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ABSTRACT

Location of an object or person in in-door environments is a vital piece of in-

formation. Traditionally, global positioning system-based devices do an excellent

job in providing location information but are limited in in-door environments due

to lack of an unobstructed line of sight. Wireless environments, with their extreme

sensitivity to the positioning of objects inside them, provide excellent opportunities

for obtaining location information of subjects. Received signal strength (RSS) based

localization methods attract special attention as they can be readily implemented

with “off-the-shelf” hardware and software. Device-free localization (DFL) presents

a new and promising dimension in RSS-based localization research by providing a non-

intrusive method of localization. However, existing RSS-based localization schemes

assume a fixed or known transmit power. Any unexpected change in transmit power,

not known to the receivers in the wireless network, can introduce errors in location

estimate. Previous work has shown that meticulously planned power attacks can

result in expected errors, in location of a transmitting sensor, in excess of 18 meters

for an area of 75 X 50 m2. We find that the localization error in DFL can increase

by four-fold when under power attack of 15 dB amplitude by multiple adversaries.

Certain nonadversarial circumstances can also lead to unexpected changes in transmit

power which would result in increased localization error. In this thesis, we focus on

detection and isolation of wireless sensor nodes in a network which vary their transmit

power to cause unexpected changes in RSS measurements and lead to increased

localization errors in DFL. In the detection methods presented in this thesis, we

do not require a training phase and hence, our methods are robust for use in dynamic

environments where the training data may get obsolete frequently. We present our

work with special focus on DFL methods using wireless sensor networks. However,

the methods developed are generic and can be easily extended to active localization



methods using both wireless sensor networks (WSN) and IEEE 802.11 protocols. To

evaluate the effectiveness of our detection method, we perform extensive experiments

in indoor settings using a network of 802.15.4 (Zigbee) compliant wireless sensor

nodes and present evaluation results in the form of average detection rate, ROC

curves, probability of missed detection and false alarm.
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CHAPTER 1

INTRODUCTION

Location of an object or person in in-door environments is a vital piece of in-

formation. The capability to know the whereabouts of a subject has wide ranging

applications from search and rescue operations, where location information can help

in reducing human and monetary losses, to organizing a supermarket where accurate

tracking of shoppers can be used for more efficient placement of goods. A large

number of location-based applications have been proposed which use the location

information to add to a user’s experience [1][2][3][4]. Traditionally, global positioning

system (GPS) based devices do an excellent job in providing location information but

are limited in in-door environments due to lack of an unobstructed line of sight [5].

Several extensions of GPS for indoor applications have also been proposed [6][7][8]

but they are still limited in use.

Wireless environments, with their extreme sensitivity to the positioning of subjects

inside them, provide excellent opportunities for obtaining location information. Sev-

eral localization schemes using features of wireless signals like received signal strength

(RSS), angle of arrival(AoA), time of arrival (ToA) and time difference of arrival

(TDoA), have been proposed which can work with existing IEEE 802.11 wireless local

area networks (WLAN) as well as IEEE 802.15 wireless sensor networks (WSNs).

Among these schemes, those using RSS measurements attract special attention as

they can be readily implemented with “off-the-shelf” hardware and software.

Existing RSS-based localization methods can be divided into two broad categories:

1. Active localization: Methods in which the subject being localized actively partici-

pates in the localization process by transmitting wireless signals through a sensor

attached to it. Such methods use RSS to estimate location of a transmitter by
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calculating path lengths in multilateration positioning algorithms [9] or by using

a precalculated RSS-to-location map in fingerprint-based localization algorithms

[10][11][12][13][14].

2. Device-free localization (DFL): More recent works do not require the subject

being monitored to carry any device and thus, the subjects remain passive to

the localization process. These DFL methods use changes in RSS measurements

on static links to monitor movement of the subject [15][16][17][18][19][20][21][22].

DFL presents a new but promising dimension in RSS-based localization research.

Since the subject is not carrying any device, it has the advantage of being nonintrusive.

In general, DFL also does not require cooperation from the subject and hence,

can be extremely useful in hostile situations where the subject being monitored is

not expected to cooperate. Another interesting application of DFL is through-wall

monitoring [22] which makes DFL applicable in situations where traditional methods

of monitoring like optical and infra-red cameras do not work.

1.1 Problem statement

While the pervasiveness of wireless networks makes DFL using RSS measurements

a widely applicable localization method, the untethered nature of wireless networks

raises security concerns. WLANs are susceptible to access-point spoofing [23][24][25].

WSNs are often deployed in unmonitored and possibly hostile situations where they

are susceptible to node capturing attacks by adversaries [26][27]. With DFL methods

being proposed for use in mission critical operations involving emergency responders,

police, and military personnel [22], timely and accurate detection of compromised

nodes becomes increasingly important.

While the most common attack form in wireless networks is stealing secret keys

used for authentication and encryption, DFL methods can also be targets of another,

not so common attack technique. The existing DFL methods use a path loss model

to model the channel perturbations resulting from movement in the network. In this

model, the RSS measurements are given by:
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Pr = Pt − Ploss (1.1)

where Pt (Pr) is the transmit (received) power in dBm and Ploss is the path loss in

dB.

Here, path loss, Ploss , is the component which is directly affected by the channel

perturbations due to the movements and contains information about the location

of the subject. However, RSS measurements Pr are often used as a surrogate for

Ploss with the assumption that the transmit power stays constant. This assumption

may not hold true in adversarial circumstances where a compromised node varies

its transmit power to introduce unexpected variations in RSS measurements. These

unexpected variations when erroneously attributed to Ploss can result in increased

errors in localization. Existing works have shown that meticulously planned transmit

power changes in active RSS-based localization schemes result in expected errors in

excess of 18 meters for an area of 75 X 50 m2 [28]. Further, it has been observed that

mean error for most existing active localization schemes range between 0.5-1.8 ft per

dB of transmit power change [29]. In our experiments with DFL, we find that the

localization error increases up to four-fold when there is a 15 dB variation in transmit

power by multiple adversaries.

Further, certain nonadversarial circumstances can also lead to unexpected changes

in transmit power. For example, faults in sensor nodes, due to physical damage and

varying transmit power levels due to depleting batteries [30], can manifest as changes

in transmit power. Power control algorithms are often used in WSNs in order to

preserve battery life and to reduce interference with other nodes [31][32] which, again,

may vary the transmit power. Under such circumstances, any change in the transmit

power level must be communicated to the receiver nodes in the network. However,

uncertainty (due to sensor faults), data corruption (due to packet errors, etc.) or

software bugs can result in cases when a node’s transmit power changes without the

receiver nodes in the network finding out about the change.
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The effect of power attack, on both active and device-free localization methods,

serves as a strong motivation for us to develop a common yet robust method to detect

a power attack and isolate the adversarial nodes in both approaches of localization.

In this thesis, we present our main work with special focus on DFL methods using

wireless sensor networks. However, the methods developed are generic and can be

easily extended to active localization methods using both WSN and IEEE 802.11

protocols.

1.2 Contributions

In this thesis, we focus on detection and isolation of nodes which vary their

transmit power to cause unexpected changes in RSS measurements and lead to

increased localization errors in DFL. In the rest of this thesis, we denote such transmit

power changes by power attack irrespective of their adversarial or non-adversarial

origins. The amount by which transmit power changes is defined as power attack

amplitude. Any transmission in which the transmit power changes unexpectedly

from the previous transmission by the same transmitter is defined as a malicious

transmission. A node which is not an adversary is called a normal node.

In this thesis, we make the following main contributions:

1. We experimentally determine the increased localization error in DFL under

adversarial circumstances.

2. We present two different methods to detect power attacks and identify adversarial

nodes.

3. We evaluate the performance of the proposed methods with extensive experi-

mental data.

4. We design a simple, yet robust, protocol to isolate adversarial nodes from the

network and add in new nodes as replacements.

In both the detection methods presented in this thesis, we do not require a

training phase. This makes our methods robust for use in dynamic environments

where training data may get obsolete frequently. The algorithms developed are of

low complexity and hence, can be implemented on nodes with few resources. For the
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isolation of adversarial nodes, we propose Enhanced Spin or eSpin, an enhancement

of the Spin scheduling protocol [33]. We provide an algorithm for node removal as

well as node addition using the eSpin protocol.

To evaluate the effectiveness of our detection method, we perform extensive ex-

periments in indoor settings using a network of 802.15.4 (Zigbee) compliant wireless

sensor nodes. We present evaluation results in the form of average detection rate,

ROC curves, probability of missed detection and probability of false alarm under two

different experimental environments.

The remainder of this thesis is organized as follows. In Chapter 2, we discuss

related work. Chapter 3 presents our adversary model and the notations used in

this thesis. In Chapter 4, we present experimental evidence of adversarial affect on

DFL by showing the increase in localization error under power attack. In Chapter

5 and Chapter 6, we formulate our detection methods, M1 and M2, and provide

evaluation results under two different adversarial environments using extensive ex-

perimental data. In Chapter 7, we propose our Enhanced-Spin protocol and discuss

the mechanism followed to isolate and replace adversarial nodes. Chapter 8 concludes

the thesis and indicates directions for future work.



CHAPTER 2

RELATED WORK

In this section, we present a brief discussion on existing work for detecting power

attacks.

Traditionally, crypto-based approaches are used to secure WSN against an adver-

sary whose aim is to extract the secret keys or eavesdrop the communication between

sensor nodes. These would, in general, not be suitable for securing against power

attacks as discussed below.

• Key based authentication and encryption methods : Significant work has involved

securing WSNs using traditional key based authentication and encryption proto-

cols [34][35]. These methods, although resource intensive, do provide admission

control and some level of security as long as the adversary is assumed not to gain

physical control over the sensor nodes. However, if the adversary has physical

control over the nodes, it can obtain security keys and passwords and maliciously

insert cloned nodes in the network. The adversary can even reprogram a node

to make it behave maliciously while still using the original security keys and

passwords.

• Using Device signatures [36]: Device signatures can be used as alternative to

traditional key based encryption methods. These signatures can protect the

system from maliciously inserted cloned nodes. However, most device signatures

depend on hardware characteristics and would not change with the software

installed on the nodes. Hence, this method is not robust against malicious

reprogramming.

• Tamper proof memory [26]: This provides a method to secure a node from being

reprogrammed by an adversary and when combined with security passwords and
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keys, can serve to protect a malicious node from affecting the system. However,

use of tamper proof memory would result in an increase in the implementation

cost of the system.

Power attacks have been previously considered for active RSS-based localization

algorithms. [29] provides a survey for power attacks in common active RSS-based

localization methods. However, due to the fundamental difference between the active

and device-free localization method, none of the existing methods to secure active

RSS-based localization can be applied or extended to DFL. Further, most of the works

on developing a secure RSS-based localization scheme, like SPINE [37], ROPE [38],

SeRLoc [39] and HirLoc [40], assume the availability of some reference points, special

nodes with known locations or key-based secure communication between anchor nodes

to prevent against a variety of attacks in WSNs. These methods are thus vulnerable

to capture of critical nodes by the adversary.

There has been considerably less work towards providing a method for detection

of power attacks which could be applied to existing localization schemes. Chen et al.

[41] proposed a generic method which works for two broad ranges of active localization

methods: multilateration-based and RSS-based. However, their method is also not

applicable to DFL.



CHAPTER 3

ADVERSARY MODEL AND NOTATIONS

3.1 Adversary model and assumptions

We assume that the adversarial nodes are never present in majority in the network

and all nodes have equal probability of developing fault or being targeted by an

adversary. We allow multiple adversaries to be active at the same time but they

do not collude with each other to carry out a coordinated power attack. We make

the assumption that even though an adversary can vary its transmit power to create

localization errors, it does not report report false readings of RSS values it receives

from other transmitters. This would be considered in future works.

We assume a network of N transceivers nodes. Hereafter, a transceiver is referred

to as a transmitter when it is transmitting and as a receiver when it is receiving. A

fully connected network is not required for our detection method. A transmitter’s

neighborhood is defined as the set of receivers capable of receiving wireless signals

from it. In a network where a transmitter’s neighborhood can change with time, we

assume availability of a suitable protocol which can disseminate the neighborhood

information quickly. In our analysis, we assume such information is disseminated

instantly and the current neighborhood information is always available at the nodes.

Since faulty nodes are just a weaker form of the adversary being considered, all

further discussions apply to both adversarial and faulty nodes.

3.2 Notations

Table 3.1 lists the symbols used frequently in this thesis. We discuss a few of them

in detail here and the rest are defined as needed.

We define the set of RSS measurements being analyzed for the presence of a power

attack as the detection window. During a power attack, an adversary can affect a
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Table 3.1. List of frequently used symbols

Symbol Meaning

N Number of nodes in the network

Hk Neighborhood of transmitter k

rk,j(i) RSS measurement at receiver j from transmitter k at time i

Lk,j Link between transmitter k and receiver j, j ∈ Hk

ak, âk Power attack amplitude and its estimate

n Power attack interval

M1,M2 Method 1 and Method 2 for detecting power attacks

T Vector transpose

Sk(i), Qk(i) Detection windows for M1 and M2 ending at time i

p Size of detection window

L Line with slope 1 and passing through origin

γ Distance threshold

γh(i) Heuristically chosen distance threshold for window Qk(i)

PD, PMD, PFA Probability of detection, missed detection and false alarm

wmin Minimum power attack window size

amin Minimum power attack amplitude

RSS-based localization system by changing the transmit power of a node. We define

the following parameters related to this change in RSS:

• Power attack interval (n): It is defined as the time interval between two periodic

power changes by the adversary. For an ideal detector, probability of detection

would be 1 for a detection window size p greater than and equal to n.

• Minimum power attack window size (wmin): Power changes by an adversary may

not always be periodic. For such cases, we define wmin as the smallest set of con-

tiguous transmissions which would always contain at least one malicious power

change. In real scenarios, wmin is not expected to be known beforehand; however,

an educated guess of wmin can be made based on the expected movement activity

and noise in WSNs. For p ≥ wmin, we expect our detection methods to achieve

nearly 100 % detection rate. In this thesis, we only evaluate our methods for a

periodic n. Experimental evaluation for nonperiodic power variations is to be

considered in future research.

• Minimum attack amplitude (amin): It is defined as the minimum power change
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that is required to perform a power attack with significant changes in the es-

timated location. Power attacks with an amplitude less than amin are not

considered significantly harmful to the application and thus are not important to

detect. We use amin in the formulation of M2. The value of amin is determined

by the application and the environment.



CHAPTER 4

LOCALIZATION ERROR IN DFL

In this chapter, we demonstrate the affect of power attack by adversaries on

localization error in DFL. We perform experiments using variance-based radio to-

mographic imaging (VRTI) [22] which performs device-free localization by measuring

link variance. We show that an adversary can introduce significant errors in VRTI by

varying its transmit power and thus creating artificial variance on the links. Through

our experiments, we also determine the dependence of localization error on the number

of adversaries and on the power attack amplitude.

We first present a little background on the VRTI method used for our experiments.

We then explain our experimental setup and finally present our findings.

4.1 VRTI background

VRTI uses RSS variance caused on static links in a WSN due to motion in the

network area. The entire network area is divided into N equal voxels and the estimated

image vector x describes the presence of motion in the network area. Each element

of image vector x is given by:

xi =

{

1, if there is motion in voxel i

0, otherwise
(4.1)

The image vector x is estimated using the RSS variance vector s which contains a

measure of the RSS variance on each of the M links in the network. The variance

vector s and the image vector x have a linear relationship which can be expressed as:

s = Wx+ n (4.2)

where W is an MXN matrix representing the variance weighting for each pixel, and

n is an M X 1 noise vector. W is the elliptical weighing model given by:



12

[W ]l,j =
1

√
dl

{

ψ, if dlj(1) + dlj(2) < dl + λ

0, otherwise
(4.3)

where dl is the distance between two nodes on a link, dlj(1) and dlj(2) are the

distances from the center of the voxel j to the respective node locations on the link,

λ and ψ are two tunable parameters. For estimating the position vector x, Tikhonov

regularization is used. The inversion formula can be written as:

x̂ = (WTW+ αQTQ)−1s (4.4)

where Q is the Tikhonov matrix, and α is the regularization parameter.

4.2 Experimental setup

In this section, we provide detailed description of the experimental environment

and the experiments performed to obtain the localization error. The same experi-

mental setup is again used for experiments performed later in Chapter 5 and 6.

4.2.1 Environment

We perform our experiments in a typical classroom with a testbed of 20 wireless

sensors deployed at equal distances from one another in a network area of 6 X 6 m2.

We refer to this as the In-room environment. An In-room environment setup with (o)

representing the deployed node’s locations is shown in Figure 4.1. The room has a

number of static objects like chairs and tables present near the deployment area which

would result in lots of multipaths for the wireless signals, providing a perfect indoor

environment. TelosB wireless sensors nodes are used for all the experiments. The

nodes operate in the 2.4 GHz frequency band. Spin [33] is used as the data collection

protocol for normal nodes. For adversarial nodes, we modify the standard Spin

protocol as per the requirements of the experiment. For completeness, we describe

the normal Spin protocol briefly here. Spin is a round-robin token-passing protocol

used to schedule transmission of nodes in a manner which prevents packet collisions

while still maintaining high data collection rate. When one node transmits, all other

nodes receive the packet and make the RSS measurements. These RSS measurements
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Figure 4.1. Set up for In-room environment setup

are transmitted to a base station along with the node’s unique ID. The base station

collects all RSS measurements and forwards the data to a laptop for storage and

later processing. We define a Spin cycle as one round of the token passing scheduling

protocol Spin. Each spin cycle consists of RSS data with at most one transmission

from every sensor node.

4.2.2 Experiment description

We perform two experiments in the In-room environment.

1. No-attack: This experiment is a standard VRTI localization experiment. During

this experiment, all nodes are normal (nonadversarial). Spin is used as the data

collection protocol. A subject walks on a known path with constant speed shown

by a dotted line in Figure 4.1. A metronome is used to ensure that the subject

maintains the constant speed. Data are collected for a period of 4 minutes.

2. Attack: This experiment is used to create a power attack scenario. During
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this experiment, some nodes are made adversarial by programming them with a

modified version Spin protocol in which the transmit power is changed by ak with

an attack interval n of 32. The complete experiment is conducted in 8 different

phases. We start with one adversarial node in phase 1. After completion of a

phase, the number of adversaries is increased by one. Nodes are picked randomly,

from the normal nodes, to be programmed as adversarial node. Ids of nodes

made adversarial are in the order 5, 11, 17, 3, 8, 13, 1 and 14. Each phase

further consist of two rounds of 4 minute each. For each phase, round 1 involves

adversarial nodes changing their transmit power by 7 dB and round 2 involves

the same action with a change of 15 dB in transmit power.

4.2.3 Calculating localization error

We use the data collected from the No-attack experiment to obtain baseline error

in localization in DFL. The Attack experiment is performed to measure the increase

in localization error with increasing power attack amplitude and increasing number

of adversaries.

We calculate localization error using a set ofNr reference points on the known path

walked by the subject. The reference points are labeled as (xi, yi), i ∈ {0, ..., Nr − 1}

and are placed such that the subject walks moves from one reference point to the next

in one time unit, starting at (x0, y0). At time i, we calculate the closest reference point

(xi, yi) to the actual position of the subject. Let the reference point closest to the

estimated position using VRTI at time i be (x′i, y
′
i). Then, the error in localization is

calculated as:

RMS localization error =

√

√

√

√

√

√

Nr
∑

i

{(xi − x′i)
2 + (yi − y′i)

2}

Nr

(4.5)
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4.3 Results

Figure 4.2 plots the root mean squared (RMS) error between the estimated and

actual position for the attack experiments in the In-room environment.

From Figure 4.2, we make the following observations:

• Localization error increases rapidly with the increase in the number of adversary

nodes. RMS localization error of VRTI when there is no adversary present is

about 0.65m. For power attack amplitude of 7 dB, the RMS error increases

by almost 100% in presence of a single adversarial node. When number of

adversaries increases to 8, a 7 dB power attack results in a 2.5 fold increase

in the RMS error of localization in VRTI.

• Localization error is lower for power attacks of small amplitude (7dB) than power

attacks of larger amplitude (15 dB). In presence of 8 adversarial nodes, the RMS

error of VRTI is almost 4.5 times that of the baseline ( no adversary present in

network) for a power attack of 15 dB.

4.4 Conclusion

In this chapter, we experimentally demonstrate the affect of adversarial nodes

in DFL using VRTI. We show unexpected transmit power variations can result in

increased localization error. The localization error increases with an increase in power

attack amplitude and the number of adversaries.

In the next two chapters, we present methods which can be used to detect and

identify adversarial nodes in DFL.
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CHAPTER 5

DETECTION USING TEMPORAL

CORRELATION IN RSS

MEASUREMENTS

The last chapter discussed the affect of adversarial nodes on localization error in

DFL. In this chapter, we will discuss our first method, hereafter referred to as M1,

to detect the presence of adversarial nodes which takes advantage of the temporal

correlation in RSS variations. We first present here a basic intuition into the method

and then formalize this intuition in Section 5.2.

When there is no movement in the network area, the changes in RSS measurement

on a wireless link are determined by the wireless channel noise. For most cases, these

changes can be approximated as Gaussian. As the changes are random, no two links

show a significant temporal correlation in the RSS measurements on them.

In addition to noise, the RSS measurements on multiple links can change simul-

taneously in two cases: 1) a movement in the network or 2) a power attack by an

adversary. This simultaneous change results in a temporal correlation either positive

or negative. However, the two cases are not similar in terms of the number of link pairs

which show this effect. When there is some channel perturbation due to a movement,

the RSS measurements on the links change; increasing or decreasing depending on the

fade-level of the links [42]. However, a subject’s movement only perturbs the wireless

channel for links passing through a region of finite volume around him. This finite

region is much smaller than the total volume of the room and hence, the affected

links are only a small fraction of the total links present in the network. Thus, the

temporal correlation observed due to the movement will only be limited to pairs in

that small fraction of total links.
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On the other hand, when an adversarial node k changes its transmit power, it

results in a change in RSS measurements on all the links Lk,j s.t. j ∈ Hk . Since

the change affects every link originating from k simultaneously, a high temporal

correlation in the RSS measurements is observed among all link pairs with k as the

transmitter.

By using the fraction, of all link pairs in Hk, which show a high temporal corre-

lation, we can determine whether the observed variations in RSS are due to normal

movement or due to a power attack; a lower fraction indicating a normal movement

whereas a higher fraction indicating a power attack.

In Section 5.1, we present a brief theory on Pearson product-moment correlation

coefficient. We present our method M1 in Section 5.2, our experiments and evaluation

results in Section 5.3, and finally the conclusion in Section 5.4.

5.1 Pearson product-moment correlation coefficient

We use Pearson product-moment correlation coefficient to determine the temporal

correlation between RSS measurements on a pair of links.

Pearson correlation coefficient of two random variables X and Y is defined as the

covariance of two variables divided by the product of their variances. Its value ranges

from -1 to 1 and it is not defined when the variance of either X or Y is zero.

ρX,Y =
Cov(X, Y )

σXσY
=

E[(X − µX)(Y − µY )]
√

E(X2)− (E(X))2
√

E(Y 2)− (E(Y ))2
(5.1)

where E(X) is the expected value of X.

The interpretation used for the Pearson correlation coefficient is shown in Table

5.1.

5.2 Model

In this section, we formulate our model for detecting power attack using the

temporal correlation between the RSS measurements. The method discussed could

be used independently for each adversary in the network where multiple adversaries

are present. We consider deciding between the following two hypotheses:



19

Table 5.1. Correlation coefficient interpretation

0-0.09 None

0.1-0.29 Small

0.3-0.49 Medium

>0.5 High

• H0: No power attack from transmitter k is present at time i.

• H1: A power attack from transmitter k is present at time i.

We define the neighborhood of k by Hk = {n0, n1, ...nM−1} consisting of M ⊂ N

receivers capable of communicating with k. RSS measurements are made on every

link in the network and rk,j(i) is defined as the RSS measurement at receiver j from

transmitter k at time i.

To determine the temporal correlation between RSS measurements, we define a

detection window Sk,j(i) consisting of RSS measurements at receiver j from trans-

mitter k during previous p time units, ending at time i as:

Sk,j(i) = [rk,j(i− p+ 1), rk,j(i− p+ 2), ... , rk,j(i)]
T (5.2)

where k ∈ {1, ..., N} and j ∈ Hk.

Next we calculate the temporal correlation between vectors Sk,a and Sk,b, for

receivers a and b respectively, given by ρSk,aSk,b
using Equation (5.1).

Then, we define a indicator random variable as:

Ik,a,b =

{

1, ρSk,aSk,b
> 0.5

0, ρSk,aSk,b
< 0.5

(5.3)

A value of 1 for Ik,a,b indicates a high temporal correlation between Sk,a and Sk,b and

a value of 0 indicates otherwise.

Then, we determine the fraction fk of total link pairs originating from k which

have a value of 1 for Ik,a,b using:
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fk =
1

Ck

∑

a,b∈Hk

a 6=b

Ik,a,b (5.4)

where Ck =
(

|Hk|
2

)

, the total number of link pairs originating from k.

Now, we can choose between the two hypotheses using:

fk

H1

>
<

H0

θ (5.5)

Here, θ is a suitable threshold.

5.3 Evaluation

In this section, we evaluate the method M1 developed in the previous section.

First, we give a brief description of the experiments performed and then present the

results obtained. We set the value of θ to 0.75 and p to 100 in our experiments.

In our model, we have assumed that the neighbor set Hk of each transceiver

is always known. In practical deployments, a node’s transmission range can vary

due to changes in the environment resulting in a change in Hk. Ensuring instant

availability of neighborhood information is not trivial and may require a lot of network

communication to pass the changing neighborhood information. Hence, to keep our

experiments simple and reliable, we use a fully connected network. This is a special

case for the network considered in the previous section with |Hk| = N, ∀ k.

5.3.1 Experimental environments

We use the data set from two different environments for our evaluation:

1. Simulated attack environment : In this approach, we use a publicly available RTI

data set [43] collected in an outdoor experiment. The original experiment of this

data set consisted of 28 TelosB nodes deployed in a square layout of area 21 X

21 feet. The data collection protocol used was Spin [33], which is explained in

Section 4.2.1. The data set is in the form of rows of RSS measurements, each

row consisting of readings made by a receiver node during a spin cycle. The

rows are ordered by the receiver ID and time of measurement. We use the file
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empty.csv from the data set. During this experiment, there was no movement

in the deployment area.

We simulate power attacks from two nodes, 12 and 23. To simulate power

attack, we subtract a constant value, ak, from RSS measurements measured by

every receiver corresponding to transmissions from nodes 12 and 23. This is

done once for every n transmission from 12 and 23 where n is the power attack

interval.

2. In-room environment: This environment is explained in detail in Section 4.2.1.

We perform two experiments, No-attack and Attack, for our evaluation. The

primary objective of these experiments is to analyze the performance of M1 with

variations in the power attack amplitude in an experimental environment. Spin

is used as the data collection protocol.

The No-attack experiment is described in Section 4.2.2. In the Attack ex-

periment, a single transmitter is chosen randomly to act as an adversary and

programmed with a modified Spin code which reduces the transmit power by ak.

We consider five values for ak – 6, 9, 12, 15 and 18 dB. We use a fixed attack

interval of 16. By collecting data from a large set of experimental data, we

evaluate the probability of missed detection PMD and probability of false alarm

PFA defined as:

• PMD: Failure to detect a power attack by an adversarial node in the

network.

• PFA: A detection event for any of the normal nodes in the network.

5.3.2 Detection results

In this section, we present the results obtained with M1 in the simulated power

attack and In-room experimental environment.

5.3.2.1 With simulated data

In this set of experiments, we simulate the attack by subtracting ak from RSS for

transmitter k at all receivers in the network. We also control the interval of attack n
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by making one change every n spin cycles. Using the attack interval and total spin

cycles present in the data set, we can calculate actual number of power changes as

Total power changes, Smal =
total spin cycles

n
∗ 2 (5.6)

We use Smal to calculate the detection rate as

Detection rate =
number of detections

Smal

∗ 100 (5.7)

Since the detection of an adversarial node in M1 is independent of other adversarial

nodes present in the network, we present our results by averaging over all the adver-

saries. The detection results can be applied independently for each adversary where

multiple adversaries are present.

Table 5.2 gives the variations in detection count for malicious nodes as the attack

interval is changed for constant ak = 18 dB . Figure 5.1 plots the variation in average

detection rate for ak = 3 dB and 18 dB.

From Figure 5.1 we can conclude that M1 can detect adversarial nodes with

nearly 90 % success rate for attack intervals less than 4. However, as the attack

interval increases, i.e., as the adversary becomes less active, the number of successful

detections decreases.

Table 5.3 and Figure 5.2 show the M1’s performance with varying power attack

amplitude for known attack intervals n.

Table 5.2. Number of detections with ak = 18 dB for simulated data.

n Smal # detections

for node 12

# detections

for node 23

2 138 130 123

4 69 61 58

8 34 18 20

16 17 8 6

32 8 4 3
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Figure 5.1. Variation in average detection rate with n for simulated data.

The results in Table 5.3 and Figure 5.2 show that with increasing values of ak,

we get better detection performance with M1. The performance reaches its peak at

ak = 18 dB and does not improve further with an increase in power attack amplitude.

We obtain zero false alarms for all the simulation results presented in this section.

5.3.2.2 With experimental data

Using simulation data, we showed that M1 can be used to detect adversarial

nodes with acceptable detection rate, especially for small attack intervals. To test

our method in a more realistic environment, we conduct experiments in a classroom

as described in Section 5.3.1. For this experiment, n was set to 16.

Figure 5.3 plots PMD and PFA for the experimental data. We observe a similar

trend with experimental data as observed with the simulation data. Detection rate

of M1 increases (PMD decreases) with increasing value of ak. The best performance
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Table 5.3. Number of detections with n = 16 for simulated data.

ak # detections

for node 12

# detections

for node 23

3 4 4

5 5 5

7 5 5

10 5 5

12 6 6

15 8 6

18 8 6

with M1 is obtained for power attack amplitude of 18 dB, which is a detection rate

of 0.48 which is close to and slightly better than the results obtained with simulation

data ( a detection rate of 0.4).

5.4 Conclusion

In this chapter, we presented the first of our two methods to detect adversarial

nodes in WSN. We provided a mathematical formulation for our method M1 which

uses Pearson product-moment correlation to determine temporal correlation in RSS

measurements observed on link pairs in the neighborhood of a transmitter. We evalu-

ate our method using simulated power attack scenarios as well as experimental data.

Our results show that M1 can detect adversarial nodes with acceptable detection rate,

especially for smaller attack intervals, achieving more than 80 % detection rate for

n = 2 and ak = 18.

However, we observe that for larger attack intervals, the performance of M1 is

mediocre. For n = 16, M1 achieves 40 % percent success rate in simulations and

48 % percent in experiments. On the other hand, in Section 4.3, we show that

an adversary changing its transmit power with an interval of n = 32 can introduce

significant localization error in DFL. The localization error doubles for a power attack

amplitude of 7 dB and is four times in the worst case with multiple adversaries. Hence,

M1 will not provide robust detection for many applications when the power attack



25

5 10 15 20
0

20

40

60

80

100

Power attack amplitude, a
k

A
v
e
ra

g
e
 d

e
te

c
ti
o
n
 r

a
te

 (
%

)

n=16

n=2

Figure 5.2. Variations in average detection rate with ak for simulated data.

interval is large. M1 would also not perform well in scenarios where a single adversary

is not very active but multiple adversaries acting simultaneously can create significant

performance degradation in DFL.

In the next chapter, we present our second method which shows a substantial

performance gain over M1. Our next method is able to detect less active adversaries

with high success rate.
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CHAPTER 6

DETECTION USING DISTANCES IN RSS

VECTOR SPACE

In this chapter, we present our second approach to detect power attacks in WSN.

The method is based upon the same basic intuition discussed in Chapter 5. We refer

to this method as M2. In M2, we use the changes in RSS measurement instead of

the RSS measurement itself. The RSS changes are calculated for each receiver in

the neighborhood Hk of transmitter k and plotted in a multidimensional space where

each dimension corresponds to a receiver belonging to Hk. We then use these RSS

changes to formulate a statistical hypotheses test which acts as the basis of detection.

In this method, we incorporate the factor amin in our model to ignore attacks with

amplitude less than amin. This reduces the number of false alarms and makes the

detection process more robust. We also discuss a heuristic-based method to choose

the threshold parameter γ used in the hypotheses test for detection.

The evaluation for M2 consists of extensive experiments conducted in a classroom

environment. We first present results to demonstrate an example detection with M2.

Then, ROC curves are presented which can be used to determine an appropriate

operating threshold for the detector, based on the constraints on false alarms and

missed detections. We then present results for evaluation of our heuristic-based

operating threshold. With the threshold fixed heuristically, we vary size of the

detection window to tune the performance of the detector and provide a trade-off

analysis between performance accuracy and latency of detection process. Finally, we

evaluate our detection method for through-wall localization applications which is a

distinguishing feature of DFL.
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6.1 Hypotheses formulation

Let rk(i) be the RSS vector defined as:

rk(i) = [rk,n0
(i), ..., rk,nM−1

(i)]T (6.1)

where rk,j(i), j ∈ Hk, denote the RSS measurement at receiver j from transmitter k

at time i and mean RSS vector over a window of time T as:

r̄k(i) =
1

T

T
∑

t=1

rk(i− t) (6.2)

Using (6.1) and (6.2), we can define the change in RSS for a transmission of node k

at time i as

∆rk(i) = rk(i)− r̄k(i) (6.3)

Next, we consider two cases for ∆rk(i):

1. No attack : When a power attack is not present, changes in RSS can be caused by

many reasons. However, these changes are equally likely to increase or decrease

the RSS measurement. For example, noise and quantization error are likely to

be zero mean. Movement of people and objects in the environment will similarly

tend to increase RSS on some links and decrease RSS on others [42]. Thus for

generality, we model ∆rk(i) as

∆rk(i) = ǫ (6.4)

where ǫ is a vector of zero mean random variables. We do not make any

assumptions about the distribution or the correlation between elements of ǫ.

2. Attack: When there is a power attack from k, ∆rk(i) can no longer be modeled

as a vector of zero mean random variables. For this case, we model ∆rk(i) as

∆rk(i) = ak1+ ǫ (6.5)

where ak is the transmit power variation by k and 1 = [1, ..., 1]T.
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Corresponding to the two cases above, we formulate the two hypotheses:

• H0: No power attack from transmitter k is present.

• H1: A power attack from transmitter k is present.

6.1.1 Estimating ak

The main difficulty of the detection problem considered is that, under H1, we

do not know the amplitude, ak, of the power attack a priori. In order to judge the

likelihood that H1 is occurring, we first need to estimate ak.

Since we are estimating ak given H1, we know that the amplitude of our estimate

must be greater than amin, which is the minimum attack amplitude parameter.

We first define ā as

ā =
1

M

M−1
∑

j=0

∆rk,nj
(i) (6.6)

where M is the size of Hk and ∆rk,nj
(i) represents the jth element of ∆rk(i).

Then, we define âk to be an estimate of the attack amplitude as

âk =

{

max ( ā, +amin ), ā > 0

min ( ā, -amin ), ā ≤ 0
(6.7)

6.1.2 Detecting power attack

Next, we consider the problem of detecting a power attack. We define a detection

window, Qk(i), of p transmissions for transmitter k ending at time i as

Qk(i) = [∆rk(i− p+ 1), ∆rk(i− p+ 2), ..., ∆rk(i) ]
T (6.8)

Also define a line in space R
|Hk|, with slope 1, as:

L : ∆rk,n0
= ∆rk,n1

= · · · = ∆rk,nM−1
= âk (6.9)

Next, we define the distance of ∆rk(i) from L using the estimated parameter âk as

dk(i) = ||∆rk(i)− âk1|| (6.10)
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Finally, to choose between H0 and H1 for the detection window Qk(i), we use the

distances dk(i− j), ∀ j ∈ [0, p) as

min
j∈[0,p)

(dk(i− j))

H0

>
<

H1

γ (6.11)

where γ is an appropriately chosen distance threshold. Like (5.5), (6.11) is indepen-

dent of the number of adversaries in the network. (6.11) can be applied independently

to each node to test for multiple adversaries.

If there is a power attack at time j such that ∆rk(j) ∈ Qk(i), we can model

∆rk(j) as (6.5). This lies in a region of constant diameter around L and hence, dk(j)

is smaller than the threshold value γ. Thus, we choose H1 for Qk(i).

When there is no attack, ∆rk(j) can lie randomly at any point in space. In this

case, min(dk(i− j)), j ∈ [0, p), has a low probability of lying in a region of constant

radius around L. This probability is further decreased as the number of receivers

and thus the number of dimensions increase, the region of constant diameter around

L occupies an increasingly smaller percentage of total volume in space. Effectively,

min(dk(i − j)), j ∈ [0, p) is greater than γ when there is no attack and hence, we

choose H0 for Qk(i).

Further, the definition of âk ensures that the distance dk(i) is not close to zero

for power variations less than amin. This reduces the probability of choosing H1 for

a normal node due to noise (a false alarm) or an adversarial node with power attack

amplitude less than amin (not significant).

Figure 6.1 illustrates attack detection in R
3 where Hk = {n0, n1, n2}. The cylinder

around L is the detection region. The cube around the origin is excluded out of the

attack detection region.

6.2 A heuristic-based method to choose γ

To successfully detect a power attack, we need to set the threshold appropriately.

Since the value of γ can change with the experimental environment , we provide a
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Figure 6.1. Attack detection in R
3 space

method to find the optimal γ automatically. The method leverages the fact that the

minimum distance measured for a normal transmitter is usually determined by the

environment noise, whereas for an adversarial node, it is determined by the power

attack amplitude ak. In presence of an attack, the minimum distance measured for

an adversarial node is relatively much smaller than the distance measured for normal

nodes and hence, an optimal value of γ can be chosen by picking an outlier from the

distribution of minimum distances of the transmitters. The method is based on the

assumption that the adversarial nodes are never present in majority in the network.

6.2.1 Method

For a transmitter k, Qk(i) represents a detection window of size p ending at time

i. In this section, we consider identical detection windows for every transmitter in the



32

network and use (6.10) to get p distances from L for each window. Let dmin denote

the vector giving minimum distance points recorded for each window such that

dmin[k] = min
l∈[0,p)

(dk(i− l)) (6.12)

where dmin[k] is the k
th element of dmin which also corresponds to transmitter k.

Let’s define the mean of dmin as

md =
1

M

M−1
∑

k=0

dmin[k] (6.13)

and the standard deviation of dmin as

sd =

√

√

√

√

1

M

M−1
∑

k=0

(dmin[k]−md)2 (6.14)

Then we define γh(i) as:

γh(i) = md − h ∗ sd (6.15)

The γh(i) defined above can be used as threshold for (6.11). We provide detailed

experimental evaluation of using γh(i) in Section 6.3.2.3. A qualitative analysis of

performance using γh(i) is given here.

If there is no adversary transmitter, dmin is determined only by the environment

noise. All elements of dmin lie close to each other and hence sd is small. For such

cases, the calculated γh(i) lies well below dmin[k] ∀ k. If k is an adversary node,

dmin[k] would be close to zero. Since majority of nodes are assumed to be normal,

the calculated γh(i) lies below all dmin[j], j ∈ [0, |Hj|], j 6= k and lies above dmin[k].

Hence, k can be identified using (6.11).

6.2.2 Evaluation criteria

The heuristic discussed in the previous section sets the threshold γ for (6.11)

automatically. We now vary another parameter, the detection window size p, to
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tune the performance of the detection method. Increasing p increases the latency of

detection. Thus, we provide a trade-off analysis between detection accuracy, measured

in PMD and PFA as defined in Section 5.3.1, and the latency of detection, measured

in window size p.

Further, by setting the threshold γ relative to distances measured for all nodes,

the detection process for an adversary is no longer independent of other adversaries

in the network. With a large number of adversaries, γh(i) would not be effective

as the mean of dmin, md, could now be controlled by the adversaries. Hence, we

also evaluate the robustness of our heuristic-based detection method with increasing

number of adversaries.

6.3 Evaluation

In this section, we evaluate the performance of M2 with extensive experimental

data. To keep the evaluation simple and reliable, we assume a fully connected network

for reasons discussed in Section 5.3.

6.3.1 Experiments

We evaluate the performance of M2 under two different experimental scenarios.

The primary objectives of the experiments are manifold:

1. To validate the working of detection method M2.

2. To obtain ROC curves which can be used to determine a suitable operating

threshold based on the constraints of PMD and PFA.

3. To perform a trade-off analysis between detection accuracy and latency of de-

tection using heuristically chosen threshold, γh(i).

4. To determine the robustness of M2 while using γh(i) as the number of adversaries

are increased.

5. To analyze the performance of M2 for through-wall localization.

We present results which meet the above experimental objectives in Sections 6.3.2

and 6.3.3. Next we describe the experimental environments and the experiments

performed.
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6.3.1.1 Experimental environment

We perform experiments in two different environments.

1. In-room environment: This is as described in Section 4.2.1.

2. Through-wall : The through-wall environment consists of a typical office room

with access to all four walls of the room from outside. The walls are made of

drywall and wood. Nodes are deployed on stands 3 feet high placed close to

the outer boundary of the room. The node arrangement in the through-wall

experiment is shown in Figure 6.2. The solid line rectangle drawn is the wall

location. Twenty-six TelosB nodes are deployed in the network in a rectangular

area of dimensions 7m X 6m.

6.3.1.2 Experiment description

For the In-room environment, we perform two experiments, No-attack and Attack,

which are explained in detail in Section 4.2.2. We briefly revise the experiments here.
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Figure 6.2. Setup for Through-wall experimental environment.
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The experiments are performed on a testbed of 20 wireless sensor nodes. The

No-attack experiment consists of all normal nodes. The data from this experiment is

used to validate the working of M2 and to calculate PFA. In the Attack experiment,

nodes are picked randomly, from the normal nodes, to be programmed as adversarial

node. Ids of nodes made adversarial are in the order 5, 11, 17, 3, 8, 13, 1 and 14.

Two power attack amplitudes are considered, 7dB and 15 dB. Power attack interval

n is set to 32.

For the through-wall environment, we perform the same set of experiments No-

attack and Attack. However, the attack experiment only consist of power change of

15 dB and with a single adversarial node of ID 22. n is 16 for this environment. The

data are collected for a period of 4 minutes.

During both the experiments, a subject is walking in the deployment area on a

known path with a fixed velocity. The path and velocity are not relevant for this

analysis but are recorded for the purpose of completeness and future work. For all

the experiments, no one other than the subject is present in the network.

6.3.2 In-room detection results

In this section, we evaluate our method and present the experimental results.

First, we validate the working of our method using sample data collected from No-

attack and Attack experiments. Next, we present the ROC curves for the detector

and finally results for our heuristic-based method for choosing the threshold γ.

6.3.2.1 Method validation

We validate our method by comparing results obtained from No-attack and Attack

experiments and confirm that the measured distance from line L measured using

(6.10) is indeed a suitable metric for detecting power attacks. We consider a sample

window of 50 consecutive spin cycles. Each spin cycle gives us one data point ∆rk(i) in

R
|Hk| space for each node. The distance of this data point from L, dk(i), is calculated

using (6.10) and plotted in Figure 6.3.

From Figures 6.3 (b) and 6.3 (c), we observe that the distances measured for

adversarial nodes are considerably lower than those measured for normal nodes.
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Figure 6.3. Distances from slope 1 Line L for In-room environment. The figure
shows three cases with (a) no-attack, (b) attack with one adversary (node 5), and (c)
attack with 4 adversaries (nodes 3, 5, 11, and 17). A appropriate value of threshold
γ is selected which separates adversarial nodes from normal nodes.

The distance from L for normal nodes is determined by the environment. As the

power attack amplitude increases from 0, the distance of adversarial nodes from L

decreases while the distance for normal nodes remain almost the same. The increased

separation between adversarial nodes and normal nodes helps us to detect power

attacks using 6.11 by choosing a suitable threshold γ.

The choice of threshold plays an important role in determining the number of
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missed detections and false alarms. As an example, we have 4 adversarial nodes for

the experiment of Figure 6.3 (c). By setting the threshold at distance 12, we see that

some of the distances for nodes 3, 11 and 17 lie below the threshold and hence, nodes

3, 11 and 17 can be detected as adversarial. But with this threshold, we cannot detect

node 5 which is also an adversarial node. Choosing a higher distance threshold of 18

increases the detection rate (all adversarial nodes are detected) but it also increases

the rate of false positives (node 4 is detected as an adversary). Depending on the

deployment conditions, the desired level of threshold can be chosen. An appropriate

threshold which results in 100 % detection and 0 % false alarms is also shown in

Figure 6.3.

6.3.2.2 ROC curves

In this section, we present ROC curves for our detection method which are a

classical way of representing a detector’s performance. We use ROC curves to display

the trade-off between probability of detection PD ( 1−PMD ) and probability of false

alarm PFA for M2. These ROC curves can be used to determine a suitable threshold

γ for the detection of an adversarial node based on the constraints on PD and PFA.

We plot ROC curves for three values of detection window size p and for 2 different

power attack amplitudes, ak in Figure 6.4.

From Figure 6.4, we make the following observations:

1. We achieve higher detection percentage for a given percentage of false alarms

as the size of the detection window increases. The reason for this is that

as we increase the size of the detection window, more numbers of malicious

transmissions would be present in the detection window which increases the

probability of detection.

2. As the power attack amplitude increases, we achieve higher detection rates

and a lesser number of false alarms. This is because an increase in power

attack amplitude decreases the distance of ∆rk(i) from L, thereby increasing

the separation between normal and adversarial nodes. The increased separation

results in better detection and fewer false alarms.
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Figure 6.4. ROC curves for two different power attack amplitudes (a) 7 dB and (b)
15 dB in In-room environment.
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6.3.2.3 Performance using heuristic for threshold, γh(i)

6.3.2.3.1 PMD and PFA

In this section, we use the data from Attack experiment in In-room environment

and calculate PMD and PFA as a function of detection window size p. We also

calculate PMD and PFA as a function of number of adversaries Na. The method

is able to detect simultaneous activity for up to 7 adversarial nodes out of 20 in the

best case with h = 1 in (6.15). The performance is tuned for low false alarms while

using h = 1. We do not plot results for more than 7 adversarial nodes. The results

are plotted in Figures 6.5 and 6.6. The results convey the following information:

• Variation of PMD and PFA with p for constant Na. This gives the trade-off

between accuracy and latency of detection.

• Variation of PMD and PFA with Na for constant p. This gives a measure of

robustness of M2 with increasing number of adversaries.

Further, we plot PMD and PFA for two power attack amplitudes – 7 dB and 15

dB. There are a total of 20 nodes in this experiment.

From Figures 6.5 and 6.6, we make the following observations:

1. The performance of the detector improves with increasing amplitude of power

attack and decreases with increasing number of adversarial nodes.

2. For 7 dB of power attack, we can achieve 100 % detection rate for up to 3

adversarial nodes. For 15 dB power attack, 100 % detection is possible for a

maximum of 7 adversarial nodes (one third of the total number of nodes).

3. 0 % false alarm rate is achievable for a maximum of 7 adversarial nodes. We do

not plot the results for more than 7 adversarial nodes but the trend is likely to

continue with increasingly larger window size required.

6.3.2.3.2 Accuracy vs timeliness of detection

In Figure 4.2, we observed that the localization error increases as the number

of adversaries are increased. From Figure 6.5, we observe that even with increasing

number of adversaries, we can identify all adversarial nodes by increasing the detection

window size p.
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Figure 6.5. Plot for PMD for (a) 7dB and (b) 15 dB
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Figure 6.6. Plot for PFA for (a) 7dB and (b) 15 dB
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This holds true up to a certain number of adversaries (3 in case of 7dB and 7 in

case of 15 dB) beyond which the detection method breaks down and no adversaries

are detected. Thus, we conclude that the accuracy of the system in detecting the

adversary reliably, i.e., with 0 % missed detection rate, does not degrade as the

number of adversaries increase. This, however, comes at the cost of increased time of

detection resulting from the large detection window size required.

6.3.3 Through-wall detection results

This experiment is performed to check the applicability of M2 for through-wall

localization techniques. We test our method for one adversarial node which varies

its power by 15 dB every 16 cycles. The results obtained from our through-wall

experiments are shown in Figure 6.7.

The results obtained from this experiment are quite encouraging and confirm the

efficiency of our detection method in case of through-wall localization techniques.

Detailed analysis of performance for different power attack amplitudes and the affect

of increasing number of adversaries is to be considered in future research.

6.4 Conclusion

In this chapter, we presented a novel approach which used distances in RSS

vector space to detect adversarial nodes in WSN. We showed through extensive

experimentation that during power attack, the distances measured from slope 1 line

L are considerably lower for adversarial nodes in comparison to distances measured

for normal nodes. This separation allows us to effectively identify adversarial nodes

from normal nodes.

We present ROC curves for the detector and observe that the performance of

the detector gets closer to the ideal detector as the window size is increased to 100.

Better performance is also achieved for a higher power attack amplitude. Similar

observations are made for the heuristic-based method to calculate γ with near ideal

performance achievable with sufficiently large window size. With γh(i), we observe

that M2 is robust against up to 7 adversaries, a third of the total nodes, for a power
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Figure 6.7. Through-wall detection of adversarial nodes. (a) Distance from slope
1 Line L while under power attack from node 22. (b) ROC curve for performance
of detector in through-wall environment. (b) PMD and PFA for detector when using
γh(i) with one adversary.
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attack amplitude of 15 dB. Finally, we evaluate M2 for through-wall localization

environment with one adversary and find that the method also performs equally well

in that scenario.



CHAPTER 7

ISOLATION OF ADVERSARIAL NODES

The previous two chapters discussed methods to detect adversarial nodes which

can introduce significant errors in localization in DFL by varying their transmit

powers. These methods, especially M2, are shown to be efficient in the detection

process. Next, in this chapter, we propose a simple yet robust enhancement to the

token passing protocol Spin which can be used to isolate the detected adversarial

nodes efficiently from the token ring. We call this protocol Enhanced-Spin or eSpin.

Assuming that the detection algorithm is executed at the basestation, eSpin allows

basestation to issue commands which would adjust the token ring such that the

detected adversarial node is no longer a part of the schedule. Note that, in case of

adversarial nodes, it may not be possible to make them stop transmitting or varying

their transmit powers by issuing instructions from the basestation. However, taking

them off the token ring allows us to free up the transmission slot which may be used

again for a replacement node. In such cases, the adversarial node may compete with

the replacement node for the same transmission slot. The basestation then needs to

ignore measurements received from the adversarial node until it is turned off manually.

In addition to isolation of adversarial nodes, eSpin can, in general, be used to

handle any failed node in the network. Node failures are common in WSN resulting

from exhausted batteries or damaged components. While using Spin, failed nodes not

only decrease the coverage area but also slow down the Spin protocol as other nodes

in the token ring start timing out while waiting for the failed node to transmit.

The protocol also allows us to add replacement nodes in place of the removed

nodes by automatically assigning transmission slots to the new nodes. In the following

sections, we discuss the protocol in detail.
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7.1 Protocol design

In this section, we discuss the design of the eSpin protocol. This protocol assumes

a single hop network and has been designed with the following objectives in sight:

• Removal of detected adversarial nodes or failed nodes from the network.

• Allowing replacement nodes to join the sensor network on-the-fly.

• Have as less overhead as possible while maintaining reliability and stability.

In eSpin every node is given a node ID and a transmission slot. The node IDs are

static and are assigned at the time of programming. Transmission slots are dynamic

and assigned by the basestation when a node joins the protocol. Basestation keeps a

map of the allotted transmission slots along with the associated node IDs.

eSpin follows a token ring protocol. At any time, the token ring consists of

a number of sensor nodes and the basestation. The transmission schedule can be

explained with the help of a virtual transmission token where only the node with the

transmission token is allowed to transmit. When a node transmits, all other nodes

receive the packet and make the RSS measurements. These RSS measurements are

then transmitted to a base station along with the node’s unique ID.

A token ring schedule in eSpin consist of two beacons, a control slot and trans-

mission slots for nodes in the token ring. The control slot is bounded by two marker

packets (beacon A and beacon B). Beacon A marks the start of the control slot

whereas beacon B marks the end. Beacon B is followed by transmission slots for

nodes in the token ring. An example eSpin schedule with a control slot is shown in

Figure 7.1 .

Figure 7.1. A token ring schedule with 1 control slot, 2 beacon frames and 11
transmission slots. Node Ids are shown in the boxes.
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Basestation initiates the control slot by transmitting beacon A. The control slot

is like an unallocated transmission slot in which any node can transmit/receive

commands to/from the basestation. Duration of the control slot is usually determined

by the basestation and can be changed from one cycle to another. After the control

slot is over, basestation transmits beacon B to pass the transmission token to the

node in slot 0. Nodes in later slots follow node 0 in the same manner as in Spin.

After the last node in the token ring transmits, the transmission token comes back

to the basestation. Basestation now has the three options

• Start a new token ring cycle with control slot by transmitting beacon A.

• Start a new token ring cycle without control slot by directly transmitting beacon

B.

• Stop the token ring cycle by not transmitting at all.

To avoid stalls in the token ring protocol, each node implements a timeout. If a

node having the transmission token does not transmit for a specified period of time

or its transmission is missed by the node next in the token ring, the next node times

out and grabs the token from it and continues the cycle. Each cycle of token ring is

identified by a sequence number which is incremented by basestation and repeated

by every other node. If any of the nodes miss beacon B, it can identify start of a

new cycle by observing a new sequence number in transmissions from nodes in slots

earlier than it.

7.2 Removal of nodes

Nodes may need to be removed from the token ring either because they are

detected adversarial or they may have failed.

To explain the node removal steps, we use the sample token ring of Figure 7.1. Let

us assume that node 0xab is identified adversarial or is nonresponsive due to failure.

• When node 0xab is identified as adversarial or observed to be nonresponsive for

a timeout T1, its slot is swapped with the last node (0xcd) in the token ring. To

swap the slots, basestation sends out a new slot information packet to both the

nodes.
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• The token ring is now observed for a timeout T2. If slot 1 now becomes

responsive, it means that the node (0xcd) has successfully moved to slot 1. This

would imply that slot 10 is now nonresponsive (node 0xab may or may not have

moved to slot 10). Now the basestation can discard the last slot and start a new

cycle as soon as slot 9 is over. The new token ring schedule looks like as shown

in Figure 7.2.

Timeout T2 is required to ensure that node 0xcd has successfully moved to the

new slot. It might be possible that the new slot information from basestation does not

go through successfully to node 0xcd. If after timeout T2, basestation still identifies

slot 1 to be nonresponsive (and slot 10 to be responsive), it would imply that the node

did not receive the new slot information packet. Basestation can then re-initiate the

process from step 1. This 2 step approach eliminates the need for any acknowledgment

packets from the nodes during the removal process and hence creates less overhead

messages.

7.3 Addition of new nodes

New nodes may be added to the token ring in Spin to replace the adversarial nodes

or to just increase the range of the network. eSpin provides a mechanism to add new

nodes by allowing them to request a slot in the schedule from basestation during the

control slot. The steps involved in the joining process are:

• When a new node, ready to enter the token ring, hears beacon A, it sends out a

join request to the basestation.

Figure 7.2. Example token ring schedule after removing the node 0xab.
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• Upon receiving a join request, basestation looks for the next free slot and re-

sponds to the new node in the control slot (current or next).

• Once the new node receives the new slot information from the basestation, it

can start transmitting in the allotted slot.

In the meantime, nodes already on the token passing ring wait for beacon B to

start the next cycle. All communications from basestation to the new node take place

within the control slot.



CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

In this thesis, we consider the problem of power attacks in DFL. During a power

attack, an adversary can vary transmit power of a transmitter node and introduce

significant error in localization. Several nonadversarial circumstances like faults

developed due to physical damage or depleting power levels and use of power control

algorithms also results in change in transmit power. Such changes, if not conveyed

to the receiver nodes in the WSN, can result in an increase in localization error.

To detect such unanticipated power changes, we present two detection methods,

M1 and M2, that use a statistical hypothesis test of choosing between attack and

no-attack hypotheses. Our methods do not depend on the training data and hence,

are very robust in environments where the wireless channel characteristics can change

frequently. The results obtained during our extensive experiments show the efficiency

of our detection methods in in-door settings. In particular, we found M1 to be

sufficiently successful in scenarios where the adversary is highly active. However, as

the adversary becomes less active, the efficiency of M1 decreases. On the other hand,

M2 was found to be highly successful in most adversarial circumstances considered.

In addition, we also give a heuristic-based approach to choose the distance threshold

γ automatically for M2 by considering data collected in the detection window. We

present the performance of this heuristic by giving a trade-off analysis between the

accuracy and latency of detection method. Zero missed detection and zero false

positive rates are achievable using this heuristic method with very few transmissions

from the adversary in cases when only one adversary is present. In the presence of

multiple adversaries, our method scales well and can detect all adversaries as long as

two-thirds of the nodes are normal.
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We also test our method for through-wall device free localization method and

the results obtained are highly encouraging, confirming the wide application of our

method.

We finally provide a simple enhancement to the Spin protocol, called eSPin, which

can be used to remove detected adversarial nodes from the network. eSpin can also be

used, in general, to remove any failed node in the network and add in new replacement

nodes.

8.2 Future work

In this thesis, we made some assumptions about the adversary and the network

to formulate a simple, yet powerful analysis. Some of these assumptions may not be

true always and thus, several avenues for future research need to be explored further:

• Smarter colluding adversaries : We assumed that the malicious nodes do not

collude with each other to perform a more sophisticated power attack by varying

their power in a coordinated manner. Addressing these RSS-based attacks is an

interesting and important area of future research.

• Faking RSS values: We considered here a malicious node capable of varying its

transmit power. A malicious node can also report false RSS values received

from other transmitters in order to create similar effects. Our preliminary

experiments indicate that such actions are less significant than varying transmit

power. However, an adversary can combine both type of effects to perform

advanced attacks.

• Power variation patterns : We only conducted experiments with periodic power

variations. Though the methods developed do not make any assumption about

the power variation patterns, experimental evaluation of different patterns of

varying power variation needs to be performed.
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