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ABSTRACT

A fundamental challenge for the immune system is the distinction between self and 

nonself, or infected and uninfected. Autoimmune disease arises when the immune response 

mounts an immune response against the hosts tissues. Via a mathematical model, we show 

tha t the immune system can distinguish self from nonself via the interaction of T-cells and 

and dendritic cells (DCs) and explain how autoimmunity is avoided in most people most of 

the time. The NOD mouse develops Type 1 diabetes, an autoimmune disease, spontaneously 

with an incidence of about 80% in females. The progression of Type 1 diabetes may be 

either accelerated or delayed by viral infection. We first create a mathematical model 

to understand the factors tha t affect progression in uninfected mice and how it may be 

interrupted via certain treatments. We categorize which types of viral infection should 

accelerate Type 1 diabetes or delay. We find that the timing of infection is important, as 

well as the cell type infected.
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CHAPTER 1

INTRODUCTION

One of the primary challenges of the mammalian immune system is to distinguish self 

from foreign. Fundamentally, the immune system does this at the molecular level, as immune 

responses form against specific molecules called antigens. These immune responses consist 

of adaptive immune cells called lymphocytes, which each respond specifically to a limited 

range of molecules. We focus here on a subset of lymphocytes, T-cells, which can respond to 

protein fragments about 8-10 amino acids long. An amino acid sequence that is expressed 

by the cells of the host’s body is a self antigen, and the T-cells that recognize it are self 

reactive T-cells. The generation and activation of a large number of self reactive T-cells 

is an autoimmune response. Autoimmunity is the cause of a large number of diseases, in 

particular Type 1 Diabetes, one of the subjects of this thesis.

The generation of self reactive T-cells is difficult to avoid entirely, but the immune 

system has several regulatory mechanisms that limit their numbers. In the first chapter, 

we describe these mechanisms and develop a mathematical model to examine how they 

work together to control autoimmunity. Although there is no fundamental difference at the 

molecular level between self antigens and foreign antigens, as each are composed of the same 

amino acids, the context in which these antigens appear can be quite different. If an antigen 

is associated with a dangerous pathogen, then wherever it appears there should be signs 

of tissue damage. These environmental cues are sensed by dendritic cells, another immune 

cell tha t is required to activate T-cells. Dendritic cells continuously gather antigen, present 

it to T-cells and then, based on the environmental cues they have received, either activate 

or suppress the T-cells that bind to them. In this manner, the body effectively measures 

the correlation between the presence of an individual antigen and the presence of tissue 

damage. This results in the generation of immune responses against antigens associated 

with infectious disease and the repression of autoimmune responses.

It is thought tha t viral infection plays an important role in the initiation of many 

autoimmune diseases [27]. One proposed mechanism, epitope spreading, suggests that if the
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expression of antigen A and antigen B is strongly correlated and antigen A is associated with 

a pathogen that causes tissue damage, then the immune system might detect a correlation 

between antigen B and damage. The immune system might mount a response to antigen 

B instead of, as well as or subsequent to, a response to antigen A. This general mechanism 

can apply to the spread of an immune response from a viral antigen to a self antigen or 

even between responses to different self antigens.

The ‘hygiene hypothesis’ seemingly runs counter to the notion of viral initiation of 

autoimmunity via epitope spreading [59]. Broadly speaking, this hypothesis states that 

lack of exposure to pathogenic foreign antigens makes our immune systems more likely to 

generate autoimmune responses or allergic responses, which are overly strong responses to 

otherwise harmless molecules.

Type 1 diabetes, an autoimmune disease of the pancreas, is thought to either be triggered 

or delayed by viral infection depending on the context. In the NOD mouse, an animal 

model of Type 1 diabetes, infection by the same virus, at different ages, can have opposite 

outcomes. Infection at a young age can prevent or at least delay diabetes, whereas infection 

later in life can precipitate it rapidly [16]. This system provides an excellent opportunity 

to better understand the role of infection in Type 1 Diabetes.

NOD mice develop diabetes spontaneously in the absence of infection. It is due to 

multiple breakdowns in immune regulation, which have analogs in the human disease 

[38]. Before investigating the role of viral infection, we first study the progression of this 

spontaneous diabetes. In Chapter 3, we develop a mathematical model of Type 1 Diabetes to 

study the factors tha t affect the incidence of diabetes among NOD mice and the distribution 

of the age of onset. Then in Chapter 4, we create a mathematical model of viral infection 

of NOD mice and test the prevailing hypotheses about their mechanisms of action.

In this thesis, we attem pt to address why and how regulatory mechanisms fail and, 

more specifically, why some individuals develop autoimmune disease while others do not. 

The differences between two individuals may be genetic, environmental or a combination 

of both. These are factors tha t we consider in the first three chapters. However, it may 

be that the underlying process within an organism can be intrinsically stochastic so that 

two individuals with identical parameters and initial conditions may experience different 

outcomes. In Chapter 5, we develop a simple stochastic model of the development of 

autoimmune disease and compare the results to the corresponding deterministic model.



CHAPTER 2

HETEROGENOUS DC POPULATIONS 
ALLOW FOR IM M UNITY AND  

TOLERANCE 

2.1 Introduction
The immune system must destroy harmful pathogens within the body without destroying 

the body itself. It must recognize what is self and what is foreign, even though individual 

immune cells remain ignorant of this. We use mathematical models to test whether immune 

cells following simple rules can self-organize to generate a protective immune response 

while avoiding autoimmunity. Our mathematical model tracks a relatively small number of 

variables amidst the greater complexity of the immune system.

2 .1 .1  B io lo g ic a l b a c k g ro u n d

Immune cells called T -cells recognize a specific peptide (see Figure 2.1), an a n ti

gen. The T-cell population is composed of many subpopulations each with a different 

antigen-specificity. Some of these populations recognize molecules associated with danger

ous pathogens or other molecules not produced by the body (foreign  reac tiv e), while 

others recognize endogenous molecules such as collagen or insulin (self reac tiv e). The 

activation and proliferation of self reactive T-cells is responsible for many autoimmune 

diseases including type 1 diabetes, multiple sclerosis, and rheumatoid arthritis. The lack of a 

response is called immune self tolerance or, more simply, to le ran ce . As both foreign and self 

antigens are present during an infection, there is the potential for some self reactive T-cells 

to become activated [66]. Animal models and epidemiological studies suggest tha t infection 

can act as a trigger in autoimmune diseases [2, 16, 54]. In this paper, we examine how 

regulatory mechanisms prevent infection-triggered autoimmunity under normal conditions.

Reprinted w ith permission from J. R  Moore, The benefits o f diversity: heterogenous dc populations allow 
fo r  both im m unity and tolerance, J. Theor. Biol. 357  (2014), 86-102
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There are several known mechanisms of tolerance. Here, we focus on thymic selection, 

regulatory T-cells, and tolerogenic dendritic cells. Thymic selection is the deletion of cells in 

the thymus, through which all newly created T-cells must pass before entering circulation. 

As this process takes place only in the thymus, we also call it c e n tra l to le ran ce . By 

contrast, p e r ip h e ra l to le ra n c e  is a collective term  for any mechanism tha t prevents the 

survival, proliferation, or activation of self reactive T-cells tha t escape deletion in the 

thymus. The thymus expresses many self antigens and can thus bind most self reactive 

T-cells. A T-cell tha t binds strongly within the thymus is either deleted or induced to 

become a regulatory T-cell (see [57] and Figure 2.2). These regulatory T-cells or T regs 

take part in peripheral tolerance once they have left the thymus and constitute a second 

level of protection against autoimmunity. Finally, context is very important in the immune 

system. A self reactive T-cell tha t encounters its antigen in the periphery will not become 

activated without an accompanying d a n g e r signal of an infection. This danger signal 

could be either evidence of excessive cell damage [10] or of molecules that are made only 

by bacteria or viruses [52].

During an immune response, T-cells must be activated by dendritic cells (D Cs). DCs 

collect antigens from the environment, often by phagocytosing dead cells, and then present 

those antigens on their surfaces. T-cells bind to the presented antigens to initiate a 

response, but this often happens away from the infected tissue in secondary lymphoid 

organs such as ly m p h  nodes. The DCs also collect environmental danger signals, such 

as bacterial polysaccharides or molecules associated with necrosis, the presence of which 

they then communicate to the bound T-cells. There are many subpopulations of DCs, but 

we divide them into two broad categories: im m unogen ic  D C  that have seen a danger 

signal and to le ro g en ic  D C  tha t have not. Immunogenic DC cause T-cells to differentiate 

into effecto r cells, which fight infection, whereas tolerogenic DC cause T-cells to enter an 

unresponsive state called anergy [66].

Multiple T-cells can bind to a DC simultaneously and can interact with each other while 

bound. In particular, Tregs can suppress the activation of other T-cells tha t are bound to 

the same DC [57]. A Treg can prevent the activation, proliferation, and even survial of 

other T-cells, but all of these processes require the presence of the DC to mediate signals. 

This means tha t Treg activity is not necessarily antigen specific, as DCs may present more 

than one antigen simultaneously [43]. Prior models, such as [43], assumed that Tregs must 

therefore act uniformly on all T-cells in the lymph node. However, this is only true if we 

assume tha t all DCs present the same antigens in the same quantities.
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2 .1 .2  P r io r  m o d e lin g

The question of how the immune system can simultaneously avoid autoimmunity while 

mounting a defensive immune response has rarely been approached by math modeling. 

However, there have been numerous models of autoimmune disease, immune tolerance, 

and, more generally, the activation of T-cells by DCs.

Some of the earliest models of autoimmune disease concerned the positive feedback 

inherent to im m un o p ath o lo g y , disease caused by the immune system. When the immune 

system mounts a self reactive response, a danger signal is created by the resulting tissue 

damage, which then further stimulates the autoimmune response. The onset of diabetes is 

thought to be due to an initial traum a either during development [71] or due to viral infection 

[16] tha t can precipitate a self-sustaining autoimmune disease. Several groups [18, 47] have 

studied this system and demonstrated tha t the importance of this positive feedback in the 

early stages of the disease. Iwami et al. [37] made a more general, minimalistic model 

including only T-cells, tissue damage, and the level of target cells. They showed tha t this 

model could produce behavior characteristic of several different autoimmune diseases by 

simply changing the parameters. In particular, they found tha t they could reproduce the 

‘relapsing-remitting’ behavior of multiple sclerosis. In this case, the levels of self reactive 

T-cells and target cells oscillate stably, with the self reactive T-cell population declining 

when there is no longer enough target antigen available to promote a response.

Several authors have extended the self immune response/target cell model to incorporate 

regulation by Tregs. Borghans and de Boer investigated the use of treatm ent of multiple- 

sclerosis (a T-cell mediated autoimmune disease of nerve tissue) with self reactive T-cells 

[11]. In their model, Tregs proliferate in response to the presence of effector T-cells. They 

showed tha t treatm ent with a small dose of effector T-cells could move the system from a 

naive state with a small number of Tregs to a ‘vaccinated’ state. This vaccinated state has an 

ongoing, subclinical immune response held in check by Tregs. Importantly, perturbation of 

the vaccinated equilibrium, such as by a large influx of T-cells or by antigen release, results 

in a much smaller immune response than the peturbation of the naive state. Alexander 

and Wahl [5] investigated different proposed mechanisms of Treg action. They found that 

the presence of Tregs has no impact on the initiation of an autoimmune response, but can 

limit its size. Magombedze et al. [45] had a similar finding when they modeled the role 

of Tregs in Type 1 Diabetes (T1D). In the progression of T1D, Tregs initially control an 

autoimmune response preventing the destruction of pancreatic ,5-cells, despite the presence 

of an ongoing immune response.
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It is widely accepted that infectious disease can act as a trigger for autoimmune disease 

[16, 27]. Burroughs et al. [13] modeled the non-antigen-specific activation of autoreactive 

T-cells via growth factors secreted by foreign reactive T-cells during infection, a mechanism 

known as Bystander Activation. They found tha t at certain parameter values, the self reac

tive T-cell population has two stable equilibria. Bystander activation can move the system 

from the ‘controlled’ equilibrium to the uncontrolled, self-sustaining response, despite the 

activation of Tregs.

Our hypothesis is tha t the antigen specificity of Tregs is relevant as they can colocalize 

to the same DCs as effector T-cells with the same specificity. Therefore, it is necessary 

to explicitly model the multicell conjugates of T-cells and DCs. The formation of these 

conjugates is vital for both the activation of T-cells and their repression by Tregs. De Boer 

et al. [19] proposed a basic model for the interaction of DC and T-cells, with the primary 

goal of deriving a realistic T-cell growth rate. They assumed, as we do, tha t T-cells divide 

only when bound to DCs (or, equivalently, tha t proliferation is proportional to the amount 

of time spent bound), and so the growth rate of T-cells saturates with respect to both T-cells 

and DC. They generalized their model to include multiple different T-cell lineages binding 

to a single population of DCs. As there is finite binding space on the surface of a DC, the 

proliferation of a given T-cell lineage is indirectly limited by the presence of others. The 

T-cells that bind to DCs with the highest affinity dominate the population, generating an 

antigen-specific response. This framework was also used by [44] to investigate competition 

between Tregs and effectors. They found that competition for space is not strong enough 

for effective regulation and tha t Tregs must actively inhibit the growth of effectors. They 

assume tha t Tregs and effectors only interact on DCs in an antigen nonspecific manner. 

Leon and colleagues extend their model to include multiple lineages controlled by central 

tolerance [43]. They hypothesized that thymic selection ensured tha t self antigen would 

never be presented strongly, and so there could only be an immune response when a foreign 

antigen is present. They found that this behavior was only possible under strict assumptions 

on model parameters. Further analysis of this model [14] revealed that Tregs could suppress 

a T-cell population whose antigen is sufficiently common, but the result depended on initial 

conditions as the system is bistable.

2 .1 .3  O u t l in e  o f  o u r  a p p ro a c h

In this paper, we have two objectives. First, we hypothesize tha t heterogenous antigen 

presentation by DC is necessary for the robust promotion of simultaneous immunity to 

foreign antigens and tolerance to self. This heterogeneity, which leads to some DC presenting
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more self than others, may lead to tolerance either via tolerogenic DC, Tregs or both. To 

show this, we construct a minimal mathematical model of immune tolerance. We focus 

on the short-term initiation of an immune response during an infection, prior to either 

the clearance of disease by foreign reactive T-cells or the initiation of immunopathology. 

Therefore we assume tha t antigen availability in the tissues and presentation in lymph node 

remain constant.

The immune system has several, seemingly redundant, mechanisms of regulation, some 

or all of which we may select when creating a minimal model. Thus, the second objective 

in this paper is to investigate how each mechanism contributes to tolerance and how they 

work together. The steps we take are as follows:

• Introduce the modeling framework of T-cell and DC interaction used by [43] and 

discuss its basic behavior.

• Extend the model to tolerogenic DC, regulatory T-cells, and heterogenous self antigen 

presentation by DC. We represent thymic selection via the initial self reactive T-cell 

population size. These changes and extensions are modular and can be added in any 

combination.

• Evaluate each combination by its ability to produce a strong foreign response (im

munity) while limiting the self response (tolerance) across a wide variety of possible 

antigenic environments.

• Adjust control parameters governing the relative importance of different Treg mech

anisms, to test whether they are synergistic or redundant.

We then discuss the limitations of the model, as well as possible extensions and applications.

2.2 Model description
2 .2 .1  T -c e ll p ro l i f e r a t io n

The interaction of T-cells and DCs is crucial for the induction of both immune responses 

and tolerance. In this section, we will describe the binding of T-cells and their resulting 

proliferation. This model has been used before to study T-cell and Treg interaction [44] as 

well as in a more general setting of competition between different T-cell lineages [19].

Let T  be the total number of T-cells of one lineage in a lymph node. Some of these 

T-cells are bound to DCs and others are free moving. We assume that there are N  DCs 

with enough surface area to bind N s  T-cells each. Let S  =  N N s  be the total number of 

potential ‘spots’ for T-cells. The total number of bound and unbound T-cells are B and U , 

respectively, with
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T =  U +  B (2.1)

Bound T-cells divide at a rate 7 . We assume that the death rate of T-cells within the 

lymph node is small compared to the rate of egress. Chemotaxis controls the trafficking 

of T-cells through the lymph node. Upon an initial contact with a DC, T-cells change the 

surface expression of certain chemotactic receptors, trapping themselves in the lymph node 

for several days until the expression level reverts [48]. We assume this expression reverts 

at a constant rate 5, regardless of whether or not they are bound, and that the T-cell 

immediately leaves.

dT
d—  =  yB  -  5T 
dt

=  (Y -  5)B -  5U (2.2)

When a T-cell comes in contact with a spot on a DC, S, it binds at a rate c. It unbinds at 

a rate ^  =  A-1 where A is the average duration of the T-cell:DC contact. Assuming mass 

action for the cellular interaction, the number of bound cells obeys

dB  =  cSU -  ^B  dt -

=  c(S -  B )U  -  ^ B  (2.3)

We shall assume that the process of binding and unbinding is near equilibrium as this 

process is much faster than the rate of at which the T-cell populations change. The steady 

state of (2.3) gives an expression for B as a function of U .

B 5 cAU
B  =  r+ c A U

We substitute the above into (2.1) and (2.2) to get a differential-algebriac system for T  and 

U.

f  = f  (U > =  (y -  U - 5U

T  = 9(U > = U + S r + ACAU (2-4)

The value cA is the affinity of a T-cell for a DC. Due to the assumption tha t (2.3) is near 

equilibrium, changing c has the same effect as changing A. Throughout this paper, we shall 

assume (as in [43]) tha t c is fixed for all interactions but tha t A may change for different 

T-cells. To avoid solving the DAE, we temporarily eliminate the variable T  and write our 

equations with respect to the number of unbound T-cells, U. Differentiating (2.4) with 

respect to time yields g ( U )d t  =  f  (U). Prior modeling papers [19, 44] have derived a
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differential equation in terms of the more ‘natural’ variable T . Their methods, unlike ours, 

do not readily generalize to more T-cell and DC populations.

2 .2 .2  M u lt ip le  T -c e ll lin e a g e s

To exhibit tolerance and immunity, the model must include at least two lineages—one 

self reactive and one foreign reactive. To allow for this and the later introduction of Tregs, 

we will describe how to extend our model to an arbitrary number of lineages, indexed by j. 

Let T j, Uj and Bj be the total, unbound and bound number, respectively, of T-cell lineage 

j  and Aj =  ^ -1  be its residence time on DCs (see Table 2.1).

For each j,

dB •

j _  c(S  -  ^  B k)Uj — ^ j B j (2.5)dt k

which is analogous to (2.3) in the single lineage case. To find the steady state for the 

multilineage case, we set (2.5) equal to zero

Bj =  c(S -  £  Bk )AjUj
k

where Aj =  ^ -1 . We then sum over all values of j  and replace the subscript j  with k, for 

clarity.

£  Bk =  c(S -  £  Bk ) £  AkUk 
k k k

e c E k  AkUk
, - , - ^  Ak Uk k

E u e c Z  ̂k A
Bk = 1 + T E

Therefore, the steady state is

Bj  =  S-. cAj Uj
j 1 + c Ak Uk

For example, suppose we have two T-cell populations: ‘self’(j =  S ) and ‘foreign’ (j =  F ). 

At QSS,

cAs Us
B s  =  S  

B f  =  S

1 +  c( As Us +  A f  Uf  ) 
cAf  Uf

1 +  c( As Us +  A f  Uf  )

This leads to the differential algebraic system

dTs  =  (7  -  6)______ c A E s ________ u
dt 1 +  c(As Us +  Af Uf  )

dTF  =  (7  -  S)______ cAfUf________ SUF
dt (Y 0 )1 +  c(As Us +  Af U f ) F
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Ts  =  Us  + S- cXs Us
1 +  c(Xs Us  +  A f  Uf  ) , ,

TF =  Uf  + *  cA,Us <2-6)
1 +  c(As Us +  A f  Uf  ) 

In general we have a pair of equations for each T-cell lineage.

dT3 - cAiU3
—  -  8Ui

(2.7)
V  =  (Y -  S)S ------- rr -  811 idt 1 +  c ^2 Ak Uk

T- =  U- +  S  cAj Uj 
3 3 +  1 +  c £  AkUk

2 .2 .3  C e n t r a l  to le r a n c e

We include central tolerance indirectly via initial conditions. We assume tha t any ‘self’ 

antigen may be presented in the Thymus, but a ‘foreign’ antigen is not. Thus, there will 

be fewer self reactive than foreign reactive precursors at the start of an immune reaction, 

as the self reactive T-cells tend to be deleted via negative selection (Figure 2.2). However, 

we can relax this assumption to model situations where the self antigen is not present in 

the thymus or to evaluate the other mechanisms by themselves. In general, we find that 

changing the initial conditions has only a small effect on the model outcome.

If a T-cell encounters its antigen in the Thymus it may differentiate into a Treg instead of 

dying. Thus, the other effect of central tolerance is the generation of self reactive regulatory 

T-cells. We always assume tha t there are no foreign reactive Tregs.

2 .2 .4  E q u i l ib r ia  o f  t h e  m u lt i l in e a g e  s y s te m

The system (2.7) represents a regulation-free immune response. The only interaction 

between lineages is competition for space on DCs. In this section, we show tha t this 

system exhibits competitive exclusion so tha t only the T-cell population that binds the most 

strongly (with the largest A-) is present at equilibrium. We can assume that each lineage 

has a unique A-, as any populations tha t share a A can be treated as a single population. 

We also include this analysis to demonstrate how the differential-algebraic system may be 

analyzed using conventional techniques.

When we put (2.6) in steady state, we find tha t for each j , either U- =  0 or

1 +  c ^ A k  Uk =  cAj S  Y^ ~
k

As all values Ai are unique, this condition can only be met for a single j . At each steady 

state, all Ui =  0 except for one. Thus, each lineage has an equilibrium tha t it dominates 

completely, as Tj =  0 if and only if U- =  0. The equilibrium value is given by
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Uj  = n  ̂  i

To analyze the stability of the system, we must first write our DAE as a first order ODE. 

We have equations of the form.

dT-
- d -  =  f ; (U) =  -SU j  +  (7  -  S)B;(U)

T; =  g- (U) =  U; +  B j  (U)

Bj  (U) =  S ,  CAj Uj
1 +  c k A k Uk

where U  =  {U;}. If we let T  =  {T-} and B =  {B-}, we can rewrite the system in vector 

form

dT
—  =  f(U) =  - S U  +  (7  -  ^)B(U)

T  =  g(U ) =  U  +  B(U )

We then rewrite this as a single equation

(U ) -dU = f  (U)

where J g(U) is the Jacobian of g(U) Alternatively,

—  =  f  (g- 1(T)) 
dt { ’’ (2.8)

=  h(T )

In general, we cannot find g -1 , but (2.8) is useful for linearizing the system near steady 

states. The linearization is the Jacobian of h  evaluated at a steady state U* =  g - 1(T*).

Jh(T*) =  Jf  (g -1  (T*))Jfl- i  (U*)

=  Jf  (U*)Jg (U *)-1

where f(U*) =  0. Both U* and J h(U*) can thus be calculated without inverting g.

We have shown tha t (2.7) has solutions Uo =  0 as well as solutions U ; of the form

{

c T- d ___1_ k =  j
n '   ̂ (2.9)
0 k =  j

To calculate the stability of the equilibria, we must calculate the eigenvalues of J h at each 

equilibrium. Any such eigenvalue v  must satisfy

\J f  — vJg1 =  0

Given that J f  =  —SI  +  (7  — S)JB and Jg =  I  +  J B where J B is the jacobian of B(U ), we 

have
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(Y — 5)a -  5
1 +  a

0 =  | Jb (U*) -  a l |

The upper triangular structure of J b at all values for U* allows for the eigenvalues to be 

calculated along the diagonal. We find tha t all eigenvalues of Jh, v, are negative only for 

the critical point dominated by the lineage with the highest A j .

2 .2 .5  T o le ro g e n ic  D C s

The multilineage model is equivalent to the no-Treg case discussed in [43]. We find that 

the antigen with the highest value for Aj always completely dominates the competition for 

space on DCs. As immunogenic DC may present autoantigens, an autoreactive T-cell clone 

may have the highest affinity for the DC during infection. To combat this, we divide our 

DCs into two populations. Immunogenic DCs work as discussed above. They come from 

the site of infection and present both self and foreign antigens. Tolerogenic DCs come from 

uninfected areas of the body and so we expect them to carry mostly self antigens (see Figure 

2.3). T-cells tha t are bound to them will die rather than proliferate.

Let B jj and Byj be the number of j  T-cells bound to immunogenic and tolerogenic DCs, 

respectively. Then for j  =  S, F ,

dTs
dt

dTp

=  YBjs -  uB t s  -  5Ts (2.10)

=  yB jp  -  u B t f  -  5Tp (2.11)dt

Each lineage has different values of ^  for immunogenic and tolerogenic DC, so 

dB is
dt

dBTs

=  c(Spi -  B js  -  B jp )Us  -  ^ i s B js 

=  c(S (1 -  p i ) -  B ts  -  B t f )Us  -  ^ t s B jsdt

where p j is the proportion of DCs tha t are immunogenic. Solving for each B in steady state

and substituting into (2.10)

dTs , - cAis Us
=  (Y -  5)Spi-

dt 1 +  c(Ajs Us +  Aj,p Up)

-  (u  + 5>S(1 - p i >! + ^aT sU s +SA tf Uf ) - 5 U s

dTp , ^  ^ cAi ,f  Uf
=  (Y -  5)Spi-

dt 1 +  c(Ajs Us +  Aj,p Uf  )

-  (u  + 5')S (1 -  p i >! + ^aTSU s +FA tf Uf  ) -  5Up

As before, these must be closed with the T-cell conservation equations.
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T  =  5p _______cAis  Us_______
S 1 1 +  c(A/s Us +  A i ,f  Uf  )

+  5 (1  "  Pi >1 +  c ^  + A t f  U f ) +  Us 

Tf  =  Spi-. cAlF Uf
1 +  c(Ais Us  +  A i , f  U f )

+  S(1 -  Pi <1 +  c(ATSUS + A t f  U f ) +  UF

2 .2 .6  R e g u la to r y  T -c e lls

Regulatory T-cells provide an additional mechanism of tolerance independent from 

Tolerogenic DC. We consider two different mechanisms of action by Tregs. ‘Suppressive’ 

Tregs limit proliferation by competing for growth signals with effectors, whereas ‘Killer’ 

Tregs permanently disable effectors, rendering them anergic [78]. As Tregs act nonspecif- 

ically, the terms governing these interactions always refers to the total number of Tregs 

bound to a particular DC.

We assume tha t there is only one population of Tregs and tha t they share a receptor 

with the self reactive T-cells. The rules governing the binding and unbinding of Tregs are 

thus the same as for self reactive effector cells.

BlR =  Sl 1 +  c(Ais (t/H + U * ) +  Af Uf  ) (2' 12)

B tR  = St  1 +  c(At* Us  ) +  Af Uf  ) (2'13)

All T-cells use the growth factor IL-2 to proliferate; however, only effector T-cells 

produce this cytokine. We assume that IL-2 is localized around individual DCs, so it is 

used either by the T-cell that secreted it or T-cells bound to the same DC [60]. Let Ii 

be the concentration of IL-2 around dendritic cell i, a i  be the production rate of IL-2 

by a single T-cell, and kE and kR be the IL-2 consumption rates of effectors and Tregs, 

respectively. 

dIi
=  a 1 #effectors bound to i -  (kE#effectors bound to i +  kR#Tregs bound to i ) I

We assume that IL-2 is in equilibrium and that the effective growth rate of each cell type 

is linearly proportional to the amount of IL-2 it consumes. For effector cells on DC i,

7i =  YkE I i" (2.14)
kE#effectors bound to i . _ .— Y___________________________________________  (2 15)

kE#effectors bound to i +  kR#Tregs bound to i ’

This expression depends only on the ratio of kE to kR, so we set kE =  1. Constitutive
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expression of the high affinity IL-2 receptor subunit CD25 is a defining characteristic of Tregs 

tha t distinguishes them from effector T-cells experimentally. Expression of CD25 increases 

IL-2 affinity by roughly a factor of 100 [1]; however, it is also transiently upregulated 

on activated effector T-cells. Furthermore, effector T-cells, as producers, may have better 

access to IL-2 than Tregs, which depend on diffusion from nearby cells. Therefore, we assume 

tha t 100 > kR > 1, but leave the exact value as a control parameter to be determined. The 

expression for per capita growth is

#Producers
7 =  Y-----------------#Consumers

#effectors
=  Y--------------------------#effectors+#Tregs

The binding model tells us the expected number of effectors and Tregs to find on 

a DC; however, not all DC are identical. The number of effectors and Tregs follow a 

hypergeometric distribution [44]. Rather than use the expected per capita growth rate 

from tha t distribution (see Appendix A), we use the following heuristic argument, which 

produces a close approximation to the analytic result. We present the argument with only 

one type of DC, as the process readily extends to multiple types. Let bE and bR be the 

proportion of DC spots filled by effectors and Tregs, respectively.

bE =  S  £  Bj (2.16)
typej=Eff

bR =  |  £  Bj (2.17)
typej=Treg

We consider a single, fixed T-cell tha t is bound to a DC. The per capita growth rate depends 

on the number of producers and consumers of IL-2 bound to the same DC, including the 

cell itself. The number of IL-2 consumers is the T-cell itself plus its expected number of 

neighbors. The number of producers is the expected number of effector neighbors plus itself 

if it is an effector.

#Consumers =  1 +  (NS -  1)(bE +  bR) (2.18)

#Producers (if effector) =  1 +  (NS -  1)bE (2.19)

#Producers (if Treg) =  (NS -  1)bE (2.20)

In addition to suppressing proliferation, Tregs may also indirectly kill or anergize Tregs 

on the same DC. They do this through a number of mechanisms often mediated via the 

DC itself [78]. We assume tha t Treg-mediated effector killing occurs according to mass 

action between the two cell types bound to the same DC, 0 (Wjv-1) bEbR, as experiments
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with nonlinear functions showed little difference in behavior (not shown). The parameter 

P controls the rate of Treg killing.

The differential equations for the Treg System are 

dTp
dt

dTs
dt

dTu
dt

with constraints

=  (7 ie(U ) -  8)B /f(U ) -  (Yt e (U) -  8)Bt f (U) -  8Uf 

=  (7 /e (U ) -  8)B i s (U) -  (7 te (U ) -  8)Bt s (U) -  8Us (2.21)

=  (7 / r (U )  -  8)B /r(U ) -  8Ur

Tf  =  Uf  +  B /f  (U) +  B t f  (U)

Ts =  Us +  B /s (U) +  Bts (U)

T r =  Ur  +  B /r(U ) +  B tr (U )

where U  =  [UF , US, UR]T. Table 2.2 summarizes the per capita growth rates (7 ) of bound 

effectors and Tregs. Note tha t Tregs are not affected either way by tolerogenic DC.

2 .2 .7  H e te ro g e n e o u s  D C  p o p u la t io n s

Although Tregs are antigen specific, their inhibitory functions are not. The only way 

for an effector T-cell to avoid Tregs is to avoid binding to DCs, meaning tha t they also 

fail to proliferate. This is only a problem if we assume tha t all DCs are identical. If some 

DCs present more self antigen than others, then they will bind a greater proportion of self 

reactive Tregs and effector cells. Foreign reactive T-cells will bind to different dendritic cells 

with fewer Tregs.

To model this, we let As and Ap be random variables. Each DC represents an indepen

dent sample of these random variables. Let AiS and AiF be the value of As  and Af  on DC 

i. Bi,j is expected number of T-cells of type j  on DC i.

cAiS USBis  =  

BiR =  

BiF =

1 +  c(Ais (Us  +  Ur ) +  AiF Up)
__________cAiS Ur__________
1 +  c(Ais (Us  +  Ur ) +  AiF Up) 

cAiF Uf

1 +  c(Ais (Us  +  Ur ) +  AiF Up) 

Our system now includes a summation over all DCs.

dTs
dt - 8Us +  ^  7iE Bis
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R SUr  +  ^  7iR BiR—  I

— SUf  + ^ 2  YiEBiF

dt

dTf 
dt i

Although this allows us in principle to make every DC unique, we study a single case 

with just two DC categories; simulations with scaled beta-distributed A show tha t the two 

category case captures the key behavior (results not shown). The two values for A represent 

a switch like behavior for binding duration as a function of an underlying variable, such 

as the amount of a particular antigen to which the DC is exposed. This agrees with some 

experiments [36] and biophysical modeling [6].

Let <fis G [0,1] be the probability tha t a DC collects and presents antigen S . On those 

DCs, the T-cell:DC interactions are stable and long lasting. On the remaining DCs, bound 

T-cells unbind quickly.

1>As (As ) =  (  f '  A” “  (2-22)
^1 9S Amin

We shall refer to this as the heterogenous case. The expected value of As  is E[As ] =  

Amin +  ^ s (Amax — Amin). If we ignore the variability in DCs and set AiS =  E[As ] for each

i, then this model reduces to (2.21), which we will refer to as the homogenous case. Table

2.3 explicitly defines these two cases. In the heterogenous case, we use the homogenous 

term for immunogenic DCs presenting foreign antigen. We do this to avoid having a large 

population of activated DCs that have not collected foreign antigen while still allowing the 

foreign antigen to be rare. This modification does not significantly change the results.

2 .2 .8  O u tp u t s  o f  t h e  m o d e l

We wish to measure the strength of the foreign reactive immune response and the self 

reactive immune response. Each T-cell has three possible fates. It can become part of the 

immune response, be killed or deactivated, or leave and continue to circulate to other lymph 

nodes. The last possibility occurs if the T-cell does not make sufficient contact with a DC. 

We designate ‘activated’ T-cells to be those tha t have spent sufficient time bound in order 

for them to divide once. We call other T-cells ‘naive’. Let N; =  pN;T;  and A; =  (1— pN; )T; 

be the number of naive and activated T-cells of type j ,  respectively.

Activation status has no effect on binding, unbinding, or death rates. The rate of 

activation is exactly the rate of proliferation, as T-cells activate upon their first division. 

dTj
=  Proliferation — Death — Leaving
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=  - p N,j (Proliferation +  Death +  Leaving)

dA ■
=  2pN,jProliferation +  (1 -  pN,j)(Proliferation -  Death -  Leaving)

The ‘proliferation’ terms for the j th  T-cell are ^ i n%jBj where n%j is the per capita growth
T ■_a  •

rate with ft =  0 and u  =  0 (see Table 2.2). As pNj =  jT. j , we have

dAj Tj -  Aj Aj dTj
—j  =  2 j  V  m iB ii + — —j  (2.23)
dt Tj ^  iij ij Tj dt y J

Finally, Cj is the number of activated T-cells tha t have left the lymph node.

dC
j =  5Aj . (2.24)

dt

CS(final) and CF (tfinal) represent the total number of activated T-cells that have left the 

lymph node after tfinal days.

2.3 Results
Our goal is not to match specific data sets, but to examine how the various mechanisms 

contribute to immune tolerance. An ideal model of immune tolerance should allow for a 

strong response to foreign antigens while avoiding or limiting a response to self. Additionally, 

this behavior should be robust to initial conditions as well as the relative prevalence of the 

antigens and level of infection.

We assume that self antigens are presented equally on immunogenic and tolerogenic 

DC: 0S =  0s,i =  ^ S,T. Foreign antigens are only presented by immunogenic DC 0F =  0F,i  

and 0F,T =  0. We vary two parameters: the proportion of DC presenting the self antigen,

0S, and the proportion of DC tha t are immunogenic, p j . Changing these s itu a tio n a l 

p a ra m e te rs  allows us to evaluate the maintenance of tolerance to a variety of different 

types of self antigens, as well as different intensities of infection. We refer to four different 

situations, for which we choose different values of pi  and 0S.

1. A rare self antigen (0s =  0.1) tha t is presented primarily during infection, meaning 

that all relavant dendritic cells are immunogenic (pi =  1). These ‘cryptic’ antigens 

are often involved in autoimmune disease [58] (Figure 2.4).

2. A more common antigen (0s =  0.5) tha t is presented on immunogenic and tolerogenic 

DC equally (pi  =  0.5). (Figure 2.5)

3. A cryptic self antigen that (pi  =  0.8), when presented, appears on a large number of 

immunogenic DC (0s =  0.9).

4. A very common self antigen (0s =  0.8) that appears slightly more often on immuno
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genic than tolerogenic DC (p/ =  0.6)

These last two situations test the limits of our model (see Appendix B). In addition 

to changing these situational parameters, we can also change initial conditions. For all 

simulations, we start with a total of 1000 effector cells and, if applicable, 80 Tregs. Unless 

otherwise stated we will use ‘even’ initial conditions, with 500 self effectors and 500 foreign 

effectors. Occasionally, we will use ‘self skewed’ initial conditions with one foreign and 999 

effectors and ‘foreignskewed’ initial conditions with 1 self and 999 foreign effectors.

Throughout the results section, we compare three different types of Tregs (absent, 

suppressive or killer Tregs) and two different types of DC population (homogenous or 

heterogenous) to give a total of six different model combinations. We can further refine 

the killer Treg model by varying two co n tro l p a ra m e te rs : the strength of Treg-induced 

effector T-cell death, ^, and the relative affinity of Tregs for IL-2, kR. We assume that 

these values are innate properties of the immune system and do not change in response to 

situational parameters.

We judge the success or failure of a particular model in a particular situation in several 

ways. First, we calculate the final count for each type of T-cell (see 2.2.8). We call the 

ratio of foreign to self in the final count the specific ity  of the response. This single number 

does not reveal the size of the response, so we set two additional criteria: tha t the number 

of foreign cells exceed 10000 (immunity) and tha t the number of self cells be less than the 

initial population of self cells (tolerance). We use the cut off of 10000 because it allows 

us to graphically distinguish between different models, not because the number holds any 

biological significance.

2 .3 .1  H e te ro g e n o u s  D C s  im p ro v e  T re g  efficacy

To assess the effect of Tregs in the absence of tolerogenic DC, we first compared the 

models with 0S =  0F , p/  =  1 and equal initial condition (500 self and 500 foreign effectors). 

Figure 2.4 shows the number of activated T-cells as a function of time for each of the six 

models. Self and foreign reactive effector T-cells behave identically in the homogenous case. 

This should be expected as they have the same binding and unbinding rates to the DC and 

so the two populations are indistinguishable. W ith homogenous DC, the Tregs kill both self 

and foreign effectors indiscriminately but cannot wipe either out as they are dependent on 

the effectors for growth factor. This system exhibits a limit cycle analogous to a predator 

prey model.

In the heterogenous case, there are always more foreign than self T-cells, because 

immunogenic DC still present the foreign antigen homogenously (Table 2.3). When we
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add Tregs tha t only compete for IL-2 (Figure 2.4E), the population tends towards 100% 

foreign reactive T-cells, but there is an initial window during which some self reactive 

T-cells are activated. The addition of killer Tregs (Figure 2.4F) decreases the number of 

self reactive T-cells produced to below the initial condition of 500. The Tregs also initially 

lower foreign reactive numbers, but this is only transient. Once the self reactive T-cells are 

cleared, the foreign reactive population rebounds. If we start with one self effector and 999 

foreign effectors, the initial transient disappears.

2 .3 .2  T o le ro g e n ic  D C s  fa v o r fo re ig n  r e a c t iv e  re s p o n s e s

W ithout regulation by Tregs or tolerogenic DC, the population tha t binds most strongly 

to DC will dominate the response. If 0 s > 0 f , then self T-cells bind more strongly to DC 

on average so we expect a purely self reactive response in the absence of regulation. Figure

2.5 shows the time series when 0 s =  50f  =  0.5, but 50% of DC are tolerogenic. In all 

cases, there is a robust foreign response and essentially no self response. The addition of 

tolerogenic DC can change a self reactive response into a primarily foreign reactive one.

In this situation, Tregs are not required for tolerance and actually decrease the total 

output of foreign reactive T-cells in all cases, inhibiting the immune response. The effect 

is much larger for homogenous (Figure 2.5 B,C) Tregs than heterogenous (Figure 2.5 E,F) 

and for killer (Figure 2.5 C,F) Tregs than nonkiller Tregs (Figure 2.5 B,E).

2 .3 .3  A  h e te ro g e n o u s  D C  p o p u la t io n  is m o re  r o b u s t  to  
c h a n g in g  im m u n o g e n ic i ty  a n d  in i t ia l  c o n d it io n s

We compare the robustness of each model by changing the initial conditions and numbers 

of tolerogenic DC. For this experiment, we let 0 f  =  0 s =  0.1. We measure the strength of 

the self and foreign response by counting the number of activated T-cells leaving the lymph 

node. Figure 2.6 shows the counts of foreign (red), self (blue dashed), and regulatory 

(blue dotted) T-cells as a function of the proportion of DCs tha t are immunogenic (p1). 

In both the homogenous and heterogenous cases, foreign T-cells outnumber self T-cells if 

there are roughly equal numbers of immunogenic and tolerogenic DCs. W ith too many 

tolerogenic DCs, the immune response is extremely small. W ith too few, the immune 

response contains large numbers of self reactive T-cells. Killer Tregs mitigate the latter effect 

in the presence of heterogenous DCs. In general, greater diversity of the DC population, 

either via heterogeneity or intermediate p i , increases the ratio of foreign to self T-cells.

The initial conditions, shown as pale red and blue lines in Figure 2.6, can play a large role. 

The bottom row of Figure 2.6, for example, has initial conditions of 999 self T-cells and one
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foreign T-cell. These lopsided initial conditions skew the outcome towards autoimmunity in 

the homogenous case. In this case the system is bistable, so the outcome depends strongly 

on initial conditions. In the heterogenous case, both lineages can coexist as they each 

have their own spatial resource. This change from bistability to coexistence decreases the 

sensitivity to initial conditions.

2 .3 .4  K ille r  T re g s  h a v e  th e  la rg e s t  e ffec t fo r r a r e  se lf  
a n t ig e n s  a n d  b ia s  t h e  s y s te m  to w a r d  to le r a n c e

So far, we have assumed that the rare antigen and self antigen overall appear at the 

same rate on immunogenic DC. During an immune response a self antigen may be more 

(or less) common than the foreign antigen. To study this condition, we vary 0 s and fix 

0f  =  .1. For each set of values of the parameters 0 s and pi , we calculate the specificity 

of the immune response and evaluate immunity and tolerance. Figure 2.7 shows the 

results of this experiment for each model. The darker red color corresponds to a higher 

specificity. The solid and dashed lines indicate boundaries of areas with tolerance and 

immunity, respectively. The regions marked IT are those tha t have both properties. For 

large numbers of tolerogenic DC, all models behave similarly for most parameter values. 

W ith few tolerogenic DC (high p /) and moderate 0 s , the heterogenous killer Treg model 

performs the best according to all measures. On the other hand, this same model does not 

perform well compared to the others for moderate p / and high 0 s . This is an example of high 

levels of regulation causing the immune system to ‘err on the side of caution’ as tolerance is 

achieved, but only a weak immune response. However, if we increase the prevalence of the 

foreign antigen, 0f , then the immune response is restored even for the killer Treg model 

(data not shown).

2 .3 .5  IL -2  c o m p e t i t io n  a n d  d ir e c t  k il lin g  w o rk  in  s y n e rg y

To study the best combination of IL-2 competition and killing by Tregs, we vary the 

two control parameters kR and p. We then evaluate the model specificity, immunity, and 

tolerance for the four different values of our situational parameters. Figure 2.8 shows the 

specificity using a color scale and divides the parameter space into regions with tolerance 

(T), immunity (I), and both (IT). The blue dot indicates the value of kR and P that we 

chose for our simulations. For three of the four situations it lies within the IT region and 

for the fourth, it has both tolerance and a high degree of specificity. Although there are 

other parameter combinations tha t have a qualitatively similar outcome, we note that Tregs 

must have both a heightened affinity for IL-2 and an ability to kill, or mediate the killing
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of, effectors.

2.4 Discussion
We have created a simple model of immune tolerance, featuring only four cell types: 

effector T-cells, regulatory T-cells (Tregs), and immunogenic and tolerogenic dendritic 

cells (DCs). T-cells bind to DCs tha t present their cognate antigen, proliferating when 

bound to immunogenic DC and apoptosing when bound to tolerogenic DC. Tregs inhibit 

effector cells antigen-nonspecifically by altering the microenvironment around individual 

DCs. Heterogeneity of antigen presentation by DCs allows Tregs to preferentially inhibit 

T-cells tha t share antigen-specificity. We sought a model tha t would exhibit a strong 

response to foreign antigens and a weak response to self antigens under a wide range of 

antigen expression profiles. We assume self and foreign antigens differ in two important 

ways. First, immunogenic DC present a mixture of self and foreign antigens, but tolerogenic 

DC primarily present self antigens. Second, due to presentation of the self antigen in the 

thymus, there will be an initial population of self reactive Tregs. We find that tolerogenic 

DC promote tolerance to common self antigens, whereas Tregs promote tolerance to rarer 

self antigens. In addition, we find tha t Tregs perform better when they can both actively 

kill effectors and inhibit their proliferation.

The different types of DC heterogeneity prevent autoimmune responses to different kinds 

of self antigens. Tolerogenic DC prevent immune responses to ubiquitous self antigens, as 

we assume that tolerogenic DC will present such antigens in large numbers. We find that 

immunity and tolerance are maintained in the absence of Tregs when there are significant 

numbers of tolerogenic DC, but tha t Tregs improve the specificity. Tregs are crucial for 

tolerating slightly less common antigens, which may appear on few tolerogenic DC. Self 

antigens tha t are primarily presented during infection fit this profile. To be effective, Tregs 

must be able to kill effector T-cells and DCs must present self antigen heterogenously. The 

model fails to tolerate extremely common antigens tha t are not presented on tolerogenic DC. 

W ithout Tregs, there is typically a failure of tolerance and response specificity. Response 

specificity can be restored by Tregs, but the result is generally an abrogated immune 

response.

Central tolerance plays two distinct roles in this model. First, we assume the existence 

of self reactive Tregs of thymic origin. Second, negative selection in the thymus reduces the 

number of self reactive naive T-cells. Central tolerance thus initially biases the system away 

from self reactivity. Our model is not generically bistable, so the initial bias is irrelevant to
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the final outcome. Including any positive feedback, such as autoimmune-related pathology 

tha t can promote further self reactive T-cells through a tissue damage, could increase the 

importance of initial conditions and thus central tolerance.

We did not explore the dynamics of this model, such as the limit cycles in Fig. B.1. 

Cyclic T-cell populations have been observed in autoimmune diabetes [46]. Although the 

time scales are different from what we observe in our model, it seems plausible tha t Tregs 

are driving this cycle as they have been implicated in controlling the early development of 

the disease [15]. The limit cycle involves two populations: foreign effectors and self Tregs, 

so the Tregs are exerting nonspecific control. This may be an important feature of the 

immune system as even foreign reactive T-cells can cause cell damage, which can in turn 

lead to autoimmunity [27]. Therefore, it makes sense that all T-cell responses, even foreign 

reactive ones, should be controlled by Tregs.

The model could be extended naturally to simulate multiple infections over a period of 

several years with a portion of the response to one infection becoming the initial conditions 

for the next. This type of model could help explain epidemiological patterns in autoimmune 

diseases tha t have a lengthy progression. One such pattern is the apparent protection from 

multiple sclerosis when moving from high latitude to low latitude. Several studies have 

found tha t only migration during childhood significantly lowers incidence rate; however, 

the age of onset is typically after 30 [2, 42]. The development of MS must therefore take 

several decades and so any mathematical model used to study it must take this longer 

timescale into account.

Molecular mimicry, bystander activation and epitope spreading are common mech- 

nanisms for the initiation of autoimmune disease [27]. In molecular mimicry, the pathogen 

presents an antigen tha t is nearly identical to a self antigen. According to our model, it 

would not be possible to have both immunity and tolerance in this situation as the self and 

foreign T-cell population would be a single population that reacts to both self and foreign. 

However, if we also include a second foreign reactive T-cell lineage tha t does not also respond 

to self, this case is identical to those already studied. We would see an immune response only 

towards the foreign antigen that does not mimic self. Bystander activation is the nonspecific 

activation of T-cells, some of which may be self reactive, during an immune response. This 

could be modelled with an extremely large number of T-cells that have 0 =  0. A preliminary 

run of this situation shows tha t this can significantly delay an effective immune response, 

although we have not explored how this may lead to autoimmune disease.

Epitope spreading is implicated in numerous animal models of autoimmune disease [27]
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particularly multiple sclerosis [49]. In this process, immunogenic DC present multiple self 

antigens in addition to the primary foreign antigen leading to an autoimmune response. 

This autoimmune response leads to further damage and the presentation of different self 

antigens, which spreads the autoimmune response to a different target. Our model explicitly 

addresses this issue, and we find tha t a sufficient number of tolerogenic DC prevent the 

initial spread of autoimmunity. However, we have not included immunopathology, the 

damage caused by the immune system itself, which could potentially allow a transient 

autoimmune response to become self-sustaining by decreasing the number of tolerogenic DC. 

Similarly, chronic inflammation can trigger autoimmune disease. For example, the chronic 

inflammatory disorder Crohn’s Disease is a major risk factor for Ankylosing Spondylitis, a 

form of degenerative autoimmune arthritis [12]. In NOD mice, a model for Type 1 diabetes, 

viral infection speeds up disease progression only if there is already pancreatic inflammation 

[33].

The inverse of autoimmune disease is the tolerance of exogenous antigens. The human 

body provides a home to hundreds of species of commensal micro-organisms tha t we con

tinuously tolerate, in addition to the many antigens that we eat and inhale. The tolerance 

to antigens in the gut is thought to involve tolerogenic DC and Tregs [76]. This process is 

conceptually similar to the tolerance of self as harmless exogenous antigens should not be 

accompanied by a danger signal. The main difference is that the Tregs do not differentiate 

in the thymus, but rather secondary lymphoid organs during a response. CD4 T-cells 

can differentiate into several effector subtypes including induced Tregs or iTregs. The 

other subtypes include Th1, Th2, and Th17. In lymphoid tissues of the gut, there may 

simultaneously be antigens from pathogenic bacteria, commensal bacteria, and food. These 

antigens may all require different types of T-cell response. For example, IgA antibody, 

produced during a Th2 response, keeps commensal bacteria from invading epithelial cells 

[52]. There have been several models of T-cell subtype differentiation [24, 72, 79], but none 

of them allow for distinct responses to distinct antigens. Extending any of these models to 

include DC heterogeneity may be sufficient to achieve this.

Immunological processes exist on a variety of scales: the molecular level of antigen 

recognition, the cellular level of T-cell activation and differentiation, the systemic level of 

an adaptive immune response and self tolerance, and even the population level of herd 

immunity. Mathematical models can link these levels, predicting outcomes at one based 

on hypotheses at another. Models tha t can reliably trace cellular and molecular behavior 

to the systemic level should prove invaluable in the treatm ent of immune disorders and
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provide basic insight into how the immune system works. In this paper, we have evaluated 

a variety of cellular mechanisms thought to induce systemic tolerance. Our model allowed 

us to distinguish the roles played by tolerogenic DC and Tregs and even between Tregs 

tha t mediate killing of effectors and those that merely compete for resources. The distinct 

mechanisms provide a patchwork of partially overlapping protection, in which different 

components are best suited to combating different threats. Such models may help us 

understand the evolutionary history of the immune system. The evolutionary perspective 

may be key to understand much of the seemingly unnecessary complexity of the immune 

system.
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F ig u re  2.1: Interaction of DC with T-cell. Different T-cell lineages respond to different 
antigens presented on the DC surface. Zoomed in region shows the molecular interactions 
of receptors on the self surface. The binding affinity of self (blue) and foreign (red) T-cells is 
determined by the amount of complementary antigen presented on the surface of the DC. A 
single DC may present multiple different antigens simultaneously and therefore bind T-cells 
from multiple lineages.
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T Cells leave the \ 
Thymus and ' 
Enter Circulation '

F ig u re  2.2: Possible outcomes of central tolerance in the thymus. All T-cell lineages bind 
self antigens in the thymus. Those that bind strongly are either deleted or become Tregs, 
with only a few mistakes entering circulation. Those tha t bind weakly are deleted. Those 
tha t bind with intermediate strength enter circulation as effector T-cells.
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Table 2.1: Variable names and parameters values used in this chapter
Symbol Description Value
Tj T-cells of type j
Uj T-cells of type j not bound to any lymph node
B ij T-cells of type j  bound to DC of type i
bE Probability tha t a DC spot is occupied by an effector
bR Probability tha t a DC spot is occupied by an Treg
Si Total number of spots on DC type i
Y Growth rate of T-cells 5 days 1
S Leaving rate of T-cells 1 day 1
w Death rate of T-cells on Tolerogenic DC 5 days 1

£ Strength of Treg killing 1.2 days 1cells 1
kE Relative IL-2 affinity of effectors 1
kR Relative IL-2 affinity of Tregs 3
N s Number of T-cell binding spots per T-cell 10
N Number of DCs 1000
Pi Proportion of DCs which are immunogenic 0-1
c Treg:DC binding rate 20 days 1 cells 1
A Treg:DC contact duration .0005-.05 days
0i; Relative Treg:DC contact strength 0-1
final Duration of infection 10 days
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F ig u re  2.3: Potential outcomes of interactions between DC and T-cells. Immunogenic DC 
(I) carry both self and foreign, so we depict them as multicolored. Tolerogenic DC (T) 
carry mostly self are shown in blue. We indicate Tregs with diagonal shading. T-cells bind 
and unbind to spots on DCs (A). T-cells bound to immunogenic DC proliferate, and T-cells 
bound to tolerogenic DC deactivate (B). Suppresive Tregs prevent T-cells from proliferating, 
whereas killer Tregs actively kill or deactivate T-cells (C).
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T able 2.2: Per Capita Growth Rates of Bound T-cells (7 )
Immunogenic Tolerogenic

Effectors Y i+ ^ S - E + E . r) '» i« < NS 1) - u  -  ftbTR(Ns -  1)
Tregs Y (NS-1 )bIE 

Y 1+(Ns 1)(bIE +bIR) 0



Table 2.3: Binding affinities of self and foreign T-cells
Immunogenic 

Affinity Probability
Tolerogenic 

Affinity Probability
Foreign 

Homogenous g ^ Amin max Amin) f 
Amin tftisi.Amax Amin) f

Amin ~\~ <Pt f (.Amax Amin) f 
Amin (pTsi. Amax Amin) f

Foreign 

Heterogenous g ^

Amin <Pi f (. Amax Amin) f

Amax 4 IS 
Amin 1 — 4>IS

Amax (pTF 
Amin f (pTF 
Amax (pTS 
Amin 1 — 4>TS
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F ig u re  2.4: Activated T-cells versus time (days) for foreign (red), self (blue dashed), and 
Treg (blue dotted) in the absence of tolerogenic DC. Each panel represents a different model. 
The numbers in each plot represent the total number of effector cells of each type that leave 
the lymph node. Parameters: =  0.1, =  0.1, p/  =  1
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F ig u re  2.5: Activated T-cells versus time (days) for foreign (red), self (blue dashed), and 
Treg (blue dotted) with 50% of DC tolerogenic. Each panel represents a different model. 
The numbers in each plot represent the total number of effector cells of each type that leave 
the lymph node. Parameters: =  0.5, =  0.1, pI =  0.5, ft =  1.25, kR =  3
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Hom ogenous DCs H eterogenous DCs
No Tregs Suppressive Tregs Killer Tregs No Tregs Suppressive Tregs K iller Tregs

F ig u re  2.6: Comparison of model performance for different values of p / (proportion 
immunogenic DC) and different initial T-cell counts. In each plot the vertical axis is 
the final number of T-cells of each type and the horizontal axis is p / . Each column is 
a different model and each row a different set of initial conditions: 999f vs 1s, 500f vs 
500s, 1s vs 999f. If Tregs are present then their initial condition is 80. The solid red lines 
represent foreign effector T-cells; the dashed and dotted blue lines represent self effector 
and Tregs, respectively; the corresponding tinted flat lines indicate the initial conditions for 
each population. Parameters: 0 s  =  0.1, 0 f  =  0.1, P =  1.25, kR =  3
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F ig u re  2.7: Comparison of model performance for different values of 0 s  (self antigen 
presentatation by DC) and pi  (proportion DC immunogenic). Color scale represents the 
ratio of foreign reactive to self reactive T-cells generated during the immune response. The 
darker red color indicates a higher ratio of foreign to self. The dotted (foreign =  10000) and 
solid (self =  500) are isoclines for the final T-cell counts tha t delineate regions of immunity 
and tolerance respectively. In immune regions (I), the size of the foreign response is at least 
10000 cells strong. In tolerant regions (T), the size of the self response is less than the initial 
number of self T-cells (500). Regions denoted IT show where both conditions are met. In 
blank regions, neither condition is met. Parameter values used for time series are marked 
1-4. Parameters: 0 f  =  0.1, 0  =  1.25, kR =  3
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CHAPTER 3

MATHEMATICAL MODEL OF TYPE 1 
DIABETES IN THE NOD MOUSE 

3.1 Introduction
In the previous chapter, we developed a generic model of immune regulation by Tolero

genic dendritic cells (DC) and regulatory T-cells (Tregs). We show that such regulation 

could prevent or limit the proliferation of self reactive T-cells under the a variety of im

munological circumstances. In tha t model, we assume tha t the antigen presentation and 

immunogenicity of DC is constant. More importantly, we assume tha t it is independent 

of the ensuing immune response. Although this may be a reasonable assumption for a 

short-lived infection, it should break down when we consider a chronic disease. In this 

chapter, we develop a model of such a chronic disease, Type 1 diabetes, and we shift our 

focus from the dynamics within a lymph node to those at the site of infection, the pancreas. 

We investigate the role of immune-regulation in its nominal progression and in its potential 

treatment.

3 .1 .1  B io lo g ic a l b a c k g ro u n d

Type 1 diabetes (T1D) is an autoimmune disorder in which T-cells invade the islets of 

langerhans within the pancreas and kill insulin producing ft-cells. The nonobese diabetic or 

NOD mouse is an inbred mouse strain that spontaneously develops T1D. Among females, 

the age of onset is on average 12-16 weeks, with an incidence of 60-80%. Prior to T1D onset, 

at 3-4 weeks of age, immune cells such as CD4 T-cells, CD8 T-cells, and macrophages invade 

the islets. This infiltration, called insu litis , gradually becomes more severe, affecting more 

islets and penetrating more deeply (see Figure 3.1). It is present in all NOD mice, even 

those tha t do not develop T1D.

NOD mice exhibit multiple immune problems. For an extensive review, see [8]. Here 

we focus on a few key differences from the wild type, which may mimic the factors that 

lead to genetic susceptibility in humans. First, there is a fa ilu re  in  c e n tra l to le ra n c e  as
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NOD mice do not effectively present peptides from the proinsulin gene in the thymus. This 

leads to the generation of a population of proinsulin reactive lymphocytes, although these 

T-cells typically have a low affinity for their target T-cell antigen. These T-cells are the first 

detected in the pancreas during immunopathogenesis and eventually give way to other more 

reactive T-cell clones. However, the anti-proinsulin response appears to be required [25, 82]. 

In humans, T1D is associated with lower expression of insulin in the thymus [38]. Second, 

NOD mice have a defec t in  th e  c lea ran ce  o f a p o p to tic  cells. Specifically, this is a 

defect in m acrophages, an antigen nonspecific immune cell with a large number of jobs, 

including the clearance of dead cells and the activation of T-cells. The excess apoptotic cells 

can become necrotic and trigger an inflammatory response by macrophages. This defect 

is particularly important at the time of weaning when the pancreas undergoes structural 

changes and heightened apoptosis [71]. This a p o p to tic  w ave and subsequent inflammation 

initiates an immune response, and T-cells start to infiltrate the pancreas (see Table 3.1). 

Finally, NOD mice have a defec t in  th e  g ro w th  an d  su rv iva l fac to r IL-2. Despite 

its role as a T-cell growth factor, deficiency in IL-2 typically leads to uncontrolled growth 

of effector T-cells as IL-2 is required for the proliferation and survival of Tregs. Tregs can 

control the development of T1D in the NOD mouse for several months, and T1D is greatly 

accelerated in Treg-deficient NOD mice [15, 20]. Human T1D patients have impaired IL-2 

signaling via a defect in the high affinity IL-2 receptor [38].

It is unclear what causes T-cells to escape the regulation of Tregs and destroy ,5-cells. 

The simplest hypothesis is that the destruction of 5-cells within the islets is ongoing, 

but tha t T1D is not diagnosed until the 5-cell mass reaches a critical level. However, 

quantification of the 5 -cell mass shows tha t it does not start to decline until 8-12 weeks 

of age [4], 6-10 weeks after the apoptotic wave [71]. Ablation of Tregs in 4-6-week old 

mice leads to rapid T1D onset [20], indicating tha t Tregs are required to prevent disease 

progression. This suggests that Tregs possibly lose effectiveness over time. This hypothesis 

is supported by the work of Tritt et al. [69], who find tha t older mice have similar numbers 

of Tregs, but they are less able to control T1D than those of young adult mice, and Pop 

et al. [55], who find tha t Tregs from older mice have a loss of function in vitro. Another 

possibility is tha t 5-cells gradually lose function over time. It may be tha t the 5-cells 

degranulate, losing their ability to produce insulin, [3] or simply apoptose [31, 68] in 

response to increased demands. Finally, the delay may be due to the time it takes for 

the development of a population of T-cells capable of killing 5-cells. In the early stages of 

insulitis, the most important population of T-cells is C D 4s, or helper T-cells, which can
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activate other components of the immune sytem, but not directly kill target cells. Another 

population of T-cells, C D 8s or killer T-cells, is very efficient at killing target cells, but 

require additional activation. In the early stages of T1D in NOD mice, the CD8 population 

is generally insulin-specific with a low affinity. After several weeks, high affinity CD8s, 

specific to islet-specific glucose-6-phosphate catalytic subunit related protein (IGRP), take 

their place. The destruction of P-cells corresponds to the expansion of this population [7].

Almost all NOD mice develop insulitis, and yet many do not develop T1D. Trudeau 

et al. [70] find signficant differences in the makeup of the CD8 T-cell population between 

those that get T1D and those tha t do not. In particular, CD8 T-cells specific for the islet 

antigen IGRP are at much higher levels in the ‘prediabetic’ mice, although they do not 

appear until week 8 in either group [70]. Fu et al. [26] perform MRIs of mice at different 

ages and find tha t the degree of inflammation is significantly greater in the mice destined for 

T1D. At 6 weeks, inflammation of the pancreas is significantly correlated with the eventual 

development of T1D. They also find tha t the mice with lower inflammation expressed higher 

levels of CRIg, a marker of a class of regulatory macrophages. Taken together, these studies 

suggest tha t the eventual fate of an individual mouse is predetermined at the initiation of 

insulitis. The nature of the insulitis of each mouse should therefore fall into at least two 

classes, which can be distinguished by the presence of CRIg-expressing macrophages. Islets 

with more severe inflammation have a greater level of P-cell turnover and therefore a greater 

presentation of IGRP. This ultimately leads to a greater IGRP CD8 response and T1D.

3 .1 .2  P r io r  m o d e lin g

As discussed above, the initiation of T1D requires a proinflammatory stimulus, which, 

in the NOD mouse, likely occurs during weaning. Nerup and colleagues [53] propose a 

nonmathematical description of T1D initiation, the ‘Copenhagen Model’, which is not 

specific to NOD mice. The stimulating event, such as a virus, causes minor P-cell destruction 

and, more importantly, releases P-cell antigens triggering an immune cascade. De Blasio 

et al. [18] proposed a simple model of 4 ODEs (resting and activated macrophages, P-cell 

antigen and T-cells) to reproduce this phenomenon. The model is intentionally generic 

and does not describe any particular environmental insult. They find tha t the activity of 

Macrophages is key and tha t the nature of the T-cell response does not drive inflammation. 

Maree et al. [47] expanded upon this model and incorporated the ideas of Trudeau [71]: 

tha t NOD mice have a reduced ability to clear apoptotic P-cells tha t then become necrotic. 

They find tha t for NOD mice, the system is bistable; the wave of apoptosis transfers the 

system from a resting ‘healthy’ state to a ‘disease’ state.
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Regulatory T-cells play an important role of slowing the progression of T1D and other 

autoimmune diseases. Alexander et al. [5] study a generic model of the Treg-controlled 

autoimmune disease. They demonstrate that Tregs may not eliminate an autoimmune 

response, but can reduce it to a subclinical level. Similarly, Magombdze et al. incorporate 

Treg control into the framework of the Copenhagen/Maree models and find that Tregs 

cannot eliminate the autoimmune response, but can reduce its intensity so that the ft-cell 

population is barely affected. See the previous chapter for a more complete review of Treg 

models.

Leah Keshet and colleagues have investigated the dynamics of the CD8 population in 

a series of papers. The time series of the IGRP CD8 population in [70] appears cyclical. 

Mahaffy, Keshet et al. [46] model this phenomenon using multiple T-cell compartments: 

‘activated’ T-cells can become either effectors and memory cells (which can later become 

activated upon restimulation). Their model reproduces the observed cycle and the ft-cells 

die off step-wise during each cycle until none remain. Khadra, Keshet et al. [40] investigate 

the competition between low-affinity and high-affinity CD8s. High-affinity CD8s kill ft-cells, 

releasing antigens and perpetuate the immune response, whereas low-affinity CD8s simply 

crowd the environment. This leads, fairly robustly, to a bistable system that has a ‘healthy’ 

state with few high-affinity CD8s and a ‘diseased’ state with many.

3 .1 .3  O u tlin e  o f  o u r  a p p ro a ch

We seek a simple model that

1. has two possible outcomes, a ‘T1D ’ state and an ‘ insulitis but no T1D’ state;

2. develops T1D predominantly within a narrow time window; and

3. is initially under the control of a Treg population, which it subsequently escapes.

We propose a model of T1D development that proceeds in two stages. An ‘ initiation’ phase 

corresponding to the development-driven apoptosis and a ‘progression’ phase describing the 

increase in the number and reactivity of the islet-specific CD8 population. The initiation 

phase has two distinct outcomes corresponding to distinct stable equilibria: m ild-insulitis, 

which does not lead to progression, and severe-insulitis, which does. These two states 

are characterized by differences in the makeup of the macrophage population, the ratio of 

infiltrating Tregs to effector T-cells, and the cytokine milieu of the islet. We show how 

various treatments can shift the system from the severe insulitis state to the mild. The 

‘progression’ phase is a feedforward model. Activated macrophages stimulate the growth 

of the CD8 population, which in turn kill ft-cells causing a rise in blood glucose. Only in
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the severe insulitis state do the activated macrophages promote a sufficient growth in CD8 

cells to promote T1D development.

We then validate this model by simulating various treatments of NOD mice found 

in the literature and comparing the results. To replicate incidence data, we must have 

heterogeneity in the mouse population. We generate this heterogeneity by changing the 

initial number of activated macrophages and the death rate due to CD8s, which we assume 

are quite variable. The justification for this is that they are the result of complicated 

processes (see [47] and [40], respectively) that can have multiple outcomes in otherwise 

identical organisms. We add a small amount of noise to all other parameters. We then 

perform a sensitivity analysis to investigate which parameters are key for the development 

of T1D. Specifically, we are interested in those that lead to an acceleration or delay of T1D 

versus those that change the incidence. Finally, we propose some further extensions and 

some possible experiments to further validate the model.

3.2 The initiation model
3 .2 .1  A c t iv a t io n  o f  m a cro p h a g e s

Macrophages are among the first cells to infiltrate the islet in NOD mice [38], likely in 

response to an apoptotic wave of 5 -cell death during weaning (the ‘apoptotic wave’ , see 

[71]). As explored in [47], NOD macrophages are inefficient at clearing these apoptotic 

cells, which leads to further inflammation and 5-cell death. Here, we shall assume that the 

apoptotic wave has just passed, resulting in an initial excess of macrophages.

Tissue-resident macrophages are a type of innate immune cell, meaning non-antigen- 

specific, with an incredibly wide array of potential behaviors. They phagocytose other 

cells, act as antigen presenting cells (APCs) and control the behavior of neighboring cells, 

both immune and nonimmune, via the release of cytokines. They are critical in the initiation 

and continuation of immune responses and yet they can also act as ‘custodians’ , clearing 

away debris from dead cells. These regulatory activities correlate with the expresion 

of the receptor CRIg on a macrophages surface. CRIg expression is promoted by the 

regulatory molecule IL-10 and inhibited by the inflammatory molecule IFN-y as well as 

other inflammatory molecules such as arachidonic acid [30]. Importantly, the expression 

of CRIg by pancreatic macrophages is negatively correlated with the progression to T1D 

[26]. Both IL-10 and IFN-y are cytokines: diffusing, extracellular molecules used for 

communication between cells, typically of the immune system.

We assume there are two classes of Macrophage: inflamatory macrophages (M *), cor

responding to low CRIg expression, which can stimulate the activation and proliferation of
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T-cells, and regulatory macrophages (M ), corresponding to high CRIg expression which act 

primarily as phagocytes. Macrophages can switch back and forth in response to external 

signals from cytokines. All macrophages enter the pancreas at a rate J in the regulatory 

class. They activate to become inflammatory at a basal rate a0, but their activation rate 

can be greatly enhanced by IFN-7 . Likewise, inflammatory macrophages deactivate at a 

basal rate b0, and their deactivation rate is enhanced by IL-10.
dM *

=  aM  -  bM * -  5M * dt -  -

—  — J -  aM  +  bM * -  5M  
dt

I 2
a =  a  ̂ 2 Y 2 +  ao 

'k* + 12
I 2

b =  bi^  2 10 t2 +  bo 
kio +  I io

IFN-y is produced by TH1 effector CD4 T-cells (T ) in response to IL-12, a product of 

inflammatory macrophages. We let T * denote the population of effector T-cells expressing 

IFN-y . IL-10 is produced by CD4 Tregs (R). Pancreatic Tregs in NOD mice overexpress 

IL-10, so we assume that the entire population expresses IL-10 without the need for further 

stimulation.
dT* I 2

_  „ 12 ( t  -  t *) -  eT* (3.1)

7 =  a 7T * -  U717 (3.2)

dt k22 +  I 12 
d I 
dt 

dI12 
dt 

dI1o

— a u M * -  u 12112 (3.3)

=  a 1oR -  U10I 10, (3.4)dt

where c is the rate at which T-cells are activated by IL-12 and e is the rate at which they 

revert to resting. Cytokine i is produced at a rate a* and decays at rate Uj. We assume 

that all cytokine concentrations equilibriate rapidly. Therefore, we set (3.3)-(3.4) equal to 

zero, and solve for the equilibrium concentrations. This yields the three-dimensional ODE: 

dM *
—  — - 5 m M * +  (a7F (v7T *) +  ao) M  -  (bwF (V10R) +  bo) M *

- M  =  J -  5mM -  (a7F (vyT *) +  ao)M  +  (b1oF(V10R) +  bo) M * (3.5)
dT*

— cF (v 12M *)(T  -  T*) -  eT*
dt

where
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F  (x) =
x

x 2 +  1

Vi =  ai/uiki.

3 .2 .2  A n a ly s is  o f  e q u ilib r ia

The equilibria of (3.5) are given by

cF (v i2M* )
T  C  (M - )T  =  e T

M  =  J ---- M  *
M Meg 

m  * =  Megeg

where M*g satisfieseg

J A (M * , T )
eg +  B (R ) +  A(M*g, T )

M  =

A(Me*g, T ) =  a7F (v7T C (M * ) +  aq (3.6)
eg

Leg, T ) =  aYF (VYT C (M eg) “L

B (R ) =  6(qF (V(qR) +  6q.

(3.6) represents a fifth degree polynomial, whose coefficients alternate signs. Therefore we 

expect it to have 1, 3, or 5 positive real roots. For any parameter choice, the number and 

value of these equilibria will depend on the state variables T and R, whose dynamics are 

discussed in the next section.

With our parameter values (see Table 3.2) there are either 1 or 3 solutions, depending 

on the values of T  and R. For fixed R and small values of T , as in Figure 3.2A, there is only 

one solution with few inflammatory macrophages. This agrees with the observation that 

CD4s are required for the initiation of T1D [8]. There is also only one solution for large 

values of T, corresponding to large numbers of inflammatory macrophages. For intermediate 

values of T, there is both the inflamed and noninflamed solutions, separated by an unstable 

threshold solution.

3 .2 .3  T regs  an d  e ffe c to rs  c o m p e te  in th e  islet

During the progession of T1D, T-cells infiltrate the pancreatic islets. Cytotoxic CD8 

T-cells directly kill ft-cells, but the CD4 population also plays a role by maintaining an 

inflammatory environment that perpetuates the immune response. The CD4 population, 

also called helper T-cells, is often divided into two broad categories: effector T-cells and 

regulatory T-cells, which respectively promote or obstruct immune responses. T1D does 

not develop in NOD mice in the absence of CD4 effectors. With effectors present but not
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Tregs, the disease develops much faster, indicating that they also play an important role

[15].
Effectors and Tregs enter the islet at a rate of a T and a R, respectively. Although there 

are other populations of antigen presenting cells in the pancreas, we assume that T-cells are 

dependent upon interaction with macrophages in order to proliferate. This is equivalent to 

assuming that other APC population numbers are correlated with those of inflammatory 

macrophages. The maximum per-capita growth rate should therefore occur when there 

are very few T-cells relative to macrophages as the competition for binding space will be 

minimal. The decrease in proliferation rate as T-cell numbers increase has been observed 

in vivo [67]. For simplicity, we model this process as a Michaelis-Menten rate with the 

inflammatory macrophage acting analagously to an enzyme. We let a denote the maximum 

proportion of T-cells undergoing mitosis and y denote the exponential growth rate of those 

dividing cells. The maximum possible growth rate of the T-cell population is therefore Ya.

The IL-2-BCL-2 pathway controls apoptosis of T-cells in the islets [67]. Secreted IL-2 

promotes the expression of the antiapoptotic factor BCL-2 in T-cells. Tregs are dependent 

upon effectors for IL-2, whereas effectors are self sufficient. NOD mice are deficient in IL-2, 

leading to increased turnover in Tregs but not effectors [67]. Therefore, we assume that 

T-cells die at a constant rate 5T1 but that Tregs will die at an enhanced rate 5T1 +  5T2 in 

the absence of IL-2. Effectors secrete IL-2 at a rate a 2 and it is taken up by Tregs at a rate 

w2. In addition, we include an input u(t) representing IL-2 treatment.

—T  arM *T  r ^
d  =  aT +  YT M * +  aTT +  aRR — ^ iT

—  =  a R +  yR------- aRM R-----------1 +  T̂2— k—  ̂  R
dt R +  YR m * +  aTT +  aRR V T 1 2 k +  h  )

dlo
—— =  a 2T — 2̂̂ 2 -  W2/ 2R +  u(t)dt

Putting the cytokine concentration in steady state,

—T aTM *T . ^
I t  =  “ T +  YT M  * +  aTT +  a „R  — T̂ iT
—R _  aRM*R /  kRR +  1 \
—t =  aR +  YR M * +  dTT +  aRR V T 1 +  T2 Q(t) +  kTT +  kRR +  1 J

(3.7)

where Q(t) =  u (t)/M 2 is the scaled IL-2 treatment, kT =  a 2/M 2 the scaled IL-2 production 

rate and kR =  w2/5 2 the scaled uptake by Tregs. Equation (3.7) and (3.5) together make 

up the initiation model.
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3 .2 .4  A n a ly s is  o f  th e  in it ia t io n  m o d e l

To simplify the analysis of this model, we consider the case aT =  a R =  0 with Q(t) =  Q. 

The system (3.7) then becomes

aT M  * T
0 =  7 t ------- - TM eq------------- 8t  t

11 M *  +  aT T  +  aRR 1 (
aRM*q R r kR R + 1

0 YR M*q +  apT +  aRR ( +  °T2 Q +  krT  +  kRR +  1 ]  R

which has four solution branches: the trivial solution T0 =  Ro =  0, a ‘T-only’ solution with

T  =  YTaT -  °T( M e, (3.8)
aT OT (

R( =  0 (3.9)

an ‘R-only’ solution satisfying

T2 =  0 (3.10)

aR M eq / ,  , , kR R2 +  1
0 = YRM*q +  a/?R2 -  l ° T 1 + OT2Q T k R R T T j  (3.J1)

and a ‘coexistence’ solution satisfying

a r  M*
0 =  Yt — ---------- ------------------- Ot  ( (3.12)

M eq +  aT T3 +  aRR3
aRM eq ( r r kRR 3 +  1

0 Yr M e*q +  arT 3 +  a /R 3  V°T( +  °T2 Q +  krT3 -+ k /R 3 +  J  (3^ 3)

Each of these solutions exist for aT,aR >  0; however, only the coexistent solution is 

guaranteed to remain positive. The other three solutions are positive if and only if they 

are stable. Recalling that M*q represents the solution of a 5th degree polynomial whose 

coefficients depend on T  and R, we cannot directly solve this system. However, if we view 

M*q as a parameter, we can implicitly solve for R, T  and a parameter of our choice to create 

bifurcation diagrams.

First we vary kT (Figure 3.3A) to simulate different levels of IL-2 production by NOD 

mice. At the current parameter values (left dotted line), there are two stable equilibria: 

severe (M *) and mild (M *) insulitis. As kT increases, the severe equilibrium disappears. 

This is observed in [62], when a wild type IL-2 gene bred into the NOD mice greatly reduces 

T1D.

Next we increase Q (Figure 3.3B) to simulate exogenous IL-2 treatment. The effect is 

similar to increasing kT , except that the lower solution branch undergous a transcritical 

bifurcation (red region) and switches to the R-only equilibrium. The arrows indicate, 

conceptually, the trajectory of the system during treatment. The trajectory starts on the
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upper branch, but is forced down onto the lower one after the saddle-node bifurcation. After 

treatment, the trajectory remains on the lower branch.

Finally, we vary gr and gt simultaneously while keeping them in the same proportion 

(Figure 3.3C). This represents treatment with anti-CD3 (which actually decreases these 

values to zero). The result is almost exactly the same as treatment with IL-2, with 

the trajectory dropping down onto the lower branch after the saddle-node bifurcation. 

Even though this branch is on the T-only equilibrium initially (blue region), it eventually 

undergoes a transcritical bifurcation to arrive at the mild insulitis equilibrium.

3 .2 .5  P a ra m e te r  e s t im a tio n

The typical lifespan of a macrophage within the pancreas is 10 days, so we let 5 — .1 

days-1  [47]. The concentration of these cells in the inflamed pancreas is 1 * 107cell/ml, which 

we then take to be J /5 , the total number of macrophages in our model at equilibrium [47]. 

The macrophage deactivation rate is b0 — .4 [47]. We assume that a T +  a R has a similiar 

magnitude to the macrophage influx J . From [67], we see that Tregs initially account for 

30% of the CD4 population. Therefore, we let a R — .3J and a T — .7J. From [80], we note 

that IL-12 triggers IFN-y after roughly 8 hours, and so we assume that a7 — c — 8 days-1 . 

Also from [80], the half life of the expression of IFN-y is about 3 hrs, so e — 5.5 days-1 .

Initially, we let v12 — v10 — v7 — 5 /J . This is so that the argument passed to F  

would be close to 1, and so its sigmoidal behavior would be relevant. We find that with 

these parameters, the basin of attraction of the severe insulitis state is so small that the 

equilibrium cannot be reached from reasonable initial conditions. Doubling the value of v7 

resolves this.

We let yT — YR — 2, which corresponds to a doubling time of 8 hours. We can directly 

observe gt  w .4 and gr  w .8 from the proliferation data in [67]. We also note that, at 

equilibrium, roughly 10% of effectors are dividing. Assuming that the proliferation rate 

matches the death rate at this point, we find that 5t 1 — .2. To fit the final parameters, we 

note that at equilibrium, roughly 20% of Tregs are dividing and that the ratio of Tregs to 

effectors is about 9 to 1 [67]. Taken together, this allows us to fit the parameters 5t2  — .8, 

kT — 55/J  and kR — 205 /J .

3.3 The progression model
3 .3 .1  C D 8 T -ce lls

NOD mice have multiple lineages of islet specific T-cells, however, we focus on the 

high affinity IGRP/NRP-specific subset. We assume that these cells are generated at a
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low frequency due to control by central tolerance, but that they proliferate when the islet 

antigen IGRP is presented with costimulation in either the Pancreatic Lymph Node or the 

islets themselves. Following [46], we use both a linear death term, representing normal 

turnover, and quadratic death term, representing autoregulation by the CD8 population.

—C (  M  * \ ^  . ^ 2 . „
lit  =  a c  +  ( YC M *T feC  — f c 1)  C  — ic2 C  <3-14>

To parameterize this system we use the data for NRP-A7 CD8 T-cells in [7]. Assuming

that a c  is small and that M * is constant from week 5 onwards. Then (3.14) becomes

—C
-  AiC — ^ C 2 (3.15)

—t

A  =  YC M * T f c  — Jc i  (-3-16>

Where Aj represents the exponential growth rate of CD8 population when M * =  M*. From 

the time series data, we can estimate that 2 =  2.6*10- 6cells- 1days-1 and A 2 =  .13 days-1 . 

From [70], we know that there are roughly 8 times as many NRP specific CD8 in mice that 

get T1D versus those that do not. This implies that A 2 — 8 * A 1. Taken together, these 

two relations allow us to estimate the values of YC =  .27 days-1 and kc  =  .75J. Finally, 

a c  remains as an important parameter controlling the timing of the expansion of the CD8 

T-cells. We adjust a c , after assigning all other parameters, so that the median onset of 

T1D occurs at 16 weeks. This gives a c  =  .03 cells per day.

3 .3 .2  M e ta b o lic  s u b sy s te m

In most experiments, a T1D diagnosis corresponds to a blood glucose level 250mg/dl 

(normal is 100mg/dl). Glucose controls both the proliferation rate and insulin production 

of beta cells. The produced insulin, in turn, stimulates the uptake of blood glucose. Topp 

et al. [68] modeled the insulin-glucose system with the following differential equations.

—G
—  =  Ro — (E go — S / 1)G (3.17)

— 1 G 2

—t =  a/ ^  

As, 5/ »  1 , we assume that the insulin level I  is in equilibrium.

^  =  Ro — ( £ o o +  ^  ) G (3.19)

To account for the increase in proliferation, we follow the work of [31] who created a highly 

detailed model of beta cell function. We simplify their model as
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^ — ( yb a ^ f o ; -  5b)  b  (3'20)

To parameterize this model we note the following. First, we observe from [63] that the 

number of proliferating cells reaches roughly 3%. This corresponds to a max growth rate 

YB — .06. The lifespan of a typical beta cell is 60 days [31] so 5b — 1/60. The resting 

population of P-cells in the absence of an immune response is B* — 300, allowing us to 

solve for Ghb — 161mg/dl.

In [35], untreated mice experience an increase in blood glucose from 300mg/dl to 500mg/dl 

in the first 2 weeks after onset. This corresponds to a decrease in P-cell mass from 24 to 

4.32 in our model, a loss of roughly 12% daily. To offset compensatory growth, the immune 

response must remove about 16% of P-cells daily. In treated mice, on the other hand, 

glucose levels drop to about 200mg/dl, which is still twice the baseline level. In our model, 

we can only account for this by a continued immune destruction of about 2% of immune 

cells daily. This means that the strength of the immune response is roughly 8 times less 

after treatment than before. Interestingly, this prediction corresponds closely to the ratio of 

NRP-reactive cells found in [70] between mice that get T1D and those that do not. Taken 

together, we conclude that we can model P-cell death due to CD8s as mass action with a 

constant of ns — 3.2 * 10-6  cells- 1  days-1 .

CD4s can also kill P-cells, although this primarily happens in the absence of Tregs. We 

include a killing term due to CD4s, which only becomes relevant to model behavior if Tregs 

are either absent [15] or removed [20]. Our final P-cell equation is

d B _  (  G 2 „  (st4T *)2

d f  — V G ^ f G i ;  -  5B -  nsC -  n4 1 +  (ST4T*)2 +  (SR 4 fi)0  B ' (3 '21)

3.4 Simulating treatments
In the next section, we simulate the treatments described in various papers. Table 3.3 

summarizes the nature and duration of these treatments. Here we descibe the implemen

tation of IFN-a treatment, anti-CD3 antibodies (aCD3 treatment), anti-PDL1 antibodies 

(aPDL1 treatment), Treg treatment, and IL-2 treatment.

According to Filippi et al. [23], treatment with IFN-a boosts PD-L1 expression. PD-L1 

is a negative costimulatory molecule, so it impairs the ability of APCs to activate T-cells. We 

therefore set v12 — 0 so CD4s produce no IFN-y, and yC — 0 so CD8s do not proliferate [23]. 

Treatment with Tregs is relatively straightforward, directly increasing the R population, 

which we implement by changing aR.

Fife et al. [21] treat with aPDL1, which we assume should have the opposite effect to
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IFN-a treatment. We therefore increase v12 by a factor of 10 and set YC equal to y t , which 

is the maximum growth rate of T-cells. Anti-CD3 interferes with the interaction between 

T-cells and APCs. Thus, we let o t  =  o r  =  0 to indicate that no division takes place. We 

also set 5t2  =  0 and 5T1 =  .1 , which is equivalent to the assumption that both effectors and 

Tregs die at the IL-2 deprived death rate of 5T1 +  5T2 as there is no source of IL-2.

Finally, to simulate IL-2 treatment we assume that Q obeys

where the tis are spaced every 2 days for the duration of the treatment. This represents 

pulses of Q0 that decay at a rate of per day. This matches the treatment described in

equilibria, representing insulitis of different severities. By changing the initial conditions, 

we can shift the long term behavior of the system from mild to severe insulitis and the 

outcome from nondiabetic to diabetic. Specifically, we hold all initial conditions constant 

with the exception of activated macrophages. We start each simulation at t0 =  14 days, 

during the apoptotic wave. The initial number of activated macrophages, M *(t0), will 

change depending on severity of the wave, which could vary between mice. Figure 3.4 

shows time series for M *(t0) =  1.6 * 107cells (Figure 3.4A,B) and M *(t0) = 8  * 106cells 

(Figure 3.4C,D). When M *(t0) is high, the CD4 and macrophage populations equilibriate 

relatively rapidly to the severe insulitis state (Figure 3.4A), eventually leading to T1D 

onset (Glucose>250mg/dl) at 16 weeks (Figure 3.4C). When M *(t0) is low, the CD4 and 

macrophage populations equilibriate to the mild insulitis state (Figure 3.4C), and T1D does 

not develop (Figure 3.4D).

3 .5 .2  S im u la tion  o f  m ou se  p o p u la t io n s

One of the main goals of this study is to model the incidence of T1D in NOD mice 

under various treatments. Not all NOD mice develop T1D, and the age of onset can vary 

among those that do. As our ODE model is deterministic, we represent the differences

(3.22)

t > 0

else
(3.23)

[67].

3.5 Results
3 .5 .1  M a g n itu d e  o f  in itia l in fla m m a tio n  d e te rm in e s  

T 1 D  p ro g n o s is

As demonstrated in section 3.2.4, the intiation model (3.5) and (3.7) has two stable
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between individuals via parameter values and initial conditions. To simulate experiments 

with groups of N  mice, we make N  parameter sets, sampling each parameter from a different 

distribution, described below. We then replicate those parameter sets and initial conditions 

for each treatment, so differences between treatments are never due to stochasticity. We 

start each simulation at the time of the initial inflammation (t0 =  14 days). Therefore, we 

assume that the number of activated macrophages will initially be elevated in each mouse, 

as our model does not include the initiating event. The initial macrophage population 

could be different for each mouse due to diet or differences in development. We draw this 

value from the normal distribution (1.2 +  N (.4,1)) * 107cells. Likewise, the value nS is 

dependent on the affinity of CD8s for ft-cells and is therefore the outcome of a complicated 

process of gene rearrangement, thymic selection, and the population dynamics of competing 

CD8 clones. Where specified, we generate this value from the log-normal distribution 3.2 * 

10- ( 310N(0,(/9)days- ( . We generate all other parameters by sampling from a log-normal 

distribution with the means given by the base parameters and the standard deviations as 

1% of those means. When we show the time series from an individual mouse, we use the 

parameters in Table 3.2.

3 .5 .3  T re a tm e n t w ith  IL -2  in creases  T re g :T e ff  ra tio  
a n d  p re v e n ts  T 1 D

Several groups [35, 67] find that treatment with exogenous IL-2 can restore the Treg 

population and prevent the development of T1D. We treat groups of 100 mice with 1, 5, or 

11 weeks of IL-2 pulses (of 500 every 2 days). Treatment for 1 week causes a transient but 

significicant drop in the CD4 population and a corresponding rise in the Treg population 

(Figure 3.5A). This results in a very small delay in T1D, but no change in incidence. 

Treatment for 5 weeks, on the other hand, leads to a permanent decrease in the CD4 and 

inflammatory macrophage population and a permanent increase in the Treg population. 

This leads to a very large decrease in incidence (Figure 3.6). Treatment for 11 weeks has 

little marginal benefit as compared to 5 weeks. In both of these latter cases, insulitis is 

greatly reduced, but remains perpetually. The lower level of insulitis is insufficient, in most 

cases, to stimulate the growth of a killer CD8, and so T1D never occurs.

3 .5 .4  C D 3  in d u ce d  to le ra n ce  req u ires  co n tin u e d  a c t iv ity  
o f  P D -L 1

Fife et al. [21] demonstrate that early treatment with an aCD3 prevents T1D. CD3 is a 

surface protein on T-cells that helps them bind to antigen presenting cells. We can represent
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CD3 treatment by setting o t  — o r  — 0 to indicate that no proliferation takes place. We 

further modify the death rates of both effectors and Tregs to be 5t  1 +  5t2 , indicating that 

they receive no survival signals from the IL-2-BCL pathway. Fife’s group also treats some 

mice with a PD-L1 antibody. PD-L1 acts as a negative regulator of T-cells. We represent 

PD-L1 treatment by increasing v12 10-fold, corresponding to a decrease in the activation 

threshold of CD4 T-cells. This change means that CD4 T-cells require 10 times less IL-12 

to activate and start to produce IFN-y. We also assume that more PD-L1 dramatically 

increases the division rate of CD8 T-cells to the maximum rate of T-cell division y t .

We follow the same protocol as Fife, treating with aCD3 at 5 weeks and aPD-L1 at 17 

weeks, with both treatments lasting for 2 weeks. Our results (Figure 3.7) match the key 

features of the experiment. With aCD3 treatment, aPD-L1 accelerates T1D among NOD 

mice and leads to a much higher incidence. Mice that received aCD3 alone did not develop 

any T1D, whereas 100% of those that also received aPD-L1 rapidly developed T1D shortly 

after the latter treatment.

3 .5 .5  S y n e rg y  b e tw e e n  IF N -a  an d  T regs

Filippi et al. [23] study the role of viruses in the regulation of T1D in NOD mice. 

They find that the virus LCMV transiently increases PD-L1 expression. In addition, they 

hypothesize that the Treg population generated during the immune response may explain 

the decreased T1D among LCMV treated mice. To test this hypothesis, they treat mice with 

IFN-a, which can also increase PD-L1 expression and transfer Tregs from mice previously 

exposed to LCMV.

We represent the boost in PD-L1 by setting v12 — 0, meaning that APCs cannot activate 

CD4 T-cells to produce IFN-y, and yC — 0, meaning that CD8 T-cells cannot divide. This is 

esentially the inverse of how we modeled the aPD-L1 treatment. We represent the injection 

of T-cells by increasing aR for the duration of the treatment.

Like Fillipi, we find synergy between the two treatments (Figure 3.8). The administra

tion of IFN-a by itself does not change the incidence of T1D, but it does delay the age 

of onset. The administration of Tregs by themselves does not change the age of onset, 

but does decrease incidence. The combination of both treatments decreases incidence by 

more than the sum of the individual treatments. All of these observations replicate Fillipi’s 

findings. In this experiment, we used a smaller range of ns to bring it in line with the other 

parameters. Without this change, the variance is so large that it obscures the synergy.
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3 .5 .6  C D 4  a n d  m a cro p h a g e  p a ra m e te rs  a ffect in c id e n ce  w h ile  
C D 8 p a ra m e te rs  a ffe ct  age o f  on se t

To determine which parameters contribute to incidence and which to age of onset, we 

ran a sensitivity analysis for each parameter. First we generate 100 pairs of values of nS 

and M  *(t0), our two key parameters. Then we vary each parameter, one at a time, from 

50% to 200% of its baseline value, equally spaced on a log scale, with every other parameter 

fixed at its baseline. For each value of the current parameter, we simulate the system using 

each of the 100 parameters pairs for ns and M  * (t0). We record if and when T1D develops 

in each simulation.

Figures 3.9, 3.10, and 3.11 summarize the results of the sensitivity analysis. In each 

panel, we vary a different parameter. The blue line shows the incidence, while the red 

and grey lines show the median and deciles, respectively, of the age of onset. Figure 3.9 

shows parameters that primarily affect age of onset, Figure 3.10 shows those that primarily 

affect incidence, and Figure 3.11 shows those with strongs effects on both. In general, the 

parameters that describe CD4 and macrophage behavior affect only incidence and those 

that describe CD8 behavior affect only the age of onset. We summarize this pattern in 

Figure 3.12 that shows the entire model, with each arrow color-coded and scaled according 

to its significance. Bolder arrows have greater significance, red arrows affect primarily age 

of onset, blue affect incidence, and purple arrows affect both. Greyed-out arrows have little 

affect on the model and are confined to the metabolic processes in the model.

3.6 Discussion
In this chapter, we present a mathematical model of Type 1 diabetes (T1D) in the 

NOD mouse. We propose that the intensity of the apoptotic wave controls the eventual 

development of T1D. We further propose that the long delay between this initial inflam

mation and the destruction of the islets is due to the growth and maturation of the CD8 

population. Therefore, the model has two components: an ‘ initiation’ component that 

consists of equations governing the interaction of CD4s and macrophage populations, and a 

‘progression’ component that describes the growth of CD8s, their killing of ft-cells, and the 

eventual rise in blood glucose. The initiation component has two possible outcomes, defined 

by its stable equilibria, only one of which leads to T1D. These equilibria are distinguished 

by the relative activity of Tregs, effectors, and activated macrophages and their associated 

cytokines: IL-10 , IFN-y and IL-12 .

Our model reproduces the results of several experiments on NOD mice: aCD3 treat

ment, aPDL1 treatment, IL-2 treatment, IFN-a treatment, and Treg treatment. All of
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these treatments amount to shifting the trajectory from the basin of attraction of the 

severe-insulitis state to that of the mild insulitis state. A treatment that does not cause 

a transition can still cause a delay in insulitis. For example, IFN-a treatment alone does 

not decrease incidence but does delay T1D due to downstream effects that interfere with 

the CD8 population. When combined with adoptive transfer of Tregs, it does significantly 

decrease incidence. According to our model, each treatment by itself is insufficient to make 

the transition, and so the system returns to the severe-insulitis state once treatment is over. 

Conversely, treatment with aPDL1 can shift the system from mild to severe arthritis. We 

show that aCD3 treatment followed by aPDL1 shifts the system from severe to mild and 

back to severe again. The equivalence between all of these treatments suggests that the 

system is ‘memoryless’ . A mouse that has been cured with aCD3 should be similar to one 

cured via the transfer of Tregs or IFN-a. Fife et al. [21] found similarities between aCD3 

treated mice and those that received insulin coupled splenocytes that tolerized them to the 

peptide. Table 3.4 summarizes the experimental results that our model can reproduce.

In our model, Tregs play two separate roles. First, Tregs prevent the killing of 5-cells 

by CD4 T-cells. This is an assumption of the model given that Tregs have been observed 

to control the extent of infiltration in the islet [15, 20]. Second, Tregs can control the 

inflammatory state of macrophages and other APCs which in turn prevents the development 

of a CD8 response. Due to IL-2 deficiency in NOD mice, Tregs are at a competitive 

disadvantage in the islets, favoring a proinflammatory environment. In our model, this 

proinflammatory envinronment is manifested in the severe insulitis equilibrium. We find 

that a moderate increase in IL-2 production can eliminate this equilibrium. Treatment 

with exogenous IL-2 does not eliminate this equilibrium in the long term, but can shift the 

system to the mild equilibrium as the other treatments do.

It has been suggested that the Treg population loses either effectiveness [69] or popula

tion size [67] over time. Lack of IL-2 uptake by Tregs decreases BCL-2 expression and thus 

survival. Therefore, the IL-2 deficiency lowers the Treg:effector ratio in NOD islets relative 

to the spleen and lymph nodes and relative to wild type islets. However, this ratio does not 

decline as the mouse ages. Bleyer et al. find that it stays constant until disease onset, when 

it rises slightly [35]. In our model, the Treg:effector ratio stays constant over the progression 

of T1D and is not significantly different between mice that develop T1D and those that do 

not. This is not to say that the Treg population does not decline in NOD mice, but we 

need not assume it to reproduce the known phenomena. The presence of T1D-resistant 

mice, either naturally or following treatment by IL-2, IFN-a, or aCD3, suggests ongoing
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regulation of the insulitic legion by Tregs. If the Tregs were to intrinsically decline, we 

would expect all of these mice to also develop T1D. Although this process may happen on 

a timescale longer than current experiments, it cannot be the driving force behind onset of 

T1D.

CD8 killer T-cells drive the eventual decline of the ft-cell population. Although, in this 

model, CD4 T-cells also possess the capacity to destroy ft-cells, they do not do so in the 

presence of Tregs (as in [20]). The CD8 population in our model represents the population 

of high affinity CD8 specific to IGRP. Trudeau et al. [70] use the size of this population to 

predict T1D outcome, and Amrani et al. [7] show that an increase in the average affinity 

of the CD8 population for IGRP correspond with disease onset. To eliminate the ft-cell 

population, the CD8 population must kill them faster than the ft-cells can divide. We 

estimate that at the time of disease onset, CD8 T-cells kill ft-cells at a rate of roughly 16% 

a day, which is almost 3 times as fast as ft-cells have been observed to divide. Therefore, 

a slight decrease in CD8 number or effectiveness is unlikely to prevent T1D development, 

although it can slow it. We find that CD8 related parameters primarily contribute to the 

age of onset instead of T1D incidence. In agreement with this, TCR8.3 NOD transgenic 

mice that produce only high-affinity IGRP-specific CD8 T-cells have a more rapid onset, 

but similiar incidence to NOD mice [74].

In this model, the treatment of the CD8 population is extremely simple. We only 

track a single population that grows from a very small number of precursors. In NOD 

mice, the CD8 population transitions from insulin specific to IGRP specific [7]. An initial 

response to insulin is required for T1D progression [41], but it is unclear whether this is due 

specifically to the activity of CD8s. It is plausible that initial low levels of ft-cell death due to 

insulin-specific CD8s releases IGRP, which is then presented on APC triggering the switch in 

autoimmunity. It is also plausible that the CD8-mediated death is necessary to maintain the 

‘severe-insulitis’ state that leads to T1D in this model. One possible experiment to elucidate 

the role of CD8s would be to create a transgenic line of mice on the NOD background whose 

CD8s lack the ability to kill ft-cells. According to our simple model of CD8s, they should still 

develop an IGRP-specific population in the same time frame. If these NOD mice continue to 

produce primarily insulin-specific CD8s, that will imply that CD8-related pathology drives 

the progression of their own ft-cell affinity.

Another simplifying assumption of our model is that the ft-cell population responds 

only to glucose levels and only homeostatically. In fact, ft-cells divide in response to islet 

inflammation [65]. We have ignored this phenomenon, reasoning that the immune response
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results in a net decrease in P-cells. In addition, P-cells can decompensate [65] when under 

high demand, producing less insulin per cell. This is due in part to the degranulation 

of P-cells during T1D progression [3]. Including any of these phenomena will change the 

parameter estimates for the immune-mediated killing of P-cells. More importantly, it could 

alter some of the conclusions of how we expect the P-cell population to respond to treatment. 

For example, the inclusion of degranulated P-cells could allow for a rapid rebound after IL-2 

treatment in new onset mice, as in [35], which cannot be reproduced by the one-compartment 

P-cell model we use.

In treating T1D in both NOD mice and humans, there are two main strategies. Admin

istration of anti-inflammatories, such as anti-CD3, Vitamin D or omega-3s [38] can reduce 

insulitis and hopefully prevent the development of an autoimmune destruction. Antigen 

specific tolerance, such as with oral administration of insulin, aims to delete the autoreactive 

T-cell clones directly [38, 81]. Only the former have had successful trials among humans, 

but the latter represent a more specific treatment.
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Figure 3.1: Progression of insulitis in the islets. Over time, immune cells such as T-cells 
and macrophages infiltrate the islets, killing 5 -cells and decresing insulin production.



56

Table 3.1: T1D progression in the NOD mouse
Time Event Source
9-15 days Apoptotic Wave [71]
18 days T1D in Treg deficient NOD mice [15]
3 weeks Initiation of Insulitis [26]
4-5 weeks Insulin-specific CD8s dominate [70]
4-5 weeks Rapid T1D after ablation of Tregs [20]
6 weeks Differential Prognosis with MRI [26]
6-8 weeks Decline in Treg effectiveness [69]
8 weeks IGRP-specific CD8s appear [70]
8-12 weeks 0 -cell mass starts to decline [4]
12-16 weeks Rapid loss of 0-cell mass [4]
16 weeks Median T1D onset [7]
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Table 3.2: Parameter values used in the model
Parameter Description value
J Influx of macrophages into pancreas 1 *106cells
5 Turnover of macrophages in pancreas 1 days-1

oq Basal macrophage activation rate of macrophages .05 days-1
a7 Macrophage activation rate induced by IFN-y 8 days-1

bo Basal macrophage deactivation rate .4 days-1

b1Q Macrophage deactivation rate induced by IL-10 8 days-1
c CD4 activation rate by IL-12 8 days-1
e CD4 deactivation rate 5.5days-1

Scaled IFN-y affinity of macrophages 25/J
V1Q Scaled IL-10 affinity of macrophages 5 /J
V12 Scaled IL-12 affinity of CD4 T-cells 5 /J
aT Influx of effectors into islets .7 *106cells
aR Influx of Tregs into islets .3 *106cells
Yt Proliferation rate of effectors 2 days-1

YR Proliferation rate of Tregs 2 days-1

Ot Max fraction of effectors in mitosis .4
Or Max fraction of Tregs in mitosis .8

5t 1 Basal death rate of Tregs in pancreas .2 days-1

5T 2 Death rate of Tregs due to IL-2 deficiency .8 days-1

kR Scaled affinity of Tregs for IL-2 5 5 /J
kT Scaled affinity of effectors for IL-2 20 5 /J
a c Production of CD8s .03
Yc Division rate of CD8s .27
5c1 Death rate of CD8s .01

5c2 Autoregulation rate of CD8s 2 .6*10-6  cells- 1days-1

kc Saturation constant for CD8 proliferation .75 J
n4 Rate of P-cell killing by CD4 .3
st 4 Saturation constant of CD4 killing 1

SR4 Control of Tregs over CD4 killing 30
ns Per capita rate of beta cell killing by CD8 3.2 *106cells
Yb Growth rate of beta cells .06
Ghb Glucose level for half maximal beta cell growth 161
5b Death rate of beta cells 1/60
Rq Average glucose production 864 mgdays-1

e gq Basal glucose decay rate 1.44 days-1

S/ Rate of insulin-mediated glucose uptake .72 days-1 /per ^U
o/ Max insulin production rate 43.2 ^Udays- 1  per mg
5/ Insulin decay rate 432 days-1
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Figure 3.2: Equilibria of (3.5) with the parameters in Table 3.2.
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Figure 3.3: Bifurcation diagrams (A: fcy, B: Q, and C: <tt and cfr simultaneously) of the initiation model. Solid lines are stable states 
and dashed lines are unstable saddles. Black curves indicate that effectors and Tregs coexist, blue curves have only effectors, red curves 
only Tregs, and green curves represent the trivial solution. The arrows indicate the trajectory during IL-2 treatment (B) and anti-CD3 
treatment (C). Dotted lines mark the baseline values in Table 3.2 and the locations of saddle-node bifurcations.

Cn
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Table 3.3: Summary of Treatments
Treatment Change Timeframe
IFN-a Treatment 
Boost of Tregs

Day 63-77 
Day 77-78

Set yc =  V(2 =  0 
Increase a T by 150/J

anti-CD3 Treatment 
anti-PDL1 Treatment

Day 35-49 
Day 119-133

Set aT =  aR =  OT2 =  0 and OT1 
Set yC =  YT and v(2 =  200/J

= 1

IL-2 treatment Every two days Pulse Q with Q0 =  500 and Oq := 1days- (

F igure 3.4: Time series with M  *(t0) =  1.6 * 107cells (A,B) or M  *(t0) =  8 * 106cells (C,D). 
Panels A and C show the CD4 and macrophage populations. Panels B and D show the 
CD8 population (black), ft-cells (blue), blood glucose (solid red), and the glucose threshold 
for T1D (250mg/dl, dotted red).
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Figure 3.5: Simulation of IL-2 treatments of different lengths. Using the baseline 
parameters, we simulated treatment with IL-2 for 0 (Panel A), 1 (Panel B), 5 (C), or 
11(D) weeks. Each panel shows the time course of the inflammatory macrophages (M *), 
resting macrophages(M), effector CD4s (T ), and Tregs (R). The dosage is Q — 500.
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Figure 3.6: Incidence of T1D with IL-2 treatment for 0, 1, 5, or 11 weeks.
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Figure 3.7: Simulation of treatment of NOD mice with aCD3 and aPDLl. We generated 
100 different parameter sets ( ‘mice’) and simulated each T1D progression under four 
different simluated treatments. Mice received no treatment, aCD3 at 5 weeks of age, aPDLl 
at 17 weeks, or both treatments. This is a replication of experiment from [21].
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Day

Figure 3.8: Simulation of treatment of NOD mice with IFN-a and Tregs. We generated 100 
different parameter sets ( ‘mice’) and simulated each T1D progression under four different 
simluated treatments. Mice received no treatment, IFN-a at 9 weeks of age, Tregs at 11 
weeks or both treatments. This is a replication of experiment from [23].
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Figure 3.9: Sensitivity analysis of full model. Parameters that primarily affect age of 
onset. We vary an individual parameter from 50% to 200% of its baseline value. We hold 
each other parameter constant except for the killing rate of CD8 ns and the initial number 
of activated macrophages M * (t0). The blue line shows the percentage of diabetic mice, by 
the end of 50 weeks, in the sample. The red and grey lines show the median and deciles, 
respectively, of the age of onset.
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Figure 3.10: Sensitivity analysis of full model. Parameters that primarily affect incidnece. 
We vary an individual parameter from 50% to 200% of its baseline value. For each other 
parameter, we randomly sample 100 times from a normal distribution centered on the 
baseline value and run a seperate simulation for each parameter set. The blue line shows 
the percentage of diabetic mice, by the end of 50 weeks, in the sample. The red and grey 
lines show the median and deciles, respectively, of the age of onset.



67

<D
CL

TO
,o

<D
CL

TO
,o

Treg Growth Rate anced Death Rate Due to  IL -2  Deprivatio Activation rate o f M acs by CD4

0.05 0.10 0.20
CD4 Influx into Islet

0.04 0.08
Baseline Activation o f Macs

TO
<D
<D
CL

TO
,o

Figure 3.11: Sensitivity analysis of full model. Parameters that affect incidence and age 
of onset. We vary an individual parameter from 50% to 200% of its baseline value. For 
each other parameter, we randomly sample 100 times from a normal distribution centered 
on the baseline value and run a seperate simulation for each parameter set. The blue line 
shows the percentage of diabetic mice, by the end of 50 weeks, in the sample. The red and 
grey lines show the median and deciles, respectively, of the age of onset.
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Figure 3.12: Schematic diagram summarizing the model in this chapter. Arrows are 
colored according to whether they affect incidence/penetrance (blue), age of onset (red), or 
both (purple). The strength of the effect is denoted by the arrow thickness. Arrows in dark 
cyan had negligible effect.
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Table 3.4: Key behaviors this model can reproduce
Phenomenom Source Outcome
T1D at 16 weeks [4] Fitted
T1D in 80% of females [8] Fitted
T1D rapid without Tregs [15] and [20]
Protection from T1D with enhanced IL-2 production [62]
Protection from T1D with exogenous IL-2 [62]
Protection from T1D with anti-CD3 treatment [2 1]
Protection from T1D with Treg treatment [23]
Delay of T1D with IFN-a treatment [23]
Synergy between Treg and IFN-a treatments [23]
NOD8.3 have faster onset, same incidence [74]
IGRP-specific CD8 predict outcome [70]
Inflammation predicts T1D months in advance [26]



CHAPTER 4

ACCELERATION AND DELAY OF TYPE 
1 DIABETES BY VIRAL INFECTION 

4.1 Introduction
The link between viral infection and the development of autoimmune disease is complex. 

Incidence of autoimmune diseases such as Type 1 Diabetes (T1D) are rising worldwide [28], 

particularly in developed nations and among those with access to modern healthcare [17]. 

The ‘hygiene hypothesis’ suggests that early childhood infection may be protective against 

the development of such diseases. On the other hand, viral infection is thought to act as a 

trigger of automimmunity in some, if not all, cases [27].

Viral infection of the NOD mouse has revealed this dichotomy in the laboratory setting. 

It may accelerate or delay T1D depending on the type of virus and the age of infection. The 

goal of this chapter is to understand the mechanisms by which viral infection can change 

the course of T1D.

4 .1 .1  B io lo g ic a l b a c k g r o u n d

The nonobese diabetic (NOD) mouse is a useful animal model that spontaneously 

develops T1D. NOD mice develop a progressive insulitis or invasion of pancreatic islets 

by immune cells beginning at about 3-4 weeks of age. In roughly 80% of females, this leads 

to destruction of the ft-cells and T1D onset at about 12-20 weeks [38]. Viral infection of 

these mice can either accelerate or delay T1D, depending not only on the virus but also the 

age of infection. Table 4.1 summarizes some representative experiments (see [16] for a more 

complete list).

Viruses can affect T1D progression in many ways. First, many viruses activate im- 

munoregulatory processes. Infection of NOD mice with Coxsackie virus B3 (CVB3) or 

lymphocytic choriomeningitis virus (LCMV) can promote the development of regulatory 

T-cells (Tregs) and increase expression of the anti-inflammatory molecule PDL1 [23]. Ar

tificial stimulation of Tregs and PDL1 abrogates T1D with similar effectiveness as viral
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infection [23]. Viral infection can also interfere with the ongoing autoimmune response. 

During murine gammaherpes virus (MHV) infection, self antigen processing by dendritic 

cells is reduced [64].

Viruses can affect T1D progression even if they do not invade P-cells. LCMV and RRV 

infect cells within the pancreas, but not P-cells [23]. RRV does not even infect islet cells 

within the islet of Langerhans, where P-cells reside [32]. CVB4 does infect P-cells and is 

capable of accelerating T1D [61], suggesting that the cell type invaded determines the effect 

of the virus [23]. This is far from certain, however, as the type and number of infected cells 

is hard to study.

In general, infection early in life tends to be protective from T1D, whereas infection later 

in life can accelerate it. For example, infection with rotavirus (RRV) early in life delays T1D 

[32], whereas infection later in life accelerates it [33]. One hypothesis is that the increase 

of insulitis over time makes viral infection more diabetogenic. During an infection or other 

inflammatory event, innate immune cells called den dritic cells (DCs) become activated in 

response to either signals of damage or microbial products. These DCs can then activate 

antigen-specific T-cells, which fight the infection. However, there is no gurantee that the 

T-cells they activate have the correct specificity. For example, a virus can cause localized 

necrosis, leading to the release of self antigens. The DC presents these self antigens in an 

immunogenic manner alongside the viral antigen. We show in chapter 1 that the presence 

of regulatory T-cells (Tregs) and tolerogenic DC can make it more likely to generate a 

viral-specific immune response, but it is never guaranteed. As the mouse ages and insulitis 

becomes more intense, the presentation of self antigen increases. This makes it more likely 

that a viral infection could activate an autoimmune response. This first mechanism is 

known as ep itop e  spreading as the immune response spreads from antigen, or epitope, 

to another.

The second major mechanism of T1D acceleration is bystander activation, the nonspe

cific activation of T-cells by inflammatory signals. Immune cells communicate via messenger 

molecules called cytokines. During an infection in the pancreas, T-cells that already reside 

there will, regardless of their specificity, receive many activating signals from other immune 

cells. The incoming signals may activate the T-cells to perform their effector function: the 

killing of P-cells. As insulitis progresses, more T-cells home to the pancreas, increasing the 

effect of bystander activation.

Viral infection early in life is often beneficial for NOD mice. One hypothesis is that 

viral infection generates a population of regulatory T-cells or Tregs [16, 56]. Although
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Tregs are antigen specific, they can control other T-cells nonspecifically via cytokines as 

well as semispecifically, through colocalization to the same dendritic cell (see Chapter 2). 

The viral infection will also generate a virus-specific immune response that competes with 

for resources with the autoimmune response.

4 .1 .2  P r io r  m o d e lin g

We discuss much of the necessary modeling background in the prior two chapters. For 

more information on T1D in the NOD mouse, see Chapter 3. For more information on 

models of immune reuglation, see Chapter 2. Here we highlight some important concepts.

The development of T1D occurs in two stages. First, an apoptotic wave drives the 

initiation of insulitis [71]. Maree and Keshet show that the failure to clear necrotic cells 

can potentially lead to an instability of the resting state [47]. Second, the progression of 

insulitis results from the outgrowth of a particular population of T-cells [7]. Keshet and 

Khadra [40] demonstrate that competition between different high affinity and low affinity 

T-cells can lead to bistability. In Chapter 2, we develop a two-stage model of T1D and 

show that it can reproduce many results from the literature.

Viral infection may affect T1D due to immune competition or the generation of Tregs. 

De Boer studies the competition between T-cell populations and concludes that competition 

should lead to domination by the highest affinity T-cell clone [19]. In Chapter 2, we expand 

this model to include multiple DC populations and find that this allows multiple T-cell 

populations to coexist. We also show that this competitive balance depends on the presence 

of Tregs. Tregs can also prevent 5-cell destruction within the islet [15] instead of directly 

inhibiting T-cell growth. Alexander et al. [5] review this mechanism of Treg activity and 

conclude that Tregs can make self reactive responses arbitrarily small.

In a model of multiple sclerosis treatment, De Boer and Borghans show that adminis

tration of T-cells suppresses immunopathology via the induction of Tregs [11]. In Chapter

3, we show that Tregs can act to slow but not stop T1D. Tregs invade the islets along 

with effector T-cells after the apoptotic wave and prevent the immediate destruction of the

5-cells. Tregs and effectors coexist in one of two states: severe or mild insulitis. The former 

leads to T1D progression, whereas the latter does not.

4 .1 .3  O u r a p p ro a ch

The goal of this study is to investigate the effect of viral infection on the timing and 

incidence of T1D. In particular we are interested in how the nature of the virus and the 

time of infection change the outcome. Viruses may affect T1D in different ways and a
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mathematical model allows us to study each mechanism in isolation. The mechanisms we 

consider are

• virus induced inflammation of the islets, which leads to greater presentation of self 

antigen by immunogenic DC (epitope spreading),

• the nonspecific activation of T-cells leading to rapid 0-cell destruction (bystander 

activation),

• competition between viral-specific T-cells and self reactive T-cells, and

• the induction of Tregs by viral-specific T-cells.

Our model has two components: an islet state model and a T-cell/DC interaction 

model in the pancreatic lymph node. The islet state model tracks the transition of islets 

between different states of infection, inflammation, and insulitis. Each islet state generates 

a different population of dendritic cells. For example, dendritic cells from inflamed islets 

are immunogenic and those from infected islets are more likely to present viral antigen. The 

heterogeneity of the islets is therefore crucial for accurately representing the full array of 

dendritic cells that traffic to the pancreatic lymph node. The T-cell/DC interaction model 

is a basic model of T-cell growth and death in response to the DC population emerging from 

the pancreas. T-cells competitively bind to DC, proliferating when bound to immunogenic 

DC and dying when bound to tolerogenic DC. These T-cell populations in turn then drive 

the transitions in the islet state model.

We find that time of infection, especially in relation to the apoptotic wave, can greatly 

alter the effect of viral infection on T1D. In general, we find that early infection should 

delay or eliminate T1D whereas later infection promotes or acceleratates it. We predict 

that bystander activation can cause an acceleration of T1D but decrease incidence. The 

combination of multiple mechanisms in a single virus can create a window of infection during 

which infection is beneficial.

4.2 Model description
4 .2 .1  Islet eq u a tio n s

As Diabetes progresses, Islets are gradually invaded by T-Cells, B-Cells, and inflamma

tory macrophages in a process called insulitis. To allow for efficient, unbiased comparisons 

of the extent of insulitis in different mice, pathologists group islets into distinct histological 

stages. We follow the same convention here, except that for the first two stages we include 

additional states, 10 and I { , which differ subtly as described below.

• Stage 0 (Io and Iq): No insulitis
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• Stage 1 (I ( and I*): Peri-Insulitis (Leukocytes accumulate at the periphery of the 

islet)

• Stage 2 (I2): Intraislet-Insulitis (Leukocytes penetrate into the islet, covering less 

than 50%)

• Stage 3 (I3): Intraislet-Insulitis (Leukocytes penetrate into the islet, covering more 

than 50%)

• Stage 4 (I4): Intraislet-Insulitis (Leukocytes penetrate the entire islet)

Progression from stage 0 to stage 1 represents the initial infiltration of T-cells into an islet. 

We assume that T-cells can only home to islets that are inflamed and thus express the 

necessary adhesion molecules and chemokines. Let I0 be the proportion of uninflamed islets 

and I* the proportion of inflamed islets,

“d 0 =  — (a +  f  (t)) ̂  +  k I0 

“ I *
“■“ t° =  (a +  f ( t ) )^0 -  k I0

Islets become inflamed at a basal rate a, but there may be additional time dependent 

inflammation

f (t) J aW ^w( <   ̂ <  ŵ2 
f  ( ) [0  else

due to either a developmental program or weaning of the mice.

As with state 0, there are two classes of state 1 . State 1( are islets that have a large 

number of Tregs, high expression of CRIg and IL-10, low expression of IL-12 and IFNg, and 

low levels of beta-cell destruction. Dendritic cells within these islets remain tolerogenic when 

they traffic to the pancreatic lymphnode and do not promote a further immune response. 

I* have a fewer Tregs, low expression of CRIg and IL-10, high expression of IL-12 and IFNg, 

and subclinical yet persistent levels of beta cell destruction, which is sufficient to drive an 

immune response in the pancreatic lymph node. Entry into one class or the other from the 

uninflamed state depends on ratio of effector to Treg cells in the periphery.

I* to I* transition =  ftp(TS, R)I*

I* to I ( transition =  ft(1 — p(TS, R ))I* 

p{Ts R) =  ( feT*>'‘
S Rn +  (kTS)“

All islets then progress through stages 1 ^  4 at a rate that depends on TS. We assume 

that progression of the disease is dependent upon a continued immune response, which 

gradually progresses in pathogenicity over time.
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/  to /i+1 transition — p/jTs

After reaching stage 4, islets are destroyed at a rate n. Figure 4.1 schematically represents 

these transitions.

In summary, the islet equations are

— - (a +  f  (t)) / Q +  K/o
*

-^0 — (a +  f  (t))/o  -  K/* -  P/*Ts 

- t -  — P (1 -  p (T s, R ))/*T s  -  p /1Ts

*
- — Pp(Ts, R )/*T s -  p/*Ts (4.1)

f  — pf/* +  / !  -  

f  — P(/2 -  / 3>TS

t  — P/sT* -  ^

4 .2 .2  V ira l in fe c t io n

During viral infection, infected cells and virions may be unevenly distributed throughout 

the pancreas. For simplicity, we assume that each islet may be infected individually, but that 

the inflammation state does not affect the susceptibility to infection, or the time it takes to 

clear the virus. To account for islets that infect the pancreas but not the islets, we divide the 

pancreas into ‘ islet zones’ (Figure 4.2), which include an islet and the surrounding tissue. 

Let I(t) — { / Q, /* , ■ ■ ■ } be the vector of all uninfected states, and let V (t) — { VQ, VQ*, ■ ■ ■ } 

be the vector of all corresponding infected states. Then,

I
—  — L/1 -  g(t)I +  5v V

V
—  — Ly V  +  g(t)I -  5v V

where

/,\ I rmax înf <  t <  tinf +  ur
g(t) = \ 0 else

is the infection rate. The matrix L / represents the transition process in (4.1). The viral 

transition matrix, L y , is similar to L / but may differ in the following ways:

1. The islet inflammation rate, a, could potentially be much higher during viral infection. 

This depends on the nature of the virus, its tendency to elicit an immune response, 

and whether or not it infects islets. Therefore we define two parameters a/  and ay
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that describe this inflamation rate in infected and uninfected islets-zones.

2. The death rate of 0-cells in the islets may be greater in infected areas. However, we 

are not considering viruses that directly kill 0 -cells. During an immune response, the 

release of cytokines can activate cells in a nonspecific way in a process called bystander 

activation. As discussed in the previous chapter, islets with advanced insulitis harbor 

a large population of potentially deadly T-cells that are kept under tight regulation 

by Tregs. Thus we assume that the viral infection can eliminate islets in the V2, V3, 

or V4 classes. We define two separate killing rates ni  and nv . The viral islet-death 

rate, nV, is not only larger than ni, but also applies to V2 and V3.

The full islet equations are

■—r =  - ( a i  +  f  (t))Io +  kIo -  g (t)Io +  ^v Vo
— T *

=  (ai +  f  (t))Io -  kI* -  0I*T* -  g(t)I*  +  £vVo*

—t- =  0 (1  -  p(T*, R))I*Ts -  phT s -  g (t )h  +  £v Vi

-T *
- 1  =  0p(T*, R)I*T* -  pI*T* -  g(t)I*  +  £v Vi*

- t  =  p(I* +  Ii -  h )T *  -  g (t )l2 +  £vV2

—I o
~—T =  P(I2 -  T3)TS -  g (t)T3 +  ^vV3 

=  pI3TS -  ni T4 -  g (t)I4 +  ^vV4

for uninfected islets and

~—f  =  - ( a v  +  f  (t))V 0 +  k V 0 +  g (t)I0 -  ^vV 0 

—V *
=  (av +  f  (t)) Vo -  kVo* -  0Vo*T* +  g(t)I* -  5vV0*

- t -  =  0(1 -  p(T* , R)) Vo*T* -  pIiT* +  g(t)Ii -  £vVi 

-V *
—t

=  0p(T*, R) Vo*T* -  pVi*T* +  g(t)I* -  £vVi*

—-t2 =  p(Vi* +  Vi -  V2)T* +  g (t )l2 -  (5v +  nv) V2 

-—t3 =  p(V2 -  V3)Ts +  g(t)l3 -  (5v +  nv) V3 

4 =  pV3Ts +  g (t)l4 -  (5v +  nv) V4

for infected islets.
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4 .2 .3  T -c e l l  eq u a tio n s

In Chapter 2, we develop a model of multiple T-cell clones competing via competition 

for space on dendritic cells. Here, we develop a slightly simpler model that preserves the 

following features:

• Immunogenic DC promote T-cell proliferation, whereas Tolerogenic DC promote T- 

cell apoptosis or anergy.

• Dendritic cells have a finite capacity for interacting with T-cells. This limits the 

proliferation of T-cells and is the source of competition.

• T-cell-dendritic cell interaction is antigen specific, although a DC may present mul

tiple antigens.

• Tregs depend on growth factors produced by effector cells to proliferate.

First, we consider a single T-cell clone, T , and two dendritic cell populations: immuno

genic, D 1, and tolerogenic, D T. These dendritic cell populations present antigen in the 

same way, so T  interacts with them equally strongly. The T-cell clone transitions between 

three states, a dividing state T *, a resting state To, and an anergic state Ta according to

dT:
~dt =  ap

=  apC* (T  -  T * -  T a) -  WpT* (4.2)

dT a
~dT =  ap

=  apCa(T  -  T * -  T a) -  WpTa (4.3)

C * =  ctD1 (4.4)

Ca =  ctD t  (4.5)

where C * and C a are the numbers of contacts per day that a single T-cell has with 

immunogenic and tolerogenic DC, respectively. We assume that transitions between T0, 

T *, and T a are rapid and equilibriate quickly. Therefore, we set (4.3) and (4.4) to zero. 

In steady state T * =  T fc+(T+Ca and T a =  T  k+CC*a'+Ca, where k =  wp/a p is the number of 

contacts required per day to achieve half maximal activation. Therefore the full formula for 

the T-cell equation is

- T  =  t  YC * -  ^Ca -  ^ t
dt kp +  Ca +  C * T 

This description readily expands to include multiple DC populations, indexed by i, and 

multiple T-cell populations, indexed by j .

dTj =  T  TC * -  ^Cj _  _ T 
dt j kp +  Ca +  C* T j



78

C j  =  E  "ij D T
i

These equations change slightly for a Treg population. First, tolerogenic DC have no effect 

on Tregs. Second, Tregs depend on T-cells for growth factors. We model this with a reduced 

activation rate while bound to immunogenic DC. For a Treg bound to DC i, the activation 

rate is

„ =  Gi
kuHi +  kj +  Gi 

Gi =  Effectors that contact DC i

Hi =  Tregs that contact DC i.

The full Treg equation for Treg population Rj is

d R  =  R YCR
dt j kv +  CR U1 Tjj Rj ^ T C R  -  h Tj 

r>J GiCR =  £  "ij Di
i kR Hi +  kJ +  Gi

Gi =  E  "ij Tj 
j

Hi =  " ij Rj
j

Rather than explicitly model the binding and unbinding of T-cells, we shall instead assume 

that the death rate of an individual DC is proportional to the number of contacts that it 

makes.

dD
dt =  Ai(t) — ^DDi — v y  ] " i jTj D i (4.6)

j

where " T  is the rate of contacts and v is the death rate per contact. If we assume that 

each DC can contact 10 T-cells simultaneously and that each interaction lasts around 10 

minutes, then " T  k, 103 per day. We assume that the max number of T Cells is roughly 

106 cells (in one ml of blood); therefore, "  k  10-3 .

4 .2 .4  S p e c ific  im m u n e  p o p u la t io n s

We track two populations of effector cells TS, specific for an islet-associated self antigen 

S, and TV, specific for the viral antigen V . We also consider a pool of self reactive T-cells 

R, which arise during the autoimmune response of TS. We expect that, even if they are 

not specific for the same antigen, S, they are specific to antigens that are correlated with 

S in space and time and therefore likely to be presented on the same dendritic cell. These
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antigens may or may not be correlated with V .

We track four types of dendritic cells.

• DT Tolerogenic DC presenting S but not V . Ts binds with affinity as , R with affinity 

asR. TV does not bind to these cells.

• DS Immunogenic DC presenting S but not V

• D y Immunogenic DC presenting V but not S. TV binds with affinity aV, R with 

affinity aVR. Ts does not bind to these cells.

• DB Immunogenic DC presenting both V and S. Ts binds with affinity as , TV with 

aV and R with the maximum of asR and aVR.

Tolerogenic DC originate only from uninflamed islets I  and islets with high Treg control 

(I(). Each day, At  DC leave uninflamed islets and traffic to the pLN, with a fraction 

0s expressing antigen S. Immunogenic DC originate from all other classes of islets. Any 

DC presenting viral antigens will automatically become immunogenic. Immunogenic DC 

leave the islets at a rate Aj , with proportions 0 s and 0V presenting self and viral antigens, 

respectively. To calculate the number of DCs that present both, we must also specify the 

correlation 0 . If 0  is equal or close to 1, then S and V will likely always appear together 

on DCs. If 0  is equal or close to -1, then S and V rarely co-occur. We can therefore view

0  to reflect which cells the virus is likely to infect. A value of 0  =  1 implies the virus only 

infects ft-cells, whereas a value of 0  =  —1 implies the virus invades cells outsides the islets. 

Let 0 b be the probability that a DC presents both antigens, then

Pb =  0s 0V +  0 a /  (1 — 0 V )(1 — 0s )0 s  0V 

A ts  =  0s A t  (I0 +  I() +  A t  (0s — 0b  )(V) +  V()

Ais  =  0s AI (I* +  +  2̂ +  3̂ +  I4) +  AI (0s — 0B )(V0* +  V(* +  ^2 +  ^3 +  ^4) 

AJV =  (0V — 0B )A J (V0 +  V0* +  V( +  V(* +  V2 +  ^3 +  V4)

A jb  =  0B A j (V0 +  V0* +  V( +  V(* +  V2 +  V3 +  V4)

Once inside the lymphnode, these DC interact with T-cells as described in the previous 

section. The full system is

Pb <  0
Pb >  0V >  0s 
Pb >  0s >  0V

0s +  0V — 1 Pb <  0V +  0s — 1
Pb otherwise

(4.7)
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*
-T V , rr YCy x rr u  ô
I T  — aR +  T yk P T c »  -  5tTv (4'8)

3 T  — * k 5 V  «  “
CS — os (DS +  DB) (4.10)

CS — os DT (4.11)

Cy — ° y  (D y +  d B ) (4.12)
 ̂ OsTs n /  i ^ OyTy n / ^  io\C * — °RSi--------- 7—------^ D y +  O r ^ ----------— ------—— — D S (4.13)

kRORS R +  OsT s +  k/ kRORV R +  Oy Ty +  k/
+  O ________° s  t s +  ° y  t v________D/  (4 14)

BS kRORS R +  OS Ts +  Oy Ty +  k/ y  .
DT

— ATS -  5DD t -  V(°S TS +  °RSR )D t (4.15)
D /

S — A/S -  5d D S -  v (oSTS +  ° r s R )D S (4.16)
D /

— A /y  -  5d D y -  V (°yTy +  ORyR)Dy (4.17)
D /

B — A /b  -  5d DB -  V(oyTy +  ° sTs +  o r bR )d B (4.18)

Figure 4.3 summarizes the specific immune populations schematically.

4.3 Virus-free dynamics
In the long term, the only steady state of the full system (4.1) and (4.7)-(4.18) is 

trivial, with no islets remaining. Thus, T1D is inevitable for a sufficiently long-lived 

mouse. However, the time it takes to reach this steady state can vary over several orders 

of magnitude. In this section, we demonstrate the apoptotic wave, though brief, can 

dramatically shorten the time it takes for T1D onset.

4 .3 .1  A n a ly s is  o f  islet eq u a tio n s

For constant TS — 0, the only equilibrium of (4.1) is the trivial solution: / Q — /*  — / 1 — 

■ ■ ■ — /3 — /4 — 0. Whereas if TS — 0, then (4.1) is degenerate and the equilibria form a

6-dimensional subspace. For nonconstant TS, there exist other equilibria. To see this we 

consider a greatly reduced system

f  — - P/ 3 TS (t)

^  — p/3Ts(t) -  n/4 

/3(0) — 1 

/4(0) — 0
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which has the solution

I3 (t) =  eV (t)

/4(t) =  pe-nt /" enTT s(t)eV(t) dr 
Jo

V (t) =  p /  T s (r ) dr
o

As t —— to, / 3 — eV(to) and / 4 — 0. We expect a nontrivial solution if Ts(t) dt is 

bounded.

Therefore, we consider the case Ts =  Toe-(5t. In the limit that t — to

Io =  - ^ e - ^  
a +  k

/o =  - ^ e - ^
a +  k

r | r+ 5 p e - ^  ( * ( e ^  -  e"T1 )  +  To(5 -  p)e"T1 )

11 +  ^  =  <*(5 -  p)2

5 e - ^  ( - 2*2 ( e ^  -  e ^ )  +  (5  -  p)2p2T2e"PT1 -  2(5 -  p ) « e " P T 1 )

/2 =  2(5 -  p)3*2
3 to("+p) (  3 (  "Zo P?b) 2 , . "To)

5 p3e « ( - 653 (e « -  e « J +  652To (5 -  p)e « J 

/3 =  6*3(5 -  p)4

5p3e-T0 "̂+p) ( - 3 * T 2(5 -  p)2e +  T03(5 -  p)3e "r°)  
+  V y

653(5 -  p)4

/4 =  0

Figure 4.4 shows the equilibrium distribution of islets states as a function of the initial 

T-cell population. We see that equilibrium changes continuously as a function of the initial 

condition. A larger initial T-cell population means that more islets will eventually end up 

with more advanced insulitis.

4 .3 .2  S te a d y  s ta te  o f  T -c e l l  eq u a tio n s

We recognize that (4.1) and (4.7)-(4.18) do not have any steady states. However, it 

is illustrative to consider a fixed islet population and compute the steady states of just

(4.7)-(4.18). This steady state gives us information on the progression of Type 1 Diabetes. 

The initial invasion of the islets can take one of two forms, either mild or severe, depending 

on the relative population sizes of effectors and Tregs. If Tregs outnumber effectors, then 

most newly infiltrated islets will enter the mild insulitis state. If effectors outnumber Tregs, 

most enter the severe state. In the absence of infection, (4.7)-(4.18) reduce to
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dTs  , T  7CS j C s z T  ( 4 i 9)
I T  =  “ s +  Ts kp +  C j  +  c S -  iT Ts (4 '19)

df  =  “ R +  Rk P T %  -  iTR  (4'20)
d D 1
—d ts =  0s A t  I t  -  5d DS -  v ( " s  Ts +  " rs R )—S (4.21) 

dDJ
-— -  =  0s AJ I j — ZD D s — v (" s  Ts  +  "R s R )D s (4.22)

Cs =  " s  d s  (4.23)

Cs =  " s —S (4.24)

CR =  " rs I--------- p" s T^  , , —s (4.25)kR"Rs R +  " s  Ts +  kj

where IS =  Io +  Ii and I j =  Iq +  I  ̂+  I2 + 13 +  I4 are the proportions of islets that export 

tolerogenic DC and immunogenic DC, respectively.

To analyze the equilibria of (4.19), we use the nondimensionalization shown in Table 

4.2. We see that after nondimensionalization, some parameters are dominant and others 

negligible. In particular, the proliferation and death rates associated with T-cell-DC in

teraction are much larger than the normal turnover rate of T-cells. To account for these 

differences of scale, we make the following substitution

i
7 ^  ge

ij  ^  me 

7f  ^  ke2

After substitutions, all parameters are O(1) except for e »  1. We use the substitution

X  -  e- 1  X - i  +  Xo +  •••

Y  -  e- 1  Y -i +  Yo +  •••

and solve (4.19)-(4.25) using matched asymptotic expansions. Substitution yields three 

different solution forms. First, if

I j <  j A r  Is7]Aj 
=  WiIs 

k  .1Is

then the only positive solutions have X - 1  =  X 0 =  Y- 1  = 0 .  The lowest order nonzero 

terms, X i and Y0, satisfy
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0 =  1 +  A i I j +  A t  I t  +  « r  Y0 +  (yA j I j — / A t  I t  )X ( (4.26)

0 =  Aj  a s  1r s  II X ( +  a R AR(1 +  <aR)Y0(1 — Y0 ) (4.27)

which has a unique positive solution. Thus, if anergy from tolerogenic DCs outweighs 

proliferation from immunogenic ones, then the Ts population will be very small. More 

importantly, we find that R ^  T s, indicating that almost every islet will enter the mild 

insulitis state, I( , as opposed to the severe insulitis state I( . This means that I j will rise 

slowly. However, it will still rise as our solution Ts does not tend to zero.

The second solution type occurs when Ij  >  w(IT and

I j <  It1 — ar s  /yAI 
=  W2IT

=  .35It

indicating intermediate numbers of immunogenic DC. Under these circumstances, both X  

and Y  are O(e- ( ):

_ ( A r (iA j I j — / A t  I t  )2

Ar ^ A j I j (Ar +  aRV — 1) +  / A t  It  (1 — Ar  ))
_ ( Ar (i Aj I j — / A t  It  ) (—i A j  I j +  / A t  It  +  i A j  I j aRs)

A r(7 A i I j (Ar +  aRV — 1) +  / A t  I t  (1 — Ar ))

As Ts and R have the same order, we expect that significant numbers of islets will enter 

both the severe and mild states. The higher absolute number of Ts cells means that these 

islets will also progress faster to the latter stages, which only produce immunogenic DC.

Finally, if I j >  w2IT, the Treg population cannot compete with the effector population 

and Y  drops to a lower order of magnitude

_ ( Ar ^ A j I j — ft At  It  )X  -  e- 

Y

CtR
/ A t  It  — i A j  I j

—lA j  I j +  / A t  It  +  i A j  I j aRs 
As X  »  Y , virtually all newly infiltrated islets will enter the severe insulitis state.

4 .3 .3  E ffe c t  o f  th e  a p o p to t ic  w ave  on  T 1 D  p ro g re ss io n

The numbers of immunogenic and tolerogenic DC entering the pancreatic lymph node 

presenting self antigen (I j and It ) are the key values driving T1D progression. To examine 

how these values change we apply our nondimensionalization to (4.1) and make the following 

substitution
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0 ^  eb 

p ^  er

This substitution ensures that all parameters are now close to one except for e »  1. After 

substitution, we recover the following

=  - e b ^ ^ X l T  
a +  n

=  eX  ( ba h B (X /Y )T «T -  rT*)

=  eX  (b ^ (1 -  B (X / Y ))I0T -  r h )
\ a +  n )

=  erX (Ii +  I* -  I2)

=  e rX (I2 -  I3)

=  e X (r l3 -  nl4)

=  n T T
n +  n o

=  n T T
n +  n o

where I  T is the total number of uninfiltrated islets. Initially, all islets are uninfiltrated 

(It  =  1), so Ii  =  KIt . For our parameter choices, this implies that Ii  <  w*It . Therefore,

X  is initially O(e), and Y  is O(1) so B (X /Y ) is O(e2). Thus, the transition from Io to I l 

will be extremely slow: O(e4).

The apoptotic wave greatly increases a temporarily and thus modifies the DC population. 

In the previous section we showed that if roughly 9% or more of all islets become inflamed, 

then X  is O(e- i ) and Y  is O(1)or O(e- i ). In either case, all transition rates in the islet 

model become O(1). If sufficient number of islets are infiltrated by T-cells during the 

apoptotic wave, then DC originating from those islets can continue to drive the T-cell 

population even after the wave ends, resulting eventually in T1D (Figure 4.5). However, if 

the wave is too brief or its magnitude too small, then most of the islet population remains 

uninfiltrated (Figure 4.6). The DC population then reverts to the prewave state and T1D 

progression is slow. Table 4.3 lists the parameters used for simulation.

4.4 Viral infection
We expect that viral infection will have fundamentally different effects whether it occurs 

before, during or after the apoptotic wave. Not only that, viral infection could affect T1D 

progression by several mechanisms simultaneously, in particular,

—IT
—t
—I*
—t
—I*
—t

—I2
—t

—I3
—t

—I4

—t

Io
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• Viral infection of the pancreas can lead to inflammation in the islets and the generation 

of more immunogenic DC. In essence, infection acts as a second apoptotic wave. We 

implement this with (ay >  a/ ).

• Viral infection can lead to bystander activation of T-cells already within islets. This 

could rapidly precipate T1D, but also be protective in the long term by eliminating 

the most inflamed islets. We implement this with (ny >  n/)

• Viral-specific T-cells can compete with self reactive T-cells in the lymph node. For 

simplicity we let 0y  — 0S — .5. The T-cell populations compete when ^  — 1 and do 

not compete when ^  — - 1 .

• Viral-specific T-cells can stimulate the growth of Tregs, which in turn limits the growth 

of self reactive T-cells. We implement this with o Ry >  0.

To reduce the total number of cases, we shall only analyze these properties in isolation.

4 .4 .1  V ir u s - in d u c e d  in fla m m a tio n  a ids T 1 D  p ro g re ss io n

If the only effect of the viral infection is to induce inflammation, then the forms of 

(4.19) still apply. The DC inputs / T and / /  do change, as the balance between / Q and /* 

shifts. In the absence of infection, the solution of (4.1) approaches a stable manifold with 

/ * / / Q — a / / k. During infection, if we assume that ay  »  a/ , then

/* ^ _______ ay g_______
K(ay +  5y +  k +  g)

where 5y is the rate of viral clearnace and g is the infection rate. Virus induced inflammation 

could therefore increase / /  above the critical thresholds of either w 1 / t  or w2/ t . In this 

way, the viral infection is similar to the apoptotic wave. Such a viral infection has less 

impact in older mice as fewer islets are uninfiltrated and thus susceptible to virus-induced 

inflammation. Figure 4.7 shows the effect of this type of infection on / / ,  / t  (panels A, C), 

insulitis, and insulin production (panel B, D). Infection at both 0 (A, B) and 60 (C, D) 

days accelerates T1D compared to uninfected mice (shown by grey lines), but the effect is 

stronger in the earlier case. Figure 4.8B shows the effect of viral infection at different ages 

on incidence and age of onset. Viral infection generally speeds progression, except where it 

overlaps with the apoptotic wave (shown in grey) when it is redundant and has little effect.

4 .4 .2  B y s ta n d e r  a c t iv a t io n  in h ib its  T 1 D  p ro g re ss io n

We assume, based on the histological data in [61], that bystander activation only affects 

islets with level-2 insulitis or above. Therefore, it is not a significant factor for young 

mice with little insulitis. If a sufficient number of islets have advanced insulitis, then their
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destruction may precipitate rapid T1D. However, if T1D is not immediate, our analysis 

suggests that T1D is avoided altogether. The mechanism for this is a reduction in I j 

without a corresponding reduction in IS . More plainly, bystander activation selectively 

eliminates islets that are the source of immunogenic DC presenting self. Figure 4.9 shows 

the effect of this type of infection on the islet population (panels A, C, E), insulitis, and 

insulin production (panel B, D, F). We group the islet population into no insulitis (black), 

stage 1 insulitis (red), and stage 2-4 insulitis (blue). Infection at 0 days (A, B) has no effect 

compared to the uninfected case. At 60 days (C, D), there are sufficient islets with advanced 

insulitis that infection makes a significant difference. The elimination of these islets does 

cause a sudden drop in insulin production, but it does not precipitate insulitis. In fact, 

disease progress is significantly slowed. By 100 days (E, F), there is a sufficiently large 

number of islets at stage 2 or greater that their destruction immediately precipitates T1D. 

Figure 4.8C shows the effect of infection at different ages on incidence and age of onset. 

Infection early in life has little effect, but infection from 3-8 weeks completely eliminates 

T1D. Later infection may accelerate T1D, but the incidence is still lower than in the absence 

of infection.

4 .4 .3  C o m p e t it io n  o f  v ira l an d  se lf  re a c t iv e  T -ce lls

During infection, the presence of viral-specific T-cells in the pancreatic lymph node can 

interfere with the growth of self reactive T-cells by competing for space on DCs. Unlike the 

previous cases, this mechanism substantially changes the form of the solution for X  and Y. 

To study this case we use the substitution

-17 — ge
-1j  — me 

7J — ke2
_1

7 v  —— 7(7s e

and seek solutions to lowest order in e.

We consider a virus with ^  =  1 and 0 v  =  0s . With these parameters, all DCs from 

infected islets present both viral antigen and the self antigen, S, or no relevant antigens,

i.e., 0 b  =  0 v  =  0 s . The viral reactive T-cells dominate the interaction with DCs from 

infected islets, as " V >  " s . Therefore, to first order in e the dynamics of self reactive T-cells 

are determined by DCs migrating from uninfected islets. In the absence of infection, the 

nondimensionalized self reactive T-cell population, X , is © (e1) if If <  w1IS and O(e-1 ) if



87

/ /  >  w1/ T. This still holds true during infection with a competitive virus. Suppose that, 

prior to infection, the number of inflamed and uninflamed islets are given by i / ,u and / t ,u, 

respectively. Then during infection,

/ /  =  v//,u

i r  =  v iT,u (4.28)

v =
V g(t) +

where g(t) is the infection rate and is the rate that the virus is cleared from an islet. 

The ratio of / /  to i r  does not change, as we assume that the inflammation rate, a, is not 

modified by infection.

The impact of infection by a competitive virus is subtle. When / /  <  w1/ T, X  ~  eX 1 and

Y  ~  Yo regardless of the level of infection; however, the values of X 1 and Y) may change. 

The equations defining X 1 and Yi are derived by substituting (4.28) into (4.26)-(4.27).

1 +  vAr i f  u +  vA r / t  u / NX 1 =  — i ----- f ^ 4 1 1,u (4.29)
4 A /v // ,„  -  / A t v /r ,„

0 =  A /O 'R S v i/,«X 1 +  a RkR(1 +  « r)y )(1 -  Yo) (4.30)

We are interested in how a decrease in the proportion of uninfected islets, v , changes the ratio 

of J =  X 1/Y0. Therefore we make the substitution X 1 =  JY0 into (4.30) and differentiate 

with respect to v. We find that

dJ J (1 +  OrY  ) (A / a s  y / / ,„ (A / / / ,„  +  At  / t ,u)v 2<trs J +  <4RfcR(1 +  Or Yo )2)
* . (4.31)dv a Rvx

X =  &r (1 +  A / i /,„v  +  At  /r ,«v ) +  (aRfcR(3 +  2A/ i /,„v  +  2Ar /r ,«v ) (4.32)

+  A /a sY //,« (A / / / ,„  +  At  / t ,«)v24'rs J ) Yo (4.33)

+  a R kR(3 +  A/  / / ,«q +  Ar  / r ,«q)Yo2 +  a R Y03 (4.34)

which is strictly negative. This means that as more islets become infected and v decreases, 

the ratio of self effectors to Tregs will increase. This is because the tolerogenic nature of 

the DCs migrating from these islets has a net negative effect on the self effector population. 

Therefore any infection by this type of virus, at a time prior to widespread insulitis, is likely 

to speed progression slightly. Infection at 20 days, shortly after the end of the apoptotic 

wave, is an example of this (Figure 4.10C, D). Although the T-cell populations is elevated, 

there has not yet been sufficient time for the development of insulitis in many islets. Viral 

infection at this time provides a sufficent boost to the Ts population to speed T1D onset 

and increase incidence.
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Infection by a competitive virus can speed progression when tolerogenic DC outnumber 

immunogenic DC. This condition is generally met in young NOD mice, except for during the 

apoptotic wave when viral infection interferes with the instigation of the immune response. 

Although the impact of viral infection on the solutions of X  and Y  is small, the effect 

on T1D progression can be quite large. Infection at 6 days (Figure 4.10A and B), which 

perfectly overlaps the apoptotic wave, reduces the self reactive T-cell population by about 

50%. This is enough to completely prevent T1D progression. Thus, viral infection can 

prevent T1D early in life, accelerates it in young adulthood, and has little effect later on 

4.8D.

Finally, in the case that the entire pancreas is infected then

X  =  aas +  7 " v A j
aas +  Y ("v  -  1)Aj 

Y = 1

=  aas +  7 " v A j 
a<7s

This solution does not depend on Is  or I j , which are now both zero. We find that the 

solution for both X  and Y  is now O(1). If prior to infection, Ij ,u <  w1IS,u, then this 

dramatically increases the rate of islet invasion and insulitis progression. However, if Ij ,u > 

w1Is,u prior to infection, then this should slow progression, but only for the duration of 

infection. If a viral infection of this kind takes place during the apoptotic wave, then the 

wave will become ‘invisible’ to the T-cell population, not affecting it at all.

4 .4 .4  V ir u s - in d u c e d  r e g u la to r y  T -ce lls

The last viral mechanism that we consider is the induction of Tregs. We have so far 

assumed that the regulatory T-cell population reacts to the same antigen, S, as the self 

reactive population or, equivalently, to an antigen that is present on the same DC as S. 

Under these conditions, if viral infection increases Treg proliferation, then it necessarily will 

boost self reactive T-cells as well, the case we studied in the last section. Here, we suppose 

that it is possible for the viral infection to stimulate the growth of the Treg population 

without also stimulating the self reactive population. In other words, we are assuming that 

Tregs respond to a distinct antigen from S , but one that is still often associated with it. In 

practice, this means that we set " RV >  0, meaning that Tregs can bind to DC that present

V without S.

Viral infection prior to the apoptotic wave boosts the Treg population and prevents the 

development of T1D (Figure 4.8E, Figure 4.11A, B). As with competition, the perturbation
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of the immune populations is subtle (the unperturbed system is shown in grey). If I j < 

w (IT, then X ( and Y0 now satisfy

where IV is the total number of infected islets. We assume that aV >  aRV, so the solution 

of Y0 remains bounded. The total number of Tregs is only increased slightly by infection at 

day 0 (Figure 4.11A), but this is enough to change the course of T1D development. Infection 

at day 30 also delays T1D, but the effect is only transient as IJ has already crossed the 

critical threshold.

We develop a mathematical model of T1D progression in the NOD mouse. The model 

has two components: an islet transition model that tracks inflammation, insulitis, and 

infection and an immune model that tracks populations of T-cells and dendritic cells. We

T1D. We consider four different mechanisms by which viruses could potentially affect T1D 

progression: virus induced inflammation, bystander activation of self reactive T-cells, direct 

competition with self T-cells, and the induction of regulatory T-cells.

The timing of infection can dramatically alter the progression of T1D. A developmental 

change in pancreatic morphology leads to a temporary increase in ft-cell turnover in ado

lescent mice, the ‘apoptotic wave’ . Infection taking place before, during, or after the wave 

can have dramatically different results. Figure 4.8 summarizes how age of onset and disease 

incidence change as the time of infection changes. Inflammation due to viral infection 

generally increases incidence and accelerates onset (Figure 4.8B). Bystander activation can, 

counterintuitively, completely eliminate T1D at some ages, but accelerates T1D later in life 

(Figure 4.8C). Viral competition can either delay or accelerate T1D depending on whether 

the infection occurs before or after the apoptotic wave (Figure 4.8D). Finally, Treg-induction 

always delays T1D slightly, but the effect is strongest when infection is prior to the apoptotic 

wave (Figure 4.8E).

Bystander activation is the nonspecific activation of T-cells during an immune response. 

In the context of this model, viral infection activates self reactive T-cells that have already 

infiltrated the islets and causes an accelerated destruction of the resident ft-cells. We show 

that if this does not precipitate T1D immediately, then it is unlikely to occur after infection

4.5 Discussion

use this model to study the effect of viral infection on the age of onset and incidence of
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as the infiltrated islets are required to prolong the immune response. Infection of NOD 

mice with CVB4 at 8 weeks causes about 60% of mice to develop T1D within 2 weeks, but 

none after that [61]. Control mice had a median age of onset of 13 weeks, but the incidence 

was greater than 90%. The pattern is similar, if not quite as strong, among NOD mice 

infected with rotavirus at 12 weeks of age. These mice had dramatically accelerated T1D, 

but similar incidence rates as uninfected mice. Rotavirus infection at this age, unlike in 

infant mice, does not spread to the pancreas, suggesting antigen nonspecific effects. Mice 

with strong immune responses, as measured by antiviral antibodies, either developed T1D 

within 2 weeks of infection or not at all. Our model is in close agreement with these results.

Even in cases where viral infection prevents T1D, insulitis still persists. This is true 

experimentally [32, 77] and in our model. Whether and to what extent the degree of 

insulitis changes is unclear. Our model provides a detailed description of the severity of 

insulitis and how it changes over time. A more careful parameterization of the model and 

possibly a distinction between different mechanisms may be possible should more detailed 

insulitis data become available.

There is no single mechanism that can explain the effects that viruses have on T1D. Many 

viruses delay T1D onset or reduce its incidence (see Table 4.1), and our model shows that 

multiple mechanisms can reproduce this behavior. Filippi et al. [23] found that transfer of 

Tregs from virally infected mice to uninfected mice could also transfer some of the protection 

from T1D, providing strong support to the idea that the boost in Tregs is key. On the other 

hand Smith et al. concluded that the delay induced by murine gammaherpes virus was not 

dependent on Tregs, but rather on the reduced processing of antigen by DC [64]. Our model 

does predict, however, that different mechanisms produce different profiles of incidence and 

age of onset as a function of age. For example, if a virus boosts Tregs, then as long as it can 

still establish infection, then it should not matter much when the infection happens between 

the apoptotic wave and the onset of T1D. On the other hand, if the primary mechanism 

is competition, then the effect will only be significant if the infection is early in life. It 

should also be possible to constrain the model by attempting to directly measure some 

of the control parateters. For example, ^  represents the correlation between self antigen 

and viral antigen on DC. Its value can be inferred from knowledge of which cells the virus 

invades.

We have demonstrated that a single virus can either accelerate or delay T1D depending 

on the age of infection. In general, infection at a young age is protective, whereas infection 

later can quickly lead to T1D. In humans, it is thought that insulitis must already be



91

present before a viral infection can precipitate T1D [16]. Exposure at a younger age 

could theoretically generate a population of regulatory T-cells that protects against disease 

development. The first exposure to a novel enterovirus is likely to result in a more extensive 

infection and increased inflammation due to a lack of protective immunity. If the infection 

rate is decreased, then the first exposure may be delayed to an age with more extensive 

insulitis and thus a greater risk of diabetes. Another possibility is that lower infection rates 

in a population decreases the immunity among newborns due to the loss of protective 

maternal antibodies. The incidence of Type 1 Diabetes in a population is negatively 

correlated with the presence of maternal antibodies to enterovirus [75].
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Table 4.1: Summary of selected experimental viral infection of the NOD mouse
Infection Result Source
2 days/T3A Delay/Decrease in incidence [77]
5 days/RRV Decrease in incidence [32]
4-6 weeks/RRV Delay/Decrease in incidence [32]
4-7 weeks/MHV68 No effect [64]
6 weeks/CVB4 No effect [61]
8 weeks/CVB4 Acceleration/Decrease in incidence [61]
8-9 weeks/MHV68 Delay/Decrease in incidence [64]
9 weeks/LCMV Delay/Decrease in incidence [23]
9 weeks/CVB3 Delay/Decrease in incidence [23]
12 weeks/RRV Acceleration/Increase in incidence [33]



Figure 4.1: The islet transition model
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Figure 4.2: An individual ‘ islet zone’ consists of the islet and the surrounding exocrine 
pancreatic tissue. T-cells and macrophages invade the islets, causing apoptosis. Viruses 
may infect the islets themselves or neighboring cells.



Figure 4.3: Schematic of the islet classes, DC populations, and T-cell populations. We categorize islets based on inflammation, infection, 
and insulitis. These attributes determine which populations of dendritic cells they produce. Dendritic cells then stimulate the growth of 
T-cell populations of the appropriate specificity. Arrows starting and ending at a particular DC class are color-coded for ease of reading.
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Figure 4.4: Equilibrium distribution of the islet population resulting from an exponentially 
decaying T-cell population (decay rate .01 per day). The fraction of islets in each stage of 
insulitis depends on the initial T-cell population size.
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Table 4.2: Nondimensionalized parameters
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Figure 4.5: Time series of the full model with parameters in Table 4.3. The apoptotic 
wave lasts from day 6 to 16.



N
um

be
r 

of 
D

en
dr

iti
c 

C
el

ls
 

P
ro

po
rt

io
n 

of
 

Is
le

ts
 

1 
5 

50
 

50
0 

0.0
 

0.5
 

1.0
 

1.
5

99

Time(Days) Time(Days)

Time(Days) Time(Days)

Figure 4.6: Time series of the virus-free model with parameters in Table 4.3 except that 
aW =  2.5. The apoptotic wave lasts from day 6 to day 16.
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Table 4.3: Parameter values used in the model
Symbol Description Value

Uninfected islets in state i
Vi Infected islets in state i
Ts Self reactive T-cells
Tv Viral reactive T-cells
R Regulatory T-cells
DT Tolerogenic DC presenting self antigen S
DS Immunogenic DC presenting self antigen S

Immunogenic DC presenting viral antigen
DB Immunogenic DC presenting viral antigen and S
F  (T /R ) Probability of severe insulitis
f  (t) Inflammation rate due to development
g(t) Infection rate of islets
Y Growth rate of T-cells 5 days-1
V Death rate of T-cells due to tolerogenic DC 5 days-1

Death rate of T-cells .1 days-1
k/ D .1 days-1
kR D .1 days-1
kp Daily Contacts required for Growth 50
^S Contact rate between Ts and D T .007 days-1 cells-1
CTy Contact rate between Tv and D^ .01 days-1 cells-1
ORS Contact rate between Tr and D T .005 days-1 cells-1
ORV Contact rate between Tr and D^ 0 — .005 days-1 cells-1
as Thymic production rate of Ts 100 cells days-1
aR Thymic production rate of Tr 500 cells days-1
a y Thymic production rate of Tv 10000 cells days-1
^V Clearance rate of virus 1 days-1
a/ Inflammation rate in infected cells .02 days-1
aw Inflammation rate during apoptotic wave 1 days-1
ŵ1 Start of apoptotic wave 6 days

tw2 End of apoptotic wave 16 days
K Rate that inflammation resolves
n/ Death rate of uninfected islets .03 days-1
5 Invasion rate of T-cells
p Progression rate of insulitis
aV Inflammation rate in uninfected cells (.02-10) days-1
tinf Time of infection 0-100 days
d̂ur Duration of infection 10 days

nv Death rate of infected islets (.03-10) days-1
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Figure 4.7: Time series of infection with a virus with inflammatory properties at age 0 (A, 
B) and 60 days (C, D). Panels A and C show the number of islets producing immunogenic 
versus tolerogenic DC. Panels B and D show the insulin production and average insulitis 
score. The greyed out lines show the virus-free dynamics for comparison.
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Figure 4.8: Age of onset and incidence of T1D when infected by different viruses. The 
apoptotic wave is marked in grey. The virus free behavior is shown by the thin red and 
blue lines. The black curves denote deciles of the age of onset. A: Control virus (0y  =  .5, 
av  =  .02, nV =  .03, C =  —1 and ctrv  =  0). B: Inflammatory virus (same parameters as A, 
except av  =  10). C: Bystander activation virus (same parameters as A, except nV =  10). 
D: Competitive virus (same parameters as A, except C =  1). E: Treg-inducing virus (same 
parameters as A, except ctrv  =  .005). F: All-of-the-above virus (av  =  10, nV =  10, C =  1 
and ctrv  =  .005).
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Figure 4.9: Time series of infection with a virus that promotes bystander activation at 
age 0 (A, B), 60 days (C, D) and 100 days (E, F). Panels A, C, and E show the number 
of islets with no insulitis, stage-1 insulitis or stage 2-4 insulitis. Bystander activation only 
affects islets in stages 2-4. Panels B, D, and F show the insulin production and average 
insulitis score. The greyed out lines show the virus-free dynamics for comparison.
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Figure 4.10: Time series of infection with a virus that competes with self reactive T-cells 
at day 6 (A, B) and day 20 (C, D). Panels A and C show the number of self reactive, 
regulatory and virus-specific T-cells. Panels B and D show the insulin production and 
average insulitis score. The greyed out lines show the virus-free dynamics for comparison.
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Figure 4.11: Time series after infection with a virus that promotes Treg proliferation at 
day 0 (A, B) and day 30 (C, D). Panels A and C show the number of self reactive, regulatory 
and virus-specific T-cells. Bystander activation only affects islets in stages 2-4. Panels B 
and D show the insulin production and average insulitis score. The greyed out lines show 
the virus-free dynamics for comparison.



CHAPTER 5

THE ROLE OF INTRINSIC NOISE IN 
AUTOIMMUNE DISEASE 

5.1 Introduction
Immune regulation consists of many overlapping, redundant mechanisms such as central 

tolerance, tolerogenic DC, and Tregs. In the first chapter, we show that these mechanisms 

combine to form a robust control system that can reliably generate responses to foreign 

antigens and avoid responses to self antigens.

The NOD mouse has defects in each of these control mechanisms and spontaneously 

develops Type 1 Diabetes. These defects have analogs in human patients. However, 

although each NOD mouse shares these defects, not all mice develop Type 1 Diabetes. 

In Chapters 3 and 4 we develop a deterministic model and represent different mice via 

small changes in parameter values.

Here, we consider the stochasticity that may arise intrinsically from immune interactions. 

We demonstrate that a stochastic model predicts the onset of autoimmune diseaseas under 

conditions where a deterministic model predicts perpetual health. We also investigate how 

intrinsic stochasticity can account for differences between individuals.

5 .1 .1  B io lo g ic a l B a ck g ro u n d

At the heart of our prior models is the interaction between individual cells, particularly 

T-cells and DCs. Our description of these processes with ordinary differential equations 

makes the assumption that each T-cell and DC behaves uniformly. For example, if a T-cell 

enters a lymph node containing 1200 immunogenic DC and 1800 tolerogenic DC, then 

our differential equation model suggests that the T-cell should somehow interact with all 

of them, or at least a representative sample. In fact, as T-cells interact with DCs they 

become progressively less motile. This makes it likely that an individual T-cell will interact 

multiple times with the same DC or small group of DCs [50]. Therefore, we expect that the 

interactions of individual T-cells within a lymph node will be highly variable.
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The interaction between T-cells and DC is a two way process. After binding to an 

immunogenic or tolerogenic DC, a T-cell will proliferate or anergize, respectively. T-cells 

can also change the behavior of DCs, both directly, via intercellular signalling, and indirectly, 

via tissue damage. For example, stimulation of CD40 on macrophages by CD40L can induce 

an immunogenic phenotype under circumstances that would typically produce tolerogenic 

DC [66]. The CD40 coreceptor, CD40L, is present on activated CD4 T-cells [1]. T-cells can 

also generate immunogenic DC indirectly by killing their target cells [34].

5 .1 .2  P r io r  m o d e lin g

Autoimmune responses drive the release of self antigens providing positive feedback, 

but also eliminate target cells, providing negative feedback. Iwami et al. [37] demonstrates 

that this combination of positive and negative feedback can deterministically produce many 

interesting dynamics. First, the system may be bistable with one ‘healthy’ state and one 

‘diseased’ state. Second, the system may have only a single, ‘diseased’ state, but there may 

be an arbitrarily long transient to reach it. This is the case if there is still a ‘ghost’ of the 

healthy equilibrium that slows down the trajectory as it passes by. Finally, these feedbacks 

with different parameters can produce stable oscillations.

Stochastic models can often have different results from their deterministic analogs. 

Alexander et al. [5] develop a model of feedback between self reactive T-cells, self antigen, 

and immunogenic DCs. The self reactive T-cell population is controlled by a regulatory 

T-cell population. According to their analysis, the addition of Tregs can never eliminate the 

chronically autoimmune state. Tregs can, however, lower the number of self reactive T-cells 

present in this state to an arbitrarily low number. The stochastic system behaves quite 

differently in that the self reactive T-cell population always vanishes given enough time. As 

the trivial equilibrium is unstable, this is an example of Keizer’s paradox [73]. Alexander 

et al. show that Tregs can eliminate the autoimmune response, before the development of 

a significant response.

5 .1 .3  O u r a p p ro a ch

We propose an extremely simple model of immune regulation. Tolerogenic DCs eliminate 

self reactive T-cells, whereas immunogenic DCs stimulate their proliferation. Initially, the 

tolerogenic DCs outnumber the immunogenic DCs, but as the T-cell population increases, 

the balance shifts toward immunogenic DCs. Based on this simple mechanism, we write 

down a deterministic ODE model and demonstrate that it is bistable.

We then develop the analogous stochastic model of our deterministic system. The
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stochastic model is fully summarized by a master equation, which we approximate with 

a Fokker-Planck equation. Finally, we use the Fokker-Planck equation to calculate the 

mean first passage time as a function of parameters. We show that under certain parameter 

conditions, the deterministic model predicts that the system stays in the healthy state, 

whereas the stochastic model predicts the development of autoimmune disease.

5.2 Deterministic model
We consider a system of very limited regulation. Let T  be the number of T-cells that 

respond to a self antigen, A. Self reactive T-cells are produced by the thymus at a low 

rate, a y . The T-cells turn over slowly at a rate 0y . They divide upon contact with an 

immunogenic DC presenting A, S / , and anergize/apoptose when they come into contact 

with a tolerogenic DC presenting A, Sy . When interacting with any other DC, S0, they 

divide at a rate Yh,

dT k
—  =  a T -  OyT +  (yS / -  uSy +  C ) T + k T

where C =  YhSo is the effective homeostatic growth rate. We assume that these growth 

rates saturate for large T , as binding space is limited. This prevents the solution from 

becoming unbounded, but the term does not affect dynamics much as we let k »  .

Let a D be the number of DCs presenting A generated daily, and let q be the proportion 

that are immunogenic, where

=  qo +  mT 
q =  1 +  mT

We call q0 the baseline level of immunogenicity. This baseline represents ongoing inflam

mation or infection not due to the immunopathology of the self reactive T-cell population. 

T-cells increase the proportion of immunogenic DC. The equations for the DC population 

are therefore

dS/ „ „
—— =  aDp -  Od S / dt

=  aD (1 -  p) -  Od Sy

In the deterministic system S =  S/  +  Sy =  a D/Od is constant. Therefore we define 

H  =  S / -  Sy and note that

—  =  aD (2p -  1) -  Od H

—T S +  H  S -  H  \ k 
—— =  ay  -  Oy T  +  I y -------------u -------------+ C ) -------—T
dt I 2 2 / T  +  k
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5 .2 .1  N o n d im e n s io n a liz e d  m o d e l

We perform the following nondimensionalization

t =  Ot  t 

x =  aT T  /Ot 

y =  a D h /Od

which yields the following system

' 1 , f 1 +  y 1 -  y ̂  kx = 1 -  x +  (5 - ^ -  -  W—^ )  x + k  (5.1)

y' =  1 (2p -  1 -  y) (5.2)

p =  (5.3)
1 +  / x

Table 5.1 summarizes the nondimensionalization, which introduces three small parameters. 

First, e ^  1 represents the ratio between DC turnover and T-cell turnover. Although 

T-cells can proliferate rapidly during an infection, naive and memory T-cells can be quite 

long-lived. We therefore assume that the turnover rate of the DC populations is about 10 

times faster than that of T-cells. We also introduce two other small parameters, hi and 

h2, which are the inverse of the population sizes of T-cells and DCs, respectively. These 

parameters determine the size of population fluctuations, which are insignificant for large 

enough populations.

5 .2 .2  A n a ly s is  o f  th e  d e te rm in is t ic  m o d e l

The deterministic model has three equilibria where

, = 2 qo +  _  j 
1 +  /x *

and x satisfies

- K -  Kq0x * (y +  w) +  / x  *3 -  x * 2(yk/  -  K / +  /  -  1) +  x * (k( - / )  +  KW +  K -  1) =  0 (5.4)

which has either one or three solutions. The largest solution, which we denote x f , represents 

a ‘disease’ or ‘final’ state. From Table 5.1, we see that k »  1. Therefore, ^  1 unless 

x has a similar order to k. To find solutions on this order, we subsitute x f =  x kk and find 

that

x K ~  (y +  c -  1)
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This solution exists provided that y +  c >  1, i.e., the maximum proliferation rate of T-cells 

exceeds their turnover rate, which we assume to be true.

To find the other potential solutions, we let =  1 and perform the substitution

X ~  j -1 x -1 +  X0

since j  ^  1. We find two additional solutions: a healthy solution, Xj, with order 1 and a 

‘barrier’ solution, xb, with order j -1 :

1
Xj

1 +  w(1 -  qo) -  Y9o -  C
_ 1 1 +  w(1 -  qo) -  Y9o -  c

Xb ~  j  -------------- ---------------------Y + c - 1

These solutions exist provided that q0 <  w/ ( y +  w) and j  is sufficiently small (Figure 5.1).

5.3 Stochastic model
5 .3 .1  D is c re te  J u m p  P ro ce s s

We track three state variables U =  [Sj SS T]S and simulate their dynamics using the 

gillespie algorithm [29]. We define a transition L± to be a column vector of length three 

with the ith entry ±1 and all other entries zero. The associated propensity function 

defines the probability that a given transition will occur during an interval dt. At each time 

step, we

1. calculate the propensities W  for each transition L. Let A be the total sum of all 

propensities,

2. choose a time step At from an exponential distribution with mean A,

3. choose a transition, L* by sampling from L with probabilities given by W /A , and

4. update the system:

U fc =  U fc-1 +  L* (5.5)

tfc =  tfc-1 +  At (5.6)

We run this algorithm until T  >  £SXf / a S , the dimensionalized diseased state, t >  tmax =  

1000 years, or k >  kmax =  109, whichever comes first.

5 .3 .2  M a s te r  E q u a tio n

To analyze this system, we once again perform the change of variables

S j =  (5.7)
S _ H

Ss  =  (5.8)
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and consider S to be approximately constant. Let p j( t )  be the probability that T  =  i and 

H  =  j  at time t. The full master equation for p is

=  Di+ ){ 4 +,p« } +  } +  D ‘ + ,{G<+>pij }  +  D<-> { G ' - ’pij }

r . S — j  k .
Fij =  i + T T ^

F j-)  =  a T +  +  CT+~kij  2 i +  k i +  k

g ( .+) =  £d (s  +  j  )/2 +  a D(1 — qi) (5 .9)

G(j- )  =  £d (S — j  )/2 +  a D qi 
qo +  im

qi =  t t —1 +  im 
D (+){a i} =  ai+1 — ai

D ( - ) {a i} =  ai-1  — ai

where F (+) ,F ( - ) ,G (+) , and G (-) are propensity functions for our reduced model. For 

example, F (+) dt is the probability that the T-cell population decreases by one cell during 

a timestep of size dt. We wish to approximate this with a Fokker-Planck equation taking 

advantage of the large numbers of cells involved. Applying the same nondimensionalization 

as in (5.3) and Table 5.1, we have

f  l+)< * > = ( x + "  ̂  x + k )
„( ) , . (  1 +  y kx kx \

f  ( - ) (x) =  1 +  Y--------------r +  c------ -
\ 2 x +  k x +  k J

g(+) (x) =  e-1  (  ̂  +  1 — q(x) 

g ( - ) (x) =  e-1  (  ̂  +  q(x)

We can now convert the discrete operators into differential operators

D (+) {a (x )} =  a(x +  h) — a(x)
h2

hax(x) +  y  axx(x) (5.10)
h2

D ( - ) {a (x )} w —hax(x) +  y a ^ x (x )

To greatly simplify the analysis, we now assume that the growth rate from immunogenic 

DC matches the death rate due to tolerogenic DC, i.e., y =  w. Applying (5.3) and (5.10) 

to (5.9) yields the nondimensionalized PDE,

h1  |7f (-)
x 2

dp
dT ( f (+) — f ( - ) )p ] +  y  [ ( f (-) +  f (+))p
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+ (g(+) -  g(- ))p (g ( ) +  g (+))P +  h.o.t.
yy

( /i (x )  +  / 2(x)y)p +  hi f  (x)p

+  e- i (g i(y) +  g2(x))p +  e- i h2P +  h.o.t.
yy

/* (x) =  x -  1 -  c
kx 

k +  x

/ 2(x) =  - Y
kx 

k +  x

/3(x) =  x +  1 +  Y

g i(y) =  y

g2(x) =  2q(x) -  1

which we can write compactly as

kx
k + x

dP 1 r r —  =  - L-p +  L2Pdt e
(5.11)

where L* and L2 are both linear differential operators. The factor of e- i  suggests that p 

should be close to the nullspace of L*. To see this more clearly, we project our PDE onto 

this nullspace, which is the Gaussian

12n y+i-2q(x)
p(x,y) =  w T -e  2h2 

V h2

The orthogonal projection, P , onto p(x, y) is

P (■) = <  1, ■ > p

(5.12)

(5.13)

where <  ■, ■ >  is the L2 inner product and 1 is a function that is 1 for all y. We define 

u =  P(p) and v =  p -  P(p). Projecting (5.11) yields

dUp =  P  (L2p)

< 1 , / i (x )  +  /2 (x)y)p +  h-/3(x)p > p

f [ / i ( x )  <  1 , p >  + / 2(x) < y , p > ]  +  [h-/3(x) <  1 , p > ]  )  pV L Jx L Jxx/ (5.14)

du
/i(x )u  +  / 2(x) <  y,p  > + hi/3(x)u

+ h - /3(x)u=  /i (x )u  +  / 2(x )(u r-(x )+  <  y, v >)

where r*(x) = <  y ,p  > =  2q(x) -  1 is the first moment of p. To close the system, we must 

compute <  y ,v  >, the first moment of the orthogonal complement. To do this, we must 

first find the orthogonal complement of (5.11)

xx

y

x

x xx
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dv
dT =  e-1 LiP +  L2P -  P (L 2P)

=  e- 1L"V +  L2P -  P (L 2P)

We see that to zeroth order v ~  0; therefore, we substitute in v =  ev1. To lowest order,

- L 1V1 =  L2(up) -  P (L i(up))

/1 (x)up +  / 2(x)yup +  h1/ 3(x)up

/ 1(x)u +  / 2(x) <  y ,p  >  u 

We note that <  y ,L 1 v1 > =  -  <  y ,v 1 >. Therefore

+ h1/3(x)u

< y,V1 > /iu r i +  / 2ur2

/ 1U +  / 2f 1U

=  / 1r '1 u +  h2 / 2U +  / 2ur1 ̂

1
+  2x 2

hi
r1 -  "2" x 2

h1/3ur1 

/ 3U r1
(5.15)

/3uri / 3U ri

where r2 = <  y2, p > =  h2 is the second moment of p.

We can finally write our system as a one dimensional Fokker-Planck equation by sub

stituting (5.15) into (5.14)

^  =  - [a (x )u ]x +  1  [d(x)u]xx

a(x) =  /1 +  / 2ri +  e ( /2/ i r i  (x) +  / 22r ir i )

+  eh1(ri / 2/ 3 +  2 / 3/ 2rl )

+  eh2/ 2/2 

2d(x) =  h i/3 +  e(h2/ 22 +  h i /3/ 2ri)

where a(x) and d(x) are the advection and diffusion rates, respectively. To lowest order, the 

advection rate matches the deterministic model, with y in steady state. This is equivalent 

to finding a solution in the nullspace of L2. We can see each term in the diffusion rate is 

preceded by one of our small parameters e, h1 or h2. The identity of the lowest order term 

depends on the relative sizes of these small parameters.

• When the T-cell population size is quite small, then diffusion is dominated by the 

inherent noise in the T-cell birth-death process (h1 »  eh2x). The diffusion rate is

h
dT(x) «  —" (1 +  (1 +  y +  c)x)2 (5.16)

When the T-cell population increases, then the diffusion is dominated by noise in the

x xx

px xx

xx

xx

x
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DC population (h1 ^  eh2x).

(5.17)

We have modeled the noise in the DC population as the result of small population 

size, but it could be due to infection or be driven by other components of the immune 

system that we have not modeled. For the purpose of our analysis, it is sufficient to 

assume that Y  has mean r1(x) and variance h2.

5.4 Computing first passage times
Our primary interest is computing the time it takes for the system to travel from T  =  0 

to T  =  x f . We denote this mean first passage time W . We follow the work of [29] in this 

section. We calculate the mean first passage time using the following system

where Wi (0) =  W1 (0) =  0 and - W1(x f ) is the time for the system to travel from x =  0 to 

x =  x f . We can also calculate the second moment of the first passage time

with W2(0) =  W2(0). The variance can be calculated as - W2(x f ) -  W12(x f ). This 

approximation is much faster to calculate than a full stochastic simulation of the system, 

particularly for large system sizes. Figure 5.2 compares the mean first passage time cal

culated with (5.18) (solid lines) to the average of repeated stochastic simulations of the 

birth-death process (dashed lines) as a function of q0, the baseline inflammation. We vary 

m, which measures the ability of T-cells to induce the generation of immunogenic DC, and 

a D, the production rate of DC. Note that when we vary a D, we also change g to keep 

the nondimensionalized y the same. This means that change in aD corresponds only to a 

change in the variance of the DC population. The mean first passage time dramatically 

increases as q0 decreases, and there is a marked turning point that roughly corresponds 

to where the deterministic system no longer reaches x f . This threshold changes with m, 

but does not depend on the variance of the DC population, which is only relevant for the 

stochastic system.

If the barrier equilibrium, xb, does not exist, then the deterministic system tends towards 

the disease state deterministically (Figure 5.3A-C, dashed lines). If the parameters are such 

that xb and x» do not exist but there are still points at which a(x) is very nearly zero, then we 

say that there are two ‘ghost’ equilibria. We see that both the deterministic and stochastic

W1'(x) =  2a(x)W1 (x )/d (x ) -  2 /d(x) (5.18)

W2' (x) =  2a(x)W 2(x ) '/d (x ) +  4W1(x )/d (x )
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system pause as they pass by the ghost equilibria. The stochastic system (solid black line) 

can, on average, jump over the barrier slightly faster then the deterministic system (dashed 

black line) (Figure 5.3A-C). Individual simulations of the stochastic system (Figure 5.3A-C, 

red, blue, and yellow) pause at the ghost barrier for variable lengths of time, but afterwards 

behave similarly to each other and the deterministic system.

If the barrier equilibrium does exist, along with the disease free state Xj, then the 

deterministic system remains disease free for all time (Figure 5.3D-F, dashed lines). The 

stochastic system behaves similarly to the prior case, pausing as it crosses the barrier, then 

growing rapidly afterwards (Figure 5.3, solid line). Individual runs also look quite similar 

to the prior case. However, if the simulation remains near Xj for an extended period of time, 

we see that the T-cell population can drop to zero (Figure 5.3D, yellow line). The T-cell 

population is replenished by the thymus in this model. Without this thymic input, when 

the T-cell population reaches zero it would not transition back to one and so would never 

reach the disease state, x - .

The stochastic transition from the disease free state x  to the disease state x -  has two 

stages. First, the system must escape from a potential well near x  to the boundary or 

threshold state Xb. The time it takes for this process should have a large variance. Second, 

there is the low variance transition from Xb to X f, where advection dominates over diffusion. 

This second step is similar in stochastic and deterministic systems; therefore we expect it 

to have a low variance. To visualize this, we approximate the distribution of W  with a 

Y-distribution that has the same mean and variance.

When the mean and standard deviation of W  are equal, then the Y-distribution approxima-

zero, implying that the peak age of onset should be at birth. If the standard deviation is 

less than the mean, then the probability density function has a nonzero mode, predicting a 

peak age of onset later in life.

The height of the peak increases when we increase the basal inflammation rate. If the 

basal inflammation rate is low, then the mean age of onset is very large, but the variance is 

also high, so there is no distinct peak in the probability density function (Figure 5.4, black

(5.19)

k = ------------------ ------------
W i(Xf )2 +  W2(X f)

=  W1(Xf )2 +  W2(Xf  ) 
W i(X f)

W i(Xf )2
(5.20)

(5.21)

tion reduces to an exponential distribution. The mode of the distribution then approaches
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line). As we increase q0 the peak becomes more defined, and the size of the right hand tail 

decreases (Figure 5.4, red and blue lines).

5.5 Discussion
We propose and analyze a simple model of the growth of self reactive T-cells over the life 

of an individual. In particular, we analyze the role of stochastic fluctuation in disease pro

gression. The T-cells and immunogenic dendritic cells (DCs) have mutual positive feedback, 

creating a bistable system under certain parameter conditions, with one ‘healthy’ stable 

steady state and one ‘diseased’ stable steady state separated by an unstable ‘threshold’ 

state. Stochastic fluctuation allows the system to jump from one stable steady-state to 

another.

Using a separation of time scales and a large system approximation, we reduce the 

stochastic model to a one-dimensional Fokker-Planck equation. We then derive a system of 

ODEs to calculate the mean and variance of the time required to jump from the healthy 

state to the disease state. This approximation has good agreement with the full stochastic 

simulation and is far faster to calculate.

Type 1 Diabetes is typically diagnosed during childhood, although the incidence in

creases with age until about age ten [39]. These type of incidence curves are typically 

interpreted to indicate a multiple-hit disease progression [9]. In the case of T1D, it has 

been hypothesized that viral infections are required [22]. Our model can be described as 

‘one hit+delay’ , where the hit is the escape from the potential well of the healthy state. We 

model this as due to the intrinsic noise of the system, without any external stimulation, in 

a similar fashion to mutation of an oncogene in cancer development. Despite only requiring 

one hit, we can still produce an incidence curve with the observed qualitative behavior.

In this paper we have only considered intrinsic noise, driven largely by small population 

size. This may be reasonable in the case of self reactive T-cells, but is probably far from 

accurate for DCs. In fact, we expect that the number of immunogenic and tolerogenic DCs 

should largely be driven by infection or any other proinflammatory event. Although these 

events may be stochastic in nature, they do not arise inherently from small population size, 

as we have modeled here. However, our analysis reveals that no matter what stochastic 

process controls the DC population, our approximation of mean first passage time depends 

only on its mean and variance. Therefore, driving the population with an external, noisy 

‘ infection’ function should have the same effect as altering parameters that already exist in 

the model.
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Our model suggests that greater levels of inflammation should inevitably drive autoim

mune disease, which runs counter to the hygiene hypothesis. There is compelling evidence 

that decreased infection in childhood actually increases the incidence of T1D [17]. This is 

possibly because we have not included competition with other T-cell populations, which 

should be enhanced during infection. Therefore, an important next step would be to 

include a population of T-cells that reacts to a foreign pathogen, which could respond 

to immunogenic DC in a deterministic manner.
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Table 5.1: Nondimensionalization
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Figure 5.1: Bifurcation diagram of the stable (solid) and unstable (dashed) solutions to 
(5.4). Parameters: e =  .1, c =  7  =  w =  l,h i =  .1, h? =  -01, k =  1000.
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Figure 5.2: Average time to reach the disease state, x / , as a function of the basal 
inflammation rate, q . Dashed lines: mean of simulations using a gillespie algorithm. Solid 
lines: derived approximation from (5.18)
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Tim e(Days)
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Figure 5.3: Simulation of the stochastic (red, yellow, and blue) and deterministic (black 
dashed) systems. The mean first passage of the stochastic model is the black dashed lines.
A, D: Self T-cell. B, E: Immunogenic DC. C, F: Tolerogenic DC. A-C: q0 =  .15. D-F: 
q0 =  .1. All other parameters are common: m =  .01, a T =  .1, a D =  10, g =  w =  10-4 .
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Figure 5.4: Approximate probability density functions of first passage time. We calculate 
the mean and standard deviation using 5.18, then compute the gamma distribution that 
shares these statistics.



APPENDIX A

DERIVING PER CAPITA GROWTH  
RATES

In this appendix, we derive the total proliferation of T-cells due to IL-2 and justify the 

simplification we use in the model. We consider a population of N  DC, each with NS spots 

on their surfaces, that binds T-cells according to (2.3). The collection of T-cells bound to 

a given DC represents a sample from a multivariate hypergeometric distribution [44]. Let 

BE and B r  be the total number of bound effectors and Tregs, respectively. The probability 

that an individual DC binds e effectors and r Tregs is
(Be\ (Br\ (NNs—Be—Br\ 

q =  V e / V r / V  Ns—e—r ) ( A1)
qer =  /NNs \ • (A 1 )

e JV r / V Ns—e—r
nns
Ns

When N  is large the hypergeometric distribution approaches a multinomial distribution

lim qer =  Per =  f Ns ^  bebR(1 -  be -  bR)Ns e r (A.2)
n y e /  \ r /

where bE =  B E/(N N S) and bR =  BR/(N N S) are the probabilities that a DC spot binds

an effector or Treg, respectively. The per capita growth rate of T-cells bound to such a DC

is Ykgek+ekflr, where i =  E  or R for effectors and Tregs, respectively. The expected value of

the per capita growth rates for effectors and Tregs, respectively, is

V  kEe2 k
YE (be, br) =  elk E e+kRr (A.3)e r

ery^er eper
kRer k

7R(be,6,) =  ^ e+kRrk • (A.4)
Z^er rper

In this paper, we replace these expressions with a simpler approximation that is far faster 

to calculate.

S' E ) =  kE kE +  (k1EtE ’+ (N!Sb-)(Ns -  1) ^

7R<be’ br) =  kRkR +  (kEf J + t Rf J ( N s -  1) (A .6)
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Figure A.1 shows the relative error of the approximation for 7e  across the full range of 

values be and br. Our approximation has the following qualitative features:

Ye (be, 0) =  yE (be, 0) =  1

Yr ( 1 , 0 ) =  yE (1 ,0) =  n N _ 1  

Ye(0,br) >  0 

Yr(0, br) =  yR (0, br) =  0
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Error in Effector Growth Rate Error in Treg Growth Rate

Relative Error 
50% 

40% 
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20% 

10% 

0%
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Fraction occupied by Treg

Figure A .1 : Relative error of per capita growth rate of effector T-cells used in model (7# 
and 7 r) compared to the derived values (7 # and 7 R). Parameters: =  10, =  1, 
kR =  3.



APPENDIX B

ALL MODELS PERFORM POORLY 
UNDER EXTREME CONDITIONS

According to Figures 2.7 and B.1, the outcome is poor in all models if 0S and p/  are 

close to 1. In the absence of Tregs, there is always a sustained self response (Figure B.1 A, 

D). The foreign response is significant in either case and meets our criteria for ‘Immunity’ ; 

however, this response is not sustained in the homogenous case (Figure B.1 A). With the 

addition of killer Tregs (Figure B.1 C, F), the self response is no longer sustained, but the 

foreign response does not escape suppression by self reactive Tregs. In the heterogenous 

case (Figure B.1 F), the criteria for immunity or tolerance are met, albeit it narrowly. This 

represents a tradeoff with the suppressive Treg case (Figure B.1 E), which has a stronger 

immune response but more self reactive T-cells. Although the self reactive population 

is not sustained in the lymph node, these cells could potentially trigger immunopathology 

and eventual autoimmune disease. Killer Tregs bias the system tends toward weaker foreign 

immune responses rather than autoimmune ones.
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Figure B .1: Activated T-cells versus time (days) for foreign (red), self (blue dashed), 
and Treg (blue dotted). Each panel represents a different model. The numbers in each 
plot represent the total number of effector cells of each type that leave the lymph node. 
Parameters: =  0.8, =  0.1, p/  =  0.9, 0  =  1.25, kR =  3.
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