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ABSTRACT 
 
 

The brain’s medial entorhinal cortex (MEC) plays a key role in spatial 

navigation, serving as the node between the hippocampus and the rest of the 

mammalian cortex.  In the last 10 years, spatially-modulated “grid” cells in the 

superficial MEC have been shown to preferentially fire as the animal moves into 

the apices of a hexagonal grid.  Our incomplete understanding of the inhibitory 

dynamics within the MEC, however, limits our knowledge of how this brain 

structure executes such spatial navigation functions.  Here, we explore various 

roles that inhibition plays in the superficial MEC and characterize the neuronal 

population that elicits this inhibition.  We find that excitatory stellate cells in the 

layer 2 MEC exhibit membrane-dependent, nonlinear synaptic integration of 

inhibitory inputs, amplifying inputs that arrive near their firing threshold and 

dampening those that arrive closer to rest.  Our next study is the first systematic 

anatomical/electrophysiological characterization of the superficial MEC’s 

inhibitory interneuron population.  We find that they are best classified into four 

clusters with distinct anatomical/electrophysiological profiles.  In our last study, 

we investigated the viability of a novel, inhibition-mediated gamma rhythm model, 

finding that superficial MEC interneurons can exhibit resonant behaviors that 

could be key to generating neuronal network oscillations.  The work presented 

here provides valuable groundwork for understanding MEC cortical computation. 
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CHAPTER 1 
 
 

INTRODUCTION 
 

 
Medial entorhinal cortex 

The medial entorhinal cortex (MEC) is the main cortical interface of the 

hippocampal formation (Burwell, 2006; Squire et al., 2004) and plays an 

important role in spatial navigation (Moser et al., 2008).  Recently, in vivo 

extracellular single unit recordings have identified multiple functional cell types 

linked to spatial navigation in the MEC.   Among these are grid cells, which fire 

preferentially when the animal is on the apices of a hexagonal lattice (Hafting et 

al., 2005); boundary cells that fire preferentially along the borders of an 

environment (Solstad et al., 2008); head direction cells that fire preferentially 

according to the orientation of the animal’s head (Sargolini, 2006); and 

conjunctive cells which show some combination of the previous behavioral 

correlates (Sargolini, 2006).  The presence of these behaviorally-linked cell types 

has made the MEC cortical circuitry an attractive target for anatomical and 

physiological study.   

Like any cortical structure, the MEC is composed of two basic neuronal 

populations: a relatively homogeneous excitatory, glutamatergic principal cell 

population that projects to other brain regions; and a heterogeneous inhibitory, 

GABAergic interneuron population that modulates local activity (McBain and 
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Fisahn, 2001).  The two main types of principal cells are star-shaped stellate 

cells predominant in the superficial layers and conically-shaped pyramidal cells 

present throughout the MEC (Canto and Witter, 2012).  GABAergic interneurons, 

in turn, are an anatomically and physiologically diverse population that represent 

a minority (<20%) of the neurons in the MEC (Canto et al., 2008; Gatome et al., 

2010).  

MEC connectivity varies by layer.  Principal neurons in the superficial layers 

of the MEC project to the dentate gyrus via the perforant path, providing the main 

excitatory cortical input to the hippocampal formation; neurons in the deeper 

layers receive direct input from hippocampus and serve as one of the 

hippocampus major outputs (Canto et al., 2008).  As with its connective 

differences, the MEC has functional differentiation between the cell layers. Grid 

cells are primarily located in layer 2 of the MEC (Hafting et al., 2005), where 

stellate cells are the major principal cells, whereas the other functional cell types 

are present either throughout the entire MEC (boundary cells) or particularly 

located in layers 3 and 5 (head direction and conjunctive cells) (Sargolini, 2006; 

Solstad et al., 2008; Taube and Muller, 1998), where the majority of principal 

cells are the more ubiquitous pyramidal cells. 
 
 

Neural oscillations in the medial entorhinal cortex: theta and gamma 

Local field potential recordings have long revealed the presence of narrow-

band, behavior-dependent oscillations in the mammalian cortex (Buzsáki, 2006).  

The exact mechanism of generation and the physiological function of these 

oscillations remains an area of active research.  The oscillations are known to 
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represent periodic activity in neurons close to the recording site, and have 

generally been classified into distinct frequency bands (Buzsáki, 2006).  The 

work in this dissertation encompasses work on two such bands: the slow theta 

(4-12 Hz) oscillation and fast gamma (30-100 Hz) oscillation.  

Like much of the hippocampal formation, the MEC exhibits a prominent 

extracellular electrical signal in the 4-12 Hz theta band (McNaughton et al., 2006; 

Witter and Moser, 2006).  Brain functions such as memory formation, synaptic 

plasticity, and spatial navigation have been posited to be dependent on the theta 

oscillation for temporal coordination (Bland and Bland, 1986; Buzsáki, 2002; 

Huerta and Lisman, 1995).  In the superficial MEC, the theta rhythm has been 

posited to play a role in grid cell firing (Brandon et al., 2011; Giocomo et al., 

2007; Hafting et al., 2005; Koenig et al., 2011), although there is evidence that 

questions the importance of the theta rhythm to grid field generation (Couey et 

al., 2013; Domnisoru et al., 2013; Pastoll et al., 2013; Schmidt-Hieber and 

Häusser, 2013; Stensola et al., 2012; Yartsev and Ulanovsky, 2013).  

Intracellularly, stellate cells exhibit synaptically-driven membrane potential theta 

oscillations in vivo near threshold, and show pronounced ramp depolarizations 

when in their respective grid fields (Domnisoru et al., 2013; Schmidt-Hieber and 

Häusser, 2013).  These phenomena suggest the functional relevance of stellate 

cell membrane potential fluctuations. 

Another prominent cortical rhythm is the faster 30-100 Hz gamma band 

oscillation observed in the MEC (Chrobak and Buzsáki, 1998).   Gamma 

oscillations have been often posited to play a crucial role in multisensory 
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integration, wherein different sensory inputs are “bound” together to form a 

unified percept (Singer, 2006).  More generally, they are believed to help mediate 

communication between separate cortical regions: gamma-entrained neuronal 

ensembles in one cortical region may preferentially communicate with phase-

specific gamma-entrained neural ensembles in another cortical region (Wang, 

2010).   Cortical gamma rhythms may also play a crucial role in memory 

formation and attention (Jensen and Colgin, 2007).  In the MEC, gamma has 

been theorized to both coordinate activity with the hippocampus in a task-specific 

manner via its reciprocal input/output connections and combine the inputs it 

receives from various cortical areas (Chrobak and Buzsáki, 1998; Quilichini et al., 

2010; Schomburg et al., 2014).  The mechanism by which these gamma 

oscillations are generated in the MEC are not well understood, and the 

physiological validation of a proposed gamma rhythmogenesis model is the focus  

of Chapter 4 of this dissertation. 
 
 

Membrane dynamics and synaptic integration in stellate cells 

In vitro intracellular experiments in stellate have described a prominent 

(approximately 5 mV peak-to-peak) intrinsic membrane potential oscillation 

(MPO) as cell is depolarized toward threshold (Alonso and Llinás, 1989; Burton 

et al., 2008; Dickson et al., 1997; Dorval, 2005; White et al., 1998).  This MPO is 

due to the interplay between the persistent sodium current, INaP, and the 

hyperpolarization-activated cation current, Ih (Alonso and García-Austt, 1987; 

Alonso and Klink, 1993; Dickson et al., 2000; White et al., 1998).  Basically, as 

the membrane potential is depolarized, the inward current Ih is slowly deactivated 
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and the membrane potential is hyperpolarized.  As the deactivation of Ih is slow 

(on the order of 200-300 ms near threshold), it creates a delayed feedback 

mechanism that enables sustained oscillations (Dickson et al., 2000).  Although 

Ih alone can produce oscillatory behavior, the effect is amplified by the 

depolarization-activated opening of persistent sodium channels.   

Along with producing subthreshold MPOs, INaP and Ih have a nonlinear effect 

on the impedance spectra of stellate cells.  This can affect how these cells 

integrate inhibitory and excitatory synaptic inputs, a phenomenon which is 

investigated in the second chapter of this dissertation.  First, the combination of 

these currents produces a resonant peak in the impedance spectrum of stellate 

cells at near-threshold potentials (Burton et al., 2008; Erchova et al., 2004; 

Fernandez and White, 2008; Garden et al., 2008; Haas and White, 2002; Nolan 

et al., 2007).  Second, INaP endows stellate cells with a depolarization-induced 

increase in membrane impedance, an effect referred to as a negative slope 

conductance (Stafstrom et al., 1982).  Blocking INaP with TTX eliminates this 

effect.  Given the behavioral context of the large (>10 mV) membrane potential 

fluctuations stellate cells undergo in vivo, any significant change in synaptic 

integration due to this impedance increase could have functional consequences 

in physiological stellate cell dynamics.  Furthermore, since interneurons 

specifically make up a large number of the synaptic inputs onto hippocampal 

neuronal somata (Freund and Buzsáki, 1996) and are known to fire 

synchronously (Quilichini et al., 2010) in the MEC, it is likely that effects on 

synaptic integration of inhibitory inputs in stellate cells is particularly relevant to in  
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vivo dynamics.  
 
 

Interneuron form and function in the superficial MEC 

Although much effort has been focused on understanding the properties of 

the MEC’s principal cells, there remains a paucity of electrophysiological data on 

the GABAergic interneurons that modulate principal cell activity in the superficial 

MEC.   Recent evidence, however, suggests that GABAergic interneurons play 

an important role in the spatial navigation functions of the MEC (Couey et al., 

2013; Domnisoru et al., 2013; Garden et al., 2008; Pastoll et al., 2013; Varga et 

al., 2010).  Layer 2 stellate cells, which along with superficial layer pyramidal 

cells are the putative grid cells measured in vivo, show very sparse to no 

interconnectivity; instead stellate-to-stellate is mediated via inhibitory 

interneurons in the superficial MEC (Couey et al., 2013).  Inhibitory synaptic 

activity onto principal cells is also known to be much higher in superficial layers 

of the MEC than in the deeper layers: Woodhall et al. (2005) found that 

spontaneous inhibitory postsynaptic currents were approximately four times 

higher in frequency in layers 2 and 3 compared to layers 5 and 6.  Computational 

modeling of grid field formation in the MEC has recently transitioned toward more 

inhibition-dominated network models to accommodate these findings (Burak and 

Fiete, 2009; Thurley et al., 2013).  Finally, (Pastoll et al., 2013) showed that 

feedback inhibition without recurrent excitation was sufficient to produce theta-

nested gamma (30-100 Hz) oscillations in stellate cells within optically stimulated 

MEC acute brain slices.  These theta-nested gamma oscillations are believed to 

be important in coordinating interactions between MEC and hippocampus. 
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Despite the important role that interneurons play in the superficial MEC, 

studying this neuronal cell population remains difficult for two reasons.  First, 

interneurons amount to less than 10% of neuronal cell bodies in the superficial 

MEC (Gatome et al., 2010), making targeted studies difficult.  Second, as in other 

cortical regions, the population of interneurons in the superficial MEC interneuron 

population is quite diverse (Ascoli et al., 2008; Buzsáki et al., 2004; Maccaferri 

and Lacaille, 2003; McBain and Fisahn, 2001; Whittington and Traub, 2003).  

Whereas MEC principal cells are usually categorized as either stellate or 

pyramidal (with some efforts to further subdivide pyramidal cells), cortical 

interneurons can be subdivided into as little as 3 types to as many as 100 

(DeFelipe et al., 2013). This “interneuron diversity problem” is compounded as 

interneurons can be categorized by their anatomical, molecular or physiological 

characteristics.  Using only a single categorization scheme fails to completely 

capture the functional diversity of interneurons, so two or three categories must 

be examined concurrently to adequately characterize interneurons.  Although 

there has not been a systematic study of the electrophysiological properties of 

superficial MEC interneurons (nor one linking these properties to anatomical 

classifications), there have been anatomical studies describing some basic 

morphologies for superficial MEC interneurons (Canto et al., 2008).  These 

studies have classified interneurons into layer 1 horizontal neurons, layer 1/2/3 

multipolar neurons, layer 2 horizontal bipolar cells, layer 2 fan cells, layer 2 

basket cells (forming an axonal “basket” at targeted somas), layer 2 chandelier 

cells (forming candle-shaped axonal projections onto principal axons), layer 3 
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pyramidal-like interneurons, and layer 3 bipolar cells. It is likely that these 

different anatomical types have different functions within the cortical circuit 

(Kepecs and Fishell, 2014). 

Despite the anatomical categorization of MEC interneurons, the 

combination of low cell counts and functional diversity has made systematic 

electrophysiological studies difficult.  Limited data are available on the firing 

pattern of basket cells and chandelier cells, both of which have been generally 

lumped together using their common molecular identifier parvalbumin 

(Wouterlood et al., 1995), but these data do not include passive membrane 

features, basic input/output measures or action potential characterization.  

Furthermore, the electrophysiological properties of remaining cell types in the 

superficial MEC are largely unknown (Gloveli et al., 1997; Wolansky et al., 2007).  

Finally, what limited data are available does not take into account the localization 

of these neurons within the MEC dorsoventral axis, which as previously 

described has been shown to exhibit a gradient in inhibitory activity as well as 

principal cell physiology and grid field spacing. 
 
 

Inhibition-mediated gamma oscillations in the MEC 

Like other cortical regions, the medial entorhinal cortex exhibits robust 

rhythmic activity in the 30-100 Hz gamma band (Chrobak and Buzsáki, 1998).  

Cortical oscillations are believed to coordinate spike timing of different neuronal 

populations and may synchronize activity across different brain regions (Wang, 

2010).  In the cortex, gamma rhythms have been implicated in memory 

formation, attention (Jensen and Colgin, 2007), and, most commonly, sensory 
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binding (Singer, 2006); in the MEC in particular, gamma is theorized to 

coordinate activity with the hippocampus in a task-specific manner and associate 

inputs from various cortical areas (Chrobak and Buzsáki, 1998; Quilichini et al., 

2010; Schomburg et al., 2014). 

Multiple mechanisms for gamma rhythmogenesis have been described, 

invariably relying on fast GABA-mediated inhibition to pace synchrony (Buzsáki 

and Wang, 2012).  Two basic connectivity models have been proposed: the first 

describes a minimal, mutually inhibitory network (comprised of interneurons) that 

is sufficient to produce gamma synchronization (I-I models), while the second 

describes an excitatory-inhibitory feedback loop that requires both excitatory 

principal cells and interneurons to create gamma synchrony (E-I models).  

Experimental evidence has been presented for both I-I models and E-I models 

(Csicsvari et al., 2003; Whittington et al., 1995), and it is likely that several 

gamma generation mechanisms operate in the MEC in vivo (Cunningham, 2004, 

2006; Cunningham et al., 2003; Middleton et al., 2008). 

Work specific to the MEC has shown that MEC gamma oscillations arise 

independently in layers 2, 3, and 5, with the strongest gamma rhythm being 

present in layer 2 (Quilichini et al., 2010).  Superficial MEC low-mid gamma 

oscillations in particular are thought to coordinate activity between the MEC and 

hippocampus (Schomburg et al., 2014), possibly allowing MEC input to 

preferentially arrive during the most excitable phases of the hippocampal gamma 

cycle.  These mechanisms, however, require operational uniformity in gamma 

frequencies within each region, a feature that has been difficult to achieve in 
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models with heterogeneous input. 

Recent gamma rhythmogenesis models have attempted to address this 

issue by constructing stochastic synchrony models wherein neurons are in a 

fluctuation-driven regime and firing probability is dictated by delayed feedback 

(Brunel, 2003).  These models are more amenable to heterogeneous inputs and 

more closely replicate the physiological sparseness of firing in individual neurons.  

Although these models have generally treated interneurons as simple integrators, 

recent studies have shown that modeling interneurons as resonators can further 

facilitate frequency uniformity in brain regions in these network types (Baroni et 

al., 2014; Moca et al., 2014).  

Along this paradigm, a sparsely connected I-I model of gamma 

rhythmogenesis has been proposed (Tikidji-Hamburyan and Canavier, 

unpublished results) that relies on postinhibitory rebound (PIR) spiking to elicit 

gamma oscillations in the network.  This model constructs a sparsely connected 

network comprised of type 2 spiking resonator model neurons (Izhikevich, 2003).   

The bias current depolarizes interneurons toward threshold to reach a resonant 

firing regime, where they fire intermittently.  Once a neuron fires, it inhibits other 

neurons that are similarly in the resonant firing regime.  These inputs could then 

elicit a postinhibitory rebound spike in the target cell.  As interneurons cause 

other interneurons to fire, the network becomes synchronized to a network period 

approximately equal to the input-to-spike delay.  The model is robust to noise, 

being able to maintain a stable network frequency despite the interneurons 

receiving noisy inputs from both outside sources and other interneurons.  
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In this regime, the frequency of the network oscillation is directly linked to 

the postsynaptic potential-to-spike latency in inhibitory neurons; as such a delay 

of 10-33 ms would be necessary to account for a 30-100 Hz gamma oscillation in 

the network.  Although there is some limited evidence showing that interneuronal 

PIR spiking may occur in vivo in the MEC (Kumar and Buckmaster, 2006), there 

are no data on intrinsic properties of MEC interneurons whereby they exhibit PIR 

spiking in response to synaptic inputs.  Also, although there is significant 

evidence supporting the role of fast-spiking basket cells in gamma 

rhythmogenesis (Cardin et al., 2009), our understanding of the role other  

interneuron populations may play in gamma is limited (Buzsáki and Wang, 2012). 
 
 

Inhibitory dynamics in the medial entorhinal cortex 

The common focus of the work presented in this dissertation is to better 

understand various aspects of the inhibitory dynamics in the superficial medial 

entorhinal cortex.  In Chapter 2, we describe a synaptic integration effect in the 

superficial MEC’s stellate cells, whereby membrane potential is observed to 

amplify/attenuate the amplitude of synaptic inputs.  The findings in this chapter 

describe an integrative phenomenon that preferentially affects the integration of 

inhibitory synaptic inputs, which synapse directly onto the stellate cell somas 

(Freund and Buzsáki, 1996; Hu et al., 2010; Jarsky et al., 2005).  Chapter 3 

covers the electrophysiological/anatomical characterization and clustering of 

interneuronal populations in the superficial MEC, the first systematic study on the 

inhibitory components of this cortical circuit.  Chapter 4 covers the physiological 

validation of an inhibition-mediated gamma rhythmogenesis model, an important 
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role of inhibitory neurons in the superficial MEC.   In the final chapter, the findings 

of this dissertation are summarized and future directions that arise from the work 

presented here are explored.



 

 

 

 
CHAPTER 2 

 
 

MEMBRANE POTENTIAL-DEPENDENT INTEGRATION  

OF SYNAPTIC INPUTS IN ENTORHINAL 

STELLATE NEURONS 
 
 

Introduction 

The 4-12 Hz theta rhythm is the dominant electrical signal recorded 

extracellularly in the rodent hippocampal formation during a variety of behavioral 

states (Buzsáki, 2002; Kramis et al., 1975; Mitchell and Ranck, 1980; 

Vanderwolf, 1969) and has been observed concurrently in the medial septum, 

nucleus accumbens, amygdala, prefrontal cortex, and many parts of the olfactory 

system (Bland and Oddie, 2001; Seidenbecher et al., 2003; Siapas et al., 2005).  

Brain functions as diverse as memory formation, synaptic plasticity, spatial 

navigation, and sensorimotor integration have been suggested to be reliant upon 

the theta rhythm for temporal coordination (Bland and Oddie, 2001; Buzsáki, 

2002; Huerta and Lisman, 1993; Lisman, 2010).  Additionally, the theta rhythm 

has been hypothesized to play a critical role in the formation of the grid-like 

spatial firing patterns of neurons in the superficial entorhinal cortex (Brandon et 

al., 2011; Giocomo et al., 2007; Hafting et al., 2005; Koenig et al., 2011),  

 
Adapted from Economo, M. N.*, Martínez, J. J.* and White, J. A. (2014), Membrane potential-
dependent integration of synaptic inputs in entorhinal stellate neurons. Hippocampus, 24: 1493–
1505. doi: 10.1002/hipo.22329.  Reprinted with permission from John Wiley and Sons, Inc. 
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although recent evidence points to other models (Couey et al., 2013; Domnisoru 

et al., 2013; Harvey et al., 2009; Pastoll et al., 2013; Remme et al., 2010; 

Schmidt-Hieber and Häusser, 2013; Stensola et al., 2012; Yartsev et al., 2011).  

Several factors have been suggested to contribute to the hippocampal theta 

rhythm, including cellular and synaptic properties within the hippocampus and 

medial entorhinal cortex (Alonso and Llinás, 1989; Gillies et al., 2002; Gloveli et 

al., 2005a, 2005b; Goldin et al., 2007; Goutagny et al., 2008; Haas et al., 2007; 

Heys et al., 2013; Pastoll et al., 2012; Tort et al., 2007; White et al., 2000) and 

unidirectional or bidirectional interactions of these structures with the medial 

septum (Bland and Bland, 1986; Freund and Antal, 1988; Hangya et al., 2009; 

Manseau et al., 2008; Stewart and Fox, 1990; Wang, 2002). 

Stellate neurons of the medial entorhinal cortex (MEC) layer II exhibit 

pronounced narrow-band, though non-periodic, membrane potential oscillations 

(MPOs) in the theta band.  In vitro, MPOs occur spontaneously through an 

interplay of intrinsic ionic currents near spike threshold (Alonso and Llinás, 1989; 

Burton et al., 2008; Dickson et al., 2000; Dorval and White, 2005; Pastoll et al., 

2012; White et al., 1998) and typically have a peak-to-peak amplitude of 1-5 mV.  

Furthermore, stellate neurons exhibit a resonant peak in the subthreshold 

membrane impedance spectrum at theta frequencies (Burton et al., 2008; 

Erchova et al., 2004; Fernandez and White, 2008; Garden et al., 2008; Haas and 

White, 2002; Nolan et al., 2007), indicating that synaptic inputs modulated at 

theta frequencies may be preferentially amplified.  While this effect is present in 

stellate cells in vitro, these intrinsic MPOs are not observed in vivo either at rest, 
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where synaptic input may be dampening such oscillations, or during movement, 

where theta oscillations are synaptically driven (Schmidt-Hieber and Häusser, 

2013).  During movement in vivo, ~10 mV MPOs have been observed 

concomitantly with population-level local field potential oscillations at theta 

frequencies (Domnisoru et al., 2013; Harvey et al., 2009; Quilichini et al., 2010; 

Schmidt-Hieber and Häusser, 2013), presumably reflecting resonant responses 

to coherent synaptic input. It is currently unknown if and how the intrinsic 

rhythmicity of stellate neurons contributes to population-level oscillations.  

However, the ability of these cells to spontaneously produce theta-frequency 

MPOs and the observation of a theta generator in the superficial MEC (Alonso 

and García-Austt, 1987; Kocsis et al., 1999; Mitchell and Ranck, 1980) have 

prompted the suggestion that the intrinsic electrophysiological rhythmicity of 

stellate cells could be responsible for the production or strengthening of this 

rhythm (Hasselmo et al., 2000). 

Here, we demonstrate that a slowly inactivating, TTX-sensitive 

conductance, primarily represented by the persistent sodium conductance (GNaP) 

(Magistretti and Alonso, 1999), is responsible for a highly nonlinear subthreshold 

membrane mechanism.  Our results are consistent with those from other brain 

areas (Stuart and Sakmann, 1994). The inward current generated by GNaP gives 

rise to an apparent depolarization-induced increase in input resistance, an effect 

known in the literature as negative slope conductance (Stafstrom et al., 1982).  

Using the dynamic clamp technique, we show that a noninactivating, TTX-

sensitive conductance leads to highly nonlinear, membrane potential- and phase-
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dependent integration of synaptic inputs in the membrane potential range of 

ongoing oscillations—both intrinsic and synaptically-driven—near spike 

threshold. This nonlinearity has a profound impact on the integrative properties of 

stellate cells and may contribute to the selective amplification of synaptic input 

arriving coherently as a result of population-level, input-driven theta oscillations in  

vivo. 
 
 

Materials and methods 

Electrophysiology 

All experiments were conducted as approved by the University of Utah 

Institutional Animal Care and Use Committee.  Measurements from stellate cells 

of the medial entorhinal cortex were made from Long-Evans rats, 18-32 days old.  

These animals were anesthetized with isoflurane and decapitated.  The brain 

was removed and chilled in ACSF (in mM, 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 10 

MgCl2, 25 NaHCO3, 25 Glucose, 2 CaCl2) and slices were cut in the horizontal 

plane using a vibrating microtome (Vibratome 1000+; Vibratome, St. Louis, MO) 

to 400 μm thickness. After letting slices recover for at least one hour in a holding 

chamber at room temperature, they were transferred to a heated (32-34°C) 

chamber (Warner Instruments), mounted on an upright microscope stage 

(AxioSkop FS2; Carl Zeiss, Thornwood, NY).  Slices were perfused with heated 

ACSF and bubbled continuously with 95/5 percent O2/CO2.  Neurons were 

visualized using infrared differential interference contrast video microscopy (CCD 

100; Dage/MTI, Michigan City, IN).  Whole-cell patch clamp recordings were 

obtained using patch pipettes (2-5 MΩ) fabricated from borosilicate glass (1.0 
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O.D. 0.5 I.D.; Sutter Instruments, Novato, CA) and filled with (in mM), 120 K-

Gluconate, 5 MgCl2, 0.2 EGTA, 10 HEPES, 20 KCl, 7 di(tris) phosphocreatine, 4 

Na2ATP, 0.3 Tris-GTP.  Presented data were not corrected for the junction 

potential, presumed to be 10-12 mV.  Entorhinal stellate cells were identified 

electrophysiologically by their prominent sag potentials following 

hyperpolarization and the presence of MPOs near threshold (Alonso and Klink, 

1993).  Stellate cells were anatomically identified by their location in layer II of the 

MEC, their large cell body and the absence of an apical dendrite.  In a small 

number of experiments, the recording pipette contained 0.6% biocytin 

(Invitrogen, Carlsbad, CA) and recorded cells were processed for posthoc 

visualization using established techniques (Kispersky et al., 2012).  This aided 

post-hoc anatomical identification of stellate and pyramidal cells. Control trials 

using tetrodotoxin (TTX) used ACSF that with 0.5 μM of TTX; those using 

ZD7288 used concentrations of 20 μM in ACSF.  All reagents were obtained from  

Sigma-Aldrich (St. Louis, MO), unless otherwise noted. 
 
 
Stimulation protocols 

 Stimuli for calculating subthreshold impedance were frozen noise current 

waveforms with white frequency spectra up to 250 Hz.  Current waveforms were 

either 10 sec in duration and repeated 8 times, or 50 sec long and applied in a 

single trial.  Trials in which action potentials were generated were omitted from 

further analysis. 

In comparisons with pyramidal neurons and stellate neurons in TTX, 

artificial MPOs were elicited by injecting a small-amplitude current waveform 
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constructed in the frequency domain.  These stimuli had Gaussian power spectra 

with a standard deviation of 4 Hz, centered at 3.5 Hz, and truncated at 0Hz.  The 

phases of individual frequency components were uniformly distributed between 0 

and 2π.  This stimulus was constructed in the frequency domain to resemble 

spontaneous MPOs and adjusted to generate 3-5 mV peak-to-peak fluctuations 

in the membrane potential of each neuron. 

Synaptic conductances were simulated using dynamic clamp software 

(Bettencourt et al., 2008; www.rtxi.org; Dorval et al., 2001; Lin et al., 2010) on a 

Pentium 4 computer running Linux with a patched version of the real-time 

application interface (RTAI) kernel and equipped with an analog-to-digital 

converter card (National Instruments, Atlanta GA).  Voltage was measured and a 

control signal applied using a MultiClamp 700B amplifier (Axon Instruments, 

Union City, CA).    

Conductances were implemented according to Isyn(t)=gmax∙s(t)(V-Esyn), 

where gmax is maximal conductance, V is membrane voltage, Esyn is the reversal 

potential of the synapse (-75 mV for inhibitory, 0 mV for excitatory), and s(t) is the 

difference of two exponentials with time constants of τrise = 1 ms and τfall = 3 ms.  

Artificial postsynaptic conductances (PSGs) were elicited as above using a 

modified homogeneous Poisson process at an average rate of 0.5 Hz with the 

additional constraint that events were separated by at least 500 ms.  PSGs 

occurring within 250 ms of an action potential were disregarded during further  

analysis. 
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Data analysis 

Data analyses were performed using custom scripts written in MATLAB 

(The Mathworks, Natick, MA).  Impedance-frequency plots were calculated by 

dividing the amplitude of the Fourier transform of the membrane voltage by the 

transform of input current waveforms.  Postsynaptic potential amplitudes were 

calculated as the difference between the maximum (minimum) voltage within 15 

ms of stimulation in response to excitatory (inhibitory) inputs and the voltage 

immediately prior to stimulation.  Given that the implemented synaptic inputs 

include a driving-force term, the amplitude of applied synaptic currents varied 

with membrane potential.  To correct this driving force effect, in the analysis PSP 

amplitudes were divided by the integral of the input current (total electric charge) 

driving that PSP.  In order to compare across trials, PSP amplitudes were also 

normalized by dividing PSP amplitudes by the mean PSP amplitude of that trial.  

PSP modulation values are thus presented as percent differences per mV of 

depolarizations, rather than mV (in amplitude) differences per mV of 

depolarization.  When determining significant difference to zero, reported p 

values were calculated using a one-sample t-test.  When comparing among 

groups, reported p values were calculated using a one-way ANOVA with a Tukey 

test for means when comparing groups assuming equal variance, except when 

otherwise noted.  P values reported for correlation coefficients were calculated 

with the 'corrcoef' function in MATLAB and represent the probability that a 

correlation coefficient as large as or larger than the reported value would be 

obtained by chance.   

 To evaluate the effect of peak vs. trough and rising vs. falling phase on the 
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amplitude of PSPs, traces were detrended using a 4th order highpass Butterworth 

filter with a cutoff frequency of 1 Hz.  Using this detrended trace, the PSPs within 

the band of 20% most depolarized potentials were labeled “peak phase” PSPs; 

the PSPs within the band of 20% most hyperpolarized potentials were labeled 

“trough phase” PSPs.  The middle 40% membrane potential band was used to 

calculate the rising and falling phase PSPs.  Within this band, PSPs that were 

preceded by 25 ms of an overall increase in membrane potential were labeled 

“rising phase” PSPs, whereas those preceded by 25 ms of an overall decrease in 

membrane potential were labeled “falling phase” PSPs.  When comparing PSP 

amplitudes between a) peak and trough phase PSPs and b) rising and falling 

phase PSPs, the reported p values were calculated using a two sample paired t- 

test assuming equal variance. 
 
 

Results 

Voltage dependence of subthreshold impedance 

Below spike threshold, stellate neurons of the medial entorhinal cortex (see 

Figure 2.1A) express substantial quantities of a noninactivating, “persistent” 

sodium conductance, GNaP (Alonso and Klink, 1993; Burton et al., 2008; 

Magistretti and Alonso, 1999; White et al., 1998).  Somewhat paradoxically, 

activation of GNaP leads to an increase in the apparent input resistance of stellate 

neurons, as the slope of the current-voltage relationship of the channel is 

negative (Stafstrom et al., 1982).  The presence of GNaP necessarily contributes a 

nonlinearity to the subthreshold response properties of these neurons: 

membrane impedance is thus a function of membrane voltage, increasing as a  
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Figure 2.1 Stellate neuron morphology and electrophysiology 
A Schematic of the recording setup and morphology of a representative 
stellate neuron.  B Stellate neurons display a pronounced inward rectification 
(sag) in response to hyperpolarizing current steps.  In response to a step of 
depolarizing current, stellate neurons respond with a short burst of action 
potentials followed by tonic spiking.  C Average activation curve of persistent 
sodium conductance (GNaP) across a population of stellate cells (modified from 
Burton et al., 2008).  D Spontaneous subthreshold oscillations appear as the 
neuron is depolarized to just below spike threshold. 
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neuron is depolarized towards spike threshold.  Here, our results are consistent 

with prior findings showing the characteristic membrane impedance spectrum of 

entorhinal stellate cells (Erchova et al., 2004; Nolan et al., 2007) and the role of 

TTX-sensitive currents in the impedance spectrum (Boehlen et al., 2013). 

To quantify the voltage dependence of the subthreshold impedance in 

entorhinal stellate cells, we recorded from these cells in the current-clamp 

configuration (Figure 2.1).  Stellate neurons were easily identifiable by 

established criteria (Alonso and Klink, 1993), including their location in superficial 

layer II of the medial entorhinal cortex, the presence of a prominent sag in 

response to hyperpolarizing current steps (Figure 2.1B), and the presence of 

spontaneous MPOs near spike threshold (Figure 2.1D).  In a subset of 

experiments, the recording pipette contained 0.6% biocytin and stellate 

morphology was confirmed following post-hoc staining with a fluorescent 

molecule (Figure 2.1A).  

In addition to displaying the characteristic resonance peak at theta 

frequencies resulting from the presence of the hyperpolarization-activated cation 

current, Ih, (Burton et al., 2008; Nolan et al., 2007), the membrane impedance of 

entorhinal stellate cells was found to be exquisitely sensitive to membrane 

potential (Figure 2.2A).  Specifically, the impedance increased at all frequencies 

below the membrane's intrinsic cutoff frequency (~10 Hz) as the membrane 

potential was depolarized towards spike threshold (Figure 2.2A). We observed a 

particularly large increase at the resonant frequency, where the impedance 

reaches a maximum, although the Q-value (ratio of peak impedance to  
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Figure 2.2 Membrane potential-dependent impedance spectra in MEC 
principal cells 
Ai Membrane impedance as a function of frequency for a stellate cell at 
different mean voltages (as indicated). ii,iii Average impedance of stellate 
neurons (n=10) at their resting potentials and near threshold.  Bi Impedance 
measurements in the same cell as in (Ai) in 0.5 μM tetrodotoxin (TTX).  ii,iii 
Average impedance across all stellate neurons recorded in TTX (n=8) at 
resting and threshold potentials.  Ci Impedance of a putative entorhinal layer 
II/III pyramidal neuron at a range of mean voltages.  ii,iii Average impedance 
of putative pyramidal neurons (n = 5) at resting and threshold potentials.  
Impedance is sensitive to voltage in stellate neurons under control conditions 
(A) but not in TTX (B) or in nearby pyramidal neurons (C). 
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impedance at 0.1 Hz) was statistically unchanged (Figure 2.2Aiii; Qrest = 1.30 ± 

0.09; Qthresh = 1.42 ± 0.11; p = 0.45).  Additionally, the sensitivity of impedance to 

voltage became greater as threshold was approached.  Across all stellate cells 

studied, the impedance at 5 Hz increased from 83.6 ± 10.5 MΩ at resting 

potential to 171.5 ± 13.4 MΩ near threshold (p < 10-3).  Similarly, at 0.5 Hz, 

impedance increased from 59.3 ± 7.7 MΩ at rest to 135.4 ± 10.5 MΩ near 

threshold (p < 10-3; n = 9).  For the preceding comparisons, the mean voltage in 

the resting condition was -68.0 mV ± 0.6 mV compared to -54.8 ± 1.1 near 

threshold, reflecting the presumed biologically relevant range of subthreshold 

voltages for these neurons.  It is worth noting that slices were held at a 

temperature of 32-34°C, lower than the physiological 37°C, in order to preserve 

the health of the brain slices.  At this lower temperature, the resonance frequency 

in hippocampal pyramidal cells has been shown to decrease from approximately 

8 Hz to 4 Hz (Hu et al., 2002).  As such, it is possible that using lower-than-

physiological holding temperatures may have lowered the resonance frequency 

of the stellate cells in this study. 

To confirm that the observed voltage dependency of impedance was indeed 

a product of persistent sodium channels, we repeated these measurements in 

the presence of 0.5 μM tetrodotoxin to block voltage-gated sodium channels 

(TTX; Figure 2.2B).  In TTX, the voltage dependence of the membrane 

impedance was abolished and the impedance spectrum closely matched the 

spectrum measured at the resting membrane potential in control ACSF (Figure 

2.2B; threshold impedance in TTX at 5 Hz: 104.6 ± 19.5 MΩ, hyperpolarized 
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impedance in control: 102.4 ± 17.5 MΩ; p = 0.94; n = 9).  Averaged data (Figure 

2.2Bii) show a hint of resonance near resting potential, probably due to the 

effects of Ih.  This effect is small, and thus hard to see in many individual 

examples (e.g., Figure 2.2Bi).  The observation that impedance in TTX was 

similar to that measured at the resting potential of the cell in the control condition 

(p = 0.36) is consistent with the interpretation that voltage-sensitive input 

resistance is mediated by GNaP, as the persistent sodium conductance is nearly 

completely deactivated at rest (Figure 2.1C).  Furthermore, nearby pyramidal 

neurons did not display a voltage-dependent impedance profile (5 Hz: 122.2 ± 

23.6 MΩ at rest vs. 163.6 ± 58.8 MΩ near threshold; p = 0.54; n = 4), which 

suggests that GNaP-mediated increase in impedance near threshold in pyramidal 

cells is either small or non-existing.  Although TTX also blocks the transient 

sodium current, INaT, responsible for the upstroke of the action potential, this 

channel population comprises only a small (approximately 10%) of the total 

sodium current at this membrane potential range (Magistretti and Alonso, 1999).  

Since GNaP represents the overwhelming majority of the sodium current in this 

voltage range, GNaP is used here to refer to the slowly inactivating, TTX-sensitive  

conductance responsible for this effect. 
 
 
Membrane potential variations within the physiological range  
affect synaptic integration due to impedance changes 

The observations of voltage-dependent membrane impedance and theta-

rhythmic membrane potential oscillations led us to hypothesize that synaptic 

inputs might be integrated with variable efficacy within the range of membrane 

potentials where subthreshold oscillations occur.  As shown in Figure 2.3, we 
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Figure 2.3 Effects of driving force and impedance on PSP amplitude 
A Post-synaptic potentials (PSPs) induced via dynamic clamp in a stellate cell 
depolarized to the peri-threshold region.  At this level of depolarization, 
membrane potential oscillations are pronounced.  PSPs of amplitude 0.5-3 mV 
were induced randomly in time to quantify modulation of PSP amplitudes by 
fluctuations in membrane potential.  B  Single IPSP samples were measured 
from moment of initiation to their peak, as illustrated by the arrows.  The IPSP 
occurring at the more depolarized membrane potential (peak phase of the 
oscillation) is greater in amplitude than the IPSP in the more hyperpolarized 
membrane potential (trough phase of the oscillation).   C Examples of the 
relationship between PSP amplitude and membrane potential for excitatory (i,ii) 
and inhibitory (iii, iv) PSPs amplitudes excluding a driving force normalization 
(i,iii) and including the driving force normalization (ii, iv).  As expected, 
excitatory PSPs are somewhat attenuated with depolarization by the decreasing 
driving force (compare i and ii), while inhibitory PSPs are further amplified by 
the increasing driving force (compare iii and iv).  D Population averages 
(stellates near threshold, n = 29 in 24 cells for excitatory, n = 41 in 26 cells for 
inhibitory; stellates in TTX, n = 15 in 11 cells for excitatory, n = 15 in 10 cells for 
inhibitory) for the modulation of PSP amplitude by membrane potential for the 
four cases illustrated in A (solid bars) and when the same measurements were 
repeated in TTX (shaded bars).  The modulation effect is maintained in both 
uncorrected and driving force normalized conditions. 
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tested this hypothesis by current clamping cells and injecting a bias current to 

depolarize the membrane to perithreshold potentials, the membrane potential at 

which entorhinal stellate cell membrane potential oscillations were spontaneously 

and robustly generated, and applying artificial synaptic conductances via 

dynamic clamp (Figure 2.3A). Test artificial excitatory and inhibitory postsynaptic 

conductances (PSGs) with constant amplitude were applied randomly in time at 

low rates (see Materials and Methods).  PSG amplitudes were set to elicit 0.5-3.0 

mV voltage deflections (Figure 2.3B), which are small enough as to not alter 

either the steady state conductance of the cell or the amplitude/frequency of the 

theta-frequency subthreshold oscillations (as was done in Fernandez and White 

(2008) and Schmidt-Hieber and Häusser (2013)).  Interestingly, even these small 

artificial PSPs appear to reset the phase of MPOs (Figure 2.3B). 

The resulting relationship between postsynaptic potential (PSP) amplitude 

and the membrane potential at the time of PSG onset is illustrated for a single, 

representative stellate neuron in Figure 2.3C.  Here, driving force corrected data 

are also shown along with raw, noncorrected data.  Since the magnitude of 

postsynaptic current waveforms in the intact brain—introduced here via dynamic 

clamp—also depend on membrane potential, the synaptic driving force changes 

with changing membrane potential.  For this reason, a simple calculation would 

predict that excitatory PSP amplitudes would decrease by approximately 2% per 

mV depolarization near threshold if the reversal potential of an 2-amino-3-(5-

methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid (AMPA) channel is taken to be 0 

mV and the perithreshold region is assumed to be -55 to  -50 mV.  In contrast,  
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inhibitory PSPs would be expected to increase in magnitude by 4-5% per mV 

depolarization for ionotropic γ–aminobutyric acid (GABA) synapses in the 

absence of any membrane nonlinearity if the reversal potential of these channels 

was taken to be -75 mV.  When referring to driving force corrected data, PSP 

amplitudes have been divided by the integral of the input current (total electric 

charge) injected during that PSP. 

In Figure 2.3C, both excitatory and inhibitory PSP representative samples 

are plotted versus membrane potential, in both non-corrected and driving force 

corrected form.  The corresponding PSP amplitude modulatory effect is shown 

using the calculated correlation coefficient.  As expected, with the driving force 

correction the modulation of PSP amplitude becomes larger for excitatory 

synapses and smaller for inhibitory synapses (Figure 2.3D; compare solid red 

and black bars).  The net effect of these two factors is that raw (non-corrected) 

inhibitory PSPs are dramatically increased in magnitude with depolarization 

(9.38% ± 0.55% per mV, n = 41 in 26 cells, p < 10-3), whereas raw excitatory 

inputs are only modestly amplified (2.79% ± 0.61% per mV, n = 29 in 24 cells, p 

< 10-3).  In TTX, the only modulation of PSP amplitude occurs through changes in 

the driving force.  In this case, with the membrane non-linearity largely abolished, 

raw excitatory synaptic inputs do not change magnitude appreciably with 

depolarization while raw inhibitory inputs are amplified (-1.58% ± 0.98% per mV 

for excitation, n = 15 stellate threshold trials in 11 cells, p = 0.13; 5.39% ± 0.55% 

per mV for inhibition, n = 15 stellate threshold trials in 10 cells, p < 10-3).  In raw 

control data, stellate cells in perithreshold membrane voltages showed 
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significantly more modulation relative to TTX trials in both excitatory (p < 10-3, n = 

29 stellate threshold trials in 24 cells, n = 15 TTX trials in 11 cells) and (p < 10-3, 

n = 41 stellate threshold trials in 26 cells, n = 15 TTX trials in 10 cells) inhibitory 

trials, reflecting the impedance-driven modulatory effect.  Furthermore, PSP 

modulation was not significantly different from zero in TTX when the changing 

driving force was taken into account (0.77% ± 0.57% per mV; n = 15 excitatory 

trials in 11 cells; 15 inhibitory trials in 10 cells; p = 0.18), validating our correction 

procedure.  In all, these results indicate that the ability for GABAergic synaptic 

inputs to hyperpolarize the membrane is likely to be substantially greater near the 

peak of an intrinsic MPO when compared to the trough, while the excitatory 

ability of AMPAergic synapses is only modestly enhanced by the same cyclic 

depolarization. 

In Figure 2.4A, driving force corrected data are shown for both 

representative stellate and pyramidal neurons (top row), as well as in control 

conditions.  A clear trend is apparent in the PSP amplitude-vs.-membrane-

potential relationship, with PSP amplitudes increasing significantly as the neuron 

is depolarized. In the representative example of a stellate cell near threshold in 

Figure 2.4Ai, the corrected PSP amplitude increases linearly with depolarization 

with a 5.90% increase in amplitude per mV of depolarization (r=0.315, p < 10-3).  

No such relationship was observed when these measurements were repeated in 

the presence of 0.5 µM TTX in the same cell in Figure 2.4Aii, which then 

exhibited a -0.76% decrease in amplitude per mV of depolarization (r = 0.105, p 

> 0.05).  In a pyramidal neuron of the same cortical region (Figure 2.4Aiii), a   
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Figure 2.4 Nonlinear integration of artificial synaptic inputs 
A Relationship between PSP amplitudes and membrane potential.  There is a 
clear linear trend in stellate neurons near threshold under control conditions (i) 
but not in TTX (ii) or in pyramidal neurons (iii).  For stellate neurons in ZD7288 
(iv), the effect is reduced, but largely maintained.  B  Summary plots for the 
percent modulation of excitatory and inhibitory PSP amplitude per mV 
depolarization under the various conditions described.  Stellates cells near 
threshold are significantly different (in both excitatory and inhibitory) from all 
other conditions (ANOVA with Tukey test for means, p < 10-2) except where 
otherwise noted.  In ZD7288 trials, stellate cells near threshold were 
significantly different (ANOVA with Tukey test for means, p < 10-2) from 
stellates at rest, for both excitatory and inhibitory trials. 
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0.04% increase in amplitude per mV of depolarization, r = 0.009, p > 0.05 was 

observed.  These examples suggest that the modulation of PSP amplitude was 

indeed likely the result of the voltage-dependence of the stellate neuron 

impedance.  To eliminate the effect of the hyperpolarization activated cation 

current, Ih (Harris and Constanti, 1995), the effect was also measured in the 

presence of 20  µM of ZD7288.  In Figure 2.4Aiv, a representative sample is 

shown, exhibiting a 2.37% increase in amplitude per mV of depolarization 

(r=0.4682, p < 10-3), suggesting the effect is diminished but maintained. 

Across all recorded stellate cells (Figure 2.4B), a significant increase in 

PSP amplitude was observed at perithreshold membrane potentials (5.15% ± 

0.41% per mV; n = 29 excitatory trials in 24 cells, 41 inhibitory trials in 26 cells; p 

< 10-3).  As expected, such nonlinear integration of synaptic inputs was 

substantially reduced in these neurons at their resting potential (0.72% ± 0.34% 

per mV; n = 23 excitatory trials in 19 cells, 16 inhibitory trials in 16 cells; p < 10-2) 

and completely absent in the presence of TTX (0.77% ± 0.57% per mV; n = 15 

excitatory trials in 11 cells, 15 inhibitory trials in 10 cells; p = 0.18).  In nearby 

MEC layer II pyramidal neurons, artificial synaptic conductances were integrated 

linearly; the relationship between PSP amplitude and voltage was nearly flat—

after compensating for changes in driving force—near threshold (0.44% ± 0.59% 

per mV; n = 6 excitatory trials in 6 cells, 8 inhibitory trials cells in 7 cells, p = 0.46) 

and at rest (-0.33% ± 0.80% per mV; 7 excitatory trials in 7 cells, 7 inhibitory trials 

in 8 cells; p = 0.69).  The Ih current was blocked using ZD7288, and while the 

effect of membrane potential on PSP amplitude was reduced at threshold (2.51% 
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± 0.24% per mV; 17 excitatory trials in 11 cells, 24 inhibitory trials in 10 cells; p < 

10-3), it was only fully eliminated at rest (-0.85% ± 0.44% per mV; 13 excitatory 

trials in 11 cells, 12 inhibitory trials in 10 cells; p = 0.07).   

 These relationships remain unchanged if excitatory and inhibitory trials are 

separated and similarly compared across all conditions.  Near threshold, 

excitatory (inhibitory) PSPs increased in magnitude by 4.49% ± 0.62% per mV, n 

= 29 trials in 24 cells, p < 10-3 (5.62% ± 0.54%, n = 41 trials in 26 cells, p < 10-3).  

On average in stellate neurons, these values were significantly different from all 

other conditions (p < 10-2 for excitatory trials, except compared to stellates in 

ZD7288 near threshold where p = 0.17; p < 10-3 for inhibitory trials).  In turn, 

modulation values were near zero under the other conditions: stellates near rest 

0.59% ± 0.46% per mV, n = 23 trials in 19 cells, p = 0.21 (inhibitory PSPs: 0.90% 

± 0.53% per mV, 16 trials in 16 cells, p = 0.11), stellates in the presence of TTX 

0.49% ± 0.99% per mV, n = 15 trials in 11 cells, p = 0.85 (inhibitory: 1.36% ± 

0.57% per mV, 15 trials in 10 cells, p = 0.03), pyramidal cells near threshold 

0.73% ± 0.76% per mV, n = 6 trials in 6 cells, p = 0.38 (inhibitory: 0.22% ± 0.90% 

per mV, 8 trials in 7 cells, p = 0.81), and pyramidal cells near rest 0.61% ± 0.58, 

7 trials in 7 cells, p = 0.33 (inhibitory: -1.27 % ± 1.48% per mV, 7 trials in 8 cells, 

p = 0.42).   

These findings bolster the argument that the observed PSP amplification is 

caused by the voltage dependence of the membrane impedance illustrated in 

Figure 2.2 which is, in turn, mediated largely by the presence of a substantial 

persistent sodium conductance.  Nevertheless, the impedance spectrum of 
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stellate cells near threshold is in part attributable to Ih (Nolan et al., 2007), so to 

discriminate the effect of Ih on this modulation, similar trials were performed in the 

presence of 20 μM ZD7288.   Stellate cells in ZD7288 showed subthreshold 

modulation of 2.47% ± 0.37% per mV, 17 trials in 11 cells, p < 10-3 (inhibitory: 

2.54% ± 0.31% per mV, 24 trials in 10 cells, p < 10-3), whereas at rest the effect 

was eliminated with modulation of -1.19% ± 0.51, 13 trials in 11 cells, p < 10-2 

(inhibitory: -.49% ± 0.74% per mV, 12 trials in 10 cells, p = 0.52).  ZD7288 

subthreshold trials were significantly different from their corresponding rest trials  

(p < 10-3 in excitatory trials, p < 10-2 in inhibitory trials). 
 
 
Effects of membrane potential oscillation phase on  
synaptic integration 

Thus far, the effect discussed has been between the corrected PSP 

amplitude and the membrane potential at which this PSP is elicited.  To study the 

relationship of PSP amplitude to the oscillation phase of stellate cell intrinsic 

subthreshold oscillations, trials were detrended to account for slow drift in the 

voltage signal and PSPs were grouped according to their location within the 

oscillation bands, as in Figure 2.5.  The PSPs elicited during the 20% most 

depolarized membrane potentials were labeled peak phase PSPs, those elicited 

during the 20% most hyperpolarized were labeled trough phase PSPs, and the 

PSPs in the central 40% were classified as either rising or falling phase, 

depending on the voltage change prior to the PSP.  The amplitude of PSPs in 

each group were averaged for each trial and compared using paired-samples t- 

tests.  In excitatory (inhibitory) trials, peak phase PSPs were significantly larger in 

amplitude than their corresponding trough phase PSPs with a calculated p < 10-2,  
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Figure 2.5 Effect of oscillation phase on synaptic integration  
A PSPs were grouped into four different categories: peak, trough, rising and 
falling phase.  Detrended data were divided into bands representing each 
category: the 20% most depolarized membrane potential were labeled “peak 
phase” trials, while the 20% most hyperpolarized band were labeled “trough 
phase” trials.  From the middle band representing 40% of the membrane 
potential range, PSPs following an increase in membrane potential were 
labelled “rising phase” PSPs; those following a decrease in membrane 
potential were labelled “falling phase” PSPs.  B  A sample waveform average 
from one trial showing the PSP-triggered average of all peak phase PSPs and 
trough phase PSPs.  An arrow denotes the beginning of the artificial PSP 
injection.  Shaded region indicates standard error associated with the 
waveform average.  Note the larger magnitude associated with peak phase 
PSPs relative to trough phase PSPs, as well as the intrinsic MPO preceding 
the PSP.  C  For each trial, the average PSP amplitude for peak (rising) phase 
PSPs are compared to the average PSP amplitude for trough (falling) phase 
PSPs (stellates near threshold, n = 29 in 24 cells for excitatory, n = 41 in 26 
cells for inhibitory; stellates in TTX, n = 15 in 11 cells for excitatory, n = 15 in 10 
cells for inhibitory).  Peak phase PSP amplitudes were significantly larger (p < 
10-3 for both inhibitory and excitatory, paired sample t-test) than their 
corresponding trough phase PSP amplitudes (i, ii).  This effect was eliminated 
for PSPs in TTX, which showed no significant difference between matched 
peak vs. trough PSP amplitudes.  Rising and falling phase PSPs showed now 
significant difference in any condition, for neither excitatory nor inhibitory trials. 
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n = 29 trials in 24 cells (inhibitory: p < 10-3, n = 41 trials in 26 cells). In TTX, this 

peak phase vs. trough phase difference was not significant with a calculated p = 

0.07, n = 15 trials in 11 cells (inhibitory: p = 0.08, 15 trials in 10 cells).  Rising 

phase vs. falling phase paired comparisons in stellate excitatory (inhibitory) trials  

showed no significant difference with a calculated p = 0.23, n = 29 trials in 24 

cells (inhibitory: p = 0.28, n = 41 trials in 26 cells); nor did the same comparisons 

for stellates in TTX with a calculated p = 0.72, 15 trials in 11 cells (inhibitory: p = 

0.33, 15 trials in 10 cells).  These findings suggest that PSP amplification is more 

directly a function of membrane voltage and is thus evident at the peak phase of 

the oscillation (versus the trough), and furthermore that the rising and falling  

phase do not have different effects on the amplification of synaptic inputs. 
 
 

Discussion 

In agreement with previous studies (Boehlen et al., 2013; Erchova et al., 

2004; Nolan et al., 2007), we have demonstrated that the subthreshold 

impedance of stellate neurons in the MEC layer II is sensitive to voltage and that 

this dependence is brought about by the successive activation of increasing 

numbers of non-inactivating, “persistent” sodium channels in response to 

membrane depolarization.  The effect of this nonlinearity is an increase in 

membrane impedance, particularly near the theta frequency band, as spike 

threshold is approached (Figure 2.2). Using artificial postsynaptic conductance 

waveforms introduced during ongoing MPOs with dynamic clamp, we have 

shown that SCs exhibit voltage-dependent integration of synaptic inputs.  

Quantitatively, these results indicate that PSP amplitude may be modulated by 
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up to 30-60% by the changing membrane impedance alone during an ongoing 

synaptically-driven MPO in vivo.  Voltage-dependent synaptic integration is 

abolished by blocking Na+ channels and reduced by blocking HCN channels that 

underlie the hyperpolarization-activated cation current Ih.  Our results 

complement those showing that SCs at different locations along the dorsal-

ventral (DV) axis, and thus associated with different grid periods, process inputs 

differentially (Garden et al., 2008).  Thus while we expect the mechanism 

described in this paper to not change along the DV axis, the effect is 

complementary to the increase in resistance along the DV axis described in 

Garden et al., 2008. 

The nonlinear resonance of stellate cells is intriguing in the context of theta-

frequency oscillations, which are commonly recorded in the MEC (Kramis et al., 

1975; Mitchell and Ranck, 1980; Vanderwolf, 1969) and are accompanied by 

membrane-potential oscillations (MPOs) at theta frequencies near spike 

threshold (Domnisoru et al., 2013; Harvey et al., 2009; Quilichini et al., 2010; 

Schmidt-Hieber and Häusser, 2013).  Both stellate cells and pyramidal cells 

phase lock to the theta rhythm and phase precess (Alonso and García-Austt, 

1987; Frank et al., 2001; Hafting et al., 2008; Quilichini et al., 2010), consistent 

with their high impedances within the theta band.  Our data suggest that, due to 

their impedance spectra having theta-centered resonance, stellate cells may 

show stronger frequency dependence in their phase locking.  Furthermore, given 

that phase precession seems to be driven by periodic inputs that are faster than 

the average network activity (Schmidt-Hieber and Häusser, 2013), the cellular 
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mechanisms of phase precession are likely to be identical to those underlying 

phase locking.  This suggests that stellates will also show strong frequency 

preference in their phase precession. 

While much of this study focused on the increase in impedance mediated 

by slowly inactivating Na+ channels, we also studied the effect of Ih in the 

membrane potential-dependent synaptic integration.  Ih plays a prominent role in 

stellate cells electrophysiological dynamics (Dickson et al., 2000; Fernandez et 

al., 2013; Haas et al., 2007; Nolan et al., 2007; Richter et al., 2000), and its 

deactivation as the membrane potential is depolarized could contribute to the 

effect described in this paper.  Experiments using ZD7288, an Ih blocker, 

maintained the effect relative to rest, but reduced the mean percent modulation 

per mV from approximately 5% to 2.5%.  This suggests that the Ih deactivation 

approaching threshold could play a role in voltage-dependent synaptic 

integration, and that the increased low frequency impedance associated with 

eliminating Ih (Nolan et al., 2007) would reduce the impedance differential in the 

membrane voltage range studied here.  It is also possible that ZD7288 

introduces off target effects on sodium channels, and that the effect observed 

here is due to these off-target effect rather than through the block of Ih (Wu et al., 

2012). 

In addition to amplification by increasing subthreshold impedance, PSP 

amplitudes are also affected by changes in driving force as the membrane 

potential varies.  For glutamatergic excitation, with a reversal potential of about 0 

mV, a 1 mV depolarization of membrane potential will produce a roughly 2% 
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decrease in synaptic current due to the change in driving force alone.  Although 

estimates of the reversal potential of GABAA channels vary considerably (Khirug 

et al., 2008; Vida et al., 2006; Woodruff et al., 2010), the effects of either 

shunting or hyperpolarizing GABAA channels will be enhanced near threshold 

(e.g., by 4-5% if EGABA = -75 mV).  Effects of driving force combine approximately 

linearly with the effects of nonlinear impedance (Figure 2.3D). 

In this study, we have limited measurements and analysis to the dynamics 

of only the neuronal cell body.  It is possible that the characteristics we describe 

here are substantially different at distal dendritic locations.  However, a large 

number of inhibitory synapses are located on the cell body or at proximal 

dendritic sites of principal cells in the hippocampal formation (Freund and 

Buzsáki, 1996), indicating that the effects of nonlinear impedance are likely 

relevant for physiological inhibitory synaptic inputs in the intact brain.  As 

excitatory inputs may arrive at more distal locations and because the density of 

sodium channels has been found to decrease with distance along dendritic 

processes in other cell types (Hu et al., 2010; Jarsky et al., 2005), it is possible 

that excitatory synaptic inputs are affected by the membrane nonlinearity to a 

lesser degree (Stuart and Sakmann, 1995). 

The nonlinearity we describe here is likely present in any neuronal 

population possessing a substantial persistent sodium conductance below spike 

threshold, due to the simplicity of this mechanism.  Neurons in the thalamus, 

neocortex, hippocampus, and cerebellum express such a conductance 

prominently (Crill, 1996), and for this reason one may presume that synaptic 
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inputs are integrated in all of these cells in a manner that is nonlinear and 

depends significantly (5-10% / mV) on membrane voltage when engaged in 

oscillatory or other activity in which membrane potential traverses a large range 

of values.   

The results we describe here should have substantial effects in vivo, on 

three time scales.  On the time scale of crossings through one of the cells’ 

periodically spaced place fields, SCs exhibit sustained depolarizations lasting 

seconds (Domnisoru et al., 2013; Schmidt-Hieber and Häusser, 2013).  Our 

results suggest that the effects of both excitation and (especially) inhibition are 

enhanced during these in-field periods, making the SCs easier to drive but also 

making it easier for inhibition to modulate this drive.  On the time scale of the 

theta cycle (hundreds of ms), we would expect both the excitation arriving during 

the depolarizing phase, and any inhibitory inputs that help terminate the 

depolarizing phase, to be enhanced by nonlinear membrane impedance.  Thus, 

the nonlinearity in the membrane may enhance the quality of phase locking to the 

network theta rhythm.  Finally, on the time scale of short trains of action 

potentials (10 ms), membrane nonlinearity may serve as an additional form of 

negative feedback, amplifying the effects of inhibition.  As the temporal lobe in 

general and the superficial entorhinal cortex in particular represent common foci 

for epileptic seizures (Bartolomei et al., 2005; Engel and Pedley, 2008; Spencer 

and Spencer, 1994), it is not unreasonable to expect that neurons in this area 

have developed numerous negative feedback mechanisms to regulate 

excitability. 
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CHAPTER 3 

 
 

INTERNEURON FORM AND FUNCTION  

IN THE SUPERFICIAL MEC 
 
 

Introduction 

By modulating the activity of principal neurons, interneurons play a crucial 

role in the spatial navigation function of the superficial medial entorhinal cortex 

(Buetfering et al., 2014; Couey et al., 2013; Domnisoru et al., 2013; Garden et 

al., 2008; Pastoll et al., 2013; Varga et al., 2010).    Among other findings, recent 

studies have demonstrated that MEC GABAergic interneurons mediate stellate-

to-stellate cell communication (Couey et al., 2013) and the superficial layers of 

the MEC exhibit higher inhibitory synaptic input onto principal cells than the 

deeper layers (Woodhall et al., 2005).   Grid cell computation work has 

implemented inhibition-dominated network models to simulate spatial navigation 

mechanisms (Burak and Fiete, 2009; Thurley et al., 2013), although a recent 

study has argued against the notion that interneurons provide location dependent 

input onto grid cells (Buetfering et al., 2014). 

Despite their importance, electrophysiological data for GABAergic 

interneurons remain scarce (Gloveli et al., 1997; Wolansky et al., 2007).  The 

characterization of superficial MEC interneurons has been difficult for two 

reasons: the low proportion of interneurons (approximately 10%) compared to 
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principal cells (Gatome et al., 2010) and the relative physiological and anatomical 

diversity of cortical interneuron populations (Buzsáki et al., 2004; DeFelipe et al., 

2013; Maccaferri and Lacaille, 2003; Whittington and Traub, 2003).  Previous 

research suggests that the superficial MEC is anatomically diverse, containing at 

least seven anatomical categories as defined by soma depth and dendritic 

morphology (Canto et al., 2008).  The anatomical differences in the interneuron 

population are likely to coincide with different roles within the local cortical circuit 

(Kepecs and Fishell, 2014).  Nevertheless, only limited data exist on the 

electrophysiological profiles of the superficial MEC interneuron population 

(Gloveli et al., 1997; Wolansky et al., 2007; Wouterlood et al., 1995). 

This study takes advantage of recent developments in transgenic 

techniques that specifically label GABAergic interneurons in order to 

systematically characterize the superficial MEC interneuron population both 

electrophysiologically and anatomically.  Acute brain slices were harvested from 

GAD2+ and PV+ labeled transgenic mice and whole cell patch clamp techniques 

were used to measure a variety of electrophysiological features.  Posthoc 

anatomical reconstruction was then conducted using fluorescence staining and 

2-photon imaging to couple each interneuron’s electrophysiological profile with its 

MEC localization and axonal tree distribution.  We find that superficial MEC 

interneurons can be grouped into four separate groups that have distinct 

anatomical and electrophysiological profiles.  These categories include deep-

projecting layer 2/3 slow-firing interneurons, layer 2/3 projecting fast-spiking 

interneurons, layer 1/2-projecting interneurons and layer 1-projecting superficial 
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interneurons.  To our knowledge, these findings are the first to systematically  

characterize superficial MEC interneurons into these four distinct categories. 
 
 

Materials and methods 

Electrophysiology 

All electrophysiology experiments were conducted according to protocols 

approved by the University of Utah Animal Care and Use Committee.  Brain 

slices were harvested from 18-35 day old transgenic mice.  Two transgenic 

strains were used: cre-dependent GAD2-IRES-tdTomato transgenic mice 

(Taniguchi et al., 2011, strain 010802, The Jackson Laboratories; Bar Harbor, 

ME), which labeled glutamic acid decarboxylase 2 gene (GAD2) expressing cells 

and thus facilitated targeting of GABAergic cortical interneurons; and PV-

tdTomato transgenic mice (Hippenmeyer et al., 2005, strain 008069, The 

Jackson Laboratories; Bar Harbor, ME), which labeled all parvalbumin (PV) 

expressing cells and thus facilitated targeting of the specific PV+ genotype in 

inhibitory interneurons.  These mice were anesthetized with isoflurane and 

decapitated.  The brain was then harvested, chilled in sucrose-substituted 

artificial cerebrospinal fluid (ACSF, units in mM, 185 sucrose, 2.5 KCl, 1.25 

NaH2PO4, 10 MgCl2, 25 NaHCO3, 12.5 Glucose, 0.5 CaCl2), and cut 

parasagittally into 300 μm thick slices using a vibrating microtome (Vibratome 

VT1200, Leica; Buffalo Grove, IL).  Slices were incubated for 15 min in ACSF 

(units in mM, 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 10 MgCl2, 25 NaHCO3, 25 

Glucose, 2 CaCl2) at 37°C, and then allowed to recover for at least 30 min at 

room temperature.  For recordings, slices were transferred to a heated (32-34°C) 
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slice chamber (Warner Instruments; Hamden, CT) that is mounted on an upright 

microscope stage (Olympus BX53; Olympus, Tokyo, Japan) and perfused with 

95/5 percent O2/C02 ACSF.  GAD2+/PV+ neurons were visualized using 

fluorescence and whole-cell patch clamp clamped using patch pipettes (5-6 MΩ) 

fabricated from borosilicate glass (1.5 O.D. 1.1 I.D.; Sutter Instruments; Novato, 

CA) and filled with artificial intracellular fluid (ICF, units in mM,  120 K-Gluconate, 

5 MgCl2, 0.2 EGTA, 10 HEPES, 20 KCl, 7 di(tris) phosphocreatine, 4 Na2ATP, 

0.3 Tris-GTP) loaded with biocytin (1% by weight) for posthoc reconstruction.  

Presented data were not corrected for the junction potential, assumed to be 10-

12 mV.  Cells were patched for at least 30 min to ensure complete biocytin fill.  

Following electrophysiological trials, brain slices were perfused in 4% 

paraformaldehyde for 16-24 hours, then washed in phosphate-buffered saline 

(units in mM, 137 NaCl, 2.7 KCl, 10 Na2HPO4, 1.8 KH2PO4) three times for 15  

min each and stored in 4° C for later staining. 
 
 
Posthoc anatomical reconstruction 

To reconstruct the anatomy of patched cells, brain slices were incubated for 

3 hr in a PBS solution containing 3 µg/mL streptavidin Alexa 488 (Molecular 

Probes; Eugene, OR) and 2% Triton X-100 (by volume).  Slices were then 

washed in PBS three times for 15 min each and mounted on slides using a 

Mowiol mounting medium.  At least 24 hr after mounting, slides were imaged 

using a two-photon microscope (Ultima Intravital, Bruker Corporation; Billerica, 

MA), with excitation wavelength set to 810 nm and a 520 nm low-pass filter.  

Alexa 488-filled cells were localized in the brain slice and a z-stack of 585 µm x 
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585 µm raster-scanned images was acquired, covering the entire range of the 

soma and neuronal processes (usually 100-200 µm).  This z-stack was projected 

onto a single composite image and endowed with a dark-cell, light-background 

look-up table to aid axonal visualization.  In order to describe the anatomical 

features of each neuron, soma depth was measured and the extent of the axonal 

tree was described with a rectangular approximation using the z-projected image,  

reducing the anatomical decription to these two anatomical features. 
 
 
Electrophysiological protocols and data analysis 

All electrophysiological protocols were conducted in current clamp and were 

performed within 30 min of breaking the cell membrane to engage the whole cell  

patch clamp recording. 
 
 
Input resistance, time constant, and sag ratio 

A bias current was applied in current clamp to polarize the cell to -70 mV.  

Five 2 sec negative current pulses (with a 2 sec rest time) were injected to 

hyperpolarize the cell to approximately -80 mV (between -20 pA and -50 pA, 

depending on input resistance).  The resulting steady-state voltage was divided 

by the applied current to calculate the input resistance.  To determine the falling 

time constant, the time from the beginning of the pulse to reaching 63% of the 

most hyperpolarized membrane potential was measured.  The sag ratio was 

determined by dividing the maximum voltage hyperpolarization (the sag) by the  

steady state voltage during the pulse. 
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Action potential (AP) half-width, AP rise time, and  
spike afterhyperpolarization (AHP) 

A depolarizing bias current was inserted to elicit action potentials just above 

firing threshold.  The average of 50-100 total action potentials recorded in a 30-

40 sec recording were used to describe the action potential shape.  First, the AP 

half-width was determined by measuring the AP height (from the action potential 

upstroke to the peak) and calculating the time between passing the half-height on 

the depolarizing phase and passing the half-height on the hyperpolarizing phase 

is the AP half-width.  The AP rise time was calculated as the time required for the 

action potential to go from 20% of its total height to 80% of its total height.  The 

afterhyperpolarizing potential (AHP) was measured as the membrane potential 

difference between the AP upstroke initiation and the most hyperpolarized  

membrane potential immediately following the AP.  
 
 
Firing threshold 

The cell was hyperpolarized to -80 mV and a 50 pA/s current ramp for 10-

20 sec, depending on the input resistance.  The membrane potential at which the  

first action potential was observed was labeled the firing threshold. 
 
 
Impedance 

The cell was hyperpolarized to -80 mV and a 15 sec white noise current 

trace (approximately 5 mV in amplitude) was injected.  The voltage trace was 

divided by the injected current trace and the resulting trace was plotted in the 

frequency domain using a fast Fourier transformation.  This procedure was 

repeated several times at increasing membrane potentials until the cell was 
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depolarized to its firing threshold.  The impedance change was measured by 

calculating the average impedance between 1-10 Hz for the most depolarized 

trace (labeled “perithreshold”) and dividing it by the average impedance for the – 

80 mV trace in the same frequency band. 
 
 
Frequency-current gain and peak firing rate 

A bias current was applied in current clamp to polarize the cell to -70 mV.  A 

series of one-second current pulses (with a four-second rest between pulses) 

were injected to determine the frequency-current (F-I) relationship of the cell.  

These current pulses ranged from -100 pA to up to 1500 pA, depending on what 

current amplitude was required to reach a firing rate plateau, and were 

introduced in 20 nA increments.   The peak firing rate was the fastest firing 

frequency recorded during the F-I trial.  A linear regression fit to all points 

between the first non-zero frequency-current point and the peak firing rate point 

was calculated with the least-squares ‘polyfit’ function in MATLAB for a first order  

polynomial.  The slope of this fit was taken to be the F-I gain.   
 
 
Grouping methodology 

Principal component analysis 

Principal components analysis (Jolliffe, 2002) was used to emphasize 

variation within the electrophysiological/anatomical dataset.  The 

electrophysiological features used for this analysis were: input resistance, peak 

firing rate, AP half-width, change in impedance, and F-I gain.  The anatomical 

features used were: soma depth, the most superficial extent of the axonal tree, 

the deepest extent of the axonal tree, and the axonal width. All these features 
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were z-scored (i.e., mean-subtracted and divided by the standard deviation) prior 

to the analysis. Each cell was treated as an observation with each feature a 

variable.  The ‘princomp’ function in MATLAB was used to calculate the  

transformation. 
 
 
K-means clustering analysis 

K-means clustering analysis (MacQueen, 1967) was used on the first four 

principal components of the above data set in order to group cells.  The ‘kmeans’ 

function in MATLAB was used with 100 iterations for each operation to ensure 

the most optimal solution is achieved.  Silhouette scores were calculated using 

the ‘silhouette’ function in MATLAB.  The silhouette score is a measure of 

similarity of a point to points within its own cluster and of dissimilarity of a point to 

points outside of its own cluster (Rousseeuw, 1987).  For a given cell i, it is 

calculated as s(i) = (b(i)-a(i))/maximum[a(i),b(i)], where a(i) is the average 

distance between cell i and all other cells in its cluster and b(i) is the shortest 

distance between cell i and any cell not in i's cluster. The range of values ranges 

from -1 to 1.  A higher score (closer to 1) indicates high similarity within cluster 

and dissimilarity outside of cluster, whereas a lower score (closer to -1) indicates 

low similarity within cluster and dissimilarity outside of cluster (suggesting the  

data point was misclassified).    
 
 
Group comparisons 

When comparing electrophysiological and anatomical features among 

different cell groups, reported p values were calculated using a one-way ANOVA 

with a Tukey test for means.  For each feature in each group, a Kolmogorov–
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Smirnov normality test was performed to ascertain that all compared distributions  

were normal. 
 
 

Results 

Interneuron characterization 

Interneurons of the mouse superficial medial entorhinal cortex were 

systematically patched, electrophysiologically characterized, and then 

anatomically reconstructed in order to better understand the local inhibitory 

components of this brain region.  Because interneurons make up a small (<10%) 

portion of all the medial entorhinal cortex, transgenic mice labeling GAD2+ and 

PV+ cells are used to target the neuron subpopulation.  For each interneuron, 

passive properties (like input resistance at rest, time constant, and sag ratio) and 

active properties (like action potential shape and frequency-current relationships) 

are measured in the current clamp configuration (Figure 3.1A), and then the 

neuron is stained posthoc with an Alexa 488 fluorescent marker.  The neuron is 

then reconstructed in a three dimensional z-stack using a 2-photon microscope 

(Figure 3.1B).  In all, each neuron had ten electrophysiological features and four 

anatomical features recorded. 

The study yielded a total of 122 interneurons with complete 

electrophysiological and anatomical profiles.  Of these, 96 cells were acquired 

using GAD2+ mice and 26 were acquired in PV+ mice.  Cells that had incomplete 

or inadequate electrophysiological trials were discarded.  Common causes of 

incomplete electrophysiological characterization included cell death during 

experiment, incomplete pipette to cell seal, and noise artifacts that corrupted the  
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Figure 3.1 MEC interneuron electrophysiological and anatomical 
characterization  
Ai Depolarizing current is injected to elicit firing and resulting action potentials 
(AP) are characterized.  AP half-widths are measured at half the height of the 
AP (using the AP initiation upstroke, or “knee,” as the base).  The duration 
between passing the half-height on the depolarizing phase and passing the 
half-height on the hyperpolarizing phase is the AP half-width.  The 
afterhyperpolarizing potential (AHP) is measured as the membrane potential 
difference between the AP “knee” and the most hyperpolarized membrane 
potential immediately following the AP. ii One-second long hyperpolarizing 
pulses are injected to hyperpolarize the cell from -70 mV to approximately -80 
mV.  The resulting voltage deflection ΔV is divided by the injected current ΔI to 
calculate the input resistance.  The sag ratio was defined as ΔV /(sag+ ΔV). iii 
The frequency-current (F-I) relationship was described injecting progressively 
increasing current pulses and measuring the resulting firing rate.  The slope 
between the first non-zero F-I trial and the peak firing trial is the F-I gain.  The 
fastest firing rate elicited by the current pulses is the peak firing rate. iv The 
impedance spectra are measured at both -80 mV and near threshold are used 
to calculate the impedance change.  The impedance between 1 Hz and 10 Hz 
of the perithreshold spectrum is divided by the same impedance band of the 
rest spectrum.  The dashed line indicates the upper band for the impedance 
change calculation, 10 Hz. Bi A z-stack projection of a biocytin filled, Alexa 488 
labelled MEC interneuron is used to determine the location of the soma and 
estimate the extent of the axonal tree. ii The neuron in Bi is described using a 
diamond to indicate the depth of the soma (relative to the pial surface) and a 
rectangle to describe the laminar and columnar extent of the neuron’s axonal 
projection, both in red.  Dashed line indicate the average depth of layers 1, 2, 
and 3.  This neuron has a soma at the layer 1/2 border (approximately 200 µm 
deep), and its axonal tree extends from approximately 170 µm to 350 µm in 
depth and is approximately 500 µm wide. 
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data acquisition.  Cells that had incomplete anatomical reconstructions, 

particularly those where the axonal tree was not visible, were also discarded.  

Common issues with anatomical reconstruction included incomplete anatomical  

fills and inadequate staining. 
 
 
Classifying interneurons into distinct groups 

Given that the large data set included 122 interneurons each with 10 

electrophysiological features and 4 anatomical features, principal components 

analysis (PCA) was used to isolate the variation of the data into fewer 

dimensions.  PCA was conducted using 9 selected electrophysiological and 

anatomical measurements (see Materials and Methods).  Since this diverse set 

of measurements vary greatly in mean and variance, all measurements were z-

scored to standardize the PCA variables to a mean of 0 and variance of 1.  To 

reduce the dimensionality of the data set, in further analyses used only the top 

four ranked principal components, which altogether accounted for 79.6% of the 

variance in the data.  The relationships among the four principal components 

have been plotted in Figure 3.2A. 

The resulting principal components were then used to group cells into 

distinct clusters.  K-means clustering analysis was performed as described 

previously.  Given that k-means clustering requires the number of clusters as an 

input, it was necessary to determine the optimal number of clusters to divide the 

data set.  K-means clustering was thus conducted on using various cluster 

number inputs, ranging from only 2 clusters to up to 16 clusters.  For each cluster 

number input, a silhouette score was calculated for all cells.  The silhouette score  
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Figure 3.2 Principal component and k-means clustering analysis 
A The first four principal components of combined electrophysiological and 
anatomical data are plotted in all possible combinations.  These four principal 
component dimensions were used to conduct k-means clustering analysis.  
Cluster 1 is cyan, cluster 2 is blue, cluster 3 is magenta and cluster 4 is in 
black.  Bi In order to determine the optimal number of clusters for k-means 
clustering, the average silhouette score (measure of distance for within-cluster 
points compared to outside-of-cluster points) was calculated for k-means 
clustering analyses using between 2 and 16 clusters.  The highest silhouette 
score was achieved using 4 clusters, suggesting that this is the optimal cluster 
number. ii The silhouette value (score) for each point is shown in their 
corresponding cluster.  Low or negative silhouette values indicate points that fit 
poorly within its cluster.  For further analyses, points with silhouette values 
lower than 0.2 (indicated by the dashed gray line) were discarded. iii In a 4 
cluster analysis, parvalbumin positive (PV+) cells were located entirely in 
cluster 2, with 26 out of 30 cells being PV+.  This again suggests that using 4 
clusters for the k-means clustering analysis is optimal. 
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is a measure of the cluster “fit”; it is high when a data point (in this case a cell) is 

more similar to data points within its cluster than those outside of its cluster.  The 

average silhouette score for all 122 interneurons in each of the 2-16 cluster k-

means analyses was calculated to validate the cluster “fit,” as shown in in Figure 

3.2Bi.  The highest mean silhouette score was achieved when four clusters were 

assigned to the data set, suggesting that the data set is most optimally clustered 

when the cluster number input is four.   

The silhouette scores four the 4 cluster analysis are shown in Figure 3.2Bii.  

In order to optimize the clustering analysis, cells with silhouette scores less than 

0.2 (shown in a gray dashed line in Figure 3.2Bii) were discarded from further 

analysis.  This reduced the data set from 122 interneurons to 105 interneurons.  

The resulting GAD2-PV cell distribution for these clusters is shown in Figure 

3.2Biii.  Clusters 1 and 2 have a total of 30 cells each, cluster 3 has 15 cells, and 

cluster 4 has 28 cells.  Notably, the k-means clustering analysis placed all 26  

PV+ cells in the data set into cluster 2.  The fact that all PV+ cells were placed in 

a single cluster and that the cluster itself was almost entirely (26 out of 30, 87%) 

comprised of verified PV+ cells lends further support to the PCA/k-mean 

clustering method used in this study.  This result also suggests that PV+ cells  

represent a relatively small fraction of the fluorescent cells in the GAD2 mice. 
 
 
Description of the four interneuron groups 

Assigned groups express distinct electrophysiological/ 
anatomical profiles 

As shown on Table 3.1 and Figure 3.3, the clustering method classified the 

data set into four interneuron groups with distinct anatomical and  
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Table 3.1 Electrophysiological and anatomical characteristics for all 4 interneuron 
clusters with statistical comparisons 

 

The electrophysiological and anatomical characteristics of all 4 clusters are 
shown, along with the associated p-values from a one-way analysis of variance 
test (as described in Materials and Methods).  Each row shows the average 
value for a different electrophysiological or anatomical measurement.  The 
standard error associated with that measurement is located below the average 
value.  Each column for the left half of the table shows the measurements for 
each of the 4 clusters.  On the right half of the table, the p-value for the one-way 
ANOVA test is shown for matched pairs.  For example, column “1,2” shows the 
p-values for the test between clusters 1 and 2 for each characteristics.  P-values 
less than 0.05 are highlighted in blue.  Tests that showed no significance are 
shown as “n.s.” 
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Figure 3.3 Anatomical and electrophysiological summary data for 4 clusters 
A The average anatomical characteristics for each cluster are displayed in the same 
abstract form as in Figure 3.1Bii.  The average soma depth is shown as a diamond, and 
the average axonal tree extent is shown as a rectangle.  Cluster 1 shows an average 
soma depth in the layer 2 with axonal projections to layers 2 and 3.  Cluster 2 shows an 
average soma depth also in layer 2 with axonal projections mostly restricted to layer 2.  
Cluster 3 shows an average soma depth in layer 2 with axonal projections in layers 2 
and 3.  Cluster 4 shows an average soma depth in the layer 1/2 border, with axonal 
projections mostly in layer 1. B Several electrophysiological characteristics are 
described for each cluster.  All electrophysiological characteristics and relevant 
statistical tests are described in Table 3.1. i Input resistance is shown in megaohms.  
Clusters 2 and 4 were lower relative to clusters 1 and 3. ii AP halfwidth is show in ms.  
Cluster 2 interneurons had the fastest AP half-widths of all clusters. iii FI gain is shown 
in hertz per nanoamp.  Clusters 2 and 4 had steeper FI gains than clusters 1 and 4. iv 
The peak firing rate is shown in hertz.  Cluster 2 had the fastest peak firing rate of all 
clusters. 
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electrophysiological profiles.  Figure 3.3A shows the average soma depth and 

the average axonal tree extent for each cluster. The average soma depth varies 

slightly among clusters, with most of the variance being within cortical layer 2.  

The average axonal extent, however, is distinct among clusters, with each cluster 

projecting to a different range of cortical layers.  Figure 3.3B shows the 

distribution (in box plot form) for various electrophysiological characteristics: input 

resistance (3.3Bi), AP half-width (3.3Bii), F-I gain (3.3Biii), and peak firing rate 

(3.3Biv).  Overall, no 2 clusters show similar electrophysiological profiles; 

although for certain features two clusters may have distributions with substantial 

overlap, the combination of electrophysiological features for each cluster is 

unique.  The complete statistical comparisons for both electrophysiological and 

anatomical features are shown in  

Table 3.1. 
 
 
Cluster 1: layer 2/3-projecting slow-firing interneurons 

Cluster 1 interneurons (n = 30) have somas throughout layers 2 and 3, with 

an average depth of 320.3±14.6 µm.  Their axonal projection reach layers 2 and 

3, and their average axonal extent is the deepest of all clusters at 298.7±22.5 µm 

(p<0.01) for its most superficial extent and 439.5±19.8 µm (p<0.01) for its 

deepest extent.  The average axonal width is the narrower (p<0.01) than Cluster 

2 and 4 at 366.7±22.7 µm.  Several examples of this interneuron cluster are 

shown in Figure 3.4, with all somas and axonal trees shown in Figure 3.4A and 

2-photon reconstructions in Figure 3.4Bi-vi.   

 The most salient electrophysiological feature of the layer 2/3-projecting  
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Figure 3.4 Examples of Cluster 1 interneurons 
A Anatomical characteristics for all cells in Cluster 1 are shown in the same 
abstract form as in Figure 3.1Bii.  Bi-v Z-stack projections of Cluster 1 Alexa 
488 labelled MEC interneurons are shown as examples. 
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Cluster 1 interneurons is their slow firing rate and flat frequency-current 

relationship. The interneurons in this cluster had both the flattest F-I gain at 

97.1±13 Hz/nA (p<0.01) and the slowest peak firing potential at 45.1±4.8 Hz 

(p<0.01) of all clusters.  The average input resistance of Cluster 1 interneurons is 

205.9±12.8 MΩ, the second highest and most significantly different than all other 

clusters (p<0.05).  The average time constant is 13.3±0.8 ms significantly longer 

than Cluster 2 (p<0.01) and shorter than Cluster 3 (p<0.01) but not significantly 

different to Cluster 4.  The average firing threshold is -39.3±0.7 mV significantly 

more polarized than Clusters 1 and 4 (p<0.01).  The AP rise time for Cluster 1 

interneurons averaged at 0.275±0.005 ms, and its AP half-width was 

1.124±0.034 ms, significantly greater than Clusters 2 and 3 (p<0.01).  Cluster 1 

had the shallowest spike AHP of all clusters at 16.0±1.0 mV (p<0.01).  It has a 

smaller change in impedance between -80 mV and the perithreshold region than 

Clusters 1 and 2 (p<0.01), with an average percent change was 56.6±9.5 (%).   

The average sag ratio for the interneurons of this cluster is 0.935±0.006. 
 
 
Cluster 2: layer 2/3-projecting fast-firing interneurons 

Cluster 2 is the only cluster to contain PV+ interneurons, which comprise 

26 out of the 30 cells in this group.  Figure 3.5A shows all axonal trees for this 

cluster. Figure 3.5Bi-vi shows several examples of 2-photon reconstructions.  

Their somas are located throughout layers 2 and 3, with an average depth of 

308.2±15.1 µm.  Like Cluster 1, Cluster 2 axonal projections are located mainly 

throughout layers 2 and 3.  The most superficial/deepest axonal projections are 

on average 162.8±17.4 µm and 282.3±13.1 µm respectively, which places it 
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Figure 3.5 Examples of Cluster 2 interneurons 
A Anatomical characteristics for all cells in Cluster 2 are shown in the same 
abstract form as in Figure 3.1Bii.  Bi-v Z-stack projections of Cluster 2 Alexa 
488 labelled MEC interneurons are shown as examples. 
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significantly deeper than Cluster 4 cells (p<0.01) but more superficial than 

Cluster 1 cells (p<0.01).  Average axonal width is 512.2±12.5 µm.   

Cluster 2 interneurons are predominantly fast-spiking, in agreement with 

previous findings on PV+ cells (Jones and Bühl, 1993).  The interneurons in this 

cluster have a very fast peak firing rate of 274.5±9.6 Hz, significantly faster than 

all other clusters (p<0.01) and 228% greater than the next fastest spiking cluster 

(Cluster 3 at 120.6±7.3 Hz).  The average input resistance of Cluster 2 

interneurons is 89.3±6.1 MΩ, by far the lowest of all clusters (p<0.01).  The time 

constant is also faster than all other clusters (p<0.01) at 5.34±0.29 ms; as are the 

AP half-width (0.536±0.014 ms, p<0.01) and the AP rise time (0.196±0.005, 

p<0.01).  Its 19.8±0.8 mV spike AHP is similar to Clusters 3 and 4, significantly 

greater only than Cluster 1.  Despite its fast firing rate, the frequency-current gain 

is only the second highest of the four clusters at 282.0±15.3 Hz/nA, less than 

Cluster 3 but greater than Cluster 1 and 4 (p<0.01 for all comparisons).  The 

percent change in impedance exhibited in Cluster 2 neurons is 134.7±12.4 (%), 

similar to Cluster 3 but greater than Clusters 1 and 4 (p<0.01).  The average sag  

ratio is 0.946+0.004. 
 
 
Cluster 3: layer 1/2-projecting interneurons 

Cluster 3 interneurons (n=15), like the first two clusters, have somas 

throughout layers 2 and 3 as shown in Figure 3.6.  The average soma depth in 

Cluster 3 is 294.7±19.5 µm.  Cluster 3 axonal projections extend mainly through 

layers 1 and 2.  The average axonal extent of Cluster 3 interneurons is similar to 

Cluster 2 at 105.2±32.7 µm in its superficial extent and 338.2±36.6 µm in its deep  
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Figure 3.6 Examples of Cluster 3 interneurons 
A Anatomical characteristics for all cells in Cluster 3 are shown in the same 
abstract form as in Figure 3.1Bii.  Bi-v Z-stack projections of Cluster 3 Alexa 
488 labelled MEC interneurons are shown as examples. 
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extent (deeper than Cluster 4 and more superficial than Cluster 1, p<0.01).  Its 

anatomical profile is different from Cluster 2 only in that its axonal tree is 

narrower (p<0.01) at 440.8±32.1 µm, compared to 512.2±12.5 µm.  Cluster 3 is 

the smallest cluster, having only 15 cells.  All the axonal trees for this cluster are 

shown in Figure 3.6A, and several 2-photon reconstruction examples are shown 

in Figure 3.6Bi-vi. 

Cluster 3 interneurons have the highest input resistance (294.7±22.9 MΩ) 

of any cluster (p<0.01).  Due in part to this high input resistance, Cluster 3 

interneurons also have the steepest F-I gain of all clusters at 409.4±48.2 Hz/nA 

(p<0.01).  The average time constant is 19.38±2.76, greater than Clusters 1 and 

2 (p<0.01).  The firing threshold is -41.2±1.1 mV, more polarized than Clusters 2 

and 4 (p<0.01).  The AP half-width (0.784±0.052 ms) is significantly different from 

all other clusters, greater than Cluster 2 but less than Clusters 1 and 4 (p<0.01 

for all comparisons).  The AP rise time is 0.251±0.014 ms, and the spike AHP 

19.5±0.9 mV.    The peak firing rate is 120.6±7.3 Hz, faster than Cluster 1 and 4 

but slower than Cluster 2.  The change in impedance for Cluster 3 is 140.8±14.1 

(%).  Cluster 3 has the lowest sag ratio at 0.900±0.015 (p<0.01), the only sag  

ratio to be significantly different compared to other clusters. 
 
 
Cluster 4: layer 1-projecting interneurons 

Cluster 4 interneurons (n=28) have the most superficial somas of any 

cluster (p<0.01), as can be seen in Figure 3.7.  At an average soma depth of 

169.5±7.5 µm, Cluster 4 interneuron somas are located throughout layers 1 and 

2.  This cluster’s axonal projections are mainly limited to layer 1, with its average  
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Figure 3.7 Examples of Cluster 4 interneurons 
A Anatomical characteristics for all cells in Cluster 4 are shown in the same 
abstract form as in Figure 3.1Bii.  Bi-v Z-stack projections of Cluster 4 Alexa 
488 labelled MEC interneurons are shown as examples. 
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deepest axonal extent being the most superficial of all clusters (214.7±23.5 µm, 

p<0.01).  The average most superficial axonal extent is 79.1±22.9 µm and the 

axonal width is 495.1±19.3 µm.  The entire population of somas and axonal 

extents is shown in Figure 3.7A, and several examples of 2-photon 

reconstructions for Cluster 4 interneurons are shown in Figure 3.7Bi-vi. 

Most of the electrophysiological features for these layer 1-projecting 

interneurons do not lie at either extreme among the clusters.  Input resistance is 

168.6±8.3 MΩ, greater than Cluster 2 (p<0.01) but less than Clusters 1 (p<0.05) 

and 3 (p<0.001).  The average F-I gain is 157.7±18.6 Hz/nA and peak firing rate 

is 64.9±5.7 Hz, both greater than Cluster 1 but less than Clusters 2 and 3 

(p<0.01 for all comparisons).  The Cluster 4 average time constant is 15.5±4.99 

ms, and firing threshold is -35.9±1.0 mV.  The action potential shape is unique in 

having the slowest AP rise time of all clusters (0.306±0.007 ms, p<0.01).  The AP 

half-width is 1.224±0.042 ms, greater than those of Clusters 2 and 3 (p<0.01).  

The spike AHP is 19.0±0.8 mV.  The percent change in impedance is 48.7±10.1 

(%), lower than Clusters 2 and 3 (p<0.01).  Finally, the sag ratio for Cluster 4 is  

0.934±0.009. 
 
 

Discussion 

Having systematically characterized 122 interneurons in the superficial 

MEC, we have found that this interneuron population is best classified into four 

distinct groups, based on their anatomical and electrophysiological 

characteristics.  In anatomical classifiers, the laminar extent of axonal projection 

and the somatic depth of interneurons were emphasized.  For 



68 
 

 
 

electrophysiological classification, input resistance, AP half-width, peak firing 

rate, frequency-current gain, and changes in impedance were used.  The 

resulting interneuron groups are layer 2/3-projecting, slow-firing neurons; layer 

2/3-projecting fast-firing neurons (mainly PV+); layer 1/2-projecting interneurons; 

and layer 1-projecting interneurons.   

The clustering method for interneuron data used principal component 

analysis to reduce the 10-dimensional parameter space into four orthogonal 

dimensions (principal components) with maximized variance (Jolliffe, 2002).  

Multidimensional clustering was then performed on the first four principal 

components and silhouette scores were used to determine optimal cluster 

number.  This method is similar to previous approaches to neuronal classification 

(Cauli et al., 2000; Dumitriu et al., 2006; Helm et al., 2013; Krimer, 2005).  This 

study is the first, to our knowledge, to combine both anatomical and 

electrophysiological characteristics in the analysis, as opposed to using only 

electrophysiological data (Helm et al., 2013; Krimer, 2005) or conducting 

clustering analyses for different types of data separately and evaluating 

correlations (Cauli et al., 2000; Dumitriu et al., 2006).   This method is often used 

to differentiate between cell types within distinct molecular subgroups, such as 

parvalbumin-positive or somatostatin-positive interneurons (Halabisky, 2006; Ma, 

2006; McGarry, 2010).  Because our dataset included cells from the general 

GAD2+ population and the specific molecular PV+ subgroup, the clustering 

method was particularly effective at differentiating different 

anatomical/electrophysiological profiles. 
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Previous immunostaining work has found that PV+ interneurons make up 

approximately 50% of the GAD+ population in the superficial MEC (Miettinen et 

al., 1996).  However, analysis of the GAD2+ interneurons characterized in this 

cluster found a very small percentage of interneurons exhibiting characteristic 

PV+ electrophysiological/anatomical profiles.  The clustering analysis yielded 

only 4 interneurons out of 96 that were taken to be anatomically and 

electrophysiologically similar to PV+ interneurons by being placed in Cluster 2. 

This discrepancy may be explained by issues in the transgenic technique used in 

this study.  PV+ cells may also have been preferentially lost during slicing as 

compared to GAD2+ cells.  GAD2+/tdTomato fluorescence in PV+ neurons may 

have been lower than in neighboring cells, discouraging patching of PV+ cells.  

Fortunately, the addition of separate PV+ transgenic animals into the study 

compensated in part for the relative paucity of PV+ in the GAD2+ patched cell 

population. 

The interneurons of Cluster 1 have somas located throughout layers 2 and 

3; their axonal projections reach into layers 2 and 3, with some neurons having 

axons projecting into the lamina dessicans (layer 4).  Previous anatomical 

studies have identified MEC layer 2/3 interneurons with similar anatomical 

characteristics as pyramidal-looking interneurons (Kumar and Buckmaster, 

2006), multipolar cells (Gloveli et al., 1997), and bipolar cells (Wouterlood et al., 

2000).  Pyramidal-looking interneurons in the MEC layer 3 described by Kumar 

and Buckmaster (2006) have axonal projections mostly concentrated around the 

cell body in layer 3 and projecting superficially in layer 2, a feature present in 
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some Cluster 1 cells (see Figure 3.5A).  They are described as having high input 

resistance (382±47 MΩ), whereas the population average for Cluster 1 neurons 

is also high relative to other clusters (205.9±12.8 MΩ).  Gloveli et al. (1997) in 

turn describes pyramidal-looking interneurons in MEC layer 3 as having much 

lower input resistances of 50.6±5 MΩ, although they maintained their previously 

mentioned layer 2/3 axonal projections.   The relatively low input resistances 

measured by Gloveli et al. (1997) are likely due to their use of sharp electrodes 

(as opposed to the patch electrodes used in this study), which have been shown 

to reduce the input resistance in a cell by 20-40% (Li, 2004).  Overall, these 

results suggest that a significant portion of Cluster 1 cells are pyramidal-looking 

interneurons. Multipolar cells are described similarly by Gloveli et al. (1997), with 

a low input resistance of 36.8±3.3 MΩ.  Unlike the pyramidal-looking 

interneurons, the axonal projections of these interneurons project further into 

layer 2 and can project onto layer 1, in addition to projecting intralaminarly in 

layer 3.  This cell type contains somatostatin (SOM) and cholecystokinin (CCK) 

positive cells (Wouterlood and Pothuizen, 2000), and like the pyramidal-looking 

interneuron is also likely represented within the Cluster 1 population.  Finally, 

MEC layer 3 bipolar cells described by Wouterlood et al. (2000) may be included 

in the Cluster 1 population as the cells having narrower axonal widths that can 

project deeper into the lamina dessicans. Cluster 1 neurons account for the 

superficial MEC’s deeper-projecting interneurons that generally have lower firing 

rates and low frequency-current gains.  This differentiates them from the fast-

firing layer 2/3-projecting interneurons and suggests that they play different roles 
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in local circuit modulation.   

The second cluster described in this study is made up almost entirely of 

PV+ interneurons.  The 4 out of 30 cells that are not verified to be PV+ may 

indeed be PV+, as the GAD2+ marker also covers the PV+ cell population 

(Miettinen et al., 1996).  In the MEC, the population of PV+ neurons with somas 

located in layer 2 (as is the case with most Cluster 2 neurons) contains basket 

cells and chandelier cells (Canto et al., 2008).  Basket cells in the MEC were first 

described by Jones and Bühl (1993), who through unaided patching over several 

years successfully characterized 12 basket cells, both anatomically and 

electrophysiologically.  In the anatomical description, they described cells with 

axonal projection mostly within layer 2, as we see for Cluster 2 neurons. 

Electrophysiologically, they described the PV+ interneurons as fast-spiking, and 

Cluster 2 neurons are the fastest spiking population in the present corpus.  

Additionally, the basket-like interneurons had action potential half-width as 0.51 + 

0.05 ms, very similar to the AP half-width of Cluster 2 neurons at 0.536 + 0.014 

ms.  Finally, the cells in Cluster 2 were very likely to exhibit type 2 discontinuous 

frequency-current relationship (data not shown), a feature which has often been 

associated with fast-spiking PV+ cells (Mancilla et al., 2007).  These cells are 

likely to make up the bulk of the Cluster 2 interneuron population.  MEC 

horizontal chandelier cells, named for their vertically oriented axonal 

aggregations, have been described having a vertical axonal extent 100-200 µm 

long (Cluster 2 average is approximately 120 µm); the horizontal extent is usually 

250-350 µm wide (Cluster 2 average is 512.2±12.5 µm, although some are 
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narrower than 350 µm) (Soriano et al., 1993).  By visual inspection, chandelier 

cells comprise a smaller fraction of the cells in Cluster 2 than basket cells. 

Clusters 1 and 2 have similar anatomical distributions (axonal projections 

mainly in layers 2 and 3) and so are mainly distinguished by their temporal 

dynamics.  Cluster 1 cells express slower firing rates, flatter F-I gains and a 

greater time constant than Cluster 2 cells.  What role might these two interneuron 

populations play in the superficial MEC?  First, fast-firing PV+ neurons like those 

in Cluster 2 have already been shown to mediate stellate-to-stellate cell 

connectivity (Couey et al., 2013), provide grid cell-driven recurrent inhibition to 

the local circuit (Buetfering et al., 2014), and drive theta-nested gamma 

oscillations (Pastoll et al., 2013).  Second, cortical circuits throughout the brain 

receive a large dynamic range of excitatory inputs, input which is then balanced 

by an increase in inhibitory inputs (Borg-Graham et al., 1998; Monier et al., 2003; 

Wehr and Zador, 2003).  This coordination occurs over a large dynamic range, 

meaning the inhibitory dynamics of each circuit is capable of matching excitatory 

input across this same temporal range.  The existence of slow-firing (Cluster 1) 

and fast-firing (Cluster 2) inhibitory interneurons with axonal projections within 

the same layers may thus serve to provide enough sensitivity and dynamic range 

to address the heterogeneous multimodal inputs that the MEC receives, 

facilitating the spatial navigation functions that have been described in layers 2 

and 3.  Third, optogenetic stimulation of either the PV+ cell populations (as in 

Cluster 2) and SOM+ populations (as are likely present in Cluster 1) have been 

shown to produce ictal discharges in vitro in the superficial MEC (Yekhlef et al., 



73 
 

 
 

2015).  Kumar and Buckmaster (2006) also showed that rats treated with 

pilocarpine showed reduced levels of these two cell types, which directly resulted 

in hyper-excitability of layer 2 stellate cells.  The cells of both Clusters 1 and 2 

may thus also play an important role in epilepsy. 

Cluster 3 interneuron somas are mainly located in the layer 2 somas and 

have axonal projections into layer 1 and layer 2.  Anatomical studies have 

described MEC and lateral entorhinal cortex cells with similar anatomical 

characteristics as multiform neurons, with axons similarly projecting into the white 

matter (layer 1) and intralaminarly in layer 2 (Tahvildari and Alonso, 2005).  

Electrophysiological characterization of these cells in the LEC by Tahvildari and 

Alonso (2005) showed cells with similar time constants (19.38±2.76 ms in this 

study, where they showed 20.7±1.32 ms) and peak firing rates (120.6±7.3 Hz 

compared to approximately 125±30 Hz).  The average firing threshold they 

measured in the LEC was slightly more depolarized (-45.8±0.5 mV) than that 

measured in this study in the MEC (-41.2±1.1 mV); input resistance was also 

considerably lower in the LEC (55.7±6.85 MΩ) than in the MEC (294.7±22.9 MΩ), 

though our study used pipette tips of much lower resistance (~6 MΩ versus 80-

120 MΩ).   The cells of Cluster 3 may therefore be related to the multiform cells 

electrophysiologically characterized in the LEC and anatomically described in the 

MEC, although to our knowledge they were never previously described 

electrophysiologically. Being the cluster with the smallest sample size and most 

heterogeneous anatomical distribution, it is difficult to ascertain what role Cluster 

3 interneurons may play in the MEC.  They have the second fastest peak firing 
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rate and steepest F-I gain to the PV+ Cluster 2 cells.  Given that Cluster 3 and 

Cluster 4 both project into layer 1, the relatively slower firing rate of Cluster 4 

cells suggest that these two populations play the same fast/slow complementary 

role that Clusters 1 and 2 play in layers 2 and 3, increasing the range of inhibitory 

responses available to respond to excitatory inputs. 

The fourth cluster describes cells with somas in layer 1 (near the layer 1/2 

border) and axonal projections mostly restricted to layer 1 with a horizontal extent 

on average 495.1±19.3 µm.  Neurons with these anatomical characteristics have 

been previously described as both horizontal cells (Germroth et al., 1989) and 

multipolar cells (Wouterlood et al., 2000).  Horizontal cells have been shown to 

express cholecystokinin (CCK) in the MEC (Schwerdtfeger et al., 1990), whereas 

layer 1 multipolar cells in the MEC have been described as calretinin (CR) 

positive (Wouterlood et al., 2000).  Both cells have been described as having at 

least one axonal projection into the deeper layers of the MEC, a feature that was 

observed in several examples of the Cluster 4 neurons.   Although Canto and 

Witter (2012) electrophysiologically characterized layer 1 horizontal and 

multipolar MEC neurons, their study was focused on principal cells and discarded 

interneuron-like cells (with shorter AP half-widths) from their analysis.  Therefore, 

to our knowledge, this is the first characterization of these GABAergic, MEC-layer 

1 projecting cells.  Layer 1 interneurons have been suggested to play a delayed 

feedback role in cortical computation (Zhou and Hablitz, 1996).  Basically, as 

excitatory inputs arrive from other brain regions and excite pyramidal cells and 

stellates cells in layers 2 and 3, interneurons in layer 1 may also be excited 
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(either directly by the excitatory inputs or indirectly via principal cells) and inhibit 

the dendritic branches of the superficial MEC principal cells.  Given the great 

width of their axonal projections, it is possible that input to one of these layer 1 

cells has an effect on a wide area.  These may mean inhibitory input onto other 

layer 1 cells (disinhibition) or inhibitory input onto the dendrites of principal cells 

in other cortical columns.  Further work would be required to understand the  

specific role these layer 1-projecting Cluster 4 neurons play in the MEC.   
 
 

Supplement 

Alternative clustering approaches 

In addition to the combined data k-means clustering method used in this 

study, we explored several different approaches to the clustering problem.  First, 

we used hierarchical clustering to group the interneuron population and 

compared the results to those arrived at using k-means clustering.  Second, we 

explored clustering the interneurons using either anatomical data or 

electrophysiological data, as opposed to combining both data types into one  

analysis. 
 
 
Methods 

Hierarchical clustering 

The first four principal components of the combined anatomical/ 

electrophysiological data set (5 electrophysiological measures and 4 anatomical 

measures) were clustered using the unweighted pair group method with 

arithmetic mean (UPGAM) for hierarchical clustering (Sokal, 1958), using the 

least squared Euclidean distance to separate interneurons.  As this method 



76 
 

 
 

sequentially separates the population into different hierarchies, it is possible from 

one analysis to group interneurons into a few large clusters or several smaller 

clusters.  For the purposes of comparing our results to those of k-means 

clustering, the cutoff for differentiating clusters was set to 57% of the maximum 

distance between any 2 interneurons.  That is, all interneurons within a single 

cluster have to be no further than 57% of the maximum distance measured in this  

population; interneurons with a greater distance must be in separate clusters. 
 
 
Anatomical and electrophysiological clustering 

 We separated out the 4 anatomical and 5 electrophysiological measures 

and conducted separate analyses.  To reiterate, the electrophysiological features 

used for this analysis were input resistance, peak firing rate, AP half-width, 

change in impedance, and F-I gain.  The anatomical features used were soma 

depth, the most superficial extent of the axonal tree, the deepest extent of the 

axonal tree, and the axonal width. For both sets of data, we z-scored the 

measurements and conducted PCA analysis, as described in the Materials and 

Methods section.  For k-means clustering analysis, we set the cluster number to  

four, to match with the optimal cluster number for the combined analysis.  
 
 
Correspondence between different clustering distributions 

To compare different distributions, it was necessary to determine the 

optimal correspondence between clusters of one distribution to that of the 

combined k-means clustering distribution used in the study.  We established the 

optimal correspondence by testing every possible permutation for assignment 

overlap (percentage of interneurons assigned to the same cluster in both  
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distributions), and choosing the permutation of highest overlap. 
 
 
Results 

K-means clustering versus hierarchical clustering 

We conducted UPGAM hierarchical clustering on the same 4-dimensional 

principal component anatomy/electrophysiology data used for k-means clustering 

in the study. This separated the 122 interneuron population into the dendrogram 

in Figure 3.8Ai, with each end point representing a single interneuron and the 

branch connections indicating linkages between interneurons.  This created 

various levels (“hierarchies”) into which the population could be grouped.  Any 

separation would be based on the minimum required linkage between 

interneurons for these interneurons to be grouped into the same cluster.  By 

visual inspection, we tested a range of cutoff distances in order to yield 4 clusters 

of similar sample sizes to the k-means clusters used in the study.  We therefore 

set the cutoff at 57% of the maximum distance between any two interneurons in 

the population.  The resulting 8 clusters are colored differently in Figure 3.8Ai.  In 

order to adequately compare these clusters with those of the study, we inspected 

all possible permutations (8!=40,320) for maximum overlap.  This produced the 

corresponding k-means cluster labels for the hierarchical clusters shown in 

Figure 3.8Ai.   

The hierarchical clustering analysis had 83% overlap with the k-means 

clustering analysis, meaning 83% of interneurons were placed in the same 

cluster in both analyses.  This indicates substantial agreement in the results 

between both methods.  The distributions for each clustering analysis is shown in  
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Figure 3.8 Comparison of different clustering methods  
A UPGAM hierarchical clustering using combined anatomical and 
electrophysiological data yielded similar results to k-means clustering. i 
UPGAM hierarchical dendrogram separates the 122 interneurons sequentially 
by the least squared Euclidean distance.  Each branching point represents the 
splitting of a cluster into two clusters, until the clusters are comprised of single 
neurons.  Each end point thus represents a single interneuron.  Branch points 
above the height of 2.8 (a.u.), in this case representing 57% of the maximum 
distance in the population, are considered to represent distinct clusters.  These 
resulted in 8 different clusters, half of which had 3 or fewer interneurons.  In 
order to match up these clusters with those derived from the k-means 
clustering analysis, all possible permutations were tested.  The permutation 
with maximum overlap, shown per the labels for each cluster, was used for 
further analysis. ii The clustering distribution for hierarchical clustering is 
shown on the left bar, with each color corresponding to the branch on the 
dendrogram.  The 4 clusters with less than 4 interneurons were grouped into 
the gray “Other” category.  The clustering distribution for the k-means 
clustering is shown on the right, in the same color scheme used throughout the 
rest of the chapter.  For each distribution, red whiskers represent the PV+ 
interneurons.  Black lines connect corresponding interneurons that were 
categorized differently in each distribution, therefore fewer lines indicate 
greater overlap between clustering methods.  The 2 clustering methods 
showed 85% overlap, meaning 85% of interneurons were categorized within 
the same cluster.   The number of interneurons in each cluster is noted beside 
each cluster, along with the percentage of that cluster which was classified into 
their corresponding cluster in the other clustering method.  For example, 
Cluster 1 in the hierarchical clustering method has 45 interneurons, 89% of 
which were also classified into Cluster 1 in the k-means clustering method. B 
K-means clustering was used to cluster all 122 interneurons using only one 
type of data: either anatomical or electrophysiological. i Distribution plots for 
purely anatomical clustering and purely electrophysiological clustering are 
shown as in Aii.  Both anatomical and electrophysiological clustering were 
matched to the combined, 4 cluster k-means clustering distribution, as 
described in the methods.  The overlap between purely anatomical and purely 
electrophysiological clustering was 44%, indicating that some but not most 
interneurons could be matched to different anatomical and electrophysiological 
profiles. ii The same anatomical and electrophysiological distributions as in Bi 
are shown in comparison with the combined distribution in the center.  There is 
a 70% overlap between the combined distribution and the anatomical; whereas 
there is 61% overlap between the combined and electrophysiological 
distribution.  
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Figure 3.8Aii.  Cluster 1 had 45 interneurons in hierarchical clustering, 89% of 

which were categorized into the k-means Cluster 1; in turn, there were 42 

interneurons in k-means Cluster 1, 95% of which were classified into hierarchical 

Cluster 1.  The interneurons that were not classified into the same cluster are 

displayed as black lines leading to the corresponding cluster in Figure 3.8Aii.  

Both Cluster 2 populations contained all PV+ cells, as shown by the red whiskers 

indicating PV+ cells in Figure 3.8Aii.  Hierarchical Cluster 2 had 31 interneurons, 

97% classified into k-means Cluster 2; in turn, k-means Cluster 2 had 30 

interneurons, all of which were classified into hierarchical Cluster 2.  This shows 

a high degree of agreement in the predominantly PV+ Cluster 2. Cluster 3 in both 

analysis had 22 interneurons, although the overlap in each direction was only 

68%.  Hierarchical Cluster 4 had 16 interneurons, all of which were classified into 

k-means Cluster 4.  This cluster had 28 interneurons and only 57% were 

classified into hierarchical Cluster 4, completely due to the difference in cluster  

size. 
 
 
Combined data clustering versus separate data clustering 

We conducted separate analyses using either anatomical or 

electrophysiological data, using the same principal components analysis and k-

means clustering analysis as the study.  We matched the resulting 4 clusters 

from each analysis to the combined, 4-cluster k-means analysis used in the 

study. 

First, we compared the clustering results for the anatomy-only and 

electrophysiology-only data sets, shown in Figure 3.1Bi.  These distributions 
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showed only 44% overlap, suggesting that there is limited predictability for 

anatomy given electrophysiology, and vice versa.  Sixty-seven percent of 

anatomical Cluster 1 cells (n = 48) matched up with electrophysiological Cluster 1 

(n = 57), which in turn had 56% of its cells matched.  Similarly, 62% of 

anatomical Cluster 2 cells (n = 34) matched with electrophysiological Cluster 2 (n 

= 29), of which 72% matched.  Electrophysiological Cluster 2 had all but one of 

all the PV+ cells, which indicates that these cells could be well clustered using 

only electrophysiological data.  Anatomical Cluster 2, however, had a smaller 

fraction of PV+ cells (20 out of 26, 77%), suggesting that anatomical data were 

not as clear cut a differentiator for PV+ cells.  Anatomical Cluster 3 was small, 

with only 4 cells, only 14% of which matched with electrophysiological Cluster 3.  

This cluster had 29 cells, only 3% of which matched with anatomical Cluster 3.  

Overall Cluster 3 showed almost no correlation between its anatomy and its 

electrophysiology.  Similarly, Cluster 4 showed no correct matches between the 

anatomical distribution (n = 33) and the electrophysiological (n = 6).  This 

suggests that Clusters 3 and 4 had a less distinct paired anatomical and 

electrophysiological profile than Cluster 2.   

We then inspected the similarity of each separate analysis to the combined 

distribution used in the study, as shown in Figure 3.8Bii.  The anatomical 

distribution had 70% overlap with the combined distribution, whereas the 

electrophysiological cluster had 61% overlap with combined distribution.  

Anatomical clusters were matched with their corresponding combined clusters in 

proportions of 81%, 65%, 0%, and 73%, respectively.  Electrophysiological 
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clusters were matched with their corresponding combined clusters in proportions 

of 56%, 97%, 47%, and 0%, respectively. Notably, combined Cluster 4 had a  

large portion of its population assigned to electrophysiological Cluster 1 (68%). 
 
 
Discussion 

Hierarchical clustering showed substantial similarity with k-means 

clustering, with an overlap of 83% between both analyses.  This lends support to 

the clustering method used in the study, as similar results could be obtained 

using a different method.  It is important to note that the hierarchical clustering 

method produces 8 clusters, as opposed to 4, which meant that 8 of the 122 

interneurons were not matched to corresponding k-means clusters.  This set a 

ceiling of 93% on the possible overlap between the two distributions.  

Furthermore, for simplicity the k-means distribution used in this analysis included 

the 19 interneurons discarded in the main study for poor clustering.  This may 

further explain the population of interneurons that were not matched in the two 

analyses. 

Anatomical and electrophysiological clustering comparisons suggest there 

is only limited (44%) overlap between the separate anatomical and 

electrophysiological profiles of the interneuron population.  Cluster 1 was in both 

distributions the largest cluster and showed higher than average amount of 

overlap.  Cluster 2, as the cluster containing many PV+ cells, also showed higher 

overlap than average.  Clusters 3 and 4, however, showed close to no overlap in 

their distributions.  The greater disparity in cluster size in both the anatomical and 

electrophysiological distributions suggest that these data sets do not conform 
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particularly to the division into 4 clusters, but rather may be better fit to 3 clusters.  

This result itself suggests that while combining the two data types yields 4 

distinct profiles of interneurons, anatomy or electrophysiology alone would not 

predict the same number of clusters.  Electrophysiological clustering grouped all 

but one PV+ cell into the same cluster, however, anatomical clustering had 6 

PV+ cells assigned to other clusters.  Electrophysiology, thus, may be a slightly 

more reliable predictor of PV expression than anatomy.   

When comparing the separated analyses to the combined analysis 

distribution, we observed that the anatomical distribution had a 70% overlap with 

the combined distribution, whereas the electrophysiological distribution had 61% 

overlap.  Some of the combined clusters corresponded to the separated clusters 

more poorly than others.  For instance, anatomical Cluster 4 had 68% of its cells 

classified into electrophysiological Cluster 1.  According to the results of the 

study, this indicates that the layer 1 projecting cells of Cluster 1 may have similar 

electrophysiological profiles to those of the main study’s Cluster 1, but were 

differentiated mainly by the more superficial soma depth and axonal projections.  

This further validates our use of combined anatomical/electrophysiological 

clustering analysis in the main study.



 

 

 

 
CHAPTER 4 

 
 

INHIBITION-MEDIATED GAMMA OSCILLATIONS  

IN THE MEC 
 
 

Introduction 

Gamma frequency (30-100Hz) oscillations in the MEC and other cortical 

structures are thought to coordinate interactions between local neurons and their 

efferent targets in the hippocampus (Chrobak and Buzsáki, 1998; Cunningham, 

2004; Quilichini et al., 2010).  Specifically, it is thought that cortical principal 

neurons that are phase-locked to gamma oscillations are more effective at 

exciting downstream hippocampal neurons relative to non-gamma phase locked 

neurons.  Although robust MEC gamma oscillations have been observed in 

rodents and human, the mechanism by which these gamma oscillations can be 

so robustly maintained in vivo are not fully understood (Buzsáki and Wang, 2012; 

Wang, 2010).   In a circuit with high inhibitory interconnectivity and 

heterogeneous inputs like the MEC (Beed et al., 2010; Couey et al., 2013; Pastoll 

et al., 2013; Woodhall et al., 2005), fluctuation-driven stochastic inhibition-

mediated networks are an attractive model for gamma generation.  Recent work 

by Tikidji-Hamburyan and Canavier (2013) suggests that I-I networks with 

resonant (as opposed to integrating) interneurons produce a more robust model 

for I-I gamma generation, a finding also supported by Baroni et al. (2014) and 
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Moca et al. (2014).   

The model proposed by Tikidji-Hamburyan and Canavier describes 

interneurons as resonators, capable of responding to synaptic inputs with ringing, 

as in Figure 4.1Ai.  This property implies that interneurons can exhibit post-

inhibitory rebound (PIR) firing, i.e., a strong enough inhibitory synaptic impulse 

near threshold can produce a large enough depolarization (after the initial 

hyperpolarization) to cross the neuron’s firing threshold and initiate an action 

potential (Figure 4.1Aii).  The model further predicts that an interneuron 

synaptically coupled to itself via an inhibitory autapse (as in Figure 4.1B; this is a 

highly reduced model representing an interconnected population of interneurons) 

can self-sustain continuous fire.  In a randomly connected network with no noisy 

inputs, these properties would result in a single, stable network frequency with all 

cells firing in synchrony (Figure 4.2Ai).  An important feature of this model, 

however, is that the network frequency remains robust when noise is introduced 

into the inputs.  In the noisy input regime, single cells begin to skip cycles while 

the network frequency period remains the same, as shown in Figure 4.2Aii-iii.  

This is evident in Figure 4.2Bi-ii in the difference between the interspike intervals 

(ISI) of the network, which remains constant at longer time spans, and the 

interspike intervals of single neurons, which become reduced in count across 

longer time spans.  Figure 4.2C shows that the probability of a PIR spike 

occurring at a given neuron is dependent on the number of presynaptic spikes 

and the synchrony (or its inverse jitter) of those inputs.  In short, a minimum 

number of inputs are necessary, and low jitter greatly facilitates the firing of a PIR 
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Figure 4.1 Model resonant interneuron characteristics 
Ai A model resonant interneuron with an inhibitory input does not elicit a post-
inhibitory rebound (PIR) spike if the input is too small.  The voltage (V) trace is 
shown above the input conductance (gi) trace. ii A slightly larger input elicits a 
PIR spike. B A model resonant interneuron with both an inhibitory input and 
autapse can sustain a train of oscillatory firing, emulating behavior within a 
network.  The voltage (V) trace is shown above the synaptic input conductance 
(gi) and autapse input conductance (gr) traces. 
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Figure 4.2 Model resonant interneuron network behavior under noisy input 
Ai Each point represents the firing of an action potential.  In a randomly 
connected network with no noise, these resonant interneurons would exhibit 
stable tonic firing with each neuron firing in each cycle. ii When noise is added 
to the resonant interneuron network, the network frequency is maintained, but 
interneurons exhibit cycle skipping. iii Single cell voltage trace within a noisy 
network regime shows that the neuron skips cycles but its firing remains 
entrained to the network frequency. Bi The network ISI is consistent with peaks 
at multiples of 40 ms. ii However the single neuron ISI is less consistent at 
greater interspike intervals, due to cycle skipping. C The probability of a PIR 
spike being elicited in any particular neuron is plotted as a function of both 
input jitter and the number of presynaptic spikes.  A PIR spike requires a 
minimum number of presynaptic neurons to spike and for the jitter among 
those spikes to be low. D When the variance of input current is increased, the 
IPSP-to-spike latency peak is decreased.  Since the IPSP-to-spike latency 
determines how fast inputs result in spikes, the network period is set by the 
IPSP-to-spike latency. 
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spike.  Finally, Figure 4.2D shows how the network period is closely matched to 

the average input-to-spike latency at several variance levels of input current.  For 

the gamma rhythmogenesis network model to produce 30-100 Hz oscillations, 

interneurons would thus have to exhibit input-to-spike latencies on the order of 

10-33 ms. 

The network hypothesized by Tikidji-Hamburyan and Canavier relies on 

postinhibitory rebound (PIR) spiking between interneurons to drive firing and 

synchronize interneuron ensembles.  Network period in these simulations is 

commensurate with the synaptic input-to-spike latency, and cycle skipping is 

caused by disruptive inhibitory synaptic inputs that arrive just prior to the action 

potential initiation.  However, there is no evidence that MEC interneurons 

express the electrophysiological properties—such as PIR spiking at the 

appropriate input-to-spike delay—necessary to exhibit these behaviors.  

Furthermore, it is currently not known whether these properties are preferentially 

expressed in certain interneuron cell types and not others. 

Using whole-cell dynamic clamp to elicit inhibitory synaptic inputs 

(Economo and White, 2012), we tested whether GAD2+ and PV+ interneurons 

were capable of exhibiting PIR firing in response to inhibitory postsynaptic 

conductances (IPSGs).  In cells for which PIR firing could be elicited, we also 

simulated network conditions for firing by introducing an artificial autapse that 

inhibits the cell upon it firing.  To determine whether the autapse-induced firing 

regime responded to “mistimed” inhibitory synaptic inputs, we also injected 

randomly-timed disruptive IPSGs.  We find that parvalbumin positive (PV+) 
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populations of MEC interneurons are significantly more likely to exhibit PIR-

induced firing than the general (GAD2+) interneuron population.  This spiking 

occurs with IPSG-to-spike delay commensurate to maintaining a gamma band 

oscillation (22±6 ms, corresponding to an average gamma frequency of 45 Hz).   

We further find that PV+ cells are more likely than the general GAD2+ population 

to readily maintain autapse-mediated firing.  The input phase to phase delay 

response these cells exhibit to disruptive IPSGs (during the autapse-driven firing 

regime), however, is linear, as opposed to the exponential relationship predicted 

by the Tikidji-Hamburyan and Canavier model.  We conclude that the expression 

of these electrophysiological properties in PV+ cells suggest that the gamma 

rhythmogenesis mechanism proposed by Tikidji-Hamburyan and Canavier is 

viable in the MEC, although the precise network dynamics these cells exhibit in  

vivo might be different. 
 
 

Materials and methods 

Electrophysiology 

All electrophysiology experiments were conducted according to protocols 

approved by the University of Utah Animal Care and Use Committee.  Brain 

slices were harvested from 18-35 day old transgenic mice.  Two transgenic 

strains were used: cre-dependent GAD2-IRES-tdTomato transgenic mice 

(Taniguchi et al., 2011, strain 010802, The Jackson Laboratories; Bar Harbor, 

ME), which labeled glutamic acid decarboxylase 2 gene (GAD2) expressing cells, 

and thus facilitated targeting of GABAergic cortical interneurons; and PV-

tdTomato transgenic mice (Hippenmeyer et al., 2005, strain 008069, The 
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Jackson Laboratories; Hamden, CT), which labeled all parvalbumin (PV) 

expressing cells, and thus facilitated targeting of the specific PV+ genotype in 

inhibitory interneurons.  These mice were anesthetized with isoflurane and 

decapitated.  The brain was then harvested, chilled in sucrose-substituted 

artificial cerebrospinal fluid (ACSF, units in mM, 185 sucrose, 2.5 KCl, 1.25 

NaH2PO4, 10 MgCl2, 25 NaHCO3, 12.5 glucose, 0.5 CaCl2), and cut 

parasagittally into 300 μm thick slices using a vibrating microtome (Vibratome 

VT1200, Leica; Buffalo Grove, IL).  Slices were incubated for 15 min in ACSF 

(units in mM, 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 10 MgCl2, 25 NaHCO3, 25 

Glucose, 2 CaCl2) at 37°C, and then allowed to recover for at least 30 min at 

room temperature.  For recordings, slices were transferred to a heated (32-34°C) 

slice chamber (Warner Instruments; Hamden, CT) that is mounted on an upright 

microscope stage (Olympus BX53, Olympus; Tokyo, Japan) and perfused with 

95/5% O2/C02 ACSF.  GAD2+/PV+ neurons were visualized using fluorescence 

and whole-cell patch clamp clamped using patch pipettes (5-6 MΩ) fabricated 

from borosilicate glass (1.5 O.D. 1.1 I.D., Sutter Instruments; Novato, CA) and 

filled with artificial intracellular fluid (ICF, units in mM,  120 K-Gluconate, 5 MgCl2, 

0.2 EGTA, 10 HEPES, 20 KCl, 7 di(tris) phosphocreatine, 4 Na2ATP, 0.3 Tris-

GTP) loaded with biocytin (1% by weight) for posthoc reconstruction.  Presented  

data were not corrected for the junction potential, assumed to be 10-12 mV.   
 
 
Dynamic clamp synaptic stimulation protocol 

For all experimental protocols, synaptic conductances were simulated using 

dynamic clamp software (rtxi.org; Bettencourt et al., 2008; Dorval et al., 2001; Lin 
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et al., 2010) on a Pentium 4 computer running Linux Ubuntu with a patched 

version of the real-time application interface (RTAI) kernel.  Voltage was 

measured and a control current applied with a MultiClamp 700B amplifier (Axon 

Instruments, Union City, CA).   Conductances were implemented according to  

Isyn(t)=gmax∙s(t)(V-Esyn), where gmax is maximal conductance, V is membrane 

voltage, Esyn is the reversal potential of the synapse (-75 mV for inhibitory, 0 mV 

for excitatory), and s(t) is the difference of two exponentials with time constants 

of τrise = 1 ms and τfall = 3 ms.  Maximal conductances ranged between 2 and 

10 nS.  In order to examine a neuron’s ability to exhibit postinhibitory rebound 

firing, single artificial inhibitory postsynaptic conductances (IPSGs) were elicited 

near threshold with varying maximal conductances. If a neuron was able to 

exhibit PIR firing in more than 30% of induced IPSGs, then it was determined to 

be capable of PIR spiking.  In neurons exhibiting PIR firing, an artificial inhibitory 

autapse was introduced wherein the detection of an action potential (determined 

by a crossing of the -20 mV potential threshold) was followed by an artificial 

IPSG with a 2 ms delay.  Neurons that were able to exhibit PIR firing but not 

autapse-sustained firing were labeled as such and no further autapse trials were 

run.  In some cells, conductance-based leak was added with a reversal potential 

of -70 mV and magnitude of 10-20 nS, in order to prevent intrinsic burst firing.  To 

show phase resetting by an additional nonautapse induced IPSG, in some trials 

an IPSG was inserted randomly 100-300 ms after the initiation of autapse driven  

firing. 
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Data analysis 

Data analysis was performed using scripts written in MATLAB (The 

Mathworks, Natick, MA).  IPSP-to-spike delays were measured from the initial 

voltage deflection due to the IPSP to the action potential crossing of the -20 mV 

threshold. When comparing among groups, reported p values were calculated 

using a one-way ANOVA with a Tukey test for means when comparing groups 

assuming equal variance, except when otherwise noted.  P values reported for 

correlation coefficients were calculated with the 'corrcoef' function in MATLAB 

and represent the probability that a correlation coefficient as large as or larger 

than the reported value would be obtained by chance.  Interspike intervals in 

autapse trials were calculated as the time between action potential peaks for 

autapse-driven peaks. A single cycle in all phase analyses was also considered 

to be action potential peak-to-peak.  In trials with disruptive IPSGs, the average 

cycle period was calculated as the median interspike interval for that trial, and 

disruptive IPSG introduction phase was calculated with the previous action 

potential as phase equal to zero.  The resulting phase delay was calculated as 

the total time between the previous spike and the following spike (in the cycle 

where a disruptive PSG was introduced) divided by the average cycle period.  

Linear regression fits to the phase/phase delay data were calculated with the 

least-squares ‘polyfit’ function in MATLAB for a first order polynomial.  In trials 

with a disruptive IPSG, instances where a disruptive IPSG resulted in no further 

spiking (i.e., the autapse-driven regime was terminated) were labeled failures.  

The probability of failure was calculated as the proportion of all trials in that 

phase band which resulted in failure. 
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Results 

Postinhibitory rebound firing 

In silico, neurons modeled as resonators exhibit a characteristic “ringing” 

following a synaptic impulse.  This effect can be seen in Figure 4.3Ai.  To 

determine whether physiological interneurons could express this characteristic, 

whole cell dynamic clamp was used to patch GAD2+ or PV+ cells in acute mouse 

brain slices.  Upon patching these inhibitory interneurons, the membrane was 

depolarized to the perithreshold region and an inhibitory post-synaptic 

conductance (IPSG) was injected using dynamic clamp. The resulting 

hyperpolarization followed by a smaller depolarization and “ringing” can be seen 

in Figure 4.3Aii.   

Under perithreshold conditions, resonant neurons also exhibit post-

inhibitory rebound spiking in response to strong enough inhibitory input, as 

shown in Figure 4.3Bi.  The same interneuron shown in Figure 4.3Aii is shown in 

Figure 4.3Bii receiving a stronger inhibitory synaptic input.  The voltage response 

shows that the stronger inhibitory pulse can produce the postinhibitory rebound 

firing required for the gamma rhythmogenesis model proposed by Tikidji-

Hamburyan and Canavier to work.  These initial findings were important to 

establishing that these resonant properties existed in at least some MEC  

interneurons.  
 
 
Autapse-driven firing 

Having established that some MEC interneurons can exhibit postinhibitory 

rebound firing, it was important to establish whether these interneurons could  
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Figure 4.3 Model cell and physiological cell single input comparison 
Ai In the model, a weak inhibitory input fails to elicit a PIR spike but is instead 
followed by resonant ringing. ii Similarly, in a whole cell patch clamped GAD2+ 
inhibitory interneuron, a weak inhibitory input is followed by resonant ringing. 
Bi In the model, a strong inhibitory input results in a PIR spike. ii This PIR 
spiking is also replicated in a GAD2+ inhibitory interneuron. 



96 
 

 
 

replicate the in-network dynamics of the model.  As an alternative to attempting 

to simulate an entire network of cells in the dynamic clamp environment, an 

inhibitory autapse was used as a proxy for network inputs onto the interneuron.  

Two milliseconds after each action potential, the interneuron would receive an 

inhibitory synaptic conductance, simulating the type of firing it would receive 

within a mutually inhibitory network. In this manner, model neurons (Figure 4.4Ai) 

and actual interneurons (Figure 4.4Aii) could enter an autapse-sustained 

continuous firing regime.  The interspike intervals for each autapse trial is shown 

in Figure 4.4Bi-ii.  Whereas the peak for the model cell centered and peaked at  

approximately 38 ms, the patched interneuron ISI is centered around 26 ms. 
 
 
Differences in PIR spiking and autapse-driven firing  
expression between GAD2 cells and PV cells 

In this study, both GAD2+ and PV+ interneurons were examined for 

expression of PIR firing and autapse-maintained firing.  Not all interneurons that 

were able to fire in response to postinhibitory rebound firing were capable of 

maintaining autapse-driven firing.  All in all, 95 cells were examined for these 

properties: 25 PV+ cells and 70 GAD2+ cells.  The proportion of GAD2+ cells 

that exhibited either of the inspected properties was low.  Only 23 cells out of 70 

(33%) were able to fire in response to an inhibitory input and only 6 of those (9% 

of the total) were able to maintain autapse-driven firing (it is important to note 

here that GAD2+ cells include PV+ cells within its population).  In general, 

however, a majority of PV+ cells readily exhibited PIR firing and were able to 

maintain autapse-induced firing.  Of the 25 PV+ cells examined, 18 (72%) could 

fire in response to an inhibitory synaptic conductance.  Of those, 14 (56% 
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Figure 4.4 Model and physiological autapse input comparison 
Ai In the model, an inhibitory autapse elicits sustained firing. The voltage trace 
is located above the autapse input conductance trace. ii In a GAD2+ inhibitory 
interneuron, a simulated inhibitory autapse (introduced using dynamic clamp) 
also elicits sustained firing. Bi The model neuron exhibits an interspike interval 
distribution with a peak at 38 ms. ii The GAD2+ inhibitory interneuron 
interspike interval distribution for this cell has a peak at 25 ms. 
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of the total) could also maintain autapse-induced firing (see Table 4.1).  The 

input-to-spike delay (which the model predicts should be between 10-33 ms long 

to account for a 30-100 Hz gamma rhythm) for these groups were different.  

GAD2+ interneurons had IPSG-to-spike latencies 46±16 ms (n = 17) in cells that 

could not exhibit autapse-induced firing and 44±16 ms (n = 6) for those that could 

(n.s.).  PV+ neurons, in turn, had far shorter latencies.  PV+ cells that could not 

maintain autapse-driven firing had average IPSG-to-spike delays of 31±8 ms (n = 

4).  PV+ cells that could also engage in an autapse-driven firing had significantly 

shorter (p < 0.05) IPSG to spike delay than those that could not 22±6 ms (n = 

14).  This disparity could suggest that in PV+ cells shorter delays are important  

for enabling autapse-driven continuous firing.  
 
  
Disruptive IPSG injection in the autapse-driven firing  
regime 

A key aspect of the model proposed by Tikidji-Hamburyan and Canavier is 

how the timing of inputs in the network affect population synchrony: inhibitory 

inputs can delay the firing of an action potential in a single cell (see Figure 4.5Ai), 

which will in turn affect that interneuron’s output to other interneurons.  

Specifically, the network predicts that while inputs arriving in the first half of the 

spike-to-spike cycle (the normalized phase band between 0 and 0.5), inputs 

arriving in the second half of the cycle can substantially delay the next spike or 

even terminate the next action potential entirely (this effect is labeled “oscillator 

death”).  This relationship between the timing of the IPSG and the resulting delay 

to the next spike is illustrated in Figure 4.5Bi. 
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Table 4.1 Cell counts for each PIR response phenotype 
 

The cell counts for all possible postinhibitory rebound responses examined are 
shown for both PV+ and GAD2+ cells.  The first column shows the total number 
of cells in each cell type that failed to show postinhibitory synapse rebound 
(PIPSR) firing.  The second column shows the counts for cells that expressed 
PIPSR firing but could not successfully maintain autapse-driven firing.  The third 
column shows the counts for cells that both expressed PIPSR firing and could 
robustly maintain autapse-driven firing. 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Cell counts 
 per cell type No PIPSR 

PIPSR+ but 
cannot 

maintain 
autapse firing 

PIPSR+ and 
can maintain 

autapse 
firing 

PV+ 7 4 14 

GAD2+ only 47 17 6 
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Figure 4.5 Effect of a disruptive IPSG during the autapse-sustained firing 
regime  
Ai In the model, injecting a random, disruptive IPSG to the autapse-sustained 
firing regime can delay the next spike. The voltage trace is located above the 
autapse input conductance trace and also the disruptive inhibitory 
conductance. ii Similarly, injecting a disruptive IPSG to a GAD2+ inhibitory 
interneuron can delay the next spike. Bi The model predicts that the resulting 
delay that the disruptive IPSG will elicit, depending on the phase of the spike-
to-spike cycle at which it arrives.  IPSGs arriving in the first half of the phase 
are predicted to not delay the next spike, however, past the half phase point 
the resulting delay increases dramatically until it reaches an “oscillator death” 
zone, upon which a disruptive IPSG is likely to terminate the autapse-sustained 
firing.  Following the “oscillator death” zone, the phase delay elicited by the 
IPSG approaches zero. ii In a GAD2+ inhibitory interneuron, interneurons in an 
induced autapse-sustained firing regime were injected with a random, 
disruptive IPSG.  The phase at which these IPSGs were injected are plotted 
against the resulting phase delay, with each point representing a single trial.  
The red line shows the average membrane potential for a single cycle, showing 
the first hyperpolarization following the previous action potential, a steady rise 
to the next action potential throughout the cycle and ending with the steep 
depolarization of the next action potential.  The blue line represents the linear 
regression fit to the data, which has a slope of 1.32.  Unlike the model, the 
resulting delay of disruptive IPSGs in the physiological interneuron is best 
represented by a straight line. C The probability of a disruptive IPSG 
terminating the autapse-sustained firing regime is dependent on the phase at 
which the IPSG is injected.  In PV+ cells, the phase band between 0.8 and 0.9 
has the highest probability of failure (0.4) of any other phase band, replicating 
the prediction of the model. D PV+ cells that successfully exhibited autapse-
sustained firing had a significantly lower (22±6 ms) IPSP-to-spike delay than 
PV+ which failed to exhibit autapse-sustained firing (31±8 ms).  There was no 
significant difference in the IPSP-to-spike delay between successful and failed 
autapse GAD2+ cells. 
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In order to replicate these conditions in the dynamic clamp environment, 

PV+ cells in the autapse-driven firing regime were injected with an additional 

IPSG at a random time point, as shown in Figure 4.5Aii.  The phase timing of this 

random input was determined within the spike-to-spike cycle that the input was 

injected, and the resulting delay to the next spike was calculated as described in 

Materials and Methods.  The results from 612 successful disrupted autapse trials 

in 10 PV+ cells are shown in Figure 4.5Bii.  The relationship is best fitted with a 

line with slope 1.32 and intercept of 0.05 (in blue); the coefficient of determination 

is 0.847.  (The average membrane potential for a single spike-to-spike cycle is 

shown in red in Figure 4.5Bii.)  The phase-phase delay effect of IPSGs is linear, 

and thus different than that predicted from the model, which implies that the 

mechanism by which inhibitory interneurons might synchronize in gamma within 

a network is not well-explained by the proposed model. 

The “oscillator death” zone in the model predicts the phase space 

(approximately 0.6 to 0.8) where the disruptive IPSG would most likely prevent 

the next action potential from happening.  In the simulated autapse environment, 

this would lead to a complete termination of the autapse-driven firing regime.  

Disruptive IPSGs that were not followed by an action potential were labeled 

“failure” autapse trials.  These trials comprised 131 of the total 743 trials (17.6%) 

conducted in 10 PV+ cells.  Figure 4.5C shows the probability of these failures 

occurring depending on the phase at which the disruptive IPSG arrived.  While 

failures occurred throughout the phase space between 0.1 and 0.9, the peak 

failure probability is in the phase space between 0.8 and 0.9, which is similar to  
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that predicted by the model. 
 
 

Discussion 

We have demonstrated that PV+ MEC interneurons are more likely than the 

GAD2+ population to exhibit the resonant behaviors necessary for viability of the 

proposed gamma rhythmogenesis.  The input-to-spike delay in these PV+ 

interneurons is appropriate for such a network to exhibit gamma oscillations, with 

22±6 ms delays predicting network frequencies between 40-50 Hz.  The results 

have also demonstrated that PV+ interneurons are more likely to enter an 

autapse-mediated firing regime in response to an inhibitory autapse, a network 

analogue that suggests the cells would behave similarly in a network of similarly 

resonant cells.  The input phase to phase delay response of these cells, 

however, are different to those exhibited in the model, being best described by a 

linear fit of slope 1.32 rather than an exponential fit shown in the model. 

Our findings agree with previous work suggesting that the PV+ 

interneuronal population can exhibit resonant behaviors.  Mancilla et al. (2007) 

showed that fast-firing interneurons in the rat barrel cortex were more likely to 

exhibit type 2 discontinuous frequency-current relationships, whereby neurons 

are unable to fire at arbitrarily low frequencies.  This frequency-current 

relationship is associated with resonant firing behavior (Izhikevich, 2007).  

Tateno (2004) described fast-firing interneurons in the rat somatosensory cortex 

that alternated between a fast firing regime and a nonfiring, subthreshold regime, 

another feature of resonant behavior.  Both these observations were made in 

several superficial MEC PV+ cells in this study through protocols conducted for 
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the study in Chapter 3 (data not shown).   

The ability of PV+ to exhibit the resonant behaviors described here is 

promising for the viability of the I-I resonator network model proposed by Tikidji-

Hamburyan and Canavier (2013).  First, previous work has shown PV+ 

interneurons in the cortex have dense, unspecific interconnectivity with other PV+ 

neurons (Packer and Yuste, 2011).  This connectivity profile is similar to the 

gamma network model, lending further support to the viability of the model.  

Second, PV+ cells have already been implicated in gamma rhythmogenesis, both 

in vitro (Gulyas et al., 2010) and in vivo (Cardin et al., 2009).  Cardin et al. (2009) 

showed that optogenetically driving PV+ interneurons can induce gamma 

oscillations in barrel cortex of anesthetized mice.  Both these results support our 

finding suggesting PV+ neurons are more likely to participate in the proposed 

gamma rhythmogenesis model.  

In MEC PV+ cells that were able to enter the autapse-induced firing regime, 

the measured input-to-spike delay (22±6 ms) was generally in agreement with 

the electrophysiological features required for the gamma rhythmogenesis model.  

The input phase to phase delay relationship, however, was notably different than 

the one predicted by the model.  The model predicts the phase delay to be 

relatively unaffected if the input arrives in the first half of the cycle, whereas 

inputs arriving in the second half of the cycle are predicted to quickly increase the 

resulting delay to the next spike (Figure 4.5Bi).  The relationship measured in 

PV+ cells, however, was best described by a straight linear relationship.  This 

difference may be due to the simplified resonator neuron model used in the 



105 
 

 
 

network simulation, which lacks the full membrane dynamics present in an actual 

cell.  In particular, the model neuron used in the simulation implements a 

postaction potential artificial reset to -65 mV to simulate the afterhyperpolarizing 

potential.  Once the model neuron is reset, it is then depolarized from -65 mV 

back to the perithreshold resonant regime, which results in a region at the 

beginning of the cycle where hyperpolarizing inputs with a reversal potential of -

75 mV could have a diminished impact on the subsequent action potential timing.  

In the real cell, however, there exists two key differences.  First, the beginning of 

the cycle is set near the peak of the previous action potential, therefore, the first 

tenth of each cycle generally describes the region including the peak of the 

action potential, the downstroke of the action potential, and the final minimum 

spike AHP.  The red trace in Figure 4.5Bii describing the average autapse cycle 

membrane potential illustrates this region in the phase space between 0 and 0.1.  

Second, the maximum post-spike hyperpolarization for PV+ cells in the autapse-

induced firing regime is approximately -55 mV, not -65 mV as in the model.  This 

means the cell’s membrane potential is usually more depolarized than in the 

model cell in the first half of the cycle.  Since inhibitory conductance inputs are 

based on the difference between the membrane potential and the GABA reversal 

potential (i.e., the driving force), PV+ cells receive inhibitory inputs larger in 

amplitude than the model cells in the network.  This disparity in input size likely 

explains the significant delaying effect that disruptive IPSGs have in the first half 

of the cycle.  Finally, the oscillation death zone measured in the cells, in turn, 

was similar to the zone predicted in the model, with both the model and the 
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measured physiology predicting a maximum probability of oscillation death in the 

phase space between 0.8 and 0.9, as shown in Figure 4.5C. 

Although we emphasize the disposition for PV+ neurons to exhibit resonant 

properties, it is equally important that the GAD2+ interneuron population exhibits 

low rates of both PIR-induced firing (33%) and autapse-induced firing (9%).  In 

the proposed model, networks are constructed either entirely with resonant or 

entirely with integrator interneurons: resonant interneuron networks produce 

gamma oscillations whereas integrator networks do not (Tikidji-Hamburyan and 

Canavier, 2013).  Our findings, however, suggest there is heterogeneity in the 

expression of resonant properties in the MEC interneuron population.  An 

interesting venue for future work is to investigate the robustness of this gamma 

rhythmogenesis model in networks with varying fractions of resonant  

interneurons. 
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CHAPTER 5 

 
 

CONCLUSION 
 
 

Major findings 

Understanding the role of the medial entorhinal cortex in spatial navigation, 

learning, memory, and multimodal sensory processing remains an intense focus 

of research.  The discovery of grid cells in the superficial MEC in particular has 

spurred interest in how this cortical circuit is capable of producing this spatially 

modulated activity and what purpose this activity has in the larger task of 

navigation.  The work presented in this dissertation, while not addressing 

behavioral functionality directly, attempts to address the relatively understudied 

inhibitory dynamics within this brain region.  We have identified how an input 

integration phenomenon may play a role in how inhibitory synaptic inputs impact 

stellate cell activity, we have classified superficial MEC interneurons into distinct 

anatomical/electrophysiological clusters, and we have helped validate a gamma 

rhythmogenesis mechanism in the superficial MEC.  These major findings are 

summarized in Chapter 5.1.  In Chapter 5.2 we look at the future directions for 

research that may prove fruitful to fully understanding the superficial MEC circuit.  

In our first study, we found that entorhinal stellates integrated synaptic 

inputs in a nonlinear manner, amplifying inputs arriving at more depolarized 

membrane potentials.  We chose to explore this phenomenon because stellate 
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neurons in the superficial MEC exhibit ~10 mV membrane potential oscillations 

during in vivo movement, coinciding with population-level local field potential 

theta (4-12 Hz) rhythms (Domnisoru et al., 2013; Quilichini et al., 2010; Schmidt-

Hieber and Häusser, 2013).  In vitro, stellate cells also have a pronounced theta 

band resonant peak in their impedance spectra (Burton et al., 2008; Erchova et 

al., 2004; Fernandez and White, 2008; Garden et al., 2008; Haas et al., 2007; 

Nolan et al., 2007), which indicates that synaptic inputs are preferentially 

amplified near the peaks of their membrane potential oscillations.  This 

membrane potential-dependent increase in subthreshold impedance is produced 

by the persistent sodium channels expressed in stellate cells.  We confirmed 

these prior findings by showing that the subthreshold impedance of stellate cells 

is sensitive to the membrane potential and that this increase can be eliminated 

with the introduction of sodium channel blocker tetrodotoxin.  This result 

implicates the persistent sodium conductance in generating this increase in 

impedance.  In order to study the effect of this impedance increase on synaptic 

integration, we used dynamic clamp to inject artificial synaptic conductances into 

the cell at the perithreshold region.  We found that the resulting postsynaptic 

potential amplitudes were dependent on the membrane potential at which they 

were elicited: PSPs injected at more depolarized potentials were larger than 

those elicited at more hyperpolarized potentials.  This result was true of both 

excitatory and inhibitory inputs, and amounted to approximately a 4-5% increase 

in PSP amplitude per millivolt of depolarization.  Quantitatively, this indicates that 

PSP amplitudes may be modulated by as much as 30-60% in vivo, given that 
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stellate cells undergo ~10 mV synaptically-driven oscillations during movement.  

This voltage dependence, however, is eliminated upon the blockage of Na+ 

channels and can be attenuated by blocking the underlying hyperpolarization 

activated cation current.  The result holds if, instead of looking directly at 

membrane potential, the PSP amplitudes are compared across different 

oscillation phases: inputs arriving at the peak of the oscillation are significantly 

greater than those arriving at the trough of the oscillation.  Given that stellate 

cells receive spatially-modulated inputs in vivo (Schmidt-Hieber and Häusser, 

2013), these results indicate that both excitatory and particularly inhibitory inputs 

may be amplified/modulated depending on the location of the animal. 

In another study, we characterized and classified the interneuron population 

of the superficial MEC, a relatively understudied component of the medial 

entorhinal circuit.  Recent studies have suggested that GABAergic interneurons 

in the superficial MEC play an important role in the region’s spatial navigation 

functions (Buetfering et al., 2014; Couey et al., 2013; Domnisoru et al., 2013; 

Garden et al., 2008; Pastoll et al., 2013; Varga et al., 2010).  Among other 

results, these studies found stellate-to-stellate cell connectivity is mediated by 

inhibitory interneurons (Couey et al., 2013), spontaneous inhibitory currents were 

much more frequent in the superficial layers than in the deeper MEC layers 

(Woodhall et al., 2005), and that PV+ interneurons received inputs from various 

grid cells that result in a broadly tuned spatial firing profile (Buetfering et al., 

2014).  Despite the increasing appreciation for the role of GABAergic 

interneurons, there remained a paucity of data on the combined anatomical and 
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electrophysiological profiles of the superficial MEC’s interneurons.  This was due 

to interneurons’ representing a minority of the neuronal population (~10%) 

(Gatome et al., 2010) and the population being incredibly diverse (Ascoli et al., 

2008; Buzsáki et al., 2004; Maccaferri and Lacaille, 2003; McBain and Fisahn, 

2001; Whittington and Traub, 2003).  This study used transgenic techniques to 

greatly facilitate the targeting of GAD2+ and PV+ for whole cell patch clamp 

recordings.  We used this technique to systematically patch and fill GABAergic 

interneurons in the superficial MEC, collecting electrophysiological and 

anatomical data to compile a neuronal profile.  Multidimensional clustering 

analysis was then used to classify the profiled interneurons into distinct groups.  

We successfully characterized and classified 105 interneurons into four groups.  

Thirty neurons were classified as layer 2/3-projecting slow firing interneurons, 

which share features with previously anatomically identified pyramidal-looking 

interneurons (Kumar and Buckmaster, 2006), multipolar cells (Gloveli et al., 

1997), and bipolar cells (Wouterlood et al., 2000).  Thirty other neurons were 

classified as fast spiking, layer 2/3-projecting fast-firing interneurons, the vast 

majority of which were PV+ and shared characteristic profiles of MEC basket 

cells (Jones and Bühl, 1993).  Fifteen neurons were identified as layer 1/2-

projecting interneurons, similar to the multiform neurons described in Tahvildari 

and Alonso (2005).  Finally, 28 interneurons were classified as layer 1-projecting 

interneurons, similar to the multipolar (Wouterlood et al., 2000) and horizontal 

cells (Germroth et al., 1989) previously described.  This classification scheme 

can serve as the foundation for future studies into inhibitory dynamics in the 
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superficial MEC.  Already, work has shown that PV+ interneurons (as in the 

second cluster) are important to grid cell formation and gamma oscillations 

despite their nonspatially tuned firing fields (Buetfering et al., 2014; Couey et al., 

2013; Pastoll et al., 2013).  The deeper, slow-firing interneurons of the first 

cluster, in turn, are likely to play a more nuanced role in the associative networks 

within MEC layer 3.  Their projections exclusively onto layer suggest that 

interneurons of the fourth cluster may play modulate multimodal inputs onto the 

MEC. 

In a concurrent study, we provided some physiological validation for a 

gamma rhythmogenesis model proposed by Tikidji-Hamburyan and Canavier 

(2013), showing that PV+ interneurons in the MEC can exhibit resonant firing 

properties.  This is of substantial importance in the MEC as gamma oscillations 

are believed to coordinate communication between the MEC and the 

hippocampus (Schomburg et al., 2014), a mechanism which would require some 

uniformity in gamma network frequencies in response to noisy inputs.  The 

Tikidji-Hamburyan and Canavier (2013) model produces such a network in a 

sparsely connected I-I network of type 2 resonator interneurons (Izhikevich, 

2003).  This model relies on interneurons inhibiting one another, eliciting a 

postinhibitory rebound (PIR) spike, and overall producing a synchronized 

network.  The network frequency is determined by the input-to-spike delay and is 

robust to heterogeneity in input.   Our study attempted to establish whether the 

superficial MEC interneurons were capable of exhibiting the resonant 

characteristics necessary for this model to work, and whether these features 
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were expressed differently in different neuronal subtypes.  Using whole cell 

dynamic clamp to simulate inhibitory synaptic inputs, we examined GAD2+ and 

PV+ superficial MEC interneurons for their ability to exhibit PIR firing and 

maintain autapse-induced firing—an attempt to emulate “within the network” input 

conditions.  We found that PV+ cells were much more likely than GAD2+ cells to 

exhibit both these resonant behaviors.  PV+ cells exhibited an average input-to-

spike delay of 22±6 ms (for those that could also maintain autapse-induced 

firing), which predicts that within network these neurons would maintain firing at 

approximately 45 Hz.  GAD2+ interneurons had on average 46±16 ms input 

delays, too slow to elicit gamma rhythm firing in this model.  In the PV+ cell 

autapse-sustained firing regime, we also found that introducing a disruptive IPSG 

will delay the firing of the next action potential linearly, contrary to the predicted 

phase-input-to-phase-delay relationship in the model.  Specifically, whereas the 

PV+ cells had a straight linear relationship with slope 1.32, the model predicts 

that inputs arriving in the first half of the cycle will not delay the next action 

potential.  Furthermore, inputs arriving further into the second half of the cycle 

were expected to exponentially increase the delay, with a significant oscillator 

death zone in the 0.8 to 0.9 phase band.  While the oscillator death zone was 

observed in PV+ cells (inputs arriving in the 0.8 to 0.9 phase band had a ~40% 

probability of failure), the PV+ cells continued to have a continuous linear 

relationship between input phase and phase delay.  Our findings in this study 

suggest that the PV+ interneurons in the superficial MEC are capable of 

exhibiting the resonant behaviors necessary for the Tikidji-Hamburyan and 
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Canavier (2013) model to work, however exact network dynamics that exist in 

vivo are likely to be different than the model predicts.   

This collection of results overall offers insight into several inhibitory 

mechanisms of the superficial medial entorhinal cortex.  First, we understand 

how inhibitory inputs onto stellate cell somata are preferentially amplified if they 

arrive at the peak of the stellate cell’s theta-modulated and/or spatially-modulated 

excitatory inputs.  Second, we have established that PV+ MEC interneurons 

exhibit resonant properties that suggest they could participate in a PIR-driven 

gamma rhythmogenesis mechanism.  Finally, we have characterized and 

classified the interneuron population in the superficial MEC, grouping them 

according to the depth of the somas, the extent of their axonal projections, and  

their electrophysiological characteristics. 
 
 

Future directions 

We remain far from completely understanding the inhibitory dynamics of the 

superficial medial entorhinal cortex.  Both the diverse mechanisms that 

doubtlessly modulate local circuit activity and their role in the larger functions of 

spatial navigation, learning, memory, and sensory integration will continue to be 

areas of intense research.  The work here nevertheless first offers insight into 

some of the mechanisms that inhibitory interneurons take part in within the MEC 

circuit, and second, provides a characterization and classification framework for 

which to direct future research.  The implications of our first study leads directly 

to future computational work to understand the possible consequences of 

nonlinear synaptic integration in MEC stellate cells.  At this stage, simulations 
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would be the ideal venue to understand how this 4-5% increase in PSP 

amplitude per millivolt of depolarization can impact the processing of sensory 

inputs, the maintenance of theta rhythms, and the spatially-modulated activity in 

the superficial MEC.  This effect may prove valuable in the recent drive toward 

modeling and understanding grid cell-generating mechanisms in this brain 

region.   

The physiological validation of a gamma rhythmogenesis model in our third 

study suggests that the originally proposed model needs to be reevaluated, 

based on the difference in the input-phase-to-phase-delay relationship between 

model and physiological reality.   This difference is likely to produce different 

synchronization regimes within the network, particularly in the face of noisy 

inputs.  Furthermore, our finding that PV+ cells were much more likely than the 

general GAD2+ population to exhibit resonant properties asks the question 

whether a similar I-I network with heterogeneous expression of resonant 

properties is capable of producing the same robust gamma generating network.   

Such an endeavor would be aided by the findings of our second study, 

where we characterized and classified the interneurons of the superficial MEC.  

Our findings point toward several avenues for future research.  For example, the 

interplay between the slow-firing and fast-firing interneuron populations of layers 

2 and 3 is a promising target for understanding the grid cell mechanism.  

Selective optogenetic manipulation of PV+ and SOM+ populations in vivo may 

help explain how the superficial MEC responds to very heterogeneous inputs and 

generates grid fields.  Anatomical work on the layer 1-projecting cells in this 
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study would explain where this interneuronal population receives inputs (whether 

mainly from other brain regions or local principal cells) and where its main output 

targets lie (whether mainly principal cell dendrites or other layer 1 interneurons). 

Future studies of the inhibitory populations of the superficial MEC could explore 

different molecular genotypes (such as the PV+, SOM+, and CCK+ populations 

already mentioned) specifically, as opposed to focusing on the overarching 

GAD2+ population.  This approach is particularly attractive as optogenetic 

manipulations can harness these molecular markers to target specific 

subpopulations in vivo.  Furthermore, spatial variations in interneuronal 

physiology along the MEC’s dorsoventral axis (DVA) could provide vital clues as 

to the cortical mechanisms behind spatial navigation.  Grid field spacing has 

been shown to increase along the DVA (Hafting et al., 2005).  This decrease is 

matched by a decrease of PV+ inputs and an increase in non-PV+ inputs onto 

the MEC principal cells (Beed et al., 2010), so there exists an inhibitory gradient 

along the DVA.  Given the known spatial correlates along the DVA, uncovering 

differences in interneuron physiology (for any of the interneuron populations) 

between the dorsal end interneurons characterized in this study and the 

unstudied ventral end interneuronal population would be of particular value to the 

field.  As our understanding of this brain region expands and deepens, the 

research presented here may provide valuable insight that helps answer 

fundamental questions about the medial entorhinal cortex’s greater role in 

cortical computation.
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