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ABSTRACT

Two years of speciated atmospheric mercury data in the Intermountain West are exam-

ined for annual, seasonal, and diurnal patterns, as well as influences of precipitation. Mer-

cury is a pollutant in the atmosphere that occurs as three species: gaseous elemental mer-

cury (GEM), particulate-bound mercury (PBM), and gaseous oxidized mercury (GOM).

Mercury can enter ecosystems from the atmosphere via wet and dry deposition. In aquatic

ecosystems, it can convert to the neurotoxin methylmercury, which has prompted con-

sumption advisories for both fish and waterfowl. A Tekran ambient air mercury monitor

was deployed at a site (UT96) near the Great Salt Lake, Utah as part of the Atmospheric

Mercury Network (AMNet). UT96 has the only such detector in continuous operation in

Utah with two years of data (July 2009 - June 2011).

All three mercury species exhibit right-skewed distributions and vary in concentration

over multiple orders of magnitude. GEM is the dominant species with a median concentra-

tion of 1.58 ng m−3 (range 0.25 - 64.47 ng m−3). PBM has a median concentration of 5.7

pg m−3 (range 0 - 803.2 pg m−3), while GOM has a median concentration of 2.6 pg m−3

(range 0 - 225.6 pg m−3). The sporadic nature of the extremely high GEM and PBM events

suggest that they primarily result from local/regional emissions. In contrast, extremely

high GOM events depend strongly on time of day and season, suggesting a connection to

meteorological conditions.

All three species exhibit statistically significant seasonal and diurnal patterns. GOM

exhibits the strongest seasonal pattern, peaking during summer with median summer con-

centrations a factor of six greater than median winter concentrations. GEM and PBM peak

during winter. All three species exhibit statistically significant diurnal patterns for at least



part of the year. GOM has the most pronounced diurnal cycle, particularly during summer.

Median concentrations of GOM during the afternoons of summer months are greater than

20 pg m−3, while median concentrations overnight are below 5 pg m−3. GEM and PBM

both exhibit minima in concentrations during the afternoons, and both exhibit the largest

diurnal variation amplitude during summer. Neither GEM nor PBM exhibit a statistically

significant diurnal pattern during winter.

An examination of the influences of precipitation on mercury concentrations indicates

that precipitation scavenges GOM more efficiently than PBM, and that the scavenging in-

creases as the amount of precipitation increases. Mixed precipitation scavenges PBM bet-

ter than either rain or snow alone. The median GOM concentration during rain, snow, and

mixed precipitation were all below the method detection limit (MDL), and could not be dis-

tinguished. There are some indications in the data that rain may promote slightly elevated

concentrations of GEM.
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CHAPTER 1

INTRODUCTION

In 1997, the U.S. Environmental Protection Agency (EPA) provided evidence of a

“plausible link between anthropogenic releases of mercury [Hg] from industrial and com-

bustion sources in the United States and methylmercury in fish” (EPA, 1997a). “Human

exposure to monomethylmercury (MMHg) through the consumption of freshwater and ma-

rine fish is the principal public health concern with Hg in the environment” (Fitzgerald

et al., 1998). Understanding mercury deposition is important because “Elevated levels

of mercury in aquatic environments remote from industrial sources have been broadly at-

tributed to long-range atmospheric transport and deposition of anthropogenic Hg” (Fitzger-

ald et al., 1998). Mercury in aquatic ecosystems, including wetland areas, can convert

into the neurotoxin methylmercury, which is hazardous to both humans and wildlife (EPA,

1997a,d; Furl et al., 2010). Methylmercury also accumulates in the food chain by more than

a million-fold (Schroeder and Munthe, 1998). Mercury contamination in lakes and rivers

has prompted all states in the U.S. to issue fish consumption advisories (EPA, 2011a).

Furthermore, Utah was the first state to issue waterfowl consumption advisories due to

mercury contamination (UDEQ, 2009). In addition to affecting aquatic ecosystems, plants

can accumulate mercury during the growing season (Ericksen et al., 2003).

In this chapter, properties of the three dominant species of atmospheric mercury will

be introduced, including characteristics such as water solubility and atmospheric lifetime

(Section 1.1). Sources, conversions, and sinks of atmospheric mercury will be discussed in

Section 1.2. Observed concentrations and seasonality at various locations will be described
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in Section 1.3. Finally, the objectives of this thesis are described in Section 1.4.

1.1 Properties of Atmospheric Mercury

The three primary species of atmospheric mercury are gaseous elemental mercury (GEM),

particulate-bound mercury (PBM), and gaseous oxidized mercury (GOM). GOM is also

commonly referred to as reactive gaseous mercury (RGM) (e.g., Lindberg et al., 2007; Ab-

bott et al., 2008; Liu et al., 2010). GEM constituted more than 98% of total atmospheric

mercury (TAM) during a year-long study of speciated atmospheric mercury in Canada

(Poissant et al., 2005).

1.1.1 Properties of GEM

GEM is highly volatile with low water solubility and consequently is removed rela-

tively slowly from the atmosphere via wet and dry deposition (Lindberg et al., 2007; Fain

et al., 2009; Liu et al., 2010). GEM can react with ozone (O3), the hydroxyl radical (OH),

bromine (Br), hypobromite (BrO), and chlorine (Cl2). Some of these reactions can oc-

cur relatively rapidly in a laboratory setting, but it is unclear how quickly such reactions

proceed in the ambient atmosphere (Lindberg et al., 2007).

The atmospheric lifetime of GEM is not a fixed value because it can vary significantly

by season, latitude, and the ambient concentration of atmospheric oxidants (Lindberg et al.,

2007). Estimates of the atmospheric lifetime of GEM, however, range between 0.5 to 2

years (Sakata and Asakura, 2007; Fain et al., 2009). Because GEM can stay in the atmo-

sphere so long, it is subject to both regional and global transport (Liu et al., 2010). The

atmospheric lifetime of GEM is thought to be much shorter in polar regions, marine bound-

ary layers, and the upper troposphere (Lindberg et al., 2007). The lifetime of GEM in the

marine boundary layer is thought to be about ten days under typical summer conditions on

the basis of model calculations (Sakata and Asakura, 2007). It has been suggested that in

the marine boundary layer, GEM, sunlight, low temperatures, sea-salt halogens, and water-

soluble particles combine to produce rapid oxidation of GEM and subsequent deposition to
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the water surface (Lindberg et al., 2007).

GEM concentrations tend to be higher when PBM concentrations, relative humidity

(RH), and dewpoint temperature are higher. Conversely, GEM concentrations tend to be

lower when GOM concentrations, ozone, ambient temperature, solar radiation, and wind

speed are higher (Weiss-Penzias et al., 2009). Little vertical gradient in GEM concentration

has been observed in the lower troposphere (Swartzendruber et al., 2006).

1.1.2 Properties of PBM

PBM consists of mercury associated with airborne dust, soot, sea-salt aerosols, and ice

crystals (Lu and Schroeder, 2004). The majority of PBM exists in the form of fine particles

with aerodynamic diameters≤ 2µm. Fine particulate matter can spread over a large spatial

area due to its low gravitational settling velocity (Seinfeld, 1986). PBM has a typical

lifetime less than ten days (Fain et al., 2009), but the lifetime is particle-size dependent

(EPA, 1997c). Both GEM and GOM can adsorb to particulate matter where heterogeneous

reactions can occur (Lindberg et al., 1999).

1.1.3 Properties of GOM

GOM is five orders of magnitude more water soluble than GEM, and is sequestered

by rain or cloud droplets (Schroeder and Munthe, 1998; Lindberg et al., 2007). Concen-

trations of GOM are also strongly affected by relative humidity. Fain et al. (2009) found

that the relationship of relative humidity to GOM was stronger than with either water vapor

or temperature. High GOM concentrations were only observed at Storm Peak Laboratory,

Colorado while RH < 50%, and Fain et al. (2009) concluded that a build up of high concen-

trations of GOM requires dry air. GOM may be scavenged by particles when RH > 50%

due to increases in the total particle surface area (Fain et al., 2009). Abbott et al. (2008)

and Liu et al. (2010) also observed an anti-correlation of GOM concentrations with RH.

GOM concentrations have been observed to follow solar radiation, temperature, mixing

height, and ozone (Lynam and Keeler, 2005; Abbott et al., 2008; Liu et al., 2010). Abbott
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et al. (2008) observed pronounced summertime diurnal cycles of GOM that correlated with

ozone concentrations, and suggested that photochemistry plays a role in the production of

GOM.

GOM is removed from the atmosphere relatively quickly compared to GEM because

of its high solubility and reactivity with surfaces (Lindberg et al., 2007; Liu et al., 2010).

GOM is estimated to have a typical lifetime of 1-7 days, but some estimates are as long

as 16 days (Fain et al., 2009). GOM may have of a lifetime of 16 days in the free tropo-

sphere (Selin et al., 2007). The most probable compounds comprising GOM are HgCl2 and

HgBr2 (Schroeder and Munthe, 1998; Fain et al., 2009). However, the temporal and spatial

variations are highly uncertain.

1.2 Sources, Conversions and Sinks of Atmospheric Mercury

“The dynamics for the three mercury species are very complex, suggesting that the

source profiles are multi-factorial” (Lynam and Keeler, 2005). Mercury enters the atmo-

sphere from both natural and anthropogenic sources. It has been suggested that perhaps

one-third of the global atmospheric pool of mercury is from new point-source emissions,

another third is from natural emissions from both land and ocean, and the final third is

Earth-surface recycling of anthropogenic mercury (Lindberg et al., 2007). Mercury can

convert from one form to another while in the atmosphere. Conversion between types of

mercury constitutes a source for one type of mercury while being a sink for another type.

PBM and GOM concentrations in air depend on direct emissions from local and regional

sources as well as in situ formation in the atmosphere (Sakata and Asakura, 2007). Finally,

mercury can be removed from the atmosphere via dry deposition or scavenging by precipi-

tation. Mercury deposition in rural areas is usually lower than in urban areas because local

urban emissions are attenuated by deposition and dilution as the distance from the urban

source increases (Guentzel et al., 2001).
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1.2.1 Natural Sources

The average annual global natural mercury emissions to the atmosphere are estimated

to be between 1.6 x 106 kg and 4.0 x 106 kg (Fitzgerald et al., 1998). The dominant natural

sources of mercury include wildfires (Friedli et al., 2003), volcanoes and geothermal areas

(Schuster et al., 2002; Engle et al., 2006), naturally enriched substrates (Engle et al., 2001),

and the ocean (Mason and Sheu, 2002). Most natural mercury emissions are in the form of

GEM (Gustin et al., 2000; Engle et al., 2001; Mason and Sheu, 2002).

Friedli et al. (2003) used a combination of laboratory and airborne measurements to de-

termine that both plant material and surface soils emit mercury during wildfires, primarily

in the form of GEM. Generally, more than 90% of the mercury emitted was in the form of

GEM, depending on the type of plant material. The rest of the mercury was in the form

of PBM, while GOM concentrations were below detectable limits. Friedli et al. (2003)

calculated an emission factor for the fire they observed to be 112±17 g Hg per kg of fuel

(dry mass). Caldwell et al. (2006) observed a nearly 12-fold increase of PBM when an air

mass influenced by a wildfire passed over their detector in south central New Mexico.

Volcanoes and geothermal areas are natural sources of mercury (Schuster et al., 2002;

Engle et al., 2006). An ice core study in Wyoming concluded that >6% of atmospheric de-

position of mercury over 270 years (ending in 1998) was due to volcanoes (Schuster et al.,

2002). This is a lower bound estimate because it only includes the three largest volcanic

eruptions to impact Wyoming over the 270 year period: Mount St. Helens, Krakatau, and

Tambora. It is also possible that not all of the mercury deposited by the volcanoes stayed

in the ice (elution processes). The mercury concentration of the volcanic plume of the

Krakatau eruption was estimated to be 2.44 x 105 ng m−3 (Schuster et al., 2002), while

the maximum observed concentration of the fumarole gas and steam from hot springs in

Yellowstone is 3.0 x 104 ng m−3 (Engle et al., 2006). Typical ambient concentrations are <

3 ng m−3 (e.g. Fain et al., 2009; Weiss-Penzias et al., 2009; Liu et al., 2010).

“Naturally Hg-enriched substrate is found associated with plate tectonic boundaries;
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areas of high crustal heat flow; precious and base metal mineralization; Hg mineralization;

recent volcanism; and organic rich sedimentary rocks” (Rasmussen, 1994; Engle et al.,

2001). Sources of mercury to soils also include atmospheric deposition and contamination

from mining activities (Lindberg et al., 1999). Volatilization of soil mercury is an important

contributor to the global mercury cycle (Lindberg et al., 1999). Soils enriched with mercury

typically have concentrations of 100 to 102 µg g−1, while background soils contain less than

0.5 µg g−1 (Lindberg et al., 1999).

There are several factors that influence volatilization of soil mercury. These factors

include soil temperature, mercury speciation, humidity, solar radiation, soil moisture, and

rainfall effects (Lindberg et al., 1999). Several forms of mercury in soil (particularly ele-

mental mercury) exhibit relatively high elevated vapor pressures at ambient temperatures

(Lindberg et al., 1999). The relationship between soil temperature and volatilization of

soil mercury is exponential (Lindberg et al., 1999). Mercury emission from soil can be in-

creased with increases in light and soil moisture, and elevated soil mercury concentrations

can also contribute to elevated mercury emissions from soil (Engle et al., 2001). Mercury

emissions from soil follow a diurnal pattern, with the highest emissions around noon (local

time), with deposition at night (Engle et al., 2001). Increases in GEM flux have also been

observed from relatively dry soils following simulated precipitation in a laboratory setting

(Song and Heyst, 2005).

Soils in parts of Nevada have unusually high concentrations of mercury (Engle et al.,

2001). The average flux from the Ivanhoe Mining District in north-central Nevada (586

km2), for example, is 17.1 ng m−2 h−1 (Engle et al., 2001). The mercury in soils in Nevada

is thought to be 30-50% elemental mercury (Lindberg et al., 1999). The Nevada soils that

Lindberg et al. (1999) studied contained 1.4 to 4.7 µg g−1 mercury.

Lindberg et al. (1999) observed that atmospheric mercury concentrations inside flux

chambers increased after both rain and irrigation with low-mercury distilled water com-

pared to before-wet conditions. Prior to the rain event, the mercury concentrations inside
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the flux chambers rose from 7.6 ± 9.3 ng m−3 prior to the rain to 31 ± 25 ng m−3 after

the rain. It is important to note that the study was conducted over mercury-enriched soils

in Nevada. That Lindberg et al. (1999) were able to observe the same effect via irrigation

with low-mercury distilled water suggests the mercury is not coming from the precipita-

tion water. Lindberg et al. (1999) suggest that the following mechanisms are the dominant

causes for the increase in mercury emissions from the soil: 1) physical displacement of

Hg-enriched soil gas by the percolating water, 2) exchange of elemental mercury adsorbed

on dry soil particle surfaces with water molecules (essentially soil “sticks” to water better

than mercury, so the soil releases mercury), and 3) desorption of GOM adsorbed on soil

solid particle surfaces and its subsequent reduction. The increased emissions in the Nevada

soil represent � 0.1% of the total mercury in the upper 2 cm of the soil. Lindberg et al.

(1999) conducted similar lab studies on soils from Tennessee with similar results. Mean-

while, irrigating with methanol, which is less polar than water, did not increase mercury

emissions.

In the global budget, the ocean is a sink for mercury. However, important exchanges

of mercury occur between the ocean and atmosphere. Approximately 5.4 µg m−2 yr−1 of

mercury are deposited to the ocean via wet deposition and dry deposition of PBM. The

ocean emits ~7.2 µg m−2 yr−1 GEM, of which ~3.1 µg m−2 yr−1 are converted into GOM

and dry deposited back to the ocean (Mason and Sheu, 2002).

1.2.2 Anthropogenic Sources

U.S. anthropogenic emissions of mercury have declined substantially in recent years,

dropping from 220 tons in 1990 to 115 tons in 1999 (EPA, 2011b). High temperature waste

and fossil fuel combustion are the most significant sources of anthropogenic mercury emis-

sions (EPA, 1997b). Anthropogenic sources of atmospheric mercury include combustion,

manufacturing, refineries, agricultural burning, mobile sources, utility coal boilers, indus-

trial boilers, and both municipal and medical combustion (EPA, 1997b). Mercury is also a
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common byproduct in gold mining operations (EPA, 1997b). It has even been noted that

farming activities that disturb soil can resuspend PBM, increasing mercury emissions from

the soil (Engle et al., 2001; Poissant et al., 2005).

Mason et al. (1997) concluded that PBM in the Chesapeake Bay area is predominantly

coming from coal combustion because of its association with sulfur (S). Most of those

particles are less than 1 µm in size with only 10% larger than 2.5 µm. Other co-pollutants

with mercury include sulfur dioxide (SO2), nitrous oxide (NOx), and particulate matter

(PM2.5) (Liu et al., 2010).

The primary anthropogenic sources of RGM in southern Florida are municipal solid

and medical waste incinerators, and are responsible for less than half of the RGM in the

southern Florida airshed (2.5± 0.5 kg day−1) with a combined PBM and RGM load of 2.6

to 4.0 kg day−1 (Guentzel et al., 2001).

Major sources of mercury in Japan are equipped with wet scrubbers that remove GOM

but not GEM, so that only 5-17% of the total mercury emitted by coal- and oil-fired power

plants is in the form of GOM (Sakata and Asakura, 2007). A mercury speciation study

on the emissions from six coal-fired power plants in China found that between 66% and

94% of mercury emitted was in the form of GEM, depending on the composition of the

coal used as well as the type of emissions control equipment used (Wang et al., 2010).

Nearly all PBM can be removed with the use of certain emissions control equipment (e.g.,

electrostatic precipitators).

1.2.3 Conversions

Atmospheric mercury can convert from one form to another through oxidation and/or

photochemistry, adsorption, and reduction (Fig. 1.1).

1.2.3.1 Oxidation/Photochemistry

Correlations of GOM with meteorological variables suggests the role of photochem-

istry in its production (Abbott et al., 2008). GEM can also be converted to GOM through
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Figure 1.1: Schematic of conversions among atmospheric mercury species (based on refer-
ences in Section 1.2.3).

oxidation by O3 and OH radicals in gas and/or aqueous phases (Sakata and Asakura, 2007).

Such reactions may involve O3, the OH, H2O2, NO3 and reactive halogens in both gaseous

and aqueous phase, and the reactions may be photochemical in nature (Lin et al., 2006).

The conversion of GEM to GOM via O3 is thought to be slow (Poissant et al., 2005). This

conversion is favored during warm seasons due to the higher air temperature, solar radiation

intensity, and higher concentrations of atmospheric O3 (Sakata and Asakura, 2007). Given

a one-year residence time of GEM in the atmosphere, Guentzel et al. (2001) estimated a

daily increase in GOM of 3-5 pg m−3 via O3 oxidation if there is no precipitation. In situ

oxidation of GEM to GOM may also be responsible for 8% of the daily RGM burden in the

boundary layer in southern Florida Guentzel et al. (2001). Relatively low concentrations

of GEM in the free troposphere are thought to be due to conversion of GEM into GOM

(Swartzendruber et al., 2006).

Atmospheric Mercury Depletion Events (AMDEs) occur during rapid oxidation reac-

tions of GEM. AMDEs reduce the concentration of GEM while increasing the concentra-

tions of GOM and PBM. AMDEs lead to elevated deposition of GOM and PBM, and are



10

most noted to occur at the poles during spring (Lindberg et al., 2007). As will be shown in

Chapter 3, depletion events occur in Utah as well.

Fain et al. (2009) concluded that high concentrations of GOM were related to oxida-

tion of tropospheric GEM by halogens, possibly from sea-salt over the ocean, though they

observed a lack of mass balance. Only ~10% of the depletion in GEM was explained by

an increase in GOM concentration, and the rest was attributed to deposition and scaveng-

ing, possibly over the Pacific Ocean. The conversion of GEM to GOM is thought to occur

both in the free troposphere and over the ocean. While Fain et al. (2009) observed no

correlation between O3 and GOM at Storm Peak Laboratory, Colorado, the oxidation of

GEM in the upper troposphere and lower stratosphere is thought to occur with O3, OH,

and other oxidation mechanisms (Swartzendruber et al., 2006). The GOM-enriched air is

then brought to the surface via deep convective mixing (Swartzendruber et al., 2006) and

subsidence of free-tropospheric air (Sillman et al., 2007; Selin and Jacob, 2008). Multi-day

enhancements in GOM concentrations were observed at Storm Peak Laboratory, and seven

of the eight such events were found to have a statistically significant negative correlation

with GEM concentration (Fain et al., 2009).

Stutz et al. (2002) concluded that “reactive halogens are mobilized from salt on the flats

around the Great Salt Lake, Utah.” Stutz et al. (2002) observed 15± 2 pmoles/mole-air of

chlorine oxide (ClO) and 6 ± 0.4 pmoles/mole-air of bromine oxide (BrO) in the vicinity

of the Great Salt Lake, Utah. In addition, there are a number of chlorine sources in the

vicinity of the Great Salt Lake, the largest being U.S. Magnesium on the western side of

the basin (EPA, 2011c).

1.2.3.2 Adsorption

GEM and GOM are thought to be converted to PBM via temperature dependent phys-

ical adsorption onto atmospheric particles and is favored at low temperatures (Sakata and

Asakura, 2007; Lindberg et al., 2007). GOM can adhere to particles rapidly (Liu et al.,
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2010). GOM may be scavenged by particles when the relative humidity is above 50% due

to an increase in the total particle surface area (Fain et al., 2009).

1.2.3.3 Reduction

The reduction of PBM and GOM can produce GEM (Gratz et al., 2009). GOM readily

converts to GEM after deposition, though the exact mechanism is unknown (Lindberg et al.,

2007). It has been suggested that between 5% and 40% of the deposited GOM is re-emitted

as GEM (Lindberg et al., 2007).

1.2.4 Deposition in General

PBM and GOM can be deposited relatively near emission sources (Schroeder and

Munthe, 1998). GOM is thought to deposit relatively close to its source (order of 10-

100 km), while PBM may be transported further (order of 100-1000 km) (Schroeder and

Munthe, 1998). Elevated mercury concentrations in an urban environment “may substan-

tially increase Hg Levels in dry and wet deposition, as well as urban runoff, thus ultimately

impacting the water quality in its surrounding area” (Liu et al., 2010).

It has been estimated from lake-sediment records that there has been approximately a

three-fold increase in deposition since preindustrial times (Lindberg et al., 2007). In lakes

in Minnesota and Wisconsin, recent deposition of mercury to lake sediments is about 12.5

µg m−2 yr−1, while preindustrial deposition was about 3.7 µg m−2 yr−1 (Fitzgerald et al.,

1998). It has been calculated that 84% of the mercury entering Lake Michigan was from

the atmosphere (Lynam and Keeler, 2005). Model estimates of annual mercury deposition

in Idaho suggest that the total deposition is 11.9 µg m−2 ± 3.3 µg m−2, 2/3 of which is dry

deposition, but this does not account for an upward flux of mercury from the soil (Abbott

et al., 2008).

1.2.4.1 Dry Deposition

All three forms of atmospheric mercury can dry deposit (Lindberg et al., 2007). Dry
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deposition is a function of atmospheric mercury concentrations, atmospheric stability, and

terrain (Schroeder and Munthe, 1998; Seinfeld and Pandis, 1998). Dry deposition is en-

hanced by the presence of vegetation and is also influenced by temperature, surface wetness

and windspeed (Seinfeld and Pandis, 1998; Lindberg et al., 2007). Mercury fluxes on bare

soils (deposition and emission) can be influenced by radiation and atmospheric oxidants

such as O3 (Engle et al., 2005; Xin and Gustin, 2007). The deposition velocity of GOM

is one and two orders of magnitude higher than PBM and GEM, respectively, and hence

GOM does not survive long-range transport (Liu et al., 2010).

1.2.4.2 Wet Deposition

Both cloud droplets and hydrometeors efficiently scavenge reactive forms of atmo-

spheric mercury (Schroeder and Munthe, 1998). GEM has a low water solubility, so it

is thought that GEM is oxidized in clouds by O3 and OH before scavenging occurs (Sakata

and Asakura, 2007; Lindberg et al., 2007). Wet deposition is a function of atmospheric mer-

cury concentrations, rainfall rates, and aqueous mercury concentrations (Guentzel et al.,

2001; Abbott et al., 2008). Larger particles are more efficiently scavenged by wet depo-

sition (Seinfeld and Pandis, 1998), and Lynam and Keeler (2005) observed that days with

precipitation and dew formation had reduced concentrations of GOM relative to days with-

out in Michigan. PBM can be removed from the upper troposphere and lower stratosphere

during deep convective storms (Lindberg et al., 2007).

The Mercury Deposition Network (MDN) provides longterm records of mercury wet

deposition in the United States and Canada (MDN, 2011). The MDN consists of 169 sites

in North America, two of which are in Mexico, 14 in Canada, and the rest in the United

States, though some are no longer active (MDN, 2011). Japan also has a network observing

mercury wet deposition consisting of 10 sites (Sakata and Asakura, 2007).

The annual mercury wet deposition fluxes were 5.8 to 18.0 µg m−2 yr−1 at 10 sites

in Japan (Sakata and Asakura, 2007). Regional and seasonal variations in mercury wet
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deposition are observed in Japan (Sakata and Asakura, 2007). Sakata and Asakura (2007)

found that 26±11% of wet deposition of mercury was due to PBM (i.e., their wet deposition

is dominated by GOM). Sakata and Asakura (2007) also found a significant correlation

between annual wet deposition flux of mercury and annual amount of precipitation, and

they concluded that GOM mainly originates from in situ oxidation in the atmosphere.

The Florida Atmospheric Mercury Study (FAMS) study was initiated in 1992 (Guentzel

et al., 2001). FAMS operated 10 sites in Florida on 15 m towers, as well as two ground-

based sites. They measured the monthly bulk and wet-only deposition for 2-5 years, de-

pending on the site. Guentzel et al. (2001) hypothesize that long-range transport of RGM

coupled with strong convective thunderstorm activity is responsible for more than 50% of

the mercury deposition in southern Florida. Local anthropogenic PBM and RGM could be

responsible for 30-46% of the summertime rainfall deposition in southern Florida (Guentzel

et al., 2001). Mercury concentrations in precipitation water in southern Florida ranged from

14± 2 to 16± 2 ng L−1 while the flux of mercury due to precipitation was 20± 3 to 23± 3

µg m−2 yr−1 (Guentzel et al., 2001). The annual rainfall in southern Florida is 102-213

cm, 70% of which falls during May-October (Guentzel et al., 2001). 70-90% of the mer-

cury deposition occurs during May-October (Guentzel et al., 2001). Mercury deposition in

southern Florida is greater than in northern and central Florida, while marine sites had the

lowest mercury deposition (Guentzel et al., 2001).

Mason et al. (1997) concluded that “rain effectively scavenges particles from the atmo-

sphere within the initial storm period with little washout later in the rain event.” Mason

et al. (1997) measured wet deposition of mercury at two sites near the Chesapeake Bay

by collecting precipitation water and testing it for Hg. They also made measurements of

atmospheric mercury by using a vacuum pump to draw air over filters and then analyz-

ing the filters. They found that Hg concentrations in precipitation water varied between

10 pM - 400 pM, with most samples below 150 pM. They also found that MMHg com-

prised less than 1% of the mercury in precipitation water. Mason et al. (1997) concluded
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that both particulate scavenging and in-cloud conversion of elemental mercury contribute

to wet deposition as scavenging of particulate mercury appears to explain only 40% of the

mercury in precipitation water. High concentrations of mercury only occurred in precipita-

tion water for small precipitation events while low mercury concentrations were observed

in conjunction with large precipitation events.

Gratz et al. (2009) found that “The highest concentrations were typically observed with

low precipitation amounts, suggesting that at this remote site most of the mercury was

removed during the onset of precipitation, and additional precipitation acted to dilute sam-

ples throughout the remainder of the event,” and this relationship was observed regardless

of precipitation type. They studied wet deposition of mercury and categorized precipitation

events by type (rain, snow, and mixed) in Underhill, Vermont. The largest wet deposition

events were associated with winds coming from the midwest and east coast of the U.S. and

temperatures between 4.9◦C and 27◦C with precipitation in the form of rain. The lowest

wet deposition events were associated with winds coming from the northwest or southeast

with temperatures between −22.4◦C and 6.7◦C in the form of snow and mixed precipita-

tion. Gratz et al. (2009) observed more wet deposition during warmer months than colder

months, with a three-fold or more difference between summer and winter. They only in-

cluded precipitation samples ≥0.10 cm in their analysis.

Fain et al. (2009) found that the “occurrence of precipitation leads to very strong and

immediate drops of RGM to levels close to the detection limit of the analyzer.” They also

noted that high concentrations of RGM in the Rocky Mountains could be a significant

source of mercury to snowpacks via wet deposition.

1.3 Observed Concentrations and Seasonality

1.3.1 Observed Concentrations and Seasonality of GEM

The northern hemisphere atmospheric pool of GEM (i.e., the sea-level atmospheric

concentration at remote sites) is ~1.5-1.7 ng m−3 (Lindberg et al., 2007). The observed
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concentration of GEM at 22 sites in the northern hemisphere is 1.7± 0.3 ng m−3 (Valente

et al., 2007). The average total gaseous mercury at 211 sites in Japan was 2.2±0.5 ng m−3

for 2004, and the average O3 concentration was 0.032± 0.005 ppmv (Sakata and Asakura,

2007). The average concentration of GEM at Storm Peak Laboratory, Colorado from 28

April to 1 July 2008 was 1.6 ng m−3 (Fain et al., 2009).

Liu et al. (2010) observed slightly higher concentrations of GEM during the summer

compared to other seasons at both urban and rural settings in Michigan. Abbott et al. (2008)

also observed the highest concentrations of GEM during the summer in south-central Idaho.

Fall had the second-highest concentrations, followed by spring then winter (Abbott et al.,

2008). Converse et al. (2010) observed the highest mean GEM concentration during winter

in Shenandoah National Park, Virginia.

1.3.2 Observed Concentrations and Seasonality of PBM

Mean concentrations of PBM observed at various rural locations in the U.S. are gen-

erally below 10 pg m−3 (e.g., Caldwell et al., 2006; Abbott et al., 2008; Liu et al., 2010).

The average PBM concentrations at 10 sites in Japan ranged between 4.9 and 59.4 pg

m−3 (Sakata and Asakura, 2007). The weekly integrated PBM concentrations in south-

ern Florida ranged from 2.0 to 9.3 pg m−3 and did not exhibit strong seasonal variability

(Guentzel et al., 2001).

Sakata and Asakura (2007) observed more PBM during winter than summer in Japan,

and they provide two explanations. First, clean air masses entering Japan from the Pacific

Ocean during the summer dilute atmospheric mercury. However, that does not explain all

of the seasonality when PBM is compared to other trace elements. Second, PBM is formed

by temperature-dependent adsorption or condensation of GOM and GEM onto atmospheric

particles. Relatively high concentrations of PBM were observed during winter in Detroit,

which was attributed to “increased production of electricity from coal and heating activ-

ities in the region” (Liu et al., 2010). In addition, PBM concentrations were negatively
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correlated with temperature (Liu et al., 2010). Mason et al. (1997) found the average con-

centration of PBM near the Chesapeake Bay to be 16 ± 15 pg m−3 during summer with

60% of all samples below 10 pg m−3, and the average wintertime concentration was 21±20

pg m−3 with 30% of all samples below 10 pg m−3. Fain et al. (2009) observed an average

PBM concentration of 9 pg m−3 from 28 April to 1 July 2008 at Storm Peak Laboratory,

Colorado. Data from the lower stratosphere indicate significant PBM enrichment (Murphy

et al., 2006). PBM is the dominant form of mercury near the tropopause (Lindberg et al.,

2007).

1.3.3 Observed Concentrations and Seasonality of GOM

Mean concentrations of GOM observed at various rural locations in the U.S. are gen-

erally below 10 pg m−3 (e.g., Caldwell et al., 2006; Abbott et al., 2008; Liu et al., 2010).

Significantly higher concentrations of GOM have been observed in the free troposphere

(Lindberg et al., 2007). Guentzel et al. (2001) used ion-exchange filter packs to mea-

sure RGM. This technique is known to underestimate mercury concentrations relative to a

mist chamber technique or relative to KCl-coated annular denuders (Guentzel et al., 2001).

Guentzel et al. (2001) measured 5 pg m−3 during winter and 30 pg m−3 during the sum-

mer in southern Florida. Florida has a wet season from May to October characterized by

strong southeast and easterly winds and deep (12-16 km) convective thunderstorm clouds,

enabling scavenging of mercury from the middle and upper troposphere in addition to the

boundary layer (Guentzel et al., 2001). Aircraft measurements (800 - 2600 m) of RGM

east of Miami yielded 50 - 340 pg m−3 during late summer (Guentzel et al., 2001).

The mean concentration of GOM measured during 28 April to 1 July 2008 at Storm

Peak Laboratory was 20 pg m−3, and the maximum concentration was 137 pg m−3 (Fain

et al., 2009). The GOM concentration peaked slightly around 1500 LT.

Relatively high concentrations of GOM were observed during the summer in Detroit,

which was attributed to photochemical reactions converting GEM to GOM via O3 and other
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oxidants (Liu et al., 2010). In addition, GOM concentration is positively correlated with

temperature (Liu et al., 2010). GEM was weakly negatively correlated with O3 while GOM

and O3 had a weak positive correlation (Liu et al., 2010).

In south-central Idaho, the highest concentrations of GOM were observed during sum-

mer, and the lowest during fall and winter (Abbott et al., 2008). A daytime high and

nighttime low diurnal pattern has been observed during summer in both Idaho and Nevada

(Abbott et al., 2008; Weiss-Penzias et al., 2009). Weiss-Penzias et al. (2009) suggested that

the decline in GOM could be due, at least in part, to deposition after formation. In addi-

tion, the free troposphere can have high concentrations of GOM, which may act as a source

to the boundary layer (e.g., Swartzendruber et al., 2006; Fain et al., 2009; Weiss-Penzias

et al., 2009).

“Long-range transport of RGM from the free troposphere is a potentially important

component of Hg input to rural areas of the western United States” (Weiss-Penzias et al.,

2009). GOM concentrations up to 600 pg m−3 have been observed in the free tropo-

sphere (Swartzendruber et al., 2006). Weiss-Penzias et al. (2009) observed that relatively

high GOM concentrations were associated with dry air from above the boundary layer.

Swartzendruber et al. (2006) found that the highest quartile data observed at Mount Bache-

lor, OR generally had back-trajectories to the free troposphere of the middle-latitudes above

the Pacific Ocean, while the lowest quartile had back-trajectories from the boundary layer

over land.

1.4 Thesis Outline

The goals of this thesis are to analyze the first two years of speciated atmospheric

mercury data measured at the UT96 site and to explore the influence of precipitation on

speciated atmospheric mercury. The UT96 site will be described in Chapter 2 as well as

the instrumentation used. As will be shown in Chapter 3, Gaussian statistics cannot be used

to adequately describe the speciated atmospheric mercury data. Therefore, nonparametric
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statistics will be discussed in Chapter 2. Chapter 3 introduces the speciated atmospheric

mercury data set, including summary statistics as well as the temporal patterns observed

on timescales of annual to diurnal. Extreme events will also be discussed. The effects

of precipitation on atmospheric mercury are explored in Chapter 4. Finally, Chapter 5

describes the conclusions of this work and includes ideas for future work.



CHAPTER 2

SITE, INSTRUMENTATION, AND STATISTICAL

METHODOLOGY

Chapter 2 will provide a description of the UT96 site including location, meteorology,

and instrumentation. In addition, the nonparametric statistical descriptors and tests used to

analyze the mercury data will be described.

2.1 Site Description

UT96 is an Atmospheric Mercury Network (AMNet) dry deposition monitoring site

located on the eastern shore of the Great Salt Lake. AMNet was created to measure at-

mospheric mercury fractions that contribute to dry and total mercury deposition (AMNet,

2011b). UT96 has collected 2 years of continuous data, and represents the only such data

set in the Intermountain Western U.S. An additional Tekran mercury speciation system has

been placed at the UT97 AMNet site in West Valley, UT, but does not run continuously.

UT97 does measure wet deposition. The next closest sites are along the coast of California

and eastern Oklahoma, see Figure 2.1 (AMNet, 2011b). UT96 is co-located with a Utah

Division of Air Quality Weather Station adjacent to the entrance to Antelope Island State

Park approximately 37 kilometers from Salt Lake City, Utah, USA. West of the site is the

Great Salt Lake (GSL). The Wasatch mountains are to the east with primarily urban areas

between the mountains and the site (Fig. 2.2).

Local wind patterns are influenced by the land/lake breeze due to the presence of the

GSL and by upslope/downslope mountain flows due to the proximity of the Wasatch Moun-
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Figure 2.2: Map (USGS, 1984) showing the location of the UT96 AMNet site (red circle).
The Great Salt Lake is west of UT96 and the Wasatch Mountains are to the east.
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tains. Figure 2.3 shows the wind rose by season for UT96 from 1 July 2009 through 30 June

2011. Figures 2.4-2.5 show the diurnal wind pattern at UT96. Overnight winds at UT96

tend to be either from the north or east. The northerly winds likely represent synoptic

forcing while the easterly winds represent downslope flows from the Wasatch Mountains

and the land breeze. Afternoon winds tend to be westerly due to the lake breeze. Figure

2.6 shows histograms of the primary meteorological variables measured at UT96 (temper-

ature, relative humidity, solar radiation, and dew point), which will be used in Chapter 3

to compare typical weather at UT96 to the weather occurring during unusually high or low

mercury concentrations.

2.2 Instrumentation Description

The UT96 site employs a Tekran ambient air mercury analyzer system which measures

GEM, PBM, and GOM (Fig. 2.7). The Tekran system consists of a Model 2537B cold va-

por atomic fluorescence spectroscopy mercury analyzer, a Model 1130 oxidized mercury

speciation module, and a Model 1135 particulate mercury module. Ambient air is pulled

in through an air intake located at a height of ~4 m. Particles in the air with an effective di-

ameter larger than the cutpoint impact the impactor frit and are removed from the airstream

and discarded. The Tekran system is designed to have a flow rate of 10 L m−1 and a 50%

cutpoint of 2.5 µm. However, due to the altitude of UT96, the system pump only pulls

approximately 8.5 L m−1. Weiss-Penzias et al. (2009) also had lower flow in their Tekran

system in Nevada. The low flow leads to a 50% cutpoint of approximately 2.7 µm aerody-

namic diameter (Fig. 2.8). This could lead to PBM concentrations that are slightly elevated

relative to Tekran systems with a flow of 10 L m−1, but this depends on the underlying

particle size distribution, which is unknown at the present time. Particulate matter larger

than the cutpoint is discarded.

The air then enters the denuder, which is annular glassware coated with potassium chlo-

ride. The GOM in the air stream adheres to the surface of the denuder and is removed from
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Figure 2.3: Seasonal wind roses (m s−1) for the UT96 site as measured by a sonic
anemometer from 1 July 2009 through 30 June 2011.
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Figure 2.4: Diurnal wind roses (m s−1) for the UT96 site as measured by a sonic anemome-
ter from 1 July 2009 through 30 June 2011 from midnight to 0900.

• D 
D 

• • 

• D 
D 

• • 

• D 
D 

• • 

• D 
D 

• • 



25

5%

10%

15%

a) Hour of day: 12−15

WEST EAST

SOUTH

NORTH

<1
1 − 2
2 − 3
3 − 4
>=4

5%

10%

15%

b) Hour of day: 15−18

WEST EAST

SOUTH

NORTH

0.5 − 1
1 − 2
2 − 3
3 − 4
>=4

5%

10%

15%

c) Hour of day: 18−21

WEST EAST

SOUTH

NORTH

<1
1 − 2
2 − 3
3 − 4
>=4

5%

10%

15%

d) Hour of day: 21−24

WEST EAST

SOUTH

NORTH

0.5 − 1
1 − 2
2 − 3
3 − 4
>=4

Figure 2.5: Diurnal wind roses (m s−1) for the UT96 site as measured by a sonic anemome-
ter from 1 July 2009 through 30 June 2011 from noon to 2100.
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Figure 2.7: Schematic of Tekran ambient air mercury analyzer system (Courtesy of Tekran
Instruments).
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Figure 2.8: Flow versus PBM 50% particle-size cutpoint as a function of flow rate (Cour-
tesy of Tekran Instruments). Note: Temperature effect other than volumetric flow is only
important over ~100◦C due to the increase in air viscosity.

the airstream. The airstream then leaves the denuder and enters the regenerable particulate

filter (RPF) which contains a quartz filter. Particulate matter in the airstream (including

PBM) are collected by the quartz filter. At this point, the only form of mercury remaining

in the airstream is GEM. The airstream flows over one of two gold cartridges, named A and

B. GEM forms a temporary amalgam with the gold. After 5 minutes of collecting GEM

on one of the gold cartridges, A for example, a solenoid switches the air stream to flow

over cartridge B for 5 minutes. Meanwhile, ultra high purity argon flows over cartridge

A as it is heated. This process liberates the GEM and is referred to as desorption. A UV

lamp emitting light at 253.7 nm shines onto the GEM causing the mercury to fluoresce.

The fluoresced light then enters a photomultiplier tube where the signal is integrated. The

integrated signal from the photomultiplier tube and the volume of ambient air that flowed

over cartridge A are then used to calculate the concentration of GEM in the atmosphere.

Cartridges A and B alternate collection and desorption/measurement at 5 minute intervals

for 2 hours. At the end of the 2 hour period, collection of ambient air stops while the
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PBM and GOM collected during the previous 2-hour period are measured. One at a time,

the RPF and denuder are heated to 800◦C and 500◦C, respectively. The heating desorbs

the mercury from the quartz filter and glassware and converts it to GEM. The converted

GEM then flows down the tubing toward cartridge A or B to be measured in the same

fashion described above. The desorption and measurement of PBM and GOM takes one

hour. Consequently, during any 24-hour period, UT96 will at most collect 96 GEM data

points, 8 PBM data points, and 8 GOM data points. The difference in the length of the

collection periods of GEM versus PBM and GOM is due to the differences in atmospheric

concentrations. GEM is measured in ng m−3 with a typical concentration of 1.58 ng m−3

while PBM and GOM are measured in pg m−3 with typical concentrations of 5.7 pg m−3

and 2.6 pg m−3, respectively.

The Tekran 2537B undergoes an automated calibration once every 72 hours during

which a permeation tube emits a known quantity of mercury into the system to be mea-

sured. Results of this calibration are used in future conversions of the signal from the

photomultiplier tube to an atmospheric mercury concentration. Once per month, a manual

calibration is performed whereby a digital syringe is used to inject a known quantity of

mercury from an external source (Tekran Model 2505) into the flow over the cartridges to

verify the performance of the system.

The data collected from the Tekran 2537B undergoes four levels of quality assurance.

The first level separates the output of the Tekran 2537B by mercury species. The second

level marks individual data points as either valid or invalid based on both automated and

manual quality assurance protocols (AMNet, 2011a). The third level has all of the invalid

data removed from it. The fourth level applies a correction factor to data measured before

9 June 2011. (Part of the Tekran system was set up for 1-hour cycles while the Tekran was

actually running 2-hour cycles.) Level four also consolidates the data into three Matlab

matrices, one for each species. Only fourth-level, quality-assured data are used in this

thesis.
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Similar to Lynam and Keeler (2005), Poissant et al. (2005), and Liu et al. (2010), the

method detection limit (MDL) for PBM and GOM was calculated as three times the stan-

dard deviation of the system blank, which gives an overall MDL of 1.5 pg m−3. Where data

is analyzed by season, the MDL is calculated and used by season (Fig. 2.9). The method

detection limit for GEM is <0.1 ng m−3 (Tekran, 2007), and no UT96 GEM data is below

this threshold.

2.3 Nonparametric Statistical Descriptors and Tests

The speciated atmospheric mercury measurements made at the UT96 AMNet site are

distinctly non-Gaussian. As a result, typical statistical tests that assume a Gaussian dis-

tribution of the underlying data cannot be used to characterize the data. This finding is

consistent with other studies of speciated atmospheric mercury. To overcome this problem,

various researchers have used the Wilcoxon test (Lynam and Keeler, 2005; Gratz et al.,

2009; Liu et al., 2010) and the Kruskal-Wallis test (Abbott et al., 2008; Gratz et al., 2009;

Liu et al., 2010). These, and other, nonparametric statistical tools are described in this
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Figure 2.9: Method detection limit for PBM and GOM by season.
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section.

2.3.1 Nonparametric Statistical Descriptors

The trimean is a weighted average of the median and the quartiles, and is defined as:

trimean =
q0.25 + 2 ∗ q0.5 + q0.75

4
(2.1)

where q0.5 is the median while q0.25 and q0.75 are the lower and upper quartiles, respectively.

The trimean describes the “location” of the data and is less sensitive to outliers than the

mean (Wilks, 2006).

The median absolute deviation (MAD) is analogous to the standard deviation, but is

less sensitive to outliers. The MAD is defined as:

MAD = median |xi − q0.5| (2.2)

where xi represents each data point in the data set (Wilks, 2006).

The skewness coefficient (γ) is a dimensionless measure of the symmetry of a data set

about the mean and is sensitive to outliers because of the cubes (Eq. 2.3).

γ =
1

n−1

∑n
i=1(xi − x)3

s3
(2.3)

Data with long right tails (such as the mercury measurements) are positively skewed and

will have a large value for γ. A dimensionless measure of skewness that is less sensitive to

outliers is the Yule-Kendall (Y-K) index, which describes the skewness of the central 50%

of data (Eq. 2.4 where IQR is the interquartile range).
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γY K =
q0.25 − 2q0.5 + q0.75

IQR
(2.4)

Right-skewed data will have a positive Yule-Kendall index (Wilks, 2006).

2.3.2 Wilcoxon Test

The Wilcoxon test, also known as the Mann-Whitney test, is a method used to describe

whether two populations of data are statistically different from one another without the as-

sumption that the underlying data is Gaussian (Wilks, 2006). The test assumes that the two

data samples are random samples from their respective populations (serially independent)

and that there is mutual independence between the two populations (unpaired data), and it

tests for a possible difference in location (Conover, 1980; Wilks, 2006). The null hypothe-

sis is that the two data samples have been drawn from the same distribution. The test can

be done with either a one-sided or a two-sided alternative hypothesis (Wilks, 2006). Using

this test on serially correlated data can lead to unwarranted rejection of the null hypothesis

(Wilks, 2006). A method of addressing the problem of serial correlation is described below.

The total number of observations is given by N and is related to population 1 and

population 2 by the following:

N = n1 + n2. (2.5)

The two populations of data are combined into one pool and ranked. The smallest obser-

vation receives a rank 1 while the largest data point receives a rank N (Wilks, 2006). If

two or more data points have the same value (a tie in rank), all of the tied data receives the

average rank that those data points would have received had there not been a tie (Conover,

1980). The large pool of data with the given ranks is then separated again into the two

populations, and the rank sum statistics (R1 and R2) are calculated (Wilks, 2006).
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R1 is the sum of the ranks held by members of population 1. Likewise, R2 is the sum

of the ranks held by members of population 2. R1 and R2 are related by:

R1 +R2 = 1 + 2 + ...+N =
(N)(N + 1)

2
. (2.6)

If the null hypothesis is true and n1 = n2, then R1 ≈ R2 because under the null hypothesis,

there is no reason for a given observation to be in one population instead of the other. If the

sample sizes are different, then the relationship

R1

n1

≈ R2

n2

(2.7)

suggests that the null hypothesis is true. Statistical significance can be tested using either

of the Mann-Whitney U-statistics:

U1 = R1 −
n1

2
(n1 + 1) (2.8)

and

U2 = R2 −
n2

2
(n2 + 1). (2.9)

U1 and U2 are related by

(U1 + U2) = (n1)(n2) (2.10)

(Wilks, 2006). If n1 and n2 are both larger than about 10, then the large sample approxi-

mation can be made, i.e. the Mann-Whitney U-statistic can be approximated as Gaussian

with
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µU =
n1n2

2
(2.11)

and

σU =

[
n1n2(n1 + n2 + 1)

12

]1/2
(2.12)

(Conover, 1980; Wilks, 2006). Finally,

z =
U1 − µU
σU

(2.13)

can be used to look up probabilities in Gaussian probability tables for the chosen level of

significance (typically 5% in this thesis) (Wilks, 2006). The significance level indicates

the probability with which the null hypothesis will be rejected when it is true (von Storch,

1995).

2.3.3 Kruskal-Wallis Test

The Kruskal-Wallis test (KW test) is an extension of the Wilcoxon test from 2 to k

independent populations, and the populations can all be of different sizes (Conover, 1980).

Using the Kruskal-Wallis test in a case with two populations is equivalent to using the two-

sided Wilcoxon test (Hájek et al., 1999). There are four assumptions about the data that

must be met in order for the Kruskal-Wallis test to be valid:

1. All populations are random samples from their respective populations.

2. In addition to independence within each population, there is mutual independence
among the various populations.

3. The measurement scale is at least ordinal.

4. Either a) the k population distribution functions of all samples are identical, or
b) some of the population distribution functions are weighted toward larger values
than others (Conover, 1980).
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The problem of serial correlation is addressed below. The null hypothesis is that all k

populations are identical. The alternative hypothesis is that some of the populations tend

to furnish greater observed values than other populations. If the null hypothesis is rejected,

there is a procedure to determine which pairs of populations are different from each other

(Conover, 1980).

Each population contains ni observations (i = 1, 2, ...k), andN is the total total number

of observations.

N =
k∑
i=1

ni (2.14)

As with the Wilcoxon test, all N observations are combined into one pool and ranked

from 1 (smallest observation) to N (largest observation). Ties again receive the average

rank. The pool of data is then separated back into the k populations with the corresponding

ranks. The rank sum statistic Ri is then calculated for each population:

Ri =

ni∑
j=1

rank(Xij) (2.15)

where Xij refers to the jth observation within population i. After Ri has been calculated

for each population, the test statistic T can then be calculated (Eq. 2.16) (Conover, 1980).

T =
12

N(N + 1)

k∑
i=1

(
R2
i

ni

)
− 3(N + 1) (2.16)

To test the null hypothesis at the level of significance α (α = 0.05 for 5%, i.e. 95%

confidence), the chi-square distribution is used. The chi-square distribution value with

k − 1 degrees of freedom at the 1 − α quantile is called CS. If T is greater than CS, the

null hypothesis is rejected (Conover, 1980).

If the null hypothesis has been rejected, the following procedure can be used to deter-
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mine which pairs of populations tend to differ. If inequality 2.17 is satisfied, then popula-

tions g and h tend to be different (Conover, 1980).

∣∣∣∣Rg

ng
− Rh

nh

∣∣∣∣ > t1−α
2

(
S2N − 1− T

N − k

)1/2(
1

ng
+

1

nh

)1/2

(2.17)

In inequality 2.17, t1−α
2

is the 1 − α
2

quantile of the t distribution with N − k degrees of

freedom while:

S2 =
N(N + 1)

12
(2.18)

(Conover, 1980).

Substantial portions of GOM and PBM data are below the MDL, so an additional re-

quirement was added to the Kruskal-Wallis test. If the medians of both populations g and

h are below the MDL, then those two populations are automatically statistically the same,

and the procedure above is not used.

2.3.4 Serial Correlation

As mentioned above, both the Wilcoxon test and the Kruskal-Wallis test assume that

the data being tested is not serially correlated, and using these tests on serially correlated

data can lead to unwarranted rejection of the null hypothesis (Conover, 1980; Wilks, 2006).

von Storch (1995) suggests “pruning the data” as a method of addressing the issue of serial

correlation for both the Mann-Kendall test and Student’s t-test. The Mann-Kendall test

and Student’s t-test are not used in this thesis. However, it seems reasonable to apply

the solution to the Wilcoxon and Kruskal-Wallis tests for two reasons: 1) This solution is

suggested for multiple statistical tests, implying a level of generality and 2) Student’s t-test

is the parametric analog of the Wilcoxon test.

“Pruning the data” simply means forming a subset of data in which each data point
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is temporally well separated. Consecutive data points in the pruned subset will not be

autocorrelated. The benefit of pruning the data is the following: given that the time interval

between data points in the data subset is long enough, the test operates as specified by the

user. The drawback of pruning the data is that a substantial portion of the data is not used

in the analysis (von Storch, 1995). A pruning function was created that takes the first data

point of each 3 hr time block (i.e., every data point in the pruned data is at least 3 hrs from

the next one). It is noted where this function is used.



CHAPTER 3

ANNUAL, SEASONAL, AND DIURNAL PATTERNS

This chapter will focus on characterizing the temporal variability of atmospheric mer-

cury at the UT96 site on time scales ranging from annual to a few hours. This analysis will

not only provide a broad overview of the data, it will also help identify potentially inter-

esting scientific processes and/or chemical transformations that may be studied in greater

detail in the future.

3.1 Statistical Summary

This section will provide a statistical summary of the UT96 mercury data set from 1

July 2009 to 30 June 2011. The GEM concentration is generally well below 5 ng m−3 with

only a few well-defined extreme events (Fig. 3.1a). These extremely high GEM events are

most likely due to plumes from local or regional sources. Lynam and Keeler (2005) also

observed fairly constant GEM concentrations that were interrupted by episodes with large

increases in concentration due to the impact of a plume on their site in Detroit, Michigan.

While the majority of the GEM data lies within the range of 1-2 ng m−3, there are some well

defined mercury depletion events when the GEM concentration drops below 1.0 ng m−3

(Fig. 3.1b). Mercury depletion events are important because the mercury that is depleted

from the atmosphere is likely being deposited to the ground and/or surface water where it

can enter into the ecosystem and contribute to bio-accumulation of mercury. In addition,

the physical and/or chemical processes responsible for these mercury depletion events are

not well understood.
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Figure 3.1: Time series of GEM measured at the UT96 site from July 2009 through June
2011. a) is the complete time series including outliers, while b) has truncated axes to show
more detail for the majority of the data.
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The PBM concentration is generally less than 60 pg m−3 with some sporadic extremely

high events (Fig. 3.2). The extremely high PBM events are most likely due to plumes

from local or regional sources. In general, the PBM concentrations are typically less than

0.4% of total atmospheric mercury concentrations, compared to 99.5% for GEM. This large

disparity results from the vastly different atmospheric residence times for the two species.

The GOM concentration is generally less than 20 pg m−3 except for afternoons in the

warmer months (Fig. 3.3a). The strong seasonality of GOM concentrations is apparent in

Figure 3.3 with lower concentrations generally occurring during the winter months. Unlike

GEM and PBM, the highest GOM concentration events do not occur in isolation, but rather

as a seasonal phenomenon. This suggests that the highest GOM concentrations are most

likely influenced by meteorological conditions rather than plumes from local or regional

sources.

The MDL for a Tekran for GEM is <0.1 ng m−3 (Tekran, 2007). The MDL for PBM

and GOM, which is calculated as 3 times the standard deviation of the zero-air cycle field

blanks, is typically between 2.2 and 5.4 pg m−3 (e.g., Lynam and Keeler, 2005; Poissant

et al., 2005; Abbott et al., 2008; Liu et al., 2010). However, for the UT96 data, the MDL

for PBM and GOM is only 1.5 pg m−3. For PBM, 7% of the data set is below the MDL,

while 37% of the GOM data is below the MDL.

As discussed earlier, none of the three species of atmospheric mercury exhibit a Gaus-

sian distribution (Fig. 3.4). The distributions of all three species of mercury are skewed

significantly to the right. The distinctly non-Gaussian distributions mean that many of the

traditional metrics used for describing Gaussian data sets are not appropriate for this data

set.

A statistical summary of two years of mercury measurements (1 July 2009 to 30 June

2011) is provided in Table 3.1. Using the medians, GEM comprised 99.47% of total atmo-

spheric mercury measured at UT96, while PBM and GOM comprised 0.36% and 0.16%,

respectively. These results are similar to that of Poissant et al. (2005), who found that
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Figure 3.2: Time series of PBM measured at the UT96 site from July 2009 through June
2011. a) is the complete time series including outliers, while b) has truncated axes to show
more detail for the majority of the data.
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Figure 3.3: Time series of GOM measured at the UT96 site from July 2009 through June
2011. a) is the complete time series including outliers, while b) has truncated axes to show
more detail for the majority of the data.
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Figure 3.4: Box plots for a) GEM, b) PBM, and c) GOM measured at the UT96 site from
July 2009 through June 2011. The blue box encompasses data between the quartiles, and
the red line is the median. The whiskers have a maximum length of 3*IQR, and outliers
beyond the whiskers are plotted individually.
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Table 3.1: Statistical summary of the atmospheric mercury speciation data collected at the
UT96 site from 1 July 2009 through 30 June 2011.

GEM (ng m−3) PBM (pg m−3) GOM (pg m−3)
Number of Data Points∗ 111674§ 4901 4894

Minimum 0.25 0.0 0.0
Maximum 64.47 803.2 225.6

Half Percentile (q0.005) 1.01 0.0 0.0
Lowest Decile (q0.10) 1.31 1.8 0.0
Lower Quartile (q0.25) 1.44 3.3 0.9

Median (q0.5) 1.58 5.7 2.6
Upper Quartile (q0.75) 1.74 10.3 6.9

Upper-Most Decile (q0.9) 1.92 19.7 18.1
99.5 Percentile (q0.995) 2.92 82.0 96.1

Mean (x) 1.62 9.9 7.2
Trimean 1.58 6.3 3.2

Spread (IQR) 0.3 7.0 6.0
Standard Deviation (s) 0.62 19.5 14.2

MAD 0.15 3.0 2.1
Skewness Coefficient (γ)∗ 61.6 20.8 5.0

Y-K Index∗ 0.05 0.3 0.4
∗These are the only rows that do not have units of mercury concentration.
§There are more GEM data points because 24 GEM data points are typically measured
in any 3-hour time period while only one PBM data point and one GOM data point are
measured during that time.

GEM comprised 98.4% of atmospheric mercury using average concentrations on a year of

data in Quebec, Canada. The median concentrations of GEM, PBM and GOM at UT96

were 1.58 ng m−3, 5.7 pg m−3 and 2.6 pg m−3, respectively. A year of speciated mercury

concentration observations in Quebec, Canada yielded median concentrations of 1.61 ng

m−3, 9 pg m−3 and 1 pg m−3, for GEM, PBM and GOM, while the maximum observed

concentrations were 10.4 ng m−3, 1527 pg m−3 and 387 pg m−3, respectively (Poissant

et al., 2005).

GEM has the overall greatest variability, as it has the largest MAD. Table 3.1 also

demonstrates the non-Gaussian nature of the data for all three species via the skewness

coefficients and Y-K indices, which would be zero under Gaussian conditions. In addition,

the means and medians have the same value under Gaussian conditions, and this is not the
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case in the mercury data. Of the three mercury species measured at UT96, GOM is most

strongly skewed to the right, as shown by the Y-K indices.

Approximately 3% of all GEM data points are classified as enhancement events with

concentrations > 2.2 ng m−3 (Abbott et al., 2008). Abbott et al. (2008) defined an enhance-

ment event as “a measured concentration that exceeds trans-Pacific, coastal U.S. concen-

trations, suggesting possible local or regional source input.” Mean concentrations of PBM

and GOM observed at various rural locations in the U.S. are generally below 10 pg m−3

(e.g., Caldwell et al., 2006; Abbott et al., 2008; Liu et al., 2010). A comparison of UT96

data with both rural (Dexter) and urban (Detroit) sites in Michigan (Liu et al., 2010) is

shown in Table 3.2. With regards to GEM, UT96 appears to be between rural and urban,

although the maximum concentration measured at UT96 is more than double that seen in

Detroit, Michigan. UT96 is also between rural and urban with regard to PBM. GOM con-

centrations at UT96 are closer to those observed in Dexter than Detroit. Overall, UT96 can

be characterized as a moderately urban site.

Table 3.2: Comparison of UT96 data with similar rural (Dexter, MI) and urban (Detroit,
MI) speciated mercury data measured by Liu et al. (2010).

minimum∗ median maximum∗ % Above NH pool
rural GEM (ng m−3) 0.26 1.47 14.82 (not given)
UT96 GEM (ng m−3) 0.25 1.58 64.47 29
urban GEM (ng m−3) 0.36 2.09 25.60 84
rural PBM (pg m−3) 1.2 4.8 90.6 (not given)
UT96 PBM (pg m−3) 0.0 5.7 803.2 56
urban PBM (pg m−3) 1.1 9.7 1345.2 75
rural GOM (pg m−3) 1.2 1.2 121.7 (not given)
UT96 GOM (pg m−3) 0.0 2.6 225.6 32
urban GOM (pg m−3) 1.1 6.8 2472.9 62

∗For PBM and GOM, Liu et al. (2010) replaced below-detection values with one half of
the MDLs, which were 2.2 pg m−3 and 2.4 pg m−3 for urban and rural sites, respectively.
This was not done for the UT96 data.
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3.2 Seasonal Patterns

Although the vast majority of total atmospheric mercury is in the form of GEM dur-

ing every season (Table 3.3), each species of mercury undergoes statistically significant

seasonal variations (Figs. 3.5-3.8). GEM concentrations are highest in the winter and de-

crease in each subsequent season to reach a minimum during the fall (Fig. 3.5a). The

KW test shows GEM in every season is statistically different from every other season (Fig.

3.5b) at the 95% confidence level. To reduce serial correlation problems for the KW test,

the GEM data were pruned to 3 hours (see Section 2.3.4).

The GEM concentrations are ~7% lower in fall than they are during winter. The high

winter GEM coincides with stagnant air conditions caused by persistent surface temper-

ature inversions. Relatively high winter GEM concentrations have also been observed

in Shenandoah National Park, Virginia (Converse et al., 2010) and Reno, Nevada (Sta-

menkovic et al., 2007). GEM concentrations were also higher during winter than spring in

Dexter, Michigan (Lynam and Keeler, 2005). This seasonality contrasts with that observed

in Michigan and Idaho where GEM concentrations were observed to be slightly higher

during summer than other seasons (Abbott et al., 2008; Liu et al., 2010).

PBM concentrations are highest during winter and lowest during the spring with moder-

ate concentrations in the summer and fall (Fig. 3.6a). All of the PBM seasonal comparison

pairs are statistically different using the KW test at the 95% confidence level with the ex-

ception of fall versus summer (Fig. 3.6b). The wintertime PBM median concentration

is about twice that of spring. The relatively low springtime PBM concentrations most

likely result from the scavenging of particles by precipitation (Fig. 3.7). Elevated winter

Table 3.3: Percent of total Hg comprised by each species separated by season.

GEM (%) PBM (%) GOM (%)
Winter (DJF) 99.4 0.5 0.1

Spring (MAM) 99.6 0.3 0.2
Summer (JJA) 99.3 0.3 0.4

Fall (SON) 99.4 0.4 0.2
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Figure 3.7: Seasonal precipitation observed at the KHIF weather station on Hill Air Force
Base 1 July 2009 to 30 June 2011.

PBM has also been observed in Japan (Sakata and Asakura, 2007), Michigan (Liu et al.,

2010), and near the Chesapeake Bay (Mason et al., 1997). This is thought to be due to

temperature-dependent adsorption or condensation of GOM and GEM onto atmospheric

particles (Sakata and Asakura, 2007). The elevated winter concentrations may also be due

to “increased production of electricity from coal and heating activities” (Liu et al., 2010).

Poissant et al. (2005) also suggested that some high winter concentrations could be related

to house heating or other combustion facilities. In contrast, southern Florida, which does

not have strong seasonal temperature variations, did not exhibit strong seasonal variability

for PBM (Guentzel et al., 2001).

GOM has a very distinctive summer maximum and winter minimum (Fig. 3.8a). All

of the GOM seasonal comparison pairs are statistically different at the 95% confidence

level using the KW test (Fig. 3.8b). The summertime GOM median concentration is ~6

times greater than that of winter. Elevated summer GOM has also been observed in south-

ern Florida (Guentzel et al., 2001), Michigan (Liu et al., 2010), and Idaho (Abbott et al.,
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Figure 3.8: Seasonal GOM concentrations for 1 July 2009 through 30 June 2011. a) medi-
ans with MAD error bars, and b) results of the KW test.

x x x 

x x 

x 0 
x 



51

2008). Poissant et al. (2005) observed high concentrations during winter in southern Que-

bec, Canada and suggested that they could be related to house heating or other combustion

facilities. The high summertime GOM concentrations most likely result from the chemical

transformation of GEM to GOM (Liu et al., 2010). Abbott et al. (2008) also suggest that

photochemistry is involved in the production of GOM. Elevated summer GOM concentra-

tions could also result from entrainment of free tropospheric air, which has higher GOM

concentrations, into the boundary layer (Swartzendruber et al., 2006; Weiss-Penzias et al.,

2009).

3.3 Diurnal Patterns

All three mercury species have statistically significant diurnal patterns (Figs. 3.9-3.11).

GEM has relatively constant concentrations from about 2200 to 0700 MST and then dips

by ~9% during the afternoon with the minimum occurring around 1600 MST (Fig. 3.9a).

For GEM, 71% of the comparison pairs are statistically different from one another at the

95% confidence level using the KW test after pruning the data (Fig. 3.9b). If 0% of the

comparison pairs were statistically different, there would be no diurnal variation, and if

100% of the comparison pairs were statistically different, that would indicate that every

3-hour time block of the day is statistically different from every other 3-hour time block.

The afternoon dip in GEM concentration could result from the conversion of GEM to GOM

and/or PBM or from the enhancement of dry deposition during the more turbulent afternoon

period. It is also possible that ambient air over the lake has lower concentrations of GEM,

and this is transported to UT96 by the lake breeze during the afternoon. Caldwell et al.

(2006) observed no discernible diurnal pattern for GEM in south central New Mexico.

The PBM diurnal variation is similar to that of GEM with relatively constant concen-

trations from about 2200 to 1000 MST (Fig. 3.10a) and a minimum occurring at 1600

MST. For PBM, only 46% of the comparison pairs were statistically different from one

another (Fig. 3.10b). The afternoon decrease in PBM is ~25%, which is larger than that
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Figure 3.9: Diurnal GEM concentrations for 1 July 2009 through 30 June 2011. a) medians
with MAD error bars, and b) results of the KW test. The time stamp on a given datum
denotes the end of the adsorption period.
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Figure 3.10: Diurnal PBM concentrations for 1 July 2009 through 30 June 2011. a) medi-
ans with MAD error bars, and b) results of the KW test. The time stamp on a given datum
denotes the end of the adsorption period. Three-hour medians (based on the time stamp)
were used for the diurnal analysis to match the data collection schedule of the Tekran de-
tector. There is some overlap among the bins. For example, data points with an adsorption
period from 03:00-5:00 will be in the 04:00 time bin, while data with an adsorption period
from 04:00-6:00 will be in the 07:00 time bin.
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of GEM. Conversion of PBM to GOM could contribute to the dip in PBM. However, no

known studies have investigated this potential conversion. Afternoon conversion of PBM

to GEM seems unlikely given that GEM also exhibits an afternoon dip. This would be

quite difficult to observe given that the change in PBM concentration (~0.002 ng m−3) is

so small relative to GEM concentrations. The afternoon dip in PBM concentrations could

be from enhancement of dry deposition during the more turbulent afternoon period. If air

over the lake has less PBM than air over the land, then the lake breeze could be contributing

to the afternoon dip in PBM as well. This result contrasts with the diurnal pattern observed

in Quebec, Canada, which had an afternoon peak in concentration which correlated with

solar radiation and wind speed (Poissant et al., 2005). Caldwell et al. (2006) observed no

discernible diurnal pattern for PBM in south central New Mexico.

GOM has a very different diurnal pattern (Fig. 3.11a) from GEM and PBM with the

daily maximum at 1600 MST and a minimum in the early morning hours (i.e., 0400-0700

MST). The 1600 MST peak median GOM concentration is nearly 5 times larger than the

0400 MST median concentration. For GOM, 93% of the comparison pairs were statisti-

cally different from one another (Fig. 3.11b), indicating that the diurnal pattern in GOM

is stronger than it is for either GEM or PBM. This diurnal pattern is consistent with ob-

servations in Michigan (Lynam and Keeler, 2005; Liu et al., 2010), Quebec, Canada (Pois-

sant et al., 2005), and Storm Peak Laboratory, Colorado (Fain et al., 2009). Abbott et al.

(2008) observed daytime high concentrations of GOM and nighttime lows during summer

in Idaho. Caldwell et al. (2006) observed the lowest GOM concentrations at night in south

central New Mexico, which they suggested could be due to either local photochemistry in

the boundary layer or entrainment of free tropospheric air during daytime growth of the

boundary layer. Liu et al. (2010) attributed the pattern primarily to photochemical oxida-

tion of GEM. Near the shore of the Dead Sea, Israel, daytime high GOM concentrations

were observed concurrently with high BrO concentrations, GEM depletion events, and low

ozone concentrations. Obrist et al. (2010) concluded that the BrO was likely causing the
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GEM to convert to GOM, and attributed the lack of mass balance between the declines

in GEM and increases in GOM to rapid deposition of GOM. The proximity of the UT96

site to the GSL and the persistent afternoon lake breeze creates a possibility that halogen

species, such as Br, enhance the GEM transformation to GOM.

3.4 Diurnal Patterns by Season

Since GEM, PBM, and GOM all exhibit both seasonal and diurnal variations, it is

reasonable to expect that the diurnal patterns may vary by season as well. Figure 3.12

shows the median speciated mercury concentrations by hour of day and month. This figure

is only intended for visualization purposes, while results from the KW statistical tests are

shown in Figures 3.13-3.15. Figures 3.13-3.15 are analogous to Figures 3.9-3.11, except

that the data has been broken down by season and instead of showing the result of the

KW test for each comparison pair (all of the 3-hour time blocks), only the percent of the

comparison pairs that were statistically different from one another are presented.

GEM tends to have a relative minimum during the afternoon for spring through fall

(Fig. 3.12a). The contours in Figure 3.12a represent the lower decile, the quartiles, and the

median. This pattern has the largest amplitude in the summer (Fig. 3.13b). GEM does not

exhibit a diurnal pattern during winter. GEM was pruned for the seasonal diurnal statistics

tests, and Figure 3.13a-b shows pruned data. During spring and summer, 71% of com-

parison pairs are statistically different, while 39% of comparison pairs were statistically

different during fall (Fig. 3.13b). No comparison pairs are statistically different during

winter. Figure 3.12a suggests that February was a particularly high month for GEM. Fig-

ure 3.12a was not pruned because it was not used for statistical tests. GEM exhibits the

most coherent diurnal pattern during spring and summer when there is an overnight plateau

followed by an afternoon dip (Fig. 3.13a). A similar pattern exists during fall, but with

a smaller amplitude. The seasonality of the afternoon dip is consistent with the hypothe-

ses that GEM photochemically converts to GOM and that increased dry deposition occurs
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during the afternoon due to increased turbulence.

Relative to GEM and GOM, PBM has weak diurnal patterns by month (Fig. 3.12b).

The contours in Figure 3.12b represent the upper and lower deciles, the quartiles, and the

median. PBM exhibits the most coherent and strongest diurnal pattern during summer, re-

sembling a sinusoidal curve (3.14a) with a peak around 0700 MST and a minimum around

1600 MST. The summer PBM diurnal pattern is statistically significant with 64% of the

comparison pairs being statistically different in the KW test (Fig. 3.14b). Spring and

fall PBM exhibited a weaker diurnal pattern with 43% and 50% of the comparison pairs

being statistically different, respectively. Winter exhibited no diurnal pattern with all of

the comparison pairs being statistically the same. This pattern is most consistent with the

hypothesis that PBM is more effectively removed from the atmosphere by dry deposition

during the turbulent afternoons of the warmest months.

GOM exhibits a distinct diurnal and monthly pattern (Fig. 3.12c). The contours in Fig-

ure 3.12c represent the MDL, median, upper quartile, and upper decile. GOM shows strong

seasonal variations in the diurnal pattern throughout the year (Fig. 3.15a). The results of

the KW test for the various seasons range between 54% (winter) and 89% (summer) of the

comparison pairs being statistically different from one another (Fig. 3.15b). Median GOM

is 5 pg m−3 or lower from about 2200 to 0700 MST throughout the year. GOM then in-

creases after 0700 MST to peak around 1600 MST. The amplitude of this midday increase

in GOM depends strongly on season. During fall through spring, the median diurnal peak

is < 10 pg m−3. Summer GOM is quite remarkable with a median diurnal peak > 20 pg

m−3. The seasonality of the diurnal pattern is consistent with the hypotheses that GEM

photochemically converts to GOM or that entrainment of higher concentration GOM from

above the boundary layer (e.g., Swartzendruber et al., 2006; Weiss-Penzias et al., 2009).
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3.5 Extreme Events

A cursory examination of extreme events (both high and low) may provide insight into

processes that either increase or decrease speciated mercury concentrations. This is not

intended as a rigorous statistical analysis, but rather as a guide to topics that may be of

interest for future research. An “extreme event” is arbitrarily defined as the collection of

mercury concentration data points on any given day that are at or above the 99.5 percentile

for high events or at or below the 0.5 percentile or the MDL for low events.

3.5.1 Extreme GEM Events

The 99.5 percentile corresponds to a GEM concentration of 2.92 ng m−3. At least

one high GEM event has occurred during every month from July 2009 through June 2011,

except during July 2009 and April 2011 (Tables 3.4-3.5). The longest event occurred on

22 July 2010 and lasted 11 hours. Abbott et al. (2008) observed most of their enhancement

events (above 2.2 ng m−3) in Idaho during spring and summer. The median length of

enhancement events in Idaho was 5 hours, while several lasted 14-21 hours during stable

air flow. The 0.5 percentile corresponds to a GEM concentration of 1.01 ng m−3. Low

GEM events have occurred during every season (Tables 3.6- 3.7). The longest low GEM

events occurred during 3-5 August 2009 and 13 January, 2011 each lasting for more than

8 hours. There are seven calendar days in the GEM data set during which both high and

low GEM events occurred: 3-4 and 12 August 2009, 18 December 2009, 28 April 2010,

30 May 2010, and 22 August 2010. Also, several high and low GEM events have occurred

on consecutive days. The close temporal proximity of high and low GEM events may be

of interest for future research to investigate whether the high and low events are related

to one another and what physical mechanisms would drive such large swings in GEM

concentrations.

High GEM events have occurred throughout the day, but high events are least common

during the late afternoon (Fig. 3.16a). Low GEM events, in contrast, exhibit a quasi-
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Table 3.4: High GEM events 1-40 (99.5%, i.e. above 2.92 ng m−3) for the first two years
of data at the UT96 site.
Event # Year Month Day Duration # Data Points Peak Hg (ng m−3)

1 2009 August 2 19:05 - 19:05 1 3.58
2 3 22:15 - 22:15 1 3.28
3 4 22:35 - 22:35 1 3.05
4 12 22:25 - 23:20 2 3.11
5 September 15 21:05 - 21:05 1 3.10
6 October 3 07:55 - 08:00 2 3.15
7 17 01:15 - 03:00 22 3.97
8 November 13 02:10 - 12:00 17 13.18
9 28 11:00 - 11:00 1 3.43

10 December 3 20:55 - 20:55 1 3.27
11 6 08:15 - 08:35 5 4.75
12 8 03:25 - 09:35 4 4.21
13 18 10:05 - 16:15 9 4.11
14 22 16:15 - 20:40 16 3.91
15 29 13:00 - 13:55 3 3.24
16 2010 January 1 18:30 - 18:30 1 3.26
17 11 18:15 - 22:25 24 3.16
18 12 07:20 - 13:30 25 3.43
19 15 20:05 - 23:55 26 3.21
20 16 00:00 - 03:00 23 3.52
21 17 21:15 - 23:35 15 3.40
22 18 17:35 - 18:35 13 4.42
23 February 3 15:05 - 21:00 5 3.30
24 6 18:15 - 22:10 20 3.48
25 7 16:55 - 17:00 2 3.85
26 10 17:05 - 17:15 3 3.42
27 11 04:45 - 17:30 30 3.46
28 March 24 09:15 - 09:30 4 3.82
29 April 2 00:35 - 00:35 1 3.23
30 13 23:05 - 23:05 1 3.04
31 28 01:35 - 01:35 1 2.97
32 May 8 12:15 - 12:30 4 3.71
33 9 06:15 - 07:15 12 3.93
34 10 21:15 - 21:25 3 4.31
35 11 02:00 - 02:00 1 3.27
36 16 23:05 - 23:05 1 2.99
37 28 03:20 - 03:25 2 3.24
38 30 03:20 - 04:35 16 4.30
39 June 3 22:55 - 22:55 1 2.92
40 July 15 19:40 - 19:40 1 3.45
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Table 3.5: High GEM events 41-77 (99.5%, i.e. above 2.92 ng m−3) for the first two years
of data at the UT96 site.
Event # Year Month Day Duration # Data Points Peak Hg (ng m−3)

41 2010 July 18 23:35 - 23:55 5 6.14
42 19 00:00 - 01:25 4 5.05
43 21 23:15 - 23:55 8 64.47
44 22 00:05 - 11:55 72 50.27
45 30 20:50 - 20:50 1 3.04
46 August 2 22:40 - 22:45 2 3.24
47 8 19:50 - 19:55 2 4.49
48 22 07:30 - 08:25 5 4.09
49 23 07:15 - 09:00 9 4.96
50 September 17 21:15 - 21:20 2 3.39
51 19 22:45 - 23:00 4 4.65
52 October 22 09:15 - 09:55 9 4.01
53 24 06:30 - 06:45 4 4.39
54 31 17:45 - 17:45 1 3.63
55 November 1 08:25 - 09:15 10 5.30
56 4 09:25 - 09:25 1 3.04
57 5 09:25 - 09:25 1 2.96
58 8 22:35 - 22:35 1 3.14
59 25 00:15 - 01:15 13 5.22
60 December 2 13:20 - 13:50 4 3.18
61 3 02:40 - 12:00 4 2.99
62 10 11:00 - 11:00 1 3.01
63 18 14:45 - 14:55 3 3.32
64 20 17:45 - 18:20 4 3.23
65 2011 January 16 14:55 - 15:15 5 4.06
66 20 12:30 - 13:15 7 7.12
67 24 09:55 - 09:55 1 3.23
68 25 12:00 - 12:05 2 3.68
69 February 11 17:50 - 18:55 11 3.55
70 12 18:25 - 18:55 7 5.62
71 14 18:25 - 18:25 1 3.09
72 March 29 10:15 - 23:15 14 6.10
73 30 04:35 - 05:00 6 3.62
74 May 9 05:15 - 05:15 1 3.03
75 June 14 19:45 - 23:15 9 3.81
76 19 00:50 - 00:55 2 3.00
77 23 20:45 - 20:45 1 3.12
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Table 3.6: Low GEM events 1-40 (0.5%, i.e. below 1.01 ng m−3) for the first two years of
data at the UT96 site.
Event # Year Month Day Duration # Data Points Minimum Hg (ng m−3)

1 2009 July 21 15:10 - 15:10 1 0.96
2 August 3 11:05 - 19:45 86 0.74
3 4 10:20 - 20:45 96 0.68
4 5 06:05 - 15:30 6 0.94
5 6 13:10 - 18:40 2 0.99
6 12 13:55 - 16:55 6 0.98
7 19 12:53 - 13:03 3 0.76
8 November 6 11:15 - 11:15 1 1.00
9 December 17 18:15 - 18:15 1 0.97

10 18 03:35 - 09:35 9 0.25
11 24 20:25 - 21:15 11 0.32
12 25 09:00 - 09:15 4 0.68
13 26 22:55 - 22:55 1 1.00
14 28 07:15 - 07:35 5 0.79
15 30 16:15 - 16:15 1 0.99
16 2010 January 2 20:15 - 20:40 6 0.55
17 3 09:10 - 09:20 3 0.70
18 5 22:15 - 22:25 3 0.73
19 April 27 21:15 - 22:55 4 0.84
20 28 00:15 - 00:15 1 0.99
21 30 16:55 - 16:55 1 0.99
22 May 26 12:40 - 17:00 6 0.89
23 29 17:00 - 20:20 9 0.91
24 30 13:20 - 18:45 25 0.91
25 31 12:20 - 18:40 32 0.85
26 June 8 19:20 - 19:20 1 0.91
27 19 11:25 - 17:55 13 0.92
28 August 3 13:20 - 16:45 7 0.93
29 5 15:35 - 19:55 5 0.93
30 6 13:15 - 19:55 9 0.91
31 7 11:00 - 17:35 24 0.67
32 11 10:20 - 10:20 1 0.98
33 15 18:20 - 18:25 2 1.00
34 16 15:20 - 16:00 7 0.81
35 21 17:30 - 17:35 2 0.95
36 22 11:30 - 11:30 1 1.00
37 25 15:05 - 18:50 15 0.88
38 26 14:40 - 16:00 7 0.68
39 September 4 14:50 - 15:50 5 0.91
40 6 15:25 - 21:30 3 0.99
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Table 3.7: Low GEM events 41-54 (0.5%, i.e. below 1.01 ng m−3) for the first two years
of data at the UT96 site.
Event # Year Month Day Duration # Data Points Minimum Hg (ng m−3)

41 2010 September 8 18:40 - 19:50 5 0.93
42 9 00:20 - 03:40 3 0.90
43 13 12:30 - 17:00 37 0.75
44 October 21 14:30 - 15:20 11 0.88
45 November 9 07:35 - 07:35 1 0.90
46 2011 January 10 15:15 - 19:45 20 0.84
47 13 11:15 - 19:40 20 0.75
48 14 13:15 - 15:00 21 0.37
49 15 14:20 - 14:35 3 0.93
50 February 27 17:05 - 17:40 4 0.98
51 March 8 11:40 - 11:40 1 0.96
52 April 27 15:25 - 15:25 1 1.00
53 May 21 12:25 - 12:45 5 0.32
54 24 16:55 - 16:55 1 1.00

Gaussian distribution centered on the late afternoon (Fig. 3.16b). Both the high and low

event distributions are consistent with the diurnal pattern observed in Section 3.3.

The weather conditions during which high GEM events occurred are shown in Figures

3.17-3.18. The winds during high GEM events (Fig. 3.17) are consistent with the general

winds observed at UT96 (Fig. 2.3). There does not appear to be a relationship between

temperature and the likelihood of high GEM events, except that relatively few high GEM

data points were measured while the temperature was in the 10-20◦C range (Figs. 2.6a

and 3.18a). The histogram for RH during high GEM events (Fig. 3.18b) is similar to

the histogram of two years of RH data at UT96 (Fig. 2.6a) except that there appears to

be a deficit of high GEM events between roughly 60-80% RH. The histogram for solar

radiation during high GEM events (Fig. 3.18c) is similar to the histogram of two years

of solar radiation data at UT96 (Fig. 2.6c). There appears to be no relationship between

high GEM events and dewpoint temperature (Figs. 2.6d and 3.18d). One possible ex-

planation for the high GEM events is local anthropogenic sources. Abbott et al. (2008)

observed that GEM enhancement events in Idaho were not associated with any particu-

lar type of weather, and concluded that the GEM enhancement events were likely coming
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Figure 3.16: Histograms of the times of day for extreme GEM events with 2-hour time res-
olution: a) high GEM events, and b) low GEM events. Note: The timestamps represent the
end of the adsorption period (i.e., the GEM was collected during the five minutes preceding
the time stamp).
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Figure 3.17: Wind rose (m s−1) at the UT96 site for high GEM conditions.

from known anthropogenic and natural sources in the region, and possibly additional un-

documented sources. The predominant source contributions in Idaho were from western

Utah and northern Nevada (Abbott et al., 2008).

The weather conditions during which low GEM events occurred are shown in Figures

3.19-3.20. There is a deficit of low GEM events when the wind is coming from the east

and south-east directions. This is not surprising because the closest urban areas are in that

sector. The temperatures measured during low GEM events have a bimodal distribution

(Fig. 3.20a), which is inconsistent with the overall temperature distribution at UT96 (Fig.

2.6a). There is only one low GEM data point measured while the temperature was between

2.5 ◦C and 13 ◦C. This suggests that multiple temperature-dependent processes promote

low GEM, one of which could be photochemical conversion of GEM to GOM at high

temperatures. Another could be adsorption onto atmospheric particles at low temperatures

(conversion to PBM). The RH distribution measured during low GEM events (Fig. 3.20b)

exhibits bimodality corresponding to the temperature distribution (Fig. 3.20a). There is no

obvious relationship between solar radiation and low GEM events (Fig. 3.20c), except that
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Figure 3.18: Histograms of the weather during high GEM data: a) temperature, b) relative
humidity, c) solar radiation, and d) dewpoint temperature.
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Figure 3.19: Wind rose (m s−1) at the UT96 site for low GEM conditions.

there are not as many data points in the lowest bin as one might expect based on Figure

2.6c. The dewpoint temperature distribution observed during low GEM events (Fig. 3.20d)

is generally consistent with the overall dewpoint temperature distribution (Fig. 2.6d), ex-

cept that there are not as many data points near 0◦C as one might expect. The results of

this section are consistent with what might be expected if there were summertime conver-

sion of GEM to GOM and wintertime conversion of GEM to PBM. The summertime GEM

to GOM conversion is suggested by several variables: 1) the predominance of low GEM

events during the afternoon, which is the time of day at which all high GOM events oc-

cur (see below), and 2) some low GEM events favor high temperature and low RH. The

wintertime conversion of GEM to PBM is suggested by: 1) subfreezing mercury depletion

events, and 2) high wintertime PBM.

3.5.2 Extreme PBM Events

The 99.5 percentile corresponds to a PBM concentration of 82.0 pg m−3. The longest

events occurred during January 2011 (Table 3.8). In addition, 8 of the 14 high PBM events
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Figure 3.20: Histograms of the weather during low GEM data: a) temperature, b) relative
humidity, c) solar radiation, and d) dewpoint temperature.
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Table 3.8: High PBM events (99.5%, i.e. above 82.0 pg m−3) for the first two years of data
at the UT96 site.
Event # Year Month Day Duration # Data Points Peak Hg (pg m−3)

1 2009 December 30 03:00 - 03:00 1 88.3
2 2010 February 11 06:00 - 09:00 2 803.2
3 April 28 02:00 - 02:00 1 294.0
4 July 25 05:00 - 05:00 1 147.9
5 August 23 09:00 - 09:00 1 92.3
6 November 4 08:00 - 11:00 2 343.9
7 2011 January 4 20:55 - 23:55 2 98.3
8 5 02:55 - 23:55 3 99.5
9 10 17:00 - 20:00 2 143.3

10 12 14:00 - 14:00 1 97.2
11 13 09:00 - 15:00 3 95.5
12 14 21:00 - 21:00 1 86.8
13 15 03:00 - 22:00 3 139.1
14 16 01:00 - 04:00 2 117.1

observed during the two years of operation at UT96 occurred during January 2011. The

25 July 2010 event occurred the morning after a major fireworks holiday in Utah (Pioneer

Day). It is worth noting that elevated PBM concentrations were observed overnight fol-

lowing each of the major fireworks holidays (Independence Day and Pioneer Day) during

both 2009 and 2010. Comparing Tables 3.4-3.5 with Table 3.8 reveals that 5 of the 14 high

PBM events occurred on the same calendar day as high GEM events (four of which were

concurrent). Meanwhile, comparing Tables 3.6-3.7 and 3.8 shows that 6 of the 14 high

PBM events occurred on the same calendar day as low GEM events (four of which were

concurrent). Approximately 7% of all PBM data is below the MDL (1.5 pg m−3), so all of

this data is considered to be low events. Low PBM data is included in this section, but a

table is not included for brevity.

Neither the high nor low PBM events appear to favor any part of the day (Fig. 3.21).

The weather conditions during which high PBM events occurred are shown in Figures

3.22-3.23. The winds during high PBM events (Fig. 3.22) are calm and do not appear to

have a preferential direction. High PBM events appear to favor lower temperatures (Figs.
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Figure 3.21: Histograms of the times of day for extreme PBM events with 2-hour time
resolution: a) high PBM events and, b) low PBM events. It should be noted that (b) includes
7% of the entire PBM data set. The timestamps represent the end of the adsorption period
(i.e., the PBM was collected during the two hours preceding the time stamp).
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Figure 3.22: Wind rose (m s−1) at the UT96 site for high PBM conditions.

2.6a and 3.23a), but high PBM events have occurred at a broad range of temperatures. In

the histogram of two years of RH data at UT96 (Fig. 2.6b), the highest bin (RH close to

100%) is about twice the height of the other bins. In the histogram including only RH

data during high PBM events (Fig. 3.23b), the highest bin is much more than twice the

height of the other bins. In addition, no high PBM events have occurred while the RH was

below 49%. Therefore, high PBM events tend to favor high RH. The histogram for solar

radiation during high PBM events (Fig. 3.23c) is similar to the histogram of two years of

solar radiation data at UT96 (Fig. 2.6c), except that no high PBM events have occurred

while solar radiation was > 600 W m−2. High PBM events slightly favor low dewpoint

temperatures (Figs. 2.6d and 3.23d). Figure 3.23 is consistent with what might be expected

if the sources of the high PBM events were predominantly local anthropogenic sources but

may be influenced by RH. Perhaps high RH promotes adsorption of GEM and GOM onto

aerosols to form PBM.

Low PBM events (below the MDL) represent approximately 7% of the entire PBM data

set. The wind rose corresponding to the times of low PBM events (Fig. 3.24) is consistent
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Figure 3.23: Histograms of the weather during high PBM data: a) temperature, b) relative
humidity, c) solar radiation, and d) dewpoint temperature.
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Figure 3.24: Wind rose (m s−1) at the UT96 site for low PBM conditions.

with the overall wind rose (Fig. 2.3). Low PBM events have occurred during a broad range

of temperatures (Fig. 3.25a). The RH distribution measured during low PBM events (Fig.

3.25b) is similar in shape to the overall RH distribution (Fig. 2.6b), but with relatively

fewer data points below 70% RH. The solar radiation distribution measured during low

PBM events (Fig. 3.25c) is very similar in shape to the overall solar radiation distribution

(Fig. 2.6c). The dewpoint temperature distribution observed during low GEM events (Fig.

3.25d) and the overall dewpoint temperature distribution (Fig. 2.6d) both peak around 0◦C

and cover the range from roughly -20◦C to 20◦C. There is no striking relationship between

the weather variables presented here and the occurrence of PBM concentrations below the

MDL.

3.5.3 Extreme GOM Events

The 99.5 percentile corresponds to a GOM concentration of 96.1 pg m−3. High GOM

events have only occurred during the May-October months (Table 3.9). The highest con-

centration of GOM observed at UT96 is 225.6 pg m−3, while the highest concentration
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Figure 3.25: Histograms of the weather during low PBM data: a) temperature, b) relative
humidity, c) solar radiation, and d) dewpoint temperature.
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Table 3.9: High GOM events (99.5%, i.e. above 96.1 pg m−3) for the first two years of
data at the UT96 site.
Event # Year Month Day Duration # Data Points Peak Hg (pg m−3)

1 2009 August 12 15:05 - 15:05 1 103.0
2 19 14:28 - 14:28 1 117.0
3 2010 May 19 19:00 - 19:00 1 101.1
4 June 19 12:00 - 15:00 2 117.0
5 24 14:00 - 14:00 1 106.2
6 25 15:00 - 15:00 1 154.5
7 July 8 18:00 - 18:00 1 96.1
8 16 14:00 - 14:00 1 100.5
9 August 13 18:00 - 18:00 1 97.0

10 16 16:00 - 16:00 1 111.4
11 17 17:00 - 17:00 1 105.1
12 September 13 14:00 - 14:00 1 133.3
13 16 16:00 - 19:00 2 157.5
14 17 16:00 - 19:00 2 124.6
15 18 13:00 - 16:00 2 121.1
16 24 15:00 - 15:00 1 118.9
17 28 16:00 - 16:00 1 110.9
18 October 21 16:00 - 16:00 1 225.6
19 2011 June 21 14:00 - 17:00 2 176.9

observed in Detroit, Michigan during a short-term study was 270 pg m−3 (Lynam and

Keeler, 2005). Two of the 19 high GOM events were followed within hours by high GEM

events (Tables 3.4-3.5 and 3.9). Meanwhile, 6 of the 19 high GOM events occurred con-

currently with low GEM events (Tables 3.6-3.7 and 3.9). No high PBM events occurred in

close temporal proximity to a high GOM event. Approximately 37% of all GOM data is

below the MDL (1.5 pg m−3), so all of this data is considered to be low events as the data

may provide insight into processes that scavenge GOM. Low GOM data are included in

this section, but a table is not included for brevity.

All High GOM events in the UT96 data set have occurred between noon and 2000

MST (adsorption from 1000 to 2000 MST), predominantly between 1400 and 1800 MST

(Fig. 3.26a). Figure 3.26 shows histograms of the times of day at which high GOM events

and low GOM events (below the MDL) occurred. GOM data below the MDL, in contrast,
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Figure 3.26: Histograms of the times of day for extreme GOM events with 2-hour time res-
olution: a) high GOM events, and b) low GOM events. It should be noted that (b) includes
37% of the entire GOM data set. The timestamps represent the end of the adsorption period
(i.e., the GOM was collected during the two hours preceding the time stamp).
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appear to follow a quasi-sinusoidal distribution with the peak during the early morning and

minimum during the afternoon (Fig. 3.26b). The diurnal patterns exhibited in Figure 3.26

suggest that GOM concentrations are likely influenced by meteorological variables such as

solar radiation, temperature, etc. and are not dominated by local anthropogenic sources.

Both the high and low event distributions are consistent with the diurnal pattern observed

in Section 3.3.

The weather conditions during which high GOM events occurred are shown in Figures

3.27-3.28. The winds are most likely to be from the northwest quadrant during high GOM

events (Fig. 3.27), consistent with the typical afternoon wind patterns at UT96 (Fig. 2.4).

All high GOM events have been observed while the temperature was between 17◦C and

35◦C, with the temperature predominantly above 23◦C (Fig. 3.28a). No high GOM events

have occurred while the RH was greater than 44%, and most high GOM events have oc-

curred while the RH was below 30% (Fig. 3.28d). Fain et al. (2009) found that RH was

the dominant factor affecting GOM concentrations, more dominant than either water vapor

or temperature, and that high GOM concentrations were essentially always present when-

ever the RH was below ~40% at Storm Peak Laboratory during 28 April to 1 July, 2008.

There is no obvious relationship between high GOM concentrations and solar radiation

(Fig. 3.28e). This suggests that high GOM concentrations can occur on both sunny and

cloudy days because, from Figure 3.26a, we know that all high GOM events have occurred

during the afternoon/early evening. All high GOM events occurred while the dewpoint

temperature was between 3◦C and 12◦C (Fig. 3.28d). Figure 3.28 is consistent with what

might be expected if the sources of the high GOM events were strongly influenced by mete-

orological variables. High GOM events appear to be most likely to occur under conditions

of high temperature and low RH. Sorting out the causal relationships among the various

meteorological parameters with high GOM may be a topic of interest for future research.

Low GOM events (below the MDL) represent approximately 37% of the entire GOM

data set. The wind rose corresponding to the times of low GOM events (Fig. 3.29) is
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Figure 3.27: Wind rose (m s−1) at the UT96 site for high GOM conditions.

consistent with the overall wind rose (Fig. 2.3). The temperature distribution observed

during low GOM events (Fig. 3.30a) and the overall temperature distribution (Fig. 2.6a)

both peak around 0◦C and cover the range from roughly -15◦C to 30◦C. The RH distribu-

tion measured during low GOM events (Fig. 3.30b) is similar in shape to the overall RH

distribution (Fig. 2.6b), but with relatively fewer data points around 40% RH. The solar ra-

diation distribution measured during low GOM events (Fig. 3.30c) is very similar in shape

to the overall solar radiation distribution (Fig. 2.6c). The dewpoint temperature distribu-

tion observed during low GEM events (Fig. 3.25d) and the overall dewpoint temperature

distribution (Fig. 2.6d) both peak around 0◦C and cover the range from roughly -20◦C to

20◦C. There is no striking relationship between the weather variables presented here and

the occurrence of GOM concentrations below the MDL.
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Figure 3.28: Histograms of the weather during high GOM data: a) temperature, b) relative
humidity, c) solar radiation, and d) dewpoint temperature.
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Figure 3.29: Wind rose (m s−1) at the UT96 site for low GOM conditions.
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Figure 3.30: Histograms of the weather during low GOM data: a) temperature, b) relative
humidity, c) solar radiation, and d) dewpoint temperature.



CHAPTER 4

INFLUENCES OF PRECIPITATION

This chapter will investigate three hypotheses relating to the wet scavenging of speci-

ated atmospheric mercury. The first hypothesis is that precipitation will scavenge GOM

and PBM, but not GEM. The second hypothesis is that heavy precipitation will scavenge

GOM and PBM more efficiently than light precipitation. The final hypothesis is that differ-

ent types of precipitation (snow, rain, or mixed) affect atmospheric mercury concentrations

with varying efficiencies (i.e., mixed precipitation will scavenge GOM and PBM more ef-

ficiently than either rain or snow). These three hypotheses will be tested using the UT96

mercury data in conjunction with data from the KHIF weather station at Hill Air Force

Base (Fig. 4.1), located 13.0 km northeast of UT96.

Throughout this chapter, mercury concentrations that were observed under dry atmo-

spheric conditions are compared with mercury concentrations observed during or following

a precipitation event. A concise method of comparing the two populations of data is to de-

fine a scavenging efficiency s as:

s = 1− median(wet)

median(dry)
(4.1)

where wet refers to the population of mercury concentrations observed during or after pre-

cipitation and dry refers to the population of mercury concentrations observed during dry

atmospheric conditions. If the wet and dry data are statistically the same, the scaveng-

ing efficiency is defined as 0.0. The scavenging efficiency suggests, on the timescale in

question, what fraction of mercury is removed by precipitation. A positive result indicates
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Figure 4.1: Precipitation measurements at KHIF from 1 July 2009 to 30 June 2011.

scavenging. For example, if s = 0.2, that would suggest that 20% of the mercury is typi-

cally removed by precipitation compared to the reference of observations made under dry

atmospheric conditions. A negative scavenging efficiency would indicate that the presence

of precipitation somehow promotes higher concentrations of mercury. The median was

used in Equation 4.1 instead of the mean to limit the influence of outliers. This form of s

compares the populations of wet and dry data and not necessarily individual precipitation

events. Calculating s for individual precipitation events, at least for the 2-hour timescale

analyses, would not be informative because of the strong diurnal patterns that exist for each

of the mercury species.

4.1 Hypothesis #1: Precipitation Scavenging

Two sets of timescales were used to analyze dry versus wet data: 2-hour and 24-hour.

In the 2-hour tests, a mercury datum was designated as “wet” if precipitation occurred dur-

ing the 2 hours preceding the datum time stamp (adsorption period for GOM and PBM).

The 24-hour tests (pre-post analysis) compared the mercury concentrations during the 24
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hours of dry weather preceding precipitation with the mercury concentrations during the

24 hours after the initiation of precipitation. Two different timescales (2-hour and 24-hour)

were used in the analysis for a couple of reasons. First, it was unclear what the appropriate

timescale might be (i.e., how long the influence of precipitation might persist). Second,

a direct before-and-after comparison cannot be done on the 2-hour timescale because the

influence of precipitation would be overlaid on the diurnal patterns of mercury concentra-

tions. The 2-hour timescale was chosen because that is the length of the adsorption period

for GOM and PBM, meaning that precipitation occurred while the GOM and PBM were be-

ing collected. The 24-hour timescale addressed the diurnal cycle problem by encompassing

an entire diurnal cycle in both the before and after data. It is anticipated that the influence

of precipitation will be stronger on the 2-hour timescale than on the 24-hour timescale, and

that the scavenging efficiencies in the 2-hour analyses will have larger absolute magnitudes

than the corresponding 24-hour scavenging efficiencies.

4.1.1 Precipitation Scavenging Methodology (2-hour timescale)

The mercury data were designated as either “dry” or “wet” based on 1-hour precipita-

tion measurements at KHIF (Horel et al., 2002). If nonzero precipitation was measured at

KHIF within two hours preceding the time stamp for a mercury data point, then that data

point was designated as “wet” because there was measurable precipitation at some point

during the 2-hour adsorption cycle. Two hours was also used for GEM (5-min adsorption

cycle) to ease the comparison between mercury species. If there was no measurable precip-

itation during the 48 hours preceding the time stamp of a given data point, it was designated

as “dry.” Also, there are some gaps in the KHIF data set, and the corresponding mercury

data is not included in the precipitation analysis. The 48-hour requirement for dry data and

the gaps in the KHIF data result in ~33% of the data for each species of mercury eliminated

from the precipitation analysis. This was worthwhile because it reduces contamination of

the dry data with data points that may have been affected by recent precipitation.



88

For any 3-hour time period, 24 GEM data points are measured while only one PBM

data point and one GOM data point are measured at the UT96 site. Consequently, serial

correlation is likely to be a greater problem for GEM than for PBM and GOM. To address

this issue, the GEM data set was pruned to have the same frequency of measurements as

PBM and GOM using the methodology described in Section 2.3.4. All figures and tables

in this chapter use pruned GEM data, except where the pruned and unpruned data subsets

are briefly compared.

If precipitation did not affect atmospheric mercury concentrations, then subdividing the

mercury data set into “wet” and “dry” subcategories would be essentially arbitrary. These

subsets should have essentially the same (non-Gaussian) distributions as the mercury data

set as a whole. Two tests were conducted to investigate whether the wet and dry subsets had

the same distributions: the Wilcoxon test (described in Section 2.3.2) and the decile/MDL

test. In the decile test, the lowest decile for the mercury data set as a whole was determined.

Next, the percent of the subdivided data points that are smaller than the overall decile was

calculated. If precipitation has no effect on the mercury concentrations, then the percent

of subset data below the overall decile should be ~10%. If this percent is substantially

different from 10%, that would be an indication that precipitation does affect mercury

concentrations. A result for the dry subset below 10% and a result for the wet subset

above 10% would suggest scavenging. This test was modified slightly for PBM and GOM

because a substantial portion of the PBM and GOM data is below the MDL. For those

species, the percent of the overall data set at or below the MDL was used instead of 10%.

For each mercury species, a comparison of the dry and wet data subsets for the full

2 years of data will be presented. The comparisons will then be broken down by season.

Finally, the 24-hour analysis will be presented for each mercury species.
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4.1.2 Precipitation Scavenging Methodology (24-hour timescale)

First, the beginning of a precipitation event was identified (i.e., there had been no pre-

cipitation for at least 48 hours before a wet data point). Second, the “before-wet” data were

identified, which are all of the mercury data points measured during the 24 hours preceding

the event datum. Third, the “after-wet” data were identified as the event datum and the data

collected during the 24-hour period after precipitation began. This analysis did not consider

whether precipitation continued after the initial wet datum. This procedure was repeated

for the entire mercury data set. There was also a requirement that all events be at least 72

hours apart to avoid using the same data for multiple events and reduce serial correlation.

There were 55 GOM events, 56 PBM events, and 82 GEM events that met these criteria.

The before-wet and after-wet GEM data were pruned to address the problem of serial cor-

relation using the methodology described in Section 2.3.4. The two-sided Wilcoxon test

was conducted on the collection of before-wet and after-wet data to test whether these data

populations were significantly different.

The purpose of using 24 hours of data before and after the onset of precipitation was

to encompass an entire diurnal cycle. Simply comparing the one datum before and after

the onset of precipitation would not have been informative because the change in mercury

concentration due to precipitation would have been superimposed on the diurnal mercury

fluctuations (Figs. 3.11-3.9). It is unclear how long the effects of precipitation last, but a

reduction in mercury concentrations due to precipitation for part of the day should shift the

after-wet data distribution relative to the before-wet data.

4.1.3 Precipitation Scavenging Results for GOM

Wet GOM is statistically lower than dry GOM at the 95% confidence level (two-sided

Wilcoxon test) on a 2-hour timescale. Figure 4.2 shows the wet and dry GOM time series as

well as the medians and MADs. This figure clearly shows that the wet GOM is significantly

lower than dry GOM. Table 4.1 shows basic statistics for dry and wet GOM. The GOM
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Figure 4.2: Dry and wet GOM (2-hour timescale) from 1 July 2009 to 30 June 2011: a)
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Table 4.1: Statistical summary of dry and wet GOM on a 2-hour timescale (pg m−3, except
# data points).

GOM Dry Wet
# Data Points 2960 310

Minimum 0.0 0.0
Maximum 225.6 24.7

Lower Quartile 1.3 0.2
Median 3.7 1.0

Upper Quartile 10.1 2.3
MAD 2.9 1.0

scavenging efficiency for precipitation on a 2-hour timescale is 0.7.

Approximately 37% of the entire GOM data set is below the MDL (1.5 pg m−3). If

precipitation had no effect on GOM concentrations, then ~37% of both the dry and wet

GOM data subsets should be below the MDL. Only 28% of the dry data set is below the

MDL, while 59% of the wet GOM is below the MDL. Both this result and the Wilcoxon

test support the hypothesis that GOM is efficiently scavenged by precipitation.

The 2-hour timescale Wilcoxon test results were extended to seasonal timescales to de-

termine the robustness of the results (Fig. 4.3). This analysis revealed that wet GOM is

statistically lower than dry GOM during all seasons and the scavenging efficiencies vary

between 0.4 (spring) and 0.9 (summer). It is unclear why the scavenging efficiencies should

have a seasonal dependence. It is possible that the scavenging efficiency depends on precip-

itation intensity or type, which are seasonally dependent. This possibility will be explored

later in this chapter.

The before-wet and after-wet data are statistically different (Fig. 4.4) suggesting that

precipitation scavenges GOM on a 24-hour timescale as well (two-sided Wilcoxon test,

95%). The scavenging efficiency, defined in Equation 4.1, is 0.6. These results suggest not

only that precipitation scavenges a substantial fraction of GOM, but also that the scavenging

of GOM by precipitation is persistent enough to be measurable on a 24-hour timescale.

However, it is possible that the cloudy/cold weather associated with precipitation could

suppress the typical (assumed) GEM to GOM photochemical conversion which would have
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Figure 4.3: Dry and wet GOM a) medians by season, and b) seasonal scavenging effi-
ciencies for GOM (2-hour timescale). Seasons were marked with an X when the dry and
wet GOM were statistically different and with an O when they were statistically the same.
(Wilcoxon test). Error bars are MADs.
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Figure 4.4: GOM precipitation scavenging for 55 separate precipitation events (24-hour
timescale). Before-wet represents the median of the population of data points collected
during the 24 hours preceding all of the qualifying precipitation events (420 data points).
(See Section 4.1.2.) After-wet represents the median of the population of data points col-
lected during and for 24 hours after the onset of all qualifying precipitation events (417
data points). Error bars are MADs.

the same effect on the data.

4.1.4 Precipitation Scavenging Results for PBM

Wet PBM is statistically lower than the dry PBM at the 95% confidence level (two-sided

Wilcoxon test) on a 2-hour timescale. Figure 4.5 shows the wet and dry PBM time series

with both full and truncated axes. The full axes plot acknowledges the outliers while the

truncated axes plot allows the majority of the data to be seen. Figure 4.5 shows that there

are both dry and wet PBM outliers, and there is clearly not a total suppression of PBM due

to precipitation. Figure 4.6 shows that the wet PBM median is less than half of the dry

PBM median. Table 4.2 shows basic statistics for dry and wet PBM. The PBM scavenging

efficiency for precipitation on a 2-hour timescale is 0.6.

The extremely high concentration of 803.2 pg m−3 in the wet category (Table 4.2) was
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Figure 4.5: Dry and wet PBM from 1 July 2009 to 30 June 2011: a) time series, and b)
time series with truncated axes (2-hour timescale).
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Figure 4.6: Dry and wet PBM from 1 July 2009 to 30 June 2011 medians with MAD error
bars (2-hour timescale).

Table 4.2: Statistical summary of dry and wet PBM on a 2-hour timescale (pg m−3, except
# data points).

PBM Dry Wet
# Data Points 2906 328

Minimum 0.0 0.0
Maximum 343.9 803.2

Lower Quartile 4.1 1.6
Median 6.7 2.8

Upper Quartile 11.5 5.1
MAD 3.2 1.5
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measured on 11 February 2010 at 06:00 (the mercury was collected 04:00-06:00). This

was part of a high PBM event, and was followed by a concentration of 549.6 pg m−3. This

high PBM event was concurrent with a high GEM event. The highest GEM concentration

observed during the corresponding adsorption period was 3.24 ng m−3. KHIF reported

light snow and fog during that time. These high concentrations are thought to be due to a

high concentration plume from a local industrial or urban source. The second-largest wet

PBM event is 80.3 pg m−3.

Approximately 7% of the entire PBM data set is below the MDL (1.5 pg m−3). If

precipitation had no effect on PBM concentrations, then ~7% of both the dry and wet PBM

data subsets should be below the MDL. Only 3% of the dry data set is below the MDL,

while 23% of the wet PBM is below the MDL. Both this result and the Wilcoxon test

support the hypothesis that PBM is scavenged by precipitation.

The 2-hour timescale Wilcoxon test results for PBM were extended to seasonal time

periods to determine the robustness of the results (Fig. 4.7). This analysis revealed that

wet PBM is statistically lower than dry PBM for all seasons. The seasonal scavenging

efficiencies vary between 0.4 and 0.7. It is unclear why the scavenging efficiency should

vary be season. Once again, this might be due to seasonal variations in precipitation type

and intensity.

The before-wet and after-wet data are statistically different (Fig. 4.8), suggesting that

precipitation scavenges PBM on a 24-hour timescale as well (two-sided Wilcoxon test,

95%). The scavenging efficiency, defined in Equation 4.1, is 0.3, suggesting that precipita-

tion scavenges some PBM on a 24-hour timescale.

4.1.5 Precipitation Scavenging Results for GEM

GEM has a low solubility, so it is not effectively scavenged by precipitation (Sakata

and Asakura, 2007). For any 3-hour time period, 24 GEM data points are measured at the

UT96 site. Consequently, GEM data were pruned (see Section 2.3.4) to one data point per
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Figure 4.7: Dry and wet PBM a) medians by season and b) seasonal scavenging efficiencies
for PBM (2-hour timescale). Seasons were marked with an X when the dry and wet PBM
were statistically different and with an O when they were statistically the same (Wilcoxon
test). Error bars are MADs.
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Figure 4.8: PBM precipitation scavenging for 56 separate precipitation events (24-hour
timescale). Before-wet represents the median of the population of data points collected
during the 24 hours preceding all of the qualifying precipitation events (425 data points).
(See Section 4.1.2.) After-wet represents the median of the population of data points col-
lected during and for 24 hours after the onset of all qualifying precipitation events (426
data points). Error bars are MADs.
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3-hour time period to address serial correlation. Table 4.3 shows the basic statistics for dry

and wet GEM using both pruned and unpruned data. Pruning the data shifted the quartiles

surprisingly little, suggesting that pruning did not alter the distribution significantly. The

time series of the wet and dry pruned GEM is shown in Figure 4.9a. There is little difference

between the pruned and unpruned median wet and dry GEM (Fig. 4.9b). However, the

results of the Wilcoxon test on the pruned and unpruned data sets are different. Without

pruning, the Wilcoxon test showed that dry and wet GEM are statistically different. After

pruning, which addresses the problem of serial correlation, the wet GEM is statistically

the same as dry GEM (2-sided Wilcoxon test, 95%). The GEM scavenging efficiency for

precipitation on a 2-hour timescale is, therefore, 0.0.

If precipitation had no effect on GEM concentrations, then approximately 10% of the

(pruned) dry and wet GEM subsets should be below the overall lowest decile of unpruned

GEM (1.31 ng m−3). Approximately 11% of dry GEM is below the overall decile while

only 5% of the wet GEM is below the decile. Both this test and the Wilcoxon test support

the hypothesis that GEM is not scavenged by precipitation. Indeed, these results suggest

that if precipitation has any effect on GEM, precipitation increases GEM slightly. Per-

haps precipitation suppresses the typical (assumed here) conversion from GEM to GOM.

It is also possible that precipitation could drive mercury from the soil, thereby increasing

atmospheric GEM (e.g., Lindberg et al., 1999).

The 2-hour Wilcoxon test results were extended to seasonal time periods to determine

Table 4.3: Statistical summary of dry and wet GEM on a 2-hour timescale with and without
pruning. (ng m−3, except # data points).

GEM Unpruned Dry Unpruned Wet Pruned Dry Pruned Wet
# Data Points 66553 7396 3097 330

Minimum 0.25 1.00 0.73 1.14
Maximum 13.18 4.39 3.95 3.57

Lower Quartile (q0.25) 1.43 1.49 1.43 1.47
Median (q0.5) 1.57 1.60 1.57 1.60

Upper Quartile (q0.75) 1.74 1.74 1.74 1.72
MAD 0.15 0.12 0.15 0.13
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Figure 4.9: Dry and wet GEM (2-hour timescale) from 1 July 2009 to 30 June 2011: a)
pruned time series, and b) pruned and unpruned medians with MAD error bars.
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the robustness of the results (Figure 4.10). This analysis revealed that wet and dry GEM are

statistically the same for all seasons, therefore, the scavenging efficiency for each season is

0.0.

The before-wet and after-wet GEM data are statistically the same (Fig. 4.11), suggest-

ing that precipitation does not affect GEM on a 24-hour timescale (two-sided Wilcoxon

test, 95%). The scavenging efficiency, defined in Equation 4.1, is 0.0, suggesting that pre-

cipitation does not scavenge nor promote GEM on a 24-hour timescale.

4.2 Hypothesis #2: Precipitation Intensity

The precipitation intensity analysis was conducted by including distinctions about the

amount of precipitation that fell during the 2 hours preceding the time stamp on each wet

data point. The designation for dry was the same as in Section 4.1, but wet events were

sorted into “damp” and “soggy” categories. Damp data had total accumulated precipitation

of more than 0 cm but less than or equal to the “soggy threshold.” The soggy threshold
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Figure 4.10: Dry and wet GEM medians by season. Seasons in which the dry and wet
PBM were statistically different are marked with an X, and an O if they were statistically
the same (Wilcoxon test). Error bars are MADs.
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Figure 4.11: GEM precipitation scavenging for 82 separate precipitation events (24-hour
timescale). Before-wet represents the median of the population of data points collected
during the 24 hours preceding all of the qualifying precipitation events (654 data points).
(See Section 4.1.2.) After-wet represents the median of the population of data points col-
lected during and for 24 hours after the onset of all qualifying precipitation events (635
data points). Error bars are MADs.
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was set to 0.09 cm, which produced damp and soggy data sets of similar size. For “soggy”

data, there was an accumulation of precipitation in the preceding time window greater than

the soggy threshold. Similar to Section 4.1, the Wilcoxon test, scavenging efficiencies,

decile/MDL test, and seasonal analysis were all calculated on the dry, damp, and soggy

data. Tables with results are presented in the corresponding test sections.

The post-pre (24-hour timescale) analysis was also extended to the precipitation inten-

sity analysis. The wet events found in the previous analysis were separated into damp and

soggy events. The total accumulated precipitation measured at KHIF between the begin-

ning of the adsorption period (two hours before the time stamp on the event datum) and

24 hours after the time stamp on the event datum (a 26-hour period) was used to distin-

guish between damp and soggy events. If the 26-hour total accumulated precipitation was

less than the chosen 26-hour soggy threshold, then the event was designated as “damp.”

Similarly, if the 26-hour total accumulated precipitation was more than the 26-hour soggy

threshold, the event was designated as “soggy.” The 26-hour soggy threshold was set to ap-

proximately the median of the 26-hour total accumulated precipitation for all events (0.25

cm). This threshold leads to approximately equal numbers of damp and soggy events.

4.2.1 Precipitation Intensity Scavenging Results for GOM

Damp and soggy GOM are both statistically lower than dry GOM (KW test, 95%).

Damp and soggy GOM could not be statistically compared to each other because the me-

dian of each is below the MDL. Figure 4.12 shows the time series as well as the median dry,

damp, and soggy GOM. Table 4.4 shows the basic statistics for dry, damp, and soggy GOM.

The GOM scavenging efficiency for light precipitation (damp) on a 2-hour timescale is 0.6.

The GOM scavenging efficiency for heavy precipitation (soggy) on a 2-hour timescale is

0.8 meaning that most GOM is removed from the atmosphere during heavy precipitation.

Approximately 37% of the entire GOM data set is below the MDL (1.5 pg m−3). If

precipitation had no effect on GOM concentrations, then ~37% of each of the dry, damp,
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Figure 4.12: GOM concentrations under dry, damp, and soggy conditions from 1 July
2009 to 30 June 2011: a) time series, and b) medians with MAD error bars.
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Table 4.4: Statistical summary of dry, damp, and soggy GOM on a 2-hour timescale
(pg m−3, except # data points).

GOM Dry Damp Soggy
# Data Points 2960 164 146

Minimum 0.0 0.0 0.0
Maximum 225.6 14.6 24.7

Lower Quartile 1.3 0.4 0.0
Median 3.7 1.4 0.7

Upper Quartile 10.1 2.5 2.0
MAD 2.9 1.0 0.7

and soggy GOM data subsets should be below the MDL. Only 28% of the dry data set is

below the MDL, while 53% and 65% of the damp and soggy GOM are below the MDL,

respectively. This result supports the hypothesis that GOM is scavenged more efficiently

as precipitation intensity increases.

During all seasons (Fig. 4.13), dry GOM is statistically higher than damp and soggy

GOM with scavenging efficiencies ranging between 0.3 and 1.0 (KW test, 95%). Damp

and soggy GOM are statistically the same during all seasons at the 95% confidence levels.

However, spring damp and soggy GOM are statistically different at the 90% confidence

level, while winter damp and soggy GOM are statistically different at the 70% confidence

level. For summer and fall, the damp and soggy GOM are both below the MDL and cannot

be distinguished statistically. The soggy scavenging efficiency is greater than the damp

scavenging efficiency for every season, consistent with the hypothesis that heavy precipi-

tation will scavenge GOM more efficiently than light precipitation (Fig. 4.14).

The events in the pre-post (24-hour timescale) analysis of Section 4.1.3 were also sub-

divided into damp and soggy categories (Fig. 4.15). The before-damp and after-damp data

are statistically different (two-sided Wilcoxon test, 95%) with a scavenging efficiency (Eq.

4.1) of 0.4. In addition, the before-soggy and after-soggy data are statistically different

with a scavenging efficiency of 0.7. These results suggest that scavenging increases as

precipitation increases on a 24-hour timescale.

The results of this section suggest that both light and heavy precipitation scavenge
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Figure 4.14: Seasonal pattern of scavenging efficiencies of GOM for damp, and soggy
conditions.

GOM, and heavy precipitation scavenges GOM more efficiently than light precipitation on

both 2-hour and 24-hour timescales.

4.2.2 Precipitation Intensity Scavenging Results for PBM

Dry, damp, and soggy PBM (Fig. 4.16) are all statistically different (KW test, 95%).

The median PBM concentration decreases as the amount of precipitation increases. The

time series of dry, damp, and soggy PBM is shown in Figure 4.17, with both full axes and

truncated axes to allow the majority of data to be seen. Table 4.5 shows the PBM statistics

for dry, damp, and soggy conditions. The PBM scavenging efficiency for light precipitation

(damp) on a 2-hour timescale is 0.5. The PBM scavenging efficiency for heavy precipitation

(soggy) on a 2-hour timescale is 0.7, meaning that the majority of PBM is removed from

the atmosphere during heavy precipitation.

Approximately 7% of the entire PBM data set is below the MDL (1.5 pg m−3). If

precipitation had no effect on PBM concentrations, then ~7% of each of the dry, damp,

and soggy PBM data subsets should be below the MDL. Only 3% of the dry data set is

- 0 -
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Figure 4.15: GOM precipitation scavenging for 26 separate light precipitation events and
29 separate heavy precipitation events (24-hour timescale). Before-damp represents the
median of the population of data points collected during the 24 hours preceding the light
precipitation events (197 data points). After-damp represents the median of the population
of data points collected during and for 24 hours after the onset of the light precipitation
events (201 data points). Likewise for the heavy precipitation events. Before-soggy and
after-soggy data had 223 and 216 data points, respectively. Error bars are MADs.

Table 4.5: Statistical summary of dry, damp, and soggy PBM on a 2-hour timescale
(pg m−3, except # data points).

PBM Dry Damp Soggy
# Data Points 2906 171 157

Minimum 0.0 0.3 0.0
Maximum 343.9 77.0 803.2

Lower Quartile 4.1 2.0 1.2
Median 6.7 3.5 2.3

Upper Quartile 11.5 5.5 4.1
MAD 3.2 1.8 1.3
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Figure 4.16: Median PBM concentrations with MAD error bars under dry, damp, and
soggy conditions from 1 July 2009 to 30 June 2011.

below the MDL, while 14% and 32% of the damp and soggy PBM are below the MDL,

respectively. This result supports the hypothesis that PBM is scavenged more efficiently as

precipitation intensity increases.

During all seasons, dry PBM is statistically higher than damp and soggy PBM (Fig.

4.18). Fall and winter damp PBM are statistically higher than soggy PBM. Spring and

summer damp and soggy PBM are statistically the same at the 95% confidence level (KW

test). However, spring damp and soggy PBM are statistically different at the 75% confi-

dence level. Damp PBM has a scavenging efficiency of 0.4-0.5 during all seasons, while

soggy PBM has a scavenging efficiency of 0.4-0.8 (Fig. 4.19). The summer soggy PBM

scavenging efficiency, in contrast the rest of the year, is only 0.4. The inconsistency during

summer could be related to the small number of data points. For all other seasons, there are

between 31 and 72 soggy PBM data points, but there are only 16 soggy PBM data points

for summer.

The events in the pre-post (24-hour timescale) analysis of Section 4.1.4 were subdivided

into damp and soggy categories. The before-damp and after-damp data are statistically dif-
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Figure 4.17: PBM concentration time series under dry, damp, and soggy conditions from
1 July 2009 to 30 June 2011 with: a) full, and b) truncated axes.
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Figure 4.18: Seasonal pattern of PBM concentrations for dry, damp, and soggy conditions:
a) dry, damp, and soggy median PBM by season with MAD error bars and results of KW
test for b) winter, c) spring, d) summer, and e) fall. Comparison pairs that are statistically
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Figure 4.19: Seasonal pattern of scavenging efficiencies of PBM for damp and soggy
conditions.

ferent (two-sided Wilcoxon test, 95%) on a 24-hour timescale as are the before-soggy and

after-soggy data (Fig. 4.20). The scavenging efficiency, defined in Equation 4.1, is 0.2 for

the damp case and 0.4 for the soggy case. This suggests that precipitation does scavenge

PBM on a 24-hour timescale, but not a majority. It should be noted, however, that the

Tekran 2537B only measures particles with aerodynamic diameters < ~2.7 µm. The scav-

enging efficiency will vary greatly depending on the underlying particle size distribution.

4.2.3 Precipitation Intensity Scavenging Results for GEM

Dry, damp, and soggy GEM are all statistically the same (KW test, 95%), which means

that the scavenging efficiency is 0.0 (Fig. 4.21). Table 4.6 shows the basic statistics for dry,

damp, and soggy GEM.

If precipitation had no effect on GEM concentrations, then approximately 10% of the

(pruned) dry, damp, and soggy GEM subsets should be below the overall unpruned lowest

decile of GEM (1.31 ng m−3). Approximately 11% of dry GEM is below the overall decile.

- 0 -

0- -
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Figure 4.20: PBM precipitation scavenging for 28 separate light precipitation events and
28 separate heavy precipitation events (24-hour timescale). Before-damp represents the
median of the population of data points collected during the 24 hours preceding the light
precipitation events (209 data points). After-damp represents the median of the population
of data points collected during and for 24 hours after the onset of the light precipitation
events (220 data points). Likewise for the heavy precipitation events. Before-soggy and
after-soggy data had 216 and 206 data points, respectively. Error bars are MADs.

Table 4.6: Statistical summary of dry, damp, and soggy GEM on a 2-hour timescale
(ng m−3, except # data points).

GEM Dry Damp Soggy
# Data Points 3097 172 158

Minimum 0.73 1.20 1.14
Maximum 3.95 3.57 3.09

Lower Quartile 1.43 1.46 1.49
Median 1.57 1.59 1.61

Upper Quartile 1.74 1.73 1.72
MAD 0.15 0.14 0.11
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Figure 4.21: GEM concentrations under dry, damp, and soggy conditions from 1 July 2009
to 30 June 2011: a) time series, and b) medians with MAD error bars.
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Meanwhile, only 5% of the damp GEM and only 6% of the soggy GEM is below the

decile. These results suggest that if precipitation has any effect on GEM, GEM increases

as the amount of precipitation increases. This apparent increase in GEM could be due to

a reduction in the photochemical conversion of GEM to GOM during the cloudy and cold

conditions that tend to accompany precipitation. It could also result from an increased

emission from the soil (e.g., Lindberg et al., 1999).

Dry, damp, and soggy GEM (Fig. 4.22) are also all statistically the same for all seasons

(KW test, 95%) yielding a scavenging efficiency of 0.0 for both damp and soggy GEM for

every season.

The before-damp and after-damp data (Fig. 4.23) are statistically the same as are the

before-soggy and after-soggy data (two-sided Wilcoxon test, 95%) on a 24-hour timescale.

The scavenging efficiency, defined in Equation 4.1, is 0.0 for both the damp and soggy cases

(i.e., precipitation does not scavenge GEM regardless of the amount of precipitation).

4.3 Hypothesis #3: Precipitation Type

This section will use the textual weather descriptions attached to the KHIF data to

separate the data by precipitation type (i.e., rain, snow, or mixed). The raw KHIF data

(mostly temperature and weather descriptions such as “rain” or “snow”) were used to assign

flags to the 1-hour precipitation data (Table 4.7).

The post-pre (24-hour timescale) analysis was extended to the precipitation type anal-

ysis. The events found in the post-pre analysis were separated into rain, snow and mixed

events based on all KHIF observations made during the 26-hour period from the begin-

Table 4.7: Precipitation flags for the KHIF data.

Precipitation Type Flag Meaning
0 No Measurable Precipitation
1 Rain
2 Snow
3 Mixed Rain and Snow or Uncertain Type (near 0◦C)



116

Winter Spring Summer Fall  
1.3

1.4

1.5

1.6

1.7

1.8

1.9

G
E

M
 C

on
ce

nt
ra

tio
n 

(n
g 

m−
3 )

 

 

Dry
Damp
Soggy

Figure 4.22: Dry, damp, and soggy median GEM by season with MAD error bars.

Pre−Damp  Post−Damp Pre−Soggy Post−Soggy
1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

G
E

M
 C

on
ce

nt
ra

tio
n 

(n
g 

m−
3 )

Figure 4.23: GEM precipitation scavenging for 41 separate light precipitation events and
41 separate heavy precipitation events (24-hour timescale). Before-damp represents the
median of the population of data points collected during the 24 hours preceding the light
precipitation events (332 data points). After-damp represents the median of the population
of data points collected during and for 24 hours after the onset of the light precipitation
events (324 data points). Likewise for the heavy precipitation events. Before-soggy and
after-soggy data had 322 and 311 data points, respectively. Error bars are MADs.
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ning of adsorption to 24 hours after the event datum time stamp. During rain events, only

liquid precipitation was observed at KHIF. Likewise, during snow events, only frozen pre-

cipitation was observed at KHIF. Mixed events include times when both frozen and liquid

precipitation occurred or when the precipitation type was unclear in the KHIF data.

The rain events were subsequently separated into light rain and heavy rain events based

on the soggy definition (Section 4.2). Snow and mixed-phase precipitation events were

similarly separated when there were enough events to do so.

4.3.1 Precipitation Type Effects on Scavenging of GOM

Dry GOM is statistically higher than rain, snow, and mixed GOM on a 2-hour timescale

(Fig. 4.24). Meanwhile, rain, snow, and mixed GOM are all statistically the same as the

median of each is below the MDL. The scavenging efficiency for both rain and snow is 0.7,

while the scavenging efficiency for mixed precipitation is 0.8. These results suggest that

all three forms of precipitation are quite effective at scavenging GOM. The time series of

dry, rain, snow, and mixed GOM are shown in Figure 4.25. The statistical summary of the

precipitation type analysis for GOM is given in Table 4.8. In addition to the medians and

MADs demonstrating that the dry and precipitation subsets exhibit different distributions,

the upper quartiles also show this quite clearly. The upper quartile for the dry GOM subset

is 10.1 pg m−3, while none of the upper quartiles for any of the precipitation GOM subsets

is above 2.5 pg m−3.

Table 4.8: Statistical summary of dry, rain, snow, and mixed GOM on a 2-hour timescale
(pg m−3, except # data points).

GOM Dry Rain Snow Mixed
# Data Points 2960 177 85 48

Minimum 0.0 0.0 0.0 0.0
Maximum 225.6 14.6 24.7 14.5

Lower Quartile 1.3 0.2 0.3 0.0
Median 3.7 1.1 0.9 0.6

Upper Quartile 10.1 2.5 2.3 1.9
MAD 2.9 1.1 0.9 0.6
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Figure 4.24: Dry, rain, snow, and mixed GOM: a) medians, error bars are MADs, and b)
KW test results for comparison pairs.
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Figure 4.25: Dry, rain, snow, and mixed GOM time series from 1 July 2009 to 30 June
2011.

Approximately 37% of the entire GOM data set is below the MDL (1.5 pg m−3). If

precipitation had no effect on GOM concentrations, then ~37% of each of the dry, rain,

and snow GOM data subsets should be below the MDL. Only 28% of the dry data set is

below the MDL, while 54%, 62%, and 68% of the rain, snow and mixed GOM are below

the MDL, respectively. This result supports the hypothesis that GOM is scavenged by all

forms of precipitation, and indicates mixed precipitation scavenges GOM most efficiently.

The seasonality of dry, rain, snow, and mixed GOM concentrations is shown in Figure

4.26. Only some types of precipitation could be included in the KW test for some seasons

because of small sample sizes (i.e., at least 10 data points were required for statistical tests).

During winter, dry, snow, and mixed GOM are statistically the same. Wintertime rain GOM

is statistically lower than dry GOM with a scavenging efficiency of 0.7. During the spring,

rain and snow GOM are statistically the same and are lower than dry GOM. The springtime

scavenging efficiencies of GOM for rain and snow are 0.3 and 0.4, respectively. During the

summer, dry GOM is higher than rain GOM with a scavenging efficiency of 0.9. In fall, dry
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Figure 4.26: Dry, rain, snow, and mixed GOM: a) medians by season and results of the KW
test for b) winter, c) spring, d) summer, and e) fall. Error bars are MADs.
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GOM is statistically higher than rain, snow, and mixed GOM. The three GOM precipitation

subsets are all statistically the same for fall because the medians are all below the MDL.

The autumn scavenging efficiencies of GOM for rain, snow, and mixed precipitation are

0.8, 0.8 and 0.9, respectively. These results are consistent with the hypothesis that all

forms of precipitation scavenge GOM.

The events in the pre-post (24-hour timescale) analysis were subdivided into rain, snow,

and mixed categories (Fig. 4.27). The before-rain and after-rain data are statistically differ-

ent (28 events), and the scavenging efficiency is 0.5. The before-snow and after-snow data

are also statistically different (11 events) with a scavenging efficiency for snow of 0.6. The

before-mixed and after-mixed data are statistically different (16 events), with a scavenging

efficiency of 0.7.

When the rain events are separated into light rain and heavy rain events (using the soggy

definition), pre- and post- light rain were statistically the same while pre- and post- heavy

rain events were statistically different. This suggests that rain does scavenge GOM, but how

well rain scavenges GOM depends on the amount of rain. The scavenging efficiency for

heavy rain is 0.6. Only three of the eight snow events qualify as soggy, so no determination

can be made about how well heavy snow events scavenge GOM compared to light snow

events. Pre- and post- heavy mixed precipitation events were statistically different with a

scavenging efficiency of 0.8. Only five of the 16 mixed events are light events, so it is not

possible to use this data set to determine the scavenging efficiency of light mixed events.

4.3.2 Precipitation Type Effects on Scavenging of PBM

Dry PBM is statistically higher than rain, snow, and mixed (Fig. 4.28). Snow PBM

is higher than both rain and mixed (KW test, 5%). The scavenging efficiencies for rain,

snow, and mixed precipitation are 0.6, 0.5, and 0.7, respectively. Thus, mixed precipitation

scavenges PBM more efficiently than other forms of precipitation. The time series of dry,

rain, snow, and mixed PBM are shown in Figure 4.29. The statistical summary of the pre-
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Figure 4.27: GOM precipitation scavenging for 28 separate rain events, 11 separate snow
events, and 16 mixed events (24-hour timescale). Before-rain represents the median of the
population of data points collected during the 24 hours preceding the rain events (212 data
points). After-rain represents the median of the population of data points collected during
and for 24 hours after the onset of the rain events (205 data points). Likewise for the snow
and mixed events. Before-snow and after-snow data had 88 and 86 data points, respectively.
Before-mixed and after-mixed data had 120 and 126 data points, respectively. Error bars
are MADs.
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Table 4.9: Statistical summary of dry, rain, snow, and mixed PBM on a 2-hour timescale
(pg m−3, except # data points).

PBM Dry Rain Snow Mixed
# Data Points 2906 186 92 50

Minimum 0 0 0 0
Maximum 343.9 63.4 803.2 55.0

Lower Quartile (q0.25) 4.1 1.8 1.4 1.2
Median (q0.5) 6.7 2.8 3.4 2.3

Upper Quartile (q0.75) 11.5 4.8 10.2 4.7
MAD 3.2 1.2 2.4 1.5

cipitation type analysis for PBM is given in Table 4.9. Every statistic for rain and mixed

PBM demonstrate a lower distribution compared to dry PBM. Snow PBM, however, has

some outliers of very high concentration. While the median snow PBM is well below the

median dry PBM, the snow PBM upper quartile is above that for dry PBM. The scavenging

efficiency for snow likely depends on the size distribution of snowflakes, about which no

information is available for this data set. In addition, this analysis describes the scaveng-

ing efficiency of PBM of particles smaller than ~2.7 µm aerodynamic diameter, and the

scavenging efficiency would likely be higher for larger particles.

Approximately 7% of the entire PBM data set is below the MDL (1.5 pg m−3). If

precipitation had no effect on PBM concentrations, then ~7% of each of the dry, rain, and

snow PBM data subsets should be below the MDL. Only 3% of the dry data set is below the

MDL, while 17%, 27% and 36% of the rain, snow and mixed PBM are below the MDL,

respectively. This result supports the hypothesis that PBM is scavenged by all forms of

precipitation, and indicates mixed precipitation scavenges PBM most efficiently.

Figure 4.30 shows the dry, rain, snow, and mixed subcategories by season. A popula-

tion is not included in the KW test if there are less than ten data points in a population for a

given season. Accordingly, there are no KW results included for some types of precipitation

during some seasons. The results in Figure 4.30 suggest that rain scavenges precipitation

because rain PBM is statistically lower than dry PBM during all four seasons. The scav-

enging efficiency of rain for PBM varies between 0.4 and 0.6. Snow PBM was lower than
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Figure 4.28: Dry, rain, snow, and mixed PBM: a) medians, error bars are MADs, and b)
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Figure 4.29: Dry, rain, snow, and mixed PBM time series from 1 July 2009 to 30 June 2011
with both: a) full axes to allow the outliers to be seen, and b) truncated axes to allow a view
of the majority of data.
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Figure 4.30: Dry, rain, snow, and mixed PBM: a) medians by season and results of the KW
test for b) winter, c) spring, d) summer, and e) fall. Error bars are MADs.
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dry PBM during fall through spring (the seasons that had snow), and the scavenging ef-

ficiencies varied between 0.5 and 0.7. Mixed PBM was lower than dry PBM during fall

through spring (the seasons that had mixed precipitation), and the scavenging efficiencies

varied between 0.6 and 0.8.

The events in the pre-post (24-hour timescale) analysis of Section 4.1.4 were subdivided

into rain, snow, and mixed categories. The before-rain and after-rain data are statistically

different (Fig. 4.31 ). The scavenging efficiency, defined in Equation 4.1, for rain is 0.1.

The before-snow and after-snow data are statistically different with a scavenging efficiency

of 0.3. In addition, the before-mixed and after-mixed data are statistically different (two-

sided Wilcoxon test, 95%). The scavenging efficiency for mixed-phase precipitation is 0.4,

suggesting that mixed-phase precipitation scavenges PBM better than either rain or snow

alone.

When the rain events are separated into light rain and heavy rain events (using the soggy

definition), pre- and post- light rain were statistically the same while pre- and post- heavy

rain events were statistically different. The scavenging efficiency for heavy rain is 0.2.

Only 3 of the 12 snow events qualify as soggy, so no determination can be made about

how well heavy snow events scavenge PBM compared to light snow events. Five of the 15

mixed events are heavy events, so it is not possible to use this data set to determine what the

scavenging efficiency of light mixed events might be. Pre- and post- heavy mixed-phase

precipitation are statistically different with a scavenging efficiency of 0.5.

4.3.3 Precipitation Type Effects on Scavenging of GEM

Rain GEM is statistically higher than dry GEM on a 2-hour timescale (Fig. 4.32). Snow

GEM is statistically lower than both dry GEM and rain GEM. Mixed GEM is statistically

the same as dry, rain, and snow GEM which implies that rain GEM and snow GEM barely

passed the statistical significance test. These results suggest that rain may act to promote

higher GEM concentrations. The scavenging efficiency of rain is -0.04, indicating that rain
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Figure 4.31: PBM precipitation scavenging for 29 rain, 12 snow, and 15 mixed precip-
itation events (24-hour timescale). Before-rain represents the median of the population
of data points collected during the 24 hours preceding the rain events (216 data points).
After-rain represents the median of the population of data points collected during and for
24 hours after the onset of the rain events (214 data points). Likewise for the snow and
mixed precipitation events. Before-snow and after-snow PBM data had 96 and 94 data
points, respectively. Before-mixed and after-mixed PBM data had 113 and 118 data points,
respectively. Error bars are MADs.
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Figure 4.32: Dry, rain, snow, and mixed GEM: a) medians, error bars are MADs, and b)
KW test results for comparison pairs.
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may promote very slightly higher GEM concentrations compared to dry conditions. Weiss-

Penzias et al. (2009) observed GEM enhancement events associated with rain near their

detector. Snow GEM is statistically lower than dry GEM, suggesting that the presence of

snow promotes lower concentrations of GEM. Scavenging seems an unlikely explanation

as GEM is not water soluble and rain clearly does not scavenge GEM. A possible expla-

nation is that snow covering the ground prevents soil emissions of GEM. The scavenging

efficiency for snow is 0.02, indicating that while the snow GEM and dry GEM are sta-

tistically different, the effect of snow is quite small. As dry GEM and mixed GEM are

statistically the same, the scavenging efficiency is 0.0. The time series of dry, rain, snow,

and mixed GEM are shown in Figure 4.33. The statistical summary of the precipitation

type analysis for GEM is given in Table 4.10.

The 2-hour precipitation type analysis for GEM is consistent with Lindberg et al. (1999)

who observed emissions of mercury following wetting soil either by rainfall or irrigation

using flux chambers. Perhaps the liquid precipitation promotes mercury emissions from

the soil as, Lindberg et al. (1999) suggested, because liquid precipitation goes down into

the soil. Meanwhile, snow will form a layer on top of the soil preventing emission. Mixed

precipitation could go either way depending on whether it is more like rain or more like

snow.

The results of the lowest 10% test for dry, rain, snow, and mixed GEM are shown in

Table 4.11. The results are not consistent with the hypothesis that precipitation scavenges

GEM. The results suggest that if precipitation has any affect on GEM, precipitation pro-

motes higher GEM. Unlike the results for GOM and PBM, the dry GEM subset has slightly

more than 10% of its population below the overall decile of 1.31 ng m−3 and less than 10%

of each precipitation data subset is below the overall decile.

Seasonality of dry, rain, snow, and mixed GEM concentrations is shown in Figure 4.34.

Only some types of precipitation could be included in the KW test for some seasons because

of small sample sizes. During winter and spring, snow GEM is statistically lower than dry
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Figure 4.33: Dry , rain, snow, and mixed GOM time series from 1 July 2009 to 30 June
2011.

Table 4.10: Statistical summary of dry, rain, snow, and mixed GEM on a 2-hour timescale
(ng m−3, except # data points).

GEM Dry Rain Snow Mixed
# Data Points 3097 193 95 42

Minimum 0.73 1.14 1.20 1.21
Maximum 3.95 3.57 3.09 2.12

Lower Quartile 1.43 1.52 1.43 1.49
Median 1.57 1.64 1.54 1.61

Upper Quartile 1.74 1.78 1.62 1.69
MAD 0.15 0.13 0.09 0.11
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GEM, which is lower than rain GEM. During the summer, dry and rain GEM are the same.

During fall, dry, snow and rain GEM are all statistically the same. These results suggest

that rain promotes higher concentrations of GEM and snow promotes lower concentrations

of GEM, though these observations are only statistically significant for two of the four

seasons.

The events in the pre-post (24-hour timescale) analysis were subdivided into rain, snow,

and mixed categories (Fig. 4.35). The before-rain and after-rain data are statistically the

same (37 events), with a scavenging efficiency of 0.0. When the rain events are separated

into light rain and heavy rain events (using the soggy definition), pre- and post- light rain

are the statistically the same (18 events). The pre- and post- heavy rain are also statistically

the same (19 events).

The before-snow and after-snow data are statistically the same, so the scavenging effi-

ciency is 0.0. Fourteen of the 19 snow events were light events, and pre- and post- light

snow events are also statistically the same.

The before-mixed and after-mixed GEM data are statistically the same (two-sided Wilcoxon

test, 95%), with a scavenging efficiency of 0.0. Seventeen of the 26 mixed events are heavy

events, and pre- and post- heavy mixed events were statistically the same. Figure 4.35

shows the medians and MADs for the pre-post rain/snow/mixed analysis.

Table 4.11: Dry, rain, snow and mixed GEM below lowest decile (2-hour timescale).

GEM Value # Data Points
Overall Lowest Decile 1.31 ng m−3 111674

Dry Below Decile 11 % 3097
Rain Below Decile 5 % 193
Snow Below Decile 4 % 95
Mixed Below Decile 7 % 42
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Figure 4.34: Dry, rain, snow, and mixed GEM: a) medians by season and results of the KW
test for b) winter, c) spring, d) summer, and e) fall. Error bars are MADs.
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Figure 4.35: GEM precipitation scavenging for 37 separate rain events, 19 separate snow
events, and 26 mixed events (24-hour timescale). Before-rain represents the median of
the population of data points collected during the 24 hours preceding the rain events (301
data points). After-rain represents the median of the population of data points collected
during and for 24 hours after the onset of the rain events (280 data points). Likewise for
the snow and mixed events. Before-snow and after-snow data had 158 and 151 data points,
respectively. Before-mixed and after-mixed data had 195 and 204 data points, respectively.
Error bars are MADs.



CHAPTER 5

CONCLUSIONS

The UT96 site has the only speciated atmospheric mercury detector in continuous oper-

ation in Utah with two years of data (July 2009 – June 2011), and is, therefore, an invaluable

tool for understanding mercury contamination in the region.

5.1 Temporal Variations in Mercury Concentrations

All three species of atmospheric mercury (GEM, PBM, and GOM) exhibit non-Gaussian

distributions and vary over multiple orders of magnitude. Consequently, non-parametric

statistics are needed to analyze the data. GEM is the dominant species, comprising 99.48%

of total atmospheric mercury observed at UT96. Meanwhile, PBM and GOM comprise

0.36% and 0.16% of total atmospheric mercury, respectively. The medians (ranges) of

GEM, PBM, and GOM are 1.58 ng m−3 (0.25-64.47 ng m−3), 5.7 pg m−3 (0.0-803.2

pg m−3), and 2.6 pg m−3 (0.0-225.6 pg m−3), respectively. Approximately 7% of the PBM

data and ~37% of the GOM data are below the MDL. In comparison to rural Dexter, MI and

urban Detroit, MI (Liu et al., 2010), UT96 can be characterized as moderately urban. UT96

is influenced by local/regional urban and industrial activities. UT96 could not be used to

find background concentrations without careful consideration of wind direction and back-

trajectories. Air parcels from the northeast could probably be considered background.

GEM and PBM concentrations are highest during winter, while GOM concentrations

are highest during summer. High wintertime PBM could represent temperature-dependent

adsorption or condensation of GEM or GOM onto atmospheric particles. It could also be re-
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lated to heating activities. Wintertime temperature inversions may also trap GEM and PBM

allowing mercury to accumulate. High summertime GOM could be due to photochemistry,

entrainment of free tropospheric air, or conversion in a halogen-rich environment.

The diurnal patterns provide evidence of very dynamic, short-timescale processes and

that all three species are impacted by meteorological variables. Both GEM and PBM con-

centrations tend to dip during the afternoon, while peak GOM concentrations are generally

observed during the afternoon. The afternoon dips in both GEM and PBM could be due to

conversions to GOM or enhanced afternoon deposition. In addition to conversion, the after-

noon peaks in GOM could be due to entrainment of free tropospheric air into the boundary

layer or air-surface exchange.

All three species exhibit the largest amplitude in diurnal variation during summer.

GOM exhibits the weakest diurnal pattern during winter, while GEM and PBM exhibit

no diurnal pattern during winter. These findings suggest that the processes that drive high

winter GEM and PBM concentrations are not related to the processes that drive their di-

urnal patterns. Meanwhile, it is plausible that the processes that drive the seasonal and

diurnal variations in GOM concentration are the same.

GEM and PBM both exhibit sporadic extremely high events suggesting the events are

from local/regional sources. GOM, in contrast, exhibits extremely high events with an ob-

vious seasonality suggesting a relationship among GOM concentrations and meteorological

variables. High and low (top and bottom 0.5% of data) GEM events occur throughout the

year, and occasionally within close temporal proximity. High GEM events occur through-

out the day, but are least common during the afternoon, which is when low GEM events are

most common. High GEM events are thought to be predominantly related to local/regional

anthropogenic sources. Low GEM events are thought to be wintertime conversion of GEM

to PBM and summertime conversion to GOM and subsequent deposition. Studying mer-

cury depletion events could provide information on how mercury enters the local ecosystem

where it can be methylated.
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High PBM events are generally thought to be related to local/regional industrial/urban

emission sources, though concentrations may also be influenced by RH. Perhaps high RH

promotes adsorption of GEM and GOM onto aerosols to form PBM. More than half of all

high PBM events occurred during January 2011. Perhaps this is due to inversions trap-

ping local emissions, cold-temperature conversion of GEM and GOM to PBM, and/or an

increase in local urban/industrial emissions. The high PBM event on 25 July 2011 and

other elevated PBM concentration events observed following July holidays (Independence

Day and Pioneer Day) are most likely due to fireworks. High GEM and PBM events may

have at least some common sources. For example, four of the 14 high PBM events oc-

curred concurrently with high GEM events, and a fifth occurred on the same day, but not

concurrently.

All high GOM events occurred between May and October. Six of the 19 high GOM

events occurred concurrently with low GEM events. All high GOM events were adsorbed

between late morning and late afternoon (i.e., 1000 and 2000 MST). No high GOM events

occurred while the RH was above 44%, and most occurred while the RH was below 30%.

High GOM concentrations appear to be strongly influenced by meteorological conditions.

5.2 Effects of Precipitation on Airborne Mercury Species

GOM is scavenged by precipitation on both 2-hour and 24-hour timescales and for the

data set as a whole and by season. GOM is scavenged under both damp and soggy con-

ditions (Table 5.1). Median GOM concentrations during both damp and soggy conditions

were either statistically the same or below the MDL and could not be distinguished. Sim-

ilarly, GOM concentrations during different types of precipitation (rain, snow, and mixed)

could not be distinguished statistically. Overall, GOM is generally well scavenged by any

measurable amount of precipitation of any type, which is important because wet deposition

of GOM is a pathway for atmospheric mercury to enter ecosystems where it can become

methylated and cause harm.
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Table 5.1: Precipitation scavenging efficiencies for atmospheric mercury.

2-hr GOM 24-hr GOM 2-hr PBM 24-hr PBM 2-hr GEM 24-hr GEM
wet 0.7 0.6 0.6 0.3 0.0 0.0

damp 0.6 0.4 0.5 0.2 0.0 0.0
soggy 0.8 0.7 0.7 0.4 0.0 0.0
rain 0.7 0.5 0.6 0.1 -0.04 0.0

snow 0.7 0.6 0.5 0.3 0.02 0.0
mixed 0.8 0.7 0.7 0.4 0.0 0.0

PBM is scavenged by precipitation on both 2-hour and 24-hour timescales for the data

set as a whole and by season. However, PBM is not scavenged as well as GOM. Scavenging

of PBM increases as precipitation amount increases on both 2-hour and 24-hour timescales.

Damp and soggy PBM are not scavenged as well as damp and soggy GOM, especially on

24-hour timescales (Table 5.1). While all forms of precipitation do scavenge PBM, mixed

precipitation scavenges PBM most efficiently. Overall, while PBM is not scavenged by

precipitation as well as GOM, wet deposition of PBM still represents an important pathway

for atmospheric mercury to enter ecosystems, where it can become methylated and cause

harm.

On a 2-hour timescale including two years of data, rain promotes slightly higher con-

centrations of GEM, while snow promotes slightly lower concentrations of GEM. This

pattern also holds during winter and spring. Lindberg et al. (1999) also observed higher

concentrations of GEM following a rain event and irrigation and concluded that liquid

precipitation promotes mercury emissions from the soil. By the same token, perhaps snow-

covered ground could inhibit emissions from soil, promoting slightly lower concentrations

of GEM. Also, perhaps the cold and cloudy weather associated with rain suppresses the

(assumed) GEM to GOM conversion.

5.3 Future Work

The large temporal variations in concentrations for each species suggest that all three

types of mercury undergo interesting dynamics that warrant further study. This work could
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be extended by analyzing GEM and PBM concentrations as functions of atmospheric sta-

bility to investigate whether high GEM and PBM concentrations are related to inversions.

More generally, an in-depth analysis of the potential relationships between meteorological

conditions and mercury concentrations may provide a great deal of insight into atmospheric

mercury dynamics. Mercury concentrations could also be compared to concentrations of

other pollutants such as particulate matter and ozone.

The analysis of diurnal patterns could be extended by analysis of the derivatives of con-

centrations (i.e., how the magnitude of the change in GOM concentration compares to the

change in GEM and PBM concentrations). The hypothetical deposition rates that would

be required to bring mass balance could be calculated, and these deposition rates could be

compared to results from existing dry deposition models. Several low GEM events occurred

concurrently with high GOM events. It may be worthwhile to do a more in-depth statis-

tical analysis of GEM concentrations during elevated GOM concentrations. Two Tekran

systems set up at two different elevations on a tower (i.e., 4 m and 10 m) could measure

the net flux of speciated mercury to the surface. It would also be worthwhile to analyze the

GOM concentrations in relation to observed entrainment rates to determine the potential

significance of the free troposphere as a source of GOM to the boundary layer.

The precipitation analysis could be extended fairly easily to other locations with long-

running Tekran systems as long as there is a rain gauge in close proximity. It would be

interesting to break down the dry-damp-soggy analysis for PBM into finer precipitation

bins and simultaneously segregate the data by precipitation type to plot scavenging effi-

ciency as a function of precipitation amount and type. This would require a location with

more precipitation than UT96 and/or a data set much longer than 2 years. It might also

be interesting to combine data from different locations and calculate aggregate scavenging

efficiencies, which should be quite similar to those calculated for individual locations. The

precipitation analysis at UT96 could also be improved by putting a rain gauge on-site.

It may be possible to use information such as cloud height, precipitation amounts, and
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scavenging efficiencies to estimate wet deposition for individual precipitation events and

subsequently extend to an annual deposition. This could be compared to wet deposition

measurements where Tekran systems are co-located with wet deposition measurements.

This would be useful because the amount of mercury wet deposition due to GOM versus

PBM could be estimated. It would also allow estimates of wet deposition in locations

that have Tekran systems and no wet deposition measurements. This information could be

useful for policy decisions regarding mercury emissions. In addition, this method would

provide much higher temporal resolution than typical wet deposition measurements, and a

net flux of mercury to the soil could be estimated for rain events.
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