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ABSTRACT

This dissertation examines three separate data analysis studies which sought to

estimate the spatial and temporal characteristics of seasonal snowpack variables in the

mountainous areas of the western United States. Research began with the analysis of

historical daily snow data from Snowpack Telemetry (SNOTEL) sites, located in the

mountainous areas of the western United States. Three snowpack characteristics were

analyzed from a climatological perspective: snow water equivalent (SWE); snow depth

(SD); and snow density, all three being interrelated. Analysis of 7 years of data showed

that at a given location, during the winter season, interannual snowpack density

variability was smaller than the corresponding SD and SWE changes. Hence, reliable

climatological estimates of snow density could be obtained from a relatively short

record period. Additionally, the spatial pattern of snowpack densification was quali-

tatively characterized using cluster analysis. The second part of research developed a

regional regression-based approach to creating monthly climatological SWE grids over

the western United States. The western United States was partitioned into smaller,

homogenous regions in consideration of seasonal snowpack accumulation and ablation

processes. Using stepwise regression, various geographic and meteorological variables

were investigated as potential predictors of change in climatological SWE within each

subregion. Results indicate that a simple regional regression approach, coupled with

readily available geographic and meteorological parameters as predictors, is reliable

for mapping SWE climatology from October to March. For the period of April,

however, the regional equations produced increased error, especially in the North

Pacific and Southwest regions. Lastly, performance of space-borne passive microwave



SWE retrieval algorithms for the Colorado River Basin was examined by comparing

daily SWE estimates from selected algorithms with SNOTEL SWE measurements for

each winter month.
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“It is one of our most exciting discoveries that local discovery leads to
a complex of further discoveries.”

– R. Buckminster Fuller
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CHAPTER 1

INTRODUCTION

1.1 Significance of seasonal snow pack

Seasonal snow cover is the most rapidly fluctuating cryospheric variable on the

earth surface [ACIA, 2005]. Its extent varies from less than 1 million km2 in summer

to 40-50 million km2 in midwinter over the Northern Hemisphere. Within North

America, it can cover over 14 million km2, equivalent to 50% of the land surface, at

peak time, concentrated in the mountainous areas. Such a large and dynamic extent

of seasonal snow cover play pivotal roles in the climate, ecosystem and hydrologic

system.

One of the most documented roles of seasonal snow cover is its influence on the

climate system. Cohen and Rind [1991] described many of its first-order effects. These

are high albedo acting as a reflector of solar energy, low thermal conductivity, high

thermal emissivity and latent heat sink during snowmelt, thus controlling surface

energy balance in lower atmosphere over large land areas, and in turn affecting

atmospheric circulation patterns.

Early observational studies found that snow cover can decrease the temperature

of the lower atmosphere (up to 500 hPa) locally by several degrees over days to

months [Wagner , 1973; Dewey , 1977], supported by subsequent modeling studies by

Walsh et al. [1982]; Walsh and Ross [1988]. This suppressed atmospheric temperature

is related to large-scale atmospheric circulation modes such as the Pacific-North

American (PNA) and Pacific Decadal Oscillation (PDO) patterns. Over broad re-

gional/continental scales, the bulk of the scientific literature has primarily focused on
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relationships between climate and snow cover extent, namely the presence or absence

of snow on land. Numerous statistical and modeling studies revealed that large

continental-scale snow extent anomalies could contribute to considerable variations in

atmospheric circulation via modification of the energy budget in the lower atmosphere

[e.g., Leathers and Robinson, 1993; Cohen and Entekhabi , 1999; Gong et al., 2002,

2003; Saito and Cohen, 2003; Saunders et al., 2003; Garćıa-Herrera and Barriopedro,

2006].

More recently, Sobolowski and Frei [2007] reported statistical relationships between

various winter climate modes and continental-scale snow pack depth (SD). At more

regional scales, point observations over North America have been used to deduce

statistical relationships between SD and climate over selected regions. Most of these

works were based on observations over the western United States and demonstrated

the effects of precipitation and temperature variability on snow volume [McCabe and

Dettinger , 2002; Jin et al., 2006; Mote, 2006]. Sobolowski and Frei [2007] detected

teleconnection between summer/fall climate indices (i.e., PDO, North Atlantic Oscil-

lation, and El-Nino Southern Oscillation) and winter snow volume over north central

to western U. S. Ge and Gong [2009] indicated SD anomalies over North America

exhibited stronger and more robust statistical relationships with large-scale climate

indices compared to snow extent anomalies. They reported that zero-lag correlations

between monthly average SD and PNA were statistically significant from November

through April, and March and April average SD was significantly correlated with PNA

in the preceding winter months, which is consistent with previous findings of a winter

PNA and April 1st snow volume relationship [Jin et al., 2006]. However, studies on

the contribution of the SD to climate variability have been much less extensive largely

owing to the lack of spatially and temporally broad SD datasets.

The ecological impacts of seasonal snow cover are also noteworthy. Seasonal snow
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cover is one of the most important environmental factors controlling plant growth in

the alpine tundra ecosystem [Billings , 1988; Walker et al., 1993] because of its direct

effect on soil temperature, moisture, duration of the growing season and control of

nutrient availability in the alpine environment [Williams et al., 1998].

Snowpack acts as an excellent insulator of the underlying ground because of the low

thermal conductivity of snow, resulting in soil temperatures up to 15 degrees warmer

underneath a snow pack [Mölders and Walsh, 2004]. Ground temperatures beneath

snow cover can be influenced as much by the snow as the overlying air temperature,

as demonstrated by Stieglitz et al. [2003], who attribute half of the temperature rise

in the 20-m soil at Barrow, Alaska to locally increasing snow cover since the 1970s.

Snowpack energy balance model confirms that the insulative ability of snow pack

increases with increasing SD [Ge and Gong , 2010]. The insulating ability of a snow

pack permits a great amount of ecological activity during winter, much of which

happens within the soil where temperatures can remain high enough to support a

wide range of biotic activities [Campbell et al., 2005]. Counterintuitively, warmer

winters may actually result in colder soils because of snow cover reductions based on

field studies in which snow is manually removed from test plots [Groffman et al., 2001;

Decker et al., 2003]. The associated consequences were reported to be greater root

mortality, more nutrient losses, and decreased productivity of certain tree species.

Lastly, hydrologic cycle in high-mid latitude is directly affected by the seasonal

snow accumulation and ablation [e.g., Dyer , 2008]. Seasonal snowpack stores wa-

ter during the cold months, which is then released as snowmelt runoff. In the

mountainous areas of the western United States, between 40 and 70% of annual

precipitation occurs in the form of snowfall, rendering accumulated snow important

to water resources over the regions [Serreze et al., 1999]. In response to the melt

water from the seasonal snowpack, annual peak flows often occur in spring and early
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summer and contribute as much as 75% of the annual runoff over the region [Palmer ,

1988].

The significant relationships between snow storage and discharge characteristics

(the magnitude and timing) have been observed in many other parts of the northern

hemisphere [e.g., Zhang et al., 2001; Yang et al., 2003; Dyer , 2008]. Many studies

showed that timing of snowmelt onset has become early over the recent decades,

associated with warming in winter and spring air temperature in various mountainous

areas across North America including Canada, Alaska, Sierra Nevada, and North

Pacific [Lammers et al., 2001; Regonda et al., 2005; Stewart et al., 2005]. This

indicates a shift in a hydrologic cycle over the continent driven by changes in the

snow accumulation and ablation patterns. Given this change in the seasonal snow

accumulation and melt pattern, water resource managers could be faced with the

challenge of predicting the timing and the amount of snowmelt runoff to optimize the

management of hydropower, municipal and industrial water demand, and recreation.

In contrast to the vital roles in water resources of snow, snowmelt can cause devas-

tating floods as well. The snowmelt driven flood is typically driven by a rain-on-snow

event [Leathers et al., 1998] and is a concern particularly in a maritime climate regime

such as the North Pacific [Hall and Hannaford , 1983; Marks et al., 1998].

To this end, snow volumetric variables are most needed in various temporal and

spatial scales to better understand and model earth climate, ecosystem, and hydro-

logic cycle in snowy areas. The next subsection describes measurement methods for

snow volumetric variables.

1.2 Volumetric snowpack variables
and measurements

Both snow water equivalent (SWE) and SD represent the volumetric quantities of

snow pack. SD is a thickness of snow pack from the bottom to the surface of the pack
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while SWE is a mass of snow pack column within a unit area. SWE is more widely

used for hydrology applications as it also represents the amount of water snow pack

yields if it melts completely. SWE (cm) is related to snow pack density (kg/m3) and

SD (cm) through the following relationship:

SWE = SD
ρs
ρw

(1.1)

where ρs is the density of snow pack in kg/m3, ρw is the density of liquid water

(approximately 1000 kg/m3 at 0 C). This relationship allows one to convert SD to

SWE or vice versa given snow pack density.

The most traditional but accurate method, manual snowpack measurements, also

known as a snow survey, can be made using a hollow snow tube for sampling of a

snow core from the snow pack. The Federal snow samplers most typically used in

the United States are made of 76.2-cm (30-inch) long aluminum tubes with an inside

diameter of about 3.8 cm (1.5 inch). A snow core is sampled by vertically inserting the

tube into the snow pack until it reaches the ground and then turning the tube to plug

the snow at the tube base. At this point SD can be easily measured by reading a scale

marked outside the tube. The tube together with the sampled snow core is weighed

and then repeated without the sample to obtain a difference, or SWE. More detailed

descriptions of site selection, measurement tools, and measurement procedure can be

found in Goodison et al. [1981].

In the western U.S., systematic manual snow surveys have been performed at

predetermined snowcourse by Soil Conservation Service (SCS, currently The Natural

Resources Conservation Service; NRCS) since the 1930s for water supply forecasting

purpose. Each snowcourse consists of approximately 10 measurement points marked

by stakes. The snow surveyor can return to the site periodically, once or twice a

month during the snow season [Dunne and Leopold , 1978]. A traditional method

in predicting spring stream discharge uses an empirical model developed based on
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such point SWE measurements made within a basin and its corresponding discharge

measurements in the stream [United States Army Corps of Engineers , 1956].

In the mid 1960s, NRCS started installing an automated system called SNOpack

TELemetry (SNOTEL). This measurement system was designed to collect near-real

time snowpack and related climatic data (air temperature and precipitation) over the

western U.S. including Alaska in places where previous NRCS historic snowcourse

data correlated well with streamflow volumes [Schaefer and Johnson, 1992] and at

remote locations that are particularly difficult to access. At each SNOTEL site, a

fluid-filled pillow is installed under the ground. Snow mass or SWE is measured by

reading hydrostatic pressure produced by snow accumulated over the pillow. The

collected data are transferred via a meteor burst communication technology to a

master station where the data are made available to the public. SNOTEL sites are

less frequent at elevations above tree lines, at low elevations and south facing terrain.

Although some sites have measurements as early as the 1964 winter season, data

at most SNOTEL sites became available starting in the late 1970s. The number of

SNOTEL sites increased drastically in the 1980s, and presently there are close to 700

sites across the western U.S. (Figure 1.1). In the mid 1990s, NRCS started installing

ultrasonic snow depth sensors at a few SNOTEL sites to measure SD in addition to

SWE. The number of sites reporting both, SWE and SD, has increased significantly

since then. Currently over 500 sites are reporting both snow properties (Figure 1.1).

1.3 Methods of snow distribution estimate

1.3.1 Statistical interpolation of point measurements

Information on spatially distributed snow variables, rather than point datasets,

is of more interest for recent hydrologic and climate studies. For example, such

information is in demand for the distributed model application over snow dominated

areas [e.g., model evaluation, initialization, and update; Dressler et al., 2006].
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Statistical models using various independent variables (e.g., topographic data) as

predictors are the most common methods to interpolate point SWE or SD mea-

surements at ungauged locations. Various geostatistical techniques such as krig-

ing [Hosang and Dettwiler , 1991; Carroll and Cressie, 1997; Balk and Elder , 2000;

Erxleben et al., 2002; Erickson et al., 2005], or binary regression tree [Elder et al.,

1998; Balk and Elder , 2000; Erxleben et al., 2002; Anderton et al., 2004] have been

used. Many of these studies showed that coupling two statistical interpolation meth-

ods yielded the improved accuracy, e.g., applying the binary regression tree to the

residuals from generalized additive model [Moreno et al., 2010] or kriging to binary

regression tree model [Balk and Elder , 2000; Erxleben et al., 2002]. All of the above

studies examined spatial variability of SWE or SD over a headwater basin (up to

100 km2). Within such areal extent, heterogeneous snowmelt pattern caused by

heterogeneous incident solar radiation, snow redistribution by heterogeneous wind

field and snow avalanche, and elevation variation of air temperature are major derivers

of physical processes of snow distribution. The scale of such physical processes of

snow distribution can be by far less than 100 meter. Therefore, a measurement

scale [space between measurement points; Blöschl , 1999] has to be smaller than this

physical process scale to depict the spatial structure of SWE or SD variability (e.g.,

variogram). So does the model scale [spatial resolution; space between interpolation

points; Blöschl , 1999] to map realistic spatial distributed SWE or SD fields for this

areal extent. However, such dense measurements are normally available only through

labor-intensive snow surveys, and therefore are usually performed for a limited time

and basin.

Compared to the small headwater basin studies, only a few studies attempted

spatial interpolation of operational ground SWE measurements over larger areas

where intensive snow surveys are not feasible. Identifying the physiographic effects
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on SWE distribution processes over larger basins (e.g., > 1,000 km2) is particularly

challenging [Molotch and Bales , 2006] probably due to lack of an extensive and dense

snow data set to examine this. However, the snow processes at less than 100 m scale

may not be important for SWE distribution over the larger extent, where a model

scale used is typically above 1 km. A hypothesis used in the past studies below

is that the large scale (>1 km) elevation and other physiographic characteristics

[Fassnacht et al., 2003] control SWE distribution at such scales. Daly et al. [2000]

used the hypsometry-detrending regression technique to interpolate SWE measure-

ments over the San Joaquin and Sacramento River basins in the Sierra Nevada,

California. Fassnacht et al. [2003] tested multivariate regression, inverse distance

weighting and elevation-detrended regression-inverse distance weighting techniques

to estimate daily SWE at 1-km resolution for three winter season types (average,

wet, and dry) over the Colorado River basin. Fassnacht et al. [2003] indicated that

regression-based techniques could produce reliable SWE estimates over large areas

during snow accumulation seasons, but that error magnitudes become significantly

larger during snowmelt seasons. More investigations on the SWE distribution over

the large scale (>1 km resolution) and areal extent (>1,000 km2) will be required to

understand and model the SWE distribution process.

1.3.2 Remote sensing

Besides direct ground SWE measurements conjunction with the spatial interpola-

tion, SWE distribution can be estimated indirectly from remotely sensed data (e.g.,

microwave and gamma).

Airborne gamma radiation SWE surveys, such as the one operated by the National

Weather Services National Operational Hydrologic Remote Sensing Center [Carroll ,

2001], can provide reliable mean areal SWE estimates along flight lines [approximately

10 km x 300 m; Cline et al., 2009]. However, this approach may not be feasible when
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continuous estimates of SWE over large areas are needed.

Satellite observation is more suitable for spatially and temporally continuous mon-

itoring snow pack in regional to global scale. This is beneficial particularly for

remote mountainous areas or high latitude where the ground measurements are not

available, and very difficult or costly to conduct. The National Oceanic Atmospheric

Administration, National Environmental Satellite, Data, and Information Service

have been operationally producing snow cover maps for Northern Hemisphere using

visible range image from the satellite for four decades [Ramsay , 1998]. Besides the

snow cover area mapping, various studies investigated retrievals of snowpack condition

such as grain size, liquid water content and impurities using imageries from visible

through near-infrared range of electromagnetic spectral [0.4 µm through 2.5 µm;

Dozier and Painter , 2004]. However these observations are limited to top portion of

snowpack because the penetration depth of light in visible/near infrared spectrum is

very shallow [e.g., 0.5 mm in visible range and only a few millimeters in near- mid

infrared spectrum; Dozier and Painter , 2004].

In contrast, a microwave radiation (1 mm to 1,000 mm wavelengths; 0.3 GHz

to 300 GHz frequencies) can penetrates the snowpack typically 10 to 100 times

of the wavelength, which is equivalent to approximately 500 to 1,000 mm of snow

depth, depending on the physical snowpack properties [Tait and Armstrong , 1996].

Also, unlike the visible range radiation, the microwave radiation is little blocked by

nonprecipitating clouds, and observations are independent of the solar illumination.

Consequently, the measurements are less affected by weather conditions and are

permissible during the nighttime [Ulaby et al., 1986]. Brightness temperature (TB)

is a measure of the radiation in terms of the physical temperature of a hypothetical

black body emitting an identical amount of radiation in the same wavelengths. TB

of the microwave radiation in Kelvin is given by the Rayleigh-Jeans expression:
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TB = σT (1.2)

where σ is an emissivity (nondimensional number less than one) and T is a physical

temperature of the snowpack in Kelvin. As the microwave radiation emitted by

the underlying soil travels upward through the snowpack the microwave intensity is

attenuated through absorption and volume scattering by the snow crystals. As a

result, TB of the microwave radiation emanated from the snowpack is lower than

snow-free areas. For the dry snow, emissivity depends primarily on the amount

of volume scattering since the absorption of radiation is very low. The scattering

becomes more pronounced as the grain size approaches the radiation wavelength.

The amount of volume scattering also depends on the snowpack depth and fraction

of the snow particles (i.e., snow density) along the emission path. Since the product of

snow depth and density defines SWE, the brightness temperature reflects the amount

of SWE.

Many SWE retrieval algorithms using TB observed from space-borne passive mi-

crowave radiometers have been developed over the last two decades [e.g., Chang et al.,

1987; Goodison and Walker , 1995; Singh and Gan, 2000; Pulliainen and Hallikainen,

2001; Koenig and Forster , 2004; Tedesco et al., 2004; Gan et al., 2009]. The algorithm

developed by [Chang et al., 1987] is among the first algorithms (hereafter the Chang’s

equation) and is the basis of the majority of subsequently developed algorithms. It is

still used in practical applications, for example, for continental to global mapping

of SWE [e.g., Foster et al., 2009]. The original Chang’s equation was based on

TB measured from Scanning Multichannel Microwave Radiometer (SMMR; operated

from1979 to1987). The equation uses TB difference between two frequency channels:

SWE = a(TB18H − TB37H) (1.3)

where a is a grain size coefficient that was estimated to be 4.8 mm/K for dry snowpack

with constant grain size of 0.3 mm and constant snow density of 300 kg/m3, TB18H
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and TB37H are brightness temperatures at horizontally polarized 18 GHz and 37 GHz

frequency channels, respectively. TB at higher frequency (TB37H) is by far more

sensitive to the volumetric scattering than TB at lower frequency (TB18H), resulting

in lower TB19H ; and by taking the difference in TB between two frequency channels,

the effect of snow temperature on TB was reduced. For one of the current operational

passive microwave radiometers - Special Sensor Microwave Imager (SSM/I), carried

aboard Defense Meteorological Satellite Program (DMSP) satellites, provide slightly

different frequency TB (19 GHz frequency channel instead of 18 GHz). However,

difference between 19 and 18 GHz has a very small effect on the algorithm performance

since the penetration for both frequencies is nearly identical [Foster et al., 2005].

There have been inconsistencies in the selection of the polarizations (horizontal or

vertical) used in the equation, but the choice of the polarization seemingly has little

effect on the algorithm performance over the large scale SWE mapping [Rango et al.,

1979].

Among various snowpack characteristics, wet snow and depth hoar affect the

accuracy of the passive microwave derived SWE estimates. In a wet snowpack, liquid

water that resides inside the snowpack or on its surface alters microwave interaction

with the snowpack from scatter to emission due to higher dielectric constant of

the liquid water, resulting in very little brightness temperature difference between

different frequency channels, and consequently making it difficult to discriminate

between no-snow and wet snowpack areas. This sensitivity of the microwave to liquid

water content of snowpack is useful for identification of wet and dry snow cover areas

and for estimation of snowmelt timing [Walker and Goodison, 1993], but is undesirable

for estimation of SWE.

A depth hoar is formed by recrystallization caused by water vapor transfer be-

tween snow crystals driven by strong temperature gradients within the snowpack.
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In contrast to typical snow grains in a dry snowpack, which are less than 1 mm

in diameter, depth hoar crystals normally exceed 5 mm in diameter approaching

the microwave wavelengths. Therefore the depth hoar enhances volume scattering

and results in SWE overestimation [Hall et al., 1986]. Since air temperature affects

depth hoar formation, Josberger and Mognard [2002] incorporated air temperature

measurements in the Chang’s equation to account for the effect of grain growth on

microwave emission. Grippa et al. [2004] confirmed that this modification improved

accuracy of snow depth estimates for depth hoar dominated snowpack, but the method

is applicable only during early winter season when snow grain growth is active.

Besides the physical snowpack properties, the underlying landscape features in the

footprint also impact the accuracy of SWE estimates from the passive microwave data.

The most notable ones are forest canopy [e.g., Chang et al., 1996; Dong et al., 2005;

Foster et al., 2005], water body such as lakes [Gan et al., 2009] and rugged topography

[Foster et al., 2005]. The forest canopy tends to mask the microwave emission from

snowpack underneath trees [e.g., Chang et al., 1996]. This results in less brightness

temperature difference between frequency channels, leading to underestimation of

SWE. The amount of underestimation depends on forest density and type of forest

and could be as large as 50% [Foster et al., 2005]. The first attempt to correct the

forest canopy effect on the SWE estimates was by Foster et al. [1997], who added

a fractional forest percentage over the pixel to the original Chang’s equation as a

correction factor. Göıta et al. [2003] also developed separate SWE equations for

different land cover types (conifer, deciduous, and sparse forest). For complex terrain

areas, the sensors viewing angle against the measuring surface differs from one satellite

grid cell to another [Foster et al., 2005] and is in reality even heterogeneous within

each grid cell due to high terrain irregularities. In addition, in high elevation areas

that typically receive more than 100 cm of snow accumulation it is likely that SWE
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will be underestimated, given that the penetrating depth of microwave is limited to

50 to 100 cm of snow depth. In contrast to the terrestrial surface, the TBD over lakes

tends to diminish due to higher dielectric constant of the water. Due to the large

passive microwave footprint (25 km scale), the water body can comprise a significant

portion of the pixels in many lake-rich areas such as the northern Hudson Bay area,

Canada, Alaska, northern Scandinavia and northern Russia.

Tait [1998] tried to account for the effects of various snowpack characteristics (wet

snow, depth hoar), landscape features (evergreen forest, complex terrain) on bright-

ness temperature emission by separating the terrestrial surface over the Northern

Hemisphere (mainly Russia and Northern America) into 16 clusters where similar

physical snowpack characteristics and terrain features are expected. For each cluster,

the best linear multiple regression equation was derived using SWE measurements

as a dependent variable and several TBs (19, 37 and 85 GHz frequency channels,

both vertical and horizontal polarization) as predictor variables. Among 16 clusters,

the largest uncertainty in SWE estimates was observed in complex terrain clusters,

especially in the mountains, where 90% confidence intervals on SWE estimates were

more than 750 mm wide. Kelly and Chang [2003] also attempted to account for the

effects of physical snowpack properties and landscape features on the SWE estimates

by calibrating the grain size coefficient in the Chang’s equation at each satellite grid

cell using in-situ measurements available inside each grid cell. Their study covered

the Northern Hemisphere, but excluded the mountainous areas in the U.S. due to a

concern that the coarse spatial resolution of the passive microwave radiometers (25 x

25 km) is not able to capture high spatial variation in SWE in the mountains. Tong

et al. [2010] evaluated three different SWE retrieval algorithms (TBD algorithm simi-

lar to the Chang’s equation, spectral polarization difference algorithm, and nonlinear

model - neural artificial network) at three snow stations in the alpine basin in western
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Canada. Based on their study, at-site calibration of the ANN model produce most

reliable SWE estimates, however, it is extremely difficult to expand the model to the

other areas in the basin due to the black-box nature of the model.

1.3.3 Snow modeling

Finally, the snow modeling approach should be mentioned. There are emerging

efforts of large scale snow simulations as a part of land surface modeling projects

such as North American Land Data Assimilation System (NLDAS) project [Pan

et al., 2003] and 30-year retrospective distributed hydrologic simulation over the

conterminous U.S.[Dong et al., 2011]. Such continental scale land surface models

are capable of producing historical snow variables in a gridded format in a consistent

manner. There also exists a large-domain snow modeling at the National Weather

Service, National Operational Hydrologic Remote Sensing Center (NOHRSC). For

a decade, NOHRSC has successfully executed an energy-based snow model in the

Snow Data Assimilation System [Rutter et al., 2009; Barrett , 2003] to operationally

produce near real time snowpack estimates over the conterminous U.S. at 1-km and

1-hour resolution. However, validations of simulated snowpack variables have not

been performed due to lack of independent snow distribution data from observations.

Therefore reliability of the snowpack information remains unknown.

1.4 Problem statement and research objectives

1.4.1 Problem statement

This dissertation explored methodologies to map large scale snow distribution

over the mountainous areas based on observations (including remote sensing data).

The extensive literature reviews of the past studies on the distributions of snowpack

variables revealed the following unresolved questions.

Despite accumulated researches on the geostatistical techniques to derive snow

distribution from in-situ measurements with promising results, such techniques re-
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quire a large number of snow measurements. Therefore, geostatistical approaches are

applicable to small areas but are unlikely to be suitable for regional to continental

scale snow mapping particularly when one is interested in examining temporal changes

in the snow distribution pattern.

Satellite data are attractive for a large-scale snow mapping because of reduced cost

and little logistical effort. It also provides the data at a fine temporal interval such

as daily. However, the retrieval algorithms have not been evaluated over the complex

terrains, and are still assumed to be unreliable for the estimate of mountain snowpack

amount.

1.4.2 Research objectives and synopsis

The primary goals of this research are to examine two approaches - 1) statistical

approach to interpolate point snow measurements and 2) passive microwave SWE

retrieval algorithm, to estimate spatial SWE distributions over the mountainous areas.

This study focused on the multiple mountainous regions of the western U.S. where

daily operational snow measurement network is available.

The research began with investigation of spatial and temporal patterns of snowpack

variables from climatological perspective based on SNOTEL sites across the whole

western U.S. In this analysis, the characteristics of seasonal snowpack density were

given more attention due to little research on snowpack density study in terms of large

scale spatial variability. The analysis was performed at a point scale, but attempted

to provide insight into spatial patterns of snowpack climatology over the western U.S.

This research followed up the work by Serreze et al. [1999], who analyzed SNOTEL

data from 1978 through 1995, but the present study included SD and snowpack

density in addition to SWE.

With the same dataset and several auxiliary dataset (climatic wind and physio-

graphic grids), climatological SWE distribution was developed on a monthly basis in
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the second part of the research. These climatological estimates are not for immediate

application to hydrologic or climate model, but expected to assist in estimating

near-real time estimate of SWE distribution. Space and temporal resolution used

in this analysis was 4 km and monthly, though the methodology could be applied to

any other combinations of the spatial and temporal scales when the desirable scale of

the auxiliary data necessary to assist in interpolation is available in the future.

Finally, remote sensing approaches (i.e., microwave data) are examined over the

Colorado River basin located in the western U.S. To the best of my knowledge, there

have been very few published research studies that investigated the performance of

space-borne passive microwave SWE retrievals for the mountainous regions of the

western U.S. Therefore the objective was first to evaluate the performances of most

commonly used SWE retrieval algorithm for the Colorado River basin and then to

investigate if and by how much the accuracy of obtained SWE could be improved

through the calibration of the algorithm and a statistical post processing commonly

used for the model bias correction. The analyses intended to provide insights into the

applicability of the algorithms to spatially and temporally continuous SWE mapping

over the basin.

1.4.3 Organization of dissertation

The dissertation consists of three data analytical studies.

The next chapter presents the results of climatological analysis of SNOTEL snow

data (SWE, SD and snowpack density) obtained in the mountain regions of the

western U.S. These analysis results were published in Journal of Hydrometeorology in

December 2008 (Vol. 9, 1416-1426 DOI:10.1175/2008JHM981.1) entitled Spatiotem-

poral characteristics of snowpack density in the mountainous regions of the western

United States.

Chapter 3 discusses the methodology for estimations of SWE distribution over
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the entire western United States from the SNOTEL network data. This work was

published in Journal of Hydrology in March 2011 (Vol.400, 72-82 DOI:10.1016/

j.jhydrol.2011.01.019) entitled Regional approach for mapping climatological snow

water equivalent over the mountainous regions of the western United States.

Chapter 4 presents the analyses and results of the passive microwave SWE re-

trievals. The results of this analysis were submitted to Hydrological Processes in

April 2011 and are currently under peer review.

Chapter 5 provides conclusive remarks and potential future work for each of three

studies.



CHAPTER 2

SPATIO-TEMPORAL CHARACTERISTICS

OF SEASONAL SNOW PACK

PROPERTIES FROM

SNOTEL

2.1 Introduction

The goal of this study is to characterize climatic spatio-temporal features of

seasonal snow pack characteristics in the mountainous areas of the western United

States throughout winter season using daily SWE and SD measurements collected

at SNOTEL sites. In particular, this work weighted more on snow pack density

to primarily fill in a gap of large scale snow density studies based on the ground

measurements. The following section briefly describes the physical seasonal snow

pack processes. In Section 2.4, the year-to-year variability as well as the intraannual

evolution of snow pack density was examined along with SWE and SD. Section 2.5

characterizes spatial patterns of snow pack densification over the western U.S. Main

findings are summarized in Section 2.6.

2.2 Background

Direct ground measurements of SWE are by far sparser than ground measurements

of SD. For instance, U.S. and Canadian cooperative stations have provided nearly

a million daily SD observations for decades. In contrast, only around 2000 SWE

observations at irregular time intervals were available [Brown et al., 2003]. Accurate

spatial representation of snow pack density would make it possible to utilize much

denser network of ground SD measurements to deduce a better spatial and temporal
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representation of SWE through the conversion of SD to SWE given in Eq. 1.1.

Physical snow pack models [e.g., Jordan, 1991] that incorporate the snow aging

processes represented by snow pack densification and grain growth have often been

used to alleviate the lack of sufficient SWE measurements [Mote et al., 2003] needed

for many hydrologic applications [e.g., Thyer et al., 2004; Garen and Marks , 2005]

and climate studies [e.g., Flanner and Zender , 2006]. Accurate representation of

snow pack density is critical to performance of the snow pack models [Xue et al.,

2003]. Typically the snow pack density and its densification rate are modeled using

empirical equations with few climate variables used as predictors [e.g., air temperature

and precipitation; Kojima, 1967; Brown et al., 2003; Kelly et al., 2003]. Due to

a very limited availability of snow density measurements, however, spatio-temporal

characteristics of snow pack density have not been well understood, particularly at

regional or larger spatial scales. Because of this, calibration of model parameters and

evaluation of modeled snow density estimates have not been performed.

Density is one of the fundamental properties of snow pack as it directly affects

many physical properties of snow [e.g., dielectric, mechanical, and thermal properties;

Langham, 1981]. Snow pack density is related to snow pack porosity (the fractional

volume of air or liquid water portion of snow pack). Typical seasonal snow pack

density ranges between approximately 30 and 600 kg/m3 [McClung and Schaerer ,

1993]. Based on the density of ice (917 kg/m3), snow pack density near 30 kg/m3

implies approximately 97% porosity (3% ice particles and 97% air). This low density

is mostly seen for newly fallen snow [Judson and Doesken, 2000].

Snow pack densification starts immediately after newly fallen snow reaches the

ground. A primary mechanism of densification of seasonal snow pack is continuous

compaction derived by overburden pressure that acts on snow grains and sintering

process [Maeno and Ebinuma, 1983]. The overburden pressure mechanically rear-
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ranges snow grains by forcing them together, resulting in reduction of porosity. When

snow grains are in contact with each other, necks grow between snow grains through

mass transport driven by vapor pressure difference over the convex part (grain) and

concave part (neck) of ice surface [Colbeck , 1997]. This process is known as sintering

and plays a significant role in snow pack densification because it also reduces the

porosity of snow pack [Maeno and Ebinuma, 1983].

Snow grains by themselves also change in size and shape. This morphological

process called snow metamorphism affects the densification process. There are two

distinct types of snow metamorphism [Colbeck , 1982]: constructive metamorphism

(kinetic growth) and destructive metamorphism (equilibrium growth). Constructive

metamorphism is grain growth due to recrystallization on existing snow grains and is

caused by vapor diffusion resulting from strong temperature gradient within snow

pack. A temperature gradient of about 10 ◦C/m is considered a threshold for

the initiation of the constructive metamorphism [Akitaya, 1974; Armstrong , 1980].

Constructive metamorphism produces large and complex shaped grains called depth

hoar. This metamorphism process happens particularly in cold regions such as Alaska

[Hall et al., 1986] and the interior of the western United States such as Wyoming

during early winter [Josberger et al., 1996]. A snow pack dominated by depth hoar

undergoes slower densification than finer grain snow pack because large and complex

shaped snow grains hardly experience sintering [Colbeck , 1997]. As a result snow

pack density stays relatively low throughout the winter season [Massom et al., 2001].

In contrast, when the temperature gradient is weak (warmer air temperature), ir-

regularly shaped snow grains are slowly rounded through mass transfer within snow

grains through a process similar to sintering [Colbeck , 1982], known as destructive

metamorphism. Because rounded grains are more effectively compacted, the density

of a snow pack undergoing destructive metamorphism increases steadily [Kojima,
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1967; Kaempfer and Schneebeli , 2007]. Accordingly, higher temperature snow pack

increases in density more rapidly. In spring, as the amount of solar radiation increases,

net energy inputs into the snow pack become positive and the snow pack temperatures

increase. Once the snow pack becomes isothermal at 0 ◦C, further energy inputs

produce snowmelt that begins to fill the snow pack pore space. Once liquid water

appears in the snow pack, melt metamorphism becomes the dominant process of the

metamorphism [Anderson, 1976]. The liquid water causes destructive metamorphism

to proceed at a faster rate, and decreases SD while the melt water can be retained

within the snow pack. Therefore, snow pack increases in its density more rapidly.

Melt metamorphism also involves melt-freeze cycles that happen at the surface the

snow pack primarily due to daytime solar radiation. During the melt-freeze cycles,

some of the liquid water refreezes during the night, resulting in reduction of snow

pack porosity and increase in density.

2.3 SNOTEL data

The analysis used daily SNOTEL data for five months (December through April)

from 1999/2000 through 2005/2006 winter season during which the number of sites

that provide SD data exceeded 100 sites. Because SNOTEL measurements are fully

automated, the daily values were screened for quality check. The quality control

procedure on both SWE and SD data described in the Appendix was applied to

eliminate erroneous values. In the end, less than 2% of both SD and SWE data were

eliminated from all the tests combined.

2.4 Interannual variability in snowpack
characteristics

First, we examined how seasonal behaviors of SWE, SD and snow density change

from year to year at a given location. For 130 SNOTEL sites for which daily

measurements of both SWE and SD were available for the 1999/2000 to 2005/06
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period, snow density was computed using Eq. 1.1. Average values of all three variables

were calculated for each of the three nonoverlapping 10-day periods per month starting

in November and ending in April (the third period in each month may have 8, 9,

10 or 11 days, depending on a month and year). This averaging was performed to

reduce effects of random fluctuations on calculated statistics. To examine interannual

variability of selected snow characteristics, coefficient of variation (standard deviation

normalized by mean and expressed as a percentage) was calculated for each 10-day

period for each variable. Figure 2.1 shows coefficients of variation (CV) for SWE, SD

and density for midmonth 10-day periods in January, February and March. As can

be seen from the figure, there are significant differences in degrees of interannual

variability for different snow properties. A significant year-to-year fluctuation is

present in SWE data at a majority of the SNOTEL sites. In coastal regions and the

southern portion of the western United States, CVs are typically higher than 50% in

January. They decrease in February and March to about 30 - 60%. CVs are somewhat

lower over the continental region (Montana, Wyoming, and Northern Colorado). At

a majority of sites, CVs are about 30 - 40% in January; they decrease to 20 - 30% in

March, and increase again in April (not shown in the figure). Similar variability in

early spring SWE was found by Cayan [1996]. He analyzed SWE measurements at

200 snow courses over 5 decades in the mountain regions in the western United States

and reported CVs of April 1 SWE from 20% to over 100%. As can be seen from Figure

2.1, CV estimates for SD are somewhat smaller than corresponding CVs for SWE,

but regional patterns are similar for both variables. At the same time, equivalent CV

estimates for snow density are significantly lower. At a majority of sites across the

western United States, they are less than 20% from midwinter through spring. The

low interannual variability of snow pack density was also observed by Brown [2000]

who analyzed snow course data collected from 1964 to 1993 over southern Canada.
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Figure 2.1. Coefficients of variation (in percent) of SWE (left column), SD (middle
column) and snow density (right column) for the midmonth 10-day period in January
(1st row), February (2nd row) and March (3rd row).
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In order to further examine year-to-year variability of the three snow pack char-

acteristics, the following three SNOTEL sites were selected for detailed analysis:

Park Creek Ridge in Washington (48.45 N, 120.92 W, 1403 m.a.s.l), Bloody Dick in

Montana (45.17 N, 113.50 W, 2303 m.a.s.l), and Kings Cabin in Utah (40.72 N, 109.55

W, 2662 m.a.s.l). The sites were chosen primarily because snow courses collocated at

those sites provided long-term SWE and SD measurements. The snow course data

extends back to 1928 at Park Creek Ridge, to 1948 at Bloody Dick, and to 1930 at

Kings Cabin. In addition, selected sites are located in different geographical regions

and at different elevations.

The difficulty with the snow course data is that measurements are typically made

on a single day at the end of each month (mostly from January through April),

and not always at the same date. Also, there are months or even years when no

measurements were taken. For this analysis, snow course measurements of SWE and

SD taken at the end of each month (from January through April) were combined with

the corresponding SNOTEL measurements on the 25th of each month. Table 2.1

shows CV estimates for all three snow variables calculated from combined records

and, and for comparison, CV estimates for all three variables calculated from only

7-year long SNOTEL record. As can be seen from Table 2.1, CV estimates for snow

density are similar for both records; they are less than 15% at Park Creek Ridge and

Bloody Dick sites and around 20% at Kings Cabin. CVs are significantly higher for

SWE and SD for both datasets. To examine intraseasonal and interannual variations

in daily snow data, daily time series were plotted for all three snow variables for 7

winter seasons (Figure 2.2). Similar to the previous analysis of 10-day averaged data,

the analysis of daily data showed that there is a considerable inter-annual variability

in SWE and SD, but significantly less year-to-year variation in snow density. It

also becomes visible that densification trends are generally linear for all three sites.
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Table 2.1. Coefficients of variation (in percent) for daily estimates of SWE, SD
and density computed at selected sites. For each site, the first row shows CVs
estimated using both SNOTEL measurements taken on the 25th of each month and
historical snow course data from January to April; second row (in parenthesis) shows
corresponding CVs estimated from 7-years of SNOTEL data.

Coefficients of variation (%)
Month Park Creek Ridge Bloody Dick Kings Cabin

SWE Jan 35(37) 36 (36) 58(61)
Feb 32(38) 30(36) 39(41)
Mar 31(42) 27(34) 34(38)
Apr 46(48) 48(42) 55(66)

SD Jan 38(46) 32(20) 37(40)
Feb 29(45) 21(26) 30(24)
Mar 30(51) 23(30) 32(40)
Apr 41(48) 51(37) 54(65)

Density Jan 15(13) 9(9) 24(24)
Feb 11(9) 15(12) 17(24)
Mar 10(6) 12(16) 19(18)
Apr 8(5) 17(22) 23(15)

However, at the Kings Cabin and Bloody Dick sites, densification rates change around

the beginning of March. About the same time, and before the SWE peaks, SD starts

decreasing. The change in densification change could be result of abrupt snow pack

compaction possibly due to appearance of liquid water inside the pack, which enhances

destructive snow metamorphism.

2.5 Spatial patterns of snowpack density
and densification

Based on the results from the previous section, density magnitudes may have

little year-to-year variations, but they appear to be location dependent. This finding

prompted us to further investigate whether: a) densification trends from Figure 2.2

are typical for the entire western United States, and b) whether similar snow pack

densities and densification rates occur in spatially coherent manners. Cluster analysis

was used to obtain qualitative information on spatial patterns.
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Figure 2.2. Daily time series of SWE (column 1) , SD (column 2) and snowpack
density (column 3) from November 1 to May 30 for 7 winter seasons starting in
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In cluster analysis, the similarity between sites is measured by the Euclidian dis-

tance in terms of the selected attribute variables Everitt et al. [2001]. The equation for

Euclidian distance (di,j) between site i and site j is given by the following expression:

di,j = [
K∑
k=1

(xi,j − xj,k)2]1/2 (2.1)

where xi,k is the k-th (k = 1, · · · , K) attribute variable at site i, and xj,k is k-th

attribute variable at site j. When the attribute variables consist of the time series of

a single type of variable, Eq. 2.1 can be decomposed into three components: difference

in seasonal means of time series at site i and site j (xi and xj), difference in seasonal

variability (Si and Sj), and linear correlation (rij) between two time series:

di,j = c[(xi − xj)2 + (Si − Sj)
2 + 2SiSj(1− rij)]1/2 (2.2)

where c is a constant. This concept was introduced by Fovell [1997], who delineated

homogeneous climate zones over the contiguous United States by applying this type

of clustering strategy with time series data of air temperature and precipitation

independently and then intersecting two cluster maps.

Using the time series of a single variable provides two important advantages for

cluster analysis [Fovell , 1997]. First, because all attributes have the same mea-

surement unit, standardization that is usually performed to assign equal weights to

all the attribute variables is unnecessary. The second advantage is related to data

redundancy. Like other types of multivariate statistical analyzes (such as multiple

regression analysis), redundancy of attribute variables might have negative effects on

cluster analysis results [Fovell and Fovell , 1993]. If correlated attribute variables are

used for Euclidian distance computation, they dominate other attributes; therefore,

they have more influence on the clustering outcome. In contrast, inclusion of long

term continuous time series of a single variable at finer time step may have positive

effects on the results. This is because the statistics (mean, standard deviation, and
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correlation coefficient) used in the Eq. 2.2 are likely to gain a confidence owing to

increased samples.

In this study, 10-day average climatological density values (based on 2000/01

through 2005/06 years) from December through April calculated at 181 SNOTEL

sites were used for cluster analysis. Therefore, 15 attribute variables (three 10-day

average values per month times 5 months) were used to evaluate the similarity between

SNOTEL sites.

There are two types of clustering algorithms: hierarchical and nonhierarchical. The

hierarchical clustering algorithms perform a series of either successive partitioning

(agglomerative method) or successive merging (division method). The agglomerative

method starts with n clusters containing a single membership and then continues

aggregating two clusters until a single cluster containing all the n memberships

is obtained. Division method runs in the opposite way, splitting one cluster into

two until all the n memberships are separated into n clusters. In contrast to the

hierarchical method, the nonhierarchical algorithm permits objects to change group

membership through the cluster formation process. The partitioning method usually

begins with an initial solution, after which reallocation occurs according to some

optimality criterion. There have been some discussions on what type of clustering

approach is appropriate for analyzing meteorological data [e.g., Kalkstein et al., 1987;

Fovell and Fovell , 1993]. In this study, we chose one of the nonhierarchical clustering

methods, K-mean algorithm, because of its resistance to outliers [MacQueen, 1967].

We also tried one of the hierarchical clustering algorithms, the Wards method, but it

produced almost identical clusters to the K-mean algorithm results.

We also investigated the influence of different groupings of clusters on the spatial

contiguity of SNOTEL sites. SNOTEL sites were first divided into two clusters. A

map of the western United States with sites assigned to each of the two clusters is
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shown in the top left panel of Figure 2.3. Time series of mean snow pack density

for each cluster are shown to the right of the spatial map. As can be seen from the

top-left panel of Figure 2.3, high and low density regimes are clearly separated for the

2-cluster case. Cluster 1 includes mostly sites located in the coastal region and cluster

2 consists of sites in the continental region. That suggests that the most significant

factor that separates different snow density regimes is proximity to a large water body

(in this case, the Pacific Ocean).

For the 3-cluster case (Figure 2.3 middle panels), many sites assigned to new

cluster (cluster 3) are located between coastal region (cluster 1) and continental

region (cluster 2). This longitudinal transition from higher density snow pack to

lower density is still present, but clusters 2 and 3 seem to be spatially disconnected.

However, when some mountain ranges are looked into, regional patterns become

apparent. For instance, cluster 2 contains sites on the west side and cluster 3 contains

sites on the eastern side of the Colorado Rocky Mountains. Sites in Utah are assigned

to cluster 3 except for sites in the Uinta Mountains and the southern portion of the

Wasatch Mountains.

We further partitioned the SNOTEL sites into four clusters (Figure 2.3, bottom

panels). Several sites located in the continental area that were assigned to cluster

3 in previous analysis (3-cluster case) were reassigned to the cluster 2, making the

spatial patterns more contiguous than in the 3-cluster case. The new cluster (cluster

4) is composed of sites with the lowest density throughout winter, but is spatially

discontinuous. It appears that the majority of sites assigned to the cluster 4 are

located at the highest elevations in the continental western United States, such as the

Uinta Mountains in Utah and the central Colorado Rocky Mountains. Increasing the

number of clusters to five or more (not shown in the figure) did not lead to detection

of significantly different density regimes.
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Inspection of time series of mean density for different clusters (right panels in

Figure 2.3) pointed to an interesting link between snow pack densification rates

and snow density magnitudes. The higher the seasonal mean density is, the faster

the midwinter densification rate. This characteristic can be seen in all the cluster

cases. Also, as can be seen from Figure 2.3, early-March snow pack densifies at

similar densification rate for all clusters at a rate that is faster than any midwinter

densification rate.

We used a linear regression approach to quantify densification rates for each of

four clusters. Time series were separated in two periods: midwinter (from December

1 through March 1) and early spring (March 1 through April 31). As can be seen from

Table 2.2, densification rates (slope terms in regression equations) for midwinter snow

pack vary in space implying snow pack densification is affected by regional climate

when snow pack is cold and likely to be dry. However, densification rates for spring

snow pack are 2.0 kg/m3per day with very little spatial variability.

To examine what factors might control these spatial patterns, box-plots of se-

lected terrain characteristics were constructed for each cluster in the 4-cluster case

(Figure 2.4). Selected characteristics were latitude, longitude, elevation (in meters),

eastness (sine of azimuthal angle), northness (cosine of azimuthal angle), and slope in-

clination. Latitude, longitude and elevation are at-site characteristics from SNOTEL

locations. Other selected terrain variables (eastness, northness, slope) were derived

from 1-km Digital Elevation Model (DEM) dataset. Chosen terrain variables control

local meteorological conditions such as air temperature and solar energy flux, and

were investigated as possible predictors of snow characteristics in earlier snow studies

[e.g., Balk and Elder , 2000; Erxleben et al., 2002; Fassnacht et al., 2003; Erickson

et al., 2005]. Many studies have also reported that the new fallen snow is denser in

warmer
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Table 2.2. Regression equations for midwinter (December 1 through March 1) and
early spring (March 1 through April 31) snowpack densification per each cluster.
Clusters are ordered in west-east direction. ρs is snow density in kg/m3 and t is time
in days.

December 1 - March 1 March 1 - April 31

Cluster 1 ρs = 269.7 + 1.1t ρs = 363.6 + 2.0t
Cluster 2 ρs = 227.1 + 1.0t ρs = 316.1 + 2.1t
Cluster 3 ρs = 213.4 + 0.7t ρs = 275.0 + 2.0t
Cluster 4 ρs = 189.1 + 0.4t ρs = 226.4 + 2.1t

environments [LaChapelle, 1962; Grant and Rhea, 1974; McGurk et al., 1988; Judson

and Doesken, 2000]. As can be seen from Figure 2.4, longitude and elevation most

effectively discriminate between densification regimes. In the western United States,

longitude is correlated to the proximity to the Pacific Ocean. The coastal region of the

western United States is characterized by the abundant precipitation and relatively

high air temperatures [Serreze et al., 1999], which are contributors to high snow pack

density throughout winter.

2.6 Summary

Spatio-temporal characteristics of seasonal snow pack density were examined through-

out the winter season based on 7 years of daily snow pack observations (1999/2000

to 2005/06) at SNOTEL sites over the western United States.

In contrast to SWE and SD, snow pack density exhibits rather small year-to-year

variability throughout the winter season at most SNOTEL sites. This low inter-

annual variability of snow density is beneficial for several applications. To start

with, climatological values of snow pack density at any location of interest could be

estimated with confidence after only several years of SWE and SD measurements

become available. Also, climatological values of snow pack density could be used
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with SD measurements to estimate real-time SWE data needed for many hydrologic

applications. This could be very useful, for example, in lower elevation areas in the

western United States where only SD data are available from the National Weather

Service (NWS) Cooperative Observer stations and NWS First Order stations.

Also, historical SD measurement and developed snow pack density climatological

maps could be used to obtain historical SWE data and to create climatological SWE

maps. They are useful for climate studies as they provide information on longer-term

fluctuations of snow pack amounts associated with climate fluctuations [Mote et al.,

2005]. The SWE climatology could also be useful for calibration of hydrologic models

that include a snow component and for calibration of empirical equations used to

estimate SWE from remote sensing data such as passive microwave data.

In order to characterize complexity of spatial and temporal variability of snow

pack density, we used cluster analysis. Cluster analysis revealed four distinct regions,

each having different density magnitude and densification throughout winter months.

Patterns of snow pack densification from each cluster were characterized as follows.

During early and midwinter, densification rate is correlated with density. The higher

the magnitude of density is, the faster the densification is. Around the beginning of

March, however, snow pack densification becomes faster but relatively constant (2.0

kg/m3 per day) regardless of location. It was also found that longitude (representing

the proximity of the Pacific Ocean) and elevation are important variables that dis-

criminate between different snow pack density regimes.

Although there are more than 700 SNOTEL sites across the western U.S., at the

moment only 130 sites had sufficiently long records to be useful for this study. As the

number of SNOTEL sites increases every year and additional SD sensors are installed

at existing sites, more detailed analysis of spatio-temporal characteristics of mountain

snow pack density will be feasible in a few years.



CHAPTER 3

REGIONAL APPROACH FOR MAPPING

CLIMATOLOGICAL SWE OVER THE

MOUNTAIN REGIONS OF

THE WESTERN U.S.

3.1 Introduction

The study presented in this chapter intended to follow up on the large-scale (e.g.,

continental scale) SWE interpolation studies descried in the Chapter 1 [i.e., Fassnacht

et al., 2003]. This study investigated the ability of simple regional regression-based

approaches to map SWE climatology over the mountainous regions of the western

United States.

The rest of the chapter is structured as follows. All datasets used in the study

are briefly described in Section 3.2. The development of the regional equations is

described in Sections 3.3 and 3.4. First, in Section 3.3, regions with homogenous

climate and similar snow pack processes are delineated for the entire western U.S.

Then, monthly SWE climatological grids are estimated for October-April period

through regionally calibrated equations in Section 3.4. Estimation errors are evalu-

ated through jack-knife method. Finally, the main findings of the study and potential

applications for this product are discussed in Section 3.5.

3.2 Datasets

3.2.1 In-situ SWE measurements

In-situ SWE measurements at the SNOTEL across the western United States from

October 1980 through April 2004 were used for this analysis. The quality control (see
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Appendix) left complete daily SWE dataset at 403 SNOTEL sites shown in Figure 3.1.

3.2.2 Precipitation and air temperature grids

Monthly total precipitation and average daily air temperature values at a 2.5-

arc-minute (approximately 4-km) resolution for each month for the 1980-2004 period

were obtained from the PRISM (Parameter-elevation Regressions on Independent

Slopes Model) Climate Groups database (http://www.prismclimate.org). Detailed

descriptions of the PRISM products and the techniques used to develop those products

can be found in several publications [e.g., Daly et al., 1994, 2008]. In short, the

PRISM climate mapping system incorporates point measurements of precipitation,

temperature, and other climatic variables together with a digital elevation model and

expert knowledge of complex topographic effects on climatic variables to produce

monthly gridded estimates of several meteorological variables over the conterminous

U.S.

3.2.3 Elevation grids

One-arc-sec (approximately 30-m) digital elevation model (DEM) data were ob-

tained from the National Elevation Dataset through the U.S. Geological Surveys

National Map Seamless Server (http://seamless.usgs.gov). Elevation grids were used

for two purposes: they were included in a set of potential predictors of climatological

SWE (in Section 3.4), and were used to estimate daily clear sky solar radiation

that was in turn used as an attribute variable for cluster analysis (see below and

Section 3.2.4).

3.2.4 Solar radiation grids

Daily total direct solar beam (J/m2) was estimated from a model that uses

geometric relationship between astronomical solar position and latitude and local

terrain properties (such as orientation, incline and local topographic shadowing)
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Figure 3.1. Five snow climate regions for the western United States delineated
through cluster analysis. Region 3 is characterized by wind speed data that were
available at lower resolution (32-km vs. 4-km for other variables). Numbers in
parentheses in the legend indicate number of SNOTEL sites used in this study in
each region.
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computed from the DEM data [Dozier and Frew , 1990; Kumar et al., 1997; Šúri

and Hofierka, 2004]. Daily total direct solar beam was computed for each 1-arc-sec

grid cell on the 15th of each month from October to April, and an assumption was

made that the computed direct radiation represents direct radiation value for each

month. The computation used a clear sky condition. Therefore the scattering effect

of atmospheric aerosols and clouds was not taken into account.

3.2.5 Wind speed grids

Wind speed data were obtained from the National Centers for Environmental

Predictions (NCEP) North American Regional Reanalysis (NARR) dataset [Mesinger

et al., 2006]. The NARR is a hydrometeorological dataset over North America derived

using the 32-km resolution. NCEPs Eta model together with the Regional Data

Assimilation System (RDAS) which assimilates various types of satellite, radar and

surface observations. The 3-hour near-surface wind speed estimates are available

over the North American domain from 1979. Brief discussions on the derivation and

accuracy of NARRs wind speed data can be found in Mesinger et al. [2006].

3.3 Delineation of homogeneous snow
climate regions

Regionalization based on similar hydrologic processes is typically a first step for

modeling and prediction for ungauged basins since the analyses of regionally grouped

data can reveal specific regional relationships that could lead to unbiased estima-

tions. With this in mind, the development of regional regression-based equations

for the estimation of monthly climatological SWE grids starts with a delineation of

homogeneous regions in terms of the seasonal snow pack accumulation and ablation

processes. However, the identification of homogeneous regions requires a considerable

amount of subjective judgments.

A few snow studies presented some kind of regionalization for the snow pack
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climate. For example, Serreze et al. [1999] and Hatch [2006] used geographical

regionalization scheme based on major mountain regions in the western United States.

Sturm et al. [1995] created a 0.5-degree mesh over the North America and Eurasia

and classified each grid cell into one of the six seasonal snow pack climate regions

(hereafter Sturms snow classification). The snow climate regions were delineated

by relating the physical properties of snow pack (crystal morphology, depth, wetness,

density, and thermal conductivity) to average precipitation, air temperature and wind

speed characteristics. Lacking global gridded wind speed data, a vegetation type was

used as a proxy for wind speed; tall vegetation was equated with low wind speed,

and short vegetation with high wind speed. Fassnacht and Derry [2010] classified

SNOTEL sites within the upper Colorado River Basin into the regions of similar

snow accumulation and ablation patterns using a self-organizing map approach, but

this type of regionalization approach requires an additional classification of ungauged

locations to one of the delineated regions to generate spatially continuous classification

maps. Farmer et al. [2010] utilized hierarchical clustering algorithm and gridded

passive microwave brightness temperature data (25 km resolution), which contains

information on snow accumulation and melt processes, to classify the Canadian prairie

area into 18 homogeneous snowpack regions.

For this study, a spatially contiguous classification method similar to Sturms and

Farmers classification is essential to estimation of SWE climatology at ungauged

locations. Cluster analysis with the gridded attribute data was used to delineate

homogeneous snow climate regions for the western United States by assigning every

4-km grid cell to one of the regions. Various meteorological and geographic variables

that directly or indirectly affect snow accumulation and ablation were considered as

potential attribute variables for the cluster analysis. Precipitation, air temperature,

solar radiation and wind speed were selected among the meteorological variables
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since they are major drivers of snow pack mass and energy exchange processes [e.g.,

Marks and Dozier , 1992], thus directly affecting snow accumulation and ablation.

Latitude, longitude and elevation were selected as representative geographic variables

that influence spatial variability of the meteorological variables and thus indirectly

affect snow accumulation and ablation processes. For the meteorological variables,

both, the magnitude and temporal evolution were considered in the regionalization.

All meteorological variables were averaged over the 1980-2004 period. The spatial and

temporal resolution for the analysis was selected to match the resolution of the pre-

cipitation and temperature data obtained from the PRISM database (approximately

4-km spatial resolution and 1-month temporal resolution). The geographic and solar

radiation grids were aggregated into 4-km grid. The NARRs wind speed estimates,

available at 32-km resolution, were assumed to be uniform across all 4-km cells inside

a corresponding 32-km cell. Average monthly wind-speed estimates were obtained

from corresponding 3-hour estimates.

Regionalization based on similar hydrologic processes is typically a first step for

modeling and prediction for ungauged basins since the analyses of regionally grouped

data can reveal specific regional relationships that could lead to unbiased estima-

tions. With this in mind, the development of regional regression-based equations

for the estimation of monthly climatological SWE grids starts with a delineation of

homogeneous regions in terms of the seasonal snow pack accumulation and ablation

processes. However, the identification of homogeneous regions requires a considerable

amount of subjective judgments.

A few snow studies presented some kind of regionalization for the snow pack

climate. For example, Serreze et al. [1999] and Hatch [2006] used geographical

regionalization scheme based on major mountain regions in the western United States.

Sturm et al. [1995] created a 0.5-degree mesh over North America and Eurasia and
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classified each grid cell into one of the six seasonal snow pack climate regions (hereafter

Sturms snow classification). The snow climate regions were delineated by relating

the physical properties of snow pack (crystal morphology, depth, wetness, density,

and thermal conductivity) to average precipitation, air temperature and wind speed

characteristics. Lacking global gridded wind speed data, a vegetation type was

used as a proxy for wind speed; tall vegetation was equated with low wind speed,

and short vegetation with high wind speed. Fassnacht and Derry [2010] classified

SNOTEL sites within the upper Colorado River Basin into the regions of similar

snow accumulation and ablation patterns using a self-organizing map approach, but

this type of regionalization approach requires an additional classification of ungauged

locations to one of the delineated regions to generate spatially continuous classification

maps. Farmer et al. [2010] utilized hierarchical clustering algorithm and gridded

passive microwave brightness temperature data (25 km resolution), which contains

information on snow accumulation and melt processes, to classify the Canadian prairie

area into 18 homogeneous snowpack regions.

For this study, a spatially contiguous classification method similar to Sturms and

Farmers classification is essential to estimation of SWE climatology at ungauged

locations. Cluster analysis with the gridded attribute data was used to delineate

homogeneous snow climate regions for the western United States by assigning every

4-km grid cell to one of the regions. Various meteorological and geographic variables

that directly or indirectly affect snow accumulation and ablation were considered as

potential attribute variables for the cluster analysis. Precipitation, air temperature,

solar radiation and wind speed were selected among the meteorological variables

since they are major drivers of snow pack mass and energy exchange processes [e.g.,

Marks and Dozier , 1992], thus directly affecting snow accumulation and ablation.

Latitude, longitude and elevation were selected as representative geographic variables
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that influence spatial variability of the meteorological variables and thus indirectly

affect snow accumulation and ablation processes. For the meteorological variables,

both the magnitude and temporal evolution were considered in the regionalization.

All meteorological variables were averaged over the 1980-2004 period. The spatial

and temporal resolution for the analysis was selected to match the resolution of the

precipitation and temperature data obtained from the PRISM database (approxi-

mately 4-km spatial resolution and one-month temporal resolution). The geographic

and solar radiation grids were aggregated into 4-km grid. The NARRs wind speed

estimates, available at 32-km resolution, were assumed to be uniform across all 4-km

cells inside a corresponding 32-km cell. Average monthly wind-speed estimates were

obtained from corresponding 3-hour estimates.

Similar to other types of multivariate statistical analyses, inclusion of highly cor-

related attribute variables is not desirable in cluster analysis, as redundant attribute

variables could dominate clustering outcomes [e.g., Fovell and Fovell , 1993]. Cross-

correlation analysis for the selected geographic variables and meteorological variables

averaged for the winter season was performed and the results are shown in Table 3.1.

As can be seen from the table, all the geographic variables are correlated with at least

one meteorological variable. For example, latitude is highly correlated with solar ra-

diation and air temperature (correlation coefficient R = -0.81 and -0.68, respectively);

longitude is correlated with precipitation (R = -0.54), and elevation is correlated with

air temperature (R = -0.60). Because of the more direct relationship between SWE

and meteorological variables than geographic variables, only meteorological variables

were considered for the cluster analysis.

Inclusion of attribute variables with different units and ranges of the magnitudes

is also undesirable for the cluster analysis. Therefore, all the attribute variables were

standardized as follows:
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Table 3.1. Cross-correlation coefficients (R) for various geographic and meteorologi-
cal variables (averaged over October-April, 1980-2004 period) considered as potential
attribute variables for cluster analysis. |R| > 0.5 is shown in bold.
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Latitude 1.00
Longitude -0.16 1.00
Elevation -0.12 0.39 1.00
Precipitation 0.26 -0.54 -0.14 1.00
Temperature -0.68 -0.29 -0.60 -0.01 1.00
Wind speed 0.22 0.16 0.33 0.16 -0.38 1.00
Solar radiation -0.81 0.17 0.14 -0.25 0.46 -0.18 1.00

zi,j = (xi,j − xj)/Sj (3.1)

where xi,j and zi,j are the j-th (j = 1, · · · , J) original and standardized attribute

variables at grid cell i, respectively, and xi and sj are the mean and standard deviation

of the j-th attribute variable over the whole domain (i.e., the entire western United

States), respectively.

K-mean is one of many clustering algorithms that could be used to statistically

partition n objects (in this case, 248,050 grid cells). The K-mean algorithm was

selected over the hierarchical clustering algorithms here, because it it is computa-

tionally more efficient and also more resistant to outliers in the attribute variables

[MacQueen, 1967].

The K-mean algorithm iteratively assigns objects to a prespecified number of

clusters (K) through the following procedure. First, initial centroids for all clusters

(i.e., mean values of each attribute variable over a cluster) are obtained from a random

partition of n objects into K clusters. Then, each object is assigned to the cluster

with the nearest centroid according to similarity of the attribute variables considered,
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which is measured by the Euclidian distance [Everitt et al., 2001]. After all the objects

have been reassigned and the centroids are updated for each cluster, they are used as

new seed centroids for the next iteration. At the same time, the within-cluster sum of

the squared Euclidian distances between each object and the centroid of its currently

assigned cluster (F ) is computed as a follows:

F =
K∑
k=1

nk∑
i=1

J∑
j=1

(zi,j − xk,j)2 (3.2)

where zi,j is a j-th standardized attribute variable of object i, is the mean of j-th

standardized attribute variable within k-th cluster, and nk is the number of objects

within the k-th cluster. Iteration terminates when the centroids of all clusters do not

change, that is, when F is minimized.

Determining an optimal number of clusters is one of the subjective aspects of many

clustering techniques, including K-mean. Rather than relying on some of the indices

commonly used for determination of the final number of clusters (e.g., the silhouette

validation, Dunns Validity Index, Goodman-Kruskal index, or C-index), the optimal

number of the clusters was determined by examination of change in selected statistical

performance measures of the regional regression equations developed in the next

section with the increase in number of clusters. Root mean squared error (RMSE)

and correlation coefficient (R) statistics were used to measure the performance of the

regional regression equations for a varying number of the regions. In the next section,

2-, 5-, and 10- region cases will be examined in more detail. As will be shown in the

next section, five regions for the western United States seem to be sufficient for the

estimations of monthly SWE climatology throughout the analysis period except in

April.

Figure 3.1 shows the spatial distribution of five snow climate regions delineated

through the cluster analysis. The regions match fairly well with the Sturm snow

classification shown in Figure 3.2 (except that their ephemeral region is now split
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Figure 3.2. Snow climate regions in the western United States delineated by Sturm
et al. [1995]. Grid cells over large water bodies were not classified. Black dots indicate
locations of current SNOTEL sites. Numbers in parentheses in the legend indicate
number of SNOTEL sites used in this study in each region.

into two regions - regions 4 and 5). This is probably because both studies considered

similar meteorological characteristics for the regional delineations, although the re-

gionalization approaches are different.

Figure 3.3 shows that the regional mean and variability (mean ± standard devia-

tion) for the selected attribute variables for each month between October and April,

indicating that each region can be uniquely characterized based on their magnitude

and temporal variation. For example, region 4, which includes coastal regions of

Washington, Oregon and Northern California, is characterized by maritime climate
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Figure 3.3. Monthly mean and variability (mean ±standard deviation) for total
precipitation, daily average temperature, wind speed and radiation for each month
from October through April for regions 1 to 4.

with exceptionally high precipitation amounts and high air temperature. Region 3,

located in continental areas over Wyoming and eastern Colorado, is characterized by

average wind speeds that are higher than in any other regions throughout the winter

season. Because the wind speed data were available at a 32-km grid, the region

3 grids appear coarser than the grids inside other regions. Region 1 is similar to

region 3 in terms of selected meteorological characteristics, except that average wind

speeds are much lower in region 1 for all months. Similarly, regions 2 and 5 can be
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distinguished based on air temperature; average daily temperatures are significantly

higher in region 5 than in region 2 throughout the winter season.

3.4 Development and validation of regional
equations for estimation of

monthly climatological
SWE grids

To estimate monthly climatological SWE distributions, a forward-selection step-

wise regression was used for each region and each month between October and April.

Forward-selection stepwise regression is a systematic method for adding predictors to

a multilinear regression model based on their statistical significance in a regression

[Wilks , 2005]. This method starts with an intercept-only model. In each consecutive

step, all remaining predictors are screened for degree of their linear relationship with

the predictand and one predictor that produces the highest coefficient of determi-

nation is added to a linear equation. This screening process is terminated when

none of the remaining variables is significant at a certain level (95% was used in this

study). The quality controlled daily SWE values at the SNOTEL sites were used

to calculate monthly SWE changes (i.e., difference between SWE values on the first

day and the last day of month) for each month from 1980 to 2004. They are then

averaged over the 25-year period to obtain climatological monthly SWE changes,

which were used as predictants for the regression analysis. The same geographic

and meteorological variables considered for the regional delineation were tested as

potential predictors of the climatological monthly SWE changes. For similar reasons

discussed in Section 3.3 for cluster analysis, multicollinearity in explanatory variables

was investigated and accounted for in variable selection. Climatological monthly SWE

changes estimated via the calibrated regression equations were then accumulated at

the end of each month between October and April to develop climatological monthly

SWE grids. When the estimated SWE value for a grid cell became zero or below, it
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was assumed that the snow pack completely melted during that month and a zero

value was assigned to that grid cell.

To examine how the number of the regions affects performance of the regionally-

calibrated equations, RMSE and R statistics were computed for climatological monthly

SWE changes for varying number of regions. Average statistics across all regions, for

2-, 5- and 10-region cases, are shown in Table 3.2. As can be seen from the table,

the increase in number of regions from 2 to 5, on average, significantly improves

the accuracy of the estimates particularly in early to midwinter (October to March).

However, the selected performance statistics are comparable for the 5- and 10-region

cases for all the months but April. For comparison, the regional equations were also

developed for the four regions delineated by Sturm et al. [1995]. As can be seen from

the table, RMSE and R statistics for this regionalization approach are comparable

to the 5-region case, except for February and April when the 5-region case performs

slightly better.There was an additional reason in this study for keeping the number of

the regions relatively small; as the number of the regions increased, the number of the

measurement sites within each region decreased, leaving more and more regions with

no SNOTEL sites. Even for the 5-region case, there are no SNOTEL sites in region

5 that encompass lower elevation areas in Southern California through Arizona/New

Mexico (see Figure 3.1). As a result, the regional equations could not be calibrated

for that region, but because of high temperatures and little precipitation as shown

in Figure 3.3, significant snow accumulation is not expected in this region. Based on

these results, the 5-region case grid classification was used to develop climatological

monthly SWE grids over the western U.S.

For 5-region case, the overall performance of the developed equations can be seen

from the performance statistics shown in Table 3.2. As a rule, 65 to 85% (R =

0.8-0.93) of observed monthly SWE change variability is explained through this model,
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Table 3.2. Root mean squared error (RMSE; mm) and correlation coefficient (R)
between measured and estimated climatological monthly SWE changes averaged aross
the western United States for 2-, 5-, and 10-region cases from this study and for four
regions as delineated by Sturm et al. [1995] for each month between October and
April

RMSE (mm)
Month 2-regions 5-regions 10-regions Sturm
Oct 9.19 7.90 8.00 8.08
Nov 27.89 17.76 17.79 18.13
Dec 30.72 21.75 21.41 21.70
Jan 33.37 22.32 21.33 22.21
Feb 28.85 20.06 19.52 21.60
Mar 36.24 31.77 31.23 31.12
Apr 63.49 65.03 57.85 68.98

R
Month 2-regions 5-regions 10-regions Sturm
Oct 0.84 0.88 0.87 0.87
Nov 0.80 0.93 0.93 0.92
Dec 0.85 0.93 0.93 0.93
Jan 0.82 0.93 0.93 0.93
Feb 0.91 0.91 0.91 0.89
Mar 0.84 0.88 0.89 0.88
Apr 0.73 0.72 0.73 0.68

except in April, especially in regions 2 and 4 where R is less than 0.6. RMSE is also

relatively small for the winter months in all the regions, but in April RMSE increases

drastically for all the regions.

Table 3.3 also shows the coefficients of the regression equations for each geographic

and meteorological variable in each month and region that were found to be statisti-

cally significant predictors of SWE change at the 95% significance level. Because the

coefficients were determined for the standardized variables (see equation 1), they can

be used to evaluate the relative significance of each variable in determining the SWE

change variability; the larger the magnitude of the coefficient, the more significant

the variable. As expected, precipitation is the most statistically significant predictor
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Table 3.3. Root mean squared error (RMSE; mm) and correlation coefficient (R)
between measured and estimated climatological monthly SWE changes averaged aross
the western United States for 2-, 5-, and 10-region cases from this study and for four
regions as delineated by Sturm et al. [1995] for each month between October and
April
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Oct 0.72 0.12 0.99 0.34 - - - 0.89 7.28
Nov 0.30 - 0.60 0.84 - - - 0.91 14.89
Dec - - 0.25 0.93 - - - 0.90 17.30

1 Jan - 0.16 -0.09 0.94 - - - 0.93 16.04
Feb - - 0.39 0.80 - - - 0.90 17.59
Mar 0.60 - 0.86 0.52 - - - 0.89 29.65
Apr 0.82 0.21 1.07 - - - - 0.73 64.15
Oct - - - 0.39 -0.58 - - 0.77 7.26
Nov 0.50 - 0.54 0.71 - - - 0.93 13.82
Dec - - - 0.85 -0.27 - - 0.89 20.06

2 Jan - - - 0.81 -0.33 - - 0.86 22.64
Feb 0.61 - 0.69 0.67 - - - 0.90 20.02
Mar 0.80 - 0.78 0.40 - - - 0.89 33.58
Apr -0.24 - - - - - - 0.24 74.78
Oct - - - 0.57 -0.51 - - 0.84 9.26
Nov - - 0.18 0.90 -0.22 - - 0.91 14.80
Dec - - - 0.92 -0.11 -0.08 - 0.92 15.34

3 Jan - - - 0.94 -0.08 - 0.07 0.93 15.31
Feb - -0.13 0.13 0.93 - - - 0.90 15.71
Mar 0.66 - 0.69 0.70 - - - 0.83 23.34
Apr 0.28 - -0.22 0.28 -0.22 - - 0.85 45.73
Oct 0.74 - 0.98 0.19 - - - 0.87 9.45
Nov 0.71 - 1.04 0.42 - - - 0.88 31.22
Dec 0.48 0.29 0.92 0.51 -0.27 - - 0.86 37.65

4 Jan 0.67 - 0.95 0.39 - - - 0.85 40.82
Feb 0.51 - 1.03 0.36 - - - 0.87 31.68
Mar 0.74 - 0.94 0.34 - - - 0.86 46.54
Apr 0.30 - - - -0.44 - - 0.55 88.48

5 no SWE available
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for all regions during cold months. The inclusion of elevation becomes more important

for the warmer regions or late winter month (March and April). Wind speed and solar

radiation are not statistically significant predictors. Unexpectedly, air temperature

does not explain SWE change even for the warmer months such as April. Possible

explanations for the exclusion of air temperature in the regional equations are its

relatively high correlations with latitude and elevation (see Table 3.1), both of which

are identified as more statistically significant SWE predictors through the forward-

selection stepwise regression approach.

The developed regional regression equations were further evaluated based on errors

of climatological monthly SWE estimated using a jack-knife technique [Papamichail

and Metaxa, 1996]. For each region and for each month, the regression equation

was recalibrated for each site in the region without changing the type of regression

equation or predictor sets included in the original equation, but with the data for

that site excluded from the calibration dataset. Errors were computed by taking the

difference between climatological SWE estimated from measurements and climatolog-

ical SWE estimated through the jack-knife procedure at all the sites. Distributions

of the errors in the estimated monthly SWE climatology for each region are shown in

Figure 3.4. Since the error distributions were similar for the cold months (October

through March), combined histograms for those months are shown in the figure for

each region, and separate histograms are shown for April. As can be seen from the

figure, in regions 1 to 3, errors are negligible at approximately 60% of sites and they

are between ±75 mm for more than 90% of sites. The magnitude of the errors in

region 4 is typically larger than in the other regions throughout the season; they are

negligible for approximately 35% of sites, and for approximately 70% of sites they are

less than 75 mm. However, the error spread increases significantly for all regions in

April, when the error magnitudes become too large (> 75%) for at least 20-30 percent
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Figure 3.4. Error distributions for monthly climatological SWE estimated via
jack-knifing for each region.
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Table 3.4. Average regional climatological SWE (mm) together with performance
statistics based on the jack-knife validation for each month and region

Average regional SWE (mm) RMSE (%) Bias (%)
Month for region for region for region

1 2 3 4 1 2 3 4 1 2 3 4
Oct 17.9 12.5 25.7 21.3 41 58 35 44 2 1 1 3
Nov 92.4 71.3 102.6 155.2 21 26 20 25 0 0 0 0
Dec 187.8 149.7 183.5 342.1 18 24 18 20 0 0 0 0
Jan 284.8 234.9 267.0 525.7 16 24 17 20 0 0 0 0
Feb 366.5 315.3 345.0 660.4 17 22 17 21 0 0 0 0
Mar 415.5 337.9 418.8 744.6 20 27 18 23 0 0 0 0
Apr 314.8 219.3 367.4 624.5 29 53 25 31 2 4 0 1

of the sites. To summarize the results, relative RMSE and bias of errors for each

month and region are calculated and shown in Table 3.4 together with average regional

climatological SWE estimated from SNOTEL measurements. As expected, there is

very little bias across all the regions and for all the months. Relative RMSE is larger

for October and April than for the other months when it is approximately 20%. Since

there is very little SWE in October, that error is acceptable; however, that is not the

case for April.

Finally, the spatial maps of SWE climatology for the mountainous regions of

the western United States were generated; January and April maps are shown in

Figure 3.5. The estimated patterns are predictable and qualitatively reasonable.

A larger area of the western United States is covered with snow in January than in

April, but the SWE magnitudes are greater in April when the significant amounts of

SWE are concentrated in the higher elevation areas.

3.5 Summary and discussion

In this study, a regional regression-based approach for mapping SWE climatology

for the mountainous regions of the western United States was investigated. To develop
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Figure 3.5. Spatial distribution of climatological SWE on January 31st (top) and
April 30th (bottom). The maximum climatological SWE for the study area in January
was 1650 mm, and 2690 mm in April.
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climatological SWE grids, the entire western U.S. was first partitioned into five

regions through cluster analysis with selected meteorological gridded data averaged

between 1980 and 2004 used as SWE attribute variables. Forward-selection stepwise

regression analysis, with at-site measurements of monthly SWE change averaged

between 1980 and 2004, as a predictant and the corresponding selected geographic

and meteorological variables averaged between 1980 and 2004 as predictors, was used

to calibrate the regional equations for each month between October and April for

each of the four regions where the SNOTEL stations were available. The developed

regional equations were used to estimate climatological monthly SWE changes on a

4-km grid. They were further accumulated at the end of each month between October

and April to develop climatological SWE grids.

The space-time resolution for this study (4 km and 1 month) was selected based

on the resolution of readily available precipitation and temperature grids. Since the

equations were calibrated for the specific regionalization and combination of space

and time scales, the developed equations are not directly transferable to other spatio-

temporal scales. In other words, for different regionalization schemes and different

combinations of space-time scales, the regression equations have to be recalibrated. As

such, the findings of this study should be considered solely for guidance. This study

showed that even with relatively large regions and with a monthly time step, the

estimation errors in the cold months when precipitation directly contributes to SWE

increases are acceptable for the practical applications. However, for the given scale,

the estimation errors become large when SWE starts decreasing (April for some areas

in the western U.S). The monthly time step is definitely not adequate for the warmer

months when the snow accumulation and ablation phases are contained in a single

step. The analysis similar to this study would benefit if data were analyzed at a finer

temporal scale, such as biweekly or even daily. Recently developed multiyear daily
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meteorological grids on a continental scale [e.g., Di Luzio et al., 2008; Nelson et al.,

2010] seem to be a promising source of high spatio-temporal resolution meteorological

data that could be used in the future in a similar type of study.

Finally, it is worth mentioning some practical applications for which climatological

SWE grids may be useful. One of their most important applications is in a bias

correction of real-time SWE grids indirectly obtained from passive microwave data,

airborne gamma measurements or various snow pack models. For microwave based

estimations of SWE, for instance, those biases can be significant, especially in complex

terrains, forested areas, and in proximity to water bodies [e.g., Derksen et al., 2003;

Dong et al., 2005] and they have to be quantified and removed before real-time SWE

data are used as input to hydrologic models. The bias correction can be achieved

through statistical method such as the quantile-based matching method [e.g., Reichle

and Koster , 2004; Li et al., 2010], namely a statistical comparison of cumulative

distribution functions of climatological SWEs obtained from in situ measurements

and corresponding SWEs estimates.

Climatological SWE grids could also assist in statistical estimations of daily

SWE amounts at ungauged locations. For example, the so called Mountain mapper

technique [Schaake et al., 2004] combines standard interpolation techniques (e.g.,

an inverse distance weighting) of at-site measurements of variable of interest (SWE,

precipitation, etc.) with its gridded climatological estimates to obtain estimates at

ungauged locations. This technique has been used for years in the National Weather

Services River Forecast System for estimation of precipitation amounts at ungauged

locations and it has proven to be superior to direct interpolation techniques, especially

for applications over large basins in mountainous regions.



CHAPTER 4

EVALUATION OF PASSIVE MICROWAVE

SWE RETRIEVAL ALGORITHMS OVER

THE COLORADO RIVER BASIN

4.1 Introduction

The analyses in this chapter intended to characterize the estimation errors in vari-

ous SWE retrieval algorithms by comparing daily SWE estimates from the algorithms

with SNOTEL SWE measurements at the pixels that encompass the SNOTEL sites

for each winter month. Several mountain ranges in the Colorado River basin were

focused instead of the whole western United States.

The rest of chapter is organized as follows. The study area and the datasets used

are described in Section 4.2. Section 4.3 starts with evaluation of the accuracy of

SWE estimates from the original Chang’s equation (Section 4.3.1) and then estima-

tion errors were evaluated for successively calibrated SWE retrieval equations. The

calibration included rending the grain coefficient of the Changs equation dynamic in

time and space (Section 4.3.2) and using differences in TB from different combinations

of channels (Section 4.3.3). Effectiveness of a statistical postprocessing of the SWE

estimates from the all types of the algorithms in reducing their estimate errors was

investigated in Section 4.4. Finally, findings and recommendations are discussed in

Section 4.5.
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4.2 Study area and datasets used in the study

4.2.1 Study area

The study focuses on seven major mountain ranges in or near the Colorado River

Basin (Figure 4.1): the Wasatch Range and Uinta Mountains in Utah, Park Range,

Front Range, and San Juan Mountains in Colorado, Wind River Range in Wyoming,

and the Mogollon Rim in Arizona/New Mexico. The total basin area is 623,000 km2

with an elevation range of 0-4260 m. For all of the mountain ranges in the study area,

except the Mogollon Rim where snowfall constitutes 40% of annual precipitation, over

60% of the annual precipitation falls as snow [Serreze et al., 1999].

4.2.2 Passive microwave data

The brightness temperature data used in this study come from the SSM/I in-

struments carried by the Defense Meteorological Satellite Program satellites. The

SSM/I is a seven-channel, four-frequency, orthogonally polarized, passive microwave

radiometric system that measures atmospheric, ocean and terrain microwave bright-

ness temperatures at approximately 19, 22, 37, and 85 GHz frequencies [Hollinger

et al., 1990]. The SSM/I passes the Colorado River Basin area between 5:00-8:00

a.m. (morning path) and 5:00-8:00 p.m. (evening path) in local time. To reduce

the possible influence of wet snow on the estimates, only TB data from the morning

satellite paths were used for this study. Short periodic gaps in the daily dataset exist,

as the 1,400km-wide SSM/I swaths do not always cover the study area. The data are

available at Equal Area Scalable Earth Grid (EASE-Grid; approximately 25 x 25 km

for the study area) developed by the National Snow and Ice Data Center [Armstrong

and Brodzik , 1995]. TB data from the 17 winter seasons (October 1987 - April 1988

through October 2003 - April 2004) were used in this study.
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Figure 4.1. Colorado River basin with major mountain rages. Dots indicate centers
of EASE-Grid cells. The cells with at least one SNOTEL site are shown as triangles.
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4.2.3 SWE data

Daily SNOTEL SWE data from 1987 through 2004 were available at 262 sites in

the study area, contained in 173 EASE-Grid cells (see Figure 4.1). As in Chapter 3,

the SWE data were screened to perform quality control described in the Appendix.

4.3 Evaluation of PM SWE retrieval equations

Three SWE retrieval algorithms were successively evaluated at locations where

in-situ measurements were available. The evaluation started with the Chang equation,

which is, despite being one of the oldest algorithms, among the very few algo-

rithms that have been used and evaluated in mountainous regions. An attempt was

then made to improve the performance of this algorithm first through calibration

of the equation’s grain coefficient (hereafter calibrated Chang equation), and then

by inclusion of various TBDs as SWE predictors (hereafter multi-TBD equation).

Analysis was performed for each month between November and April separately

to account for temporal changes in snowpack properties; a monthly time step was

selected primarily for convenience and more efficient comparison of results. Two

basic statistical measures, systematic bias and root mean square error (RMSE), were

selected to quantify the errors in daily SWE estimates from the three algorithms and

to make comparisons between results.

4.3.1 Chang’s equation

In Figure 4.2, systematic bias (left panels) and RMSE (right panels) are shown

for the SWE estimates from the Chang’s equation for each location for November,

February and April, representing early, middle and late periods of the winter season,

respectively. As seen in the left panels in the figure, the SWE amounts are consistently

underestimated across the study area throughout the season. The magnitudes of both

error measures are generally higher for Wasatch Range in Utah and Park Range in
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Figure 4.2. Systematic biases (left panels) and RMSEs (right panels) for SWE
estimated from the Chang’s equation at each location for November, February and
April
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norther Colorado than for the other mountain ranges.

Both error metrics increase across the study area during the winter season without

a corresponding change in spatial patterns. The negative bias is, on average, about

300 mm for the whole area, and surpasses 500 mm in April at several locations. The

average RMSE for the area is over 200 mm from February until April with a sizable

number of locations featuring RMSE values above 500 mm. These calculated biases

are comparable to the biases reported in a similar analysis done by Dong et al. [2005]

for the mountainous regions in Canada. In their study, seasonal average errors in

SWE estimates from the Chang’s equation, relative to in-situ SWE measurements,

exceeded 200 mm for numerous areas.

4.3.2 Calibrated Chang’s equation

An attempt was made to improve the Chang algorithm performance through

calibration of the grain size coefficient, which has a fixed value of 4.8 in the original

equation. As previously mentioned, this coefficient value was derived under the

assumption of dry snowpack condition with a constant grain size of 0.3 mm and

a constant snow density of 300 kg/m3 over open areas. The postulation in this

analysis was that calibrated coefficient could potentially account for the combined

effects on microwave emissions of the physiographic characteristics and actual physical

properties of the underlying snowpack. Over dense forest areas, for example, the

coefficient value is expected to increase to overcome the mask effect of the forest

on microwave emissions, while the coefficient value is expected to decrease for the

snowpack dominated by larger crystals (depth hoar) to account for volume scattering

that is causing SWE overestimation.

Since the Chang’s equation is, in essence, a linear equation between the SWE as

a dependent and the TB difference as an independent variable, with a zero constant

term and the grain size coefficient representing the slope of the equation, zero-
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intercept regression analysis can be used to find the optimal value of the coefficient

for each location and month.

Coefficients were calibrated via a leave-one-year-out cross validation method using

the 17 years of data. There was little difference among individual coefficient values;

they were typically between ± 10% of the corresponding averages. Figure 4.3 shows

17-year average calibrated grain size coefficients at each location for each month

between November and April. As can be seen from the figure, optimal coefficients

are normally much higher than 4.8 mm/K used in the Chang’s equation, except

in November. Generally, coefficient values increase throughout the season, which

corresponds to findings by Foster et al. [2005].

Because the zero-intercept linear regression model was used, as expected, system-

atic biases were not completely removed, but were greatly reduced at the majority of

sites for all months. The scatter plots of RMSEs for SWE estimated from the original

and calibrated Chang equation, shown in Figure 4.4 (black circles), indicate that

RMSE values also greatly decreased at the majority of locations for all months. For

the whole study area, the average, RMSE of the values from the calibrated equation

is about 50% less than that produced by the Chang equation.

During the analysis, however, it became apparent that while zero-intercept

regression model is guaranteed to produce the expected positive relationship between

the SWE and TBD, the true relationship between the two is sometimes the opposite.

As can be seen from Figure 4.5, Pearson correlation coefficients between the two

variables are negative at numerous locations. In February, for instance, the coefficient

is negative at approximately half of all sites clustered in the Colorado, Wyoming,

and Uinta mountains. Figure 4.6 shows scatter plots of SWE and (TB18H-TB37H)

throughout the winter at a location (38.49 N, 106.30 W) in the Front Range in

Colorado. Both nonzero intercept and zero-intercept regression lines are shown in
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Figure 4.3. Average values for the calibrated grain size coefficients at each site per
month
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Figure 4.4. Scatter plots of RMSE in SWE estimates from the Chang’s equation
versus those from the calibrated Chang’s equation (black dots), multi-TBD equations
(red) and statistically postprocessed Chang’s equation (blue).
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Figure 4.5. Pearson correlation coefficients between daily SNOTEL SWE measure-
ments and (TB18H-TB37H) for November through April.
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Figure 4.6. Scatter plots of SWE versus (TB18H-TB37H) together with linear
regression lines with and without constraints on the intercept for a selected location
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the figures. This reversed relationship likely occurs due to saturation of microwave

emission for larger frequencies (in this case TB37H) in deep snow or/and presence of

large crystals in the snowpack.

4.3.3 Multi-TBD equation

Given the negative correlation between the SWE and (TB18H-TB37H) especially

during cold months, different combinations of frequency channels were examined

for potential improvement of the SWE estimates. Stepwise multivariate regression

analysis with various TBD combinations as predictors was performed for each month

and for each gauged location. In addition to the difference in TB measurements

from the horizontally polarized channels, vertically and cross-polarized TBDs (one

TB is horizontally polarized and another is vertically polarized) were also included

in the analysis based on the findings of Koenig and Forster [2004] that polarization

differences of both 85 GHz and 37 GHz were statistically significant predictors for

depth-hoar dominated snowpack in the Alaska’s North Slope. The 90% level was

used as the demarcation for statistical significance. Table 4.1 shows the frequency of

each TBD combination that ended up being statistically significant for each month.

For example, cross-polarized TBD at 19 GHz was the most frequent statistically

significant term throughout the season; it was statistically significant SWE predictor

for 71% of locations in January. By comparison, in January, the TBD combination

used in the Chang’s equation was statistically significant only in 28% of cases. TBD

combinations that included 85 GHz were significant predictors less frequently possibly

due to emission saturation caused by deeper snowpack in this area. It should be

noted, however, that at a given location, the set of statistically significant TBD

terms developed via the one-year-out cross validation method greatly varied from

year to year (not shown). As in the calibrated Chang’s equation analysis, systematic

bias and RMSE values were calculated using leave-one-year-out cross validation. This
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Table 4.1. TBD combinations investigated as potential SWE predictors in stepwise
regression analysis and frequency of each TBD combination (in percent) that ended
up being a significant predictor at 90% significance level per month.

TBD Nov Dec Jan Feb Mar Apr
TB19H − TB19V 48 52 71 66 66 58
TB19H − TB37H 48 23 28 34 23 32
TB19H − TB37V 21 18 19 36 25 14
TB19H − TB85H 18 17 16 9 15 22
TB19H − TB85V 15 24 19 14 12 15
TB19V − TB37H 17 22 12 15 10 24
TB19V − TB37V 23 24 10 11 8 11
TB19V − TB85H 8 7 7 2 16 10
TB19H − TB85V 15 7 8 3 8 9
TB37H − TB37V 9 9 37 20 15 26
TB37H − TB85H 5 17 10 6 15 5
TB37H − TB85V 6 23 18 6 8 17
TB37V − TB85H 9 7 6 7 8 17
TB37V − TB85V 10 9 10 2 11 7
TB85H − TB85V 25 26 11 32 20 14

analysis, depicted in the scatter plots of Figure 4.4 (blue dots), showed that the use

of optimized TBD combinations led to greater reductions in RMSE than did the

calibration of the Chang’s equation, particularly for February and March.

4.4 Evaluation of statistical postprocessing of SWE
estimates from PM SWE retrieval algorithms

The effectiveness of statistically postprocessing the SWE estimates to reduce

bias and RMSE through application of the cumulative distribution function (CDF)

matching method (also known as a quantile matching method) was investigated. The

CDF matching method has been widely used in various applications; for example, it

has been used for bias correction in satellite estimates of soil moisture [Reichle and

Koster , 2004] and precipitation [Anagnostou et al., 1999], and for removal of biases

in outputs from climate models [Li et al., 2010] and from hydrologic models [Wood

et al., 2002].
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The principle of the CDF matching is to first establish a statistical relationship

between the estimates and observations based on their historical CDFs and then to

adjust real-time estimates (or forecasts) by replacing them with observations that have

the same nonexceedance probability. This procedure can be expressed mathematically

as follows:

Xadj = F−1
obs(F (X)) (4.1)

where X is an estimate of a variable under consideration (in this case SWE estimated

from the TB data), Fobs and F are nonexceedance probabilities of estimate X ob-

tained from historical CDFs of observations and estimates, respectively, and Xadj is

the adjusted estimate.

Since the CDF matching method does not depend on the algorithm used to

derive the estimates, it was applied to SWE estimates obtained from all the SWE

retrieval algorithms analyzed in Section 4.3. For each location and for each day

between November 1st and April 30th, CDFs were constructed from SNOTEL SWE

measurements and from SWE values estimated from microwave data by means of

the Chang’s equation, calibrated Chang’s equation and multiple TBD equation using

daily values over a 7-day period centered on a day of interest. To be consistent

with the analyses in the previous section, RMSE and systematic bias were calculated

using leave-one-year-out cross validation method. The CDFs for the observations and

estimates were generated from the dataset with 1 year’s data excluded and then used

to adjust daily SWE estimates from the excluded year. The process was repeated

17 times, and every time a different year of data was excluded. Finally, adjusted

estimates were compared with the SNOTEL SWE measurements from the excluded

year to calculate bias and RMSE statistics. The CDF matching method proved to be

very efficient in removing systematic bias and reducing the RMSE between 30 and

50%, when coupled with the Chang’s equation (red dots in Figure 4.4). Statistical
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postprocessing of results from the calibrated Chang’s equation and the equation with

multiple TBD was not beneficial. The estimates from those two approaches were

relatively unbiased to start with, and statistical postprocessing did very little to

reduce the RMSE. In fact, RMSE even slightly increased in a few cases.

4.5 Summary and discussion

To summarize the analyses, average monthly bias and RMSE statistics were

calculated for the whole study area (Table 4.2). The Chang equation consistently

underestimated SWE amounts. The average bias for the study area varied from -26

mm in November to almost -300 mm in March and April, exceeding -500 mm at some

locations. The RMSE was also high; the areal average was well above 200 mm between

February and April, exceeding 500 mm at numerous locations, and even reaching 800

mm at several sites. Through statistical postprocessing, biases were removed and

RMSE was reduced by approximately 50% across the whole winter season. While

the CDF matching technique is quite successful in reducing the estimation errors at

locations with in-situ SWE measurements, it becomes less attractive for applications

that require SWE estimates over large areas since a regionalization would be necessary

for it to be usable at ungauged locations. One of the recommended approaches is an

index-flood regional frequency analysis approach. The term index-flood comes from

the method’s first applications in flood frequency analyses [Dalrymple, 1960], but the

method is applicable to any types of cumulative distribution analyses. The underlying

assumption of the index-flood approach is that all locations in a homogeneous region

have different climatological means but common normalized higher order statistics;

therefore the CDF normalized by the climatological means is identical in the homo-

geneous region. The regional normalized CDF derived from gage data can be applied

to ungaged locations as observed CDF (Fobs in Equation 4.1). Mizukami et al. [2011]

developed monthly gridded SWE climatology map over the western United States
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Table 4.2. Comparisons of basin-wide bias and RMSE for each SWE retrieval algo-
rithm without and with statistical postprocessing (columns (1) and (2), respectively)
for each month.

Systematic bias (mm)
Month Chang’s eqn Calibrated Chang’ eqn Multi-TBD eqn

(1) (2) (1) (2) (1) (2)
Nov -26 0 -3 0 0 -1
Dec -72 0 -8 0 0 -5
Jan -129 3 -17 0 1 -8
Feb -199 -1 -29 0 -1 -9
Mar -280 -2 -43 -2 0 -6
Apr -283 -4 -43 -2 0 -7

RMSE (mm)
Month Chang’s eqn Calibrated Chang’ eqn Multi-TBD eqn

(1) (2) (1) (2) (1) (2)
Nov 44 37 34 37 31 32
Dec 90 67 59 66 53 53
Jan 154 114 101 114 81 78
Feb 225 148 140 146 93 97
Mar 302 151 164 151 109 115
Apr 316 159 164 159 124 130

based on regional regression analysis, which can serve climatological SWE means.

To delineate homogeneous regions in terms of similar snow pack climate and phys-

iographic characteristics that affect passive microwave emissions, regionalization ap-

proaches similar to approaches developed by Farmer et al. [2010] or Mizukami et al.

[2011] could be used. Those two approaches are particularly attractive because they

both used gridded data as input variables for cluster analysis; therefore the delineated

regions are spatially continuous.

The error statistics significantly improved when the grain coefficients in the Chang’s

equation were calibrated at each measurement location; biases were reduced by ap-

proximately 85% and RMSEs were reduced by 40-50%. Since the calibration was
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done for each month separately, temporal variations in the SWE - TBD relationship

were also indirectly accounted for. The calibrated Chang’s equation approach has

several important advantages. First, it is a physically based algorithm. It is a

particularly attractive approach for applications that require SWE estimates over

large areas; a single coefficient in the algorithm that indirectly accounts for various

factors affecting the relationship between microwave emission and SWE was found

to be spatially coherent (Figure 4.3). Therefore, estimation of SWE grids covering

extended areas could be as simple as interpolation of the grain size coefficient. A

major concern in using this type of equation is that although the zero-intercept

model produces the expected results, a forced relationship was not always borne

out by the measurements. In fact, the observed SWE-TBD relationship was the

opposite to expected for midwinter months at many locations in this study area.

Through statistical postprocessing, it was possible to remove the remaining small

biases, but the RMSE could not be further reduced. Because of that, in addition

to the regionalization issues discussed above, the statistical postprocessing of SWE

estimates using the CDF matching technique is not recommended.

The SWE retrieval algorithm that uses multiple TBDs produced unbiased SWE

estimates. RMSEs were 50-60% less than those from the original equation, and were

consistently smaller than the RMSEs associated with the calibrated Chang’s equation.

For that reason alone, this is the recommended SWE retrieval algorithm for single-site

or small-scale applications, especially if SWE records are long enough to support

reliable calibration. The algorithm is less attractive for applications that require

spatially continuous SWE estimates over large areas because the extrapolation of

results to ungauged location is not as straightforward as with the calibrated Chang’s

equation. One approach could be to develop regional equations using data from

all stations inside of a homogeneous region. However, the regionalization approach
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would indeed increase errors at gauged locations. There would be no regional biases,

but estimates at each location would no longer be unbiased. At-site RMSEs would

also likely increase. To gain insight into how much the model performance might

deteriorate if the equations were regionally calibrated, the multi-TBD equations were

developed treating the whole study area as one region. Table 4.3 compares the

average RMSEs from equations calibrated separately at every gauged location to

corresponding RMSEs from equations calibrated using all of the data for each month.

As can be seen from the table, RMSE values increased by at least 50% and almost

doubled in April. However, it is likely that if regional equations were developed for

truly homogeneous regions, RMSEs would be smaller.

Finally, the analyses throughout this paper were based on comparisons of two

different spatial scale SWE values (25 km x 25 km grid cell versus point). Obviously

the SWE measured at a SNOTEL site is unlikely to represent areal mean SWE over

the grid box in particularly for mountainous regions. Therefore, the calibration of the

algorithm results in reproducing point SWE values at a particular location within the

grid cells. Representativeness of point SWE measurements to the areal average values

have been discussed in the past. Chang et al. [2005] concluded that more than 10 point

measurements are required for reasonable representativeness of 1-degree box (error

less than 50mm) over the northern great plain in the United States where topography,

hence snowpack properties, are less heterogeneous than the Rocky Mountain areas.

For the mountainous areas, Molotch and Bales [2005] examined the representativeness

of six SNOTEL sites in Rio Grande located within the Colorado River basin to the

surrounding grid boxes (1, 4, and 16 km scale). The bias of SWE from SNOTE

compared to areal mean SWE can be positive or negative depending on the sites; in

some case, it can be 200% greater than mean areal SWE. With the issues associated

with representativeness of ground observed data, the calibrated Chang’s equation
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Table 4.3. Average RMSE (mm) from the Multiple-TBD algorithm for calibration
done at each site and RMSE (mm) for regional calibration.

RMSE (mm)
Month At-site Regional

calibration calibration
Nov 31 42
Dec 53 74
Jan 81 116
Feb 93 148
Mar 109 179
Apr 124 215

and multi-TBD equation will reproduce the SWE characteristics from SNOTEL

rather than estimating areal average SWE. However, the in-situ SWE observation

is expected to better represent the satellite grid cell with higher spatial resolution of

the passive microwave radiometer. The latest microwave radiometer- the Advanced

Microwave Scanning Radiometer Earth Observing System (AMSR-E), provide 20 km

for 18.7GHz and 12km for 36.5GHz since 2002. The calibrations of the SWE retrieval

algorithms presented in this study would be possible with longer AMSR-E dataset in

the future.



CHAPTER 5

CONCLUSIONS

5.1 Summary

Quantitative information of spatial snow distribution is central to the understand-

ing of terrestrial processes. Despite the significant amount of seasonal snowpack in

mountainous areas, its large scale mapping is significantly more arduous than mapping

of less complex landscapes, primarily due to higher spatial variability of snowpack

in mountainous regions. This dissertation examined two potential approaches to

deriving spatial and temporal distributions of snow volumetric variables over the

mountainous regions of the western United States. SWE, which represents snow mass

(and is therefore pertinent to hydrology) was a focused quantity for the analyses. The

examined mapping methods are 1) spatial interpolation of ground-measured SWE;

and 2) SWE estimation via passive microwave satellite. Summaries of all analyses

are given here.

Climatological characteristics of seasonal snowpack were first examined for each

SNOTEL site that provided both the SD and SWE snowpack volumetric variables

between the 1999/2000 and the 2005/2006 winter seasons. The most significant

finding is that in contrast to SWE and SD, snowpack density estimated from both

SWE and SD exhibits less year-to-year variability compared to the change observed

in SD and SWE throughout the winter season. With small interannual variability,

reliable estimates of climatological values of snowpack density could be deduced at

any location, using only several years of SWE and SD measurements. Real-time and

retrospective estimates of SWE could be deduced by merging climatological snowpack
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density data with denser networks of SD measurements, such as those obtained from

National Weather Service (NWS) Cooperative Observer stations, as well as NWS

First Order Stations. The complexity of spatial and seasonal variability of snow

pack density was characterized using cluster analysis. Among several topographic

and geographic variables, elevation and longitude appear to be explanatory variables

which separate different snow density regions.

In Chapter 3, the procedure for the spatial interpolation of in-situ SWE mea-

surements for gridded SWE mapping over the western United States was presented

and the errors of interpolated SWE values were evaluated. The developed method

was a simple but viable regional regression-based approach with readily available

geographic and meteorological parameters used as predictors. This method was then

used to map SWE climatology in the mountainous areas of the entire western United

States. As a first step, the mountainous regions of the western United States were

regionally delineated through k-mean clustering, using various climate parameters

that influence seasonal snowpack accumulation and ablation processes as attribute

variables. Various geographic and climate parameters were then investigated through

stepwise regression in order to assess their potential as predictors of monthly changes

in climatological SWE for each delineated region. Spatial and temporal resolution of

the analysis was based on the resolution of available meteorological data - 4 km and 1

month, respectively. For a monthly time step, the reliability of the SWE estimates did

not significantly increase when the number of regions evaluated was more than five.

The regional equations that were developed using monthly resolution and a 5-region

sample/case, provided reliable estimates for the majority of regions from October

to March. For April however, based on cross validation analysis, the equations did

not provide reliable estimates, especially in the North Pacific and Southwest regions.

This climatological information is potentially useful for several applications, including
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estimation of real-time SWE grids via the mountain-mapper technique, as well as

calibration and/or evaluation of SWE estimates obtained from remote sensing or

through various snow models.

In Chapter 4, the performance of three passive microwave SWE retrieval algorithms

was examined over the mountainous Colorado River Basin by comparing daily SWE

estimates from the selected algorithms with in-situ SWE measurements. Additionally,

statistical postprocessing, namely CDF matching, was tested as a means of improving

the SWE estimates from each retrieval algorithm. The standard Chang equation

has been used for global scale SWE or SD mapping, but use of this algorithm on a

regional scale, particularly a mountainous region, would be highly problematic, based

on results which indicate a large negative bias (up to -300 mm) and RMSE (up to

500 mm) for numerous locations. Calibrating the grain size coefficient of the Chang

equation with in-situ SWE data incorporates unique response of microwave emission

to physiographic and snowpack characteristics for each location. As expected, the

calibrated Chang equation reduced estimation bias greatly, and to a lesser extent

RMSE. Thus, the calibrated Chang equation would be practical for large scale SWE

mapping such as application to the entire Colorado River basin, as it requires a

spatial interpolation of a single spatially coherent coefficient. Multiple TBD equations

produced the most reliable estimates for at-site analysis, but their skill deteriorated

when the analysis area increased; therefore, the equations require a regional approach

similar to the procedure presented in Chapter 3. Statistical postprocessing did not

reduce RMSE for both calibrated algorithms.

As a conclusive remark, the key idea of large scale SWE mapping over the moun-

tainous regions is presented here. For both mapping approaches, it is more challeng-

ing to estimate SWE during snow ablation periods than during snow accumulation

periods. This is illustrated by an increase in errors for both mapping techniques,



80

as examined in this dissertation. It is obvious that separate algorithms need to

be developed or a different predictor set included for each period. The main issue

when mapping SWE distribution for subcontinental scale or greater is that at a

particular time, some locations are in the snow ablation phase while snow continues

to accumulate in other areas. Therefore, the identification of regions with similar

snow accumulation and ablation patterns could be an important step in successful

SWE mapping on such a large areal scale.

With recent improvements in numerical weather, climate and land surface mod-

els, as well as quality of satellite derived terrain data (e.g., land cover type, and

percentage), more gridded climate and physiographic data became available. Despite

uncertain accuracy, such gridded data can provide reasonable spatial variability, which

is the most important factor in delineating homogeneous snow climate regions.

5.2 Future studies

Finally, some thoughts about future studies are presented here for each individual

analysis. The extensions of the study on SNOTEL snowpack properties presented in

Chapter 2 are listed as follows:

• In this dissertation, only 130 sites out of over 700 sites provided sufficiently long

records for this analysis. As the number of SNOTEL sites increases every year

and SD sensors are installed at more sites, more detailed analysis of spatial and

temporal characteristics of mountain snowpack density will be feasible in the

near future.

• Spatial distribution of climatological snowpack density could be futher analyzed.

For example, regional interpolation methods presented in Chapter 3 could be

tested to derive gridded climatological snowpack density.

Future works associated with Chapter 3 include the following:
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• Since significant meteorological predictors of monthly SWE change are precip-

itation in most cases (i.e., region and month) and air temperature in fewer

cases, the regression analysis that excludes solar radiation and wind speed data

could be performed for individual years, and interannual variability of SWE

distribution could be analyzed in the context of climate study.

• Other alternative regionalization techniques should also be explored. Among the

considered clustering algorithms are hierarchical clustering algorithms such as

wards algorithm, as well as Self-Organizing Mapping [SOM; Kohonen, 2001]. As

different clustering algorithms result in different regionalization, it follows that

errors of SWE estimates should be examined for each regionalization technique

in order to reduce SWE estimate errors.

• In this analysis, only multiple linear regression analysis was used for spatial

interpolation technique. More sophisticated techniques could improve the ac-

curacy of SWE estimates. For example, nonlinear techniques which might be

worthwhile exploring include a binary regression tree model or the Artificial

Neural Network. In addition, kriging of the residual from the regional regression

equation could improve RMSE of the climatological SWE estimate.

• To estimate real-time or finer temporal SWE grids, the Mountain-Mapper tech-

nique could be tested using the developed monthly climatological SWE grids.

Estimate errors from the Mounain-Mapper could be evaluated and compared

to other interpolation methods proposed by Fassnacht et al. [2003]

Finally, more studies on passive microwave SWE retrieval algorithm will be needed

to develop the algorithm towards an ability of deriving spatially continuous SWE.

• As aforementioned, calibration of multiple TBD equations need to be performed

over the subregions of the Colorado River basin. Therefore, a regionalization

scheme according to similar snow pack climate and physiographic characteris-
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tics, which in tern affect passive microwave emission, needs to be investigated.

This includes investigation of attribute variable selection, as well as regional-

ization schemes. The effect of regionalization on the SWE estimate error needs

to be evaluated with an approach similar to the error analysis performed in

Chapter 3.

• It is interesting to examine the spatial interpolation of the at-site calibrated

coefficient of the Chang equation, as well as the effect of the interpolation

methods on the error of the SWE estimate.

• Chapter 4 focused on the Colorado River basin where seasonal snowpack is

characterized by lower density snowpack, as indicated in the results of Chap-

ter 2. The ability of passive microwave data to retrieve SWE values over a

maritime climate such as the Northwest Pacific area and Sierra Nevada needs

to be explored.



APPENDIX

SNOTEL QUALITY CONTROL

The procedure to screen SNOTEL daily data (SWE and SD) was adopted from

those used by Serreze et al. [1999] on SWE data. SWE and SD are reported as

cumulative values rounded to the nearest 2.54 mm, starting on October 1. First, all

negative SWE and SD values were eliminated from the records. Next, the SWE (SD)

increment for day (i) was computed as a difference between SWE (SD) measurements

on day (i+1) and day (i). Daily increments with an absolute value greater than

100 cm were removed from the dataset. Occasionally, very large positive SWE

(SD) increments followed by large negative values (or the other way around) were

identified. Those values were also considered erroneous and removed. Negative

increments with an absolute value greater than five standard deviations from the

average monthly negative daily increment for a given month were also removed

from data sets. Similarly, positive increments greater than five standard deviations

from the average monthly positive daily increment were also flagged and without

the corresponding significant precipitation event were deleted from the datasets.

Additionally, if the daily ratio of SWE to SD was less than 0.03 (lower limit of

typical snow pack density; McClung and Schaerer [1993]) or more than one, both

values were not included in the analysis.
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