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ABSTRACT

Creating very small structures in the resist exceeding diffraction limit is becoming

a bottle-neck in lithography especially for nanoscale features. A novel optical lithog-

raphy technique that has the ability to overcome the diffraction barrier is Absorbance

Modulation Interferometric-Lithography (AMIL). Feasibility of this technique is ex-

perimentally verified. In this approach of absorbance modulation, a standing wave

at wavelength λ2 (633nm) is overlaid with a uniform beam from a light-emitting

diode with a center wavelength at λ1 (310nm). Both beams illuminate a photoresist

film overcoated with a photochromic layer. This photochromic layer localizes the

transmitted light at λ1 to subwavelength spatial dimensions. The subwavelength

lines are spaced by a diffraction-limited grating period. In order to generate dense

lines, the sample is mounted on a single-axis high precision scanning stage that will

enable multiple exposures.
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CHAPTER 1

INTRODUCTION

Creating pattern on the resist can be categorized into two pathways in lithography.

It can be either direct, maskless lithography (e.g., e-beam or ion beam lithography,

etc.) or indirect, generating mask initially and then transferring the pattern on the

mask onto resist. In photolithography, light is the purpose of transferring a pattern

onto light-sensitive chemical photoresist or in simple ‘resist’. A series of chemical

treatments then actually creates the desired pattern on the resist. Depending on

fabrication process and circuit complexity, this lithography technique is repeated

several times. This shows us how important this process is in terms of repeatability

and reliability in the fabrication process. General requirements of current or future

lithography systems are to create dimensions in a few tens of nanometers, very small

variation in dimensions, i.e., very good line width control, accurate alignment of

subsequent pattern, low distortion of image and sample, high throughput, i.e., low

cost, high reliability, uniformity over large areas, etc. In most commercial fabrication

processes, photolithography is done through exposure systems that use mask instead

of direct exposure systems because of major factors like cost and bulk production of

chips.

Exposure systems that use mask create pattern on the wafer using a photomask by

shining a uniform light on it. Photomask blocks the light in some areas and lets it pass

in the other areas. Exposure systems that use mask are further classified based on the

optics that transfers the image from the mask onto the wafer. One of them is contact

or proximity lithography. In this technique, photomask is placed in direct contact

with the wafer or with a small gap between the photomask and wafer, respectively.

Here the wafer is completely covered by mask when it is exposed to a uniform light

at certain intensity based on the resist and its characteristics. Projection lithography
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is the other exposer system that uses masks to create pattern where projection masks

show only one or an array of dies. It is a most common technique in Very-large-scale

integration (VLSI) lithography projecting mask onto a wafer many times to create

the entire pattern.

1.1 Motivation

Projecting clear image of smaller features onto the wafer is limited by the wave-

length of the light that is used for exposure and also the optical systems used to

capture enough diffraction orders from the illuminated mask. To create feature sizes

down to 50nm, deep ultraviolet (DUV) light from the lasers having peak wavelengths

of 248nm and 193nm was used until recently, and also continued improvement in

lithography played a crucial role in withholding Moore’s Law for the past 20 years

[1, 2, 3]. Industries have to focus on reducing emission light wavelength of the lasers

[4-5] to improve the resolution limits in photolithography.

Abbe diffraction limit: Exact spacing in the specimen can be resolved when the

numerical aperture of the objective lens is large enough to capture the first order

diffraction pattern produced in diffraction limited microscope at a specific wavelength

AbbeLimit(d) =
λ

2 ×NAobj
(1.1)

where,

d = lateral resolution, λ = wavelength, n = smallest refractive index in the optical

path, NAobj = numerical aperture of objective = n × sin 1
2

A, A= Angular Aperture

of a cone of light entering the lens, n = smallest refractive index in the optical path

Shorter wavelengths, better lenses, and adaptive optics have all contributed to

this Law, which has allowed commercially available chips to be fabricated with 45nm,

32nm and 25nm [6] feature sizes. These processes had succeeded beyond everyone’s

expectations on the small feature lithography, but at the same time, this does not

mean that future feature reductions that rely only on this technology (or) with this

technology are guaranteed. Approaches that claim to allow this are so-called maskless
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lithography which saves manufacturers tens of thousands of dollars each time a change

is made in device design, no matter how large or small the change is.

Looking at both masked and maskless photolithography technologies, the maskless

part is also gaining a lot of importance these days. Normal lithography creates an

image of the features that will be etched into a chip by imaging a negative mask,

which in most cases mask is in contact with the resist onto which the feature is to be

transferred. Usually these masks are big in size, very expensive for long term usage,

and can take quite a while to make depending on the features. When you are just

trying to get a chip design right, each little change means a new mask. You can

imagine that this might increase the development cost somewhat, while also slowing

circuit development.

Maskless lithography partially eliminates these problems by writing or creating

pattern on the chip directly, which does not require any physical or proximity contact

of mask. This can be done by milling the silicon with a beam of electrons, ions

or photons. Electrons and ions can be focused to very small spots, meaning that

features just a few nanometers in size can be written, but this is a seriously slow way

to write an entire chip. Running many beams in parallel would speed the process up.

Unfortunately electrons and ions are charged, so the beams interact with each other:

parallel beams do not focus, and do not go where they are directed. Light, on the

other hand, does not interact so strongly with itself, making it the perfect candidate

for maskless lithography.

1.2 Maskless Lithography Techniques

There are various forms of maskless lithography, mainly Scanning Electron-Beam

Lithography (SEBL), Focused Ion-Beam (FIB) Lithography, Multi-Axis Electron-

Beam Lithography (MAEBL), Interference Lithography (IL), Maskless Optical-Projection

Lithography (MOPL), Zone-Plate-Array Lithography (ZPAL), Scanning-Probe Lithog-

raphy (SPL), Dip-Pen Lithography (DPL), etc.[7].
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1.2.1 Scanning-Electron-Beam Lithography (SEBL)

Scanning-Electron-Beam Lithography (SEBL) is a practice of scanning a beam

of electrons in a predefined fashion (desired pattern) across a surface covered with

a resist and then removing either exposed or unexposed regions of the resist (also

known as developing the resist). The major advantage associated with SEBL is that

it overcomes the diffraction limit of light and makes features in the nanometer regime

which had found vast recognition in making photo masks used in photolithography,

only low volume production of semiconductor components, and in Research and

Development (R&D). But then, its limitation is throughput, i.e., it takes a very

long time, even several days in some cases, to expose an entire silicon wafer with

photoresist, which means it is easily vulnerable to beam drift or instability which

can be partially eliminated with other techniques [8]. Other defects include sample

charging, backscattering calculation errors, dose errors, fogging (long-range reflection

of backscattered electrons), contamination and resolution limits based on resist [9].

1.2.2 Focused Ion Beam (FIB)

Focused Ion Beam (FIB) Lithography has many advantages over the electron

beam counterpart in terms of resist sensitivity, backscattering and proximity effects.

Applying the Top Surface Imaging (TSI) principal to FIB lithography could further

enhance its capability [10]. Even though FIB systems are capable of very high

resolution, they suffer from worse problems of throughput and placement accuracy

than SEBL systems as well. Interference Lithography has many forms [10-13] and

throughput is quite high. However, it is applicable only to periodic and quasi-periodic

patterns, where it excels. SPL [14] and DPL [15] have a number of unique aspects

and play an important role in nanostructures research. However, they do not appear

to have the general applicability of optical lithography techniques and lack sufficient

throughput for applications outside of research. A MOPL system has been proposed

that replaces the mask with a programmable micromirror array [16-17].
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1.2.3 Multiple Electron Beam

Multiple electron beam (multibeam) approaches [19], [20] and [21] offer a high

throughput solution for sub-100nm lithography when compared to single-beam[18]. It

is very difficult to obtain throughput in a single-beam electron-beam lithography(EBL)

due to electron-electron interaction which limits lithography resolution by increasing

fuzz in the beam current, whereas resolution is directly proportional to the total beam

current supplied to expose the given resist. The use of a multibeam approach can

result in compared to singlebeam approach throughput while maintaining pattern

accuracy and quality. In multibeam approach, the current in each beam can be

considerably reduced and at the same time, a high total current can be maintained

at the wafer surface. Two major applications of multibeam are direct-write-on-wafer

and maskmaking. Also multibeam approach eliminates the maskmaking, resulting

in reduced costs and effects from the masks in the semiconductor IC manufacturing

process.

1.2.4 Scanning Probe Lithography (SPL)

Scanning Probe Lithography (SPL)is a type of maskless lithography that is based

on Scanning Probe Microscopy(SPM), in which nanoscale features are constructed

on the wafer surfaces by drawing lines directly either by removing atoms from a

passivated silicon or by touching the target surface with a Scanning Probe Microscopy

tip that has been loaded with a chemical substance which needs to be patterned on

the surface. The latter technique is also known as Dip Pen Lithography (DPL). In

both the approaches, the probe is moved in a raster scan manner of the specimen,

i.e., line by line and then recording the probe to surface interaction as a function of

position. Resolution in atomic scale can be achieved with the advent of piezoelectric

actuators to execute motions with a very high precision and accuracy.

1.3 Related Work

This section presents two techniques - Zone-Plate-Array Lithography (ZPAL) and

Patterning via Optical Saturable Transitions (POST) that are influential or related

to AMIL.
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1.3.1 Zone-Plate-Array Lithography (ZPAL)

In Zone-Plate-Array Lithography [14], an array of diffractive lenses (e.g., Fresnel

zone plates) focuses an array of spots on the surface of a photoresist -coated substrate.

The light intensity of each spot is controlled by one element on a spatial light

modulator (SLM). The substrate is scanned on a high precision stage while the

elements of the SLM are appropriately controlled, resulting in patterns of arbitrary

geometry being written in a ‘dot-matrix’ fashion. A schematic of ZPAL is shown

in Fig. 1.1. The light source is preferably a continuous wave (CW) laser (a pulsed

laser source would severely limit system throughput). Light from the laser is passed

through a spatial filter and a collimating lens to create a clean, uniform beam incident

on the SLM. The SLM breaks the beam into individually controllable beamlets. A

telescope is placed such that each beamlet is normally incident on one zone plate in

the array. A Fourier filter within the telescope ensures that there is sufficient contrast

between the on and off states. It also prevents cross talk between the beamlets. Each

zone plate behaves like a microscopic lens focusing the light into a tight on-axis spot

in its focal plane.

Alternate zones of the zone plate can either block the transmitted radiation or

phase shift it. The former are called ‘amplitude zone plates’ and the latter ‘phase

zone plates’. Phase zone plates have much higher focusing efficiency (∼40%) than

amplitude zone plates (∼10%), whereas phase zone plates are also assumed to consist

of circular, concentric zones of alternating π and 0 phase shifts [3]. The radii of the

zones are chosen such that there is constructive interference at the focus.

1.3.2 Patterning via Optical-Saturable Transitions (POST)

Patterning via Optical-Saturable Transitions (POST) is an approach similar to

Absorbance Modulation Interferometric Lithography (described later in this paper)

that is based on spectrally-selective reversible and irreversible photochemical transi-

tions. POST involves the use of molecules that reversibly change their absorbance

spectra upon irradiation [15]. These molecules exist in two isomeric forms.

As shown in Fig. 1.2, when the form A (e.g., an open bond) is irradiated by

photons of wavelength, λ1, they transform into form B (e.g., a closed bond). When
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Figure 1.1: Schematic of Zone Plate Array Lithography(ZPAL)
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Figure 1.2: Schematic illustrating the photochemical transformations in the POST
approach

the form B is irradiated by photons of wavelength, λ2, they transform back to form

A. If in addition, form B can be transformed irreversibly via exposure to photons

at wavelength, λ3 into a highly stable form C (which is feasible for certain organic

molecules), and single-molecule resolution in 3-D is achievable.

In the POST implementation, molecules that undergo reversible transitions at λ1

and λ2, and an irreversible transition at λ3 are photochromic molecules, which have

been extensively studied in the past for optical memories, molecular switches and

molecular motors.

POST enables patterning at sub-10nm length scales with long-wavelength pho-

tons. Earlier, nanostructures could only be patterned by focused electron beams,

ion beams or very short-wavelength photons. These particles can cause damage to

many types of substrates and also they require vacuum and hence are incompatible

with fragile organic samples which are complex and expensive. Many approaches were

proposed to overcome these problems. A large array of independently controlled nodes

enables rapid patterning (λ/8) via POST. Large depth of- focus can be engineered into

2-D nodes enabling very robust 2-D patterning with large process latitude. Further-

more, the potential to rapidly create nanostructures in 3 dimensions with low power

visible and near-UV wavelengths will revolutionize nanomanufacturing. But the most

important limiting factor of this technique, even though it could be able to overcome

the Abbe diffraction limit, is that the resist here is not commercially available photo

resist, whereas most of the current fabrication processes are based on commercially
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available photo resists either positive or negative based on the application. In some

cases, different kinds of photo resists regardless of their availability (cost perspective)

are used, say for example, high aspect ratio, and very short exposure time, complex

structures, etc. Absorbance Modulation Interferometric-Lithography (AMIL) is an

alternative to POST that overcomes the diffraction barrier which is a major concern

in the current lithography techniques.

1.4 Thesis Overview

The rest of this thesis is organized as four chapters which give a detailed descrip-

tion of the contributions of this research.

Chapter 2 describes Interferometric Lithography technique in particular based

on absorbance modulation, characterization of materials in the stack of four layers

used in the current Absorbance Modulation Interferometric-Lithography(AMIL) re-

search technique and also the preparation of each layer in the stack, Absorbance

of Photochromic molecules corresponding to Bis-bithienylethene (BTE) developed

by Trisha Andrew from Massachusetts Institute of Technology (MIT) and also of

Diarylethene polymer from Italy, in its closed and open forms at different wavelengths.

Photochromic material can be translated between its open and closed forms based

on the time duration the material is exposed to a specific wavelength either λ1=310

nm (or any Ultra Violet Source) most cases the UV source for this test is Xenon-Arc

Lamp, sometimes using UV LED having peak wavelength at 310 nm or λ2=633 nm

(He-Ne Laser). Surface roughness of all the layers in the material stack is discussed

individually, polyvinyl alcohol (PVA) in brief. PVA is a blocking or protecting layer

on top of photo resist to prevent photochromic molecules from attacking the resist.

Also discussed are MATLAB simulation results showing reflectivity versus material

thickness in the stack of four layers, varying ARC and photoresist thickness in par-

ticular.

Chapter 3 presents the canonical experimental setup of proposed research Ab-

sorbance Modulation Interferometric-Lithography (AMIL) with nanoprecision piezoelectric-

controlled stage and different UV Wavelength sources. Nanoprecision stage is con-

trolled by USB interface to a Personal Computer through LabVIEW software. Fab-
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rication of the sample with all the four layers on which AMIL is performed is shown.

Also discussed is more about results of this AMIL research with Atomic Force Mi-

croscopy (AFM), Scanning Electron Microscopy (SEM) and Optical images corre-

sponding to various AMIL exposures performed on different kinds of positive and neg-

ative resist samples, with both types of photochromic materials Bis-bithienylethene

(BTE) and Diarylethene polymer at different intensity ratios of two wavelengths λ1

= 310 nm or 325 nm and λ2 = 633 nm. In order to minimize the exposure dose,

chemically amplified positive resist is also used. Considering the resolution effect

w.r.t resist layer thickness, resist layer thickness in the four layers stack is thinned

down considerably. Linewidth of the grating due to AMIL exposures versus Exposure

dose of Shipley S1813 positive resist is also presented.

Chapter 4 summarizes the research work detailed in this thesis. The scope of

this research is also presented. This chapter also describes a number of interesting

areas where this research is applicable directly or indirectly in the current fabrication

lithography. While this work solves some of the problems related to miniature nano-

repetitive patterning, there are numerous interesting problems that still need to be

overcome. The future work section of this chapter describes some such problems

which need to be addressed.



CHAPTER 2

BACKGROUND

In most commercial processes, Photolithography (also known as optical lithog-

raphy) means to create pattern on the wafer using photomask. Even though it is

the simplest and most cost effective way to create pattern on the resist, it is severely

limited by many parameters. Especially, features are limited by the wavelength of the

light that is used. Absorbance Modulation Interferometric Lithography (AMIL) is a

novel optical lithography technique that has the ability to overcome this diffraction

limit. This AMIL technique, as explained in Chapter 1, is also based on a reversible

photochemical transition. It involves usage of the molecules that reversibly change

their absorbance spectra upon specific irradiation. The photochromic molecules used

in this approach are Bithienylethene (BTE)and Diarylethene polymer.

2.1 Interferometric Lithography

Interference Lithography (IL) is implicitly limited when compared to many other

lithography techniques. Through IL only periodic pattern can be produced which is

very advantageous to fabricate devices that need a periodic pattern. IL technique

used in this research uses only two beams, producing a periodic pattern in only one

dimension. Exposing this pattern on a substrate with photoresist creates a set of

parallel lines due to highly nonlinear dissolution rate as a function of dose. Often

these parallel lines are known as grating as shown in Fig. 2.1.

The intensity pattern formed using interference lithography is sinusoidal; the

amplitude and periodicity of the sinusoid are the only lithographic parameters that

can be altered in this technique. Nonperiodic patterns are impossible to create using

interference lithography alone. Also, creating periodic pattern in more than one

dimension demands more than two interfering beams or more than one exposure
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Figure 2.1: Schematic illustrating the sinusoidal intensity pattern formed by the
interference of two coherent beams

based on the requirement. The range of devices which can be made using IL is

limited; a few examples are patterned magnetic media and distributed-feedback lasers.

However, interference lithography is the best, and often the only lithographic option

for periodic devices because most of the other lithography techniques cannot attain

the spatial-phase coherence of a truly periodic structure, producing at best only

quasi-periodic structures. Another advantage of this interference lithography is its

ability to make smaller features than any other optical scheme at a given wavelength.

The minimum linewidth (half-pitch)of grating lmin in optical lithography is often

given in the form of Equation 1.1. Most advanced industrial tools maintain half-pitch

of ∼0.53 λ. For this they are spending millions of dollars just on the lithography

systems and masks, and thus it is impossible to adapt in research and university

environments. Most of the affordable optical lithography tools guarantee up to >1µm

resolution. With interference lithography half that of even state-of-the-art industrial

systems can be achieved [22].

2.2 Interferometric Lithography Using Absorbance

Modulation Technique

In this Absorbance Modulation Interferometric Lithography approach, a sample

with absorbance-modulation layer (AML) on the top of photoresist is exposed to a
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standing wavelength λ2= 632.8nm, uniform beam of short wavelength λ1 = 310 nm

(LED) or 325 nm (HeCd Laser). When the AML is exposed to only wavelength λ2, it

remains in a high absorbing configuration A. Similarly if the AML is exposed to only

wavelength λ1, it attains low absorbing configuration B. When both the wavelengths

are incident simultaneously, the focal ring at λ2 super imposed by the round spot at λ1

creates a localized subwavelength transparent aperture on the absorbance-modulation

layer as shown in Fig. 2.2.

Through these transparent apertures, light with wavelength λ1 at the nodes of

λ2 penetrates through AML and exposes the photoresist, whereas in the portions

where AML is opaque, i.e., in state B, it prevents the light from passing. Once the

underlying photoresist is exposed, if we turn off the light of wavelength λ1, the AML

can either thermally return to its original configuration A or it can be brought back

to the high absorbance configuration B by exposing the layer to only a beam with

wavelength λ2 in case of doing multiple exposures. In general, commercially available

photoresist is of a kind that it is exposed only at λ1 but not at λ2. Thus AMIL is a

most feasible technique of its kind.

The way of doing double exposure with AMIL is shown in Fig. 2.3. After the first

exposure, the sample can be moved with the help of piezoelectric nanopositioning

stage (for high precision capability) and then the AML is allowed to recover back to

Figure 2.2: Schematic illustrating formation of aperture in AMIL approach
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Figure 2.3: Schematic explaining how to do double exposure with AMIL.

The ring illumination at λ2 creates a local subwavelength aperture for λ1, through
which the underlying photoresist is exposed. After exposure, the AML recovers by
exposure to λ2 or thermally. The substrate is stepped, and the λ1, λ2 exposure is
repeated, effectively scanning the subwavelength aperture [23].

form A. This can be done either thermally or by exposing the AML to only λ2. Once

AML is completely recovered, simultaneous exposure with λ1, λ2 is repeated.

Standing-wave illumination at λ2= 632.8 nm creates a local aperture at λ1 = UV

wavelength, through which underlying photoresist is exposed, whereas the size of this

aperture is controlled primarily by the ratio of the intensities of the two wavelengths

(in this case λ2
λ1

), but not by individual wavelength source or optics. Hence, size is

not limited to diffraction limit levied by either of the two wavelengths, which is a

limiting issue/concern in conventional lithography techniques.
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As shown in Fig. 2.4, if the ratio of intensities of λ2
λ1

increases, then the size of

the subwavelength aperture is even narrowed, creating nanoscale features/grating(<

λ
10

) exceeding the diffraction barrier (Abbe Diffraction limit) explained in Chapter

1. The size of the aperture can be controlled secondarily with the exposure dose

without changing the intensity ratios by simply doing exposures that lie in between

underexposed and overexposed categories. Of course a lot of calibration is needed

every time the intensity ratio of two wavelengths are varied. More explanation with

plots is provided in Chapter 3.

2.3 Absorbance Modulation Layer (AML)

According to Absorbance Modulation Interferometric Lithography technique, this

section details the key layer, Absorbance Modulation layer (AML) in the stack of

four layers on top of Silicon substrate. We described two photochromic molecules

Bithienylethene (BTE) and Diarylethene Polymer, their response or states corre-

sponding to two wavelengths. Also, their absorbance plots are presented in sec-

tion 2.3.3 by spin coating each of them on a glass slide, irradiating with a Xenon

Figure 2.4: Increasing power density at λ2 relative to λ1 squeezes the transmitted
spot, i.e., nanoscale optical probe
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Arc lamp, UV LED having peak wavelength at 310 nm or laser light, and conducting

UV-Vis spectroscopy. The choice of wavelengths was restrained by the available lines

of the Xenon Arc lamp and laser sources we have. In Chapter 3, we experimentally

demonstrated the exposures with these photochromic materials. Details of the similar

photochromic material similar to the one used in section 2.3.1 are also used for POST

which will be discussed in Chapter 4.

2.3.1 Bithienylethene (BTE)

As shown in Fig. 2.5, the BTE molecules are initially present in the open form

A (opaque Configuration). They are converted into closed form B (transparent

Configuration) when it is irradiated by photons of wavelength, λ1 = UV (310 or

325 nm). When the form B molecules are irradiated by photons of wavelength, λ2

= 633 nm, they transform back to form A. This single transition is sufficient for this

AMIL in case of single exposure when compared to contiguous double transitions in

the POST approach of the same molecule. At the same time for a double exposure,

complete reverse transition to form A has to be done before starting the second

exposure.

In order to do multiple exposures or to create complex structures, we have to do

the transition from open form A to closed form B and then back to form A, so on

for several times. Transformation of the chemical species between two forms by the

absorption of electromagnetic radiation, where the two forms have different absorption

spectra, is known as photocromism. Absorbances of this BTE during its open and

Figure 2.5: Open(opaque) and closed(transparent) molecular forms of
Bithienylethene (BTE)
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closed forms of photocromism are presented in subsection 2.3.3. Also presented are

the saturated absorbance values w.r.t time, at the wavelengths λ1 = 310 nm and λ2

= 633 nm.

2.3.2 Diarylethene Polymer

Schematic of a single molecule in Diarylethene polymer is shown in Fig. 2.6. Like

BTE, when these molecules are in open form A (opaque to λ2 = 633 nm), they can

be converted into closed form B (transparent configuration to λ1 = UV (310 or 325

nm)) by irradiating with photons of wavelength, λ1. To convert them back to form

B, they are irradiated with photons of wavelength, λ2. Based on the number of

repetitive exposures, this transition between the forms is repeated. In chemistry, this

phenomenon of different structural formulas at different stages, but having the same

molecular formula, is known as isomerization.

Reversible isomerization of this polymer can also be achieved thermally. But

we did not try in this research. The diarylethene polymer is also of interest for

the fact that their isomerization requires very little change of shape. This means

that their isomerization takes place more quickly than with most other photochromic

molecules. In some cases, this photochromic behavior can be carried out in a single

crystal without disrupting the crystal structure.

Figure 2.6: Diarylethene polymer (single molecule) in its open and closed forms
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This open-ring isomer is a colorless compound, whereas the closed-ring isomer have

colors dependent on its chemical structure, due to the extended conjugation along

the initial molecular structure. Therefore many diarylethenes have photochromic

behavior both in solution and in solid state. Also, the two isomers of this diarylethene

polymer differ from one another not only in their absorption spectra explained in

subsection 2.3.3, but also in various physical and chemical properties, such as their

refractive indices, dielectric constants, and oxidation-reduction potentials. These

properties can be readily controlled by reversible isomerization between the open and

closed forms using photoirradiation to UV and visible light, and thus they have been

suggested for use in optical data storage and 3D optical data storage in particular[24].

The closed form has a conjugated path from one end of the molecule to the other,

whereas the open form has not. This allows for the electronic communication between

functional groups attached to the far ends of the diarylethene to be switched on and

off using UV and visible light[24][25].

2.3.3 Absorbance Plots of Photochromic Molecules

Here we investigated the UV-Vis spectrum of the two photochromic molecules

BTE and Diarylethene polymer. The photochromic properties of each AML were

analyzed by spin-coating on a glass slide, irradiating with a Xenon Arc Lamp/ UV

LED to make sure that it is in closed form B. And then at regular intervals, it

is exposed to laser beam (HeNe) and conducted UV-Vis spectroscopy. Wavelength

sources desired for AMIL are chosen based on the absorbance of AML corresponding

to different wavelengths and availability. Absorbance versus time is plotted for two

wavelengths λ1 and λ2, in particular to observe the time taken by the material for

complete change in form. Also absorbances corresponding to repeated transition

between the forms A and B are discussed.

The UV-Vis spectrum of Bithienylethene (BTE) is shown in Fig. 2.7. Measure-

ments of this molecule are taken by spun-coating BTE of thickness ∼600nm onto

glass slide.

Absorbance corresponding to wavelengths ranging 250-900nm are obtained with

the help of UV-Vis spectrometer. The sample is initially converted to closed form
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by exposing it to UV. At regular intervals, it is exposed to HeNe laser whose output

wavelength is 632.8nm until it is converted to open form, i.e., no more change in the

absorbance w.r.t time which is shown in Fig. 2.8. Spectrum in Fig. 2.7 corresponds

to absorbance during this molecular transition from closed to open form.

The way this BTE molecule works as a photochromic material is described as

follows. When the bond at the center between the two rings is open, the electrons of

the two rings do not interact with each other much, creating two separate resonant

cavities and an absorption peak at shorter wavelength. When the bond is close,

the entire molecule forms a resonant cavity and creates another absorption peak at

longer wavelength. The molecule was synthesized by Trisha L. Andrew, Chemist from

Massachusetts Institute of Technology(MIT), USA. Its chemical structure during the

two transitions is shown in Fig. 2.5. The peak of the open form is close to 300nm,

and that of the closed form is close to 600nm. So, we used λ1=310nm (UV LED had

peak wavelength at 310nm) or 325nm from HeCd laser, and λ2=633nm from a HeNe

laser. This molecule was dissolved in a PMMA such that concentration ratio is 80%

and 60mg/ml.

Absorbance of BTE corresponding to wavelengths λ1=310nm and λ2=633nm is

shown in Fig. 2.8. When the molecule is in closed form, absorbance at λ2 is 0.61828

and at λ1 is 0.95025, thus acting as transparent to UV and absorbing most of the Red,

creating a pathway to the wavelength that exposes resist and avoiding the wavelength

that does not affect the resist. Then, we exposed this molecule to Red beam (HeNe

laser), until the change in the absorbance is less than 1%. Final absorbance values of

BTE layer after 1200 minutes of exposure to Red wavelength are at λ2, absorbance

is 0.0552 and at λ1, absorbance of the layer is 1.36939, thus acting as transparent to

Red and absorbing most of the UV, creating a pathway to the wavelength that does

not expose the resist and blocking the wavelength that affects the resist.

The composition and UV-Vis spectrum measurements of the diarylethene polymer

are shown in Figs. 2.9, 2.10 and 2.11. The way this molecule works is similar to

BTE. The absorbance peaks for this molecule are also close to 300nm, in open form

and close to 600nm, in closed form.



21

F
ig

u
re

2
.8

:
A

b
so

rb
an

ce
of

B
T

E
ve

rs
u

s
ti

m
e

in
m

in
u
te

s
co

rr
es

p
on

d
in

g
to

w
av

el
en

gt
h
s
λ
1

an
d
λ
2

d
u
ri

n
g

th
e

tr
an

si
ti

on
fr

om
cl

os
ed

to
op

en
fo

rm
.

T
h
es

e
m

ea
su

re
m

en
ts

ar
e

ta
ke

n
b
y

ex
p

os
in

g
th

e
sp

u
n
-c

oa
te

d
B

T
E

la
ye

r
to

w
av

el
en

gt
h
,λ

1
=

31
0n

m
(U

V
L

E
D

)
fo

r
45

m
in

u
te

s,
in

te
n
si

ty
=

92
.6

u
W

/c
m

2
an

d
th

en
at

re
gu

la
r

in
te

rv
al

s
to

w
av

el
en

gt
h
,λ

2
=

63
3n

m
(H

eN
e

la
se

r)
,

in
te

n
si

ty
=

13
.7

9m
W

/c
m

2
.



22

F
ig

u
re

2
.9

:
C

om
p

os
it

io
n

of
d
ia

ry
le

th
en

e
p

ol
y
m

er
in

op
en

an
d

cl
os

ed
fo

rm
s.



23

The UV-Vis spectrum of Diarylethene polymer in chloroform of lesser concentra-

tion is shown in Fig. 2.10. Absorbance measurements on this molecule are taken

by mixing the polymer in chloroform, such that concentration of the solution is

4mg/100ml, then spun-coating at 1000rpm onto a glass slide.

From Fig. 2.10, it is obvious that phototransitions at λ1 and λ2 are very narrow,

which means that contrast in absorbance is not significant to observe the absorbance

modulation. Low absolute absorbance at λ1, results in low final image contrast in the

resist.

Compared to Fig. 2.7 corresponding to absorbance of the BTE, the absorbance

of the diarylethene film of thickness (250nm) is only 0.068, when the molecule is in

closed form. With a 650nm thick film as shown in Fig. 2.11, the peak absorbance is

about 1.0634 during its closed form state. Thus, 650nm thick diarylethene polymer

film can provide enough image contrast to be recorded in the underlying photoresist

but not with a thin diarylethene polymer film.

The UV-Vis spectrum of Diarylethene polymer in chloroform of higher concentra-

tion compared to the diluted one discussed earlier is shown in Fig. 2.11. Absorbance

measurements on this molecule are taken by mixing the polymer in chloroform, such

that concentration of the solution is 8.55mg/100ml, then spun-coated at 1000rpm

onto a glass slide. After spun-coating, molecules are converted into closed form with

Xenon-Arc lamp, short UV illumination λ1 for 30 minutes. Intensity of this lamp at

310nm is 3.21mW/cm2. Now for the reverse transition to open form, Diarylethene

polymer is illuminated to HeNe laser beam of intensity 11.73mW/cm2 for 120 minutes.

The UV-Vis spectrum of Bithienylethene (BTE) during its transitions from open

to closed and closed to open forms, used in Patterning via Optical Saturable Transfor-

mations (POST), is shown in Figs. 2.12 and 2.13 respectively. Measurements of this

molecule are taken by thermally evaporating BTE of thickness ∼100nm onto glass

slide.

Just like UV-Vis measurements taken on BTE in AMIL, the sample (glass slide

with evaporated BTE onto it) is initially illuminated with Short UV of intensity

3.061mW/cm2 for 22 minutes. Then, the same sample is exposed to Red λ2 to convert

it into open form. UV-Vis measurements are taken during this process at different
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Figure 2.10: The UV-Vis spectrum of diluted diarylethene polymer.

Polymer in chloroform of concentration 4mg/100ml is spun-coated onto glass slide at
a speed of 1000rpm with a spinner such that thickness of the layer is 2̃50nm. Sample
is then exposed to short UV light of Xenon-Arc lamp for 30 minutes, to make sure it
is in the closed form, whereas the intensity of this UV light is 3.21mW/cm2. UV-Vis
spectroscopy is performed on this sample and also spectroscopy measurements are
repeated upon exposure to HeNe laser, output wavelength 633nm. Intensity of this
source is 10.99mW/cm2.
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Figure 2.11: The UV-Vis spectrum of diarylethene molecules used for AML.

The diarylethene molecules are again dissolved in chloroform but this time concen-
tration is around 8.55mg/ml, to increase the signal to noise ratio for the UV-Vis
measurement. It can be seen that the diarylethene is absorbing when it is in closed
form and less absorbing when it is in open form. λ1=310nm illumination was applied
to for the transition from open form to closed form, and λ1=633nm illumination was
applied for the reverse transition.

intervals as shown in Fig. 2.12. Now the sample is again illuminated with Short

UV of intensity 2.8765mW/cm2 at 310nm to convert it into closed form. UV-Vis

measurements are repeated at different intervals as shown in Fig. 2.13. Significant

change in absorbances in the desired manner are occurring at the wavelengths 330nm

and 600nm. Based on the sources available we used Short UV/ UV LED having

peak wavelength at 310nm and He-Ne laser having an output of wavelength 632.8 nm

( 633nm).

During the transition of BTE between its forms, change in absorbances over a

period of time are plotted at the wavelengths 310nm and 633nm. In Fig. 2.14, (a)



26

Figure 2.12: UV-Vis spectrum of BTE used in POST during its transition from
open to closed form.

Upon thermal evaporation of BTE onto glass slide, the sample is exposed to Short UV
from Xenon-Arc lamp of intensity 2.8765mW/cm2 at 310nm. The above processes are
repeated until the molecule is completely converted to closed form, which is known
from a much smaller percentage change in absorbance.

and (b) correspond to absorbances at 633nm and 310nm during transition of BTE

from open to close form, whereas (c) and (d) also correspond to absorbances at 633nm

and 310nm but during the reverse transition of BTE to open form. Here it is obvious

that within a few minutes we can convert the BTE from open to close form but

for converting back into open form it has to be exposed to λ2=633nm of intensity

9.469mW/cm2 for at least 2 hours to make sure that the molecule completely changes

its form. For this reason, while doing a double exposure with the help of nanoposition

piezoelectric stage (will provide precise control over the linewidth of the periodic

grating which is directly proportional to the extent the stage is moved) between the
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exposures, leave the sample under λ2=633nm for few hours by turning OFF the UV

power supply (no simultaneous UV illumination during molecular transition). So that

BTE is completed converted back to open form. Once BTE is converted, simultaneous

second exposure with λ2=633nm and λ1=310nm is repeated.

Absorbance of BTE at the wavelength λ2=633nm over a period of time between

its repetitive transitions open to close and close to open forms by exposing the sample

to short UV λ1 of intensity 2.629mW/cm2 at 310nm and Red λ2=633nm of intensity

9.469mW/cm2, respectively, is observed and is plotted as shown in Fig. 2.15. This

variation in absorbance is also an important parameter that should be considered

while doing multiple exposures (especially more than two exposures), because based

on the requirements for the latest design techniques, having complicated periodic

structures we might need to do more than two exposures on the same sample with-

out removing or adding photochromic molecules. Then, exposure doses should be

Figure 2.13: UV-Vis spectrum of BTE used in POST during its transition from
closed to open form.
UV-Vis spectroscopy is performed on this sample at regular intervals of exposure to
HeNe laser, of output wavelength 633nm in the same way as we did spectroscopy
measurements during the transition from open to closed form . Intensity of this Red
beam while illuminating the sample is 13.79mW/cm2.
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Figure 2.14: Absorbance of BTE at 310 nm and 633 nm during its transition from open-close and close-open forms.
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Figure 2.15: Absorbance of BTE at λ2=633nm during its repetitive transitions
between open-close forms.

adjusted based on the absorbance value of the BTE. As the number of repetitive

exposures increases on a sample without altering the BTE layer, limitation of this

technique increases due to decrease in absorption contrast of photochromic molecules

at different wavelengths esp. at λ1 and λ2 during its molecular state, i.e., open and

close forms.

2.4 MATLAB Simulations - Power Reflectivity

Power reflectivities from the lower layers in the stack of layers with irradiation to

two wavelengths were investigated in this part. It is found out that higher power re-

flectivity will cause nonuniformity in the lithography step, esp. due to this higher back

reflections. Power reflectivity between the photoresist and Anti-Reflection Coating

(ARC)/ Silicon interface is simulated in MATLAB and presented various results which

are based upon optical constant of all the layers in the stack, their thickness’s accurate

resist layer thickness in particular, angle of incidence, polarization and wavelength

source. Where the greatest percentage of reflectivity is from the Silicon which is at

the bottom of all the layers in the stack, in the Absorbace Modulation Interferometric
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Lithography AMIL technique is the root cause for nonuniformity in the resist layer

which we observed earlier.

The MATLAB code used for this power reflectivity simulation creates a GUI to

display 1D/2D reflectivity measurements based on the number of variables. These

simulations are done considering the exact individual layer thicknesses of the stack

used so far, angle of incidences (angles at which Red and UV beams are incident

onto Si sample in a practical set-up are considering while doing simulations than just

taking somme random values). Both 1D and 2D simulation results of this code are

explained in brief in the following paragraphs.

Power reflectivity 2D simulations corresponding to wavelengths λ1=325nm and

λ2=633nm at two different angles, one original angle of incidence and the other (90◦

- angle of incidence) for the thin or thicker resist and Anti-Reflection coating are

shown in Fig. 2.16. All these simulations and also the ones to be discussed later in

this section are performed only in TE polarization mode.

TM polarization mode corresponding to all the presented simulations (figures

corresponding to this mode are not presented), no significant variation in power

reflectivity values w.r.t thickness of the layer is observed. In Fig. 2.16, (a) and (b)

correspond to wavelength λ1=325nm, where the angle of incidence is 20◦ and 80◦,

respectively, and (c) and (d) correspond to λ2=633nm, where the angle of incidence

is 27◦ and 63◦, respectively. From these figures, it is observed that power reflectivity

value is not varying much w.r.t resist layer thickness whereas it is more sensitive to

only ARC layer thickness. Also comparing ARC layer thickness among the simulations

corresponding to λ1 and λ2, to make the percentage of power reflectivity the <5%

ARC layer should be much thicker for λ2 than for λ1. Again it does not really matter

how much power is reflected corresponding to λ2 because it is not going to affect the

resist. Only λ1 will expose the resist and also the more the power of this wavelength

reflected corresponds to the more the nonuniformity seen on the photoresist. For this

reason based on the simulation corresponding to λ1, ARC layer thickness is chosen

for a particular photoresist layer thickness.

Figs. 2.17(a) and (b) correspond to 1D simulations of power reflectivity with

antireflection coating as a variable in the stack with Shipley S1813 photoresist layer of
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thick 1.2µm, Poly-Vinyl alcohol (PVA) of 10nm and BTE of 686nm for λ1=310nm and

λ2=633nm, respectively, whereas in Figs. 2.17(c) and (d), photoresist layer thickness

is the variable in a stack with PVA and BTE of same thicknesses discussed earlier

and moreover without antireflection coating at all. From the simulations presented

in Fig. 2.17, we can obtain the required antireflection coating layer thickness to

minimize the back reflections at photoresist-antireflection coating layers interface and

also minimum photoresist layer needed to avoid maximum power reflections from the

Silicon. Based on these simulations, AMIL experiments were performed and are

explained in brief in Chapter 3.

Two-dimensional MATLAB simulations corresponding to POST samples are seen

in Figs. 2.18 and 2.19. In these figures, (a), (b) and (c) correspond to stack of BTE,

Platinum and ARC layer top-bottom architecture, angle of incidence is 31◦ but BTE

layer thickness is 15nm, 50nm and 80nm, respectively. From Figs. 2.18 and 2.19,

it can be concluded that for the given angle of incidence, irrespective of BTE layer

thickness to have the power reflectivity <1%, the platinum layer should be ≤5nm and

also the ARC layer should be of 118 - 130nm.

Even with minimum power reflectivity calculations, we still could be able to see

some roughness in the photoresist during the AMIL exposures. Now, two other

parameters which are assumed to be the reason for this are

(i) Blocking/protecting layer polyvinyl alcohol (PVA); it is dubious that PVA is not

really protecting the resist from BTE.

(ii) Nonuniformity of photochromic molecules within the BTE layer spun-coated. To

check this confocal microscopy images are obtained.

More about these assumptions are explained in Chapter 3 along with AMIL

experimental results.
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CHAPTER 3

ABSORBANCE MODULATION INTER-

FEROMETRIC-LITHOGRAPHY

(AMIL)

Absorbance Modulation Interferometric-Lithography (AMIL) is a novel optical

lithography technique that has the ability to overcome the diffraction barrier.

3.1 Experimental Setup

Canonical experimental setup of the proposed research, Absorbance Modulation

Interferometric-Lithography (AMIL), based on the Lloyd’s mirror interferometer sys-

tem is shown in Fig. 3.1. AMIL requires two different wavelengths, so a special optical

system is constructed [26]. One of the first systems that was built is an interference

system that will incorporate two wavelengths (λ2=632.8nm, λ1 = 325nm) by He-Ne

Laser and UV lamp, respectively. The source of λ1 may be inexpensive UV LEDs or

UV lamps.

Initially experiments were performed using UV lamp which had short and long

UV range selections. But now, we are using UV LED which had wavelength peak at

310nm (i.e., λ1 = 310nm) due to power and other optical issues, whereas, λ2 is He-Ne

laser in both cases.

In Fig. 3.2, experimental setup of AMIL is shown. The only modifications in

this figure when compared to Fig. 3.1 are that the UV source is LED instead of

UV lamp and an extra optics (spatial filter) to alter the beam from the LED. We

even did some exposures using HeCd Laser as a replacement for the UV LED/UV

lamp not shown in either of the figures. To make the system very economical and

reliable, we started using UV LED. The only limitation of equipping UV LED is
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Figure 3.1: Schematic of AMIL approach

Figure 3.2: Recent AMIL experimental setup with piezo-controlled nanoprecision
stage controllable by LabVIEW

power constraints; intensity is only an order of a few µW/cm2 when compared to the

other two sources used in this research.

3.2 Layers in the Sample Stack

The sample on which AMIL exposures are done had a stack of four layers on top

of each starting with antireflection coating of ∼200nm to 1.5µm, thickness chosen is

based on the type of resist and its thickness through MATLAB simulations explained

in Chapter 2, positive resist; Shipley 1813 positive photo resist (thickness varies) is

the most common resist used in the sample preparation for the exposures discussed
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in this chapter, Poly Vinyl Alcohol (8-10nm) to prevent photochromic molecules from

diffusing into photo resist, i.e., it acts as a blocking layer in between photoresist and

photochromic molecules layer which can be easily removed with DI water either by

sonication or by just dipping it in the DI water for 30 seconds, photochromic molecule

Bithienylethene (BTE) in PMMA spun-coated such that the thickness is of ∼700nm.

A schematic of this kind of sample with all the stack of layers is shown in Fig. 3.3.

Other kinds of resists tested with AMIL include chemically amplified resist TDUR,

Negative resist - SU8 & AZnLOF 2020, etc. Different kinds of PVA ranging from

the one with different molecular weight to chemically amplified ones are used in the

process of getting rid off roughness, for better AMIL exposures. More details about

this can be found in section 3.4. We tried to replace the blocking layer (PVA) with

a few metals, such as Au, Cu, etc. But it turned out be difficult to get rid of metals

easily and also selection of material is limited because of exposing the resist while

depositing any other layer that can act as a blocking layer between the resist and

photochromic molecules.

3.3 Sample Preparation

All the layers in the sample used for AMIL are prepared by spun-coating at

different speeds on a spinner. Prior to spun-coating any of these layers, initially

each one of them is intensively calibrated in terms of thickness and roughness. We

even tried to replace PVA with some other layer and thermally evaporate BTE

Figure 3.3: Schematic of AMIL sample with all the layers in the stack
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onto the sample. But no significant improvement was observed with that and also

relatively less absorbance contrast with BTE from UV-Vis spectrum measurements,

so we continued with spun-coating instead of thermal evaporation. For the later

experiments discussed in this chapter, ARC is not included in the stack. Instead we

used a thicker resist. Some exposures are tried on the samples with very thin resist

also without ARC for the sake of lower exposure doses when compared to thicker

resist. Respective steps in preparing the most recent sample are mentioned in the

last subsections.

3.3.1 Antireflection Coating (ARC)

An antireflection coating is a type of optical coating applied to the surface of the

sample to reduce back reflection from the Silicon surface in our research. Apart from

this, people use this layer for many other applications.

Until recent exposures, Az Barli II 90 is spun-coated at 2000rpm onto Si thus

forming a ∼200nm of layer, acting as an antireflection layer. Later based on the

thickness requirement, the previous step is repeated 7-8 times on top of each other

by spun-coating the material at 1000rpm thus forming a film of ∼1.2µm. In the

most recent exposures the stack does not have the ARC layer, which is replaced with

thicker resist.

3.3.2 Photoresist

Photoresist is a type of light sensitive material upon exposure to light due to

absorption at UV and shorter wavelengths causing electronic transition[27]/carbon

double-bond chromophores[28]. It becomes more soluble in the portions where it is

exposed and remains insoluble in the areas where it is unexposed to UV with a solution

(photoresist developer). Photoresists can also be exposed by electron beams[29].

The primary aim of this project is the photoresist onto which a period pattern has

to be created. The most commonly used photoresist in AMIL is Shipley S1813.

Shipley S1813 is a positive photoresist, i.e., upon exposure to UV wavelength, the

material becomes soluble in the developer , or else it is insoluble. So, during the

AMIL exposures, portions down the optical apertures to BTE that are exposed to
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UV are washed away upon immersing the sample after the desired exposures in a

developer solution and those portions that are not beneath the apertures of BTE

are not exposed to UV because of the blocking nature of the absorbance modulation

layer to λ2, insoluble in developer solution, thus creating a periodic pattern due to

apertures created with Interferometry using the Absorbance Modulation technique.

Here the photoresist is spun-coated at different spin speeds based on the thickness

requirements, with a spinner and then prebaked to cure the photoresist. Before

prebake, photoresist still has much solvent. This prebake may be done in several

ways especially depending on the type of resist. In some cases, postbake (not to

be confused with postexposure bake that comes before development)[30], i.e., baking

at higher temperatures (usually 120-150◦C) will cross-link the resin polymer in the

photoresist, thus making the image more thermally stable, is performed, whereas

postexposure bake (PEB), which is baking after the exposure but before developing

the sample, may also be performed before the transferring the pattern onto Silicon.

Photoresist Shipley S1813 is diluted further in Thinner P to create films of only

few tens of nanometers. Different resist used in this project are Shipley S1813 positive

photoresist and its diluted forms, chemically amplified resist TDUR (by Tokyo Ohka

Kogyo Co., Ltd.), negative resists SU-8 series and AZ nLOF 2020.

Resist is spun-coated on top of ARC layer (if it is present)/Silicon substrate with

a spinner and then it is prebaked at 115◦C for 2 minutes. For thinner S1813 resist of

ratio 1:11, it is spun-coated with a spinner and then the sample is prebaked at 115◦C

for 15 minutes. The prebaking temperature of this particular resist with hotplate

should not exceed 120◦C.

3.3.3 Polyvinyl Alcohol (PVA)

Polyvinyl alcohol is a water-soluble synthetic polymer having excellent film form-

ing, emulsifying and adhesive properties. In this project, this PVA is used as a pro-

tective/blocking layer between the photoresist and photochromic molecules. Earlier

PVA of different molecular weights from Sigma-Aldrich mixed in DI water is used as

a blocking layer, but recently, in most of the exposures a chemically amplified PVA is

used. This PVA is spun-coated on spinner such that the thickness is ∼10nm. The sole
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purpose of this layer to protect the resist from the top layers, which means that the

layer thickness should be as minimal as possible such that there are minimal effects

due to contrast between the layers. At the same time it should be thick enough

to avoid diffusing molecules from the top layers. More about this is discussed in

section 3.4.

Chemically amplified PVA is spun-coated on top of the resist with a spinner by

filtering the solution with 0.45µm filter, glass syringe. Then it is baked on a hotplate

at 80◦C for 90sec. Earlier we tried doing desiccation and also overnight drying of the

layer before putting any layer on top of this.

3.3.4 Photochromic Molecules

Photochromic molecules switch reversibly between two stable isomers when irra-

diated with light. The diarylethene polymer is a photochromic molecule discussed in

Chapter 2 that can exist either as the colorless open form A, or as closed form B, which

has a dark blue color. When the bond at the center between the two rings is open, the

electrons of the two rings do not interact with each other much, creating two separate

resonant cavities and an absorption peak at shorter wavelength. When the bond is

close, the entire molecule forms a resonant cavity and creates another absorption peak

at longer wavelength. Similar functionality with BTE as well. UV-Vis measurements

that describe the absorbance of the photochormic molecules BTE and Diarylethene

polymer are described in Chapter 2.

Bithienylethene (BTE) in Poly(methyl methacrylate) (PMMA) 80%/60mg/ml is

spun-coated on top of PVA with a spinner by filtering the solution with 0.2µm filter,

glass syringe. It is observed that film quality becomes even better if it is thermally

annealed. Then, after spun-coating the BTE, the sample is baked in an oven at 110◦C

for 1 hour. For the initial exposures, we did not do the thermal annealing step of

BTE, which might be the reason behind the initial roughness observed on photoresist

with AMIL exposures. Similarly, Diarylethene polymer 8.55mg/ml of Chloroform

is spun-coated on top of PVA with a spinner. Even these samples are thermally

annealed before using them for AMIL exposures.
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3.4 PVA Roughness Analysis

As discussed earlier in this chapter, the sole purpose of the PVA layer is to protect

the resist from its top layers. In this case it is a spun-coated photochromic layer. PVAs

of a different molecular weight and also of different concentrations are tried to form a

thin protective layer. From Fig. 3.4, it is evident that even though spun-coating PVA

(high molecular weight: 12500)of different concentrations is not forming a uniform

film in most cases. This could be a strong reason behind the roughness seen on the

photoresist with AMIL exposures that used PVA of lesser concentration/thin layer

thickness, because if PVA layer formed upon spun-coating is not uniform, holes in the

layer mean that it is not completely protecting the resist from photochromic molecules

which attack the resist badly through those gaps.

In Fig. 3.4, (a) and (b) correspond to PVA of concentration 0.4g/100ml which

is spun-coated onto a sample with a spinner at 1000rpm and then the sample is

left for an overnight dry / dessicated the sample, respectively. Fig. 3.4 (c) and (d)

correspond to concentration 1g/100ml and spun-coated at 6000rpm, then overnight

dried / dessicated, respectively. Fig. 3.4 (e) and (f) correspond to the same concen-

tration 1g/100ml but this time it is spun-coated at 2000rpm, then overnight dried /

dessicated, respectively. Fig. 3.4 (g) and (h) correspond to concentration 2g/100ml

and spun-coated at 6000rpm, then overnight dried / dessicated, respectively. Fig. 3.4

(i) and (j) correspond to the same concentration 2g/100ml but are spun-coated at

2000rpm, then overnight dried / dessicated, respectively.

From the analysis, it is found that only one blocking layer, which is formed by

PVA (molecular weight: 12500), of concentration 2g/100ml and then spun-coated at

2000rpm, is forming a uniform layer or layer without any openings. Thus for all the

AMIL exposures after this analysis, the PVA layer is formed by spun-coating the

material with these specifications, i.e., PVA of concentration 2g/100ml, spin-coating

at 2000rpm. Using the same concentrated PVA, the solution can be spun-coated

at even lower RPM to form a thicker film. But the PVA layer should be as thin as

possible because of the contrast issue between the photoresist layer and photochromic

molecules layer. Then the significant improvement in the exposure grating is observed.
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Later we started using chemically amplified PVA, to form a layer of 10nm and also

moreover it is uniform at this thickness and does not have any holes.

Since PVA is water-soluble, both the layers PVA and BTE/Diarylethene polymer

are easily removed by doing sonication in DI water. If it is not water soluble, the top

layer (BTE/Diarylethene polymer) has to be removed separately with its respective

solvent and then PVA. Since PVA has a glass transition temperature at 80◦C, the

sample after putting PVA by spun-coating is baked at this temperature and for

doing thermal annealing of BTE/Polymer, the sample is baked in an oven at higher

temperature, say 110◦C, instead of a hot plate, whereas glass transition temperature

of PMMA, which is a solvent for BTE, is 95-106◦C.

3.5 Experimental Results

AMIL experiments and results are discussed in this section. All the results are

categorized under two subsections, one set having BTE as Absorbance Modulation

Layer (AML) and the other having Diarylethene polymer as AML. Thickness of the

antireflection coating, photoresist and PVA are varied from sample to sample in most

cases. Limitations are due to exposure dose, experimental setup, etc.

3.5.1 BTE as Absorbance Modulation Layer

In this subsection, all the samples had BTE as an AML in the stack. Thus,

the stack is a composition of ARC, photoresist (Shipley S1813/chemically amplified

resist; TDUR), PVA and BTE. In Fig. 3.5, (a) and (b) correspond to Shipley S1813

resist of thickness ∼1.2µm, Source wavelengths, λ1 = 325nm and λ2 = 633nm.

Intensity of λ2 is 4.98mW/cm2 and of λ1 is 462.96µW/cm2, whereas doses are 70

and 255 minutes, respectively. Fig. 3.5 (c) and (d) also correspond to S1813 resist

but of thickness ∼1.2µm. Now λ1 = 310nm and λ2 = 633nm. Intensity of λ1 is

4.815µW/cm2, of λ2 is 2.9mW/cm2. Doses of these two exposures are 290 and 180

minutes, respectively. Finally, Fig. 3.5 (e) and (f) correspond to chemically amplified

resist TDUR of thickness 100nm. Again, λ1 = 325nm and λ2 = 633nm with intensities

of λ1 is 0.37µW/cm2, of λ2 is 4.94mW/cm2. So, now doses are 25 and 124 minutes,

respectively.
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Even though grating is observed, it is not significant in terms of exceeding the

diffraction limit/capable of doing multiple exposures. In an attempt to decrease

linewidth of the periodic grating, grating became even worse. The primary reason

behind this is the PVA layer, which is not actually protecting the resist. The PVA

layer and its violation of functionality is discussed in Section. 3.4.

SEM images of AMIL exposures with thin resist (Shipley S1813 positive pho-

toresist of thickness ∼70nm) in the stack are shown in Figs. 3.6 (a) and (b). For

both the exposures, λ1 = 310nm and λ2 = 633nm and their respective intensities

are 25.06µW/cm2 and 7.04mW/cm2 are the same. But doses are 21 hours and 7

hours, respectively. Grating seen here is very shallow of only a few nanometres when

compared to thick resist samples.

More AFM images of recent AMIL exposures are shown in Fig. 3.7. This time

along with thicker resist, we tried exposures without ARC in the stack and also did

exposures with very thin resist by going all the way down to 30nm by thinning Shipley

Figure 3.6: SEM images of AMIL exposures (thin resist = 70nm) with BTE as AML
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Figure 3.7: More AFM images of AMIL exposures with BTE as AML

S1813 in the ratio of 1 : 11 in Thinner P and then spun-coated at very high rpm on

a spinner. Even the exposures with thinner resist (30nm), stack does not have ARC,

but to improve adhesion, HMDS is spun-coated before putting resist in the stack.

Moreover, thermal annealing of BTE is done on all these samples which might be the

reason for seeing repetitive reasonably good grating with thick/thinner resist.

In Fig. 3.7, (a) and (c) correspond to AMIL exposures of samples with thicker

resist (Shipley S1813 of thickness 1.58µm), whereas (b) and (d) correspond to AMIL

exposures of samples with thinner resist (30nm). Moreover, both PVA and BTE layers



48

are thermally annealed by heating the sample on a hotplate at 80◦C for 90 seconds

and then in an oven at 110◦C for 1 hour, respectively. Significant betterment in

exposure roughness is seen after including this thermal annealing step in the sample

preparation procedure. Thus, this could be one of the possible solutions for the

comparative roughness seen earlier.

The purpose of preferring thin resist samples is that narrow linewidth is possible

and also exposure doses are very much less for the thinner resist samples compared to

thicker resist samples, which means lot of time is saved by adopting the thinner resist

even though aspect ratio of the grating is good for the thicker resist samples. To even

enhance the exposure dose (decrease), chemically amplified resist can be used, but it

goes bad very soon when compared to other resist samples.

3.5.2 Diarylethene Polymer as Absorbance Modulation Layer

In this subsection, for all the AMIL exposures, samples used had Diarylethene

polymer as an absorbance modulation layer(AML) in the stack of layers instead of

BTE. More about this polymer including funtionality, absorbance curves through

UV-Vis measurements, etc are discussed in Chapter 2.

AMIl exposures corresponding to thicker resist(undiluted Shipley S1813 positive

photoresist of thickness 1.58µm) samples with Diarylethene polymer as AML in the

stack are shown in Fig. 3.8. Among these AFM images, (a) and (b) correspond to

the same exposure dose (2 hours 40 minutes), and the same source wavelengths, λ1

= 310nm and λ2 = 633nm. Intensity of λ2 is 2.42mW/cm2 and of λ1 is 8.27µW/cm2.

The only difference is they are developed in diluted TMAH (developer solution) for 5

and 10 seconds, respectively. Fig. 3.8 (c) and (d) also correspond to similar exposures

explained earlier with wavelength sources λ1 = 310nm and λ2 = 633nm of same

intensity 2.90mW/cm2. But intensity of λ1 are 4.815µW/cm2 and 0.3086µW/cm2,

respectively. Since ratios are way different, correspondingly doses of these two expo-

sures are 290 and 2390 minutes, respectively.

From Fig. 3.8, it is evident that with a small change in developer time we saw

change in linewidth, which means that a lot of calibration is needed for the precise

development time, exposure dose visible in (a) and (b). The same concept without
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Figure 3.8: AFM images of AMIL exposures with Diarylethene polymer as AML

changing setup, development time, change in linewidth w.r.t change in exposure dose

can be observed in subsection. 3.5.3. From (c) and (d) it is evident that linewidth

is primarily based on source wavelengths intensity ratio and exposure dose but

not on the wavelengths of the source.

Moreover, with these photochromic molecules we were also able to see grating

under certain exposure doses and source intensity ratios. By the time we attempted
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to try it on thinner resist(30nm) samples, we were short of this polymer, so exposures

on thinner resist are only with BTE.

3.5.3 Linewidth vs. Dose

One of the AMIL exposures performed on the sample with diarylethene polymer

is extended further to see the change in linewidth w.r.t exposure dose, provided

remaining parameters are constant among these exposures, shown in Fig. 3.9. Layers

in the stack of the sample used for this exposure are ARC (1.25µm), Shipley S1813

photoresist (1.58µm), pva (10nm) and Diarylethene polymer (400nm). Intensities

of λ1 and λ2 are 0.27µW/cm2 and 2.9mW/cm2, respectively. Figs.(a)-(f) in 3.10

correspond to AFM images of exposures whose doses are in a descending order and

also of the linewidth is observed.

Figure 3.9: Graph corresponds to line width versus single AMIL exposure dose
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Graphical representation of linewidth of the grating versus exposure dose is shown

in Fig. 3.9. Exposure time is reported along the x-axis, and linewidth along the

y-axis. From the graph, linewidth varies linearly with the exposure dose. Linewidth

measurements corresponding to exposure doses are tabulated in Table. 3.1.

Table 3.1: Linewidth vs. exposure time of a single AMIL exposure.

Exposure Exposure time(minutes) Linewidth(nm)

1 4103 350
2 2390 300
3 1785 280
4 1650 275
5 1521 270
6 1475 267.5



CHAPTER 4

CONCLUSIONS

The complexity of today’s VLSI designs demands vast improvements in lithog-

raphy as well. Significant improvements in lithography are also a major factor in

driving Moore’s Law so far. Lithography using mask is hindered by many factors

in attempting to attain smaller resolutions in nanoscale. In this regard, maskless

lithography is gaining a lot of importance especially to meet the industrial demand.

Even though huge research is going on, no cost effective maskless lithography replaced

Scanning Electron-Beam Lithography(SEBL), Focused Ion Beam (FIB), etc. The

proposed research is an attempt to enhance the current ways of patterning that can

be used for large scale production especially in terms of cost perspective which is a

major concern in the current economy. The proposed research is expected to make

significant contributions in the semiconductor industry.

4.1 Summary

This thesis presents a novel optical lithography technique that has the ability to

overcome the diffraction limit. From the results, discussed in Chapter 3, it is evident

that it can create the pattern exceeding the Abbe’s diffraction limit.

This research is a simple technique when compared to conventional Scanning

Electron-Beam Lithography(SEBL) or Focused Ion Beam (FIB), which are very com-

plex systems, and also attaining parallelism is extremely challenging. Moreover, this

AMIL is an easy means to create periodic pattern. With increasing the intensities of

both the wavelength sources, exposures are much faster. Hence four major contribu-

tions of this study are:

• Effective approach for creating miniature patterns exceeding the diffraction

barrier.
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• Minimal placement errors when compared to most of the other maskless lithog-

raphy techniques that are based on charged particles.

• Simple and cost effective system when compared to conventional SEBL or FIB

• A fast way to create miniature pattern over the large area

4.2 Future Work

This research is an alternative to create the miniature periodic pattern over a

large area which is almost impossible with many other maskless lithography methods.

Problems associated with this technique are discussed in Chapter 3 but still there is a

significant scope for research in this area. The major research directions in this area

are :

• New setup with high power sources.

• Other photochromic molecules that have even better absorbance contrast.

• Use of chemically amplified resist.

• More multiple exposures.

• AML that does not affect the resist.

• Pattern transfer

4.2.1 New Setup with High Power Sources

Even though this technique is described as a faster way to create miniature pattern,

but actually during the research, it takes several hours sometimes days to do just a

single exposure due to the fact that we need higher intensity ratio of λ2 and λ1 for

smaller line widths. Since we are limited by intensity of λ2, we are forced to reduce

the λ1 intensity such that ratio of intensities is still high. Eventually because of low

λ1, the resist is taking a very long time to expose. To avoid this we have to increase

the intensity of λ2 such that even with increasing intensity of λ1, we can still achieve

a very high ratio, and because the λ1 intensity is high, resist is exposed much faster

and hence at a lesser exposure dose.
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4.2.2 Other Photochromic Molecules that Have Even Better

Absorbance Contrast

It is unquestionable that BTE or Diarylethene polymer (photochromic molecules)

is the primary layer that is responsible for this absorbance modulation. In future, any

photochromic molecules that have even better contrast in UV and Red will lead to

even better grating, because the higher the absorbance contrast the better the layer

acts as an ideal mask in the portions where it is supposed to be. Hence features are

infinitely better even on thin resist.

4.2.3 Use of Chemically Amplified Resist

Another alternative to improve the expose dose (minimal) of this AMIL technique

is to use a chemically amplified resist. A few exposures discussed in Chapter 3 are

based on chemically amplified resist (TDUR). These exposures are much faster when

compared to ones exposed with ordinary Shipley s1813 resist. The only problem

associated with these resists is that they easily go bad or get contaminated upon

exposure to air for a long time, thus making them not appropriate to use everywhere.

4.2.4 More Multiple Exposures

Due to limitations caused by the nanopositioning peizo-controlled stage, precise

control over the stage movement has been a problem, ending up with a trial and

error concept in moving the stage manually and then determining the displacement

from the results. Based on the photochromic molecule, for a certain amount of time

the sample is exposed to only λ2 until molecules are converted back to original form.

More than two exposures can be demonstrated.

4.2.5 AML that Does Not Affect the Resist

The purpose of the PVA layer to is to block or protect the resist layer from the top

which is photochromic molecules in our case. If the AML is not attacking the resist,

then the PVA layer can be excluded in the stack. This can be done by choosing

a solvent to mix the photochromic molecules. For instance, Diarylethene polymer

mixed in chloroform will attack the resist if it is spun coated on top of the resist. If
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Diarylethene polymer is mixed in toluene and then spun coated, it will not attack the

resist because toluene does not affect the resist.

4.2.6 Pattern Transfer

The ultimate goal behind patterning the resist is to transfer the pattern onto

the underlying layer of photoresist, which in this research would be Silicon. Once

pattern is created using AMIL, it can be easily transferred to the underlying layer

(Silicon) using conventional etching techniques which are not yet limited by the

current nanoscale requirements. Outline of the pattern transfer onto Silicon substrate

is shown in Fig. 4.1
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