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ABSTRACT 

 

Despite numerous experimental and analytical investigations on the compressive 

behavior of fiber-reinforced polymer (FRP) confined concrete sections, researchers have 

been unable to develop a unified theoretical stress-strain model that can accurately 

capture and describe the axial compressive and resultant transverse dilation behavior of 

various FRP-jacketed concrete column shapes. 

In this dissertation, a mechanics-based unified stress-strain model is introduced; this 

model is applicable to FRP-confined concrete sections of various shapes that can 

accurately capture both the compressive and dilation behavior of rectangular, square, 

oval, circular, and elliptical FRP-confined concrete members using the concept of 

diagonal dilation and diagonal equilibrium of the FRP-confined concrete section with a 

minimum number of curve-fitting parameters based on experiments. 

This is accomplished by including the general concepts of elasticity, damage 

mechanics, soils mechanics, and plasticity theory in the development of a theoretically 

sound mechanics-based stress-strain model for FRP-confined concrete that takes into 

consideration the macrostructural effects of the increase in internal damage (i.e., increase 

in dilation) and the beneficial effects contributed by the kinematic restraint provided by 

the confining elastic FRP jacket. 

The proposed stress-strain model’s ability to accurately describe the compressive 

behavior of FRP-confined concrete of various geometrical shapes will depend on its 
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ability to capture the restraint sensitivity of the confined concrete core and the effects that 

the shape of the confining FRP jacket has on the jacket’s ability to restrain the transverse 

dilation of the confined concrete core. 
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CHAPTER 1 

 

INTRODUCTION 

 

In recent years, fiber-reinforced polymer (FRP) reinforcement has been introduced for 

shear and flexural strengthening of reinforced concrete beams, columns, beam-column 

members, and beam-column joints.  These advanced composite materials are used widely 

in the aerospace and sports industries.  Recently, their use has been extended to the 

development of new rehabilitation, strengthening, and repair technologies for improving 

existing reinforced concrete. 

Rehabilitation and strengthening techniques of applying surface-bonded FRP 

reinforcement to reinforced concrete columns and beams are a relatively new field of 

research that has received much attention in the last 30 years.  Researchers have used 

externally applied FRP reinforcement for the seismic retrofit of reinforced concrete 

columns and bridge systems (Saadatmanesh et al. 1994, Seible et al. 1997, Xiao and Ma 

1997, Pantelides et al. 1999, 2001, Ozbakkaloglu  and Saatcioglu 2006, 2007); for 

improving the flexural (Haragli 2005, Mosalam et al. 2007, Binici and Mosalam 2007,) 

and compressive (Demers and Neale 1999, Pessiki et al. 2001, Mathys et al. 2005, Tastani 

et al. 2006, Eid et al. 2008, 2009) behavior of reinforced concrete columns; for improving 

the shear and flexural behavior of reinforced concrete beams (Saadatmanesh and Ehsani 

1991, Ritchie et al. 1991, Triantafillou et al. 1992, Al-Sulaimani et al. 1994, Kaliakin et 



 

 

2 

 

al. 1996, Chajes et al. 1995 Varastehpour and Hamelin 1997, Triantafillou 1998, Rahimi 

and Hutchison 2001), among others; and improving the shear capacity of reinforced 

concrete beam-column connections (Gergely et al. 1998, Pantelides et al. 1999, 2001, 

Antonopoulus and Triantofillou 2002). 

One major impediment encountered by many researchers is the development of a 

theoretical stress-strain model that can accurately describe the axial compressive behavior 

and axial strain-induced dilation behavior of rectangular, square, oval, circular, and 

elliptical FRP-jacketed concrete columns.  Until recently, the development of stress-strain 

models for FRP-confined concrete sections has been limited to specific cross-sectional 

jacket shapes, such as circular or square sections which are subjected to essentially 

uniform equibiaxial confinement.  The goal of this investigation is to develop a unified 

theoretical mechanics-based stress-strain model that can accurately describe the 

compressive and dilation behavior of several common types of FRP-jacketed concrete 

column sections, using the concepts of diagonal dilation and equilibrium of FRP-confined 

concrete and a Mohr-Coulomb-type failure criterion for confined concrete.  To the 

knowledge of the writer, a unified stress-strain model based on theoretical mechanics that 

can accurately represent the uniaxial compressive behavior of FRP-confined concrete 

sections of various cross-sectional shapes has not been achieved to date by other 

researchers. 



 

 

 

 

 

CHAPTER 2 

 

LITERATURE REVIEW 

 

Compressive Stress-Strain Models for Plain Concrete 

Since the mid-1930s, research into the compressive stress-strain behavior of plain 

concrete columns has yielded the development of several analytical stress-strain models 

for confined and unconfined concrete.  Among these models, the most recognized and 

widely used is the Popovics (1973) fractional model for plain concrete in compression.  

Several researchers (Carreira and Chu 1985, Collins et al. 1993, Wee et al. 1996, Mansur 

et al. 1997, Chin et al. 1997) have incorporated and improved the accuracy of the 

Popovics (1973) fractional model in modeling the compressive stress-strain behavior of 

low, medium, and high-strength concrete.  Pantazopoulou (1995) and Pantazopoulou and 

Mills (1995) have recognized that the nonlinearity of the compressive behavior of plain 

unconfined concrete is due to the reduction in the load-carrying area of the concrete cross 

section in compression that results from the expansion (i.e., dilation) induced by micro 

cracking suffered by the area supporting the axial load. 

There has been a significant amount of research in the compressive behavior of 

concrete in biaxial (Kupfer et al. 1969, Mills and Zimmerman 1970, Kupfer and Gerstle 

1973, Darwin and Pecknold 1977, Gerstle 1981a) and triaxial compression state of stress 

(Richart et al. 1928, Mills and Zimmerman 1970, Palaniswany and Shah 1974, Newman 

and Newman 1971, Kotsovos and Newman 1978, Gerstle 1981b, Imran 1994, Xie et al. 
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1995, Attard ands Setunge 1996, Ansari and Li 1998, Sfer et al. 2002).  These 

experimental investigations have shown that the behavior of concrete under either biaxial 

or triaxial compressive stresses improves significantly in terms of an increase in the 

ultimate major principal compressive strength and strain and an increase in strain 

ductility.  For the majority of biaxial and triaxial plain concrete tests, the out-of-plane 

confinement was provided by mechanical means (i.e., platens, brushes, etc.).  In the case 

of concrete cylinders in a triaxial compression state of stress, the out-of-plane lateral 

confinement was provided by means of fluid pressure, which was maintained constant 

(Richart et al. 1928, Palaniswany and Shah 1974, Kotsovos and Newman 1978, Gerstle 

1981b, Imran 1994, Xie et al. 1995, Ansari and Li 1998, Sfer et al. 2002), or it was 

increased in a stepwise manner (Imran 1994) as the principal compressive axial load was 

monotonically increased.  Pantazopoulou (1995) recognized that the enhancement in 

compressive strength and ductility of concrete in the biaxial and triaxial compression 

state of stress is associated with the kinematic restraint imposed at the surface of the 

concrete member by the confining device. 

 

Confinement Models for Concrete Confined by Transverse 

Steel Reinforcement 

Several analytical stress-strain models for reinforced concrete members passively 

confined by transverse steel reinforcement have been introduced in the past.  A majority 

of these models were derived based on the compressive behavior of rectangular, circular, 

and square reinforced concrete members restrained by closely spaced transverse steel 

reinforcement.  Sheikh (1982) and Sakai and Sheikh (1989) produced a series of excellent 

reviews on the majority of the analytical confinement models developed prior to 1989.  
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The most notable stress-strain models for normal weight, medium-strength (20-40 MPa) 

concrete developed prior to 1989 are the Mander et al. (1988) analytical model for steel-

confined concrete, which utilized the Popovics (1973) fractional model, and the Ahmad 

and Shah (1982a,b) stress-strain model.  For the case of steel confined, high-strength 

concrete (40-80 MPa) members, the most notable stress-strain models are those 

introduced by Saatcioglu and Razvi (1992), Saatcioglu et al. (1995), Cusson and Paultre 

(1995), Ibrahim and McGregor (1996), and Attard and Setunge (1996). 

 

Confinement Models for Concrete Confined by 

FRP Jackets 

Since the early attempts by Kurt (1978) on the stress-strain behavior of concrete-filled 

structural PVC columns and by Fardis and Khalili (1981, 1982) on the stress-strain 

behavior of FRP-confined concrete cylinders, numerous experiments have been 

performed to investigate the compressive stress-strain behavior of concrete confined by 

FRP spirals (Ahmad et al. 1991, Nanni and Bradford 1995), bonded FRP wraps (Harmon 

and Slattery 1992, Demers et al. 1996, Picher et al. 1996, Kharbari and Gao 1997, 

Miyauchi et al. 1997, Watanabe et al. 1997, Harmon et al. 1998b, Kono et al. 1998, 

Saaman et al. 1998, Toutanji 1999, Rochette and Labossièrre 2000, Wu and Xiao 2000, 

Xiao and Wu 2000, 2003, Carey 2002, Teng and Lam 2002, 2004, Lam and Teng 

2003a,b, Carey and Harries 2003, Chaallal et al. 2003a,b, Tamusz et al. 2006, 2007, 

Saenz and Pantelides 2007, Toutanji et al. 2007, Shehata et al. 2007), among others, and 

nonbonded FRP tubes (Mirmiran 1997, Mirmiran and Shahawy 1996, 1997a,b, Saafi et 

al. 1999, Fam and Rizkalla 2001a,b, Carey 2003, Carey and Harries 2003, Yan and 

Pantelides 2006, Yan et al. 2006), among others. 
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Since the 1990s, the development of stress-strain models for FRP-confined concrete 

was limited to modification of the Mander et al. (1988) confinement model originally 

developed for reinforced concrete members confined by transverse steel reinforcement or 

steel jackets (Saadatmanesh et al. 1994, Mirmiran and Shahawy 1996, Spoelstra and 

Monti 1999, Fam and Rizkalla 2001a,b). 

Beginning in the late 1990s and early 2000s, several models specifically suited for 

FRP-confined concrete columns have been proposed, in particular the models introduced 

by Miyauchi et al. (1997), Kono et al. (1998), Saaman et al. (1998), Toutanji (1999), 

Saafi et al. (1999), and Xiao and Wu (2000). 

De Lorenzis and Tepfers (2003), Lam and Teng (2003a), and Teng and Lam (2004) 

produced a series of excellent reviews on the majority of the analytical and empirical 

stress-strain models for FRP-confined developed prior to 2003. 

In recent years, researchers have successfully developed stress-strain models for 

rectangular (Restrepo and DeVino 1996, Lam and Teng 2003a, Chaalal et al. 2003a, 

Monti and Nistico 2007), square (Campione and Miraglia 2003, Lam and Teng 2003b, 

Masia et al. 2004, Marques et al. 2004, Monti and Nistico 2007), circular (Kharbari and 

Gao 1997, Harmon et al. 1998b, Saaman et al. 1998, Spoelstra and Monti 1999, Toutanji 

1999, Saafi et al. 1999, Wu and Xiao 2000a,b, Lam and Teng 2002, Xiao and Wu 2002, 

2003, Fujikake et al. 2004, Marques et al. 2004, Mandal et al. 2005, Saenz and Pantelides 

2007, Teng et al. 2007) and elliptical (Teng and Lam 2002, Yan 2005, Yan and 

Pantelides 2006) FRP-confined concrete sections. 
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Damage-Based Constitutive Models for Concrete Confined by  

FRP Jackets 

Despite the successful application of the aforementioned models, few models can 

accurately capture the dilation and compressive behavior of passively and actively 

confined concrete as the damage-based model introduced by Imran (1994), 

Pantazopoulou and Mills (1995), Pantazopoulou (1995), and Imran and Pantazopoulou 

(1996).  These constitutive models are the first to recognize that concrete is a restraint 

sensitive material, rather than a pressure sensitive material, as is typically assumed in the 

analysis of reinforced concrete sections.  This implies that if lateral kinematic restraint is 

provided during loading, the confining element will induce some confining pressure 

whose magnitude will depend on the lateral stiffness of the confining device.  In addition, 

during loading, the stiffness of the confining device can also determine the degree of 

volumetric expansion (if any) by controlling the degree of micro-crack and macro-crack 

growth and the contraction, compaction, collapse, or nucleation of internal voids and 

capillary pores present within the microstructure of the concrete core. 

Recently, several investigators including Spoelstra and Monti (1999), Marques et al. 

(2004), and Saenz (2004) have attempted to incorporate the damaged-based model 

introduced by Pantazopoulou (1995) into biaxial confinement models that describe the 

compressive behavior of circular (Spoelstra and Monti 1999, Saenz 2004) and square 

(Marques et al. 2004) FRP-confined concrete sections.  Unfortunately, Pantazopoulou’s 

(1995) damage-based model can only capture the compressive and dilation behavior of 

unconfined and passively and actively confined circular concrete sections. 
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The Spoelstra and Monti (1999) model is an iterative stress-train model for circular 

FRP-confined concrete sections that combines the Pantazopoulou (1995) damage-based 

model’s ability to capture the compressive and dilation behavior of unconfined and 

confined circular concrete sections, with the Mander et al. (1988) confinement model’s 

ability to capture the increase in the ultimate compressive strength and strain that result 

from the passive confining pressure provided by the restraining circular FRP jacket. 

Recently, Marques et al. (2004) introduced an iterative model that can be considered 

to be an updated version of the Spoelstra and Monti (1999) model for predicting the 

compressive behavior of both circular and square FRP-confined concrete sections. 

The Saenz (2004) model is a constitutive model that combines the Pantazopoulou 

(1995) model with unique volumetric and dilation formulations that can accurately 

capture the dilation and compressive behavior of circular FRP-confined concrete 

sections. 

The Yan (2005) stress-strain model is a constitutive model that combines the Willam 

and Warnke (1975) parabolic ultimate surface for concrete in a triaxial compression state 

of stress and the Pantazopoulou (1995) dilation model to capture the compressive 

behavior and resultant average transverse dilation of elliptical and circular FRP-confined 

concrete sections. 

In this investigation, the proposed stress-strain model takes into consideration the 

shortcomings of other stress-strain models for FRP-confined concrete sections developed 

in the past and expands upon the knowledge obtained by these researchers. This is 

accomplished herein by developing a theoretically sound, mechanics-based stress-strain 

model for FRP-confined concrete sections of various geometric shapes that can 
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accurately capture both the strain-softening compressive behavior of concrete members 

confined by low transverse stiffness FRP jackets and the quasi-bilinear strain-hardening 

compressive behavior of members confined by moderate to high transverse stiffness FRP 

jackets. 

A generalized and theoretically sound stress-strain model based on fundamental 

principles allows for accurate estimates of the displacement and curvature ductility of 

reinforced concrete beam-columns and the FRP jacket thickness that is required to 

achieve a certain performance level during a seismic event. 



 

 

 

 

 

CHAPTER 3 

 

RESEARCH GOALS 

 

Thus far, investigators have not developed a unified theoretical stress-strain model 

that can accurately capture and describe the axial compressive and transverse dilation 

behavior of various FRP-jacketed concrete column shapes.   

Despite numerous experimental and analytical investigations, there is a lack of a 

unified stress-strain model that can accurately capture at a fundamental level and in a 

unified manner the compressive behavior of rectangular, square, oval, circular, and 

elliptical FRP-confined concrete members. 

The principal goals of this dissertation are as follows: 

1. To develop a theoretically sound unified damage-based model for rectangular, square, 

oval, circular and elliptical FRP-confined concrete sections in compression. 

2. To develop a theoretically sound design procedure for estimating the required FRP 

jacket thickness for concrete column sections of various shapes confined by FRP 

jackets, that are subjected to combined axial compression and flexure, to achieve a 

certain performance level during a seismic event. 

 

Unified Damage-Based Model for FRP-Confined Concrete 

The first goal of this dissertation is to develop a unified damage-based model for 

rectangular, square, circular, and elliptical FRP-confined concrete compression members 
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that can accurately capture both the axial strain-induced dilation and compressive 

behavior. 

In this dissertation, a general mechanics-based and theoretically sound damage model 

for FRP-confined concrete is developed, applicable to bonded and unbonded FRP jackets 

of various geometrical shapes, with a limited number of curve-fitting parameters.  The 

model predicts the dilation and axial compressive behavior of FRP-confined concrete 

sections exhibiting either a strain-softening or strain-hardening compressive behavior, as 

shown in Figure 3.1. 

The stress-strain models for FRP-confined concrete sections introduced thus far by 

others researchers are of limited applicability.  This may include limitations on the FRP 

jacket shape (i.e., circular or square sections); limitations on the FRP jacket construction 

type (i.e., bonded, or unbonded); limitations on the type of compressive behavior (i.e., 

strain softening or strain hardening); and limitations imposed by the use of curve fitting 

techniques of experimental data, among others.  In this dissertation, a new theoretical 

stress-strain model for FRP-confined concrete sections is introduced which considers the 

shortcomings of models introduced in the past and expands upon the knowledge obtained 

thus far by other researchers. 

A model’s ability to accurately describe the compressive behavior of FRP-confined 

concrete of various geometrical cross-sectional shapes depends on its ability to capture 

the restraint sensitivity of the confined concrete core.  A constitutive model for FRP-

confined concrete needs to recognize that restraint sensitivity of the concrete core not 

only affects its compressive strength and ductility but also its axial strain-induced 

transverse dilation behavior. 
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Figure 3.1 Typical axial stress-strain ratio curves of concrete sections exhibiting (a) 

strain-softening and (b) strain-hardening compressive behavior. 
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The unconfined and confined concrete core is considered to be a restraint sensitive 

material rather than a pressure sensitive material (Pantazopoulou 1995). This indicates 

that the dilation behavior of the FRP-confined concrete depends on the lateral kinematic 

restraint provided by the thin elastic FRP jacket at the surface of the confined concrete 

core, rather than on the passive confining pressure provided by the restraining FRP jacket 

that results from transverse dilation of the FRP-confined concrete core. 

 

FRP Jacket Design Procedure 

The second goal of this research is the development of a moment versus curvature 

based design procedure for estimating the required FRP jacket thickness and size for 

rectangular, square, and circular reinforced concrete columns confined by FRP jackets to 

attain an increase in axial strength or ductility in order to achieve a given performance 

level during a seismic event. 

Typically, existing circular concrete sections are confined by circular FRP jackets.  

However, existing square concrete sections can be confined by either square FRP jackets 

or they can be shape modified using circular FRP jackets (Yan 2005).  Furthermore, 

existing rectangular concrete sections can be confined by rectangular FRP jackets or they 

can be shape-modified using either oval or elliptical FRP jackets (Yan 2005). 

The applicability of the damage-based model for FRP-confined concrete proposed 

herein is expanded and included in the development of a design procedure for estimating 

the required FRP jacket thickness based on the expected displacement and curvature 

ductility demand imposed on reinforced concrete columns during a seismic event. 



 

 

 

 

 

CHAPTER 4 

 

GEOMETRIC AND MECHANICAL PROPERTIES OF 

CONCRETE SECTIONS CONFINED BY FIBER- 

REINFORCED POLYMER 

JACKETS 

 

In this chapter, a unique set of analytical relationships are introduced in modeling the 

compressive stress-strain and transverse dilation behavior of rectangular, square, oval, 

circular, and elliptical concrete sections confined by thin elastic FRP jackets.  The 

proposed model requires the introduction of a series of unique  mathematical 

relationships for the geometric and mechanical properties of the confining FRP jacket, 

which are then used in modeling both the dilatancy and compressive behavior of FRP-

confined concrete sections of various geometrical shapes (rectangular, square, oval, 

circular, and elliptical concrete sections in particular), as demonstrated in Chapters 6, 7, 8 

and 10,  subjected to either a uniform (circular) or a nonuniform (rectangular, square, 

oval and elliptical) triaxial compression state of stress, as demonstrated in Chapter 9. 

In this chapter a series of mathematical relationships are developed to describe the 

geometric and mechanical properties of FRP-confined concrete (FCC) sections of various 

shapes, which includes circular, elliptical, rectangular, square, and oval sections.  These 

relationship are then incorporated into Chapters 5-10 to describe the uniaxial compressive 
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behavior and the transverse and diagonal dilation behavior of FRP-confined concrete 

sections. 

 

Geometric and Mechanical Properties of FRP-Confined 

Concrete Sections 

In this investigation, several geometric Figure 4.1 and mechanical properties of FCC 

sections were found to affect the dilation and axial compressive behavior of the FCC 

sections shown in Figure 4.2, as a result of the elastic properties of the confining FRP 

jacket. 

 

FRP-Confined Concrete Section Geometry 

In this investigation it was found that in addition to the FRP jacket stiffness, the shape 

of the FRP-confined concrete cross-section, as shown in Figures 4.1 and 4.2, constitutes 

the greatest contribution to both the dilatancy and axial compressive stress-strain 

behavior of the FCC section.  The geometric parameters of the FRP-jacketed sections, 

shown in Figures 4.1 and 4.2, which significantly affect the compressive and dilation 

behavior of the FCC are as follows 

1. The aspect ratio of the section shα  

2. The angle of inclination of the main diagonal cD  of the FCC section dθ  

3. The jacket corner aspect ratio of rectangular, square, and oval FCC sections jα  

4. The shape of the effectively confined concrete core, as defined by the confining 

efficiency ek  of the FRP jacket and  



 16 

 

 

 

 

 
(a) 

 
(b) 

 

 

 

 
(c)  

(d)

 

Figure 4.1 FRP-confined concrete sections of various shapes: (a) rectangular, (b) 

square, (c) circular, and (d) elliptical. 
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Figure 4.2 Geometry of FRP-confined concrete sections of various shapes: (a) 

rectangular, (b) square, (c) circular, and (d) elliptical. 
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5. The effective transverse stiffness ( )
shjeC  and normalized transverse stiffness ( )

shjeK  

of the confining elastic FRP jacket. 

These geometric parameters and mechanical properties of the FCC section are 

introduced in what follows. 

The angle of inclination dθ  of the main diagonal cD  and the section aspect ratio shα  

of the FCC sections shown in Figure 4.2 are given by: 

 

( )shd αθ 1
tan

−=
 

(4.1)

 

c

c
sh

B

H
=α

 

(4.2)

 

( ) ( ) ( )2
2

22 1
1

1 shc
sh

cccc BHBHD α
α

+=



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


+=+=

 

(4.3)

 

 

where cB  and cH  are the overall minor and major dimensions of the FCC cross-section, 

respectively, as shown in Figure 4.2 and the oval section shown in Figure 4.3. 

The jacket corner aspect ratio jα  of the rectangular, square, and circular FCC 

sections shown in Figure 4.2 and the oval section of Figure 4.3 are defined as: 

 

csh

j

c

j
j

B

R

H

R

α
α ==

 

(4.4)

 

 

where 50.00 ≤≤ jα .  The upper bound value of 50.0=jα  represents the special case 

of a circular FRP-confined concrete section for which jccj RBHD 2===  (i.e., 

0.1=shα  and 50.0=jα ). 
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Figure 4.3 Oval FRP-confined concrete sections: (a) typical section and (b) typical 

geometry. 
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The lower bound value of 0=jα  indicates that no rounding of the corners is 

provided.  Also, jD  is the overall diameter of the circular FCC section. 

For rectilinear sections, such as rectangular, square, and oval FCC sections, the upper 

bound value of jα  is given by ( ) ( )shj αα 21
max

= , or when 2cj BR = .  When 

0.1=shα  and ( ) 50.0
max

=jα  it indicates a circular FCC section, whereas when 

0.1>shα , an oval FRP-confined section occurs when 2cj BR =  or when 

( ) ( )shjj ααα 21
max

== , as shown in Figure 4.3. 

Another geometric parameter that significantly influences the dilation and 

compressive behavior of FCC sections is the shape of the effectively confined concrete 

core, as shown in Figure 4.4.  In this figure, the ineffectively confined concrete core 

along the faces of the square and rectangular FCC section is shown as cross-hatched 

areas. 

These areas are approximated by parabolas with an initial tangent equal to the aspect 

ratio shα  at the minor cB  sides and an initial tangent equal to the inverse of the aspect 

ratio shα1  at the major cH  sides as shown in Figure 4.4.  From these figures, it can be 

observed that the effectively confined section has a major effH  and minor effB  

dimension and an effective aspect ratio effα , that are given by: 

 

sh
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eff

eff
eff
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B
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Figure 4.4 Geometry of effectively FRP-confined concrete in (a) rectangular and (b) 

square sections. 



 22 

 

2
;

2

eff
eff

eff
eff

B
b

H
h ==

 

(4.7)

 

 

where effh  and effb  are the major and minor axes of the effectively confined elliptical or 

circular concrete core shown in Figure 4.4.  The analysis of the rectangular FCC sections 

shown in Fig. 4.4 is similar to the analysis of rectangular reinforced FCC sections 

introduced by Lam and Teng (2003b) 

It is demonstrated herein that the shape of the FCC core and the geometric parameters 

introduced in Eqs. (4.1) through (4.7) contribute to the overall decrease or increase in 

both the compressive strength and strain ductility of the FRP-confined concrete sections 

considered in Figures 4.1-4.4, as established in Chapters 9 and 10.  In addition, these 

geometric parameters also significantly influence the transverse dilation behavior of the 

FRP-confined concrete core, as demonstrated in Chapters 7 and 8. 

 

FRP Jacket Confining Efficiency 

The confining efficiency of the confining element, be it closely spaced transverse 

steel reinforcement, steel jackets, or FRP jackets, is a geometric and mechanical property 

of the FRP-confined concrete section that determines the effectiveness of the confining 

FRP jacket layout in curtailing the axial strain-induced transverse dilation of the confined 

concrete core. 

The confinement efficiency ek  (Mander et al. 1988) of the transverse reinforcement, 

which is defined as the ratio of the least effectively confined concrete core area ecA  to 

the net concrete core area njA  is given by: 
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icnjec AAA −=
 

(4.9)

 

 

where icA  is the ineffectively confined concrete core area. 

In this chapter, a series of analytical relationships are developed using the concept of 

an effectively FRP-confined concrete core introduced by Mander et al. (1998), Restrepo 

and De Vino (1996), and Lam and Teng (2003b).  The rate of dilatancy of the FRP-

jacketed concrete was found to be significantly affected by the confining efficiency of the 

FRP jacket ek , since the dilatancy of the FRP-confined concrete depends on the lateral 

stiffness of the FRP jacket.  In addition, the lateral stiffness of the FRP jacket jeC , 

shown in the following sections, depends on the geometry of the concrete section, the 

mechanical properties of the FRP jacket, and the confining efficiency of the FRP jacket.  

A low jacket confining efficiency ek  results in a reduction in the transverse stiffness of 

the confining elastic rectangular and square FRP jackets in comparison to that of oval, 

circular, and elliptical FRP jackets. 

 

FRP Jacket Reinforcement Ratio 

The reinforcement ratio of the confining transverse reinforcement trρ  be it closely 

spaced steel reinforcement, steel jackets, or FRP jackets, is a geometric property of the 

confining element that is defined as the ratio of the volume of transverse reinforcement 

trV  to the volume of the confined concrete core cV , as: 
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c

tr
tr

V

V
=ρ

 

(4.10)

 

 

For the case of FRP-confined concrete sections, the transverse reinforcement ratio 

jρ  of the confining FRP jacket is given by: 

 

c

j
j
V

V
=ρ

 

(4.11)

 

 

where jV  is the unit volume of the thin confining elastic FRP jacket, for a unit length 

FCC section; jV  is essentially equal to the perimeter of the confined concrete core corep , 

times the thickness of the FRP jacket jt .  For a unit length FCC section, the concrete 

volume cV  is equal to the net area of the FCC core. 

The reinforcement ratio of the FRP jacket, as shown in Figures 4.2 and 4.3, depends 

on the shape of FRP-confined concrete core and the thickness jt  of the confining FRP 

jacket.  As a result, the reinforcement ratio of the confining FRP jacket of any given 

shape ( )
shjρ  can be expressed as: 
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where shC  is the FRP jacket reinforcement ratio coefficient.  A series of mathematical 

relationships for the jacket reinforcement ratio coefficient shC  of the FRP jacket shapes 

considered in Figures 4.2 and 4.3 are introduced in this chapter. 
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FRP Jacket Confining Stiffness 

The lateral confining stiffness of the transverse reinforcement, be it closely spaced 

transverse steel, steel jackets, or FRP jackets, is a mechanical property of the confining 

element that depends on the geometric reinforcement ratio of the confining element.  For 

the case of thin elastic FRP jackets having an average transverse modulus jE  and 

thickness jt , the transverse stiffness of the FRP jackets jC , shown in Figures 4.2 and 

4.3, is defined in what follows. 

The effective confining stiffness of the elastic FRP jacket jeC  is given by: 

 

jjjjeje ECCkC ρ
2

1
; ==

 

(4.13)

 

 

where ek  is the confining efficiency of the FRP jacket as defined in Eq. (4.8).  The 

effective confining stiffness ( )
shjeC  of an FRP jacket of a given shape, as shown in 

Figure 4.2 and 4.3, is expressed as: 
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The effective transverse modulus of the FRP jacket along the minor ( )
BjeE  and 

major ( )
HjeE  axes of the FRP-confined concrete section is: 
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The effective confining stiffness ( )
shjeC  of Eq. (4.14) can be rewritten in terms of 

( )
BjeE  and ( )

HjeE  as follows: 

 

( ) ( ) ( )
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The normalized effective stiffness jeK  of the confining elastic FRP jacket is defined 

as the ratio of the effective confining stiffness of the FRP jacket jeC  to the unconfined 

peak compressive strength of the concrete core cof , as follows: 

 

co

je
je

f

C
K =

 

(4.18)

 

 

For an FRP jacket of a given shape, the normalized effective confining stiffness of the 

FRP jacket ( )
shjeK , as shown in Figures 4.2 and 4.3, is expressed as: 

 

( ) ( )
co

shje

shje
f

C
K =

 

(4.19)

 

 

The effective confining stiffness ( )
shjeC  and the normalized effective stiffness 

( )
shjeK  of the FRP jacket affect the axial strain-induced dilatancy (i.e., Poisson’s effects) 

and the axial compressive behavior of the FRP concrete sections shown in Figures 4.2 

and 4.3. 
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In what follows, a series of numerical relationships are introduced to define the 

geometric and mechanical properties of rectangular, square, oval, circular and elliptical 

FRP-confined concrete sections, including elliptical, oval and circular shape modifying 

FRP jackets. 

 

Rectangular Sections 

Confining Efficiency  

The concept of effectively confined concrete introduced by Restrepo and deVino 

(1996) and Lam and Teng (2003) is incorporated into the definition of the FRP jacket 

confining efficiency ek .  This concept is used in the analysis of rectangular, circular and 

elliptical reinforced columns confined by continuous oval, circular, or elliptical FRP 

jackets. 

The confining efficiency ek  of oval, circular and elliptical FRP jackets are derived 

from the general analysis of the effectively confined concrete core area of a rectangular 

column with rounded corners confined by a continuous rectangular FRP jacket. 

The gross cross-sectional area of a rectangular FRP-confined concrete (RFCC) 

section, as shown in Figures 4.2(a) and 4.4(a), is defined as: 

 

( ) ( )
sh
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cshccg

H
BHBA

α
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For the case of rectangular, as shown in Figures 4.2(a) and 4.4(a), and square, as 

shown in Figures 4.2(b) and 4.4(b), FRP-jacketed concrete sections, the corners are 

typically rounded in order to minimize the effects of stress-concentrations at the sharp 
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corners and to mitigate the premature failure of the FRP jacket due to the presence of 

sharp edges. 

Corner rounding also increases the confining efficiency ek  of the FRP jacket by 

increasing the effectively confined concrete core area ecA .  Accounting for the rounding 

of the corners to an average radius jR  the net cross-sectional area njA  of a RFCC 

section, as shown in Figure 4.5, is defined as: 

 

( ) ( )( )[ ] ( ) ( )( )[ ]222
2

4141 jshcshjsh
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c
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AAA απαααπα

α
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(4.21)

 

( )( ) ( ) ( )( ) ( ) ( )( )22222 444 jshcjcjr BHRA ααπαππ −=−=−=
 

(4.22)

 

 

where rA  is a reduction in area due to rounding of corners to an average radius, jR .  

Rounding of the corners is typically limited to small values due to the presence of 

transverse and longitudinal steel reinforcing bars just inside the corner, which is typically 

in the range of 38-75 mm. 

The ineffectively confined concrete core area icA , as shown in Figure 4.5, is given 

by: 

 

( ) ( )HicBicic AA +A=

 

(4.23)

 

 

where ( )BicA  and ( )HicA  are the ineffectively confined concrete area along the minor 

cB , and major cH , faces of the RFCC section, respectively.  The ineffectively confined 

core area icA  in a RCC section is shown as a hatched area in Figure 4.5. 
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Figure 4.5 Geometry of effectively confined concrete in rectangular FRP-confined 

sections. 
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This hatched area is assumed governed by a second degree parabola with an initial 

diagonal angle of inclination dθ  that initiates at a distance R j  from the member’s edge 

at the minor cB  dimension and at a distance jshRα  at the major cH  dimension. 

Lam and Teng (2003b) recognized that the ineffectively confined concrete area along 

the minor cB  and major cH  faces of the RFCC section, ( )BicA  and ( )HicA , 

respectively, are given by: 
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Substituting Eqs. (4.24) and (4.25) into Eq. (4.23) yields the total ineffectively 

confined concrete core area icA : 
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Substituting njA  of Eq. (4.21), icA  of eq. (4.27), into ecA  of Eq. (4.9) yields: 
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Substituting njA  of Eq. (4.21) and icA  of Eq. (4.27) into ek  of Eq. (4.8) yields: 
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This relationship indicates that the confining efficiency of the confining rectangular 

FRP jacket ( )reek , depends on the geometry of the FRP-confined concrete as measured 

by the jacket corner aspect ratio jα  and the aspect ratio shα . 

The minimum confining efficiency of ( ) 31=reek  occurs when no rounding of the 

corners is provided (i.e., 0=jα ).  The maximum confining efficiency of ( ) 0.1=reek  

occurs when the corners of the rectangular section are rounded to a radius jR  equal to 

one half of the minor dimension cB  (i.e., 2cj BR =  or ( )shj αα 21= ) which is the 

case of a circular FRP-confined concrete (CFCC) section, as shown in Figure 4.2(c), 

when 0.1=shα  or an oval FRP-confined concrete (OFCC) section, as shown in Figure 

4.3(b), when 0.1>shα . 

 

Reinforcement Ratio 

Using Eq. (4.12), the reinforcement ratio of the confining rectangular FRP jacket 

( )
rejρ , of Figure 4.5 is given by: 
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where reC  is the reinforcement ratio coefficient of the confining rectangular FRP jacket. 

 

Effective and Normalized Effective Confining Stiffness 

The effective stiffness of a RFCC section ( )
rejeC , can be found by setting 

( ) ( )
rejeshje CC =  in Eq. (4.17) and substituting the confining efficiency ( )recek  of Eq. 

(4.29) and the reinforcement ratio coefficient reC  of Eq. (4.31) into Eq. (4.17).  The 

normalized effective confining stiffness ( )
rejeK  of a rectangular FRP jacket can be 

found by setting ( ) ( )
rejeshje KK =  in Eq. (4.17). 

 

Square Sections 

Confining Efficiency 

A square FRP-confined concrete (SFCC) section with rounded corners is the special 

case of a rectangular FRP-confined concrete (RFCC) section with rounded corners with a 

unity aspect ratio (i.e., 0.1=shα ).  As a result, the confining efficiency ( )sqek  of the 

square FRP-confined concrete section shown in Figure 4.6 can be found by substituting 

0.1=shα  into the confining efficiency ek  of Eq. (4.29), which yields: 
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The above relationship indicates that confining efficiency of the confining square 

FRP jacket ( )sqek  is solely dependent on the rounding of the corners of the FRP-

confined concrete as measured by the jacket corner aspect ratio jα . 
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Figure 4.6 Geometry of effectively confined concrete in square FRP-confined 

sections. 
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As for rectangular sections, the minimum confining efficiency of ( ) 31=sqek  occurs 

when no rounding of the corners is provided in a SFCC section (i.e., 0=jα ).  The 

maximum confining efficiency of ( ) 0.1=sqek  occurs when the corners of the square 

section are rounded to a radius jR  equal to one half of the minor dimension cB  (i.e., 

2cj BR =  or 21=jα ) which is the case of a CFCC section, as shown in Figure 

4.2(c). 

 

Reinforcement Ratio 

Setting ( ) ( )
sqjshj ρρ =  in Eq. (4.12), and setting 0.1=shα  in Eq. (4.31), yields the 

reinforcement ratio ( )
sqjρ  of the confining square FRP jacket of Figure 4.6: 
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where sqC  is the reinforcement ratio coefficient of the confining square FRP jacket. 

 

Effective and Normalized Effective Confining Stiffness 

The effective stiffness of a square FRP jacket ( )
sqjeC  can be found by setting 

( ) ( )
sqjeshje CC =  in Eq. (4.17) and substituting ( )sqek  of Eq. (4.32) and sqC  of Eq. 

(4.34) into Eq. (4.17).  The normalized effective confining stiffness of a square FRP 
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jacket ( )
sqjeK  can be found by setting ( ) ( )

sqjeshje KK =  and substituting ( )
sqjeC  into 

Eq. (4.19).  

 

Oval Sections 

Confining Efficiency 

An oval FRP-confined concrete (OFCC) section with a radius equal to one half the 

minor dimension cB , is a special case of a RFCC section with rounded corners with a 

corner aspect ratio jα  equal to one half the inverse aspect ratio shα  (i.e., 

( )shj αα ⋅= 21 ).  As a result, the confining efficiency ( )
ovek

 

of the OFCC section 

shown in Figure 4.7 can be found by substituting ( )shj αα ⋅= 21  into the ek  of Eq. 

(4.29), which yields ( ) 0.1=ovek . 

This indicates that the maximum confining efficiency of ( ) 0.1=ovek  occurs when 

the section is an OFCC section.  This indicates that the confining efficiency ( )ovek  of the 

confining oval FRP jacket is a constant and is independent of the aspect ratio shα  of the 

OFCC section. 

 

Reinforcement Ratio 

Setting ( ) ( )
ovjshj ρρ =  in Eq. (4.12), and setting jsh αα 21=  in Eq. (4.31), yields 

the reinforcement ratio ( )
ovjρ  of the confining oval FRP jacket of Figure 4.7: 
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Figure 4.7 Typical geometry of an oval FRP-confined concrete section. 
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where ovC  is the reinforcement ratio coefficient of the confining oval FRP jacket. 

 

Effective and Normalized Effective Confining Stiffness 

The effective stiffness of an oval FRP jacket ( )
ovjeC  can be found by setting 

( ) ( )
ovjeshje CC =  in Eq. (4.17) and substituting ( ) 0.1=ovek  and ovC  of Eq. (4.36) into 

Eq. (4.17). 

The normalized effective confining stiffness of an oval FRP jacket ( )
ovjeK  can be 

found by setting ( ) ( )
ovjeshje KK =  and substituting ( ) ( )

ovjeshje CC =  into Eq. (4.19). 

 

Circular Sections 

Confining Efficiency 

A circular FRP-confined concrete (CFCC) section is the special case of a RFCC 

section with rounded corners with a unity aspect ratio (i.e., 0.1=shα ) and a jacket corner 

ratio of 21=jα . 

The confining efficiency ( )ciek  
of the CFCC section shown in Figure 4.8 can be 

found by substituting 0.1=shα  and 21=jα  into ( )reek  of Eq. (4.29) or substituting 

21=jα  into ( )sqek  of Eq. (4.32) which yields ( ) 0.1=ciek . 

This indicates that the confining efficiency ( )ciek  of the confining circular FRP 

jacket is a constant and is independent of the size (i.e., diameter jD ) of the CFCC 

section. 
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Figure 4.8 Typical geometry of a circular FRP-confined concrete section. 
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Reinforcement Ratio 

Setting ( ) ( )
cijshj ρρ =  in Eq. (4.12), and jcc DBH == , 0.1=shα  and 21=jα  in 

Eq. (4.31), yields the reinforcement ratio ( )
cijρ  of the confining circular FRP jacket of 

Figure 4.8 is given by: 

 

( ) 0.2;
2

=













=










= cici

j

j

cic

j

cij CC
D

t

V

V
ρ

 

(4.37)

 

 

where ciC  is the reinforcement ratio coefficient of the confining circular FRP jacket. 

 

Effective and Normalized Effective Confining Stiffness 

The effective stiffness of a circular FRP jacket ( )
cijeC , can be found by setting 

( ) ( )
cijeshje CC =  in Eq. (4.17) and substituting the confining efficiency ( ) 0.1=cirek  

and the reinforcement ratio coefficient ciC  of Eq. (4.37) into Eq. (4.17). 

The normalized effective confining stiffness of a circular FRP jacket ( )
cijeK , can be 

found by setting ( ) ( )
cijeshje KK =  and substituting ( ) ( )

cijeshje CC =  into Eq. (4.19). 

 

Elliptical Sections 

The geometric properties of an elliptical FRP jacket, as shown in Figure 4.9, are the 

distance of the foci elc , the elliptical eccentricity ele , and the elliptical perimeter 

coefficient elλ , which are defined in terms of the major ch  and minor cb  axis dimension 

of the elliptical FRP-confined concrete section as follows: 
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Figure 4.9 Typical geometry of an elliptical FRP-confined concrete section. 
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The elliptical perimeter coefficient elλ  of Eq. (4.39) is used to determine the 

perimeter of an ellipse elp  which is given by: 
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(4.41)

 

 

The eccentricity of the ellipse ele  of Eq. (4.40) measures the roundness of the ellipse. 

An eccentricity 0=ele  indicates a circular section, whereas 0.1=ele  indicates a flat 

(degenerate) ellipse or a line having a length of cc Hh =2 . 

 

Confining Efficiency 

The dilation of the elliptical FRP-confined concrete section depends on the hoop 

dilation of the FRP jacket; arching of the confining stresses does not occur as it takes 

place in rectangular and square FRP-confined concrete sections, as shown in Figures 4.5 

and 4.6.  Membrane action occurs in circular and elliptical sections but not in rectangular 

or square FRP-confined sections.  In rectangular and square FRP jackets bending of the 

sides of the FRP jackets occurs, due to lateral dilation of the concrete core, as a result of 

the weak out-of-plane stiffness of the thin rectangular and square FRP jacket. 
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A circular section as shown in Figure 4.8 is also a special case of an elliptical section, 

as shown in Figure 4.9, for a unity section aspect ratio (i.e., 0.1=shα ).  In addition, an 

elliptical section can also be considered as a special case of an elongated (i.e., distorted) 

circular section for which 0.1≥shα .  As a result, the confining efficiency ( )
elek  of the 

elliptical FRP jacket is also given by Eq. (4.35); thus ( ) ( ) 0.1== cieele kk .   

 

Reinforcement Ratio 

Using Eq. (4.12), the reinforcement ratio ( )
eljρ  of the confining elliptical FRP jacket 

of Figure 4.9 is given by: 

 

( ) el
c

j

elj C
H

t


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(4.42)
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(4.43)

 

 

where elC  is the reinforcement ratio coefficient of the confining elliptical FRP jacket.  

For a circular section for which 0.1=shα , Eq. (4.43) yields 0.2== elci CC , which is 

identical to that given in Eq. (4.37). 

 

Effective and Normalized Effective Confining Stiffness 

The effective stiffness of an elliptical FRP jacket ( )
eljeC  can be found by setting 

( ) ( )
eljeshje CC =  in Eq. (4.17) and substituting the confining efficiency 

( ) ( ) 0.1== cieele kk  and the reinforcement ratio coefficient elC  of Eq. (4.43) into Eq. 
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(4.17).  The normalized effective confining stiffness ( )
eljeK  of an elliptical FRP jacket, 

can be found by setting ( ) =
shjeK ( )

eljeK  and substituting ( ) ( )
eljeshje CC =  into Eq. 

(4.19). 

 

Shape-Modified Sections 

FRP jackets are effective in confining circular or elliptical concrete sections. 

However, in the case of square and rectangular concrete sections, the confinement 

provided by the FRP jacket is less effective due to the rectilinear FRP jacket shape which 

includes rounded corners and flat sides.  The presence of steel ties in rectangular 

reinforced concrete sections limits corner rounding to small radii in the order of 25-76 

mm. 

One approach to increasing the confinement effectiveness and strain ductility of 

square and rectangular sections with chamfered corners, as shown in Figure 4.10, is to 

shape modify the cross section into either circular, oval or elliptical FRP-confined 

sections (Yan 2005). 

When the presence of steel ties in square or rectangular reinforced concrete sections 

limits corner rounding to small radii, shapes other than rectangular FRP jackets may be 

used to improve the confining effectiveness of the FRP jacket while minimizing the size 

of the confining FRP jacket. 

This can be accomplished by modifying the rectilinear (rectangular and square) 

section using either a circular FRP jacket to confined square sections or an elliptical or 

oval FRP jacket to confine rectangular sections.  The use of shape-modifying elliptical 

FRP jackets (including circular) and oval FRP jackets are considered herein. 
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Figure 4.10 Geometry of existing (a) rectangular and (b) square sections. 
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In this section a rectangular shape-modified (RSM) section that is confined by either 

a shape-modifying oval (SMO) or a shape-modifying elliptical (SME) FRP jacket, as 

shown in Figures 4.11 and 4.12, is considered herein.  In these figures a rectangular 

concrete section with major cH  and minor cB  dimensions, having a nonunity aspect 

ratio (i.e., 0.1>shα ) whose shape has been modified so that a minimum concrete cover 

corc  is provided at the corners of the rectangular section, along the section’s main 

diagonal is shown. 

The dimensions of the dashed rectangle circumscribed within the elliptical FRP jacket 

shown in Figure 4.11(a) are given by: 

 

( )
c
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H

c
HH =+= αθα ;sin21
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( )dshcorcrsm BB θαα cos21+=
 

(4.45)
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The subscript rsm  indicates a rectangular shape-modified (RSM) section confined by 

a shape-modifying elliptical or oval FRP jacket. In addition, rsmα  is the aspect ratio of 

the RSM section; rsmH , rsmB , and rsmD  are the overall major, minor, and main 

diagonal dimensions of the RSM section.  Also, rsmh  and rsmb  are the major and minor 

axis of the RSM section, respectively, and rsmθ  is the angle of inclination of the main 

diagonal of the RSM section. 
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Figure 4.11 Geometry of shape-modified rectangular section: (a) rectangular section 

geometry and (b) elliptical FRP jacket geometry. 
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Figure 4.12 Geometry of shape-modified rectangular section: (a) rectangular section 

geometry and (b) oval FRP jacket geometry. 
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Elliptical Shape-Modified Sections 

As shown in Figure 4.11(b), the rectangular section could be confined by an elliptical 

FRP jacket whose aspect ratio is minimized; this is accomplished by minimizing the 

distance of the foci elc  of Eq. (4.38) of an elliptical FRP jacket, which yields the 

following: 
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smej DD
2

2=
 

(4.52)

 

 

where smeα  is the aspect ratio of the shape-modifying elliptical (SME) FRP jacket.  

Also, smeH , smeB , and smeD  are the overall major, minor, and main diagonal 

dimensions of the SME jacket, respectively.  In addition, smeh  and smeb  are the major 

and minor axis of the SME jacket, respectively, and smeθ  is the angle of inclination of 

the FRP jacket diagonal jD  and smeD  of the SME jacket.  The subscript sme  indicates 

a rectangular concrete section confined by an SME jacket. 
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Using Eq. (4.12), the reinforcement ratio of the shape-modifying elliptical FRP jacket 

of Figure 4.11, ( )
smejρ  is given by: 
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where smeC  is the reinforcement ratio coefficient of the shape-modifying elliptical FRP 

jacket.  The effective stiffness of the shape-modifying elliptical FRP jacket ( )
smejeC  can 

be found by setting ( ) ( )
smejeshje CC =  in Eq. (4.17) and substituting the confining 

efficiency ( ) ( ) ( ) 0.1=== cieelesmee kkk  and the reinforcement ratio coefficient smeC  

of Eq. (4.54) into Eq. (4.17).  In addition, the normalized effective confining stiffness of 

the shape-modifying elliptical FRP jacket ( )
smejeK  can be found by setting 

( ) ( )
smejeshje KK =  and substituting ( ) ( )

smejeshje CC =  into Eq. (4.19). 

 

Oval Shape-Modified Sections. 

The rectangular concrete section of Figure 4.10(a), whose shape has been modified 

by a shape-modifying oval (SMO) FRP jacket, as shown in Figure 4.12, is considered. 

Minimizing the aspect ratio of an SMO jacket smoα , the minimum required aspect ratio 

( )
minsmoα  of the SMO jacket is given by: 
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( )[ ]{ }
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(4.60)

 

( ) ( )smosmosmosmoa θθθθ cossinsin 1 −−= −

 

(4.61)

 

 

where smoB , smoH , and smoD  are the overall minor, major, and diagonal dimensions of 

the SMO jacket; jD  is the main diagonal of the confined core within the SMO jacket; 

smoθ  is the main diagonal angle of the SMO jacket, and ( )
smoaθ  is the reference angle 

measured from the center of the jacket radius smoR  to the intercept of the main diagonal 

with the FRP jacket for a rectangular concrete section with a nonunity aspect ratio (i.e., 

0.1>shα ) as shown in Figure 4.12, the subscript smo  indicates a rectangular section 

confined by a SMO jacket.  For the rectangular section confined by an SMO jacket, as 

shown in Figure 4.12, the confining efficiency ( )
smoek  of the SMO jacket can be found 

by substituting smosh αα =  and ( )smoj αα 21=  into Eq. (4.29) which yields 

( ) 0.1=smoek . 
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Using Eq. (4.12), the reinforcement ratio ( )
smojρ  of the SMO section as shown in 

Figure 4.12 is found by substituting smosh αα =  and ( )smoj αα 21=  into Eq. (4.30), 

which yields: 
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where smoC  is the reinforcement ratio coefficient of the SMO jacket. 

The effective stiffness ( )
smojeC  of the SMO jacket can be found by setting 

( ) ( )
smojeshje CC =  in Eq. (4.17) and substituting the confining efficiency 

( ) ( ) 0.1== ciesmoe kk , the aspect ratio smosh αα = , and the jacket reinforcement ratio 

coefficient smosh CC =  into Eq. (4.17).  In addition, the normalized effective confining 

stiffness of the shape-modifying circular FRP jacket ( )
smojeK  can be found by setting 

( ) ( )
smojeshje KK =  and substituting ( ) ( )

smojeshje CC =  into Eq. (4.19). 

 

Circular Shape-Modified Sections 

A square concrete section with chamfered corner having major cH  and minor cB  

dimensions, and a unity aspect ratio (i.e., 0.1=shα ), whose shape has been modified so 

that a minimum cover corc  is provided at the corners of the square section is shown in 

Figure 4.13.  The dimensions of the dashed square circumscribed within the shape-

modifying circular FRP jacket, as shown in Figure 4.13(a), are given by: 
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Figure 4.13 Geometry of shape-modified square section: (a) square section geometry 

and (b) circular FRP jacket geometry. 
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The subscript ssm  indicates a square shape-modified (SSM) section confined by a 

shape-modifying circular (SMC) FRP jacket.  The size of the SMC jacket with a unity 

aspect ratio (i.e., 0.1== shsmc αα ) as shown in Figure 4.13(b) can be found as follows: 
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where smcα  is the aspect ratio of the shape-modifying circular FRP jacket; smcH , smcB , 

smcD , and jD  are the overall major, minor, and diagonal dimensions of the shape-

modifying circular FRP jacket, respectively; smch  and smcb  are the overall major and 

minor axis of the shape-modifying circular FRP jacket, respectively.  The subscript smc  

indicates a section confined by a SMC jacket. 

Using Eq. (4.12), the reinforcement ratio ( )
smcjρ  of the SMC jacket as shown in 

Figure 4.12 is given by: 
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where smcC  is the reinforcement ratio coefficient of the shape-modifying circular (SMC) 

FRP jacket. 
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The effective stiffness ( )
smcjeC  of the SMC jacket, can be found by setting 

( ) ( )
smcjeshje CC =  in Eq. (4.17) and substituting the confining efficiency 

( ) ( ) 0.1== ciesmce kk , and the reinforcement ratio coefficient smcC  of Eq. (4.59) into 

Eq. (4.17).  In addition, the normalized effective confining stiffness ( )
smcjeK  of the 

SMC jacket, can be found by setting ( ) ( )
smcjeshje KK =  and substituting 

( ) ( )
smcjeshje CC =  into Eq. (4.19). 

The confinement efficiency ek  of Eq. (4.8) and the reinforcement ratio coefficient 

shC  of Eq. (4.12) of the FRP-jacketed sections considered herein are summarized in 

Table 4.1 and Table 4.2, respectively. 

In this chapter a series of mathematical relationships were developed to describe the 

geometric and mechanical properties of FCC sections of various shapes, which include 

circular, elliptical, rectangular, square, and oval sections.  These relationships are 

incorporated into Chapters 5-10 to describe the uniaxial compressive behavior and the 

axial strain-induced transverse and diagonal dilation behavior of FRP-confined concrete 

sections in compression. 
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Table 4.1 Summary of the confinement efficiency ek  of various FRP-confined 

concrete sections. 

   

FRP jacket shape Confinement Efficiency ( ek ) Ref. Eq. 

Rectangular 
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Oval 

Same as rectangular with =jα2  

shα1 or 0.1=ek  

N/A 

Circular 

Same as rectangular with 0.1=shα  and 

50.0=jα , or 0.1=ek  

N/A 

Elliptical 0.1=ek  N/A 
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Table 4.2 FRP jacket shape dependent reinforcement ratio coefficient shC  of 

various FRP-confined concrete sections. 

   

FRP jacket shape 

FRP jacket shape dependent 

reinforcement ratio coefficient shC  Ref. Eq. 

Rectangular 
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CHAPTER 5 

 

TRANSVERSE AND DIAGONAL EQUILIBRIUM 

OF CONCRETE SECTIONS CONFINED BY 

FIBER-REINFORCED POLYMER 

JACKETS 

 

In this chapter a series of equilibrium relationships are developed from the transverse 

and diagonal equilibrium of the FRP-confined concrete (FCC) sections considered in this 

dissertation.  In addition, a novel concept of diagonal equilibrium along the main 

diagonal of the FCC section is introduced.  The mechanical and geometric properties of 

these FCC sections introduced in Chapter 4 are used to develop a series of diagonal 

equilibrium relationships for FCC sections. 

The analytical equilibrium relationships introduced in what follows are used to 

determining the analytical strain compatibility relationships introduced in Chapter 6.  

Also, the concept of diagonal equilibrium is used in an analytical Mohr-Coulomb-based 

yield criterion for frictional-cohesive materials introduced in Chapter 9 and in an 

incremental damage-based stress-strain model introduced in Chapter 10. 

In this investigation the following assumptions are made in the transverse and 

diagonal equilibrium analysis of FCC sections: 

1. Perfect bond exists between the FRP jacket and the confined concrete core near the 

corners of rectangular and square FCC sections with surface-bonded FRP jackets or 
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bonded shape-modifying FRP jackets, referred to herein as bonded FRP-confined 

concrete (BFCC) sections. 

2. At the corners of cast in place FRP jacketed concrete sections or what is typically 

referred to as concrete filled FRP tube (CFFT) sections, the coefficient of friction 

between the concrete core and the FRP jacket is assumed to be sufficiently high to 

suppress slippage between the FRP jacket and concrete core near the rounded corners 

of rectangular and square FCC sections and at the concrete-to-jacket interface of oval, 

circular, and elliptical CFFT sections, including shape-modifying FRP jackets. 

3. Flexural stiffness of the confining rectangular jacket is assumed negligible, and 

arching action between the rounded corners is assumed to spread the resultant passive 

confining pressures along the faces of the rectangular and square BFCC and CFFT 

sections.  As a result, the FRP jacket is considered as an element having only axial 

stiffness. 

4. Flexure-induced strains at the extreme fibers of the FRP jacket due to lateral bulging 

of the confined core at the faces of the rectangular and square BFCC or CFFT 

sections are ignored.  In addition, flexure-induced strains at the extreme fibers of 

elliptical FRP jackets due to lateral bulging of the confined core are also ignored. 

5. Secondary effects due to combined axial shortening and transverse extension of the 

FRP jacket are ignored in the analysis of the FCC section. 

6. The fibers of the FRP jacket are assumed oriented in the hoop or transverse direction. 

7. Stress-concentrations at the concrete-to-jacket interface that can occur due to cracking 

of the confined concrete core near the surface of the FRP-jacketed concrete are 

ignored in the equilibrium analysis of the FCC section. 
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8. In determining the lateral confining pressure provided  by the confining FRP jacket at 

a given transverse jacket strain, the concrete core within the FRP jacket is considered 

infinitely rigid when compared to the lateral stiffness of the FRP jacket. 

In the analysis of confined concrete sections, be it concrete confined by transverse 

steel reinforcing, steel jackets, or FRP jackets, the equilibrium of the passively confined 

concrete is typically defined in terms of the transverse equilibrium of the confined 

concrete core, as shown in Figures 5.1-5.5, for FCC sections of various shapes.  In this 

dissertation, a series of mathematical relationships are introduced using the concept of 

diagonal equilibrium of the FCC sections as shown in Figures 5.6-5.10. 

Consider the transverse equilibrium of the half body of the concrete sections along 

the minor cB  dimension, as shown in Figures 5.1(a), 5.2(a), 5.3(a), 5.4(a) and 5.5(a), 

and along the major cH  dimension as shown in Figures 5.1(b), 5.2(b), 5.3(b), 5.4(b), 

and 5.5(b).  Equilibrium of the FCC sections along the minor cB  and major cH  

dimension of Figures 5.1-5.5, yields: 

 

 ( ) 02 =− cBjBj
Hftf  (5.1) 

 ( ) 02 =− cHjHj
Bftf  (5.2) 

 

The average stress in the linear elastic FRP jacket along the minor ( )
Bj

f  and major 

( )
Hj

f  faces of the FRP jackets of Figures 5.1-5.5 are given in terms of overall average 

transverse strains in the confined concrete core along the minor Bε  and major Hε  

dimensions of the FRP jacket, respectively, as follows: 
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Figure 5.1 Transverse equilibrium of rectangular FRP-confined concrete section 

along the (a) minor and (b) major dimension. 
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Figure 5.2 Transverse equilibrium of square FRP-confined concrete section: along 

the (a) minor and (b) major dimension. 
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Figure 5.3 Transverse equilibrium of oval FRP-confined concrete sections: along the 

(a) minor and (b) major dimension. 
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Figure 5.4 Transverse equilibrium of circular FRP-confined concrete sections: along 

the (a) minor and (b) major dimension. 
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Figure 5.5 Transverse equilibrium of elliptical FRP-confined concrete sections: along 

the (a) minor and (b) major dimension. 
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Figure 5.6 Diagonal equilibrium of a rectangular FRP-confined concrete section. 
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Figure 5.7 Diagonal equilibrium of a square FRP-confined concrete section. 
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Figure 5.8 Diagonal equilibrium of an oval FRP-confined concrete section. 
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Figure 5.9 Diagonal equilibrium of a circular FRP-confined concrete section. 
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Figure 5.10 Diagonal equilibrium of an elliptical FRP-confined concrete section. 
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 ( ) BjBj
Ef ε=  (5.3) 

 ( ) HjHj
Ef ε=  (5.4) 

 

Solving for the average confining stress along the minor cB  and major cH  

dimensions in Eqs. (5.1) and (5.2), and setting the effective confining stress as 

( ) BeeB fkf =  and ( ) HeeH fkf =  and using Eqs. (5.3) and (5.4) yields: 

 

 ( ) ( ) BBjeeB Ef ε=  (5.5) 

 ( ) ( ) HHjeeH Ef ε=  (5.6) 

 

where ( )
BjeE  and ( )

HjeE  are the effective transverse stiffness of the FRP jacket along 

the minor cB  and major cH  dimensions of the FCC section, given in Eqs. (4.15) and 

(4.16), respectively. 

One of the difficulties associated with Eqs. (5.5) and (5.6) is that they are two 

equilibrium equations with two unknown transverse strains Bε  and Hε  and an unknown 

relationship between them.  These challenges can be overcome by considering the 

diagonal equilibrium of the FCC sections shown in Figures 5.6-5.10, in combination 

with the transverse equilibrium of the FCC sections of Figures 5.1-5.5 and the resulting 

transverse equilibrium relationships of Eqs. (5.5) and (5.6). 

The novel concept of diagonal equilibrium and dilation of the FCC sections 

introduced herein, to the knowledge of the author, has not been introduced in the analysis 

of FCC sections.  From equilibrium of the FCC sections perpendicular to the main 
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concrete core diagonal shD , as shown in Figures 5.6-5.10, the average diagonal 

confining stress ( )
shdf  can be found as: 

 

 ( ) b
sh

jj

shd
D

tf
f θcos

2











=  (5.7) 

 

From equilibrium of the FCC sections parallel to the main concrete core diagonal 

shD , as shown in Figures 5.6-5.10, the average shearing stress ( )
shdτ  is given by: 

 

 ( ) b
sh

jj

shd
D

tf
θτ sin

2











=  (5.8) 

 

where jf  is the tensile stress in the FRP jacket at the intersection of the main diagonal, 

cD  of Eq. (4.3), with the FRP jacket having a thickness jt , as shown in Figures 5.6-5.10 

which is given as: 

 

 jjj Ef ε=  (5.9) 

 

This tensile stress in the FRP jacket is a result of the transverse dilation that the FCC 

core exhibits during axial deformation of the core.  In addition, jε  is the tensile strain in 

the FCC section at the intersection of the main diagonal cD  of Eq. (4.3) with the FRP 

jacket; jE  is the transverse or hoop modulus of elasticity of the FRP jacket. Also, the 

main concrete core diagonal shD  and the FRP jacket strain/stress angles aθ  and bθ  

depend on the shape and geometry of the FCC core. 
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Using Eqs. (5.7) and (5.8) the average effective shearing stress ( )
shdeτ  can be found 

in terms of the average effective diagonal confining stress ( )
shdef , as follows: 

 

 ( ) ( ) bshdshd f θτ tan=  (5.10) 

 

The main concrete core diagonal shD  of the FRP-confined core is given in terms of 

the major dimension cH  of the FRP jacket, as follows: 

 

 cshsh HD χ=  (5.11) 

 

where shχ  is a diagonal parameter that relates main concrete core diagonal shD  to the 

major dimension cH . 

Substituting the effective transverse stiffness ( )
BjeE  of the FRP jacket along the 

minor jacket dimension cB  of Eq. (4.15) and the main concrete core diagonal shD  of Eq. 

(5.11) into the definition of the average diagonal confining stress ( )
shdf  of Eq. (5.7) and 

setting the effective diagonal confining stress as ( ) ( )
shdede fkf =  yield: 

 

 ( ) ( ) ( ) jshdBjeshde Ef εψ=  (5.12) 

 ( )
sh

b
shd χ

θψ cos
=  (5.13) 

 

where ek  is the confinement efficiency  of the FRP jacket, which is summarized in Table 

4.1 for the FRP-confined sections considered herein; ( )
shdψ  is a diagonal confinement 

equilibrium coefficient of the FCC section.  This coefficient is included in the analytical 
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strain compatibility relationships introduced in Chapter 6, which relate the diagonal 

jacket strain jε  to the strain along the minor Bε , and major Hε , dimensions of the FCC 

section. 

Performing identical substitutions into the definition of the average diagonal shear 

stress ( )
shdτ  of Eqs. (5.8) and (5.10) and setting the effective diagonal shear stress ( )deτ  

as ( ) ( )
shdede k ττ =  yield the following: 

 

 ( ) ( ) ( ) ( ) bshdejshBjeshde fE θεψτ τ tan==  (5.14) 

 ( ) ( ) bshd
sh

b
sh θψ

χ
θψτ tan

sin
==  (5.15) 

 

where ( )
shτψ  is a diagonal shear equilibrium coefficient of the FCC section. 

The normalized effective confining stress ( )
shdeF  and the normalized diagonal 

shearing stress ( )
shdeΤ  of any given FRP jacket is defined as: 

 

 ( ) ( )
co

shde
shde

f

f
F =  (5.16) 

 ( ) ( )
co

shde
shde

f

τ
=Τ  (5.17) 

 

where cof  is the unconfined peak compressive strength of the concrete core. 

Using the effective transverse stiffness ( )
BjeE  of Eq. (4.15), the effective confining 

stiffness ( )
shjeC  of Eq. (4.17), the normalized effective jacket stiffness jeK  of Eq. 
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(4.18), and the effective diagonal confining stress ( )
shdef  of Eq. (5.12), the normalized 

effective confining stress ( )
shdeF  of Eq. (5.16) can be rewritten as: 

 

 ( ) ( ) ( ) jshdshjeshde KF εγ=  (5.18) 

 ( ) ( )
sh

shd
shd

C

ψ
γ

2
=  (5.19) 

 

where ( )
shdγ  is a normalized diagonal confinement equilibrium coefficient of the FCC 

section.  In addition, shC  is an FRP-jacket shape-dependent reinforcement ratio 

coefficient, summarized in Table 4.2. 

The same can be done for the normalized diagonal shearing stress ( )
shdeΤ  of Eq. 

(5.17) where: 

 

 ( ) ( ) ( ) ( ) ( ) bjshdshjejshshjeshde KKT θεγεγτ tan==  (5.20) 

 ( ) ( ) ( ) bshd
sh

sh
sh C

θγ
ψ

γ τ
τ tan

2
==  (5.21) 

 

where ( )
shτγ  is a normalized diagonal shear equilibrium coefficient of the FCC section. 

Using the geometry of Figures 5.6-5.10, the dθcos  and dθsin  terms included in the 

following relationships are given as: 

 

 ( ) ( )
( )2

22 1
1

1
sin

sh

cc

c
d

BH

H

α

θ
+

=
+

=  
(5.22) 
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 ( ) ( ) ( )222
1

1
cos

shcc

c
d

BH

B

α
θ

+
=

+
=  (5.23) 

 

where the angle of inclination dθ  of the main diagonal cD  and the section aspect ratio 

shα  of the FCC sections shown in Figures 5.6-5.10 are defined in Eqs. (4.1), (4.2), and 

(4.3), respectively. 

In what follows, a series of relationships for the nondimensional shape-dependent 

parameter shχ  of Eq. (5.11) and the FRP jacket shape-dependent angles aθ  and bθ  are 

introduced from the diagonal equilibrium of the FRP-jacketed concrete sections of the 

various shapes shown in Figures 5.6-5.10. 

 

Rectangular Sections 

A unit length rectangular FRP-confined concrete BFCC or CFFT section, as shown in 

Figure 5.11(a), is considered herein.  From the geometry of the half body shown in 

Figure 5.11, the minor shB  and major shH  dimensions of the main diagonal shD  of the 

rectangular FRP-confined concrete (RFCC) section can be found as: 

 

 ( )[ ]ajcsh HH θα sin121 −−=  (5.24) 

 ( )[ ]ajcsh BB θα sin121 −−=
 

(5.25) 

 

where the corner aspect ratio of the FRP jacket jα  is defined in Eq.(4.4). 

The main concrete core diagonal shD  of the rectangular RFCC section, as shown in 

Figure 5.11, is given as: 
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Figure 5.11 Rectangular FRP-confined concrete section: (a) typical section geometry, 

(b) diagonal equilibrium. 
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 ( ) ( )
d

sh

d

sh
shshsh

BH
HBD

θθ cossin

22 ==+=  (5.26) 

 

The shape-dependent angles aθ  and bθ  of the rectangular FRP jacket are given by: 

 

 bda θθθ −=  (5.27) 

 ( )ddb θθθ cossinsin 1 −= −  (5.28) 

 

Substituting shH  of Eq. (5.24) into the definition of shD  of Eq. (5.26) and solving 

for the nondimensional shape-dependent parameter of the RFCC section shχ  of Eq. 

(5.11) yields: 

 

 
( )
d

aj
sh θ

θα
χ

sin

sin121 −−
=  (5.29) 

 

Square Sections 

A unit length square FRP-confined concrete BFCC or CFFT section, as shown in 

Figure 5.12(a), is considered herein.  From the geometry of the half body shown in 

Figure 5.12, the minor shB  and major shH  dimensions of the main diagonal shD  of the 

square FRP-confined concrete (SFCC) section can be found as: 

 

 ( )[ ]221 −−= jcsh HH α  (5.30) 

 ( )[ ]221 −−= jcsh BB α  (5.31) 
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Figure 5.12 Square FRP-confined concrete section: (a) typical section geometry, (b) 

diagonal equilibrium. 
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For a square section cc HB =  (i.e., )0.1=shα ; hence the minor shB  dimension is 

equal to the major shH  dimension and can be used interchangeably given that 

shsh HB = .  The main concrete core diagonal shD  of the SFCC section, as shown in 

Figure 5.12, is given as: 

 

 ( ) ( ) shshshsh HHBD  2
22 =+=  (5.32) 

 

Substituting shH  of Eq. (5.30) into shD  of Eq. (5.32) and solving for the 

nondimensional shape-dependent parameter shχ  of the SFCC section of Eq. (5.11) yield: 

 

 
( ) ( )[ ]2212
sin

sin121
−−=

−−
= j

d

dj
sh α

θ
θα

χ  (5.33) 

 

The nondimensional shape-dependent parameter shχ  of the SFCC section of Eq. 

(5.33) is similar to that introduced in Eq. (5.29) for RFCC sections, since a SFCC section 

is the special case of a RFCC section with rounded corners with a unity section aspect 

ratio (i.e., 0.1=shα  and o45=dθ ). 

As shown in Figure 5.12(b), the shape-dependent angles aθ  and bθ  of the SFCC 

jacket are o45== da θθ  and 0=bθ ; these values can also be found by substituting 

0.1=shα  (i.e., o45=dθ ) into bθ  of the RFCC section of Eq. (5.28). 

 

Oval Sections 

A unit length oval FRP-confined concrete BFCC or CFFT section, as shown in 

Figure 5.13(a), is considered herein.  From the geometry of the half body shown in 
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Figure 5.13, the minor shB  and major shH  dimensions of the main diagonal shD  of an 

oval FRP-confined concrete (OFCC) section can be found as: 

 

 ( )[ ]ash
sh

c
sh

H
H θα

α
sin1−−=  (5.34) 

 ( )[ ]ash

sh

c
sh

H
B θα

α
sin1

2
−−=  (5.35) 

 

The main diagonal shD  is given by Eq. (5.26).  The shape-dependent angles aθ  and 

bθ  of the oval FRP jacket are given by Eqs. (5.27) and (5.28), respectively. 

Substituting shH  of Eq. (5.34) into the definition of shD  of Eq. (5.26) and solving 

for the nondimensional shape-dependent parameter shχ  of the OFCC section of Eq. 

(5.11) yield: 

 

 
( ) ( )[ ]addd

dsh

ash
sh θθθθ

θα
θαχ sin1cossincsc

sin

sin1 2 −−=
−−

=  (5.36) 

 

The nondimensional shape-dependent parameter shχ  of the OFCC section of Eq. 

(5.36) is similar to that introduced in Eq. (5.29) for RFCC sections, since an OFCC 

section is the special case of a rectangular section with rounded corners with 0.1≥shα  

and ( )shj αα 21= .  Also, an oval section with a unity aspect ratio 0.1=shα  is a 

circular section, as shown in the following section, since a circular section is also a 

special case of a square section with rounded corners for which 2jj DR =  or 21=jα . 
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Figure 5.13 Oval FRP-confined concrete section: (a) typical section geometry, (b) 

diagonal equilibrium. 
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Circular Sections 

In this section, the following analysis of circular FRP-confined concrete (CFCC) 

sections also includes square concrete sections confined by shape-modifying circular FRP 

jackets introduced in Chapter 4.  A unit length CFCC section, as shown in Figure 

5.14(a), is considered herein. 

From the geometry of the half body shown in Figure 5.14, the minor shB  and major 

shH  dimensions of the main diagonal shD  of the CFCC section can be found as: 

 

 dcsh BB θsin=  (5.37) 

 dcsh HH θsin=  (5.38) 

 

Considering that for a circular section cc HB =  (i.e., )0.1=shα , the minor 

dimension shB  of Eq. (5.37) is equal to the major dimension shH  of Eq. (5.37), i.e., 

shsh HB = .  The dθsin  terms in Eq. (5.37) and (5.38) is equal to 22 , determined by 

substituting 0.1=shα  into dθsin  of Eq. (5.22).  The main concrete core diagonal shD  

of the CFCC section, as shown Figure 5.14, is given by: 

 

 ( ) ( ) shshshsh HHBD  2
22 =+=  (5.39) 

 

Substituting shH  of Eq. (5.37) into shD  of Eq. (5.39) and solving for the 

nondimensional shape-dependent parameter shχ  of the CFCC section of Eq. (5.11) yield 

0.1=shχ  for a CFCC section. 
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Figure 5.14 Circular FRP-confined concrete section: (a) typical section geometry; (b) 

diagonal equilibrium. 
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A value of 0.1=shχ  can also be obtained by substituting 21=jα  (i.e., 

2jj DR = ), o0=bθ , and o45=dθ  for 0.1=shα  (i.e., jcc DHB == ) into shχ  of 

Eq. (5.29), since a circular section is a special case of a rectangular section with rounded 

corners for which 0.1=shα  and 21=jα  (i.e., 2jj DR = ). 

A value of 0.1=shχ  can also be obtained by substituting 21=jα  (i.e., 

2jj DR = ) into shχ  of Eq. (5.33), since a circular section is also a special case of a 

square section with rounded corners for which 2jj DR =  or 21=jα . 

As shown in Figure 5.14(b), the shape-dependent angles aθ  and bθ  of the CFCC 

jacket are o45== da θθ  and 0=bθ ; these values can also be found by substituting 

0.1=shα  into bθ  of the RFCC section of Eq. (5.28). 

 

Elliptical Sections 

In this section the analysis of elliptical FRP-confined concrete (EFCC) sections also 

includes rectangular sections confined by shape-modifying elliptical FRP jackets.  A unit 

length EFCC section, as shown in Figure 5.15, is considered herein. 

The main concrete core diagonal shD  of the EFCC section is given by shD  of Eq. 

(5.39).  The shape-dependent angles aθ  and bθ  of the elliptical FRP jacket are given by: 

 

 da θθ −= o90  (5.40) 

 o902 −=−= dadb θθθθ  (5.41) 
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Figure 5.15 Elliptical FRP-confined concrete section: (a) typical section geometry, (b) 

diagonal equilibrium 
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Substituting shH  of Eq. (5.38) into shD  of Eq. (5.39) and solving for the 

nondimensional shape-dependent parameter shχ  of the EFCC section of Eq. (5.11) yield: 

 

 ( )dsh θ
χ

sin2

2=  (5.42) 

 

As indicated in Chapter 4, a circular section is a special case of an ellipse with a unity 

aspect ratio ( 0.1=shα ) for which °= 45dθ .  As a result, the nondimensional shape-

dependent parameter shχ  of the EFCC section of Eq. (5.42) reduces to that of a circular 

section for which 0.1=shχ . 

The nondimensional shape-dependent parameter shχ  of Eq. (5.11) of the FCC 

sections shown in Figures 5.11-5.15 introduced in Eqs. (5.29)-(5.42) is summarized in 

Table 5.1.  The shape-dependent angles aθ  and bθ  of the FCC sections shown in 

Figures 5.5-5.8, introduced in Eqs. (5.27)-(5.41), are summarized in Table 5.2. 
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Table 5.1 Summary of the nondimensional shape-dependent 

parameter shχ  of various FRP-confined concrete 

sections. 

   

FRP jacket 

shape 

Nondimensional shape-dependent 

parameter shχ  

Ref. 

Eq. 

Rectangular 
( )
d

aj
sh θ

θα
χ

sin

sin121 −−
=  (5.29) 

Square ( )[ ]2212 −−= jsh αχ  (5.33) 

Oval 
( )

dsh

ash
sh θα

θαχ
sin

sin1−−
=  (5.36) 

Circular 0.1=shχ  N/A 

Elliptical 
d

sh θ
χ

sin2

2=  (5.42) 
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Table 5.2 Summary of the shape-dependent angles aθ  and bθ  of various FRP-

confined concrete sections. 

  

FRP jacket angle  

FRP jacket 

shape aθ  
Ref. 

Eq. bθ  
Ref. 

Eq. 

Rectangular bda θθθ −=  (5.27) ( )ddb θθθ cossinsin 1 −= −  (5.28) 

Square o45== da θθ  N/A o0=bθ  N/A 

Oval bda θθθ −=  N/A ( )ddb θθθ cossinsin 1 −= −  (5.28) 

Circular o45== da θθ  N/A o0=bθ  N/A 

Elliptical da θθ −= o90  (5.40) o902 −= db θθ  (5.41) 

 



 

 

 

 

 

 

CHAPTER 6 

 

STRAIN COMPATIBILITY OF CONCRETE SECTIONS 

CONFINED BY FIBER-REINFORCED 

POLYMER JACKETS 

 

In this chapter, a series of analytical strain compatibility relationships are introduced 

from the analysis of the dilation behavior of rectangular, square, oval, circular and 

elliptical concrete columns confined by FRP jackets, using the concept of diagonal 

equilibrium of FRP-confined concrete (FCC) sections, introduced in Chapter 5. 

The assumptions made in Chapter 5 are also applicable to the transverse and diagonal 

dilation analysis of FRP-confined concrete sections introduced herein.  These strain 

compatibility relationships are then utilized in Chapters 7 and 8 to describe and model the 

transverse and diagonal dilation of FCC sections. 

It is shown herein that due to the elastic properties of the confining FRP jacket, as 

introduced in Chapter 4, the geometry of the FRP jacket plays a significant role in 

determining a series of mathematical relationships between the axial strain and the 

transverse and diagonal dilation strains in the FRP-confined concrete core and FRP 

jacket. 

These strain compatibility relationships are used in Chapters 7, 8, and 9 to describe 

how the section shape and geometry affect the transverse and diagonal dilation of the 

FCC section and the passive confinement provided by the restraining elastic FRP jacket. 
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Rectangular Sections 

A rectangular FRP-confined concrete (RFCC) sections, with rounded corners that is 

confined with an FRP jacket having a corner radius jR , a thickness jt , and a hoop 

stiffness jE , is shown in Figure 6.1. 

From this figure, the minor '
shB  and major '

shH  dimensions of the diagonal '
shD  of 

the RFCC section are given by: 

 

 ( )shjcjcsh BRBB αα−=−= 1'  (6.1) 

 ( ) ( )shjcdjcsh HRHH ααθ −=−= 1tan'  (6.2) 

 

where the FRP jacket aspect ratio shα  and the jacket corner aspect ratio jα , are defined 

in Eqs.(4.2) and (4.4), respectively. 

As shown in Figure 6.1, cH  and cB  are the major and minor dimensions of the FRP 

jacket, respectively; the diagonal angle dθ  is given in Eq. (4.1); the main jacket diagonal 

cD  is defined in Eq. (4.3); the FRP jacket shape-dependent angles aθ  and bθ  of an 

RFCC section are defined in Eqs. (5.27) and (5.28), respectively. 

The main core diagonal shD  of an FCC section is defined in Eq. (5.11) with the 

shape parameter shχ  in Eq. (5.29).  Also, jε  is the diagonal FRP jacket strain, and Bε  

and Hε  are the FRP jacket strains along the minor cB  and major cH  FRP jacket 

dimensions, respectively. 

The diagonal '
shD  of an RFCC, as shown in Figures 6.1, is given by: 
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'
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'
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'
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Figure 6.1 Rectangular FRP-confined concrete section: (a) section geometry, (b) 

offset diagonal equilibrium. 
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 ( ) ( )
d

sh

d

sh
shshsh

BH
HBD

θθ cossin

''2'2'' ==+=  (6.3) 

 

where the dθcos  and dθsin  terms are defined in Eqs. (5.22) and (5.23), respectively.   

A relationship between the diagonal '
shD  of Eq. (6.3) and the major jacket dimension 

cH  can be found by substituting '
shH  of Eq. (6.2) into Eq. (6.3), which yields: 

 

 cshsh HD λ='  (6.4) 

 
( )

d

shj
sh θ

αα
λ

sin

1−
=  (6.5) 

 

where shλ  is a diagonal  shape coefficient that relates the diagonal '
shD  of the RFCC 

section to the major FRP jacket dimension cH . 

Using the horizontal jacket stress ( )
Bj

f  of Eq. (5.3), horizontal equilibrium of the 

half body of an RFCC section as shown in Figure 6.1(b) yields: 

 

 ( ) ( ) 0cossin '' =+− dshshddshshdjBj DDftE θτθε  (6.6) 

 

Substituting the diagonal shearing stress ( )
shdτ  of Eq. (5.10) into the equilibrium 

relationship of Eq. (6.6), solving for the diagonal confining stress ( )
shdf , setting the 

effective diagonal confining stress as ( ) ( )
shdede fkf = , using ( )

BjeE  of Eq. (4.15) and 

'
shD  of Eq. (6.4) yield the following generalized relationship of the effective diagonal 
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confining stress ( )
shdef  in terms of the FRP jacket strain Bε  along the minor dimension 

cB  as follows: 

 

 ( ) ( ) ( ) BshBBjeshde Ef εψ=  (6.7) 

 

where ( )shBψ  is the minor diagonal equilibrium coefficient of the FCC section.  Using 

'
shD  of Eq. (6.4) with shλ  of Eq. (6.5) for an RFCC section, this coefficient is given by: 

 

 ( ) ( )( )bdshj
shB

θθαα
ψ

tancot112

1

−−
=  (6.8) 

 

Equating the effective diagonal confining stress ( )
shdef  of Eqs. (5.12) and (6.7), 

yields the following generalized relationship between minor FRP jacket strain Bε  and 

the diagonal FRP jacket strain jε : 

 

 ( ) jshBB εγε =  (6.9) 

 ( )
shB

d

j

B
shB 








==

ψ
ψ

ε
εγ  (6.10) 

 

where ( )shBγ  is the FRP minor strain ratio that relates the minor strain Bε  to the 

diagonal FRP jacket strain jε  and ( )
shdψ  is the diagonal confinement equilibrium 

coefficient of the FCC section of Eq. (5.13).  In RFCC sections, the minor strain 

coefficient ( )shBγ  can be found by substituting ( )
shdψ  of Eq. (5.13) with shχ  of Eq. 

(5.29) and ( )shBψ  of Eq. (6.8) into ( )shBγ  of Eq. (6.10), which yields: 
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 ( ) ( )
( )aj

ashj

j

B
shB

θα

θαα
ε
εγ

sin121

sin12

−−

−
==  (6.11) 

 

Using the vertical jacket stress ( )
Hj

f  of Eq. (5.4), the vertical equilibrium of the half 

body of the RFCC section of Figure 6.1(b) yields the following: 

 

 ( ) ( ) 0sincos '' =−+ jHjdshshddshshd tEDDf εθτθ  (6.12) 

 

Substituting the diagonal shearing stress ( )
shdτ  of Eq. (5.10) into the equilibrium 

relationship of Eq. (6.12), solving for the diagonal confining stress ( )
shdf , and 

performing the same substitutions as in the horizontal equilibrium of the RFCC section 

yield the following generalized relationship between the effective diagonal confining 

stress ( )
shdef  and the major FRP jacket strain Hε : 

 

 ( ) ( ) ( ) HshHBjeshde Ef εψ=  (6.13) 

 

where ( )shHψ  is the major diagonal equilibrium coefficient of the FCC section.  For an 

RFCC section, this coefficient is given by: 

 

 ( ) ( )( )bdshj
shH

θθαα
ψ

tancot12

1

+−
=  (6.14) 

Equating the effective diagonal confining stress ( )
shdef  of Eqs. (5.12) and (6.14), 

yields the following generalized relationship between the major FRP jacket strain Hε  

and the tangential jacket strain jε : 
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 ( ) jshHH εγε =  (6.15) 

 ( )
shH

d

j

H
shH 








==

ψ
ψ

ε
εγ  (6.16) 

 

where ( )shHγ  is the major strain ratio that relates the major jacket strain Hε  to the 

tangential jacket strain jε . 

In RFCC sections, the major strain ratio ( )shHγ  can be found by substituting 

( )
shdψ  of Eq. (5.13) with shχ  of Eq. (5.29) and ( )shHψ  of Eq. (6.14) into ( )shHγ  of 

Eq. (6.16), which yields: 

 

 ( ) ( )
( )aj

ashj

j

H
shH θα

θαα
ε
εγ

sin121

cos12

−−
−

==  (6.17) 

 

Solving for the diagonal jacket strain jε  in Eqs. (6.9) and (6.15) yields the following 

generalized transverse strain ratio εα : 

 

 
( )
( )shB

shH

B

H

γ
γ

ε
εαε ==  (6.18) 

 

Substituting ( )shBγ  of Eq. (6.11) and ( )shHγ  of Eq. (6.17) into the above 

relationship yields the following transverse strain ratio εα : 

 

 a
B

H θ
ε
εαε cot==  (6.19) 
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Square Sections 

A square FRP-confined concrete (SFCC) section, with rounded corners that is 

confined with an FRP jacket having a corner radius jR , a thickness jt , and a hoop 

stiffness jE  is shown in Figure 6.2. 

From this figure, the minor '
shB  and major '

shH  dimensions of the diagonal '
shD  of 

the SFCC section are given by: 

 

 ( )jcjcsh BRBB α−=−= 1'  (6.20) 

 ( )jcjcsh HRHH α−=−= 1'  (6.21) 

 

Substituting '
shH  of Eq. (6.21) into (6.3) and (6.4) yields the following diagonal 

shape coefficient shλ  for SFCC sections: 

 

 
( ) ( )j

d

j
sh α

θ
α

λ −=
−

= 12
sin

1
 (6.22) 

The previous diagonal shape coefficient shλ  can also be found by substituting 

0.1=shα  and o45=dθ  into shλ  of an RFCC section of Eq. (6.5). 

Using the horizontal jacket stress ( )
Bj

f  of Eq. (5.3), horizontal equilibrium of the 

half body of an SFCC section of Figure 6.2(b) yields: 

 

 ( ) 0sin' =− dshshdjBj DftE θε  (6.23) 
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'
shB

 

 

 

dθ

'
shD

cH

cB

 

 

dθ

   

cD

 

dθ

 

 

jR

 

 

jR

'
shH

 

(a) 

 

 

 

 

'
shD

( )
shdef

'
shH

'
shB

HjE ε

BjE ε

 

dθda θθ =

jε

 

 

(b) 

 

Figure 6.2 Square FRP-confined concrete sections: (a) section geometry, (b) offset 

diagonal equilibrium. 
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Solving for the diagonal confining stress ( )
shdf  in the previous relationship, setting 

( ) ( )
shdede fkf = , using ( )

BjeE  of Eq. (4.15), '
shD  of Eq. (6.4), shλ  of Eq. (6.22), and 

using ( )
shdef  of Eq. (6.7) yield the following the minor diagonal equilibrium coefficient 

( )shBψ  of an SFCC section: 

 

 ( ) ( )jshB
α

ψ
−

=
12

1
 (6.24) 

 

The above minor diagonal equilibrium coefficient ( )shBψ  can also be found by 

substituting 0.1=shα , o45== ad θθ , and 0=bθ  into ( )shBψ  of an RFCC section of 

Eq. (6.6). 

In SFCC sections, the minor strain coefficient ( )shBγ  of Eq. (6.10) can be found by 

substituting ( )
shdψ  of Eq. (5.13) with shχ  of Eq. (5.33) and ( )shBψ  of Eq. (6.24) into 

Eq. (6.10), which yield: 

 

 ( ) ( )
( )221

12

−−

−
==

j

j

j

B
shB

α

α
ε
εγ  (6.25) 

 

The above minor strain coefficient ( )shBγ  can also be found by substituting 

0.1=shα , o45== ad θθ  and 0=bθ  into the ( )shBγ  of an RFCC section of Eq. (6.11).   

Using the vertical jacket stress ( )
Hj

f  of Eq. (5.4), the vertical equilibrium of the half 

body of a RFCC section of Figure 6.1(b) yields the following: 
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 ( ) 0cos' =− jHjdshshd tEDf εθ  (6.26) 

 

Solving for the diagonal confining stress ( )
shdf  in the above relationship and 

performing the same substitutions as in the horizontal equilibrium of the SFCC section 

yield the following the major diagonal equilibrium coefficient ( )shHψ  of SFCC sections: 

 

 ( ) ( )jshH
α

ψ
−

=
12

1
 (6.27) 

 

The above major diagonal equilibrium coefficient ( )shHψ  can also be found by 

substituting 0.1=shα , o45== ad θθ , and 0=bθ  into ( )shHψ  of an RFCC section of 

Eq. (6.14).  The above relationship indicates that for SFCC sections ( ) ( )shBshH ψψ = . 

For an SFCC section, the major strain coefficient ( )shHγ  of Eq. (6.16) can be found 

by substituting ( )
shdψ  of Eq. (5.13) with shχ  of Eq. (5.33) and ( )shHψ  of Eq. (6.27) 

into Eq. (6.16), which yield: 

 ( ) ( )
( )221

12

−−

−
==

j

j

j

H
shH

α

α
ε
εγ  (6.28) 

 

The above major strain coefficient ( )shHγ  can also be found by substituting 

0.1=shα , o45== ad θθ , and 0=bθ  into the major strain coefficient ( )shHγ  of an 

RFCC section of Eq. (6.17). The above relationship indicates that for an SFCC section 

( ) ( )shHshB γγ = . 
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Substituting ( )shBγ  of Eq. (6.25) and ( )shHγ  of Eq.(6.28) into the transverse strain 

ratio εα  of Eq. (6.18) yields: 

 

 
( )
( ) 0.1===

shB

shH

B

H

γ
γ

ε
εαε  (6.29) 

 

The above strain ratio εα  can also be found by substituting o45== ad θθ  into the 

strain ratio εα  of Eq. (6.19) of an RFCC section, since an SFCC section is a special case 

of an RFCC section with a unit aspect ratio, i.e., 0.1=shα .  This indicates that the strain 

ratio εα  of Eq. (6.19) also applies to SFCC sections. 

 

Oval Sections 

An oval FRP-confined concrete (OFCC) section, with rounded corners that is 

confined with an FRP jacket having a corner radius 2cj BR = , a thickness jt , and a 

hoop stiffness jE  is shown in Figure 6.3.  The oval sections considered herein also 

include rectangular section confined by shape-modifying oval FRP jackets, i.e., oval 

shape-modified (OSM) sections. 

The minor '
shB  and major '

shH  dimensions of the diagonal '
shD , shown in the OFCC 

section of Figure 6.3, are given by: 

 

 
2

' c
jcsh

B
RBB =−=  (6.30) 

 2
tan' c

djcsh
H

RHH =−= θ  (6.31) 
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 cD
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Figure 6.3 Oval FRP-confined concrete sections: (a) section geometry, (b) offset 

diagonal equilibrium. 
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Substituting '
shH  of Eq. (6.30) into (6.3) and (6.4) yields the following diagonal-

shape coefficient shλ  of Eq. (6.4) for OFCC sections: 

 

 
d

sh θ
λ

sin2

1=  (6.32) 

 

The above diagonal equilibrium coefficient shλ  can also be found by substituting 

( )shj αα 21=  into shλ  of an RFCC section of Eq. (6.5). 

Using the horizontal jacket stress ( )
Bj

f  of Eq. (5.3), horizontal equilibrium of the 

half body of an OFCC section of Figure 6.3(b) yields the equilibrium relationship of Eq. 

(6.6).  Solving for the diagonal confining stress ( )
shdf  in Eq. (6.6), setting the effective 

diagonal confining stress as ( ) ( )
shdede fkf = , using ( )

BjeE  of Eq. (4.15), '
shD  of Eq. 

(6.4), shλ  of Eq. (6.32), and using ( )
shdef  of Eq. (6.7) yield the following the minor 

diagonal equilibrium coefficient ( )shBψ  of an OFCC section: 

 

 ( )
( )bsh

sh
shB

θα
αψ
tan−

=  (6.33) 

 

The previous minor diagonal equilibrium coefficient ( )shBψ  can also be found by 

substituting ( )shj αα 21=  into the ( )shBψ  of an RFCC section of Eq. (6.8). 

In OFCC sections, the minor strain coefficient ( )shBγ  of Eq. (6.10) can be found by 

substituting ( )
shdψ  of Eq. (5.13) with shχ  of Eq. (5.32) and ( )shBψ  of Eq. (6.33), 

which yield: 
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 ( )ash

ash

j

B
B θα

θα
ε
εγ

sin1

sin

−−
==  (6.34) 

 

Using the vertical jacket stress ( )
Hj

f  of Eq. (5.4), the vertical equilibrium of the half 

body of an RFCC section of Figure 6.3(b) yields the equilibrium relationship of Eq. 

(6.12).  Solving for the diagonal confining stress ( )
shdf  in Eq. (6.26) and performing the 

same substitutions as in the horizontal equilibrium of the SFCC section yield the 

following major diagonal equilibrium coefficient ( )shHψ  of OFCC sections: 

 

 ( )
( )bsh

sh
shH

θα
αψ
tan1+

=  (6.35) 

 

The above major diagonal equilibrium coefficient ( )shHψ  can also be found by 

substituting ( )shj αα 21=  into ( )shHψ  of an RFCC section of Eq. (6.14). 

In OFCC sections, the major strain coefficient ( )shHγ  of Eq. (6.16) can be found by 

substituting ( )
shdψ  of Eq. (5.13) with shχ  of Eq. (5.32) and ( )shHψ  of Eq. (6.35) into 

Eq. (6.16), which yields: 

 

 ( ) ( )ash

ash

j

H
shH θα

θα
ε
εγ

sin1

cos

−−
==  (6.36) 

 

The above major strain coefficient ( )shHγ  can also be found by substituting 

( )shj αα 21=  into ( )shHγ  of an RFCC section of Eq. (6.17).  Substituting ( )shBγ  of 
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Eq. (6.34) and ( )shHγ  of Eq.(6.36) into the transverse strain ratio εα  of Eq. (6.18) 

yields the transverse strain ratio of Eq. (6.19) for OFCC sections. 

 

Circular Sections 

The circular FRP-confined concrete (CFCC) sections included herein, also applies to 

square sections confined by shape-modifying circular FRP jackets.  An CFCC section 

that is confined with a circular FRP jacket having radius jR  or diameter jj RD 2= , a 

thickness jt , and a hoop stiffness jE  is shown in Figure 6.4. 

From these figures, the minor 2'
shsh BB = , and major 2'

shsh HH =  dimensions of 

the diagonal '
shD .  The circular section dimensions shB , shH , and shD  are given in Eqs. 

(5.37), (5.38), and (5.39), respectively.  As a result, for an CFCC section, the diagonal 

shape coefficient shλ  of Eq. (6.4) is given by: 

 

 
2

2

sin2

1 ==
d

sh θ
λ  (6.37) 

 

The previous diagonal equilibrium coefficient shλ  can be found by substituting 

0.1=shα , 21=jα , and o45=dθ  into shλ  of an RFCC section of Eq. (6.5).  The 

diagonal equilibrium coefficient shλ  of Eq. (6.37) can also be found by substituting 

21=jα  and o45=dθ  into shλ  of an SFCC section of Eq. (6.22), since a circular 

section is a special case of a square section with a radius equal to one half its overall 

jacket dimension, i.e., 2cj HR =  or 21=jα . 
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'
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Figure 6.4 Circular FRP-confined concrete sections: (a) typical geometry, (b) offset 

diagonal equilibrium. 
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Using the FRP jacket stress jf  of Eq. (5.9), the horizontal equilibrium of the half 

body of the CFCC section of Figure 6.4(b) yields the equilibrium relationship of Eq. 

(6.23).  Solving for the diagonal confining stress ( )
shdf , setting ( ) ( )

shdede fkf = , using 

( )
BjeE  of Eq. (4.15), '

shD  of Eq. (6.4), shλ  of Eq. (6.37), and using ( )
shdef  of Eq. (6.7) 

yield a unity minor diagonal equilibrium coefficient, ( ) 0.1=shBψ .  A unity minor 

diagonal equilibrium coefficient ( )shBψ  can also be found by substituting 0.1=shα , 

21=jα , o45== da θθ , and o0=bθ  into ( )shBψ  of an RFCC section of Eq. (6.8) and 

by setting 21=jα  into ( )shBψ  of an SFCC section of Eq. (6.24). 

For an CFCC section, the minor strain coefficient ( )shBγ  of Eq. (6.10) also has a 

unity value, i.e., ( ) 0.1=shBγ , which indicates that for CFCC section jB εε = , as occurs 

in SFCC sections.  This unity minor strain coefficient ( )shBγ  can be found by 

substituting ( )
shdψ  of Eq. (5.13) with 0.1=shχ  of Eq. (6.37) and o0=bθ , and 

( ) 0.1=shBψ  into ( )shBγ  of an RFCC section of Eq. (6.11).  A unity minor strain 

coefficient ( )shBγ  can also be found by substituting 21=jα  into ( )shBγ  for an SFCC 

section of Eq. (6.25). 

Solving for the diagonal confining stress ( )
shdf  in Eq. (6.26) and performing the 

same substitutions as in the horizontal equilibrium of the CFCC section yield 

( ) 0.1=shHψ  and ( ) 0.1=shHγ , which indicates that for an CFCC section jH εε = , as 

occurs in an SFCC section .  For CFCC sections the strain ratio εα  of Eq. (6.18) also has 

a unity value, 0.1=εα  or jBH εεε == .  This indicates that the strain ratio εα  of Eq. 
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(6.19) also applies to CFCC sections since for an CFCC section o45== da θθ ; this is 

proven in the following equilibrium analysis of elliptical FRP-confined concrete sections. 

 

Circular and Elliptical Sections 

Circular FRP-confined sections (CFCC), including square sections confined by 

shape-modifying circular (SMC) FRP jackets and elliptical FRP-confined concrete 

(EFCC) sections, including rectangular sections confined by shape-modifying elliptical 

(SME) FRP jackets, are considered in this section. 

A typical elliptical and circular FRP-confined concrete section is shown in Figure 

6.5.  As was previously established, a circular section is a special case of an elliptical 

section with a unity aspect ratio shα  of Eq. (4.2), i.e., 0.1=shα .  A portion of the 

elliptical FRP jacket at a given diagonal angle iθ  is shown in Figure 6.6(b); the 

following equilibrium relationships can be found: 

Equilibrium in the y-direction of Figure 6.6(b) yields: 

 

 ( ) ( ) ( ) 0cos =− θθθθ θε jjjjB tEhf  (6.38) 

 ( )













= −

i

sh
j θ

αθ θ tan
tan

2
1  (6.39) 

 

where ( )θε j  is the tangential jacket strain in the elliptical FRP jacket at a given angle iθ  

and corresponding jacket tangent angle ( )θθ j  of Eq. (6.39); ( )θBf  is the average 

confining stress in the confined concrete core jacket at the minor jacket dimension cB  at 

a given angle iθ . 
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Figure 6.5 Typical geometry of (a) an elliptical and (b) a circular FRP-confined 

concrete section. 
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Figure 6.6 Elliptical FRP-confined concrete section: (a) section geometry and (b) 

equilibrium of a portion of an elliptical section. 
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From the geometry of Figure 6.6 it can be established that ( ) o0=θθ j when o90=iθ .  

Equilibrium in the x-direction of Figure 6.6(b) yields: 

 

 ( ) ( ) ( ) ( ) 0sin =−−+ HjjcHjjjj tEbbftE εθε θθθθ  (6.40) 

 

where cb  is the minor axis dimension of the EFCC section, where 2cc Bb = ; ( )θHf  is 

the average confining stress in the confined concrete core along the major jacket 

dimension cH , at a given angle iθ ; and ch  is the major axis dimension of the EFCC 

section, where 2cc Hh = . 

Rotational equilibrium with respect to the point O of Figure 6.6(b) with 

counterclockwise moment being positive, yields the following equilibrium relationship: 

 

 ( ) ( ) ( ) ( ) ( ) 0
2

1

2

1 22 =−−−− θθθθθε hfbbfbbtE BcHcHjj  (6.41) 

 

This equilibrium analysis is similar to the analysis of EFCC sections introduced by 

Campione and Cuchiara (2007). 

The elliptical radius ( )θjR , at a given diagonal angle iθ  can be determined from the 

geometry of Figure 6.6 as follows: 

 

 ( ) ( ) ( ) ( )
( ) ( ) iish

c

icic

cc
j h

hb

hb
hbR

θθαθθ
θθθ 22222

2
22

sincos

1

cossin +
=

+
=+=  (6.42) 
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Based on the analysis of Figure 6.6, the elliptical radius ( )θjR  has a minimum value 

of ( ) ( ) cjj bRR ==
minθ  when °= 0iθ  and a maximum value of ( ) ( ) cjj hRR ==

maxθ  

when °= 90iθ .  These minimum ( )
minjR  and maximum ( )

maxjR  radii values can also 

be obtained analytically by substituting °= 0iθ  and °= 90iθ  into ( )θjR  of Eq. (6.42), 

respectively. 

The major ( )θjh  and minor ( )θjb  core dimensions, measured from the centroid of 

the elliptical FRP-confined concrete to the perimeter of the FRP jacket at a given 

diagonal angle iθ , as shown in Figure 6.6(b), are given by: 

 

 ( ) ( ) ( ) ( ) ijjijj RbRh θθ θθθθ cos;sin ==  (6.43) 

 

Solving for ( )θBf  in Eq. (6.38), solving for ( )θHf  in Eq. (6.40), substituting them 

into Eq. (6.41), using ( )θjR  of Eq. (6.42) and the major ( )θjh  and minor ( )θjb  

dimensions of Eq. (6.43) yield the following tangential jacket strain ratio ( )θεα  of an 

EFFC section: 

 

 ( ) ( )
( )

( ) ( ) ( )θθ
θ

θ

θ
θε θθ

θ

θ

ε
εα jj

ijc

ij

j

H

Rb

R
sincos

cos

sin
−















−
==  (6.44) 

 

The previous relationship is plotted in Figure 6.7 versus the diagonal angle iθ  for a 

quadrant of an elliptical section, i.e., for °≤≤° 900 iθ .  
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Figure 6.7 Tangential jacket strain ratio versus diagonal angle of elliptical FRP-

confined concrete sections of various section aspect ratios. 
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The elliptical sections considered in Figure 6.7 have an aspect ratio of 0.1=shα  (i.e., 

circular sections), 50.1=shα , 0.2=shα , 50.2=shα , and 0.3=shα .  From Eq. (6.44) 

and Figure 6.7 it can be established that a nonlinear variation of the transverse strain in 

the FRP jacket occurs along the perimeter of the elliptical FRP jacket for elliptical 

sections having an aspect ratio greater than one, i.e., for 0.1>shα . 

For an elliptical section with a unity aspect ratio ( 0.1=shα ), i.e., a circular section, 

Eq. (6.44) and Figure 6.7 indicate that the strain along the perimeter of the FRP jacket 

remains constant, 0.1=εα , i.e., ( ) BHjj εεεε θ === , as demonstrated in the 

preceding section. 

The nonlinear variation of the transverse jacket strain ( )θε j  of elliptical jackets 

having an aspect ratio greater than one, i.e., for 0.1>shα , as shown in Figure 6.7, can 

also be attributed to the change in the radius of curvature of the FRP jacket ( )θjΦ , at a 

given diagonal angle iθ , that is defined as: 

 

 

( ) ( )
( ) [ ]
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 (6.45) 

 

The maximum radius of curvature ( )
maxjΦ  of the elliptical jacket occurs along the 

minor axis dimension cb , and the minimum ( )
minjΦ  occurs along the major axis 

dimension ch  of the elliptical jacket. These curvatures are given by: 
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(6.47) 

 

Using the radius of curvature ( )θjΦ  of Eq. (6.45) and the maximum radius of 

curvature ( )
maxjΦ of Eq. (6.46), the following tangential jacket strain ratio ( )θεα  can 

also be established: 

 

 ( ) ( )
( )
( ) ( )33

max

θθθ
θε

α
ε
εα

j

csh

j

j

j

H h

Φ
=

Φ

Φ
==  (6.48) 

 

For a circular section having a unity aspect ratio ( 0.1=shα ), the radius of the ellipse 

( )θjR  of Eq. (6.42) and the radius of curvature ( )θjΦ  of Eq. (6.45) are a constant where 

( ) ( ) ccjjj hbRR ===Φ= θθ . 

Thus for an CFCC section the tangential jacket strain ratio ( )θεα  of Eqs. (6.44) and 

(6.48) is also a constant with a unity value, i.e., ( ) 0.1=θεα  or ( ) BHjj εεεε θ === , 

as pointed out earlier.  For an EFCC section for which 0.1>shα , a strain ratio ( )θεα  of 

unity occurs only when °= 0iθ  is substituted into Eqs. (6.42), (6.44), and (6.48), i.e., 

( ) Hj εε θ = . 

At the major axis, for which ( ) Bj εε θ = , the tangential jacket strain ratio of 

( ) BH εεαα εθε ==  is found to occur only when °= 90iθ  is substituted into Eq. 
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(6.39), which yields ( ) °= 0θθ j ; further substituting °= 90iθ , ( ) cj hR =θ  into Eqs. 

(6.44), (6.45), and (6.48) yields the following transverse strain ratio εα  for an EFCC 

section: 

 

 shd
B

H αθ
ε
εαε === tan  (6.49) 

 

In reference to Figure 6.8, the main core diagonal shD  or main diagonal radius 

2shsh DR = , at the main diagonal angle di θθ = , can be determined from the geometry 

of Figure 6.8, by setting di θθ = , which yields ( ) 2shshj DRR ==θ  in Eq. (6.42), 

where for an EFCC section: 
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where the above shχ  is also given in Eq. (5.42) for EFCC sections. 

In reference to Figure 6.6, the tangential jacket angle jθ  of the FRP jacket at the 

main diagonal can be found by substituting angle of inclination dθ  of the main diagonal 

of Eq. (4.1) and setting di θθ =  in ( )θθ j  of Eq. (6.39), which yields: 
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Figure 6.8 Elliptical FRP-confined concrete section: (a) section geometry; (b) 

diagonal equilibrium. 
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Setting ( ) jj εε θ = , substituting di θθ = , ( ) shj RR =θ , and di θθ =  into ( )θε j  of 

Eq. (6.44), yield the following major strain ratio ( )shHγ  of Eq. (6.16) of an EFCC 

section: 
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Substituting the shape-dependent diagonal confinement equilibrium coefficient 

( )
shdψ  of Eq. (5.13) with the shape parameter shχ  of Eq. (5.40) or (6.51) into ( )shHγ  

of Eqs. (6.16) and (6.53), solving for the major diagonal equilibrium coefficient ( )shHψ , 

yields: 

 

 ( ) bshH θψ cos=  (6.54) 

 

Solving for the major transverse strain Hε  in Eq. (6.49), substituting it into Eq. 

(6.53), and solving for the generalized minor strain ratio ( )shBγ  of Eq. (6.10) yield: 

 

 ( ) d
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d

j

B
shB θ

ψ
ψ

ε
εγ cos 2=




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


==  (6.55) 

 

Substituting the shape-dependent diagonal confinement equilibrium coefficient 

( )
shdψ  of Eq. (5.13) with the shape parameter shχ  of Eq. (5.42) or (6.51) into ( )shBγ  of 

Eqs. (6.10) and (6.55) and solving for the minor diagonal equilibrium coefficient ( )shBψ , 

yield: 
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 ( ) ( )
sh

shH
shB α

ψ
ψ =  (6.56) 

 

Substituting ( )shHγ  of Eq. (6.53) and ( )shBγ  of Eq. (6.55) into the generalized 

transverse strain ratio εα  of Eq. (6.18) and using the shape-dependent angles aθ  and bθ  

of Eqs. (5.40) and (5.41), respectively, yield the following transverse jacket strain ratio 

εα  for an EFCC section: 

 

 
( )
( ) ( )a

shB

shH

B

H θ
γ
γ

ε
εαε cot===  (6.57) 

 

The previous strain ratio indicates that the relationship for the transverse jacket strain 

ratio εα  of Eq. (6.19) introduced from the diagonal equilibrium analysis of rectangular 

( )0.1≥shα  and square ( )0.1=shα  FCC sections with rounded corners is also applicable 

to both elliptical ( 0.1≥shα  and o45≥dθ ) and circular ( 0.1=shα  and o45=dθ ) FCC 

sections. 

The previous relationship indicates that for rectangular, oval, square, elliptical, and 

circular FCC sections, the transverse strain ratio εα  of the FCC section is given by εα  

of Eq. (6.19) with the angle aθ  listed in Table 5.2. 

Using the strain relationship of Eq. (6.9), using ( )shBγ  of Eq. (6.10), and solving for 

the FRP jacket strain jε  yield: 

 

 Bjj εβε =  (6.58) 
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 ( )shBB

j
j γε

ε
β 1==  (6.59) 

 

where jβ  is the diagonal strain coefficient, which is the inverse of the minor strain ratio 

( )shBγ  of Eq. (6.10). 

Using the transverse strain ratio εα  of Eq. (6.18), solving for the minor strain Bε , 

and substituting it into Eq. (6.58) yield: 

 

 ( )ajHH
j

j θβεε
α
β

ε
ε

tan=









=  (6.60) 

 

In this chapter it was determined that the geometry of the FRP-confined concrete 

section, which includes the FRP jacket shape, the section aspect ratio shα , and the jacket 

corner aspect ratio jα  (rectangular and square sections only), introduced in Chapter 4, 

influences the diagonal dilation, the diagonal equilibrium, introduced in Chapter 5, and 

the transverse dilation of FRP-confined concrete core introduced in this chapter. 

The diagonal strain coefficient jβ  of Eq. 6.59 is summarized in Table 6.1 for the 

FRP jacket shapes considered herein.  Both the transverse strain ratio εα  of Eq. (6.19) 

and the diagonal strain coefficient jβ  of Eq. 6.59 will be used in determining the 

transverse and diagonal dilation relationships introduced in Chapters 7 and 8, the 

transverse confinement relationships introduced in Chapter 9, and the design of FRP 

jackets introduced in Chapter 11. 
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Table 6.1 Summary of the nondimensional jacket shape-dependent transverse strain 

coefficient jβ  of various FRP-confined concrete sections. 

   

FRP jacket 

shape 
Transverse strain coefficient jβ  Reference Eqs. 

Rectangular 
( )[ ]

( ) ( )ashj

aj
j θαα

θα
β

sin12

sin121

−
−−

=  (6.11) and (6.59) 

Square 
( )[ ]

( )j
j

j α
α

β
−

−−
=

12

2212
 (6.25) and (6.59) 

Oval 
( )

ash

ash
j θα

θαβ
sin

sin1−−
=  (6.34) and (6.59) 

Circular Same as elliptical with o45=dθ  or  

0.1=jβ  

N/A 

Elliptical 
d

j θ
β

cos2

2=  (6.55) and (6.59) 

 



 

 

 

 

 

CHAPTER 7 

 

TRANSVERSE AND DIAGONAL STRAIN RELATIONSHIPS 

FOR CONCRETE SECTIONS CONFINED BY FIBER- 

REINFORCED POLYMER JACKETS 

 

In this chapter a series of strain compatibility relationships are introduced from 

analysis of the dilation behavior of rectangular, square, oval (including rectangular 

sections confined by a shape-modifying  oval FRP jacket), circular (including square 

section confined by shape-modifying circular jacket), and elliptical (including rectangular 

sections confined by a shape-modifying elliptical FRP jacket) FRP-confined concrete 

(FCC) sections in compression.  The strain compatibility relationships introduced in 

Chapter 6 are incorporated herein into a series of analytical diagonal and transverse strain 

relationships for the aforementioned FRP-jacketed shapes. 

The damage-based stress-strain model for FCC sections developed herein, requires 

defining a series of strain compatibility relationships that describe the increase in damage 

in the cross section in terms of the geometric and mechanical properties of the confining 

elastic FRP jacket, introduced in Chapter 4, and the mechanical properties of the concrete 

core.  In addition to the assumptions made in Chapter 5, the following assumptions are 

also made in the strain compatibility relationships developed herein: 

1. Prior to cracking of the passively confined concrete core, both the concrete core  and 

FRP jacket are assumed to behave elastically.  In the elastic regime the confined 



 120 

concrete core is idealized as an isotropic, homogeneous elastic material, whereas the 

FRP material is idealized as a unidirectional isotropic elastic material. 

2. Poisson effects due to shortening of the FRP jacket along the length of the FCC 

section are considered negligible and are ignored in the analysis. 

3. Tensile stresses and strains are considered negative, and compressive stresses and 

strains are considered positive. 

 

FRP-Confined Concrete Sections-Elastic Regime 

Prior to cracking of the passively confined concrete core, both the concrete core and 

FRP jacket behave elastically.  Thus, the concrete is treated as an isotropic, homogeneous 

elastic material prior to cracking and the FRP jacket as an elastic material that passively 

confines the concrete core during the application of a uniform axial compressive load and 

resultant axial compressive stress cf  and strain cε . 

Using Hooke’s law for a linear homogeneous isotropic concrete material, the normal 

strain mε , for which the subscript m  indicates an arbitrary transverse strain direction 

where zyxm or  ,,= , is directly proportional to the applied normal stress mσ  as follows: 
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where ciE  is the elastic modulus of the unconfined concrete core; ciν  is the initial 

Poisson’s ratio of the unconfined concrete core; xσ , yσ , and zσ  are the axial stresses 

along the X, Y, and Z coordinates, respectively; xε , yε , and zε , are the axial strains 

along the X, Y, and Z coordinates, respectively.  For known strains xε , yε , and zε , the 

axial xσ , yσ , and zσ  stresses can be solved simultaneously utilizing Eqs. (7.1)-(7.3),  

which yield: 
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(7.6) 

 

The secant Poisson’s ratio ν  of the concrete core is defined as the secant slope of the 

transverse strains ( rε , θε , dε , Bx εε = , and Hy εε =  ) versus the axial strain, cz εε = , 

curves. 

The dilation rate µ  of the concrete core is defined as the tangent slope of the 

transverse strain versus axial strain curves as follows: 
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where the subscript m  indicates an arbitrary transverse strain direction, where 

BHdrm or  ,,,,θ= .  In addition, at the initiation of loading the initial dilation rate ( )omµ  

and the initial secant Poisson’s ratio ( )omν  of the confined concrete core are equal to 

each other, such that: 
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(7.8) 

 

where the subscript o  in the relationships introduced herein indicates an initial confined 

condition and the subscript i  indicates an initial unconfined condition. 

 

Circular Concrete Sections 

A circular concrete column, shown in Figure 7.1, having an unconfined compressive 

strength cof , an initial tangent modulus of elasticity ciE , an initial Poisson’s ratio ciν , 

and an initial dilation rate ciµ , where cici νµ = , that is confined by a thin elastic circular 

FRP jacket of thickness jt , having an average hoop or transverse modulus of elasticity 

jE , and a hoop or transverse stiffness ( )
cijeC  of Eq. (4.17), with the volumetric ratio 

( )
cijρ of Eq. (4.37), is considered herein. 

Considering the transverse equilibrium of the half circles of Figure 7.2 and 

considering that for a circular section yxdr εεεεε θ ==== , and setting Bx εε = , 

Hy εε = , cz εε = , and cz f=σ , setting ( ) ( )
Bjexje EE =  in Eq. (4.15) and 

( ) ( )
Hjeyje EE =  in Eq. (4.16), the applied axial stress cf  can be found by solving for 

cz f=σ  in Eq. (7.1), which yields: 



 123 

 

 

 

 

 

 

 

cH

cB

dθ

dθ

cD

 

j
D

 
 

Figure 7.1 Geometry of a circular FRP-confined concrete section. 
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Figure 7.2 Equilibrium of a circular FRP-confined concrete section: (a) along the 

minor axis and (b) along the major axis. 

 



 125 

 
( ) ( )[ ]
( )

( )[ ]orciEcci

rBjecicci

yHjexBjecicci

ccoc

E

EE

EEE

Ef

νναε

ενε

εενε
ε

21

2

+=

−=

+−=
=

 

(7.9) 
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(7.10) 

 

where rε , θε , and dε  are the average radial, hoop, and diagonal strains in the circular 

FRP-confined concrete (CFCC) section, respectively. 

In addition ( )
HjeE  and ( )

BjeE  are the effective transverse modulus of the FRP 

jacket along its major and minor dimensions, respectively; Eα  is the transverse modular 

ratio of the FRP jacket; and ( )orν  is the initial secant Poisson’s ratio of the FCC section.  

At the initiation of loading ( ) ( )oror µν = , with ( )orµ  being the initial dilation rate or 

tangent Poisson’s ratio of the CFCC section. 

Solving for the initial modulus of elasticity of the CFCC section coE  in Eq. (7.9) 

yields: 

 

 ( )[ ]orciEcico EE µνα21+=
 

(7.11) 

 

The above indicates that the initial modulus of elasticity of the CFCC section 

increases as the hoop stiffness ( )
cijeC  of the FRP jacket increases.  It also demonstrates 

that coE  is directly proportional to the transverse modular ratio of the FRP jacket Eα  of 

Eq. (7.10). 
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Using Eqs. (7.7) and (7.8), realizing that for a circular section 

yxdr εεεεε θ ==== , substituting Eqs. (7.9)-(7.11) into Eq. (7.4), and solving for the 

initial dilation rate ( )orµ  of the CFCC section yield: 
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(7.12) 

 

where roE  is the initial radial or transverse modulus of elasticity of the CFCC section.  

The previous relationship reveals that the initial dilation rate ( )orµ  of the CFCC section 

decreases as the hoop or transverse stiffness ( )
cijeC  of the circular FRP jacket increases. 

Using the initial axial modulus coE  of Eq. (7.11) and solving for the initial transverse 

modulus roE  in Eq. (7.12) yield: 
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(7.13) 

 

FRP-Confined Concrete Sections 

In this analysis the FCC sections shown in Figure 7.3 are considered herein.  A given 

FCC sections is considered to have an unconfined compressive strength cof , an initial 

tangent modulus of elasticity ciE , an initial Poisson’s ratio ciν , and an initial dilation 

rate ciµ , for which cici νµ =  that is confined by thin elastic FRP jackets of thickness jt  

and having a transverse or hoop modulus of elasticity jE  and a transverse or hoop 

stiffness ( )
shjeC  of Eq. (4.14). 
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Figure 7.3 FRP-confined concrete sections: (a) rectangular; (b) square, (c) oval, (d) 

circular, and (e) elliptical. 
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The transverse equilibrium along the minor cB  and major cH  dimensions of the 

FCC sections of a rectangular (RFCC) section of Figure 5.1, a square (SFCC) section of 

Figure 5.2, an oval (OFCC) section of Figure 5.3, a circular (CFCC) section of Figure 

5.4, and an elliptical (EFCC) section of Figure 5.5 for which yxB εεε ≤=  and 

xyH εεε ≥= ; by setting cz εε = , setting ( ) ( )
Bjexje EE =  of Eq. (4.15), 

( ) ( )
Hjeyje EE =  of Eq. (4.16), and setting cz f=σ , and by using the aspect ratio shα  

of Eq. (4.2), and the strain ratio εα  of Eq. (6.19), the applied axial stress cf  in the FCC 

section can be found by solving for cz f=σ  in Eq. (7.1), which yields: 

 

 ( ) ( )[ ]
( )[ ]oBciEshcci

HHjeBBjecicci

ccoc

E

EEE

Ef

νναβε

εενε
ε

+=

+−=
=

1  

(7.14) 

 εααβ shsh += 1

 

(7.15) 

 

where ( )oBν  is the initial secant Poisson’s ratio along the minor cB  dimension of the 

FCC section.  As previously indicated, at the initiation of loading the initial secant and 

tangent slopes are equal, such that ( ) ( )oBoB µν = , where ( )oBµ  is the initial dilation 

rate along the minor cB  dimension of the FCC section and shβ  is a transverse strain 

coefficient.  Solving for the initial modulus of elasticity coE  of the FCC section in Eq. 

(7.14) yields: 

 

 ( )[ ]oBcishEcico EE µνβα+= 1

 

(7.16) 
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This indicates that the initial modulus of elasticity of the FCC section increases with 

an increase in the transverse stiffness ( )
BjeE  of Eq. (4.15), the section aspect ratio shα  

of Eq. (4.2) and the strain ratio εα  of Eq. (6.19) of the FCC section.  For a circular 

section for which 0.1== εαα sh , the initial modulus of elasticity coE  of Eq. (7.16) 

yields roE  of Eq. (7.13), i.e., roco EE = . 

Substituting Eqs. (7.14) and (7.16) into Eq. (7.4) and solving for the initial dilation 

rate ( )oBµ , along the minor dimension cB  of the FCC section yield: 
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(7.17) 

 

where BoE  is the initial modulus of elasticity along the minor cB  dimension of the FCC 

section.  This dilation rate is the initial tangent slope of the transverse strain Bε  along the 

minor cB  dimension of the FCC section versus the axial strain cε  in the section.  The 

above relationship indicates that the initial minor dilation rate Boµ  decreases as the hoop 

or transverse stiffness ( )
BjeE  of the FRP jacket increases and increases as the aspect 

ratio shα  and strain ratio εα  increase. 

Using coE  of Eq. (7.16), and solving for the initial modulus of elasticity along the 

minor dimension BoE  in Eq. (7.17) yield: 
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The initial dilation rate ( )oHµ  along the major cH  dimension of the FCC section 

can be found using the strain ratio εα  of Eq. (6.19) and the initial minor dilation rate 

Boµ  of (7.17), which yield: 
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(7.19) 

 

where HoE  is the initial modulus of elasticity along the major cH  dimension of the FCC 

section. 

The initial dilation rate joµ  along the main diagonal of the FCC sections shown in 

Figure 7.3 is found using the strain relationships of Eqs. (6.57)-(6.59) and the initial 

dilation rates along the minor ( )oBµ  of Eq. (7.17) and major ( )oHµ  of Eq. (7.19) 

dimensions, which yield: 
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(7.20) 

 

where jβ  is the diagonal strain coefficient of Eq. (6.58). 

Using coE  of Eq. (7.16) and BoE  of (7.18) and solving for the initial modulus of 

elasticity along the major cH  dimension HoE  in (7.19), yield: 
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At the initiation of loading or deformation the initial secant slope is equal to the initial 

tangent slope such that ( ) ( )oHoH νµ = , where ( )oHν  is the initial secant Poisson’s ratio 

along the major cH  dimension of the FCC section.  For a circular section for which 

0.1== εαα sh , the initial moduli of elasticity HoE  of Eq. (7.21) and BoE  of Eq. (7.18) 

yield coE  of Eq. (7.15) and roE  of Eq. (7.13), i.e., rocoHoBo EEEE === . 

 

Plastic Properties of FRP-Confined Concrete 

In this investigation, plastic compressive behavior of FRP-confined concrete is 

assumed to occur at axial compressive strains cpc εε = , greater than the peak 

compressive strain coε  of the unconfined concrete core, where cucpco εεε ≤<  and 

where cuε  is the axial compressive strain at failure of the confining elastic FRP jacket. 

 

Circular Concrete Sections 

As a result of the constant kinematic restraint provided by elastic circular FRP jacket, 

the plastic dilation behavior, as measured by the dilation rate rµ , of a circular concrete 

section confined by a high stiffness circular FRP jacket reaches an asymptotic value 

which is referred to herein as the plastic dilation rate rpµ .  This asymptotic plastic 

dilation rate rpµ  can be established based on the following hyperbolic relationship: 
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where uµ  is the dilation rate of a circular unconfined concrete section and ( )
refjeK  is a 

reference FRP jacket stiffness.  Using an initial dilation rate of 20.0== cici νµ  and 

performing a regression analysis of uniaxial compression tests of FRP-confined concrete 

cylinders yield: 
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(7.23) 

 

The above empirical relationship was determined from the analysis of the transverse 

dilation behavior of circular concrete cylinders confined by bonded (Xiao and Wu 2000, 

Saenz 2004, Tamuzs et al. 2007) and unbonded FRP jackets (Mirmiran 1997).  The above 

relationship indicates that an unconfined circular concrete section will experience a 

maximum dilation rate of ( ) 2
max

== urp µµ , whereas highly confined concrete will 

experience a minimum dilation rate equal to the initial dilation rate of the unconfined 

concrete, i.e., ( ) 20.0
min

=== cicirp νµµ .  The plastic dilation rate rpµ  of the afore-

mentioned CFCC cylinder tests is plotted versus the effective stiffness of the FRP jacket 

in Figure 7.4.  The previous equation has a coefficient of correlation of 82.9 %, i.e., 

829.02 =R , and a standard deviation of 31027.6 −x , i.e., 31027.6 −= xσ . 

In this figure, the asymptotic plastic dilation rate rpµ  of Eq. (7.23) is plotted as a 

solid curve, and the dashed curves indicate the prediction with a plus or minus two 

standard deviations. 
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Figure 7.4 Plot of plastic dilation rate versus effective jacket stiffness of FRP-

confined concrete. 
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For a circular concrete section the secant Poisson’s ratio mν  and the dilation rate mµ  

of the section remain essentially constant along the perimeter of the section, as was 

demonstrated in Chapter 6.  In Chapters 4 and 5, it was demonstrated that a CFCC section 

is a special case of a rectangular (RFCC) section for which 0.1=shα  and 21=jα , and 

a special case of an elliptical (EFCC) section with a unit aspect ratio, i.e., 0.1=shα .  In 

addition, jα  is the jacket corner aspect ratio of Eq. (4.4). 

 

FRP-Confined Concrete Sections 

The diagonal dilation rate jµ  of the rectangular (RFCC), square (SFCC), oval 

(OFCC), circular (CFCC), and elliptical (EFCC) FRP-confined concrete sections can be 

found in terms of the dilation rate rµ  of an equivalent circular concrete section confined 

by a continuous circular FRP jacket as follows: 

 

 rjj µβµ =
 

(7.24) 

 

Thus, in the plastic regions of the compressive behavior of the FCC sections shown in 

Figure 7.3, the plastic diagonal dilation rate jpµ  can be found in terms of the plastic 

dilation rate rpµ  of Eq. (7.23) of an equivalent circular concrete section confined by a 

continuous circular FRP jacket having the same effective FRP jacket stiffness jeK  of Eq. 

(4.19) of the FCC sections considered herein as follows: 

 

 rpjjp µβµ =
 

(7.25) 
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General Transverse Strain Relationships for 

FRP-Confined Concrete Sections 

A typical compressive stress-strain curve of normal weight, normal strength, 

unconfined concrete cylinder is plotted in Figure 7.5.  In this figure, the stress-strain 

curves are plotted versus the axial strain cε  on the right side of the vertical axis and 

versus the transverse dilation strain rε  on the left hand side.  The peak axial compressive 

strain coε  and peak transverse strain roε  occur when the unconfined concrete reaches its 

peak compressive strength cof , i.e., when 0.1=coc ff . 

 

Secant Poisson’s Ratio 

As indicated in Eq. (7.7), the secant Poisson’s ratio mν  of an unconfined or FRP-

confined concrete section is the secant slope of the transverse strain mε  versus axial 

strain cε  curve of the FRP-confined section in compression. 

In the following sections, a series of secant Poisson ratio formulations are introduced 

from the analysis of the dilation of unconfined and FRP-confined circular concrete 

sections in compression.  Using the strain compatibility relationships introduced in 

Chapter 6, these formulations are expanded to include other FCC cross-sectional shapes 

(i.e., rectangular, square, oval, and elliptical) in compression. 

 

Circular Concrete Sections 

The absolute transverse strain of the concrete cylinder stress-strain curve shown in 

Figure 7.5 is plotted versus the axial strain in Figure 7.6(a). 
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Figure 7.5 Plot of normalized axial stress versus radial and axial strain curve of 

unconfined concrete in compression. 



 137 

The initial slope of the curve in this figure is the initial Poisson’s ratio ciν  of the 

concrete material, which is in the range of 22.015.0 ≤≤ ciν ; a value of 20.0=ciν  is 

used herein. 

From analysis of Figure 7.6(a), the secant Poisson’s ratio rν  of the circular concrete 

section is defined as: 
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(7.26) 

 

The Poisson’s ratio of a circular concrete section is plotted versus the axial strain in 

Figure 7.6(b).  From Figure 7.6, it can be observed that as the axial compressive strain 

cε  reaches the peak compressive strain coε  of the unconfined concrete (i.e., as 

coc εε → ) the concrete section experiences a significant increase in the Poisson’s ratio 

with a small increase in axial strain.  This results in an uncontrolled increase in the area 

strain aε , in the concrete core (i.e., increase in area per unit of initial cross-sectional 

area).  For a circular section, the area strain aε  is defined as: 
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(7.27) 

 

Considering that for a circular section yxdr εεεεε θ ==== , as demonstrated in 

Chapter 6, the above Poisson’s ratio of circular concrete section can be rewritten as: 
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Figure 7.6 Plot of (a) absolute transverse strain versus axial strain and (b) secant 

Poisson’s ratio versus axial strain of unconfined concrete in compression. 
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As can be observed in Figure 7.6(b), deviation from a linear elastic material behavior 

occurs almost immediately after loading as a result of an increase in damage in the 

concrete’s structure due to axial strain-induced transverse dilation which generates 

material discontinuities, such as internal micro- and macro-crack formation and 

compaction or nucleation of existing voids within the concrete’s structure. 

The area strain aε  in a concrete member in compression measures the amount of 

damage in response to the applied axial load or deformation in the cross-sectional area 

supporting the load (Pantazopoulou and Mills 1995).  As the area strain aε  increases, i.e., 

an increase in damage, the net effective area supporting the load decreases and results in 

a decrease in the resistance of the concrete material as damage progresses (Pantazopoulou 

1995).  Pantazopoulou and Mills (1995) and Pantazopoulou (1995) recognized that the 

initiation of the descending branch of unconfined and confined concrete can be attributed 

to the drastic increase in the rate of growth (i.e., slope) of the area strain aε  curve of 

Figure 7.7(a).  This sudden increase is a result of unrestrained crack propagation (i.e., 

increase in damage) near the peak compressive strength of the unconfined concrete core. 

The secant slope of the area strain aε  versus axial strain cε  curve of Figure 7.7(a) is 

defined herein as the secant area Poisson’s ratio aν  and is given by: 
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A typical secant area Poisson’s ratio aν  of Eq. (7.29) curve is plotted in Figure 

7.7(b) versus the axial strain cε  in a circular concrete section in compression. 
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Figure 7.7 Plot of typical (a) absolute area strain and (b) secant area Poisson’s ratio 

versus axial strain curve of unconfined concrete in compression. 



 141 

Using Eqs. (7.28) and (7.29), the secant area Poisson’s ratio aν  can be obtained in 

terms of the secant Poisson’s ratio rν  of Eq. (7.26) as follows: 
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(7.30) 

 

For an unconfined circular section the initial area Poisson’s ratio aiν  is given by 

ciai νν  2= , as shown in the typical Poisson’s ratio curve plotted in Figure 7.7(b). 

In Figure 7.8, the axial strain cε  curve is potted versus the absolute transverse strain 

rε .  The initial inverse secant Poisson’s ratio ciν1  of the unconfined concrete is given 

by: 
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The inverse secant Poisson’s ratio rν1  or secant slope of the axial strain cε  versus 

absolute transverse strain rε  curve of Figure 7.8, is given by: 
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FRP-Confined Concrete Sections 

The rectangular, square, oval, circular and elliptical FRP-confined concrete sections 

shown in Figure 7.3 are considered herein. 
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Figure 7.8 Plot of typical axial strain versus absolute transverse strain curve of 

unconfined concrete in compression. 
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Using the general strain relationships introduced in Chapter 6 that relate the minor 

Bε  and major Hε  transverse strains of the FRP-confined concrete sections of Figure 7.3 

to the diagonal jacket strain jε , introduced in Eqs. (6.58)-(6.60); the following strain 

transformation relationships are introduced. 

Defining the secant jacket diagonal Poisson’s ratio jν  as: 
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where jν  represents the secant slope of the diagonal jacket strain along the main 

diagonal jε  introduced in Chapter 5 versus the average axial strain cε  in the FCC 

section. 

Using the transverse strain ratio εα  of Eq. (6.19) and the diagonal transverse strain 

coefficient jβ  of Eq. (6.59), the average secant Poisson’s ratio along the minor Bν  and 

major Hν  dimension of FCC sections shown in Figure 7.3 yields: 
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where Bν  and Hν  represent the secant slopes of the minor Bε  and major Hε  transverse 

strains versus the average axial strain cε  in the FCC section, respectively.  Using Eqs. 
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(7.28), (7.30), (7.34), and (7.35), and setting xB εε =  and yH εε = ,  the average area 

strain aε  and the average secant area Poisson’s ratio aν  in an FCC section are given by: 
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Using the strain ratio εα  of Eq. (6.19), the average area strain aε  of Eq. (7.36) can 

be given in terms of the diagonal jacket strain jε  as follows: 
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where aβ  is the area strain coefficient of the FCC section.  Using Eqs. (7.34)-(7.39), the 

average secant area Poisson’s ratio aν  of Eq. (7.37) can be given in terms of the diagonal 

jacket Poisson’s ratio jν  of Eq. (7.33) as follows: 
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Dilation Rate 

As indicated in Eq. (7.7), the dilation rate mµ  of an unconfined or FCC section is the 

tangent slope of the transverse strain mε  versus axial strain cε  curve of the section in 

compression.  In what follows, a series of dilation rate formulations are introduced from 
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the analysis of the dilation of unconfined and FRP-confined circular concrete sections in 

compression.  These formulations are then expanded to include the FRP-confined cross-

sectional shapes considered in this dissertation. 

 

Circular Concrete Sections 

The tangent slope of the transverse strain rε  versus axial strain cε  curve of Figure 

7.6(a) is defined herein as the dilation rate rµ , where: 
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The dilation rate rµ  of the concrete section is also typically referred to as the tangent 

Poisson’s ratio ( )trν .  A typical dilation rate curve is plotted in Figure 7.9(a). 

The tangent slope of the area strain aε  versus axial strain cε  curve of Figure 7.7(a) 

is defined herein as the area dilation rate aµ  and is given by: 
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In Figure 7.9 (b) a typical area dilation rate aµ  is plotted versus the axial strain in 

the concrete section.  Setting HByxdr εεεεεεε θ ======  in the area strain aε  of 

Eq. (7.27) and substituting it into aµ  of Eq. (7.42), yield the following: 
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Figure 7.9 Plot of typical (a) dilation rate and (b) axial dilation rate versus axial strain 

curve of unconfined concrete in compression. 
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As can be observed in Figure 7.9, the unconfined circular concrete core approaches 

its unconfined peak compressive strain coε  and strength cof , as both the dilation rate rµ  

of Eq. (7.40) and the area dilation rate aµ  of Eq. (7.41) approach their maximum value. 

The inverse dilation rate rµ1  is defined as the tangent slope of the axial strain cε  

versus absolute transverse strain rε  curve of Figure 7.8 where: 
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FRP-Confined Concrete Sections 

For the FCC sections shown in Figure 7.3, the average dilation rates along the minor 

Bµ  and major Hµ  dimensions of the FCC section can be found using the general strain 

transformation relationships introduced in Chapter 6, which relate the transverse strain 

along the minor Bε  and major Hε  dimensions to the diagonal jacket strain jε . [refer to 

Eqs. (6.53)-(6.55)] as follows: 
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where Bµ  and Hµ  represent the tangent slopes of the minor Bε  and major Hε  

transverse strains versus the average axial strain cε  in the FCC section, respectively. 
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Substituting Bµ  of Eq. (7.45) and Hµ  of Eq. (7.46) into the area dilation rate aµ  of 

Eq. (7.42) and using the area strain aε  of Eqs. (7.36) and (7.38) yield: 
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As in circular unconfined and confined concrete sections, the area dilation rate aµ  of 

Eqs. (7.42) and (7.47) determines the average rate of change (i.e., slope) of the area strain 

aε  versus the axial strain cε  curve of an FCC section in compression. 

The plastic dilation rate along the minor Bpµ  for BuBpBo εεε ≤≤  and major 

Hpµ  for HuHpHo εεε ≤≤  dimensions of an FCC section and the average plastic area 

dilation rate apµ  in the plastic region of its compressive stress-strain behavior (i.e., when 

cucpco εεε ≤≤ ) are defined as: 
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where Boε  and Hoε  are the average dilation strains along the minor and major 

dimensions of the FCC section, corresponding to the peak unconfined compressive strain, 

coε ; Bpε  and Hpε  are the average plastic dilation strains along the minor and major 
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dimensions of the FCC section, corresponding to an arbitrary plastic compressive strain, 

cpε ; Buε  and Huε  are the average ultimate dilation strains along the minor and major 

directions of the FCC section, corresponding to the ultimate compressive strain cuε  at 

failure of the FRP jacket. 

Define the diagonal jacket dilation rate jµ , of the FRP-confined concrete section as: 
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Using the strain transformation relationships introduced in Eqs. (6.58)-(6.60), the 

transverse dilation rates Bµ  of Eq. (7.45) and Hµ  of Eq. (7.46) can be written in terms 

of the diagonal dilation rate jµ  of Eq. (7.51) as follows: 
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Using Eqs. (7.34)-(7.39), the average area dilation rate aµ  of Eq. (7.47) can be given 

in terms of the diagonal jacket dilation rate jµ  of Eq. (7.51), or vice versa as follows: 
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The jacket diagonal plastic dilation rate jpµ  for dudpdo εεε ≤≤  of an FCC 

section in the plastic region of its compressive stress-strain behavior when 

cucpco εεε ≤≤  is given by: 
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Using Eqs. (7.52) and (7.53), the plastic dilation rate Bpµ  of Eq. (7.48), and Hpµ  of 

(7.49) and the average plastic area dilation rate apµ  of Eq. (7.50) can be found in terms 

of the plastic diagonal dilation rate jpµ  of Eq. (7.55) as follows: 
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Volumetric Strain 

Another means of measuring the amount of damage in the concrete material is the 

volumetric strain of concrete in a uniaxial, biaxial, or triaxial compression state of stress.  

In the analysis of concrete sections in compression, the volumetric strain vε  is typically 

defined as: 
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where mε  is the principal strain in the orthogonal principal thm  direction. 

As the imposed axial deformation or strain in the concrete section increases, damage 

of the internal structure of the concrete material starts to accumulate.  Deviation from a 

linear elastic response of the concrete material initiates in the axial stress-axial strain, 

axial stress-transverse strain, axial strain-transverse strain, volumetric strain-axial strain, 

volumetric strain-transverse and the axial stress-volumetric strain curves of concrete in a 

uniaxial, biaxial or triaxial compression state of stress occurs as a result of axial strain-

induced damage, i.e.. micro-crack growth at the paste-aggregate interface. 

In this dissertation, the axial stress-volumetric strain, volumetric strain-axial strain, 

and the volumetric strain-transverse strain curves of the concrete in a uniaxial and triaxial 

compression state of stress typical of unconfined concrete sections and FCC sections are 

studied in order to describe the nonlinear compressive behavior of unconfined and 

concrete sections confined by the FRP jacket, as shown in Figure 7.3. 

A negative volumetric strain indicates that the concrete section experiences 

volumetric contraction, whereas, a positive volumetric strain indicates volumetric 

expansion. 

 

Circular Concrete Sections 

The normalized axial stress coc ff  versus axial and radial strain curve plotted in 

Figure 7.5 is plotted in Figure 7.10(a) versus the volumetric strain vε  of Eq. (7.59).  For 

confined and unconfined circular concrete sections the volumetric strain vε , is given as: 
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 ( ) ( ) ( )acrcrcv εεεεεεεε θ +−=+−=++−= 2

 

(7.60) 

 

Using rν  of Eq. (7.26) and aν  of Eq. (7.30), the above volumetric strain vε  can be 

rewritten as: 

 

 ( ) ( ) ( )1122 −=−=+−= acrcrcv νενεεεε
 

(7.61) 

 

It can be observed from Figure 7.10(a) that the unconfined concrete core approaches 

its unconfined compressive strength, coc ff →  as the volumetric strain 0→vε .  This is 

a result of unrestrained volumetric expansion of the unconfined concrete cores when 

0>vε  as coc ff →  and as coc εε → .  For a circular section, a value of 0>vε  occurs 

as 21→rν , 2cr εε → , 0.1→aν  and ca εε →  as can be seen from Eqs. (7.28) and 

(7.59).  In Figure 7.10(b), the volumetric strain curve of an unconfined concrete section 

is plotted versus the axial strain and radial strain in the section. 

 

FRP-Confined Concrete Sections 

Using the strain relationships of Eqs. (6.19) and (6.54)-(6.55), the average volumetric 

strain vε  of Eq. (7.59) in the FCC section can be determined from the average transverse 

strains Bε  and Hε  and the average area strain aε  of Eq. (7.36) as follows: 

 

 ( ) ( )[ ] ( )acBcHBcv εεαεεεεεε ε +−=++−=++−= 1

 

(7.62) 

 

Using Eqs. (7.38) and (7.39), the previous relationship can be rewritten in terms of 

the diagonal jacket strain jε  as follows: 
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Figure 7.10 Plot of a typical (a) normalized axial stress versus volumetric strain and 

(b) volumetric strain versus axial and transverse strain of unconfined 

concrete in compression. 
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(7.63) 

 

The diagonal jacket strain jε , at the instant of zero volumetric strain (i.e., 0=vε ) is 

defined herein as the average volumetric diagonal jacket strain ( )
voljε  and is found by 

setting 0=vε  and ( )volcc εε =  for 0≠cε  in Eqs. (7.62) and (7.63), which yield: 
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(7.64) 

 

Using the strain relationships on Eqs. (6.58)-(6.60), the minor ( )volBε  and major 

( )volHε  dilation strains of the FCC section at the instant of zero volumetric strain can be 

given in terms of the jacket volumetric strain vε  of Eq. (7.64) as follows: 
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The diagonal Poisson’s ratio jν , at the instant of  zero volumetric strain, is defined 

as the volumetric diagonal Poisson’s ratio ( )
voljν . 

This Poisson’s ratio can be determined by setting 0=vε , ( )
voljj εε = , and 

( )volcc εε =  in Eq. (7.63), which yield: 

 



 155 

 ( )
avolc

j

volj βε
ε

ν 1=









−=

 

(7.67) 

 

Using Eqs. (7.34) and (7.35), the volumetric Poisson’s ratio along the minor ( )volBν  

and major ( )volHν  dimensions of the FCC section is given in terms of the volumetric 

diagonal Poisson’s ratio ( )
voljν  of Eq. (7.67) as follows: 

 

 ( ) ( )
aj

volj
jvolc

B
volB ββ

ν
βε

εν 11 ==







−=

 

(7.68) 

 ( ) ( )
ja

volj
jvolc

B
volH ββ

αν
β
α

ε
εν εε ==








−=

 

(7.69) 

 

Volumetric Dilation Rate 

The volumetric dilation rate nψ  of an unconfined or FRP-confined concrete section is 

defined as the tangent slope of the volumetric strain vε  versus the nε  strain curve of the 

section in compression, and is given by: 
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(7.70) 

 

where the subscript n  indicates an arbitrary strain direction, where BHdrcn or  ,,,,, θ= . 

 

Circular Concrete Sections 

In Figure 7.11, the tangent slope of the volumetric strain vε  curves plotted in Figure 

7.10(b) is plotted versus the axial cε  and transverse strain rε  of a typical concrete 

member in compression. 
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Figure 7.11 Plot of a typical volumetric dilation rate versus axial and transverse strains 

of an unconfined concrete in compression. 
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These tangent slopes in the axial and transverse strain direction of the volumetric 

curves of Figure 7.10(b) of a circular concrete section are defined as the axial cψ  and 

transverse rψ  volumetric dilation rates, respectively, and are given by: 
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(7.72) 

 

As can be observed in Figure 7.11, the axial volumetric dilation rate cψ  of Eq. 

(7.71), of the circular unconfined concrete section approaches its maximum value at axial 

strains near the peak axial compressive strain coε  of the concrete core.  The minimum 

transverse volumetric dilation rate rψ  of Eq. (7.72) tends to occur near the peak 

transverse strain roε . 

 

FRP-Confined Concrete Sections 

For the FRP-confined cross-sections shown in Figure 7.3, the axial cψ  and 

transverse volumetric dilation rates along the minor Bψ  and major Hψ  dimensions of 

the FRP-confined concrete sections are given by: 
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where the axial cψ  and transverse volumetric dilation rates Bψ  and Hψ  are the tangent 

slopes of the volumetric strain vε  versus the axial cε , and the minor Bε , and major Hε , 

transverse strain curves, respectively. 

The diagonal jacket volumetric dilation rate jψ  is defined as the tangent slope of the 

volumetric strain vε  versus the diagonal jacket strain jε , and is given by: 
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Using Eqs. (7.52)-(7.54), (7.60)-(7.63), and (7.76), the volumetric dilation rates cψ of 

Eq. (7.73), Bψ  of Eq. (7.74), and Hψ  of Eq. (7.75) can be found in terms of the diagonal 

jacket dilation rate jµ  of Eq. (7.51) as follows: 
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In this chapter it was determined that the geometry of the FCC section and stiffness of 

the FRP jacket, introduced in Chapters 4-6, influence the Poisson’s ratio ( jν , Bν , and 
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Hν ), the dilation rate or tangent Poisson’s ratio ( jµ , Bµ , and µ ), the area strain aε , the 

area Poisson’s ratio aν , and dilation rate aµ , the volumetric strain vε , and volumetric 

dilation rates ( cψ , rψ , Hψ , Bψ , and jψ ) of the FRP-jacketed section shapes considered 

in this dissertation. 

 



 

 

 

 

 

CHAPTER 8 

 

TRANSVERSE AND DIAGONAL DILATION MODEL 

OF CONCRETE SECTIONS CONFINED BY 

FIBER-REINFORCED POLYMER 

JACKETS 

 

In this chapter, a series of damage-based strain relationships are introduced for 

modeling the dilation behavior of rectangular, square, circular, and elliptical concrete 

columns confined by FRP jackets.  The dilation model requires the definition of a series 

of dilation relationships that describe the increase in damage in the cross section in terms 

of the geometric and mechanical properties of the FRP jacket and concrete core, as 

discussed in Chapters 4-7.  The assumptions made in Chapters 5 and 7 are also applicable 

to the analytical dilation model introduced herein. 

 

Dilation Behavior of Concrete in Compression 

A series of typical compressive stress-strain curves of normal weight, normal 

strength, FRP-confined concrete (FCC) cylinders are plotted in Figure 8.1 of FRP jacket 

having low, moderate, and high effective jacket stiffness jeC  of Eq. (4.13) or normalized 

stiffness jeK  of Eq. (4.18).  In this figure, the stress-strain curves of concrete are plotted 

versus the axial strain cε  on the right side of the vertical axis, and versus the transverse 

dilation strain rε  on the left-hand side. 
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Figure 8.1 Plot of typical normalized axial stress versus transverse and axial strains 

curves of FRP-confined concrete cylinders section in compression. 
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In Figure 8.2, a typical absolute transverse strain rε  of the concrete cylinder stress-

train curves, shown in Figure 8.1, is plotted versus the axial strain cε .  The initial slope 

shown in Figure 8.2 up to an axial strain of 0.001 is the initial dilation rate roµ  of Eq. 

(7.8) or Eq. (7.12) of the circular FRP-confined concrete (CFCC) section.  As can be 

observed from both Figures 8.1 and 8.2, the second slope of the bilinear stress-strain 

curves of the FCC section increases as the relative stiffness of the confining elastic FRP 

jacket increases.  This bilinear behavior is a result of the increase in the lateral kinematic 

restraint provided by the restraining (confining) elastic FRP jacket, as measured by the 

transverse effective stiffness ( )
shjeC  of Eq. (4.14) or the normalized effective stiffness 

( )
shjeK  of Eq. (4.19). 

At high levels of axial compressive strains, i.e., at coc εε >> , the slope of the 

absolute transverse strain versus axial strain curves of Figure 8.2 decreases as the FRP 

jacket stiffness increases.  This effect is also a result of an increase in the lateral restraint 

provided by the confining elastic FRP jacket.  Unconfined and confined concrete is 

considered to be in a plastic compressive behavior when the axial compressive strain cε  

in the concrete is greater than the unconfined peak compressive strain coε , i.e., when 

coc εε > , as shown in Figures 8.1 and 8.2. 

In Figure 8.3(a), a typical absolute diagonal jacket strain jε  versus axial strain cε  

curve ( the jε - cε  dilation curve) of a section confined by a moderate stiffness FRP 

jacket is shown. 
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Figure 8.2 Plot of typical absolute transverse strain versus axial strain curves of FRP-

confined concrete cylinder sections in compression. 



 

 

164 

In Figure 8.3(b) the axial strain cε  versus absolute diagonal jacket strain jε  curve 

(the cε - jε  dilation curve) is shown, i.e., the inverse of the dilation curve of Figure 

8.3(a).  In this figure the curve shown is the inverse transverse strain-axial strain curve.  

For a circular section, the inverse Poisson’s ratio rν1  is defined as: 
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where jν  is the secant Poisson’s ratio of an FCC section of Eq. (7.33) and rν  is the 

secant Poisson’s ratio of a circular concrete section of Eq. (7.28).  For unconfined and 

confined circular concrete sections 2ajHBr εεεεεε θ ===== , where rε , θε , 

Bε , Hε , jε  and aε  are the radial, hoop, minor, major, diagonal jacket and area strains, 

respectively, which are terms previously introduced in Chapters 6 and 7. 

The inverse secant Poisson’s ratio along the minor Bν1  and major Hν1  dimensions 

of the FCC section and the inverse jacket diagonal secant Poisson’s ratio jν1  of 

rectangular (RFCC), square (SFCC), oval (OFCC), including oval shape-modified  

(OSM) sections, circular (CFCC), including circular shape-modified (CSM) sections, and 

elliptical (EFCC), including elliptical shape-modified (ESM) sections, are given by: 
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where Bν , Hν ,and jν  are the minor, major, and jacket diagonal Poisson’s ratios of the 

FRP-confined concrete section, introduced in Eqs. (7.34), (7.35), and (7.33), respectively. 
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Figure 8.3 Plot of a typical (a) absolute transverse strain versus axial strain and (b) 

axial strain versus transverse strain curves of an FRP-confined concrete 

cylinder section in compression. 
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In Chapters 5 and 6 it was established that for a circular concrete section 

2ajHBr εεεεεε θ ===== ; this chapter is concerned only with modeling the 

diagonal dilation of the FCC section shown in Figure 7.3.  As a result, the strain 

transformation relationships introduced in Chapters 6 and 7 are applicable to rectangular, 

square, oval , circular, and elliptical FCC sections. 

A typical axial strain cε  versus absolute jacket diagonal strain jε  curve (the cε -

jε  curve) of an FRP-confined concrete member is shown in Figure 8.4(a).  This curve 

is subdivided into a linear and a nonlinear component.  The nonlinear component of the 

cε - jε  curve, which is shown as a cross-hatched area in Figure 8.4(a), represents the 

amount of degradation that the internal structure of the FRP-confined concrete core 

exhibits as a result of a remolding of its internal structure, as it undergoes unrestrained 

axial strain-induced extension, growth and nucleation of micro-cracks and/or voids (as 

damage progresses) prior to fully engaging the lateral kinematic restraint provided by the 

confining elastic FRP jacket.  The linear component of the cε - jε  curve, which is shown 

as a vertically hatched area in Figure 8.4(a), represents the amount of degradation of the 

concrete’s internal structure that is restrained by the confining elastic FRP jacket as the 

axial strain-induced damage in the confined concrete core progresses. 

The effective axial strain '
cε  at a given jacket diagonal strain jε  can be found from 

the geometry of the cε - jε  curve of Figure 8.4(a), and using the inverse jacket diagonal 

secant Poisson’s ratio jν1  of Eq. (8.2) and the plastic dilation rate jpµ  of Eq. (7.25), as 

follows: 
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where '1 jν  is the inverse effective jacket diagonal secant Poisson’s ratio at a given 

effective axial strain '
cε  and corresponding jacket diagonal strain jε ; it represents the 

secant slope of the effective axial strain '
cε  versus the absolute jacket diagonal strain jε  

curve (the '
cε - jε  curve) shown in Figure 8.4(b).  Using Eq. (8.3), the inverse effective 

jacket diagonal secant Poisson’s ratio '1 jν  is given by: 
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Graphically, the inverse effective secant Poisson’s ratio '1 jν  of Eq. (8.4) is the 

difference in slope between the inverse Poisson’s ratio jν1  and the asymptotic plastic 

slope jpµ1 , as shown in the cε - jε  curve of Figure 8.4(a).  Solving for the effective 

Poisson’s ratio '
jν  in Eq. (8.4) yields: 
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As shown in Figure 8.4 when jpj µν →  plastic dilation commences and 0' →jν . 

As a result, the limit of jpj µν ≠  is imposed in Eq. (8.5). 
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Figure 8.4 Plot of a typical (a) axial strain versus absolute transverse strain versus 

axial strain curve and (b) nonlinear component of FRP-confined concrete 

section in compression. 
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The geometric terms that are used to describe the shape of the cε - jε  curve of 

Figure 8.4(a) are plotted in Figure 8.5.  In this figure joµ  is the initial diagonal dilation 

rate of Eq. (7.19); '
joµ  is the  effective initial jacket diagonal dilation rate; ( )

secjν  is the 

jacket diagonal secant Poisson’s ratio evaluated at the axial strain coε  and corresponding 

diagonal strain joε ; ( )
sec

'
jν  is the effective jacket diagonal secant Poisson’s ratio; 

( )
pkjν  is the localized jacket diagonal peak Poisson’s ratio evaluated at the localized 

peak axial strain ( )pkcε  and corresponding jacket diagonal strain ( )
pkjε ; ( )

pkj
'ν  is the 

effective jacket diagonal peak Poisson’s ratio.  The mathematical relationships of these 

geometric terms of the diagonal strain-axial strain curve of Figure 8.5 are introduced in 

what follows. 

The initial inverse diagonal dilation rate joµ1  is the initial tangent slope of the cε -

jε  curve of Figure 8.5(a), which can be found using the initial inverse diagonal dilation 

rate joµ  of Eq. (7.20) as follows: 
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where ( )oBµ  and ( )oHµ  are the minor and major initial dilation rate of the FRP-

confined concrete section of Eqs. (7.17) and (7.19), respectively; jβ  is the shape 

diagonal strain coefficient of Eq. (6.59), summarized in Table 6.1. 



 

 

170 

joµ1

cε
A
x
ia
l 
S
tr
ai
n

Absolute Transverse Strain

jν1

jε−

1

jpµ1
1

'1 jν

1

1
1( )

sec
1 jν

'1 joµ

( )
pkjν1

( )
pkj

'1 ν

 

 

( )
sec

'1 jν( )
pkcε

coε

joε−
( )

pkjε−

 

 

 

 

 

 

 

 

(a) 

E
ff
ec
ti
v
e 
A
x
ia
l 
S
tr
ai
n

Absolute Transverse Strainjε−

1

'1 jν

cε

'1 joµ ( )
pkj

'1 ν

( )
sec

'
1 jν

( )
pkcε

coε

joε−

( )
pkjε−

1

1

1

 

(b) 

 

Figure 8.5 Geometry of a typical (a) axial strain versus absolute transverse strain 

versus axial strain curve and (b) its nonlinear component of FRP-confined 

concrete sections in compression. 
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From analysis of cε - jε  curve of Figure 8.6(a), using the definition of the effective 

Poisson’s ratio ( )'1 jν  of Eq. (8.5), and recognizing that in the elastic regime prior to 

cracking jojo µν = , the effective inverse initial dilation rate '1 joµ  is the difference in 

slope, between the initial tangent slope joµ1 , and the final plastic slope jpµ1 .  In 

addition, the inverse effective initial jacket dilation rate '1 joµ  is the initial tangent slope 

of the nonlinear portion of the typical '
cε - jε  curve of the FRP-confined concrete 

section shown in Figure 8.6(b).  As a result, the effective initial jacket dilation rate '
joµ  

is given by: 
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The jacket diagonal secant Poisson’s ratio ( )
secjν  of the typical axial stress-axial 

strain and axial stress-diagonal strain curves of FRP-confined concrete sections shown in 

Figure 8.7(a), is defined as: 
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From analysis of the cε - dε  and dc εε −;  curves of Figure 8.7, the effective peak 

axial strain '
coε  is given by: 
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Figure 8.6 Definition of (a) the initial dilation rate and (b) initial effective dilation 

rate of the dilation curve of an FRP-confined concrete section in 

compression. 
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Figure 8.7 Definition of (a) the secant Poisson’s ratio and (b) the effective secant 

Poisson’s ratio of the dilation curve of an FRP-confined concrete section. 
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where the inverse effective secant Poisson’s ratio ( )
sec

'1 jν  of Eq. (8.9) is the difference 

between the inverse secant Poisson’s ratio ( )
sec

1 jν  and the inverse plastic dilation rate 

jpµ1 , as can be observed in the cε - jε  curve of Figure 8.7(a). 

Graphically, the inverse effective secant Poisson’s ratio ( )
sec

'1 jν  is the difference in 

slope between the secant slope ( )
secjν1  and the final plastic slope jpµ1 , as shown in 

the cε - jε  curve of Figure 8.7(a) at the instant when coc εε =  and joj εε = .  In 

addition, the inverse effective secant Poisson’s ratio ( )
sec

'1 jν  is the secant slope of the 

'
cε - jε  curve of Figure 8.7(b) at the instant when ''

coc εε =  and joj εε = . 

Using Eq. (8.9), the effective secant Poisson’s ratio ( )
sec

'
jν  is given by: 
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The localized peak diagonal Poisson’s ratio ( )
pkjν  of the typical axial stress-axial 

strain and axial stress-diagonal strain curves of an FRP-confined concrete section, shown 

in Figure 8.8(a), is defined as: 
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where ( )pkcε  is the localized peak axial strain; ( )
pkjε  is the corresponding peak 

diagonal strain.  From analysis of the cε - jε  and dc εε −;  curves of Figure 8.8, the 

effective localized peak axial strain ( )
pkc

'ε  is given by: 
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As shown in of Figure 8.8, the inverse effective localized peak Poisson’s ratio 

( )
pkj

'1 ν  of Eq. (8.12) is the difference between the inverse jacket peak Poisson’s ratio 

( )
pkjν1  and the inverse jacket plastic dilation rate jpµ1 .  Graphically, the inverse 

effective peak Poisson’s ratio ( )
pkj

'1 ν  is the difference in slope between the peak slope 

( )
pkjv1  and the final plastic slope jpµ1  of the cε - jε  curve shown in Figure 8.8(a) 

at the instant when ( )pkcc εε =  and ( )
pkjj εε = .  In addition, the inverse effective 

secant Poisson’s ratio ( )
pkj

'1 ν  is the slope of the '
cε - jε  curve of Figure 8.8(b) at the 

instant when ( )
pkcc

'' εε =  and ( )
pkjj εε = . 

Using Eq. (8.12), the effective peak Poisson’s ratio ( )
pkj

'ν  is given by: 
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Figure 8.8 Definition of (a) the localized peak Poisson’s ratio and (b) the effective 

peak Poisson’s ratio of the dilation curve of an FRP-confined concrete 

section. 
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For FCC sections confined by low to moderate stiffness FRP jackets that exhibit 

volumetric expansion during their loading history, the volumetric diagonal Poisson’s 

ratio ( )
voljν  of Eq. (7.67), which is defined as the Poisson’s ratio of the FRP-confined 

concrete section at the instant of zero volumetric strain, e.g., 0=vε , can be found from 

analysis of the cε - jε  curve of Figure 8.9(a) [refer to Eqs. (7.59)-(7.69)].  In this figure 

the effective volumetric axial strain ( )
volc

'ε  at the instant of zero volumetric strain 

0=vε  is given by: 
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where ( )
volcε  and ( )

voljε  are the axial and corresponding diagonal volumetric strains at 

the instant of zero volumetric strain, respectively.  The volumetric strain vε  is defined in 

Eqs. (7.62) and (7.63) and ( )
voljε  in Eq. (7.64). 

The inverse effective volumetric Poisson’s ratio ( )
volj

'1 ν  of Eq. (8.14) is the 

difference between the inverse volumetric Poisson’s ratio ( )
voljν1  and the inverse 

plastic dilation rate jpµ1 , as shown in Figure 8.9. 
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Figure 8.9 Definition of (a) the volumetric Poisson’s ratio and (b) the effective 

volumetric Poisson’s ratio of the dilation curve of an FRP-confined 

concrete section. 
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Graphically, the inverse effective volumetric Poisson’s ratio ( )
volj

'1 ν  is the 

difference in slope between the volumetric slope ( )
voljν1  and the final plastic slope 

jpµ1 , as shown in the cε - jε  curve of Figure 8.9(a) at the instant when ( )
volcc εε =  

and ( )
voljj εε = .  In addition, the inverse effective volumetric Poisson’s ratio ( )

volj
'1 ν  

is the secant slope of the '
cε - jε  curve of an FRP-confined concrete section shown in 

Figure 8.9(b) at the instant when ( )
volcc

'' εε =  and ( )
voljj εε = .  Using Eq. (8.14), the 

effective volumetric Poisson’s ratio ( )
volj

'ν  is given by: 
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Dilation Model for FRP-Confined Concrete Sections 

Due to the nonlinearity of the cε - jε  and '
cε - jε  curves shown in Figures 8.4-8.9, 

a simple continuous mathematical relationship is sought for which the following 

geometrical conditions apply: 

1. At very  small axial and diagonal strains as 0, →jc εε , the initial slope of '
cε - jε  is 

given by the effective initial dilation rate '1 joµ , where: 
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2. When the diagonal jacket strain jε  is equal to the localized peak diagonal jacket 

strain ( )
pkjε , the slope of '

cε - jε  curve is equal to zero, where: 
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3. At infinitely large diagonal strains as −∞→jε , the effective axial strain '
cε  

approaches the value of zero where: 

 

 ( ) 0' ≅−∞→jc εε  (8.18) 

 

4. At infinitely large diagonal strains as −∞→jε , the slope of '
cε - jε  curve 

approaches the value of zero where: 
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A simple continuous mathematical relationship that can accurately model the 

nonlinearity of the '
cε - jε  curve as shown in Figures 8.4-8.9 and which meets the 

conditions imposed in Eqs. (8.16)-(8.19) is the Popovics (1973) fractional model for 

concrete, modified herein in terms of the effective axial strain '
cε  and diagonal  strain jε  

introduced in Eqs. (8.3)-(8.15), where the effective inverse effective jacket diagonal 
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Poisson’s ratio '1 jν  or secant slope of the '
cε - jε  curve of Figures 8.4(b) and 8.5(b) is 

given as: 

 

 ( )
( ) ( ) 










































+−

=













−=

j

pkj

j
j

j

pkj
j

c

j
γ

ε

ε
γ

γ

νε
ε

ν
1

11

'

'

'
 (8.20) 

 

where jγ  is the diagonal curvature parameter of the Popovics-based fractional model 

(1973).  This curvature parameter determines both the rate of softening of the ascending 

portion and the rate of decay of the descending portion of the '
cε - jε  curve and is given 

by: 
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Graphically, the above diagonal curvature parameter jγ  of Eq. (8.21) is the ratio of 

the initial effective slope '1 joµ  and the difference between the initial effective slope 

'1 joµ  and effective peak slope ( )
pkj

'1 ν  of the '
cε - jε  curve, shown in of Figures 

8.4(b) and 8.5(b). 
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The ratio of the effective peak Poisson’s ratio ( )
pkj

'ν  to the effective initial dilation 

rate '
joµ  is defined as the peak dilation parameter pkγ  where: 
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Using the effective initial dilation rate '
joµ  of Eq. (8.7) and the effective peak 

Poisson’s ratio ( )
pkj

'ν  of Eq. (8.13), the peak Poisson’s ratio ( )
pkjν  of Eq. (8.11) can be 

rewritten in terms of the peak dilation parameter pkγ  of Eq. (8.22), as follows: 
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Using the peak dilation parameter pkγ  of Eq. (8.22), the diagonal curvature 

parameter jγ  of Eq. (8.21) can be rewritten as: 
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Using the diagonal curvature parameter jγ  of Eqs. (8.21) and (8.24) and the peak 

dilation parameter pkγ  of Eq. (8.22), the fractional dilation model of Eq. (8.20) can be 

rewritten as: 
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In the development of the diagonal dilation model introduced in Eqs. (8.5)-(8.25), 

both the axial volumetric strain ( )
volcε  and the localized peak axial strain ( )pkcε  have 

not been determined; this is accomplished as follows. 

The ratio of the axial volumetric strain ( )
volcε  to the unconfined peak compressive 

strain coε  is defined as the volumetric strain ratio volα  where: 
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The ratio of the localized peak axial strain ( )pkcε  to the unconfined peak 

compressive strain coε  is defined as the peak strain ratio pkα  where: 
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From analysis of the cε - jε  curve of Figure 8.10(a) of a typical concrete section 

confined by a low stiffness FRP jacket for which ( ) ujjpvolj µβµν ≤< , and using pkα  

of Eq. (8.27), the intercept peak axial strain ( )pkoε  is given by: 
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From analysis of Figure 8.10(b) and using volα  of Eq. (8.26), the intercept 

volumetric axial strain ( )
voloε  is given by: 
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Assuming that for concrete sections confined by a low stiffness FRP jacket, the peak 

strain ratio pkα  of Eq. (8.27) is approximately equal to one ( 0.1≈pkα ), and equating 

Eqs. (8.28) and (8.29), where ( ) ( )volopko εε ≈ , the volumetric strain ratio volα  of Eq. 

(8.26) can be approximated by: 
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Substituting the inverse effective diagonal Poisson’s ratio model '1 jν  of Eq. (8.25) 

into Eq. (8.5), solving for the inverse diagonal Poisson’s ratio jν1  of Eq. (8.2), setting 

( )
voljj νν = , setting ( ) ( )

voljcovolvoljj νεαεε −==  using volα  of Eq. (8.30), setting 

( ) ( )
pkjcopkpkj νεαε −=  using pkα  of Eq. (8.27), and solving for the peak strain ratio 

pkα , yield: 
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Figure 8.10 Definition of (a) the peak intercept axial strain and (b) volumetric 

intercept axial strain of the dilation curve of an FRP-confined  concrete 

section. 
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where the coefficients Aα , Bα , Bα , and Dα  are used to simplify the solution for the 

peak strain ratio  pkα  of Eqs. (8.27) and (8.31). 

Considering that the effective initial diagonal dilation rate '
joµ  of Eq. (8.7) and the 

effective peak Poisson’s ratio ( )
pkj

'ν  of Eq. (8.13), both depend on the diagonal plastic 

dilation rate jpµ  of Eq. (7.25) of the FCC section; the peak dilation parameter pkγ  of 

Eq. (8.22) can be approximated by: 
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Based on the definition of the asymptotic diagonal plastic dilation rate rpµ  of Eq. 

(7.23) and the unconfined dilation rate 40.1=uµ  of Eq. (7.23), the above approximation 

indicates that the effective stiffness ( )
shjeK  of Eq. (4.19) or the transverse stiffness 

( )
shjeC  of Eq. (4.17) of the FRP jacket and the Poisson’s ratio of the unconfined 

concrete core, i.e., ciµ  and uµ , are solely responsible for the dilation behavior of the 
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FRP-jacketed concrete throughout its compression loading history.  In addition, for an 

unconfined circular concrete section for which ( ) 0=
shjeK , Eq. (7.23) yields 

40.1== urp µµ , Eq. (8.30) yields 0.1=volα , and Eq. (8.31) yields 0.1=pkα  when 

pkγ  of Eq. (8.34) is used.  As a result, the proposed dilation relationships introduced 

herein indicate that volumetric expansion of the unconfined concrete begins to occur, i.e., 

0≥vε , as the unconfined concrete approaches its peak unconfined compressive strength 

cof  and strain coε , which is in agreement with Pantazopoulou and Mills(1995) and 

Pantazopoulou (1995) for the general concrete model. 

The curvature coefficient pkγ  of Eq. (8.34) is considered a material constant that is 

affected by the initial Poisson’s ratio or dilation rate of the unconfined concrete material 

cici νµ = .  This indicates that the dilation behavior (Poisson’s ratio cν  and dilation rate 

jµ ) of the concrete material is significantly affected by the initial elastic properties of 

the concrete material, i.e., ciν . 

For normal-strength concrete ciν  is influenced by the water-cement and aggregate-

cement ratio (Anon 1964, Imran 1994) of the concrete material and can range between 

30.015.0 ≤≤ ciν .  Based on this range of ciν , the curvature parameter pkγ  of Eq. (8.34) 

can range between 63.4.03.2 ≤≤ pkγ , with the higher value corresponding to the lower 

value of ciν , and viceversa.  For 20.0=ciν  and 40.1=uµ , Eq. (8.34) yields 

33.3=pkγ .  For convenience a value of πγ =pk  is used herein.  For cases in which the 
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initial Poisson’s ratio ciν  of the concrete material is known, the curvature parameter pkγ  

of Eq. (8.34) can be evaluated and substituted for π  in the following relationships. 

Using  πγ =pk  in Eq. (8.24), indicates that that the diagonal curvature parameter jγ  

of Eq. (8.21) can be rewritten as: 
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The ratio of the diagonal volumetric Poisson’s ratio ( )
voljν  to the plastic dilation 

rate jpµ  is defined as the volumetric dilation parameter volγ  where: 
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Using the peak dilation parameter pkγ  of Eq. (8.34) and the volumetric dilation 

parameter volγ  of Eq. (8.36), the peak Poisson’s ratio ( )
pkjν  of Eq. (8.23) and the 

volumetric strain ratio volα  of Eq. (8.30) can be rewritten as: 
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For an unconfined circular concrete section that above relationships assumes that 

volumetric expansion of the unconfined concrete core occurs when ( ) covolc εε =  (i.e. 

0.1=volα ), which is supported by experimental evidence (Imran 1994, Pantazopoulou 

and Mills 1995).  For FRP-confined sections the above relationship predicts that the axial 
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strain at which volumetric expansion occurs increases, i.e. 0.1>volα , as the confining 

stiffness of the restraining FRP jacket increases (an increase in confinement).  This 

behavior is supported by experimental evidence of actively confined concrete (Imran 

1994, Imran and Pantazopoulou 1996) and FCC sections (Mirmiran 1999, Saenz 2004, 

Yan 2007). 

Substituting the peak dilation parameter pkγ  of Eq. (8.34) and the volumetric strain 

ratio volα  of Eq. (8.37) into the peak strain ratio pkα  of Eq. (8.31) yields: 
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The previous relationships for the peak strain ratio pkα  of Eq. (8.31) and (8.38) are 

undefined when ( )
voljjp νµ ≤  or 0.1>volγ .  A value of pkα  of Eq. (8.38), evaluated at 

a volumetric dilation parameter volγ  of Eq. (8.36) approximately equal to one 0.1≈volγ  

or within the range 98.095.0 ≤≤ volγ  can be used without incurring a significant loss in 

accuracy of the nonlinear component of the proposed dilation model of Eq. (8.25). 

Solving for the inverse jacket diagonal Poisson’s ratio jν1  in (Eq. 8.5) yields: 
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The term '1 jν  of Eq. (8.39) is governed by the dilation model of Eq. (8.25), this term 

represents the degradation that the FCC core experiences as a result of the remolding 
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process that its internal structure endures, due to unrestrained axial strain-induced 

damage prior to full activation of the kinematic restraint provided by the confining elastic 

FRP jacket.  The term jpµ1  of Eq. (8.39) represents the amount of degradation of the 

concrete’s internal structure that is restrained by the confining elastic FRP jacket. 

Substituting the inverse effective diagonal Poisson’s ratio '1 jν  model of Eq. (8.25) 

into the inverse diagonal Poisson’s ratio jν1  of (Eq. 8.39) the whole axial strain cε  

versus jacket diagonal strain jε  curve (the cε - jε  curve) of the FCC section of Figures 

8.4 and 8.5 can be modeled using the following fractional dilation model: 
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Defining the inverse diagonal dilation rate of the FRP-confined concrete jµ1  as: 
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Taking the derivative of the inverse diagonal secant Poisson’s ratio jν1  of Eq. 

(8.40), with respect to the diagonal jacket strain jε , yields the inverse diagonal dilation 

rate jµ1 , as follows: 
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Manipulation of Eq. (8.40) and (8.42) yields the diagonal jacket Poisson’s ratio jν  

and the diagonal dilation rate jµ  of the FRP-confined concrete section, as follows: 
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The jacket diagonal peak strain ( )
pkjε  can be found using the peak strain ratio pkα  

of Eqs. (8.38), the peak dilation parameter pkγ  of Eq. (8.34), and the diagonal peak 

Poisson’s ratio ( )
pkjν of Eq. (8.23), as follows: 
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The previous dilation model assumes that the dilation of FCC sections is a function of 

the kinematic restraint provided by the confining elastic FRP jacket and the initial 

dilation properties ( ciν  and ciµ ) of the concrete core.  (Also, refer to the strain 

relationships introduced in Chapters 6 and 7.) 

In the diagonal dilation rate model jµ  of Eq. (8.44), the maximum diagonal jacket 

dilation rate ( )
maxjµ  of the FCC section is obtained by taking the derivative of the jacket 

diagonal dilation rate jµ  of Eq. (8.44) with respect to the diagonal strain jε , i.e., 

jj δεδµ , and setting 0=jj δεδµ  for 0≠jε .  As a result, the maximum diagonal 

dilation rate ( )
maxjµ  can be found when ( ) pkpkjj γεε += 1  is substituted into the 

diagonal dilation rate jµ  of Eq. (8.44). 

The proposed analytical transverse dilation model introduced in this dissertation is 

unlike the empirical dilation models introduced by other researchers in the past, which 

include: the empirical fractional dilation model introduced by Mirmiran and Shahawy 

(1997b); the empirical trilinear model introduced by Carey (2002); the transverse 

confining stress-dependent empirical models introduced by Fam and Rizkalla (2001), 

Fujikake et al. (2004), Binici and Mosalam (2007) and Teng et al. (2007); and the 

empirical volumetric strain-dependent dilation model introduced by Monti and Nistico 

(2007). 
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The distinguishing feature for the proposed analytical dilation model is that it uses the 

concept of diagonal dilation of the FRP-confined concrete core and describes the increase 

in damage (dilation) in the cross-section in terms of the mechanical and geometric 

properties of both the concrete core and the confining FRP jacket. 

In this dissertation, the confined concrete core is considered to be a restraint sensitive 

material rather than a pressure sensitive material, as is typically assumed in the analysis 

of confined concrete.  As a result, the proposed dilation model considers that the dilation 

behavior of the FRP-confined concrete depends only on the lateral kinematic restraint 

provided by the thin elastic FRP jacket at the surface of the confined concrete core, rather 

than on the passive confining pressure provided by the restraining FRP jacket that results 

from transverse dilation of the FRP-confined concrete core. 



 

 

 

 

 

 

 

CHAPTER 9 

 

AN EXTENDED MOHR-COULOMB FAILURE CRITERION 

FOR CONFINED CONCRETE 

 

One of the goals of this research is to introduce a theoretically sound mechanics-

based stress-strain model, applicable to rectangular, square, oval, circular, and elliptical 

concrete beam-columns confined by bonded FRP jackets (BFCC sections) or cast in place 

FRP tubes (CFFT sections).  This model requires an analytical yield surface or failure 

envelope that defines the confinement effectiveness of actively or passively confined 

concrete in a triaxial compression state of stress. 

The geometric and mechanical properties of the aforementioned FRP-jacketed 

sections introduced in Chapter 4, the transverse and diagonal equilibrium relationships 

introduced in Chapter 5, and the strain compatibility relationships introduced in Chapter 

6 are included in the development of a Mohr-Coulomb-based failure criterion for 

confined concrete, FRP-confined concrete in particular. 

 

Confinement Effectiveness of FRP-Confined Concrete 

Currently, there is a lack of stress-strain models that can accurately model the non-

linear compressive behavior of rectangular, square, oval, circular, and elliptical concrete 
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sections confined by bonded FRP jackets (BFCC) or cast in place FRP tubes (CFFT), 

generally referred to as FRP-confined concrete (FCC) sections in this review. 

In the analysis of laterally confined concrete members, it is assumed that the increase 

in strength due to passive confinement provided by the restraining transverse 

reinforcement or jacket is governed by an experimentally determined confinement 

effectiveness of the confining element cck , given as: 

 

 
co

cc
cc

f

f
k =  (9.1) 

 

where cof  and ccf  are the peak compressive strength of the unconfined and confined 

concrete core, respectively.  The increase in the compressive strength of the actively or 

passively confined concrete is typically assumed to be governed by the following Richart 

et al. (1928) relationship: 

 

 ( )rcocc fkff 1+=  (9.2) 

 
r

cocc

f

ff
k

−
=1  (9.3) 

 

where rf  is the average transfer confining stress provided by the confining element and 

1k  is the average confinement effectiveness coefficient. 

The confinement effectiveness cck  of Eq. (9.1) can be rewritten in terms of the 

average confinement stress ratio corr ffk =  and the confinement effectiveness 

coefficient 1k  by dividing Eq. (9.2) and Eq. (9.3) by the unconfined compressive strength 

cof  as: 
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The above relationship correlates well with experimental test data of plain and 

reinforced concrete sections actively confined by hydrostatic fluid pressure and passively 

confined concrete sections confined by transverse steel reinforcement, steel jackets, as 

well as FRP jackets. 

For plain concrete sections in a uniform triaxial compression state of stress (i.e.,  

biaxially confined concrete), for which rf==> 321 σσσ , Richart, et al. (1928) found 

that the value of the confinement effectiveness coefficient 1k  is in the range of 

50.550.3 1 ≤≤ k .  The upper value corresponding to concrete subjected to low confining 

stresses rf  and the lower value corresponds to highly confined concrete, with an average 

value of ( ) 10.41 =avgk .  1σ , , 2σ  and 3σ  are the major, intermediate and minor 

compressive stresses in the confined concrete, for which shearing stresses vanish and 

compression is considered positive. 

In the analysis of biaxially confined concrete cylinder tests performed by Imran 

(1994), the range of the confinement effectiveness coefficient 1k  was 50.650.2 1 ≤≤ k . 

The higher values of 1k  occur at low levels of confinement, and the lower values at high 

levels of confinement, with an average value of ( ) 10.41 =avgk , which is in agreement 

with Richart et al. (1928). 
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In the past, many investigators described the variation of the confinement 

effectiveness coefficient 1k  of Eq. (9.3), in terms of the applied confining stress rf , 

while mostly ignoring the contributions of the applied axial compressive stress cf  at 

failure of the confined concrete core (i.e., ccf ). 

The confinement effectiveness coefficient 1k  of the confined concrete is typically 

plotted versus the applied transverse confining stress rf , as shown in Figures 9.1-9.3, or 

versus the confinement ratio corr ffk =  as shown in Figures 9.4-9.6. This behavior is 

a result of the inherent decreasing nonlinear relationship between the confinement 

effectiveness coefficient 1k , with respect to the confining stress rf  or confinement stress 

ratio rk , as shown in Figures 9.1-9.6.  Several researchers in the past have introduced 

empirical relationships for 1k  in the form of a decreasing power relationship as follows: 

 

( ) 2
11

a
rfak −=          (9.6) 

( ) 4
31

a
rkak

−=          (9.7) 

 

where 1a , 2a , 3a  , and 4a  are empirical constants that have no physical meaning.  Eq. 

(9.6) was introduced by Saatcioglu (1992) and Eq. (9.7) by Newman and Newman 

(1971).  Both Eqs. (9.6) and (9.7) with 042 == aa  are the special case for a constant 

confinement effectiveness coefficient 1k , a concept first introduced by Richart et al. 

(1928), an assumption that is not supported by experimental data, as can be observed in 

Figures 9.1-9.6, which reflect the experimental fact that for confined concrete, 1k  

decreases with increasing axial and transverse confining stress rf  or stress ratio rk . 
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(b) 

 

Figure 9.1  Experimental and analytical confinement effectiveness coefficient versus 

transverse confining stress of biaxially confined low-strength concrete 

cylinders performed by Imran (1994). 
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(b) 

 

Figure 9.2  Experimental and analytical confinement effectiveness coefficient versus 

transverse confining stress of biaxially confined medium-strength concrete 

cylinders performed by Imran (1994). 
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(b) 

 

Figure 9.3  Experimental and analytical confinement effectiveness coefficient versus 

transverse confining stress of biaxially confined high-strength concrete 

cylinders performed by Imran (1994). 
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(b) 

 

Figure 9.4  Experimental and analytical confinement effectiveness coefficient versus 

confinement stress ratio of biaxially confined low-strength concrete 

cylinders performed by Imran (1994). 
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(b) 

 

Figure 9.5  Experimental and analytical confinement effectiveness coefficient versus 

confinement stress ratio of biaxially confined medium-strength concrete 

cylinders performed by Imran (1994). 
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(b) 

 

Figure 9.6  Experimental and analytical confinement effectiveness coefficient versus 

confining stress of biaxially confined high-strength concrete cylinders 

performed by Imran (1994). 
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The data points plotted in Figures 9.1-9.6 are the experimental data of biaxially 

confined concrete cylinder tests performed by Imran (1994) for which 

rf==> 321 σσσ .  From these figures, it can be observed that the confinement 

effectiveness coefficient 1k  decreases nonlinearly as the transverse confining stress rf  or 

stress ratio rk  increases.  This is the basis for utilizing the negative 2a  and 4a  exponents 

in the empirical relationships of Eqs. (9.6) and (9.7). 

The compressive stress at failure of the confined concrete core ccf  is plotted versus 

the transverse confining stress rf  in Figures 9.7-9.9.  The confinement effectiveness 

cck  is plotted versus the confinement stress ratio rk  as shown in Figures 9.10-9.12.  The 

data points plotted in Figures 9.7-9.12 are the experimental data points of biaxially 

confined concrete cylinder tests performed by Imran (1994).  From these figures, it can 

be observed that at high levels of transverse confinement, the compressive stress ccf  and 

the confinement effectiveness cck  appear to be a linear function of the confining stress 

rf  and the confinement stress ratio rk , respectively.  As a result of the nonlinear 

relationship between the confinement effectiveness coefficient 1k  and the transverse 

confining stress rf  of Figures 9.1-9.3, or the confinement stress ratio rk  of Figures 9.4-

9.6, an analytical failure criterion for confined concrete must capture the nonlinear 

relationships between 1k  and rf  or 1k  and rk   at low confinement levels and also 

capture the essentially linear relationship between the compressive strength ccf  and the 

transverse confining stress rf  at high confinement levels, as shown in Figures 9.7-9.9. 
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(b) 

 

Figure 9.7  Experimental and analytical compressive strength versus confining stress 

of biaxially confined low-strength concrete cylinders performed by Imran 

(1994). 
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(b) 

 

Figure 9.8  Experimental and analytical compressive strength versus confining stress 

of biaxially confined medium-strength concrete cylinders performed by 

Imran (1994). 
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(b) 

 

Figure 9.9  Experimental and analytical compressive strength versus confining stress 

of biaxially confined high-strength concrete cylinders performed by Imran 

(1994). 
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(b) 

 

Figure 9.10  Experimental and analytical confinement effectiveness versus confinement 

stress ratio of biaxially confined low-strength concrete cylinders 

performed by Imran (1994). 
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(b) 

 

Figure 9.11  Experimental and analytical confinement effectiveness versus confinement 

stress ratio of biaxially confined medium-strength concrete cylinders 

performed by Imran (1994). 
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(b) 

 

Figure 9.12  Experimental and analytical confinement effectiveness versus confinement 

stress ratio of biaxially confined high-strength concrete cylinders 

performed by Imran (1994). 
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The analytical failure criterion must also capture the linear relationship between the 

confinement effectiveness cck  and the confinement stress ratio rk , as shown in Figures 

9.10-9.12, and the combined effects of the applied axial stress cf  and applied or resultant 

transverse confining stress rf , in order to describe the compressive behavior of 

uniaxially and biaxially confined concrete. 

Pramono and Willam (1989), Menetrey and Willam (1995), Xie et al. (1995) and 

Fujikake et al. (2004) introduced a series of relationships based on the Leon (Romano 

1969) or the Hoek and Brown (1980) parabolic model for the failure envelope of concrete 

in a triaxial compression state of stress.  This includes the cases of uniaxial tension, 

tension-compression, and tension-tension stress states given by the following three-

parameter parabolic relationship: 
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where '
1σ  and 

'
3σ  are the minor and major principal stresses in the concrete core with 

tension considered positive.  When compared to the principal compressive stresses 1σ , 

2σ , and 3σ , 3
'
1 σσ −= , 2

'
2 σσ −= , and  1

'
3 σσ −= .  Also, '

2σ  is the intermediate 

principal stress. 

Pramono and Willam (1989) found that the ultimate strength envelope of concrete can 

be described by considering that the constants in the parabolic model of Eq. (9.8) are 

03 =a , ( ) tt kka 1
2

4 −= , and 0.15 −=a .  tk  is defined as the ratio of the uniaxial 

tensile strength tof  to the uniaxial compressive strength cof  of the concrete core as: 
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co
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f

f
k =  (9.9) 

 

Menetrey and Willam (1995) found that the ultimate strength envelope of concrete 

can be described by considering that the constants in the parabolic model of Eq. (9.8) are 

03 =a , ( ) ( )[ ]131
2

4 +−= eekka tt , and 0.15 −=a , where e  is the eccentricity of an 

elliptical function which is further discussed in this chapter.  Fujikake et al. (2004) used 

Pramono and Willam’s (1989) model to describe the ultimate strength envelope of FRP-

confined concrete with 08.0=tk . 

Xie et al. (1995) found that for the case of high-strength concrete, the terms 3a  and 

5a  in Eq. (9.8) are empirical constants of the concrete core which were found to depend 

on the unconfined compressive strength of the concrete core cof , and the term 4a  is an 

empirical constant that depends on both the unconfined compressive cof  and tensile 

strength tof  of the concrete material. 

In the modified Leon (Romano 1969) or Hoek and Brown (1980) parabolic failure 

criterion of Eq. (9.8), the influence of the intermediate principal compressive stress 2σ  is 

omitted similar to the Tresca and Mohr-Coulomb condition of maximum shear.  In 

addition, the three-parameter parabolic formulation for the ultimate strength envelope of 

Eq. (9.8) combines the two-parameter Mohr-Coulomb friction law and the one-parameter 

tension cut-off condition of Rankine.  Although the parabolic type ultimate strength 

envelope of Eq. (9.8) can accurately describe the cases of uniaxial tension, tension-

compression, tension-tension stress, and triaxial compression stress states, a direct 
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solution for the minor principal stress 
'
3σ  cannot be obtained in terms of the major 

principal stress '
1σ  without iteration. 

In this research a noniterative ultimate strength envelope of the concrete material is 

obtained by treating the restraint sensitive concrete material as a frictional-cohesive 

material whose ultimate strength criterion is governed by a Mohr-Coulomb type failure 

envelope for frictional-cohesive materials subjected to uniform biaxial confinement, i.e., 

23 σσ =  or '
2

'
1 σσ = .  For confined concrete, the kinematic restraint is provided by 

either active hydrostatic compressive stresses or passive confining stresses provided by a 

transverse confining element, such as FRP jackets. 

In what follows, a series of mathematical relationships are introduced to describe the 

variation of the confinement effectiveness coefficient 1k  and the confinement 

effectiveness cck , with respect to the applied axial stress cf  and the applied transverse 

confining stress rf , while minimizing or eliminating the number of empirical 

coefficients such as those introduced in Eqs. (9.1)-(9.9). 

 

Confinement Effectiveness of Confined Concrete: A Soil 

Mechanics Approach 

The structure of the concrete material within the confined concrete core can be 

considered a heterogeneous material consisting of granular aggregates (i.e., crushed stone 

aggregate or gravel and sand), a binding material (i.e., cement paste), and pores.  The 

concrete material in a uniaxial tension, tension-compression, and tension-tension, biaxial 

or triaxial compression state of stress behaves as a cohesive-frictional material and 
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exhibits similar compressive and dilation behavior as that exhibited by granular cemented 

soils, i.e., soils that exhibit a uniaxial tensile capacity. 

The confined concrete core is a restraint sensitive material that is composed of 

granular materials (i.e., angular crushed rocks, well-graded gravels, and dense sands) plus 

a binding agent (i.e., cement paste).  As the internal structure of the confined concrete 

core is subjected to very large compressive strains, it becomes damaged as a result of 

internal crack growth, aggregate crushing and shifting, void compaction, and nucleation. 

As damage in the internal structure of the concrete core increases, it undergoes a 

remolding process in which its internal structure essentially degrades to that of its 

constituent materials.  This is a result of the degradation of the adhesion provided by the 

binding cement paste from internal crack growth, void compaction, and nucleation (i.e., 

as damage progresses). 

At high levels of axial and transverse deformations, the mechanical response of the 

remolded concrete core depends on the resistance provided by a combination of 

aggregate sliding, shifting, rolling, and crushing that develops during the axial and 

transverse deformation of the concrete core. 

The concrete material is treated as an isotropic, homogenous Mohr-Coulomb 

frictional-cohesive granular material with some interparticle attraction or cohesion that is 

provided by the binding cement, whose resistance to deformation is contingent upon the 

shear strength of the material cτ .  This shear strength depends on the average 

interparticle attraction or apparent cohesion cc  of the concrete core and the resistance to 

interparticle slip called the coefficient of friction of the concrete core cυ , that is given 

by: 
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 cncc c υστ +=  (9.10) 

 c
n

c
c φ

σ
τυ tan=

∂
∂

=  (9.11) 

 

where nσ  is the normal stress on the failure shear plane, as shown in Figures 9.13 and 

9.14; cυ  is the coefficient of internal friction of the concrete core; cφ  is the average 

angle of internal friction of the concrete core.  The above relationships describe a 

maximum shear strength failure envelope of the concrete material as shown in Figures 

9.13 and 9.14. 

For a Mohr-Coulomb-based maximum shear strength envelope to properly model the 

behavior of concrete in a triaxial compression state of stress, it must also include the 

cases of uniaxial tension, tension-compression, and tension-tension stress states and shall 

satisfy the following conditions: 

1. It should represent a close fit to the experimental data 

2. It should have simple identification of the model parameters 

3. It should pass through the point of uniaxial tension, i.e., when tof−=3σ , 01 =σ  

4. It should pass through the point of uniaxial compression, i.e., when 03 =σ , 

cof=1σ  

5. It should fit the failure envelope of concrete in a triaxial compression state of stress, 

as shown in Figure 9.15 in which 03 ≥σ , cof≥1σ . 

This is accomplished herein by considering that the concrete material behaves similar 

to similar compressive and dilation behavior as that exhibited by granular cemented soils. 
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Figure 9.13 Plot of typical Mohr-Coulomb failure envelope of a frictional cohesive 

material. 
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Figure 9.14 Plot of (a) typical Mohr-Coulomb failure envelope of a frictional cohesive 

material showing pertinent terms, (b) Mohr’s circle and definition of 1σ , 

3σ  and the angle of inclination of the failure shear plane cθ . 



 218 

 

 

 

 

 

M
aj
o
r 
P
ri
n
ci
p
al
 C
o
m
p
re
ss
iv
e

S
tr
es
s

Minor Principal Compressive Stress

cof=1σ

1σ

3σ

tof=3σ

1σ

3σ
 

 

Figure 9.15 Plot of typical failure envelope of a frictional cohesive material in the 

major principal and minor principal compressive stress region. 
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A concrete prism subjected to a triaxial compression state of stress for which 

321 σσσ ≥> , uniaxial compression tests for which 01 ≥σ  and 032 == σσ , uniaxial 

tension tests for which 021 == σσ , and 03 ≤σ , and uniform biaxial confinement for 

which rf== 32 σσ  is considered herein. 

Referring to the Mohr’s circle of Figure 9.14(b), the normal stress nσ  and the shear 

stress cτ  on the failure shear plane are given in terms of the minor 3σ  and major 1σ  

principal compressive stresses in the concrete core as follows: 

 

 ( )cc θσστ 2sin
2

31 −
=  (9.12) 

 ( )cn θσσσσσ 2cos
22

3131 −
+

+
=  (9.13) 

 
2

45 c
c

φθ +°=  (9.14) 

 

where cθ  and cφ  are the average angle of inclination of the failure shear plane and the 

angle of internal friction of the confined concrete, respectively, as shown in Figure 

9.14(b).  In this research, a relationship is sought for concrete subjected to a triaxial 

compression state of stress in which the major principal compressive stress 1σ  is 

determined in terms of the minor principal compressive stress 3σ .  This is accomplished 

using the following trigonometric relationships: 
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Thus setting the minor rf=3σ  and major ccf=1σ  compressive stresses in Eqs. 

(9.10)-(9.13), using the previous trigonometric relationships and solving for 1σ  yields: 
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(9.19) 

 

Setting the ccf=1σ  and rf=3σ , the above relationships can be rewritten as a 

generalized two-parameter modified Mohr-Coulomb (MMC) failure envelope for 

confined as follows: 

 

 0131 =−− σβσγ ff  (9.20) 

 

where fγ  and fβ  are material parameters that measure the cohesive and frictional 

strength of the concrete subjected to a biaxial or triaxial compression state of stress.  The 

Richart et al. (1928) failure criterion of Eq. (9.2) is the case for which cof f1=γ  and 

10.41 == ffk γβ .  The material parameters fγ  and fβ  of the concrete material are 
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determined as follows.  The apparent cohesion of the confined concrete core cc  of Eqs. 

(9.10) and (9.19) can be determined from the uniaxial unconfined compression test.  

Setting  cocc ff ==1σ  and 03 == rfσ  and substituting cocc ff =  and 0=rf  into 

Eq. (9.19) yield: 
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Substituting Eq. (9.21) into Eq. (9.19) yields a relationship for the peak compressive 

strength ccf  similar to the Richart et al. (1928) relationship of Eq. (9.2) or a confinement 

effectiveness cck  relationship similar to that of Eq. (9.4).  Utilizing Eqs. (9.2), (9.19), and 

(9.21), the confinement effectiveness coefficient 1k  of Eqs. (9.2) and (9.6) can be 

rewritten in terms of the angle of internal friction of the concrete core cφ  or the angle of 

inclination of the failure shear plane cθ  and the coefficient of friction cυ  of the concrete 

core as follows: 
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The previous confinement effectiveness coefficient 1k  also applies to concrete in a 

triaxial compression state of stress for which 321 σσσ >> , which corresponds to the 

case of rectangular, oval, and elliptical FCC sections, since the MMC criterion introduced 

herein ignores the effects of the intermediate compressive stress 2σ . 

The angle of internal friction of the confined concrete core cφ  can be determined in 

terms of the confinement effectiveness coefficient 1k  of Eq. (9.22) as follows: 

 

 



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



+
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= −
1

1
sin

1

11

k

k
cφ  (9.23) 

 

In the analysis of concrete in a biaxial or triaxial compression state of stress, the 

combined effects of the applied axial stress cf  and transverse confining stress rf  are 

typically ignored in the development of maximum or ultimate strength criterion for 

confined concrete.  In order to capture these combined effects, a series of analytical 

relationships are introduced using a MMC failure envelope, that combines the two-

parameter Mohr-Coulomb friction law of limited shear stress and the one-parameter 

Rankine tension cut-off condition as follows. 

As shown in Eqs. (9.10) and (9.11), shear failure of the confined concrete core cτ  

occurs when the normal stress in concrete nσ  and the angle of internal friction cφ  reach 

a critical combination.  Based on the definition of the normal stress on the failure shear 

plane nσ  of Eq. (9.13), failure of the concrete core in a triaxial compression state of 

stress occurs due to shear failure of the concrete, i.e., when cττ =  or when equality of 

Eqs. (9.2) and (9.12) occurs.  The occurrence of higher values of 1k  at low levels of 
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confinement, as evidenced in the Richart et al. (1928) and Imran (1994) investigations, 

can be attributed to the following. 

The uniaxial compression case for which 03 =σ  and cof=1σ  and the uniaxial 

tension case for which tf−=3σ  and 01 =σ  are considered herein.  For these cases Eqs. 

(9.10)-(9.19) predict that the uniaxial shear strength uτ , the apparent uniaxial cohesion 

uc , the uniaxial coefficient of internal friction uυ , the uniaxial angle of internal friction 

uφ , and the uniaxial confinement effectiveness coefficient ( )uk1  are given by: 
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 ( ) 3/2
32.0 coto ff −≅  (9.30) 

 

where the uniaxial tensile strength of the concrete tof  can be determined by uniaxial 

tensile tests or it can be estimated using Eq. (9.30) with cof  in MPa units (Raphael 1984) 

with compression being positive. 
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For an unconfined concrete compressive strength ranging between 

MPa55MPa17 ≤≤ cof , using tof  of Eq. (9.30) and tk  of Eq. (9.9), tk  ranges 

between 12.008.0 ≤≤ tk .  Also, for this range of concrete compressive strengths 

18.015.0 ≤≤ cou fc , °≤≤° 7.571.51 uφ , 58.124.1 ≤≤ uυ  and ( ) 90.1106.8 1 ≤≤ uk .  

This indicates that at low levels of confinement, as 0→rk , the confined concrete core 

behaves similar to unconfined concrete, and the confinement effectiveness coefficient 1k  

approaches the value of the uniaxial confinement effectiveness coefficient ( )uk1  of Eq. 

(9.29), [i.e., as 0→rk , ( ) tu kkk 111 =→ ]. 

As previously indicated and as shown in Figures 9.1-9.6, the assumption of a 

constant confinement effectiveness coefficient 1k  at all levels of confinement is not 

supported by the experimental data.  The experimental data of triaxial compression tests 

by Richart et al. (1928) and Imran (1994) suggest that at low levels of confinement 1k  

approaches the value of the uniaxial confinement effectiveness coefficient ( )uk1  of Eq. 

(9.29).  At high levels of confinement 1k  approaches an asymptotic value, which will be 

referred to herein as the basic confinement effectiveness coefficient ( )bk1  of the dry 

concrete material.  This indicates that for concrete in a uniaxial or triaxial compression 

state of stress, 1k  is bounded by the following range ( ) ( )ub kkk 111 ≥≥ . 

The nonlinearity of the confinement effectiveness coefficient 1k , as can be observed 

in Figures 9.1-9.6, can be attributed to the inherent nonlinearity of the Mohr-Coulomb 

failure envelope for granular frictional-cohesive materials.  The curvature of this failure 

envelope can be attributed to remolding of the concrete’s internal structure as axial strain-
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induced damage progresses.  As a result, the shear strength cτ  of the confined concrete 

core is a nonlinear function of the normal stress nσ  of Eq. (9.13) (or of the major 1σ  and 

minor 3σ  principal compressive stresses), where the shear strength cτ  of Eqs. (9.10) and 

(9.12) can be rewritten as: 

 

 ( )ccncc c θσσφστ 2sin
2

tan 31 −
=+=  (9.31) 

 

In Eq. (9.31), the apparent cohesion cc  (i.e., apparent intercept shear stress) of the 

concrete material is given by the unconfined cohesion, uc  of Eq. (9.25).  Using nσ  of 

Eqs. (9.13), uc  of Eq. (9.25), cτ  of Eq. (9.31) and solving for both the major 1σ  and 

minor 3σ  principal compressive stresses in terms of the normal stress nσ  yield: 

 

 1311 2 kkcu σσ +=  (9.32) 

 
( )

( ) ( ) ( )c
ctcon

kk

kkf

θ
θσ

σ
2cos11

cos12

11

1
3 −++

+−
=  (9.33) 

 

Setting the major principal compressive stress 1σ  in the confined concrete core equal 

to the ultimate strength of the confined concrete core ccf  (i.e., ccf=1σ ), the confined 

concrete strength ccf  of Eq. (9.2) can be found in terms of minor principal compressive 

stress 3σ  by substituting the uniaxial cohesion intercept uc  of Eq. (9.25) into Eq. (9.32) 

and setting ccf=1σ  in Eq. (9.32), which yields: 

 

 131 kkkff tcocc σ+=  (9.34) 
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The previous analytical compressive strength of biaxially confined concrete is plotted 

as a solid curved versus the confining stress in Figures 9.7-9.9 of actively confined 

concrete cylinders performed by Imran (1994).  From these figures it can be observed 

that the analytical compressive strength of Eq. (9.34) can accurately predict the 

compressive strength ccf  of biaxially confined concrete, for which rf==> 321 σσσ , 

of varying uniaxial compressive strengths cof  at all confinement levels. 

Substituting the confined concrete strength ccf  of Eq. (9.34) into the confinement 

effectiveness of the confined concrete core cck  of Eq. (9.4) yields: 

 

 131 kkkk
f

f
k t

co

cc
cc +==  (9.35) 

 
cof

k 3
3

σ
=  (9.36) 

 

where 3k  is the minor principal compressive stress ratio.  The previous relationship 

indicates that confinement effectiveness cck  can be found in terms of the uniaxial tensile-

uniaxial compressive strength ratio tk  of Eq. (9.9), with tof  estimated using Eq. (9.30) 

and 1k  of Eq. (9.22). 

The confinement effectiveness cck  of biaxially confined concrete of Eq. (9.35) is 

plotted versus the confining stress in Figures 9.10-9.12 of actively confined concrete 

cylinders performed by Imran (1994).  From these figures it can be observed that the 

analytical confinement effectiveness cck  of Eq. (9.35) can accurately predict the 
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confinement effectiveness of biaxially confined concrete of various uniaxial compressive 

strengths cof . 

The confinement effectiveness cck  of Eq. (9.35) is somewhat similar to that 

introduced in Eq. (9.4); cck  of Eq. (9.35) yields cck  of Eq. (9.4) for unconfined concrete 

only, i.e., only when 033 == σk  and when ( )ukk 11 = .  As a result, it can be stated that 

for confined concrete in a triaxial compression state of stress, for which 

rf==> 321 σσσ , the confinement effectiveness cck  of Eq. (9.35) can be considered to 

be the lower bound value of cck  and cck  of Eq. (9.4) its upper bound value. 

Solving for the MMC concrete material parameters fγ  and fβ  of Eq. (9.20) in Eq. 

(9.34) yields: 

 

 
1

1
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The above material parameters also apply to plain concrete in a triaxial compression 

state of stress for which 321 σσσ >> , which corresponds to the case of rectangular, 

oval, and elliptical FCC sections which have an aspect ratio shα  of Eq. (4.2) greater than 

unity, i.e., 0.1>shα . 

Solving for the confinement effectiveness coefficient 1k  of biaxially confined 

concrete in Eqs. (9.32) and (9.34) yields: 
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The above solution applies to cylindrical concrete section for which 

rf==> 321 σσσ . In addition, the above solution was determined using the fact for 

unconfined and confined concrete in compression 1k  is bounded by ( ) ( )ub kkk 111 ≤≤ . 

The experimental data points shown in Figures 9.1-9.6 are the experimental 

confinement effectiveness coefficients 1k  calculated using Eq. (9.39).  The experimental 

values of the angle of internal friction of the confined concrete core cφ  of Eq. (9.23), 

determined using the experimental 1k  data points previously mentioned, are plotted in 

Figures 9.16-9.18 versus the transverse confining stress 3σ=rf , and in Figures 9.19-

9.21 versus the confinement stress ratio 3kkr = . 

 

Angle of Internal Friction of Plain Concrete 

The nonlinearly decreasing relationship between the angle of internal friction of the 

confined concrete core cφ  and the minor principal confining stress 3σ  or stress ratio 3k , 

as shown in Figures 9.16-9.21, is a result of remolding of the concrete’s internal 

structure, that results from axial strain-induced damage (i.e., dilation).  At very large axial 

compressive stresses and strains, the concrete’s internal structure becomes damaged as a 

result of internal crack growth, aggregate crushing and shifting, void compaction and 

nucleation, and decohesion (loss of adhesion provided by the binding cement paste) as it 

essentially degrades to that of its constituent granular materials. 
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Figure 9.16  Experimental and analytical internal friction angle versus confining stress 

of biaxially confined low-strength concrete cylinders performed by Imran 

(1994).  
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Figure 9.17  Experimental and analytical internal friction angle versus confining stress 

of biaxially confined medium-strength concrete cylinders performed by 

Imran (1994). 
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Figure 9.18  Experimental and analytical internal friction angle versus confining stress 

of biaxially confined high-strength concrete cylinders performed by Imran 

(1994). 
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Figure 9.19  Experimental and analytical internal friction angle versus confinement 

stress ratio of biaxially confined low-strength concrete cylinders 

performed by Imran (1994). 
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Figure 9.20  Experimental and analytical internal friction angle versus confinement 

stress ratio of biaxially confined medium-strength concrete cylinders 

performed by Imran (1994). 
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Figure 9.21  Experimental and analytical internal friction angle versus confinement 

stress ratio of biaxially confined high-strength concrete cylinders 

performed by Imran (1994). 
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At high levels of axial and transverse deformations, the mechanical response of the 

remolded confined and unconfined concrete core depends on the resistance provided by a 

combination of aggregate sliding, shifting, rolling, and crushing that develops during the 

axial and transverse deformation of the concrete core.  

The nonlinearity of the Mohr-Coulomb shear strength cτ , as shown in Figures 9.13 

and 9.15, is due to de-cohesion of the concrete’s rock-like structure as axial strain-

induced damage accumulates, as is evident in the experimental confinement effectiveness 

coefficient 1k  and the angle of internal friction cφ  plots of Figures  9.1-9.6 and 9.16-

9.21, respectively. 

Both the shear strength of the concrete core cτ  of Eq. (9.12) and the normal stress 

nσ  of Eq. (9.13) are a function of the angle of inclination of the failure shear plane cθ  of 

Eq. (9. 14) and the angle of internal friction cφ  of the concrete core that has a nonlinear 

relationship with respect to the applied stresses, as shown in Figures 9.16-9.21. 

In order to properly capture the compressive behavior of confined concrete, this 

nonlinear relationship is taken into consideration in the extended Mohr-Coulomb (EMC) 

failure criterion for concrete, presented herein, which combines the modified Mohr-

Coulomb (MMC) failure criterion previously discussed with a degrading friction angle 

model presented in what follows. 

 

Degrading Friction Angle Model for Confined Concrete 

A nonlinear variation of the angle of internal friction cφ  versus the applied transverse 

confining stress rf  was observed of Figures 9.16-9.18 or versus the transverse stress 

ratio rk  in Figures 9.19-9.21. From these figures it can be observed that the angle of 
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internal friction cφ  of the concrete core is a nonlinear stress-path dependent material 

property that depends on the magnitude of the applied stresses ( nσ , 1σ  or 3σ ), where 

the angle of internal friction cφ  is separated into two distinct components: (1) a constant 

basic angle of internal friction bφ  considered a material constant, and (2) a stress-

dependent angle of dilatancy dilφ  (Maksimovic 1989,1996) as follows: 

 

 dilbc φφφ +=
 

(9.40) 

 

The basic angle of internal friction of the concrete material bφ  of Eq. (9.40) is 

considered to be a stress-path-independent material constant (i.e., bφ  is independent of 

1σ , 3σ , and nσ ).  At very high confining stresses, the behavior of the confined concrete 

core is mostly governed by friction and aggregate particle breakage occurring at existing 

micro- and macro-crack interfaces.  The basic angle of internal friction of the concrete 

core bφ  represents the residual angle of shearing resistance of the rock-like concrete 

material, which is mobilized at very high normal stresses at which dilatancy effects are 

suppressed (Maksimovic 1989,1996). 

For uniaxially and biaxially confined concrete, the confinement effectiveness 

coefficient 1k  of the confined concrete falls within the range of ( ) ( )ub kkk 111 ≤≤ .  

Using the definition of the angle of internal friction cφ  of Eq. (9.23), the range of the 

angle of internal friction cφ  of Eq. (9.40) indicates that for unconfined and confined 

concrete cφ  should be in the range of ucb φφφ ≤≤ .  This range for the angle of internal 

friction cφ  applies to a minor principal compressive stress 3σ  in the range of 
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∞≤≤ 30 σ  and a resultant major principal compressive stress 1σ  in the range of 

∞≤≤ 1σcof .  For this range of stresses, the lower bound value of bc φφ =  in Eqs. 

(9.23) and (9.40) is the basic angle of friction bφ  of the concrete core, whereas the upper 

bound value is uc φφ = , where uφ  is the uniaxial angle of internal friction of Eq. (9.28). 

At very low levels of confinement, as 03 →= rfσ , the angle of dilatancy dilφ  of 

Eq. (9.40) approaches the value of ( )budil φφφ −=  (i.e., as 03 →σ , ( )budil φφφ −→ , 

and uc φφ → ).  At very high levels of confinement, i.e., as ∞→3σ , the angle of 

dilatancy dilφ  diminishes and approaches the value of 0=dilφ , i.e., as ∞→3σ , 

0→dilφ , and bc φφ → . 

The angle of dilatancy dilφ  of Eq. (9.40) represents the degradation of the concrete’s 

internal structure that occurs as a result of de-cohesion of the rock-like structure of the 

concrete material as axial strain-induced damage accumulates.  This increase in internal 

damage contributes to an apparent degradation of the angle of internal friction cφ  of the 

concrete. 

At low and moderate levels of active confinement, 40.03 ≤= kkr , the angle of 

dilatancy dilφ  represents the effects of dilatancy of the confined concrete as damage in 

the internal structure of the partially restrained concrete core is dominated by a 

combination of internal micro-crack growth at the paste-aggregate interface, macro-crack 

growth through the aggregate, fine and coarse aggregate crushing and rolling, and de-

cohesion provided by the cement paste (Imran 1994, Sfer et al. 2002).  At high levels of 

active confinement, 40.03 >= kkr , the angle of dilatancy dilφ  represents the effects of 
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alterations in the microstructure of the highly restrained concrete core that are dominated 

by collapse and compaction of the pore structure of the concrete (Imran 1994, Imran and 

Pantazopoulou 1996, Sfer et al. 2002). 

For passively confined concrete, the angle of dilatancy dilφ  represents the effects of 

alterations to the internal structure (de-cohesion and internal cracking) of the concrete 

core due to axial strain-induced damage, which depends on the lateral kinematic restraint 

provided by the confining element, be it closely spaced transverse steel reinforcement or 

steel jacket (Pantazopoulou 1995) or an FRP jacket (Moran and Pantelides 2002a,b, Yan 

and Pantelides 2006, Saenz and Pantelides 2007). 

The curvature of the failure envelope of confined concrete can be attributed to 

remolding of the concrete’s internal structure as the axial strain-induced damage (de-

cohesion and internal cracking) progresses.  As a result of this process, the angle of 

internal friction of the concrete core cφ  of Eq. (9.40) is assumed to be a nonlinear 

function of the applied stress ( nσ , 1σ , or 3σ ), in which dilφ  of Eq. (9.40) is assumed to 

be governed by the following hyperbolic-type degrading friction angle model, as shown 

in Figure 9.22, similar to the Maksimovic (1989,1996) hyperbolic model, where dilφ  is 

given by: 
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Figure 9.22 Geometry of generalized degrading friction angle model for concrete. 
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where iφ  is the reference initial angle of friction at the instant when the applied stress kσ  

is equal to the initial reference stress ( )ikσ  (i.e., ( )ikk σσ = ); ( )
ibmkσ  is the median-

angle stress corresponding to the median-angle of internal friction ( )ibmφ  of Eq. (9.42). 

The above dilatancy angle model applies to concrete subjected to an applied stress 

kσ  in the range of ( ) ∞≤≤ kik σσ , as shown in Figure 9.22. In what follows it is 

demonstrated that the proposed degrading frictional model of Eqs. (9.40)-(9.42) reduces 

to the normal stress-dependent Maksimovic (1989, 1996) hyperbolic degrading friction 

angle model previously mentioned. 

 

Normal Stress-Dependent Dilatancy Angle Model 

The degrading dilatancy angle model of Eqs. (9.41) and (9.42) in combination with 

Eq. (9.40) yield the Maksimovic (1989, 1996) model only when the reference initial 

angle of friction iφ  occurs at the instant of zero normal stress, i.e., when 

( ) ( ) 0== inik σσ , i.e., cohesionless soils.  The dilatancy angle model of Eqs. (9.41) and 

(9.42), applies to cohensionless frictional materials such as noncemented sands, silts, or 

gravels, and to frictional cohesive materials such as concrete since the concrete exhibits a 

uniaxial tensile capacity 0>tof , and it exhibits a positive apparent uniaxial cohesion 

intercept, 0>uc , as indicated in Eq. (9.25). 

For concrete in a tension-compression, uniaxial compression, and triaxial 

compression state of stress, the resultant normal stress nσ  in the concrete core is in the 

range of ∞≤≤ nσ0 , as shown in Figure 9.23.  For this range of normal stresses the 

angle of dilatancy of the concrete material dilφ  of Eq. (9.41) can be rewritten as: 
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Figure 9.23  Geometry of normal stress-dependent degrading friction angle model for 

concrete. 
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where ( )
obmnσ  is the median-angle normal stress corresponding to the median-angle of 

internal friction ( )obmφ  for a normal stress nσ  in the range of ∞≤≤ nσ0 ; oφ  is the 

initial angle of internal friction at the instant of zero normal stress, i.e., when 0=nσ . 

The normal stress-dependent degrading angle model of Eqs. (9.43) and (9.44), in 

combination with Eq. (9.40), is similar to the model originally proposed by Maksimovic 

(1989,1996) for cohesionless soils and rock discontinuities, i.e., for granular materials 

that exhibit little or no tensile capacity (i.e., 0≅tof  and for which 0≅uc ). 

The median-angle normal stress ( )
obmnσ  of Eq. (9.43) can be found in terms of the 

normal stress at failure of the unconfined concrete ( )unσ  of Eq. (9.26) by setting 

uc φφ =  and ( )unn σσ =  in Eq. (9.43), using Eq. (9.40), and solving for the median-

angle normal stress ( )
obmnσ , which yields: 
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The median-angle normal stress ( )
obmnσ  of Eqs. (9.43) and (9.45) is considered to 

be a function of the unconfined cohesion uc  of Eq. (9.25) as follows: 
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where σk  is a normal stress parameter, which is determined as follows.  Solving for the 

unconfined cohesion uc  in both Eqs. (9.32) and (9.46) and recognizing that for 

unconfined concrete cof=1σ , 03 =σ  and ( ) tu kkk 111 == , and solving for the 

median-angle normal stress ( )
obmnσ  of Eqs. (9.43) and (9.46) yield: 
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Equating the median-angle normal stress ( )
obmnσ  of Eqs. (9.45) and (9.47), using 

( )unσ  of Eq. (9.26), and solving for the initial angle of friction oφ  at the instant of zero 

normal stress yield: 
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t
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(9.48) 

 

Substituting the median-angle normal stress ( )
obmnσ  of Eq. (9.47) and the initial 

angle of friction oφ  of Eq. (9.48) into the angle of internal friction cφ  of Eq. (9.43) 

yields: 

 

 ( )budilbc φφγφφ −+=
 

(9.49) 
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where dilγ  is a dilatancy parameter and nk  is the normalized normal stress. 

The normal stress parameter σk  of Eqs. (9.46)-(9.48) and (9.50) can be found based 

on the uniaxial tensile strength of the concrete material tof  as follows.  For concrete in a 

uniaxial tension state of stress 01 =σ , tof−=3σ , °== 90tc φφ , and 

°==+= 90245 tcc θφθ o , as shown in Figure 9.15.  Substituting these values into the 

relationships for the normal stress on the failure shear plane nσ  of Eq. (9.13) and the 

failure shear stress cτ  of Eq. (9.12) yields ( ) totnn f−== σσ  and 0== tc ττ , 

respectively. 

Substituting ( ) totnn f−== σσ  into the relationship for the angle of internal friction 

cφ  of Eq. (9.43), setting °== 90tc φφ , and solving for the initial angle of internal 

friction oφ  yield: 
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where °= 90tφ  is the tensile angle of separation of the concrete material. 
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Substituting the mean angle normal stress ( )
obmnσ  of Eq. (9.47) into Eq. (9.52), 

equating Eqs. (9.52) and (9.48), and solving for the mean angle normal stress parameter 

σk  yield: 
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The above mean angle normal stress parameter σk  can be substituted into Eq. (9.48) 

to find the initial angle of friction oφ  at the instant of zero normal stress, when 0=nσ .  

In addition, oφ  can also be found by substituting ( )
obmnσ  of Eq. (9.45) and tof  of Eq. 

(9.30) into Eq. (9.52).  In the development of the ultimate failure envelope of the concrete 

material of Eqs. (9.40)-(9.53), the basic angle of friction bφ  is the only unknown term in 

the extended Mohr-Coulomb (EMC) criterion developed herein, which combines the 

modified Mohr-Coulomb (MMC) criterion previously discussed with the degrading 

friction angle models presented herein.  This basic friction angle bφ  is determined in 

what follows. 

At very large confining stress and at high levels of axial and transverse deformations, 

the confined concrete material is expected to behave similar to sandy and gravelly soils 

subjected to very large confining stresses.  Maksimovic (1996) has shown that for coarse 

granular soils like limestone sand °≅ 36bφ ; °≤≤° 347.32 bφ  for crushed Basalt (an 

aggregate used in normal-weight concrete Attard and Setunge 1996); °≈ 7.32bφ  for 

gravel; °≈ 4.36bφ  for sand and gravelly soil; and °≈ 8.37bφ  for very dense sand.  This 

would indicate that the type of large aggregate used (be it crushed stone or gravel), the 



 246 

aggregate size and gradation, and gravel-to-sand ratio can have a significant influence on 

the basic angle of internal friction bφ  of normal-weight dry concrete; based on the 

previous values, this basic angle of internal friction bφ  is expected to range between 

°≤≤° 3733 bφ , with an average value of ( ) °≅ 35avgbφ . 

Based on the analysis of tests of plain concrete in a triaxial compression state of stress 

performed by Imran (1994), an average value of the basic angle of internal friction of 

( ) °== 35avgbb φφ  is used in Eqs. (9.39)-(9.52) and is plotted as solid curves in Figures 

9.1-9.6 and 9.16-9.21.  Based on these findings and the typical range of the basic angle of 

granular soils given by Maksimovic (1996) previously listed and the stress path 

independency of the concrete core (Imran 1994), it is assumed that the basic angle of 

internal friction bφ  of normal-weight concrete in a triaxial compression state of stress, be 

it active confinement provided by fluid pressure or passive confinement provided by a 

restraining transverse reinforcement, including transverse steel, steel jacket, or FRP 

jackets, can be approximated by °= 35bφ . 

The extended Mohr-Coulomb (EMC) failure envelope as developed in Eqs. (9.10)-

(9.39) in combination with the hyperbolic degrading friction model of Eqs (9.40)-(9.53) 

can accurately capture the ultimate failure envelopes of normal-weight concrete in a 

triaxial compression state of stress.  This EMC ultimate strength model developed herein 

satisfies the following conditions: 

1. It passes through the point of uniaxial compression 

2. It passes through the point of uniaxial tension 
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3. It describes the typical nonlinear failure envelope of concrete in a triaxial 

compression state of stress, as shown in Figures 9.1-9.12 

4. It approaches the hydrostatic state at very large confining stresses (i.e., as 

∞→= 32 σσ , 321 σσσ =→ ). 

One of the drawbacks of the Maksimovic (1989, 1996)-type normal stress degrading 

friction angle model of Eqs. (9.43)-(9.53) in combination with Eq. (9.40), is that it 

describes the EMC ultimate strength failure envelope in terms of the normal stress nσ  on 

the failure shear plane.  As shown in Eq. (9.13), this depends on a critical combination of 

the major 1σ  and minor 3σ  principal compressive stresses and the normal stress-

dependent angle of inclination of the failure shear plane cθ  of Eq. (9.19).  As a result, a 

direct solution for the major principal compressive stress 1σ  cannot be obtained in terms 

of the minor principal compressive stress 3σ , thus requiring an indirect iterative or 

incremental solution as follows. 

Solving for the resultant normal stress on the shear plane nσ  and defining the 

normalized normal stress as conn fk σ=  yield a relationship between the normalized 

normal stress and the minor principal stress ratio 3k  of Eq. (9.36) as follows: 
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Solving for the normal stress on the shear plane nσ  in Eq. (9.43), using the median-

angle normal stress ( )
obmnσ  of Eqs. (9.45), the normalized normal stress nk  of Eq. 

(9.54), and equating both relationships yield the following equality which can be solved 
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in terms of the applied minor principal compressive stress 3σ  and the angle of internal 

friction cφ : 
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where ( ) ( ) counun fk σ=  is the normalized unconfined normal stress.  The above 

equality indicates that for a normal stress-dependent degrading friction angle model an 

iterative (indirect) solution for the angle of internal friction cφ  is required.  A 

noniterative (direct) solution for cφ  can be found in terms of the applied minor principal 

compressive stress 3σ  as follows. 

 

Minor Principal Compressive Stress-Dependent Dilatancy 

Angle Model 

In the analysis of concrete sections in a triaxial compression state of stress, it is best 

to describe the ultimate strength envelope of the confined concrete in terms both the 

major 1σ  and minor 3σ  principal compressive stresses in the confined concrete core, as 

shown in Eqs. (9.20) and (9.34)-(9.39); this is preferable to describing the ultimate 

strength in terms of the normal stress nσ , since it leads to a rather simple degrading 

friction angle model, introduced in what follows. 

The variation of the angle of dilatancy as described in dilφ  of Eq. (9.39) throughout 

the compressive loading history of the confined concrete core can be found in terms of 

the minor principal compressive stress 3σ  or compressive stress ratio 3k  of Eq. (9.36).  
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Solving for the applied minor principal compressive stress 3σ  in Eq. (9.33) and using 3k  

of Eq. (9.36) yield a relationship between the normalized normal stress defined as 

conn fk σ=  and the minor principal stress ratio 3k  as follows: 

 

 
( ) ( )

[ ] [ ] ( )c
ctn

co kk

kkk

f
k

θ

θσ
2cos11

cos12

11

13
3

−++

+−
==

 
(9.56) 

 

Both Eqs. (9.54) and (9.56) indicate that at failure of the confined concrete, the 

normal stress nσ  on the failure shear plane and the applied minor principal compressive 

stress 3σ  are proportional to each other, i.e., 3σσ ∝n  or 3kkn ∝  and vice versa.  Thus, 

the hyperbolic-type degrading friction model of Eqs. (9.41) and (9.42) can also be written 

in terms of the minor principal compressive stress 3σ  or stress ratio 3k , which  is 

accomplished in what follows. 

Substituting the minor stress ratio terms 3k , ( )ik3 , and ( )
ibmk3  in place of the 

applied stress terms kσ , ( )ikσ  and ( )
ibmkσ , respectively, in Eq. (9.41), yields a 

relationship for the angle of dilatancy dilφ  in terms the minor compressive stress ratio 3k  

of Eq. (9.36) as follows: 
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where ( )
ibmk3  is the reference median-confinement ratio corresponding to the median-

angle of internal friction ( )ibmφ  of Eq. (9.42), as shown in Figure 9.24. 



 250 

uφ

 

( )tbmφ

 

2
bt φφ −

2
bt φφ −

bφ

( )
tbm3σ

3σ

cφ

F
ri
ct
io
n
 A
n
g
le

Minor Principal Compressive Stress( ) 03 =σ

 

bt φφ −

tφ

tof=3σ

dilbc φφφ +=

 

(a) 

uφ

 

( )
tbmφ

 

2
bt φφ −

2
bt φφ −

bφ

( )
tbmk3

3k

cφ

F
ri
ct
io
n
 A
n
g
le

Minor Principal Compressive Stress Ratio03 =k

 

bt φφ −

tφ

tkk −=3

dilbc φφφ +=

 

(b) 

 

Figure 9.24 Plot of angle of internal friction versus (a) minor principal compressive 

stress and (b) minor principal compressive stress ratio, including 

geometry. 
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For unconfined concrete in uniaxial tension and compression, and confined concrete 

in a triaxial compression state of stress, the minor principal compressive stress 3σ  is in 

the range of ∞≤≤ 3σtof  or ∞≤≤− 3kkt , as shown in Figure 9.24.  Thus setting the 

reference minor principal compressive stress ratio ( ) ti kk −=3  and setting the reference 

initial angle of friction iφ  as ti φφ =  and the reference median-confinement ratio ( )
ibmk3  

as ( ) ( )
tbmibm kk 33 =  in Eq. (9.57) yield: 
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where ( )
tbmk3  is the median angle minor principal stress ratio at the median angle of 

internal friction ( )tbmφ , as shown in Figure 9.24.  Eqs. (9.58)-(9.60) apply when 3σ  is in 

the range of ∞≤≤ 3σtof  or ∞≤≤− 3kkt . 

For low-to-medium-strength normal-weight concrete with cof  ranging between 

55MPa17 ≤≤ cof , with a tensile strength ratio tk , determined using tof  of Eq. (9.30) 

and tk  of Eq. (9.9), in the range of 124.0084.0 ≤≤ tk , with a uniaxial angle of internal 

friction uφ  in the range of °≤≤° 7.572.51 uφ , the median angle minor principal stress 

ratio ratio ( )
tbmk3 of Eq. (9.60) is in the range of ( ) 056.0048.0 3 ≤≤

tbmk . 
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The combination of the modified Mohr-Coulomb (MMC) criterion introduced in Eqs. 

(9.12)-(9.39) and the minor principal compressive stress-dependent degrading friction 

angle model cφ  of Eqs. (9.40) and Eqs. (9.56)-(9.61), yields what is referred to herein as 

the extended Mohr-Coulomb (EMC) criterion for actively and passively confined, FRP-

confined concrete in particular. 

 

Excess Pore Water Pressure Effects 

For the case of normal-weight FRP-confined concrete (FCC) cylinders, an average 

value of ( ) 10.41 ≈avgk  (i.e., ( ) °= 4.37avgcφ ) was found to apply to bonded FRP-

confined concrete (BFCC) cylindrical sections (Nanni and Bradford 1995, Wu and Xiao 

2000, Moran and Pantelides 2002a) at high levels of confinement, i.e., when 

0.14.0 3 ≤≤ k .  From the analysis of concrete-filled FRP tube (CFFT) cylinders tests 

performed by Mirmiran (1997) and Saafi et al. (1999), an average value of 

( ) 33.21 ≈avgk  was found (i.e., ( ) °= 5.23avgcφ ). 

The lower values of ( )avgk1  or ( )avgcφ  of CFFT sections in comparison to that of 

BFCC sections can be attributed to the presence of excess pore water in the concrete core.  

For BFCC sections, the FRP-wrapped concrete is typically allowed to dry to its natural 

moisture content, whereas for CFFT sections the cast-in-place FRP jacket serves as a 

barrier against evaporation of the nonhydrated water (i.e., bleed water) at the perimeter 

surface of the concrete member.  As a result, in CFFT sections, the remaining bleed water 

remains in suspension in the concrete mix and may become trapped within the voids of 

the concrete’s structure.  The presence of pore water has a significant weakening 
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influence on the strength of the concrete material, which increases as the confining stress 

increases (Imran 1994). 

For FCC sections, this weakening influence is a result of an increase in the pore water 

pressure which acts against the concrete’s internal structure and weakens the 

effectiveness of the concrete core in sustaining the applied load.  An increase in the pore 

water pressure results from an increase in the passive confining stresses provided by the 

restraining elastic FRP jacket as dilation of the confined concrete core progresses; this 

weakening effect increases as the passive confining stress provided by the retraining FRP 

jacket increases. 

The presence of excess pore water can be accounted for in the analysis of FCC in 

Eqs. (9.39) and Eqs. (9.42)-(9.58), with the use of an effective confinement effectiveness 

coefficient ( )PWk1 , given as: 

 

 ( ) 11 )1( knnk PWPWPW −+=

 

(9.61) 

 

where PWn  is the pore water pressure parameter of the granular concrete core where 

0.10 ≤≤ PWn , which is somewhat analogous  to the degree of saturation of the concrete 

material.  The lower value of 0=PWn  corresponds to dry concrete and 0.1=PWn  to 

saturated concrete, and for 0.10 << PWn  corresponds to partially saturated concrete. 

The pore water pressure parameter of the concrete material can be found based on the 

confinement effectiveness coefficient of the confined concrete core by solving for PWn  

in Eq. (9.61), which yields: 
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where ( )PW3σ is the effective confining stress including the effects of excess pore water 

pressure and ( )PWk1  is the effective confinement effectiveness including pore water 

pressure effects. 

The average pore water pressure parameter of FRP-confined concrete sections can be 

determined from the average effective confinement coefficients of BFCC and CFTT 

sections by evaluating the angle of internal friction of dry normal-weight concrete with 

cof  ranging between MPa55MPa17 ≤≤ cof , tk  of Eq. (9.9) ranging between 

124.0084.0 ≤≤ tk , and uφ  of Eq. (9.28) ranging between °≤≤° 7.571.51 uφ . 

Using these values of tk  and uφ , a basic angle of friction of dry concrete of o
33=bφ  

and a unity minor principal stress ratio, i.e., 0.13 =k , in the degrading friction angle 

model of Eqs. (9.58)-(9.60), yield a friction angle cφ  in the range of °° ≤≤ 6.388.37 cφ  

and a confinement effectiveness coefficient 1k  in the range of 32.417.4 1 ≤≤ k . 

Substituting these values of 1k  and the average confinement effectiveness of BFCC 

sections of ( ) ( ) 10.411 ≈= avgPW kk  into Eq. (9.62) yields a pore water pressure 

parameter of the FCC section PWn  in the range of %6.6%2.2 ≤≤ PWn .  Substituting 

( ) ( ) 33.211 ≈= avgPW kk  into Eq. (9.63) and the aforementioned range of 1k  values 

yields PWn  in the range of %9.59%1.58 ≤≤ PWn  for CFFT sections. 
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The lower value of pore water pressure parameter PWn  of the surface applied or 

bonded FRP jackets is because prior to the application of the FRP jacket, the concrete is 

typically allowed to dry to its natural moisture content, as previously mentioned.  The 

higher value of PWn  for CFFT sections is because the FRP jacket serves as a barrier 

against evaporation of the nonhydrated water, which increases the degree of saturation of 

the concrete material and, hence, results in increasing the presence of excess pore water 

within the voids of the concrete, which has a significantly detrimental effect in decreasing 

the apparent strength of an FCC section due to the presence of excess pore water 

pressure. 

The pore water pressure parameter PWn  of the confined concrete section depends on 

the water-cement ratio and can range between 20.001.0 ≤< PWn  for dry to partially 

saturated concrete.  When concrete is not allowed to dry to its natural water content, such 

as submerged concrete, wet or fog-cured concrete, or concrete exposed to a high 

humidity environment, the pore water pressure parameter PWn  is in the range of 

0.120.0 << PWn .  This indicates that under a triaxial compression state of stress, FCC 

sections behave more like dry and low partially saturated concrete and CFFT sections 

more like highly saturated concrete. 

In the analysis of BFCC sections, an average value of %0.3=en  is recommended for 

surface applied or bonded FRP-jacketed concrete in which the natural moisture content of 

is low.  For cast in place FRP-jacketed (CFFT) sections, an average value of %0.59=en  

is recommended. 
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The effective basic confinement effectiveness ( )bek1  can be found by substituting 

( ) ( ) ( )bePW kkk 111 ==  and beb φφ =  into Eqs. (9.23) and (9.61), which yield: 
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(9.64) 

 

where beφ  is the effective basic angle of internal friction, including pore water pressure 

effects.  The effects of excess pore water pressure on the compressive behavior of the 

confined concrete core must be considered; this can be accomplished by substituting 

beb φφ =  of Eq. (9.64) in the degrading friction angle model introduced in Eqs. (9.40) 

through (9.60). 

In Figure 9.25 the variation of the angle of internal friction of a circular concrete 

section having a compressive strength of 40 MPa is plotted versus the minor principal 

compressive stress ratio 3k  of Eq. (9.36) for 5.13 ≤≤− kkt  and pore water pressure 

parameters of % 0.5=PWn , % 0.30=PWn , and % 0.60=PWn . 

The detrimental effects of excess pore water pressure is more evident on the increase 

in compressive strength of confined concrete, as is shown in the plot of the confinement 

effectiveness cck  of Eq. (9.35) versus the transverse confinement stress ratio, as shown 

in Figure 9.26. 

From these figures it can be observed that the value of the pore water parameter has 

no significant effect on the friction angle cφ  and the confinement effectiveness 

coefficient at low levels of transverse confinement. 
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Figure 9.25  Plot of the (a) friction angle and (b) confinement effectiveness coefficient 

versus minor principal compressive stress ratio of concrete with varying 

pore water pressure parameters. 
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Figure 9.26  Plot of confinement effectiveness coefficient versus minor principal 

compressive stress ratio of concrete with varying pore water pressure 

parameters. 
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At high levels of transverse confinement, an increase in the pore water parameter 

(degree of saturation) has a significant detrimental effect on the friction angle cφ  and 

confinement effectiveness coefficient 1k , and the confinement effectiveness cck  as the 

confining pressure becomes large. 

 

Triaxial Extended Mohr-Coulomb Failure Criterion for Concrete 

The failure surface of a Mohr-Coulomb material in principal stress space is plotted in 

Figure 9.27; from this figure it can be observed that the Mohr-Coulomb criterion models 

the failure envelope of concrete as a conical failure surface with an irregular hexagonal 

base section with sharp corners, which is not supported by experimental evidence.  The 

typical failure surface of concrete in principal stress space is a cone with a noncircular 

base section, as is plotted in Figure 9.28. 

In this research a mathematical model is developed in which the minor principal 

compressive stress-dependent two-parameter extended Mohr-Coulomb criterion (EMC) 

for concrete is incorporated into a triaxial failure surface for concrete with a noncircular 

base section, such as that shown in Figure 9.28, rather than an irregular hexagon base 

section as shown in Figure 9.27. 

The proposed two-parameter EMC model, which is an extension of the modified 

Mohr-Coulomb (MMC) criterion of Eq. (9.20) with a degrading friction angle, is 

dependent upon the major 1σ  and minor 3σ  principal compressive stresses and ignores 

the effects of the intermediate compressive principal stress 2σ  on the strength of the 

confined concrete in a nonuniform triaxial compression state of stress. 
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Figure 9.27  Plot of typical Mohr-Coulomb-type triaxial failure surface of concrete in 

principal stress space. 
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Figure 9.28  Plot of typical triaxial failure surface of concrete in principal stress space. 
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This is the main weakness of a Mohr-Coulomb-base criterion, including the MMC 

and EMC yield criteria.  This obstacle can be easily overcome by transforming the Mohr-

Coulomb-type principal stress-criterion into a yield surface or yield function with a 

noncircular base section as follows: 

 

 ( ) 0,,
'
3

'
2

'
1 =σσσf

 

(9.65) 

 

where '
1σ , '

2σ , and '
3σ  are the principal stresses, for which tensile stresses are 

considered positive.  The principal compressive stresses 1σ , 2σ , and 3σ , and the 

principal stresses '
1σ , '

2σ , and '
3σ  depend only on the load being applied and are not 

influenced by the choice of coordinate axis ( )zyx ,,  or any particular orthogonal 

coordinate system, and as a result they are considered as stress invariants. 

The principal stress yield surface of Eq. (9.65) can be written in terms of the three 

basic invariants of the stress tensor 321  ,I , II  and the second 2J  and third 3J  deviatoric 

stress invariants as follows: 

 

 ( ) 0,, 321 =JJIf

 

(9.66) 

 

where the first 1I , second 2I , and third 3I  basic invariants of the stress tensor also have 

the same magnitudes for all choices of coordinate axis ( )zyx ,, .  These invariants are 

given in terms of the principal stresses '
1σ , '

2σ , and '
3σ  as follows: 
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The second 2J  and third 3J  deviatoric stress invariants can also be given in terms of 

the principal stresses '
1σ , '

2σ , and '
3σ  and the three basic invariants of the stress tensor 

321  ,I , II  as follows: 
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The principal stress invariants '
1σ , '

2σ , and '
3σ  can also be transformed into the 

Haigh-Westergaard coordinates as follows: 
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(9.72) 

 

where ξ  is the hydrostatic stress invariant which represents the distance of the 

hydrostatic projection from the origin, ρ  is the deviatoric stress invariant that represents 

the polar radius or orthogonal distance of the stress point from the hydrostatic axis, and θ  
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is the deviatoric polar radius, which is often referred to as the angle of similarity or the 

polar angle. 

This polar angle describes the direction of the deviatoric stress invariant ρ  from the 

projection of the principal axis onto the deviatoric plane, as is shown in Figure 9.29.  

0=θ  corresponds to triaxial extension, biaxial compression, or uniaxial tension stress 

states, and 32πθ =  corresponds to uniaxial/triaxial compression and biaxial tension 

stress states. 

These Haigh-Westergaard coordinates are given in terms of the first basic stress 

invariant 1I  and the second 2J  and third 3J  deviatoric stress invariants as follows: 

 

 
3

1I=ξ

 

(9.73) 

 22J=ρ

 

(9.74) 

 
( ) 











= −

23
2

31

2

 33
cos

3

1

J

Jθ

 

(9.75) 

 

The principal stress yield surface of Eq. (9.65) can be written in terms of the above 

Haigh-Westergaard coordinates as follows: 

 

 ( ) 0,, =θρξf

 

(9.76) 

 

The principal stress invariants '
1σ , '

2σ , and '
3σ  can be written in terms of the Haigh-

Westergaard coordinates using the transformation relationship of Eq. (9.72) as follows: 
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Figure 9.29 Plot of (a) Haigh-Westergaard coordinate system, (b) deviatoric plane or 

section. 
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The yield function of a Mohr-Coulomb-type criterion, including the MMC and EMC 

criteria introduced herein, can be expressed in terms of the major '
1σ  and minor '

3σ  

principal stresses using Eq. (9.65) as follows: 
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The previous yield function can also be expressed using Eq. (9.25) as: 
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Substituting the Haigh-Westergaard transformation relationships for '
1σ  of Eq. (9.77) 

and '
3σ  of Eq. (9.79) into the above yield function yields: 
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(9.82) 

 

The above Haigh-Westergaard representation of a Mohr-Coulomb-type criterion also 

yields a deviatoric section with an irregular hexagon shape as shown in Figure 9.30. 
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Figure 9.30  Plot of typical deviatoric section of a Mohr-Coulomb-type yield criterion. 
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The Mohr-Coulomb-type criterion of Eq. (9.82) can be transformed into a yield 

surface with a smooth noncircular deviatoric section (Menetrey 1994), modified herein 

using uc  of Eq. (9.25), that matches the Mohr-Coulomb deviatoric section only at the 

compressive cρ  and tensile tρ  meridians as shown in Figure 9.31 as follows: 
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The term ( )er ,θ  of Eq. (9.83) is a radial function that describes the shape of the 

deviatoric trace and the radial distance from the hydrostat.  The radial function ( )er ,θ  

utilized herein is that introduced by Papanikolopoulos and Papadrakakis (2006), which 

transforms the circular trace of the deviatoric polar radius ( )θρ  into a triple symmetric 

smooth deviatoric trace of the yield function. 

This radial function is defined in the sextant 30 πθ ≤≤  and extends to all polar 

directions πθ 20 ≤≤  due to symmetry and is given by: 

 

 ( )
( )( )[ ]1)1cos14cos

1cos
,

+−−

−+=
θθ

θθ
e

e
er

 

(9.84) 

 

where e  defines the eccentricity or out-of-roundness of the deviatoric trace where 

0.150.0 ≤≤ e . 

For a pressure sensitive material such as concrete, the eccentricity e  introduced in 

Eqs. (9.83) and 9.84) is defined as the ratio between the polar radius of the tensile tρ  and 

the compressive cρ  meridian as follows: 
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Figure 9.31  Plot of deviatoric stress projections of eccentricity: (a) 667.0=e  and (b) 

875.0=e . 
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The radial deviatoric function ( )er ,θ  of Eq. (9.84) cannot exactly trace the irregular 

hexagonal shape of the Mohr-Coulomb-type deviatoric section, but it can exactly match 

the tensile tρ  and compressive cρ  polar radius by using the above definition of 

eccentricity e , as shown in Figure 9.31, which is plotted, or a deviatoric section 

described by ( )erc , θρ , with a unity compression meridian (i.e., 0.1=cρ ), and the 

irregular hexagonal deviatoric section of the Mohr-Coulomb criterion having an 

eccentricity 667.0=e  and 875.0=e . 

In Figures 9.32 and 9.33 the shape of the deviatoric section of a Mohr-Coulomb-type 

criterion of various eccentricities with a unity compression meridian (i.e., 0.1=cρ ) is 

shown.  From these figures it can be observed that at low eccentricities the deviatoric 

section becomes triangular as 50.0→e  (see Figure 9.32), and hexagonal as 0.1→e  

(see Figure 9.33). 

As shown in Figure 9.32(a), when 50.0=e , the shape of the deviatoric section is that 

of the Rankine yield criteria for tensile cracking; when 0.1=e  it describes the hexagonal 

deviatoric section of the Tresca maximum shear stress criterion for materials exhibiting 

insensitivity to hydrostatic pressure, as shown in Figure 9.33(b). 

For eccentricities e  ranging between 0.150.0 << e , the shape of the deviatoric 

section becomes an irregular hexagon that resembles a distorted triangular shape at small 

eccentricities as 50.0→e . 
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Figure 9.32  Plot of deviatoric stress projections of the Mohr-Coulomb yield criterion 

of various eccentricities: (a) 500.0=e , (b) 550.0=e , (c) 667.0=e , and 

(d) 750.0=e . 

 



 272 

 

 
cρ

tρ

ρ

θ

875.0=e

'
1σ−

'
2σ−

'
3σ−

 

(a) 

 
cρ

ct ρρ =

ρ

θ

0.1=e

'
1σ−

'
2σ− '

3σ−

 

(b) 

 

Figure 9.33 Plot of deviatoric stress projections of the Mohr-Coulomb yield criterion 

various eccentricities: (a) 875.0=e  and (b) 0.1=e . 
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As the eccentricity increases, the essentially triangular deviatoric section achieves an 

irregular hexagonal shape that becomes more uniform as 0.1→e , as shown in Figures 

9.32 and 9.33. 

In reference to Figures 9.34 and 9.35, it can be observed that at low eccentricities the 

deviatoric section described by ( )erc , θρ , with a unity compression meridian (i.e., 

0.1=cρ ) becomes triangular as 50.0→e  and circular as 0.1→e .  When 50.0=e , the 

deviatoric trace function ( )er ,θ  of Eq. (9.84) describes the deviatoric section of the 

Rankine yield criteria for tensile cracking. 

When 0.1=e , the radial function ( )er ,θ  of Eq. (9.84) describes the deviatoric 

section of the Huber-Mises yield criteria for materials exhibiting insensitivity to 

hydrostatic pressure, since for 0.1=e , o0=cφ , which corresponds to a frictionless 

material. 

The radial function ( )er ,θ  of Eq. (9.84) cannot exactly trace the irregular hexagon 

shape of the Mohr-Coulomb deviatoric section, but it can be calibrated to exactly match 

the tensile tρ  and compressive cρ  polar radius when the eccentricity is given by 

(Menetrey 1994): 

 

 
( )
( )c
c

c

te
φ
φ

ρ
ρ

sin3

sin3

+
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(9.86) 

 

In reference to Figures 9.34 and 9.35 and Eq. (9.86), it can be observed that for low 

eccentricities the deviatoric section of a Mohr-Coulomb-type criterion becomes triangular 

as 50.0→e , i.e., when °== 90tc φφ , and hexagonal as 0.1→e , i.e., when °= 0cφ . 
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Figure 9.34  Plot of deviatoric stress projections of various eccentricities: (a) 

500.0=e , (b) 550.0=e , (c) 667.0=e , and (d) 750.0=e . 
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Figure 9.35 Plot of deviatoric stress projections of various eccentricities: (a) 875.0=e  

and (b) 0.1=e . 
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When 0.150.0 << e , the deviatoric section of the Mohr-Coulomb-type criterion can 

evolve from a distorted triangular section to an irregular hexagon, since °<<° 900 cφ . 

As shown in Figure 9.36 for the MMC criterion, the deviatoric section of the 

concrete material evolves from a triangular section to an irregular hexagonal section 

having a constant eccentricity e  as a result of the assumption of a constant angle of 

internal friction cφ  of the concrete material, which as previously indicated, is not 

supported by the experimental evidence. 

As shown in Figure 9.37 for the EMC criterion, the deviatoric section of the concrete 

material evolves from a triangular section to an irregular hexagon section having a 

variable eccentricity e  as a result of the hydrostatic stress-dependent angle of internal 

friction cφ  of the concrete material assumption included in the EMC criterion. 

For dry normal-weight concrete the angle of internal friction cφ  is in the range of 

bct φφφ ≤≤ , where tφ  is the angle of separation with a value of o
90=tφ  and bφ  is the 

basic or residual angle of shearing resistance of dry concrete with an average value of 

o
35=bφ . 

This indicates that for dry normal-weight concrete, the eccentricity e  of Eq. (9.86), 

included in the radial function ( )er ,θ  of Eq. (9.84), varies between 68.050.0 ≤≤ e  for 

bct φφφ ≤≤ .  The lower value of 50.0=e  corresponds to tof='1σ , o
90== tc φφ , and 

3tof=ξ , and the upper value 68.0== bee  corresponds to ∞=== 3
'
1 σσξ , 

o
35== bc φφ .  be  is the basic eccentricity of dry normal-weight concrete. 
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Figure 9.36 Plot of deviatoric stress projections of the MMC criterion for concrete. 
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Figure 9.37 Plot of deviatoric stress projections of the EMC criterion for concrete. 
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For normal-weight concrete having an unconfined compressive strength ranging 

between MPa55MPa17 ≤≤ cof , the uniaxial angle of internal friction uφ  of Eq. 

(9.28) is in the range of °≤≤° 7.572.51 uφ .  For this range of compressive strengths the 

eccentricity ue  of the unconfined concrete (i.e., for 3cof−=ξ ) varies between 

59.056.0 ≤≤ ue , which is also obtained by substituting uc φφ =  into e  of Eq. (9.86).  

The lower value of 56.0== uee  corresponds to the higher strength concrete and 

59.0== uee  to low strength concrete. 

At high levels of confinement, the eccentricity of highly confined normal-weight wet 

concrete with a pore water pressure parameter PWn  of 50% is 78.0== beee .  

Essentially dry concrete having a pore water pressure parameter PWn  of 5% has an 

eccentricity of 678.0== beee  at high levels of confinement.  This indicates that for high 

moisture content concrete at high levels of confinement, the deviatoric section of the 

concrete has a more rounded triangular shape when compared to that of dry concrete, as 

is shown in Figure 9.34(c) and (d), respectively.  bee  is the effective eccentricity of 

highly confined wet concrete, which is found by substituting the pore pressure parameter 

PWn  into Eq. (9.63), substituting ( )bek1  of Eq. (9.63) into Eq. (9.64), and substituting 

beφ  of Eq. (9.64) into Eq. (9.86) with bec φφ = . 

The smooth Mohr-Coulomb-type criterion of Eqs. (9.83)-(9.86) can be further 

simplified using the following generalized two-parameter triaxial extended Mohr-

Coulomb (TEMC)-type failure criterion for concrete as follows: 
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 01=−+ ξβργ ff
 

(9.87) 

 

The above two-parameter TEMC criterion simplifies the Mohr-Coulomb failure 

criterion of Eqs. (9.82) and (9.83), as it broadens the applicability of the MMC and EMC 

criterion by including the sensitivity of the concrete’s behavior to the intermediate 

principal stress '
2σ  for concrete subjected to a triaxial compression state of stress, as well 

as the sensitivity of the angle of internal friction cφ  of the EMC model. 

The above material parameters fγ  and fβ  apply to plain concrete in a triaxial 

compression state of stress for which 321 σσσ ≥≥  or '
3

'
2

'
1 σσσ ≥≥  with 3

'
1 σσ −= , 

2
'
2 σσ −= , and 1

'
3 σσ −= .  The case of '

3
'
2

'
1 σσσ >>  corresponds to rectangular, oval, 

and elliptical FCC sections which have an aspect ratio shα  of Eq. (4.2) greater than 

unity, i.e., 0.1>shα ; the case of '
3

'
2

'
1 σσσ >=  corresponds to circular and square FRP-

confined concrete sections which have a unity aspect ratio, i.e., 0.1=shα  

The effects of the intermediate principal stress '
2σ  on the compressive strength of the 

confined concrete are considered herein for rectangular, oval, and elliptical FCC sections, 

which have an aspect ratio shα  of Eq. (4.2) greater than unity (i.e., 0.1>shα  or 

cc BH > ).  For these sections, the effectively confined concrete core is in a nonuniform 

biaxial confinement state of stress, i.e., '
3

'
2

'
1 σσσ >> , as a result of the nonuniform 

effective transverse stiffness of the FRP jacket, since for these sections ( ) ( )
HjeBje EE > ; 

( )
BjeE  was defined in Eq. (4.15) and ( )

HjeE  in Eq. (4.16). 
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The nonuniform transverse stiffness of the FRP jacket affects the transverse and 

diagonal dilation of the FCC section, as measured by the diagonal jε , minor Bε , and 

major Hε  transverse dilation strains in the FCC section, as indicated in Chapters 4-6. 

The material parameters  fγ  and fβ  of the proposed two-parameter TEMC 

criterion of Eq. (9.87) are given in terms of the material parameters fγ  of Eq. (9.37) and 

fβ  of Eq. (9.38) of the generalized two-parameter MMC yield criteria of Eq. (9.20) as 

follows: 
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(9.89) 

 

The deviatoric section of the generalized two-parameter TEMC criterion of Eq. 

(9.87)-(9.89), using the radial function ( )er ,θ  of Eq. (9.84) and the eccentricity e  of Eq. 

(9.86) is plotted in Figure 9.38. 

When the confined concrete core is subjected to uniform biaxial confinement, i.e. 

when '
3

'
2

'
1 σσσ >= , the generalized two-parameter TEMC criterion of Eq. (9.87) 

reduces to the EMC criterion, which combines the generalized two-parameter MMC 

criterion of Eq. (9.20) and the minor principal compressive stress 3σ  dependent 

degrading friction angle model of Eq. (9.40) and Eqs. (9.56)-(9.61).  
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Figure 9.38 Plot of deviatoric stress projections of the TEMC criterion for concrete. 
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The smooth Mohr-Coulomb-type criterion of Eqs. (9.83)-(9.85) is similar to the 

Menetrey (1994) smooth coulomb yield criterion, in which the eccentricity e  of Eq. 

(9.89) is considered a constant throughout its loading history, as shown in Figure 9.39, 

i.e, a constant angle of internal friction which is in disagreement with the experimental 

evidence, as was demonstrated in Figures 9.16-9.21.  Kang and Willam (1999) 

considered that the eccentricity e  of Eq. (9.86) is a hyperbolic empirical function of the 

hydrostatic stress invariant ξ  of Eq. (9.73), i.e., ( )ξfe = , which allows the shape of the 

deviatoric section to expand from triangular to circular shapes with increasing 

compressive hydrostatic pressure. 

In the TEMC criterion for concrete in a triaxial compression state of stress, 

introduced herein, the eccentricity e  of Eq. (9.86) is considered to be a nonlinear 

function of the minor principal compressive stress 3σ .  This is a direct result of the 

hyperbolic relationship introduced in the minor principal compressive stress-dependent 

degrading friction angle model of Eq. (9.40) and Eqs. (9.58)-(9.60).  As a result, the 

proposed TEMC model allows the shape of the deviatoric section to expand from 

triangular to rounded triangular shapes with increasing compressive hydrostatic pressure, 

as shown in Figure 9.38. 

The detrimental effects of excess pore water on the compressive behavior of the 

concrete in a triaxial compression state of stress are included in the TEMC model, as 

shown in Figures 9.25, 9.26, and 9.34(d) as bec φφ → , with beφ  being the effective basic 

angle of internal friction of Eqs. (9.63) and (9.64).  Excess pore water pressure affects the 

roundness of the deviatoric section due to the reduction in the angle of internal friction 

cφ , as demonstrated in Figures 9.25 and 9.26. 
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Figure 9.39 Plot of deviatoric stress projections of the smooth Mohr-Coulomb 

criterion with a constant eccentricity e . 
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Determination of the Intermediate and Minor Compressive 

Stress in FRP-Confined Concrete Sections 

The proposed EMC and TEMC models for plain concrete in a triaxial compression 

state of stress require the determination of the minor 3σ  and intermediate 2σ  principal 

compressive stresses in the biaxially confined concrete section.  Thus far this chapter has 

included a generalized Mohr-Coulomb model for confined plain concrete; its 

applicability is extended herein for the cases of rectangular (RFCC), square (SFCC), oval 

(SFCC), circular (CFCC), and elliptical (EFCC) FRP-confined concrete (FCC) sections 

in compression confined by a continuous linear elastic FRP jacket. 

As was demonstrated in Chapters 4-6, the transverse and diagonal equilibrium of the 

FRP-confined concrete depends on the effective transverse stiffness of the FRP jacket, 

( )
BjeE  of Eq. (4.15), and the shape of the FRP-jacketed section. 

For the aforementioned FCC sections, the minor 3σ  and intermediate 2σ  principal 

compressive stresses can be found from the vertical and horizontal equilibrium of the 

confined concrete core bounded by the major shH , minor shB , and diagonal shD  core 

dimensions of the confined concrete and the diagonal equilibrium of the FCC section as 

shown in Figures 9.40-9.44. 

The main core diagonal shD  can be found using Eqs. (5.11) or (5.16), with the 

diagonal parameter shχ  of Eq. (5.11) summarized in Table 5.1.  The major shH  and 

minor shB  core dimensions can be found using Eq. (5.26), using the angle of inclination 

dθ  of the main diagonal cD  of Eq. (4.1). 
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Figure 9.40. Main FRP-confined concrete core in a rectangular section: (a) typical 

section geometry and (b) diagonal equilibrium. 
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Figure 9.41 Main FRP-confined concrete core in a square section: (a) section geometry 

and (b) diagonal equilibrium. 
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Figure 9.42 Main FRP-confined concrete core in an oval section: (a) section geometry 

and (b) diagonal equilibrium. 
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Figure 9.43 Main FRP-confined concrete core in a circular section: (a) section 

geometry and (b) diagonal equilibrium. 
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Figure 9.44 Main FRP-confined concrete core in an elliptical: (a) section geometry and 

(b) diagonal equilibrium. 
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As shown in these figures, the aspect ratio shα  of rectangular FCC sections is 

0.1>= ccsh BHα , for square and circular sections 0.1=shα , and for elliptical sections 

0.1>shα .  For rectangular sections shH , shB , and shD  can be found using Eqs. (5.24), 

(5.25) and (5.26), respectively; for square FCC sections using Eqs. (5.30), (5.31), and 

5.32, respectively; for oval sections using Eqs. (5.34), (5.35), and (5.26), respectively; 

and for both circular and elliptical FCC sections using Eqs. (5.37), (5.38), and (5.39), 

respectively.  As shown in Figures 9.40-9.44, cH , cB , and cD  are the overall major, 

minor, and diagonal dimensions of the FCC section, respectively.  In addition, dθ  is the 

angle of inclination of the main diagonal cD  as given by Eq. (4.1). 

In these figures ( )
shdf  is the diagonal confining stress perpendicular to the main 

diagonal shD , at a given diagonal jacket strain jε , which can be found using Eqs. (5.7) 

and (5.12).  In addition, ( )
shdτ  is the diagonal shear stress along the main diagonal, 

which can be found using Eqs. (5.8), (5.10), and (5.14). 

The effectively confined concrete core within the elastic FRP jacket concrete, as 

shown in Figure 9.45, has a generalized rectangular shape as shown by the dashed lines 

in Figures 9.40-9.44.  This generalized rectangle shown in Figure 9.45(a) can be 

separated into four triangular wedges having the dimensions shown in Figure 9.45(b). 

From Figure 9.45(b), shH , 2shB , and 2shD  are the vertical, horizontal, and 

diagonal dimensions, respectively, of the triangular wedges on the right- and left-hand 

sides.  For the top and bottom triangular wedges, 2shH , shB , and 2shD  are its 

vertical, horizontal, and diagonal dimensions, respectively.   
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Figure 9.45 Main FRP-confined concrete core: (a) typical geometry and (b) triangular 

wedge geometry. 
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As shown in Figure 9.46, the diagonals in the effectively confined triangular wedges 

are subjected to a diagonal effective confining stress ( ) ( )
shdeshde fkf =  perpendicular 

to the diagonal of the triangular wedges and an effective shear stress ( ) ( )
shdeshde k ττ =  

along the main diagonal 2shD .  ek  is the confinement effectiveness of the FRP jacket, 

as defined in Eq. (4.8) and summarized in Table 4.2.  For rectangular sections ek  is 

given by Eq. (4.29), Eq. (4.32) for square sections, and 0.1=ek  for oval, circular, and 

elliptical sections. 

As shown in Figure 9.46, the vertical faces of the left and right triangular wedges are 

subjected to an effective minor principal stress 33 σσ ee k= , and the horizontal faces of 

the top and bottom wedges are subjected to an effective intermediate principal stress 

22 σσ ee k= . 

The effective intermediate principal stress e2σ  can be found from the vertical 

equilibrium of the top or bottom wedge shown in Figure 9.47, where: 

 

 ( ) ( ) ( ) ( )[ ] 0sincos 2 =−+ shedshdedshdesh BfD σθτθ

 

(9.90) 

 

The effective diagonal shearing stress ( )
shdeτ  of Eqs. (5.10) and (5.14) can be found 

by recognizing that in Eq. (5.26) ( )dshsh DB θcos=  and using ( )
shdef  of Eq. (5.12), the 

diagonal equilibrium coefficient ( )
shdψ  of Eq. (5.13), and the diagonal shear equilibrium 

cioefficient ( )
shτψ  of Eq. (5.15).  Substituting this effective diagonal shearing stress 

( )
shdeτ  into Eq. (9.90) and solving for the effective intermediate principal stress e2σ  

yields: 
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Figure 9.46 Definition of stresses on the triangular wedges of the effectively confined 

concrete core in an FRP-confined concrete section. 
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Figure 9.47 Geometry and stresses on the top triangular wedge of the effectively 

confined concrete core in an FRP-confined concrete section. 
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 ( ) ( ) ( )[ ]bdshdee f θθσ tantan12 +=

 

(9.91) 

 

where bθ  is an FRP jacket shape-dependent angle, which can be found using Eq. (5.27), 

using both the jacket angle aθ  and the diagonal angle dθ .  In addition, both aθ  and bθ  

are summarized in Table 5.2, and are shown in Figures 5.6-5.10 and 9.40-9.44. 

Using ( )
shdef  of Eq. (5.12) and ( )

shdψ  of Eq. (5.13) in the above relationship 

yields: 

 

 ( ) ( ) jshBjee E εψσ 22 =

 

(9.92) 

 ( ) ( ) ( )[ ]bshshdsh θαψψ tan12 +=

 

(9.93) 

 

where ( )sh2ψ  is the intermediate principal stress coefficient.  This coefficient is 

evaluated using ( )
shdψ  of Eq. (5.13) using shχ  of Eq. (5.11) and is summarized in 

Table 5.1.  This intermediate principal stress coefficient is summarized in Table 9.1 for 

the FCC sections considered in this dissertation. 

The diagonal jacket strain in the FRP-confined concrete section jε  of Eq. (9.92) can 

be found in terms of the axial compressive strain cε , using the FRP jacket stiffness-

dependent diagonal dilation model introduced in Chapter 8, using the diagonal Poisson’s 

ratio model of Eq. (8.43). 

Defining the normalized effective intermediate principal stress as coee fK 22 θ= ; 

using e2σ  of Eq. (9.92), ( )
BjeE  of Eq. (4.15), ( )

shjeC  of Eq. (4.17), and jeK  of Eq. 

(4.18) yield: 
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Table 9.1 Summary of the nondimensional intermediate 

principal stress coefficient ( )sh2ψ  of various FRP-

confined concrete sections. 

  

FRP jacket 

shape 

Intermediate Principal Stress  

Coefficient ( )sh2ψ  

Rectangular  

( ) ( )[ ] ( ) ( )
( )[ ]aj

bdash
sh θα

θθθαψ
sin121

coscostan
2

−−

+
=  

Oval 
Same as rectangular with 

sh
j α

α 1
2 =  or 

( ) ( )[ ] ( ) ( )
( ) 1sin

cossintan
2 −+

+
=

ash

bdash
sh θα

θθθαψ  

Square 
( )

( )[ ]2212

2
2

−−
=

j

sh
α

ψ  

Circular ( ) 0.12 =shψ  

(Same as elliptical with o45=dθ  and 0.1=shα ) 

Elliptical ( ) ( ) ( ) ( )[ ]bshbdsh θαθθψ tancoscos22 +=  
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K εγσ
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2 ==

 

(9.94) 

 ( ) ( ) ( ) ( )[ ]bshshd
sh

sh
sh C

θαγ
ψ

γ tan1
2 2

2 +==

 

(9.95) 

 

where ( )sh2γ  is the normalized intermediate stress coefficient, ( )
shdγ  is the diagonal 

equilibrium coefficient of Eq. (5.19), and shC  is the jacket reinforcement ratio coefficient 

of Eq. (4.12), summarized in Table 4.1. 

The effective minor principal stress e3σ  can be found from the horizontal 

equilibrium of the left or right wedge, shown in Figure 9.48, where: 

 

 ( ) ( ) ( ) ( )[ ] 0cossin 3 =−− shedshdedshdesh HfD σθτθ  (9.96) 

 

Recognizing that ( )dshsh DH θsin=  (see Eq. (5.26)), and using ( )
shdef  of Eq. 

(5.12), ( )
shdψ  of Eq. (5.13), ( )

shdeτ  of Eqs. (5.10) and (5.14), ( )
shτψ  of Eq. (5.15), and 

solving for effective minor principal stress e3σ  in the previous relationship yield: 

 

 ( ) ( ) ( )[ ]bdshdee f θθσ tancot13 −=  (9.97) 

 

Using ( )
shdef  of Eq. (5.12) and ( )

shdψ  of Eq. (5.13) in the above relationship 

yields: 

 

 ( ) ( ) jshBjee E εψσ 33 =  (9.98) 

 ( ) ( ) ( ) ( )[ ]bdshdsh θθψψ tancot13 −=
 

(9.99) 
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Figure 9.48 Geometry and stresses on the right triangular wedge of the effectively 

confined concrete core in an FRP-confined concrete section; left wedge 

similar. 
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where ( )
sh3ψ  is the minor principal stress coefficient. 

Defining the normalized effective minor principal stress as coee fK 33 σ=  and using 

e3σ  of Eq. (9.98), ( )
BjeE  of Eq. (4.15), ( )

shjeC  of Eq. (4.17) and jeK  of Eq. (4.18) 

yield: 

 

 ( ) ( ) jshshje
co

e
e K

f
K εγσ

3
3

3 ==  (9.100) 

 ( ) ( ) ( ) ( ) ( )[ ]bdshd
sh

sh
sh C

θθγ
ψ

γ tancot1
2 3

3 −==  (9.101) 

 

where ( )
sh3γ  is the normalized minor principal stress coefficient.. 

Using the intermediate e2σ  and minor e3σ  effective principal stresses of Eqs. (9.92) 

and (9.98), the principal stress ratio ee 32 σσασ =  is given by: 

 

 
( )
( )

( )
( ) 1
3

2

3

2

3

2 −===== shsh
sh

sh

sh

sh

e

e βαα
γ
γ

ψ
ψ

σ
σα εσ  (9.102) 

 

The previous relationship indicates that the principal stress ratio σα  of an FCC 

section is a function of the section aspect ratio shα  of Eq. (4.2) and the transverse strain 

ratio εα  of Eq. (6.19).  Because both shα  and εα  are a function of the geometry of the 

FRP-confined concrete section, it can also be stated that the principal stress ratio σα  is a 

function of the geometry of the confining elastic FRP jacket.  In addition, the principal 

stress ratio σα  is greater than or equal to unity, i.e., 0.1≥σα , since both 0.1≥shα  and 

0.1≥εα .  Furthermore, the effective minor principal stress e3σ  in the FCC section can 
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be found in terms of the effective intermediate principal stress e2σ  using the principal 

stress ratio σα  of Eq. (9.102) or vice versa. 

For the FCC sections considered herein that are confined by an elastic FRP jacket 

having an effective transverse confining stiffness of the FRP jacket ( )
BjeE  of Eq. (4.15) 

that are subjected to an axial compressive stress cε , and resultant diagonal jacket strain 

jε , determined using the FRP jacket stiffness-dependent diagonal dilation model 

introduced in Chapter 8, the minor principal compressive stress e3σ  in the FRP-confined 

concrete section can be determined using Eq. (9.98).  The intermediate principal 

compressive stress e2σ  can then be determined using the principal stress ratio σα  of Eq. 

(9.102). 

In reference to Eq. (9.102) and to FCC sections subjected to equibiaxial confinement, 

i.e., sections with a unity aspect ratio 0.1=shα , such as square and circular FCC 

sections, the major principal compressive stress 1σ  can be found using the extended 

Mohr-Coulomb (EMC) criterion for concrete with the effective minor principal e3σ  of 

Eq. (9.98).  This indicates that for circular (CFCC) and square (SFCC) sections, the EMC 

model can be used to find a direct (noniterative) solution for the major principal 

compressive stress 1σ  in terms of the effective minor principal compressive stress e3σ . 

For concrete sections subjected to nonuniform biaxial confinement, i.e., sections with 

an aspect ratio 0.1>shα  such as rectangular (RFCC), oval (OFCC), and elliptical 

(EFCC) sections [refer to σα  of Eq. (9.102)], an indirect (iterative) solution for the 

major principal compressive stress 1σ  can be found using the TEMC criterion for 
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concrete with the effective minor principal e3σ  of  Eq. (9.98) and the intermediate 

principal stress e2σ  of Eq. (9.92) determined using the principal stress ratio σα  of Eq. 

(9.102). 

Unlike the EMC criterion, the TEMC criterion requires an iterative solution for the 

major principal compressive stress 1σ ; this solution can be easily implemented in a 

spreadsheet-type program or incorporated into a finite element analysis program.   In this 

dissertation a spreadsheet solution is used in the analysis of FCC sections in compression. 



 

 

 

 

 

CHAPTER 10 

 

UNIAXIAL COMPRESSIVE CONSTITUTIVE MODEL 

FOR CONCRETE SECTIONS CONFINED BY 

FIBER-REINFORCED POLYMER 

JACKETS 

 

In this chapter, a series of stress-strain relationships are introduced for modelling the 

uniaxial compressive stress-strain behavior of rectangular, square, circular, and elliptical 

concrete columns confined by fiber-reinforced polymer (FRP) jackets.  The stress-strain 

model introduced herein takes into consideration the effects that the FRP jacket shape 

has: 

1. On the mechanical properties of the confining elastic FRP jacket introduced in 

Chapter 4 

2. On the transverse and diagonal equilibrium of the FRP-confined concrete section, 

introduced in Chapter 5 

3. On the strain compatibility relationships introduced in Chapter 6 

4. On the transverse and diagonal dilation of FRP-confined concrete section, as 

discussed in Chapters 7 and 8 

5. On the passive transverse confining stresses provided by the confining FRP jacket 

as introduced in Chapter 9. 
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Uniaxial Stress-Strain Model for FRP-Confined Concrete 

The compressive stress-strain behavior of the FRP-confined concrete (FCC) sections 

considered herein is modeled by an incremental Popovics (1973)-type fractional secant 

modulus model for FRP-confined concrete, which will be developed in what follows. 

For a given FCC section subjected to a uniform axial compressive strain cε  and 

resultant transverse jacket diagonal strain jε , the average compressive stress cf  in the 

confined concrete core can be determined as follows: 

 

 jc
j

ccc EEf ε
ν

ε













−== 1

 (10.1) 

 

where cE  is the average axial secant modulus of the confined concrete and jν  is the 

diagonal Poisson’s ratio of the FRP-confined concrete section, which is determined using 

the diagonal dilation model introduced in Chapter 8. 

At a given axial compressive strain cε  in the FCC section, the diagonal Poisson’s 

ratio jν  can be found iteratively by solving for the resultant diagonal expansive strain jε  

in the FRP jacket in Eq. (8.43), with the pertinent terms defined in Eqs. (8.20)-(8.45).  A 

noniterative solution for the diagonal Poisson’s ratio jν  can be found using the Poisson’s 

ratio model of Eq. (8.43) by assuming a diagonal expansive strain jε  in the FRP jacket 

and finding the corresponding axial compressive strain cε  in the FCC section using Eq. 

(7.32). 

The average axial secant modulus of the FRP-confined concrete cE  can be found 

based on the applied axial compressive strain cε , using the following incremental 
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Popovics (1973)-type fractional secant modulus model for FRP-confined concrete.  The 

average axial compressive stress-strain behavior of FRP-confined concrete sections 

considered herein, that exhibit either strain-softening or strain-hardening behavior as 

shown in the normalized axial stress versus normalized axial strain Figure 10.1(a) and 

Figure 10.1(b), respectively, is governed by the following fractional model: 
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(10.4) 

 

where ccE  is the secant modulus of the confined concrete at the ultimate compressive 

strength ccf  and strain ccε  of the confined concrete core; ccn  is the curvature parameter 

of the Popovics (1973)-type fractional model of Eq. (10.2). 

In the above model, compressive stresses and strains are considered positive.  In 

addition, coE  is the initial modulus of elasticity of the FRP-confined concrete section of 

Eq. (7.16), determined using the initial Poisson’s ratio ciν  and modulus of elasticity ciE  

of the unconfined concrete core, and the initial dilation rate along the minor dimension of 

the FCC section, ( )oBµ  of Eq. (7.17). 
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(b) 

 

Figure 10.1 Plot of normalized axial stress versus normalized axial strain curves of 

sections exhibiting (a) strain-hardening and (b) strain-softening 

compressive behavior. 
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When the experimental values of unconfined concrete are unknown, the tangent 

modulus of elasticity ciE  and the peak compressive strain coε  of the unconfined concrete 

can be estimated based on the unconfined compressive strength cof  as follows (Collins 

et al. 1993): 

 

 69003320 += coci fE  (10.5) 
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where un  is a curvature parameter of the unconfined concrete core. In the above 

relationships, ciE  and cof  are expressed in MPa units.  When the experimental values of 

unconfined concrete are known ( ciE , cof  and coε ), the curvature parameter of the 

unconfined concrete core un  can be determined as: 
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(10.8) 

 

For the case of equi-biaxially confined concrete sections, square and circular FRP-

confined concrete sections in particular, the ultimate compressive strength of the FRP-

confined section can be found using the two-parameter extended Mohr-Coulomb (EMC) 

model introduced in Chapter 9 and setting 1σ=ccf , where 1σ  is the major principal 
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compressive stress in the confined concrete core, in which compressive stresses and 

strain are considered positive. 

For concrete in a nonuniform biaxial confinement state of stress, which is the case of 

rectangular and elliptical FRP-confined concrete sections, the ultimate compressive 

strength of the FRP-confined section ccf  can be found by utilizing the two-parameter 

triaxial extended Mohr-Coulomb (TEMC) model introduced in Chapter 9, and setting 

1
'
3 σσ =−=ccf , where '

3σ  is the minor principal stress with tension considered positive. 

Recently, Fujikake et al. (2004) recognized that an ultimate strength criterion for 

actively confined concrete, such as the parabolic Leon criterion (Pramono and Willam 

1989) of Eq. (9.8), cannot accurately describe the uniaxial stress-strain behavior of 

concrete under a continuously increasing confining stress, which occurs in FRP-confined 

concrete sections.  As a result, Fujikake et al. (2004) introduced a reduced maximum 

strength criterion after the FRP-confined concrete first reaches the Leon criterion. 

In this dissertation, a different approach is taken by applying the EMC or TEMC 

failure criterion for confined concrete to the case of passively confined concrete, FRP-

confined concrete sections in particular.  It is assumed that the axial stress cf  or 

normalized axial stress cocc ffk =  in FRP-confined concrete asymptotically 

approaches the analytical ultimate strength ccf  or confinement effectiveness 

cocccc ffk =  when the axial strains in the confined concrete reaches the peak 

compressive strain ccε  or ccc εε = , in which ccf  is determined using either the 

proposed EMC (circular and square FCC sections) or the TEMC (rectangular, square, 
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oval, elliptical and circular FCC sections) ultimate strength criterion introduced in 

Chapter 9. 

At the instant when ccc ff =  or ccc kk = , it is assumed that the axial compressive 

strain cε  in the confined concrete reaches the peak compressive strain ccε  or ccc εε = . 

The ultimate compressive strain ccε  occurring at the ultimate compressive strength ccf  

is determined as follows (Mander et al. 1988): 

 

 ( )[ ]11 −+= cccocc kRεε  (10.9) 

 

where R  is the strain ductility ratio of concrete under constant (biaxial or uniaxial) 

confinement, which is defined as: 
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where ckε  is the strain effectiveness of the confined concrete core.  In the definition of 

the strain ductility ratio R  of Eq. (10.10), the terms ( )1−cck  and ( )1−ckε  represent the 

percentage increase in ultimate compressive strength and peak compressive strain in the 

confined concrete, respectively. 

The strain ductility ratio of the confined concrete R  of Eq. (10.10) is considered 

equal to 0.5=R  (Richart et al. 1928), when the section is subjected to uniform 

equibiaxial confinement, which will be referred to as the equi-biaxial confinement 

ductility ratio 0.5=bcR .  This is the case of concrete cylinders actively confined by 
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hydrostatic fluid pressure or passively confined concrete in which the confining element 

provides an essentially uniform equi-biaxial confining stress, typical of circular FRP-

confined concrete (CFCC) sections (i.e., when 0.1→shα  and 0.1=ek ).  When the 

confined concrete core is subjected to a uniform uniaxial confining stress, i.e., 31 σσ ≥  

with 02 ≅σ , the strain ductility ratio of the uniaxially confined concrete 0.3=R   

(Darwin and Pecknold 1977), which will be referred to as the uniaxial confinement 

ductility ratio 0.3=ucR .  Due to the shape of rectangular FRP-confined concrete 

(RFCC) sections with rounded corners, including square FRP-confined concrete (SFCC) 

sections, the FRP-confined concrete core is subjected to nonuniform transverse confining 

stress; as the confining efficiency of the FRP jacket 31→ek  which occurs as the aspect 

ratio shα  increases and/or the jacket corner aspect ratio jα  decreases.  For high aspect 

ratio 2>>shα , RFCC sections with small corner radii for which 0→jα  and 31→ek , 

both the confinement effectiveness cck  and strain effectiveness εk  approach a unity 

value, i.e., 0.1, →εkkcc .  In addition, for high aspect ratio RFCC sections, the minor 

principal stress 03 →eσ  and the principal stress ratio σα  of Eq. (9.102) increase 

nonlinearly as shα  increases.  For high aspect ratio RFCC sections the strain ductility 

ratio of the lightly confined or essentially unconfined concrete approaches a unity value, 

with 0.1→uR , where uR  is the strain ductility ratio of the unconfined concrete.  This 

also occurs in high aspect ratio, 2>>shα  and 0.1=ek , elliptical FRP-confined concrete 

(EFCC).  In reference to the strain ratio εα  of Eq. (6.52), the aspect ratio shα  of Eq. 

(4.2) and the principal stress ratio σα  of Eq. (9.102), for an EFCC section with 
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0.1≥shα , the principal stress ratio is given by 2
shαασ =  and 0.1=σα  for circular 

sections. 

For RFCC sections with low-aspect ratios, the confining efficiency of the FRP jacket 

0.1→ek , which occurs as the RFCC section becomes more rounded, as the aspect ratio 

shα  decreases and approaches a unity value (i.e., as 0.1→shα ) and as the jacket corner 

aspect ratio jα  increases and approaches a value of 0.50 (i.e.,  as 50.0→jα ); hence the 

strain ductility ratio of the RFCC section approaches the value of the equi-biaxial 

confinement ductility ratio 0.5=bcR .  In addition, for low-aspect ratio RFCC sections, 

as the section aspect ratio approaches a unity value (i.e., as 0.1→shα ), the intermediate 

principal stress e2σ  approaches the value of the minor principal stress ee 32 σσ →  (i.e.,  

ee 32 σσ → ), and the principal stress ratio σα  of Eq. (9.102) approaches a unity value 

0.132 →= ee σσασ .  This indicates that the strain ductility ratio of FCC sections shR , 

depends on the FRP jacket shape.  As a result, shR  is assumed to be governed by the 

following hyperbolic relationship: 

 

 
( )

e
R

R

ubc
ush

k

RR
RR σαψ

ψ
=

−
+= ;  (10.12) 

 

where Rψ  is an FRP jacket shape-dependent ductility coefficient that measures the effect 

that the FRP jacket shape has on the strain ductility of the confined concrete; the strain 

ductility ratio shR  of Eq. (10.12) is plotted in Figure 10.2 versus the ductility coefficient 

Rψ . 
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Figure 10.2 Plot of strain ductility ratio versus jacket ductility coefficient of FRP-

confined concrete. 
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The previous relationship indicates that shR  is proportional to the confinement 

efficiency ek  of the confining FRP jacket and inversely proportional to the principal 

stress ratio σα  of Eq. (9.102).  This strain ductility ratio is applicable to FRP-confined 

concrete subjected to uniform biaxial confinement (circular sections and low-aspect ratio 

elliptical sections) and to sections subjected to nonuniform biaxial confinement (square, 

rectangular  and high aspect ratio elliptical sections). 

For rectangular (including square and circular) FRP-confined concrete sections, and 

elliptical (including circular) FRP-confined concrete sections, 0.1≅uR .  Substituting 

0.1=uR  and 0.5=bcR  into shR  of Eq. (10.12) yields the following for RFCC, SFCC, 

CFCC, and EFCC sections: 
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For EFCC (including CFCC) sections for which 0.1=ek  and 2
shαασ = , Eq. 

(10.13) can be rewritten as: 
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For circular sections for which 0.1=ek , 0.1=shα , and 0.1=σα , shR  of Eqs. 

(10.13) and (10.14) yield the equi-biaxial confinement ductility ratio of 0.5=bcR , 

whereas for very high aspect ratio RFCC and EFCC sections, it approaches the 

unconfined ductility ratio of 0.1=uR . 
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For the FCC sections considered herein, the ultimate compressive strain ccε  in the 

FCC section is found by substituting shRR =  into Eq. (10.9) which yields: 

 

 ( )[ ]11 −+= ccshcocc kRεε
 

(10.15) 

 

The plastic strain ductility ratio pR  of the FCC section is defined as: 
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In the plastic strain ductility ratio pR  of Eq. (10.15), the terms ( )1−cpk  and ( )1−pkε  

represent the percentage increase in plastic compressive strength and strain, respectively.  

Plastic compressive behavior is assumed to occur at any given plastic compressive 

strength cpf  and strain cpε , where cucpco εεε ≤≤ , and corresponding plastic diagonal 

expansive jacket strain jpε  in the FCC section, where jujpjo εεε ≤≤ .  In addition, 

cpk  is the plastic confinement effectiveness; pkε  is the plastic strain effectiveness; joε  is 

the jacket dilation strain corresponding to the unconfined peak compressive strain coε ; 

and juε  is the ultimate jacket dilation strain corresponding to the ultimate compressive 

strain cuε , at failure of the FRP jacket. 
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The difference between shR  of Eq. (10.12) and pR  of Eq. (10.16) is that the latter is 

applicable to any plastic axial compressive stress cpf  and strain cpε  in the FCC section, 

whereas shR  is defined only when ccc ff =  or ccc kk =  and when ccc εε =  of Eq. 

(10.11). 

The plastic strain ductility coefficient Rα  is defined herein as the ratio between the 

FRP jacket shape-dependent strain ductility ratio shR  of Eq. (10.11) and the plastic strain 

ductility ratio pR  of Eq. (10.16): 
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sh
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(10.19) 

 

When 0.1=Rα  the stress ratio ck  in the FCC section asymptotically approaches the 

analytical confinement coefficient cck .  This is illustrated in Figures 10.3-10.5, in which 

the normalized axial stress ck  is plotted versus the effective minor principal stress ratio 

ek3 . 

The cases shown are for sections concrete exhibiting strain-softening compressive 

behavior, as shown in Figures 10.3 and 10.4, and sections which exhibit strain-hardening 

as shown in Figure 10.5.  From these figures it can be observed that at a very small 

plastic strain cpε , in the FCC section near the peak unconfined strain coε , i.e.,  when 

cocp εε ≅ , the plastic strain ductility coefficient Rα  of Eq. (10.19) has a very large value 

as a result of the low value of the plastic strain ductility ratio pR  of Eq. (10.16), i.e., a 

low plastic strain effectiveness pkε  of Eq. (10.18). 
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Figure 10.3 Axial stress ratio and strain ductility ratio versus minor principal stress 

ratio of an FRP section confined by a low stiffness FRP jacket exhibiting 

strain-softening compressive behavior. 
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Figure 10.4 Axial stress ratio and strain ductility ratio versus minor principal stress 

ratio of an FRP section confined by a moderate stiffness FRP jacket 

exhibiting strain-hardening compressive behavior. 
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Figure 10.5 Axial stress ratio and strain ductility ratio versus minor principal stress 

ratio of an FRP section confined by a high stiffness FRP jacket exhibiting 

strain-hardening compressive behavior. 
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When the axial strain ratio εk  strain approaches a unity value, i.e., when 

0.1== pkk εε  or when cocp εε ≅ , the strain ductility coefficient Rα  decreases as the 

FRP jacket stiffness increases; this is due to an increase in the kinematic restraint 

provided by the confining elastic FRP jacket which curtails the dilation behavior of the 

concrete core as it approaches its peak unconfined compressive strain coε , corresponding 

jacket dilation strain joε , and confinement stress e3σ . 

At a high plastic compressive strain cpε , jacket strain jpε , and confinement stress 

e3σ , the resultant plastic strain ductility coefficient Rα  decreases at a smaller rate; i.e.,  

the plastic strain ductility ratio pR  increases at a larger rate, as the stiffness of the FRP 

jacket increases.  This increase in the plastic strain ductility ratio pR  is also a result of an 

increase in the jacket’s ability to control the dilation of the confined concrete core, thus 

resulting in a larger increase in the plastic compressive strain cpε  with respect to an 

increase in the plastic compressive strength cpf  and confinement effectiveness cpk , due 

to a reduction in the FRP jacket strain jε  at a given axial strain cε .  The rate of increase 

of the plastic compressive strength cpf  is proportional to the rate of increase in the FRP 

jacket strain jε , the plastic dilation rate jpµ  of Eq. (7.25), and the plastic Poisson’s ratio 

jpν  of the FCC section. 

Both the plastic dilation rate jpµ  (i.e., the slope of the Poisson’s ratio curve) or 

plastic Poisson’s ratio jpν  decrease as the FRP jacket stiffness increases.  As indicated in 

Chapter 7, the plastic dilation rate jpµ  of Eq. (7.25) is inversely proportional to the FRP 
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jacket stiffness.  The FRP jacket stiffness also affects the plastic Poisson’s ratio jpν of 

the FCC section.  As the jacket Poisson’s ratio jν  decreases, either the jacket dilation 

strain jε  decreases or the axial compressive strain cε  increases [refer to jv  of Eq. 

(7.32)]. 

The incremental stress-strain model of Eqs. (10.1)-(10.18) can capture the strain-

softening behavior of low FRP jacket stiffness confined concrete, the essentially elasto-

plastic behavior of moderate FRP jacket stiffness confined concrete, and the strain-

hardening behavior of high FRP jacket stiffness confined concrete, as shown in Figures 

10.3-10.5.  The increase in compressive strength and strain ductility of FRP-confined 

concrete is attributed to the lateral kinematic restraint provided by the confining FRP 

jacket and is evaluated using the triaxial extended Mohr-Coulomb (TEMC) criterion 

introduced in Chapter 9. 

The axial strain-induced dilation of FCC sections is assumed to be governed by the 

FRP jacket stiffness-dependent fractional dilation model of Chapter 8.  In the stress- 

strain model developed in this dissertation, the only experimentally obtained coefficients 

in the proposed TEMC criterion are the average values of the basic angle of friction of 

dry concrete, °= 35bφ  included in the degrading friction angle model introduced in 

Chapter 9, the diagonal plastic dilation rate jpµ  of Eq. (7.24), and the pore water 

pressure parameter PWn of Eq. (9.62). 

 

Stress-Strain Model Implementation 

The damage-based stress-strain model can be implemented using the following steps 

shown in summarized in the flow charts of Figures 10.6-10.9, and Tables 10.1-10.3: 
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Figure 10.6 Flow chart of the proposed uniaxial stress-strain model-Part I. 
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Figure 10.7 Flow chart of the proposed uniaxial stress-strain model-Part II. 
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Figure 10.8 Flow chart of proposed uniaxial stress-strain model-Part III. 
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Figure 10.9 Flow chart of proposed uniaxial stress-strain model-Part IV. 
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Table 10.1 Summary of geometric properties of the 

FRP-confined concrete section required in 

the stress-strain model. 

 

   

   

Properties Term Reference 

Unconfined concrete tk  Eq. (9.9) 

 uc  Eq. (9.25)  

 uφ  Eq. (9.28) 

 beφ  Eq. (9.64) 

 ( )
tbmφ

 
Eq. (9.59) 

 ( )
tbmk3  

Eq. (9.60) 

 secE
 

Eq. (10.8) 

 un  
Eq. (10.8) 

FRP jacket ( )  
BjeE  Eq. (4.15) 

 ( ) shje  C  Eq. (4.17) 

 ( ) shje  K  Eq. (4.18) 

 Eα  Eq.(7.10) 
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Table 10.2 Summary of geometric properties of the 

FRP-confined concrete section required in 

the stress-strain model. 

 

    
    

Term Reference Term Reference 

 cD  Eq. (4.3)  dθ  Eq. (4.1) 

shα  Eq. (4.2)  jα  Eq. (4.2) 

 ek  Table 4.2 shC  Table 4.1 

 shD  Eq. 5.11 shχ  Table 5.1 

 aθ  Table 5.2 bθ  Table 5.2 

εα  Eq. (6.19) jβ  Table 6.1 

shβ  Eq. (7.15) aβ  Eq. (7.39) 

( )sh2ψ  Table 9.1 σα  Eq. (9.102) 

( )sh3ψ  Eq. (9.102) shR  Eq. (10.12) 

 Rψ  Eq. (10.12)   
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Table 10.3 Summary of FRP-confined concrete 

properties. 

 

    

    

Term Reference Term Reference 

 coE  Eq. (7.16) ( )oBµ  Eq. (7.17) 

joµ  Eq. (7.20) rpµ  Eq. (7.23) 

jpµ  Eq. (7.25) ( )
voljν  Eq. (7.67) 

 '
joµ  Eq. (8.7)  Cα  Eq.(8.33) 

jγ  Eq. (8.35) volγ  Eq. (8.36) 

volα  Eq. (8.37) pkα  Eq. (8.38) 

( )
pkjε  Eq. (8.45)   
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Step (1) Input the material (FRP jacket and concrete) properties and FRP-confined 

section geometry, and calculate the mechanical and geometric terms shown in the flow 

diagram of Figure 10.6 

Step (2) Utilize the flow diagram of Figure 10.7-10.9 to model the uniaxial stress-

strain behavior of FRP-confined concrete sections. 

 

Parametric Study 

The purpose of this parametric study is to examine how the proposed constitutive 

stress-strain model introduced herein responds to variations in the values of the various 

parameters including material properties, geometric and mechanical properties of the 

FCC section, and shape-dependent dilation and stress-strain parameters. 

This includes the effects of the concrete material properties, such as the initial 

Poisson’s ratio ciν , the initial modulus of elasticity ciE  of Eq. (10.5), the peak 

unconfined compressive strain coε  and strength cof , and the effective basic angle of 

internal friction beφ  of the concrete material are considered. 

Variation of the FRP jacket properties such as jacket stiffness jeK  of Eq. (4.18), the 

aspect ratio shα  of the rectangular (RFCC) and elliptical (EFCC) FCC section of Eq. 

(4.2), the jacket corner ratio jα  of the RFCC section of Eq. (4.4), and the plastic dilation 

rate jpµ  of Eq. (7.24) are studied. 

Variation of the strain ductility ratio shR  of Eq. (10.12), a stress-strain model specific 

parameter, is considered in this parametric study.  The FCC sections that serve as a basis 

of this parametric study are the following: 
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Case 1: A circular FRP-confined concrete section (CFCC) confined by a circular 

FRP jacket having a 305 mm diameter section. 

Case 2: A rectangular FRP-confined concrete (RFCC) section with a minor 

dimension cB  of 305 mm, a unit aspect ratio 0.1== ccsh BHα  (i.e.,  a square section), 

and a jacket corner ratio 0.5== cjj HRα %, where cH  is the major jacket dimension 

and jR  is the jacket corner radius. 

The aforementioned FCC sections have an unconfined compressive strength of 41.4 

MPa, an elastic modulus calculated using ciE  of Eq. (10.5), an unconfined peak 

compressive strain using coε  of 0.002 mm/mm, i.e., 002.0=coε , with the curvature 

parameter un  of Eq. (10.7), a tensile strength ratio cotot ffk =  of Eq. (9.9), with tof  

of Eq. (9.30), a basic angle of friction of o
35=bφ , a pore water pressure parameter PWn  

of Eq. (9.62) and (9.63) of 0.5=PWn  percent, an effective basic angle of friction 

o
1.34=beφ  found using Eq. (9.64), and an initial Poisson’s ratio of 20.0=ciν .  These 

sections are assumed to be confined by an FRP jacket having a transverse modulus jE  of 

82.7 MPa and a jacket rupture strain of 50.8=juε  mm/m. 

Unless otherwise noted, the cases considered in the parametric study include sections 

confined by low stiffness FRP jackets with 0.10=jeK  and high stiffness jackets with 

0.30=jeK .  In the parametric study of the proposed model, the only parameters that 

change in value are those that are affected by the parameter being considered. 
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Concrete Material Properties 

Initial Poisson’s Ratio 

The effects that the initial Poisson ratio ciν  has on the stress-strain model introduced 

herein for the CFCC section of Case 1 is plotted in the axial stress-strain curves shown in 

Figure 10.10; Figure 10.11 shows the axial stress-strain curves for the RFCC section of 

Case 2.  The Poisson’s ratios considered in this parametric analysis are 15.0=ciν  and 

30.0=ciν , which are considered to be the lower and upper bound values, respectively, of 

the initial Poisson’s ratio of concrete materials.  As can be observed in these figures, the 

initial Poisson’s ratio ciν , is predicted to have no significant effect on the stress-strain 

curve of the CFCC or RFCC section. 

The most noticeable influence predicted by the model is that as ciν  increases, the 

ultimate axial strain ratio ( )ukε  (i.e., at cuc εε = ) experiences a slight decrease; this 

results in a decrease in the strain ductility of the confined concrete core.  This is apparent 

for both low and high stiffness FRP-jacketed sections and is predicted to be independent 

of the FRP jacket shape.  A slight decrease in the ultimate stress ratio ( )uck  or ultimate 

axial stress cuf  is predicted to occur as ciν  increases.  This effect is more apparent in 

RFCC sections confined by high stiffness FRP jackets, than in circular sections.   

The analytical model predicts that for a given plastic strain ratio pkε , the normalized 

plastic stress ratio value cpk  slightly increases as the initial Poisson’s ratio ciν  increases.  

This indicates that a slight increase in the strain energy in the FRP-confined concrete is 

predicted to occur at any given plastic strain ratio pkε , as ciν  doubles in value. 
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Figure 10.10 Axial stress-axial strain ratio curves of a circular concrete section confined 

by a (a) low stiffness and (b) high stiffness FRP jacket with various initial 

Poisson’s ratio. 
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Figure 10.11 Axial stress-axial strain ratio curves of a rectangular concrete section 

confined by a (a) low stiffness and (b) high stiffness FRP jacket with 

various initial Poisson’s ratio. 
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Initial Modulus of Elasticity 

The effects that the initial modulus of elasticity ciE  of the concrete core has on the 

proposed stress-strain model for the CFCC section of Case 1 is plotted in the axial stress-

strain ratio curves shown in Figure 10.12. and in Figure 10.13 for the RFCC section of 

Case 2. The initial modulus of elasticity ciE  values considered in this section of the 

parametric analysis is multiples of ciE  of Eq. (10.5), which are ciE75.0 , ciE , and 

ciE25.1 . 

As can be observed in Figure 10.12, a slight increase in the axial failure strain ratio 

( )ukε (i.e., at cuc εε = ) and ultimate stress ratio cuk  is predicted to occur as the initial 

modulus of elasticity ciE  increases for both low and high stiffness CFCC sections.  This 

results in a small increase in strain ductility of the confined concrete as both ( )ukε and 

( )uck  increase. 

The analytical model predicts that for FCC sections exhibiting an essentially bilinear 

strain-hardening compressive stress-strain behavior, such as those shown in Figure 

10.12, the initial slope and the slope of the plastic strain curve increases slightly as ciE  

increases.  This indicates that the model predicts a proportional relationship between the 

plastic slope of the sections exhibiting a bilinear strain-hardening behavior and the initial 

modulus of elasticity ciE  of the concrete core. 

In RFCC sections, the analytical model predicts that an increase in the initial modulus 

of elasticity ciE  results in a significant decrease in the ultimate strength ratio cuk , as 

shown Figure 10.13, for both high stiffness and low stiffness rectangular FRP-jacketed 

sections. 
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(b) 

 

Figure 10.12 Axial stress-axial strain ratio curves of a circular concrete section confined 

by a (a) low stiffness and (b) high stiffness FRP jacket with various initial 

modulus of elasticity. 
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Figure 10.13 Axial stress-axial strain ratio curves of a rectangular concrete section 

confined by a (a) low stiffness and (b) high stiffness FRP jacket with 

various initial modulus of elasticity. 
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For sections exhibiting a strain-softening compressive behavior, typical of RFCC 

sections with a small corner radius, as shown in Figure 10.13, the model predicts that in 

the plastic region of the stress-strain curve (i.e., when 0.1>εk ) and the axial stress ratio 

ck  at a given plastic axial strain ratio pkε  decreases as ciE  increases.  This implies that 

an inversely proportional relationship is predicted between the axial plastic stress cpf  

and the initial modulus ciE  for sections exhibiting strain-softening compressive behavior.  

This also indicates that the model predicts a decrease in the strain energy in the RFCC 

section at a given plastic axial strain ratio pkε  as ciE  increases.  Analysis of Figures 

10.12 and 10.13 indicates that the effects that initial modulus of elasticity ciE  has on the 

analytical stress-strain curve of an FCC section is shape-dependent. 

The effects of the elastic modulus ciE  on the analytical stress-strain curve of  

elliptical sections with an aspect ratio of 5.1=shα  and 0.2=shα  that are confined by a 

high stiffness 0.30=jeK ; FRP jacket are investigated in Figures 10.14(a) and (b), 

respectively.  From these figures it can be observed that as both the aspect ratio shα  of 

the elliptical section and ciE  increase, the ultimate stress ratio cuk  is predicted to 

decrease at a faster rate.  An increase in the strain ductility of the FRP-confined concrete 

section is forecasted to occur as ciE  increases, due to an increase in the ultimate stress 

ratio cuk .  This effect is predicted to be independent of the elliptical section aspect ratio. 

In Figures 10.15(a) and (b) the effects that the elastic modulus ciE  has on the 

analytical stress-strain curve of rectangular sections with aspect ratios of  25.1=shα  and 

50.1=shα  confined by high stiffness FRP jackets are investigated. 
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(b) 

 

Figure 10.14 Axial stress-axial strain ratio curves of elliptical concrete section confined 

by a high stiffness FRP jacket with a section aspect ratio of (a) 1.50 and 

(b) 2.00 and various initial modulus of elasticity. 
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Figure 10.15 Axial stress-axial strain ratio curves of rectangular sections confined by 

stiffness FRP jacket having a section aspect ratio of (a) 1.25 and (b) 1.50 

with various initial modulus of elasticity. 
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The analytical model predicts that as both the aspect ratio shα  of the RFCC section 

and ciE  of the concrete increases, the ultimate stress ratio cuk decreases at a faster rate; 

this effect is in contradiction with that predicted for EFCC sections.  The decrease in 

strain ductility of RFCC sections is predicted to be dependent on the section aspect ratio. 

Based on analysis of Figures 10.12-10.15, it can be stated that the analytical model 

predicts that the shape of the FRP-jacketed section has a significant effect on the shape of 

the axial compressive stress-strain curve of the FRP-jacketed section; this is supported by 

experimental evidence. 

 

Unconfined Peak Compressive Strain 

The effects that the unconfined peak compressive strain coε  has on the stress-strain 

behavior predicted by the analytical stress-strain model introduced herein is plotted in the 

axial stress-strain ratio curves shown in Figure 10.16 for the CFCC section of Case 1 and 

in Figure 10.17 for the RFCC section of Case 2.  The unconfined peak compressive 

strain coε  considered in this section of the parametric analysis are multiples of 

002.0=coε , which are coε75.0 , coε , and coε25.1 . 

As shown in Figure 10.16, the model predicts that for CFCC sections an increase in 

the unconfined peak compressive strain coε  results in a decrease of the ultimate strain 

ratio ( )ukε (i.e., at cuc εε = ) and a slight increase in ultimate axial stress ratio cuk , for 

both high stiffness and low stiffness CFCC sections.  This effect is most notable in low 

stiffness circular FRP-jacketed sections.  This indicates that a decrease in the strain 

ductility of the confined concrete is predicted to occur as coε  increases. 
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(b) 

 

Figure 10.16 Axial stress-axial strain ratio curves of a circular concrete section confined 

by (a) low and (b) high stiffness FRP jacket with various peak unconfined 

compressive strains. 
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Figure 10.17 Axial stress-axial strain ratio curves of a rectangular concrete section 

confined by (a) low and (b) high stiffness FRP jacket with various 

unconfined peak compressive strains. 
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For an FCC section exhibiting an essentially bilinear strain-hardening compressive 

stress-strain behavior, such as those shown in Figure 10.16, the slope of the plastic strain 

ratio curve is predicted to increase as coε  increases; this indicates that a proportional 

relationship exists between the plastic slope of the stress-strain curve and the peak 

unconfined compressive strain coε  of the concrete core.  For FCC sections experiencing 

a bilinear strain-hardening behavior, the plastic slope of the analytical stress-strain curve 

is proportional to the FRP jacket stiffness and can be affected by the unconfined peak 

compressive strain coe  of the concrete core, as shown in Figure 10.16. 

In rectangular sections, the model predicts that as coε  increases, the ultimate axial 

strain ratio ( )ukε  decreases, as shown in Figure 10.17, whereas the ultimate axial stress 

ratio cuk  slightly increases for high stiffness rectangular FRP-jacketed sections.  For low 

plastic strain ratios pkε , a decrease in the energy of the RFCC section is predicted to 

occur for both low and high stiffness FRP jackets. At high plastic strain ratios pkε , a 

decrease in the strain energy of the RFCC section is predicted to occur for a low stiffness 

RFCC section and a slight increase for high stiffness RFCC sections, as coε  increases.  

The model predicts that for FCC sections exhibiting a strain-softening compressive 

behavior, as shown in Figure 10.17 for rectangular sections, an increase in the 

unconfined peak compressive strain coε  significantly affects the shape of the analytical 

plastic stress-strain curve of the RFCC section. 

Based on analysis of Figures 10.16 and 10.17, it can be stated that the analytical 

model predicts that the shape of the FRP-jacketed section has a significant effect on the 



 342 

shape of the axial compressive stress-strain curve of the FRP-jacketed section; this is 

supported by experimental evidence. 

 

Unconfined Peak Compressive Strength 

The effects that the unconfined peak compressive strength cof  has on the stress-

strain behavior predicted by the analytical stress-strain model introduced herein is plotted 

in the axial stress-strain ratio curves shown in Figure 10.18 for the CFCC section of 

Case 1 and in Figure 10.19 for the RFCC section of Case 2.  The unconfined peak 

compressive strengths considered in this section of the parametric analysis are 

8.13=cof  MPa, 6.27=cof  MPa, and 4.41=cof  MPa. 

As shown in Figure 10.18, the model predicts that for CFCC sections an increase in 

the unconfined peak compressive strength cof  has no significant effect on the stress-

strain behavior of the circular sections confined by either high or low stiffness FRP 

jackets.  This indicates that no significant increase in strain energy occurs in CFCC 

sections exhibiting strain-hardening compressive behavior. 

In RFCC sections, the model predicts that as cof  increases both the ultimate axial 

strain ( )ukε  and strength cuk  ratio decrease, as shown in Figure 10.19, which indicates 

a decrease in strain energy in the RFCC section as cof  increases.  This effect is in 

contradiction with the effects predicted in CFCC sections exhibiting strain-hardening 

behavior, as shown in Figure 10.18.  As a result, it can be stated that the analytical model 

predicts that the effect of the peak unconfined compressive strength cof  is FRP jacket 

shape-dependent and appears to be independent of the FRP jacket stiffness. 
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(b) 

 

Figure 10.18 Axial stress-axial strain ratio curves of a circular concrete section confined 

by (a) low and (b) high stiffness FRP jacket with various unconfined peak 

compressive strengths. 
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(b) 

 

Figure 10.19 Axial stress-axial strain ratio curves of a rectangular concrete section 

confined by (a) low and (b) high stiffness FRP jacket with various 

unconfined peak compressive strengths. 
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Effective Basic Angle of Internal Friction 

The effects of the effective basic angle of internal friction beφ  of the concrete core on 

the stress-strain behavior of FCC sections predicted by the analytical stress-strain model 

introduced herein are plotted in the axial stress-strain ratio curves shown in Figure 10.20 

for the CFCC section of Case 1 and in Figure 10.21 for the RFCC section of Case 2. 

The effective basic angles of internal friction beφ  considered in this section of the 

parametric analysis are determined using a pore water pressure parameter PWn  of Eqs. 

(9.62) and (9.63) of 5.12=PWn  %, 0.25=PWn  and 0.50=PWn , which result in 

o
7.32=beφ , o

2.30=beφ , and o
7.23=beφ , respectively, found using beφ  of Eq. (9.64). 

As can be observed in Figures 10.20 and 10.21, the model predicts that for CFCC 

and RFCC sections a decrease in the effective angle of internal friction beφ , i.e., as the 

pore water pressure parameter PWn  increase, results in a decrease in the ultimate axial 

stress ratio cuk (i.e., at cuc ff = ). 

For the CFCC sections that exhibit an essentially bilinear strain-hardening 

compressive behavior and RFCC sections that exhibit a strain-softening behavior, such as 

those shown in Figures 10.20 and 10.21, the slope of the plastic strain curve is predicted 

to decrease as the pore water pressure parameter PWn  increases, i.e., when beφ  

decreases.  This indicates that an inversely proportional relationship between the plastic 

slope of the stress-strain curve and the effective basic angle of internal friction beφ  of the 

concrete core is predicted. 
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(b) 

 

Figure 10.20 Axial stress-strain ratio curves of a circular concrete section confined by 

(a) low and (b) high stiffness FRP jacket with various pore water pressure 

parameters. 



 347 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Axial Strain Ratio

A
x
ia
l 
S
tr
e
s
s
 R
a
ti
o

12.5 %

25.0 %
50.0 %

 

(a) 

 

0.00

0.30

0.60

0.90

1.20

1.50

0.0 2.0 4.0 6.0 8.0 10.0

Axial Strain Ratio

A
x
ia
l 
S
tr
e
s
s
 R
a
ti
o

12.5 %

25.0 %

50.0 %

 

(b) 

 

Figure 10.21 Axial stress-strain ratio curves of a rectangular concrete section confined 

by (a) low and (b) high stiffness FRP jacket with various pore water 

pressure parameters. 
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As a result, the plastic stress ratio cpk  at a given plastic axial strain ratio pkε  

increases as beφ  increases, which indicates an increase in strain energy in the CFCC and 

RFCC sections is predicted to occur regardless of the FRP jacket stiffness. 

This forecasted behavior is supported by experimental evidence, as concrete-filled 

FRP tubes (CFFT) exhibit a decrease in the plastic slope in comparison with bonded 

FRP-jacketed (BFCC) sections with similar FRP jacket stiffness, as will be demonstrated 

in the comparison with experimental results. 

 

FRP Jacket Properties 

FRP Jacket Stiffness 

The effect that the FRP jacket stiffness jeK  of Eq. (4.18) has on the stress-strain 

model introduced herein is plotted as an axial stress-strain ratio curve in Figure 10.22(a) 

for the CFCC section of Case 1, and in Figure 10.22(b) for the RFCC section of Case 2. 

From analysis of Figure 10.22(a) it can be observed that for CFCC sections the 

model predicts that as the FRP jacket stiffness increases, both the ultimate stress ratio 

cuk  and strain ratio ( )ukε  increase.  The model makes similar predictions for RFCC 

sections, as shown in Figure 10.22(b).  An increase in the FRP jackets stiffness results in 

an increase in the ultimate axial strain ratio ( )ukε  and stress ratio cuk , which results in 

an increase in the strain ductility of the FRP-jacketed section. 

At high axial plastic strains (i.e., at 0.2>= pkk εε ), the slope of the stress-strain 

curve increases as the FRP jacket stiffness increases for a section experiencing a strain-

hardening behavior, as shown in Figure 10.22(a) for CFCC sections. 
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(b) 

 

Figure 10.22 Axial stress-strain ratio curves of (a) circular and (b) rectangular concrete 

sections confined by FRP jackets of various jacket stiffness. 
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For sections experiencing a strain-softening behavior, as shown in Figure 10.22(b) 

for RFCC sections, the model predicts that the plastic slope can change from a negative 

plastic slope to a positive slope as the FRP jacket stiffness increases.  Thus, at high axial 

plastic strains, the model forecasts that that the stress-strain behavior of the FCC section 

can change from that of a section exhibiting a strain-softening behavior to that of a 

section exhibiting strain-hardening as the stiffness of the FRP jacket increases. 

As a result, it can be stated that the analytical model predicts that the effect that the 

FRP jacket stiffness jeK  of Eq. (4.18) has on the compressive behavior of FRP-confined 

concrete sections is independent of the FRP jacket shape. 

In order to accurately predict the shape of the uniaxial stress-strain curve of the FCC 

sections the model must adequately predict the effect that the FRP jacket stiffness jeK  of 

Eq. (4.18) has on the compressive behavior of the FCC sections considered in this 

dissertation; this will be demonstrated in the comparison with experimental test results. 

 

Jacket Aspect Ratio 

The effect that the section aspect ratio shα  of Eq. (4.2) has on the stress-strain 

behavior of FCC sections predicted by the analytical model introduced herein is plotted 

in the axial stress-strain ratio curves shown in Figure 10.23 for an EFCC section of Case 

1, and in Figure 10.24 for an RFCC section of Case 2. 

The cases considered in this parametric study are for sections with aspect ratios of 

0.1=shα , 5.1=shα , and 0.2=shα , with a constant jacket corner radius for the RFCC 

sections considered. 
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(b) 

 

Figure 10.23 Axial stress-strain ratio curves of an elliptical concrete section confined by 

(a) low and (b) high stiffness FRP jacket with various section aspect 

ratios. 
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(b) 

 

Figure 10.24 Axial stress-strain ratio curves of a rectangular concrete section confined 

by (a) low and (b) high stiffness FRP jacket with various section aspect 

ratios. 
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From these figures it can be observed that the analytical model predicts that an 

increase in the jacket aspect ratio shα  results in a decrease in both the ultimate stress cuk  

and strain ( )ukε  ratio.  This indicates that a decrease in the strain ductility of the 

confined concrete is predicted for both EFCC and RFCC sections as shα  increases.  As 

shown in Figures 10.23 and 10.24, this effect is more pronounced as the stiffness of the 

FRP jacket increases.  This forecasted behavior is supported by the experimental 

evidence of RFCC and EFCC sections, as will be demonstrated in the comparison with 

experimental compressive tests.  Analysis of Figures 10.23 and 10.24 indicates that for a 

given plastic axial strain ratio pkε , a decrease in the strain energy of the confined 

concrete is predicted to occur as shα  increases.  This is due to the decrease in the plastic 

stress ratio cpk  at any given plastic axial plastic strain ratio pkε .  This effect is predicted 

to be independent of the stiffness and shape of the FRP jacket.  In order to accurately 

predict the shape of the uniaxial stress-strain curve of the FCC sections, the model must 

adequately capture the effects that the FRP jacket aspect ratio shα  of Eq. (4.2) has on the 

compressive behavior of the FCC sections considered in this dissertation. 

 

Jacket Corner Aspect Ratio 

The effect that the jacket corner aspect ratio jα  of Eq. (4.4) has on the stress-strain 

behavior of RFCC sections predicted by the analytical stress-strain model introduced 

herein for Case 2 is plotted in the axial stress-strain ratio curves shown in Figure 10.25, 

and for a RFCC section of Case 2 with a section aspect ratio 0.2=shα  is plotted in 

Figure 10.26. 
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Figure 10.25 Axial stress-strain ratio curves of a square concrete section confined by (a) 

low and (b) high stiffness FRP jacket with various jacket corner aspect 

ratios. 
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Figure 10.26 Axial stress-strain ratio curves of a rectangular concrete section confined 

by (a) low and (b) high stiffness FRP jacket with various jacket corner 

aspect ratios. 
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The cases shown in these figures are for RFCC sections confined by an FRP jacket 

having jacket corner aspect ratios jα  of 05.0=jα , 25.0=jα , and 50.0=jα , which is 

50.0=jα  for the SFCC section and 05.0=jα , 15.0=jα , and 25.0=jα  for the 

RFCC section considered in this parametric study. 

From these figures it can be observed that the analytical model predicts that an 

increase in the jacket corner aspect ratio jα  results in an increase in the ultimate strength 

ratio cuk  and a slight increase in the ultimate axial strain ratio ( )ukε , which indicates an 

increase in the strain ductility of the confined concrete is predicted for SFCC and RFCC 

sections.  This predicted compressive stress-strain behavior is supported by the 

experimental evidence of SFCC and RFCC sections, as will be demonstrated in the 

comparison with experimental results. 

The analytical model forecasts that the shape of the analytical plastic stress-strain 

curve of the FCC section can shift from that of a section exhibiting a strain-softening 

behavior to that of a section exhibiting strain-hardening behavior by increasing the jacket 

corner aspect ratios jα , as shown in Figures 10.25 and 10.26; this effect is predicted to 

be independent of the rectangular FRP jacket aspect ratio and stiffness.  In the plastic 

region of the stress-strain curve, the model predicts that the plastic stress ratio cpk  at a 

given plastic axial strain ratio pkε  increases as jα  increases.  This indicates that an 

increase in strain energy at a given plastic axial strain ratio pkε  is predicted to occur as 

jα  increases and was found to be independent of the rectangular FRP jacket aspect ratio 

and stiffness. 
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In order to accurately predict the shape of the uniaxial stress-strain curve of the FCC 

sections, the model must adequately predict the effects that the jacket corner aspect ratio 

jα  of Eq. (4.4) has on the compressive behavior of RFCC sections. 

 

Plastic Diagonal Dilation Rate 

The effect that the plastic diagonal dilation rate jpµ  of Eq. (7.25) has on the stress-

strain behavior of FCC predicted by the analytical stress-strain model introduced herein 

for an CFCC section of Case 1 is plotted in the stress ratio-strain curves shown in Figure 

10.27 and for an RFCC section of Case 2 in Figure 10.28.  The plastic diagonal dilation 

rates jpµ  considered in this section of the parametric study are jpµ75.0 , jpµ , and 

jpµ25.1 .  As can be observed in Figures 10.27 and 10.28, the model predicts that for 

CFCC and RFCC sections an increase in the plastic diagonal dilation rate jpµ  results in 

a decrease of the axial failure strain ratio ( )ukε (i.e., at cuc εε = ), which results in a 

decrease in the strain ductility of the FRP-confined concrete. 

An increase in the ultimate strength ratio cuk (i.e., at cuc ff = ) is predicted for both 

high stiffness and low stiffness CFCC and RFCC sections.  The increase is smaller for 

CFCC sections with high stiffness FRP jackets.  The analytical model forecasts that for a 

CFCC section exhibiting an essentially bilinear strain-hardening compressive behavior, 

such as those shown in Figure 10.27 for CFCC sections, the slope of the plastic strain 

curve increases as jpµ  increases.  This indicates that a proportional relationship is 

predicted between the plastic slope of the stress-strain curve and plastic diagonal dilation 

rate jpµ , this effect is supported by the experimental evidence. 
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(b) 

 

Figure 10.27 Axial stress-strain ratio curves of a circular concrete section confined by 

(a) low and (b) high stiffness FRP jacket with various plastic dilation 

rates. 
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(b) 

 

Figure 10.28 Axial stress-strain ratio curves of a rectangular concrete section confined 

by (a) low and (b) high stiffness FRP jacket with various plastic dilation 

rates. 



 360 

For sections exhibiting a strain-softening compressive behavior, as shown in Figure 

10.28 for rectangular sections, the model predicts that an increase in jpµ  affects the 

shape of the analytical plastic stress-strain curve of the RFCC section. 

From these figures it can be observed that in the plastic region of the stress-strain 

curve, the axial stress ratio ck  at a given plastic axial strain ratio pkε  increases as jpµ  

increases, independent of the FRP jacket shape or stiffness.  This implies that a 

proportional relationship is predicted between the axial plastic stress cpf  and jpµ ; this is 

a result of an increase in the corresponding FRP jacket strain jε  [refer to Eqs. (7.32) and 

(7.54)], and diagonal confining stress ( )shdef  of Eq. (5.12), which results in an increase 

in the confinement effectiveness cck  of Eq. (9.35) with e3σ  of Eq. (9.100). 

An increase in cpf  at a given pkε  implies that an increase in strain energy is 

predicted to occur by the proposed analytical model as jpµ  increases; this effect is also 

predicted to be independent of the FRP jacket shape and stiffness.  This explains why the 

diagonal dilation is used in this dissertation as a basic model. 

 

Stress-Strain Model Parameters 

Strain Ductility Ratio 

The effect that the strain ductility ratio shR  of Eq. (10.12) has on the stress-strain 

behavior of FCC sections predicted by the analytical stress-strain model introduced 

herein are examined.  The stress ratio-strain curves of the CFCC section of Case 1 is 

plotted in Figure 10.29 and in Figure 10.30 for the RFCC section of Case 2. 
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(b) 

 

Figure 10.29 Axial stress-strain ratio curves of a circular concrete section confined by 

(a) low and (b) high stiffness FRP jacket with various strain ductility 

ratios. 
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(b) 

 

Figure 10.30 Axial stress-strain ratio curves of a rectangular concrete section confined 

by (a) low and (b) high stiffness FRP jacket with various strain ductility 

ratios. 
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It is apparent in these figures that the strain ductility ratio shR  of the proposed 

analytical stress-strain model has a significant effect on the plastic region of the predicted 

axial stress-strain ratio curve.  The model predicts that as shR  increases, the normalized 

plastic stress cpk  at a given normalized plastic axial strain pkε  increases.  This effect is 

less pronounced as the strain ductility ratio shR  of the model approaches the value of the 

equi-biaxial confinement ductility ratio bcR  (i.e., as 0.5=→ bcsh RR ) and as the FRP 

jacket stiffness increases. 

The analytical model forecasts that the shape of the analytical plastic stress-strain 

curve of the FCC section can shift from that of section exhibiting a strain-softening 

behavior to that of a section exhibiting strain-hardening behavior by increasing the strain 

ductility ratio shR , as shown in Figures 10.29 and 10.30. 

The amount of strain-hardening is predicted to be independent of the FRP jacket 

shape, aspect ratio, and stiffness.  In order to accurately predict the shape of the uniaxial 

stress-strain curve of the FCC section the model must adequately predict the value of the 

strain ductility ratio shR  of Eq. (10.11) for all the FCC jacket shapes considered in this 

dissertation. 

The following is a ranking of the parameters that were predicted to affect the 

compressive behavior of FCC section the most: 

1. The FRP jacket stiffness jeK , which is affected by the jacket transverse modulus 

jE , the jacket thickness jt , and the unconfined concrete compressive strength cof  

2. The plastic dilation rate jpµ , which depends on the FRP jacket stiffness jeK  
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3. The FRP jacket shape, which includes the effects of the section aspect ratio shα  

and jacket corner aspect ratio jα  

4. The strain ductility ratio shR  of the FCC section, which affects the slope of the 

plastic region of the FCC section and appears to depend on the FRP jacket shape 

5. The pore water pressure parameter PWn , which is affected by the type of FRP 

jacket application, bonded (BFCC) or unbonded (CFFT) FRP jackets, and the degree 

of saturation (moisture content) of the confined concrete core, which influences the 

effective basic angle of internal friction beφ  of the concrete core. 

This ranking will be demonstrated in the following comparison with experimental 

tests of elliptical (EFCC), circular (CFCC), rectangular (RFCC), and square (SFCC), 

FRP-confined concrete sections. 

 

Comparison with Experimental Tests 

The effectiveness that the proposed uniaxial stress-strain model has in predicting the 

compressive behavior of the FCC section will depend on the model’s ability to predict the 

effects that the concrete material properties such as initial modulus of elasticity ciE , 

initial Poisson’s ratio ciν  and peak unconfined compressive strength cof  and  train coε , 

and effective basic angle of internal friction beφ  have on the stress-strain curve of the 

FRP-confined concrete section. 

Due to the analytical nature of the proposed model, it should be able to accurately 

predict the effects that the FRP jacket properties, such as the FRP jacket stiffness jeK  

(including the plastic dilation rate jpµ ), jacket aspect ratio shα , jacket corner aspect 
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ratio jα , the FRP jacket shape (elliptical, circular, oval, square, or rectangular) and FRP 

jacket construction, i.e., bonded (BFCC) or unbonded (CFFT) FRP jacket, have on the 

compressive behavior of the FRP-confined concrete section. 

The first goal of this dissertation as outlined in Chapter 3 was to develop an analytical 

unified damage-based model for the analysis of rectangular, square, oval, circular, and 

elliptical FCC sections that can capture their dilation and compressive behavior.  This is 

accomplished herein with the introduction of a minimal number of empirical curve-fitting 

parameters, limited to three parameters: 

1. The empirical plastic dilation rpµ  of Eq. (7.23) which was determined from the 

transverse dilation and axial deformation of CFFT  and BFCC concrete cylinder 

tests, as described in Chapter 7 

2. The pore water pressure parameter PWn  of Eq. (9.62) that was found to have an 

average value of 0.59=PWn % for CFFT sections, determined from the analysis 

of CFFT cylinder tests performed by Mirmiran (1997), as described in Chapter 9 

3. The basic angle of internal friction bφ  of Eq. (9.40), a material property of 

normal-strength normal-weight concrete, with an average value of o
35=bφ  for 

dry concrete, determined from the analysis of hydrostatically confined concrete 

cylinder tests performed by Imran (1994), as described in Chapter 9. 

In what follows, the results of the analytical uniaxial stress-strain model developed 

herein are compared to the experimental stress-strain and dilation behavior of FRP-

confined concrete sections of different FRP jacket shapes, confined by FRP jacket of 

varying stiffness, varying unconfined concrete compressive strength, varying section 

aspect ratios shα  (EFCC and RFCC sections), varying jacket corner aspect ratios jα  
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(RFCC and SFCC sections only), and different FRP jacket construction (bonded or 

unbonded).  The stress-strain model introduced in this dissertation has not been calibrated 

to match the compressive stress-strain behavior or dilation behavior of the FCC sections 

previously mentioned.  This indicates that the model predictions are blind predictions of 

the compressive and dilation behavior of the FCC sections considered in these 

comparisons. 

The predictions presented herein are based on the reported section and FRP jacket 

geometry, the mechanical properties of the FRP jacket, i.e., jacket modulus jE  and 

thickness jt , and the unconfined concrete properties, i.e., cof .  The initial modulus of 

elasticity coci EE ≈  used in the analysis was selected to match the experimental 

modulus.  The unconfined peak compressive strain coε  of Eq. (10.6) was determined 

based on matching the experimental compressive stress in the FCC section at an axial 

strain cε  within the range of 0016.00012.0 ≤≤ cε .  The unconfined curvature 

parameter un  was then calculated from Eq. (10.8) using the estimated initial modulus 

ciE  and unconfined peak compressive strain coε .  This was done in order to ensure that 

the influences that both ciE  and coε  have on the predicted stress-strain behavior, 

outlined in the parametric study and shown in Figures 10.12-10.17, are minimized in the 

stress-strain curves predicted by the analytical model. 

 

Circular FRP-Confined Concrete Sections 

The compressive stress-strain behavior predicted by the analytical stress-strain model 

is compared with the uniaxial compressive tests of circular concrete cylinders tests 

confined by either bonded (BFCC sections) or unbonded (CFFT sections) FRP jackets 
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performed by several investigators.  The BFCC sections that are part of this comparison 

include the tests performed by Picher et al. (1996), Xiao and Wu (2000), Rochette and 

Labossiérre (2000), and Teng and Lam (2004) of medium-strength normal-weight 

concrete cylinders confined by circular FRP jackets.  The CFFT sections with FRP 

jackets that are part of this comparison include the tests performed by Mirmiran (1997). 

The results of the analytical model introduced herein are first compared to 

experimental stress-strain behavior and dilation behavior of the concrete cylinder tests 

perform by Xiao and Wu (2000).  The CFCC section considered in this comparison is 

specimen H3-3P-3.  In Figure 10.31 the results of the analytical model are compared to 

the axial stress-axial strain shown in the right-hand quadrant and axial stress-transverse 

strain curve in the left-hand quadrant.  From this figure it can be observed that the 

analytical model can accurately predict the experimental compressive stress-strain 

behavior. 

In Figure 10.32 the analytical axial strain-absolute transverse strain curves predicted 

by the transverse dilation model of Eq. (8.43) and pertinent terms introduced in Chapter 8 

are compared to the experimental test results of specimen H3-3P-3.  As can be observed 

in this figure, the analytical transverse dilation model of Chapter 8 can accurately predict 

the shape of the transverse dilation curve of this circular FCC cylinder test.  In Figure 

10.33 the analytical and experimental Poisson’s ratio jν  of Eq. (7.33) is plotted versus 

the axial and transverse strain of specimen H3-3P-3.  In Figure 10.34 the analytical and 

experimental dilation rate jµ  of Eq. (7.51) is plotted versus the axial and transverse 

strain of specimen H3-3P-3, where the analytical dilation rate curve is that predicted by 

Eq. (8.44).  
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Figure 10.31 Analytical and experimental axial stress versus axial and transverse strain 

curves of concrete cylinder test specimen H3-3P-3 performed by Xiao and 

Wu (2000). 
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Figure 10.32 Analytical and experimental axial stress versus absolute transverse strain 

curves of concrete cylinder test specimen H3-3P-3 performed by Xiao and 

Wu (2000). 
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Figure 10.33 Analytical and experimental Poisson’s ratio versus axial and transverse 

strain curves of concrete cylinder test specimen H3-3P-3 performed by 

Xiao and Wu (2000). 
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Figure 10.34 Analytical and experimental dilation rate versus axial and transverse strain 

curves of concrete cylinder test specimen H3-3 performed by Xiao and 

Wu (2000). 
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From these figures it can be observed that the analytical transverse dilation model of 

Chapter 8 can accurately predict the shape of the Poisson’s ratio and transverse dilation 

rate curves of cylindrical FRP-confined concrete sections.  The experimental dilation rate 

curve shown in Figure 10.34 is a smooth dilation rate curve that was developed from the 

experimental data in order to minimize the noise introduced by the data acquisition 

hardware used in these experiments. 

Poisson’s ratio is the secant slope of the axial versus transverse strain curve, and the 

dilation rate is the tangent slope of the axial versus transverse strain curve, as discussed in 

Chapter 7.  The Poisson’s ratio and dilation rate curves shown in Figures 10.33 and 

10.34 are the secant and tangent slopes of the transverse dilation curve shown in Figure 

10.32. 

In Figure 10.35 the analytical and experimental volumetric strain volε  of Eq. (7.62) 

is plotted versus the axial and transverse strain of specimen H3-3P-3.  In this figure it can 

be observed that the proposed analytical dilation model introduced in Chapter 8 can 

accurately predict the shape of the volumetric strain curves of cylindrical FCC sections.  

This figure demonstrates that the analytical model can accurately predict instant when 

volumetric expansion begins to occur, i.e., when 0≅volε  for 0>cε .  Zero volumetric 

strain occurs when the volumetric strain curves cross the horizontal axis of Figure 10.35. 

The analytical axial volumetric strain ( )volcε  can be found using Eq. (8.37), the 

transverse volumetric strain ( )
voljε  using Eq. (7.63), with the volumetric Poisson’s ratio 

( )
voljν  evaluated using Eq. (7.66). 
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Figure 10.35 Analytical and experimental volumetric strain versus axial strain and 

transverse strain curves of concrete cylinder test specimen H3-3P-3 

performed by Xiao and Wu (2000). 
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A negative volumetric strain indicates that the FRP-confined confined concrete core 

is experiencing volumetric contraction, whereas a positive volumetric strain indicates that 

it experiences volumetric expansion. 

In Figure 10.36 the analytical and experimental volumetric dilation rates mψ  of Eq. 

(7.70) are plotted versus the axial and transverse strain of specimen H3-3P-3.  The 

experimental and analytical axial volumetric dilation rate cψ  of Eq. (7.7.) is plotted on 

the right-hand side of the vertical axis versus the axial compressive strain cε .  In this 

figure the transverse volumetric dilation rate jψ  of Eq. (7.76) is plotted on the left-hand 

side of the vertical axis versus the transverse jacket dilation strain jε .  The experimental 

volumetric dilate rate curve shown in this figure is based on the smooth dilation rate 

curve of Figure 10.34. 

The axial volumetric dilation rate cψ  is the average tangent slope of the volumetric 

strain versus axial strain curve shown on the right-hand side of the vertical axis of Figure 

10.36.  In addition, the transverse volumetric dilation rate jψ  is the tangent slope of the 

volumetric strain versus transverse strain curve plotted on the left-hand side of the 

vertical axial of Figure 10.36.  From this figure it can be observed that the analytical 

transverse dilation model of Chapter 8 can accurately predict the shape of the volumetric 

dilation rate curves of cylindrical FRP-confined concrete sections. 

In Figure 10.37 the analytical and experimental plastic strain ductility ratio pR  of 

Eq. (10.16) is plotted versus the axial and transverse strain of specimen H3-3P-3.  In this 

figure it can be observed that the proposed analytical stress-strain model can predict the 

shape of the plastic strain ductility ratio pR  curves of cylindrical FCC sections. 
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Figure 10.36 Analytical and experimental axial and transverse volumetric dilation rate 

curves of concrete cylinder test specimen H3-3P-3 performed by Xiao and 

Wu (2000). 
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Figure 10.37 Analytical and experimental plastic strain ductility ratio versus axial strain 

and transverse strain curves of concrete cylinder test specimen H3-3P-3 

performed by Xiao and Wu (2000). 



 377 

From analysis of the analytical and experimental curves shown Figures 10.31-10.37 

it can be stated that the proposed incremental uniaxial stress-strain model can accurately 

predict the experimental stress-strain behavior and transverse dilation behavior of FRP-

confined concrete cylinders. 

The ability of the proposed stress-strain model in predicting the uniaxial compressive 

stress-strain behavior and transverse dilation behavior of circular FRP-confined sections 

is further demonstrated in the following comparisons with experimental tests of FRP-

confined concrete cylinders. 

The compressive stress-strain behavior predicted by the proposed analytical model 

introduced herein is compared to the experimental compressive stress-strain behavior of 

the concrete cylinder tests performed by Picher et al. (1996) for specimens C-0 and C-12 

in Figure 10.38. 

Comparisons of the analytical model predictions with the experimental stress-strain 

behavior of FRP-confined concrete cylinder tests performed by Xiao and Wu (2000) are 

shown in Figures 10.39-10.41. 

The analytical and experimental axial stress-transverse strain and axial stress-axial 

strain curves plotted in Figure 10.39 are for the concrete cylinder tests results of low-

strength concrete specimens L1-1P-3 and L1-2P-3. 

The stress-strain curves plotted in Figure 10.40 are the concrete cylinder tests results 

and analytical predictions of medium-strength concrete specimens M1-2P-2 and M1-3P-

1.  The stress-strain curves plotted in Figure 10.41 are the concrete cylinder tests results 

and analytical predictions of high-strength concrete specimen H1-3P-1. 
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Figure 10.38 Analytical and experimental axial stress versus axial strain curves of 

concrete cylinder test specimen (a) C-0 and (b) C-12 performed by Pitcher 

et al. (1996). 
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Figure 10.39 Analytical and experimental axial stress versus axial strain curves of low-

strength concrete cylinder test specimen (a) L1-1P-3 and (b) L1-2P-3 

performed by Xiao and Wu (2000). 
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Figure 10.40 Analytical and experimental axial stress versus axial strain curves of 

medium-strength concrete cylinder test specimen (a) M1-2P-2 and (b) M1-

3P-1 performed by Xiao and Wu (2000). 
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Figure 10.41 Analytical and experimental axial stress versus axial strain curves of high-

strength concrete cylinder test specimen H1-3P-1 performed by Xiao and 

Wu (2000). 
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The first terms in the specimen designation indicates the concrete compressive 

strength where L1 indicates low-, M1 medium-, and H1 high-strength concrete; the 

second terms indicate the number of carbon FRP (CFRP) layers: 1P indicates one layer, 

2P two layers, and 3P 3 layers; the third term indicates the specimen number in the tests 

series.  For a given concrete strength, an increase in FRP jacket thickness indicates an 

increase in the FRP jacket stiffness jeK  of Eq. (4.18). 

The effects that the increase in the FRP jacket stiffness has on the compressive 

behavior of FRP-confined concrete cylinders are plotted in Figure 10.42 for the low-

strength concrete cylinders tests and in Figure 10.43 for the medium-strength concrete 

cylinder tests.  From these figures it can be observed that the proposed analytical model 

can predict and capture the beneficial effects that an increase in the stiffness of the 

confining FRP jacket has on the compressive behavior of cylindrical plain concrete 

sections as is evidenced by the experimental results shown in Figure 10.42(a) and 

10.43(a).  The effects that an increase in compressive strength of the concrete core has on 

the compressive behavior of FRP-confined concrete cylinders, having similar FRP jacket 

stiffness, is investigated in Figure 10.44.  The medium-strength concrete cylinder test 

specimen M1-2P-2 is confined with an FRP jacket having an effective stiffness of 

4.30=jeK  and with 5.27=jeK  for the high-strength concrete cylinder test specimen 

H1-3P-1. 

Analysis of Figure 10.44(b) indicates that the proposed analytical stress-strain model 

can capture the effects that the increase in the compressive strength of the concrete core 

has on the compressive stress-strain behavior of cylindrical FRP-confined concrete 

sections, as evidenced by the experimental results shown in Figure 10.44(a). 
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Figure 10.42 Axial stress-axial strain curves of low-strength concrete cylinder tests 

performed by Xiao and Wu (2000) with FRP jackets of various 

thicknesses: (a) experimental and (b) analytical. 
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Figure 10.43 Axial stress-axial strain curves of medium-strength concrete cylinder tests 

performed by Xiao and Wu (2000) with FRP jackets of various 

thicknesses: (a) experimental and (b) analytical. 
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Figure 10.44 Axial stress-axial strain curves of medium- and high-strength concrete 

cylinder tests performed by Xiao and Wu (2000) with similar FRP jacket 

stiffness: (a) experimental and (b) analytical. 
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The plastic slopes of the axial stress-axial strain curves shown in Figure 10.44 are 

essentially equal.  This is because the specimens considered are confined by FRP jackets 

having similar FRP jacket stiffness jeK ; this is evidenced by the plastic slopes of both 

the experimental and analytical stress-strain curves shown in Figure 10.44. 

In Figure 10.45, the experimental compressive stress-strain behavior of the FRP-

confined concrete cylinder tests performed by Rochette and Labossiérre (2000) for 

specimen C-100-2 is compared to the compressive stress-strain behavior predicted by the 

proposed analytical model introduced herein. 

The compressive stress-strain behavior predicted by the proposed analytical model 

introduced herein is also compared to experimental stress-strain behavior of the FRP-

confined concrete cylinder tests performed by Teng and Lam (2004) in Figure 10.46. 

These figures indicate that the proposed analytical model can accurately predict the 

compressive behavior of circular concrete sections confined by both carbon (CFRP) and 

glass (GFRP) FRP jackets, as shown in Figures 10.46(a) and 10.46(b), respectively. 

In Figures 10.47 and 10.48, the compressive stress-strain behavior predicted by the 

proposed analytical model introduced herein is compared to experimental compressive 

stress-strain behavior of cast in place FRP tubes (CFFT) cylinder tests performed by 

Mirmiran (1997). 

These figures indicate that the proposed analytical model can accurately predict the 

compressive behavior of cylindrical plain concrete sections confined by an unbonded 

(CFFT) glass FRP jacket of low stiffness 1.22=jeK  of specimen DC-11 shown in 

Figure 10.47(a). 
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Figure 10.45 Analytical and experimental axial stress-axial strain curves of concrete 

cylinder test specimen C100-C2 performed by Rochette and Labossiérre 

(2000). 



 388 

0.0

20.0

40.0

60.0

80.0

0 0.004 0.008 0.012 0.016 0.02

Axial strain (mm/mm)

A
x
ia

l 
S

tr
es

s 
(M

P
a)

2 Ply CFRP

Analytical CFRP

 

(a) 

0

20

40

60

80

100

0 0.004 0.008 0.012 0.016 0.02 0.024

Axial strain (mm/mm)

A
x
ia

l 
S

tr
es

s 
(M

P
a)

2 ply GFRP 

Analytical GFRP

 

(b) 

 

Figure 10.46 Analytical and experimental axial stress-axial strain curves of concrete 

cylinder tests performed by Teng and Lam (2004) of specimens confined 

by two plies of (a) carbon (CFRP) and (b) glass (GFRP) FRP jackets. 
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Figure 10.47 Analytical and experimental axial stress-axial strain curves of concrete 

cylinder tests performed by Mirmiran (1997) of specimens confined by (a) 

low stiffness and (b) moderate stiffness unbonded (CFFT) glass FRP 

jackets. 
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Figure 10.48 Analytical and experimental axial stress-axial strain curves of concrete 

cylinder test specimen performed by Mirmiran (1997) confined by a high 

stiffness unbonded (CFFT) glass FRP jacket. 
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The specimen DC-21 that is confined by a moderate stiffness 6.36=jeK  FRP jacket 

shown in Figure 10.47(b) and of specimen DC-31 that is confined by a high stiffness 

6.49=jeK  FRP jacket shown in Figure 10.48. 

These figures show that the proposed analytical stress-strain model can accurately 

predict the uniaxial stress-strain behavior of cylindrical plain concrete sections confined 

by cast in place (CFFT) FRP jackets, typically referred to as unbonded FRP jackets. 

The effects that FRP jacket construction has on the compressive behavior of FRP-

confined concrete is investigated in Figure 10.49.  FRP jacket construction can be 

surface-bonded FRP-confined concrete (BFCC) or it can be cast in place concrete-filled 

FRP tubes (CFFT). 

In this figure, the analytical axial stress ratio cocc ffk =  is plotted versus the axial 

strain ratio cock εεε =  of the FRP-confined concrete cylinder specimen M1-2P-2 

tested by Xiao and Wu (2000) is compared to the analytical curve of the FRP-confined 

concrete cylinder specimen DC-11 tested by Mirmiran (1997) that is confined by a cast in 

place (CFFT) FRP tube. 

These concrete cylinder tests were selected since they are confined by an FRP jacket 

having an identical stiffness; specimen M1-2P-2 has an effective stiffness of 5.22=jeK , 

and specimen DC-11 has 1.22=jeK . 

From analysis of Figure 10.49 it can be observed that at a given plastic axial 

compressive strain, i.e., when 0.1>>εk  or coc εε >> , the bonded FRP-jacketed 

cylindrical concrete section exhibits a greater increase in compressive strength, i.e., an 

increase in strain energy, than a cast-in-place  FRP-jacketed section. 
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Figure 10.49 Comparison of analytical axial stress-axial strain ratio curves of concrete 

cylinders confined by cast in place FRP jacket (DC-11) tested by 

Mirmiran (1997) and by bonded (MP-2P-2) FRP jacket tested by Xiao and 

Wu (2000) that are confined by similar stiffness FRP jackets. 



 393 

For a given axial plastic compressive stress for which 0.1>>εk  or coc εε >> , the 

cast-in-place (CFFT) FRP jacketed section exhibits a significant increase in plastic 

compressive strain, i.e., an increase in strain ductility, when compared to that experienced 

by the bonded (BFCC) FRP-jacketed section.  As a result, for new construction, a cast-in-

place concrete-filled FRP tube (CFFT) construction may be warranted when an increase 

in strain ductility is the desired feature in the FRP-confined concrete section. 

For existing or new cast-in-place concrete sections, surface-bonded (BFCC) FRP 

jacket construction can provide a significant increase in strength and ductility.  Care must 

be taken when selecting the required FRP jacket thickness or stiffness, since low stiffness 

FRP-jacketed sections can experience premature jacket rupture due to stress 

concentrations at the jacket-to-concrete interface, as a result of the axial strain-induced 

transverse dilation of the confined concrete core. 

The difference in behavior between BFCC and CFFT can be attributed to the 

presence of excess pore water in the FRP-confined concrete core.  For the case of BFCC 

sections, the FRP-wrapped concrete is typically allowed to dry to its natural moisture 

content. 

For CFFT sections the cast-in-place FRP jacket serves as a barrier against evaporation 

of the nonhydrated water (i.e., bleed water) which can remain in suspension in the 

concrete mix and often becomes trapped within the voids of the concrete’s structure.  The 

presence of pore water has a significant weakening influence on the strength of the 

concrete material, which is a result of an increase in the pore water pressure, which acts 

against the concrete’s internal structure and weakens the effectiveness of the concrete 

core in sustaining the applied load. 
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An increase in the pore water pressure results from an increase in the passive 

confining stresses provided by the restraining elastic FRP jacket as dilation of the 

confined concrete core progresses; this weakening effect increases as the passive 

confining stress provided by the retraining FRP jacket increases (Imran 1994). 

As demonstrated in Figures 10.31-10.49 the proposed uniaxial stress-strain model for 

FRP-confined concrete sections can accurately capture the essentially bilinear 

compressive stress-strain behavior that circular FRP-confined concrete sections 

experience throughout entire axial compressive loading or deformation.  The bilinear 

behavior of the FRP-confined concrete section is a result of the constant kinematic 

restraint that is provided by the confining elastic FRP jacket, which curtails the transverse 

dilation of the confined concrete core. 

As established in the parametric study [refer to Figure 10.22] and as supported by the 

experimental evidence introduced herein, as shown in Figures 10.42-10.44, an increase 

in the FRP jacket stiffness jeK  of Eq. (4.14) can result in an increase in strain ductility 

and in strain energy.  In addition, for FRP-confined concrete sections experiencing strain-

hardening behavior, the plastic slope of the stress-strain curve is proportional to the FRP 

jacket stiffness as indicated in the parametric study, as demonstrated in Figure 10.22 and 

as supported by the experimental evidence in Figures 10.42-10.44. 

In what follows, shape effects are considered in the comparison of the proposed 

analytical model with the experimental compressive behavior of elliptical (EFCC), 

circular (CFCC), rectangular (RFCC), and square (SFCC) FRP-confined concrete 

sections. 
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Elliptical FRP-Confined Concrete Sections 

The compressive stress-strain behavior predicted by the proposed analytical stress-

strain model is compared with the uniaxial compressive tests of plain elliptical FRP-

confined concrete (EFCC) tests confined by bonded (BFCC) FRP-jackets performed by 

several investigators. These include compressive tests of normal-strength normal-weight 

EFCC sections performed by Teng and Lam (2002) and shape-modified rectangular 

concrete sections confined by elliptical FRP jackets performed by Yan (2005). 

In Figures 10.50-10.53, the compressive stress-strain behavior predicted by the 

proposed analytical model introduced herein is compared to experimental stress-strain 

behavior of elliptical FRP-confined concrete sections performed by Teng and Lam 

(2002). 

The stress-strain curves shown in Figure 10.50 correspond to the series I tests of 

circular (a/b=1.0) and elliptical (a/b=5/4) FRP-confined concrete sections, shown in 

Figure 10.50(a) and (b), respectively. 

The stress-strain curves shown in Figure 10.51 correspond to the series II tests of 

circular (a/b=1.0) and elliptical (a/b=5/4) FRP-confined concrete sections, shown in 

Figure 10.51(a) and (b), respectively. 

The stress-strain curves shown in Figure 10.52 and Figure 10.53 correspond to the 

series V tests of circular (a/b=1.0) and elliptical (a/b=5/4) and (a/b-5/3) FRP-confined 

concrete sections, shown in Figure 10.52(a), (b), and Figure 10.53, respectively. 

From Figures 10.50-10.53, it can be observed that the proposed analytical stress-

strain model can accurately predict the uniaxial stress-strain behavior of elliptical 

concrete sections confined with elliptical FRP jackets. 
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Figure 10.50 Analytical and experimental axial stress-axial strain curves of series I 

elliptical concrete section tests performed by Teng and Lam (2002). 
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Figure 10.51 Analytical and experimental axial stress-axial strain curves of series II 

elliptical concrete section tests performed by Teng and Lam (2002). 
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Figure 10.52 Analytical and experimental axial stress-axial strain curves of series V 

elliptical concrete section tests performed by Teng and Lam (2002). 
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Figure 10.53 Analytical and experimental axial stress-axial strain curves of series V 

elliptical concrete section tests performed by Teng and Lam (2002). 
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The model also accurately predicts the effects that the elliptical FRP jacket aspect 

ratio shα  of Eq. (4.2) has on the uniaxial compressive behavior of elliptical FRP-

confined concrete sections. 

The designation ba /  of the elliptical specimens tested by Teng and Lam (2002), as 

shown in Figures 10.50-10.53, refers to the aspect ratio of the elliptical FRP-confined 

concrete section ccsh BH=α  of Eq. (4.2), with aH c 2=  and bBc 2= . 

In Figure 10.54 and 10.55, the compressive stress-strain behavior predicted by the 

proposed analytical model introduced herein is compared to the experimental stress-strain 

behavior of shape-modified rectangular concrete sections confined by carbon and glass 

elliptical FRP jackets performed by Yan (2005). 

The stress-strain curves shown in Figure 10.54 correspond to the shape-modified 

square concrete section confined by a circular carbon FRP jacket, as shown in Figure 

10.54(a), and a shape-modified rectangular concrete section with an aspect ratio of 

0.3=shα  confined an elliptical carbon FRP jacket, as shown in Figure 10.52(b). 

The stress-strain curves shown in Figure 10.55 correspond to the shape-modified 

square concrete section confined by a circular glass FRP (GFRP) jacket, as shown in 

Figure 10.55(a) and a shape-modified rectangular concrete section with an aspect ratio of 

0.3=shα  confined by an elliptical glass FRP (GFRP) jacket, as shown in Figure 

10.55(b).  From these figures it can be observed that the proposed analytical stress-strain 

model can accurately predict the uniaxial stress-strain behavior of shape-modified 

rectangular and square sections confined by elliptical FRP jackets. 



 401 

0

10

20

30

40

50

0 0.003 0.006 0.009 0.012 0.015

Axial Strain (mm/mm)

A
x
ia

l 
S

tr
es

s 
(M

P
a)

Exp. S-CT-F

Analytical

 

(a) 

0

10

20

30

0 0.002 0.004 0.006 0.008 0.01

Axial Strain (mm/mm)

A
x
ia

l 
S

tr
es

s 
(M

P
a)

Exp. R3-CT-F

Analytical

 

(b) 

 

Figure 10.54 Analytical and experimental axial stress-axial strain curves of (a) square 

and (b) rectangular shape-modified concrete sections confined by carbon 

elliptical FRP jackets performed by Yan (2005). 
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Figure 10.55 Analytical and experimental axial stress-axial strain curves of (a) square 

and (b) rectangular shape-modified concrete sections confined by glass 

elliptical FRP jackets performed by Yan (2005). 
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As shown in Figures 10.54-10.55, the proposed analytical model can predict the 

effects that the FRP jacket aspect ratio shα  of Eq. (4.2) has on the uniaxial compressive 

behavior of shape-modified rectangular (SMR) (including square) sections confined by 

shape–modifying elliptical (ESM) and circular (CSM) FRP jackets. 

Analysis of Figures 10.50-10.55 indicates the proposed analytical model can predict 

the uniaxial compressive stress-strain behavior of elliptical FRP-confined concrete 

sections, be it surface-bonded FRP jacket construction (Teng and Lam 2002) or 

prefabricated circular or elliptical FRP jacket used as a cast-in-place FRP form that shape 

modifies rectangular (including square) sections (Yan 2005).  Also, these figures 

demonstrate that the proposed analytical model can predict the FRP jacket’s aspect ratio 

effects on the uniaxial compression behavior of EFCC sections, as was demonstrated in 

the parametric study of Figure 10.23 and supported by the experimental evidence, as 

shown in Figures 10.48-10.53. 

 

Square FRP-Confined Concrete Sections 

The compressive stress-strain behavior predicted by the proposed analytical stress-

strain model is compared with the uniaxial compressive tests of plain square FRP-

confined concrete (SFCC) tests confined by bonded (BFCC) and unbonded (CFFT) FRP-

jackets with rounded corners performed by several investigators. These include 

compressive tests of SFCC sections with bonded carbon FRP (CFRP) jackets performed 

by Rochette and Labossièrre (2000), Lam and Teng (2003b) and SFCC sections with 

cast-in-place  (CFFT) rectangular glass FRP (GFRP) jackets performed by Mirmiran et 

al. (2000). 
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The compressive stress-strain behavior predicted by the proposed analytical model 

introduced herein is compared to the experimental stress-strain behavior of 152 mm 

square FRP-confined concrete sections performed by Rochette and Labossièrre (2000) in 

Figure 10.56. 

The stress-strain curves plotted in Figure 10.56(a) are for a 152 mm square specimen 

with rounded corners having an average radius of 5 mm, with a jacket corner aspect ratio 

jα  of Eq. (4.4), of 3.3=jα %, whereas the stress-strain curve of Figure 10.56(b) 

corresponds to a square section with 38 mm corner radius, with a jacket corner aspect 

ratio of 0.25=jα %. 

In Figures 10.57-10.58, the compressive stress-strain behavior predicted by the 

proposed analytical model introduced herein is compared to the experimental stress-strain 

behavior of 152 mm square FRP-confined concrete sections with rounded corners, 

performed by Lam and Teng (2003b). 

In Figure 10.57, the compressive stress-strain behavior predicted by the proposed 

analytical model introduced herein is compared to the experimental stress-strain behavior 

of 152 mm square sections confined by a single layer carbon FRP (CFRP) jacket with a 

corner radius of 15 mm corner radius ( 9.9=jα %), as shown in Figure 10.57(a), and 25 

mm corner radius ( 5.16=jα %), as shown in Figure 10.57(b). 

In Figure 10.58, the analytical and experimental stress-strain curves of a 152 mm 

square section confined by a double layer carbon FRP (CFRP) jacket with a 15 mm 

corner radius ( 9.9=jα %) are shown. 
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Figure 10.56 Analytical and experimental axial stress-axial strain curves of square FRP-

confined concrete sections with corners having a radius of (a) 5 mm and 

(b) 38 mm performed by Rochette and Labossièrre (2000). 
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Figure 10.57 Analytical and experimental axial stress-axial strain curves of square 

concrete sections confined by a single layer carbon FRP jacket with (a) 15 

mm and (b) 25 mm corner radius, performed by Lam and Teng (2003b). 
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Figure 10.58 Analytical and experimental axial stress-axial strain curves of a square 

concrete section confined by a double layer carbon FRP jacket with 15 

mm corner radius, performed by Lam and Teng (2003b). 



 408 

The stress-strain curves shown in Figures 10.56-10.58 indicate that analytical model 

can accurately predict the effects that an increase in the jacket corner aspect ratio jα  of 

Eq. (4.4) has on the uniaxial compressive behavior of square (SFCC) sections, as was 

demonstrated in Figure 10.25. 

In Figures 10.59 and 10.60, the compressive stress-strain behavior predicted by the 

proposed analytical model is compared to the experimental stress-strain behavior of 152 

mm square concrete filled FRP tube (CFFT) sections, with 6.35 mm corner radius 

( 2.4=jα %), performed by Mirmiran et al. (2000). 

The experimental stress-strain curves of the square concrete sections confined by a 

single- and double-layer bonded (BFCC) carbon FRP (CFRP) jacket, shown in Figure 

10.61(a), are compared to the analytical stress-strain predictions shown in Figure 

10.61(b) of the tests performed by Lam and Teng (2003b).  In these figures it can be 

observed that the proposed stress-strain model can accurately predict that the stress-strain 

behavior of FCC sections having identical geometries can change from that of a section 

exhibiting a strain-softening behavior to that exhibiting strain-hardening as the FRP 

jacket stiffness jeK  of Eq. (4.18) increases. 

The experimental stress-strain curves of the square CFFT concrete sections confined 

by a 6 ply and 10 ply GFRP jackets performed by Mirmiran et al. (2000), shown in 

Figure 10.62(a), are compared to the analytical stress-strain shown in Figure 10.62(b).  

These figures show that the proposed analytical stress-strain model can predict the effects 

that an increase in the FRP jacket stiffness jeK  has on the compressive behavior of 

square CFFT concrete sections with identical section geometries. 
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Figure 10.59 Analytical and experimental axial stress-axial strain curves of square 

(CFFT) concrete section confined by a (a) 6 ply and (b) 10 ply glass FRP 

jacket, performed by Mirmiran et al. (2000). 
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Figure 10.60 Analytical and experimental axial stress-axial strain curves of square 

(CFFT) concrete section confined by a 14 ply glass FRP jacket, performed 

by Mirmiran et al. (2000). 
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Figure 10.61 Axial stress-axial strain curves of square (BFCC) concrete section 

confined with carbon FRP jackets of varying thickness, performed by Lam 

and Teng (2003b): (a) experimental and (b) analytical. 
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Figure 10.62 Axial stress-axial strain curves of a square (CFFT) concrete section 

confined by glass FRP jackets of varying thickness, performed by 

Mirmiran et al. (2000): (a) experimental and (a) analytical. 
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In Figures 10.61 and 10.62 it is demonstrated that the proposed analytical model 

accurately predicts that an increase in the FRP jacket stiffness jeK  results in an increase 

in the peak and ultimate compressive stresses and strains in the square FCC sections, as 

was demonstrated in the parametric study of Figures 10.22 and 10.23 and supported by 

the experimental evidence, as shown in Figures 10.61 and 10.62. 

Analysis of Figures 10.59-10.62 indicates that the effects that an increase in FRP 

jacket stiffness has on the compressive behavior of square FCC section is independent of 

the FRP jacket construction, be it bonded (BFCC) or unbonded (CFFT) FRP-confined 

concrete sections. 

 

Rectangular FRP-Confined Concrete Sections 

The compressive stress-strain behavior predicted by the proposed analytical stress-

strain model is compared with the uniaxial compressive tests of plain rectangular FRP-

confined concrete (RFCC) tests confined by bonded (BFCC) FRP-jackets with rounded 

corners performed by Lam and Teng (2003b). 

In Figure 10.63, the compressive stress-strain behavior predicted by the proposed 

analytical model introduced herein is compared to the experimental stress-strain behavior 

of 152 mm x 255 mm, i.e., 68.1=shα , rectangular FRP-confined concrete sections with 

rounded corners having a corner radius of 15 mm ( 7.6=jα %), plotted in Figure 

10.63(a), and 25 mm ( 1.11=jα %), plotted in Figure 10.63(b).  The stress-strain curves 

shown in Figure 10.63 indicate that the proposed analytical model can predict the effects 

that an increase in the jacket corner aspect ratio jα  of Eq. (4.4) has on the uniaxial 

compressive behavior of rectangular (RFCC) sections. 
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Figure 10.63 Analytical and experimental axial stress-axial strain curves of rectangular 

concrete sections confined by carbon FRP jacket with (a) 15 mm and (b) 

25 mm corner radius, performed by Lam and Teng (2003b). 
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The proposed model accurately predicts the effects that an increase in the FRP jacket 

stiffness jeK  of Eq. (4.18) has on the compressive behavior of the rectangular FRP-

confined concrete sections previously mentioned. 

For rectangular (RFCC) and square (SFCC) FRP-confined concrete sections the 

model accurately predicts that an increase in the jacket corner aspect ratio jα  can 

significantly improve the uniaxial compressive behavior of these FRP-jacketed shapes by 

increasing both the strain energy and strain ductility of the section.  An increase in the 

jacket corner aspect ratio jα  in RFCC and SFCC sections has many beneficial effects.  

For any RFCC section aspect ratio shα , an increase in jα  results in an increase in the 

confining efficiency ek  of Eq. (4.8), summarized in Table 4.1.  For a given RFCC or 

SFCC section geometry rounding of the corners also increases the effective FRP jacket 

stiffness jeK  of Eq. (4.18), as shown by the effective jacket transverse stiffness ( )
shjeC  

of Eq. (4.14) and the reinforcement ratio coefficient shC  of Eq. (4.17), summarized in 

Table 4.2. 

For rectangular (RFCC) and elliptical (EFCC) FRP-confined concrete sections the 

model accurately predicts the effects that the section aspect ratio shα  has on the uniaxial 

compressive behavior of these FRP-jacketed shapes. 

In order to attain similar performance as a square (SFCC) FRP-confined concrete 

section in a rectangular (RFCC) section, the RFCC section requires an increase in the 

thickness jt  of the FRP jacket and/or an increase in the jacket corner aspect ratio jα , 

which in a reinforced concrete section is limited to small corner radius due to the 

presence of corner bars and transverse steel reinforcing. 
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The use of rectangular FRP jackets should be limited to small section aspect ratios, in 

the range of 0.20.1 ≤≤ shα , while maximizing the jacket corner aspect ratio jα .  The 

use of large aspect ratio rectangular jackets, i.e., for 0.2>shα , with small corner radius, 

is not recommended, since premature rupture of the FRP jacket can occur due to stress 

concentrations near the corners of the RFCC section.  In addition, for large aspect ratio 

rectangular FRP jackets, the jacket experiences an increase in the transverse dilation of 

the confined concrete core along the major dimensions of the rectangular jacket, as 

compared to the dilation that occurs along the minor dimension; this is reflected in the 

transverse strain ratio εα  of Eq. (6.19). 

In order to increase the effectiveness of the confining FRP jacket in a rectangular or 

square concrete section, the section can be shape-modified to be confined by either 

elliptical (rectangular sections) or circular (square sections) FRP jackets, as was 

demonstrated by Yan (2005). 

In order to attain similar performance as a circular (CFCC) FRP-confined concrete 

section from an elliptical (EFCC) section, the EFCC section requires an increase in the 

FRP jacket thickness jt .  The use of elliptical FRP-confined concrete sections limited to 

small jacket aspect ratios shα , in the range of 0.20.1 ≤≤ shα , is recommended. 

The transverse dilation of the elliptical and rectangular FRP jackets is proportional to 

the section aspect ratio; this is reflected in the transverse strain ratio εα  of Eq. (6.19) and 

the jacket shape-dependent angles aθ  and bθ  summarized in Table 5.2.  In addition, the 

confinement effectiveness cck  of the FRP jacket decreases significantly as the aspect 
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ratio shα  of the rectangular and elliptical FRP jacket increases; this is reflected in the 

principal stress ratio σα  of Eq. (9.102). 

The confined concrete within the elliptical or rectangular jackets having high aspect 

ratios experiences a small increase in stress, as the state of stress in the confined concrete 

cores approaches that of concrete in a biaxial compression state of stress.  The smaller the 

aspect ratio shα  of the FRP jacket, the more effective the jacket is in confining the 

concrete core, since at low aspect ratios, the state of stress of the confined concrete 

approaches that of concrete in a triaxial compression state of stress due to a more uniform 

biaxial confinement provided by the FRP jacket.  This occurs as the shape of the FRP 

jacket approaches that of a square jacket in RFCC sections or a circular jacket in EFCC 

sections. 

For FRP-confined concrete sections having identical FRP jacket stiffness jeK  and 

concrete material properties, the proposed analytical model predicts that the most 

effective FRP jacket shape is a circular (CFCC) FRP-jacketed section, since the confined 

concrete core in a circular section is subjected to uniform biaxial confinement.  The 

second most effective jacket shape is an elliptical (EFCC) jacketed section with low to 

moderate aspect ratios, i.e., 0.20.1 ≤< shα , followed by a square (SFCC) jacketed 

section; the least effective FRP jacket shape is a large aspect ratio rectangular (RFCC) 

FRP jacket section with small corner radius. 



 

 

 

 

 

CHAPTER 11 

 

PERFORMANCE-BASED DESIGN OF FRP JACKETS  

FOR PLASTIC HINGE CONFINEMENT 

OF CONCRETE COLUMNS 

 

The encasement of concrete in fiber reinforced polymer (FRP) composite jackets can 

significantly increase the compressive strength and strain ductility of reinforced concrete 

columns, and the structural system the columns are part of, be it a building or a bridge.  

Analysis and design of FRP-confined concrete members require an accurate estimate of 

the performance enhancement due to the confinement provided by FRP composite 

jackets.  An analytical design procedure is presented herein for predicting the behavior of 

reinforced concrete columns confined with either bonded FRP-confined concrete (BFCC) 

sections or concrete-filled FRP tubes (CFFT) or unbonded FRP composite jacketed 

sections. 

This chapter describes the use of the damage-based uniaxial stress model for plain 

FRP-confined concrete introduced in Chapters 1 through 10 that is incorporated into a 

performance-based design procedure for determining the mechanical properties of the 

FRP jacket required to achieve a target performance during a seismic event. 

Rehabilitation of existing concrete structures using advanced FRP composite 

materials is gaining attention due to the need for repair of the existing infrastructure. 

Rehabilitation is undertaken either for strengthening or upgrading the seismic 
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performance of existing reinforced concrete buildings and bridges to significantly 

improve their axial and flexural behavior during a seismic event.  In particular, buildings 

and bridges that were designed using outdated and inadequate seismic codes can benefit 

significantly from seismic retrofit using FRP composites. 

The use of advanced FRP composite materials for improving the shear strength and 

ductility capacity of reinforced concrete members, in particular the use of confinement 

systems utilizing FRP composite jackets, has become a popular structural retrofit option 

for the design engineer in regions of high seismicity (Pantelides et al. 1999, 2001).  

Considerable research has been carried out on the use of FRP composite jackets for 

seismic retrofit of reinforced concrete columns and bridge systems (Saadatmanesh et al. 

1994, Seible et al. 1997, Xiao and Ma 1997, Pantelides et al. 1999, 2001, Ozbakkaloglu  

and Saatcioglu 2006, 2007), for improving the flexural behavior of structural members 

(Haragli 2005, Binici and Mosalam 2007, Mosalam et al. 2007), and for improving axial 

compressive behavior of structural members (Demers and Neale 1999, Mathys et al. 

2005, Tastani et al. 2006, Eid et al. 2008, 2009). 

The presence of FRP composite jackets within the plastic hinge region of a reinforced 

concrete beam-column element can induce the development of ductile flexural behavior, 

while inhibiting premature lap splice, anchorage, or shear failure of a reinforced concrete 

column; this type of behavior is desirable for concrete sections subjected to cyclic lateral 

loads such as those that occur in a seismic event. 

Seible et al. (1995, 1997) introduced a strain energy-based design procedure for the 

plastic hinge confinement of reinforced concrete columns that utilizes the Mander et al. 

(1988) strain energy model for steel-confined concrete.  Monti et al. (2001) introduced a 
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multivariate regression analysis-based upgrading index design procedure that utilizes the 

Mander et al. (1988) confinement model and the Pantazopoulou (1995) dilation and 

stress-strain model for the design of FRP jackets for plastic hinge confinement of 

reinforced concrete columns. 

In the analytical design procedure introduced in this dissertation, the performance 

enhancement in compressive strength and strain ductility of FRP-confined concrete is 

expressed in terms of the internal damage-based stress-strain model previously 

introduced in Chapter 10.  In addition, the design methodology introduced herein will 

expand upon the concept of upgrading indexes, introduced by Monti et al. (2001).  Unlike 

the FRP jacket design procedures presented by Seible et al. (1995, 1997) and Monti et al. 

(2001), no immediate consideration is given to the unknown increase in compressive 

strength due to the passive confinement provided by the confining elastic FRP jacket.  

The design approach presented herein is different in that it is based on the strain ductility 

increase provided by the confining FRP jacket and is thus a strain-based approach using 

performance-based design principles. 

The objective of the design procedure proposed herein is to find a series of 

relationships for the mechanical properties of FRP jacket (i.e., jacket thickness and FRP 

material type) required for upgrading the performance of reinforced concrete structures in 

areas of high seismicity by improving their ductile behavior by means of confinement of 

the plastic hinge region.  In this procedure, no consideration is given to the additional 

confinement and enhanced strain ductility provided by the available hoop reinforcement.  

This can be justified because in many areas, corrosion damage of hoop reinforcement can 

be at such an advanced stage (Pantelides et al. 1999, 2001), and depending on the 
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building period, the spacing and arrangement of the transverse steel are such that their 

contribution can be ignored (Demers and Neale 1999). 

An as-built reinforced concrete column or a new reinforced concrete column with a 

minimal transverse steel reinforcement of a given length cL  in single (Figure 11.1) and 

double (Figure 11.2) curvature bending are considered. 

The displacement ductility of the as-built column ( )ex∆µ  can be found by performing 

a moment-curvature analysis of the reinforced concrete cross section.  Assuming a 

bilinear behavior, in which linear elastic behavior occurs up to the stage of first yield and 

that plastic behavior (rotation) is concentrated at the center of the plastic hinge (Priestley 

and Park 1987), as shown in Figures 11.1-11.3, the displacement ductility, ( )ex∆µ , of 

the as-built column within a rigid system can be approximated by: 
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Figure 11.1 Plot of moment, curvature, and displacement diagrams of a cantilevered 

reinforced concrete element with rigid-base. 
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Figure 11.2 Plot of moment, curvature, and displacement diagrams of a reinforced 

concrete element in double curvature with rigid-base.  
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Figure 11.3 Plot of analytical and bilinear moment-curvature curve of a reinforced 

concrete element  
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where ΦC  is the column curvature coefficient, cL  is the column clear span, and  

=vL VM  is the column shear span; for single curvature bending 0.1=ΦC , and for 

double curvature bending 50.0=ΦC .  In addition, ( )ex∆µ  is the ultimate displacement 

ductility factor of the as-built column; ( )
exu∆  is the analytical maximum displacement of 

the as-built column corresponding to either crushing of the concrete core or the 

displacement corresponding to a 20% reduction in lateral load capacity from the 

maximum value, whichever is less; ( )
exy∆  is the analytical yield displacement of the as-

built column; ( )exΦµ  is the ultimate curvature ductility factor of the as-built column; and 

exλ  is the moment capacity ratio of the as-built column; ( )
exyM  and ( )

exuM  are the 

yield and ultimate moment capacity of the as-built column, respectively.  Also, ( )
exuΦ  is 

the analytical maximum curvature of the as-built column section; ( )
exyΦ  is the analytical 

yield curvature of the as-built column section; pL  is the analytical length of the plastic 

hinge; and pλ  is the normalized plastic hinge length given by Panagiotakos and Fardis 

(2001): 
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where yef  and bld  are the expected yield strength and bar diameter of the longitudinal 

steel reinforcement, respectively; sα  is the reinforcing slippage coefficient, where 

0.1=sα  if slippage in the plastic hinge region is possible, and 0=sα .  Otherwise, the 

use of 0.1=sα  is recommended herein. 
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A reinforced concrete column of a given length cL  with a flexible-base in single 

(Figure 11.4) and double (Figure 11.5) curvature bending are considered.  Using the 

moment-curvature curve of Figure 11.3 and the load displacement curves of Figure 11.6, 

the displacement ductility of the as-built column ( )
exf∆µ  in a flexible structural system 

can be found in terms of the rigid-base displacement ductility ( )ex∆µ  of Eq. (11.1)as 

follows: 
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where ( )
exuf∆  is the ultimate displacement of the as-built column in a flexible system; 

yf∆  is the yield displacement of the as-built column in a flexible system that is divided 

into the column yield displacement y∆  and the elastic displacement due to system 

flexibility es∆  of Eq. (11.8). 
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Figure 11.4 Plot of moment, curvature, and displacement diagrams of a cantilevered 

reinforced concrete element with flexible-base. 
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Figure 11.5 Plot of moment, curvature, and displacement diagrams of a reinforced 

concrete element in double curvature with flexible-base. 
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Figure 11.6 Comparison of typical bilinear load displacement curves of a typical 

reinforced concrete element with rigid and flexible-base. 
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In addition, pf∆  is the plastic displacement of the column in a flexible system that is 

divided into the column plastic displacement p∆  and the plastic displacement due to 

system flexibility ps∆  of Eq. (11.9). Also, s∆  is the displacement due to system 

flexibility that is divided into an elastic es∆  and a plastic ps∆  displacement component, 

as given in Eq. (11.10).  These displacements components are shown graphically in 

Figure 11.6. 

The sC  term in Eqs. (11.7) and (11.11) is a system flexibility coefficient that 

accounts for the elastic flexibility of the existing structure (i.e., soil-structure interaction, 

beam-column connection, beam flexibility, footing-column connection, etc.), where 

typically 0.168.0 ≤≤ sC .  A flexibility coefficient of 0.1=sC  indicates a rigid support 

(i.e., 0=∆=∆ pses ); the lower bound flexibility coefficient 68.0=sC  corresponds to 

an as-built column with a low ductility capacity for which ( ) 0.2=∆ exµ , and a low 

moment capacity ratio for which 05.1=exλ , with an elastic deformation of the system 

es∆  that accounts for one-half of the overall elastic deformation yf∆  (i.e., 

50.0=∆∆= yfesec ).  The term pc  represents the ratio of the percentage increase in 

flexural capacity versus the plastic displacement ductility ypp ∆∆=µ  of the as-built 

column. 

In what follows, a rehabilitation design methodology is proposed for a rigid-base 

system which is modified to include the effects of system flexibility on the displacement 

demands imposed on the existing reinforced concrete column, during a seismic event. 
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Upon reviewing the as-built drawings, taking into consideration the period of 

construction and performing a sectional analysis of the existing reinforced concrete 

column, the design engineer can recognize that the existing column has inadequate 

ductile capacity, for which ( ) 0.2<∆ exµ .  It is then established that upgrading of the 

existing column may be required to achieve a desired level of performance during a 

seismic event.  Thus by selecting a given target ultimate displacement ductility ( )up∆µ  

of the column to achieve a ductile performance during a seismic event, the design 

engineer can establish a target displacement upgrading index ∆I  that is defined as: 
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where ( )upu∆  target maximum displacement of the FRP-upgraded column corresponding 

to either crushing of the concrete core at fracture of the FRP jacket, or the displacement 

corresponding to a 20 % reduction in lateral load capacity from the maximum value, 

whichever is less; ( )
upy∆  analytical yield displacement of the FRP-upgraded column; 

and upλ  is the moment capacity ratio of the as-built column; ( )
upyM  and ( )upuM  are 
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the yield and ultimate moment capacity of the FRP-upgraded section, respectively.  Also, 

( )upuΦ  and ( )
upyΦ  of Eq. (11.16) are the analytical ultimate and yield curvature of the 

rigid-base FRP-upgraded section, respectively. 

As was established by Monti et al. (2001) and verified herein, at low curvatures, the 

presence of the FRP jacket does not significantly affect the analytical yield curvature, 

yield displacement, or yielding moment capacity of the reinforced concrete column, 

which indicates that ( ) ( )
exyupy Φ≅Φ , ( ) ( )

exyupy ∆≅∆ , and ( ) ( )
exyupy MM ≅ .  As a 

result, the selected target displacement of the FRP-upgraded column ( )upu∆  of Eq. 

(11.14) is given by: 
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where upΛ  is the ultimate moment capacity ratio of the FRP-upgrade column, this ratio 

represents the increase in moment capacity of the FRP-upgraded column.  Depending on 

the effective stiffness of the confining FRP jacket jeK  of Eq. (4.18), upΛ  of Eq. (11.18) 

is in the range of 50.10.1 ≤Λ≤ up , with 50.1=Λup  corresponding to a concrete column 

confined by a high stiffness FRP jacket, and 0.1=Λup  when no upgrade is provided. 

In order to account for the flexibility of the system, the target displacement upgrading 

index of the flexible system fI∆  is given by: 
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where ( )
upf∆µ  is the displacement ductility of the upgraded column in a flexible system.  

Using the target displacement upgrading index of the flexible system fI∆  of Eq. (11.19), 

the displacement ductility of the existing flexible system ( )
exf∆µ of Eq. (11.6) and the 

displacement ductility of the upgraded column ( )
upf∆µ  of Eq. (11.20) and solving for the 

target displacement ductility of the upgraded column ( )up∆µ  of Eq. (11.14) yield: 
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Substituting the displacement ductility of the existing rigid-base column ( )ex∆µ  of 

Eq. (11.1) into the displacement ductility of the existing flexible system ( )
exf∆µ of Eq. 

(11.6) and solving for the curvature ductility of the existing column ( )exΦµ  yield: 
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Solving for the target curvature ductility of the upgraded column ( )upΦµ  in Eq. 

(11.17) yields: 
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where in the above relationship the displacement ductility of the upgraded column 

( )up∆µ  of Eq. (11.21) is substituted into (11.23).  This indicate that the target curvature 

ductility of the FRP-upgraded column ( )upΦµ  can be obtained in terms of the selected 

displacement upgrading index of the flexible system fI∆  of Eq. (11.19) and the 

displacement ductility of the as-built column ( )ex∆µ  of Eq. (11.1), which is determined 

from a nonlinear section analysis of the existing column. 

Once the target displacement upgrade index of the flexible system fI∆  of Eq. 

(11.19) is selected to achieve a given target displacement ductility ( )up∆µ  of the column, 

a curvature upgrading index ΦI , of the reinforced concrete column can be determined 

using Eqs. (11.22) and (11.23)as follows: 
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The previous target curvature upgrading index ΦI  is determined based on the target 

displacement upgrading index fI∆  of Eq. (11.19).  Using the assumptions of plane 

sections remaining plane and considering that at yielding ( ) ( )
exyupy Φ≅Φ , the curvature 

upgrading index ΦI  of Eq. (11.24) can be further simplified as: 
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where ( )
excuε  and ( )

exuc  are the ultimate compressive strain and neutral axis depth of 

the as-built column, respectively, which are known quantities determined by the design 

engineer during a sectional analysis of the as-built section.  Also, ( )upcuε  and ( )upuc  are 

the target ultimate compressive strain and neutral axis depth of the FRP-upgraded 

column, respectively, which are unknown properties of the FRP-upgraded column.  

Solving for the unknown ultimate curvature ( )upuΦ  of the FRP-upgraded section in Eq. 

(11.25) yields: 
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On the left-hand side of Eqs. (11.26) and (11.27) are the unknown target ultimate 

compressive strain ( )upcuε  and neutral axis depth ( )upuc  of the FRP-upgraded column.  

On the right-hand side of these equations, the known parameters ( )
excuε  and ( )

exuc  are 
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determined from a section analysis of the existing as-built reinforced concrete column.  

The unknown target ultimate compressive strain ( )upcuε  and neutral axis depth ( )upuc  

of the FRP-upgraded column can be found by rearranging equation Eqs. (11.26) and 

(11.27), which yields the following strain ductility upgrading index εI : 
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where cI  is the neutral axis upgrading index, an unknown geometric parameter of the 

upgraded FRP-confined concrete section. 

In this investigation, a parametric study was performed using a moment-curvature-

based analytical model of the as-built and FRP-upgraded circular concrete sections in 

order to obtain a numerical relationship for the unknown neutral axis upgrading index cI  

of (11.29), in terms of the target curvature upgrading index ΦI  of Eqs. (11.24) and 

(11.25), where: 

 

 ( )Φ= IIc F  (11.30) 

 

where F denotes a functional relationship between unknown neutral axis upgrading index 

cI  and the target curvature upgrading index ΦI . It should be noted that when no upgrade 

is provided, all upgrading indexes have a unity value, i.e., 0.1==== ∆Φ IIII cε .  In 

this parametric study, the performance enhancement due to confinement provided by 
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bonded carbon (CFRP) and glass (GFRP) FRP jackets in the potential plastic hinge 

region is assessed.  A list of the parameters considered in the parametric study are given 

in Table 11.1. 

In Figure 11.7 a series of typical normalized flexural capacity, yMMM =
_

 versus 

curvature ductility yΦΦ=Φµ  curves corresponding to the curvature range of 

uΦ≤Φ≤0  of an as-built (unconfined) and FRP-upgraded circular column sections are 

shown.   In this figure, it can be observed that as the normalized stiffness of the FRP 

jacket jeK  increases, the normalized ultimate moment capacity of the FRP-upgraded 

section slightly increases and the curvature ductility of the columns is significantly 

increased by the presence of the confining FRP jacket.  The range of FRP jacket stiffness 

jeK  is 0.250.10 <≤ jeK  for low stiffness and 0.600.25 << jeK  for high stiffness FRP 

jackets. 

In Figure 11.8 a series of typical normalized neutral axis height cDcc /
_

=  versus 

curvature ductility yΦΦ=Φµ  curves corresponding to the curvature range of 

uy Φ≤Φ≤Φ  of an as-built and an FRP-upgraded circular column section are shown.  In 

this figure, it can be observed that as the stiffness of the FRP jacket jeK  increases, the 

normalized neutral axis height at failure cuu Dcc =
−

 decreases nonlinearly. 

In Figure 11.9 the neutral axis upgrading index cI  of Eq. (11.29) of the concrete 

columns considered in this parametric study are plotted versus the curvature upgrading 

index ΦI  evaluated using Eq. (11.25). 
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Table 11.1 Parameters considered in the assessment of the performance 

enhancement due to confinement provided by FRP jackets in the 

potential plastic hinge region. 

 

 

Parameters Range 

Column  

Column Diameter  ( )cD  (mm) 460, 610, 915 

Unconfined concrete strength ( )cof  (MPa) 28, 34, 41 

Longitudinal steel strength ( )ylf  (MPa) 275, 410 

Axial load ratio ( )n  0.10, 0.20, 0.30 

Longitudinal steel reinforcement ratio ( )slρ  0.01, 0.02, 0.03 

Cover (mm) 38 

 

FRP Jacket   

Normalized FRP jacket stiffness ( )jeK  15, 30, 60, 100 

Glass FRP hoop modulus ( )jE  (GPa) 25, 35 

Carbon FRP hoop modulus ( )jE  (GPa) 80, 125 

Ultimate transverse jacket strain ( )juε  (mm/m) 8.5, 12.5, 15.0 

where: 

 ( )coc fAPn =   ;  cslsl AA=ρ  

  =P  Axial compressive load in the column 

 ( ) 4/
2

cc DA π= = Gross column area 

 =slA  Longitudinal steel area 
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Figure 11.7 Normalized flexural strength versus curvature ductility of unconfined and 

FRP-confined reinforced concrete section. 
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Figure 11.8 Normalized neutral axis depth versus curvature ductility of unconfined 

and FRP-confined reinforced concrete section. 
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Figure 11.9 Numerical and empirical neutral axis upgrading index versus curvature 

upgrading index. 
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From this figure it can be observed that as curvature upgrading index ΦI  increases, 

the neutral axis upgrading index cI  tends to decrease nonlinearly.  As shown in Figure 

11.10, the maximum value of the neutral axis upgrading index cI  of 0.1=cI  occurs 

when 0.1=ΦI , i.e., when no upgrade is provided.  The solid line plotted in this figure is 

the best fit curve determined from regression analysis, in which the unknown neutral axis 

upgrading index cI  is defined in terms of the target curvature upgrading index ΦI  as: 

 

 ( ) 38.0
120.01 −−= ΦIIc  (11.31) 

 

The above empirical relationship was found to have a coefficient of correlation of 

0.972 ≅R  % and a standard deviation of 21060.2 −= xσ . 

In Figure 11.10, the numerically obtained strain ductility upgrading index evaluated 

using εI  of Eq. (11.28) is plotted versus the curvature upgrading index ΦI  evaluated 

using Eq. (11.25).  In this figure, the strain ductility upgrading index εI  obtained by 

substituting the neutral axis upgrading index cI  of Eq. (11.31) from regression into Eq. 

(11.28) is also plotted as a solid curve.  From this figure, it can be observed that with the 

use of Eqs. (11.28) and (11.31) the relationship between the strain ductility upgrading 

index εI  and the target curvature upgrading index ΦI  can be accurately predicted. 

In the parametric study performed herein, the assumptions of (a) plane sections 

remaining plane, (b) perfect bond between the reinforcing steel and concrete, and (c) no 

buckling of longitudinal steel reinforcing were made. 
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Figure 11.10 Numerical and empirical strain ductility upgrading index versus curvature 

upgrading index. 
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In a typical column subjected to transverse shear, the assumption of plane sections 

remaining plane may not apply due to the presence of inclined shear cracks, which can 

induce an increase in steel stresses and strains beyond those predicted by the plane 

sections hypothesis.  Also, at high levels of axial compressive strains, buckling of 

longitudinal steel reinforcement in the potential plastic hinge region may occur if the FRP 

jacket does not provide adequate lateral restraint to prevent buckling of the steel 

reinforcement.  In addition, at high levels of axial tensile strains, bond degradation of the 

lap-spliced longitudinal reinforcement in the potential plastic hinge region may occur if 

the FRP jacket cannot adequately curtail the transverse dilation of the confined concrete 

core and cover. 

The presence of transverse shear and a strain gradient may significantly affect the 

dilation behavior of the concrete core when compared to that of a circular concrete 

column subjected to monotonically increasing concentric axial load or deformation.  In 

the development of Eq. (11.31) the effects of strain gradient, transverse shear, and bond 

degradation of the lap splice, among others, were ignored in the analysis.  As a result, for 

design purposes, it is recommended that a conservative value of the target ultimate 

compressive strain, ( )upcuε , be obtained by conservatively estimating the target neutral 

axis upgrading index cI  of Eq. (11.31) as follows: 

 

 ( ) 0.1120.008.1
38.0 ≤−−= ΦIIc  (11.32) 

 

The above relationship represents a mean plus three standard deviation prediction of 

the neutral axis upgrading index cI , when 04.1≥ΦI  and 0.1=cI  otherwise.  The 

results of the above relationship are plotted as heavy dashed curves in Figures 11.9 and 
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11.10.  As shown in these figures, by substituting the neutral axis upgrading index cI  of 

Eq. (11.32) into the strain ductility upgrading index εI  of Eq. (11.28) a conservative 

estimate of the target ultimate compressive strain ( )upcuε  is obtained, as will be shown in 

the design examples. 

Substituting the neutral axis upgrading index cI  of Eq. (11.29) into the strain 

ductility upgrading index εI  of Eq. (11.28) and solving for the target ultimate 

compressive strain ( )upcuε , in the FRP-confined concrete yield: 

 

 ( ) ( )excucupcu II εε Φ=  (11.33) 

 

The target ultimate compressive strain ( )upcuε  can also be obtained in terms of the 

design ultimate jacket diagonal strain ( )
upjuε  in the FRP-confined concrete section by 

using the definition of the jacket Poisson’s ratio jν  of Eq. (7.32).  Setting ( )
upjuj εε = , 

( )upcuc εε = , and juj νν =  in Eq. (7.32) and solving for the target ultimate compressive 

strain ( )upcuε  yield: 

 

 ( )
( )

ju

upju

upcu ν

ε
ε −=  (11.34) 

 

where juν  is the unknown target ultimate diagonal dilation Poisson’s ratio.  In Chapter 8 

it was established that at high axial plastic compressive strains cpε , where 
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cucpco εεε ≤<< , the Poisson’s ratio jν  of the FRP-jacketed section approaches the 

plastic jacket dilation rate jpµ  of Eq. (7.23).  This indicates that at high axial 

compressive strains jpju µν ≅ .   In addition, the diagonal plastic dilation rate jpµ  of Eq. 

(7.23) was determined to be a function of the normalized effective stiffness of the FRP 

jacket jeK  of Eq. (4.18) and the geometry of the FRP-confined concrete section, as 

discussed in Chapter 4. 

The diagonal plastic dilation rate jpµ  of Eq. (7.23) can range between 

2≤≤ jpci µν , with the upper value corresponding to essentially unconfined concrete, 

i.e., as 0→jeK , and the lower value corresponds to a linear elastic behavior which can 

occur as ∞→jeK .  Thus setting jpju µν =  in Eq. (11.34), substituting the target 

ultimate compressive strain ( )upcuε  of Eq. (11.33), and solving for the diagonal plastic 

dilation rate jpµ  yield: 

 

 ( )
( )
( )

( )
( )

excuc

upju

upcu

upju

upjp
II ε

ε

ε

ε
µ

Φ
−=−=  (11.35) 

 

When compared to the ultimate tensile strain fuε  of standard tensile coupon tests, the 

actual rupture strain of the confining FRP jacket Huε  can occur at much lower strains 

(Eid et al. 2008) due to stress-concentrations at the jacket to concrete interface due to 

axial strain-induced damage (internal cracking, aggregate sliding or crushing, void 

compaction, or nucleation) of the confined concrete and at the rounded corners of 

rectangular FRP-jacketed sections.  Huε  is defined as the ultimate strain in the confined 
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concrete section along the major dimension of the FRP jacket.  The jacket failure strain 

ratio εκ  is defined as: 

 

 
fu

Hu

ε
εκε =  (11.36) 

 

where the above jacket failure strain ratio εκ  ranges between 95.035.0 ≤≤ εκ  with an 

average value of 70.0≈εκ  (Demers and Neale 1999, Mathys et al. 2005, Tastani et al. 

2006, Ozbakkaloglu and Saatcioglu 2007, Eid et al. 2009).  The above jacket failure 

strain ratio εκ  is approximated as: 

 

 707.0
2

2 =≅=
fu

Hu

ε
εκε  (11.37) 

 

The above relationship estimates that failure of a FRP jacket occurs when 

fuHu εε 707.0= .  The diagonal strain in the FRP jacket juε , corresponding to the 

ultimate jacket strain Huε , is given by: 

 

 Hu
j

ju ε
α
β

ε
ε 









=  (11.38) 

 

where jβ  is the transverse strain coefficient defined in Eq. (6.54) and summarized in 

Table 6.1, and εα  is the transverse strain ratio defined in Eq. (6.52).  As shown in 

Chapter 6, both jβ  and εα  depend only on the geometry of the FRP-confined section. 
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Using Eqs. (11.37) and (11.38) and setting ( ) juupju εε = , the diagonal failure strain 

( )
upjuε  of the confining FRP jacket can be can be given in terms of the ultimate coupon 

tensile strain fuε  as follows: 

 

 ( ) fu
j

upju ε
α
β

ε
ε 









=
2

2
 (11.39) 

 

Using the diagonal plastic dilation rates jpµ  of Eq. (7.23) and ( )
upjpµ  of Eq. 

(11.35), using ( )
upjuε  of Eq. (11.38) and setting ( )

upjpjp µµ =  and ( )
upjeje KK =  and 

solving for the effective stiffness of the upgrading FRP jacket ( )
upjeK  yield: 

 

 ( )
( )

( ) 















−
−

−
== 1

2
35

ciupjp

ci

co

upje

upje
f

C

K
νµ

ν
 (11.40) 

 ( ) jshe
c

j

upje ECk
H

t
C 










=  (11.41) 

 

where ( )
upjeC  is the effective confining stiffness of the upgrading FRP jacket; cof  is the 

unconfined peak compressive strength of the concrete core;, ciν  is the initial Poisson’s 

ratio of the concrete core where typically 25.015.0 <≤ ciν  and a value of 20.0=ciν  is 

recommended herein; jt  is the FRP jacket thickness; jE  is the transverse modulus of the 

confining FRP jacket; ek  is the confining efficiency of the FRP jacket, defined in Eq. 

(4.8) and summarized in Table 4.1; shC  is the jacket reinforcement ratio coefficient 
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defined in Eq. (4.12) and summarized in Table 4.2.  In order to properly mitigate the 

transverse dilation of the confined concrete core to provide adequate restraint against 

unrestrained dilation of the confined concrete core and to provide adequate restraint 

against premature buckling of the vertical steel reinforcement in the reinforced concrete 

column, a minimum FRP jacket stiffness of 0.15=jeK  is recommended herein. 

Substituting ( )
upjeC  of Eq. (11.41) into Eq. (11.40) and solving for the minimum 

required thickness of the upgrading FRP jacket ( )
upjt  yield: 

 

 ( ) ( )













≅

jshe

coc

upjeupj
ECk

fH
Kt  (11.42) 

 

where the normalized effective stiffness of the upgrading FRP jacket ( )
upjeK  is 

determined using Eq. (11.40).  The previous relationship indicates that in order to obtain 

a certain level of performance in the reinforced concrete beam-column element, as 

measured by the target displacement upgrading index of the flexible system fI∆  of Eq. 

(11.19) and the target curvature upgrading index ΦI  of Eqs. (11.24) and (11.25), the 

required thickness ( )
upjt  of the FRP jacket depends on the shape and the geometry of the 

FRP-confined section as measured by the confining efficiency ek  of Eq. (4.8), the FRP 

jacket shape-dependent reinforcement ratio coefficient shC  of Eq. (4.12), and the major 

dimension cH  of the FRP-confined section. 

The target FRP jacket thickness ( )
upjt  also depends on the mechanical properties of 

the concrete core as measured by its unconfined compressive strength cof  and the 
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mechanical properties of the FRP jacket as measured by its average transverse modulus 

jE  and diagonal failure strain ( )
upjuε . 

As shown in Eqs. (11.35)-(11.42), the information required to determine the FRP 

jacket design thickness is (1) the geometry of the concrete section or new FRP jacket, (2) 

the unconfined concrete core strength cof , (3) the material properties of the selected FRP 

jacket; and (4) the ultimate design FRP jacket strain ( )
upjuε , determined based on the 

type of FRP jacket material (CFRP or GFRP) selected by the design engineer. 

 

Damage-Based Design Procedure 

If the evaluation of the as-built reinforced concrete column indicates that the 

calculated ductility demand on the column exceeds its ductile capacity, retrofit of the as-

built column may be required to achieve a ductile performance during a seismic event.  

The design of the FRP jacket for plastic hinge confinement can be achieved as follows: 

1. Determine the geometrical and mechanical properties of the as-built column. Perform 

a section analysis to determine the moment-curvature behavior of the as-built column 

section; find the yield curvature yΦ  and the moment capacity ratio exλ  of Eq. 

(11.3). 

2. Determine or estimate the plastic hinge length using pλ of Eq. (11.4), the column 

curvature coefficient ΦC  of Eq. (11.5), and the system flexibility sC  coefficient of 

Eq. (11.11). 

3. Perform a pushover analysis to determine ( ) ( )
exyuex ∆∆=∆ /µ  of Eq. (11.1) using 

( ) ( )
exyfufexf ∆∆=∆ /µ  of Eq. (11.7).  Estimate ( )exΦµ  of Eq. (11.22) and calculate 
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( ) ( )
exyexu Φ=Φ Φµ .  Determine ( )

exuc  corresponding to ( )
exuΦ  and find the 

analytical ultimate compressive strain ( ) ( )
exuuexcu c Φ=ε  of the as-built column. 

4. Select the target displacement upgrading index fI∆  of Eq. (11.19), estimate the 

increase in moment capacity of the FRP-upgraded column using upΛ  of Eq. (11.18), 

and determine the target curvature ductility ( )upΦµ  of Eq. (11.23). 

5. Estimate the target curvature upgrading index ΦI  of Eq. (11.24).  Estimate the 

neutral axis upgrading index cI  of Eq. (11.32) and the target ultimate compressive 

strain ( )upcuε  using Eq. (11.33). 

6. Determine the geometric properties of the FRP jacket including the FRP jacket aspect 

ratio shα  of Eq. (4.2); the jacket corner aspect ratio jα  of Eq. (4.4) (rectangular and 

square jackets only); the confining efficiency ek  of the FRP jacket  as summarized in 

Table 4.1; the jacket reinforcement ratio coefficient shC  of the FRP jacket as 

summarized in Table 4.2; the transverse strain coefficient jβ  summarized in Table 

6.1; and the transverse strain ratio εα  of Eq. (6.52). 

7. Select the lower bound material properties of confining FRP jacket including the 

design jacket hoop modulus jE  and design tensile coupon failure strain fuε .  

Estimate the jacket diagonal failure strain ( )
upjuε  of Eq. (11.38) and the target 

diagonal plastic dilation rate ( )
upjpµ  using Eq. (11.35). 

8. Estimate the effective stiffness of the upgrading FRP jacket ( )
upjeK  of Eq. (11.40). 
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9. Determine the minimum required thickness of the FRP jacket, ( )
upjt  using Eq. 

(11.42). 

 

Design Examples 

Circular FRP-Upgraded Concrete Column 

The as-built and FRP-upgraded reinforced circular cantilevered concrete columns 

tested by Seible et al. (1997), with the experimental and analytical properties summarized 

in Table 11.2 are considered in this design example. 

Section analysis of the as-built column indicates that the yield curvature is 

mmradxy /1008.7 6−=Φ  and 0.1≈exλ .  The normalized plastic hinge length of Eq. 

(11.4) is estimated as ( ) 142.03658/)19)(303(014.012.0 =+=pλ  or a plastic hinge length of 

520=pL  mm. 

For this cantilevered column the curvature coefficient is 0.1=φC  and the system 

flexibility coefficient is approximated as 90.0=sC .  The pushover analysis and 

experimental test results indicate that as-built column experiences a displacement 

ductility of approximately ( ) ( ) 2.2/ ≈∆∆=∆ exyfufexfµ . 

The ultimate curvature ductility of the as-built column ( )exΦµ  of Eq. (11.22) is 

estimated as: 

 

 ( ) ( ) ( )
( )

37.4
356.0

20.1
1

142.050.01142.0

12.2119.0

9.03

1
1 =+=


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⋅−
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⋅
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




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
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Φ
Φ

=Φ
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u
exµ  (11.43) 
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Table 11.2 Column specifications and details of cantilevered reinforced concrete 

columns confined by FRP jackets in the potential plastic hinge region 

performed by Seible et al. (1997). 

 

Properties 

 

Circular 

Section 

Rectangular 

Section 

Column Height ( )cL   3.658 m 3.658 m 

Column Shear Span ( )vL  3.658 m 3.658 m 

Column Depth ( )cH  610 mm 730 mm 

Column width ( )cB  610 mm 489 mm 

Concrete strength ( )cof  34.45 MPa 34.45 MPa 

Longitudinal reinforcing diameter 

( )bld  

19 mm  25 mm and 

22 mm 

Axial Load ( )uP  1,780 KN 1,780 KN 

Section 

Corner radius ( )jR  305 mm 25 mm 

Jacket Modulus ( )jE  124 GPa 124 GPa FRP jacket 

Ultimate Strain ( )fuε  0.010 mm/mm 0.010 mm/mm 

 FRP jacket Thickness ( )jt  5.1 mm 10.2 mm 
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From the moment-curvature analysis of the section, the curvature ductility of the 

existing column is found as ( ) ( ) mmradxxyexu
56 1009.31008.737.4 −−

Φ ==Φ=Φ µ .  

This corresponds to a neutral axis depth of 2.208=uC  mm and an ultimate strain of 

( ) ( ) 00633.0)1009.3(2.208 5 ==Φ= −xc exuuexcuε  mm/mm. 

Upgrading the displacement ductility of the as-built column with a minimum target 

displacement ductility of ( ) ( ) 0.8== ∆∆∆ exffupf I µµ  or a displacement upgrading index 

of ( ) ( ) 64.3≈= ∆∆∆ exupff fI µµ  yields the displacement ductility of the upgraded 

column ( )up∆µ  of Eq. (11.21): 

 

 ( ) ( ) 30.8
90.0

164.3
12.264.31 =







 −+−⋅+=














∆
∆

=∆
upyf

uf

upµ  (11.44) 

 

Assuming an increase in moment capacity 25.1=Λup  yields an ultimate upgrading 

curvature of ( )upΦµ  of Eq. (11.23): 

 

 ( )
( )( )
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395.0

05.7
1

142.050.01142.0
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upµ  (11.45) 

 

This results in a curvature upgrading index of 31.437.4/85.18 ==ΦI  of Eq. (11.24) 

and a neutral axis upgrading index ( ) 0.1765.0131.420.008.1
38.0 ≤=−−=cI  of Eq. 

(11.32).  Using Eq. 11.33 yields the ultimate compressive strain in the FRP-confined 

concrete ( )upcuε  of ( ) ( ) ( )( )( ) 0209.000633.031.4765.0 === Φ excucupcu II εε  mm/mm. 
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For a coupon failure strain of 010.0−=fuε  mm/mm, considering that for a circular 

section 0.1=== ej kεαβ , and using Eq. (11.37) and (11.38) the ultimate design jacket 

strain is given by ( )( ) 00707.0010.0707.0 −=−== Huju εε  mm/mm.  The diagonal 

plastic dilation rate ( )
upjpµ  of Eq. (11.35) yields ( ) 339.00209.000707.0 ==

upjpµ .  

Calculating the normalized effective stiffness of the upgrading FRP jacket ( )
upjeK  using 

Eq. (11.40) yields: 

 

 ( ) 44.681
20.0339.0

20.02
35 =














−

−
−=

upjeK  (11.46) 

 

Using the material properties of the confining continuous carbon FRP jacket, where 

GPaEj   124=  and 0.1=ek , and calculating the required FRP jacket thickness ( )
upjt  

using Eq. (11.42) yield: 

 

 ( ) ( ) mm80.5
)124000(2

)45.34(610
44.68 =








=

upjt  (11.47) 

 

This is approximately 13.7% larger than the 5.1 mm jacket used in the cantilevered 

reinforced concrete column test by Seible et al. (1997), which performed to a 

displacement ductility of approximately 0.10≈∆µ .  This indicates that the proposed 

performance-based design procedure can yield a conservative design for the plastic hinge 

confinement of reinforced concrete columns in combined axial load and flexure.  If a 

glass FRP jacket is selected with a modulus of elasticity of 27.0 GPa, a jacket thickness 
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of ( ) mm2.26=
upjt would be required.  This thickness represents a 460% increase in 

thickness of the confining FRP jacket when compared to the carbon FRP jacket design. 

The analytical stress-strain curve of the circular cantilevered reinforced concrete 

column test by Seible et al. (1997), evaluated using the section properties and dimensions 

listed in Table 11.2, is plotted in Figure 11.11.  From this figure it can be observed that 

the FRP-confined concrete experiences a significant increase in axial compressive strains, 

which is responsible for the significant increase in ductility experienced by the circular 

FRP-upgrade reinforced concrete section tested by Seible et al. (1997).  These analytical 

stress-strain curves were used in an analytical incremental moment-curvature-based 

pushover analysis of the circular FRP-confined cantilevered reinforced concrete column. 

The results of the analytical pushover analysis are compared to the experimental load-

displacement curve in Figure 11.12.  From this figure it can be observed that the 

proposed analytical stress-strain model introduced in Chapter 10 in combination with the 

spreadsheet-based analytical pushover model developed herein can accurately predict the 

pushover curve of the circular cantilevered reinforced concrete column test. 

 

Rectangular FRP-Upgraded Concrete Column 

The as-built and FRP-upgraded rectangular cantilevered reinforced concrete columns 

in single curvature tested by Seible, et al. (1997), with the experimental and analytical 

properties summarized in Table 11.2 are considered in this design example.  A section 

analysis of the as-built column indicates that the yield curvature is 

mmradxy /1001.5 6−=Φ  and 0.1≈exλ . 
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Figure 11.11 Comparison of the uniaxial stress-strain curves of the unconfined and 

FRP-confined concrete within the plastic hinge region of the circular 

cantilevered reinforced concrete columns tested by Seible et al. (1997). 
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Figure 11.12 Comparison of the analytical and experimental pushover curves of the 

circular cantilevered reinforced concrete columns tested by Seible et al. 

(1997). 
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The normalized plastic hinge length of Eq. (11.4) is estimated as 

( ) 149.03658/)25)(2.303(014.012.0 =+=pλ  or a plastic hinge length of 545=pL  mm.  For 

a cantilevered column in single curvature, the curvature coefficient is 0.1=φC ; the 

system flexibility coefficient is approximates as 90.0=sC . 

Analytical pushover analysis and tests results indicate that a displacement ductility of 

the as-built column of approximately three, i.e., ( ) ( ) 0.3/ ≈∆∆=∆ exyfufexfµ .  The 

ultimate curvature ductility of the as-built column ( )exΦµ of Eq. (11.22) is estimated as: 
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From the moment-curvature analysis of the section, the curvature ductility of the 

existing column is found as ( ) ( ) mmradxxyexu
56 1019.31001.537.6 −−

Φ ==Φ=Φ µ .  

This corresponds to a neutral axis depth of 6.171=uC  mm and an ultimate strain of 

( ) ( ) 00547.0)1019.3(6.171 5 ==Φ= −xc exuuexcuε  mm/mm. 

Upgrading the displacement ductility of the as-built column with a minimum target 

displacement ductility of ( ) 0.8=∆ upfµ  or a displacement upgrading index of 

( ) ( ) 67.2≈= ∆∆∆ exupff fI µµ  yields the displacement ductility of the FRP-upgraded 

column ( )up∆µ  of Eq. (11.21): 
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Assuming an increase in moment capacity 25.1=Λup  yields an ultimate upgrading 

curvature of ( )upΦµ  of Eq. (11.23):  
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This results in a curvature upgrading index of 08.337.6/61.19 ==ΦI  using Eq. 

(11.24) and ( ) 0.1816.0108.320.008.1
38.0 ≤=−−=cI  using Eq. (11.32).  The ultimate 

compressive strain the FRP-confined concrete ( )upcuε  is found using Eq. (11.33) where 

( ) ( ) ( )( )( ) 0137.000547.008.3816.0 === Φ excucupcu II εε  m/mm. 

Using column dimensions and the FRP coupon failure strain of 010.0−=fuε  

mm/mm listed in Table 11.2, calculating the transverse strain coefficient jβ  summarized 

in Table 6.1 as 796.0=jβ , the transverse strain εα  of Eq. (6.52) as 181.1=εα , and 

substituting these terms into the ultimate design jacket strain along the major dimension 

Huε  of Eqs. (11.36) and (11.37) yields ( )( ) 00707.0010.0707.0 −=−=Huε  mm/mm and 

substituting it into Eq. (11.38) yields the ultimate diagonal jacket strain juε  of 

( )( ) 00477.0181.1796.000707.0 =−=juε . 
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Calculating the diagonal plastic dilation rate ( )
upjpµ  of Eq. (11.35) yields 

( ) 347.00137.000477.0 ==
upjpµ , and the normalized effective stiffness of the 

upgrading FRP jacket ( )
upjeK  of Eq. (11.4) yields: 
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Using the material properties of the confining continuous carbon FRP jacket, where 

GPaEj   0.124= , the FRP jacket geometric properties 464.0=ek  and 453.2=shC  

calculated using the relationships listed in Table 4.1 and Table 4.2, respectively, and 

calculating the minimum FRP jacket thickness ( )
upjt  using Eq. (11.42) yields: 

 

 ( ) ( ) mm7.11
)124000(453.2464.0

)45.34(730
93.65 =








=

upjt  (11.52) 

 

This is approximately 14.6% larger than the 10.2 mm carbon FRP jacket used in the 

cantilevered reinforced concrete column test by Seible et al. (1997), which performed to a 

displacement ductility of approximately 0.8≈∆µ .  If a glass FRP (GFRP) jacket is 

selected with a modulus of elasticity of 27.0 GPa, a 53.7 mm thick GFRP jacket would be 

required. 

The stress-train behavior of the rectangular FRP-confined concrete core ,confined by 

a 11.70 mm carbon FRP jacket having the FRP jacket properties, the unconfined concrete 

properties and section dimension listed in Table 11.2, is compared to the stress-train 

curve of the unconfined concrete section in Figure 11.13. 
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Figure 11.13 Comparison of the uniaxial stress-strain curves of the unconfined and 

FRP-confined concrete within the plastic hinge region of the rectangular 

cantilivered reinforced concrete columns tested by Seible et al. (1997). 
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From this figure it can be observed that the rectangular FRP-confined concrete 

section experiences a significant increase in ultimate axial compressive strain, which is 

responsible for the increase in displacement ductility experienced by the rectangular 

FRP-upgrade reinforced concrete section tested by Seible et al. (1997). 

The increase in the compressive strength of the FRP-confined concrete core, as 

shown in Figure 11.13, is due to the continuously increasing passive confining pressure 

provided by the rectangular elastic FRP jacket that results from the axial-strain-induced 

transverse dilation of the FRP-confined concrete core. 

The analytical stress-strain curve of the rectangular cantilevered reinforced concrete 

column test by Seible et al. (1997), evaluated using the properties and dimensions listed 

in Table 11.2, was used in an analytical incremental moment-curvature-based pushover 

analysis of the rectangular FRP-confined cantilevered reinforced concrete column. 

The results of the analytical pushover analysis are compared to the experimental load-

displacement curve in Figure 11.14.  From this figure it can be observed that proposed 

analytical stress-strain model introduced in Chapter 10 in combination with the 

spreadsheet-based analytical pushover model developed herein can accurately predict the 

pushover curve of the rectangular cantilevered reinforced concrete column test. 

In the analytical design procedure presented herein, no consideration is given to the 

unknown increase in axial compressive strength in the FRP-confined concrete, since this 

increase in strength is as secondary effect that results from the axial strain-induced 

dilation of the FRP-confined concrete core and resultant transverse confining stresses 

provided by the elastic FRP jacket as transverse dilation progresses. 
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Figure 11.14 Comparison of the analytical and experimental pushover curves of the 

rectangular cantilevered reinforced concrete columns tested by Seible et 

al. (1997). 
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The proposed design approach is in contrast with those provided in both the strain 

energy-based design procedure by Seible et al. (1995, 1997) and the multivariate 

regression analysis upgrading index-based design procedure by Monti et al. (2001), in 

that it is based on the strain ductility increase that results from the constant kinematic 

restraint provided by the confining elastic FRP jacket and is thus a strain-based approach 

using performance-based design principles. 

As was demonstrated herein, the information required to determine the minimum FRP 

jacket thickness within the plastic hinge region of a reinforced concrete section is (1) the 

geometry of the concrete section or new FRP jacket; (2) the unconfined concrete core 

strength cof , (3) the material properties of the selected FRP jacket; and (4) the FRP 

material and jacket shape-dependent design FRP jacket strain juε . 



 

 

 

 

 

CHAPTER 12 

 

CONCLUSIONS 

 

In this research a unified theoretical mechanics-based stress-strain model was  

developed that can accurately describe the compressive and dilation behavior of several 

common types of FRP-jacketed concrete column sections, using the concepts of diagonal 

dilation and equilibrium of FRP-confined concrete and a Mohr-Coulomb-type failure 

surface for confined concrete. 

The model can accurately describe the axial compressive behavior and axial strain-

induced dilation behavior of FRP-confined concrete sections of various cross sectional 

shapes including circular, square, rectangular, elliptical, and oval.  In this model, the 

general concepts of elasticity, damage mechanics, and plasticity theory are included in a 

mechanics-based stress-strain model that considers the macro structural effects of the 

increase in internal damage (i.e., increase in dilation) and the beneficial effects 

contributed by the kinematic restraint provided by the confining elastic FRP jacket.  

Unlike existing confinement models for FRP-jacketed concrete, the model uses the fact 

that dilation behavior of FRP-confined concrete depends on the lateral kinematic restraint 

provided by the thin elastic FRP jacket, rather than on the passive confining pressure 

provided by the restraining FRP jacket. 

The effective confining stiffness, confinement efficiency, and reinforcement ratio of 

various FRP-confined sections as well as shape-modified cross sections with FRP jackets 
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were developed.  These properties influence significantly the dilation and compressive 

behavior of FRP-confined sections. 

The dilation and axial compressive behavior of FRP-confined concrete sections was 

found to depend on the following geometric parameters: (a) the FRP jacket shape, (b) the 

aspect ratio of the cross section, (c) the angle of inclination of the main diagonal of the 

cross section, (d) the jacket corner aspect ratio for square, rectangular, and oval cross 

sections, and (e) the shape of the effectively confined concrete core. 

An analytical transverse dilation model was developed whose distinguishing feature 

is that it uses the concept of diagonal dilation of the FRP-confined concrete core and 

describes the increase in damage (dilation) in the cross section in terms of the mechanical 

and geometric properties of both the concrete core and the confining FRP jacket.  The 

model considers that the dilation behavior of the confined concrete depends only on the 

lateral kinematic restraint provided by the thin elastic FRP jacket at the surface of the 

confined concrete core, rather than on the passive confining pressure provided by the 

restraining FRP jacket that results from transverse dilation of the confined concrete core, 

as is typically assumed in the analysis of FRP-confined concrete. 

In this research an ultimate strength envelope of the concrete material is obtained by 

treating the restraint sensitive concrete material as a frictional-cohesive material whose 

ultimate strength criterion is governed by a Mohr-Coulomb type failure envelope for 

frictional-cohesive materials. 

A simple two parameter Mohr-Coulomb-type criterion was introduced to describe the 

increase in compressive strength that the confined concrete cores experiences as a result 

of axial strain-induced dilation and resultant passive confining pressure provided by the 



 468 

restraining elastic FRP jacket.  This ultimate strength model introduced herein satisfies 

the following conditions: (a) it passes through the point of uniaxial compression, (b) it 

passes through the point of uniaxial tension, and (c) it describes the typical nonlinear 

failure envelope of concrete in a triaxial compression state of stress. 

This model includes the sensitivity of the concrete’s behavior to the intermediate 

principal stress for concrete subjected to a triaxial compression state of stress, it models 

the effects of the confining hydrostatic pressure on the angle of internal friction of the 

concrete material, and includes the weakening influence that excess pore water has on the 

compressive strength of the confined concrete core.  The ability to predict the beneficial 

effects that the intermediate principal stress has on the compressive strength of the 

confined concrete is essential in accurately predicting the compressive behavior of FRP-

confined concrete sections, rectangular, oval and elliptical sections in particular.  For 

these FRP jacket shapes, as the section aspect ratio increases, the confined concrete core 

is subjected to an increasing nonuniform biaxial confinement state of stress that results 

from a non-uniform dilation of the confined concrete core. 

In this analytical stress-strain model for FRP-confined concrete, the only 

experimentally obtained coefficients are: (a) the average value of the basic angle of 

friction of dry concrete, (b) the FRP jacket stiffness-dependent diagonal plastic dilation 

rate of the confined concrete core, and (c) the pore water pressure parameter which 

considers the detrimental effects that excess pore water has on the compressive behavior 

of confined concrete. 

A theoretical design procedure was developed for estimating the required FRP jacket 

thickness for concrete column sections of various shapes confined by FRP jackets, 
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subjected to combined axial compression and flexure, to achieve a certain performance 

level based on the expected displacement and curvature ductility demand imposed on the 

reinforced concrete column during a seismic event.  In this design procedure, no 

consideration is given to the unknown increase in axial compressive strength in the FRP-

confined concrete, since this increase in strength is considered to be a secondary effect 

that results from the axial strain-induced dilation of the confined concrete core and 

resultant transverse confining stresses provided by the confining elastic FRP jacket as 

transverse dilation progresses.  This design procedure is unlike existing FRP jacket 

design procedures, in that it is based on the increased strain ductility that results from the 

lateral restraint provided by the confining elastic FRP jacket and is thus a strain-based 

approach using performance-based design principles. 

It is hoped that the present stress-strain model will contribute to the knowledge of the 

mechanisms involved in the compressive and dilation behavior of FRP-confined concrete 

and that the performance-based design procedure will be used in the analysis, design and 

retrofit of existing reinforced concrete structures in areas of high seismicity. 
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