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ABSTRACT

The wireless radio channel is typically thought of as a means to move information 

from transmitter to receiver, but the radio channel can also be used to detect changes 

in the environment of the radio link. This dissertation is focused on the measurements 

we can make at the physical layer of wireless networks, and how we can use those 

measurements to obtain information about the locations of transceivers and people.

The first contribution of this work is the development and testing of an open 

source, 802.11b sounder and receiver, which is capable of decoding packets and using 

them to estimate the channel impulse response (C IR ) of a radio link at a fraction 

of the cost of traditional channel sounders. This receiver improves on previous im

plementations by performing optimized matched filtering on the field-programmable 

gate array (FPGA) of the Universal Software Radio Peripheral (USRP), allowing it 

to operate at full bandwidth.

The second contribution of this work is an extensive experimental evaluation of 

a technology called location distinction, i.e., the ability to identify changes in radio 

transceiver position, via CIR measurements. Previous location distinction work has 

focused on single-input single-output (SISO) radio links. We extend this work to 

the context of multiple-input multiple-output (MIMO) radio links, and study system 

design trade-offs which affect the performance of MIMO location distinction.

The third contribution of this work introduces the “exploiting radio windows” 

(ERW) attack, in which an attacker outside of a building surreptitiously uses the 

transmissions of an otherwise secure wireless network inside of the building to infer 

location information about people inside the building. This is possible because of the 

relative transparency of external walls to radio transmissions.

The final contribution of this dissertation is a feasibility study for building a 

rapidly deployable radio tomographic (RTI) imaging system for special operations



forces (SOF). We show that it is possible to obtain valuable tracking information 

using as few as 10 radios over a single floor of a typical suburban home, even without 

precise radio location measurements.
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CHAPTER 1

INTRODUCTION 

1.1 Radio Frequency Sensing in Wireless Networks
Wireless networks permeate the world around us. The past two decades have 

seen extensive expansion of cellular networks to cover most urban areas around 

the world and many rural areas as well. We use local area networking (LAN) 

technologies like WiFi to connect our personal computers and handhelds to the 

internet. We use personal area networking (PAN) technologies like Bluetooth to 

connect peripheral devices to our computers or stream audio from our cell phones. We 

also leverage wireless sensor networks (WSNs) for tasks as diverse as detecting forest 

fires [1], tracking the migration and mating patterns of animals [2], and monitoring 

the structural health of buildings and bridges [3].

All of these wireless networks transmit information at radio frequency (RF), i.e., 

between 3 kHz and 300 GHz, typically less than 6 GHz. In most cases, to the 

dismay of wireless communications engineers, these RF transmissions are distorted 

by their environment. Objects in the environment, including human beings, reflect, 

diffract, and attenuate these transmissions. Moving objects produce Doppler dis

tortion. Typically, it is the job of the wireless communications engineer to design 

modems that mitigate the effects these distortions have on the packets of data being 

push around the network, via equalization for example. However, it is also possible 

to leverage the distortions in RF transmissions caused by the environment to “sense” 

the environment.

A commonly used model that captures the distortions of wireless signals caused 

by the environment is the channel impulse response (CIR). The CIR of a wireless 

link is linear representation of the “echoing” that an RF transmission experiences as
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it follows multiple paths from the transmitter to the receiver, known as multipath 

propagation [4]. Its complex baseband representation can be written as

N (t)
h(t,T ) =  ^  ai(t)8(t -  Ti(t)) (1.1)

i= 1

where, at time t, N (t) represents the number of paths, a i (t) the complex gain of 

the ith path, Ti (t) represents the corresponding time delay, and 8 is the Dirac delta 

function.

The effects of objects in the environment are apparent in measurements that 

estimate the CIR. For example, when a person moves in the environment of a wireless 

link, she will effect some subset of the multipath for the radio link, thereby changing 

their contribution to (1.1). Figure 1.1 illustrates multipath propagation in a single 

room.

Ultra wide-band (UWB) radar devices create very accurate estimates of the CIR 

by transmitting very short (in time) RF pulses, in order to approximate an impulse, 

and listening for reflections [5]. The high bandwidth signals employed by these devices 

allow them to very accurately localize reflectors in the environment.

However, lower bandwidth signals are also useful for detecting and localizing 

objects. WiFi signals with bandwidths of 20-40 MHz have been a used to measure 

the channel and detect changes in transceiver position [6,7], as well as the motion and 

position of people that are not carrying radios [8]. The lower bandwidth signals used 

in these papers translates to the use of a lower-order approximation of the impulse 

function in (1.1), since a true impulse requires infinite bandwidth. The channel 

sounder developed as a part of this dissertation replaces the impulse function with 

the waveform shown in Figure 1.2.

Another common metric used to detect changes in wireless transmissions is re

ceived signal strength (RSS). RSS is an estimate of the power of the transmission 

measured at the receiver. The measured power results from multiplying the trans

mitted power by the squared magnitude of the phasor sum of all of the multipath 

contributions, written as

Pr =  Pt

N(t)
^  ai (t)e -j2nfTi (t)
i=1

(1.2)

2
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where PR, PT, and f  represent the received power, transmitted power, and center 

frequency, respectively.

Changes in the mean and variance of RSS have been be used to track the locations 

of people who are not carrying radios [9,10]. This kind of localization has been called 

“device-free localization” (DFL), as it does not require the targets of the localization 

to carry a device. This attribute makes DFL highly valuable in the realms of law 

enforcement, security, home automation, retail analytics, and in-home monitoring of 

the elderly.

1.2 Leveraging RF Measurements for Location 
Classification

Several methods have been introduced in the literature that leverage RF measure

ments to infer location information. The following examples employ RSS measure

ments for location classification.

• In [11], WiFi clients are localized indoors via RSS measurements from multiple 

access points (APs).

• In [12], RSS measurements made at multiple APs are used to detect the motion 

of people who are not carrying radio devices and localize them to spatial regions 

within a small office building.

• In [10], a wireless mesh network surrounding a building is used to localize people 

moving within the building.

Other methods have been introduced which utilize the CIR or its Fourier pair to 

infer location information:

• In [13], the authors use frequency response measurements between the WiFi 

clients and nearby APs to localize the clients.

• In [6] and [14], the authors use CIR estimates to perform location distinction,

i.e., determining if the position of a transceiver has changed.

• In [15], the authors use channel frequency response measurements to defend 

against Sybil attacks.
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1.3 Contributions of this Dissertation
This dissertation focuses on the physical layer measurements we can make on the 

RF links that exist in wireless networks, as well as some of the ways that we can 

leverage these measurements in order to obtain information about the physical loca

tions of people in the vicinity of the network and the transceivers that comprise the 

network. The publications, accepted and under submission, that have resulted from 

this work, as well as the specific contributions made by this author, are summarized 

below.

1. D. Maas, M.H. Firooz, J. Zhang, N. Patwari, and S.K. Kasera, “Channel Sound

ing for the Masses: Low Complexity GNU 802.11b Channel Impulse Response 

Estimation,” IEEE Transactions on Wireless Communications, 2012. [16]

RSS measurements are often used in the literature because they are made 

available at the application layer of the network stack by most wireless de

vices, requiring no special hardware to measure. The same is not true of CIR 

measurements. Although CIR measurements are very often made by RF devices 

for the purpose of equalization, these measurements are not made available at 

the application layer. It has therefore been necessary for researchers to build 

their own “channel sounders” in order to build prototypical systems that utilize 

CIR measurements.

In this work, I helped build and test an open source 802.11b receiver and 

channel sounder, capable of estimating channel impulse responses from standard 

transmissions, including debugging the FPGA design and signal processing 

through experimental validation. This work is included as Chapter 2 of this 

dissertation.

2. D. Maas, N. Patwari, J. Zhang, S. Kasera, and M. Jensen, “Location Distinction 

in a MIMO Channel,” in Proc. 2009 Virginia Tech Wireless Symp. Student 

Poster. [17]

D. Maas, N. Patwari, S.K. Kasera, D. Wasden, and M. Jensen, “Experimental 

Performance Evaluation of Location Distinction for MIMO Links,” in Proc.
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4th IEEE International Conference on Communication Systems and Networks 

(COMSNETS), 2012. [18]

It is possible to use CIR measurements to perform location distinction because 

these measurements are directly related to the physical arrangement of the 

transceivers and interfering objects in the environment and are also spatially 

unique in an environment that contains many interfering objects. If two CIR 

measurements for the same radio link differ significantly, it is likely that the 

transmitter or receiver has moved during the interval between measurements. 

It is also possible to discriminate between changes in transceiver position and 

changes in the environment because changes in transceiver location affect all 

of the reflective paths traversed, while changes in the environment only affect 

some subset of the paths.

In this work, I explored the design space for location distinction using two dif

ferent MIMO testbeds, leading to an understanding of how location distinction 

performance scales with transmission bandwidth and number of antennas, as 

well as other insights. This work is included as Chapter 3 of this dissertation.

3. A. Banerjee, D. Maas, M. Bocca, N. Patwari, S.K. Kasera, “Exploiting Radio 

Windows for Through-wall Location Information,” (submitted Sep. 2013) IEEE 

Transactions on Networking.

The RF transmissions from many of our wireless networks are able to prop

agate through exterior walls, they create so-called “radio windows,” exposing 

some information about the locations of people inside the buildings where the 

networks are deployed. This location information can be inferred from passive 

RF measurements made with receivers placed on the outside of the building.

In this multiple-author collaborative research project, I developed an algo

rithm capable of detecting the motion of people across through-wall WiFi 

links, including the ability to accurately count the number of times a person 

crosses the line-of-site of the link and determine the person's direction of motion 

relative to a single through-wall MIMO link. I led experiments and performed
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analysis to validate the methodology. This work is included as Chapter 4 of 

this dissertation.

4. D. Maas, J. Wilson, N. Patwari, “Toward a Rapidly Deployable RTI System for 

Tactical Operations,” in Proc. 8th IEEE International Workshop on Practical 

Issues in Building Sensor Network Applications (SenseApp), 2013. [19]

Previous work on radio tomographic imaging has been focused on tracking 

results obtained by complicated and sensitive research-driven systems, in which 

radio locations must be measured precisely and the system must be properly 

calibrated before use.

In this work, I conducted an extensive feasibility study for making a rapidly 

deployable and robust RTI system for special operations forces (SOF) like 

SWAT. I performed a variety of experiments to determine whether or not the 

radios can self-localize and calibrate on-the-fly and still yield the tracking results 

necessary to make the system useful to SOF. This work is included as Chapter 

5 of this dissertation.

An addendum to the published paper, which includes additional tracking results 

and link budget information, is included in Appendix A.

In support fot the research projects listed above, I have developed, implemented, 

and/or tested several channel measurement systems. These include:

• USRP /  GNU Radio Channel Sounder: FPGA code for the USRP (v1) to 

estimate the CIR from received 802.11b signals, code that is publicly available 

at h ttp ://sp a n .ece .u ta h .ed u /d ow n loa d /fo rm 7 .h tm l.

• MIMO Measurements for Location Distinction: A system that measures the 

channel response on each antenna pair of a 2x2 MIMO link, using LabView and 

National Instruments V SA /V SG  hardware.

• MIMO /  OFDM Measurements using CSI Tool: A laptop-based system that 

measures the channel state information for up to a 3x3 MIMO link, with 30 

complex-valued channel state values from each antenna pair, using an Intel 

5300 WiFi card and drivers available at [20].

http://span.ece.utah.edu/download/form7.html
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• High TX  Power WSN: A Texas Instruments CC2530/CC2590-based system 

with directional antennas for through-building RTI.

• Multitransceiver SISO Channel Sounder: A pseudo noise (PN)-based multiple- 

transceiver 20 MHz channel sounder using a network of National Instruments 

VSAs/VSGs.
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under Grant Nos. 0748206, 1035565, and 1315685. Any opinions, findings, and 

conclusions or recommendations expressed in this material are those of the authors 

and do not necessarily reflect the views of the National Science Foundation.
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Figure 1.1. A diagram illustrating the multipath propagation of RF transmissions. 
The transmission follows many paths from the transmitter (TX) to the receiver (RX), 
each of which is determined by the environment. A person, modeled here as a cylinder 
with diameter D, attenuates the line-of-site (LOS) component.

F igure 1.2. The finite bandwidth pulse used in an 802.11b channel sounder.



CHAPTER 2

CHANNEL SOUNDING FOR THE 
MASSES: LOW COMPLEXITY 

GNU 802.11B CHANNEL 
IMPULSE RESPONSE 

ESTIMATION 1

2.1 Abstract
New techniques in cross-layer wireless networks are building demand for ubiquitous 

channel sounding, that is, the capability to measure channel impulse response (CIR) 

with any standard wireless network and node. Towards that goal, we present a 

software-defined IEEE 802.11b receiver and CIR measurement system with little 

additional computational complexity compared to 802.11b reception alone. The 

system implementation, using the universal software radio peripheral (USRP) and 

GNU2 Radio, is described and compared to previous work. We validate the CIR 

measurement system and present the results of a measurement campaign which 

measures millions of CIRs between WiFi access points and a mobile receiver in urban 

and suburban areas.

2.2 Introduction
Channel impulse response (CIR) measurements have long held importance for 

communication system design [21-23]. The CIR describes the spreading, or echoing, 

that occurs when an impulse is sent through a channel. This spreading in time can

1©[2012]. Reprinted, with permission, from D. Maas, M.H. Firooz, J. Zhang, N. Patwari, and 
S.K. Kasera, “Channel Sounding for the Masses: Low complexity GNU 802.11b channel impulse 
response estimation,” IEEE Transactions on Wireless Communications, 2012.

2GNU is a recursive acronym for GNU is not unix.
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lead to intersymbol interference (ISI), and frequency-selective or narrow band fading, 

depending on the symbol bandwidth. A knowledge of the CIR characteristics enables 

system designers to ensure that ISI does not dominate and hence lead to an excessive 

irreducible bit error rate [24]. Multipath channels can also be used to increase the 

bit rate and reliability of multiple-input multiple-output (MIMO) communications 

systems. Accurate MIMO channel models can be built from CIR measurements [25], 

and can be used to improve MIMO system design [26]. In general, measurements 

of CIR in wireless networks have become increasingly important to determine the 

real-world performance of many new technologies.

In addition, new cross-layer wireless networking technologies use measurements of 

the multipath channel for purposes of environmental awareness and security, such as 

fingerprint-based localization [27], RF-based multistatic radar [28], location distinc

tion [29], secret key establishment [30]. These applications require CIR measurements 

to be performed in real time using commercial wireless devices, as opposed to with 

specialized measurement equipment or in postprocessing. Typical commercial wireless 

devices use the received signal in a demodulator to estimate the transmitted bits, but 

then discard the received signal samples. Information about the channel (besides the 

received signal strength) is not forwarded to higher networking layers, nor can it be 

estimated from the demodulated bits. For the mentioned applications to be viable, 

future commercial wireless devices must be able to rapidly calculate CIR information.

In this paper, we present the design of an inexpensive CIR measurement sys

tem. It is built upon GNU Radio, an open source framework for software-defined 

radio [31,32], and the Universal Software Radio Peripheral (USRP), an open-source 

transceiver platform [33]. Compared to signal analyzers and oscilloscopes (a 3-GHz 

vector network analyzer (VNA) can cost US $20,000), our system is low cost. The 

cost of the proposed system is US $975 [34], which enables large-scale deployment as 

might be seen in a typical WiFi deployment. Our system works seamlessly with 

standard physical (PHY) layer signals from commercial 802.11b wireless devices. 

Essentially, our system provides an 802.11b receiver with the additional capability 

of CIR estimation.

However, this paper is not limited in scope to the USRP -  the implementation
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presented enables practical CIR estimation in hardware with strict computational 

limitations, such as field-programmable gate arrays (FPGAs) or application-specific 

integrated circuits (ASICs). It will not be feasible to compute a CIR estimate 

with commercial 802.11 hardware unless the computational complexity is low. The 

open-source platform chosen is an advantage, we believe, because it is likely to 

lead to cooperative improvement in the system capabilities and large-scale adoption. 

Providing a system implementation that works within the limitations of the hardware 

platform is, in part, a demonstration of the feasibility of the approach in future 

commercial systems.

The CIR measurement system we present in this paper for 802.11b is similar to 

sliding correlator channel sounding method in which a known pseudo noise (PN) 

signal is generated and continuously transmitted from a transmitter to the receiver 

[21,35]. However, our work is different from the existing method in the following four 

significant ways:

1. The PN sequence in 802.11b is fixed and not designed for high dynamic range 

CIR estimation.

2. Devices transmitting in 802.11b send PN-coded symbols modulated with data; 

modulation is undesirable from the perspective of CIR estimation.

3. Unlike sliding correlator measurement systems, which calculate the full cross

correlation signal after thousands of PN signal periods, our system calculates 

the full cross-correlation signal during each PN signal period [35].

4. No specialized transmitter is required, as any standard 802.11b transmitter 

(e.g., laptop or access point) may be used.

Note that IEEE 802.11b devices must support two mandatory bit rates (1 Mbps and

2 Mbps) and may optionally support two higher rates (5.5 Mbps and 11 Mbps) as 

specified in [36]. In this work, for simplicity, we only consider the standard rates. 

We note that the start of any 802.11b packet and some 802.11g packets (the first 

192 symbols, known as the PLCP2 frame), are sent at either the 1 or 2 Mbps rate.

2 Physical Layer Convergence Procedure
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Thus many packet sources exist which our system implementation can utilize for CIR 

estimation.

In a similar, but independent project, a channel sounder for 802.11b applications 

is reported in [37], which begins by recording the samples of a 192-bit segment of 

the 802.11b signal onto a PC. Then, the signal is despread and demodulated on 

the PC. Next, the transmitted signal for the 192-bit segment is recreated using the 

demodulated bits. Finally, the recorded received signal and recreated transmitted 

signal are convolved. Since both have many samples, the cross-correlation consumes 

significant PC computation time, on the order of N B  log(N B ), where N  is the number 

of samples per bit, and B  is the number of bits used. In comparison, our system 

involves PC computation on the order of N B . The system proposed in [37] uses 

proprietary software and VHDL implementations (ComBlock products from Mobile 

Satellite Services Inc.), while our implementation uses open-source hardware and 

software with a wide user base that utilizes and contributes to the code library. As 

an open source platform, our code has been downloaded from our website 1140 times 

since its first posting.

Our specific contributions to 802.11b CIR estimation system research are summa

rized as follows:

1. We provide an implementation of an 802.11b FPGA matched filtering method, 

the first, to our knowledge, to be presented for the USRP-based GNU Radio 

framework.

2. We provide a method to estimate the CIR from a modulated 802.11b signal. 

In particular, we use the output of the receiver’s matched filter, which allows a 

lower-complexity CIR estimate compared to [37].

3. We perform extensive measurements, in both lab-controlled and real-world 

multipath channels.

2.3 Analysis Methods
In this section, we present a detailed analytical framework for CIR estimation 

using received 802.11b signals. We describe an 802.11b signal, how it is impacted by a
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multipath channel, and how the proposed system estimates both: (1) the transmitted 

data, and (2) the amplitudes and delays of the multipath in the channel. This signal 

framework is used throughout this paper.

2.3.1 T ran sm itted  Signal

The 802.11b physical layer uses direct-sequence spread spectrum (DSSS) modula

tion with symbol duration of Ts =  1^s. This transmitted symbol stream is multiplied 

by a pseudo-noise (PN) code signal, which also has duration Ts. Denoting the PN 

code signal as c(t) and the jth  transmitted data symbol as bj, the transmitted signal 

in baseband is given by

s(t) =  ^  bj c(t -  jT s) - (2.1)
j

Note that bj generally takes complex values, because data symbols may be modulated 

either using differential binary phase-shift keying (DBPSK) or differential quadrature 

phase-shift keying (DQPSK). Although our work is developed and tested for DBPSK, 

it is readily extendible to DQPSK.

The PN code in 802.11b is called the Barker code. This code consists of eleven 

chips, each with duration Tc =  Ts/11 ^s, thus ’’ spreading” the bandwidth of the 

transmitted signal to eleven times the original bandwidth. The Barker code signal is 

a modulated sequence of pulses,

10
c(t) =  ^  ap(t -  iTc), (2.2)

i=0

where p(t) is the pulse shape, and c  E {+ 1 , - 1 }  as given in [36]. The pulse shape is 

chosen to meet the bandwidth limitations imposed by the 802.11b standard, but the 

precise shape of p (t ) is left to the designer. In this paper, when it is necessary to use 

a particular pulse shape, we have chosen to use a square root raised cosine (SRRC) 

pulse with roll-off factor a  =  0.5, which meets the spectral mask requirements and 

represents a good trade-off between temporal and frequency domain characteristics

[38].
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2.3.2 R ece iv ed  Signal

Because of the multipath radio channel, many copies of the transmitted signal 

arrive at the receiver with different time delay, amplitude, and phase. The multipath 

channel filter is modeled as [39]:

L-1
h(t) =  ^  aiS(t -  Ti), (2.3)

i=0

where L is the total number of multipath components, a l =  |ai|ejZai is the complex 

amplitude gain of the 1th multipath, t 1 is the delay of the 1th multipath, and £(•) is 

the Dirac delta function. Since we are only interested in the relative time delay of 

each multipath, we let t 0 =  0, and then t 1 is the additional delay compared to the 

first arriving multipath.

The received signal r(t) is the convolution of the transmitted signal and the 

channel filter. Applying (2.3) and (2.1),

L-1
r(t) =  s(t) k h(t) =  ^  ^  aibjc(t -  ti -  jTs). (2.4)

l=0 j

An 802.11b receiver “de-spreads” the signal, i.e., performs matched filtering with 

the PN code signal c(t) from (2.2), which results in signal q(t),

L-1
q(t) =  r(t) k c ( - t )  =  ^  ai ^  bjRc(t -  t  -  jT s), (2.5)

i=0 j

where Rc(t) =  c(t) k c ( - t )  and Rc(0) is the energy in the signal c(t), which we denote 

Ec.

Standard 802.11b receivers must perform despreading, i.e., the calculation of q(t), 

in order to perform demodulation. We propose that q(t) can be used directly in CIR 

estimation as well. By using an output that existing 802.11b receivers compute, we 

make it more feasible for future 802.11b receivers to estimate CIR without significant 

additional computational complexity.

We note that it is possible to estimate CIR from all symbols comprising the PLCP 

preamble and header. If the PLCP is known a priori, the reception range can be 

significantly increased by correlating with the entire PLCP, rather than c(t). In this 

case, the “energy per bit” is essentially increased by a factor of 48, a 17 dB increase.
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In this work, we present a CIR measurement system that works with any 802.11b 

transmitter, thus we cannot know the PLCP ahead of time. Further, correlating with 

the entire PLCP adds computational complexity.

The above formulation has not included interference. Inevitably, some packets will 

be unable to be received due to low SINR, and thus the CIR will not be estimated. 

Further, the SINR can be estimated from a received packet, and CIR estimates can 

be dropped if the desired SINR is not achieved.

2.3.3 C IR  E stim ation

The estimation of CIR from a received 802.11b signal is complicated by the 

modulated data {b j}. That is, the PN code signal is modulated with data, pre

sumably unknown to the receiver until after demodulation. For example, for BPSK, 

bj E { - 1 ,  + 1 }. In this section we first present the (unrealistic) case of an unmodulated 

signal, i.e., where bj =  1 for all j . We then describe how we estimate the CIR from 

a modulated 802.11b signal.

First, for an ideal unmodulated signal, (2.5) would simplify to

L-1
q(t) =  ^  a tRpn(t -  ti), where Rpn(t) =  ^  Rc(t -  jT s). (2.6)

1=0 j

Here, Rpn is the correlation of a PN code signal with a repeating PN code signal with 

period Ts. The Barker code has the property that this correlation function Rpn(t) 

peaks at t =  0 and integer multiples of Ts and is almost constant in between those 

peaks [40]. Figure 2.1(a) shows the signal q(t) when there is exactly L = 1  path with 

amplitude a 0 =  1. As multipath components correspond to time-delayed versions of 

q(t), the almost constant correlation in between peaks makes it possible to identify 

multipath contributions even when their magnitude |aj| is small.

When dealing with modulated signals, the correlation q(t ) may not be nearly 

constant between peaks, making low-amplitude multipath components harder to 

identify. In Figure 2.1(b), we use the transmitted symbols b  =  [1,1, -1 ,1 ,1 ] ,  and 

plot the correlation output signal q(t) from (2.5), for the case that L = 1  and a 0 =  1. 

Note that the normalized amplitude of q(t) between the 2nd and 3rd peaks, and 

between the 3rd and 4th peaks, rapidly change between ±1 /11 . These periods of
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varying correlation correspond to the times in between changes in symbol values bj. 

When bj =  bj+1, the value of q(t) for jT s <  t <  ( j +  1)Ts is not almost constant.

However, note that when bj =  bj+1, there is a nearly constant -1 /1 1  correlation 

value in between the two peaks at jT s and ( j +  1)Ts. When subsequent symbols are 

identical, the almost constant correlation value in q(t) can be exploited for improved 

CIR estimation. To avoid the negative impact of symbol modulation, we use the 

correlator output signal q(t) whenever the symbol value bj repeats.

To be explicit, define two correlation functions, Ro(t) and Rs(t) (shown in Figure 

2.2), as:

R o(t) =  (Rc(t) — Rc(t — Ts))I (0,Ts) (2.7)

R s(t) =  (Rc(t) +  Rc(t — Ts))I (0,Ts)

where I(0,Ts)(t) has value 1 at interval (0 ,Ts) and zero elsewhere. We also define two 

subsets, Js =  { j  : bj =  bj+1} for symbol integers j  when the next symbol value 

repeats, and Jo =  { j  : bj =  bj+1}. Then we can write (2.5) as

L-1
q(t) =  ^  bj ^  a iRs(t -  jT s -  T ) 

jeJs i=o
L-1

+  bj a iRo(t — jT s — Tl) - (2.8)
jeJ0 i=o

This version of q(t) contains terms R s(-) and Ro(■) that have support only over one 

symbol period. We estimate the CIR by averaging only the symbol periods of q(t) 

that correspond to repeated symbol values:

1 L- 1 
h(t) =  m  bj q(t -  jT s)I (o,Ts)(t) ~  X !  a i R s(t -  Ti) (2.9)

1 s| jeJs i=o

Essentially, the channel estimator in (2.9) averages together only the impulse re

sponses estimated during periods when the symbol value is not switching and thus 

the correlation function is nearly constant. Note that symbol values bj do not affect 

h(t). In the ideal case, the channel estimate is a sum of time-delayed, attenuated, 

and phase-shifted versions of R s(t). However, in a given hardware implementation, 

R s(t) may be affected by other filters, known or unknown, in the receiver chain. If
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the overall filter of the receiver chain is unknown, it may be beneficial to estimate 

R s(t) using a known channel, i.e., an interference-free cabled connection between the 

transmitter and receiver. We employ this method to generate an estimate of Rs(t) 

from a single packet, which we call Rs(t).

The CIR estimate h(t) in (2.9) is a convolution of the true CIR in (2.3) with 

R s (t), which has a zero-to-zero pulse width of approximately 188 ns. Since multipath 

arrive more closely spaced than 188 ns, the complex-valued, time-delayed pulse shapes 

R s(t — ti) overlap in time, making it difficult to visually inspect h(t) to identify 

multipath arrival delays.

We apply a deconvolution procedure based on [41] to estimate multipath time 

delays. This procedure is described in detail in [42]. In short, we discretize the CIR 

and write the measurement as a linear combination of the CIR amplitudes. Then, 

we solve a quadratic optimization problem using the well known convex optimization 

software [43] to perform the inversion.

The sampled measurement is written as,

L-1
h[n] =  ^  a tRs(nTs — t  ) +  w[n] (2.10)

1=0

where w[n] is measurement noise, assumed to be i.i.d. Gaussian. Equation (2.10) 

can be written as h =  R sa  +  w, where [Rs]k;1 =  Rs(kTs — t ) is an M  x  L matrix, 

a  =  [a1;. . . ,  a L]T, and w  is an M-dimensional noise vector. An estimate of a  is the 

solution to the following optimization problem [41,42],

a  =  min ||h — R sa ||2 +  A |a|1 (2.11)
a

where A is a fixed parameter, the inverse of a Lagrange multiplier [44], which is set 

as discussed in [41].

2.4 Implementation
In this section, we present the system implementation of the WiFi-based receiver 

and CIR estimator using the proposed FPGA matched filtering method on a USRP. 

The USRP receiver path consists of a 64 M S/s (million samples per second) 12-bit 

ADC, an Altera Cyclone FPGA, and a USB controller. The USB 2.0 bandwidth is not
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sufficient to stream an 802.11b signal sampled at the Nyquist rate. However, the rate 

limitations of a USB 2.0 link do not limit transfer of 802.11b symbol information, since 

symbols are sent at 1 Msymbols/s [45]. The spreading via DSSS adds no information, 

but causes the RF bandwidth to increase by a factor of 11. To reduce the received 

signal to samples at 1 M S/s, we must first despread on the FPGA. After despreading, 

symbol decisions can be made using only one sample per symbol, and, as we will 

show, a subset of samples per symbol can be used for CIR estimation.

A broad overview of the signal processing steps is shown in Figure 2.3. We first 

reduce the sampled data r(t) to 32 MS/s. Then, we despread using (2.5). The output 

q(t) has a sample rate of 32 M S/s, however, not every sample is necessary, so we send 

only samples near the peaks in q(t), as described in detail in this section.

The result is that the average data rate sent to the PC is within the rate limitations 

of a USB 2.0 link. The PC then performs the symbol detection and bit decoding 

operations as specified in the IEEE 802.11b standard. Our receiver implementation 

can consistently receive 802.11b packets sent at the 2 Mbps rate, and the reception 

range is up to 20 m.

We compare our implementation to previous work [46], which we call the bandwidth 

reduction method. In this method, r(t) is filtered and downsampled to a 8 MHz RF 

bandwidth, smaller than the RF bandwidth of the DSSS signal. Then, the samples 

are at a rate low enough to be transfered over USB to be processed on a PC. The 

downsampling reduces the range of the receiver, as we show in Section 2.5.

The main computational challenge in the proposed method is the implementation 

of matched filtering on the FPGA. We propose a computationally-efficient method 

to implement the 802.11b matched filter, valid for the strict limitations of the given 

FPGA, or any computationally limited ASIC or FPGA implementation. We describe 

three ways in which the implementation reduces computational complexity and data 

rate yet still provides a high-capability system implementation: multiplication reduc

tion; use of two memories; and peak selection.

2.4.1 M u ltip lica tion  R ed u ction

A direct implementation of the matched filter in (2.5) would require 32 multiplies 

and additions per sample. We reduce the complexity as follows. Figure 2.4 shows
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c(t) and its sampled version, c(iTs). We quantize each sample of the PN code 

signal, c(iTs), and denote the quantized values as cq(iTs). In our implementation, 

we chose quantization to five bits, in a trade-off between resolution and multiplier 

space complexity.

Some values of |c(iTs)| are similar enough, that when quantized to five bits, 

|cq(iTs)| =  |cq(jT s)| for some j  =  i. Since summation is simpler than multiplication 

in an FPGA, it saves both time and complexity to first add (or subtract) samples 

with identical |cq| value, and then multiply the sum by its |cq| value.

31 15
q(nTs) =  ^  cq(iTs)r((n -  i)Ts) =  ^  cg

9=1i=0
^  sgn { cq(iTs) } r ((n -  i)Ts)
ieSg

(2.12)

where q(nTs) is the nth sample of the match filter output q(t), S9 is the set of all 

indexes in the gth group, sgn {■} is the signum function, and c9 is the multiplicative 

factor cq(iTs) for all i E S9. The S9 and c9 for each group g are listed in Table 2.1. 

Using this rearrangement, we require 15 multiplications, instead of the 32 that would 

be required in a direct implementation.

2.4.2 T w o  M em ories

An FPGA requires parallelization in order to complete the several additions and 

multiplications required at each new sampling time. Our implementation allows 

two clock cycles (clock rate of 64 MHz) per sampling time (sampling rate of 32 

M S/s). During these two clock cycles, we must perform addition and multiplication 

as described above, and shift samples to allow space for the new incoming signal 

sample.

For this purpose, we use two 32-length arrays, which we refer to as mem and 

bmem. When a new sample is received, it is located at mem[0] while mem[1] to 

mem[31] are filled by bmem[0] to bmem[30]. In the next cycle, mem[0] to mem[31] 

are put in bmem[0] to bmem[31]. This process is depicted in Figure 2.5. As explained 

in the previous paragraph, we first add the data in bmem, by group g, which is 

completed in one cycle. Then, multiplication by group multiplier c9 is performed, 

and the results summed.
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2.4.3 Peak  S election

The output of the FIR filter, q(nTs), has a 32 M S/s rate. With a sampling period 

of 31.25 ns, we capture 344 ns (much more than the typical excess delay for short-range 

channels [47]) of the signal within 11 samples. These 11 samples per symbol can be 

reliably transfered via USB.

The peak selection algorithm selects 11 out of each 32 samples per symbol as 

follows. First, the FPGA computes the power values |q(nTs)|2, n =  1 , . . . ,  32. The 

index of samples with maximum power is denoted nmax =  argmaxn |q(nTs)|2. The 

FPGA sends through the USB the samples from three samples before to seven samples 

after the peak power sample, i.e., {q ((n max +  i)Ts) } 7=-3 .

Note that the proposed CIR measurement system finds samples near the maximum- 

power peak, not necessarily the line-of-sight (LOS) path. In a non-LOS dominant 

channel, if the LOS path arrives within three samples prior to the maximum-power 

peak, the proposed system records the full CIR.

2.5 Experimental Results
In all cases, we load an Ettus Research USRP (rev 4.5) with the code described 

in Section 2.3.3. The RF front end is a RFX2400 daughterboard (rev 30), also 

from Ettus Research. The antenna is a 2400-2480 MHz sleeve dipole antenna with 

omnidirectional pattern in the horizontal plane and a 3 dBi gain. The USRP is 

connected to a Dell Inspiron laptop running Python and Matlab. The Python (GNU 

Radio) code collects data from the USB, demodulates the packet data, and writes to a 

file. The Matlab code performs the averaging required in (2.9) and then displays and 

stores the impulse response estimate h(t). From the stored h(t), the deconvolution 

described in Section 2.3.3 is performed in postprocessing.

2.5.1 D em od u la tor

We do not proceed with CIR estimation when packet data do not pass the CRC 

test. Equally important, the MAC address of a transmitter is included in the packet 

header, and this is necessary to distinguish packets originating from different transmit

ters. In this section, we measure the packet reception rate (PRR) of the implemented 

802.11b CIR measurement system in an interference-free environment.
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We configure a test transmitter, a D-Link 802.11b wireless router (model DI- 

614+), to broadcast a beacon packet at a basic rate (1 or 2 Mbps) every 200 ms (5 

packets/sec). The router and receiver are placed in a shielded anechoic chamber and 

separated by 6.0 m. The packet reception rate is recorded for three minutes, and 

experiment repeated four times. The implementation presented in this paper receives 

an average of 724 packets, while the bandwidth reduction method receives an average 

of 454. The results show that the FPGA matched filtering method outperforms the 

bandwidth reduction method by successfully demodulating 1.6 times more packets.

2.5.2 C hannel M easurem en t

In this section we first perform two experimental validations on our implemen

tation using known channels between the transmitter and the receiver. Then, we 

perform an experimental measurement campaign to measure a large number of CIRs 

in outdoor areas in and around Salt Lake City, Utah. We provide measurement results 

and summarize the measured delay characteristics.

2.5 .2 .1  V alidation

To validate the CIR estimation system, we create two channels with known impulse 

response out of RF hardware and cable, with which we connect the wireless router 

(transmitter) and receiver.

In the single-path experiment, the transmitter is connected to an attenuator, 

whose output is connected via cable to the receiver. We record several measured CIR 

estimates h\(t). Figure 2.6-(a) shows three measurements hi(t) and the estimated 

CIR for a single-path channel, Rs(t). Since h\(t) is nearly identical to Rs(t), it is 

apparent that the channel has only one path, i.e., L = 1 .  Figure 2.6-(b) presents the 

deconvolved CIR estimate from (2.11).

In the double-path experiment, the transmitter cable is connected to a RF splitter 

with two outputs, one connected to a short cable (1.5m), and another to a long cable 

(25.9m). We first measure the CIR using a vector network analyzer, from which we 

find that the difference in delay between the two paths is 122 ns. The amplitude 

difference between the two paths is measured to be 9.5 dB by using a LadyBug power 

sensor (LB479A). Figure 2.6-(a) shows the CIR measurements for h2(t). As can
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be seen, h2(t) is consistently higher in amplitude than R s(t) between the samples 6 

through 10, indicative of later-arriving multipath power. The deconvolution algorithm 

of (2.11) is applied and the resulting estimate shown in Figure 2.6-(c).

The results clearly show two paths, the later paths with a 125 ns relative delay and 

between 10 and 12 dB less received power. In the results where the estimated power of 

the second path is above -20 dB relative to the path with maximum power (the same 

noise level we use for the calculation of the dispersion statistics), we find we are able 

to achieve a standard deviation of 0.69 radians for the difference in phase between 

multipath components corresponding to the first and second paths. Additionally, 

the standard deviation of the relative power of the two multipath components is 3.5 

dB. These statistics are good considering the hardware synchronization issues, phase 

noise, and the coarse sampling period for the CIR estimates.

Observation of Figures 2.6(b) and 2.6(c), as well as many other deconvolution 

results lead us to the conclusion that the dynamic range for the CIR measurement 

system is at least 20 dB, which is expected since the PN coding gain of the Barker 

code is 20log10 11 «  20.8 dB.

2.5.3 D rive-T est C IR  M easurem en t C am paign

We use our system to measure CIRs in three residential, two commercial, and 

one downtown area in Salt Lake City. The residential areas are comprised of one 

to three story single-family homes and apartment buildings. The commercial areas 

include streets near strip malls, low-rise office buildings, and heavy vehicle traffic. 

The downtown area is an urban canyon of high-rise office buildings on both sides of 

the streets. In each area, the receiver antenna is on the outside of a vehicle that 

drives at typical speeds on city streets. In the course of six five-minute drive-test 

measurements, a total of three million CIR measurements are recorded. Figure 2.7 

presents a typical deconvolved CIR estimates a  from each area.

In order to compare different multipath channels and to develop some general 

design guidelines for wireless systems, parameters that grossly quantify the multipath 

channel are used. The time dispersive properties of wide band multipath channels 

are most commonly quantified by their mean excess delay f  and RMS delay spread 

ar , as defined in [47]. Table 2.2 presents the average mean excess delay, average RMS
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delay spread, and maximum RMS delay spread of the measured channel responses 

for each area.

Delay spreads depend strongly on path length, antenna height, frequency, and 

environment. However, previous work has shown that, in general, rural and suburban 

delay spreads are smaller than in urban or dense urban areas [48-51]. Our results 

in Table 2.2 show a similar trend, since the residential and commercial areas can 

be considered suburban and have lower average RMS delay spreads than the urban 

downtown area. One of the few studies of RMS delay spreads for indoor-to-outdoor 

channels near 2.4 GHz reported average RMS delay spreads of 27-44 ns [52], but the 

studied path lengths were about 330 m, significantly longer than one would expect 

from 802.11b path lengths.

2.6 Conclusion
Future wireless networks are envisioned that rely on the real-time estimation of 

CIR from received WiFi packets for the purposes of cross-layer security, localization, 

and environmental imaging. We present a CIR estimation system using an inexpensive 

and open source hardware and software platform to enable these emerging areas of 

research. We show how accurate CIR estimation can be performed using a resource- 

constrained FPGA, which provides a proof-of-concept for future commercial devices.

Future work should address MIMO (e.g., 802.11n) CIR measurement using a bank 

of synchronized software radios. Low complexity MIMO CIR measurement will likely 

benefit the development of future cross-layer techniques in multiple-antenna wireless 

networks.
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Time Delay

F igure 2.1. Correlation output signal q(t) in one-path channel (L = 1  and a 0 =  1) 
when (top) receiving an unmodulated signal (i.e., b  =  [1, 1, 1, 1, 1]); (bottom) 
receiving a signal modulated with b  =  [1, 1, —1, 1, 1].

F igure 2.2. Normalized symbol-period length correlation functions (left) Rs(t) and 
(right) Ro(t), both given in (2.8).
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F igure 2.3. Block diagram of FPGA matched filtering method.

Time

F igure 2.4. Samples (•) of PN code signal c(t), or equivalently, taps of the matched 
filter.

Table 2.1. Indices by group g and the group’s multiplier value cg.
g Multiplier cg Index Set Sg
1 19 {16,28}
2 18 {3, 7, 23, 24, 31}
3 17 {11,12,19, 22,15}
4 16 {25}
5 15 { 6}
6 14 { 8, 20, 22}
7 13 {4 ,1 3 }
8 12 {5 ,14 ,17 }
9 11 {29}
10 10 { 10}
11 8 {0 ,26 ,27 }
12 7 {1 ,3 0 }
13 4 {18}
14 2 {9 }
15 1 { 21}
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31
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------Even
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F igure 2.5. Memories mem and bmem are used to accept a new sample, and shift 
data, in two cycles, to allow for summation and multiplication.
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(a)

Delay (ns)
(b)

100 200 
Delay (ns)

(c)

300

F igure 2.6. Single- and double-path results: (a) h for single-path (upper figure) and
double-path (lower figure), both showing ideal CIR R s[n] (------- ); Deconvolved a  for
(b) single-path; and (c) double-path.
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-30.
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Delay (ns)
(b)

300

300

100 200 300
Delay (ns)
(c)

F igure 2.7. Typical CIR, a ,  measured in (a) residential, (b) commercial, and (c) 
downtown areas.
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Table 2.2. RMS delay spread and mean excess delay statistics for residential (Res.), 
commercial (Com.), and Downtown (DT) areas.

Res. 1 Res. 2 Res. 3 Com. 1 Com. 2 DT
Average f  (ns) 7.1 36.7 7.4 6.4 17.7 48.2
Average aT (ns) 7.0 23.7 7.4 6.5 16.9 30.6
Max. aT (ns) 47.4 86.8 35.2 22.8 80.7 88.6



CHAPTER 3

EXPERIMENTAL PERFORMANCE 
EVALUATION OF LOCATION 

DISTINCTION FOR 
MIMO LINKS 1

3.1 Abstract
A radio channel-based location distinction system monitors physical layer mea

surements of received signals to detect if a transmitter has changed position since 

its previous transmission. This paper explores the design space for MIMO-based 

location distinction systems. Using extensive channel measurements collected with 

two different MIMO testbeds, we make several observations about the tradeoffs 

inherent in MIMO location distinction, and the scaling of performance with respect 

to bandwidth, history size and insertion delay, and number of antenna elements. We 

show that MIMO location distinction is very reliable. For example, a 2x2 MIMO 

channel with a bandwidth of 80 MHz allows a 64-fold reduction in miss rate over the 

single-input single-output (SISO) channel for a fixed false alarm rate, achieving false 

alarm rates as low as 4 x 10-4 for a 2.4 x 10-4 probability of missed detection.

3.2 Introduction
Location distinction is determining whether or not the position of a wireless 

device has changed. Detecting a change in position is fundamentally different from

1©[2012j. Reprinted, with permission, from D. Maas, N. Patwari, S.K. Kasera, D. Wasden, and 
M. Jensen, “Experimental Performance Evaluation of Location Distinction for MIMO Links,” in 
Proc. 4th IEEE International Conference on Communication Systems and Networks (COMSNETS), 
2012.



31

estimating position (localization). In fact, location distinction can be performed 

without performing the more costly task of localizing wireless devices.

The ability to perform location distinction provides several benefits. These include 

an improved capability to monitor the positions of radio-tagged objects, better energy 

conservation in radio localization systems (by localizing only when devices have 

changed position), and a means to perform position-based authentication in wireless 

networks [14,15,53,54]. Existing work has shown that characteristics of the physical 

layer of wireless networks, including received signal strength (RSS), channel impulse 

response (CIR), or channel frequency response can be exploited to detect changes in 

transmitter or receiver positions [6,7,55,56].

Multiple-input multiple-output (MIMO)-capable devices represent the state-of- 

the-art in wireless networking and have enabled significantly improved spectral effi

ciencies in wireless networks. Many new wireless standards, such as 802.11n, WiMax, 

and 4G cellular, take advantage of MIMO technology. Therefore, it is very impor

tant to evaluate location distinction for MIMO networks. However, to the authors’ 

knowledge, no extensive implementation or experimental evaluation of MIMO-based 

location distinction has been performed2.

Intuitively, we expect that location distinction performance should increase with 

the transition from SISO to MIMO, because the higher number of channels leads to a 

richer link measurement. However, the rate at which location distinction performance 

scales with system parameters including the number of antennas, channel bandwidth, 

and others, remains to be seen. In this paper, we evaluate location distinction for 

MIMO links under varying system parameters in order to understand the benefits 

and limits of MIMO location distinction performance, as well as how system design 

choices contribute to this performance. Specifically, we explore the use of band-limited 

estimates of the CIR, called link signatures [6,14], for location distinction.

We limit our exploration to methods that do not rely on calibration or supervised 

training. A training-based approach would require prohibitively extensive measure

ments because link signatures vary rapidly with position. Furthermore, changes in

2 We had presented a preliminary experimental study of location distinction in MIMO networks 
in a poster [17]. We significantly expand on our preliminary study in this paper.
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the environment, such as the rearrangement of scatterers, would render the training 

data useless, and require periodic retraining. Without training or calibration, a 

location distinction algorithm should be able to reliably detect changes in location, 

regardless of whether or not the transmitter or receiver was moving, by comparing the 

current link signature with the ones in a recent history of signature measurements. 

We present the following work in order to characterize the performance of temporal 

link-signature-based location distinction for MIMO links:

1. We perform extensive measurement experiments with two different experimental 

testbeds.

2. We evaluate spatially and temporally dense channel measurements in order to 

study the spatial evolution of link signatures.

3. We show how to design a robust location distinction system and evaluate several 

trade-offs between system design choices and performance, including: link sig

nature history size and insertion delay, bandwidth, complex vs. magnitude-only 

signatures, and number of antenna elements.

Our experimental evaluation leads to a better understanding of the benefits and 

limits of location distinction performance, as well as a general guide for system design. 

We show that:

1. Measured link signatures should not immediately be inserted into the history. 

Instead, for robust detection, the insertion of measurements should be delayed.

2. The number of link signatures to store in the history depends on the amount of 

temporal variation in the link signatures when the wireless device is stationary. 

Channels with less temporal variation require smaller histories, while those with 

more temporal variation require larger histories.

3. We observe, based on empirical data, that the miss rate for a constant false 

alarm rate follows an inverse power law with the number of antennas, i.e., the 

miss rate decreases slowly for large numbers of antennas. However, we see very 

dramatic improvements when comparing SISO to 2x 2 or 1x4 MIM O/SIMO
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location distinction systems, which is advantageous for MIMO systems with 

few antennas.

4. When random phase shifts due to imperfect synchronization are removed, link 

signatures with phase information lead to better performance than magnitude- 

only link signatures.

5. Increasing the bandwidth of the link signatures offers diminishing returns after 

about 20 MHz. In fact, higher bandwidth measurements are more susceptible 

to synchronization errors.

Our empirical data also show that MIMO location distinction performs well in a 

variety of experimental conditions. For example, we achieve a 4 x 10-4 probability 

of false alarm for a 2.4 x 10-4 probability of missed detection using a 2x2 MIMO 

channel with a bandwidth of 80 MHz, and a 3 x 10-4 probability of missed detection 

for a false alarm rate of 0.01 using a 1x2 SIMO channel with a bandwidth of 20 MHz.

The rest of this paper is organized as follows. In Section 3.3, we describe the 

link signatures, metrics, and MIMO location distinction algorithm. In Section 3.4, 

we discuss two measurement experiments, which we will refer to as Experiment I and 

Experiment II. In Section 3.5, we present testing results and analysis of the MIMO 

location distinction algorithm. We discuss related work in Section 3.6. Conclusions 

and future work are presented in Section 3.7.

3.3 Methods
In this section, we first describe the wireless measurements, a.k.a. link signatures, 

we use for location distinction and the difference metrics we use to quantify changes 

in them. Next, we present a real-time location distinction algorithm. Please note 

that our definitions and methods described below for MIMO are similar to those we 

have used in our past work on SISO links [6,14].

3.3.1 Link Signatures

We define the complex temporal link signature (CTLS) calculated for the cth 

transmitter/receiver antenna pair as

fc =  [hc(0 )A (1 T s ) , . . . ,  hc( (M -  1)Ts)] (3.1)
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where hc ( t ) is the band-limited channel impulse response as a function of delay t  , M  

is the number of samples, Ts is the sampling period, and c E S , where

S =  {1 ,...,k 1 } x {1 ,...,k 2 }. (3.2)

The number of transmitter and receiver antennas are represented by k1 and k2, 

respectively. We also define the temporal link signature (TLS) calculated for the 

cth transmitter/receiver antenna pair as

gc =  [|hc(0)|. |hc(1Ts)|. . . ,  |hc((M  -  1)Ts)|]. (3.3)

The MIMO channel measurements used in this paper are gathered using either a 

multitone probe or preamble-based channel estimation, both of which are described 

in Section 3.4. In both cases, time-domain representations of the channel response 

are used for link signatures.

We let the MIMO complex temporal link signature (MIMO CTLS) be the con

catenation of the set of complex temporal link signatures measured between the first 

k1 x k2 transmitter and receiver antennas:

F = [ f c , . . . . .  fck ], (3.4)

where c1; ck is a list of the elements of S .

Finally, we let the MIMO temporal link signature (MIMO TLS) be the concate

nation of the set of temporal link signatures measured between the first k1 x k2 

transmitter and receiver antennas:

G  =  [gCl. . . . .  gCfc ]. (3.5)

3.3.2 D ifference M etric

In this section, we define the metric for measuring the difference between the 

current MIMO link signature and the history of previous MIMO link signatures. The 

history H is a first-in first-out (FIFO) buffer that stores a set of N  previous MIMO 

link signatures.
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The difference metric we explore in this paper is

A (F , H) =  — min IIF -  FII (3.6)o feu

where F is the current MIMO link signature and o is the average distance between 

link signatures in the history, defined as

0 (N -  1)(N -  2) ^  |Fl ^  (3.7)v ! Fi,F2GU

The magnitude-only TLS uses the t 2 norm in (3.6) and (3.7); for the CTLS, these 

norms are the 0 2 norm, defined as

||X -  Y|U =  min ||X -  Y e j0 ||,2 =  ||X||2 +  ||Y||2 -  2||X*Y||. (3.8)

The 02 norm removes the effect of random phase shifts that occur between subsequent 

CTLS measurements [6].

3.3.3 R eal-tim e Location D istinction

We evaluate a location distinction algorithm that operates in real-time without 

training. In such algorithms, recently recorded link signatures are stored in a “his

tory” and compared to the most recent link signature. Specifically, we evaluate the 

following algorithm:

1. Measure the current link signature.

2. Calculate the difference metric A  from (3.6) between the current link signature 

and the link signatures in the FIFO history H.

3. Compare the difference A  to a threshold 7 . If A  > 7 , raise an alarm to indicate 

that the receiver has moved since the last link signature was measured. If A  < Y, 

do not raise an alarm, thereby indicating that the receiver has not moved since 

the last link signature was measured.

4. Add the current link signature to a delay buffer and add any link signature in 

the delay buffer older than D to the FIFO history H, where D E R is a time 

delay.
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5. Return to step 1.

We evaluate the performance of this algorithm for various thresholds 7  in order to 

identify system tradeoffs and characterize achievable system performance.

3.4 Measurements
We describe two MIMO measurement experiments. One is performed at Brigham 

Young University [57], and another is performed at the University of Utah. These ex

periments provide an opportunity to examine the following two use cases for location 

distinction:

1. A wireless device sends packets while in motion so that each new packet is sent 

from a distinct location. In this case, the location distinction algorithm should 

detect the change with every new packet. Our Experiment I provides MIMO 

data to test the performance of location distinction in this use case.

2. A wireless device sends packets while stationary for a long period of time. Then, 

a new packet is sent from a distinct location, either because the wireless device 

has moved, or because a second wireless device is attempting to impersonate 

the first from a different location. In either case, the location distinction 

algorithm should detect the change with the final transmission. Our Experiment

II provides MIMO data to test the performance of location distinction for this 

use case.

Under both use cases, in order to simulate MIMO antenna arrays of different 

sizes and examine the associated performance of temporal signature-based location 

distinction, we compile the MIMO link signatures, as in (3.4) and (3.5), from the 

subsets of the SISO link signatures, CTLS and TLS, measured with 1 x k and k x k 

antenna arrays, where k G { 1 , . . . ,  8}. In both of these experiments, the receivers 

change position and the transmitters are stationary, but the reciprocity of the radio 

channel allows us to operate as if the opposite were true.

3.4.1 Experim ent I

In the first experiment, conducted at Brigham Young University by Wallace et 

al. [57], MIMO channel data are collected using an 8x8 MIMO channel sounder in
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which a multitone baseband signal is mixed with a carrier frequency of 2.55 GHz and 

transmitted to stationary and moving receivers. The transmitter is stationary for 

these measurements. The multitone signal is 80 MHz wide.

Channel measurements are collected at eight different receiver locations on a single 

floor of an office building. Figure 3.1 is a diagram showing the first three receiver 

locations. The circled numbers represent each location.

In the cases where the receiver is moving, it moves with a speed of 31.75 cm/sec. 

Note that this speed is about 0.7 miles per hour or 1.1 km per hour, which corresponds 

to a relatively slow walking speed. At each receiver location, between 390 and 585 

measurements are made, depending on the space available for receiver motion. In the 

measurements made with a moving receiver, the multitone probe is sent every 3.2 ms, 

or given the receiver speed of 31.75 cm/sec, every 1.016 mm. These spatially dense 

measurements are the reason we delay (D) inserting the most recently measured 

link signature into the history H. As we show in Section 3.5, the performance of 

location distinction improves when this delay is increased, or equivalently, when the 

current location of the receiver is further from the location it occupied during the 

measurements in the history H.

3.4.2 Experim ent II

The second experiment is performed at the University of Utah. Channel measure

ments are made at a center frequency of 2.42 GHz using a MIMO-OFDM transceiver 

implemented with a National Instruments vector signal generator (VSG) and vector 

signal analyzer (VSA) and Labview software.

The transmitted signal is designed to emulate the IEEE 802.11n standard [58]. It 

is an OFDM signal and has 64 subcarriers contained in a total bandwidth of 20 MHz 

(312.5 kHz per subcarrier). The frame (timing) synchronization, carrier offset recov

ery, and channel estimation are using the greenfield preamble described in the physical 

layer specification of the IEEE 802.11n standard, but we omit the high throughput 

signal field. This field is normally used to convey MAC information regarding the 

coding, modulation scheme, etc., and is not necessary for the channel estimation 

required by this experiment. Moose’s method is used for frame synchronization and 

carrier recovery [38,59].
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The MIMO channel state is estimated using mutually orthogonal sequences. A 

minimum mean-squared-error (MMSE) channel estimation algorithm with a structure 

derived from the MMSE estimator in [60] is employed, but we increase the number 

of transmit symbols used for estimating the channel from two symbols (for a 2x2 

system) to four symbols.

In order to ensure their accuracy, channel measurements are only recorded for 

packets with low bit error rate. Similarly, future location distinction implementations 

may ensure accurate channel measurements and improve system performance by only 

recording measurements made on correctly decoded packets, thereby avoiding the 

effects of interference from other transmitters.

The data are collected in the Wireless Communication Lab at the University of 

Utah, an open plan office lab containing desks, bookcases, chairs, and measurement 

equipment. We take measurements at eighteen different receiver locations and four 

different transmitter locations, as shown in Figure 3.2, resulting in a total of 3600 

measurements of 72 distinct radio links.

3.5 Results and Discussion
In order to evaluate the performance of our location distinction algorithm, we 

define the outputs of the difference metric (3.6) for the MIMO CTLS and MIMO 

TLS as

E f =  A (F , H)

and

Eg =  A (G , H),

respectively. These values are recorded under experimental conditions corresponding 

to the following null and alternate hypotheses:

H0 : The receiver has not changed position.

H1 : The receiver has changed position.

This allows us to frame location distinction as a standard threshold-based detection 

problem, as discussed in [61], and produce receiver operating characteristic (ROC) 

curves which quantify the tradeoff between false alarm PFA and detection PD rates
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under various thresholds 7 . The PFA and PD as a function of 7  allow us to evaluate 

how well location distinction would have worked if a threshold of 7  was used in the 

real-time algorithm. Thus the set of possible Pf a /Pd combinations provide a curve 

of feasible real-time detection performance.

In this section, we present and discuss these results in the context of four link 

signature characteristics: spatial distance between link signature measurements, the 

size of the history H, the number of antennas in the MIMO array, and link signature 

bandwidth.

3.5.1 Spatial D istance /  Delay

The results of both experiments show that differences in spatial location between 

link signatures are more significant than the temporal variations in link signatures 

measured for stationary receivers. In other words, changing the position of the 

transmitter/receiver has a more significant effect on the measured link signatures 

than moving scatterers. Figure 3.3 shows the magnitudes of the 1x1 TLS measured 

at a stationary or moving receiver in Experiment I. The variation of the signatures 

for the moving receiver is more significant. In the case of the MIMO TLS, the same 

effect can be seen in the empirical distributions of the difference metric (3.6). These 

distributions are shown in Figure 3.4(a). The mean difference metric is much higher 

in the case of a moving receiver. The same result can be seen in the empirical dis

tributions of the difference metrics calculated for Experiment II. These distributions 

are shown in Figure 3.4(b).

Figure 3.5(a) shows the average i 2 and 02 distances between 8x8 MIMO CTLSs as 

a function of receiver separation where the 02 distance is defined in (3.8). The average 

£2-distance reaches a maximum at a separation of approximately A/2 ( «  12.5 cm for 

our testbeds), and then oscillates with a period of A. This result agrees with a result of 

the Clarke fading model, which assumes incoming multipath are uniformly distributed 

about the receiver [47]. The average 02-distance peaks at a receiver separation of 

about A and the oscillation is mitigated by the phase rotation inherent in the 02- 

distance. Figure 3.5(b) shows the average difference metrics E , calculated according 

to (3.7), as a function of receiver separation. These results indicate that the difference 

metrics perform best in the case where the receiver has moved about a half-wavelength
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between measurements. We note that for the detection of impersonation attacks it is 

very reasonable to assume that the attacker’s antennas are more than A/2 away from 

the antennas of the device being impersonated.

Under use case #1, the spatial distance between the signatures in the history and 

the most recent signature is determined by the delay D. Choosing D to be larger 

than the coherence time of the channel ensures that the signatures will offer sufficient 

decorrelation. If D is less than the coherence time of the channel, missed detections 

will increase. A simple approach to decide on an appropriate value for D is to use 

the tighter estimate suggested in [47] for estimating 50% coherence time Tc:

9

Tc =  1 6 f  (3-9)

where f  is the maximum Doppler shift, which is proportional to the velocity of the 

moving transceiver. This Doppler shift can be estimated using one of the methods 

reviewed in [62], or it can be computed using the lowest transceiver velocity to be 

detected. We note that the delay improves performance under use case #1, but has 

no effect under use case # 2.

The average maximum Doppler for a moving receiver in Experiment I is approx

imately 5 Hz [57]. Using (3.9), this yields a coherence time of approximately 85 ms. 

In our analysis we examined delays of 32, 64, 96, and 128 ms. While performance 

improves with delay, it stabilizes for D > Tc. An example of this can be seen in 

Figure 3.6, which presents the false alarm rates vs. D for PM =  1 x 10-4  using 

the 8x8 MIMO TLS, where is the probability of a missed detection. We note that 

this corresponds to approximately a quarter of a wavelength, suggesting that (3.9) 

leads to a smaller than ideal delay, but the performance gain associated with larger 

D is minimal.

3.5.2 H istory Size

The optimal number of signatures to include in the history depends on the distri

butions of the differences measured under H0 and H1. We examine a range of history 

sizes in both experiments in order to understand how this parameter affects location 

distinction performance. Because of the minimum operator in (3.6), increasing the 

history size can only lower the average difference metric, E , under both hypotheses.
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This has the effect of decreasing false alarms at the expense of an increase in missed 

detections.

Figure 3.7(a) shows the ROC curve of the location distinction algorithm for 

the 8x8 MIMO CTLS of Experiment I and various history sizes. In this case, the 

best performance corresponds to a history containing fifteen previous link signatures. 

Figure 3.7(b) shows the ROC curve of the location distinction algorithm for the 2x2 

CTLS of Experiment II and various history sizes. In this case, a history size of five 

offers the best performance. The difference in optimal history size can be understood 

in terms of the marginal distributions from Figure 3.4.

The difference metrics E f measured under H0 in Experiment I have a significantly 

higher mean and variance than those measured under the same hypothesis in Exper

iment II, indicating that the temporal variations of the link signatures measured for 

a stationary receiver in Experiment I are more prominent than those in Experiment

II. Therefore, a larger history size is necessary in Experiment I in order to capture 

the temporal variations of the stationary receiver. In general, the history size should 

increase with the temporal variations in the channel and/or system noise. Future 

work should investigate adaptively setting the history size based on current channel 

conditions.

3.5.3 N um ber o f  Antennas

The results show that as the size of the MIMO antenna array is increased, the 

performance of the location distinction algorithm improves. This is consistent with 

the simulation results of [7], which use a ray-tracing simulation to show that the 

average miss rate in a location distinction system decreases with the number of 

antenna elements.

Figure 3.8 shows the location distinction ROC curves for the data from Experiment

I and MIMO antenna arrays with k\ transmit antennas and k2 receive antennas for 

various combinations of k\ and k2. Figure 3.9 shows the ROC curves for the same 

experiment, but using SIMO arrangements. The trend in these figures is toward better 

location distinction performance with the increase in size of the MIMO antenna array. 

Figure 3.10 shows the achievable miss rates for a false alarm rate of 2 x 10-3  for various 

SISO, SIMO, and MIMO arrays. The miss rates appear to follow the inverse power
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law
b

Pm =  (klkO™ (3.10)
where b and m are parameters that define the rate that the probability of missed 

detection approaches zero with the number of channels. A least-squares approxi

mation yields b 10 1'44 and m 0.93 for the data in Figure 3.10. As a rule 

of thumb, the achievable miss rate for a constant false alarm rate is approximately 

inversely proportional to k1 k2, the number of channels. In general, the power law 

relationship for Pm is not as conducive to rapid decrease in Pm as an exponential 

decrease would be, for example. If the relationship holds for k1k2 > 64, then it would 

require significant increases in the number of antennas to further reduce Pm .

However, we note that the miss rate shows dramatic improvement for k1k2 =  4 

(2x2 or 1x4), compared to 1x1, MIMO systems. Table 3.1 shows the improvement of 

the location distinction algorithm in a 2x2 MIMO channel over the SISO channel in 

Experiment I. There is as much as a 108-fold reduction in the miss rate for a constant 

false alarm rate when changing from SISO to 2x2 MIMO.

3.5.4 M IM O  CTLS and TLS

In comparing Figures 3.8(a) and 3.8(b), it is also apparent that the MIMO CTLS 

and its associated difference metric leads to better performance than the MIMO 

TLS in Experiment I. Table 3.1 shows the improvement of the location distinction 

algorithm when using the MIMO CTLS instead of the MIMO TLS. Using the MIMO 

CTLS results in as much as a 133-fold reduction in miss rate for a constant false 

alarm rate.

This result is also confirmed in Experiment II, as shown in Table 3.1. In Exper

iment II, the 1x1 CTLS results in a 3.5-fold improvement in miss rate over the 1x1 

TLS. The 2x2 TLS and 2x2 CTLS both reach the lowest measurable miss rate in 

Experiment II.

3.5.5 Link Signature Bandw idth

Another crucial parameter in both experiments, and typically a limiting factor 

in radio design, is system bandwidth. We examine the performance of the location
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distinction algorithm over a range of bandwidths by varying the number of tones 

included in the frequency-domain measurements from Experiment I.

Figure 3.11 shows that performance typically improves with bandwidth, but it 

does so with diminishing returns. This is consistent with the simulation results of [7], 

which show that the miss rate of a location distinction system decreases with system 

bandwidth, but that the performance gain of MIMO over SISO also decreases, because 

at high bandwidths the SISO link signatures offer sufficient decorrelation.

However, at high bandwidths the algorithm is more sensitive to timing-synchronization 

errors that might be hidden by lower bandwidth signatures. Figure 3.12 shows 

an example of two consecutively measured link signatures that exhibit this effect. 

These errors cause small drops in performance. The higher bandwidth of the link 

signatures measured in Experiment I (80 MHz) allows for better location distinction 

performance, but the results for the 2x2 MIMO link signatures of Experiment II (20 

MHz) still offer a 3 x 10-4  probability of missed detection for a 7 x 10-3 probability 

of false alarm.

3.6 Related Work
The papers discussed in this section have contributed to this work in different 

aspects. The most closely related work is presented in [14] and [6]. In these two 

papers, a temporal link signature is defined to be used in the context of multiple 

transmitters/receivers and then refined to include phase information. We compliment 

that work by showing that a single MIMO transmitter/receiver pair can be used to 

perform reliable location distinction, and that lower false alarm rates are possible 

using a single receiver, when the communication system is a 1x2 or 2x2 MIMO system.

In [6], the authors report a 9 x 10-3  miss rate for a 0.01 false alarm rate using three 

receivers. For the same false alarm rate, we are able to achieve a 3 x 10-4  miss 

rate using a single receiver and the 2x2 MIMO CTLS with less bandwidth. This 

net reduction in system complexity may enable location distinction in future wireless 

networking systems.

In [6], a complex temporal link signature is defined which allows for the exploitation 

of the phase information in the CIR. However, not all of the phase information
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represented by the link signature is due to the channel. Some phase shifts occur 

due to a lack of time and/or frequency synchronization between the transmitter and 

receiver. The distance between two link signatures which minimizes the contribution 

of random phase shifts is shown to be (3.8); [6] calls this the 02-distance.

In [7], ray-tracing simulation results for MIMO location distinction in defense of 

impersonation attacks in an office building are presented. The authors assume that 

channel measurements made in the frequency domain are distributed as complex 

Gaussian random variables and derive ideal change metrics based on this assump

tion. We extend this work by offering an experimental validation of MIMO location 

distinction using two MIMO testbeds.

In [56], the authors propose some of the underlying ideas of this work, namely, that 

characteristics of the radio channel (rapid decorrelation in space, time, and frequency) 

can be exploited to secure wireless networks. They offer methods of probing the 

channel in order to determine, based on the channel gains between transmitters and 

receivers, whether or not communications are coming from an authentic user or a 

would-be attacker. Using the USRP/GNU Radio and a simple change-point detector, 

they show that they are able to detect a change in the wireless link via channel gains 

and thereby detect a possible spoofing attack.

In [55], the authors utilize similar principles in designing a method for identifying 

a transmitter by its signalprint, which consists of a vector of RSS values. These 

RSS values are gathered using wireless access points as sensors and a central authen

tication server for cataloging and comparing signalprints. Their results show that 

a stationary transmitter will produce a consistent signalprint and thereby allow for 

discrimination between authentic users and attackers whose signalprints will vary 

significantly because they are located in a different position in the multipath fading 

channel. The signalprint is limited in that it may be unable to detect attackers located 

near authentic transmitters, because they may have similar signalprints.

Much of the discussed work has suggested using channel measurements gathered 

at multiple receivers in order to perform location distinction [6,14,54,55,63]. However, 

in typical WiFi networks, adjacent access points are set to operate on different 

channels in order to reduce interference and clients operate on a single channel. This
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makes collecting channel data at multiple access points difficult. Extending location 

distinction to MIMO allows robust location distinction to be performed with a single 

receiver.

3.7 Conclusion and Future Work
In order to design a reliable MIMO location distinction system with limited 

resources, a system designer should understand in what aspects increasing system 

complexity will lead to better system performance. We present an extensive ex

perimental evaluation of MIMO location distinction using two experimental test 

beds. The results show that there are diminishing returns for certain aspects of 

system design. Increasing the number of antennas offers diminishing returns after 1x4 

SIMO or 2x2 MIMO, which favors MIMO systems with a small number of antennas. 

Increasing system bandwidths beyond 20 MHz offers diminishing returns as well, 

partially because lower bandwidths tend to mask the effects of timing synchronization 

errors on link signatures. However, the experiments show that MIMO location 

distinction performs very well with just a single receiver. We detail performance 

tradeoffs regarding the size of the history for optimal performance. This combined 

knowledge will benefit anyone seeking to implement a location distinction algorithm.

In the future, it will be beneficial to further characterize the link signatures used 

for location distinction and explore other difference metrics. For instance, our current 

difference metric uses the minimum Euclidean or 02-distance between the most recent 

link signature and those in the history H. This tends to increase the miss rate in 

the context of noisy measurements. A weighted average of distances, such as the 

Mahalanobis distance, may offer better performance. A broader experimental analysis 

of link signatures and their temporal and spatial variations will facilitate the design 

of better difference metrics.
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Figure 3.1. Diagram of a subset of receiver locations from Experiment I. Circled 
numbers represent the receiver locations for individual measurement sets. DO or DC 
indicate door open or door closed, respectively.
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Figure 3.2. Diagram of Experiment II. Circles represent receiver locations, diamonds 
represent transmitter locations. The outer line represents the wall of the room. Chan
nel measurements are made at each transmitter/receiver location. Desks, equipment, 
and other scatterers are present, but not depicted in this diagram.
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Figure 3.3. Link signatures measured (a) over time at a stationary receiver and (b) 
at a moving receiver. The signatures measured at a moving receiver fluctuate more 
than those measured at the stationary receiver.
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Figure 3.4. Empirical distributions of Ef for stationary and moving receiver from
(a) Experiment I with 8x8 CTLS, and (b) Experiment II with the 2x2 CTLS. In both 
cases the mean difference metric for a moving receiver is significantly higher than for 
a stationary receiver.



49

x 10"

CDOc03
CO

T3
CD

CO
a5>
<

uj
o
CD
E
0oc0
0
"a
o
ca
l_0

Spatial distance between link signatures (X)

(a)

Spatial distance between signature and history (A)

(b)

Figure 3.5. (a) Average £2 and 02-distances between 8x8 MIMO CTLS as a function 
of spacial separation. The average £2-distance peaks at a receiver separation of roughly 
A/2. (b) Average difference metrics E for 8x8 CTLS/TLS as a function of spatial 
separation.
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Figure 3.6. Probability of false alarm vs. delay D for a miss rate of 1 x 10-4  for 
the 8x8 MIMO TLS. Performance gain stabilizes for delays larger than 85 ms, the 
coherence time of the channel.
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Probability of False Alarm
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Figure 3.7. ROC curves for (a) Experiment I: 8x8 MIMO CTLS and (b) Experiment 
II: 1x1 CTLS for various history sizes. In Experiment I, a history size of fifteen link 
signatures yields the best performance. In Experiment II, a history size of five link 
signatures yields the best performance.
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Figure 3.8. ROC curves for (a) MIMO TLS and (b) MIMO CTLS for various 
antenna array sizes. Location distinction performance improves with the number of 
antennas and the MIMO CTLS performs better than the MIMO TLS.
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Figure 3.9. ROC curves for (a) SIMO TLS and (b) SIMO CTLS for various antenna 
array sizes. Location distinction performance improves with the number of antennas 
and the SIMO CTLS performs better than the SIMO TLS. The SIMO signatures 
nearly match the performance of the MIMO signatures.
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Figure 3.10. Experiment I: Probability of missed detection for a 2 x 10 3 probability 
of false alarm vs. for different SISO, MIMO, and SIMO arrays.



Table 3.1. Pm for PFa =  10 2 for Experiments I and II.
Experiment I Experiment II

(kj,k2) MIMO TLS MIMO CTLS CTLS/TLS MIMO TLS MIMO CTLS CTLS/TLS
Pm Pm Improvement Pm Pm Improvement

(1.1) 0.032 <  0.00024 > 133x 0.0323 0.0092 «  3.5x
(2.2) 0.0005 < 0.00024 > 2x < 0.0003 < 0.0003 N /A

MIMO Improvement «  64x N /A > 108x > 31x
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Link Signature Bandwidth (MHz)

Figure 3.11. Location distinction miss rate vs. link signature bandwidth for a 
7 x 10-4  false alarm rate in Experiment I. Increasing bandwidth offers diminishing 
returns.
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Figure 3.12. Two consecutive link signatures with 80 MHz bandwidth showing the 
results of a timing-synchronization error. The time-resolution of high-bandwidth link 
signatures cause an increased impact on location distinction performance.
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CHAPTER 4

EXPLOITING RADIO WINDOWS FOR 
THROUGH-WALL LOCATION 

INFORMATION 1 

4.1 Abstract
We introduce and investigate the ability of an attacker to surreptitiously use 

an otherwise secure wireless network to detect moving people through walls, in an 

area in which people expect their location to be private. We call this attack on 

location privacy of people an “exploiting radio windows” (ERW) attack. We design 

and implement the ERW attack methodology for obtaining through wall people 

location information that relies on reliably detecting when people cross the link lines 

by using physical layer measurements between the legitimate transmitters and the 

attack receivers. We also develop a method to estimate the direction of movement 

of a person from the sequence of link lines crossed during a short time interval. 

Additionally, we describe how an attacker may estimate any artificial changes in 

transmit power (used as a countermeasure), compensate for these power changes 

using measurements from sufficient number of links, and still detect line crossings. We 

implement our methodology on WiFi and ZigBee nodes and experimentally evaluate 

the ERW attack by monitoring people movements through walls in two real-world 

settings. We find that our methods achieve very high accuracy in detecting line 

crossings and determining direction of motion.

1©[2013j. Submitted to IEEE Transactions on Networking as A. Banerjee, D. Maas, M. Bocca, 
N. Patwari, S.K. Kasera, “Exploiting Radio Windows for Through-wall Location Information,” 
September, 2013.
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4.2 Introduction
We investigate an attack on the privacy of the location of people moving in an 

area covered by a wireless network. People moving in an area covered by one or 

more wireless networks affect the way radio signals propagate. We demonstrate 

that the presence, location and direction of movement of people not carrying any 

wireless device can be “eavesdropped” by using the channel information of wireless 

links artificially created by an attacker by deploying sensing devices or receivers that 

can “hear” transmitters such as WiFi access points (APs), composing the legitimate 

wireless network. Signals from the transmitters passing through nonmetal external 

walls that allow radio waves to go through, are analogous to light from light bulbs 

passing through glass windows which an adversary can use to “see” where people are 

in a building. Hence, we call this attack on location privacy of people an “exploiting 

radio windows” (ERW) attack.

Consider a building where security is important, e.g., an embassy, with a concrete 

exterior wall. One or more wireless networks may have been set up in this building 

to transfer different types of data, including voice and video. We can expect these 

networks to implement advanced data security protocols to prevent eavesdropping of 

data. However, an attacker can still deploy receivers outside the wall of the building 

to measure different parameters of the received radio signals. By measuring the 

channel state information (CSI) or received signal strength (RSS), for example, of 

the links from the transmitters inside the building to the receivers deployed, the 

attacker can monitor the movements of people and objects inside the building in the 

area behind the wall in Figure 4.1. The information about people’s movements can be 

put to malicious use including planning a physical attack on the personnel inside the 

building. On the contrary, law enforcement personnel can apply similar techniques in 

the case of a hostage situation to track activity inside a large building and plan their 

operation accordingly.

In this paper, we design and implement the ERW attack methodology for through 

wall people localization. Our methodology relies on reliably detecting when people 

cross the link lines between the legitimate transmitters and the attack receivers. We 

first develop a majority-vote based detection algorithm that reliably detects line of
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sight (LOS) crossing between the legitimate transmitter and the attack receivers 

by comparing short-term variances in link channel information with its long-term 

counterpart. We also develop a method to estimate the direction of movement of a 

person from the sequence of link lines crossed during a short time interval. Next, we 

implement our methodology on WiFi and ZigBee nodes and experimentally evaluate 

the ERW attack by monitoring people movements through walls in two real-world 

settings —  a hallway of a university building separated from the outside by a 1 ft 

thick concrete wall, and a residential house. When we use two WiFi 802.11n nodes 

with normal antenna separation, or two groups of ZigBee nodes as attack receivers, 

we find that our methods achieve close to 100% accuracy in detecting line crossings 

and the direction of movement. We also find that our methods achieve 90 — 100% 

accuracy when we use a single 802.11n attack receiver.

To protect the privacy of the location information from the ERW attack, the 

owner of the legitimate network may choose to implement a countermeasure in which 

the transmitters vary their transmit power during successive transmissions. The 

artificial transmit power changes can be either random or follow a predefined profile 

replicating the typical channel variations introduced when a person crosses a link 

line. This countermeasure is expected to introduce additional variability in the 

received signal measured by the attack receivers and can be wrongly interpreted 

by the attacker as caused by moving people or objects crossing the link lines. In 

this paper, we demonstrate that an attacker who can measure a sufficient number 

of links can accurately estimate the artificial transmit power change, compensate 

for it, and ultimately locate people and monitor their movements. We base our 

compensation strategy on the following intuition: an artificial transmit power change 

at a transmitter will impact all the links between the transmitter and the attack 

receivers, whereas genuine power changes due to human movement are likely to impact 

only some of the links.

The ERW attack described in this paper is significantly different than device-free 

localization2 (DFL) in that the ERW attack is practical for large buildings, is stealthy

2 In which people who are not carrying any radio transmitters are located by a static deployed 
network.
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because no transmitters are deployed by the attacker, and is immune from jamming. 

DFL systems such as the ones in [9, 64-70] require dozens of radio transceivers 

deployed throughout or on many sides of the target area. Further, through-building 

DFL systems such as [70, 71] assume the transmitted signal penetrates through two 

external walls and any internal walls in between, and as such have been tested only 

in buildings of small (18 - 42 m2) size. In this paper, we show access to one side 

is sufficient for an ERW attack, and it requires a signal from inside a building to 

penetrate only one external wall. Other fingerprint-based DFL systems [12, 72-74] 

require collection of training data with a person in each possible location in the 

environment. In our ERW attack, we do not assume that an attacker has prior access 

to the inside of the building to be able to perform such data collection. Further, to 

perform DFL, an attacker must deploy some nodes which transmit, exposing them 

to being detected and located by RF source localization, while an ERW attack is 

stealthier in that purely passive receivers are deployed by an attacker. Finally, DFL 

systems’ signals could be interfered with by a powerful jammer. In the method in 

this paper, any transmitter in the building, including a jammer, could be used as a 

source for ERW.

The remainder of the paper is organized as follows. In Section 4.3, we describe 

the adversary model. In Section 4.4, we formulate the methods used to detect link 

line crossings and estimate changes in transmit power. We also describe the method 

used to determine the direction of motion of the person. The experimental setup is 

presented in Section 4.5. In Section 4.6, we present the results of our experiments. 

Section 4.7 discusses the previous research in the area of location privacy attacks in 

wireless networks. Conclusions and directions for future work are given in Section 

4.8.

4.3 Adversary Model
We make the following assumptions about the attacker3:

• The attacker is able to deploy multiple wireless sensing devices within the trans-

3In this paper, we use the term attacker for anyone, whether malicious or genuine, who is trying 
to localize humans.
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mission range of the legitimate transmitter(s) outside the area being monitored. 

The attacker is able to measure the physical layer information (RSS and/or CSI) 

of the links between the transmitter(s) and the attack receivers.

• The attacker does not have access to the content of the packets transmitted by 

the legitimate network nodes.

• The attacker does not deploy any transmitters, nor does he have any control over 

the legitimate transmitters. However, he requires the legitimate transmitters to 

transmit packets frequently enough to perform line crossing detections.

• The attacker does not make any assumption regarding the transmit power profile 

of the transmitters.

• The attacker nodes do not associate or interfere in any manner with the trans

missions of the legitimate transmitter(s).

• The attacker may not know the precise location of the transmitters or the 

arrangement of their antennas. However, we do assume that a transmitter 

is located well inside the perimeters of buildings for network coverage reasons 

ensuring that they do not lie between the people (being localized) and the attack 

receivers.

4.4 Methodology
In this section, we first develop a methodology to detect line crossings based on 

a majority vote for WiFi 802.11n receivers. We also develop a method that uses a 

sequence of line crossings to determine the direction of human movement. Next, we 

present our approaches for estimating transmit power change and its compensation, 

when the transmit power is artificially changed by the owner of the wireless trans

mitters, inside a secure building, with the hope of preserving location privacy. Last, 

we show how we adapt our methodology for IEEE 802.15.4 ZigBee attack receivers.

4.4.1 Line Crossing D etection

Many modern WiFi networks use the 802.11n standard, in which transceivers 

are equipped with multiple antennas in order to leverage the spatial diversity of
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the wireless channel. While these multiple-input multiple-output (MIMO) systems 

provide high data rates, they also provide a rich source of channel information to an 

adversary interested in localizing people inside a building.

The 802.11n wireless standard uses the well-known orthogonal frequency-division 

multiplexing (OFDM) modulation scheme, which encodes and transmits data across 

multiple subcarriers for each transmitter-receiver antenna pair. When an 802.11n 

receiver receives a packet, it estimates the effect of the wireless channel on each 

MIMO OFDM subcarrier for the purpose of channel equalization. Since this channel 

state information (CSI), represented as a complex gain for each subcarrier, is mea

sured during the unencrypted preamble of each WiFi packet, an adversary without 

legitimate access to data on the network can still measure the CSI for every packet.

We apply a windowed variance method for detecting abrupt changes in the CSI 

for a WiFi link. Let Hj,k (n) be the magnitude of the signal strength for the jth  

transmitter-receiver antenna pair and the kth OFDM subcarrier for the nth packet. 

We define the windowed variance measurement at packet n as follows. Let
1 n

j  ( " ) =  W E  Hj,k (i), (4.1)
i=n- w+1 

1 n
j ( n )  = -------1 J 2  (Hj,k(i) -  j ) 2, (4.2)w -  1 i=n-w+1

and

j (n) =  \jvlk (n) > (4.3) 

where, w is the number of previous CSI samples in the window. We define the 

subcarrier-average variance for packet n for a given antenna pair j  as

j  (n) =  -N E  j  (")• (4.4)
k

where N  is the number of subcarriers. We define the subcarrier-average standard 

deviation for packet n as

j ( n ) =  jN E  s"k(n). (4.5)
N k

The quantities (4.4) and (4.5) represent the average CSI variance and standard 

deviation across all subcarriers for antenna pair j  at packet n for a time window that
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includes the past w packets. We track both (4.4) and (4.5) over a short-term time 

window ws, and a long-term time window wi, allowing us to compare the short-term 

and long-term statistics of the WiFi link and detect line crossings.

A line crossing is detected for antenna pair j  when

^  V p  (n) -  V p  (n) > Y(n), (4.6)
neD

where D is the most recent contiguous set of packets for which V p  (n) — V p  (n) > 0 

and the threshold y(n) is defined as

Y (n) =  V/ 1 (n) +  CSw (n). (4.7)

The constant C is included to allow the user to adjust the trade-off between false 

alarms and missed detections.

In the case where there are more than two antenna pairs, we take the majority 

vote between antenna pairs over the short-term window to decide if a line crossing 

has occurred. More specifically, when a receiver antenna detects a line crossing, we 

count the line crossing detections for all the receiver antennas over the short-term 

window, ws. For a 3 x 3 MIMO transmitter and receiver, this would mean computing 

a majority vote over nine measurements. When the majority of the receiver antennas 

detect a line crossing within ws, we infer that a person has crossed the link line 

between the transmitter and the receiver. We will show that this majority vote 

method improves the performance of our detector by decreasing false alarms and 

missed detections. We decrease the false alarm rate further by combining temporally 

close detections together. More specifically, if we detect a line crossing at time t 1 for 

a transmitter-receiver pair using the majority vote, we do not consider any other line 

crossing detected in the time interval (ti,ti +  A] for the same transmitter-receiver 

pair, i.e., all line crossings detected in the interval [t1,t1 +  A] are considered as a 

single line crossing for a transmitter-receiver pair.

We note that our window-based variance method differs from the method pre

sented in [72,75]. In [72,75], the authors compare recent window-based variance 

measurements of RSSI at multiple WiFi links to measurements made during a static 

calibration period when nobody is moving in the area of interest. If a certain number
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of WiFi links within the area of interest detect motion within a certain time interval, a 

motion event is detected in the area of interest. Our attacker does not know if and/or 

when people are moving inside of the building, and therefore cannot create calibration 

measurements based on a static environment. Instead, we compare a short-term 

window variance to a long-term windowed variance. The long-term window allows us 

to capture the behavior of the wireless links when the majority of measurements are 

likely made while there is nobody crossing the link line. Additionally, in the case of 

802.11n, we exploit the effect that line crossings have on each OFDM subcarrier and 

MIMO antenna pair.

4.4.2 Determ ining D irection o f  M otion

If the adversary measures the CSI at multiple receivers, or if a single receiver 

includes multiple antennas as is the case with 802.11n, it is also possible to infer the 

direction that a person is walking when line crossings are detected. The direction of 

motion is inferred from the time differences between the line crossing detections at 

each receiver, in the case of multiple receivers, or at each transmitter-receiver antenna 

pair, when the receivers include multiple antennas.

Consider the scenario where the attacker arranges the MIMO antenna array of an 

802.11n receiver such that the antennas are roughly parallel to a hallway as shown 

in Figure 4.2(a). The spatial order of the antennas with reference to the hallway 

is known, and each transmitter-receiver antenna is given an index according to its 

spatial order. Based on the adversary model assumption that a transmitter is located 

well inside the perimeter, the attacker, even without knowing the precise location of 

the transmitter or the arrangement of its antennas, may treat the antennas of the 

wireless transmitter as if they are colocated and still achieve reliable results.

In the single WiFi receiver case, if a link crossing is detected by majority vote for a 

given short-term window, we find the line that best fits the set of points {(dj ,n j ) : j  E 

P }, where dj is the spatial index of antenna pair j  representing its location relative 

to the other links, nj is the packet index indicating when a detection occurred at 

antenna pair j  according to (4.6), and P  is the set of antenna pairs ending at the 

WiFi receiver which detected a line crossing during the short-term window. The 

sign of the slope of this line indicates the direction of motion. Figure 4.2 shows an
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example which uses CSI measurements from three antennas at the WiFi transmitter 

and three antennas at WiFi RX1 (nine antenna pairs). In the case of two single-input 

single-output (SISO) WiFi receivers, a similar method may be applied, but the two 

spatial and packet indexes directly determine the line and its slope.

4.4.3 C om pensation o f  Transmit Power Change

In this subsection, we propose a methodology to detect artificial transmit power 

changes (if any) and compensate for the same. The signal strength for the jth  

transmitter-receiver antenna pair and the kth OFDM subcarrier for packet n is given 

by

(n) =  TX(n) +  Gt +  Gr — (n) +  (n), (4.8)

where Tx(n) is the transmit power of the transmitter at time n, Gt and Gr are the 

transmitter and receiver antenna gains, respectively, L jk(n) is the path loss, and 

(i) is a noise term. The path loss includes all environmentally-dependent terms, 

including large-scale loss, shadowing, and small-scale fading. The noise term includes 

thermal noise, quantization noise, and other measurement noise at the attacker re

ceiver.

The attacker cannot depend on knowing the transmit power or antenna gains. 

Instead, the attacker relies on the difference between the subcarrier signal strength for 

the packet n and the reference packet (n =  0) (the attacker may update the reference 

packet periodically to account for changes in the environment). This difference in 

subcarrier signal strength is given by

hj-fc (n) =  (n) — j  (0). (4.9)

From (4.8), we see that

hj-fc (n) =  tx (n) — (n) +  j  (n), (4.10)

where

tx(n) =  Tx(n) — Tx(0),

Zj,fc(n) =  Lj,fc(n) — Lj,fc(0),

j  (n) =  j  (n) — j  (0).
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The subcarrier signal strength difference hj;k(n) above, contains transmit power changes 

and channel-induced changes between the nth packet and the reference packet, in 

addition to noise.

The ideal situation from the attacker’s perspective would be that there is no 

artificial change in transmit powers, and that tx (n) =  0 for all j  and k. In this ideal 

situation, the subcarrier signal strength difference below is solely due to changes in 

the channel.

hj,k (n) =  -lj,k  (n) +  j  (n). (4.11)

Furthermore, people crossing the line between the transmitter and receiver antennas 

typically cause a path loss change more significant than noise, and thus the hj,k signal 

allows direct inference of people’s motion. However, when the transmitter artificially 

changes its transmit power, from (4.10), we cannot directly attribute a large mag

nitude of hj;k to environmental changes. In particular, if the magnitude of transmit 

power changes is high enough, the magnitude of hj;k (n) will be predominantly due 

to because of transmit power changes at the transmitter. A transmitter could thus 

presumably preserve location privacy by changing its transmit power frequently.

We now propose a method that a smart attacker can use to estimate and remove 

the artificial power changes and accurately detect line crossings. In our method, 

the attacker estimates the artificial transmit power change amplitude by correlating 

measurements across all antenna pairs and all subcarriers, and removes the effect of 

transmit power changes from the received signal strength measurements. We propose 

to use the median of hk)j- (n) for all available transmitter-receiver antenna pairs and 

corresponding subcarriers, as an estimator of the artificial transmit power change, as 

shown in the equation below:

ix(n) =  median {hj;k(n)Vj, k} . (4.12)

Our choice of this estimator is based on the following observations. First, we observe 

that tx(n) appears in the equation for hk)j-(n) for all j  and k. This is because, any 

change in transmit power affects measurements across all transmitter-receiver antenna 

pairs and corresponding subcarriers simultaneously. Moreover, tx(n) is linearly related 

to lj,k and hj,k. We also know that the change in the path loss lj,k is just as likely to
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be positive as negative. Furthermore, any change due to human movement will not 

affect all the links simultaneously.

In the absence of an artificial transmit power change, ix(n) is likely to be close 

to zero, i.e., our estimator does not require us to detect whether or not there is an 

artificial transmit power change for packet n.

The compensated signal strength for packet n, which we denote Hj,k(n), is given

by

Hj)fc (n) =  Hjtk (n) — 4  (n). (4.13)

Although the reference packet was sent with unknown transmit power Tx(0), for 

n > 0, we consider Tx(n) to be the relative dB shift in transmit power compared to 

Tx (0). Hj,k (n) essentially, is an estimate of the subcarrier signal strength if there were 

no transmit power changes between the reference packet and packet n.

It is clear that, any error in the estimation of the transmit power changes ampli

tude will introduce additional noise in the measurements. However, the dynamics of 

the signal are still preserved and an attacker can use any variation in the signal over 

a short time period in order to notice motion of a person near the link line.

4.4.4 ZigB ee Networks

The methodologies described above are also applicable for IEEE 802.15.4 ZigBee 

nodes. However, the ZigBee nodes are generally equipped with a single antenna, 

so the MIMO setup is not available. Moreover, ZigBee nodes do not use OFDM 

for communication, so we use channel information from a single frequency channel 

(instead of averaging across all subcarriers as in the case of OFDM) to evaluate our 

methodologies. Furthermore, there is no tool to get the complete CSI at the receiver. 

Instead, we rely on the RSS value obtained from the receiver hardware. Thus, in 

the case of ZigBee we set Hj,k(n) to the RSS value measured in decibel units for 

the jth  transmitter-receiver antenna pair for packet n, also k =  1, Vj as we have 

measurements from a single channel only.

In order to create spatial diversity we use three closely located ZigBee receivers 

together to form a group as described in Section 4.5. We detect line crossings 

by applying our majority vote approach on the three links formed between the
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transmitter and the three receivers in the group. We detect direction of motion 

using two groups of receivers and observing sequence of groups crossed over a short 

time window. We estimate and compensate for artificial transmit power changes (if 

any) by applying the methods described in Section 4.4.3, and utilizing the fact that 

any change in transmit power affects all receivers simultaneously across all groups.

4.5 Experiments
In this section, we describe the experimental setup. Section 4.5.1 describes the 

tools we use to measure the wireless channel, Section 4.5.2 describes the transmit 

power changes we apply, and Section 4.5.3 describes two real-world experimental 

deployments.

4.5.1 T ool D escription

We use the following tools to measure the wireless channel and detect line cross

ings.

4.5.1.1 W iF i

We use laptops with Intel 5300 NICs that have three-antenna MIMO 802.11n 

radios. We use the CSI Tool [20], that has been built for these radios, to get channel 

state information from the WiFi transmitter. The CSI tool extracts 802.11n channel 

state information for 30 subcarriers at each antenna pair. Since we use three antennas 

at each node for communication, for each transmitter-receiver pair, we have 3 x 3 =  9 

links each with 30 subcarrier groups. We use two kinds of antenna separations —  in 

the normal case (WiFLNORM), we place the antennas 6 cm apart, in the other case 

(WiFLSEP), we use a larger antenna separation of 30 cm. The increased separation 

is accomplished by connecting the antennas to the Intel 5300 NIC with standard RF 

cables that are long enough to provide up to 30 cm separation. We program the 

transmitter to transmit packets at a rate of 10 Hz which is similar to beacon frame 

rates of a standard wireless access point. The attack receivers use the CSI Tool to 

obtain channel state information from the received packets which in turn is used to 

detect line crossings as described in Section 4.4.1.
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4.5.1.2 ZigBee

For the ZigBee experiments, we use Texas Instrument CC2531 USB dongles, which 

are equipped with low-power, IEEE 802.15.4-compliant radios operating in the 2.4 

GHz ISM band. The transmission frequency in this case is 12 Hz. A laptop is used to 

process the measured data at the attack receivers. There is no tool to obtain the CSI 

information in the case of ZigBee nodes. Therefore, we use the RSS value (in dBm) 

measured by the receiver hardware for our analysis, as described in Section 4.4.4.

4.5.2 Transmit Power Variations

We consider three different settings of transmit power variations for our experi

ments: while simulating effects of transmit power change we rely on the fact that any 

change in the transmit power at a time instant is observed across all subcarriers for all 

transmitter-receiver antenna pairs in case of WiFi and across all receivers in case of 

ZigBee at the same instant and we change the received signal parameters accordingly. 

We also add a zero mean Gaussian random variable (with standard deviation 0.67) 

to each Hj,k(n) measurement, in addition to the the transmit power change tx(n), to 

account for errors due to environmental noise.

4.5.3 Experim ental Deploym ents

We evaluate our methodologies in two different real world settings.

4.5.3.1 University Hallway

We choose a hallway inside a university building as the area being monitored 

(Figure 4.4(a)). The hallway is adjacent to a 30 cm thick and 3.5 m tall rebar- 

reinforced concrete boundary wall (Figure 4.4(b)). We note that this type of a wall 

causes significant RF attenuation at WiFi frequencies and represents a worst-case 

scenario among typical exterior walls for our purposes [76]. We place the attack 

receivers outside the boundary wall parallel to the hallway approximately 1 m away 

from the wall.

For the WiFi experiment, we deploy one transmitter inside the building across 

the hallway, and two attack receivers separated by 3 m outside the concrete wall 

(Figure 4.3(a)). Similarly, for the ZigBee network, we deploy one transmitter across
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the hallway and six receivers outside the boundary wall. The attack receivers are 

placed in two groups of three nodes each, with the distance between the groups being

3 m (Figure 4.3(a)). Nodes in the same group are almost 30 cm apart. We perform 

both TX_NORMAL and TX_RAND experiments with the same ZigBee setup. We 

also experiment with three different transmitter locations in the case of ZigBee.

During the experiment, a person walks back and forth along a predefined path 

(route in Figure 4.3(a)) along the corridor between the transmitter and the attack 

receivers. With the help of a metronome, the person walks at a constant speed of

0.5mm. We collect over 12, 000 data samples for WiFi and over 20, 000 data samples for 

ZigBee in this experiment. In our evaluation, we use ws =  4 s (short time window), 

wi =  40 s(long term window), and A =  4 s (Section 4.4.1).

4.5.3.2 Residential House

In this experiment, we monitor two sides of a residential house (Figure 4.3(b)) to 

detect people movement. We perform two sets of experiment with the WiFi nodes. In 

the first experiment (House 1), we place the WiFi transmitter in a corridor centrally 

located inside the house and two WiFi receivers with normal antenna separation 

(WiFLNORM) in the backyard of the house outside the external wall as shown in 

the Figure 4.3(b). The receivers are placed approximately 1 m away from each other. 

For the second experiment (House 2), we use two WiFi receivers with larger antenna 

separation (WiFLSEP) and place one of them in the backyard and the other outside 

the front entrance. The transmitter is placed in the same position as in experiment 

House 1.

For the ZigBee network, we place two groups of receivers, each group with three 

nodes, on either side of the house outside the external walls. As shown in Figure 

4.3(b), the ZigBee groups 1 and 2 are placed outside the front entrance, and groups 3 

and 4 are placed in the backyard, approximately 1 m away from the walls. Nodes in 

the same group are almost 30 cm apart while the intergroup distance on either side 

is at least 1 m. The ZigBee transmitter is placed inside the house colocated with the 

WiFi transmitter. We perform two sets of experiments with the same network settings 

—  in one experiment the ZigBee transmitter transmits with fixed transmit power of 

+4.5 dBm (TX_NORMAL), in the other experiment the transmitter is programmed
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to vary its transmit power randomly with each transmission (TX_RANDOM).

During these residential experiments, a person walks inside the house at normal 

speed back and forth first near the front entrance of the house (route 1 in the 

Figure 4.3(b)), and then in the living room which is near the rear end of the house 

(shown as route 2 in the Figure 4.3(b)). Finally, the person makes a few rounds 

inside the house as shown in route 3 in the Figure 4.3(b). We collect over 10, 000 

data samples for each set of ZigBee and WiFi experiments. We video record the line 

crossings to test the accuracy of our detection method against ground truth. For the 

residential experiments, we use ws =  2 s (short-term window), w\ =  20 s (long-term 

window) and A =  4 s (Section 4.4.1). We use smaller window sizes for detection of 

line crossings as the person walks at a faster speed as compared to the University 

Hallway experiments.

4.6 Results
We evaluate the performance of the ERW attack in terms of false alarm and missed 

detection rates. False alarm (FA) rates are calculated as the number of line crossings 

wrongly detected by the system over the number of sample points. Missed detection 

(MD) rates are calculated as the number of actual line crossings not detected by the 

system over the total number of actual line crossings.

4.6.1 D etection  o f  Line Crossing

In this section, we present the accuracy of detection of line crossings using the 

methodology as described in Section 4.4.1.

4.6.1.1 University Hallway

Table 4.1 lists the results obtained in the University Hallway experiment using 

our majority vote detection. We achieve almost 100% detection rate with few false 

alarms and missed detections. Using a WiFi 802.11n receiver with normal antenna 

separation, we get zero false alarms and only 1.92% missed detections. We compare 

the detected crossing times with those in the recorded video footage of the experiment 

and find that we can detect the crossing times with an average error of 0.79 s, with 

minimum and maximum errors of 0.03 s and 2.73 s, respectively.
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We obtain zero false alarms and missed detections when using a 802.11n WiFi 

receiver with a large spatial separation between antennas, the mean error in this case 

being 1.22 s. For ZigBee, using a group of three closely located receivers, we get a 

2.66% false alarm rate and a 1.67% missed detection rate in line crossing detection 

with an average error of 1.22 s. We use two groups of receivers and experiment with 

three different transmitter locations in case of ZigBee. We obtain the above results 

by averaging over all transmitter location and receiver group pairs.

Note that while computing the errors as compared to the ground truth, we consider 

the line connecting the centroid of transmitter antenna locations (or the transmitter 

location in case of ZigBee) and the centroid of the receiver antenna locations (or the 

centroid of the receiver locations in the group in case of ZigBee) as the representative 

link line.

4.6.1.2 Residential House

We present the detection accuracy of the Residential House experiment in Table 

4.2. We achieve greater than 94% detection accuracy with a 0.043% false alarm rate 

while using WiFi receivers with normal antenna separation (WiFLNORM). With 

larger antenna separation (WiFLSEP) the accuracy is above 95% with a 0.005% 

false alarm rate. The mean error in detection of line crossings is 1.06 s in case of 

WiFLNORM, the same being 0.56 s for WiFLSEP.

For ZigBee, we achieve above 99% accuracy in detection with a false alarm rate 

of 0.004% only. The mean time-of-crossing estimation in this case is 1.63 s. Note 

that during this experiment, we placed one group of ZigBee nodes (group 2) directly 

in front of the metal-plated entrance door. The packet reception rates for receivers 

in this group are much lower than the receivers in the other groups. Also, perhaps 

due to attenuation through the door, the RSS measurements made by this group are 

more noisy than those made by the other groups, leading to further degradation in 

performance. The missed detection rate for this group is almost 30%, about 60 times 

more than the average missed detection rate of other groups (results presented in 

Table 4.2 are averaged over the other three groups). Thus, we conclude that, although 

an ERW attack can penetrate concrete and brick walls, metallic structures in the line 

of sight path of the radio signals degrades the detection accuracy significantly.
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4.6.2 Determ ining D irection o f  M otion

In the following sections, we present the accuracy we achieve in detecting the 

direction of motion of the person in each experiment.

4.6.2.1 University Hallway

In the University Hallway experiment, the corridor was crossed by a moving person 

an equal number of times in either direction. We achieve 100% accuracy in detecting 

direction of movement on either side of the corridor while using two WiFi receivers 

or two groups of ZigBee nodes using the method described in Section 4.4.2.

We also achieve an accuracy as high as 90.38% in detecting direction of motion 

with only a single WiFi 802.11n receiver by increasing the spatial separation of the 

MIMO antennas. The accuracy with a single WiFi receiver with standard antenna 

separation is 59.62%, which is slightly better than guessing the direction of motion.

4.6.2.2 Residential House

In the Residential House experiment, we achieve 100% accuracy in detection while 

using two WiFi receivers with standard antenna separation (experiment House 1) 

or two groups of ZigBee nodes on either side of the house. Individual detection 

accuracy of the two WiFi receivers (with standard antenna separation placed on 

the same side of the house as in experiment House 1) used are 100% (RX1) and 

68% (RX2), respectively. Detection accuracy with spatially separated antennas for 

these receivers (when they are placed on opposite sides of the house as in experiment 

House 2) are 96% (RX1) and 52.6% (RX2), respectively. These results differ from the 

University Hallway experiment where we get better accuracy in detecting direction of 

movement while using large spatial separation between antennas as compared to using 

normal antenna separation. The degradation in accuracy with antenna separation in 

the Residential House experiment may be due to the fact that during the House

2 experiment, walking speed of the person was about 20% faster as compared to 

the House 1 experiment with normal antenna separation, hence crossing times for 

individual antennas overlapped with each other in some cases.

To summarize, our results indicate that an ERW adversary should use two WiFi 

receivers or two groups of ZigBee nodes at each side in order to detect direction of
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motion accurately. It is possible to achieve very high accuracy even with a single WiFi 

receiver in some cases (e.g., RX1 in experiments House 1 and House 2), however, the 

results depend on the environment and need further investigation.

4.6.3 Advantages o f  M ajority  V ote

In this section, we show how our majority vote approach helps overcome inherent 

uncertainties in wireless links. All wireless links are not equally sensitive to motion 

occurring in their vicinity and the sensitivity varies with link fade level along with 

other factors. For example, Figure 4.5 shows the RSS for the three ZigBee receivers 

belonging to group 1 used in the Residential House experiment for a time interval 

during which the person crossed in front the group two times. For RX1 and RX3, the 

overall RSS variance is very small. When the person crosses the link line, she causes 

high short-term variation of the RSS, as can be seen during time intervals [113 s - 116 

s] and [128 s - 131 s]. Thus, one can infer link crossing times monitoring for these high 

short-term variations in RSS for these links. However, the link to RX2 has very low 

mean RSS value with high variance overall. This link does not show clear short-term 

high variance region corresponding to actual link line crossings as compared to RX1 

or RX3. Hence, a line crossing detection method that relies only on the link to RX2 

will perform poorly.

Since it is not possible for an adversary to know beforehand whether a link is good 

or bad for detecting LOS crossings, he relies on correlation among multiple closely 

located links and infers a line crossing only when majority of these closely located 

links indicates a crossing. In our experiments, 3 x 3 =  9 links between the MIMO 

transmitter-receiver antenna pairs are considered for majority vote in the WiFi case, 

and groups of three single-antenna receivers in the ZigBee case. Figure 4.6 shows 

one scenario where our majority vote algorithm helps get rid of some false alarms 

and missed detections due to one bad WiFi link (for clarity we show three out of the 

nine links) from the University Hallway experiment. The link shown in Figure 4.6(b) 

fails to detect a line crossing that occurs around 100 s. However, the other two links 

(Figure 4.6(a) and Figure 4.6(c)) detect the crossing and a majority vote among these 

three links detects the crossing at that time (Figure 4.6(d)). Similarly, we see that
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the link in Figure 4.6(b) flags a false alarm at 180 s but the other two links do not 

indicate any crossing. Again, the majority vote gets rid of the false alarm at time 180 

s (Figure 4.6(d)), thereby improving the overall accuracy of the system.

We summarize our findings as follows —  a single wireless link suffices in some 

cases in detection of line crossings between a transmitter and a receiver, however, 

the results are not always reliable due to inherent uncertainties in link sensitivity to 

object movements. We can improve accuracy and reliability by correlating detections 

across multiple colocated links using a majority vote approach. Our results confirm 

that we can get rid of most of the false alarms and missed detections caused by a bad 

link by applying the majority vote based detection method.

4.6.4 C om pensation for Transmit Power Change

In this section, we show how transmit power changes (random or strategic) affect 

line crossing detection accuracy and how our compensation method nullifies the effect 

of such power changes.

Figure 4.7(a) shows the effect of random transmit power changes on line crossing 

detection for a WiFi link between a single transmitter-receiver antenna pair that is 

crossed three times by a moving person. The top figure corresponds to the case 

when there is no transmit power change. This figure clearly shows distinct short time 

periods of high variance in the CSI corresponding to the times when the person crosses 

the link. However, transmit power change masks these distinct short-term variance 

regions and renders line crossing detection ineffective as can be seen in the figure in 

the middle. The bottom figure plots the CSI for the same link after compensating for 

the transmit power changes as described in Section 4.4.3. Clearly, our compensation 

method almost nullifies the masking effect of transmit power changes and the attacker 

can detect three line crossings (high short-term variance region) from the compensated 

signal.

Similarly, Figure 4.7(b) shows how strategic power changes can be used to simulate 

link line crossings, and how our compensation method eliminates these artificial 

variations. The top figure plots the RSS in dBm for a ZigBee link that is crossed 

during the time interval 856-860 s. The figure in the middle shows one additional 

line crossing (high variance region) introduced in the link by strategic transmit power
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changes during time interval 838-841 s. However, as seen from the bottom figure, 

our compensation method gets rid of the false alarm introduced by strategic power 

change and we can detect the original line crossing from the compensated signal.

In Figures 4.8 and 4.9, we show false alarms and missed detections induced by 

transmit power changes and the accuracy of our compensation method. In the 

figures, NORMAL corresponds to the case when the transmitter transmits with fixed 

transmit power, CRS is when strategic power changes are introduced in the data 

using TX_LINECROSS simulation, CRS_CMP corresponds to the results when we 

apply our compensation method on TX_CRS. Similarly, RND shows results when the 

transmitter is changing its transmit power randomly with each transmission, while 

RND_CMP is the corresponding compensation results. Note that the owner of the 

legitimate transmitter has full control over the transmitter node and can randomly 

select the periodicity with which to introduce transmit power changes in case of the 

TX_LINECROSS experiment. We present results for one such simulated scenario 

where the owner randomly selects a time period between 3 -  10 s to change transmit 

power according to a profile that mimics typical channel variation introduced by a 

person crossing the link line.

We see that transmit power changes (for both TX_LINECROSS and TX_RANDOM 

experiments) introduce significant false alarms and missed detections while using 

either WiFi (with or without spatially separated antennas) or ZigBee nodes. As an 

example, in the University Hallway experiment, a strategic transmit power change 

at the WiFi transmitter increases the missed detections rate from 1.92% to 32.69% 

and the false alarms rate from 0% to 0.199% when using a WiFi receiver with normal 

antenna separation. However, our compensation method gets rid of all the additional 

false alarms and missed detections. Similarly, in the Residential House experiment, for 

random power changes at the ZigBee transmitter, the missed detections rate increases 

to 31.37% from 0.94% and the false alarms rate increases to 0.429% from 0.003% but 

our compensation method brings down the missed detection and false alarm rates 

to only 0.94% and 0.006%, respectively. Using Equation 4.12, we can estimate the 

transmit power change amplitude accurately in 98% cases if we allow an error margin 

of ±2  dB.
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To summarize our findings, transmit power changes (strategic or random) in

crease the false alarm and missed detection rates significantly. However, using our 

compensation method, an attacker can accurately estimate the transmit power change 

amplitude and compensate for the same to get rid of most the adverse effect caused 

by such changes and still sense people location and motion with high accuracy.

4.6.5 D etection  with Varying Transmission Rate

ZigBee applications in modern facilities use different transmission rates for com

munication. In this section, we show how detection accuracy varies when the transmis

sion rate for the ZigBee transmitter is lowered. We use the data from TX_NORMAL 

for both the University Hallway and Residential House experiment to simulate the 

effect of lower transmission rate. Note that the original transmission rate is ap

proximately 12 Hz. We simulate three additional transmission rates —  6 Hz, 4 

Hz, and 2 Hz, respectively, from the original data. Figure 4.10 shows the results 

of our simulation. We find that the overall detection rates decrease with lower 

transmission rates. For the transmission rate of six transmissions/second, accuracy 

of the detector is over 98% for the University Hallway experiment and over 96% for 

the Residential House experiment. These results are similar to what we observe for 

original transmission frequency of 12 Hz. The accuracy is worst for transmission 

frequency of 2 Hz with the detection rate being as low as 71% for the Residential 

House experiment. For the transmission rate of 4 Hz, the detection rate degrades 

to 87% in the University Hallway experiment, although it remains above 96% for 

the Residential House experiment. We do not see any noticeable change in the false 

alarm rates with varying transmission rate.

We summarize our findings as follows: detection accuracy with ZigBee nodes 

decreases as transmission rate is lowered. For an ERW attack to succeed with high 

accuracy, the transmission frequency must be at least 6 transmissions/second.

4.7 Related Work
Preserving the privacy of the location of mobile devices in wireless networks has 

been object of intense research [77,78]. Location represents an important private 

information that can be used by malicious attackers for serious privacy violations and
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potentially dangerous attacks. The work in [79] presents an evaluation of the privacy 

and security of wireless tire pressure monitoring systems. It shows that eavesdropping 

on these systems is possible through their static identifiers even at a distance of 40 

m.

Other works have demonstrated that communicating wireless devices leak the 

current and past location of people carrying these devices. In [80], the authors show 

that distance bounding protocols [81] can leak distance and location information to 

an attacker overhearing the communication between the prover and the verifier to 

such an extent as to allow the attacker to estimate his own position relative to the 

two devices. They also introduce a location private distance bounding protocol that 

protects against malicious provers, passive eavesdroppers, and attackers trying to 

actively initiate a distance bounding session. In [82], the authors describe a system 

that can reveal the locations of WiFi-enabled mobile devices within the coverage 

area of a single high-gain antenna. By knowing the location and/or the maximum 

transmission range of the APs, an eavesdropper can set up a high-gain antenna to 

sniff the traffic between the victim  mobile device and the APs on all the available 

wireless channels and estimate the position of the mobile device. The work in [83] 

proposes three countermeasures to improve the location privacy in wireless networks,

i.e., anonymize the identity of the device by frequently changing its pseudonym during 

communications (as in [84]), unlink different pseudonyms of the same device with 

silent periods between different pseudonyms, reduce the transmission range of the 

devices through power control to minimize the number of APs that can collaborate 

to localize the devices’ location (the precision to which a mobile device can be located 

depends on how many APs can hear from the device [85]).

The works focusing on location privacy typically assume that the victims of the 

attack are carrying a wireless device (e.g., a mobile phone, radio frequency iden

tification (RFID) tag, low-power radio transceiver) that is actively communicating 

with the surrounding network infrastructure (e.g., WiFi APs, RFID readers, other 

radio transceivers). The work in [86] presents a through-walls passive WiFi radar 

system. In it, a receiver is situated outside the target building and a Wi-Fi AP placed 

inside the building and having a narrow-beamwidth directional antenna is used as
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transmitter. The signal received by the passive radar detector is then used to create 

a range-Doppler surface and detect a moving target. Our work is complementary 

to [86] because through wall radar systems have limited range due to direct signal 

interference. Further, as they are based on transmission, they could be detected by 

source localization or counteracted by jamming. Other systems localize people by 

measuring the change in RSS of links traveling across an area where several WiFi 

APs or ZigBee radio transceivers are deployed. In the case of Wi-Fi based passive 

localization systems [72], a radio map of the environment is created by having a person 

standing at different locations while recording the RSS of all the links. This requires 

access to the target area for an initial calibration of the system. For radio tomographic 

systems [70], accurate localization of people requires a high density deployment of 

radio transceivers on all sides of the target area. In [87], the authors developed a 

method for through wall localization using WiFi signals. However, their method 

depends on active probing, i.e., a custom hardware sending WiFi signals through 

a barrier (e.g., a wall) and measuring the way it reflects back from objects on the 

other side. This active transmission of radio waves makes their work susceptible to 

detection and jamming. Our work relies on passive measurements using standard 

hardware and, hence, is immune to detection and jamming.

In this work, we demonstrate that the presence, location and movements of 

people not carrying any wireless device can still be eavesdropped by measuring the 

RSS of the links between the devices composing the legitimate network and few 

receivers positioned outside the target area. This can be achieved without requiring 

a complex network infrastructure or previous access to the target area for an initial 

calibration. In [88], the authors propose a method to detect an attack to a radio 

tomographic system in which some of the deployed radio transceivers are maliciously 

reprogrammed to change their transmit power. Our work is different in that we 

propose a method capable of correctly estimating the amplitude of the transmit 

power changes implemented by the legitimate devices as a countermeasure to the 

ERW attack. This enables reconstructing the true dynamics of the RSS signals and 

estimating people’s locations. Moreover, in our work we do not make any assumption 

on the number of transmitters changing their transmit power and on the periodicity
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and amplitude of such changes.

4.8 Conclusion and Future Work
We investigated the ability of an attacker to surreptitiously use an otherwise 

secure wireless network to detect moving people through walls. We designed and 

implemented an attack methodology for through wall people localization that re

lies on reliably detecting when people cross the link lines by using physical layer 

measurements between the legitimate transmitters and the attack receivers. We 

also developed a method to determine the direction of movement of a person from 

the sequence of link lines crossed during a short time interval. Additionally, we 

described how an attacker may estimate any artificial changes in transmit power 

(used as a countermeasure), compensate for these power changes using measurements 

from sufficient number of links, and still detect line crossings. We implemented our 

methodology on WiFi and ZigBee nodes and experimentally evaluated the ERW 

attack by monitoring people movements through walls in two real-world settings. We 

found that our methods achieve close to 100% accuracy in detecting line crossings 

and the direction of movement, when we use two WiFi 802.11n nodes with normal 

antenna separation, or two groups of ZigBee nodes as attack receivers. We also found 

that our methods achieve 90 -  100% accuracy when we use a single 802.11n attack 

receiver.

Future work must develop more sophisticated protocols to prevent person loca

tion information leakage. Device hardware enhancements may be necessary for this 

purpose.
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Figure 4.1. Exploiting radio windows (ERW) attack example.
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Figure 4.2. (a) Line crossing detection diagram. The attack receiver(s) measure 
channel state information from the legitimate transmitter. The MIMO antenna array 
at the receiver(s) allows the adversary to count line crossings and determine direction 
of motion. (b) Direction of motion is determined by fitting a line to the points 
created by the spatial indexes of the antennas which detect a line crossing and the 
corresponding packet indexes of the detections. The sign of the slope of the fitted 
line indicates the direction of motion.
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Figure 4.3. Experiment diagrams. We show maps of the (a) University Hallway and 
(b) the Residential House and mark the location of the legitimate transmitter(s) and 
the attack receivers. We also highlight the route(s) followed by the walking person.



85

Table 4.1. Detection Accuracy (Hallway experiment).
Hallway

Experiment:
Accuracy Error (sec)

FA% MD% Min Max Mean
WiFLNORM 0 1.92 0.03 2.73 0.79

WiFLSEP 0 0 0.27 2.37 1.22
ZigBee 0 1.02 0.27 2.37 1.22

Table 4.2. Detection Accuracy (House experiment).
House

Experiment:
Accuracy Error (sec)

FA% MD% Min Max Mean
WiFLNORM

WiFLSEP
ZigBee

0.043
0.005
0.004

5.70
4.35
0.49

0.29
0.03
0.10

2.78
1.82
3.55

1.06
0.56
1.63
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(a) Transmitter deployment

(b) Attack receiver deployment

Figure 4.4. Experimental setup of ZigBee radios at the University Hallway experi
ment. The images (a) and (b) show the interior and exterior radios, respectively.
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Figure 4.6. The majority vote over transmitter-receiver antenna pairs reduces false 
alarms and missed detections. (a),(b), and (c) show the results of the windowed 
variance based line crossing detection for a different antenna pair using WiFi. In (d), 
we see that the majority vote eliminates false alarms and missed detections.
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Figure 4.8. Compensation accuracy in the University Hallway experiment. Both 
strategic (CRS) and random (RND) transmit power variations increase (a) missed 
detections and (b) false alarms rate significantly. However, our compensation method 
eliminates most of these artificially induced missed detections and false alarms (see 
CRS_CMP and RND_CMP).
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CHAPTER 5

TOWARD A RAPIDLY DEPLOYABLE RTI 
SYSTEM FOR TACTICAL OPERATIONS 1 

5.1 Abstract
The ability for special operations forces (SOF) to rapidly deploy a through-wall 

tracking system upon arrival at a tactical operation, e.g., a hostage scenario, and 

thereby estimate the approximate locations of the people within the building, has the 

potential to lower the risk of the operation and save lives. We study the feasibility 

of a rapidly deployed radio-tomographic imaging (RTI) system for use in tactical 

operations by SWAT and other SOF, in which several low-power radio devices are 

placed around a building and used to image and track the motion of humans inside the 

building. Specifically, we identify and study the constraints of this application, such 

as the need for the sensor network to self-localize and self-calibrate with minimal input 

from the SOF. We implement and test, in a wide variety of experimental deployments, 

a real-time RTI tracking system which adheres to these constraints and provides 

valuable situational intelligence. We work in concert with local law enforcement and 

SWAT in order to obtain valuable feedback from end users. We show that our system 

is capable of providing useful tracking information (average errors of less than 2 m) 

even when the self-localization results are inaccurate (up to 3 m average error).

5.2 Introduction
This report describes progress in determining the feasibility of a new radio fre

quency (RF)-based technology for through-building surveillance, specifically, deter-

1©[2013j. Reprinted, with permission, from D. Maas, J. Wilson, N. Patwari, “Toward a Rapidly 
Deployable RTI System for Tactical Operations,” in Proc. 8th IEEE International Workshop on 
Practical Issues in Building Sensor Network Applications (SenseApp), 2013.
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mining the positions of people inside a building using sensors placed only on the 

outside of the building. The enabling technology, RF tomographic imaging (RTI), 

uses a network of small, inexpensive wireless devices, placed around an area, to 

make measurements and estimate where people and objects are currently located 

in the area [9,65,67,69,89-93]. By using radio waves, the devices are able to image 

through walls, smoke, and other obstructions [10,94], a major advantage over light and 

infrared. We introduce the fundamentals of RTI in Section 5.3.1. The “see through 

walls” capability of RTI opens the door for many emergency response applications in 

which situational awareness is critical to save lives.

In this work we investigate the application of these technologies to a system for use 

in emergency response, specifically, for SWAT and military special operations forces 

(SOF). Consider the scenario of a SWAT team responding to a hostage situation. 

Upon arrival at the scene, golf-ball-sized RTI radios are placed, thrown, or tactically 

launched (from an M-32 or M203 launcher) around the building. Depending on the 

scenario, these might land on the ground, or be deployed so that they stick to the 

outside wall of the building. Once deployed, the radios communicate and form a mesh 

network. After the radios self-locate and form an accurate map of their own locations, 

they continuously measure received signal strength (RSS) on all of the pair-wise links 

in the network. The measurements are collected and processed in real-time to show 

the tracks and current locations of moving people and objects in the environment, 

as shown in Figure 5.1. These data from our system represent significant situational 

intelligence which may help save lives during the course of the SWAT operation. For 

example, SWAT commanders could decide which part of the building is furthest from 

people and thus may be their safest point of entry.

This paper details feasibility studies for a robust, rapidly deployable, commercial 

RTI system. In contrast to experimental research tests in which sensors are hand- 

placed, mapped, and manually calibrated, in a tactically-deployed system, sensors 

must self-localize, self-calibrate, and the network must automatically form and start 

to measuring RSS.

The sensors must self-localize because many tactical operations are time-critical, 

and SOF cannot take the time to map the locations of the nodes. Additionally,
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precisely measuring the node locations may put SOF personnel at risk.

The network must self-calibrate regardless of the number of people already present 

within the building being monitored. Previous RTI methods [10, 94] have required 

empty-building calibration measurements in order to generate accurate tracking re

sults, but empty-building calibration measurements may not be possible in many 

tactical operations. Additionally, since our system can measure RSS on multiple 

wireless channels, a part of the self-calibration process involves deciding which chan

nels represent the best source for tracking measurements in real-time.

We show that these capabilities are feasible, that robust localization performance 

can be achieved, and that a complete system with these capabilities would be very 

compelling for end users. In summary, a through-building surveillance system with 

the capabilities we demonstrate would be useful to SWAT and other SOF, and would 

help save lives.

Specifically, our paper describes the following achievements towards a complete 

RTI tracking system that could be operated and used by SOF:

• We implement in real-time kernel distance-based radio tomographic imaging 

(KRTI), an RTI method that has improved performance compared to previously 

reported attenuation-based RTI [9] and variance-based RTI (VRTI) [10,94]. We 

describe KRTI and its performance in Sections 5.3.1 and 5.4.1.

• Since sensors must self-localize using a combination of GPS, received signal 

strength (RSS) measurements, and minimal user input, before they can estimate 

the positions of people in the environment, we study the effects of poor self

localization on tracking performance. Surprisingly, we find that the performance 

of KRTI degrades gracefully as the sensors’ self-localization errors increase. This 

result is discussed further in Section 5.5.3.

• We implement and test a particular sensor self-localization method, called 

distributed weighted multidimensional scaling (dwMDS) [95,96] that combines 

GPS, RSS, and building layout information for sensor self-localization. We de

scribe dwMDS in Section 5.3.2 and show in Section 5.5.1.1 that our experiments 

yield an average sensor self-localization accuracy of about 1.5 m.
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• We implement two types of sensor self-calibration. First, the KRTI system 

must know the histogram of RSS values on each link. We show this can be 

calculated in real-time from RSS data, without requiring any “empty-building” 

calibration. Empty-building calibration is impossible in emergency response 

applications, but has been used in most previous research [9,89,97]. Second, we 

choose upon deployment the best frequency channel for each link according to 

its fade-level. These two self-calibration methods are discussed in Section 5.3.3.

• We examine the use of directional antennas for through-building KRTI. We find 

that equipping sensors with directional antennas, compared to omnidirectional 

antennas, reduces average tracking error further, by as much as 22%. This 

result is described in Section 5.5.2.

• Finally, we study the effects of using different sized networks for KRTI and 

find that the number of sensors can be dramatically reduced compared to the 

30 or more used in previous research [9,94]. With only ten sensors, accurate 

localization (less than 1 m RMSE) can be achieved. This development is 

described in Section 5.5.3.

In summary, we show that a tactically deployed RTI system with a small number 

of sensors can perform sensor self-localization with minimal input from end users, can 

self-calibrate, and still provide high accuracy localization and tracking of people in 

a variety of experimental deployments. In addition, we collaborate extensively with 

local SWAT in order to get feedback on system deployment and usability. End user 

observations of a testbed deployment are described in Section 5.5.4.

5.3 Methodology
In this section we introduce the RTI method we implement to produce the images 

used to track human motion. Next, we discuss the method we use to allow the nodes 

to self-localize. Finally, we discuss network self-calibration.

5.3.1 R adio Tom ographic Im aging Im plem entation

Several methods for RTI-based location tracking have been introduced over the 

past few years [8,75,91,98]. In [9], the authors measure the average RSS on each link
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while the tracking area is empty and then determine where people are in the network 

based on changes in the RSS values for each link. In [10], the authors monitor the 

variance of the RSS on each link in order to localize motion in the network. This 

method has the benefit that it does not require offline calibration, but it cannot detect 

stationary targets.

Recently a new RTI method, kernel distance radio-tomographic imaging (KRTI) 

[92,99], was introduced which detects stationary and moving targets without the need 

for offline calibration. KRTI uses a kernel distance metric to quantify the difference 

between two histograms of RSS measurements for each link in order to track people 

within the network. Using histograms of RSS measurements combines the benefits 

of the methods presented in [9] and [10], quantifying changes in both the mean and 

the variance of RSS measurements for each link. An example of the images generated 

with KRTI and used for tracking is shown in Figure 5.2. The hot point in the image 

represents the position of the person being tracked.

In KRTI, a long-term histogram is used as a baseline, while a short-term histogram 

is used to track recent changes in RSS on each link. When applied to these two 

histograms for a given link, the kernel distance metric is an indicator of motion on or 

near the link. The results we present in this work rely on KRTI in order to perform 

tracking because it is well-suited to hostage and barricade situations, in that it does 

not require empty-building calibration measurements and is capable of running in 

real-time. We note that a background subtraction method like the one presented 

in [100] is also capable of determining these distributions without empty-building 

measurements, but includes more computational complexity.

5.3.2 Sensor N etwork Self-Localization

The proposed tracking system requires knowledge about the relative locations of 

the radio transceivers deployed around the building within which the human targets 

are to be tracked. More precise node localization leads to more accurate tracking, 

which would be valuable to end users like SWAT. Since a SWAT team may not have 

the time or be willing to put their personnel at higher risk in order to precisely 

measure out the node locations, the nodes should self-localize and begin to track 

people within the network with little or no help from the team deploying the system.
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There are several methods in the literature for localizing radios. They typically 

use the time of arrival (TOA) or received signal strength (RSS) of radio transmissions 

in order to estimate internode distances [101]. An ordination technique like multidi

mensional scaling (MDS) [96] can then be applied to find a map of sensors that best 

fits the measured internode distances.

In this work, we implement and augment a type of MDS called distributed weighted 

multidimensional scaling (dwMDS) [96], an ordination method which, given a noisy 

set of interpoint distances, attempts to find the most likely arrangement of these 

points. In our case, these points correspond to the locations of the network nodes, 

and the interpoint distances are estimated using the maximum-likelihood estimator 

(MLE) for the large-scale path loss model in [47] and the RSS measurements made by 

the nodes. In order to mitigate the effects of fading error on the RSS measurements 

for each link, we use the average RSS over five channels for each link.

The dwMDS cost function is

S =  2 ^  wij(Sij -  dij(X ) )2 +  ^  riHx -  xi||2, (5.1)
i=j i

where 8ij is the estimated distance between nodes i and j , dij (X ) is the distance 

between nodes i and j  for the node location matrix X , wij is a weighting factor 

which represents the quality of the distance estimate, x i is the ith node location, 

Xi represents an a priori estimate of the ith node location, and ri is a weight that 

represents the quality of the a priori estimate. The Xi could come, for example, from 

GPS receivers attached to the nodes or from coarse location estimates contributed by 

the end user. The cost function is then minimized over the node location matrix X .

We envision that the user interface might include a method for the users to mark 

(for example, by tapping on a touch-screen) the approximate node locations (x;i) on 

a map or aerial image, similar to those provided by Google Maps. Building shapes 

could be directly inferred from the satellite imagery using edge detection. In addition, 

end users like SOF have access to building plans, which could also function as input 

to the software interface. We leave the design of the user interface for future work, 

but note that the shape of the building around which the nodes are deployed further



99

constrains the locations of the nodes. We augment the dwMDS cost function in order 

to include the building shape constraint

S =  2 ^  wij(Sij -  dij(X ) )2 +  ^  ri||xi -  x i||2 +  a ^  ||x* -  p||2, (5.2) 
i=j i i

where p is the nearest point on the perimeter to x i and a is a weighting factor that 

represents the quality of the perimeter information.

Another possible way to improve network self-localization is to use nodes that 

include GPS capability. Current commercial GPS devices are capable of localizing 

to as little as 2 m within 30 s of deployment, and are inexpensive thanks to the 

rise of the mobile phone. The GPS-based node locations may be used as a priori 

information in (5.2) or in addition to it. In fact, if GPS can reliably localize to 2 m 

and the end user only requires coarse target tracking, RTI might be performed using 

the GPS measurements alone. It is important to note that GPS receivers require 

unobstructed views of the sky to accurately localize, so we may not be able to rely 

on GPS in situations where the nodes are not exposed to the sky.

5.3.3 Sensor Network Self-Calibration

The tracking system must also establish baseline RSS distributions for each link 

in order to quantify changes in RSS and localize motion. Since it is not possible 

for end users to remove the antagonists or hostages from a building in order to 

perform calibration measurements, these distributions must be estimated online. For 

multichannel KRTI, it is also necessary to decide which frequency channels to use. 

We describe our methods for online baseline RSS estimation and channel selection 

below.

5.3.3.1 Baseline RSS estim ation

KRTI relies on keeping two histograms of RSS measurements for each link in 

the network and comparing those distributions in order to determine whether or not 

people are moving near each link. Self- calibration after deployment occurs in real

time by continuously calculating the long-term histogram and using it as a baseline 

for detecting human motion. The long-term histogram converges to what would be 

seen in a calibration to be useful for finding both moving and stationary people in the
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building. The convergence speed is adjustable, but we find that good performance 

is achieved with parameters that require about 30 s for convergence. According to 

our end user contacts, most barricade scenarios last long enough (sometimes multiple 

days) to allow such a convergence time. We note that people must move periodically 

in order for our tracking system to locate them. If they remain stationary for a period 

of time beyond the memory of both histograms, they will disappear from the tracking 

image.

5.3.3.2 Channel Selection

We leverage frequency diversity in our test system and demonstrate through 

multiple experiments that it improves tracking performance. The fading experienced 

by each link in the network is frequency selective, i.e., the RSS is different due to the 

different constructive or destructive combinations of the multipath components as a 

function of frequency. Transmitting on multiple channels makes it more likely that a 

channel will be found on which each link can be used reliably for RTI.

The best channels for RTI are those in an antifade, because the RSS on these 

channels are typically strongly affected only when a human target is blocking the line 

between the two nodes of the link, and not when he is moving at other positions [97]. 

In other words, antifade links are the most spatially informative [69,102]. For each 

link, we choose the channel with the highest average RSS, because these channels are 

most likely to be in an antifade. There are other options for combining information 

from multiple channels, e.g., using the best n channels, but we leave the exploration 

of these options for future work. For multichannel KRTI, we allow an additional 30 s 

for channel selection, leading to a total of 60 s for calibration and channel selection.

5.4 Experiments
In this work, we present results both from real-time experiments as well as exper

iments that were used in postprocessing for analysis of system design. We perform 

experiments at the following sites (the building layouts are presented in Figure 5.3):

• Site A: A 110 m2 single floor of a modern home in a typical suburb, comprised 

of four rooms and a bathroom. (33 nodes deployed)
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• Site B: A 50 m2 building comprised of 2 rooms. (34 nodes deployed)

• Site C: A 55 m2 living space comprised of a single room. (36 nodes deployed)

In each case, Texas Instruments CC253X-based nodes are deployed as uniformly 

as possible around the perimeter of the building and data are collected using 8 

dBi directional and omnidirectional antennas while a human target follows planned 

routes throughout the building. The tracking data are analyzed in postprocessing 

to determine the accuracy of the system. We study the tracking performance when 

fewer nodes are used to surround each location by using RSS measurements made at 

a subset of the nodes from each deployment. Additionally, we study the effects of 

poor node self-localization by adding noise to the known locations of the nodes.

5.4.1 Tracking

Before pursuing our research objectives relating to self-localization and self-calibration, 

we first evaluate the tracking performance of a system when the node locations are 

known exactly for each of the three experiments. Knowing the performance with 

exact node locations is important as a baseline for evaluating the effect of automatic 

configuration on tracking accuracy during rapid deployment.

5.4.2 N ode Self-Localization

In order to test the accuracy of node self-localization methods like dwMDS, we 

precisely record the positions of each node during each deployment. During the 

calibration phase immediately after each deployment, we apply dwMDS in order to 

estimate the relative locations of the nodes.

We are also interested in the performance of our tracking system in the presence 

of imperfect knowledge of the node locations. In order to understand the effects of 

poor node self-localization, we simulate the circumstance by adding Gaussian noise 

to the true node locations and comparing the corresponding tracking results to those 

we achieve with the correct node locations.

5.4.3 A ntenna T ype

The use of better radio hardware may improve the performance of an RTI tracking 

system. For example, we are interested in determining whether or not the use of
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directional antennas results in better tracking performance. Previous research of 

RTI [9, 10] has relied primarily on omnidirectional antennas, which radiate more 

energy away from the tracking area than they do into it. We expect that the more 

focused gain pattern of the directional antennas should maximize the amount of 

power being radiated through the building, as opposed to away from it or around it, 

leading to a more connected network, a higher average fade level, and better tracking 

performance. Maximizing the power radiated into the building is especially important 

in through-building imaging, where the signal may need to propagate through multiple 

exterior and interior walls.

In order to examine the benefits of directional antennas for our application, we 

first perform each experiment with radios that include a PCB microstrip inverted-F 

antenna with an omnidirectional gain pattern. We then repeat the experiment using 

circularly polarized 8 dBi directional antennas. In each case, we set the transmitted 

power for our radios to the maximum power allowed by the hardware in order to 

increase network connectivity as much as possible.

5.4.4 N etwork Size

It is important to understand the trade-off between the number of nodes in the 

RTI network and the corresponding tracking accuracy, because the tracking system 

must offer a fast and simple deployment in order to be useful to the end users. In 

some barricade scenarios the hostile targets may be armed, making it dangerous for 

SOF to spend time setting up nodes around the perimeter of the building. In these 

cases, smaller networks may allow for safer deployments and still offer useful tracking 

data. For example, using 30-40 nodes may allow for tracking a person to within 0.3 

m of their true location, but the end user may wish to sacrifice some accuracy in 

order deploy the system quickly in a dangerous situation, e.g., using 10 nodes and 

accepting a tracking error of 1 m.

We examine the tracking performance for networks which include 10 to 36 nodes. 

At each experimental deployment, the nodes are placed around the perimeter of the 

building in an approximately equally spaced pattern.
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5.4.5 C ollaboration  with End Users

In order to understand the constraints of the potential end users of our system, we 

collaborate with one of Utah’s largest SWAT operations, the Unified Police Depart

ment in Salt Lake City. The purpose of our collaboration is to obtain explicit feedback 

about our proposed system, whether it would actually help in tactical operations, and 

what physical constraints need to be addressed in order for such a system to become 

important and useful to end users.

We organize an extensive through-building tracking demonstration day for mem

bers of the SWAT team and other law enforcement agencies in order to deploy our 

tracking system around a home in Salt Lake City and simulate hostage and barri

cade scenarios while law enforcement officers offer valuable feedback about system 

deployment and performance.

5.5 Results
We present the major results from our experimental deployments below. We 

discuss general tracking results in Section 5.5.1, self-localization results and the 

corresponding effects on tracking performance in Section 5.5.1.1, a comparison of 

tracking performance for directional and omnidirectional antennas in Section 5.5.2, 

and the effects on tracking performance of using fewer nodes in Section 5.5.3. Finally, 

we discuss the feedback from local SOF after a real-time demonstration of the system 

in Section 5.5.4.

5.5.1 Tracking

At Site A, with exact locations of nodes known, an average tracking error of 

approximately 1.1 m was achieved with 33 nodes over 110 m2. At Site B, an average 

tracking error of 0.46 m was achieved with 34 nodes over 50 m2. At Site C, an average 

tracking error of 0.54 m was achieved with 36 nodes over 55 m2. Some tracking results 

for Sites A and B are depicted in Figure 5.4.

We expect that with a higher density of nodes per unit area, we should see a lower 

average tracking error, and this can be seen in the results presented in Table 5.1. 

As seen in Figure 5.6, Sites B and C, which are approximately the same size and 

have similar node-to-area ratios, show similar average tracking results. Site A, which
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represents a larger area and is covered with less nodes, shows slightly higher average 

tracking error.

While these tracking results would be beneficial according to our SOF contacts, 

they are achieved using near-perfect knowledge of the node locations, which SOF 

may not have access to in most scenarios. The sequel discusses node self-localization 

results.

5.5.1.1 Effect o f  Self-localization Error

In Figure 5.5(a), we show the dwMDS results for Site A without any a priori 

information about the node locations (ri =  0 for all i), which yield an average error 

of 3.3 m. The reason for the high average error is the rich multipath environment 

of the building, which leads to small-scale fading, and the failing of the large scale 

path loss model. We will show later that we can still achieve acceptable human 

target tracking results with this level of error in the network self-localization, but we 

can improve the localization by including some information from the end user about 

the deployment, specifically, a priori estimates of the node locations and building 

perimeter shape.

Figure 5.5(b) shows the results of dwMDS for Site A with coarse (2 m average 

error) a priori node locations and an the augmented cost function (5.2). In this case 

we achieve an average error of 1.5 m.

We note that our work investigates the accuracy of target tracking vs. the accuracy 

of node locations regardless of the methods used to localize the nodes. As expected, 

the accuracy of tracking decreases as the error of node location increases. However, 

keeping the mean squared error (MSE) of the node location estimates below 4 m2 

allows for average tracking errors of less than 1.5 m. The results are presented in 

Figure 5.6.

5.5.2 D irectional vs. O m nidirectional Antennas

Figure 5.6 shows the tracking performance at each experiment site vs. error 

variance in the network self-localization for both antenna types. Directional antennas 

offer better performance at Site A, but the two types of antennas result in similar 

performance at Sites B and C.
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The difference in the performance may be due in part to network connectivity: 

Site A shows improved connectivity, in terms of packet reception rates, when using 

directional antennas instead of omnidirectional antennas, while Sites B and C exhibit 

similar network connectivity regardless of antenna type.

5.5.3 N um ber o f  N odes

Figure 5.7 shows the tracking results from each site, for network sizes ranging from 

10 to 30 nodes, and both antenna types. Tracking results for the maximum number 

of nodes at each site can be seen in Figure 5.6. Surprisingly, we find that with as few 

as ten nodes, we are able to achieve less than 1.3 m average tracking error in most 

cases. If we guess randomly and uniformly at the location of the target across the 

area of the deployments at Sites A, B, and C, we find average errors of 6.0 m, 3.6 m, 

and 3.8 m, respectively.

The tracking accuracy appears to improve with the number of nodes. Although 

our experiments used a maximum of 36 nodes, we would expect that further increasing 

the number of nodes will further decrease the tracking error.

5.5.4 End User Feedback

After demonstration of our through-building tracking system, we interviewed 

SWAT commander Lt. Jake Petersen to receive his feedback and advice regarding 

the system. The following are quotes from the interview with their respective times 

in the video. The interview in its entirety can be found at http://w ww.youtube. 

com/watch?v=QnQKfz-AEi4. Note that a portion of the tracking demo is contained 

in the video at time 1:00.

• “This is something that I would use on really any barricaded subject or any 

hostage situation. Pinpointing exactly where the individual is, or even the 

hostages, allows us to make a save for these victims much easier. Really it is 

going to save lives, that’s the mission of SWAT.” (1:45)

• “Making sure that the technology works is really important and you’ve given 

me a lot of confidence in that here today.” (4:20)

http://www.youtube
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• “I would not be here if I didn’t think that this product could save lives, that’s 

the honest truth.” (16:16)

• “I want to save their lives, and I believe this kind of thing could help us do 

that.” (17:00)

5.6 Conclusion
We have examined the feasibility of a rapidly deployable through-building RTI 

system for SWAT and other SOF. We have shown that our system can rapidly self- 

localize and self-calibrate after deployment. The self-localization process requires 

minimal input from the user, and the system produces useful tracking results even 

when the node self-localization contains errors. We have also seen that directional 

antennas help increase through-building tracking accuracies as more power is radiated 

through the area of interest. Future development may use higher-power transmitters 

that provide full connectivity for larger building sizes.

Finally, through our interviews with SOF end users, we have further validated 

the need for this technology in tactical operations. We have shown that a simple, 

rapidly deployable, and user-friendly through-building tracking system is technically 

feasible. Future work will include the development of a user interface for SOF that 

will allow them to input deployment information, e.g., the building shape and coarse 

node locations, into the system, and then coordinate operations on top of the tracking 

data it generates.

5.7 Acknowledgment
We would like to thank Matt Kankainen for helping with the many experiments 

necessary for this work.



107

•  •  •  •

•  •  •  •

0 0  802.15.4 mesh network X  Target locations

Figure 5.1. System overview. Special operations forces arrive at a building, deploy 
mesh network nodes around the perimeter of the building, and estimate the locations 
of people moving inside.
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Figure 5.2. Example image for multichannel KRTI.
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Figure 5.3. Experiments were conducted at three sites with different floorplans and 
building materials.
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x-coordinate (m)
(a)

x-coordinate (m)

(b)

Figure 5.4. A subset of tracking results from: (a) Site A using directional antennas 
and multichannel KRTI resulting in an average error of 1.1 m; (b) Site B using 
directional antennas and multichannel KRTI resulting in an average error of 0.46 m.
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Table 5.1. Average tracking error for best antenna type at each site compared to 
random estimator and number of nodes.

Site A Site B Site C
10-node system 1.27 m 1.19 m 0.89 m
20-node system 1.22 m 0.70 m 0.68 m
30-node system 1.01 m 0.49 m 0.58 m
Random estimator 6.0 m 3.6 m 3.8 m
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x-coordinate (m)

(a)

x-coordinate (m)
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Figure 5.5. Multichannel dwMDS (a) without a priori information or augmented 
cost function and (b) with a priori information and augmented cost function.
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(a)

(b)

(c)

Figure 5.6. Average tracking error vs. mean squared error of node locations for 
directional and omnidirectional antennas at (a) Site A, (b) Site B, and (c) Site C.
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(a)

(b)

(c)

Figure 5.7. Average tracking error vs. number of nodes deployed for directional and 
omnidirectional antennas at (a) Site A, (b) Site B, and (c) Site C.



CHAPTER 6

CONCLUSION

This dissertation is concluded with a summary of the most important findings in 

in the work. Ongoing and future work are then discussed.

6.1 Research Summary
The ubiquity of wireless networks (Cellular, WSN, WiFi LAN, Bluetooth PAN) 

transmitting in the RF range is leading to new applications for measurements made 

at the physical layer of the network stack. Channel measurements, e.g., estimates of 

the CIR made with channel sounders or the RSS estimates commonly made available 

to the application layer of the network stack by commodity wireless devices, are now 

being leveraged to sense the environment of the network.

Part of this dissertation is an effort to improve the tool-set used for CIR impulse 

response measurement by wireless communication researchers. To that end, I have 

helped build an open source 802.11b channel sounder on top of the popular GNU 

Radio software defined radio platform. The sounder is capable of receiving and de

coding standard 802.11b packets at 1 Mbps and 2 Mbps data rates at full bandwidth, 

improving on previous receivers [46] by match filtering the incoming packets on the 

FPGA of the USRP before sending data through USB to the host PC. This tool 

has been downloaded over 1000 times since release. The tool has been validated in 

controlled experiments in the lab as well as in a variety of real-world environments.

I have also conducted a study of the methods for using CIR measurements to 

perform location distinction, specifically, in the context of MIMO communications, 

leading to an understanding of the trade-offs between different aspects of system 

complexity and system performance. Key findings include the knowledge that a 

system with two antennas offers nearly as much improvement in location distinction
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performance as a system with eight antennas, and that measurement bandwidths 

beyond 20 MHz offer diminishing returns because of the tendency of lower bandwidth 

measurements to mask the effects of timing synchronization errors. Finally, the 

MIMO location distinction system is capable of accurately detecting changes in re

ceiver position using measurements for just one transmitter, while accurate detection 

in previous work using SISO devices has required multiple links.

Part of this dissertation is concerned with exploiting the so-called “radio windows” 

created by infrastructure wireless networks. This work shows that, using ambient 

secured radio signals emitted by a building’s WiFi or ZigBee network, an attacker 

outside of the building can infer location information about the people within the 

building. This information includes their direction of motion and what side of the 

building they are on, and is based on the detection of people crossing the LOS radio 

links between a legitimate transmitter inside the building and an illegitimate receiver 

placed outside the building by the attacker. The work also examines possible defenses 

for this attack. A key finding is that we can identify line crossings and direction of 

motion through walls with greater than 90% accuracy using just a single 802.11n 

attack receiver.

It should be noted that we did not use GNU Radio /  USRP channel sounder or 

the National Instruments 2x2 MIMO channel sounder for the “radio window” work 

because a cheaper and more portable measurement system, the CSI Tool [20], became 

available. This tool, which makes 3x3 MIMO OFDM channel measurements on WiFi 

packets, provides higher quality measurements across larger bandwidths than the 

other tools are capable of, and does so at a significantly lower cost.

The CSI Tool relies on a common Intel NIC with a modified firmware/driver. No 

other specialized hardware is necessary, showing that it is feasible to make information- 

rich channel measurements available to the application layer on commodity hardware. 

Location distinction performance using measurements made with this tool, or similar 

measurements made with other commodity NICs, would be as robust as the perfor

mance achieved using measurements made by the sounders used in Chapter 3. I hope 

that this and other useful applications, e.g., secret key sharing and fingerprint-based 

localization, encourage NIC designers to make channel measurements available higher
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in the network stack.

The final part of this dissertation is concerned with bringing the benefits of 

through-wall imaging and tracking to SWAT teams and other special operations 

forces by making a rapidly deployable and robust RTI system. One key finding 

in this feasibility study are that the node locations in an RTI network do not need 

to be known very accurately to achieve useful tracking results, and can be estimated 

through an RSS-based method like dwMDS. Additionally, we find that as few as 

10 nodes can be used in a deployment, while still offering useful tracking results. 

A method like KRTI can be used to alleviate the need for offline calibration, while 

maintaining the ability to image people that are stationary for short periods of time. 

Finally, directional antennas offer better connectivity and RTI performance, since less 

transmit power is being radiated away from the building.

6.2 Ongoing and Future Work
At the time of this writing, I am continuing research efforts to develop a rapidly 

deployable and robust RTI system. This includes studying the effects of system 

parameters on tracking performance and automating parameter selection, so the end 

user does not have to, and examining the possibility of online adaptation of the RTI 

weighting matrix in order to improve image quality. It also includes developing a 

2.5D RTI algorithm that uses multiple radio channels and takes into consideration 

the level of multipath fading for each link when creating the weighting matrix.

Future work should address the radio window problem. Currently, countless homes 

and other buildings contain wireless networks that expose them, on some level, to 

anyone with a cellular phone, tablet, or laptop. A savvy thief, for example, can make 

a good guess as to whether or not a building is vacant based on measuring signal 

strength changes over time on its wireless network.

Perhaps the problem can be solved using algorithms that disguise the effects of 

humans on infrastructure wireless signals in subtle ways that are less susceptible to 

detection and removal than the method discussed in Chapter 4. The radio window is 

becoming even more of an issue with the introduction of less costly and more powerful 

consumer-grade software defined radios, which can go further than measuring signal
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strengths on the network. For example, with a single software defined radio, it is 

possible to detect the respiration rate of a person. So, the most savvy of thieves 

could potentially find out whether or not you are home, even if you remain perfectly 

still.

This work has been focused on making radio channel measurements of different 

types and using them to (a) localize people moving in the area covered by a wireless 

network and (b) detect the motion of the radios that make up the wireless network. 

The former tends to be the harder of these two tasks, since a person moving in the 

environment of a radio link will only affect a subset of the multipath that contribute to 

the CIR, while the motion of one of the radios that make up the link will affect most of 

the multipath. Using RSS as a channel difference metric makes both problems harder, 

since multiple positions of a person or radio can lead to similar RSS measurements. 

Therefore, future research should apply RTI methods to CIR measurements instead 

of RSS measurements. It is possible that this would lead to RTI systems that require 

fewer radios and that are therefore less expensive and easier to deploy. Further, using 

CIR measurements, it should be possible to improve radio self-localization in the RTI 

network, also leading to better performance.



APPENDIX

RAPIDLY DEPLOYABLE RTI 
ADDENDUM

This addendum is included as a supplement to the reprinted paper [19]. In 

Section A.1, I briefly discuss a link budget analysis for through-wall RTI systems. 

In Section A.2, I discuss the effect of randomly selecting the subset of radios used 

on tracking performance for through-wall RTI.

A.1 Link Budget Considerations for 
Through-Wall RTI

The radio links in a through-wall RTI system must penetrate multiple interior and 

exterior walls, as well as the furniture, appliances, and people that are in the building. 

Since the radios in the system must operate with finite transmit power and receiver 

sensitivity, it is important to consider the link budgets of the radios that comprise 

the system. While it is impossible to perfectly model the effects of every possible 

deployment environment for RTI, a link budget allows us to determine whether or 

not a given deployment is likely to have the connectivity necessary to perform RTI 

given the power constraints of the system and the size of the deployment.

A log-normal path loss model, which includes the losses contributed by free-space 

propagation and shadowing, is augmented with a fade margin term in order to capture 

the effects of multipath fading, and an additional shadowing term which represents 

the losses caused by the external walls. This model represents the received power for 

any link in the network as

d
(d)dB =  PT +  GT +  — LC — LP (d0) — 10n logl0 X o- — — (A.1)do

where is the received power, d is the distance from transmitter to receiver, is
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the transmitted power, GT is the gain of the transmitter antenna, GR is the gain of the 

receiver antenna, LC is the loss caused by cables and connectors, LP(dQ) represents 

the path loss at reference distance dQ, n is the path loss exponent, X a is a zero mean 

Gaussian random variable with standard deviation a, which accounts for random 

shadowing losses, L f is the fade margin term, and Lw represents the wall losses.

The TI radios used for the experiments performed in [19] offer a typical transmit 

power of 4.5 dBm and a typical receiver sensitivity of -97 dBm. The antenna gain 

of the directional antennas used for the experiments (transmit and receive) is 8 dBi. 

In [103], a study of indoor propagation at 2.4 GHz, LP(dQ) is found to be 50 dB with 

dQ =  3 m, n is found to be 3.73, and a is found to be 4.35 dB for NLOS links. The 

cable and connector losses are approximately 2 dB. A good rule-of-thumb fade margin 

for indoor environments is 25 dB [104].

The wall loss term Lw is specific to the material and thickness of the exterior 

walls. In [105], a study of propagation losses through common building materials, the 

authors find the transmission losses shown in Table A.1. If, for example, the exterior 

walls are made of two-layers of red brick, and all links must links pass through two 

exterior walls, Lw «  17.7 dB. Substituting the corresponding values into (A.1) and 

simplifying yields
d

PR(d)dBm =  — 74-2 — 37-3l°glO 3  — X ct=4.35 (A .2)

Figure A .1 shows (A.2) for distances up to 20 m, with the dashed lines representing 

the positive and negative standard deviations. In this example, a reliable network for 

RTI is probable as long as the radio links are less than 9 m in length. Longer links 

will require an increase in transmit power, antenna gain, or receiver sensitivity.

A.2 Further Tracking Results
In [19], I examined the effect of using fewer radios for through-wall RTI by only 

including measurements from a subset of the radios deployed in each experiment. A 

single subset was chosen such that the radios it contained surrounded the site with 

roughly even spacing between adjacent radios. However, it is possible to choose more 

than one subset of a given size. Since some radio links are better than others for RTI, 

e.g., due to fade level, different radio subsets may offer different tracking performance.
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In this addendum, I have included Figure A.2, which shows the subset average 

tracking errors for each experiment site. The subset average tracking error is the 

result of averaging the mean tracking errors over multiple subsets for each network 

size. Subsets for a network of N radios are selected such that the N radios are 

evenly distributed around the experiment site. When N is less than half of the radios 

originally deployed for an experiment site, this is accomplished by selecting every kth 

radio, where k is as large as possible given the number of radios deployed. When N 

is greater than half of the radios originally deployed, this is accomplished by pruning 

every kth radio, where k is as large as possible given the number of radios deployed. 

Different subsets for a given network size are created by shifting the selection/pruning 

by a single radio. This leads to 4 subsets for N =  10, 3 subsets for N =  15, and 2 

subsets for N =  20, 25, 30.

Although the results differ slightly from those presented in Figure 5.7, the general 

trends and conclusions about decreasing the number of radios in the deployment 

remain the same: (a) the directional antennas tend to offer better tracking perfor

mance than the omnidirectional antennas, (b) the tracking error goes gracefully with 

decreasing number of radios.
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Table A .1. Transmission coefficients (T) at 2.3 GHz for common building materials.
Material T (dB)
drywall 

fir lumber 
red brick 
plywood 
stucco 

cinder block

-0 .49
-2 .79
-4 .43
-1.91
-14.9
-4 .43

d (m)

Figure A.1. Received power for a through-wall link according to (A.2). The black 
dashed lines represent a positive and negative standard deviation. The red line 
represents the receiver sensitivity, below which it is unlikely that the receiver will 
be able to detect and decode packets. In this case, to achieve a reliable network for 
RTI, it would be best to keep the link lengths below 9 m.
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Number of Sensors

(a)

Number of Sensors

(b)

Number of Sensors

(c)

Figure A .2. Subset average tracking error vs. number of nodes deployed for 
directional and omnidirectional antennas at (a) Site A, (b) Site B, and (c) Site C. 
While the tracking results depicted in Figure 5.7 come from a single subset of radios 
for each network size, those shown here come from averaging the mean tracking error 
over multiple subsets of radios for each network size.
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