first (CDL) or we could take more of a breadth-first

approach and try to visit expressions that appear higher in our program first (CBL).

• The number of times we have visited an expression. When we come across an

expression in the course of the abstract interpretation, we might want to prioritize

states with expressions that we have already seen or vice versa (CFQ).

• Top-level function or inner function. If the lambda term we are invoking originally was

a top-level function in our program, it might be beneficial to explore inner functions

before exploring other top-level functions.

• Prefer user lambdas over continuation lambdas. When converting to continuation-

passing style, there are two types of lambda terms: user lambdas and continuation

lambdas. Returns get converted into invocations of continuation lambdas (CCR).

• The size of the continuation. This might give a rough approximation of how much

computation is left to do for a given state.

2.3.6.2 Environment

These are possible priority schemes based on the environment component of a state.

• The environment size. This is another way to give a comparable value to an expression.

A larger environment might signify that we will bind more values (ESZ).

• The flow set size of every address in the environment. How big the flow sets are

determine partially how big the flow sets are that we will be binding to values. It

stands to reason the larger these flow sets, the more values we will bind quickly (EFS).
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2.3.6.3 Store

These are possible priority schemes based on the store component of a state.

• The flow set size of the function we are applying. This determines how many successor

states we will have. If we prefer states that will generate more states, we might be

able to subsequently pick the best of those.

• The flow set size of the arguments. Given that we want to reach the fixed point as

quick as possible and that adding entries in the store is what gets us there, the more

values we bind the better (SAS).

• Number of successor states. If our language supported an if form, we could ask the

question of whether we will be exploring one branch, both branches, or neither branch

(SBF).

• The flow set size of the values we are binding. If our language supported set!, we

might want to consider the flow set size of the variable we are binding or the flow set

size of the value we are binding.

• Global store generation. The generation of the store is a metric of the size of the

store. We might prefer to explore states that already have a larger store.

2.3.6.4 Time

These are possible priority schemes based on the time component of a state.

• The number of times we have seen a given time. We will often see the same time

stamp in the course of an abstract interpretation. We could prefer states with calling

contexts that we have already seen or put a preference on new ones (TFQ).

• The value of the time. We could prefer longer contexts or shorter contexts. For

contexts of the same length, we could prefer ones that appear earlier or later in the

program we are analyzing (TVL).

2.3.7 Evaluation

To evaluate our idea, we took the implementation from Might et al. [40] which uses the

time-stamp algorithm. We adapted it so it would use a priority queue for its work list,

Observing the run times from the original paper, you will note that the benchmarks run

significantly faster. Updating the code to run on the latest version of Scala results in a 2x
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speedup. We also identified a bug where successor states were being added multiple times

to the work list. Removing these duplicate entries also resulted in a 2x speedup.

We are also running on better hardware, but given that we reran the original implemen-

tation on the newer hardware as a point of reference, this should not be a concern.

The abbreviations and descriptions for the priority schemes we evaluated in our imple-

mentation can be found in the previous section. We used the same benchmarks analyzed

by the original implementation [40]. The first two benchmarks, eta and map, test com-

mon functional idioms; sat is a back-tracking SAT-solver; regex is a regular expression

matcher based on derivatives; scm2java is a Scheme compiler that targets Java; interp is a

meta-circular Scheme interpreter; scm2c is a Scheme compiler that targets C.

Tables 2.1 and 2.2 compare the number of states that were generated for each benchmark.

In some cases, we can see that we generate only a fifth of the states as compared to the

original implementation.

Tables 2.3 and 2.4 compare the runtimes of the varying strategies. In the best case, we

were able to achieve a 1.5x speedup.

Although no specific strategy is best for all benchmarks, the strategy CFQ tends to do

well both in terms of reducing the number of states and decreasing the runtime. For a

control-flow analysis that needs to use low memory and run fast, using one of the strategies

that performs better than the baseline BFS and DFS strategies is worth considering.

All benchmarks were run with a k of zero or one. Every strategy produced the same

store for its final result.

This work is similar to that of Bourdoncle [7]. It discusses choosing the optimal ordering

of equations when using widening and narrowing. His work is different in that his abstract

interpretation is set up on creating a system of equations and for each control point and

finding the least fixed point for these system of equations. The abstract interpretation using

operational semantics uses a single transfer function and we are more concerned with the

implementation details of this transfer function. His work also works of an infinite lattice

while our lattice is finite and we are using widening for the purposes of speeding up the

analysis and making it tractable.

2.3.8 Conclusion

In this section, we have demonstrated that how states are processed is important when

computing k-CFA. We have described that there is a difference between doing a depth-first

vs. breadth-first search. We have also demonstrated that using a specific type of queue can

play an important role in limiting the number of states explored.
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Table 2.1: Number of states generated for k = 0.

eta map sat regex scm2java interp scm2c

BFS 54 230 488 3692 7888 651 38899
DFS 66 186 293 2252 2595 657 21195
CTP 53 223 284 1831 2394 653 13663
CSZ 54 192 373 2063 2933 653 14510
CDL 54 141 343 2630 4110 653 19618
CBL 54 230 234 2205 2848 648 25808
CFQ 56 166 223 1271 1718 657 7660
CCR 53 272 520 2292 3557 656 14327
ESZ 48 178 296 2248 2966 649 25845
EFS 48 178 296 2248 2966 649 25845
SAS 53 247 373 1743 3414 655 13337
SBF 61 223 382 1645 3467 653 10288

Table 2.2: Number of states generated for k = 1.

eta map sat regex scm2java interp scm2c

BFS 53 361 8696 12965 10001 635 157396
DFS 38 360 17216 11328 13397 635 130302
CTP 49 341 8831 6560 4080 635 94931
CSZ 53 344 6749 8467 3828 635 98366
CDL 53 260 4527 6039 4054 635 99471
CBL 44 343 7575 4369 4448 635 99333
CFQ 53 310 5819 7207 7651 635 96594
CCR 53 464 9855 8230 5444 635 98609
ESZ 51 342 6644 8932 4119 635 118390
EFS 51 342 6644 8932 4119 635 118390
SAS 49 442 8847 5661 5762 635 84808
SBF 47 456 9600 8283 6136 635 86390

Table 2.3: Time in milliseconds for each benchmark for k = 0.

eta map sat regex scm2java interp scm2c

BFS 73 217 293 889 1214 828 3296
DFS 75 195 233 704 790 815 2617
CTP 66 217 230 622 777 818 2338
CSZ 69 202 264 692 850 832 2376
CDL 66 167 249 781 936 831 2344
CBL 80 229 216 691 831 867 2737
CFQ 68 182 194 536 708 828 1824
CCR 67 236 295 707 880 812 2366
ESZ 65 188 232 729 831 815 2754
EFS 71 200 238 729 881 878 3149
SAS 67 238 267 633 903 822 2319
SBF 74 221 267 618 901 826 2170
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Table 2.4: Time in milliseconds for each benchmark for k = 1.

eta map sat regex scm2java interp scm2c

BFS 65 274 1441 1587 1341 830 8878
DFS 56 273 1820 1478 1514 819 6413
CTP 61 272 1436 1122 940 825 6253
CSZ 65 271 1333 1354 921 827 6297
CDL 66 232 1139 1114 943 849 6247
CBL 65 274 1433 929 968 879 6603
CFQ 63 256 1184 1201 1227 834 5967
CCR 63 308 1533 1323 1048 821 6068
ESZ 62 269 1284 1348 931 831 7469
EFS 69 276 1355 1464 1006 895 9806
SAS 63 310 1537 1130 1127 834 5338
SBF 62 308 1528 1329 1116 822 5814
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2.4 Environment Unrolling

We propose a new way of thinking about abstract interpretation with a method we

term environment unrolling. Model checkers for imperative languages will often apply

loop unrolling to make their state space finite in the presence of loops and recursion. We

propose handling environments in a similar fashion by putting a bound on the number

of environments to which a given closure can transitively refer. We present how this idea

relates to a normal model of abstract interpretation, give a general overview of its soundness

proof in regards to a concrete semantics, and show empirical results demonstrating the

effectiveness of our approach.

2.4.1 Introduction

In general, the state space of an abstract machine for a lambda calculus is infinite because

environments refer to closures and closures refer to environments [49]. In Abstracting

Abstract Machines (AAM), a systematic recipe for breaking this cycle is given [56]. Bindings

are store allocated and the number of addresses in the store is made finite.

We propose a slightly different perspective on how to make the state space finite. Model

checkers for imperative language wills often apply loop unrolling to make their state space

finite in the presence of loops and recursion. We propose handling environments in a fashion

similar to how they handle loops, by putting a bound on the number of environments to

which a given closure can transitively refer. As will be demonstrated, this provides a benefit

in both speed and precision in an abstract interpretation.

To illustrate the basic idea, we provide a simple example using the following program.

(define (fact n)

(if (zero? n) 1 (* n (fact (- n 1)))))

(fact 5)

In a traditional 0CFA, after the second recursive call, the environment would have the

binding [n 7→ a], while the store would have the binding [a 7→ {4, 5}]. However, if the

environment were concrete, the environment would contain the binding [n 7→ 4] and the

store would be empty.

2.4.2 Abstract Semantics

The abstract state space remains largely unchanged except for environments and clo-

sures.
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ς̂ ∈ Σ̂ = Call× Ênv × Ŝtore

ρ̂ ∈ Ênv = Ênvx + Ênv0

Ênvx = Var ⇀ P
(

Ĉlo
)

Ênv0 = Var ⇀ Âddr

σ̂ ∈ Ŝtore = Âddr ⇀ P
(

Ĉlo
)

ĉlo ∈ Ĉlo = Lam× Ênv

â ∈ Âddr is a finite set

Environments are abstracted in a nonstandard way. There are now two types of environ-

ments. The first type of environment has a depth which places a bound on how many times

we can extend the environment before using store allocation in the traditional fashion. We

also have the environment from the original abstract semantics in Section 2.2, which maps

variables to a set of addresses.

The subscript of the environment and the closure give its depth. The semantics maintain

the invariant that the environment depth must be greater than the depth of any closure it

binds.

Given ρ̂ ∈ Ênvx then ∀y ∈
{
y : ρ̂′ ∈ Ênvy, (lam, ρ̂′) ∈ d̂, d̂ ∈ range(ρ̂)

}
.x > y

In fact, it will be one greater the maximum depth of a closure it binds.

Given ρ̂ ∈ Ênvx then x = 1 + min
{
y : ρ̂′ ∈ Ênvy, (lam, ρ̂′) ∈ d̂, d̂ ∈ range(ρ̂)

}
However, if the environment does not bind any values, it can be any depth.

The semantics also require a way to extract the depth from the environment. The

environment is taken from the semantic category to which it belongs. In an implementation,

this could be encoded in the type of environment and a new type of environment would be

instantiated on environment extension.

We need to inject a program into an initial configuration. When this is done, the limit

on the amount of unrolling d is chosen.

ĉ0 = I(e) = (e, ρ̂, [], 〈〉), where ρ̂ = [] ∈ Ênvd

The atomic evaluator is also slightly different than usual. It must take into account the

depth of the environment. Lambda terms are handled in the traditional way. If we have

a variable, we have to be cognizant of what type of environment we have. If we have an



22

Ênv0, we evaluate in the standard way. If we have the other type of environment Ênvx, we

look up the value directly in the environment.

Â(lam, ρ̂, σ̂) = {(lam, ρ̂)}

Â(v, ρ̂, σ̂) =

{
σ̂(ρ̂(v)) ρ̂ ∈ Ênv0

ρ̂(v) ρ̂ ∈ Ênvx

The transition relation is also slightly different. It has three different scenarios it must

take into account, depending on the values it is binding and the environment it is extending.

The depth of the environment of the applied closure is df . The lowest depth of any abstract

closure that is being applied is dy. Each scenario updates generates ρ̂′′ and σ̂′ slightly

differently.

ς̂︷ ︸︸ ︷
(J(f æ1 . . .æn)K, ρ̂, σ̂) ; (call , ρ̂′′, σ̂′), where

([[(λ (v1 . . . vn) call)]], ρ̂′) ∈ Â(f, ρ̂, σ̂)

df = x where ρ̂′ ∈ Ênvx

da = min
i

{
y : ρ̂′′′ ∈ Ênvy, (lam, ρ̂′′′) ∈ Â(æi, ρ̂, σ̂)

}
ρ̂′′ = . . .

σ̂′ = . . .

Each case is responsible for extending an environment and updating the store. The

transition relation must take into account the depth of the current environment and what

the depth will be after it is extended.

2.4.2.1 Case 1

If the environment is at depth zero, it is updated in the standard way using the store.

If df = 0, then

ρ̂′′ = ρ̂′[vi 7→ â]

σ̂′ = σ̂ t [âi 7→ Â(æi, ρ̂, σ̂)]

âi = âlloc(vi, ς̂)

2.4.2.2 Case 2

In the second case where we are still dealing with environments of depth greater than

zero and the environment from the argument has depth greater than one, we do not need

to allocate any addresses, but can simply update the environment.
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If df > 0 and da > 1, then

ρ̂′′ = ρ̂′[vi 7→ Â(æi, ρ̂, σ̂)]]

σ̂′ = σ̂

2.4.2.3 Case 3

We must also be able to distinguish if extending the environment will drop the depth to

zero. If that is the case, we need to allocate addresses for all the values in the environment

and put them in the store.

If df > 0 and da ≤ 1, then

ρ̂′′ = âllocρ(ς̂)[vi 7→ â]

σ̂′ = σ̂ t [âi 7→ Â(æi, ρ̂, σ̂)]

âi = âlloc(vi, ς̂)

As seen above, we need a function that can convert an environment of non-zero depth

into an environment that is at depth zero.

âllocρ(

ς̂︷ ︸︸ ︷
call , ρ̂, σ̂) = (call , ρ̂′, σ̂′), where

vi ∈ dom(ρ̂)

âi = âlloc(vi, ς̂)

ρ̂′ = [][vi 7→ âi]

σ̂′ = σ̂ t [âi 7→ {ρ̂(vi)}]

2.4.3 Soundness

To prove the soundness, we must show that the abstract semantics simulate the concrete

semantics following the standard proof found in [37]. The key insight for the proof is that

we can provide an abstraction map that allocates a unique abstract address for every value

in a non-zero depth environment.

2.4.4 Evaluation

We have implemented this analysis and show the results on the exact benchmarks

presented in [12] in Table 2.5. Note that when the depth is zero, we get the same results

as a traditional pushdown analysis. When using a depth of one, we see that precision is

equal to or more precise than when k = 1, while at the same time generating a smaller

abstract transition graph. With further increases in the depth, we see better precision and
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Table 2.5: Environment unrolling benchmark results. The first three columns provide the
name of the benchmark, the number of expressions, and variables in the program. The
next seven columns show the results for running the original analysis with k ∈ {0, 1} and
with garbage collection off and on. Under each analysis, the first column is the number of
control states and the second column is the number of edges computed during the analysis.
The third column is the number of singleton variables. The last four columns show the
results of our analysis. It gives the depth d selected and the number of control states, edges,
and singleton variables. The depth is not shown for larger values if the precision was not
increased.

Program Exp Var k PDCFA PDCFA+GC d PDCFA+UE

mj09 19 10

0 38 38 4 33 32 4 0 38 38 4
1 44 48 1 32 31 1 1 39 40 4

2 40 40 3
3 38 37 3
4 32 31 3

eta 21 13
0 32 32 6 30 29 8 0 32 32 6
1 30 29 8 30 29 8 1 32 32 8

2 29 29 10

kcfa2 20 10
0 36 35 4 35 34 4 0 36 35 4
1 87 144 2 35 34 2 1 76 114 3

2 29 30 3

kcfa3 25 13
0 50 51 5 53 52 5 0 50 51 5
1 1761 4046 2 53 52 2 1 489 905 3

2 53 52 3

blur 40 20
0 523 813 3 299 335 9 0 523 813 3
1 324 348 9 320 344 9 1 49 49 12

2 47 48 13

loop2 41 16
0 108 117 4 67 71 4 0 108 117 4
1 398 512 3 145 156 3 1 74 77 5

sat 51 23

0 545 773 4 254 317 4 0 545 773 4
1 10872 14797 4 71 73 10 1 1400 1825 7

2 7625 9769 7
3 71 73 13
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smaller transition graphs than even occurs with abstract garbage collection. The run times

of the new analyses correlate to how many states and edges are in the graph. Environment

unrolling gives improvements in both precision and speed.

Schmidt proposed a similar scheme [47]. He also indexes environments by numbers and

if an environment refers to another environment, then its index is one less. Environments

of index zero are simply joined. Sereni and Jones developed k-bounded CFA in their

termination analysis which takes a similar approach of cutting off nested environments [48].

This work was not originally inspired by theirs but rather the optimization of CFA2 where

variables that do not escape in a closure are represented exactly. Our approach is different in

that when we reach index zero, we start abstracting through the store rather than joining

the environment. This allows our approach to use global store widening techniques or

abstract garbage collection.

2.4.5 Conclusion

We have shown a unique approach to abstract interpretation. We have described how

our approach is similar to loop unrolling and given a general overview of its semantics. We

have also provided results from an implementation of the analysis, which demonstrate its

possible benefits.

While the presentation only demonstrated the abstract interpretation for ANF lambda

calculus, it can immediately be applied to other language forms, including those involving

mutation. In the case of mutation, we would need to always store allocate mutable variables.

2.5 Strong Function Call

This section presents an incremental improvement to abstract interpretation of higher-

order languages, similar to strong update [8], which we term strong function call. In an

abstract interpretation, after a function call, we know which abstract closure was called and

can deduce that any other values found at the same abstract address in the abstract store

could not possibly exist in the corresponding concrete state. Thus they can be removed

from the abstract store without loss of soundness. We provide the intuition behind this

analysis along with a general overview of its soundness proof.

2.5.1 Introduction

Because of the unmovable force of the halting problem, static analyses as a rule must

be imprecise in some cases in order to remain inside the curtain of computability. Concrete

values must be abstracted, but this abstraction leads to imprecision. Any techniques that
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regain some if this lost precision are desirable. To this end, we propose strong function call.

A small extension to a traditional k-CFA analysis [49].

In an abstract interpretation of a lambda calculus which uses store allocation, the source

of nondeterminism is that an abstract address can point to several abstract closures. This

results in a fork in the abstract transition graph. Any subsequent function calls that

dereference that same address will also fork. However, the key insight used in this technique

is that once we have made a function call, we know which procedure was called and can

deduce that any other values in the store could not possibly exist in the corresponding

concrete state. Thus, these extra values should be pruned from the store in order to improve

the precision of subsequent dereferences of the address.

Strong function call is developed upon the abstract semantics presented in Section 2.2.

However, the ideas presented in this section are not restricted to CPS, but can easily be

extended to different language forms.

The approach taken in Section 2.2 to abstract the concrete interpreter was to make the

address space finite as described in Abstracting Abstract Machines [56]. The consequence

of this action is that the interpreter is now forced to have multiple values in the store at

a single address. Note that these values cannot grow infinitely because the state space

is finite. However, the issue arises that a single abstract address can represent multiple

concrete addresses. This is where abstract counting comes into play [20]. The abstract

count of an abstract address is the number of concrete addresses that abstract address

represents.

2.5.2 Abstract Counting

A natural domain for abstract counting is the set N̂. The analysis cares if an abstract

address represents a single concrete address or multiple concrete addresses. Our analysis

will leverage the power of this information.

N̂ = {0, 1,∞}

Note that the abstract count cannot be gleaned simply from the store and the number

of abstract closures at a particular address. It can be the case that a single abstract

address representing multiple concrete addresses can only contain one value in the store. It

can also be the case that an abstract address can represent a single concrete address but

have multiple values in the store. Indeed, this is the case of which this analysis will take

advantage.
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Defining the operator ⊕ naturally extends over the addition operator. The operator

will also lift point-wise over functions, allowing the transition function to update a store

which maps abstract address to abstract counts. Here we see that we are retaining the vital

information that we need, whether we have a single value or multiple values.

0⊕ n̂ = n̂

n̂⊕ 0 = n̂

1⊕ 1 =∞

n̂⊕∞ =∞

∞⊕ n̂ =∞

One traditional use case for abstract counting in a higher-order setting is for strong

update [8]. If it can be shown that an abstract address only represents one concrete address,

the value does not need to be joined in the store, but can shadow the old value.

([[(set!-then v æ call)]], ρ̂, σ̂, µ̂) ; (call , ρ̂, σ̂′, µ̂), where

a = ρ̂(v)

ĉlo = Â(æ, ρ̂, σ̂)

σ̂′ =

{
σ̂[â 7→ ĉlo] µ̂(a) ≤ 1

σ̂ t [â 7→ ĉlo] otherwise

We now proceed by extending the abstract semantics for our analysis. We have added an

additional store like entity, Ĉount , which will keep track of abstract counts. The remaining

components of the abstract state remain unchanged.

ς̂ ∈ Σ̂ = Call× Ênv × Ŝtore × Ĉount

µ̂ ∈ Ĉount = Âddr ⇀ N̂

The function Ĝ is the crux of our analysis.

Ĝ : Var × Ĉlo × Ênv × Ŝtore × Ĉount ⇀ Ŝtore

It updates the store by possibly pruning values that are no longer needed. It determines

its action based on the syntactic type of the function we are applying. In the case of a

lambda term, nothing is done to the store. If the case of a variable term, if the abstract

address represents multiple concrete addresses, the function does nothing to the store. If

the abstract address only represents a single concrete address, it shadows the value pointed
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to by the address, restricting its value to only be the function that is being applied. In the

case where there is only one closure at the address, this operation has no effect. However,

in the case where there are multiple closures at that abstract address, it has the effect of

restricting the store to only have a single value at that address.

Ĝ(lam, ĉlo, ρ̂, σ̂, µ̂) = σ̂

Ĝ(v, ĉlo, ρ̂, σ̂, µ̂) =

{
σ̂[ρ̂(v) 7→

{
ĉlo
}

] µ̂(ρ̂(v)) ≤ 1

σ̂ otherwise

The newly defined augmented abstract transition relation is very similar to the original

abstract transition relation. We have added the abstract counting map to maintain the

information needed for our analysis. Also notice that we now use an auxiliary function to

update the store before joining it with the values from the arguments of the call site. This

restricts the store to only contain the closure that is being applied at the call site. This

reduces the size of the abstract state and could result in increased precision and speed.

ς̂︷ ︸︸ ︷
(J(f æ1 . . .æn)K, ρ̂, σ̂, µ̂) ; (call , ρ̂′′, σ̂′′, µ̂′), where

ĉlo ∈ Â(f, ρ̂, σ̂)

([[(λ (v1 . . . vn) call)]], ρ̂′) = ĉlo

âi = âlloc(vi, ς̂)

ρ̂′′ = ρ̂′[vi 7→ âi]

σ̂′ = Ĝ(f, ĉlo, ρ̂, σ̂, µ̂)

σ̂′′ = σ̂′ t [âi 7→ Â(æi, ρ̂, σ̂)]

µ̂′ = µ̂ ⊕ [âi 7→ 1]

2.5.3 Soundness

To prove the soundness of this analysis, we provide an abstraction map that connects

the concrete and abstract state spaces.

α((call , ρ, σ)) = (call , α(ρ), α(σ), αµ(σ))

α(ρ) = λv.α(ρ(v))

α(σ) = λâ.
⊔

α(a)=â

{α(σ(a))}

αµ(σ) = λâ.
⊕

α(a)=â

1

α(lam, ρ) = {(lam, α(ρ)}
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α(a) is determined by the allocation function

From there, we prove that the abstract transition relation simulates the concrete tran-

sition relation.

Theorem 1. If α(ς) v ς̂ and ς ⇒ ς ′ then there must exist ς̂ ∈ Σ̂ such that α(ς ′) v

ς̂ ′ and ς̂ ; ς̂ ′.

Proof. The proof follows in the same manner as presented in [37]. The only difference

between this abstraction and the standard one can be found in the case where we restrict

the size of the store. However, this is simple to account for, as the concrete semantics can

only apply one function at a call site. Realizing that the concrete address can only hold

one value and that the abstract address only represents one concrete address, it is sound to

restrict the store to that one value.

2.5.4 Conclusion

In this section, we have shown that strong update can be used to restrict the size of

the store at application sites. By reducing the size of the store, it is highly likely we will

gain both speed and precision. This has been shown to be the case with abstract garbage

collection [39].

It might be easy to assume that abstract garbage collection would subsume this analysis.

However, this is not the case. Abstract garbage collection filters out bindings that are not

reachable from the root set. However, in this analysis, we are dealing with an address that

is definitely live and will not be garbage collected. Even in the presence of abstract garbage

collection, we still get flow sets that contain more than one value. Otherwise, the precision

of an analysis with abstract garbage collection would be perfect.

This idea could also easily be extended to object-oriented languages. With its extensive

use of polymorphism, one could imagine that the calling object of a method could easily

have multiple flow sets. This analysis would allow us to soundly reduce the size of these

flow sets.

2.6 Generalizing to Other Languages

The techniques developed in this chapter are applicable to any abstract machine created

with the abstracting abstract machines approach. I want to demonstrate that the techniques

developed in this chapter can be applied to other languages other than the simple lambda

calculus. I would like to demonstrate that it is equally possible to apply these techniques
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to an object oriented language. To this end, I will demonstrate that these techniques work

on A-Normal Featherweight Java. Featherweight Java is a simple language that eliminates

many features of the Java language to permit a small calculus. The original intent of

creating this language was to provide a formal method to work on proofs. Like the lambda

calculus relation to languages such as ML, Featherweight Java has a similar relation to

Java. Featherweight Java programs are complete Java programs. They could be taken and

compiled with a compiler.

I will first present the syntax of the language, a semantics to evaluate this language in

a small-step setting, and then how to abstract these semantics to guarantee termination.

Once this has been developed, I will present how the techniques presented in this chapter

can be applied to these abstract semantics. This will be demonstrated by showing how the

techniques apply to A-Normal Featherweight Java.

2.6.1 Syntax

A-Normal Featherweight Java differs from the original formulation of Featherweight

Java. To aid in simplifying the semantics, arguments must be atomically evaluable. State-

ments are reintroduced into the language, but this does not result in a change in the

expressive power of the language. The five statements allowed by the language are: field

reference, method invocation, object allocation, casting, and return.

Class ::= class C extends C ′ {C ′′ f ; K M}

K ∈ Konst ::= C (C f ) {super(f ′); this.f ′′ = f ′′′;}

M ∈ Method ::= C m(C v ) { C v ; s }

s ∈ Stmt ::= v = e;` | return v;`

e ∈ Exp ::= v.f | v.m(v) | new C (v) | (C)v

f ∈ FieldName = Var

C ∈ ClassName is a set of class names

m ∈ MethodCall is a set of method invocation sites

` ∈ Lab is a set of labels

2.6.2 Concrete State Space

The concrete state space used to evaluate the semantics appears very similar to the

concrete state space used by continuation-passing style lambda calculus. However, there

are no longer environments. There are now frame pointers which behave in a similar fashion
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to the common frame pointer mechanism used by actual computers. To get an address for

a local variable, the variable name is paired with the frame pointer. This could be thought

of as pairing the base address of the frame pointer with the offset of the variable. Object

addresses are created by pairing a base address with the field name, similar to how an object

has a base address in physical memory and its fields are accessed as offsets.

ς ∈ Σ = Stmt× FramePointer × Store × Time

σ ∈ Store = Addr ⇀ D

a ∈ Addr = StackAddr + FieldAddr

StackAddr = FramePointer × Var

FieldAddr = ObjAddr × Field

d ∈ D = Obj + Kont

o ∈ Obj = ClassName×ObjAddr

κ ∈ Kont = Var × Stmt× FramePointer

φ ∈ FramePointer is a set of frame pointers

ObjAddr is a set of addresses

t ∈ Time is a set of timestamps

2.6.3 Concrete Semantics

The concrete semantics are given by a transition relation and helper functions which are

used by the transition relation.

2.6.3.1 Helper Functions

The tick function simply prepends the current label to the existing labels. This guar-

antees a unique address at each allocation site.

There are two types of base address, those for stack frames and those for local variables.

Pairing the stack frame with a variable name gives the address of local variables (including

parameters for methods). There is also a special field reserved for the continuation. Pairing

the base of an object address with the field name gives the address of fields for objects.

tick(`, t) = ` : t

alloc(ς, t) = t

The functionM, given a method name and a class, looks up the method. If the method

is not defined, then it moves up to the super class until one is found. Once the base class
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Object is hit, it returns nothing. This means that methods can be overridden by having the

same name. The first method found in the object hierarchy will be the one returned by this

method.

The function C returns all the fields of the object. This includes all the field defined by

its super classes as well.

M : D ×MethodCall⇀ Method

C : ClassName⇀ FieldName∗

2.6.3.2 Transition Relation

There are five rules in the transition relation, one for each type of statement: field

reference, method invocation, object allocation, casting, and return.

Field reference

([[v = v′.f;`]], φ, σ, t)⇒ (succ(`), φ, σ′, t′), where

t′ = tick(`, t)

(C, a) = σ((φ, v′))

σ′ = σ[(φ, v) 7→ σ((a, f))]

Method invocation

([[v = v0.m(v′);`]], φ, σ, t)⇒ (s0, φ
′, σ′, t′), where

t′ = tick(`, t)

[[C m(C v′′ ) {C ′ v′′′; s}]] =M(d0,m)

φ′ = alloc(φ, t′)

κ = (v, succ(`), φ)

d0 = σ((φ, v0))

σ′ = σ[(φ′, return) 7→ κ, (φ′, this) 7→ d0, (φ
′, v′′i ) 7→ σ((φ, v′i))]

Object allocation

([[v = new C (v′);`]], φ, σ, t)⇒ (succ(`), φ, σ′, t′), where

t′ = tick(`, t)

a = alloc(C, t′)

f = C(C)

σ′ = σ[(a, fi) 7→ σ((φ, v′i)), (φ, v) 7→ (C, a)]
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Casting

([[v = (C ′) v′]], φ, σ, t)⇒ (succ(`), φ, σ′, t′) if C <: C ′, where

t′ = tick(`, t)

(C, a) = σ((φ, v′))

σ′ = σ[(φ, v) 7→ σ((φ, v′))]

Return

([[return v;`]], φ, σ, t)⇒ (s, φ′, σ′, t′), where

t′ = tick(`, t)

(v′, s, φ′) = σ((φ, return))

d = σ((φ, v))

σ′ = σ[(φ′, v′) 7→ d].

2.6.4 Abstract State Space

The abstract state space differs from the concrete state space in that we now have a

finite number of addresses and timestamps. Like before, this causes the store to be forced

to store multiple values at a single address.

ς ∈ Σ = Stmt× ̂FramePointer × Ŝtore × T̂ime

σ̂ ∈ Ŝtore = Âddr ⇀ D̂

â ∈ Âddr = ̂StackAddr + ̂FieldAddr

̂StackAddr = ̂FramePointer × Var

̂FieldAddr = ̂ObjAddr × Field

d̂ ∈ D̂ = P
(

Ôbj + K̂ont
)

ô ∈ Ôbj = ClassName× ̂ObjAddr

κ̂ ∈ K̂ont = Var × Stmt× ̂FramePointer

φ̂ ∈ ̂FramePointer is a finite set of frame pointers

̂ObjAddr is a finite set of addresses

t̂ ∈ T̂ime is a finite set of timestamps

2.6.5 Abstract Semantics

The abstract semantics are similar to their concrete counterparts but subtly different.

They must take into account that when looking up values in the store, multiple abstract
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values can be returned. This means that there could be multiple successor states when

evaluating successors states using the abstract transition relation.

Field reference

([[v = v′.f;`]], φ̂, σ̂, t̂) ; (succ(`), φ̂, σ̂′, t̂′), where

t̂′ = t̂ick(`, t)

(C, â) ∈ σ̂((φ̂, v′))

σ̂′ = σ̂ t [(φ̂, v) 7→ σ̂((â, f))]

Method invocation

([[v = v0.m(v′);`]], φ̂, σ̂, t̂)⇒ (s0, φ̂
′, σ̂′, t̂′), where

t̂′ = t̂ick(`, t̂)

[[C m(C v′′ ) {C ′ v′′′; s}]] = M̂(d̂0,m)

φ̂′ = âlloc(φ, t′)

κ̂ = (v, succ(`), φ)

d̂0 ∈ σ̂((φ̂, v0))

σ̂′ = σ̂ t [(φ̂′, return) 7→ κ̂] t [(φ̂′, this) 7→ d̂0]

t [(φ̂′, v′′i ) 7→ σ̂((φ̂, v′i))]

Object allocation

([[v = new C (v′);`]], φ̂, σ̂, t̂) ; (succ(`), φ̂, σ̂′, t̂′), where

t̂′ = t̂ick(`, t̂)

â = âlloc(C, t̂′)

f = C(C)

σ̂′ = σ̂ t [(â, fi) 7→ σ̂((φ̂, v′i))] t [(φ̂, v) 7→ (C, â)]

Casting

([[v = (C ′) v′]], φ̂, σ̂, t̂) ; (succ(`), φ̂, σ̂′, t̂′) if C <: C ′, where

t̂′ = t̂ick(`, t̂)

(C, â) ∈ σ̂((φ̂, v′))

σ̂′ = σ̂ t [(φ̂, v) 7→ σ̂((φ̂, v′))]
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Return

([[return v;`]], φ̂, σ̂, t̂) ; (s, φ̂′, σ̂′, t̂′), where

t̂′ = t̂ick(`, t̂)

(v′, s, φ̂′) ∈ σ((φ̂, return))

d̂ = σ̂((φ̂, v))

σ̂′ = σ̂ t [(φ̂′, v′) 7→ d̂]

2.6.6 Applying the Improvements to ANFJ

We now proceed to describe how each of the three techniques can be applied to these

new abstract semantics, which are similar but slightly different, hopefully giving insight

how these approaches could be applied to different languages.

2.6.6.1 Priority Work Queue

In the instance of using a priority queue, as long as there is a transition relation and

global store widening is used, the same techniques generally apply. There is still the decision

to make of which state to visit when, and also the decision of when to join the values to the

global store and when to widen the store of the individual states. The semantics for almost

any language (including the object oriented language, A-Normal Featherweight Java) are

still capable of using a global store.

We now show how global store widening works with the ANFJ abstract state space. We

change how we do the abstract interpretation; instead of a function that computes a graph

of the reachable states, we return a graph of partial states and a single global approximation

of the store.

Ŝystem = P
(
Stmt× ̂FramePointer × T̂ime

)
× Ŝtore

However, the heuristics used would be different as the components of the state have

changed.

2.6.6.2 Environment Unrolling

The idea behind environment unrolling could be applied equally as well. In the semantics

of A-Normal Featherweight Java, there are two transition rules when we allocate new

addresses: on method invocation and on object allocation.

There are now two sources of infiniteness in the state space. New objects could be

allocated ad infinitum as well as frame pointers. Therefore, objects could reference other

objects infinitely and continuations could reference other continuations infinitely.
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For object allocation, the class name is paired with a freshly allocated address. The

behavior of environment unrolling for object allocation is mimicked by returning a fresh

address depending on the depth of the object graph to which the fields are being initialized.

On method invocation, there is a single address that we need to allocate: a frame

pointer to give a base address for the parameters of the method and the address for the

return address.

In the case of continuation-passing style lambda calculus, these allocations are hidden

in the same mechanism used everywhere for function call. However, they are represented

more explicitly in this language form.

Once again, the behavior of environment unrolling can be mimicked by calculating the

depth of the continuation and once it reaches a certain depth, start abstracting through the

store.

Because of our choice of semantics using a frame pointer to generate addresses, rather

than an environment, the unrolling cannot proceed in the same fashion. However, the same

effect can be achieved through the allocation function.

Allocation happens at two locations, when allocating a frame pointer and when allocat-

ing an object. We need a function that calculates the depth of abstraction.

âllocd((s, φ̂, σ̂, t̂)) =

{
fresh address d̂epth(φ̂, σ̂, {}) ≤ d
âlloc((s, φ̂, σ̂, t̂)) otherwise

The abstract depth of a frame pointer is computed with the following.

d̂epth(φ̂, σ̂, seen) =


∞ φ ∈ seen

0 σ̂((φ̂, return)) = halt

1 + d̂epth(φ̂′, seen ∪ {φ̂}) σ̂((φ̂, return)) = (v, s, φ′)

The abstract depth of an object is computed with the following.

1 + max
{

d̂epth((C, â), σ̂) : (C, â) ∈ σ̂((φ̂, vi))
}

d̂epth((C, â), σ̂) = max
{

d̂epth(ôi, σ̂) : ôj ∈ σ̂((â, fi)), f = C(C)
}

When implementing this, it would make more sense to store the depth which each frame

pointer and object base address, rather than recomputing it each time.

2.6.6.3 Strong Function Call

Strong function call can be handled in a very similar fashion. In the case of a method

invocation, there could be multiple receiver objects. The store can be sharpened once the

method has been invoked.
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Like before, a map is added to the abstract state space which maps how many concrete

addresses an abstract address represents.

ς ∈ Σ = Stmt× ̂FramePointer × Ŝtore × T̂ime × Ĉount

µ̂ ∈ Ĉount = Âddr ⇀ N̂

We change slightly the relation for method invocation. If it is the case that there are

multiple receiver objects but the abstract count is one, the flow set size can be reduced to

the receiver object whose method is being invoked.

The function Ĝ is redefined slightly to take into account the different language forms it

now handles.

Ĝ : Var × D̂ ××Ŝtore × Ĉount ⇀ Ŝtore

Observe how a form of this is already happening in the abstract semantics. Only the

receiver of the method invocation is bound to this, not the entire flow set of the variable.

Ĝ(v, d̂, φ̂, σ̂, µ̂) =

{
σ̂[(φ̂, v) 7→ {d̂}] µ̂((φ̂, v)) ≤ 1

σ̂ otherwise

2.7 Advice for Implementors

This section discusses generally how these techniques could be implemented and how

they interact with each other.

When implementing global store widening, the developer needs to be cognizant that the

order in which states are visited could effect memory usage and the running time of the

analysis. Depending on language features, using a global store might introduce precision

issues. In the end, it might not be worth implementing a priority queue, but it is an option

to be aware of, especially if stringent memory requirements are present.

Environment unrolling can be implemented fully in the allocation function for abstract

addresses. This means that if the implementation has sufficient encapsulation, it would be

easy to swap in a more precise allocation function. It would also be possible to have an

adaptive allocation function where environment unrolling is used only for functions that

need extra precision.

Strong function call is more of a cautionary tale. When developing an abstract inter-

preter, it is easy to convince yourself that you can make small changes that will optimize

the abstract interpreter. However, these changes may make the analysis unsound. Going

unsound is not always a bad thing, but the developer needs to be aware when making this

decision. Unless some form of abstract counting is used, it is easy to make the analyzer

unsound when sharpening.
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2.7.1 Composing Optimizations

A natural question that arises is how these three features compose. The priority queue

requires global store widening. Environment unrolling could be composed with global store

widening, though the benchmarks evaluated used a state per store and were also in a

pushdown setting. Strong function call could be used as well at the same time. In fact,

all three of these cases could compose well, though you cannot use strong function call in

a global store widened setting. However, it is possible to use it if widening is not quite as

restrictive, for example in another setting where point-wise widening or some other form of

widening that is not global is used.



CHAPTER 3

MAPPING CONTROL-FLOW

CONSTRAINTS

An alternative approach to abstract interpretation for solving a control-flow analysis is

using constraints. These constraints can be mapped to problems for which efficient solutions

already exist. In this chapter, we will explore what these constraints look like and how we

can map them to three separate problems: a pointer analysis, SAT, and linear algebra.

3.1 Constraint-Based Analysis

One way to perform a control-flow analysis is with constraints. In describing the

constraints, we will operate over a simple language, the lambda calculus. We will first

briefly describe the lambda calculus. Then, we will briefly describe how to generate the

constraints.

3.1.1 Lambda Calculus

The lambda calculus only has three language forms: variable reference, lambda terms,

and function application. This is the core of many functional programming languages, such

as Racket, and thus also of higher-order languages.

e ∈ Exp ::= v | (λ (v) eb) | (e1 e2)

v ∈ Var is a set of identifiers

3.1.2 Palsberg Constraints for Solving 0CFA

These are the constraints that are generated by Palsberg [42]. For expression e ∈ Exp

under analysis, let E be the set of all expressions in e.

(λ (v) eb) ∈ E

{(λ (v) eb)} ⊆ flows[[(λ (v) eb)]]
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(e1 e2) ∈ E (λ (v) eb) ∈ flows[[e1 ]]

flows[[e2 ]] ⊆ flows[[v ]]

(e1 e2) ∈ E (λ (v) eb) ∈ flows[[e1 ]]

flows[[eb ]] ⊆ flows[[(e1 e2)]]

The first rule states that a lambda term is in its own flow set. The second rules says that

at a function application, for every lambda term that flows to the function being applied, the

flow set of the formal parameter includes everything that is in the flow set of the argument.

The third rule states that also at a function application, for every lambda term that flows

to the function being applied, whatever is in the flow set of the body of the lambda term is

also in the flow set of the function application.

We iterate over the expressions of the program, generating constraints for each expres-

sion. These constraints describe a set of lambda terms, flows[[e]], for each subexpression e

in our program.

3.1.3 The Lambda Calculus in Continuation-Passing Style

As mentioned in Chapter 2, this language differs from the lambda calculus in that lambda

terms now have multiple arguments and the body of a lambda term is now restricted to be

only a call site.

call ∈ Call ::= (f æ1 . . .æn)

f,æ ∈ AExp ::= lam | v

lam ∈ Lam ::= (λ (v1 . . . vn) call)

v ∈ Var is a set of identifiers

3.1.4 Palsberg Style Inference Rules for CPS

We will now explore how the constraints for a control-flow analysis of a continuation-

passing style language change. The constraints for continuation-passing style are simpler

because we no longer have to worry about the flow sets of the body of lambda terms. This

is because we never return, but rather invoke the passed explicit continuation. This causes

us to go from three inference rules to two.

The inference rules are as follows. For expression e ∈ Exp under analysis, let E be the

set of all expressions in e.
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(λ (v1 . . . vn) call) ∈ E

{(λ (v1 . . . vn) call)} ⊆ flows[[(λ (v1 . . . vn) call)]]

(f æ1 . . .æn) ∈ E (λ (v1 . . . vn) call) ∈ flows[[f ]]

flows[[æ1 ]] ⊆ flows[[v1 ]] . . .flows[[æn ]] ⊆ flows[[vn ]]

3.2 CFA via Pointer Analysis

Imagine we have an analysis or compiler optimization that needs a control-flow analysis,

but we do not have a control-flow analysis immediately available to us. Our analysis might

need to know the control flow of the program in order to prove some security properties or

the absence of errors. Our compiler optimization might need to know the control flow of

the program to speed up the program by inlining functions.

There are a large number of tools that can perform a related but different analysis:

pointer analysis. A pointer analysis tells us which objects variables point to in a program.

Wouldn’t it be nice if we could just use these tools? We could spend a significant amount

of time developing a new modern control-flow analysis tool, pulling in the latest features

from these similar but different tools, or we could find ways to reuse these existing tools to

solve the problem we have at hand. Using existing tools saves us the effort of developing

our own tool and allows us to rely on mature and well tested tools.

3.2.1 Overview

Precise control-flow analysis is expensive. For example, 0CFA as described by Palsberg,

which is the analysis we explore in this chapter, is cubic [42]. This work was initially

motivated by trying to identify ways we could speed up control-flow analysis. With the

advancement of GPUs being used for general process computing and more cores being

available on commodity machines, one way to speed up the analysis is to parallelize it. The

only work we know of that parallelizes control-flow analysis of higher-order languages is

EigenCFA [46]. We also know of two recent tools that parallelize pointer analysis developed

by Méndez-Lojo et al. [34, 33].

One option we considered to speed up control-flow analysis was to deeply understand

these two tools for pointer analysis and port over any ideas that would improve EigenCFA.

However, we took the option to use those tools directly. In order to do this, we needed

to map a control-flow analysis into a pointer analysis. This chapter demonstrates how to
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do this. To our knowledge, even though the similarities between these analyses have been

known and there has been a general feeling in the community that they are the same, this

mapping has not been explicitly laid out [40].

In this section, we plan to show that we can successfully take the state of the art in

pointer analysis and improve upon the state of the art in control-flow analysis in terms of

performance. Our goal is to leverage existing tools available to us from the pointer analysis

community. We wish to exploit the efficiency of these static analysis tools for control-flow

analysis of higher-order languages.

The contributions made in this section are as follows.

• We show that there exists a direct mapping between a control-flow analysis of higher-

order languages and a pointer analysis for first-order languages. In fact, we show three

different mappings, each serving a slightly different purpose. The first mapping, in

Section 3.2.4, is to help us demonstrate the connection between a control-flow analysis

and a pointer analysis. The second mapping, in Section 3.1.3, allows us to use the

benchmarks that were used by the control-flow analysis tool EigenCFA. The final

mapping, in Section 3.2.10, makes a different trade-off by containing more inference

rules, but results in fewer variables. Because of this mapping, we end up with one of

the fastest tools for 0CFA.

• We show in Section 3.2.7 that the constraints generated by a traditional control-flow

analysis are equivalent to the constraints generated by a pointer analysis after going

through our mapping. This is important because it means that the answer we get back

from a pointer analysis tool will be the same answer we would get from a control-flow

analysis tool.

• In Section 3.2.11, we then demonstrate the benefit of this mapping by comparing two

recent parallel pointer analysis tools with a recent parallel control-flow analysis tool

called EigenCFA [46]. We compare a control-flow analysis tool that runs on the GPU

with a pointer analysis tool that also runs on the GPU [33]. We also compare these

tools to one that runs on a single CPU with multiple cores [34]. Both of theses pointer

analysis tools were written by Méndez-Lojo et al. For the benchmarks we used, this

multithreaded implementation performs the best. We saw that the CPU multicore

pointer analysis tool is able to run up to 35 times faster than the GPU control-flow

analysis tool. With the mapping outlined in this chapter, we beat the fastest known

GPU version of CFA with a pointer analysis tool that runs on the CPU.
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The implementation details of a static analysis tool matter. With the wide range of work

that has been done for pointer analysis, applying these techniques directly to control-flow

analysis of higher-order languages is advantageous. Due to the mappings in this chapter,

for the chosen benchmarks, we now have the fastest way we know of to do higher-order

control-flow analysis that has the precision of a 0CFA as formulated by Palsberg [42].

3.2.2 Background

In this section, we give a brief description of a traditional pointer analysis and a

traditional control-flow analysis. Control-flow analysis of higher-order programs and pointer

analysis share much in common with each other and often, the pointer analysis and control-

flow analysis communities use similar techniques [23]. However, the relationship between

the techniques is often obscured by differing terminology and presentation styles.

The brief overview of the two analyses given here illustrates their differences. However,

the mapping given in the next section illustrates their similarities. By showing that the gap

between pointer analysis of first-order languages and control-flow analysis of higher-order

languages is even narrower than once thought, this allows for further applications of the

large amount of research that has gone into pointer analysis to be applied to control-flow

analyses.

3.2.3 Pointer Analysis

Pointer analysis is one of the most fundamental static analyses with a broad range of

applications. It is used by traditional optimizing compilers and by applications involved

with program verification, bug finding, refactoring, and security.

Pointer analyses can change based on the desired precision. There always exists a

trade-off between the speed, scalability, and precision of any analysis. Extensions also exist

for handling specific language features. In this chapter, we will stick to using a very basic

pointer analysis, though extended to handle very basic pointer arithmetic in order to handle

fields of structures, whose importance will be demonstrated later.

We give a brief overview of a pointer analysis, describing the statements that are

supported and the constraints that are generated from those statements.

3.2.3.1 Pointer Statements

The pointer analysis tools we used were developed to analyze C programs. These tools

only consider pointer statements, disregarding the other statements of the program. There

are five pointer statements that are supported: assigning the address of a variable, copying
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a pointer, dereferencing a pointer, assigning to dereferenced pointer, and simple pointer

arithmetic.

x, y ∈ Var ::= a finite set of variables

o ∈ Int ::= a finite set of integers

x = &y

x = y

x = ∗y

∗x = y

x = y + o

The basic pointer arithmetic allows us to handle structures. Some pointer analysis

algorithms “collapse” a structure into a single variable, but this comes at the cost of too

much precision [58]. Other algorithms treat each field as a separate field based on offset and

size. While this is not portable because the memory layout of structures is implementation

dependent, the analysis is still correct as long as pointer arithmetic is used strictly for

accessing fields of structures, and not used in other parts of the program to access arbitrary

parts of memory. This is sufficient for our needs since the only pointer arithmetic used in

our encoding is to dereference fields.

3.2.3.2 Pointer Set Constraints

Now that we know what pointer statements we can handle, we will answer the basic

question of how can we figure out which pointers point to what. A pointer analysis is

usually formulated as a set-constraint problem. An analysis will iterate over the statements

of the program, generating set constraints for each statement. These set constraints define

the points-to sets pts(x ) for each variable x in the program.

The following constraints are those generated by Andersen in his style of analysis [2].

In these constraints, loc(v) represents the memory location denoted by v.

x = &y loc(y) ∈ pts(x )

x = y pts(y) ⊆ pts(x )

x = ∗y ∀v ∈ pts(y) : pts(v) ⊆ pts(x )

∗x = y ∀v ∈ pts(x ) : pts(y) ⊆ pts(v)

x = y + o {v + o : v ∈ pts(y)} ⊆ pts(x )
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All the rules are generally straightforward. For a pointer dereference, we are stating that

everything we could possibly point to is also pointed to by the variable we are assigning.

For assigning to a pointer dereference, we are stating that everything that we could point

to also points to what is pointed to on the right-hand side.

A pointer analysis can be flow-sensitive or flow-insensitive. A flow-sensitive analysis

takes into account the order of statements in a program. A pointer analysis can also be

context-sensitive or context-insensitive. A context-sensitive analysis takes into account the

calling context (where the function was called) of the function that contains the statements

we are analyzing. In practice, context-sensitivity and flow-sensitivity are too expensive and

as such the tools we used in our evaluation are context-insensitive and flow-insensitive.

3.2.4 Encoding

Looking at the inference rules for pointer analysis and the inference rules for a control-

flow analysis, we can already see the similarities between them. This section further explores

these similarities.

This section describes how we can take a lambda calculus expression and encode it

into pointer statements that can then be analyzed using a points-to analysis. Taking into

account how we map lambda calculus expressions into pointer variables, and being able to

reverse this mapping, allows us to use the results of the pointer analysis and convert them

into a result for our control-flow analysis.

3.2.5 Analysis Compilation

Here we describe how to take a program written in lambda calculus and encode it into

a C program which will compile and on which you could perform a points-to analysis, but

which does not preserve the meaning of the program. The results of a points-to analysis

run on this program, given sufficient support for structures, and the results of a control-flow

analysis would be equivalent.

This conversion is more for illustrative purposes in order to get a better intuition on

how the inference rules given afterwards work.

The ability of the analysis to handle pointer arithmetic, and thus structures precisely,

allows us to create a relationship between variables. This allows the correlation that is

needed between the variable that represents a given lambda term’s parameter and the

variable that represents its body.

Create a struct to enable deconstructing a lambda term.

s t r u c t lambda {
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s t r u c t lamdba ∗var ;
s t r u c t lambda ∗body ;

} ;

Create a variable of type struct lambda for every lambda term that appears in the

lambda calculus program, giving each lambda term a unique variable name.

s t r u c t lambda lam ;

Create a variable of type struct lambda ∗ for every function application and lambda

term that appears in the lambda calculus program. Each expression needs a unique variable

name.

s t r u c t lambda ∗exp ;

We do not need to create a pointer for variables because they will be handled by the var

pointer inside the structure for the lambda term that binds the variable. We will use this

variable whenever we have a variable references that appears in another expression.

For every lambda term in the program, we need to assign the pointer for that lambda

term to point to the structure for that same lambda term.

exp = &lam ;

For every call site in the program there are three subexpressions and thus three pointer

variables in our translated program: the pointer for the call itself, the pointer for the

function, and the pointer for the argument. We need an assignment to state that the

variable of the lambda term that is pointed to is bound to point to the same things as the

argument. We also need an assignment to state that whatever the body of the lambda term

being applied points to is also pointed to by the pointer representing the call site.

e1−>var = e2 ;
exp = e1−>body ;

3.2.5.1 Example

To make the previous transformations more explicit, we will convert the following

program which is both a valid lambda calculus expression and valid Racket program.

((λ (x) (x x)) (λ (y) (y y)))

The resulting C code would be the following. The above example has two lambda terms,

so we create lamx and lamy and pointers lam1 and lam2. We assign these pointers to point

to the structures. There are three call expressions, so we create pointers call1 , call2 , call3 .

We create the six assignment statements associated with these calls.
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s t r u c t lambda lamx ;
s t r u c t lambda lamy ;

s t r u c t lambda ∗ c a l l 1 ;
s t r u c t lambda ∗ c a l l 2 ;
s t r u c t lambda ∗ c a l l 3 ;

s t r u c t lambda ∗ lam1 ;
s t r u c t lambda ∗ lam2 ;

lam1 = &lamx ;
lam2 = &lamy ;

lam1−>var = lam2 ;
c a l l 1 = lam1−>body ;

lamx . var−>var = lamx . var ;
c a l l 2 = lamx . var−>body ;

lamy . var−>var = lamy . var ;
c a l l 3 = lamy . var−>body ;

These statements can be converted into the simple pointer statements referenced earlier

by using both intermediate variables and pointer arithmetic to access the fields of structures.

3.2.6 Inference Rules

We will now slightly simplify the above conversion by going directly to the simple pointer

statements. The following rules describe how to encode a lambda calculus expression into

pointer statements. The function L : Exp → Var maps expressions to a unique variable.

The variables need to be laid out in memory such that for a lambda term (λ (v) e), where

a = L(v) and b = L(e), loc(b) = loc(a) + 1. For references to the same variable in different

parts of the program, L will map it to the same variable.

(λ (v) e) ∈ E x = L((λ (v) e)) y = L(v)

x = &y

(e1 e2) ∈ E x = L(e1) y = L(e2)

∗x = y

(e1 e2) ∈ E x = L((e1 e2)) y = L(e1)

x = ∗y + 1

Some of these forms are not one of the five pointer statements described as being

supported by the tools we evaluated. However, it is easy to see how we can construct them
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using intermediate variables. For example, we can change the single statement x = ∗y + 1

into the two statements yp = ∗y and x = yp + 1.

Going back to our earlier example program.

((λ (x) (x x)) (λ (y) (y y)))

Assume we have the following mapping from expressions to variable names.

l1 = L((λ (x) (x x)))

l2 = L((λ (y) (y y)))

x = L(x)

y = L(y)

c1 = L(((λ (x) (x x)) (λ (y) (y y))))

c2 = L((x x))

c3 = L((y y))

We would then generate the following pointer statements.

l1 = &x

l2 = &y

∗l1 = l2

c1 = ∗l1 + 1

∗x = x

c2 = ∗x+ 1

∗y = y

c3 = ∗y + 1

3.2.7 Equivalence of Constraints

Recall that we are trying take a lambda calculus expression, convert it into pointer

statements, run a pointer analysis on these statements, and then use those results as a

solution to a control-flow analysis of our original lambda calculus expression. We will now

go through these steps and demonstrate that the solution generated is equivalent if we were

to use the original constraint-based formulation of Palsberg.

In the Palsberg constraints, there are three inference rules. We will examine each of these

rules. We will take the lambda calculus expression and convert it into the equivalent pointer
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statements. We will then generate the Andersen constraints from those pointer statements

and show how those constraints are equivalent to the ones generated by Palsberg.

For the control-flow analysis, we generate constraints and find the least fixed point

that satisfies the constraints, building up the set flows[[e]] for each expression e. For the

points-to analysis, we also generate constraints and find the least fixed point that satisfies

the constraints, building up the set pts(x ) for each variable x.

We need a way to deconstruct the results of the pointer analysis and convert them into

useful results for our control-flow analysis. The key to this mapping is the labeling function

L : Exp→ Var which we need to maintain certain properties in its mapping.

The labeling function assigns each expression a unique variable. In the mapping, given

x = L((λ (v) e)), the result loc(x ) will represent the lambda term (λ (v) e)). This means

that if x is in the set of objects pointed to by a pointer, the lambda term is in the flow set

of the expression that maps to that pointer.

Theorem 2. Given x = L((λ (v) e)) we have

pts(x ) = pts(L((λ (v) e))) = flows[[(λ (v) e)]]

We also require the property of the labeling function that if x = L((λ (v) e)) and

y = L(e), that the address of x be one greater than the address of x.

Case (λ (v) e):

Given the labeling x = L((λ (v) e)) and y = L(v), we generate the pointer statement

x = &y. This generates the constraint loc(y) ∈ pts(x ). The location of y is equal to the

lambda term in our representation. The points-to set of x is equal to the flow set of the

lambda term.

loc(y) ∈ pts(x )

(λ (v) e) ∈ pts(x )

(λ (v) e) ∈ pts(L((λ (v) e)))

(λ (v) e) ∈ flows[[(λ (v) e)]]

This generates the desired constraint.

(λ (v) e) ∈ flows[[(λ (v) e)]]

Case (e1 e2):
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Given x = L(e1) and y = L(e2), we would generate the pointer statement ∗x = y. This

generates the constraint ∀v ∈ pts(x ) : pts(y) ⊆ pts(v). Because flows[[e1 ]] = pts(x ), this

generates the desired constraint.

∀(λ (v) e) ∈ flows[[e1 ]] : flows[[e2 ]] ⊆ flows[[v ]]

Case (e1 e2):

Given x = L(e1) and y = L(e2), we would generate the pointer statement x = ∗x + 1,

which we would split into the pointer statements p = ∗y and x = p+ 1. The first statement

generates the following constraint.

∀v ∈ pts(y) : pts(v) ⊆ pts(p)

This gives us all the lambda terms pointed to by y because ∀v ∈ pts(y). The points-to set

of p is going to contain at least the values pointed to by y by this constraint, but since this

is the only location where p is assigned, pts(v) = pts(p).

The second statement generates the following constraint.

{v + 1 : v ∈ pts(p) ⊆ pts(x )}

The expression v + 1 gives the body of a lambda term. Because pts(x ) = pts(L(e1 e2)) =

flows[[(e1 e2)]], we generate the following original constraint

∀(λ (v) eb) ∈ flows[[e1 ]] : flows[[eb ]] ⊆ flows[[(e1 e2)]]

3.2.8 EigenCFA: A Point for Comparison

One possible intermediate representation for compilers of functional languages is continuation-

passing style [3]. Given a language in continuation-passing style we will demonstrate how

the encoding changes. We do this because this is the language form that is accepted by

EigenCFA, as used by our benchmarks in Section 3.2.11.

3.2.9 Pointer Statement Encoding of CPS

Encoding a program in continuation-passing style into pointer statements uses the

following inference rules.

e = (λ (v0 . . . vn) call) ∈ E x = L(e) y = L(v0)

x = &y

(f æ0 . . .æn) ∈ E x = L(f) y = L(æi)

∗x+ i = y
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We will now demonstrate how this encoding results in fewer statements and variables.

Luckily, our example program from before is already in continuation-passing style.

((λ (x) (x x)) (λ (y) (y y)))

For this program, we generate the following pointer statements:

l1 = &x

l2 = &y

∗l1 + 0 = l2

∗x+ 0 = x

∗y + 0 = y

Generating the pointer statements is quite simple, and since we do not need to worry

about the body of lambda terms, results in fewer statements.

3.2.10 Alternative Encoding

We can forgo creating a variable for each lambda term if we deconstruct directly when

we have a lambda term in function position. A lambda term in function position is a let

form and we know directly which variables we are binding, so the dereference to the lambda

term is unnecessary. This results in more inference rules but results in fewer variables in

the encoding.

((λ (x0 . . . xn) call) æ0 . . .æn) æi = (λ (y . . . ) cally)

xi = &y

((λ (x0 . . . xn) call) æ0 . . .æn) æi = y

xi = y

(f æ0 . . .æn) æi = (λ (y . . . ) call)

∗f + i = &y

(f æ0 . . .æn) æi = y

∗f + i = y
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3.2.11 Implementation

In this section, we explore how much we can improve upon the state of the art of

higher-order control-flow analysis with this mapping. It turns out that a constraint based

pointer analysis tool runs a lot faster than EigenCFA, a state of the art control-flow analysis

tool. EigenCFA is a lot faster than traditional control-flow analysis tools, but even it is

outperformed by an optimized pointer analysis tool.

We evaluate EigenCFA as well as two recent parallel pointer analysis tools for C. We

compare the following three tools.

• EigenCFA

A GPU implementation that accelerates a control-flow analysis for higher-order lan-

guages, operating on the simple binary CPS language [46]. It encodes the analysis as

matrix operations on sparse matrices.

• GPU Inclusion-based Points-to Analysis

A GPU implementation that accelerates an inclusion-based points-to analysis [33].

It is based on a graph algorithm that monotonically grows the graph based on the

constraints generated by the pointer statements.

• CPU Inclusion-based Points-to Analysis

An inclusion-based points-to analysis that runs in parallel using multiple threads on

the CPU [34]. It uses the same graph algorithm as the previous tool.

For the GPU tools, we ran them under Ubuntu on a Nvidia GTX-480 “Fermi” GPU

with 1.5 GB of memory and the latest Nvidia drivers. We ran the parallel CPU tool on an

machine running Mac OS X 10.8 with two Intel Xeon 3.07 Ghz processors, each having 6

cores, and 64 GB of memory.

We ran each tool on the benchmarks from the EigenCFA paper. To run the pointer

analysis tools, we first ran the programs through our encoding and changed the input to be

compatible with their tools.

The running times of the tools can be found in Table 3.1. For EigenCFA the results are

similar to those as from the original paper, though slightly slower. It is interesting to note

that as the programs get large, the points-to analysis tools actually scale better than the

original analysis.

To demonstrate how well the CPU scales with more threads, we ran a various number

of threads. In Table 3.2, we see the running times for each of the values. The top row is
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Table 3.1: The running time in milliseconds for each of the implementations explored.
The first column is the number of terms found in the benchmark. We show the running
times of running the CPU pointer analysis with one thread (CPU-1) and with 12 threads
(CPU-12).

terms EigenCFA Pointer GPU CPU-1 CPU-12

297 0.4 21 94 90
545 0.7 28 111 94
1,041 1.2 39 135 103
2,033 3 62 180 126
4,017 9 148 256 175
7,985 37 291 350 232
15,921 143 531 580 449
31,793 6367 1,317 784 836
63,537 3,709 4,030 1,578 1,452
127,025 31,228 12,175 3,819 2,557
190,513 142,162 40,881 13,615 4,349

Table 3.2: The running time in milliseconds for each of the benchmarks on the multi-
threaded CPU implementation. This is to demonstrate how well the running time scales
with the number of threads for the given benchmarks.

terms

threads 297 545 1,041 2,033 4,017 7,985 15,921 31,793 63,537 127,025 190,513

1 94 111 135 180 256 350 580 784 1,578 3,819 13,615
2 91 107 129 167 247 322 495 767 1,796 3,812 12,216
4 89 99 115 140 192 280 475 692 1,315 2,501 6,997
8 86 93 107 127 180 230 449 820 927 2,848 5,293
10 85 93 103 129 170 229 467 823 1,176 2,765 4,833
12 90 94 103 126 175 232 449 836 1,452 2,557 4,349
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the number of terms in the program. The columns are the run times in milliseconds. As

we go down the column, the number of threads increase.

From this we observe that there is actually a large improvement in run time for running

an analysis on the CPU rather than on the GPU. This likely means that for the given

benchmarks, there is not parallelism that can be effectively exploited on a GPU. The GPU

implementation visits every call site on every iteration, while the CPU implementation is

able to more intelligently visit constraints. It will only visit constraints if they will add new

values to the points-to sets of variables.

3.2.12 Future Work

There exist several avenues where this work could be extended.

3.2.12.1 Pushdown Analysis

A major recent development in control-flow analysis has been pushdown analyses [57, 12].

This allows calls and returns to be precisely matched and has shown gains in precision. We

believe it is possible to do a form of these analyses using our approach.

3.2.12.2 Flow and Context Sensitivity

The pointer analysis tools we explored are flow- and context insensitive. Because of this,

we do not preserve any flow or context information in our transformation. However, if we

had a tool that took advantage of these features, it would be ideal if our transformation

could preserve this information. It has been shown though that flow sensitivity does not

add much precision for Racket and other Scheme-like languages because there is not much

mutation [4]. However, if this approach was applied to languages that use mutation more

commonly (such as Javascript), preserving flow sensitivity would likely be beneficial.

3.2.12.3 Language Compilation

In is common to compile languages into other languages. If tools exists that analyze

the target language but not the source language in which we are working, a flavor of this

technique also applies. We could perform the desired analysis on the compiled language.

Whether this would be useful or not would be highly dependent on our needs. If we need the

analysis to provide information about our language in its original form, before we compiled

it, we would need to ensure that the compilation process allows for decompilation and that

the properties we are hoping to discover are not lost in the compilation process.
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Additional Language Features

We have demonstrated how our technique works for the simple lambda calculus. How-

ever, mapping functional languages and specifically dynamic languages to the lambda

calculus is nontrivial [45, 18]. In fact, we would recommend against performing this

mapping solely to use our technique, as it is likely not to produce useful information.

An alternative interesting approach worth investigating would be to see how this technique

could be adapted in the presence of additional language features. How the additional

language features are handled would be dependent on the information we wish our analysis

to produce.

3.2.13 Related Work

One of the earliest works of a constraint-based formulation of control-flow analysis is

Henglein’s simple closure analysis [19]. It is based on unification and runs in almost linear

time. Subsequent work applied a similar strategy to a points-to analysis, citing Henglein as

an inspiration. This type of analysis is known as Steensgaard points-to analysis [50].

Control-flow analysis was also later developed in constraint form with the development

of Palsberg [42]. This framework is based on subsets, rather than unification, and as such

is more precise but is now cubic. At the same time, a similar formulation was developed

for pointer analysis of C programs by Andersen [2].

3.2.14 Conclusion

This chapter demonstrates to static analysts, analyzing higher-order languages, a way

to use existing tools by mapping their problem to ones that have already been solved with

significant engineering effort behind them.

In this chapter, we have demonstrated that a pointer analysis of a first-order language

can be used to solve a control-flow analysis of a higher-order language, leveraging the

significant effort that has gone into the state of the art of pointer analysis. We provided

the inference rules to do this and demonstrated how these result in the same constraints as

the control-flow analysis. We then demonstrated that we can effectively take advantage of

existing pointer analysis tools for significant speed-ups.

3.3 CFA via SAT Solvers

Control-flow analyses statically determine the control-flow of programs. This is a non-

trivial problem for higher-order programming languages. This work attempts to leverage

the power of SAT solvers to answer questions regarding control-flow. A brief overview
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of a traditional control-flow analysis is presented. Then, an encoding is given which has

the property that any satisfying assignment will give a conservative approximation of the

true control-flow, along with additional ideas to improve the precision and efficiency of the

encoding. The results of the encodings are then compared to those of a traditional imple-

mentation on several example programs. This approach is competitive in some instances

with hand-optimized implementations. Finally, the chapter concludes with a discussion of

the implications of these results and work that can build upon them.

3.3.1 Introduction

We present an alternative approach to the problem by encoding a control-flow analysis

into SAT. The results are more similar to 0CFA than k-CFA as SAT is a NP-hard problem,

while k-CFA is EXPTIME-hard. Similar work that took the idea of encoding k-CFA into

another problem for performance reasons was done by Prabhu et al. [46]. They run the

analysis on a GPU by encoding the problem into matrix operations. Another work that

will feel similar to the work presented in this chapter is constraint-based 0CFA analysis

as summarized by Nielson [41]. They formulate 0CFA using constraints on sets and then

provide an algorithm for solving these constraints. This work differs in that the constraints

are not encoded using matrices or sets, but propositional logic.

3.3.2 Motivation

Many problems are readily encoded into SAT and even though satisfiability is NP-

complete, fast implementations are available. Every year, there is considerable work being

done to create efficient SAT solvers. A CFA implementation based on satisfiability could

benefit directly from that work.

3.3.3 Accomplishments

This work attempts to leverage the power of SAT solvers to answer questions regarding

control-flow. It presents an encoding and compares its results to two traditional 0CFA

implementations.

3.3.4 Encodings

This section describes the devised encoding scheme. Here is a simple program we will

work with in describing the encodings. In the following explanation, each lambda term will

be identified by its label.

(( lambda1 (x)

(( lambda2 (y)
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(y (lambda3 (z) (x z)))) x))

(lambda4 (a) (a a)))

For the encoding, we introduce a variable for every variable lambda pair in the program.

The variable will be true if the lambda flows to the variable, and false if it does not. We will

assume that the program has been alphatised, meaning that each variable is only bound by

a single lambda. In the example, we have four variables and four lambda terms, resulting

in 16 variables. Lambdas use their label as their subscript.

λ1 λ2 λ3 λ4

a a1 a2 a3 a4

x x1 x2 x3 x4

y y1 y2 y3 y4

z z1 z2 z3 z4

To generate the clauses of our encoding, we look at each point where binding occurs in

lambda calculus, at application sites. From the grammar of CPS lambda calculus, we can

see that there are four cases which need to be considered. The function and the arguments

at an application can either be a lambda term or a variable.

3.3.4.1 Case 1: Lambda Lambda

The first case to consider is the simplest, when there is a lambda term in both function

and argument position. The top level application of the sample program is an example of

this.

(( lambda1 (x) call ) (lambda4 (a) (a a)))

We know that the lambda in argument position flows to the parameter of the lambda in

function position. For this call site, we would add the clause x4.

3.3.4.2 Case 2: Lambda Variable

The second case to consider is when there is still a lambda in function position but a

variable in argument position. Observe the following call site from the example.

(( lambda2 (y) call ) x)

If we know a lambda flows to x, then we know that it must flow to y. We must assume that

any lambda can flow to x, so we must create a clause for each lambda. This results in the

following clauses: x1 → y1, x2 → y2, x3 → y3, x4 → y4.

3.3.4.3 Case 3: Variable Lambda

The third case to consider is having a variable in function position and a lambda term

in argument position. Observe the following call site from the example.
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(y (lambda3 (z) call ))

We must assume that any variable can flow to y. Thus, we need to create a clause for each

lambda in the program. We infer that if a lambda term flows to y, then λ3 will flow to the

parameter of that lambda. This results in the following clauses: y1 → x3, y2 → y3, y3 → z3,

y4 → a3.

3.3.4.4 Case 4: Variable Variable

The most complicated case is when we have a variable in both function and argument

position. Observe the following call site from the example program.

(x z)

We must assume that any lambda can flow to x and any lambda can flow to z. If we know

that two flows are true for x and z, we can infer a third flow. For example, if we know λ2

flows to x and λ4 flows to z, we can infer that λ4 flows to y, the parameter of λ2. Thus, we

create the clause x2 ∧ z4 → y4. Since there are four lambda terms, there are 16 total such

clauses that need to be generated.

3.3.5 Additional Encoding Details

The generated clauses described above are necessary but not sufficient. The problem

is that every variable can be set to true and the formula is still satisfied. What we really

want is the lowest possible number of flows set to true that still satisfy all the generated

clauses. However, the SAT solver is free to give any satisfying solution. In the end, we have

constraints that will never give us false negatives, but we need constraints that will ideally

never give us false positives, or at least limit them. Note that in an analysis, having false

positives is still sound; only in having false negatives does the analysis become unsound.

3.3.6 Additional Encodings

For each case, we will show additional clauses that can be added which will limit the

number of false positives.

3.3.6.1 Case 1: Lambda Lambda

Since the program is alphatised, we not only know that the given flow must be true, but

we know that all other flows to that variable must be false. For the above example, we add

the clauses: ¬x1, ¬x2, ¬x3.
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3.3.6.2 Case 2: Lambda Variable

In the description found above, we said you could infer an additional flow if a given

lambda flows to the variable in argument position. However, more can be inferred since the

program is alphatised. The clauses are not just implications, because the call site is the

only place where the binding of the variable can occur. Thus, we can change the clauses to

equivalences: x1 ↔ y1, x2 ↔ y2, x3 ↔ y3, x4 ↔ y4.

3.3.6.3 Case 3: Variable Lambda

Unlike the previous case, we cannot turn the inference described in the previous section

for case 3 into an equivalence. The issue is that because the lambda which flows to the

variable in function position can flow to other application sites where there is a variable in

function position, this is not the only place where a binding can occur. However, we can

infer the disjoin of all the call sites where the binding could occur. An example will be

given below.

3.3.6.4 Case 4: Variable Variable

Much like the previous case, we cannot infer equivalences because bindings can happen

at any call site where there is variable in function position. However, like the above case,

additional clauses can still be created; we can infer the disjoin of all the call sites where the

binding could occur. For example, if λ3 flows to z, it would mean that either λ3 flows to y,

λ3 flows to a, or that λ3 flows to x and λ3 flows to z. Thus, we would add the following

clause: z3 → y3 ∨ a3 ∨ (x3 ∧ z3).

3.3.7 Enhancements

The encodings presented above give way to some enhancements that can be used to

make the encoding more efficient, by generating less clauses.

• Not all lambdas can flow. Lambdas that appear in function position cannot be bound

to variables; thus, we do not need to create a variable for pairs involving lambdas in

function position.

• Not all lambdas are compatible. Although the example shows lambda terms with only

one parameter, the lambda terms can have any number of parameters. When there is

a variable in function position, only lambdas with the same number of parameters as

there are arguments at the application site need to be considered.
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• Some clauses will be trivially true. While iterating through every lambda, when faced

with a variable at an application site, some of the implications will involve the same

pairs on both sides, thus they are trivially true and can be omitted.

In the implementation, the first two enhancements were used, but the third was omitted.

3.3.8 Complexity

In the described encoding, many clauses can be generated. However, it is bounded by

a polynomial of the size of the program. The worst case to consider is when you have a

variable in both function and argument position. You must consider each lambda flowing

to each variable. If there are n terms in the program, there are at most n call sites and

n lambda terms. Thus, the number of generated clauses will be bound by n3. This seems

logical as one of the simplest formulations of 0CFA is “nearly” cubic: O(n3/ log n) [36].

3.3.9 Implementation and Evaluation

We implemented the encoding in Scala using the back end of the analyzer written by

Might et al. for parsing and preprocess transformations [40]. We compared its runtimes to

those of that same analyzer, which closely follows the formal semantics, as well as a fast

Racket implementation, which employs abstract Church encodings and binary CPS lambda

calculus [46]. MiniSat was used for solving the constructed encodings. All experiments were

run on a 2.7 GHz Intel Core i7 on Ubuntu.

The first experiments were run on synthetic programs, which in a constructive complex-

ity proof are shown to be the worst case for k-CFA when k ≥ 1 and difficult for 0CFA [53, 54].

The results can be found in Table 3.3. The first column is the number of terms in the

program. The second column is the runtime of the optimized Racket implementation. The

Scala column is the runtime of the traditional Scala implementation. The SAT column is

the time taken to encode and solve the problem using SAT. This column is broken down

into its two components in the last two columns. The Encode column is the time taken to

create the encoding. The Solve column is the time taken by MiniSat to solve the encoding.

We also looked into the sensitivity of the encoding to different SAT solvers, using SAT

solvers that were some of the best performers from the 2011 international SAT competition.

See Table 3.4. We report the time taken to solve the encoding, the number of flows that

agree with the Scala implementation, and the number of flows that disagree. When there

is a disagreement, the encoding says that the flow does occur but the traditional 0CFA

reports that it does not.
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Table 3.3: Runtime comparison of a control-flow analysis using a fast Racket implemen-
tation, a Scala implementation, and using MiniSAT.

Terms Racket Scala SAT Encode Solve

37 0.008s 1.059s 0.730s 0.725s 0.005s
63 0.016s 1.056s 0.796s 0.792s 0.004s
115 0.046s 1.454s 1.025s 1.017s 0.008s
219 0.222s 2.338s 1.418s 1.387s 0.031s
427 1.374s 5.337s 2.759s 2.642s 0.117s
843 8.396s 44.873s 11.337s 10.481s 0.856s
1675 49.029s 12m34.301s 1m15.984s 1m9.222s 6.762s
3339 4m46.726s >6h 8m50.671s 8m43.103s 7.568s
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Table 3.4: Runtime and precision results from some of the best performers from the 2011
international SAT competitions.

Solver Results n = 37 n = 63 n = 155 n = 219 n = 237 n = 843 n = 1675

minisat

Time 0.005s 0.007s 0.012s 0.039s 0.133s 0.848s 6.714s
Agree 96 280 936 3400 12936 50440 199176

Disagree 0 0 0 0 0 0 0

3S

Time 2.548s 2.570s 2.554s 2.777s 5.952s 1m15.335s >2m
Agree 96 280 936 3400 12936 50440 -

Disagree 0 0 0 0 0 0 -

cirminisat

Time 0.004s 0.005s 0.009s 0.031s 0.152s 1.312s 11.299s
Agree 96 280 936 3400 12936 50440 199176

Disagree 0 0 0 0 0 0 0

clasp

Time 0.004s 0.005s 0.010s 0.029s 0.152s 1.055s 7.959s
Agree 54 150 486 1734 6534 25350 165378

Disagree 42 130 450 1666 6402 25090 33798

cryptominisat //

Time 0.007s 0.011s 0.026s 0.086s 0.413s 3.598s >2m
Agree 96 280 936 3400 12936 50440 -

Disagree 0 0 0 0 0 0 -

csls //

Time 0.006s 0.006s 0.034s 0.579s 32.656s >2m >2m
Agree 60 216 711 2754 12936 - -

Disagree 36 64 225 646 0 - -

eagleup

Time 0.004s 0.006s 0.017s 0.063s 0.541s 18.500s >2m
Agree 70 192 674 2566 9479 36639 -

Disagree 26 88 262 834 3457 13801 -

glucose

Time 0.011s 0.012s 0.020s 0.050s 0.198s 1.415s 4.805s
Agree 96 280 936 3400 12936 50440 199176

Disagree 0 0 0 0 0 0 0

glueminisat

Time 0.004s 0.005s 0.011s 0.036s 0.164s 1.363s 11.640s
Agree 96 280 936 3400 12936 50440 199176

Disagree 0 0 0 0 0 0 0

lingeling

Time 0.006s 0.010s 0.024s 0.078s 0.454s 1.980s 10.365s
Agree 96 280 936 3400 12936 50440 199176

Disagree 0 0 0 0 0 0 0

march rw

Time 0.007s 0.010s 0.033s 0.466s 18.936s >2m >2m
Agree 54 150 486 1734 6534 - -

Disagree 42 130 450 1666 6402 - -

plingeling

Time 0.009s 0.012s 0.028s 0.096s 0.477s 2.851s 19.695s
Agree 96 280 936 3400 12936 50440 199176

Disagree 0 0 0 0 0 0 0

plingeling //

Time 0.010s 0.017s 0.037s 0.083s 0.465s 3.551s 30.653s
Agree 96 280 574 1992 7813 30463 120112

Disagree 0 0 362 1408 5123 19977 79064

ppfolio

Time 0.006s 0.009s 0.010s 0.051s 0.341s 2.453s 14.588s
Agree 78 280 936 3400 12936 50440 165378

Disagree 18 0 0 0 0 0 33798

ppfolio //

Time 0.007s 0.007s 0.012s 0.028s 0.178s 0.989s 7.409s
Agree 92 280 936 3400 12936 50440 165378

Disagree 4 0 0 0 0 0 33798

qutersat

Time 0.035s 0.042s 0.061s 0.134s 0.638s 4.786s 41.886s
Agree 96 280 936 3400 12936 50440 199176

Disagree 0 0 0 0 0 0 0

sattime2011

Time 0.005s 0.008s 0.021s 0.093s 0.796s 10.857s 0.020s
Agree 83 230 805 2919 11275 44001 -

Disagree 13 50 131 481 1661 6439 -

sparrow2011

Time 0.013s 0.007s 0.029s 0.100s 3.034s >2m >2m
Agree 72 266 936 3400 10846 - -

Disagree 24 14 0 0 2090 - -
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From the results in Table 3.3, we see encoding the problem and solving it with MiniSat

takes about the same amount of time as the fast Racket implementation. However, this

is not always the case. Experiments were also run on more traditional benchmarks. To

run these, the language on which the encoding operates had to be enriched. Additional

constructs were added (e.g., if and set!) as well as support for Scheme primitives. The

fast Racket implementation could not be run on these examples without using Church

encodings, as it only supports pure binary CPS lambda calculus. See Table 3.5.

The first two benchmarks test common functional patterns; sat is a simple SAT solver;

rsa is a RSA implementation; prime is a Solovay-Strassen primality tester; scm2java is a

Scheme to Java compiler; interp is a Scheme interpreter.

These benchmarks provide a stark contrast to the previous examples in performance.

Further investigation is needed to find the source of this large difference in performance.

One possible explanation is that the Scheme primitives are not well modelled. Also,

the traditional small-step abstract interpreter is able to use widening to converge to the

minimum fixed point faster. In addition, since its analysis is directed by the syntax of the

program more closely, it can explore less spurious flows.

For the first set of benchmarks, the results returned by the encoding are exactly the

same as those provided by the traditional implementations. However, running #SAT on

the encodings revealed that there are multiple valid interpretations. Thus, the encoding

does not exactly encode traditional 0CFA, which has a unique minimum fixed point.

3.3.10 Alternative Approach Using BDDs

Another approach attempted was to use a binary decision diagram (BDD) instead of

a SAT solver to solve the constraints. The constraints are encoded in the same way, but

the approach has the benefit that the minimum prime implicant is readily available from

the structure of the BDD. The minimum prime implicant provides an equivalent solution

as 0CFA. However, in practice, using a BDD requires large amounts of memory and time

for even simple examples.

3.3.11 Alternative Approach Using MaxSAT

Another approach that could be promising is to use a MaxSAT solver instead of a

traditional SAT solver. The additional clauses from Section 3.3.5 could be elided and only

the clauses from Section 3.3.4 would be needed. The partial maximum satisfiability problem

has two types of clauses, hard and soft. The hard clauses must be satisfied, while the soft

clauses can be relaxed. The solver finds the assignment with maximum number of soft
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Table 3.5: Runtime comparison between a traditional abstract interpreter and determining
the control-flow using MiniSAT.

Program Terms Scala SAT Encode Solve

eta 79 0.879s 0.805s 0.801s 0.004s
map 182 0.879s 0.805s 0.801s 0.004s
sat 250 1.311s 1.216s 1.198s 0.018s
rsa 609 1.805s 1.427s 1.396s 0.031s

prime 891 2.258s 4.584s 4.269s 0.315s
scm2java 2505 3.845s 1m6.550s 1m0.090s 6.460s

interp 4484 6.314s 5m6.519s 4m26.078s 40.441s

clauses satisfied. All the clauses from Section 3.3.4 would be hard clauses and then for each

variable, its negation would be added as a soft clause. A satisfying assignment from this

formulation would be equivalent to 0CFA.

3.3.12 Conclusion

This work has presented an encoding for control-flow analysis of CPS lambda calculus.

It has shown that in some cases, the approach can be as fast as a highly optimized solution.

While the soundness of the encoding was not proven, empirical results showed it to be

accurate.

This work also provides a solid basis for additional work. Many avenues exist which

can build upon it. Better encoding schemes can be developed, which possibly could be

even more precise than 0CFA, given the extra power provided by SAT solvers being able

to solve NP-complete problems. Van Horn and Mairson give a reduction from SAT to

k-CFA, effectively showing how to do SAT solving with k > 1 CFA, which merits further

investigation [53]. Also, while this work operates on CPS lambda calculus, the encoding

could easily be adapted to work on a more direct style language, such as ANF lambda

calculus [15], as analyzed by Might and Prabhu [38].

3.4 CFA via Linear Algebra

This chapter provides the third mapping of 0CFA based on constraint solving in this

dissertation. It provides a method to solve the constraints using linear-algebra operations.

There are two reasons for doing this. First, it gives one possible method on how to run the

analysis on a GPU. GPUs excel at accelerating linear-algebra operations because they have

low branching and are data parallel. By encoding the solving of the constraints to linear-

algebra operations, it becomes easier to see how to run this on a GPU. Second, it provides

a mechanism for something that we want to demonstrate in the following chapter, namely
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that the solution generated by this approach is equivalent to the solution that is produced

by a pushdown analysis that is monovariant, flow-insensitive, and context-insensitive.

This chapter proceeds by demonstrating how we can encode a lambda calculus term

using vectors. In then demonstrates how to represent the abstract syntax tree of a lambda

calculus program as matrices that can be indexed using these term vectors. Finally it shows

how the constraints of Section 3.1 can be solved using linear algebra operations on these

vectors and matrices. It uses vector and matrix multiplication (×), matrix boolean or (+),

and outer product (⊕).

The lambda calculus expressions are encoded as vectors. There are three types of

expressions (lambda terms, function application, and variable reference) and each one can

also be represented by a vector.

The length of the vector is the number of lambda calculus expressions |Exp| in the

program that is being analyzed. A unique index into this vector is assigned to each

expression. For the vector representing an expression, the entry in the vector at the index

of that expression is given a value of 1, while every other position in the vector is given

a value of 0. Note that variables have two different roles in a lambda calculus expression.

They can be a formal parameter of a lambda term or a variable reference. A variable no

matter where it appears in the program, either as a parameter or a reference, is represented

by the same vector.

~e ∈
−−→
Exp = {0, 1}|Exp|

~c ∈
−−→
Call ⊂

−−→
Exp

~l ∈
−−→
Lam ⊂

−−→
Exp

~v ∈
−→
Var ⊂

−−→
Exp

The abstract syntax tree is encoded as a matrices. It is encoded as selector matrices

that allow for terms encoded as vectors to generate vectors for their subexpressions. Fun

and Arg deconstruct a call site, allowing access to the function and argument. Var and

Body deconstruct a lambda term, allowing access to the variable and body.

Var :
−−→
Lam→

−→
Var

Body :
−−→
Lam→

−−→
Exp

Fun :
−−→
Call→

−−→
Exp

Arg :
−−→
Call→

−−→
Exp
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Given a vector representing a lambda term ~l, its argument is given by ~l ×Var and its

body is given by ~l ×Body. Given a vector representing a call site ~c, the function is given

by ~c× Fun and its argument is given by ~c×Arg.

Solving the constraints builds up flow sets of each expression, as opposed to a store in

the abstract interpreter approach which builds up flow sets for addresses. A flow set is also

represented by a vector of type
−−→
Lam. However, rather than representing a single lambda

term by having a single bit set, the flow set vector can have multiple bits set. Encoding

a set as a bit vector is a common practice where the vector represents a set that contains

each element whose bit is set inside the vector.

The flows matrix encodes the flow sets which are the output of the analysis. It maps

expressions to their flow sets, where the flow sets is encoded as a vector as described above.

φ ∈ Flows :
−−→
Exp→

−−→
Lam

Each expression has a row in the flow matrix that represents its flow set. To get the

flows to set of expression ~e, it is multiplied by the flow matrix ~e× φ.

We want to encode the three types of constraints into a function that we could implement

in a GPU kernel call.

The first constraint states that lambda terms flow to themselves.

(λ (v) eb) ∈ E

(λ (v) eb) ∈ flows[[(λ (v) eb)]]

This constraint is handled simply be setting the bit for each lambda term in the flow

matrix so that it flows to itself. If all the lambda terms were in adjacent rows in the flows

to matrix and in the same order as the lambda terms in the columns, this would produce

an identity matrix.

The second constraint states that the flow set of an argument of a call site is a subset

of the formal parameter of the lambda term applied at that call site.

(e1 e2) ∈ E (λ (v) eb) ∈ flows[[e1 ]]

flows[[e2 ]] ⊆ flows[[v ]]

Given the vector for the call site 〈〈call〉〉 = (e1 e2), the call site is deconstructed

through multiplication of the matrices encoding the AST, where 〈〈call〉〉 × Fun = e1 and

〈〈call〉〉 × Arg = e2. After determining the function, its flow set can be found through

multiplying it by the flows matrix.
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flows[[e1 ]] = 〈〈call〉〉 × Fun× φ = ~f

The flow set of the argument can also be found in a similar fashion.

flows[[e2 ]] = 〈〈call〉〉 ×Arg × φ = ~a

The formal parameter of every lambda term that flows to e1 can be found through the

Var matrix.

~v = ~f ×Var

Taking the outer product of ~v and ~a creates a flow matrix where the flow set of the

argument is now the flow set of every formal parameter of the lambda terms that flow to

the function of the call site. The subset relation is enforced by applying boolean or to this

and the original store.

φ + (~v ⊗ ~a)

The third constraint states that the flow set of the body of any lambda term that flows

to the function position is a subset of the flow set of the call site.

(e1 e2) ∈ E (λ (v) eb) ∈ flows[[e1 ]]

flows[[eb ]] ⊆ flows[[(e1 e2)]]

The body of every lambda term that flows to the function position of the call site can

be found through Body where eb = ~f ×Body. Furthermore, the flow set of the body can

be found by multiplying it by the flow matrix.

flows[[eb ]] = ~f ×Body × φ = ~b

Taking the outer product of 〈〈call〉〉 and ~b creates a flow matrix where the flow set of the

call is now the flow set of the body. The subset relation can be enforced by taking applying

boolean or to this and the original flow matrix.

φ + (〈〈call〉〉 ⊗~b)

Putting this all together the following function builds up the flow set.

fcall (φ) = φ′, where

~f = 〈〈call〉〉 × Fun× φ

~a = 〈〈call〉〉 ×Arg × φ

~v = ~f ×Var

~b = ~f ×Body × φ

φ′ = φ + (~v ⊗ ~a) + (〈〈call〉〉 ⊗~b)
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Initially setting all the flow sets for the lambda terms and iteratively applying this

function until a fixed point is reached computes the minimum flow set.



CHAPTER 4

PUSHDOWN CONTROL-FLOW ANALYSIS

We describe a linear-algebraic encoding for pushdown control-flow analysis of higher-

order programs. Pushdown control-flow analyses obtain a greater precision in matching

calls with returns by encoding stack-actions on the edges of a Dyck state graph. This kind

of analysis requires a number of distinct transitions and was not amenable to parallelization

using the approach of EigenCFA. Recent work has extended EigenCFA, making it possible

to encode more complex analyses as linear-algebra for efficient implementation on SIMD

architectures. We apply this approach to an encoding of a monovariant pushdown control-

flow analysis.

4.1 Introduction

The goal of static analysis is to produce a bound for program behavior before run-

time. This is desirable for proving the soundness of code transformations, the absence or

programming errors, or the absence of malware.

However, static analysis of higher-order languages such as Scheme is nontrivial. Due

to the nature of first-class functions, data-flow affects control-flow and control-flow affects

data-flow, resulting in the higher-order control-flow problem. This vicious cycle has resulted

in even the simplest of formulations being nearly cubic [52, 54]. However, a trade-off exists in

any analysis between precision and scalability, and finding the right balance for a particular

application requires special attention and effort [37].

One way to increase the scalability of an analysis is to parallelize its execution. To

this end, we provide a linear encoding of a pushdown control-flow analysis, giving potential

speedups on many-core or SIMD architectures such as the GPU.

Prabhu et al. demonstrated the possibility of running a higher-order control flow analysis

on the GPU [46]. However, their encoding has the major drawback that it only supports

binary continuation-passing-style (CPS). It was restricted to a simple language which could

be implemented as a single transition rule as not to introduce thread-divergence in SIMD
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implementations. Currying all function calls and being forced to encode all language forms

and program values in the lambda calculus is not ideal for real applications because it

distorts the code under analysis.

Gilray et al. addressed this issue with a demonstration that richer language forms and

values can be used within this style of encoding by partitioning transfer functions and

more precisely encoding analysis components [16]. We build on this work, demonstrating

that it is not only possible to encode richer language forms, but a fundamentally richer

analysis. Specifically, we demonstrate that a pushdown analysis may also be encoded using

this transfer-function partitioning. A pushdown analysis has the benefit that it precisely

matches function calls with function returns [57].

In this chapter, we review the concrete semantics of ANF lambda calculus within a

CESK machine. We then provide a direct abstraction of the pushdown-machine semantics

to a monovariant pushdown control-flow analysis (0-PDCFA). We then partition the transfer

function and show a linear encoding of that analysis which is faithful to its original precision.

4.2 Concrete Semantics

We give semantics for a pure lambda calculus in Administrative Normal Form (ANF).

ANF is a core direct-style language which strictly let-binds all intermediate-expressions [15].

This structurally enforces an order of evaluation and greatly simplifies a formal semantics.

ANF is at the heart of common intermediate-representations for Scheme and other higher-

order programming languages.

For simplicity, we permit only call-sites, let-forms, and atomic-expressions (variables

and λ-abstractions).

e ∈ E ::= (let (x e) e)l

| (ae ae . . . )l

| ael

ae ∈ AE ::= x | lam

lam ∈ Lam ::= (λ (x . . . ) e)

x ∈ Var ::= 〈set of program variables〉

l ∈ Label ::= 〈set of unique labels〉

The concrete semantics for this machine will be given using a CESK machine [14], which

has the following state space:
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ς ∈ Σ = E× Env × Store× Time×Kont

ρ ∈ Env = Var ⇀ Addr

σ ∈ Store = Addr ⇀ V alue

t ∈ Time = Label∗

κ ∈ Kont = Frame∗

φ ∈ Frame = E× Env × Var

a ∈ Addr = Var × Time

v ∈ V alue = Lam× Env

Each state in the abstract-machine represents control at a particular expression-context

e, with a binding environment ρ encoding visible bindings of variables to addresses and a

value-store (a model of the heap) mapping addresses to values. Each state is also specific

to a timestamp t encoding a perfect program-trace and a current continuation κ encoding

a stack of continuation frames.

The only values for this language are closures. To generate values given an atomic-

expression, we will use an atomic-evaluator. Given a variable, it looks up the address of the

value in the environment and then the value in the store. Given a λ-abstraction, we simply

close it over the current environment.

A : AE× Σ ⇀ V alue

A(x, (e, ρ, σ, t, κ)) = σ(ρ(x))

A(lam, (e, ρ, σ, t, κ)) = (lam, ρ)

Looking at the grammar for our language, we can see that there are three expression

forms: let bindings, applications, and atomic expressions. To fully present the semantics,

we will provide a transition relation that has a rule for each form.

The first form we will describe is for let bindings. A let expression pushes a frame on

the stack that captures the expression to evaluate when we return, the environment to be

used, what variable we will bind, along with the stack as it exists when we push the new

frame.

((let (x e) eκ)
l, ρ, σ, t, κ)︸ ︷︷ ︸

ς

⇒ (e, ρ, σ, t′, κ′)
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where κ′ = (eκ, ρ, x) : κ

t′ = l : t

Function calls are a little bit more involved but not too complicated. We evaluate the

function we are applying, as well as all the arguments. We create new address and set the

values in the store. Note that since these are tail calls the stack is unchanged.

((λ (x1 . . . xj) e), ρλ) = A(aef , ς)

((aef ae1 . . . aej)
l, ρ, σ, t, κ)︸ ︷︷ ︸

ς

⇒ (e, ρ′, σ′, t′, κ)

where ρ′ = ρλ[xi 7→ (xi, t
′)]

σ′ = σ[(xi, t
′) 7→ A(aei, ς)]

t′ = l : t

Finally, when we come across an atomic expression, we need to return. We do this by

extracting the needed information from the top frame, extend and update the environment,

and return to using the previous stack.

κ = (e, ρκ, xκ) : κ′

(ael, ρ, σ, t, κ)︸ ︷︷ ︸
ς

⇒ (e, ρ′, σ′, t′, κ′)

where ρ′ = ρκ[xκ 7→ (xκ, t
′)]

σ′ = σ[(xκ, t
′) 7→ A(ae, ς)]

t′ = l : t

These semantics may be used to evaluate a program e by producing an initial state

ς0 = (e, ∅,⊥, (), ()) and computing the transitive closure of (⇒) from this state. Naturally,

concrete executions may take an unbounded amount of time to compute in the general case.

This manifests itself in the above semantics as an unbounded set of timestamps leading to

an unbounded address-space, and as an unbounded stack used to represent the current

continuation.

4.3 Abstract Semantics

We will now provide the abstract semantics of the analysis. Because our analysis is

monovariant and only maintains one approximation for each variable, there is only one
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environment for a given expression-context. Thus, it is elided from the state space. The

stack is now the only source of unboundedness in these semantics.

ς̂ ∈ Σ̂ = E× Ŝtore× K̂ont

σ̂ ∈ Ŝtore = V̂ ar → V̂ alues

κ̂ ∈ K̂ont = F̂ rame
∗

φ̂ ∈ F̂ rame = E× Var

v̂ ∈ V̂ alues = P(V̂ alue)

d̂ ∈ V̂ alue = Lam

In providing the abstract semantics, we will once again need a way to evaluate atomic

expressions. The atomic evaluator is very similar to its concrete counterpart. However,

since there is only one environment, we look up the value of a variable using it directly.

Also, we do not need to close lambdas over an environment as their expression-body is

already specific to a particular monovariant environment.

Â : AE× Σ̂ ⇀ V̂ alues

Â(x, (e, σ̂, κ̂)) = σ̂(x)

Â(lam, (e, σ̂, κ̂)) = {lam}

The abstract transition relation is also very similar to its concrete counterpart. Note

that the frames no longer store environments.

((let (x e) eκ)
l, σ̂, κ̂)︸ ︷︷ ︸

ς̂

≈> (e, σ̂, κ̂′)

where κ̂′ = (eκ, x) : κ̂

Also note that when updating the store, we use the least-upper-bound to remain sound.

This permits values to merge within flow-sets: (σ1 t σ2)(â) = σ1(â) ∪ σ2(â).

(λ (x1 . . . xj) e) ∈ Â(aef , ς̂)

((aef ae1 . . . aej), σ̂, κ̂)︸ ︷︷ ︸
ς̂

≈> (e, σ̂′, κ̂)
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where σ̂′ = σ̂ t [xi 7→ Â(aei, ς̂)]

Finally, when we return, we update the variable found in a stack-frame.

κ̂ = (e, x) : κ̂′

(ae, σ̂, κ̂)︸ ︷︷ ︸
ς̂

≈> (e, σ̂′, κ̂′)

where σ̂′ = σ̂ t [x 7→ Â(ae, ς̂)]

Simply enumerating all the states possible given this abstract transition relation is not

guaranteed to terminate. However, there is a finite representation of the infinite state space

of the stacks. If we use this transition relation to generate a Dyck state graph, our analysis

will terminate. This is accomplished by taking the infinite stacks and encoding them into

a finite graph, where the stack frames are labels on edges of that graph. Intuitively, we are

making the explicit result of cycles in control-flow (unbounded stacks) implicit as cycles in

a control-flow graph.

A Dyck state graph is a set of edges.

G ∈ P(Q× Γ×Q)

The nodes in the graph Q are the parts of an abstract state ς̂ ∈ Σ̂ sans the stack

κ̂ ∈ K̂ont.

q ∈ Q = E× Ŝtore

The edges describe transition between nodes and contain the stack-action that exists

between these nodes. There are three different stack actions: pushing a frame φ̂+, leaving

the stack unchanged ε, and popping a frame φ̂−.

γ ∈ Γ = φ̂+ | ε | φ̂−

Whether an edge exists in the graph can be taken directly from the abstract transition

relation. We introduce the relation (
γ−→) ⊆ Q × Γ × Q for edges in the Dyck state graph,

defined in terms of the abstract transition relation.

q
φ̂+

−−→ q′ ⇐⇒ (q, κ̂) ≈> (q′, φ̂ : κ̂)

q
ε−−→ q′ ⇐⇒ (q, κ̂) ≈> (q′, κ)

q
φ̂−−−→ q′ ⇐⇒ (q, φ̂ : κ̂) ≈> (q′, κ̂)

To efficiently compute the Dyck state graph, an epsilon closure graph is needed. An

epsilon closure graph has edges between all nodes that have no net stack change between



75

them. For instance, if we push a frame and then pop a frame, there should be an epsilon

edge between the source node of the push edge and the target node of the pop edge. This

is the epsilon edge between q1 and q3 below.

q0
γ+

0 // q1
γ+
//

ε

��
q2

γ− // q3

This allows us to immediately see that γ0 is a possible top frame for q3 when generating

successor edges and nodes for q3.

4.3.1 Transfer Function

When computing the analysis, we use a transfer function f̂ : (Q × Γ ×Q) → (Q × Γ ×

Q) that takes a Dyck state graph and computes new edges at the frontier of the graph,

generating a new Dyck state graph. We continually apply this transfer function until a

fix-point is reached.

f̂(G) = G ∪
{

(q, γ, q′) : q ∈ Q, q γ−→ q′
}

, where

Q =
{
q′ : (q, γ, q′) ∈ G

}
∪ {q0}

4.3.2 Global Store Widening

In the given abstract semantics, each state had its own store. However, to ensure the

analysis will converge more quickly, global store-widening is usually employed. This form

of widening is equivalent to using a global-store for all states which is computed as the

least-upper-bound of all stores visited at any individual state. To accomplish this, we will

remove the store from the nodes of the Dyck state graph and define the store-widened Dyck

state graph as follows.

GO ∈ P(E× Γ× E)

The globally store-widened transfer function then individually computes a new graph of

expressions and stack actions, and a new global store.

f̂O(GO, σ̂) = (G′O, σ̂
′), where

G′O = GO ∪
{

(e, γ, e′) : e ∈ Qe, (e, σ̂)
γ−→ (e′, )

}
σ̂′ =

⊔{
σ̂′ : e ∈ Qe, (e, σ̂)

γ−→ ( , σ̂′)
}

Qe = {e : ( , , e) ∈ GO} ∪ {e0}

An underscore represents a wildcard, i.e., any value.
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4.3.3 Partitioning the Transfer Function

We can partition this monolithic transfer function, defining an individualized transfer

function for each expression form in our language: f̂let , f̂calli and f̂ae . These functions

are defined in precisely the same manner, but only use the rule applying to their specific

language form. After each iteration, we merge the resulting Dyck state graphs and stores,

taking their least-upper-bound. It has been shown that partitioning a system-space transfer

function by rule in this manner is sound as the least-upper-bound of the system-spaces

resulting from an application of each, is always equal to the system-space resulting from a

single application of the combined f̂O [16].

4.4 Linear Encoding

We will construct a transfer function for each abstract transition relation. This transfer

function will update the store and will also be responsible for creating a Dyck state graph.

We will define these functions using matrix multiplication (×), outer product (⊗), and

boolean or (+). The style of encoding we use is taken directly from the original approach

of EigenCFA [46].

The abstract state space, because it is finite, is easy to represent in vector and matrix

form. If the elements in the domain are given a canonical order, we can represent a set of

those elements using a bit vector. If an element from the domain is present in the set, the

vector representing that set should have its bit set at the index corresponding to the offset

of that element in the ordering. In our encoding, we will represent the set of states using a

vector ~s ∈ ~S. We will represent atomic expressions, either variables or values, with ~a ∈ ~A,

and we will use ~v ∈ ~V to represent flow sets of abstract values.

~s ∈ ~S = {0, 1}|E|

~a ∈ ~A = {0, 1}|V̂ ar|+|V̂ alue|

~v ∈ ~V = {0, 1}|V̂ alue|

We can also encode the abstract syntax tree as matrices. We can extract the body of

a closure using Body or the variables it binds using Vari. We can also deconstruct the

components of a let expression using Arg1, LetCall, and LetBody.

Body : ~V → ~S

Fun : ~S → ~A

Vari : ~V → ~A

Argi : ~S → ~A

LetCall : ~S → ~S

LetBody : ~S → ~S
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The store is a matrix that maps atomic expressions to abstract values.

σ : ~A→ ~V

We also represent the Dyck state graph using three matrices. These three matrices map

states to states, which in the case of our linear encoding, are expressions in our program.

We use three different matrices to represent the three types of edges that can be found in

the Dyck state graph.

γ+ : ~S → ~S

γε : ~S → ~S

γ− : ~S → ~S

We also use a matrix to represent the epsilon closure graph which aids in the construction

of the matrices encoding the Dyck state graph.

ε : ~S → ~S

We now define the transfer function for the three types of expressions our language

supports, let bindings, applications, and atomic expressions.

For let expressions, we first extract the sub-expression whose value will be bound to the

variable of the let expression, ~slet × LetCall. We then record the push edge in the Dyck

state graph, γ+ + (~slet ⊗ ~snext).

f~slet (γ+) = (γ+
′)

where ~snext = ~slet × LetCall

γ+
′ = γ+ + (~slet ⊗ ~snext)

Applications are somewhat more involved. We first pull out of the store the abstract

values that we are applying for the given call site. We then extract the values of the

arguments. We then get variables that we are binding from the closures we are applying.

We then record the updated values in the store. We must also record that we made a

tail-call in the Dyck state graph. We do this by updating γε. We then must also update

any epsilon edges.
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f~scallj (σ,γε, ε) = (σ′,γε
′, ε′)

where ~vf = ~scallj × Fun× σ

~vi = ~scallj ×Argi × σ

~ai = ~vf ×Vari

σ′ = σ + (~a1 ⊗ ~v1) + . . .+ (~aj ⊗ ~vj)

~snext = ~vf ×Body

γε
′ = γε + (~scallj ⊗ ~snext)

ε′ = fε(ε, ~scallj , ~snext)

Finally, we come to the last case where we have an atomic expression and must return.

We first must compute the flow set of the atomic expression. We then look up the top

frames of our stack. We then update the environment by binding the variable found at the

top stack frame. We also extract the expression that we will be executing next. Finally, we

record the pop edge and update the epsilon closure graph accordingly.

f~sæ(σ, γ+, γ−, ε) = (σ′, γ+
′, γ−

′, ε′)

where ~v = ~sæ ×Arg1 × σ

~spush = ~sæ × ε> × γ+
>

~a = ~spush ×Arg1

σ′ = σ + (~a⊗ ~v)

~snext = ~spush × LetBody

γ−
′ = γ− + (~sæ ⊗ ~snext)

ε′ = fε(ε, ~sæ, ~spush)

The epsilon closure graph aids in the construction of the Dyck state graph. It contains

edges between states that have no net stack change. This allows us to quickly find the top

frames when we need to return. When updating the epsilon closure graph, we not only need

to record the new edges, but take all existing predecessors and successors into account.
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fε(ε, ~ss, ~st) = ε′

where ~sn = ~st × ε

~sp = ~ss × ε>

ε′ = ε + (~ss ⊗ ~st)

+ (~ss ⊗ ~sn)

+ (~sp ⊗ ~st)

+ (~sp ⊗ ~sn)

4.5 Example

To help give a better understanding of how the encoding works, we provide a short

example.

(let (idx0 (lambda (vx1) vl2)l1 d̂0)

(id (lambda (wx2)

(let (ax3 (w id)l5)

(a a)l6)l4)d̂1)l3)l0

For this program, there are only two denotable values, the two lambda terms. There

are two let expressions, three call sites, and one atomic reference as the body of a lambda.

There are also four variables in this program.

We will first discuss how you would encode the abstract syntax tree using matrices.

Recall that there are six matrices that are needed.

First, given a flow set, we want to be able to extract which expressions are the body of

a lambda term. Below we can see that l2 is the body of the first lambda and l4 is the body

of the second lambda.

Body =

[ l0 l1 l2 l3 l4 l5 l6

d0 0 0 1 0 0 0 0
d1 0 0 0 0 1 0 0

]
We also need a way to extract the function being applied at a call site, whether it be a

lambda term or a variable reference. Because there are only three call sites in the program,

only three rows in the matrix have entries with non-zero values. In our example, every call

site has a variable reference in function position.
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Fun =



x0 x1 x2 x3 d̂0 d̂1

l0 0 0 0 0 0 0
l1 0 0 0 0 0 0
l2 0 0 0 0 0 0
l3 1 0 0 0 0 0
l4 0 0 0 0 0 0
l5 0 0 1 0 0 0
l6 0 0 0 1 0 0


There must also be a way to extract the arguments of a call site. This matrix can also

be used to determine what atomic expression we are evaluating when our control state is

at an atomic expression.

Arg1 =



x0 x1 x2 x3 d̂0 d̂1

l0 1 0 0 0 0 0
l1 0 0 0 0 0 0
l2 0 1 0 0 0 0
l3 0 0 0 0 0 1
l4 0 0 0 1 0 0
l5 1 0 0 0 0 0
l6 0 0 0 1 0 0


Once we have a flow set, we want to be able to extract the variable that we are binding

when we apply the functions in our flow set.

Var1 =

[ x0 x1 x2 x3 d̂0 d̂1

d̂0 1 0 0 0 0 0
d̂1 0 0 1 0 0 0

]
We also need to be able to know what the expression is whose value we will bind to a

variable when we have a let expression. This lets us know what our successor state will be.

This is used when we push a frame onto our stack.

LetCall =



l0 l1 l2 l3 l4 l5 l6

l0 1 0 0 0 0 0 0
l1 0 0 0 0 0 0 0
l2 0 0 0 0 0 0 0
l3 0 0 0 0 0 0 0
l4 0 0 0 0 0 1 0
l5 0 0 0 0 0 0 0
l6 0 0 0 0 0 0 0


Given a let expression, we also need to know where we should return to once we have

evaluated the expression which will provide the value we are binding.
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LetBody =



l0 l1 l2 l3 l4 l5 l6

l0 0 0 0 1 0 0 0
l1 0 0 0 0 0 0 0
l2 0 0 0 0 0 0 0
l3 0 0 0 0 0 0 0
l4 0 0 0 0 0 0 1
l5 0 0 0 0 0 0 0
l6 0 0 0 0 0 0 0


The store for this program is actually rather small. We are interested in finding out

which lambda terms flow to which variables. With four variables and two lambda terms,

there are only eight entries that can be set. Note that we have an identity matrix at the

bottom of the store.

σ =



d̂0 d̂1

x0 0 0
x1 0 0
x2 0 0
x3 0 0

d̂0 1 0
d̂1 0 1


To encode a Dyck state graph, we actually need three separate matrices. A value of

one represents that there exists an edge between two states. The contents of the frame

(the variable to bind and the expression to execute next) are both available using Arg1

and LetBody. After running the analysis on the above program, the results of the three

matrices would be as follows.

γ+ =



l0 l1 l2 l3 l4 l5 l6

l0 0 1 0 0 0 0 0
l1 0 0 0 0 0 0 0
l2 0 0 0 0 0 0 0
l3 0 0 0 0 0 0 0
l4 0 0 0 0 0 0 0
l5 0 0 0 0 0 0 0
l6 0 0 0 0 0 0 0



γ− =



l0 l1 l2 l3 l4 l5 l6

l0 0 0 0 0 0 0 0
l1 0 0 0 1 0 0 0
l2 0 0 0 0 0 0 0
l3 0 0 0 0 0 0 0
l4 0 0 0 0 0 0 0
l5 0 0 0 0 0 0 0
l6 0 0 0 0 0 0 0
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γε =



l0 l1 l2 l3 l4 l5 l6

l0 0 0 0 0 0 0 0
l1 0 0 0 0 0 0 0
l2 0 0 0 0 0 0 0
l3 0 0 0 0 1 0 0
l4 0 0 0 0 0 0 0
l5 0 0 0 0 0 0 0
l6 0 0 0 0 0 0 0


We also need the epsilon closure graph. Initially it is an identity matrix because every

state has an implicit epsilon edge to itself.

ε =



l0 l1 l2 l3 l4 l5 l6

l0 1 0 1 1 0 0 0
l1 0 1 0 0 0 0 0
l2 0 0 1 0 0 0 0
l3 0 0 1 1 0 0 0
l4 0 0 0 0 1 0 0
l5 0 0 0 0 0 1 0
l6 0 0 0 0 0 0 1



4.6 Conclusion

We have described a linear encoding for a pushdown control-flow analysis as originally

formulated by Earl et al. [12] building upon the general framework of abstract interpreta-

tion [9]. By precisely matching calls and returns, a pushdown control-flow analysis gives

even more precision than a traditional finite state control-flow analysis. By demonstrating

the feasibility of a linear encoding, we have demonstrated that it is at least possible to run

a pushdown control-flow analysis on a SIMD architecture. However, a direct translation

would likely be inefficient as the matrices are very sparse. Novel techniques such as those

used in EigenCFA make the analysis run quickly [46].

4.7 Equivalence to Direct Style Constraints

In this section, we outline how the linear-algebra described in this chapter produces

equivalent results to those described in Chapter 3.

Intuitively, pushdown control-flow analysis does not buy us anything when we are flow

insensitive and monovariant because even though we can precisely match calls with returns,

because of the monovariance of the analysis, we must return any value that could ever

possibly get returned by that function. This happens with any caller. So even though we

precisely match the call and return, it does not matter in terms of precision.

Stated differently, the monovariance causes all arguments that are ever passed to a

function to be joined. In general, pushdown control-flow analysis is more precise, because it
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allows us to match the parameters to a more precise return value. However, a flow-insensitive

analysis must assume that any expression can be called after any other; we must revisit

states whenever a new value is added to the store.

Given the flow matrix, we can construct the matrices representing store and the Dyck

state graph, as well as the epsilon closure graph. We can also go the other way. Given the

matrices representing the store and Dyck state graph, we can construct the flow matrix.

We can also do a case-wise analysis for each of the supported lambda calculus terms

and show that they will contain the same values.



CHAPTER 5

RELATED WORK

Several works exists that explore parallelizing static analyses both on the GPU and on

multiple cores, whether they be on the same chip or in a distributed environment. In this

chapter, we explore prominent works in parallelizing static analysis.

Pingali et al. in their work discuss why parallelizing algorithms such as those used by a

pushdown control-flow analysis is difficult [43].

Despite the difficulty in parallelizing static analyses, the GPU has proven itself to be

capable of accelerating nontrivial static analyses. EigenCFA is a monovariant control-flow

analysis for higher-order languages [46]. Gilray et al. further advance the ideas of EigenCFA,

allowing for richer languages to be analyzed [16]. Méndez-Lojo et al. take a similar approach

in writing an inclusion-based points-to analysis for the GPU [33]. They improve upon the

ideas of EigenCFA by requiring less memory and locking, as well as removing redundant

work and hiding latencies.

Parallelizing static analyses is definitely not limited to the GPU. Many analysis have

been developed for parallel and distributed systems. Méndez-Lojo et al. also produced a

parallel implementation of their points-to analysis for running on multiple cores [34]. Al-

barghouthi et al. have also demonstrated the feasibility of running top-down interprocedural

analyses on multiple cores [1].

Distributed systems have also been used to tackle finite state model checking. Model

checking suffers from the state space explosion problem. As we try to verify complex

models, the state space that must be checked becomes too large to do in a reasonable

amount of time. To combat this, we can try and take advantage of all the computing

resources that are available to us by scaling our solutions to multiple machines in a clustered

environment. Static analysis can also suffer from the state space explosion problem. Lopes

and Rybalchenko describe a distributed system for predicate abstract refinement [26]. While

Bingham et al. have developed a distributed system for finite state model checking that can

handle billions of states [6].
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5.1 The Essence of Parallelism

One of the prominent abstractions for reasoning about and exploiting parallelism is

the dependence graph. However, the dependence graph is suitable only for “regular”

algorithms that use dense arrays. The dependence graph is not a suitable abstraction for

“irregular” algorithms where the key data structures are graphs, trees, or sets (prominent

data structures in abstract interpretation). One prominent use of “irregular” algorithms

is in optimizing compilers which perform iterative elimination-based data-flow analysis on

structures for interprocedural control-flow graphs. Pushdown control-flow analysis also fits

this definition of an “irregular” algorithm.

However, if we shift to a data-centric formulation of algorithms in which algorithms

are expressed in terms of their actions on data structures, we can distill out algorithmic

properties important for parallelization [43]. Tao analysis performs a structural analysis of

an algorithm using three axes: topology, active nodes, and the operator. For the topology,

it studies the data structure on which computation occurs. For active nodes, it studies how

nodes become active and how active nodes should be ordered. The operator is the operation

that is performed on the active node.

Amorphous data-parallelism is ubiquitous in algorithms. Given a set of active nodes

and an ordering on active nodes, amorphous data-parallelism is the parallelism that arises

from simultaneously processing active nodes. These active nodes are the parts of the

data structures of our algorithms that need to be operated on next. In other words, this

parallelism comes from the computations that are not ordered by the transitive closure of

a dependence graph.

Static dependence graphs are inadequate abstractions for irregular algorithms because

of the following reasons.

1. Dependencies between activities in irregular algorithms are most likely complex func-

tions of runtime data values. They cannot be captured by a traditional static depen-

dence graph.

2. Many irregular algorithms exhibit don’t-care nondeterminism. This is a property that

is hard to model with dependence graphs.

3. Whether or not it is safe to execute two activities in parallel at a given point in time

may depend on activities created later in time. It is unclear how to model this with

a dependence graph.
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One measure of amorphous parallelism in irregular algorithms is the number of active

nodes that can be processed in parallel at each step of the algorithm for a given input.

This means that once we have computed an abstract interpretation of a program, we could

know optimally how to parallelize the program. However, as we are running the abstract

interpretation, we cannot be sure.

5.2 Control-Flow Analysis with GPUs

Prabhu et al. created EigenCFA, a 0CFA implementation suitable for the GPU [46].

GPUs are typically used for operating over continuous domains with little branching in

the instruction set, but a control-flow analysis uses a discrete domain that often involves

branching. EigenCFA successfully overcomes these issues.

The main contribution of EigenCFA is reducing the transfer function of an abstract

semantics to a single kernel call. To achieve this goal, the analysis only operates on binary

CPS.

5.2.1 Linear Encodings

Another major contribution of EigenCFA is the use of abstract Church encodings. There

are many language features that at first glance would be difficult to abstractly interpret on a

GPU. However, the authors observe that the abstract behavior of many disparate language

features are identical in the abstract semantics. For example, termination can be modelled

by a nonterminating loop, which will terminate in our abstract semantics. Mutating a

variable is the same as binding a variable. Recursion can be modelled with mutation which

in turn is modelled again as binding. Basic values can me modelled as nontermination

which will terminate in our abstract semantics. Also, conditionals can be encoded without

branching since we usually take both branches in an abstract interpretation; these can

abstractly be represented as two subsequent calls.

Before we can encode the transfer function as a sequence of matrix operations, we

must encode the abstract syntax tree and the abstract domain as matrices. Some of these

encodings can also be done implicitly. If we were to assign a label to a lambda term, we

could use the corresponding label for the variable that the lambda binds. Also, we could use

the subsequent label for the body of the lambda. It is also important to note that though

we encode it as a matrix, in reality, since only one value is set per row, we can encode it as a

vector and use the index as an implicit value. A pushdown analysis can also take advantage

of these implicit representations.



87

5.2.2 Sparseness

A key insight of EigenCFA is that the abstract store resulting from a 0CFA analysis is

sparse. It is unlikely that a lambda will flow to many places in a program. As such, it is

advantageous to encode the store as a sparse matrix. The initial implementation of 0CFA

attempted to use dense matrices but was unable to achieve speedups until sparse matrices

were employed.

A pushdown analysis would also be able to take advantage of sparse matrices for the

store. However, the component that exists in a pushdown system and not in a finite state

representation is the Dyck state graph. The Dyck state graph will also be sparse, but the

epsilon closure graph contains some entries that contain many values, while other parts of

the matrix remain sparse.

In 0CFA, the store grows monotonically. This allows for the exploitation of benign race

conditions. The order that we go up the lattice is unimportant. Adding the same value

multiple times to the store will not change the result of the analysis.

This is also something that is exploitable in a pushdown analysis because the Dyck state

graph and epsilon closure graph also grow monotonically. We can add the same value to a

binding multiple times without changing the final answer. We can add the same edge to

the Dyck state graph, without changing the final result of the analysis.

5.3 Partitioning the Transfer Function

Gilray et al. build upon the foundational work of EigenCFA, while at the same time

addressing some of its issues [16].

EigenCFA encodes the analysis in a single kernel. This forces all the language features to

be desugared into a single form, a call site with two arguments. This design choice disallows

an analysis of simple language features such as primitive operations and conditionals.

However, by partitioning the transfer function, we can allow for more language forms. A

separate kernel can be created for every language form of interest. Then all language forms

of the same type in the program under analysis can be grouped together. This allows for

more complicated kernels depending on the analysis, which will have less thread divergence.

We can create a separate kernel for call sites with a different number of arguments. We can

create a kernel for conditionals, primitive operations, and mutation. Each of these kernels

will be able to take advantage of the SIMD architecture because there will be lesser thread

divergence than if we had a single massive kernel which handled each language form.

This partitioning of the transfer function is sound. Joining the resulting store after

applying each individual transfer function is equivalent to the store that would be created
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by a single transfer function.

For a pushdown analysis, we can partition this monolithic transfer function, defining an

individualized transfer function for each expression form in our language: f̂let , f̂calli and

f̂ae . These transfer functions are defined in precisely the same manner as the single transfer

function, but only use the rule applying to their specific language form. After each iteration,

we merge the resulting Dyck state graphs, epsilon closure graphs, and stores, taking their

least-upper-bound. A pushdown analysis must also be able to acquire the information for

top stack frames, required when we return from a function call.

5.3.1 Global Store Widening

To ensure a static analysis will converge more quickly, global store-widening is usually

employed. This form of widening is equivalent to using a global-store for all states. This

global store the least-upper-bound of all stores visited at any individual state. To accomplish

this in a pushdown analysis, the store is removed from the nodes of the Dyck state graph

and the store-widened Dyck state graph is defined as follows:

GO ∈ P(Exp× Γ× Exp)

The globally store-widened transfer function then individually computes a new graph of

expressions and stack actions, and a new global store.

f̂O(GO, σ̂) = (G′O, σ̂
′), where

G′O = GO ∪
{

(e, γ, e′) : e ∈ Qe, (e, σ̂)
γ−→ (e′, σ̂′)

}
σ̂′ =

⊔{
σ̂′ : e ∈ Qe, (e, σ̂)

γ−→ (e′, σ̂′)
}

Qe =
{
e′ : (e, γ, e′) ∈ GO

}
∪ {e0}

5.3.2 Higher Precision and Richer Domains

Another shortcoming of EigenCFA addressed by Gilray et al. is that EigenCFA propa-

gates flows caused by dead call sites. It might be the case in a program that a call site will

never be invoked. An abstract interpretation could also recognize that a call site is dead

and not propagate flows from the given call site. EigenCFA applies all call sites and has

no notion of whether a call site is dead or not. This issue is resolvable by maintaining a

vector of active call sites and only invoking them. However, this comes at the cost of some

parallelism.

Another issue of EigenCFA is its abstract encodings. It only allows for lambda terms to

be values within a program. However, this need not be the case. As long as we can represent
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an abstract value as an entry in a matrix, a GPU implementation of a static analysis could

handle it. In using the abstract Church encodings, it becomes very difficult to reason about

the results of EigenCFA. For example, if we were interested in type recovery, rather than

represent numbers and symbols as lambda terms for each unique value in the program, we

could represent them as a single column within the matrix. The use of encoding richer

abstract domains in matrix form was used by Banterle and Giacobazzi [5], where they were

able to represent Octagon Abstract Domains.

5.4 Avoiding Locks and Reducing Memory Requirements

Another recent work bringing flow analysis to the GPU implements an inclusion-based

points-to analysis [33]. This analysis is very similar to a control-flow analysis of higher-

order languages. Instead of determining which lambda terms flow to which expressions,

it attempts to answer the question of which pointer variables can point to which other

variables. Their implementation scales to handling hundreds of thousands of variables.

This work contains many ideas that improve upon the ones presented in EigenCFA.

They reduce memory usage, eliminate the need for locks, remove redundant work, and hide

memory transfer latency.

Like pushdown control-flow analysis, this algorithm is difficult to parallelize effectively

on the GPU, because it performs extensive modifications to the underlying data structure

and performs relatively little computation.

The authors make the observation that the constraints of an inclusion-based points-to

analysis can be reformulated as graph rewrite rules. Every variable becomes a node in the

graph and the constraints between them are represented as edges. Graph rewrite rules then

are applied based on the edges of a given node. They rewrite rules are applied until a fixed

point is reached. These rules do not need to be fired in any particular order, they can

be interleaved in any fashion. A quality shared by a control-flow analysis of higher-order

languages.

When adding a new edge to the graph, locking is only required if multiple nodes are

attempting to add an edge to the same node. However, if edges are only updated by a

single node, then no synchronization is required. This idea is immediately transferable to a

control-flow analysis, because we have separated work based on call sites and separate call

sites might in fact update the same variable.

A commonality between control-flow analysis of higher-order language and pointer anal-

ysis is that the final result is sparse. Just like it is unlikely that a variable will point

to many lambdas, it is unlikely that a pointer variable will point to many variables or
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address locations. Creating an efficient data structure to represent the constraints is a

difficult problem. During the course of the analysis, million of edges may need to be

added. An analysis of the Linux kernel results in 1.498 billion edges. The memory layout

needs to address minimizing memory transactions, maximizing coalescing, and avoid thread

divergence within warps. All difficult problems on the GPU. To address this issue, the

authors introduce a sparse representation of adjacency matrices that can grow as needed

but still retains small amounts of memory. They use a linked list of bit vectors for this

representation. This also takes advantage of the fact that variables which point to each

other generally appear close together in the source code. This is a major advantage over

the matrix representation used by EigenCFA.

Another tactic used by their implementation is to keep track of which nodes are active.

For each iteration, a node generates new edges, and then no longer becomes active. If a

new edge is added to a node, then it becomes active. By keeping track of which nodes

are active, we can reduce large amounts of duplicated work but still fully exploit all the

available parallelism.

The authors also hide the latency of transferring data between the CPU and GPU. Data

are copied in the background between iterations. Thus, when calculating the new edges for

the current generation, the edges from the old generation are copied to the CPU. This has

the effect of hiding the latency.

Both of these techniques are adaptable to a control-flow analysis of higher-order lan-

guages.

5.5 Parallel Inclusion-based Points-to Analysis

Before working on their GPU implementation, the previous authors worked on paral-

lelizing their algorithm on multiple CPU cores [34].

They recognize that in a constraint graph for points-to inclusion-based analysis, based

on graph rewriting, there are many active nodes in the constraint graph. They make the

observation that if the rewrites at two active nodes do not interfere with each other, they can

be performed in parallel. Parallelizing then becomes the activity of finding noninterfering

active nodes.

Parallelizing this form of static analysis is much harder than parallelizing regular appli-

cations like dense matrix multiplication and stencil operations. These type of applications

are known as regular applications. They are easier to parallelize because the dependencies

between computations are known before runtime. On the other hand, with irregular com-
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putations, dependencies of computation are known at only at runtime. The dependencies

between these computations are functions of runtime data.

5.5.1 Building upon an Existing Parallel Framework

Their implementation builds upon the Galois system framework. This is a framework

intended to support parallel execution of irregular applications and is derived from an

operator formulation. An operator is concerned with three elements: the active element,

the activity, and the neighborhood. The active element is the node or edge on which a

computation is centered. The activity is the computation itself, derived from an operator.

The neighborhood is the set of nodes and edges read or written by an activity.

Recall that opportunities for exploiting parallelism exists in graph algorithms where

there are multiple active nodes. However, by choosing which active nodes to operate one,

we must take into consideration neighborhood constraints.

In the Galois system, activities are executed by running speculatively and committing

the computation once gaining an abstract lock for a neighborhood. This leads to four sources

of overhead which can limit scalability: enforcing neighborhood constraints, copying data

for rollbacks, aborted activities, and dynamic assignment of work.

Their implementation overcomes these overhead challenges. To eliminate abstract locks,

they note that if the graph were read only, no locks would be needed. The graph rewrite

rules never remove nodes or edges from the graph, but only add them. There is also no need

to copy data because nodes and edges are never removed but only added. We can eliminate

copying data because no conflicting data will ever be generated, just possibly redundant

data. We also never need to abort an activity because the added edges are always part of

the final solution. In regards to assignment of work, nodes actually perform little work. To

overcome this challenge, they employ iteration coalescing. When an activity adds an edge

to the graph, it checks to see if any constraints are violated; if so, it puts work on a local

work queue, rather than the global work queue.

5.6 Parallelizing Interprocedural Analyses

Similar work, at least on the surface, is that of Albarghouthi et al. [1]. They develop a

framework for performing a modular analysis of top-down interprocedural analysis. There

are two ways to perform modular program analysis: top-down and bottom-up. We can start

at the leaves and work our way up function calls, which would be easier to scale. Or we can

start at the top node and work our way down to function calls. This work is significant in

that it is top-down.
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5.6.1 MapReduce Style Parallelism

They create a generic framework, named Bolt, which uses MapReduce style parallelism.

It generates a query Q over procedure P which results in sub queries for calls made to other

procedures by procedure P. In the map stage, we run multiple queries in parallel. In the

reduce state, interdependencies are managed between queries.

A similar approach can be taken for an abstract interpretation of higher-order languages.

As we generate successor states and explore the abstract transition graph, it can be the case

that there are many states for which we need to generate successors states. These can in

fact be done in parallel. Then in the reduce stage, we can determine if future successor

states need to be generated. In the course of generating successor states, it is possible that

we are generating a state that has already been seen before. In this case, we no longer need

to generate successors. In the reduce step, we then would need to coordinate between states

to determine if it the state has been visited before.

In the past, I have experimented with implementing an existing analysis on top of the

MapReduce framework [10]. The major difficulty in scaling is that for the analysis to scale

without changing the underlying framework, the abstract transition graph must have a large

dominating frontier when performing the breadth-first search.

5.6.2 Must-Analysis vs May-Analysis

One strength of the Bolt system is that it can handle may-analyses and must-analyses.

In a may-analysis, we determine behaviors that may occur during the actual runtime of the

program, but do not necessarily occur. This comes from a conservative analysis. This is

what is generated from a control-flow analysis. The analysis itself is conservative and thus

produces a may happen result. We do not perform an under-approximation of the runtime

of the program. However, if an abstract transition relation were developed that could create

a under-approximation of the runtime behavior of the program, any tool we develop would

be able to handle must-analyses.

5.6.3 Parameterization

Bolt is parameterized by an intraprocedural analysis algorithm used to analyze a single

procedure. Our analysis is parameterized by an abstract transition relation that generates

successors states for a given abstract state. This means that our framework will be able

to handle any advancements that can be contained within the abstract transition relation,

such as abstract garbage collection [39].
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Bolt employs a pluggable architecture. It assumes that its underlying intraprocedural

analysis is a pure function. It takes a query as input and returns a set of queries. No

resources are shared between threads. This is similar to the abstract transition relation. It

is a pure function that takes abstract states and returns abstract states.

They were able to successfully run their analysis on 45 Microsoft Windows device drivers.

If a function makes calls to other functions, Bolt exploits this opportunity for paral-

lelism by exploring the called functions in parallel. This source of parallelism might not be

exploitable if our internal representation of the language only allows for one function call

in the body of a lambda. However, an object oriented framework can take advantage of

multiple entry point saturation [24].

5.7 Distributed Model Checking

Lopes and Rybalchenko develop a distributed model checker by taking an existing model

checker ARMC [44] and an existing distributive framework DAHL [26]. Their tool is based

on predicate abstraction and refinement-based algorithm for software verification. Their

distributed workers communicate via message passing.

One of the main concerns they address is the inherent nondeterminism present in

distributed computing. In the case of counterexample refinement, it is not the case that all

counterexamples are equal. We need to be very deliberate in which ones we explore. We

do not want to be at the mercy of the response times and processing power of our workers.

They discovered that when a naive distribution scheme is used, an order of magnitude

difference can arise. In a control-flow analysis, how successor states are generated is an

important problem. If we naively distribute the owners of abstract states, it might be the

case that the overhead introduced by the distribution might result in longer running times

than if we just ran the analyses serially.

In their tool, they generate all states a program can reach and check if error states

are included. Our tool will do the same thing. However, once they have generated an

error state, they begin to run counter examples to refine the abstraction to possibly remove

the error state. This is similar to Shivers’ reflow analysis [49] where we could improve

the allocation function in order to gain more precision to eliminate spurious flows in the

abstract transition graph. These refinements could be run in parallel.

5.7.1 Architecture

In their architecture, they use a single master node and a set of worker nodes. The

worker nodes request work from the master nodes. It was shown that having a master node
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was not a bottleneck for the program. In their scheme, the master node was needed because

they wanted to give a deterministic exploration of counter examples.

The success of predicate abstraction-based verifiers depends on the choice of counterex-

amples. However, in an abstract interpreter, generally a single allocation function is used

that will cause the same coarseness to appear throughout the entire abstract transition

graph. Because we must explore all states in order to remain sound, it doesn’t matter what

order we explore the states, as long as we are not performing any widening.

Even in the presence of widening, the final result would still be deterministic, even

though a different number of nodes might be generated. The final result will still be the

same. This is due to the associativity and commutativity of the join operator on stores.

At the end of the analysis, if we were to join every store, we would get the same results.

However, we might explore a different amount of states. Depending on our search strategy,

it is possible that we can explore a state earlier that subsumes other states that need to

be explored. There is no need to explore the weaker state if we have already explored the

stronger state.

5.8 Industrial Strength Explicit State Model Checking

Bingham et al. present the implementation details of an industrial strength explicit

state model checker they named PReach (Parallel REACHability) [6]. Their tool is able

to explore 30 billion states of a cache coherence protocol model. To their knowledge, this

is the largest state space ever to be explored in a publication. They are able to successfully

overcome the problem that the number of states grows exponentially with the number of

state variables.

Explicit state model checkers are generally limited by the amount of memory the machine

has available. Disk-based approaches exist but are inherently slower than checking a table

in RAM, as the model checker can be slowed down by a factor of 30. However, by running

in a distributed manner, it is possible to increase the amount of available memory and scale

to very large models. A parallel explicit state model checker also allows us to model check

faster by speeding up the exploration of the state space. This allows us to check models

that would be too large to explore on a single processor in a realistic amount of time.

Increases in memory and speed are important resources for analyses of higher-order

programs as well.
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5.8.1 Implementation

The PReach tool has two implementation levels. An Erlang program handles the

distributed aspects of the tool and contains less than 1000 lines of code. This layer calls

into the second layer, a tool named Mufϕ, for parsing, state expansion, hash table look-ups

and insertion, and for invariant and assertion violation detection.

PReach is based on the DEMC algorithm of Stern and Dill [51]. It performs a

distributed breadth-first search of the state space by using a uniform random hash function

that associates an owner node with each state. The owner of a state is for responsible for

generating its successors. Whenever a state is generated, it is sent to its owner node who

is responsible for checking if the state has already been explored and generating successor

states if necessary.

We could take almost any finite state abstract interpreter and easily parallelize it with the

PReach framework. We would just need to implement the interface it requires. PReach

makes four basic calls to Murϕ: Initial, Successors, Visited, and Insert. These features

can be extracted directly from the state space search algorithm of k-CFA [49]. The Initial

function is equivalent to the injection function. The Successors function is equivalent to

the abstract small-step transition relation. The Visited function is equivalent to the set

membership test of visited states. Finally, the Insert function is equivalent to the union of

a state to the visited set. However, additional requirements remain for a pushdown analysis.

The PReach framework can even handle advanced abstract interpretation features

such as abstract garbage collection, abstract counting, and taint analysis [39, 25]. This is

achievable because these features are contained within the transition relation. Because the

framework is agnostic to the what occurs inside the Successors function, all these features

could be supported.

PReach has several features that contribute to its scalability and robustness, including

message backoff schemes, load balancing, and batch messaging.

5.8.2 Message Backoff Schemes.

An initial implementation of PReach would immediately send all successors to their

owner. However, nodes would grind to a halt or crash. The problem was that these nodes

were accumulating a disproportionate number of messages in their mailboxes. They could

not be moved to their work queue fast enough and paging resulted.

To address this issue, they introduced a crediting mechanism. Each node has a given

number of credits for sending messages to each other node. This will likely be an important

consideration.
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5.8.3 Load Balancing.

Another innovation of PReach is its load balancing. The slowest node determines the

total runtime of the system. In performing an abstract interpretation, it is likely that at

first there will not be much potential for parallel exploration. This potential will also be

limited as we approached the fixed point of the computation.

To make sure each node is given approximately the same amount of work, load balancing

is needed. Kumar and Mercer proposed an aggressive rebalancing technique which compares

work queue sizes of adjacent nodes and has nodes pass states to neighbors with smaller work

queues [22].

5.8.4 Batch Messaging.

The final innovation of PReach is that states are sent in batches. This can result in

speedups of 10 to 20 times (using batches of size 100 to 1000 as opposed to sending the

states individually).

5.8.5 Improvements

The PReach framework could also be improved upon with techniques from abstract

interpretation, such as Shivers’ aggressive-cutoff algorithm and widening [49]. When testing

for set membership in the visited set, it does not have to be implemented as a strict mem-

bership test, but can be improved upon with a subsumption test. Because the framework

is unaware of the implementation details of Visited, this feature could easily be added.

However, to employ widening in our abstract interpretation, the framework would need

to be changed slightly. This could be achieved by having each node have a single store that

it uses for the nodes it is responsible for. Then whenever it receives new nodes, it would

widen them with its node-specific store.



CHAPTER 6

CONCLUSION

This dissertation presented several techniques towards improving control-flow analysis

of higher languages, both in terms of precision and the actual running time of the analysis.

Three techniques were presented that improve the small-step abstract interpreter approach

to static analysis.

Chapter 2 demonstrated that the order in which states are explored is important when

computing k-CFA using global store widening. Counter to intuition, differences in the

number of states explored exist when exploring with the traditional graph exploration

strategies, depth first, and breadth first. This observation gave rise to idea that deliberate

choices can be made in exploring the abstract state space in a more efficient manner. By

using the features of the states to guide the exploration, it is possible to achieve reduction

in the number of states by a factor of five and attain a 1.5x speedup of the analysis.

It also demonstrated a unique approach to abstracting environments in an abstract

interpretation. It described how the approach is similar to loop unrolling. It demonstrated

that holding off abstracting addresses for a while can result in smaller abstract state spaces

and increased precision. It could even be more precise than abstract garbage collection in

some instances.

It also demonstrated a technique, similar to strong update, which restricts the size of the

store at application sites. Reduction in the store size is likely to lead to increases in both

speed and precision, as has been show to be the case with abstract garbage collection. This

improvement to the analysis deals with addresses that are alive, but have flow set sizes that

are greater than one. Three mappings of the constraint-based formulation of control-flow

analysis were also presented.

Chapter 3 demonstrated how to use existing tools for pointer analysis to solve control-

flow analysis, which are able to run both on the GPU and in parallel on multicore CPU.

This allows us to leverage the significant effort that has gone into the state of the art of
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pointer analysis. The chapter provided the inference rules that allowed us to run an analysis

in parallel.

It also demonstrated how to map the constraints into SAT. It demonstrated that in

some cases, the approach could be as fast as a highly optimized solution. However, this

chapter could potentially lead to much more work. There may exist encodings that can

take advantage of the extra powers afforded by SAT solvers, which could lead to even more

precision.

It also demonstrated that these constraints could be encoded in linear-algebra oper-

ations. This was done, having two goals in mind. First, it makes the problem suitable

for running the analysis on the GPU. Second, it provides additional intuition on how a

monovariant and flow-insensitive control-flow analysis is in fact equivalent to solving the

direct-style constraints.

Chapter 4 described a linear encoding for a pushdown control-flow analysis. By precisely

matching calls and returns, a pushdown control-flow analysis gives even more precision

than a traditional finite state control-flow analysis. By demonstrating the feasibility of a

linear encoding, this chapter demonstrated that it is possible to run a pushdown control-

flow analysis on a GPU. It also provides some intuition on how the analysis described in

Chapter 3 is the same.
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