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ABSTRACT 

 The study of fluid-rock interactions provides insight into subsurface geologic 

processes, such as diagenesis, hydrothermal alteration and metamorphism. Understanding 

and predicting these interactions also helps us assess the geologic impact of hydrocarbon 

recovery and geothermal production and injection. Therefore, the study of fluid-rock 

interactions has both geologic and economic impact. 

 At the Dixie Valley geothermal field, NV, precipitated calcite and aragonite 

within a production well trapped boiling fluids in fluid inclusions. The trapped gases 

were analyzed and shown to be compositionally different than those sampled at the well 

head. The inclusions trapped a greater ratio of light gases CH4 and H2 to CO2 than those 

sampled at the well head. This result indicates that the fluid inclusions trapped the initial 

steam fraction during boiling. 

 Declining performance of injection wells at the Coso and Salton Sea geothermal 

fields, CA, were found to result from mineral deposition in the near-wellbore 

environment during fluid injection. At Coso, opal-A and minor calcite scale mineral 

precipitates were found in cuttings from wells drilled near previously operating injection 

wells. At the Salton Sea, cuttings from a deepened injection well contained banded barite, 

fluorite, amorphous silica, and minor anhydrite scales. Mineral precipitation was modeled 

and predicted with the non-isothermal reactive transport modeling code TOUGHREACT. 

Geochemical simulations were also performed to predict the consequences of injecting 



H2SO4 modified fluid for mitigating silica precipitation at Coso using TOUGHREACT. 

The models predict that silica precipitation will be reduced significantly by maintaining 

pH of 5 or less. This can be accommodated in the models by reducing the kinetic rate 

constant for silica precipitation. TOUGHREACT simulations also predict that corundum 

proppants will be chemically stable under geothermal conditions. 

The formation of talc in the outer aureole of the Alta Stock does not define a 

regular isogradic surface, unlike isograds in the inner aureole. Examination of mineral 

and fluid stabilities in the H2O-CO2-NaCl system shows that several fluid evolution 

scenarios, including fluid immiscibility, may produce the observed talc heterogeneity. 
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CHAPTER 1 
 
 
 

MINERALOGY AND FLUID INCLUSION GAS CHEMISTRY OF 

 PRODUCTION WELL MINERAL SCALE DEPOSITS AT 

 THE DIXIE VALLEY GEOTHERMAL FIELD, USA 

 
 

Abstract 

At the Dixie Valley geothermal field, Nevada, USA, fluid boiling triggered the 

precipitation of carbonate scale minerals in concentric bands around tubing inserted into 

production well 28-33. When the tubing was removed, this mineral scale was sampled at 

44 depth intervals between the well head and 1227 m depth. These samples provide a 

unique opportunity to evaluate the effects of fluid boiling on the scale mineralogy and 

geochemistry of the vapor and liquid phase. In this study, the mineralogy of the scale 

deposits and the composition of the fluid inclusion gases trapped in the mineral scales 

were analyzed.  

The scale consists mainly of calcite from 670-1112 m depth and aragonite from 

1125 to 1227 m depth, with traces of quartz and Mg smectite. Mineral textures, including 

hopper growth, twinning, and fibrous growth in the aragonite and banded deposits of fine 

grained calcite crystals, are the result of progressive boiling. The fluid inclusion 

noncondensable gas was dominated by CO2. However, significant variations in He 



relative to N2 and Ar provide evidence that the geothermal reservoir consists of mixed 

source deeply circulating reservoir water and shallow, air saturated meteoric water. Gas 

analyses for many inclusions also showed higher CH4 and H2 relative to CO2 than 

measured in gas sampled from this well, other production wells, and fumaroles. These 

inclusions are interpreted to have trapped CH4 and H2 enriched gas resulting from early 

stages of boiling. 

 
 

Introduction 
 

Geothermal systems provide natural laboratories for understanding the behavior 

and processes affecting fluids within the crust. The gas composition of geothermal fluids 

can provide important information on the fluid origin, temperature, and evolution (e.g. 

Giggenbach, 1980, 1986). Similarly, the gas composition of geothermal fluid inclusions 

can be used to trace fluid sources and histories. CO2 is the dominant gas in geothermal 

waters, and where other data is absent, is also considered to be the dominant gaseous 

species in fluid inclusions from geothermal and epithermal systems (Hedenquist and 

Henley, 1985). However, investigations by Norman and Musgrave (1994), Graney and 

Kesler (1995), Norman et al. (1996, 1997, 1999), and Moore et al. (2000, 2001) suggest 

other gases (CH4, H2) may be present in significant concentrations. Moore et al. (2000, 

2001) further suggest that higher concentrations of these light gases in fluid inclusions 

represent preferential partitioning of these gases into the vapor phase during early 

boiling. As with CO2, these gases can significantly influence the ice melting temperature 

and therefore apparent salinities of the inclusion fluid, yielding estimates of salinities that 

are too high. 
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Boiling occurs in geothermal systems, either naturally or due to pressure changes 

during production. Phase separation within production wells can result in the deposition 

of carbonate and silicate minerals. Simmons and Christenson (1994) and Simmons and 

Browne (2000) described calcite deposition in boiling environments in geothermal wells. 

These scale minerals can significantly reduce flow in wells, and consequently scale 

inhibitor is used to mitigate their formation. However, failure of the inhibitor can lead to 

rapid mineral deposition, as was found in the Dixie Valley geothermal field production 

well 28-33. Carbonate and silicate minerals formed around tubing that was inserted into 

the well to deliver scale inhibitor. This scale was sampled at 44 depth intervals from 

inside the well head down to 1227 m depth when the tubing was removed. Because these 

mineral deposits spanned the boiling column as estimated by pressure distributions, the 

samples provide an opportunity to examine the effects of boiling on the scale mineralogy 

and textures. It also provides an unusual opportunity to compare the composition of gases 

measured at the well head with the compositions of gases trapped by fluid inclusions in 

the scale minerals during production of these fluids. There are no previous studies that 

have related the well gas chemistry to fluid inclusion gas chemistry in geothermal fields. 

In this study, we directly measure and relate gases trapped in fluid inclusions from these 

scale minerals to the chemistry of the gases sampled from well 28-33. 

 
 

Geologic Setting 
 

Dixie Valley is located 160 km northeast of Fallon, Nevada between the 

Stillwater and Clan Alpine Ranges (Fig. 1.1A). The valley trends NNE and is 120 km 

long by 20 km wide.  Dixie Valley is located in the southern end of a region of elevated 

3



heat flow known as the Battle Mountain High (Bergfeld et al., 2001). The geothermal 

reservoir is hosted in Triassic to Jurassic marine quartzite, siltstone, shale, and 

volcaniclastic rocks. The reservoir is overlain by a suite of oceanic crustal rocks that 

include gabbro, diorite, and basalt (Speed, 1976; Weibel, 1987; Lutz et al., 1997). The 

Triassic and Jurassic units are imbricated by three thrust faults and intruded by 

Cretaceous granodiorite (Goff et al., 2002). Oligocene ignimbrites and the Miocene Table 

Mountain Basalt overlie these older rocks in the valley (Goff et al., 2002). Most geologic 

units are extensively altered by hydrothermal activity (Goff et al., 2002). 

Dixie Valley was formed by Basin and Range tectonic events. The geothermal 

field is classified as an “extensional” geothermal resource (Kennedy and van Soest, 

2006). Fluid production is from the Stillwater fault zone (Fig. 1.1B). Thermal gradients 

indicate that heat is transported advectively through the fault system by upward flow of 

geothermal fluids (Blackwell et al., 2000, 2002). 

The Dixie Valley power plant is located southeast of the Stillwater Range (Fig. 

1.1B) and has operated continuously since 1988. The plant currently produces around 66 

MWe. Production reservoir fluid temperatures are between 225 and 245oC (Benoit, 1992; 

Bergfeld et al., 2001), though temperatures as high as 285oC are found in wells drilled 5 

km to the south (Blackwell, 2000). Production depths are between 2,400 and 2700 m 

(Kennedy and van Soest, 2006). The power plant and wells are located southeast of the 

surface expression of the Stillwater fault. Active and fossil hot springs and fumaroles lie 

along the fault zone from a few km north of the plant (Senator fumarole group) to an area 

20 km to the southwest of the power plant (Dixie hot springs) (Bergfeld et al., 2001). In 

addition, hot fluids discharge into shallow aquifers in the region. Previous studies have  

4



�

Fig. 1.1. Location maps of the Dixie Valley geothermal field. (A) Map showing location 
of Dixie Valley geothermal field, surrounding mountain ranges, and valleys (modified 
from Bergfeld et al. 2001). (B) Map showing location of the wells and fumaroles in the 
vicinity of the Dixie Valley geothermal power plant (modified from Goff et al. 2002). 
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measured the gas compositions discharged by wells, fumaroles, springs, and soils in the 

geothermal field and surrounding areas (e.g. Bergfeld et al., 2001; Goff et al., 2002; 

Kennedy and van Soest, 2006). The gas composition of the fumaroles indicates a mixture 

of air or gases from air saturated water and gases from a deeper geothermal source 

(Bergfeld et al., 2001). Their �13C values suggest that the reservoir CO2 is produced by 

thermal decarbonation of hydrothermal calcite veins (Bergfeld et al., 2001). Helium 

isotope data imply mixing between a deeply sourced geothermal reservoir fluid and 

shallower meteoric waters. Ra values of 0.7-0.76 have been interpreted to indicate the 

presence of a mantle derived He component (Kennedy and van Soest, 2006). 

 
 

History of Well 28-33 
 

Drilling of well 28-33 was initiated in May, 1990 and completed in July, 1990. 

The well was drilled to a total measured depth (TD) of 2898 m. The main productive 

fractures were penetrated between 2784 and 2788 m depth. Temperature surveys for well 

28-33 taken while the well was flowing are shown in Fig. 1.2. and indicate that initiation 

of boiling occurs between 1000 and 1200 m depth. During a 1993 clean out of the well, 

scale minerals on the well bore walls were found to be approximately 1 cm thick above 

950 m depth. Below 950 m, no mineral scale was observed. Tubing was inserted into 28-

33 after this clean out to deliver scale inhibitor into the well. Nalco 1340 HP was used as 

a scale inhibitor until 1998 when it was replaced by Nalco 9354. In 2001, after an acid 

cleanout of several production wells, Nalco 1340 HP was again used as the scale inhibitor 

in the Dixie Valley production wells. The tubing from 28-33 was removed during the  
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Fig. 1.2. Flowing temperature log for well 28-33 from 1993 to 1998. The break in slope 
between 1000 and 1200 m depth indicates the initiation of boiling. The temperature of the 
boiling point is depressed compared to that of pure water due to the presence of dissolved 
gases, such as CO2. 
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clean out process in 2001 (Fig. 1.3A). Fluid and gas chemistry analyses for well 28-33 

are provided in Tables 1.1 and 1.2, respectively. 

 

Methods 

Scale Mineral Analysis 

Concentric bands (Fig. 1.3B) and aggregates (Fig. 1.3C) of scale minerals 

deposited on the tubing pulled from well 28-33 were sampled at 44 depth intervals 

between 650 and 1200 m depth. The mineralogy and mineral abundances in the scale 

were estimated for 36 sample intervals using X-ray diffractometry (XRD).  

 
 
X-ray Diffractometry 
 

Whole rock and clay XRD were performed on each sample in the XRD laboratory 

at the Energy and Geoscience Institute at the University of Utah, using a Bruker D8 

Advance X-ray diffactometer. Phase quantification using the Rietveld method (Rietveld, 

1969) was performed using TOPAS software developed by Bruker Analytical X-ray 

Systems. The following operating parameters were used during the analyses: Cu-K-� 

radiation at 40 kV and 40 mA, 0.02o2� step size, 0.4 and 0.6 seconds per step for clay and 

bulk samples respectively. Clay samples (<5 �m) were examined from 2 to 45o2� before 

and after treatment with ethylene glycol and the bulk sample from 4 to 65o2�. The clay 

mineral abundances were determined from the Rietveld refinement of the bulk scans.  
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Fig. 1.3. Scale minerals deposited on tubing from well 28-33. (A) Tubing pulled from 28-
33 with scale. (B) Fine grained scale from 844 m depth. (C) Coarsely crystalline scale 
from 1183 m depth. 
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Scanning Electron Microscopy 
 

Scanning electron microscope (SEM) analyses were used to characterize the scale 

mineral textures. The samples were examined on a LEO tungsten filament electron 

source SEM at the Dixon Laser Institute at the University of Utah. An accelerating 

voltage of 20 kV was used. 

 
 

Fluid Inclusion Gas Analysis 
 

Liquid and vapor rich fluid inclusions are common in the carbonate scale samples 

(Figs. 1.4A and 1.4B). Although repeated efforts were made to prepare polished chips of 

the scale for microthermometric measurements, the small size of the fluid inclusions 

(generally 1-<3 �m) and the poor optical quality of the chips precluded measurement of 

their homogenization and ice melting temperatures. 

Samples from 24 depth intervals between 700 to 1200 m depth in well 28-33 were 

selected for fluid inclusion gas analysis at the New Mexico Institute of Mining and 

Technology. The gases in the fluid inclusions represent a sample of the liquid and vapor 

phases in the boiling column trapped during a period of five years. Prior to the analysis, 

the samples are cleansed with NaOH or KOH to remove surface organics. Major and 

minor gases, including H2O, CO2, CH4, H2S, H2, N2, Ar, He, and C2-7 organic species 

contained in inclusions were analyzed with a Balzers QMS 420 quadrupole mass 

spectrometer after being released by crushing under vacuum. Norman and Sawkins 

(1987) and Norman et al. (1996) present details of this analytical technique. The crush-

fast-scan (CFS) method used involves opening inclusions with a swift crush in a vacuum 

chamber housing the mass spectrometer. The volatiles are removed from the chamber by 

12



Fig. 1.4. Photomicrographs of fluid inclusions found in scale. (A) Unusually large (~5 
mm) liquid rich fluid inclusions found in crystal from 1095 m depth. Arrow points to a 
liquid rich inclusion. (B) Fluid inclusions found in large crystal from 877 m depth. Arrow 
points to a group of small (<1 mm) fluid inclusions. 
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the vacuum pumping system in 1 to 2 s. Measurements are taken every 150 to 225 

milliseconds by operating the quadrupole in a fast scan mode. Whole samples within each 

depth interval, not individual layers, were crushed in the CFS analysis. Each crush yields 

an analysis that could represent various proportions of liquid and vapor rich inclusions 

(Norman et al., 1997). Gas concentrations greater than 1 mol% suggest a fluid inclusion 

population dominated by vapor rich inclusions. Opening a 10 to 20 �m inclusion or group 

of smaller inclusions of equivalent volume provides the ideal amount of volatiles for the 

analysis. The volatile content of a 40 �m inclusion will overload the vacuum system, 

precluding analysis of the sample. Due to this limitation on the volume of gaseous 

species that can be collected and analyzed, inclusions that trapped gas rich steam will 

typically be underrepresented (Moore et al, 2000). Five to twenty crushes can be made on 

a 0.2 g sample with the expectation that some of the analyses will be failures. The 

precision of the CFS analyses was estimated from repeatability of gas ratio 

measurements. It is dependent on the size of the volatile burst, which ranges from 10 to 

105 counts. Bursts with counts of less than 103 are rejected due to poor precision. Volatile 

bursts of about 105 counts yield a precision of 20 percent for gaseous specie/water ratios 

and 10 percent for gas/gas ratios. Because geothermal waters are low in O2, it is routinely 

measured to determine if air contamination has occurred. No evidence of air 

contamination was detected in these analyses. 

Ammonia is rarely detected due to interferences from secondary H2O peaks at a 

mass to charge ratio (m/e) = 17 and 16. Helium concentrations below 30 ppm may be 

masked by the tail on the H2 peak. Organic compounds, principally propane (C3H8) and 

propene (C3H6), may interfere with the detection of Ar. It is assumed that the peak  

14



measured at m/e = 41 or 39 is solely from propene because it interferes more strongly 

with the Ar peak at m/e = 40 than propane. The amount of Ar is calculated by first 

subtracting the calculated contribution to the 40 m/e peak from propene. The maximum 

Ar value is taken as 20 percent of the propene (C3H6) peak height and is used to constrain 

the minimum N2/Ar ratios in cases where there is such strong interference that data 

reduction indicates no detectable Ar. 

 
 
 

Results 
 

Mineral Scale 

Mineral abundances for the 36 depth intervals, as determined by XRD, are plotted 

in Fig. 1.5. The mineral scales consist mainly of calcite and aragonite with minor Mg rich 

smectite and quartz. Aluminum bearing amorphous silica was found in the scale near the 

top of the well (Fig.1.6). Scale found deeper in the well consisted of individual bands of 

calcite, aragonite, or Mg smectite (Fig. 1.6B). Quartz is found in trace amounts between 

844 and 888 m. Between 1112 and 1125 m depth (Fig. 1.5), there is a change from calcite 

as the dominant carbonate mineral in the scale at shallow depths to aragonite. While trace 

amounts of aragonite occur in the calcite dominated interval, there is very little calcite in 

the scale below 1125 m.�

The aragonite crystals form layers of coarse grained crystals that are loosely 

bound and easily separated from each other. Aragonite crystals appear to have both 

irregular and curved surfaces.  Hopper growth (Fig. 1.6C), twinning (Fig. 1.6D), and 

fibrous crystals (Fig. 1.6E) can be observed. In contrast, the calcite layers are denser and  
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Fig. 1.5. Mineral abundance of scale deposits from XRD analysis. Red dashed line 
indicates the change from aragonite to calcite as the dominant form of CaCO3. 
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Fig. 1.6. SEM images and photomicrographs of scale minerals. (A) Aluminum rich 
amorphous silica scale found near the top of the well. (B) Mg smectite. (C) Aragonite 
crystals showing hopper growth. (D) Aragonite crystal showing twinning (twinning plane 
illustrated in red). (E) Both large, coarse and fibrous aragonite crystals. (F) Layers of 
fine, microcrystalline calcite. 
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more difficult to separate from each other. The calcite is finely crystalline to 

cryptocrystalline (Fig. 1.6F). 

 
 

Fluid Inclusion Gases 
 

Fluid inclusion gas composition data are reported in Table 1.3. The fluid 

inclusions are H2O rich with less than 4% total gas (Fig. 1.7). Fluid inclusions in 

aragonite (depths of 1134 to 1183 m) have generally lower mol% gas than those analyzed 

in calcite (depths of 718 to 1100 m). Many of the analyses from calcite in this depth 

interval have gas concentrations greater than the solubility of CO2 in water (<1 mol% wet 

gas) at the measured temperatures in this interval. Data for CO2-CH4-H2 are shown in 

Fig. 1.8A, and for N2-Ar-He in Fig. 1.9A; also plotted in both Figs. 1.8A and 1.9A are the 

wellhead compositions from 28-33. Inclusions display an appreciable range of CO2/CH4 

and CO2/H2 values that are generally lower than those measured at the well head (Fig. 

1.8A). Gas analyses from shallow calcite samples are generally enriched in CO2 relative 

to CH4 and H2 compared to analyses from the deeper aragonite samples. Most aragonite 

samples have higher He relative to N2 and Ar compared to the calcite samples. 

Furthermore, aragonite samples define a linear trend of He enrichment at constant N2/Ar 

away from the wellhead composition (Goff et al., 2002). Many analyses of the calcite 

samples are closer in composition to the wellhead gas composition (Fig. 1.9A). However, 

although many of the calcite samples appear to have lower Ar contents than the present-

day well composition, the Ar in these samples may be anomalously low due to peak 

interference from propane and propene. Ar could not be detected in several samples due 

to this interference. For comparison, gas analyses of Dixie Valley wells and fumaroles  
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Fig. 1.7. Total dry gas from fluid inclusion analyses. 
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Fig. 1.8. CO2-CH4-H2 plots. (A) Relative CO2-CH4-H2 composition of well head gas 
(n=3) and fluid inclusion gas analyses from calcite (n=19) and aragonite (n=16) scale 
samples. Aragonite analyses show a broad range in CO2/CH4 and CO2/H2 values, while 
calcite analyses (with one exception) show a composition overwhelmingly dominated by 
CO2. Well head gas analyses (Goff et al., 2002) also show high CO2 relative to CH4 and 
H2.  
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Fig. 1.8. continued. (B) Relative CO2-CH4-H2 composition of Dixie Valley area wells and 
fumaroles. Gas analyses show dominance of CO2 relative to CH4 and H2.  

23



 
Fig. 1.8. continued. (C) Relative CO2-CH4-H2 compositional changes associated with 
closed system and open system boiling. The red symbols represent the initial composition 
of the fluid (43% H2, 15% CH4, 42% CO2 for a closed system and 10% H2, 50% CH4, 
and 40% CO2 for an open system). The numbers on the plot are the steam fraction (y) 
associated with each composition plotted. Upon commencement of boiling (y=0.003) in 
an open or closed system, the vapor (open symbols) becomes enriched in CH4 and H2, 
while the liquid becomes depleted in these gases, moving the composition of the residual 
liquid to higher CO2 relative to CH4 and H2 (for example, note compositions of residual 
liquid at 0.003 and 0.008 steam fractions). With progressive boiling in an open or closed 
system, both liquid and vapor compositions move to higher CO2 relative to CH4 and H2 
compared to their compositions at y=0.003.  The measured y value, determined from 
steam and liquid at the well head of 28-33, was 0.156 in 1997 and 0.159 in 2009. 
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Fig. 1.9. N2-Ar-He plots. (A) Relative N2-Ar-He composition of well head gas (n=3) and 
fluid inclusion gas analyses from calcite (n=19) and aragonite (n=13) scale samples. 
Aragonite analyses show a broad range of He contents and relatively consistent N2/Ar 
ratio. Calcite samples all have low He relative to N2 and Ar. Well head gas analyses plot 
within this range of He relative to N2 and Ar. Some calcite analyses have high N2/Ar 
ratios. These anomalous ratios reflect low Ar values due to interference of propane and 
propene peaks in detecting Ar. The compositions of air and air saturated water (ASW) are 
plotted for reference.  
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Fig. 1.9. continued. (B) Relative N2-Ar-He composition of Dixie Valley area wells and 
fumaroles. The geothermal wells follow a trend of varying He content at relatively 
consistent N2/Ar ratio. Samples from nongeothermal local wells, springs, and fumaroles 
have lower He relative to N2 and Ar than most of the geothermal well samples in the area. 
The compositions of air and air saturated water (ASW) are plotted for reference.  

26



 
Fig. 1.9. continued. (C) Relative N2-Ar-He compositional changes associated with closed 
system and open system boiling. The red symbols represent the initial composition of the 
fluid. The numbers on the plot are the steam fraction (y) associated with each 
composition plotted. Upon commencement of boiling (y = 0.003) in an open system, the 
vapor becomes slightly enriched in N2 relative to Ar, while the liquid becomes depleted 
in N2, moving the composition of the residual liquid to a lower N2/Ar ratio. With 
progressive boiling in an open system, N2 becomes depleted relative to Ar in both the 
liquid and vapor, and Ar also begins to be depleted relative to He in the liquid (see 
y=0.008 and y=0.014). Upon initiation of boiling in a closed system (y=0.003), the liquid 
becomes slightly enriched in N2 relative to Ar and He, while the vapor becomes slightly 
depleted in N2 relative to Ar and He. With progressive boiling in a closed system, the 
compositions of both liquid and vapor move to higher N2 than their compositions at 
y=0.003. The measured y value of the steam and fluid discharged at the wellhead was 
0.156 in 1997 and 0.159 in 2009.  
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Fig. 1.9. continued. (D) N2-Ar-He compositional fields for magmatic, crustal, deeply 
circulated meteoric, and shallow meteoric fluid sources (modified from Norman and 
Musgrave 1994). 
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from Goff et al. (2002) are presented on the CO2-CH4-H2 and N2-Ar-He plots in Figs. 

1.8B and 1.9B, respectively. The compositions of 28-33, other Dixie Valley wells, and 

fumarole gases are all overwhelmingly rich in CO2 and have similar CO2-CH4-H2 

compositions to most of the gas analyses from calcite samples. In contrast, most of the 

aragonite samples are variably enriched in CH4 and/or H2. The gas analyses from the 

Dixie Valley wells and fumaroles also define a linear trend of He enrichment similar to 

that defined by the fluid inclusion gas analyses from the aragonite scales (Figs. 1.9B and 

1.9A). 

 
 

Discussion 
 

Mineralogy 

The mineral composition, habit, and textural relationships provide a record of the 

physical and chemical conditions in the well during scale formation. Polyacrylate scale 

inhibitors, such as Nalco 9354, create chemical conditions that favor the spontaneous 

nucleation and formation of very small calcite crystals in the fluid (Siega et al., 2005). 

This could explain the appearance of the calcite crystals found in the mineral scale, but 

not the presence of large aragonite crystals.  

The form of the aragonite crystals is interpreted to reflect the degree of saturation 

of the fluid at the time of their formation. Gonzales et al. (1992) and Rimstidt (1997) 

suggest that minerals formed under near equilibrium conditions will show smooth faces 

on well-developed crystals. With higher degrees of supersaturation, these crystal faces 

become roughened due to surface nucleation (Liu et al., 1992). Hopper growth, 

penetration twinning, and radial fiber growth result from the growth rate becoming 
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diffusion limited. At the highest degrees of supersaturation, colloidal particles form in 

solution then precipitate as aggregates (in low flow rate systems) or as banded deposits 

(in high flow rate systems) (Saunders, 1990). If these principles are applied to this 

geothermal well environment, the observed textures indicate that aragonite was deposited 

with a moderate degree of supersaturation in the fluid, whereas the calcite was deposited 

where progressive boiling significantly increased supersaturation of CaCO3. Differences 

in the morphology of the calcite (cryptocrystalline calcite or coarser grained calcite 

aggregates) may also reflect variations in the degree of supersaturation of CaCO3. These 

variations could, in part, be related to changes in well bore conditions dictated by field 

operations. Operational changes include putting the well on idle, bringing the well back 

on line, varying flow rates, and periods of unrestricted flow to atmosphere. 

 
 

Fluid Inclusion Gases 
 

Some of the fluid inclusion gases have higher CH4 or H2 (relative to CO2) and/or 

higher N2 (relative to Ar) than gas samples from the well head, other wells, and 

fumaroles. The formation of CH4 rich (relative to CO2) inclusions may reflect: 1) the 

mixing of a higher CO2/CH4 fluid with a lower CO2/CH4 fluid and the subsequent 

trapping of various mixtures of these fluids over time; 2) Fischer-Tropsch reactions (see 

below) occurring within the inclusion after formation; 3) bacterial production of CH4 

within the inclusion after formation; 4) the consumption of free CO2 by carbonate 

mineral formation; and/or 5) the trapping of early steam in the fluid inclusions (vapor will 

have a CO2/CH4 ratio about 1/4 of that in the liquid at temperatures near 250oC (Moore et 

al., 2000)). The formation of CH4 through Fischer-Tropsch reactions in a natural system 
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is controversial (McCollum and Seewald, 2001). Abiogenic formation of CH4 is 

postulated at midocean ridges (MOR) and in other high temperature environments where 

a chemical catalyst may be involved (Fiebig et al., 2004). 

 

CO2+4H2=CH4+2H2O          (1.1) 

 

Comparisons of the C1-6 gases can provide insight into the origins of the CH4. C1 

and C2 gases can be used as a geothermometer in geothermal fields. Their relationship to 

temperature is given by: 

 

                                                  ToC=57.8log(C1/C2)+96.8                                            (1.2) 

 

This relationship was developed by Darling (1998) based on data from various 

hydrothermal systems.  This relationship assumes that the thermal decomposition of 

higher order hydrocarbon chains will be temperature dependent.  Excess CH4 for a given 

temperature implies the addition of CH4 from another source, possibly abiogenic 

production.  The calculated temperatures for the Dixie Valley samples using this 

geothermometer are given in Table 1.3 and range from 42 to 175oC.  All but one of the 

calculated temperatures is lower than the measured production temperatures.  This 

indicates a deficiency of CH4 with respect to C2H6, possibly reflecting the influence of 

abundant sedimentary hosted organics on these gas compositions (Giggenbach and 

Corrales, 1992; Darling, 1998). Thus, these geothermometer calculations do not support 

the formation of CH4 by abiogenic processes within the inclusion after formation. 
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N2-rich (relative to Ar) inclusions can be the result of: 1) decomposition of 

organic matter providing an additional source of N2 (Norman and Musgrave, 1994); 2) 

breakdown of ammonia; 

 

           2NH3=2N2+3H2         (1.3) 

 

or 3) mixing of fluids with different N2/Ar and the subsequent trapping of various 

mixtures of these fluids. The breakdown of ammonia would increase N2 and H2 in the 

fluid inclusion gases. However, the reservoir and well temperatures are too low to be 

conducive to the thermal breakdown of ammonia (Norman and Musgrave, 1994), and 

there does not seem to be a correlation between increased N2 and increased H2 in gas 

analyses (Table 1.3). 

During boiling, CH4, H2, N2, and other light gases preferentially partition into the 

vapor phase (Henley et al., 1984). Owing to greater solubility, some gases, particularly 

CO2 and H2S, are partially retained in the residual liquid phase. Calculations of the gas 

content in either the vapor or liquid phase can be made using gas distribution coefficients 

following the procedures outlined by Giggenbach, (1980) and Henley et al., (1984) as 

detailed in Appendix A. Vapor-liquid distribution constants (referred to as Kd or B) 

reported by Fernandez-Prini et al., (2003) were used to calculate the composition of the 

liquid and vapor phases at different stages of boiling. Both closed and open system 

boiling end member processes were considered. Example boiling trends are illustrated in 

Figs. 1.8C and 1.9C. These calculations indicate that boiling can explain the progression 

in the fluid inclusion gas compositions from high CH4 and H2 to high CO2. Simmons et 
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al. (2007) observed heterogeneous trapping of coexisting gas and liquid phases as a result 

of boiling in fluid inclusions from the Broadlands-Ohaaki geothermal system in New 

Zealand. The measured variations in CH4 and H2 to CO2 in the fluid inclusions analyzed 

in this study probably reflect heterogeneous trapping of both liquid and vapor phases, as 

well; therefore, gas compositions of both liquid and vapor phases during progressive 

boiling were calculated and plotted in Figs. 1.8C and 1.9C. Fluid inclusion analyses with 

gas contents >1 mol% (Fig. 1.7) also suggest that some of these analyses are sampling 

predominantly vapor rich fluid inclusions.  

However, boiling of a single source fluid cannot produce both the high CH4 and 

high H2 fluid inclusion gas compositions shown in Fig. 1.8A. Boiling also cannot explain 

the trend of some samples toward higher N2 (relative to Ar) in shallower samples (Fig. 

1.9A), since lower N2 would be expected with progressive boiling; nor can boiling 

explain the trend of the variable He contents at near constant N2/Ar ratio. The pattern of 

the fluid inclusion gas data indicates that boiling has influenced the variation in the gas 

compositions, but the data and compositional trends cannot be fully explained by this 

process. 

Alternatively, variation in gas compositions suggests heterogeneity in the 

composition of the production fluids over time. Various studies have concluded that there 

is mixing between a deeper circulating geothermal reservoir fluid with a shallower 

meteoric fluid in the Dixie Valley geothermal field (Bergfeld et al., 2001; Kennedy and 

van Soest, 2006).  Ra values of 0.7-0.76 have been interpreted to indicate the presence of 

a mantle derived He component (Kennedy and van Soest, 2006). The linear trend of 

increasing He at near constant N2/Ar in both fluid inclusion gas analyses (Fig. 1.9A) and 
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surface gas analyses (Fig. 1.9B) is consistent with variable mixing between deeply 

circulating meteoric water (reservoir fluid) and shallow meteoric water (Fig. 1.9D) or 

variation in the input of He from a mantle derived source (Giggenbach, 1986). This trend 

is also observed in the data from the Dixie Valley well and fumarole gas samples (Fig. 

1.9B) and in the well gas sampled from 28-33 (open circles, Fig. 1.9A). The fluid 

inclusions from depths of 718 and 1100 m (calcite) plot closer to the air or air saturated 

water end member on the mixing trend. This implies dominance of a shallow source fluid 

on the composition of gases trapped within this depth interval. 

 
 

Conclusion 
 

At the Dixie Valley geothermal field, fluid boiling triggered the precipitation of 

calcite and aragonite scale in concentric bands around tubing inserted into production 

well 28-33. The trends and ranges in fluid inclusion gas compositions from these mineral 

scales appear to result from the combined effects of fluid mixing and boiling. The fluid 

inclusion gas analyses define a linear trend of increasing He at constant N2/Ar ratios 

similar to air saturated surface (meteoric) water, a trend consistent with variable mixing 

of this surface water with deeply circulated meteoric water (deep geothermal reservoir 

fluid) or variation in the input of He from a mantle derived source. However, the 

variations in CO2/CH4 and CO2/H2 in these inclusion gases and the entrapment of gas 

enriched in CH4 and/or H2 relative to the very CO2 rich gas composition discharged at the 

wellhead demonstrate the impacts of progressive boiling. Because CO2 is assumed to be 

the dominant gas present in geothermal systems based on well gas sampling (Hedenquist 

and Henley, 1985), the trapping of CH4 and H2 in fluid inclusions as a result of initial 
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boiling has implications for the calculation and interpretation of salinity and redox 

conditions in both modern and fossil geothermal systems. 
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CHAPTER 2 

MODELING THE GEOCHEMICAL EFFECTS OF INJECTION 

 AT COSO GEOTHERMAL FIELD, CA; COMPARISON 

 WITH FIELD OBSERVATIONS 

Abstract

Decreased performance of injection wells after 5 to 7 years of injection has been 

documented in several geothermal fields. In this study, the effects of injecting flashed 

geothermal fluids into the Coso geothermal field, California are investigated by 

comparing drill cuttings from the original injection wells with samples from wells drilled 

on the same pads after injectivities in the original wells had declined. At Coso the fluids 

injected into well 68-20 had silica contents up to 940 ppm and are significantly 

supersaturated in silica with respect to quartz, the stable silica phase in the reservoir. X-

ray diffraction and scanning electron microscope analyses of the reservoir rock 

penetrated by redrilled injection well 68-20RD indicate that loss of injectivity in 68-20 

was caused by the deposition of silica as opal-A accompanied by trace amounts of calcite 

near the well bore. As the scale deposits mature, the original 2 �m spheres coalesce into 

larger spheres, up to 10 �m in diameter and plate like sheets. Application of 

TOUGHREACT one dimensional (1D) reactive transport models (Xu et al., 2004) 



predicts the deposition of amorphous silica with minor calcite, leading to a sharp decrease 

in porosity 1 to 2 years after initiation of injection. These predictions are consistent with 

field measurements and the observations made from injection well cuttings from Coso 

pad 68-20.  Furthermore, the modeling predicts silica deposition will occur close to the 

wellbore, consistent with the observation that amorphous silica is found only in the 

redrilled wells (68-20RD and 68B-20RD) with trajectories closest to a previously drilled 

injection well. 

Introduction

The geochemical effects of injecting fluids into geothermal reservoirs are poorly 

understood and may be significantly underestimated. Decreased performance of injection 

wells has been observed in several geothermal fields after only a few years of service, 

although the reason for these changes has not previously been established. The purpose of 

this investigation is to predict the geochemical effects of the injection fluids on the 

reservoir rocks and to test the effects of modifying the injection fluid as a strategy for 

mitigating mineral precipitation. This study consists of petrologic investigations of the 

scale mineral assemblages in the cuttings from wells drilled on the 68-20 pad at the Coso 

geothermal field along with application of TOUGHREACT one dimensional reactive 

transport models to predict the mineral precipitation observed. The effects of changes to 

the injected fluid chemistry on the reservoir fluids and rocks were also modeled to further 

understand the consequences of particular injection strategies.
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The Coso Geothermal Field 

The Coso geothermal field is developed in Mesozoic granitic rocks of the Sierra 

Nevada Batholith on the western edge of the Basin and Range (Adams et al., 2000) (Fig. 

2.1). The heat driving the geothermal activity is related to shallow intrusions that have 

given rise to 38 rhyolitic domes during the last million years. The reservoir host rocks 

range in composition from diorite to granite with varying degrees of alteration and 

veining (Kovac et al., 2005). Active and fossil fumaroles lie along a northeast to 

southwest trending belt that extends through Devil’s Kitchen and Coso Hot Springs. On 

the eastern margin of the field, known as the East Flank, fossil sinter and travertine 

deposits are present (Adams et al., 2000). Installed capacity of the power plant is 240 

MWe, and power production has been sustained since 1989. Between 1987 and 1993, six 

injection wells were drilled on the 68-20 pad and four were drilled on the 67-17 pad in 

the southern part of the field (Fig. 2.1). Cuttings were examined from wells drilled on 

both pads, but pad 67-17 is not discussed here because no injection related mineral scale 

deposits were found in the cuttings of these wells. 

Well pad 68-20 

Between 1987 and 1993, six injection wells were drilled on the 68-20 pad in the 

southern part of the field. The trajectories of these wells and lost circulation zones 

obtained from well logs are shown in Fig. 2.2. Injectivity decreased in well 68-20 from a 

maximum liquid injection rate of over 1000 kph (kilopounds per hour mass flow) in 

March, 1989 to a minimum rate of 0 kph in November, 1990 after a steady decline (Fig. 

2.3). Mechanical and chemical cleanouts increased injectivity to a one time high of 800  

41



Fig. 2.1. Simplified geologic map of the Coso geothermal field showing the locations of 
the major thermal features. The 68-20 injection pad is located in the southern part of the 
field.
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Fig. 2.2. Well trajectories for injection wells drilled in pads 67-17 and 68-20.  Locations 
of lost circulation zones are shown as discs, and the amount of fluid lost is represented by 
the size of the disc. X and Y axes in UTMs, Z axis in feet. 
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Fig. 2.3. Injection history of w
ell 68-20 from
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kph after November, 1990, but never fully recovered, remaining between 0-400 kph 

through 1992. Redrilled wells also experienced similar injectivity declines. 

Reservoir temperatures in this part of the field prior to injection ranged from 

approximately 205-240oC, but cooling of the reservoir was observed around these wells 

post injection as seen in temperature logs of subsequent redrills. The temperatures of the 

injected fluids ranged from 110-120oC. Cuttings from the six injection wells were 

sampled at 3 m intervals. The reservoir host rocks in these wells ranged from diorite to 

granite with trace to moderate alteration and veining. Fault breccias were observed in the 

cuttings, indicating major fault or fracture zones intersected by the wells.�

Table 2.1 shows the reported chemistry of injection fluid for well 68-20. There 

was a wide range in the composition of the injected fluids, showing variation in produced 

fluids and practices of adding steam condensate back into the injected fluid. The 

maximum silica content analyzed was 965 mg/L.  

Mineral Scale from 68-20RD 

Cuttings from Coso injection wells 68-20, the original injection well, and 68-

20RD, 68A-20, and 68A-20RD have been examined at 3 m depth intervals. The rock 

type, the abundance of primary and secondary minerals, and the abundance, mineralogy, 

and paragenesis of the veins were documented at each interval. Thinly banded opaline 

silica was observed in the cuttings from 68-20RD and 68B-20RD, but not in the original 

injection well 68-20 or in wells 68A-20, 68A-20RD, and 68B-20. The banding and 

textural relationships suggest the silica represents fracture fillings and not alteration of 

preexisting minerals. The greatest density of silica precipitation was found in cuttings

45



Table 2.1 

Well 68-20 Injected Fluid Chemistry 

_______________________________________________________________________
Chemistry of injected fluid from well 68-20, showing high, low, and average 
concentrations in mg/kg from 15 analyses. Brines were injected at 110-120oC.

_______________________________________________________________________
 High Low Average
Na+ 4,283 2,897 3,612 
K+ 941 362 614 
Ca2+ 130 19 45 
Mg2+ 8.7 0 1.1 
Fe 84.1 0.1 9.5 
Al3+ 10.4 0 1.1 
SiO2 (aq) 965 97 657 
B(OH)3 141.8 83 115.4 
Li+ 47 25 34 
Sr2+ 8.2 2.6 4.4 
Astotal 26.24 2.85 9.54 
Ba2+ 116 0 9 
HCO3

- 229 77 167 
Cl- 6,958 5,015 6,079 
F- 5.7 1.6 2.5 
SO4

2- 99 27 68 
TDS 12300 9233 11103 
Lab pH 8.3 6.17 7.44 

_______________________________________________________________________

from depths of 869-884 and 1710-1713 m in well 68-20RD. Samples of the precipitate 

from these two zones were analyzed using a scanning electron microscope and X-ray 

diffractometer. Additional petrographic images (photomicrographs and SEM images) of 

silica scale from 68-20RD and 68B-20RD are shown in Appendix B. SEM images and X-

ray patterns of scale deposits are separated here by depth for descriptive purposes; 

however, morphologies and depth are not correlative. 
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869-884 m Depth 

The silica deposits consist of opal-A spheres and plates. Fig. 2.4 shows the 

morphological progression associated with maturation of deposits. Textural relationships 

shown in Fig. 2.4A indicate the silica was deposited initially as spheres 1-2 �m in 

diameter. As the deposit matures, the spheres coalesce to form larger spheres up to 10 �m

in diameter (Fig. 2.4B). Further maturation is associated with the formation of plates and 

sheets. Infilling of the spaces between spheres provides a possible explanation for the 

dense, smooth surfaces seen in Figs. 2.4B, 2.4C, and 2.4D. This maturation sequence is 

similar to changes observed in young sinter deposits in New Zealand described by 

Rodgers et al. (2004) and Lynne and Campbell (2004). Traces of calcite locally coat the 

amorphous silica, suggesting it represents a later stage in the evolution of the deposits. 

The X-ray diffraction pattern of hand picked silica rich samples from this depth (Fig. 

2.4E) indicate that the deposit consists of opal-A with a broad peak centered at 22o 2-

theta. In addition, quartz peaks are present in the X-ray diffraction patterns at 21.5o and 

26.8o 2-theta, but quartz was not unambiguously documented in the SEM images. It is 

possible that traces of quartz were deposited by the injected fluid or through interactions 

with the amorphous silica. Alternatively, the quartz could represent fragments of the host 

reservoir rock that were incorporated into the deposits of amorphous silica. 

1710-1713 m Depth 

SEM images of silica deposits from a depth of 1710-1713 m (Fig. 2.5) show that 

they display similar textural and mineralogical relationships as those from depths of 869-

884 m (Fig. 2.4). Both dense and porous layers of silica are present. Textures shown in
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Fig. 2.4. Mineral scale from 68-20RD at 869-884 m depth. (A)-(D) SEM images of 
samples taken from 68-20RD at 869-884 m depth. Opal-A spheres 1-2 mm in diameter 
seen in (A) coalesce to form 10 mm spheres and sheets seen in (B), (C), and (D). (E) X-
ray diffraction pattern of scale samples taken from the depth interval 869-884 m showing 
a broad opal-A peak centered at 22o 2-theta and quartz peaks at 21.5o and 26.8o 2-theta. 

Calcite
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Fig. 2.5. Mineral scale from 68-20RD at 1710 to 1713 m depth. (A)-(D) SEM images of 
samples taken from 68-20RD at 1710-1713 m depth. (A) Alternating silica layers with 
varying density and visible porosity. (B), (C) Silica spheres aligning to form fibrils (B) 
and sheets (C). (D) Tube structure covered with silica spheres. (E) X-ray diffraction 
pattern of scale samples taken from the depth interval 1710-1713 m showing a broad 
opal-A peak centered at 22o 2-theta and quartz peaks at 21.5o and 26.8o 2-theta. 

Calcite
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Figs. 2.5A, 2.5B and 2.5C suggest that the denser layers develop as the silica spheres 

form strands and sheets. The formation of strands of small spheres suggests a progression 

to a more stable silica form. The silica plates in Fig. 2.5C appear to be formed from 

coalesced opal-A spheres. An unusual tube like structure coated with silica spheres is 

shown in Fig. 2.5D. Similar features, interpreted as silicified bacteria, have also been 

observed in sinters from geothermal fields in New Zealand (Rodgers et al., 2004). The X-

ray pattern (Fig. 2.5E) of a sample from 1710-1713 m indicates the silica consists of  

opal-A with a broad peak centered at 22o 2-theta and quartz with peaks at 21.5o and 26.8o

2-theta.

Discussion 

Monomeric and polymeric deposition are two mechanisms of silica precipitation 

(Iler, 1979). Direct deposition of silica molecules onto solid surfaces is referred to as 

monomeric deposition. The formation of a colloid in solution and its subsequent 

precipitation is referred to as polymeric deposition. Monomeric deposition tends to form 

a hard, dense deposit, while polymeric deposition forms a softer, porous silica scale. The 

textures of silica spheres observed in deposits from Coso well 68-20RD indicate that 

polymeric deposition is the dominant process of silica deposition. The growth and 

nucleation stages that accompany the polymerization of amorphous silica are controlled 

mainly by silica saturation, pH, and salinity (Makrides et al., 1978; Iler, 1979). 

Precipitation or amorphous silica can be further catalyzed by the presence of iron and 

aluminum in solution, which reduces the solubility of amorphous silica when these 

metals are incorporated (Gallup, 1998). At higher degrees of silica supersaturation and 
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near neutral pH, polymeric deposition is favored (Iler, 1979). As the silica precipitates, 

the degree of supersaturation in the fluid decreases, favoring monomeric deposition. 

Also, the chemical composition of the injected fluid is variable (see Table 2.1), including 

varying degrees of silica saturation. These mechanisms can explain the variety in textures 

and observed porosity in the amorphous silica scale. 

When compared to the maturation sequence observed and documented in 

geothermal sinter deposits (Rodgers et al., 2004; Lynne and Campbell, 2004; Lynne et 

al., 2007), several textures observed in the Coso scale indicate a maturation of silica 

during and/or after deposition. The observed textures include nano and micro spheres 

(Fig. 2.4A), botryoidal coalesced microspheres (Fig. 2.4A), bumpy microspheres (Fig. 

2.4B), sheets (Fig. 2.5A) and aligned chains of amorphous silica (Fig. 2.5B and 2.5C). 

Maturation of the silica usually leads to increased porosity and permeability when the 

opal-A phase progresses to opal-CT. However, infilling of spaces within aggregates of 

colloidal particles that leads to sheet like textures observed at Coso may provide a barrier 

to further maturation of the silica by depriving contact with fluid necessary to dissolve 

and re precipitate silica as a more stable phase. This infill could also lead to difficulty in 

removing this scale as it becomes a barrier to fluid flow over time. 

Mineral Scale Summary 

Examination of cuttings from redrilled injection wells at the Coso geothermal 

field has yielded direct evidence for relating injectivity losses to mineral precipitation. 

Deposits of amorphous silica associated with traces of calcite were found in the reservoir 

rocks adjacent to the original injection well 68-20. This well had experienced a 
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significant loss in injectivity within a period of 1 1/2 years. The silica deposits are 

layered, with individual layers ranging from tens to hundreds of micrometers. Apparent 

porosities vary from layer to layer with some displaying little visible pore space. Textural 

relationships indicate that the silica was originally deposited as 1-2 �m spheres of opal-

A. The size and uniform diameter of the spheres suggests the silica layers formed as a 

colloidal precipitate. As the deposits mature, botryoidal, coalesced microspheres and 

bumpy microspheres up to 10 �m in diameter form. With further maturation, infilling of 

pore spaces between spheres results in the formation of silica plates and sheets, which 

could form a barrier to fluid flow that could slow or stop the maturation sequence of the 

silica. 

One Dimensional Reactive Transport Modeling 

Modeling Approach 

Simulations were carried out using the nonisothermal reactive geochemical 

transport code TOUGHREACT (Xu and Pruess, 2001; Xu et al., 2004). This code was 

developed by introducing reactive chemistry into the framework of the existing 

multiphase fluid and heat flow code TOUGH2 V2 (Pruess et al., 1999, see also 

http://www-esd.lbl.gov/TOUGHREACT/). Interactions between mineral assemblages and 

fluids can occur under local equilibrium or kinetic rates. Precipitation and dissolution 

reactions can change formation porosity and permeability. This simulator can be applied 

to one, two, and three dimensional porous and fractured media with physical and 

chemical heterogeneity. Simulations can include any number of species present in the 

liquid, solid, and gaseous phases. Various thermal, physical, and chemical processes are 
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considered under conditions of pressure, temperature, water saturation, ionic strength, 

pH, and Eh. The current models do not consider processes related to certain types of 

mineral precipitation and maturation kinetics, including nucleation, formation of 

metastable phases and their transformation to stable phases, and Ostwald ripening (Xu et 

al., 2007). 

Simulation Setup 

The conceptual model considers a one dimensional flow path between the 

injection and production wells, which is a small subvolume of the more extensive three-

dimensional reservoir. The initial reservoir conditions were 275oC and 30 MPa pressure.  

An over pressure of 2 MPa was applied to simulate injection. The model is based on 

conditions during nearly continuous injection over 7 years. The control case model uses 

measured, observed, and estimated parameters from data gathered through various studies 

at Coso (Lutz and Moore, 1997; Kovac et al., 2005; McLin et al., 2006). Further cases are 

based on hypothetical situations where these parameters are adjusted to determine the 

sensitivity of the modeling, as well as predict alternative reservoir conditions. The 

simulations were run to a total time of 7 years. Changes in fluid pH, fracture porosity, 

fracture permeability, fluid temperature, and changes in mineral abundances were 

monitored out to a distance of 594 m from the injection well. Mineral abundance changes 

were reported in terms of changes in volume fraction for the following minerals: quartz, 

potassium feldspar, chlorite, illite, Na smectite, Ca smectite, calcite, dolomite, anorthite, 

annite, and amorphous silica. Amorphous silica, calcite, and quartz displayed the most 

significant changes. Changes in porosity were calculated as a function of mineral 

53



dissolution and precipitation. A porosity increase indicates that mineral dissolution is 

dominant, while a porosity decrease occurs when precipitation dominates. Changes in 

permeability were calculated from changes in porosity using a cubic law to calculate the 

relationship between porosity and permeability. 

Fluid and Heat Flow Conditions 

The geometry and fluid and heat flow conditions are modeled after those 

described in Xu and Pruess (2004). A one dimensional MINC (multiple interacting 

continua) model was used to represent the fractured rock. The MINC method can resolve 

“global” flow and diffusion of chemicals in the fractured rock and interaction with 

“local” exchange between fractures and matrix. Details on the MINC method for reactive 

geochemical transport are described by Xu and Pruess (2001). In the simulations, 

interactions with 1) a zone representing the relatively impermeable, unaltered host rock, 

and 2) altered, fractured, and veined host rock were considered. In addition, two different 

reservoir rock types, diorite and granodiorite, were considered. These are the rock types 

are the dominant lithologies where amorphous silica deposition has been observed. The 

hydrologic and thermal parameters used in the models are shown in Table 2.2. Density = 

2650 kg*m-3, heat capacity = 1000 J*kg-1K-1, and diffusivity = 10-9 m-2s-1 were used for 

all zones. The cubic law was used to define the porosity-permeability relationship in both 

zones (Xu et al., 2004). The model generates changes in porosity and permeability based 

on changes in mineral abundances. 
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Mineralogical Conditions 

The reservoir rocks at a depth of 878 m in 68-20RD are dominated by 

hornblende-biotite-quartz diorite. Biotite granodiorite dominates at 1710 m. The 

mineralogical compositions of these rocks were estimated from petrographic observations 

of samples from 68-20RD and from X-ray and thin section studies of East Flank wells by 

Kovac et al. (2005) and Lutz and Moore (1997). Both rock types were found to be only 

weakly altered in 68-20RD. The veining was found to be especially weak in the diorite at 

878 m, so the fracture zone was modeled as nearly empty. The deeper granodiorite zone 

was found to contain quartz, calcite, and chlorite veins. Mineral parameter inputs are 

shown in Table 2.3. 

�

Table 2.2 

Hydrologic and Thermal Parameters 

_______________________________________________________________________
Hydrologic and thermal parameters of rocks used in the models 

_______________________________________________________________________

Parameters Fracture
Average Weakly  

Altered Granodiorite
Average Weakly  
Altered Diorite 

Volume (m3) 0.1 0.9 0.9 
Permeability (m2) 2.0E-12 2.0E-18 2.0E-15 
Porosity 0.10 0.02 0.05 
Thermal Conductivity 
 (W* m-1K-1) 2.9 3.0 3.0
Tortuosity 0.3 0.1 0.1 

_______________________________________________________________________
�
�
�
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Table 2.3 

Mineralogical Parameters 

_______________________________________________________________________
Simplified initial mineralogical composition of the two rocks used in the preliminary 
simulations.  A temperature of  275oC was used for the initial rock temperature in the 

simulations. 
_______________________________________________________________________

Mineral

Volume Fraction of Solid Rock 
1710 m: 

Granodiorite hosted 
878 m:  

Diorite hosted 
Average Weakly  

Altered
Granodiorite Fracture

Average Weakly  
Altered
Diorite Fracture 

Quartz 0.34 0.05 0.135  
Potassium Feldspar 0.17  0.045  
Chlorite 0.02 0.01 0.010  
Illite 0.03    
Calcite 0.02 0.04 0.025 0.009 
Anorthite 0.33  0.038  
Annite 0.06  0.150  
________________________________________________________________________

Mineral Kinetic Rates and Parameters 

Mineral dissolution and precipitation are considered under kinetic constraints. The 

general kinetic rate expression is used in TOUGHREACT (Xu et al., 2004) is: 

rm = ±kmAmaH+
n |1- Qm/Km|         (2.1) 

where m is the mineral index, rm is the dissolution/precipitation rate, (positive for 

dissolution, negative for precipitation), km is the rate constant (moles per unit mineral 

surface area and unit time) which is temperature dependent, Am is the specific reactive 

surface area per kg of H2O, aH+ is the activity of H+
, and n is an empirical reaction order 
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accounting for catalysis by H+ in solution.  Km is the equilibrium constant for the mineral 

water reaction written for the destruction of one mole of mineral m, Qm is the ion activity 

product.  The temperature dependence of the reaction rate constant can be expressed as: 

k = k25 exp[-Ea/R(1/T–1/298.15)]       (2.2) 

where Ea is the activation energy, k25 is the rate constant at 25oC, R is the universal gas 

constant, and T is absolute temperature.  Table 2.4 shows the parameters used in the 

kinetic rate expression. 

Water Chemistry 

The composition of the reservoir fluid was estimated from the approximate 

composition of reservoir fluid taken from an East Flank well (Table 2.4). Initial fluid 

compositions within the fracture and host rock were calculated by equilibrating the 

reservoir fluid composition with each rock’s mineralogical composition at 275oC. An 

example injection fluid composition that was calculated from 15 well 68-20 injection 

fluid analyses as representative injection fluid was chosen as the trial injection water 

(Table 2.5). The injectate composition was not allowed to change over time within the 

model.

Results 

In the modeled control case for both diorite and granodiorite hosted fracture 

systems, amorphous silica precipitates soon after injection begins, followed by calcite 

and a very minor amount of quartz (Figs. 2.6A, 2.6B, 2.6C, and 2.6D), consistent with
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Table 2.4 

Kinetic Rate Parameters 

_______________________________________________________________________
List of kinetic rate parameters used in Eqns. (1) and (2) for minerals considered in the 

present paper (Xu and Pruess, 2004; Palandri and Kharaka, 2004).  The first line indicates 
dissolution parameters and the second line precipitation parameters; the same values were 

used for both where only one line is shown. 
_______________________________________________________________________

Mineral
k25 

(moles m-2 s-1)
Ea

(KJ/mole)
n

(rxn. order)
Surface Area 

(cm2/g)
Quartz 1.2589E-14 87.5 0 9.1 

Am. Silica 7.3200E-13 
1.0000E-10

60.9
0.00

0
0

1.0E6
1.0E6

K-feldspar 1.0000E-12 57.78 0 9.1 
Anorthite 1.0000E-12 57.78 0 9.1 

Na smectite 1.0000E-14 58.62 0 108.7 
Ca smectite 1.0000E-14 58.62 0 108.7 

Illite 1.0000E-14 58.62 0 108.7 
Annite 2.5119E-15 

2.5119E-15
66.20
66.20

1
0

9.1
9.1

Calcite 6.9183E-2 
6.4565E-7

18.98
62.76

1
0

9.1
9.1

Dolomite 1.0233E-3 
4.4668E-10

20.90
62.76

1
0

9.1
9.1

Chlorite 2.5119E-12 62.76 0 9.1 
_______________________________________________________________________
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Table 2.5 

Fluid Chemistry 

_______________________________________________________________________
Composition of a reservoir fluid from an East Flank well at 275oC, the temperature used 
in the simulations, and average injection fluid composition at 120oC temperature based 

on 15 samples. 
_______________________________________________________________________

Chemical Component Reservoir (Mol/kg) Injection (Mol/kg) 
SiO2 1.30E-2 9.96E-03 

B(OH)3 8.42E-3 1.01E-02 
Na+ 9.50E-2 1.46E-01 
K+ 1.20E-2 1.42E-02 
Li+ 2.45E-3 4.44E-03 

Ca2+ 9.55E-4 1.07E-03 
Mg2+ 4.12E-6 2.22E-2 
Sr2+ 3.60E-5 5.00E-2 
Cl- 1.10E-1 1.60E-01 
F- 1.47E-4 1.15E-04 

HCO3
- 1.10E-3 2.48E-03 

SO4
- 3.12E-4 6.97E-04 

HS- 3.02E-5  
CH4 6.25E-10  
pH 6.84 6.47 
As  1.16E-04 

_______________________________________________________________________�

�

observed mineral scale deposits in the injection well 68-20RD (Figs. 2.7A and 2.7B). 

Amorphous silica deposition did not occur in a case where silica concentration was 

decreased in the injected fluid by an order of magnitude (Figs. 2.6A and 2.6D). 

In both the diorite  and granodiorite hosted cases, the majority of amorphous silica 

precipitates within a few meters of the well and within the first year of the simulation 

(Fig. 2.8 A and C). Minor calcite precipitation is also precipitated rapidly within the first 

few meters (Fig. 2.8 B and D). Modeled porosity and permeability decreases are also 

predicted within a few meters of the well over the same time period.  
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Well 68-20, the first well drilled on the 68-20 pad, experienced a sharp decline in 

injectivity within months of initiation of injection. Significant amorphous silica scale 

deposits have only been observed in two of the subsequently drilled injection wells 

studied on the 68-20 pad, wells 68-20RD and 68B-20RD. The trajectory of 68-20RD lies 

only several meters from the original well 68-20. The trajectory of 68B-20RD lies near 

that of 68A-20RD. In contrast, the trajectories of wells 68A-20 and 68A-20RD place 

them hundreds of meters from the trajectories of previously drilled injection wells. 

Although the trajectory of 68B-20 is close to that of both 68-20 and 68-20RD, no scale 

was observed in the cuttings from this well. 

Conclusions and Future Work 

The modeled results closely simulate the observed mineral paragenesis and 

abundances based on observations made on cuttings from injection well 68-20RD.  

Future investigations will consider the effects of varying the composition of the injected 

fluid and changing temperatures. Temperatures profiles were measured for wells 68-20 

and 68-20RD. Lower temperatures measured in 68-20RD indicate that the surrounding 

rock has cooled over time due to the injection of cooler fluids into 68-20 over the period 

of four and a half years. Attempts are being made at many geothermal fields, including 

Coso, to increase the solubility of silica in injected fluids by decreasing the pH. It is not 

yet known what effect acidifying the injected fluid will have on the system. Future 

modeling will attempt to predict the effect of pH modifications on mineral deposition and 

dissolution within the reservoir. 
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CHAPTER 3 

MODELING THE GEOCHEMICAL EFFECTS OF INJECTING 

 pH MODIFIED FLUIDS AT COSO

GEOTHERMAL FIELD, CA 

Abstract

Decreased performance of injection wells has been documented in several 

geothermal fields after very short periods of injection. At the Coso, CA geothermal field, 

the fluids injected into wells on pad 68-20 were supersaturated with respect to amorphous 

silica. Examination of drill cuttings from the original and five redrilled injection wells on 

pad 68-20 indicated that opal-A, accompanied by trace amounts of calcite, was 

precipitating near the well bore, causing the observed declines in injectivity. Injection 

fluids at Coso are now modified with H2SO4 to decrease fluid pH as a method of reducing 

the deposition of amorphous silica scale by reducing the kinetic rate of silica 

polymerization. One dimensional (1D) models were constructed using the reactive 

transport code TOUGHREACT (Xu et al., 2004) to assess amorphous silica precipitation 

and the long term effects of injecting acidic fluid into the geothermal reservoir at Coso. 

These simulations predict that injection of fluid supersaturated with respect to amorphous 

silica will cause rapid declines in injectivity due to precipitation of opal-A, consistent 

with observations of amorphous silica scaling in cuttings from injection wells drilled on 



pad 68-20 at Coso. The modeling results also predict that an optimal injection fluid pH of 

4 would virtually eliminate amorphous silica and calcite deposition within fractures and 

therefore maintain porosity and permeability. The fracture fluid pH is buffered rapidly 

upon injection into the reservoir rock due to silicate mineral reactions and SiO2(aq) in 

solution. Although changes to porosity and permeability of the fracture or reservoir rock 

are not predicted by these models, mineral dissolution and precipitation are predicted to 

occur. Porosity and permeability of the fracture and reservoir rock are maintained by 

equal volume dissolution and precipitation of minerals in these models, but processes that 

are not considered by the models, such as preferential precipitation in pore throats and 

pressure solution at grain contacts, may still change porosity and permeability along the 

flow path from injection to production well.  

Introduction

The geochemical effects of injecting fluids into geothermal reservoirs are poorly 

understood and may be significantly underestimated. Decreased performance of injection 

wells has been observed in several geothermal fields after only a few years of service, 

including the six injection wells on pad 68-20 in the Coso, CA geothermal system. Rock 

cuttings from original and redrilled injection wells drilled on pad 68-20 at Coso were 

used to characterize the mineral and geochemical changes that occur as a result of 

injection. Samples from the original well 68-20 at Coso were used to establish the 

mineral assemblages and their geochemical characteristics prior to injection. Amorphous 

silica scale deposits were found in two of the five subsequently drilled injection wells on 
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pad 68-20. Based on these initial studies, McLin et al., (2006a) identified that 

precipitation of amorphous silica led to declining injectivity in these wells.  

Because amorphous silica scale is difficult to remove once it has precipitated, 

modifications to the injected fluid are made to prevent this precipitation. Silica scale 

control methods used in geothermal operations include injecting at higher temperature, 

dilution with condensate or cool surface or groundwater, reduction of fluid pH to slow 

polymerization kinetics, and a variety of treatments with scale inhibitors (Gallup, 1998). 

Of these options, reduction of fluid pH is often the most practical and economic solution 

due to the expense of inhibitors and the lack of fresh water for injection at many sites. 

H2SO4 is commonly used to reduce the pH (Gallup and Kitz, 1998; Gallup, 1997). The 

target range for injection in a geothermal field is typically between pH=5.25 and pH=4.75 

to minimize both silica scale precipitation and corrosion (Darrell Gallup, personal 

communication). Although pH modification is a commonly employed practice, including 

at Coso, the effects of these modifications on the reservoir fluids and rocks are poorly 

understood and should be examined. Reactive transport modeling is an ideal geochemical 

method for predicting the effects of injecting flashed brine and brine modified with 

H2SO4 on the reservoir fluids and rocks at the Coso geothermal field.  

Because it is difficult to measure directly the effects of H2SO4 injection on the 

reservoir rocks and fluids, models can provide valuable insight into the consequences of 

acid injection on the productivity of the Coso geothermal field. In this study, the results 

of previous petrological investigations of amorphous silica scale deposition in Coso 

reservoir rock (McLin et al., 2006a) and reactive transport modeling of amorphous silica 

precipitation in fractured Coso reservoir rock (McLin et al., 2006b) were used to 
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constrain numerical modeling of fluid-rock interactions and mineral changes with H2SO4

injection in the near well bore and downstream reservoir environments. The objectives of 

this study were to evaluate the geochemical and mineralogical impacts of fluid injection 

and of reducing silica scale precipitation with H2SO4 injection on reservoir rocks and 

fluids.

Study Area 

The Coso geothermal field is developed in Mesozoic granitic rocks of the Sierra 

Nevada Batholith on the western edge of the Basin and Range (Adams et al., 2000) (Fig. 

3.1). The heat driving the geothermal activity is related to shallow intrusions that have 

given rise to 38 rhyolitic domes during the last million years. The reservoir host rocks 

range in composition from diorite to granite with varying degrees of alteration and 

veining (Kovac et al., 2005). Active and fossil fumaroles lie along a northeast to 

southwest trending belt that extends through Devil’s Kitchen and Coso Hot Springs. On 

the eastern margin of the field, known as the East Flank, fossil sinter and travertine 

deposits are present (Adams et al., 2000). The alteration mineral assemblage identified in 

East Flank wells related to the current geothermal system consists of calcite veins with 

minor quartz, chlorite, pyrite, and hematite at shallow depths and epidote, chlorite, 

quartz, adularia, and wairakite in the deepest portions (Kovac et al., 2005). Geothermal 

power production has been sustained since 1989 with an installed capacity of 240 MWe 

at the power plant.
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Fig. 3.1. Simplified geologic map of the Coso geothermal field showing the locations of 
the major thermal features.  The 68-20 injection pad is located in the southern part of the 
field.
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Well pad 68-20 

Between 1987 and 1993, six injection wells were drilled on the 68-20 pad in the 

southern part of the field. The trajectories of these wells and lost circulation zones 

obtained from well logs are shown in Fig. 3.2. Injectivity decreased in well 68-20 from a 

maximum liquid injection rate of over 1000 kph (kilopounds per hour mass flow rate) in 

March, 1989 to a minimum rate of 0 kph in November, 1990 after a steady decline. 

Cleanouts increased injectivity to a one time high of 800 kph after November, 1990, but 

never fully recovered, remaining between 0-400 kph through 1992. Redrilled wells also 

experienced similar injectivity declines. 

Although one well on the East Flank reaches nearly 350oC at depth, reservoir 

temperatures in the part of the field near pad 68-20 prior to injection ranged from 

approximately 205-240oC. Cooling of the reservoir was observed around these wells post 

injection as seen in temperature logs of subsequent redrills. The temperatures of the 

injected fluids ranged from 110-120oC. Cuttings from the six injection wells were 

sampled at 3 m intervals. The reservoir host rocks in these wells ranged from diorite to 

granite with trace to moderate alteration and veining. Fault breccias were observed in the 

cuttings, indicating major fault or fracture zones intersected by the wells.��

Table 3.1 shows the reported chemistry of injection for well 68-20. There was a 

wide range in the composition of the injected fluids, resulting from variation in produced 

fluids and practices of adding steam condensate back into the injected fluid. The 

maximum silica content analyzed was 941 mg/L. The minimum silica concentration of 97 

mg/L corresponds to mixing produced fluid with steam condensate. 
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Fig. 3.2. Well trajectories for injection wells drilled in pads 67-17 (not discussed in this 
paper) and 68-20.  Locations of lost circulation zones are shown as discs, and the amount 
of fluid lost is represented by the size of the disc. X and Y axes in UTMs, Z axis in feet.
The green and red arrows point north. 
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Observations from Well Cuttings 

Thinly banded opaline silica was observed in the cuttings from 68-20RD (McLin 

et al., 2006a) and 68B-20RD, but not in the original injection well 68-20, 68A-20, 68A-

20RD, or 68B-20. The banding and textural relationships suggest the silica represents 

fracture fillings and not alteration of preexisting minerals. The greatest density of silica 

precipitation in well 68-20RD was found in cuttings from depths of 869-884 and 1710-

1713 m. The zone from 1710-1713m depth corresponds to the depth of a zone of lost 

circulation in well 68-20. 

Scanning electron microscopy (SEM) was used to examine the textures of the 

amorphous silica scale. Figs. 3.3A-E are SEM images that show the morphological 

progression associated with deposition and maturation of the silica scale deposits. The 

deposits consist of opal-A deposited as colloidal particles of nano and microspheres (Fig. 

3.3A), indicating that silica homogeneously nucleated in solution to form polymeric 

particles (Iler 1979). Several textures related to the evolution of these deposits, including 

coalesced (Fig. 3.3B) and botryoidal (Fig. 3.3C) microspheres, fibrils (Fig. 3.3D), and 

sheets (Fig. 3.3E) are observed. Textural relationships indicate the silica was deposited 

initially as spheres 1-2 �m in diameter (Fig. 3.3A).  As the deposits mature, the spheres 

coalesce to form larger spheres up to 10 �m in diameter (Fig. 3.3B and C).  Further 

maturation is associated with the formation of fibrils and sheets (Fig. 3.3D and E) 

through infilling.  Traces of calcite are found deposited on the amorphous silica, 

suggesting it represents a later stage in the evolution of the deposits. Fig. 3.3F shows an 

interesting feature that has been interpreted as a silicified bacterium. 
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Fig. 3.3. SEM images of amorphous silica scale deposits from well 68-20RD. (A) Micro 
and nanoparticles of silica. (B) Coalesced particles of silica. (C) Botryoidal microspheres. 
(D) Fibrils of silica. (E) Sheet of amorphous silica. (F) Possible silicified bacterium. 
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When compared to the maturation sequence observed and documented in 

geothermal sinter deposits (Rodgers et al., 2004; Lynne and Campbell, 2004; Lynne et 

al., 2007), several textures observed in the Coso scale indicate a maturation of opal-A 

during and/or after deposition. Maturation of the silica usually leads to increased porosity 

and permeability when the opal-A phase progresses to opal-CT. However, infilling of 

spaces in colloidal particle deposits that leads to sheet like textures observed at Coso may 

provide a barrier to further maturation of the silica by depriving contact with fluid 

necessary to dissolve and reprecipitate silica as a more stable phase. This infill could also 

lead to difficulty in removing this scale as it becomes a barrier to fluid flow over time. 

The X-ray diffraction patterns of the amorphous silica scale samples are 

characterized by a broad peak centered at 22o 2-theta representing opal A, and peaks at 

21.5o and 26.8o 2-theta representing quartz Fig. 3.4.  Although quartz was not 

documented in the SEM images, it is possible that it represents fragments of the host 

reservoir rock.  Alternatively, it is possible, but less likely, that the quartz represents 

maturation of the opal-A to a higher degree of crystallinity.  Although quartz is common 

in mature sinter deposits at other geothermal fields (Lynne et al., 2004), there is no 

evidence from the SEM or X-ray diffraction studies of stages in silica maturity beyond 

opal-A in the Coso scale deposits.

Previous Coso Modeling Studies 

Prior to examination of the cuttings from the wells on pad 68-20, Adams et al. 

(2005) examined the geochemical consequences of injecting groundwater at Coso 
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Fig. 3.4. X-ray diffraction pattern of amorphous silica scale from 1710-1713 m depth.  

geothermal field as a strategy for minimizing precipitation of amorphous silica in the 

near-wellbore environment. The modeling code REACT (Bethke, 1996) was used to 

calculate saturation states of minerals to predict fluid-rock interactions with this injection 

strategy. With the addition of Mg2+ and Ca2+ rich groundwater, the precipitation of 

anhydrite + dolomite or anhydrite + calcite and a magnesium silicate was predicted. 

Following the examination of cuttings from wells 68-20 and 68-20 RD, a small 

set of initial models were run using the nonisothermal reactive transport code 

TOUGHREACT (Xu et al., 2004) to examine the precipitation of amorphous silica 

during injection (McLin et al., 2006b). An injection fluid based on the 15 analyses of 

injection fluid from well 68-20 was used, and fluid was injected into a one dimensional, 

594 m long flow path that consisted of a zone of fractures and a zone of altered host rock 

(either granodiorite or diorite). Based on data from Adams et al. (2005), the reservoir 

temperature used for these simulations was 275oC. In the modeled cases using injection 

fluid with 650 ppm SiO2(aq), amorphous silica precipitated and significantly reduced 
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porosity of the fracture within the first meter of the flow path within the first year. 

Modeled silica precipitation was followed by calcite and a very minor amount of quartz 

in the near wellbore environment, consistent with observed mineral deposits in the 

injection well cuttings. These results are consistent with the rapid decline in injectivity 

experienced by well 68-20. Amorphous silica scale is only found in redrilled injection 

wells that have a trajectory very close to that of a previously drilled well, and amorphous 

silica was predicted to deposit only within a few meters of the original well. Thus the 

modeled results closely simulated the observed mineral paragenesis and abundances 

based on analyses of the cuttings. 

The effects of modifying the pH of the injection fluid, from acidic to basic, to 

mitigate the effects of silica deposition were investigated by Park et al. (2006). Acid 

injection reduces the kinetic rate of silica precipitation by reducing the rate of silica 

polymerization (Iler, 1979; Rothbaum et al., 1979; Klein, 1995). Park et al. (2006) 

constructed a one dimensional reactive transport model to investigate the consequences 

of injection of acid or alternating acid and base on the reservoir rocks and fluids. Park et 

al. (2006) explain that injection of a basic solution will lead to SiO2 undersaturation and 

dissolution by the increased activity of H3SiO4
- and the formation of NaHSiO3(aq). The 

models predicted that with acid injection SiO2 deposition was mitigated in the immediate 

vicinity of the injection well, but deposition of SiO2 was predicted at greater distances. 

Injection of base also mitigated SiO2 precipitation, but the precipitation of calcite was 

predicted. Thus alternating the pH of the injected fluid to prevent mineral scale, as well 

as to maintain neutral fluid pH in the reservoir near production wells over time, was 

predicted to enhance permeabilities at Coso. However, the acid fluids modeled for 
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injection were very low pH (pH=2.26), and thus could cause extensive corrosion of 

equipment and well casing. Therefore, injection of fluid at this pH is not practical. 

Modeling Approach 

The current simulations were carried out using the nonisothermal reactive 

geochemical transport code TOUGHREACT (Xu and Pruess, 2001; Xu et al., 2004). This 

code was developed by introducing reactive chemistry into the framework of the existing 

multiphase fluid and heat flow code TOUGH2 V2 (Pruess et al., 1999, see also 

http://www-esd.lbl.gov/TOUGHREACT/). Interactions between mineral assemblages and 

fluids can occur under local equilibrium or kinetic rates. Precipitation and dissolution 

reactions can change formation porosity and permeability. This simulator can be applied 

to one, two, and three dimensional porous and fractured media with physical and 

chemical heterogeneity. Simulations can include any number of species present in the 

liquid, solid, and gaseous phases. Various thermal, physical, and chemical processes are 

considered under conditions of pressure, temperature, water saturation, ionic strength, 

pH, and Eh. However, the current models do not consider processes related to certain 

types of mineral precipitation and maturation kinetics, including nucleation, formation of 

metastable phases and their transformation to stable phases, and Ostwald ripening (Xu et 

al., 2007). 

Simulation Setup 

The conceptual model considers a one dimensional flow path between the 

injection and production wells, which is a small subvolume of the more extensive three 
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dimensional reservoir. The geometry and fluid and heat flow conditions of the model 

were based on those of Xu and Pruess, (2004). The thermodynamic database provided 

with the TOUGHREACT program, modified from the EQ3/6 database (Wolery, 1992) as 

described by Xu et al., (2004), was used. The initial reservoir conditions were 220oC and 

30 MPa pressure. The decrease in model reservoir temperature from that used in previous 

models is based on temperature surveys from well 68-20 and better reflects the initial 

reservoir temperature prior to injection. An over pressure of 2 MPa was applied at the 

boundary of the flow path to simulate fluid injection. The model is based on conditions 

during continuous injection over seven years.

The initial models use measured, observed, and estimated parameters from data 

gathered through various studies at Coso (Lutz and Moore, 1997; Lutz et al., 1999; 

Kovac et al., 2005; McLin et al., 2006a, 2006b). Further cases are based on hypothetical 

situations where these parameters are adjusted to determine the sensitivity of the 

modeling, as well as to predict the effects of alternative reservoir conditions. Finally, 

injection of H2SO4 modified fluid is modeled for mixtures of injectate with 98% H2SO4 at 

pH=3, 4, and 5. The simulations were each run to a total time of 7 years. Changes in fluid 

pH, fracture porosity, fracture permeability, fluid temperature, and changes in mineral 

abundances were monitored out to a distance of 594 m from the injection well. Mineral 

abundance changes were reported in terms of changes in volume fraction for the 

following minerals: quartz, potassium feldspar, chlorite, illite, Na smectite, Ca smectite, 

calcite, dolomite, albite, oligoclase, anorthite, annite, phlogopite, clinozoisite, anhydrite, 

and amorphous silica. Changes in porosity were calculated as a function of mineral 

dissolution and precipitation. A porosity increase indicates that mineral dissolution is 
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dominant, while a porosity decrease occurs when precipitation dominates. Changes in 

permeability were calculated from changes in porosity using a cubic law to calculate the 

relationship between porosity and permeability (as discussed in Xu et al., 2004). 

Fluid and Heat Flow Conditions 

The geometry and fluid and heat flow conditions are modeled after those 

described in Xu and Pruess (2004). A one dimensional MINC (multiple interacting 

continua) model was used to represent the fractured rock. The MINC method can resolve 

mass transport from “global” flow and diffusion of chemical species within the fractured 

rock from transport by “local” exchange between fluid within fractures and the minimally 

permeable rock matrix. Details on the MINC method for reactive geochemical transport 

are described by Xu and Pruess (2001). In the simulations, interactions with 1) a zone 

representing the relatively impermeable, unaltered host rock, and 2) a fracture zone 

within the host rock were considered. The model allows these two zones in the flow 

column to have individually assigned porosity and permeability. The fluid can flow in 

and chemically interact with rock both zones. Mass fluxes and reaction progress within 

each zone will be a function of the assigned parameters. The parameters used in the 

models are shown in Table 3.2.  Density = 2650 kg*m-3, heat capacity = 1000 J*kg-1K-1,

and diffusivity = 10-9 m-2s-1 were used for both fracture and reservoir rock zones. The 

cubic law was used to define the porosity-permeability relationship in both zones (Xu et 

al., 2004). The model generates changes in porosity and permeability based on changes in 

mineral abundances. 
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Mineralogical Conditions 

Mineral modes used for the simulations are shown in Table 3.3. The reservoir 

rocks at depths of 878 m and 1710 m in 68-20RD are dominated by hornblende biotite 

quartz diorite and biotite granodiorite, respectively. These are the two depths were the 

most amorphous silica scale was observed in the cuttings. Because lost circulation was 

associated with 1710 m depth, the majority of the models are based on injection into 

granodiorite.

The mineralogical compositions of the granodiorite and diorite were estimated 

from petrographic observations of samples from 68-20RD and from X-ray and thin 

section studies of East Flank wells by Kovac et al. (2005), Lutz et al. (1999), and Lutz 

and Moore (1997). Initially, anorthite was used as the composition of the plagioclase 

feldspar in the reservoir rock. This composition served as a noncalcite source of calcium, 

and the alteration mineralogy observed by Kovac et al. (2005) is an alteration product of 

Ca rich feldspar in the presence of CO2. However, the composition of the feldspar in the 

initial granodiorite is likely more albite rich (e.g., oligoclase), and feldspar near fractures 

is likely already altered to a Na rich feldspar composition from prior interaction with 

reservoir fluids. Both rock types were found to be only weakly altered in 68-20RD. The 

veining was found to be especially weak in the diorite at 878 m. The granodiorite was 

found to contain quartz, calcite, and chlorite veins.

Due to mineralogical variations and uncertainties, sensitivity studies were 

conducted for a range of mineralogical compositions of the rocks, including diorite as the 

reservoir host rock, different composition of plagioclase feldspar in the reservoir rock 

(anorthite (an), albite (al), and oligoclase (olig)), and increased mafic minerals biotite  

82



Table 3.2 

Hydrologic and Thermal Parameters 

_______________________________________________________________________�
Hydrologic and thermal parameters of rocks used in the models 

_______________________________________________________________________

Parameters Fracture
Weakly Altered  
Reservoir Rock 

Volume (m3) 0.1 0.9 
Permeability (m2) 2.0E-12 2.0E-18 
Porosity 0.10 0.02 
Thermal Conductivity 
 (W* m-1K-1) 2.9 3.0
Tortuosity 0.3 0.1 

_______________________________________________________________________
�

(represented by annite and phlogopite) and epidote (represented by clinozoisite) in the 

reservoir rock. For three models, low albite was allowed to precipitate. These sensitivity 

studies were constructed to explore the effects of these differing mineralogical 

compositions on the fluid chemistry and mineral precipitation within the system.  

Mineral Kinetic Rates and Parameters 

Mineral dissolution and precipitation are considered under kinetic constraints. A 

general kinetic rate expression is used in TOUGHREACT (Xu et al., 2004): 

rm = ±kmAmaH+
n |1- Qm/Km|         (3.1) 

where m is the mineral index, rm is the dissolution/precipitation rate, (positive for 

dissolution, negative for precipitation), km is the rate constant (moles per unit mineral 
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Table 3.3 

Mineralogical Parameters 

_______________________________________________________________________
Initial mineralogical composition of the rock types used in the preliminary simulation and 

mineralogical sensitivity studies.  A temperature of 220oC was used for the initial rock 
temperature in the simulations. 

_______________________________________________________________________
 Rock Mineralogical Composition 

Mineral

Granodiorite
(an)

Diorite
(an)

Granodiorite
(olig) 

Granodiorite
(ab)

Diorite
(60%
mafic) 

Fracture

Albite    0.33   
Anorthite 0.33 0.50   0.12  
Oligoclase   0.33    
Quartz 0.34 0.18 0.34 0.34 0.12 0.05 
K Feldspar 0.17 0.07 0.17 0.17 0.06  
Illite 0.03  0.03 0.03 0.01  
Chlorite 0.02 0.01 0.02 0.02 0.04 0.01 
Calcite 0.02 0.02 0.02 0.02 0.02 0.04 
Annite 0.06 0.20 0.02 0.02 0.20  
Phlogopite   0.02 0.02 0.20  
Clinozoisite   0.02 0.02 0.20  
_______________________________________________________________________
an=anorthite, olig=oligoclase, ab=albite 

 surface area and unit time) which is temperature dependent, Am is the specific reactive 

surface area per kg of H2O, aH+ is the activity of H+
, and n is an empirical reaction order 

accounting for catalysis by H+ in solution.  Km is the equilibrium constant for the mineral-

water reaction for the dissolution or precipitation of one mole of mineral m, Qm is the ion 

activity product.  The temperature dependence of the reaction rate constant can be 

expressed as: 

k = k25 exp[-Ea/R(1/T–1/298.15)]       (3.2) 
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where Ea is the activation energy, k25 is the rate constant at 25oC, R is the universal gas 

constant, and T is absolute temperature.  Table 3.4 shows the parameters used in the 

kinetic rate expression. 

Because precipitation rate data do not exist for most minerals, parameters for 

neutral pH dissolution were used to calculate precipitation rates for those minerals 

without precipitation rate data. The processes, different from dissolution, that are not 

considered in the calculation of precipitation rates include nucleation, crystal growth and 

Ostwald ripening processes, as well as the calculation of changes to the reactive surface 

area. 

Amorphous silica will homogeneously nucleate, polymerize, and precipitate as a 

colloidal particle at near neutral pH, as observed in cuttings from the Coso geothermal 

system, and the code does not provide for a pH dependent impact on the polymerization 

of silica. A surface area of 106 cm2/g was used for calculation of the rate of amorphous 

silica precipitation for injection fluid pH above 5 to account for these nucleation and 

polymerization processes within the framework of the code. This large surface area value 

takes into account the very small size of amorphous silica particles in solution (Parks, 

1990; Xu et al., 2004) and can approximate precipitation rates that match observations of 

rapid injectivity declines in wells on pad 68-20. To approximate and simulate the reduced 

rate of polymerization with lower pH (Iler, 1979), the amorphous silica surface area term  
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was reduced to 9.1 cm2/g for injection fluid pH less than 5. Sensitivity of this amorphous 

silica surface area term was investigated in a series of models with granodiorite host rock 

(Granodiorite (an)) and injection fluid pH=6.5. 

Water Chemistry 

The composition of the reservoir fluid was estimated from the approximate 

composition of reservoir fluid produced from an East Flank well and was calculated by 

equilibrating the East Flank fluid composition with the granodiorite mineralogical 

composition at 220oC in batch calculations (shown in Table 3.5). An injection fluid 

composition that was calculated from 15 analyses of injection fluid from well 68-20 was 

chosen as the trial injection water (Table 3.5). Injection of H2SO4 modified fluid was 

modeled for mixtures of injectate with 98% H2SO4 at pH=3, 4, and 5 calculated with 

batch equilibrations. The composition of the injectate was constant over time within each 

model simulation. 

Results 

The initial model considers the injection of fluid supersaturated with respect to 

amorphous silica into a fracture zone in a granodiorite host rock (Granodiorite (an), Table 

3.3). Several minerals dissolve and precipitate within the fracture and the altered 

reservoir rock. Amorphous silica precipitates in the fracture (Fig. 3.5), with the majority 

of the precipitation occurring within the first year of the model and within the first few 

meters of the flow path. Precipitation of amorphous silica fills greater than 80% of the 

fracture pore volume within the first meter of the flow path after seven years of injection
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Table 3.5 

Fluid Chemistry 

_______________________________________________________________________
Composition of a reservoir fluid from a produced fluid from Coso East Flank well 38B-9 
in equilibrium with Granodiorite (an) at 220oC and injection fluid composition at 110oC

based on 15 analyses of fluid injected into well 68-20. 
_______________________________________________________________________

Chemical Component Reservoir (Mol/kg) Injection (Mol/kg) 
SiO2 4.44E-3 9.96E-3 

B(OH)3 3.88E-2 1.01E-2 
Na+ 6.82E-2 1.46E-1 
K+ 3.70E-3 1.42E-2 
Li+ 1.63E-3 4.44E-3 

Ca2+ 9.55E-4 1.07E-3 
Al3+ 1.44E-5 8.49E-7 
Mg2+ 3.23E-4 1.52E-5 
Sr2+ 3.60E-5 5.00E-2 
Cl- 8.42E-2 1.60E-1 
F- 1.07E-4 1.15E-4 

HCO3
- 8.84E-2 2.48E-3 

SO4
2- 1.83E-4 6.97E-4 

HS- 3.02E-5  
CH4 6.25E-10  
pH 6.50 6.50 

_______________________________________________________________________

(Fig. 3.5). Trace quartz precipitates in the fracture and rock. No dissolution of K-feldspar 

is observed. However, trace dissolution of anorthite is observed in the rock. Trace illite 

and smectite precipitate in the rock. There is both trace dissolution and trace precipitation 

of chlorite within the fracture, with only trace dissolution in the rock. Calcite and trace 

dolomite precipitate within the fracture. Trace calcite also precipitates in the rock. Trace 

chlorite dissolves in the fracture and rock, and then it precipitates in the fracture. These 

results are consistent with the rapid decline in injectivity experienced with well 68-20 and 
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the observed scale mineralogy. These results are also consistent with the observation that 

amorphous silica scale was only found in wells 68-20RD and 68B-20RD, as these are the 

two wells with trajectories very near those of previously drilled wells. However, 

amorphous silica may be transported farther in the fractures than predicted by these 

models because the models do not account for the transport of suspended colloidal 

amorphous silica particles once they have formed. 

Surface Area Sensitivity Test 

To test model sensitivity to the surface area input for amorphous silica, several 

models were run with fluid injected into Granodiorite (an) for amorphous silica surface 

areas between 9.1 and 106 cm2/g (Fig. 3.6). As the surface area is reduced from 106,

amorphous silica precipitation decreases slightly, and precipitation of amorphous silica 

occurs farther along the flow path. The largest change in the volume of amorphous silica 

precipitation is between surface area of 102 and 9.1 cm2/g. Precipitation of amorphous 

silica is virtually eliminated when the surface area of amorphous silica is modeled as 9.1 

cm2/g.

Differing Reservoir Rock Mineral Compositions 

Varying the mineral composition has no effect on amorphous silica precipitation 

within the fracture when modeling an unmodified injection fluid (pH=6.5). However, the 

fracture fluid pH varies significantly when the unmodified fluid (pH=6.5) is injected into 

reservoir rocks of differing mineralogical compositions (Fig. 3.7). The fracture fluid pH  
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values with reservoir rocks Granodiorite (an) and Diorite (an) do not vary considerably. 

These two reservoir rock types differ in the amounts of anorthite, K-feldspar, quartz, and 

annite in their starting compositions (Table 3.3). When the plagioclase feldspar in the 

reservoir rock is albite (Granodiorite (ab)), the pH of the fluid is slightly higher than that 

of the reservoir rock with anorthite (Granodiorite (an)). Granodiorite with oligoclase as 

the plagioclase feldspar yields the highest predicted fluid pH. With the addition of mafic 

minerals phlogopite and clinozoisite to reservoir rock (Diorite (60% mafic)), the 

predicted fracture fluid pH is reduced significantly. Allowing the precipitation of low 

albite in the simulation involving granodiorite with oligoclase (Granodiorite (olig + low 

ab precip)) and the granodiorite case with anorthite (Granodiorite (an + low ab precip)) 

reduces the predicted fracture fluid pH below those of the other granodiorite simulations. 

When the precipitation of low albite is allowed in the granodiorite with albite case, the 

pH is initially high in the first 10 m of the flow path. The pH then decreases below that of 

the other granodiorite cases where low albite is not allowed to precipitate.

Figs. 3.8, 3.9, and 3.10 show the Na+, Ca2+, and AlO2
- in the fracture fluid at t=7 

years for each of these reservoir rock mineralogies. Na+ declines most dramatically in the 

fracture fluid in the granodiorite cases with oligoclase and anorthite when low albite is 

allowed to precipitate. Na+ also declines initially in the fracture fluid in the granodiorite 

case with albite when low albite is allowed to precipitate, but then increases again farther 

along the flow path. Ca2+ in the fracture fluid is highest in the granodiorite case with 

anorthite where low albite is allowed to precipitate, followed by the granodiorite cases 

with albite (with and without low albite precipitation) and the granodiorite case with 

oligoclase where low albite is allowed to precipitate. The AlO2
- is highest in the 
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granodiorite case with oligoclase, followed by the diorite case with 60% mafic minerals 

and the granodiorite case with anorthite. 

Modeling pH Modification of Injection Fluid 

Injected fluid was modified to pH=3, 4, and 5 to predict the effects of injecting 

fluid modified with H2SO4 into reservoir rocks at the Coso geothermal field. The fluid 

injected in these simulations was modified by mixing 98% H2SO4 with the injection fluid 

from Table 3.5 at 110oC until the desired pH was achieved. SO4
2- contents for pH=3, 4, 

and 5 were 7.40E-4, 7.30E-4, and 7.00E-4 respectively. Amorphous silica surface area 

was 9.1 cm2/g for these models.

Amorphous silica precipitation was significantly reduced in the simulations 

involving each of these lower pH fluids, mainly due to the decrease in the surface area 

term used in the calculation of the kinetic rate of precipitation (which represents a 

reduction in the rate of silica polymerization). Precipitation of amorphous silica for the 

injection fluid with pH=4 and an amorphous silica surface area of 9.1 cm2/g is shown in 

Fig. 3.11. With an injection fluid pH=4, the model predicts that amorphous silica 

precipitation will fill less than 2% of pore space by seven years of injection. Calcite 

precipitation varies with injection fluid pH (Fig. 3.12). Between injection pH=5 and 4, 

calcite precipitation declines significantly within the first meter of the flow path (decrease 

from 14% to 3% of the fracture volume filled). However, in all cases where injected fluid 

pH=3, 4, or 5, fracture porosity is not predicted to increase or decrease more than 3% by 

volume in the overall rock volume (fracture and reservoir rock) because the volume of 

minerals dissolved is roughly equivalent to the volume of minerals precipitated.  
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However, this prediction does not accurately represent the complexity of the effects of 

mineral dissolution and precipitation on porosity and permeability. 

Fracture Fluid pH with pH Modification 

Fracture fluid pH predictions for various injection fluid pH values are plotted in 

Fig. 3.13 for Granodiorite (an) and in Fig. 3.14 for Granodiorite (olig + low ab precip). 

With injection fluid pH=6 and 7, the two cases diverge in the predicted fracture fluid pH, 

with Granodiorite (olig + low ab precip) having a lower predicted fracture fluid pH. With 

injection pH=3, 4, and 5, the predicted fracture fluid pH for Granodiorite (an) and 

Granodiorite (olig + low ab precip) are very similar to each other. 

Discussion 

These simulations provide insight into the geochemical consequences of injecting 

fluid supersaturated with respect to amorphous silica and H2SO4 modified fluid into a 

geothermal reservoir. However, because there are limitations to the current models, it is 

important to discuss the implications of such limitations for the predictions presented. For 

example, because there are only empirical data available on the impact of pH reduction 

on the rate of silica polymerization in this temperature range, the surface area term in the 

rate equation for silica precipitation is reduced to simulate the reduced rate of silica 

polymerization in the simulations involving the injection of lower pH fluids. While the 

input for the surface area term of amorphous silica is modified depending on the initial 

injection pH, feedback modifications to the surface area term based on pH after reaction 
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of the fluid with the host rock are not allowed. Also, the models do not consider 

processes related to nucleation, growth, and maturation of silica particles. 

The models predict that an injection pH of 4 would be optimal at Coso geothermal 

field to inhibit the majority of both amorphous silica and calcite precipitation. Dissolution 

and precipitation of minerals is not predicted to dramatically impact porosity and 

permeability over time with continued injection of fluid with pH=3 to 5. However, due to 

the limitations of the model, it is important to consider that minerals will not dissolve and 

precipitate exactly in their original locations, and other aspects of mineral dissolution and 

precipitation should be considered as a possible means for modification of porosity and 

permeability over time (i.e., preferential mineral precipitation in pore throats or 

preferential dissolution at mineral contacts due to pressure solution). The predicted 

changes in fracture fluid pH over time will also have a possible impact on whether or not 

silica will remain in solution long enough to be heated in the reservoir, where high 

temperature removes homogeneous nucleation and polymerization as major factors in the 

precipitation of amorphous silica (Iler, 1979). 

In geothermal systems, reactions involving carbonates and feldspars typically 

exert the most control on the fluid pH through alteration phase equilibria (Giggenbach, 

1981). The variation in pH of the fluid produced at Coso may also be related to reactions 

with reservoir rocks of differing mafic content, as there is significant variation in the 

abundance of mafic minerals in the reservoir rocks observed in drill cuttings and cores 

from the Coso geothermal field. Salinity has an impact on the ionic strength of the fluid, 

and therefore on the activity of H+ (Henley et al., 1984). These reactions may be very 

103



important controls on the production fluid pH at Coso and may also be important controls 

on the pH of injected fluid in fractures at Coso.

The P(CO2) will also influence the pH of the fracture fluid. The difference in the 

two most recent alteration mineral assemblages observed on the East Flank at Coso 

(Kovac et al., 2005) is directly related to the P(CO2) of the system at the time of the 

alteration (Giggenbach, 1981). However, variations in the P(CO2) of the injected fluid are 

not considered in these models because CO2 is typically removed when the produced 

fluid has been flashed through boiling and deposition of carbonate minerals. Interactions 

between the fluid and carbonate minerals after injection will determine the P(CO2) of the 

injected fluid, and therefore influence the pH of the fracture fluid and the type of 

alteration minerals that would likely be observed.

These pH control mechanisms are important factors in determining the changes in 

pH of the reservoir fluid with the addition of H2SO4 into the injected fluid, and thus the 

precipitation rate and mechanism of amorphous silica deposition within the reservoir. The 

models indicate that the effect of pH-modified fluid on the reservoir rock will also be 

dependent on the mineral assemblage, mineral solubility, and assemblage buffering 

capabilities.

The calculated pH of the fluid in the fracture at t=7 years varies depending on the 

input reservoir rock mineralogy for injection fluid pH=6.5 (Fig. 3.7). The calculated pH 

of the fracture fluid  varies with the type of plagioclase mineral used in the reservoir rock 

in the model (an, olig, ab). Models using granodiorite reservoir rock with oligoclase as 

the plagioclase feldspar predict a higher fracture fluid pH than the models with anorthite 

or albite as the plagioclase. The oligoclase is predicted to dissolve and add Na+ to the 
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fracture fluid. This increases the ionic strength of the fracture fluid, decreasing the 

activity of H+ and increasing the fluid pH. In the case where anorthite is the plagioclase 

feldspar, anorthite is predicted to dissolve, but the Ca2+ can precipitate out in the form of 

calcite. Thus dissolution of anorthite does not affect the ionic strength of the fluid 

significantly. The injection fluid is already saturated with albite and K-feldspar at 110oC

(log(Q/K)=0.64 and 1.38, respectively), indicating that the injection fluid had already 

exchanged extensively with both feldspars in the Coso geothermal reservoir.  Hence the 

models predict low dissolution rates (Table 3.4) and that neither albite nor K-feldspar will 

dissolve.  In contrast, oligoclase and anorthite are compositionally and structurally out of 

equilibrium with the injection fluid, and the models predict high dissolution rates (Table 

3.4) for both of these higher temperature (igneous) feldspars. When low albite is allowed 

to precipitate in the granodiorite cases with oligoclase or albite feldspar, the low albite 

precipitation removes the Na+ from the fracture fluid, reducing the ionic strength of the 

fluid and increasing the activity of H+. However, fracture fluid pH cannot be explained 

simply with the concentration of Na+ in the fluid for the other cases, as the fluid pH is 

dependent on many mineral reactions. The saturation of the injection fluid used in the 

model with albite and K-feldspar and the predicted dissolution of oligoclase and anorthite 

in the models indicate that the structure and composition of the feldspars in the reservoir 

rocks that the fluids flow through at Coso are likely closer to those of a hydrothermal 

albite or low albite and K-feldspar than to those of oligoclase or anorthite. 

The fracture fluid pH also declines with the addition of the mafic minerals 

phlogopite and clinozoisite in the initial reservoir rock (Diorite (60% mafics)). The pH 

does not vary considerably relative to the amount of plagioclase feldspar (an), quartz, 
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annite, or K-feldspar, as seen by comparing the Granodiorite (an) and the Diorite (an) 

cases. Increasing the mafic mineral percentage to 60% of the rock volume with the 

addition of phlogopite and clinozoisite (Diorite (60% mafic)) yields a significantly lower 

fracture fluid pH. The precipitation of clinozoisite in the reservoir rock releases H+ into 

the fluid in these models. 

The injectivity of wells at Coso geothermal field is currently maintained by 

injecting H2SO4 modified fluid. The target pH is near pH=5, and precipitation of 

amorphous silica scale does not appear to be a problem when the pH modified fluid is 

injected. The current simulations predict the deposition of amorphous silica when there is 

a very large available surface area for amorphous silica precipitation. However, the 

fracture fluid pH is predicted to neutralize very quickly in Granodiorite (an) and 

Granodiorite (olig + low ab precip) reservoir rocks when the injection fluid pH is 

between pH=3 to 5 (Fig. 3.14). Of particular interest is the predicted fracture fluid pH in 

Granodiorite (olig + low ab precip). When the surface area of amorphous silica is 106

cm2/g (as in models where injection pH= 6 or 7) and low albite is allowed to precipitate 

from the fluid (removing Na+), the fracture fluid pH is predicted to decrease below pH=6. 

When amorphous silica does not precipitate (pH=3, 4, or 5 and amorphous silica surface 

area is 9.1 cm2/g), SiO2(aq) will likely complex with H+, buffering the solution to higher 

pH. Hence, the predicted fracture fluid pH is strongly related not only to silicate mineral 

reactions but to the amount of SiO2(aq) in solution. The relative impact of these two 

processes on the pH of the fracture fluid therefore will be a function of the pH of the 

injection fluid. 
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Because the kinetic rate of amorphous silica precipitation is dependent upon pH, 

the predicted pH of the fracture fluid is important in determining if amorphous silica will 

precipitate at some point along the flow path between injection and production wells at 

Coso. The kinetic rate of deposition will also be dependent on the temperature of the fluid 

within the reservoir. As observed in subsequent injection wells drilled on pad 68-20 after 

the initial injection well, the temperature of the reservoir rocks is declining in the near 

wellbore with injection over time. When amorphous silica does not precipitate and inhibit 

the flow of injection fluids into the reservoir, there is the possibility that this temperature 

decline may be accelerated in certain portions of the reservoir. The current models predict 

a decline of fracture fluid temperature related to the maintenance of porosity and 

permeability with inhibition of amorphous silica precipitation (Fig. 3.15). The 

neutralization of the pH of the fracture fluid, as well as the possible declines in 

temperature along the flow path may lead to the need for increasing the amount of H2SO4

in the injection fluid over time to keep amorphous silica from precipitating. 

The models predict that the addition of H2SO4 to the injection fluid may lead to an 

increase in anhydrite precipitation further into the flow path as fluid heated. The models, 

however, do not predict the deposition of anhydrite with the addition of quantities of 

H2SO4 calculated for the injection fluid to reach pH=3, 4 or 5. An increase in SO4
2- to 10-

3 in the injection fluid (corresponding to an injection fluid pH >2 reduced from 6.5) 

would correspond to a 10-5% increase in the volume of anhydrite in distant portions of the 

flow path. Therefore, the precipitation of anhydrite is not predicted to be significant for 

additions of H2SO4 required to reduce the pH of the injection fluid from 6.5 to >3. 

However, if the pH of the injection fluid is higher before modification and more H2SO4 is
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required to reduce the pH, there may be an increased amount of anhydrite precipitation in 

fractures. 

Conclusions

Although there are limitations to the models, reactive transport models using the 

program TOUGHREACT provide insight into the consequences of injecting post 

production reservoir fluid and H2SO4 modified fluid at the Coso geothermal field. These 

simulations predict that injection of fluid supersaturated with respect to amorphous silica 

will cause rapid declines in injectivity due to precipitation of opal-A, consistent with 

observations of amorphous silica scale in cuttings from injection wells drilled on pad 68-

20 at Coso. The TOUGHREACT model was then used to predict the effects of injection 

of pH modified fluid on reservoir rocks and fluids. An optimal injection pH of 4 is 

predicted to prevent significant precipitation of amorphous silica. The models predict that 

the pH of this fluid will be buffered within the reservoir as a result of silicate mineral 

reactions and SiO2(aq) in the fluid. Mineralogy of the reservoir rock may have a 

significant effect on the pH of the fluid after it has been injected, which in turn will have 

a significant effect on the polymerization kinetics of amorphous silica. Significant 

changes in porosity and permeability of fractures or reservoir host rock are not predicted 

for injection fluid with lower pH (3 to 5) from the addition of H2SO4. However, minor 

mineral dissolution and precipitation are predicted, which could cause declines in 

porosity and permeability within the reservoir through processes that the models do not 

consider, such as pressure solution and preferential precipitation in pore throats. With 
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decreased mineral precipitation, increased injectivity may lead to more rapid declines in 

temperature in portions of the reservoir. 
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CHAPTER 4 

MODELING THE GEOCHEMICAL EFFECTS OF INJECTION AT 

THE SALTON SEA GEOTHERMAL FIELD, CA: COMPARISON 

 WITH FIELD OBSERVATIONS 

Abstract

Mineral deposition has reduced the injection rates in an injection well at the 

Salton Sea geothermal field. Scanning electron microscope images combined with 

semiquantitative energy dispersive analyses show that the scale deposits found in cuttings 

from the Elmore IW3 RD-2 redrilled well consist of layers of barite and fluorite and 

minor anhydrite, amorphous silica and copper arsenic sulfides. Geochemical modeling 

using TOUGHREACT has been initiated to further assess the behavior of the injection 

fluids and their effects on well performance. A one dimensional model is used to simulate 

injection into sandstone containing a fracture zone with 95% porosity. Initial models 

predict that barite is the mineral responsible for porosity declines when silica and 

bicarbonate are removed from the injection fluid. This prediction is consistent with the 

observed mineral relationships. 



Introduction

Direct evidence has been observed for relating injectivity losses in the Salton Sea 

geothermal system to mineral precipitation (McLin et al., 2006). In order to mitigate the 

effects of mineral deposition, the geochemistry and mineralogy of these deposits,  

as well as fluid-fluid and fluid-rock interactions must be understood. In this chapter, the 

effects of injecting flashed  geothermal fluids into Salton Sea injection well Elmore IW3 

RD-1 are investigated by comparing field observations from drill cuttings with modeled 

results. The effects of changes in fluid chemistries are also modeled. 

Salton Sea Geothermal Field 

The Salton Sea geothermal system is developed in Quaternary deltaic sandstones 

and shales of the Salton Trough, the northern landward extension of the tectonic regime 

of the Gulf of California (Hulen and Pulka, 2001) (Fig. 4.1). The sediments, which are 

located above continental spreading centers, serve as thermal insulators. Quaternary 

volcanoes are exposed at Obsidian Butte, Rock Hill, Red Island and Mullet Island and 

several of the wells have encountered older rhyolite (Hulen and Pulka, 2001). Injection 

well Elmore IW3 RD-1 was drilled in 1988 and used for injection until 1997. Fluids 

injected into Elmore IW3 RD-1 were hypersaline (TDS exceeds 220,000 mg/kg) and 

metal-rich, but low in silica, which was removed prior to injection. The well was 

deepened in 1997 from 2308 to 2405 m depth due to declining performance and renamed 

Elmore IW3 RD-2. 
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Fig. 4.1. Generalized map of the Salton trough (modified from McLin et al., 2006, Hulen 
et al., 2001). 
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Observations 

A variety of scale deposits have been recognized in the cuttings from Elmore IW3 

RD-2 based on their mineralogy and textures. Concentrations of scale occur primarily at 

the top of the redrill at a depth of approximately 2308 and sporadically at greater depths  

(Fig. 4.2). Petrologic, scanning electron microscope (SEM), and semiquantitative energy 

dispersive x-ray (EDX) analyses were used to determine the mineralogy and texture of 

the scale deposits found in the cuttings. Fluid inclusions were studied in associated 

euhedral calcite crystals to determine their petrogenesis. 

Photomicrographs of scale deposits show distinct mineral banding that range from 

tens to hundreds of micrometers in thickness (Fig. 4.3; McLin et al., 2006). SEM and 

EDX analyses demonstrate that the scale deposits consist of layers of barite and fluorite 

associated with minor anhydrite, amorphous silica and copper arsenic sulfides. Some 

bands of barite show strong Ti peaks in the EDX spectra, whereas amorphous silica 

bands show strong Fe peaks in the spectra. No differences in the chemistries of adjacent 

barite bands, was observed, suggesting that factors other than fluid chemistry control 

barite deposition. The anhydrite coats the barite, whereas the amorphous silica was found 

deposited on the copper arsenic sulfide scale. 

Secondary fluid inclusions were studied in euhedral calcite crystals from a depth 

of 2308 m. Only two-phase liquid rich inclusions were observed. The homogenization 

temperatures of thirty inclusions ranged from 337o to 357oC. These temperatures 

represent the minimum trapping temperatures. Ice melting temperatures indicate salinities 

between 23 and 25 weight percent NaCl-CaCl2 equivalent. These homogenization 

temperatures indicate that the calcite crystals were not formed as scale  
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Fig. 4.2. Lithology of cuttings from Elmore IW3 RD-2 and calcite concentration, as well 
as the location of euhedral crystals and slickensides (as described by Jeff Hulen). MDS is 
mudstone, SS is sandstone, and CA is calcite. 
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Fig. 4.3. Photomicrographs and SEM images of scale from Elmore IW3 RD2. (A) 
Photomicrographs of scale deposits from Elmore IW3 RD2 sampled from 2308-2405 m 
depth. Images taken under plane polarized light (left) and under crossed nicols (right). 
(B), (C), (D) SEM and corresponding EDX spectra for (B) amorphous silica (C) barite 
and (D) fluorite from scale deposits. 
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deposits, as these temperatures are much higher than the 110oC and 258oC temperatures 

of the injected fluid and the reservoir respectively. 

Modeling Approach 

Simulations were carried out using the nonisothermal reactive geochemical 

transport code TOUGHREACT (Xu and Pruess, 2001; Xu et al., 2004). This code was 

developed by introducing reactive chemistry into the framework of the existing 

multiphase fluid and heat flow code TOUGH2 V2 (Pruess et al., 1999). Additional 

information on TOUGHREACT can be found on the site http://www-

esd.lbl.gov/TOUGHREACT/. Interactions between mineral assemblages and fluids can 

occur under local equilibrium or kinetic rates. The gas phase can be chemically active. 

Precipitation and dissolution reactions can change formation porosity and permeability, 

and can also modify the unsaturated flow properties of the rock. This simulator can be 

applied to one, two, and three dimensional porous and/or fractured media with physical 

and chemical heterogeneity. Any number of species may present in liquid, solid, and 

gaseous phases in these simulations. 

Simulation Setup 

Fluid and Heat Flow Conditions 

The flow geometry and conditions of fluid and heat flow are modeled after those 

described in Xu and Pruess (2004). A one dimensional MINC (multiple interacting 

continua) model was used to represent the fractured rock. The MINC method can resolve 

“global” flow and diffusion of chemicals in the fractured rock and interaction of fluids 
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with “local” exchange between fractures and matrix. Details on the MINC method for 

reactive geochemical transport are described by Xu and Pruess (2001). Two different 

domains are considered in the model; one representing the relatively impermeable, 

unaltered host rock and the second representing the relatively permeable fractures. The 

physical characteristics of the two domains are provided in Table 4.1. The host rock is 

considered to be a weakly to moderately altered calcite cemented sandstone, based on 

petrographic studies of the well cuttings. Few veins were found in the well.  To account 

for the lack of veining, the fractures were modeled as containing only trace amounts of 

anhydrite and smectite (Table 4.2). A density of 2650 kg*m-3, heat capacity of 1000 J*kg-

1K-1, and diffusivity of 10-9 m-2s-1 were used for both domains. The cubic law was used to 

define the porosity-permeability relationship in both cases (Xu et al., 2004). The model 

generates changes in porosity and permeability based on changes in mineral abundances. 

Mineral Kinetic Rates and Parameters 

Mineral dissolution and precipitation are considered under kinetic constraints. The 

general kinetic rate expression used to calculated mineral precipitation and dissolution 

rates is given by 

rm = ±kmAmaH+
n |1- Qm/Km|                           (4.1) 

where m is the mineral index, rm is the dissolution/precipitation rate, (positive for 

dissolution, negative for precipitation), km is the rate constant (moles per unit mineral 

surface area and unit time) which is temperature dependent, Am is the specific reactive

120



Table 4.1 

Hydrologic and Thermal Parameters 

________________________________________________________________________
Hydrologic and thermal parameters for the flow regimes. 

________________________________________________________________________

Parameters Fracture
Average Moderately  
Altered Sandstone 

Volume 0.1 0.6 
Permeability (m2) 2.0E-12 2.0E-15 

Porosity 0.95 0.10 
Thermal 

Conductivity
(W* m-1K-1)

2.9 3.0

Tortuosity 0.3 0.1 
________________________________________________________________________

surface area per kg of H2O, aH+ is the activity of H+
, and n is an empirical reaction order 

accounting for catalysis by H+ in solution (Xu et al., 2004):. Km is the equilibrium 

constant for the mineral-water reaction written for the destruction of one mole of mineral  

m, Qm is the ion activity product. The temperature dependence of the reaction rate 

constant can be expressed as: 

k = k25 exp[ -Ea/R (1/T – 1/298.15)]        (4.2) 

where Ea is the activation energy, k25 is the rate constant at 25oC, R is the universal gas 

constant, and T is absolute temperature. Table 4.3 shows the parameters used in the 

kinetic rate expression. 
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Table 4.2 

Mineralogical Parameters 

________________________________________________________________________
Simplified initial mineralogical composition of solid rock from the two domains used in 
the preliminary simulations. These estimations were made using data from the petrologic 
and petrographic studies. Initial rock temperature for both zones used was 258oC in the 

preliminary simulations. 
________________________________________________________________________

Mineral

Volume Fraction of Solid Rock 

Fracture
Mineralogy

Moderately
Altered 

Sandstone
Quartz  .470 

Potassium 
Feldspar .080
Chlorite  .015 

Illite  .015 
Calcite  .015 

Anorthite  .260 
Annite  .100 

Na smectite .333  
Ca smectite .333  
Anhydrite .333 .020 

Calcite  .015 
Dolomite  .010 

________________________________________________________________________
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Table 4.3 

Kinetic Rate Parameters 

________________________________________________________________________
List of kinetic rate parameters used in Eqns. (4.1) and (4.2) for minerals considered in the 
present paper (Xu and Pruess, 2004; Palandri and Kharaka, 2004). The first line indicates 
dissolution parameters and the second line precipitation parameters; the same value was 

used for both dissolution and precipitation where only one line is shown. 
________________________________________________________________________

Mineral
k25 

(moles m-2 s-1)
Ea

(KJ/mole) 
n

(rxn. order) 
Surface Area 

(cm2/g)
Quartz 1.2589E-14 87.50 0 9.8 

Am. Silica 4.9000E-13 
3.8000E-10

76.00
49.80

0
0

1.0E6
1.0E6

K-feldspar 1.0000E-12 57.78 0 9.8 
Anorthite 1.0000E-12 57.78 0 9.8 

Na smectite 1.0000E-14 58.62 0 151.63 
Ca smectite 1.0000E-14 58.62 0 151.63 

Illite 1.0000E-14 58.62 0 151.63 
Annite 2.5119E-15 

2.5119E-15
66.20
66.20

1
0

9.8
9.8

Calcite 6.9183E-02 
6.4565E-07

18.98
62.76

1
0

9.8
9.8

Dolomite 1.0233E-03 
4.4668E-10

20.90
62.76

1
0

9.8
9.8

Chlorite 2.5119E-12 62.76 0 151.63 
Barite 1.3000e-08 30.80 0 9.8 

Fluorite 1.6218e-14 73.00 0 9.8 
Anhydrite 6.4565e-04 14.30 0 9.8 

________________________________________________________________________
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Water Chemistry 

The composition of the reservoir fluid was estimated based on the approximate 

composition of production fluids from the Unit 6 Obsidian Butte Well (Table 4.4). The 

fluid has an ionic strength of 2.2 M. Iron and magnesium values were estimated based on 

values from Hulen et al. (2004). Initial fluid compositions were calculated by 

equilibrating the reservoir fluid composition with sandstone at 258oC, the initial reservoir 

temperature. The injectate composition was not allowed to change over time.   

Table 4.4 

Fluid Chemistry 

________________________________________________________________________
Example approximate composition of reservoir fluid from Salton Sea Unit 6 Obsidian 

Butte well at 258oC temperature as used in the simulations. 
________________________________________________________________________

Chemical Component mol/kg 
SiO2 0.9962E-2 
Na+ 0.1957 
K+ 0.3325 

Ca2+ 0.6137E-1 
Mg2+ 0.1781E-5 
Cl- 3.944 
F- 0.1053E-2 

HCO3
- 0.1506E-2 

SO4
- 0.1040E-2 

Fe+2 0.2586E-6 
Mg+2 0.1781E-5 
Ba+2 0.1310E-2 
pH 4.5 

________________________________________________________________________
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Results 

The publicly available TOUGHREACT version, using an extended Debye-Huckel 

equation after Helgeson et al. (1981) for calculating activity of aqueous species, was used 

in this study. Our conceptual model considers a one dimensional flow tube beginning at 

the injection well and extending outward 500 m. The simulations were run for a total of 7 

years. Changes in fluid pH, fracture porosity, fracture permeability, fluid temperature, 

and changes in mineral abundances were monitored. Mineral abundance changes are 

reported in terms of changes in volume fraction for the following minerals: quartz, 

potassium feldspar, chlorite, illite, sodium smectite, calcium smectite, calcite, dolomite, 

anorthite, biotite, amorphous silica, anhydrite, barite and fluorite. Calcite, barite, fluorite, 

anhydrite, quartz and amorphous silica displayed the most significant changes. Changes 

in porosity were calculated as a function of mineral dissolution and precipitation.

Porosity increases when mineral dissolution is dominant, whereas porosity decreases 

when precipitation dominates.  Changes in permeability are calculated from changes in 

porosity as described above. 

For the initial model, the injection fluid chemistry is equivalent to the production 

fluid chemistry. The model results indicate that, with this chemistry, the deposition of 

amorphous silica, calcite, and quartz would be responsible for the porosity declines in 

Elmore IW3 RD. Barite and fluorite are minor precipitates, whereas anhydrite dissolves 

in this scenario. As in the following models, fluorite precipitation continues after 

deposition of barite ceases. This model does not fit the observed mineralogy of the scales.  

In the second modeled run, the concentration of silica in the injection fluid was reduced 

to 10-22, reflecting precipitation of silica prior to injection. In this case, amorphous silica 
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does not precipitate, but a minor amount of quartz dissolves and precipitates. Thus, the 

amorphous silica must be carried in the injection fluid and could not be derived through 

dissolution of the reservoir rock. In contrast to the initial model, Fig. 4.4 shows that 

significant barite and calcite and minor fluorite precipitate. However, barite precipitation 

reaches a maximum at a later time, compared to the initial model. 

Fig. 4.5 shows the results of reducing both silica and HCO3
- concentrations in the 

injection fluid. Reducing HCO3
- in the modeled injection fluid to trace amounts 

eliminates calcite from the precipitate, consistent with the observed scale mineralogy. In 

this model, barite and fluorite are the dominant phases precipitated, with fluorite 

deposition continuing after barite deposition ceases. Thus, this model best explains the 

observed mineral banding of the scale deposits. 

Conclusions

The modeled results closely simulate the observed mineral deposits based on 

observations made on cuttings from injection well Elmore IW3 RD-2 when silica and 

bicarbonate are reduced to trace amounts in the injection fluid. Because minor amounts of 

amorphous silica are found in the scale deposits, the model indicates that amorphous 

silica must at times be present in the injection fluid. The Pitzer ionic interaction model 

described by Xu et al. (2005) should be used in future investigations and compared to 

results from this study. Future investigations should also include variations in the 

composition of the injection fluid, such as the addition of condensate and the effects of 

steam loss. Reductions in injection fluid temperature should be considered to determine if 

injectivity increases are predicted by injecting cooler fluids. 
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Fig. 4.4. Graphs showing barite, calcite, and fluorite precipitation in fracture over time 
for the model with silica removed from the injection fluid (t=0 to 7 years). 
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Fig. 4.5. Graphs showing barite and fluorite precipitation in fracture over time for the 
model with silica and bicarbonate removed from the injection fluid (t=0 to 7 years). 
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CHAPTER 5 

GEOCHEMICAL MODELING OF WATER-ROCK-PROPPANT 

INTERACTIONS

Abstract

Enhanced geothermal system (EGS) reservoir fracture creation and management 

may require the use of proppants to maintain fracture conductivity. The most commonly 

used proppants, which remain in hydraulically created fractures to keep them open, 

include silica sand, ceramic, and sintered bauxite. In geothermal systems, proppant will 

need to withstand high temperatures, acidified fluids, acid treatments, and cleanouts 

while maintaining the porosity and permeability of the fracture. Geochemical modeling 

of water-rock-proppant interactions was conducted in conjunction with static experiments 

to extrapolate experimental observations to the reservoir scale. PHREEQC was used to 

examine the chemical stability of silica and bauxite proppants in equilibrium with fluids 

of varying composition. TOUGHREACT was used to model one dimensional flow of 

these fluids through a granite reservoir with fractures filled with silica or bauxite 

proppant. The models predict that amorphous silica would precipitate in quartz sand 

propped fractures. The models also predict that dissolution and reprecipitation of 

aluminum minerals from the bauxite proppant would occur when the porosity was high 

enough (50%) for a sufficient water/rock ratio, allowing the hydration of corundum to 



diaspore. This predicted hydration reduced the fracture porosity by increasing the volume 

of the aluminum bearing mineral. 

Introduction

In the oil and gas industry, hydraulic fracturing is often accompanied by the 

addition of proppants. Proppants are sized particles that are added to fracturing fluids and 

remain in the fracture to physically hold the newly created fracture open while 

maintaining conductivity within the fracture. A variety of proppants are available, and the 

most commonly used proppants consist of silica sand, ceramic and resin coated sands, 

and bauxite. In enhanced geothermal systems (EGS), proppant will need to withstand 

high temperatures, acidified fluids, acid treatments, and cleanouts while maintaining the 

porosity and permeability of the fracture. However, proppant particles may act as 

nucleation sites and promote precipitation, or they may dissolve, consequently affecting 

fracture performance by increasing or decreasing permeability. Thus, the performance of 

proppants in geothermal reservoirs must be understood to avoid costly mistakes in the 

creation and maintenance of EGS reservoirs. The goal of this investigation is to develop 

improved methods for maintaining permeable fracture volumes in EGS reservoirs by 

experimentally evaluating the performance of proppants (natural and manufactured) 

under conditions found within geothermal environments and determining the effects of 

mineral deposition and dissolution on propped fractures. 
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Previous Studies 

There have been few geothermal applications of proppants. In the Northeast 

German Basin at Schoenbech, high strength ceramic proppant was used in a well at 4080-

4190 m depth and 140oC (Legarth et al., 2003). Propped fractures were created, and 

inflow performance of the well was significantly enhanced. Even so, post fracture 

productivity was not as high as predicted. The possible reasons given for this discrepancy 

are chemical and mechanical processes during well shut in or undersized and poorly 

connected fractures. Sand proppant was used during stimulation of production wells at 

Raft River, Idaho in the late 1970’s and early 1980’s (Hanold, 1982). Sand proppant was 

substantially produced from well RRGP-4 for ten days following stimulation (Verity, 

1980).

Previous studies from the oil and gas industry have reported that sintered bauxite 

proppant is resilient in high stress environments (Cooke, 1977). When formation stresses 

are high, these proppants deform, rather than crush.  This deformation allows for the 

increase of contact area between proppant grains or between proppant and the wall rock. 

Quartz sand has been shown to crush, decreasing porosity and permeability in the fracture 

(Cooke, 1977). Significant conductivity loses were reported after flow-through testing 

with sintered bauxite in fractured sandstone at temperatures between 93 and 287oC

(Weaver et al., 2009). These loses were partially attributed to geochemical interactions of 

the fluid, proppant, and formation rock.  

McLin et al. (2010) and Brinton et al. (2011) show dissolution of proppant and 

precipitation of minerals in static experiments. Proppant and a proppant-granite mixture 

were reacted with various fluids for up to two months at 200-230oC. Dissolution textures 
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were observed on the surface of the bauxite proppant in several experiments. The 

precipitated minerals included aluminosilicates (possibly wairakite), zeolites, aluminum 

oxides/hydroxides, and amorphous silicates. The main mechanisms for precipitation of 

the minerals appear to be related to the experimental methodology. Fluid leakage 

concentrated the dissolved components in solution, and cooling the reactor for extended 

periods of time allowed lower temperature mineral assemblages to become stable and 

precipitate. 

Batch Model Setup 

Bauxite proppant consists mainly of corundum (Al2O3). The stability of corundum 

was examined using the Geochemist’s Workbench (Bethke, 2008) with the Lawrence 

Livermore National Laboratory (LLNL) database and PHREEQC (Parkhurst and Appelo, 

1999) with the LLNL and THERMODDEM (TDEM) databases. For these models, 

corundum is dissolved when equilibrated with deionized water. The saturation of 

gibbsite, boehmite, and diaspore were calculated for temperatures ranging from 0 to 

300oC.

PHREEQC was used to model batch equilibration of fluid with proppant and 

granite. The LLNL database was used. These simulations were constructed to model the 

experiments conducted by McLin et al. (2010) and Brinton et al. (2011). Deionized water 

and fluid with a composition based on the production fluid from Raft River well RRG-7 

were reacted with granite and proppant. Simulations were run for both quartz and 

corundum proppants. Temperatures between 100 and 250oC were used for these 

simulations. The quartz and corundum proppants were allowed to dissolve to saturation, 
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and mineral saturations were calculated based on these dissolved mineral concentrations. 

Outputs include pre and post reaction fluid chemistries and mineral saturation indexes. 

Flow Model Setup 

The flow simulations were carried out using the nonisothermal reactive 

geochemical transport code TOUGHREACT (Xu and Pruess, 2001; Xu et al., 2004). This 

code was developed by introducing reactive chemistry into the framework of the existing 

multiphase fluid and heat flow code TOUGH2 V2 (Pruess et al., 1999, see also 

http://www-esd.lbl.gov/TOUGHREACT/). Interactions between mineral assemblages and 

fluids can occur under local equilibrium or kinetic rates. The gas phase can be chemically 

active. Precipitation and dissolution reactions can change formation porosity and 

permeability, as well as modify the unsaturated flow properties of the rock. This 

simulator can be applied to one, two, and three dimensional porous and fractured media 

with physical and chemical heterogeneity. Any number of species can be present in the 

liquid, solid, and gaseous phases within this program. 

Fluid and Heat Flow Conditions 

The geometry and fluid and heat flow conditions are modeled after those 

described in Xu and Pruess (2004) and are similar to those used by McLin et al. (2006). 

A one dimensional MINC (multiple interacting continua) model was used to represent the 

fractured rock. The MINC method can resolve “global” flow and diffusion of chemicals 

in the fractured rock and interaction with “local” exchange between the fractures and 

matrix. Details on the MINC method for reactive geochemical transport are described by 
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Xu and Pruess (2001). In the simulations we considered interactions with: 1) a zone 

representing the relatively impermeable, unaltered host rock; and 2) altered host rock 

containing fractures filled with either corundum or quartz proppant. Granite was used as 

the host rock for these models. The flow distance was 698 meters, and the simulation 

monitored changes in temperature, fluid chemistry, porosity, permeability, and mineral 

volume fractions through t = 7 years. The parameters used in the models are shown in 

Table 5.1. Density = 2650 kg*m-3, heat capacity = 1000 J*kg-1K-1, and diffusivity = 10-9

m-2s-1 were used for all zones. The cubic law was used to define the porosity-permeability 

relationship in both zones (Xu et al. 2004). The model generates changes in porosity and 

permeability based on changes in mineral abundances. 

Table 5.1 

Hydrologic and Thermal Parameters 

________________________________________________________________________
Hydrologic and thermal parameters of rocks used in the models 

________________________________________________________________________
Parameters Fracture Granite 
Volume (m3) 0.1 0.9 
Permeability (m2) 1.0E-13 2.0E-18
Porosity 0.30-0.50 0.02 
Thermal Conductivity
(W* m-1K-1) 2.9 3.0
Tortuosity 0.3 0.1 

________________________________________________________________________
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Mineralogical Conditions 

The mineralogical composition of the reservoir rock is an estimated composition 

of granite. The fractures were given the porosity (30%), permeability, and tortuosity of a 

typical sandstone (as used in Xu et al., 2007). A higher porosity (50%) situation was also 

considered for the bauxite propped fracture. The type of proppant used in the simulation 

determined the mineralogy of the fracture zone. The bauxite proppant was simulated as 

mostly corundum with a few mineral contaminants, such as quartz, calcite, and clay 

minerals. Mineralogical compositions of the host rock and fractures are presented in 

Table 5.2. 

Table 5.2 

Mineralogical Parameters 

________________________________________________________________________
Mineralogical composition of the granite used in the simulations.  A temperature of 

200oC was used for the initial rock temperature in the simulations. 
________________________________________________________________________

Mineral Granite
Fracture
(bauxite
proppant)

Fracture
(quartz
proppant)

Quartz 0.22 0.06 0.90 
Potassium Feldspar 0.22   
Chlorite 0.10 0.01 0.01 
Illite 0.10 0.01 0.01 
Calcite 0.03 0.04 0.05 
Smectite  0.03 0.03 
Anorthite 0.29   
Annite 0.06   
Amorphous Silica    
Corundum  0.85  

________________________________________________________________________
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Mineral Kinetic Rates and Parameters 

Mineral dissolution and precipitation are considered under kinetic constraints, 

with the exception of corundum, gibbsite, boehmite, and diaspore because good kinetic 

data were not available for all aluminum oxides/hydroxides. The general kinetic rate 

expression used in TOUGHREACT (Xu et al., 2004) is: 

rm = ±kmAmaH+
n |1- Qm/Km|        (5.1) 

where m is the mineral index, rm is the dissolution/precipitation rate, (positive for 

dissolution, negative for precipitation), km is the rate constant (moles per unit mineral 

surface area and unit time), which is temperature dependent, Am is the specific reactive 

surface area per kg of H2O, aH+ is the activity of H+
, and n is an empirical reaction order 

accounting for catalysis by H+ in solution. Km is the equilibrium constant for the mineral-

water reaction written for the destruction of one mole of mineral m, Qm is the ion activity 

product. The temperature dependence of the reaction rate constant can be expressed as: 

k = k25 exp[-Ea/R(1/T–1/298.15)]       (5.2) 

where Ea is the activation energy, k25 is the rate constant at 25oC, R is the universal gas 

constant, and T is the absolute temperature. Table 5.3 shows the parameters used in the 

kinetic rate expression. 

137



Table 5.3 

Kinetic Rate Parameters 

________________________________________________________________________
List of kinetic rate parameters used in Eqns. (5.1) and (5.2) for minerals considered in the 
present paper (Palandri and Kharaka, 2004 and Xu et al., 2007).  The first line indicates 

dissolution parameters and the second line precipitation parameters; the same values were 
used for both where only one line is shown. Only the neutral mechanism was considered. 
________________________________________________________________________

Mineral

A (cm2/g)

Neutral Mechanism 

k25 (mol m-2 s-1) Ea (kJ/mol) 
Quartz 9.1 1.023E-14 35 
Am. 
Silica 

9.1
9.1

4.900E-13
3.800E-10

76
49.8

K-
feldspar 

9.1 3.890E-13 38 

Anorthite 9.1 7.586E-10 17.8 
Smectite 108.7 1.660E-13 35 
Illite 108.7 1.660E-13 35 
Annite 9.1 2.512E-15 66.20 
Calcite 9.1 

9.1
6.457E-07
6.457E-07

18.98
62.76

Chlorite 9.1 3.020E-13 88 
________________________________________________________________________

Water Chemistry 

Initial fluid compositions within the fracture and host rock were calculated by 

equilibrating production fluid from Raft River well RRG-7 with granite at 200oC.  The 

injection fluid was taken from an analysis of production fluid from Raft River well RRG-

7 (Table 5.4). The composition of injectate was not allowed to change over time. 
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Table 5.4 

Fluid Chemistry 

________________________________________________________________________
Composition of the reservoir at 200oC, the temperature used in the simulations, and 

injection fluid composition at 109oC, based on an analysis of produced fluid from the 
Raft River well RRG-7. 

________________________________________________________________________
Chemical 
Component 

Reservoir
(mol/kg) 

Injection 
(mol/kg) 

SiO2 3.549E-3 8.694E-3 
Fe2+ 1.130E-8 6.689E-9 
AlO2

- 5.986E-4 1.185E-5 
Na+ 5.849E-2 3.701E-2 
K+ 2.617E-3 6.317E-3 
Ca2+ 8.424E-3 8.697E-3 
Mg2+ 2.393E-4 2.188E-5 
Cl- 9.368E-2 1.229E-1 
HCO3

- 4.082E-5 2.014E-3 
SO4

- 3.279E-6 5.696E-3 
pH 6.56 7.82 

________________________________________________________________________

Results 

Tables 5.5-7 show the saturation of gibbsite, boehmite, and diaspore from 0o-

300oC when corundum proppant was dissolved to saturation in the simulation. None of 

the aluminum oxides or hydroxides are significantly saturated at 200 to 300oC. These 

models are consistent with the observed experimental results (Brinton et al., 2011) at 

230oC showing dissolution of the corundum proppant. PHREEQC predicted 

supersaturation of several minerals in simulations with both corundum and quartz  

�
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Table 5.5 

Gibbsite Saturation 

________________________________________________________________________
Gibbsite saturation calculated for 0-300oC using the Geochemist’s Workbench and 

PHREEQC with the LLNL and TDEM databases. 
________________________________________________________________________

T (oC) Log Q/K 
(GWB LLNL) 

Log Q/K (PHREEQC 
LLNL) 

Log Q/K (PHREEQC 
TDEM)

0 3.2575   
25 2.7316 1.41 1.41 
60 2.0956 0.87 0.91 
100 1.4791 0.28 0.41 
200 0.2924 -1.10 -0.56 
300 -0.5648 -2.34  

________________________________________________________________________

Table 5.6 

Boehmite Saturation 

________________________________________________________________________
Boehmite saturation calculated for 0-300oC using the Geochemist’s Workbench and 

PHREEQC with the LLNL and TDEM databases. 
________________________________________________________________________

T (oC) Log Q/K (GWB 
LLNL) 

Log Q/K (PHREEQC 
LLNL) 

Log Q/K (PHREEQC 
TDEM)

0 1.2512   
25 1.0958 1.60 1.52 
60 0.9109 1.23 1.23 
100 0.7324 0.75 0.95 
200 0.3811 -0.61 0.41 
300 0.1083 -2.04  

________________________________________________________________________

140



Table 5.7 

Diaspore Saturation 

________________________________________________________________________
Diaspore saturation calculated for 0-300oC using the Geochemist’s Workbench and 

PHREEQC with the LLNL and TDEM databases. 
________________________________________________________________________

T (oC) Log Q/K (GWB 
LLNL) 

Log Q/K (PHREEQC 
LLNL) 

Log Q/K (PHREEQC 
TDEM)

0 2.2359   
25 1.9402 2.00 2.28 
60 1.5942 1.58 1.90 
100 1.2688 1.04 1.53 
200 0.6588 -0.42 0.82 
300 0.2186 -1.92  

________________________________________________________________________

proppant at 200oC. These minerals included anthophyllite, antigorite, talc, tremolite, 

grossular-andradite, and several zeolites. At lower temperatures, these minerals become 

undersaturated with the exception of the zeolites. The zeolites become more 

supersaturated in the 100oC simulations. Because the water to rock ratio was low for 

these simulations, the initial minerals present dissolved to saturation at each temperature. 

TOUGHREACT flow models predicted declines in porosity and permeability 

over a short time for the quartz proppant filled fractures. The quartz proppant served as a 

nucleation site for amorphous silica, calcite, and minor quartz, illite, and smectite. The 

injection fluid serves as a source for the silica that has precipitated. Fig. 5.1 shows the 

porosity of the quartz sand propped fracture. In the simulation with bauxite proppant and 

30% porosity, nothing precipitated or dissolved in the fracture. There was minor 

dissolution and precipitation of minerals in the granite. However, when porosity was 
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increased to 50%, the corundum dissolved and reprecipitated as diaspore in the first 10 

meters of the flow path (Fig. 5.2). The increased volume of diaspore led to the decline in 

porosity and permeability. There is minor dissolution and precipitation of other minerals, 

but these reactions do not seem to significantly affect the porosity and permeability of the 

propped fracture. 

Discussion 

Although supersaturation of several minerals, such as grossular, talc, and 

antigorite, is predicted with batch equilibrations at 200oC, these minerals were not 

identified in the experiments conducted by Brinton et al. (2011). Even if these minerals 

are present, the concentration of magnesium in solution is so low that the amount of 

magnesium silicate minerals precipitated will be minute. Furthermore, kinetic 

precipitation of these minerals may be slow, and the minerals may not precipitate within 

the time frame of the experiment. Brinton et al. (2011) report that zeolites precipitated in 

one experiment, along with aluminum oxides/hydroxides and amorphous silicates in this 

same and another experiment. Fluid leakage and prolonged cooling of the reaction 

vessels probably allowed the precipitation of these minerals. The lower temperature 

simulations confirm that the temperatures of the reactors were probably much lower than 

200oC when these minerals precipitated. In recent static experiments with modified 

methods to prevent leakage, dissolution of the bauxite proppant is observed, along with 

possible minor dissolution of the granite at 230oC (Brinton et al., 2011).

In flow models where the reservoir temperature was 200oC, there was no 

dissolution of corundum when the porosity was 30% in the bauxite propped fracture. In 
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the model that allowed a higher fluid flux through the sintered bauxite proppant (porosity 

of 50%), corundum dissolved and reprecipitated as diaspore. This reaction occurred in the 

cooler part of the flow path where injection had lowered the temperature of the fluid and 

rock in the flow path. In static experiments conducted with Raft River geothermal fluid, 

granite, and quartz sand proppant at 230oC, the quartz proppant had dissolved (Brinton et 

al., 2011). No precipitation was observed on the proppant or granite after these 

experiments. In flow simulations with quartz proppant, mineral precipitation decreases 

fracture porosity and permeability in the first few meters of the flow path. Any mineral 

precipitation that was predicted in these simulations was predicted to occur in the cooler 

initial portion of the flow path. 

Fig. 5.1. Porosity along the flow path (quartz sand propped fracture) at t = 0.5 to 7 years. 
The initial porosity for the entire flow path (at t=0) is 30%. 
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Fig. 5.2. Porosity along the flow path (sintered bauxite propped fracture) at t = 0.5 to 7 
years. The initial porosity for the entire flow path (at t=0) is 50%. 

Conclusions

It is possible that proppants will be: 1) chemically stable; 2) dissolve and 

reprecipitate; or 3) serve as nucleation sites in propped fractures under different chemical 

conditions. Fluid flow/reaction models (TOUGHREACT) predict that amorphous silica 

would precipitate in quartz sand propped fractures. These models also predict dissolution 

and reprecipitation of aluminum minerals from the bauxite proppant would occur when 

the porosity was high enough (50%) for a sufficient fluid flux to allow the hydration of 

corundum to diaspore. This predicted hydration reduced the fracture porosity by 

increasing the volume of the aluminum bearing mineral.  

Future TOUGHREACT simulations should investigate the chemical stability of 

quartz and bauxite proppants under pH modified conditions, with different reservoir and 

injection temperatures, and with different injection fluid chemistries. These simulations, 
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along with future experiments, will allow better predictions of in-situ chemical stability 

of proppants in geothermal reservoirs. 
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CHAPTER 6 
 
 
 

EVALUATING FLUID-ROCK REACTIONS IN THE TALC 

ZONE OF THE ALTA CONTACT AUREOLE 

 
 

Abstract 

In the talc zone of the Alta stock outer aureole, the presence of talc does not 

define a regular isogradic surface parallel to the inner tremolite, forsterite, and periclase 

isograds. At a given distance from the stock, the distribution and abundance of talc in the 

outer Alta aureole is heterogeneous on several scales, and is in large part stratigraphically 

controlled, despite the ubiquitous presence of dolomite + quartz. The implication is that 

pore fluid X(CO2) may also have been heterogeneous as a function of stratigraphy at 

several scales. Possible explanations for these heterogeneities include: multiple, possibly 

non-contemporary, hydrothermal circulation cells, bedding-controlled variations in fluid 

flow and reaction progress, and fluid immiscibility. Understanding the P-T-Xfl stability of 

talc and fluid immiscibility in the CaO-MgO-SiO2-H2O-CO2-NaCl system is important 

for evaluating these alternative processes. Calculations using Perple_X 07 (Connolly, 

1990) and the Mathematica based computer programs of Matthias Gottschalk (Personal 

communication, 2008) show that with increasing salinity, the stability field of talc is 

shifted to higher temperature and lower X(CO2). Phase equilibria were calculated for 400, 



425, and 450oC and for pressures of 100, 125, 150, and 200 Mpa. These phase equilibria 

predict that under certain T, P, and Xfl conditions, an H2O rich fluid that flows down-

temperature (and possibly down-pressure) away from the Alta Stock can either remain 

miscible or become immiscible. For example, a down-T flowing fluid can stay single 

phase, as demonstrated by phase equilibria, for a decrease in temperature from 450 to 

400oC and for a pressure decrease from 200 to 100 Mpa for certain starting fluid 

compositions. This single phase fluid may equilibrate with the observed sequence of 

mineral assemblages (tremolite + dolomite, talc + calcite and dolomite + quartz) in the 

outer aureole on a down-T and down-P path, depending on the composition of the fluid, 

pressure, and temperature. Other starting fluid compositions may be immiscible at 450oC 

and 200 Mpa, or they may be single phase and become immiscible with decreases in 

temperature and/or pressure from 450oC and 200 Mpa. These phase equilibria 

calculations show that the talc + calcite and fluid immiscibility fields intersect only at 

temperatures below 425oC and pressures below 125 MPa. The fluids that form when the 

parent fluid becomes immiscible may also become immiscible with further decrease in 

temperature and/or pressure. This could lead to the formation of several H2O and CO2-

rich fluids. Future data collected from the Alta Aureole can be considered within these 

constraints in order to understand the formation of the talc zone. 

 
 

Introduction 
 

Although important, the formation of the outermost portions of contact aureoles 

remains understudied. Evaluating fluid-rock interactions in the outer portion of contact 

aureoles could provide insight into processes and reactions taking place in a wide variety 
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of shallow crustal environments, ranging from low-grade metamorphism to diagenesis in 

deep sedimentary basins. The low-grade systems developed in carbonate rocks are of 

particular interest because these systems record production, transport, and storage of CO2 

at time scales of 103-105 years (Bowman et al., 1994; Cook et al., 1997; Cook and 

Bowman, 2000; Pollington et al., 2005). The outer portion of the Alta Aureole provides 

an opportunity to study the onset of metamorphism, particularly the parameters 

controlling the onset of metamorphism, which are not well understood. The talc zone of 

the Alta Stock thermal aureole is a system where the geology and exposures allow 

observations on the outer aureole and its transition into country rocks. In addition, the 

impact of NaCl-bearing fluids on fluid immiscibility in lower temperature metamorphic 

environments is potentially important (Sisson et al., 1981; Trommsdorff and Skippen, 

1987; Heinrich et al., 2004) but has also been understudied. Development of computer 

codes, such as the Mathematica based program of Matthias Gottschalk (Personal 

communication, 2008), allows the quantitative evaluation of phase equilibria, including 

fluid immiscibility, within the CaO-MgO-SiO2-H2O-CO2-NaCl system down to T=400oC 

and P=50 Mpa.  

 
 

Geologic Setting and Metamorphism in the Alta Aureole 
 

The Alta Stock is a mid-Tertiary age granodiorite pluton in the central Wasatch 

Range of Utah (Crittenden et al., 1973). Precambrian and Paleozoic sedimentary rocks 

were intruded and contact metamorphosed by the stock (Moore and Kerrick, 1976; Cook 

and Bowman, 2000). These rocks consist mainly of quartzite and carbonates with a single 
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pelitic unit separating the quartzites from the overlying carbonate section. The carbonate 

units are principally dolostone, and many of these units contain chert nodules. 

The contact aureole is defined by several isograds defining a prograde sequence 

of talc, tremolite, forsterite, clinohumite, and periclase zones that formed during reactions 

of rocks with H2O-rich fluids (Moore and Kerrick, 1976) (Fig. 6.1). Metamorphism 

extends up to about 2 km from the intrusive contact in the southern portion of the aureole 

(Cook and Bowman 2000). Thermal conditions, reaction progress, and fluid infiltration in 

the inner aureole (periclase, forsterite zones) have been well documented in a series of 

previous studies (Bowman et al., 1994; Cook and Bowman, 1994; Cook et al., 1997; 

Cook and Bowman, 2000). The estimated lithostatic pressure during the emplacement of 

the Alta Stock, based on stratigraphic measurements and mineral assemblages, is between 

100 to 200 Mpa (Wilson, 1961; Cook and Bowman, 1994). Temperatures during contact 

metamorphism from application of calcite-dolomite geothermometry are >570oC for the 

periclase zone, 490-570oC for the forsterite zone, and 400-450oC for the tremolite zone 

(Cook and Bowman, 1994). Cook and Bowman (2000) measured reaction progress and 

spatial patterns of 18O/16O depletion in carbonates. These results provide evidence for the 

development of the inner aureole (periclase and forsterite zones) by infiltration and sub-

horizontal flow of large fluxes (~3000 m3/m2) of H2O-rich fluids down-temperature and 

laterally away from the igneous contact.  
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Fig. 6.1. Map of the southern portion of the Alta Stock and thermal aureole modified by 
J. Bowman from Moore and Kerrick, (1976), showing the location of the periclase, 
forsterite, tremolite, and talc isograds. Although the periclase, forsterite, and tremolite 
isograds approximately parallel the boundary of the stock, the talc isograd does not.  The 
band labeled 18O/16O denotes the location of the transition between the 18O/16O-depleted 
marbles of the inner aureole and the undepleted marbles and dolostone protoliths of the 
outer aureole.  
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Previous studies (Bowman et al., 2004; Pollington et al., 2005; Bowman, 

unpublished results) have shown that the distribution and abundance of talc in the outer 

Alta aureole (Fig. 6.2) is heterogeneous at several scales and is not controlled by 

variation in the bulk composition of the rock. Where present, talc + calcite forms a 

reaction rim surrounding chert nodules in the nodular dolomite (Cook and Bowman, 

2000). This reaction rim separates the nodule from the surrounding dolomite matrix. At 

any given location, the exposed strata in the talc zone (Fig. 6.3) alternate between talc-

bearing and talc-absent compositions (both containing chert nodules), and the talc-

bearing and talc-absent strata are in direct contact (Figs. 6.4 and 6.5). Hence, the presence 

of talc does not define a regular isogradic surface, in contrast with the tremolite, 

forsterite, and periclase isograds in the inner aureole (Fig. 6.1). At a number of locations, 

the talc-bearing strata have a greater density and frequency of veins than the talc-absent 

strata (Fig. 6.5). Figs. 6.6, 6.7, and 6.8 show scanning electron microscope (SEM) images 

of the talc in the reaction rim of a sample taken from site 1 (see Fig. 6.2). The talc is 

generally fibrous, with few flattened tabular crystals, and fine grained (generally < 100 

�m long). Dolomite and calcite are both found in contact with talc crystals. 

At Alta, previous isotope analyses presented by Pollington et al., (2005) and 

unpublished data from John Bowman at the University of Utah show that the �18O values 

of calcite in talc reaction rims around chert nodules are much lower than the �18O values 

of the matrix dolomite, and thus are out of equilibrium with matrix dolomite. These 

analyses also indicate that the �18O values of a small suite of chert nodules (n=6) range 

from 8.2 to 24 permil and are also out of exchange equilibrium with the matrix dolomite. 

The results from Pollington et al. (2005) are shown in Table 6.1. 
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Fig. 6.2. Map of the talc zone showing the heterogeneity of the distribution of talc within 
the outer portion of the Alta Aureole (J. Bowman, personal communication). 
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Fig. 6.3. Exposed strata in the talc zone at Alta. Talc-bearing (t) and talc-absent (n) strata 
alternate in this area. The numbers (1, 4, and 6) represent sites where samples were taken 
and observations were made for previous and ongoing studies. (Photo: J. Bowman) 
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Fig. 6.4: Exposed strata in the talc zone at Alta at site 4 (shown in Fig. 6.3). The 
bracketed section shows a layer where talc is present (note the whiter color) between 
overlying and underlying, talc-absent layers. Note that the talc-bearing horizon is 
stratigraphically concordant within the outcrop. (Photo: J. Bowman) 
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Fig. 6.5. Vein and nodule distribution in talc-bearing (right) strata in direct contact with 
overlying, talc-absent strata (left) in the outer portion of the Alta Aureole. 
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Fig. 6.6. SEM image of a sample taken from talc-bearing strata at site 1 (see Fig. 6.3). 
Talc crystals appear darker within the matrix. 
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Fig. 6.7. SEM image of sample taken from talc-bearing strata at site 1 (see Fig. 6.3) 
showing fibrous talc forming in the reaction front between a chert nodule and dolomite 
matrix. 

 

Talc

Calcite

Dolomite

158



 
Fig. 6.8. Close-up of a portion of Fig. 6.7, SEM image showing distribution of fibrous 
talc and textural relationship to calcite and dolomite. 
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Table 6.1 

 
 

Stable Isotope Analysis 
 

 
________________________________________________________________________ 
�18O values of reaction rim calcite and matrix dolomite from 5 samples (Pollington et al. 

2005). 
________________________________________________________________________ 

Sample Dolomite Calcite 
1-1  27.76  19.60 
1-2b  28.50  19.20 
1-2c  27.30  19.80 
 2-1a  27.46   13.36 

       14.30 
 2-3c  26.53  13.38 

28.74 
________________________________________________________________________�

 
 
 

Fluid inclusions in skarn minerals from the inner aureole were previously investigated to 

determine the NaCl content of fluids that formed the skarns and inner aureole mineral 

zones. Cook (1982) reported that early stage inclusions from contact skarns in the Alta 

aureole were highly saline (31.7 to 43.0 wt% NaCl), while later stage inclusions exhibit 

lower salinities (1.9 to 10.4 wt% NaCl). Kemp (1985) suggested the possibility of 

entrapment of a two phase fluid based on fluid inclusion data gathered from additional 

Al(Fe)-Ca-Mg-Si contact skarns along the margins of the Alta Stock.  The early stage 

fluids documented by Cook (1982) may then represent the high-density saline liquid 

phase resulting from fluid immiscibility. 
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Scenarios for the Development of the Outer Alta Aureole 
 

The heterogeneous distribution of talc in the outer aureole indicates spatial 

heterogeneity in the X(CO2) values of pore fluids at several scales that are not related to 

the distance from the igneous contact. This implies that heterogeneities in pore fluid 

composition are more important than temperature and bulk composition in determining 

the distribution of talc in the outer aureole. The processes and mechanisms responsible 

for these heterogeneities may be fundamentally different from those controlling fluid 

compositions and mineral reactions in the inner aureoles of contact metamorphic systems 

(Baumgartner and Ferry, 1991; Ferry, 1994; Ferry et al., 2002) including the inner Alta 

Aureole (Cook and Bowman, 2000; Cook et al., 1997; Bowman et al., 2009). 

Three possible scenarios for the formation of the talc zone can explain the 

observed spatial heterogeneity in the talc occurrences and resulting spatial heterogeneity 

in fluid composition. At least one of these scenarios considers the possibility that the 

outer Alta aureole did not form contemporaneously with the inner aureole, nor from the 

same hydrothermal system. 

Scenario 1: The first scenario is a single hydrothermal circulation cell. In this 

scenario, the talc zone forms as part of the same down-temperature flow system 

responsible for the development of the inner aureole. The variations in X(CO2) values of 

fluids entering the talc zone would result from variations in the extent of decarbonation 

reaction progress at higher metamorphic grades and/or variations in the flux of H2O rich 

fluids. Fluids in this system are considered compositionally heterogeneous but single 

phase. 
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Scenario 2: A second scenario is the existence of multiple hydrothermal 

circulation cells within the outer aureole. Stratigraphic layer controlled variations in 

permeability within the talc zone would allow the preferential influx of H2O-rich fluids 

flowing toward the igneous contact (e.g., up-temperature flow) into higher-permeability 

(e.g., talc-bearing) zones. This up-temperature flowing system could either coexist with 

the down-temperature flowing cell responsible for the inner aureole or operate later in 

time. The down-temperature flowing fluids would have higher values of X(CO2) as a 

result of the contribution of CO2 from higher grade decarbonation reactions operating in 

the inner aureole. High X(CO2) would favor the persistence of dolomite + quartz over the 

formation of talc. However, talc could form in stratigraphic layers preferentially 

infiltrated by these up-temperature flowing H2O rich fluids. 

Scenario 3: The third scenario, and most complex, is a single circulation cell in 

which fluid immiscibility occurs. In this scenario, two fluids, one H2O-rich, the other 

CO2-rich, are generated by fluid immiscibility as CO2-bearing fluids from the inner 

aureole flow outward from the igneous contact, cool, and/or decrease in fluid pressure 

(down-temperature flow). The separation and/or differential flow of these phases could 

be responsible for the heterogeneity in the talc distribution. 

To test the possible scenarios for the formation of the talc zone at Alta, it is 

necessary to have a quantitative understanding of talc stability and fluid immiscibility at 

the predicted P-T-Xfl conditions in the outer portion of the Alta Aureole. 

 
 

162



Fluid Immiscibility 
 

Fluid immiscibility in the H2O-CO2-NaCl system has been documented at 

metamorphic pressures and temperatures in a number of fluid inclusion studies (e.g. 

Sisson et al., 1981; Trommsdorff et al., 1985; Heinrich and Gottschalk, 1994; Fernandez-

Caliani et al., 1996). To calculate the effects of immiscible fluids on the mineral reactions 

in metamorphic rocks, Bowers and Helgeson (1983a, b) developed a modified Redlich-

Kwong (MRK) equation of state to predict the fugacities of H2O and CO2 as well as fluid 

immiscibility fields. They showed that the stability field of talc is affected by the NaCl 

content of the fluid. The talc stability field moves to higher H2O/CO2 with increasing 

NaCl and can intersect the field of fluid immiscibility when NaCl is present. This 

equation of state, however, cannot accurately predict fugacities near solvus boundaries 

and at moderate to high salinities (Duan et al., 1995; Heinrich et al., 2004). The equation 

of state for the H2O-CO2-NaCl system introduced by Duan et al. (1995) calculates 

activities of fluids in good agreement with experimental results for fluids with up to 30 

wt% NaCl and with less accuracy for fluids with up to 50 wt% NaCl. This equation of 

state was used by Heinrich et al. (2004) to predict the influence of fluid immiscibility on 

phase relations and reaction progress in metamorphosed rocks in the CaO-MgO-SiO2-

H2O-CO2-NaCl system. 

 
 

Modeling Approach 
 

Previous studies have examined phase equilibria in the CaO-MgO-SiO2-H2O-

CO2-NaCl system (eg. Bowers and Helgeson, 1983b; Labotka, 1991; Heinrich et al., 

2004; Heinrich, 2007), but this study focuses more intently on the stability field of talc at 
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the conditions predicted for the outer portion of the Alta Aureole. To calculate talc 

stability in the H2O-CO2-NaCl system and determine the influence of fluid immiscibility 

on the talc stability field, both Perple_X (Connolly, 1990) and a Mathematica based 

phase equilibrium calculation program, written and provided by Matthias Gottschalk of 

GeoForschungsZentrum, were used. Both programs calculate phase equilibria by 

minimizing Gibbs’ free energy.  

With Perple_X, phase equilibria were calculated using the unpublished H2O-CO2-

NaCl equation of Aranovich and Haefner and several databases available within the 

program, including the Holland and Powell (1991) and the Gottschalk (1997) databases. 

The equation of Aranovich and Haefner was based on experimental data and does not 

calculate fluid immiscibility. 

The Mathematica based program of Gottschalk implements a corrected version of 

the Duan et al. (1995) equation of state for the H2O-CO2-NaCl system (Gottschalk 2007) 

and an internally consistent thermodynamic database for solids (Gottschalk 1997). Using 

this program, both mineral stability and fluid immiscibility fields can be calculated as a 

function of P-T-Xfl. The program should not be used to calculate phase equilibria for 

temperatures below 400oC and pressures below 50 Mpa (Matthias Gottschalk, personal 

communication, 2008).  

The starting rock composition for the models consists of dolomite and quartz in a 

molar ratio of 4:3, the stoichiometry of these minerals in the talc-forming reaction: 

 
 
4Dol + 3Qz +H2O = Tc + 3Cc + 3CO2        (6.1) 
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These calculations were made for temperatures of 400, 425, and 450oC and for pressures 

of 100, 125, 150, and 200 Mpa. 

 

 
Results 

 
There are many ways to illustrate the calculated mineral stability and fluid 

immiscibility fields in the H2O-CO2-NaCl system. Isobaric T-X(CO2) pseudo-sections are 

typically presented when discussing phase equilibria in metamorphic systems such as 

Alta (e.g. Bowers and Helgeson, 1983b; Cook et al., 1997; Heinrich, 2007). Phase 

stabilities were calculated with Perple_X for 300-700oC at 200 Mpa using the 

thermodynamic database of Gottschalk (1997) and the unpublished equation of state of 

Aranovitch and Haefner for the H2O-CO2-NaCl system. These stability fields were 

plotted as a T-X(CO2) pseudo-section to examine the effects of NaCl on the stability 

fields of talc, tremolite, and forsterite (Figs. 6.9 and 6.10). Salinities of 0, 10, and 20 wt% 

were used to calculate the stability fields shown. The inset in Fig. 6.9 is enlarged and 

presented as Fig. 6.10. With increasing salinity, the talc stability field moves to higher 

H2O/CO2 and higher temperatures at constant pressure. Invariant points I, II, and III (Fig. 

6.9) also shift to higher H2O/CO2 and higher temperature with increasing salinity. Fluid 

immiscibility cannot be calculated in Perple_X, so no information on the intersection of 

the fluid immiscibility field with the talc stability field was obtained. As shown in Figs. 

6.9 and 6.10, talc can be stable at higher temperatures with increased salinity of the fluid. 

The stability field of talc also narrows and moves to higher H2O/CO2 with increasing 

NaCl. 

165



 

 
Fig. 6.9. T-X(CO2) pseudo-section showing the mineral stability fields and the location of 
invariant points I, II, and III for 0, 10, and 20 wt% NaCl. The talc stability field for a 0 
wt% salinity fluid is highlighted in orange. With progressively higher salinity, invariant 
point I moves to I’ and I” which are higher temperature and lower X(CO2). Inset is 
enlarged and presented in Fig. 6.10. 
�
�
�
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Fig. 6.10. Inset from Fig. 6.9 showing the effect of salinity on the talc stability field 
(pink) and the invariant point I.  
�
�
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Although calculations of phase equilibria made with Gottschalk’s program could 

also be presented as T-X(CO2) pseudo-sections, it is useful to present the phase equilibria 

as isobaric, isothermal H2O-CO2-NaCl ternary plots (eg. Tromsdorff and Skippen, 1987; 

Heinrich et al., 2004). This presentation allows the full range of Xfl to be represented in 

each plot and better illustrates the phase equilibria in the H2O-CO2-NaCl system. The 

stability fields are constructed from over 500 data points for each ternary plot. 

Calculations were concentrated in the high H2O portion of the diagram. The mineral 

stability, two fluid, two fluid plus halite, and one fluid plus halite fields were drawn in the 

ternary plot for each of the twelve pressure and temperature combinations examined and 

are presented in Figs. 6.11-13. The components are plotted as mol%. 

As shown in Figs. 6.11-13, the shapes and locations of both the talc stability (Tc + 

Cc + Dol) and the fluid immiscibility (L + V) fields are affected by T, P, and Xfl at the 

temperatures and pressures investigated. The range of the talc stability field expands with 

respect to H2O/CO2 with decreasing temperature, decreasing salinity, and in some cases 

(T=400oC, Fig. 6.11) with an isothermal decrease in pressure. Increased salinity moves 

the talc stability field to higher H2O/CO2 and with a narrower range of H2O/CO2. 

Decreasing pressure from 200 Mpa in the 400oC and 425oC cases brings the talc stability 

field closer to the fluid immiscibility field, especially at lower (but non-zero) salinities. 

The fluid immiscibility field also changes shape with different pressures and 

temperatures. Talc stability and fluid immiscibility fields intersect only at 400oC and 100 

Mpa (Fig. 6.11). Fluid immiscibility and tremolite stability (Tr + Cc + Dol) fields also 

intersect at T=425oC and P=100 and 125 Mpa and T=450oC and P=100, 125, and 150 

Mpa (Figs. 6.11-13). At T=400oC and P=125, 150, and 200 Mpa, T=425oC and P=150  
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Fig. 6.11. H2O-CO2-NaCl plots for 400oC and 100-200 Mpa. The stability field for 
Antigorite + Tremolite + Calcite (Atg + Tr + Cc) is shown in orange, for Tremolite + 
Dolomite + Calcite (Tr + Cc  + Dol) in blue, for Talc + Calcite + Dolomite (Tc + Cc + 
Dol) in red, and for Quartz + Dolomite (Qz + Dol) in green. The two phase fluid 
immiscibility field is shown as V + L (L is H2O-rich fluid, and V is CO2-rich fluid). 
Halite (Hl) is observed in L + Hl, V + Hl, and V + L + Hl fields. The V + L field only 
intersects the Tc + Cc + Dol field at 400oC and 100 Mpa. 
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Fig. 6.12. H2O-CO2-NaCl plots for 425oC and 100-200 Mpa. The stability field for 
Antigorite + Tremolite + Calcite (Atg + Tr + Cc) is shown in orange, for Tremolite + 
Dolomite + Calcite (Tr + Cc  + Dol) in blue, for Talc + Calcite + Dolomite (Tc + Cc + 
Dol) in red, and for Quartz + Dolomite (Qz + Dol) in green. The two phase fluid 
immiscibility field is shown as V + L (L is H2O-rich fluid, and V is CO2-rich fluid). 
Halite (Hl) is observed in L + Hl, V + Hl, and V + L + Hl fields. 
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Fig. 6.13. H2O-CO2-NaCl plots for 450oC and 100-200 Mpa. The stability field for 
Antigorite + Tremolite + Calcite (Atg + Tr + Cc) is shown in orange, for Tremolite + 
Dolomite + Calcite (Tr + Cc  + Dol) in blue, for Talc + Calcite + Dolomite (Tc + Cc + 
Dol) in red, and for Quartz + Dolomite (Qz + Dol) in green. The two phase fluid 
immiscibility field is shown as V + L (L is H2O-rich fluid, and V is CO2-rich fluid). 
Halite (Hl) is observed in L + Hl, V + Hl, and V + L + Hl fields. 
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and 200 Mpa, and T=450oC and P=200 Mpa, only the stability field of quartz and 

dolomite (Qz + Dol) is intersected by fluid immiscibility (Figs. 6.11-13).  

 

Discussion: Fluid Evolution 

The phase equilibria calculated in this study provide insight into the feasibility of the 

three scenarios presented as possible explanations for the formation of talc in the outer 

aureole at Alta. All three scenarios include a down-temperature component of fluid flow, 

and these phase equilibria can be used to address the evolution of the fluid as it flows 

down temperature away from the intrusion. Periclase formation at Alta is restricted to 

very H2O rich fluids as determined by phase equilibria and calcite-dolomite 

geothermometry (Cook and Bowman, 2000). Because there is evidence that this fluid is 

H2O rich in the periclase zone in the inner aureole, only the evolution of a down-

temperature flowing, initially H2O-rich fluid will be considered. Fluid inclusions in skarn 

minerals adjacent to the contact exhibit highly variable salinities, requiring that the 

evolution of fluids of varying salinities be considered. The X(CO2) of the fluid will be 

dependent on the extent of decarbonation reactions as the periclase, forsterite, and 

tremolite reaction fronts progress, as well as the flux of H2O-rich fluids flowing into the 

system. Either the fluid will remain single phase, or it will become immiscible at some 

point along the flow path, depending on the T, P, and Xfl conditions. Talc is not stable in 

the evaluated temperature and pressure ranges for salinities above 25 mol% (Figs. 6.11-

12), so only salinities below this threshold are examined here. In the following cases, the 

conditions required for single phase or immiscible fluid evolution from a lower salinity 

(X(NaCl)=2.5 mol%) H2O-rich parent fluid and a higher salinity (X(NaCl)=15 mol%) 
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H2O rich parent fluid are evaluated. All observations for each case are based on the data 

in Figs. 6.11-13. The fluid evolution in each case is illustrated in condensed versions of 

these plots in Figs. 6.14-19. Although the stability fields are not all specifically labeled in 

Figs. 6.14-19 for simplicity, the color scheme is the same as for Figs. 6.11-13 (for 

Antigorite + Tremolite + Calcite (Ant + Tr + Cc) the stability field is shown in orange; 

for Tremolite + Dolomite + Calcite (Tr + Cc  + Dol) in blue; for Talc + Calcite + 

Dolomite (Tc + Cc + Dol) in red; and for Quartz + Dolomite (Qz + Dol) in green). Two 

lines at constant X(NaCl) are shown in the phase equilibria in Figs. 6.14-19. The lower 

line represents X(NaCl)=2.5 mol%, and the upper line represents X(NaCl)=15 mol%. 

The blue circle represents a starting fluid composition on the X(NaCl)=15 mol% line, and 

the yellow circle represents a starting fluid composition on the X(NaCl)=2.5 mol% line in 

Figs. 6.14-21. When the blue circle or yellow circle lies within a fluid immiscibility field, 

the parent fluid will separate into two separate, compositionally distinct fluids: the white 

circle represents the H2O-rich fluid, and the pink circle represents the CO2-rich fluid in 

Figs. 6.19-21. 

 
 

Down-Temperature Flow of a Single Phase Fluid 
 

 In this scenario, H2O-rich fluid flows down temperature and possibly down-

pressure away from the Alta Stock and remains single phase. Fig. 6.14 illustrates two 

example fluid compositions that will remain single phase. As shown in Fig. 6.14, these 

single phase fluid compositions will equilibrate with a variety of mineral stability fields 

as temperature and/or pressure decrease, depending on the initial temperature and 

pressure of the fluid. For example, a single phase fluid with the higher salinity �
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�
Fig. 6.15. Abbreviated H2O-CO2-NaCl plots for T=450oC and P=100 Mpa. At constant T 
and P, a fluid of a composition represented by either the blue or yellow circle can become 
immiscible with changes in X(CO2) and/or X(NaCl) relative to X(H2O). Arrows indicate 
the direction of the required compositional evolution of the fluid with either an increase 
in X(CO2) (lower arrow) or X(NaCl) (upper arrow). 
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Fig. 6.16. Abbreviated H2O-CO2-NaCl plots for T=400-450oC and P=100 Mpa. A fluid 
with a composition represented by the blue circle could enter the two phase field of V + L 
with an isobaric decrease in temperature. The arrow is used to illustrate the decline in 
temperature. 
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Fig. 6.17. Abbreviated H2O-CO2-NaCl plots for T=400oC and P=100-200 Mpa. A fluid 
with a composition represented by the yellow circle could enter the two phase field of V 
+ L with an isothermal decrease in pressure. The arrow is used to illustrate the decline in 
pressure. 
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Fig. 6.21. Abbreviated H2O-CO2-NaCl plots for T=425oC and P=150 Mpa and T=450oC 
and P=200 Mpa. This figure illustrates how an initial fluid at T=450oC and P=200 Mpa 
(blue circle) can become immiscible, forming the fluids with compositions represented by 
the white (H2O-rich) and pink (CO2-rich) circles. With a drop in temperature and pressure 
to T=425oC and P=150 Mpa, as illustrated by the arrows, these two fluids become 
immiscible themselves. This process could lead to multiple compositionally distinct H2O- 
and CO2-rich fluids within the system. 
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composition illustrated by the blue circle (Fig. 6.14) will stay entirely within the tremolite 

stability field as T decreases from 450 to 425oC and as P decreases to 100 Mpa. If this 

fluid cools further to 400oC but remains at P�150 Mpa, it will equilibrate with Qz + Dol 

and bypass the Tc + Cc stability field. This high salinity fluid composition will 

equilibrate with Tc + Cc only by decreasing further in pressure to P�125 Mpa. A single 

phase fluid with the composition illustrated by the yellow circle (Fig. 6.14) will also 

remain entirely within the stability field of tremolite during an isothermal (450o C) 

decrease in P or with cooling to 425o C accompanied by pressure decreasing to and below 

150 Mpa. If a single phase fluid with 2.5 mol% NaCl (yellow circle, Fig. 6.14) at P=200 

Mpa and T=450o C cooled isobarically to 400oC, it would equilibrate successively with 

Tr + Dol, Tc + Cc, and Qz + Dol. If this same fluid (initially at 450o C and 200 Mpa in 

equilibrium with Tr + Dol) cooled to 400o C and also dropped in pressure to or below 150 

Mpa, it would equilibrate with the Tc + Cc stability field and remain as a single phase.  

It is apparent from the phase diagrams (Fig. 6.14) that a variety of starting single 

phase fluid compositions could experience these same down-temperature down-pressure 

flow path scenarios and equilibrate with the same sequences of mineral stability fields as 

just demonstrated for these two example fluid compositions. Alternatively, compositional 

changes experienced by either of the starting fluids discussed here could also lead to 

these fluids entering alternative mineral stability fields during down-T down-P flow.�

 
 

Down-T Flow Where Fluid Becomes Immiscible 
 

 In this significantly more complex scenario, H2O-rich fluid flows down 

temperature and possibly down-pressure away from the Alta Stock and becomes 
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immiscible at some temperature at or below 450oC. Changes in pressure, temperature, or 

fluid composition can cause a fluid to become immiscible. For example, Fig. 6.15 

illustrates how the same two fluid compositions discussed in the previous section would 

have to change compositionally to enter the fluid immiscibility field (V + L) at 450oC and 

100 Mpa. For isothermal isobaric flow, both fluids illustrated in Fig. 6.15 (blue and 

yellow circles) would have to experience an increase in either or both X(CO2) and 

X(NaCl) relative to X(H2O) to become immiscible (illustrated by arrows in Fig. 6.15). 

Analogous changes would be required for these same two starting fluids to become 

immiscible at all temperatures and pressures evaluated in this study. Fig. 6.16 illustrates 

how a fluid of constant composition (as represented by the blue circle) can become 

immiscible with no compositional change and an isobaric decrease in temperature from 

450 to 400oC at P=100 Mpa. Fig. 6.17 illustrates how a fluid of another composition (as 

represented by the yellow circle) can become immiscible with no compositional change 

and an isothermal decrease in pressure from 200 Mpa at T=400oC. Although only three 

examples of the impact of changes in P-T-Xfl are given, it is apparent from the phase 

diagrams (Figs. 6.15-17) that there are a multitude of alternative scenarios where fluid 

immiscibility might occur due to changes in P-T-Xfl. 

Fig. 6.18 illustrates how two different fluids of constant composition, represented 

by the blue and yellow circles, could undergo changes in phase stability with changes in 

temperature and pressure of the system. For example, at T=450oC and P=200 Mpa, the 

blue circle lies on the boundary of fluid immiscibility. With a decrease in temperature to 

425oC, the blue circle lies well within the V + L field. The blue circle lies within the V + 
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L + Hl field when the temperature is further decreased to 400oC, producing solid halite 

and a two-phase fluid. 

When a single phase fluid becomes immiscible, the composition of the resulting 

H2O-rich and CO2-rich fluids will depend on the composition of the parent fluid, as well 

as the P-T conditions of unmixing, as shown in Figs. 6.19 and 6.20. Fig. 6.19 illustrates 

the compositions of H2O- and CO2-rich fluids that form from the parent fluid with 

X(NaCl)=2.5 mol%, and Fig. 6.20 illustrates the fluid compositions that form from the 

X(NaCl)=15 mol% parent fluid. Further complicating this scenario, the H2O- and CO2-

rich fluids formed when a fluid becomes immiscible may themselves become immiscible, 

as illustrated in Fig. 6.21. This could lead to multiple compositionally heterogeneous 

H2O- and CO2-rich fluids in the system. 

 
 

Conclusions 
 

The heterogeneities in the distribution of talc in the outer Alta Aureole require 

spatially variable fluid X(CO2). These variations can be the result of fluctuations in the 

H2O-CO2-NaCl composition of a single phase fluid or result from the complex evolution 

of immiscible fluids with down-temperature flow. The sequence of tremolite + dolomite 

to talc + calcite to dolomite + quartz observed out from the Alta stock can be produced in 

all three scenarios considered under certain P-T-Xfl conditions. The phase equilibria 

calculations presented here constrain the conditions necessary for the behavior of the 

down-temperature flowing fluid in each of the scenarios. For example, a down-T flowing 

fluid can remain single phase with a decrease in temperature from 450 to 400oC and a 

pressure decrease from 200 to 100 Mpa for certain starting fluid compositions. Other 
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starting fluid compositions may be immiscible at 450oC and 200 Mpa, or they may be 

single phase and become immiscible with decreases in temperature and/or pressure from 

450oC and 200 Mpa.  These phase equilibria calculations show that the talc +calcite and 

fluid immiscibility fields intersect only at temperatures below 425oC and pressures below 

125 MPa. The fluids that form when the parent fluid becomes immiscible may also 

become immiscible with further decrease in temperature and/or pressure. This could lead 

to the formation of several compositionally distinct H2O- and CO2-rich fluids.   Future 

data collected from the Alta Aureole can be considered within these constraints in order 

to understand the formation of the talc zone. 
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APPENDIX A 
 
 
 

METHOD OF CALCULATING LIQUID AND VAPOR 

CONCENTRATIONS OF GASES WITH BOILING 

 
 

The method detailed by Henley et al. (1984) to calculate the concentration of gas 

in the liquid and vapor phases during boiling was used in creating Figs. 1.8C and 1.9C. 

This appendix details this method. 

The mass balance equation is: 

 
 

Co = Cl(1-y) + Cv(y) 
 
 
 

where Co is the initial pre-boiling concentration of gas in the fluid, Cl is the concentration 

of gas in the liquid phase, Cv is the concentration of gas in the vapor phase, and y is the 

steam fraction. 

The concentration of a gas in the liquid and vapor phases during closed system 

boiling, also called single step steam separation, is calculated with the mass balance 

equation and the following equation: 

 
 

Co/Cl = 1+y(B-1) 
 
 



where Co is the initial pre-boiling concentration of a gas in the fluid, Cl is the 

concentration of that gas in the liquid phase, y is the steam fraction separated, and B is 

the partition coefficient of the gas. The concentration of a gas in the liquid and vapor 

phases during open system boiling, also called continuous steam separation, is calculated 

with the mass balance equation and the following Rayleigh-type equation: 

 
 

Cl/Co=e-B� 

 

 

where Co is the initial pre-boiling concentration of a gas in the fluid, Cl is the 

concentration of that gas in the liquid phase, y is the cumulative steam fraction removed, 

and B� is the average partition coefficient of the gas for the small temperature interval 

considered. 

The vapor-liquid distribution constants reported by Fernandez-Prini et al. (2003) 

were used for B in these calculations.  
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APPENDIX B 

PHOTOMICROGRAPHS OF AMORPHOUS SILICA SCALE 

SAMPLES FROM COSO WELLS 68-20RD 

AND 68B-20RD 

This appendix consists of photomicrographs of amorphous silica scale samples 

found in cuttings from Coso wells 68-20RD and 68B-20RD. There are 23 images taken 

with a petrographic microscope (all with plain polarized light) and 19 images taken with 

a Leo 440 scanning electron microscope (SEM) with a tungsten filament electron source. 

An energy dispersive x-ray (EDX) was used for elemental analysis with the SEM. 
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APPENDIX C 

PHOTOMICROGRAPHS OF MINERAL SCALE FROM SALTON 

SEA WELL ELMORE IW-3 RD 

This appendix consists of photomicrographs of mineral scale samples found in 

cuttings from Salton Sea well Elmore IW-3 RD. There are 9 images taken with a 

petrographic microscope and 12 images taken with a Leo 440 scanning electron 

microscope (SEM) with a tungsten filament electron source. An energy dispersive x-ray 

(EDX) was used for elemental analysis with the SEM. 
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APPENDIX D 

PHASE DIAGRAMS FOR THE H2O-CO2-NaCl SYSTEM 

This appendix consists of phase diagrams for the H2O-CO2-NaCl system for 

T=400, 425, and 450oC and P=100, 125, 150, and 200 Mpa calculated with the 

Mathematica based program of Gottschalk. The program calculates mineral stability and 

fugacities of water and CO2 using the Gottschalk (1997) internally consistent database 

and the Duan et al. (1995) equation of state by minimization of Gibbs free energy. The 

fluid immiscibility fields are shown in dark (V+L) and light gray (V+L+Hl). L represents 

an H2O-rich fluid, and V represents a CO2-rich fluid. A solid halite phase is abbreviated 

as Hl. The antigorite + tremolite + calcite stability field (Atg+Tr+Cc) is orange, the 

tremolite + dolomite + calcite stability field (Tr+Dol+Cc) is blue, the talc + calcite + 

dolomite stability field (Tc+Cc+Dol) is red, and the quartz + dolomite stability field 

(Qz+Dol) is green. 
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