UNIFIED MODEL FOR CONCRETE COLUMNS CONFINED BY
FIBER-REINFORCED POLYMER JACKETS WITH

PRACTICAL APPLICATIONS

by

Domingo A. Moran

A dissertation submitted to the faculty of
The University of Utah
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Civil and Environmental Engineering
The University of Utah

May 2011



Copyright © Domingo A. Moran 2011

All Rights Reserved



The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Domingo A. Moran

has been approved by the following supervisory committee members:

Chris Pantelides , Chair 04/30/2009
Date Approved
Larry Reaveley , Member 04/30/2009
Date Approved
Janice Chambers , Member 04/30/2009
Date Approved
Evert Lawton , Member 04/30/2009
Date Approved
Daniel Adams , Member 04/30/2009
Date Approved
and by Paul J. Tikalsky , Chair of
the Department of Civil and Environmental Engineering

and by Charles A. Wight, Dean of The Graduate School.



ABSTRACT

Despite numerous experimental and analytical investigations on the compressive
behavior of fiber-reinforced polymer (FRP) confined concrete sections, researchers have
been unable to develop a unified theoretical stress-strain model that can accurately
capture and describe the axial compressive and resultant transverse dilation behavior of
various FRP-jacketed concrete column shapes.

In this dissertation, a mechanics-based unified stress-strain model is introduced; this
model is applicable to FRP-confined concrete sections of various shapes that can
accurately capture both the compressive and dilation behavior of rectangular, square,
oval, circular, and elliptical FRP-confined concrete members using the concept of
diagonal dilation and diagonal equilibrium of the FRP-confined concrete section with a
minimum number of curve-fitting parameters based on experiments.

This is accomplished by including the general concepts of elasticity, damage
mechanics, soils mechanics, and plasticity theory in the development of a theoretically
sound mechanics-based stress-strain model for FRP-confined concrete that takes into
consideration the macrostructural effects of the increase in internal damage (i.e., increase
in dilation) and the beneficial effects contributed by the kinematic restraint provided by
the confining elastic FRP jacket.

The proposed stress-strain model’s ability to accurately describe the compressive

behavior of FRP-confined concrete of various geometrical shapes will depend on its



ability to capture the restraint sensitivity of the confined concrete core and the effects that
the shape of the confining FRP jacket has on the jacket’s ability to restrain the transverse

dilation of the confined concrete core.
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CHAPTER 1

INTRODUCTION

In recent years, fiber-reinforced polymer (FRP) reinforcement has been introduced for
shear and flexural strengthening of reinforced concrete beams, columns, beam-column
members, and beam-column joints. These advanced composite materials are used widely
in the aerospace and sports industries. Recently, their use has been extended to the
development of new rehabilitation, strengthening, and repair technologies for improving
existing reinforced concrete.

Rehabilitation and strengthening techniques of applying surface-bonded FRP
reinforcement to reinforced concrete columns and beams are a relatively new field of
research that has received much attention in the last 30 years. Researchers have used
externally applied FRP reinforcement for the seismic retrofit of reinforced concrete
columns and bridge systems (Saadatmanesh et al. 1994, Seible et al. 1997, Xiao and Ma
1997, Pantelides et al. 1999, 2001, Ozbakkaloglu and Saatcioglu 2006, 2007); for
improving the flexural (Haragli 2005, Mosalam et al. 2007, Binici and Mosalam 2007,)
and compressive (Demers and Neale 1999, Pessiki et al. 2001, Mathys et al. 2005, Tastani
et al. 2006, Eid et al. 2008, 2009) behavior of reinforced concrete columns; for improving
the shear and flexural behavior of reinforced concrete beams (Saadatmanesh and Ehsani

1991, Ritchie et al. 1991, Triantafillou et al. 1992, Al-Sulaimani et al. 1994, Kaliakin et



al. 1996, Chajes et al. 1995 Varastehpour and Hamelin 1997, Triantafillou 1998, Rahimi
and Hutchison 2001), among others; and improving the shear capacity of reinforced
concrete beam-column connections (Gergely et al. 1998, Pantelides et al. 1999, 2001,
Antonopoulus and Triantofillou 2002).

One major impediment encountered by many researchers is the development of a
theoretical stress-strain model that can accurately describe the axial compressive behavior
and axial strain-induced dilation behavior of rectangular, square, oval, circular, and
elliptical FRP-jacketed concrete columns. Until recently, the development of stress-strain
models for FRP-confined concrete sections has been limited to specific cross-sectional
jacket shapes, such as circular or square sections which are subjected to essentially
uniform equibiaxial confinement. The goal of this investigation is to develop a unified
theoretical mechanics-based stress-strain model that can accurately describe the
compressive and dilation behavior of several common types of FRP-jacketed concrete
column sections, using the concepts of diagonal dilation and equilibrium of FRP-confined
concrete and a Mohr-Coulomb-type failure criterion for confined concrete. To the
knowledge of the writer, a unified stress-strain model based on theoretical mechanics that
can accurately represent the uniaxial compressive behavior of FRP-confined concrete
sections of various cross-sectional shapes has not been achieved to date by other

researchers.



CHAPTER 2

LITERATURE REVIEW

Compressive Stress-Strain Models for Plain Concrete

Since the mid-1930s, research into the compressive stress-strain behavior of plain
concrete columns has yielded the development of several analytical stress-strain models
for confined and unconfined concrete. Among these models, the most recognized and
widely used is the Popovics (1973) fractional model for plain concrete in compression.
Several researchers (Carreira and Chu 1985, Collins et al. 1993, Wee et al. 1996, Mansur
et al. 1997, Chin et al. 1997) have incorporated and improved the accuracy of the
Popovics (1973) fractional model in modeling the compressive stress-strain behavior of
low, medium, and high-strength concrete. Pantazopoulou (1995) and Pantazopoulou and
Mills (1995) have recognized that the nonlinearity of the compressive behavior of plain
unconfined concrete is due to the reduction in the load-carrying area of the concrete cross
section in compression that results from the expansion (i.e., dilation) induced by micro
cracking suffered by the area supporting the axial load.

There has been a significant amount of research in the compressive behavior of
concrete in biaxial (Kupfer et al. 1969, Mills and Zimmerman 1970, Kupfer and Gerstle
1973, Darwin and Pecknold 1977, Gerstle 1981a) and triaxial compression state of stress
(Richart et al. 1928, Mills and Zimmerman 1970, Palaniswany and Shah 1974, Newman

and Newman 1971, Kotsovos and Newman 1978, Gerstle 1981b, Imran 1994, Xie et al.



1995, Attard ands Setunge 1996, Ansari and Li 1998, Sfer et al. 2002). These
experimental investigations have shown that the behavior of concrete under either biaxial
or triaxial compressive stresses improves significantly in terms of an increase in the
ultimate major principal compressive strength and strain and an increase in strain
ductility. For the majority of biaxial and triaxial plain concrete tests, the out-of-plane
confinement was provided by mechanical means (i.e., platens, brushes, etc.). In the case
of concrete cylinders in a triaxial compression state of stress, the out-of-plane lateral
confinement was provided by means of fluid pressure, which was maintained constant
(Richart et al. 1928, Palaniswany and Shah 1974, Kotsovos and Newman 1978, Gerstle
1981b, Imran 1994, Xie et al. 1995, Ansari and Li 1998, Sfer et al. 2002), or it was
increased in a stepwise manner (Imran 1994) as the principal compressive axial load was
monotonically increased. Pantazopoulou (1995) recognized that the enhancement in
compressive strength and ductility of concrete in the biaxial and triaxial compression
state of stress is associated with the kinematic restraint imposed at the surface of the

concrete member by the confining device.

Confinement Models for Concrete Confined by Transverse
Steel Reinforcement
Several analytical stress-strain models for reinforced concrete members passively
confined by transverse steel reinforcement have been introduced in the past. A majority
of these models were derived based on the compressive behavior of rectangular, circular,
and square reinforced concrete members restrained by closely spaced transverse steel
reinforcement. Sheikh (1982) and Sakai and Sheikh (1989) produced a series of excellent

reviews on the majority of the analytical confinement models developed prior to 1989.



The most notable stress-strain models for normal weight, medium-strength (20-40 MPa)
concrete developed prior to 1989 are the Mander et al. (1988) analytical model for steel-
confined concrete, which utilized the Popovics (1973) fractional model, and the Ahmad
and Shah (1982a,b) stress-strain model. For the case of steel confined, high-strength
concrete (40-80 MPa) members, the most notable stress-strain models are those
introduced by Saatcioglu and Razvi (1992), Saatcioglu et al. (1995), Cusson and Paultre

(1995), Ibrahim and McGregor (1996), and Attard and Setunge (1996).

Confinement Models for Concrete Confined by
FRP Jackets

Since the early attempts by Kurt (1978) on the stress-strain behavior of concrete-filled
structural PVC columns and by Fardis and Khalili (1981, 1982) on the stress-strain
behavior of FRP-confined concrete cylinders, numerous experiments have been
performed to investigate the compressive stress-strain behavior of concrete confined by
FRP spirals (Ahmad et al. 1991, Nanni and Bradford 1995), bonded FRP wraps (Harmon
and Slattery 1992, Demers et al. 1996, Picher et al. 1996, Kharbari and Gao 1997,
Miyauchi et al. 1997, Watanabe et al. 1997, Harmon et al. 1998b, Kono et al. 1998,
Saaman et al. 1998, Toutanji 1999, Rochette and Labossierre 2000, Wu and Xiao 2000,
Xiao and Wu 2000, 2003, Carey 2002, Teng and Lam 2002, 2004, Lam and Teng
2003a,b, Carey and Harries 2003, Chaallal et al. 2003a,b, Tamusz et al. 2006, 2007,
Saenz and Pantelides 2007, Toutanji et al. 2007, Shehata et al. 2007), among others, and
nonbonded FRP tubes (Mirmiran 1997, Mirmiran and Shahawy 1996, 1997a,b, Saafi et
al. 1999, Fam and Rizkalla 2001a,b, Carey 2003, Carey and Harries 2003, Yan and

Pantelides 2006, Yan et al. 2006), among others.



Since the 1990s, the development of stress-strain models for FRP-confined concrete
was limited to modification of the Mander et al. (1988) confinement model originally
developed for reinforced concrete members confined by transverse steel reinforcement or
steel jackets (Saadatmanesh et al. 1994, Mirmiran and Shahawy 1996, Spoelstra and
Monti 1999, Fam and Rizkalla 2001a,b).

Beginning in the late 1990s and early 2000s, several models specifically suited for
FRP-confined concrete columns have been proposed, in particular the models introduced
by Miyauchi et al. (1997), Kono et al. (1998), Saaman et al. (1998), Toutanji (1999),
Saafi et al. (1999), and Xiao and Wu (2000).

De Lorenzis and Tepfers (2003), Lam and Teng (2003a), and Teng and Lam (2004)
produced a series of excellent reviews on the majority of the analytical and empirical
stress-strain models for FRP-confined developed prior to 2003.

In recent years, researchers have successfully developed stress-strain models for
rectangular (Restrepo and DeVino 1996, Lam and Teng 2003a, Chaalal et al. 2003a,
Monti and Nistico 2007), square (Campione and Miraglia 2003, Lam and Teng 2003b,
Masia et al. 2004, Marques et al. 2004, Monti and Nistico 2007), circular (Kharbari and
Gao 1997, Harmon et al. 1998b, Saaman et al. 1998, Spoelstra and Monti 1999, Toutanji
1999, Saafi et al. 1999, Wu and Xiao 2000a,b, Lam and Teng 2002, Xiao and Wu 2002,
2003, Fujikake et al. 2004, Marques et al. 2004, Mandal et al. 2005, Saenz and Pantelides
2007, Teng et al. 2007) and elliptical (Teng and Lam 2002, Yan 2005, Yan and

Pantelides 2006) FRP-confined concrete sections.



Damage-Based Constitutive Models for Concrete Confined by
FRP Jackets

Despite the successful application of the aforementioned models, few models can
accurately capture the dilation and compressive behavior of passively and actively
confined concrete as the damage-based model introduced by Imran (1994),
Pantazopoulou and Mills (1995), Pantazopoulou (1995), and Imran and Pantazopoulou
(1996). These constitutive models are the first to recognize that concrete is a restraint
sensitive material, rather than a pressure sensitive material, as is typically assumed in the
analysis of reinforced concrete sections. This implies that if lateral kinematic restraint is
provided during loading, the confining element will induce some confining pressure
whose magnitude will depend on the lateral stiffness of the confining device. In addition,
during loading, the stiffness of the confining device can also determine the degree of
volumetric expansion (if any) by controlling the degree of micro-crack and macro-crack
growth and the contraction, compaction, collapse, or nucleation of internal voids and
capillary pores present within the microstructure of the concrete core.

Recently, several investigators including Spoelstra and Monti (1999), Marques et al.
(2004), and Saenz (2004) have attempted to incorporate the damaged-based model
introduced by Pantazopoulou (1995) into biaxial confinement models that describe the
compressive behavior of circular (Spoelstra and Monti 1999, Saenz 2004) and square
(Marques et al. 2004) FRP-confined concrete sections. Unfortunately, Pantazopoulou’s
(1995) damage-based model can only capture the compressive and dilation behavior of

unconfined and passively and actively confined circular concrete sections.



The Spoelstra and Monti (1999) model is an iterative stress-train model for circular
FRP-confined concrete sections that combines the Pantazopoulou (1995) damage-based
model’s ability to capture the compressive and dilation behavior of unconfined and
confined circular concrete sections, with the Mander et al. (1988) confinement model’s
ability to capture the increase in the ultimate compressive strength and strain that result
from the passive confining pressure provided by the restraining circular FRP jacket.

Recently, Marques et al. (2004) introduced an iterative model that can be considered
to be an updated version of the Spoelstra and Monti (1999) model for predicting the
compressive behavior of both circular and square FRP-confined concrete sections.

The Saenz (2004) model is a constitutive model that combines the Pantazopoulou
(1995) model with unique volumetric and dilation formulations that can accurately
capture the dilation and compressive behavior of circular FRP-confined concrete
sections.

The Yan (2005) stress-strain model is a constitutive model that combines the Willam
and Warnke (1975) parabolic ultimate surface for concrete in a triaxial compression state
of stress and the Pantazopoulou (1995) dilation model to capture the compressive
behavior and resultant average transverse dilation of elliptical and circular FRP-confined
concrete sections.

In this investigation, the proposed stress-strain model takes into consideration the
shortcomings of other stress-strain models for FRP-confined concrete sections developed
in the past and expands upon the knowledge obtained by these researchers. This is
accomplished herein by developing a theoretically sound, mechanics-based stress-strain

model for FRP-confined concrete sections of various geometric shapes that can



accurately capture both the strain-softening compressive behavior of concrete members
confined by low transverse stiffness FRP jackets and the quasi-bilinear strain-hardening
compressive behavior of members confined by moderate to high transverse stiffness FRP
jackets.

A generalized and theoretically sound stress-strain model based on fundamental
principles allows for accurate estimates of the displacement and curvature ductility of
reinforced concrete beam-columns and the FRP jacket thickness that is required to

achieve a certain performance level during a seismic event.



CHAPTER 3

RESEARCH GOALS

Thus far, investigators have not developed a unified theoretical stress-strain model
that can accurately capture and describe the axial compressive and transverse dilation
behavior of various FRP-jacketed concrete column shapes.

Despite numerous experimental and analytical investigations, there is a lack of a
unified stress-strain model that can accurately capture at a fundamental level and in a
unified manner the compressive behavior of rectangular, square, oval, circular, and
elliptical FRP-confined concrete members.

The principal goals of this dissertation are as follows:

1. To develop a theoretically sound unified damage-based model for rectangular, square,
oval, circular and elliptical FRP-confined concrete sections in compression.

2. To develop a theoretically sound design procedure for estimating the required FRP
jacket thickness for concrete column sections of various shapes confined by FRP

jackets, that are subjected to combined axial compression and flexure, to achieve a

certain performance level during a seismic event.

Unified Damage-Based Model for FRP-Confined Concrete
The first goal of this dissertation is to develop a unified damage-based model for

rectangular, square, circular, and elliptical FRP-confined concrete compression members
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that can accurately capture both the axial strain-induced dilation and compressive
behavior.

In this dissertation, a general mechanics-based and theoretically sound damage model
for FRP-confined concrete is developed, applicable to bonded and unbonded FRP jackets
of various geometrical shapes, with a limited number of curve-fitting parameters. The
model predicts the dilation and axial compressive behavior of FRP-confined concrete
sections exhibiting either a strain-softening or strain-hardening compressive behavior, as
shown in Figure 3.1.

The stress-strain models for FRP-confined concrete sections introduced thus far by
others researchers are of limited applicability. This may include limitations on the FRP
jacket shape (i.e., circular or square sections); limitations on the FRP jacket construction
type (i.e., bonded, or unbonded); limitations on the type of compressive behavior (i.e.,
strain softening or strain hardening); and limitations imposed by the use of curve fitting
techniques of experimental data, among others. In this dissertation, a new theoretical
stress-strain model for FRP-confined concrete sections is introduced which considers the
shortcomings of models introduced in the past and expands upon the knowledge obtained
thus far by other researchers.

A model’s ability to accurately describe the compressive behavior of FRP-confined
concrete of various geometrical cross-sectional shapes depends on its ability to capture
the restraint sensitivity of the confined concrete core. A constitutive model for FRP-
confined concrete needs to recognize that restraint sensitivity of the concrete core not
only affects its compressive strength and ductility but also its axial strain-induced

transverse dilation behavior.
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Figure 3.1  Typical axial stress-strain ratio curves of concrete sections exhibiting (a)

strain-softening and (b) strain-hardening compressive behavior.
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The unconfined and confined concrete core is considered to be a restraint sensitive
material rather than a pressure sensitive material (Pantazopoulou 1995). This indicates
that the dilation behavior of the FRP-confined concrete depends on the lateral kinematic
restraint provided by the thin elastic FRP jacket at the surface of the confined concrete
core, rather than on the passive confining pressure provided by the restraining FRP jacket

that results from transverse dilation of the FRP-confined concrete core.

FRP Jacket Design Procedure

The second goal of this research is the development of a moment versus curvature
based design procedure for estimating the required FRP jacket thickness and size for
rectangular, square, and circular reinforced concrete columns confined by FRP jackets to
attain an increase in axial strength or ductility in order to achieve a given performance
level during a seismic event.

Typically, existing circular concrete sections are confined by circular FRP jackets.
However, existing square concrete sections can be confined by either square FRP jackets
or they can be shape modified using circular FRP jackets (Yan 2005). Furthermore,
existing rectangular concrete sections can be confined by rectangular FRP jackets or they
can be shape-modified using either oval or elliptical FRP jackets (Yan 2005).

The applicability of the damage-based model for FRP-confined concrete proposed
herein is expanded and included in the development of a design procedure for estimating
the required FRP jacket thickness based on the expected displacement and curvature

ductility demand imposed on reinforced concrete columns during a seismic event.



CHAPTER 4

GEOMETRIC AND MECHANICAL PROPERTIES OF
CONCRETE SECTIONS CONFINED BY FIBER-
REINFORCED POLYMER

JACKETS

In this chapter, a unique set of analytical relationships are introduced in modeling the
compressive stress-strain and transverse dilation behavior of rectangular, square, oval,
circular, and elliptical concrete sections confined by thin elastic FRP jackets. The
proposed model requires the introduction of a series of unique mathematical
relationships for the geometric and mechanical properties of the confining FRP jacket,
which are then used in modeling both the dilatancy and compressive behavior of FRP-
confined concrete sections of various geometrical shapes (rectangular, square, oval,
circular, and elliptical concrete sections in particular), as demonstrated in Chapters 6, 7, 8
and 10, subjected to either a uniform (circular) or a nonuniform (rectangular, square,
oval and elliptical) triaxial compression state of stress, as demonstrated in Chapter 9.

In this chapter a series of mathematical relationships are developed to describe the
geometric and mechanical properties of FRP-confined concrete (FCC) sections of various
shapes, which includes circular, elliptical, rectangular, square, and oval sections. These

relationship are then incorporated into Chapters 5-10 to describe the uniaxial compressive
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behavior and the transverse and diagonal dilation behavior of FRP-confined concrete

sections.

Geometric and Mechanical Properties of FRP-Confined
Concrete Sections
In this investigation, several geometric Figure 4.1 and mechanical properties of FCC
sections were found to affect the dilation and axial compressive behavior of the FCC
sections shown in Figure 4.2, as a result of the elastic properties of the confining FRP

jacket.

FRP-Confined Concrete Section Geometry

In this investigation it was found that in addition to the FRP jacket stiffness, the shape
of the FRP-confined concrete cross-section, as shown in Figures 4.1 and 4.2, constitutes
the greatest contribution to both the dilatancy and axial compressive stress-strain
behavior of the FCC section. The geometric parameters of the FRP-jacketed sections,
shown in Figures 4.1 and 4.2, which significantly affect the compressive and dilation
behavior of the FCC are as follows

1. The aspect ratio of the section a,
2. The angle of inclination of the main diagonal D, of the FCC section 6,

3. The jacket corner aspect ratio of rectangular, square, and oval FCC sections @ ;

4. The shape of the effectively confined concrete core, as defined by the confining

efficiency k, of the FRP jacket and
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FRP-confined concrete sections of various shapes: (a) rectangular, (b)

square, (c) circular, and (d) elliptical.
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Figure 4.2  Geometry of FRP-confined concrete sections of various shapes: (a)

rectangular, (b) square, (c) circular, and (d) elliptical.
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5. The effective transverse stiffness (C )S " and normalized transverse stiffness (K je )s

Jje h
of the confining elastic FRP jacket.
These geometric parameters and mechanical properties of the FCC section are
introduced in what follows.

The angle of inclination 8; of the main diagonal D, and the section aspect ratio &,

of the FCC sections shown in Figure 4.2 are given by:

Hd = tan_l (ash) (41)
C

a. =He 42

sh Bc (4.2)

2
D, :\/(Hc)2 +(Bc)2 =H, 1+(%] =Bc\/1+(a'sh)2 (4.3)
sh

where B, and H . are the overall minor and major dimensions of the FCC cross-section,

respectively, as shown in Figure 4.2 and the oval section shown in Figure 4.3.

The jacket corner aspect ratio @ ; of the rectangular, square, and circular FCC

sections shown in Figure 4.2 and the oval section of Figure 4.3 are defined as:

R R;
g =t="J (4.4)
Hc asth

where 0<a; <0.50. The upper bound value of a; =0.50 represents the special case
of a circular FRP-confined concrete section for which D i =H. =B, =2R j (i.e.,

ag, =1.0 and a; =0.50).
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Figure 4.3 Oval FRP-confined concrete sections: (a) typical section and (b) typical

geometry.
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The lower bound value of &; =0 indicates that no rounding of the corners is

provided. Also, D; is the overall diameter of the circular FCC section.

For rectilinear sections, such as rectangular, square, and oval FCC sections, the upper
bound value of a; is given by (aj)max =1/(2ay,), or when R; =B./2. When
ag, =10 and (a j)max =0.50 it indicates a circular FCC section, whereas when
ag, >1.0, an oval FRP-confined section occurs when R; =B, /2 or when

a;= (aj )max =1/(2ay, ), as shown in Figure 4.3.

Another geometric parameter that significantly influences the dilation and
compressive behavior of FCC sections is the shape of the effectively confined concrete
core, as shown in Figure 4.4. In this figure, the ineffectively confined concrete core
along the faces of the square and rectangular FCC section is shown as cross-hatched
areas.

These areas are approximated by parabolas with an initial tangent equal to the aspect

ratio ', at the minor B, sides and an initial tangent equal to the inverse of the aspect
ratio 1/ag, at the major H,. sides as shown in Figure 4.4. From these figures, it can be

observed that the effectively confined section has a major H,; and minor By

dimension and an effective aspect ratio Aeff » that are given by:

aeﬁz—————ash 4.5)

H oy :%(Hzashaj); By :B—;(1+2ashaj) (4.6)
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_Heyy _ By
hegy == befy == (4.7)

where heﬁr and beﬁr are the major and minor axes of the effectively confined elliptical or

circular concrete core shown in Figure 4.4. The analysis of the rectangular FCC sections
shown in Fig. 4.4 is similar to the analysis of rectangular reinforced FCC sections
introduced by Lam and Teng (2003b)

It is demonstrated herein that the shape of the FCC core and the geometric parameters
introduced in Egs. (4.1) through (4.7) contribute to the overall decrease or increase in
both the compressive strength and strain ductility of the FRP-confined concrete sections
considered in Figures 4.1-4.4, as established in Chapters 9 and 10. In addition, these
geometric parameters also significantly influence the transverse dilation behavior of the

FRP-confined concrete core, as demonstrated in Chapters 7 and 8.

FRP Jacket Confining Efficiency

The confining efficiency of the confining element, be it closely spaced transverse
steel reinforcement, steel jackets, or FRP jackets, is a geometric and mechanical property
of the FRP-confined concrete section that determines the effectiveness of the confining
FRP jacket layout in curtailing the axial strain-induced transverse dilation of the confined
concrete core.

The confinement efficiency k, (Mander et al. 1988) of the transverse reinforcement,
which is defined as the ratio of the least effectively confined concrete core area A4,. to

the net concrete core area 4,; is given by:
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k,=—%=1-—% (4.8)
© 4, Ay
Aee = Anj — A (4.9)

where 4;. is the ineffectively confined concrete core area.

In this chapter, a series of analytical relationships are developed using the concept of
an effectively FRP-confined concrete core introduced by Mander et al. (1998), Restrepo
and De Vino (1996), and Lam and Teng (2003b). The rate of dilatancy of the FRP-
jacketed concrete was found to be significantly affected by the confining efficiency of the

FRP jacket k,, since the dilatancy of the FRP-confined concrete depends on the lateral
stiffness of the FRP jacket. In addition, the lateral stiffness of the FRP jacket C,,
shown in the following sections, depends on the geometry of the concrete section, the

mechanical properties of the FRP jacket, and the confining efficiency of the FRP jacket.

A low jacket confining efficiency k, results in a reduction in the transverse stiffness of

the confining elastic rectangular and square FRP jackets in comparison to that of oval,

circular, and elliptical FRP jackets.

FRP Jacket Reinforcement Ratio

The reinforcement ratio of the confining transverse reinforcement p,,. be it closely
spaced steel reinforcement, steel jackets, or FRP jackets, is a geometric property of the
confining element that is defined as the ratio of the volume of transverse reinforcement

V. to the volume of the confined concrete core V., as:



24

Py =1 (4.10)

For the case of FRP-confined concrete sections, the transverse reinforcement ratio

P of the confining FRP jacket is given by:

Vi
p; =L 4.11)
C

where V; is the unit volume of the thin confining elastic FRP jacket, for a unit length
FCC section; V; is essentially equal to the perimeter of the confined concrete core p gy,
times the thickness of the FRP jacket #;. For a unit length FCC section, the concrete

volume V. is equal to the net area of the FCC core.

The reinforcement ratio of the FRP jacket, as shown in Figures 4.2 and 4.3, depends

on the shape of FRP-confined concrete core and the thickness 7; of the confining FRP

jacket. As a result, the reinforcement ratio of the confining FRP jacket of any given

shape (,0 i )sh can be expressed as:

v 2t;
(o), =(V—’] h =(H—’]Csh @12)

where Cy; is the FRP jacket reinforcement ratio coefficient. A series of mathematical
relationships for the jacket reinforcement ratio coefficient C; of the FRP jacket shapes

considered in Figures 4.2 and 4.3 are introduced in this chapter.
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FRP Jacket Confining Stiffness
The lateral confining stiffness of the transverse reinforcement, be it closely spaced
transverse steel, steel jackets, or FRP jackets, is a mechanical property of the confining
element that depends on the geometric reinforcement ratio of the confining element. For

the case of thin elastic FRP jackets having an average transverse modulus £; and

thickness 7, the transverse stiffness of the FRP jackets C;, shown in Figures 4.2 and

4.3, is defined in what follows.
The effective confining stiffness of the elastic FRP jacket C j, is given by:

_ . _1
Cje =keCj 5 C;==pjE; (4.13)

where k, is the confining efficiency of the FRP jacket as defined in Eq. (4.8). The

effective confining stiffness (C of an FRP jacket of a given shape, as shown in

je)sh

Figure 4.2 and 4.3, is expressed as:

-
(cre),, = (j}(ke )on CsE (4.14)

c

The effective transverse modulus of the FRP jacket along the minor (E and

je)B

major (E je ) |, axes of the FRP-confined concrete section is:

2,
(), = (H_]J(ke ) E (4.15)
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2,
(), = (B—Jj(ke)sh E; (4.16)

c

" of Eq. (4.14) can be rewritten in terms of

The effective confining stiffness (C je )S

(E je ) 5 and (E je )H as follows:

e T I @17)

The normalized effective stiffness K ;, of the confining elastic FRP jacket is defined
as the ratio of the effective confining stiffness of the FRP jacket C . to the unconfined

peak compressive strength of the concrete core f,,,, as follows:

C.
K= ffe (4.18)
co

For an FRP jacket of a given shape, the normalized effective confining stiffness of the

FRP jacket (K je) as shown in Figures 4.2 and 4.3, is expressed as:

sh’

_ (Cje )sh

(&), = - (4.19)

The effective confining stiffness (C and the normalized effective stiffness

je)sh

(K je )S \ of the FRP jacket affect the axial strain-induced dilatancy (i.e., Poisson’s effects)

and the axial compressive behavior of the FRP concrete sections shown in Figures 4.2

and 4.3.
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In what follows, a series of numerical relationships are introduced to define the
geometric and mechanical properties of rectangular, square, oval, circular and elliptical

FRP-confined concrete sections, including elliptical, oval and circular shape modifying

FRP jackets.

Rectangular Sections
Confining Efficiency

The concept of effectively confined concrete introduced by Restrepo and deVino
(1996) and Lam and Teng (2003) is incorporated into the definition of the FRP jacket

confining efficiency k,. This concept is used in the analysis of rectangular, circular and

elliptical reinforced columns confined by continuous oval, circular, or elliptical FRP
jackets.

The confining efficiency k, of oval, circular and elliptical FRP jackets are derived

from the general analysis of the effectively confined concrete core area of a rectangular
column with rounded corners confined by a continuous rectangular FRP jacket.
The gross cross-sectional area of a rectangular FRP-confined concrete (RFCC)

section, as shown in Figures 4.2(a) and 4.4(a), is defined as:

2
Ag = Bch =gy (Bc)2 = (HC) (4.20)

For the case of rectangular, as shown in Figures 4.2(a) and 4.4(a), and square, as
shown in Figures 4.2(b) and 4.4(b), FRP-jacketed concrete sections, the corners are

typically rounded in order to minimize the effects of stress-concentrations at the sharp
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corners and to mitigate the premature failure of the FRP jacket due to the presence of
sharp edges.

Corner rounding also increases the confining efficiency k, of the FRP jacket by
increasing the effectively confined concrete core area A,.. Accounting for the rounding
of the corners to an average radius R

;j the net cross-sectional area A,; of a RFCC

section, as shown in Figure 4.5, is defined as:

Ay = Ay ~ 4, :%[1 —ay4- n)(aj)z]: ash(Bc)z[l —ay4- n)(aj)z] (4.21)
4, = (4 - )(Rj )2 = (Hc )2 (4 - ﬂ)(aj )2 = (Bc )2 (4 - n)(ashaj )2 (4.22)

where 4, is a reduction in area due to rounding of corners to an average radius, R;.
Rounding of the corners is typically limited to small values due to the presence of
transverse and longitudinal steel reinforcing bars just inside the corner, which is typically

in the range of 38-75 mm.

The ineffectively confined concrete core area 4;., as shown in Figure 4.5, is given

by:
Aic =(Ai)p + (i) (4.23)

where (Aic ) p and (Aic ) y are the ineffectively confined concrete area along the minor
B., and major H ., faces of the RFCC section, respectively. The ineffectively confined

core area 4;. in a RCC section is shown as a hatched area in Figure 4.5.
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H,-2R;tan 6,

Figure 4.5  Geometry of effectively confined concrete in rectangular FRP-confined

sections.
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This hatched area is assumed governed by a second degree parabola with an initial

diagonal angle of inclination &, that initiates at a distance R j from the member’s edge

at the minor B, dimension and at a distance 'y, R ; at the major /. dimension.

Lam and Teng (2003b) recognized that the ineffectively confined concrete area along

the minor B, and major H, faces of the RFCC section, (Aic )B and (Aic )H’

respectively, are given by:

'\2

(4ic) 5 = HCS(;;:) = 3;Sh (1 -2aa; (4.24)
"\2

(4ic) = Bc;gz) =23 [B.(1-2aa; (4.25)

H.=H,~2R;tan6, =Hc(1—205haj); B, =B.-2R; :BC(1—2aShaj) (4.26)

Substituting Eqs. (4.24) and (4.25) into Eq. (4.23) yields the total ineffectively

confined concrete core area A;.:

A, = %[HU (-2a,a; ) 4.27)

Substituting Anj of Eq. (4.21), 4,. ofeq. (4.27), into A4,. of Eq. (4.9) yields:

(r1.)? Hl ~agy(a-na j)z} ~21-2a4a; )2} (4.28)

Substituting A,; of Eq. (4.21) and 4;. of Eq. (4.27) into k, of Eq. (4.8) yields:



31

(-2a4a;

1-agy(4- n)(aj )2

2
(ke ), =1 -5 (4.29)
This relationship indicates that the confining efficiency of the confining rectangular

FRP jacket (ke ) +» depends on the geometry of the FRP-confined concrete as measured

by the jacket corner aspect ratio & ; and the aspect ratio o'y, .

The minimum confining efficiency of (k,) o =1/3 occurs when no rounding of the

corners is provided (i.e., @; =0). The maximum confining efficiency of (ke ) o = 1.0

occurs when the corners of the rectangular section are rounded to a radius R; equal to
one half of the minor dimension B, (i.e., R; =B./2 or a; = 1/(2ay,)) which is the

case of a circular FRP-confined concrete (CFCC) section, as shown in Figure 4.2(c),

when a;, =1.0 or an oval FRP-confined concrete (OFCC) section, as shown in Figure

4.3(b), when a;, >1.0.

Reinforcement Ratio
Using Eq. (4.12), the reinforcement ratio of the confining rectangular FRP jacket

(,0 i )re , of Figure 4.5 is given by:

A A I
(’0] )re _(Vc re B Hc Cre (430)
_ (1+ash)_(4_ﬂ)ajash

re — ~a, (4 ~ ﬂ)(a’j )2 (4.31)
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where C,, is the reinforcement ratio coefficient of the confining rectangular FRP jacket.

Effective and Normalized Effective Confining Stiffness

The effective stiffness of a RFCC section (C can be found by setting

je)re’

of Eq.

rec

(C je )sh = (C je )re in Eq. (4.17) and substituting the confining efficiency (ke)

(4.29) and the reinforcement ratio coefficient C,, of Eq. (4.31) into Eq. (4.17). The

normalized effective confining stiffness (K of a rectangular FRP jacket can be

je)re

found by setting (K je) = (K in Eq. (4.17).

sh je)re

Square Sections
Confining Efficiency
A square FRP-confined concrete (SFCC) section with rounded corners is the special

case of a rectangular FRP-confined concrete (RFCC) section with rounded corners with a

unity aspect ratio (i.e., &, =1.0). As a result, the confining efficiency (ke ) sq of the

square FRP-confined concrete section shown in Figure 4.6 can be found by substituting

a g, =1.0 into the confining efficiency k, of Eq. (4.29), which yields:

(4.32)

The above relationship indicates that confining efficiency of the confining square

FRP jacket (ke ) 5q is solely dependent on the rounding of the corners of the FRP-

confined concrete as measured by the jacket corner aspect ratio @ ; .
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Figure 4.6  Geometry of effectively confined concrete in square FRP-confined

sections.
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As for rectangular sections, the minimum confining efficiency of (ke ) sq = 1/3 occurs

when no rounding of the corners is provided in a SFCC section (i.e., a; =0). The

maximum confining efficiency of (ke) =1.0 occurs when the corners of the square

sq
section are rounded to a radius R; equal to one half of the minor dimension B, (i.e.,

R;=B./2 or a;=1/2) which is the case of a CFCC section, as shown in Figure

4.2(c).

Reinforcement Ratio

Setting (p; )Sh =(o; )Sq in Eq. (4.12), and setting @, =1.0 in Eq. (4.31), yiclds the

reinforcement ratio (,0 i )sq of the confining square FRP jacket of Figure 4.6:

v 2,
(o)), . (V—’] = (%]qu (4.33)
c sq c
c :[i}(p.) _ 2=, (4.34)
= b |

where Cg, is the reinforcement ratio coefficient of the confining square FRP jacket.

Effective and Normalized Effective Confining Stiffness

The effective stiffness of a square FRP jacket (C can be found by setting

je )Sq
(Cje )sh = (Cfe)sq in Eq. (4.17) and substituting (ke)sq of Eq. (4.32) and Cj, of Eq.

(4.34) into Eq. (4.17). The normalized effective confining stiffness of a square FRP
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jacket (K )sq can be found by setting (K je )S n (K je )sq and substituting (C je )Sq into

je

Eq. (4.19).

Oval Sections
Confining Efficiency
An oval FRP-confined concrete (OFCC) section with a radius equal to one half the

minor dimension B, is a special case of a RFCC section with rounded corners with a

corner aspect ratio &; equal to one half the inverse aspect ratio ag (ie.,

a; =1/ (2 B)’Sh)). As a result, the confining efficiency (ke) oy Of the OFCC section
shown in Figure 4.7 can be found by substituting a; = 1/ (2 HJ’Sh) into the k, of Eq.
(4.29), which yields (k) =1.0.

This indicates that the maximum confining efficiency of (ke ) oy = 1.0 occurs when

the section is an OFCC section. This indicates that the confining efficiency (ke ) oy Of the

confining oval FRP jacket is a constant and is independent of the aspect ratio & of the

OFCC section.

Reinforcement Ratio

Setting (,Oj )sh = (,Oj )Ov in Eq. (4.12), and setting a g, = 1/20']- in Eq. (4.31), yields

the reinforcement ratio (,0 i )Ov of the confining oval FRP jacket of Figure 4.7:

v, 2
lo;), = (V—ilv = (H—iJCOV (4.35)



Figure 4.7

Typical geometry of an oval FRP-confined concrete section.
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— 4a, (ash B 1) +2mm g,
Hag, -1)+m

C,, (4.36)

where C,, is the reinforcement ratio coefficient of the confining oval FRP jacket.

Effective and Normalized Effective Confining Stiffness

The effective stiffness of an oval FRP jacket (C can be found by setting

Jje )OV
(Cje )sh = (Cje )OV in Eq. (4.17) and substituting (ke )Ov =1.0 and C,, of Eq. (4.36) into
Eq. (4.17).

The normalized effective confining stiffness of an oval FRP jacket (K can be

je)ov

found by setting (K je )sh = (K je )Ov and substituting (C je )sh = (C je )OV into Eq. (4.19).

Circular Sections
Confining Efficiency

A circular FRP-confined concrete (CFCC) section is the special case of a RFCC
section with rounded corners with a unity aspect ratio (i.e., @, =1.0) and a jacket corner
ratio of @ ; =1/2.

The confining efficiency (ke ) ;i Of the CFCC section shown in Figure 4.8 can be
found by substituting a, =1.0 and a; = 1/2 into (ke )r . of Eq. (4.29) or substituting
a; =1/2 into (k.),, of Eq.(4.32) which yields (k),; =1.0.

This indicates that the confining efficiency (ke ) . Of the confining circular FRP

jacket is a constant and is independent of the size (i.e., diameter D ;) of the CFCC

section.



Figure 4.8

Typical geometry of a circular FRP-confined concrete section.
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Reinforcement Ratio

Setting (0, ) =(p;) . inEq. (4.12),and H, =B, =D;, @y, =1.0 and @; =1/2 in

Eq. (4.31), yields the reinforcement ratio (,0 j) . of the confining circular FRP jacket of

Cl

Figure 4.8 is given by:

o)., = (V—’J = (ﬁJCd . €y =20 (437)

where C,; is the reinforcement ratio coefficient of the confining circular FRP jacket.

Effective and Normalized Effective Confining Stiffness

The effective stiffness of a circular FRP jacket (C can be found by setting

je)ci’

(C je )sh = (C je )ci in Eq. (4.17) and substituting the confining efficiency (ke) .. =1.0

cir

and the reinforcement ratio coefficient C.; of Eq. (4.37) into Eq. (4.17).

The normalized effective confining stiffness of a circular FRP jacket (K je )ci , can be

found by setting (K je )sh = (K je )ci and substituting (C je )sh = (C je )ci into Eq. (4.19).

Elliptical Sections

The geometric properties of an elliptical FRP jacket, as shown in Figure 4.9, are the
distance of the foci c,;, the elliptical eccentricity e,;, and the elliptical perimeter
coefficient A,;, which are defined in terms of the major /4, and minor b, axis dimension

of the elliptical FRP-confined concrete section as follows:



Figure 4.9

Typical geometry of an elliptical FRP-confined concrete section.
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1
Col = (hc)2 _(bc)2 :hc I_W (4-38)
sh

4, =%n1 439

el_ash+1 ( . )
e =Sl = -1 (4.40)
“he \ (ag) |

The elliptical perimeter coefficient A, of Eq. (4.39) is used to determine the

perimeter of an ellipse p,; which is given by:

3(/161)2
10+4/4-3(A,)?

T
per =7 Bell+ag,) |1+ (4.41)

The eccentricity of the ellipse e,; of Eq. (4.40) measures the roundness of the ellipse.
An eccentricity e,; =0 indicates a circular section, whereas e,; =1.0 indicates a flat

(degenerate) ellipse or a line having a length of 24, = H ..

Confining Efficiency

The dilation of the elliptical FRP-confined concrete section depends on the hoop
dilation of the FRP jacket; arching of the confining stresses does not occur as it takes
place in rectangular and square FRP-confined concrete sections, as shown in Figures 4.5
and 4.6. Membrane action occurs in circular and elliptical sections but not in rectangular
or square FRP-confined sections. In rectangular and square FRP jackets bending of the
sides of the FRP jackets occurs, due to lateral dilation of the concrete core, as a result of

the weak out-of-plane stiffness of the thin rectangular and square FRP jacket.
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A circular section as shown in Figure 4.8 is also a special case of an elliptical section,

as shown in Figure 4.9, for a unity section aspect ratio (i.e., Oy, =1.0). In addition, an

elliptical section can also be considered as a special case of an elongated (i.e., distorted)

circular section for which ag; =21.0. As a result, the confining efficiency (ke ) o Of the

elliptical FRP jacket is also given by Eq. (4.35); thus (k,),; = (k,).; =1.0.

Reinforcement Ratio

Using Eq. (4.12), the reinforcement ratio (,0 i )el of the confining elliptical FRP jacket

of Figure 4.9 is given by:

(pj )el :(ﬁJce, (4.42)

(4.43)

where C,; is the reinforcement ratio coefficient of the confining elliptical FRP jacket.

For a circular section for which ag, =1.0, Eq. (4.43) yields C,; =C,; =2.0, which is

identical to that given in Eq. (4.37).
Effective and Normalized Effective Confining Stiffness

The effective stiffness of an elliptical FRP jacket (C je )el can be found by setting
(C je )sh = (C je )el in Eq. (4.17) and substituting the confining efficiency

(ke ) ol = (ke ) i = 1.0 and the reinforcement ratio coefficient C,; of Eq. (4.43) into Eq.
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(4.17). The normalized effective confining stiffness (K ; of an elliptical FRP jacket,

jel
can be found by setting (K je )sh = (K je )el and substituting (C e )sh = (C e )el into Eq.

(4.19).

Shape-Modified Sections

FRP jackets are effective in confining circular or elliptical concrete sections.
However, in the case of square and rectangular concrete sections, the confinement
provided by the FRP jacket is less effective due to the rectilinear FRP jacket shape which
includes rounded corners and flat sides. The presence of steel ties in rectangular
reinforced concrete sections limits corner rounding to small radii in the order of 25-76
mm.

One approach to increasing the confinement effectiveness and strain ductility of
square and rectangular sections with chamfered corners, as shown in Figure 4.10, is to
shape modify the cross section into either circular, oval or elliptical FRP-confined
sections (Yan 2005).

When the presence of steel ties in square or rectangular reinforced concrete sections
limits corner rounding to small radii, shapes other than rectangular FRP jackets may be
used to improve the confining effectiveness of the FRP jacket while minimizing the size
of the confining FRP jacket.

This can be accomplished by modifying the rectilinear (rectangular and square)
section using either a circular FRP jacket to confined square sections or an elliptical or
oval FRP jacket to confine rectangular sections. The use of shape-modifying elliptical

FRP jackets (including circular) and oval FRP jackets are considered herein.



(b)

Figure 4.10 Geometry of existing (a) rectangular and (b) square sections.
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In this section a rectangular shape-modified (RSM) section that is confined by either

a shape-modifying oval (SMO) or a shape-modifying elliptical (SME) FRP jacket, as
shown in Figures 4.11 and 4.12, is considered herein. In these figures a rectangular

concrete section with major . and minor B, dimensions, having a nonunity aspect
ratio (i.e., ag; >1.0) whose shape has been modified so that a minimum concrete cover
Cqor 15 provided at the corners of the rectangular section, along the section’s main

diagonal is shown.
The dimensions of the dashed rectangle circumscribed within the elliptical FRP jacket

shown in Figure 4.11(a) are given by:

Hiygy = He (14200, 5in6g) 5 oy =~ (4.44)

c
B,y = B.(1+2a,,,0 cos8,) (4.45)

_ 2 2 _ 1
Drsm _\/(Brsm) +(Hrsm) _Hrsm 1+ (O’ )2 (4'46)

sh

H h H B

Arsm :% =brﬂ =dsp 5 hrsm = ;sm 5 brsm = r2sm (4.47)

The subscript rsm indicates a rectangular shape-modified (RSM) section confined by

a shape-modifying elliptical or oval FRP jacket. In addition, a,,, is the aspect ratio of

the RSM section; H B and D,, are the overall major, minor, and main

rsm> rsm»

diagonal dimensions of the RSM section. Also, 4,,, and b,,, are the major and minor
axis of the RSM section, respectively, and 6,,, is the angle of inclination of the main

diagonal of the RSM section.
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Figure 4.11 Geometry of shape-modified rectangular section: (a) rectangular section

geometry and (b) elliptical FRP jacket geometry.
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Figure 4.12 Geometry of shape-modified rectangular section: (a) rectangular section

geometry and (b) oval FRP jacket geometry.
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Elliptical Shape-Modified Sections
As shown in Figure 4.11(b), the rectangular section could be confined by an elliptical
FRP jacket whose aspect ratio is minimized; this is accomplished by minimizing the

distance of the foci c,; of Eq. (4.38) of an elliptical FRP jacket, which yields the

following:

H
Asme = (_j =4 gy = tan(asme) (4-48)
sme

B
B
Byme = Brsm\/1+ash > bsme = Szme (4.49)
1 H
Hgpe = Hygy 1+a_h 5 Ngme = s2me (4.50)
s
2
D :\/(B P +(Hpo )? = Hpoq1+ b (4.51)
sme sme sme sme
sh
2
D; = gDsme (4.52)

where @, is the aspect ratio of the shape-modifying elliptical (SME) FRP jacket.
Also, Hg,., Bgue, and Dy, are the overall major, minor, and main diagonal
dimensions of the SME jacket, respectively. In addition, A, and b, are the major
and minor axis of the SME jacket, respectively, and 8,,,, is the angle of inclination of

the FRP jacket diagonal D ; and Dg,,, of the SME jacket. The subscript sme indicates

a rectangular concrete section confined by an SME jacket.
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Using Eq. (4.12), the reinforcement ratio of the shape-modifying elliptical FRP jacket

of Figure 4.11, (,0 j) is given by:

sme

o) = (%Jcsme (4.53)

2
Come =(1+agpe) |1+ W (4.54)

10+4/4=3(Ay,0)

where C,,,, 1s the reinforcement ratio coefficient of the shape-modifying elliptical FRP

jacket. The effective stiffness of the shape-modifying elliptical FRP jacket (C je )Sme can
be found by setting (C je )sh = (C je)sme in Eq. (4.17) and substituting the confining

efficiency (k,) ome = (k,) ol = (k,) i = 1.0 and the reinforcement ratio coefficient Cj,,,

of Eq. (4.54) into Eq. (4.17). In addition, the normalized effective confining stiffness of

the shape-modifying elliptical FRP jacket (K can be found by setting

Je )sme

(K je )s p = (K je )sme and substituting (C je )s by (C je )sme into Eq. (4.19).

Oval Shape-Modified Sections.
The rectangular concrete section of Figure 4.10(a), whose shape has been modified
by a shape-modifying oval (SMO) FRP jacket, as shown in Figure 4.12, is considered.

Minimizing the aspect ratio of an SMO jacket o the minimum required aspect ratio

smo >

(asmo )min of the SMO jacket is given by:
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H B, +2R
(a, ) = smoJ - Zc SMO — tan @ (4.55)
SO min (BSWZO min 2Rsm0 e
H : 2 2
(Rsmo )min = ﬁ\/(ash +20,0 0 SIN 0d - 1) + (1 +20,0 ., cOS Hd ) (4.56)
S
BSI’)’[O = 2Rsm0 ’ bSWlO = RSWIO (457)
HSWZO = 2asmoRsm0 ; hSWlO = aSWlORSWlO (458)
| 2
Do = \/(Bsmo )2 + (Hsmo )2 = H gy 1 +( ] (4.59)
aSWlO
D; =2Rg,, csc 9sm0{asm0 —[1 -sin(@, )Smol} (4.60)
(ga )smo = Omo ~ sin”! (Sin Osmo ~ €08 Oy, ) (4.61)
where B,,,, H,,,and D, are the overall minor, major, and diagonal dimensions of

the SMO jacket; D; is the main diagonal of the confined core within the SMO jacket;

B0 1s the main diagonal angle of the SMO jacket, and (ﬁa) is the reference angle

sSmo
measured from the center of the jacket radius Ry,,, to the intercept of the main diagonal
with the FRP jacket for a rectangular concrete section with a nonunity aspect ratio (i.e.,

Qg >1.0) as shown in Figure 4.12, the subscript smo indicates a rectangular section

confined by a SMO jacket. For the rectangular section confined by an SMO jacket, as

shown in Figure 4.12, the confining efficiency (ke) of the SMO jacket can be found

sSmo

by substituting @y, =dg,, and a; =1/(2a,,) into Eq. (4.29) which yields

(k) =1.0.
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Using Eq. (4.12), the reinforcement ratio (,0 i )smo of the SMO section as shown in

Figure 4.12 is found by substituting @, =d,, and a; = 1/(20’S,n0) into Eq. (4.30),

which yields:

(Ioj )smo = [%Jcsmo (4.62)

_ 4 (asmo B 1) + 2710 gy

Como = 4(asm0 _1)+ o (4.63)

where Cg,,, is the reinforcement ratio coefficient of the SMO jacket.

The effective stiffness (C je) of the SMO jacket can be found by setting

smo
(C je )sh = (C je )Smo in Eq. (4.17) and substituting the confining efficiency
(ke ) smo = (ke ) i = 1.0, the aspect ratio g, =0y, , and the jacket reinforcement ratio
coefficient Cj = Cg,,, into Eq. (4.17). In addition, the normalized effective confining

stiffness of the shape-modifying circular FRP jacket (K je )Smo can be found by setting

(K je )sh = (K je )Smo and substituting (C je )s p = (C je )Smo into Eq. (4.19).

Circular Shape-Modified Sections

A square concrete section with chamfered corner having major H,. and minor B,
dimensions, and a unity aspect ratio (i.e.,ag; =1.0), whose shape has been modified so
that a minimum cover c,,, is provided at the corners of the square section is shown in

Figure 4.13. The dimensions of the dashed square circumscribed within the shape-

modifying circular FRP jacket, as shown in Figure 4.13(a), are given by:
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smc

(b)

Figure 4.13 Geometry of shape-modified square section: (a) square section geometry

and (b) circular FRP jacket geometry.



53

H g = Bgsm = H, [1 +42 Acor (4.64)
— 2 2 _
Dssm - \/(Bssm) + (Hssm) - '\/E Hssm (465)
H
Pssm = Dgsm = szsm (4.66)

The subscript ssm indicates a square shape-modified (SSM) section confined by a
shape-modifying circular (SMC) FRP jacket. The size of the SMC jacket with a unity

aspect ratio (1.e., O, =, =1.0) as shown in Figure 4.13(b) can be found as follows:

Dj = Dyme = Hgne = Bome =\/EHssm > hsmc =bsmc = s2mc (4.67)

where @, is the aspect ratio of the shape-modifying circular FRP jacket; / B

smc > smc >

Dy and D j are the overall major, minor, and diagonal dimensions of the shape-

modifying circular FRP jacket, respectively; h,,. and by, are the overall major and
minor axis of the shape-modifying circular FRP jacket, respectively. The subscript smc
indicates a section confined by a SMC jacket.

Using Eq. (4.12), the reinforcement ratio (,0 j) of the SMC jacket as shown in

smc

Figure 4.12 is given by:

%
(0, ==L Come s Come=20 (4.68)

sme | H,

where Cg,,. is the reinforcement ratio coefficient of the shape-modifying circular (SMC)

FRP jacket.
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The effective stiffness (C je) of the SMC jacket, can be found by setting

smc

(C je)sh =(C je)smc in Eq. (4.17) and substituting the confining -efficiency

(k,) ome = (k,) ;i = 1.0, and the reinforcement ratio coefficient Cg,,. of Eq. (4.59) into

of the

Eq. (4.17). In addition, the normalized effective confining stiffness (K je )smc

SMC jacket, can be found by setting (K je )sh = (K je )Smc and substituting

(Cre), =(Cje).  into Eq. (4.19).
The confinement efficiency k&, of Eq. (4.8) and the reinforcement ratio coefficient
Cgp of Eq. (4.12) of the FRP-jacketed sections considered herein are summarized in

Table 4.1 and Table 4.2, respectively.

In this chapter a series of mathematical relationships were developed to describe the
geometric and mechanical properties of FCC sections of various shapes, which include
circular, elliptical, rectangular, square, and oval sections. These relationships are
incorporated into Chapters 5-10 to describe the uniaxial compressive behavior and the
axial strain-induced transverse and diagonal dilation behavior of FRP-confined concrete

sections in compression.
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Table 4.1 Summary of the confinement efficiency k, of various FRP-confined

concrete sections.

FRP jacket shape Confinement Efficiency (&, ) Ref. Eq.
2
2 1-2a ha
Rectangular k, =1 _E ( = ) 5 (4.29)
l—ash(4—ﬂ)(aj)
2
o[ (1-24))
Square ke =1-— 5 (4.32)
3 1—(4—ﬂ)(aj)
Same as rectangular with 2a; =
Oval N/A
l/ag, or k, =1.0
Same as rectangular witha g, =1.0 and
Circular N/A
a; =050, or k, =1.0
Elliptical k, =1.0 N/A




Table 4.2 FRP jacket shape dependent reinforcement ratio coefficient Cg; of

various FRP-confined concrete sections.

FRP jacket shape dependent

FRP jacket shape reinforcement ratio coefficient Cg, Ref. Eq.
(1 +ash)_(4 _ﬂ)ajash
Rectangular Cyp = 5 (4.30)
1_ash(4 —IT)(O’J')
: 2-(4-n)a,
= 4.34
Square sh - (4 ~ n)(aj )2 (4.34)
4ag(ag, —1)+2m
C — sh\Ysh sh
Oval ova 4(aSh _ 1) +T (436)
Circular Cy, =20 (4.37)
3(Ah)’
Elliptical Cop = (L +ag) 1+ < 4.43
iptica s s 0+ m (4.43)
with Ay, = Zsh "1

agy, +1




CHAPTER 5

TRANSVERSE AND DIAGONAL EQUILIBRIUM
OF CONCRETE SECTIONS CONFINED BY
FIBER-REINFORCED POLYMER

JACKETS

In this chapter a series of equilibrium relationships are developed from the transverse
and diagonal equilibrium of the FRP-confined concrete (FCC) sections considered in this
dissertation. In addition, a novel concept of diagonal equilibrium along the main
diagonal of the FCC section is introduced. The mechanical and geometric properties of
these FCC sections introduced in Chapter 4 are used to develop a series of diagonal
equilibrium relationships for FCC sections.

The analytical equilibrium relationships introduced in what follows are used to
determining the analytical strain compatibility relationships introduced in Chapter 6.
Also, the concept of diagonal equilibrium is used in an analytical Mohr-Coulomb-based
yield criterion for frictional-cohesive materials introduced in Chapter 9 and in an
incremental damage-based stress-strain model introduced in Chapter 10.

In this investigation the following assumptions are made in the transverse and
diagonal equilibrium analysis of FCC sections:

1. Perfect bond exists between the FRP jacket and the confined concrete core near the

corners of rectangular and square FCC sections with surface-bonded FRP jackets or



58
bonded shape-modifying FRP jackets, referred to herein as bonded FRP-confined
concrete (BFCC) sections.

. At the corners of cast in place FRP jacketed concrete sections or what is typically
referred to as concrete filled FRP tube (CFFT) sections, the coefficient of friction
between the concrete core and the FRP jacket is assumed to be sufficiently high to
suppress slippage between the FRP jacket and concrete core near the rounded corners
of rectangular and square FCC sections and at the concrete-to-jacket interface of oval,
circular, and elliptical CFFT sections, including shape-modifying FRP jackets.
Flexural stiffness of the confining rectangular jacket is assumed negligible, and
arching action between the rounded corners is assumed to spread the resultant passive
confining pressures along the faces of the rectangular and square BFCC and CFFT
sections. As a result, the FRP jacket is considered as an element having only axial
stiffness.

Flexure-induced strains at the extreme fibers of the FRP jacket due to lateral bulging
of the confined core at the faces of the rectangular and square BFCC or CFFT
sections are ignored. In addition, flexure-induced strains at the extreme fibers of
elliptical FRP jackets due to lateral bulging of the confined core are also ignored.
Secondary effects due to combined axial shortening and transverse extension of the
FRP jacket are ignored in the analysis of the FCC section.

The fibers of the FRP jacket are assumed oriented in the hoop or transverse direction.
Stress-concentrations at the concrete-to-jacket interface that can occur due to cracking
of the confined concrete core near the surface of the FRP-jacketed concrete are

ignored in the equilibrium analysis of the FCC section.
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8. In determining the lateral confining pressure provided by the confining FRP jacket at

a given transverse jacket strain, the concrete core within the FRP jacket is considered

infinitely rigid when compared to the lateral stiffness of the FRP jacket.

In the analysis of confined concrete sections, be it concrete confined by transverse
steel reinforcing, steel jackets, or FRP jackets, the equilibrium of the passively confined
concrete is typically defined in terms of the transverse equilibrium of the confined
concrete core, as shown in Figures 5.1-5.5, for FCC sections of various shapes. In this
dissertation, a series of mathematical relationships are introduced using the concept of
diagonal equilibrium of the FCC sections as shown in Figures 5.6-5.10.

Consider the transverse equilibrium of the half body of the concrete sections along

the minor B, dimension, as shown in Figures 5.1(a), 5.2(a), 5.3(a), 5.4(a) and 5.5(a),
and along the major H_. dimension as shown in Figures 5.1(b), 5.2(b), 5.3(b), 5.4(b),
and 5.5(b). Equilibrium of the FCC sections along the minor B, and major H,

dimension of Figures 5.1-5.5, yields:

2f;) ;= f5He =0 (5.1)

2f;), t; = fuBe =0 (5.2)

The average stress in the linear elastic FRP jacket along the minor ( S ) 5 and major

(fj ) u faces of the FRP jackets of Figures 5.1-5.5 are given in terms of overall average

transverse strains in the confined concrete core along the minor £z and major &£y

dimensions of the FRP jacket, respectively, as follows:
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Figure 5.1  Transverse equilibrium of rectangular FRP-confined concrete section

along the (a) minor and (b) major dimension.
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Figure 5.2  Transverse equilibrium of square FRP-confined concrete section: along

the (a) minor and (b) major dimension.
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Figure 5.3  Transverse equilibrium of oval FRP-confined concrete sections: along the

(a) minor and (b) major dimension.
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Figure 5.4  Transverse equilibrium of circular FRP-confined concrete sections: along

the (a) minor and (b) major dimension.
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Figure 5.5  Transverse equilibrium of elliptical FRP-confined concrete sections: along

the (a) minor and (b) major dimension.
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Diagonal equilibrium of a rectangular FRP-confined concrete section.

Figure 5.6

Diagonal equilibrium of a square FRP-confined concrete section.

Figure 5.7
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Diagonal equilibrium of an oval FRP-confined concrete section.

Figure 5.8

Diagonal equilibrium of a circular FRP-confined concrete section.

Figure 5.9



Figure 5.10

Diagonal equilibrium of an elliptical FRP-confined concrete section.

67
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(fj)B =E;ep (5.3)

i), =Eien (5.4)

Solving for the average confining stress along the minor B. and major H,

dimensions in Egs. (5.1) and (5.2), and setting the effective confining stress as

(fB )e =k, fp and (fH )e =k, fy and using Eqgs. (5.3) and (5.4) yields:

(/). :(Eje)BfB (5.5)
(1), :(Eje)H‘fH (5.6)
where (E je ) 5 and (E je ) ,, are the effective transverse stiffness of the FRP jacket along

the minor B, and major /. dimensions of the FCC section, given in Egs. (4.15) and

(4.16), respectively.
One of the difficulties associated with Eqgs. (5.5) and (5.6) is that they are two

equilibrium equations with two unknown transverse strains £z and £y and an unknown

relationship between them. These challenges can be overcome by considering the
diagonal equilibrium of the FCC sections shown in Figures 5.6-5.10, in combination
with the transverse equilibrium of the FCC sections of Figures 5.1-5.5 and the resulting
transverse equilibrium relationships of Egs. (5.5) and (5.6).

The novel concept of diagonal equilibrium and dilation of the FCC sections
introduced herein, to the knowledge of the author, has not been introduced in the analysis

of FCC sections. From equilibrium of the FCC sections perpendicular to the main
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concrete core diagonal Dg,, as shown in Figures 5.6-5.10, the average diagonal

confining stress ( fa ) ¢, can be found as:

2f.t:
(fd)sh :[ gj JJcosﬁb (5.7)

sh

From equilibrium of the FCC sections parallel to the main concrete core diagonal

Dy, , as shown in Figures 5.6-5.10, the average shearing stress (Td ) ¢ 18 given by:

sh

2f.1-
(74),, :[ gjtj]sing (5.8)

where f; is the tensile stress in the FRP jacket at the intersection of the main diagonal,
D, of Eq. (4.3), with the FRP jacket having a thickness ¢, as shown in Figures 5.6-5.10

which is given as:
Tj=E€; (5.9)

This tensile stress in the FRP jacket is a result of the transverse dilation that the FCC

core exhibits during axial deformation of the core. In addition, & i is the tensile strain in

the FCC section at the intersection of the main diagonal D, of Eq. (4.3) with the FRP
jacket; E; is the transverse or hoop modulus of elasticity of the FRP jacket. Also, the
main concrete core diagonal Dy, and the FRP jacket strain/stress angles 8, and 6,

depend on the shape and geometry of the FCC core.
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Using Egs. (5.7) and (5.8) the average effective shearing stress (Tde ) ¢, can be found

in terms of the average effective diagonal confining stress ( fde ) o » as follows:

(ra)y, = (1), tan 6y (5.10)

The main concrete core diagonal D, of the FRP-confined core is given in terms of

the major dimension /. of the FRP jacket, as follows:

Dsh :Xsth (5-11)

where Y; is a diagonal parameter that relates main concrete core diagonal D, to the
major dimension ..

Substituting the effective transverse stiffness (E je ) P of the FRP jacket along the
minor jacket dimension B,. of Eq. (4.15) and the main concrete core diagonal D, of Eq.
(5.11) into the definition of the average diagonal confining stress ( fa ) o, ©f Eq. (5.7) and

setting the effective diagonal confining stress as ( fde) =k, ( fa ) o Yield:

(e dsn =Eje) s Wadsn e (5.12)
_cosf,
Wa)y, o (5.13)

where k, is the confinement efficiency of the FRP jacket, which is summarized in Table
4.1 for the FRP-confined sections considered herein; (t//d ) ¢, 18 a diagonal confinement

equilibrium coefficient of the FCC section. This coefficient is included in the analytical
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strain compatibility relationships introduced in Chapter 6, which relate the diagonal
jacket strain £ to the strain along the minor £, and major £, dimensions of the FCC
section.

Performing identical substitutions into the definition of the average diagonal shear

stress (Td ) ¢, Of Egs. (5.8) and (5.10) and setting the effective diagonal shear stress (Tde)

as (Tde) =k, (Td )sh yield the following:

(TdE)Sh = (Eje)B( T)Sh‘gj = (fde)sh tan 6 (5.14)
ind
W)y = h” = (@a), tan 8y (5.15)

where ( r ) ¢, 1s a diagonal shear equilibrium coefficient of the FCC section.
The normalized effective confining stress (Fde ) o, and the normalized diagonal

shearing stress (T;,) o, of any given FRP jacket is defined as:

(Fae )y, = (fjf b (5.16)
T el
(Tae)s = ( jp) h (5.17)

where f,, is the unconfined peak compressive strength of the concrete core.

Using the effective transverse stiffness (E je ) 5 of Eq. (4.15), the effective confining

stiffness (C je)s of Eq. (4.17), the normalized effective jacket stiffness K ;, of Eq.

h
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(4.18), and the effective diagonal confining stress ( Jde ) ¢, Of Eq. (5.12), the normalized

effective confining stress (Fde ) ¢, Of Eq. (5.16) can be rewritten as:

(Fae)gn = (K je ), V)5 (5.18)
2wy),
(Va ) =—(Cd) L (5.19)
sh

where (Vd ) ¢, 18 a normalized diagonal confinement equilibrium coefficient of the FCC

section. In addition, Cg;, is an FRP-jacket shape-dependent reinforcement ratio
coefficient, summarized in Table 4.2.

The same can be done for the normalized diagonal shearing stress (Tde ) o, of Eq.

(5.17) where:

(Tde )sh = (Kje)sh (VT )sh €= (Kje )sh (yd )sh £ tan 6, (5.20)
2
(yz_ )Sh = (CTZSh = (yd )Sh tan Hb (5.21)

where (y, ) ., 1s a normalized diagonal shear equilibrium coefficient of the FCC section.

Using the geometry of Figures 5.6-5.10, the cos8; and sin8; terms included in the

following relationships are given as:

sing; = =

JH ) +(8,.) \/1+ ! (5.22)
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B

. _ 1
JH P+ (B 1+(@y)

cosf; =

(5.23)

where the angle of inclination 8; of the main diagonal D, and the section aspect ratio
agy, of the FCC sections shown in Figures 5.6-5.10 are defined in Egs. (4.1), (4.2), and

(4.3), respectively.
In what follows, a series of relationships for the nondimensional shape-dependent

parameter X, of Eq. (5.11) and the FRP jacket shape-dependent angles 8, and &), are

introduced from the diagonal equilibrium of the FRP-jacketed concrete sections of the

various shapes shown in Figures 5.6-5.10.

Rectangular Sections
A unit length rectangular FRP-confined concrete BFCC or CFFT section, as shown in
Figure 5.11(a), is considered herein. From the geometry of the half body shown in

Figure 5.11, the minor B and major H g dimensions of the main diagonal Dy, of the

rectangular FRP-confined concrete (RFCC) section can be found as:
Hgy =H, [1 -2a,(1-sin6, )] (5.24)
By, =B, [1 -2a,(1-sing, )] (5.25)

where the corner aspect ratio of the FRP jacket o | is defined in Eq.(4.4).

The main concrete core diagonal Dy, of the rectangular RFCC section, as shown in

Figure 5.11, is given as:
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(b)

Figure 5.11 Rectangular FRP-confined concrete section: (a) typical section geometry,

(b) diagonal equilibrium.
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H B
Dy = (B + (1) = 0= (520

The shape-dependent angles 8, and &), of the rectangular FRP jacket are given by:

6,=6,-6, (5.27)

G, = sin”! (sin 6, —cos Hd) (5.28)

Substituting /g of Eq. (5.24) into the definition of Dy, of Eq. (5.26) and solving

for the nondimensional shape-dependent parameter of the RFCC section X,; of Eq.

(5.11) yields:

1-2a,(1-sin6,)
sian

Xsh = (5.29)

Square Sections
A unit length square FRP-confined concrete BFCC or CFFT section, as shown in
Figure 5.12(a), is considered herein. From the geometry of the half body shown in

Figure 5.12, the minor B and major H g dimensions of the main diagonal Dy, of the

square FRP-confined concrete (SFCC) section can be found as:

Hy, :HC[1—aj(2—J§)] (5.30)

By, :Bc[l—aj(z—ﬁ)] (5.31)
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(b)

Figure 5.12 Square FRP-confined concrete section: (a) typical section geometry, (b)

diagonal equilibrium.
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For a square section B. = H_. (i.e., ay,; =1.0); hence the minor B, dimension is
equal to the major H; dimension and can be used interchangeably given that
By, = Hg,. The main concrete core diagonal Dg; of the SFCC section, as shown in

Figure 5.12, is given as:

Dsh :\/(Bsh )2 +(Hsh )2 :\/EHsh (5.32)

Substituting Hg, of Eq. (5.30) into Dy, of Eq. (5.32) and solving for the

nondimensional shape-dependent parameter X; of the SFCC section of Eq. (5.11) yield:

1-2a;(1-sin6,
sian

Xsh = )=x/5[1—aj(2—ﬁ)] (5.33)

The nondimensional shape-dependent parameter X,; of the SFCC section of Eq.

(5.33) is similar to that introduced in Eq. (5.29) for RFCC sections, since a SFCC section

is the special case of a RFCC section with rounded corners with a unity section aspect
ratio (i.e., @y, =1.0 and 8; =45°).
As shown in Figure 5.12(b), the shape-dependent angles 8, and 8, of the SFCC

jacket are 8, =6; =45° and &), =0; these values can also be found by substituting
ag, =1.0 (i.e., 8; =45°) into 8, of the RFCC section of Eq. (5.28).
Oval Sections

A unit length oval FRP-confined concrete BFCC or CFFT section, as shown in

Figure 5.13(a), is considered herein. From the geometry of the half body shown in
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Figure 5.13, the minor B, and major /; dimensions of the main diagonal D, of an

oval FRP-confined concrete (OFCC) section can be found as:

H .

Hy =—<[ay, ~(1-sin6, ) (5.34)
asp
H )

By, =—02[ash _(1 —sing, )] (5.35)
2y

The main diagonal Dy, is given by Eq. (5.26). The shape-dependent angles 8, and
g, of the oval FRP jacket are given by Eqs. (5.27) and (5.28), respectively.

Substituting H g of Eq. (5.34) into the definition of Dy, of Eq. (5.26) and solving
for the nondimensional shape-dependent parameter X,; of the OFCC section of Eq.

(5.11) yield:

ag, —(1-sind,)
agy,sinf,

Xsh = = csc? 6, [sin 6,; —cosb, (1 -sind, )] (5.36)

The nondimensional shape-dependent parameter Y, of the OFCC section of Eq.

(5.36) is similar to that introduced in Eq. (5.29) for RFCC sections, since an OFCC

section is the special case of a rectangular section with rounded corners with a;, >1.0
and a j =1/ (2ash)- Also, an oval section with a unity aspect ratio a, =1.0 is a

circular section, as shown in the following section, since a circular section is also a

special case of a square section with rounded corners for which R; =D / 2ora; = 1/2.
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(b)

Figure 5.13 Oval FRP-confined concrete section: (a) typical section geometry, (b)

diagonal equilibrium.
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Circular Sections
In this section, the following analysis of circular FRP-confined concrete (CFCC)
sections also includes square concrete sections confined by shape-modifying circular FRP
jackets introduced in Chapter 4. A unit length CFCC section, as shown in Figure

5.14(a), is considered herein.

From the geometry of the half body shown in Figure 5.14, the minor B; and major

H g, dimensions of the main diagonal Dy, of the CFCC section can be found as:

By, = B, sinf, (5.37)

Hsh :Hc siné’d (538)

Considering that for a circular section B, =H_, (ie., dy =1.0), the minor
dimension B, of Eq. (5.37) is equal to the major dimension H g, of Eq. (5.37), i.e.,
By, = Hgy,. The sinf,; terms in Eq. (5.37) and (5.38) is equal to V2/2, determined by
substituting a;, =1.0 into sind; of Eq. (5.22). The main concrete core diagonal D,

of the CFCC section, as shown Figure 5.14, is given by:

Dsh = \/(Bsh )2 + (Hsh )2 = \/EHSh (5.39)

Substituting Hg, of Eq. (5.37) into Dy, of Eq. (5.39) and solving for the
nondimensional shape-dependent parameter X, of the CFCC section of Eq. (5.11) yield

Xsn =1.0 for a CFCC section.



Dsh =D

Hsh H

(b)

Figure 5.14 Circular FRP-confined concrete section: (a) typical section geometry; (b)

diagonal equilibrium.
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A value of )y =1.0 can also be obtained by substituting a; =1/2 (e,

R;=D;/2), 6,=0°, and gy =45" for a, =1.0 (ie, B. =H, =D;) into X, of
Eq. (5.29), since a circular section is a special case of a rectangular section with rounded
corners for which ag, =1.0 and a; =1/2 (i.e., R; =D; /2).

A value of )y, =1.0 can also be obtained by substituting a; = 1/2 (e,

R;=D; /2) into X, of Eq. (5.33), since a circular section is also a special case of a

square section with rounded corners for which R; =D /2 or a; =1/2.

As shown in Figure 5.14(b), the shape-dependent angles 8, and &, of the CFCC

jacket are 8, =8; =45° and 6, =0; these values can also be found by substituting

ag, =1.0 into g, of the RFCC section of Eq. (5.28).

Elliptical Sections
In this section the analysis of elliptical FRP-confined concrete (EFCC) sections also
includes rectangular sections confined by shape-modifying elliptical FRP jackets. A unit
length EFCC section, as shown in Figure 5.15, is considered herein.

The main concrete core diagonal Dg; of the EFCC section is given by D, of Eq.

(5.39). The shape-dependent angles 8, and 8, of the elliptical FRP jacket are given by:

6,=90" -6, (5.40)

Hb :6?d —Ha = 20d -90° (541)
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(b)

Figure 5.15 Elliptical FRP-confined concrete section: (a) typical section geometry, (b)

diagonal equilibrium
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Substituting Hg, of Eq. (5.38) into Dy, of Eq. (5.39) and solving for the

nondimensional shape-dependent parameter Y,; of the EFCC section of Eq. (5.11) yield:

(5.42)

As indicated in Chapter 4, a circular section is a special case of an ellipse with a unity

aspect ratio (&, =1.0) for which 8; =45°. As a result, the nondimensional shape-
dependent parameter X,; of the EFCC section of Eq. (5.42) reduces to that of a circular
section for which Y, =1.0.

The nondimensional shape-dependent parameter Y, of Eq. (5.11) of the FCC

sections shown in Figures 5.11-5.15 introduced in Egs. (5.29)-(5.42) is summarized in

Table 5.1. The shape-dependent angles 8, and &, of the FCC sections shown in

Figures 5.5-5.8, introduced in Egs. (5.27)-(5.41), are summarized in Table 5.2.



Table 5.1 Summary of the nondimensional shape-dependent

parameter ) ;, of various FRP-confined concrete

sections.

FRP jacket Nondimensional shape-dependent Ref.

shape parameter X, Eq.
1-2a,(1-sin6,)

Rectangular Xsh = - (5.29)

sin g,

Square Xsh =\/§ll—a'j(2—\/§)J (5.33)

ag, —(1-sing,)
= 5.36
Circular Xon =1.0 N/A
2
Elliptical Xsh = V2 (5.42)

~ 2sin 6,

85
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Table 5.2 Summary of the shape-dependent angles 8, and &, of various FRP-
confined concrete sections.
FRP jacket angle
FRP jacket Ref. Ref.
shape b, Eq. Oy Eq.
Rectangular Ha = Hd Hb (5.27) Hb = sin_1 (sin Hd —Cos Hd) (5.28)
Square 6, =6, =45° N/A 6, =0° N/A
Oval 0,=6;,-6, N/A 6, =sin"(sin6; —cos@;) (5:28)
Circular 6, =6, =45° N/A 6, =0° N/A
Elliptical 6, =90° -6, (5.40) 6, =26, -90° (5.41)




CHAPTER 6

STRAIN COMPATIBILITY OF CONCRETE SECTIONS
CONFINED BY FIBER-REINFORCED

POLYMER JACKETS

In this chapter, a series of analytical strain compatibility relationships are introduced
from the analysis of the dilation behavior of rectangular, square, oval, circular and
elliptical concrete columns confined by FRP jackets, using the concept of diagonal
equilibrium of FRP-confined concrete (FCC) sections, introduced in Chapter 5.

The assumptions made in Chapter 5 are also applicable to the transverse and diagonal
dilation analysis of FRP-confined concrete sections introduced herein. These strain
compatibility relationships are then utilized in Chapters 7 and 8 to describe and model the
transverse and diagonal dilation of FCC sections.

It is shown herein that due to the elastic properties of the confining FRP jacket, as
introduced in Chapter 4, the geometry of the FRP jacket plays a significant role in
determining a series of mathematical relationships between the axial strain and the
transverse and diagonal dilation strains in the FRP-confined concrete core and FRP
jacket.

These strain compatibility relationships are used in Chapters 7, 8, and 9 to describe
how the section shape and geometry affect the transverse and diagonal dilation of the

FCC section and the passive confinement provided by the restraining elastic FRP jacket.
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Rectangular Sections

A rectangular FRP-confined concrete (RFCC) sections, with rounded corners that is

confined with an FRP jacket having a corner radius R;, a thickness #;, and a hoop

stiffness £, is shown in Figure 6.1.

From this figure, the minor B;h and major H ;h dimensions of the diagonal D;h of

the RFCC section are given by:

By, =BC—Rj=BC(1—ajash) (6.1)

Hg, =H,—R;tan(6;)=H, (1 —ajash) (6.2)

where the FRP jacket aspect ratio @, and the jacket corner aspect ratio a ;, are defined
in Egs.(4.2) and (4.4), respectively.

As shown in Figure 6.1, /. and B, are the major and minor dimensions of the FRP
jacket, respectively; the diagonal angle 8; is given in Eq. (4.1); the main jacket diagonal
D, is defined in Eq. (4.3); the FRP jacket shape-dependent angles 8, and &, of an

RFCC section are defined in Egs. (5.27) and (5.28), respectively.

The main core diagonal Dg; of an FCC section is defined in Eq. (5.11) with the
shape parameter Y, in Eq. (5.29). Also, € I is the diagonal FRP jacket strain, and £p
and &y are the FRP jacket strains along the minor B, and major H,. FRP jacket
dimensions, respectively.

The diagonal D;h of an RFCC, as shown in Figures 6.1, is given by:



&9

Rectangular FRP-confined concrete section: (a) section geometry, (b)

Figure 6.1

offset diagonal equilibrium.
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. R [ H, B,
Dy, = \/(Bsh) + (Hsh = sh = sh (6.3)
sind; cosf,

where the cos8,; and sin8; terms are defined in Eqgs. (5.22) and (5.23), respectively.
A relationship between the diagonal D;h of Eq. (6.3) and the major jacket dimension

H . can be found by substituting ;h of Eq. (6.2) into Eq. (6.3), which yields:

Dy, = AgH, (6.4)
(1 _ajash)
Ash =———5— (6.5)
sing,

where A, is a diagonal shape coefficient that relates the diagonal D;h of the RFCC
section to the major FRP jacket dimension H ..

Using the horizontal jacket stress (fj ) 5 of Eq. (5.3), horizontal equilibrium of the

half body of an RFCC section as shown in Figure 6.1(b) yields:
Engtj - (fd )Sh Dy, sin gd + (Td )sh Dy, COSgd =0 (6.6)

Substituting the diagonal shearing stress (Td ) ¢, Of Eq. (5.10) into the equilibrium
relationship of Eq. (6.6), solving for the diagonal confining stress ( fu ) o> setting the

effective diagonal confining stress as ( fde) =k, ( fa ) ) » Using (E je ) 5 of Eq. (4.15) and

D;h of Eq. (6.4) yield the following generalized relationship of the effective diagonal
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confining stress ( fde ) ¢, in terms of the FRP jacket strain £p along the minor dimension

B, as follows:

(fde)sh = (Eje )B (‘//B )sh €B (6.7)

where (t// B ) &, 18 the minor diagonal equilibrium coefficient of the FCC section. Using

D;h of Eq. (6.4) with A, of Eq. (6.5) for an RFCC section, this coefficient is given by:

1
2(1 —a Qg )(1 —cotd, tan &y )

Ws)g, = (6.8)

Equating the effective diagonal confining stress ( fae ) o, of Egs. (5.12) and (6.7),

yields the following generalized relationship between minor FRP jacket strain £p and

the diagonal FRP jacket strain € ;:

5 =(vp )sh € (6.9)
Ep _[Wa

— = — 6.10
gj (wB jsh ( )

where (VB ) ¢, 18 the FRP minor strain ratio that relates the minor strain £p to the

(VB )sh =

diagonal FRP jacket strain £; and (l//d )sh is the diagonal confinement equilibrium

coefficient of the FCC section of Eq. (5.13). In RFCC sections, the minor strain

coefficient (yz) ¢, can be found by substituting (wy) o of Eq. (5.13) with xg, of Eq.

(5.29) and (@), of Eq. (6.8)into (yz),, of Eq. (6.10), which yields:
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2(1 —a Qg )sin 6,
1-2a,(1-sin6,)

(va), =i—lj= ©6.11)

Using the vertical jacket stress ( S ) Wy of Eq. (5.4), the vertical equilibrium of the half

body of the RFCC section of Figure 6.1(b) yields the following:
(f4)g Dscos8y +(14), Dy sinby —E jegt; =0 (6.12)

Substituting the diagonal shearing stress (Td ) ¢, Of Eq. (5.10) into the equilibrium
relationship of Eq. (6.12), solving for the diagonal confining stress (fd )sh’ and

performing the same substitutions as in the horizontal equilibrium of the RFCC section
yield the following generalized relationship between the effective diagonal confining

stress ( Jde ) o, and the major FRP jacket strain & :

(Fae)sn =\Eje) , @t )€ (6.13)

where (t// H ) ¢, 1s the major diagonal equilibrium coefficient of the FCC section. For an

RFCC section, this coefficient is given by:

1
2(1 —a;ag, )(cot 6, +tan )

Wi = (6.14)

Equating the effective diagonal confining stress ( fae ) o, Of Egs. (5.12) and (6.14),
yields the following generalized relationship between the major FRP jacket strain &y

and the tangential jacket strain £
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e =i )€ (6.15)
_éH _[Ya
e )i :, ( o L} (6.16)

where (yH ) ¢, 18 the major strain ratio that relates the major jacket strain £z to the

tangential jacket strain €.

In RFCC sections, the major strain ratio (yH ) ¢, can be found by substituting
(@a),, of Eq. (5.13) with xg, of Eq. (5.29) and (@), of Eq. (6.14) into (yy ), of
Eq. (6.16), which yields:

ey 2(1—ajash)cosé?a

Vit )y = g, 1-2a;(1-sing,)

(6.17)

Solving for the diagonal jacket strain £; in Egs. (6.9) and (6.15) yields the following

generalized transverse strain ratio Q' :

(6.18)

Substituting (yz), of Eq. (6.11) and (yp ), of Eq. (6.17) into the above

relationship yields the following transverse strain ratio o :

&
a, =L =cotd, (6.19)
€B
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Square Sections

A square FRP-confined concrete (SFCC) section, with rounded corners that is
confined with an FRP jacket having a corner radius R;, a thickness #;, and a hoop

stiffness £; is shown in Figure 6.2.
From this figure, the minor B;h and major H ;h dimensions of the diagonal D;h of
the SFCC section are given by:
By, =B. - R; =Bc(1—a'j) (6.20)

Hy =H,~R; =H,(I-a;) 6.21)

Substituting H'Sh of Eq. (6.21) into (6.3) and (6.4) yields the following diagonal
shape coefficient Ay, for SFCC sections:

_t-a))

Ay = =42l -a; 6.22
sh sing, \/_( j) (6.22)

The previous diagonal shape coefficient Ay, can also be found by substituting

ag, =1.0 and 8; =45° into Ay, of an RFCC section of Eq. (6.5).

Using the horizontal jacket stress (fj ) 5 of Eq. (5.3), horizontal equilibrium of the

half body of an SFCC section of Figure 6.2(b) yields:

Eept; ~(f4)yDsnsin6; =0 (6.23)
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(b)

Figure 6.2  Square FRP-confined concrete sections: (a) section geometry, (b) offset

diagonal equilibrium.
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Solving for the diagonal confining stress ( fa ) ¢, In the previous relationship, setting
(fae)=ke(fa) gy vsing (£, ) , of Eq. (4.15), Dg; of Eq. (6:4), A of Eq. (6.22), and

using ( fde ) o, Of Eq. (6.7) yield the following the minor diagonal equilibrium coefficient

(d/ B ) ¢, of an SFCC section:

Ws)y, = (6.24)

The above minor diagonal equilibrium coefficient (lﬂ B )sh can also be found by

substituting ', =1.0, 8; =6, =45°, and 6, =0 into (Y5 )sh of an RFCC section of
Eq. (6.6).

In SFCC sections, the minor strain coefficient (VB ) o, ©f Eq. (6.10) can be found by
substituting (), of Eq. (5.13) with x, of Eq. (5.33) and (), of Eq. (6.24) into

Eq. (6.10), which yield:

(va)g = (6.25)

£p _ \/E(l—a’j)
£/ 1-a,l2-42)

The above minor strain coefficient (yB)sh can also be found by substituting

ay, =1.0, 6, =6, =45° and 6, =0 into the (yp) ; of an RFCC section of Eq. (6.11).
Using the vertical jacket stress ( S ) W of Eq. (5.4), the vertical equilibrium of the half

body of a RFCC section of Figure 6.1(b) yields the following:
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(f4) g Dy c0s8y ~E &gt ; =0 (6.26)

Solving for the diagonal confining stress ( fa ) ;, In the above relationship and

performing the same substitutions as in the horizontal equilibrium of the SFCC section

yield the following the major diagonal equilibrium coefficient (t// H ) o, 0f SFCC sections:

1

21_0']

W)y, = (6.27)

The above major diagonal equilibrium coefficient (l//H )sh can also be found by

substituting g, =1.0, 8, =6, =45°, and 6), =0 into (¥ )sh of an RFCC section of

Eq. (6.14). The above relationship indicates that for SFCC sections (t// H ) o= (t// B ) -
For an SFCC section, the major strain coefficient (yH ) ¢, Of Eq. (6.16) can be found

by substituting (¢4), of Eq. (5.13) with X, of Eq. (5.33) and (@), of Eq. (6.27)

into Eq. (6.16), which yield:

\/E(l—a-)
_€H _ J
it £ 1-a,0-42)

(6.28)

The above major strain coefficient () )sh can also be found by substituting

ay, =10, 8, =6, =45°, and 6, =0 into the major strain coefficient () )sh of an
RFCC section of Eq. (6.17). The above relationship indicates that for an SFCC section

(VB )sh = (VH )sh .
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Substituting (yB ) o, of Eq. (6.25) and (VH ) o, Of Eq.(6.28) into the transverse strain

ratio @, of Eq. (6.18) yields:

a, ="t =Hsh - (6.29)

The above strain ratio . can also be found by substituting 8, =&, =45° into the
strain ratio a, of Eq. (6.19) of an RFCC section, since an SFCC section is a special case
of an RFCC section with a unit aspect ratio, i.e.,a, =1.0. This indicates that the strain

ratio a, of Eq. (6.19) also applies to SFCC sections.

Oval Sections
An oval FRP-confined concrete (OFCC) section, with rounded corners that is

confined with an FRP jacket having a corner radius R; = B, /2, a thickness ¢;, and a

j 5
hoop stiffness E; is shown in Figure 6.3. The oval sections considered herein also

include rectangular section confined by shape-modifying oval FRP jackets, i.e., oval

shape-modified (OSM) sections.

The minor B;h and major H ;h dimensions of the diagonal D;h , shown in the OFCC

section of Figure 6.3, are given by:
. B
Bsh :BC_Rj :70 (630)

: H
Hsh:Hc—Rjtanﬁd:TC (631)
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(b)

Figure 6.3  Oval FRP-confined concrete sections: (a) section geometry, (b) offset

diagonal equilibrium.
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Substituting H ;h of Eq. (6.30) into (6.3) and (6.4) yields the following diagonal-

shape coefficient Ay, of Eq. (6.4) for OFCC sections:

1
2sin 8,

(6.32)

The above diagonal equilibrium coefficient Ay, can also be found by substituting

a; = 1/(2ash) into Ay, of an RFCC section of Eq. (6.5).
Using the horizontal jacket stress (fj ) 5 of Eq. (5.3), horizontal equilibrium of the

half body of an OFCC section of Figure 6.3(b) yields the equilibrium relationship of Eq.

(6.6). Solving for the diagonal confining stress ( fu ) ¢, 1n Eq. (6.6), setting the effective

diagonal confining stress as (fde) =k, (fd )sh’ using (Eje )B of Eq. (4.15), D;h of Eq.
(6.4), Ay, of Eq. (6.32), and using (fy,),, of Eq. (6.7) yield the following the minor

diagonal equilibrium coefficient ((// B ) ¢, 0f an OFCC section:

Q)

Wp)y, = (6.33)

(a), —tan ;)

The previous minor diagonal equilibrium coefficient (l,U B ) s, can also be found by
substituting & ; = 1/ (2ash) into the (l,U B ) ¢, 0f an RFCC section of Eq. (6.8).
In OFCC sections, the minor strain coefficient (yB ) ¢ Of Eq. (6.10) can be found by

substituting (¢4),, of Eq. (5.13) with x,;, of Eq. (5.32) and (/5),, of Eq. (6.33),

which yield:
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agy,sing,
ay, - (1-sing,)

_€p _
Yp="_ (6.34)

J

Using the vertical jacket stress ( S ) Wy of Eq. (5.4), the vertical equilibrium of the half
body of an RFCC section of Figure 6.3(b) yields the equilibrium relationship of Eq.
(6.12). Solving for the diagonal confining stress ( fa ) ¢, 10 Eq. (6.26) and performing the

same substitutions as in the horizontal equilibrium of the SFCC section yield the

following major diagonal equilibrium coefficient (t// H ) o, of OFCC sections:

Osp
(1 + agp tan@b)

W)y, = (6.35)

The above major diagonal equilibrium coefficient (l//H )sh can also be found by
substituting & ; = 1/ (2ash) into (t// H ) o, of an RFCC section of Eq. (6.14).
In OFCC sections, the major strain coefficient (yH ) ¢ Of Eq. (6.16) can be found by

substituting (¢4 ), of Eq. (5.13) with yxy;, of Eq. (5.32) and (), of Eq. (6.35) into

Eq. (6.16), which yields:

_&y __ Qg cos6,
7 )Sh ay, —(1-sind,)

:, (6.36)

The above major strain coefficient (yH )sh can also be found by substituting

a; = 1/(2ash) into (yy )sh of an RFCC section of Eq. (6.17). Substituting (yz )sh of



102
Eq. (6.34) and (yH )sh of Eq.(6.36) into the transverse strain ratio @, of Eq. (6.18)

yields the transverse strain ratio of Eq. (6.19) for OFCC sections.

Circular Sections
The circular FRP-confined concrete (CFCC) sections included herein, also applies to
square sections confined by shape-modifying circular FRP jackets. An CFCC section

that is confined with a circular FRP jacket having radius R; or diameter D; =2R;, a

J

thickness ¢, and a hoop stiffness £ ; is shown in Figure 6.4.

From these figures, the minor B;h = By, /2, and major H;h = H, /2 dimensions of

the diagonal D;h. The circular section dimensions By, , H,, and Dy, are given in Eqs.

(5.37), (5.38), and (5.39), respectively. As a result, for an CFCC section, the diagonal

shape coefficient Ay, of Eq. (6.4) is given by:

1 J2
/]sh = =

= 6.37
2sinf; 2 (637)

The previous diagonal equilibrium coefficient Ay, can be found by substituting
ag, =1.0, a; =1/2, and 6; =45" into Ay of an RFCC section of Eq. (6.5). The
diagonal equilibrium coefficient A, of Eq. (6.37) can also be found by substituting

a; =1/2 and g; =45° into Ay, of an SFCC section of Eq. (6.22), since a circular

section is a special case of a square section with a radius equal to one half its overall

jacket dimension, i.e., R; = H_ /2 or a; =1/2.
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(b)

Figure 6.4  Circular FRP-confined concrete sections: (a) typical geometry, (b) offset

diagonal equilibrium.
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Using the FRP jacket stress f; of Eq. (5.9), the horizontal equilibrium of the half
body of the CFCC section of Figure 6.4(b) yields the equilibrium relationship of Eq.
(6.23). Solving for the diagonal confining stress (fd )sh , setting (fde) =k, (fd )sh , using
(Eje), of Eq. (4.15), Dy, of Eq. (6.4), Ag, of Eq. (6.37), and using (/) of Eq. (6.7)
yield a unity minor diagonal equilibrium coefficient, (t// B )sh =1.0. A unity minor
diagonal equilibrium coefficient ((// B ) ¢, can also be found by substituting a, =1.0,
a;=1/2,0,=6;=45",and 6, =0’ into (wp )sh of an RFCC section of Eq. (6.8) and
by setting a; =1/2 into (wp )sh of an SFCC section of Eq. (6.24).

For an CFCC section, the minor strain coefficient (VB ) ¢, Of Eq. (6.10) also has a
unity value, i.e., (yB ) ¢, = 1.0, which indicates that for CFCC section £p =&, as occurs

in SFCC sections. This unity minor strain coefficient (yB’)sh can be found by

substituting (¢4),, of Eq. (5.13) with xy, =1.0 of Eq. (6.37) and 6, =0°, and
(‘//B )sh =1.0 into (yB’)sh of an RFCC section of Eq. (6.11). A unity minor strain
coefficient (VB ) ¢ can also be found by substituting o ; = 1/2 into (VB ) i foran SFCC

section of Eq. (6.25).

Solving for the diagonal confining stress ( fa ) ¢, In Eq. (6.26) and performing the
same substitutions as in the horizontal equilibrium of the CFCC section yield
((//H )sh =1.0 and (yH )sh =1.0, which indicates that for an CFCC section £ =€, as
occurs in an SFCC section . For CFCC sections the strain ratio a, of Eq. (6.18) also has

a unity value, ag =1.0 or £y =€p =€;. This indicates that the strain ratio a, of Eq.
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(6.19) also applies to CFCC sections since for an CFCC section 8, =6, =45°; this is

proven in the following equilibrium analysis of elliptical FRP-confined concrete sections.

Circular and Elliptical Sections
Circular FRP-confined sections (CFCC), including square sections confined by
shape-modifying circular (SMC) FRP jackets and elliptical FRP-confined concrete
(EFCC) sections, including rectangular sections confined by shape-modifying elliptical
(SME) FRP jackets, are considered in this section.
A typical elliptical and circular FRP-confined concrete section is shown in Figure
6.5. As was previously established, a circular section is a special case of an elliptical

section with a unity aspect ratio ay; of Eq. (4.2), i.e., ay, =1.0. A portion of the
elliptical FRP jacket at a given diagonal angle &; is shown in Figure 6.6(b); the

following equilibrium relationships can be found:

Equilibrium in the y-direction of Figure 6.6(b) yields:

(F8)oha — £t ;e )5 coslf ), =0 (6.38)
-1 ash2
l6;), = tan B (6.39)

where (5 I ) 9 is the tangential jacket strain in the elliptical FRP jacket at a given angle ;

and corresponding jacket tangent angle (Hj ) 9 of Eq. (6.39); ( fB )9 is the average

confining stress in the confined concrete core jacket at the minor jacket dimension B, at

a given angle ;.
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(b)

Typical geometry of (a) an elliptical and (b) a circular FRP-confined

Figure 6.5

concrete section.
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Figure 6.6  Elliptical FRP-confined concrete section: (a) section geometry and (b)

equilibrium of a portion of an elliptical section.
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From the geometry of Figure 6.6 it can be established that (6? i ) = 0° when 6; =90°.

Equilibrium in the x-direction of Figure 6.6(b) yields:

Ejtyle; ), sinl0; ), + (i )plbe —bo)=Ejtje1 =0 (6.40)

where b, is the minor axis dimension of the EFCC section, where b, = B,. / 2; ( fu ) g 18

the average confining stress in the confined concrete core along the major jacket

dimension H ., at a given angle &;; and A, is the major axis dimension of the EFCC
section, where h, = H_ /2.

Rotational equilibrium with respect to the point O of Figure 6.6(b) with

counterclockwise moment being positive, yields the following equilibrium relationship:

£t (be ~bo) = (f)glbc ~ba) ~3 (fa)glhe) =0 (64

This equilibrium analysis is similar to the analysis of EFCC sections introduced by
Campione and Cuchiara (2007).

The elliptical radius (R j ) - ata given diagonal angle &; can be determined from the

geometry of Figure 6.6 as follows:

(), = (ba)? +(hg)? = (e} = h, 1 (6.42)
9 (b, sin6; )2 +(h, cos G, )2 a’shz cos? g; + sin? o;
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Based on the analysis of Figure 6.6, the elliptical radius (R i ) 9 has a minimum value

of (Rj )9 = (Rj )min =b. when ; =0° and a maximum value of (Rj )9 = (Rj )max =he

when 8; =90°. These minimum (R i )min and maximum (R i )max radii values can also
be obtained analytically by substituting &; =0° and 8; =90° into (R i ) p of Eq. (6.42),

respectively.

The major (h ;

j) 9 core dimensions, measured from the centroid of

and minor (b ) ) 9

the elliptical FRP-confined concrete to the perimeter of the FRP jacket at a given

diagonal angle &;, as shown in Figure 6.6(b), are given by:
(hj )9 = (Rj )9 sing; ; (bj )9 = (Rj )9 cos 6 (6.43)

Solving for ( /B )9 in Eq. (6.38), solving for ( fu )9 in Eq. (6.40), substituting them

into Eq. (6.41), using (R-

j)g of Eq. (6.42) and the major (hj)e and minor (bj)

e
dimensions of Eq. (6.43) yield the following tangential jacket strain ratio (ag )9 of an
EFFC section:

(R - ) , Sin o;

(ag )8 (gj )9 be - (Rj )9 cos 6

cos(Hj )9 —sin(&’j)e (6.44)

The previous relationship is plotted in Figure 6.7 versus the diagonal angle &; for a

quadrant of an elliptical section, i.e., for 0°< &; <90°.
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Figure 6.7  Tangential jacket strain ratio versus diagonal angle of elliptical FRP-

confined concrete sections of various section aspect ratios.
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The elliptical sections considered in Figure 6.7 have an aspect ratio of ag; =1.0 (i.e.,
circular sections), a, =1.50, ay, =2.0, ay, =2.50, and a, =3.0. From Eq. (6.44)

and Figure 6.7 it can be established that a nonlinear variation of the transverse strain in
the FRP jacket occurs along the perimeter of the elliptical FRP jacket for elliptical

sections having an aspect ratio greater than one, i.e., for a; >1.0.
For an elliptical section with a unity aspect ratio (@, =1.0), i.e., a circular section,

Eq. (6.44) and Figure 6.7 indicate that the strain along the perimeter of the FRP jacket

remains constant, a. =1.0, ie., (Ej)9=£j =&y =€p, as demonstrated in the

preceding section.

The nonlinear variation of the transverse jacket strain (5- of elliptical jackets

i)

having an aspect ratio greater than one, i.e., for a, >1.0, as shown in Figure 6.7, can

also be attributed to the change in the radius of curvature of the FRP jacket (fb j ) > ata
given diagonal angle &;, that is defined as:
3
R; 3
(CDJ-)B = % [ash4 cos? o; +sin? (91.]4
(ash bc)
(6.45)

R.)3 3
= —( / )‘9 [a’sh4 cos? 6; +sin? Hilé

(ash hc )2

The maximum radius of curvature (fb f)max of the elliptical jacket occurs along the
minor axis dimension b., and the minimum (CD j)min occurs along the major axis

dimension /. of the elliptical jacket. These curvatures are given by:
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h 2
(q)j)max = (;c) = ashzbc =agphe (6.46)
_(bc)2 _ b _ h
D e 5 (6.47)

Using the radius of curvature ((D j) 9 of Eq. (6.45) and the maximum radius of

curvature (CD ) . of Eq. (6.46), the following tangential jacket strain ratio (a'g)e can

J 'ma

also be established:

(6.48)

For a circular section having a unity aspect ratio (a; =1.0), the radius of the ellipse

(R j ) 9 of Eq. (6.42) and the radius of curvature (CD j ) 9 of Eq. (6.45) are a constant where

Thus for an CFCC section the tangential jacket strain ratio (a'g) g of Egs. (6.44) and
(6.48) is also a constant with a unity value, i.e., (ag)g =1.0 or (£j )6? =E; =€y =€,
as pointed out earlier. For an EFCC section for which ag; >1.0, a strain ratio (a'g) g of
unity occurs only when &; =0° is substituted into Eqs. (6.42), (6.44), and (6.48), i.e.,
(‘gj )9 =¢H-

At the major axis, for which (&‘ i ) ) =€B> the tangential jacket strain ratio of

(a'g)g =q, =€y /ep is found to occur only when &; =90° is substituted into Eq.
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(6.39), which yields (ej)g =0°; further substituting &; =90°, (R J)e =h, into Egs.

(6.44), (6.45), and (6.48) yields the following transverse strain ratio a, for an EFCC

section:

£
ag = ZH = tan 0, =ay, (6.49)

&p

In reference to Figure 6.8, the main core diagonal Dg; or main diagonal radius
Ry, =Dy, /2, at the main diagonal angle &; = 6, can be determined from the geometry
of Figure 6.8, by setting 8; =8;, which yields (Rf)e =Ry, =Dy, /2 in Eq. (6.42),

where for an EFCC section:

D
Ry, = 2”’ = Xanhe (6.50)
Dy, 1 V2
Xeh =— = =——cscly 6.51
TH, \/a’sh2 cos? 6, +sin? 0, 2 (631

where the above Y, is also given in Eq. (5.42) for EFCC sections.
In reference to Figure 6.6, the tangential jacket angle & ; of the FRP jacket at the

main diagonal can be found by substituting angle of inclination 8; of the main diagonal

of Eq. (4.1) and setting 8; =6, in («9 i ) P of Eq. (6.39), which yields:

1 ah2
@:=tan | =4 _|=@ .
j o~ tan 8, d (6.52)
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(b)

Figure 6.8  Elliptical FRP-confined concrete section: (a) section geometry; (b)

diagonal equilibrium.
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Setting (gj) = gj’ Substituting Hl = Hd’ (Rj )9 = Rsh’ and Hl = Hd into (gj )9 of

e

Eq. (6.44), yield the following major strain ratio (yH ) o ©of Eq. (6.16) of an EFCC

section:

_ &g _ Rsh sin 8d . _ .
=H - 6, —sing; =+/2sin§
(VH)S;, 3 |:bC_Rsh c0s0, cosf; —sinb, sin6,; (6.53)

Substituting the shape-dependent diagonal confinement equilibrium coefficient

(t//d )sh of Eq. (5.13) with the shape parameter x,; of Eq. (5.40) or (6.51) into (yH )sh
of Egs. (6.16) and (6.53), solving for the major diagonal equilibrium coefficient (l,U H ) >

yields:

(wy )sh =cos 8, (6.54)

Solving for the major transverse strain £y in Eq. (6.49), substituting it into Eq.

(6.53), and solving for the generalized minor strain ratio (VB ) ¢, Of Eq. (6.10) yield:

(va)y = ‘Z—B = (g—;] =2 cos 8, (6.55)
J sh

Substituting the shape-dependent diagonal confinement equilibrium coefficient
((//d )sh of Eq. (5.13) with the shape parameter X, of Eq. (5.42) or (6.51) into (yB )sh of

Egs. (6.10) and (6.55) and solving for the minor diagonal equilibrium coefficient (l,U B ) oo

yield:
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(6.56)

Substituting (yH )sh of Eq. (6.53) and (yB )sh of Eq. (6.55) into the generalized

transverse strain ratio &z of Eq. (6.18) and using the shape-dependent angles 8, and 6,

of Egs. (5.40) and (5.41), respectively, yield the following transverse jacket strain ratio

a for an EFCC section:

T = cotl(6,) (6.57)

The previous strain ratio indicates that the relationship for the transverse jacket strain

ratio a, of Eq. (6.19) introduced from the diagonal equilibrium analysis of rectangular

(a'sh > 1.0) and square (ash = 1.0) FCC sections with rounded corners is also applicable

to both elliptical (a;, 21.0 and 8; =45°) and circular (ag, =1.0 and 8; =45°) FCC

sections.
The previous relationship indicates that for rectangular, oval, square, elliptical, and

circular FCC sections, the transverse strain ratio @ of the FCC section is given by a,
of Eq. (6.19) with the angle 8, listed in Table 5.2.
Using the strain relationship of Eq. (6.9), using (yB ) ¢, Of Eq. (6.10), and solving for

the FRP jacket strain £ yield:

£; =PBj€p (6.58)
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(6.59)

where [ i is the diagonal strain coefficient, which is the inverse of the minor strain ratio

(vs),, of Eq. (6.10).

Using the transverse strain ratio a, of Eq. (6.18), solving for the minor strain £z,
and substituting it into Eq. (6.58) yield:

£ = [%}SH =&y B, tan(6,) (6.60)

&

In this chapter it was determined that the geometry of the FRP-confined concrete

section, which includes the FRP jacket shape, the section aspect ratio @, and the jacket
corner aspect ratio @ ; (rectangular and square sections only), introduced in Chapter 4,

influences the diagonal dilation, the diagonal equilibrium, introduced in Chapter 5, and
the transverse dilation of FRP-confined concrete core introduced in this chapter.

The diagonal strain coefficient [ i of Eq. 6.59 is summarized in Table 6.1 for the
FRP jacket shapes considered herein. Both the transverse strain ratio o, of Eq. (6.19)
and the diagonal strain coefficient [ ; of Eq. 6.59 will be used in determining the

transverse and diagonal dilation relationships introduced in Chapters 7 and 8, the
transverse confinement relationships introduced in Chapter 9, and the design of FRP

jackets introduced in Chapter 11.
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Table 6.1  Summary of the nondimensional jacket shape-dependent transverse strain

coefficient £ ' of various FRP-confined concrete sections.

FRP jacket Transverse strain coefficient 53, Reference Eqs.
shape

_ 1-2a,[t=sin(6, )

Rectangular P = ; 6.11) and (6.59
8 J 2(1 —a;ayg, )sm(&’a) ©.11) (6.59)
Square ;= f ) (6.25) and (6.59)
20l-a;)
_ O, —(l—sinﬁa)

Oval B; ., sind, (6.34) and (6.59)

Circular Same as elliptical with 8; =45° or N/A

2

Elliptical B; = V2 (6.55) and (6.59)




CHAPTER 7

TRANSVERSE AND DIAGONAL STRAIN RELATIONSHIPS
FOR CONCRETE SECTIONS CONFINED BY FIBER-

REINFORCED POLYMER JACKETS

In this chapter a series of strain compatibility relationships are introduced from
analysis of the dilation behavior of rectangular, square, oval (including rectangular
sections confined by a shape-modifying oval FRP jacket), circular (including square
section confined by shape-modifying circular jacket), and elliptical (including rectangular
sections confined by a shape-modifying elliptical FRP jacket) FRP-confined concrete
(FCC) sections in compression. The strain compatibility relationships introduced in
Chapter 6 are incorporated herein into a series of analytical diagonal and transverse strain
relationships for the aforementioned FRP-jacketed shapes.

The damage-based stress-strain model for FCC sections developed herein, requires
defining a series of strain compatibility relationships that describe the increase in damage
in the cross section in terms of the geometric and mechanical properties of the confining
elastic FRP jacket, introduced in Chapter 4, and the mechanical properties of the concrete
core. In addition to the assumptions made in Chapter 5, the following assumptions are
also made in the strain compatibility relationships developed herein:

1. Prior to cracking of the passively confined concrete core, both the concrete core and

FRP jacket are assumed to behave elastically. In the elastic regime the confined
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concrete core is idealized as an isotropic, homogeneous elastic material, whereas the
FRP material is idealized as a unidirectional isotropic elastic material.

2. Poisson effects due to shortening of the FRP jacket along the length of the FCC
section are considered negligible and are ignored in the analysis.
3. Tensile stresses and strains are considered negative, and compressive stresses and

strains are considered positive.

FRP-Confined Concrete Sections-Elastic Regime
Prior to cracking of the passively confined concrete core, both the concrete core and
FRP jacket behave elastically. Thus, the concrete is treated as an isotropic, homogeneous
elastic material prior to cracking and the FRP jacket as an elastic material that passively
confines the concrete core during the application of a uniform axial compressive load and

resultant axial compressive stress f,. and strain &,..

Using Hooke’s law for a linear homogeneous isotropic concrete material, the normal

strain &,,, for which the subscript m indicates an arbitrary transverse strain direction

where m = x, y, or z, is directly proportional to the applied normal stress g, as follows:

£, = 7.1

: E, (7.1
g, -~V -(a +o )

Ex = (7.2)

£, =— (7.3)
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where E; is the elastic modulus of the unconfined concrete core; V. is the initial

Poisson’s ratio of the unconfined concrete core; 0,, 0,, and O, are the axial stresses

yﬂ

along the X, Y, and Z coordinates, respectively; &,, £y, and &,, are the axial strains

along the X, Y, and Z coordinates, respectively. For known strains &, £y,

and &,, the
axial 0y, 0,,, and O, stresses can be solved simultaneously utilizing Eqgs. (7.1)-(7.3),

which yield:

7 (1+v,, )(ii— w,;) [(1 —Vi)E, + Vi (fx tey )] (7.4)
Ox = (1+ ch)?éi_ 2,;) [(1 ~Vei JEx + Vg (gy Té; )] (7.5)
oy (1+ ch(ii— W) [(1 Ve )‘gy et e )] (7.6)

The secant Poisson’s ratio V of the concrete core is defined as the secant slope of the
transverse strains (£, , £g, €4, €x = €p, and £, = £y ) versus the axial strain, £, = &.,
curves.

The dilation rate  of the concrete core is defined as the tangent slope of the

transverse strain versus axial strain curves as follows:

yoofEn) ., (%
m = £, s Hm = afc (77)
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where the subscript m indicates an arbitrary transverse strain direction, where

m=r,0,d,H,or B. In addition, at the initiation of loading the initial dilation rate (,um )0

and the initial secant Poisson’s ratio (Vm ) , of the confined concrete core are equal to

each other, such that:

where the subscript o in the relationships introduced herein indicates an initial confined

condition and the subscript i indicates an initial unconfined condition.

Circular Concrete Sections
A circular concrete column, shown in Figure 7.1, having an unconfined compressive
strength f,,, an initial tangent modulus of elasticity E;, an initial Poisson’s ratio v,

and an initial dilation rate 4 .;, where . =V,;, that is confined by a thin elastic circular

FRP jacket of thickness 7, having an average hoop or transverse modulus of elasticity

E ;. and a hoop or transverse stiffness (C of Eq. (4.17), with the volumetric ratio

J’ je)ci

(,0 i )ci of Eq. (4.37), is considered herein.
Considering the transverse equilibrium of the half circles of Figure 7.2 and

considering that for a circular section &, =& =¢&; =€, =€, and setting £, = £p,

y7

£,=€y, €,=&, and O, =f., setting (Eje)x:(Eje)B in Eq. (4.15) and

(E je )y = (E je ) " in Eq. (4.16), the applied axial stress f. can be found by solving for

o, = f. in Eq. (7.1), which yields:
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Figure 7.1  Geometry of a circular FRP-confined concrete section.
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Figure 7.2  Equilibrium of a circular FRP-confined concrete section: (a) along the

minor axis and (b) along the major axis.
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Je = Ecoéc
=EqiEc—Ve [(Eje )B Ex * (Eje )H gy]

7.9
=Eq 6 2, (Eje)Bgr "
=E. &, [1 +2apv,, (VI’ )o]

E .
ayp = ( ée)B (710)
ci

where €, , &g, and &; are the average radial, hoop, and diagonal strains in the circular
FRP-confined concrete (CFCC) section, respectively.

In addition (E je) and (E je) are the effective transverse modulus of the FRP

H B

jacket along its major and minor dimensions, respectively; g is the transverse modular
ratio of the FRP jacket; and (I/r ) , 18 the initial secant Poisson’s ratio of the FCC section.
At the initiation of loading (V,, ) 0 = (,ur ) o> With (,ur ) , being the initial dilation rate or
tangent Poisson’s ratio of the CFCC section.

Solving for the initial modulus of elasticity of the CFCC section E., in Eq. (7.9)

yields:
Eco :Eci[1+2aEVci( r)o] (7.11)

The above indicates that the initial modulus of elasticity of the CFCC section

increases as the hoop stiffness (C of the FRP jacket increases. It also demonstrates

Jje )ci
that £, is directly proportional to the transverse modular ratio of the FRP jacket ag of

Eq. (7.10).
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Using Egs. (7.7) and (7.8), realizing that for a circular section

£ =Eg = &4 =&, =€, substituting Eqgs. (7.9)-(7.11) into Eq. (7.4), and solving for the

initial dilation rate (4,), of the CFCC section yield:

- _ o0&, - Eeo — Vei
('“r )O ( J Ero 1+ ag (1 + Vi )(1 - 2Vci) (7. 12)

where E,, is the initial radial or transverse modulus of elasticity of the CFCC section.

The previous relationship reveals that the initial dilation rate (,ur ) , of the CFCC section

decreases as the hoop or transverse stiffness (C of the circular FRP jacket increases.

Jje )ci
Using the initial axial modulus E_, of Eq. (7.11) and solving for the initial transverse

modulus E,, in Eq. (7.12) yield:

E
E :#:E .
ro (,ur)o ct|:

+2aEvci} (7.13)

FRP-Confined Concrete Sections

In this analysis the FCC sections shown in Figure 7.3 are considered herein. A given

FCC sections is considered to have an unconfined compressive strength f,.,, an initial
tangent modulus of elasticity E_;, an initial Poisson’s ratio V.;, and an initial dilation
rate [d;, for which pi.; =v,; that is confined by thin elastic FRP jackets of thickness ¢;
and having a transverse or hoop modulus of elasticity £; and a transverse or hoop

stiffness (C )Sh of Eq. (4.14).
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FRP-confined concrete sections: (a) rectangular; (b) square, (c) oval, (d)

Figure 7.3

circular, and (e) elliptical.
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The transverse equilibrium along the minor B, and major /. dimensions of the

FCC sections of a rectangular (RFCC) section of Figure 5.1, a square (SFCC) section of

Figure 5.2, an oval (OFCC) section of Figure 5.3, a circular (CFCC) section of Figure

5.4, and an elliptical (EFCC) section of Figure 5.5 for which &3 =&, <¢&, and

y

Eg =€, 2&; by setting &£, =&, sectting (Eje)x = (Eje)B of Eq. (4.15),

(Eje )y = (Eje )H of Eq. (4.16), and setting o, = f., and by using the aspect ratio @y,
of Eq. (4.2), and the strain ratio & of Eq. (6.19), the applied axial stress f,. in the FCC

section can be found by solving for g, = f,. in Eq. (7.1), which yields:
fC = ECOEC

=Eci&c _Vci[(Eje)BgB +(Eje)H€H] (7.14)

= Eci‘gc [1 + ﬁshaEVCi (VB )o]

/Bsh :1+asha£ (7'15)

where (I/ B ) , 18 the initial secant Poisson’s ratio along the minor B, dimension of the

FCC section. As previously indicated, at the initiation of loading the initial secant and

tangent slopes are equal, such that (V B ) p = (,UB ) . » Where (,UB ) o, 1s the initial dilation
rate along the minor B, dimension of the FCC section and [, is a transverse strain

coefficient. Solving for the initial modulus of elasticity E., of the FCC section in Eq.

(7.14) yields:

Eco = Eci[1+aE:85thi (:uB )0] (7'16)
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This indicates that the initial modulus of elasticity of the FCC section increases with

an increase in the transverse stiffness (E je ) 5 of Eq. (4.15), the section aspect ratio &y,

of Eq. (4.2) and the strain ratio @, of Eq. (6.19) of the FCC section. For a circular

section for which ag, =a, =1.0, the initial modulus of elasticity E., of Eq. (7.16)
yields E,, of Eq. (7.13),1.e., E., = E,,.

Substituting Egs. (7.14) and (7.16) into Eq. (7.4) and solving for the initial dilation

rate (,u B ) . » along the minor dimension B, of the FCC section yield:

B agBJ _E., _ Vei
) =- _Eeo _ 7.17
( B)O (ckc o EBo 1+aE(1+Vci)(1—,5’sthi) o

where Ep, is the initial modulus of elasticity along the minor B,. dimension of the FCC
section. This dilation rate is the initial tangent slope of the transverse strain £z along the
minor B, dimension of the FCC section versus the axial strain £, in the section. The
above relationship indicates that the initial minor dilation rate /g, decreases as the hoop

or transverse stiffness (E je ) 5 of the FRP jacket increases and increases as the aspect

ratio g, and strain ratio ¢ increase.
Using E., of Eq. (7.16), and solving for the initial modulus of elasticity along the

minor dimension Epg, in Eq. (7.17) yield:

1
Ep, :Eci[m"'aEﬂshvci} (7.18)
o
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The initial dilation rate (,UH ) , along the major H,. dimension of the FCC section
can be found using the strain ratio @, of Eq. (6.19) and the initial minor dilation rate

Up, of (7.17), which yield:

0
(unr), = —( EHJ =0 = a(ug), (7.19)
0 Ho

where Ep, is the initial modulus of elasticity along the major H . dimension of the FCC

section.

The initial dilation rate /4, along the main diagonal of the FCC sections shown in

Figure 7.3 is found using the strain relationships of Eqs. (6.57)-(6.59) and the initial

dilation rates along the minor (,UB )0 of Eq. (7.17) and major (,uH )0 of Eq. (7.19)

dimensions, which yield:

o€ .
Hijo = —[5] =B, (uz), =[%](uﬂ ), (7.20)

&

where [ ; 1s the diagonal strain coefficient of Eq. (6.58).

Using E., of Eq. (7.16) and Ep, of (7.18) and solving for the initial modulus of

elasticity along the major /. dimension Ep, in (7.19), yield:

1
EHo = aSEBo = Eci |:(,U— tag {&jva} (7.21)

H )0 af
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At the initiation of loading or deformation the initial secant slope is equal to the initial

tangent slope such that (,UH ) b = (I/ H ) ,» Where (I/ H ) , 18 the initial secant Poisson’s ratio
along the major H,. dimension of the FCC section. For a circular section for which
g, = ag =1.0, the initial moduli of elasticity £, of Eq. (7.21) and Ep, of Eq. (7.18)

yield E., of Eq. (7.15) and E,, of Eq. (7.13),1.e., Eg, =Ey, = E.,, = E

ro -

Plastic Properties of FRP-Confined Concrete

In this investigation, plastic compressive behavior of FRP-confined concrete is

assumed to occur at axial compressive strains &, =& greater than the peak

cp o

compressive strain &, of the unconfined concrete core, where &., <&,

p S &y and

where &, is the axial compressive strain at failure of the confining elastic FRP jacket.

Circular Concrete Sections

As a result of the constant kinematic restraint provided by elastic circular FRP jacket,
the plastic dilation behavior, as measured by the dilation rate L4, , of a circular concrete
section confined by a high stiffness circular FRP jacket reaches an asymptotic value

which is referred to herein as the plastic dilation rate f4,,. This asymptotic plastic

dilation rate My, can be established based on the following hyperbolic relationship:

Hip = _[ang Op; + Fu " e
p

0&,
L Kj, (7.22)

(Kj ¢ )ref
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where 4, is the dilation rate of a circular unconfined concrete section and (K a

je)l’ef is
reference FRP jacket stiffness. Using an initial dilation rate of 4. =V, =0.20 and

performing a regression analysis of uniaxial compression tests of FRP-confined concrete

cylinders yield:

o€ N2 -
ﬂrpz_[a‘éj D:uci"' K

L Ke 2 (7.23)
35

The above empirical relationship was determined from the analysis of the transverse

dilation behavior of circular concrete cylinders confined by bonded (Xiao and Wu 2000,
Saenz 2004, Tamuzs et al. 2007) and unbonded FRP jackets (Mirmiran 1997). The above

relationship indicates that an unconfined circular concrete section will experience a

maximum dilation rate of (:urp) =, = V2 , whereas highly confined concrete will

max
experience a minimum dilation rate equal to the initial dilation rate of the unconfined

concrete, i.e., (,u = HUei =V =0.20. The plastic dilation rate [, of the afore-

-
mentioned CFCC cylinder tests is plotted versus the effective stiffness of the FRP jacket
in Figure 7.4. The previous equation has a coefficient of correlation of 82.9 %, i.e.,
R% =0.829 , and a standard deviation of 6.27x1073 ,1.e., O = 6.27x1073.

In this figure, the asymptotic plastic dilation rate f,,, of Eq. (7.23) is plotted as a

solid curve, and the dashed curves indicate the prediction with a plus or minus two

standard deviations.
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For a circular concrete section the secant Poisson’s ratio V,, and the dilation rate f,,

of the section remain essentially constant along the perimeter of the section, as was
demonstrated in Chapter 6. In Chapters 4 and 5, it was demonstrated that a CFCC section

is a special case of a rectangular (RFCC) section for which a, =1.0 and a i= 1/2, and

a special case of an elliptical (EFCC) section with a unit aspect ratio, i.e., g, =1.0. In

addition, @ ; is the jacket corner aspect ratio of Eq. (4.4).

FRP-Confined Concrete Sections

The diagonal dilation rate W j of the rectangular (RFCC), square (SFCC), oval

(OFCC), circular (CFCC), and elliptical (EFCC) FRP-confined concrete sections can be
found in terms of the dilation rate 4, of an equivalent circular concrete section confined

by a continuous circular FRP jacket as follows:
:uj = :B]:ur (7.24)

Thus, in the plastic regions of the compressive behavior of the FCC sections shown in

Figure 7.3, the plastic diagonal dilation rate 4/, can be found in terms of the plastic
dilation rate 4, of Eq. (7.23) of an equivalent circular concrete section confined by a
continuous circular FRP jacket having the same effective FRP jacket stiffness K ;, of Eq.

(4.19) of the FCC sections considered herein as follows:

:ujp = :Bj:urp (7.25)
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General Transverse Strain Relationships for
FRP-Confined Concrete Sections
A typical compressive stress-strain curve of normal weight, normal strength,
unconfined concrete cylinder is plotted in Figure 7.5. In this figure, the stress-strain

curves are plotted versus the axial strain &. on the right side of the vertical axis and
versus the transverse dilation strain &, on the left hand side. The peak axial compressive
strain £, and peak transverse strain &,, occur when the unconfined concrete reaches its

peak compressive strength f,, i.e., when f./f., =1.0.

Secant Poisson’s Ratio

As indicated in Eq. (7.7), the secant Poisson’s ratio V,, of an unconfined or FRP-
confined concrete section is the secant slope of the transverse strain &,, versus axial
strain &€, curve of the FRP-confined section in compression.

In the following sections, a series of secant Poisson ratio formulations are introduced
from the analysis of the dilation of unconfined and FRP-confined circular concrete
sections in compression. Using the strain compatibility relationships introduced in
Chapter 6, these formulations are expanded to include other FCC cross-sectional shapes

(i.e., rectangular, square, oval, and elliptical) in compression.

Circular Concrete Sections
The absolute transverse strain of the concrete cylinder stress-strain curve shown in

Figure 7.5 is plotted versus the axial strain in Figure 7.6(a).
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Figure 7.5  Plot of normalized axial stress versus radial and axial strain curve of

unconfined concrete in compression.
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The initial slope of the curve in this figure is the initial Poisson’s ratio V,; of the

concrete material, which is in the range of 0.15<Vv_ <0.22; a value of v, =0.20 is
used herein.

From analysis of Figure 7.6(a), the secant Poisson’s ratio V,. of the circular concrete

section is defined as:

v, = —[g—r] (7.26)

The Poisson’s ratio of a circular concrete section is plotted versus the axial strain in
Figure 7.6(b). From Figure 7.6, it can be observed that as the axial compressive strain
&, reaches the peak compressive strain &., of the unconfined concrete (i.e., as
E. — &.,) the concrete section experiences a significant increase in the Poisson’s ratio
with a small increase in axial strain. This results in an uncontrolled increase in the area

strain &,, in the concrete core (i.e., increase in area per unit of initial cross-sectional

area). For a circular section, the area strain &£, is defined as:

Eq =ExHE, T, +Eg =26, =26g (7.27)

Considering that for a circular section &, =&g =&; =€, =€,,, as demonstrated in

yJ

Chapter 6, the above Poisson’s ratio of circular concrete section can be rewritten as:

VI’ = —[E_rj = —(g_ej = —[E_aj (728)
£, £, 2¢,
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Figure 7.6  Plot of (a) absolute transverse strain versus axial strain and (b) secant

Poisson’s ratio versus axial strain of unconfined concrete in compression.
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As can be observed in Figure 7.6(b), deviation from a linear elastic material behavior

occurs almost immediately after loading as a result of an increase in damage in the

concrete’s structure due to axial strain-induced transverse dilation which generates

material discontinuities, such as internal micro- and macro-crack formation and
compaction or nucleation of existing voids within the concrete’s structure.

The area strain &, in a concrete member in compression measures the amount of

damage in response to the applied axial load or deformation in the cross-sectional area

supporting the load (Pantazopoulou and Mills 1995). As the area strain &£, increases, i.e.,

an increase in damage, the net effective area supporting the load decreases and results in
a decrease in the resistance of the concrete material as damage progresses (Pantazopoulou
1995). Pantazopoulou and Mills (1995) and Pantazopoulou (1995) recognized that the
initiation of the descending branch of unconfined and confined concrete can be attributed

to the drastic increase in the rate of growth (i.e., slope) of the area strain &£, curve of

Figure 7.7(a). This sudden increase is a result of unrestrained crack propagation (i.e.,
increase in damage) near the peak compressive strength of the unconfined concrete core.

The secant slope of the area strain &, versus axial strain &£, curve of Figure 7.7(a) is

defined herein as the secant area Poisson’s ratio V, and is given by:

v, = —(g—aJ (7.29)

A typical secant area Poisson’s ratio V, of Eq. (7.29) curve is plotted in Figure

7.7(b) versus the axial strain £, in a circular concrete section in compression.
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Using Eqgs. (7.28) and (7.29), the secant area Poisson’s ratio V, can be obtained in

terms of the secant Poisson’s ratio V, of Eq. (7.26) as follows:

v, = _(f_aj = —2[‘3] =2, (7.30)
EC gc

For an unconfined circular section the initial area Poisson’s ratio V,; is given by

V, =2V,;,as shown in the typical Poisson’s ratio curve plotted in Figure 7.7(b).

ai ci»

In Figure 7.8, the axial strain £, curve is potted versus the absolute transverse strain

|£r|. The initial inverse secant Poisson’s ratio 1/v,; of the unconfined concrete is given

by:

Lz_(g_cj :L:_(‘”CJ (7.31)
Vei &r i Hei 68,, i

The inverse secant Poisson’s ratio 1/V, or secant slope of the axial strain £, versus

absolute transverse strain |£r| curve of Figure 7.8, is given by:

L. —(g—Cj (7.32)
v, £,

FRP-Confined Concrete Sections
The rectangular, square, oval, circular and elliptical FRP-confined concrete sections

shown in Figure 7.3 are considered herein.
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Using the general strain relationships introduced in Chapter 6 that relate the minor

&p and major £y transverse strains of the FRP-confined concrete sections of Figure 7.3
to the diagonal jacket strain & s introduced in Egs. (6.58)-(6.60); the following strain

transformation relationships are introduced.

Defining the secant jacket diagonal Poisson’s ratio V ; as:

J

v, = {%] (7.33)

where V; represents the secant slope of the diagonal jacket strain along the main

diagonal £; introduced in Chapter 5 versus the average axial strain £, in the FCC

section.

Using the transverse strain ratio @ of Eq. (6.19) and the diagonal transverse strain

coefficient [ ' of Eq. (6.59), the average secant Poisson’s ratio along the minor Vp and

major Vg dimension of FCC sections shown in Figure 7.3 yields:
Vp = (‘EB]— Ly (7.34)
B=1— |7l =V :
Ec /Bj /
£
Vg = —(—HJ =a.Vp (7.35)
£

where Vp and Vp represent the secant slopes of the minor £z and major £y transverse

strains versus the average axial strain &, in the FCC section, respectively. Using Egs.
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(7.28), (7.30), (7.34), and (7.35), and setting &g =&, and &y =&, the average area

y7

strain £, and the average secant area Poisson’s ratio V, in an FCC section are given by:

E,=EptE& (7.36)
a B H
& Ep t&
Va :—_a:—M:VB +VH (737)
gC gC

Using the strain ratio a of Eq. (6.19), the average area strain £, of Eq. (7.36) can

be given in terms of the diagonal jacket strain £ as follows:
&g :(53+5H):5B(1+0'5):,5a5j (7.38)
l+a
Ba = £ (7.39)
Bj

where [, is the area strain coefficient of the FCC section. Using Egs. (7.34)-(7.39), the
average secant area Poisson’s ratio v, of Eq. (7.37) can be given in terms of the diagonal

jacket Poisson’s ratio V j of Eq. (7.33) as follows:

Va ==~ T Bav; (7.40)

Dilation Rate

As indicated in Eq. (7.7), the dilation rate 1/, of an unconfined or FCC section is the
tangent slope of the transverse strain &,, versus axial strain £. curve of the section in

compression. In what follows, a series of dilation rate formulations are introduced from
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the analysis of the dilation of unconfined and FRP-confined circular concrete sections in
compression. These formulations are then expanded to include the FRP-confined cross-

sectional shapes considered in this dissertation.

Circular Concrete Sections

The tangent slope of the transverse strain &, versus axial strain £, curve of Figure

7.6(a) is defined herein as the dilation rate 4,., where:

__[ 9&,
U, = [aacj (7.41)

The dilation rate 4, of the concrete section is also typically referred to as the tangent

Poisson’s ratio (I/r )t . A typical dilation rate curve is plotted in Figure 7.9(a).
The tangent slope of the area strain &, versus axial strain &, curve of Figure 7.7(a)

is defined herein as the area dilation rate £/, and is given by:

- _ aéQa
Hq = [agcj (7-42)

In Figure 7.9 (b) a typical area dilation rate f/, is plotted versus the axial strain in

the concrete section. Setting &, =&g =&y =€, =&, = Ep = £y in the area strain £, of

y

Eq. (7.27) and substituting it into 4, of Eq. (7.42), yield the following:

o€, o€
=- ==2 L |=2 7.43
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Figure 7.9  Plot of typical (a) dilation rate and (b) axial dilation rate versus axial strain

curve of unconfined concrete in compression.
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As can be observed in Figure 7.9, the unconfined circular concrete core approaches

its unconfined peak compressive strain £., and strength f,.,, as both the dilation rate u,
of Eq. (7.40) and the area dilation rate 1, of Eq. (7.41) approach their maximum value.
The inverse dilation rate 1/4, is defined as the tangent slope of the axial strain &,

versus absolute transverse strain |£r| curve of Figure 7.8 where:

. —L az: j (7.44)
Hy o€,

FRP-Confined Concrete Sections

For the FCC sections shown in Figure 7.3, the average dilation rates along the minor
MUp and major Yy dimensions of the FCC section can be found using the general strain
transformation relationships introduced in Chapter 6, which relate the transverse strain

along the minor £5 and major £ dimensions to the diagonal jacket strain £ ;. [refer to

Egs. (6.53)-(6.55)] as follows:

683
=B 7.45
Hp [5fcj (7.45)
0cy
=-| Ll | =g 7.46
Hu [afc J eMB (7.46)

where pp and Wy represent the tangent slopes of the minor £z and major &y

transverse strains versus the average axial strain £, in the FCC section, respectively.
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Substituting g of Eq. (7.45) and iy of Eq. (7.46) into the area dilation rate f, of

Eq. (7.42) and using the area strain £, of Egs. (7.36) and (7.38) yield:

o€ olep +&
ﬂ“:_aejz_ (%ECH):ﬂBJr”H:ﬂB(“%) (7.47)

As in circular unconfined and confined concrete sections, the area dilation rate 4/, of

Egs. (7.42) and (7.47) determines the average rate of change (i.e., slope) of the area strain

£, versus the axial strain £, curve of an FCC section in compression.

The plastic dilation rate along the minor fp, for |£Bo| < “pr‘ S|£Bu| and major

Hpp for |5Ho| < ‘pr‘ < |5Hu| dimensions of an FCC section and the average plastic area

dilation rate /4, in the plastic region of its compressive stress-strain behavior (i.e., when

Eco S Ecp S E¢y) are defined as:

__[9¢5
Hy = S (7.48)
o€, »
oe
Hpp = { B =a,up, (7.49)
&, »

o€ oleg +¢
Hap = _(a aj = _[M = Upp + Uy = Hpp (1 +ag) (7.50)
£, 0, »

where €p, and &£p, are the average dilation strains along the minor and major

dimensions of the FCC section, corresponding to the peak unconfined compressive strain,

Eco> €pp and Epp, are the average plastic dilation strains along the minor and major
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dimensions of the FCC section, corresponding to an arbitrary plastic compressive strain,

E.p; Epy and &y, are the average ultimate dilation strains along the minor and major

cp o
directions of the FCC section, corresponding to the ultimate compressive strain &, at

failure of the FRP jacket.

Define the diagonal jacket dilation rate 4 ;, of the FRP-confined concrete section as:

_ [ 9¢
u; = (7.51)

oe,

Using the strain transformation relationships introduced in Egs. (6.58)-(6.60), the

transverse dilation rates (g of Eq. (7.45) and y of Eq. (7.46) can be written in terms

of the diagonal dilation rate 4/; of Eq. (7.51) as follows:

_{%B|_[ 1|,
Hp = afc J (IB] J:u] (7.52)
Uy = agH = ﬁ y7r (753)

7 a‘9(: ,Bj /

Using Egs. (7.34)-(7.39), the average area dilation rate f/, of Eq. (7.47) can be given

in terms of the diagonal jacket dilation rate 4; of Eq. (7.51), or vice versa as follows:

0g, __0leg+ep)
=22 —_ =B 1, 7.54
Hqy 2. oz BaH; (7.54)
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The jacket diagonal plastic dilation rate 4, for |£d0|s‘£dp‘s|£du| of an FCC
section in the plastic region of its compressive stress-strain behavior when

Eco S Ecp S E¢y 1s given by:

6£j

Hip = ‘(g} (7.55)
©/p

Using Egs. (7.52) and (7.53), the plastic dilation rate fp, of Eq. (7.48), and [y, of
(7.49) and the average plastic area dilation rate Hgp of Eq. (7.50) can be found in terms

of the plastic diagonal dilation rate 4, of Eq. (7.55) as follows:

:qu :—[OEJ = L :u]p (756)
6‘90 p ,Bj
0y ac

=- =|—£ |y, 7.57

,qu (650 ) (/8] J:U]p ( )

o€
:uap = (a . = ﬂa:ujp (7.58)
& »

Volumetric Strain
Another means of measuring the amount of damage in the concrete material is the
volumetric strain of concrete in a uniaxial, biaxial, or triaxial compression state of stress.

In the analysis of concrete sections in compression, the volumetric strain &, is typically

defined as:
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3

£, ) €y =& TE) T E (7.59)
m=1

where &, is the principal strain in the orthogonal principal m" direction.

As the imposed axial deformation or strain in the concrete section increases, damage
of the internal structure of the concrete material starts to accumulate. Deviation from a
linear elastic response of the concrete material initiates in the axial stress-axial strain,
axial stress-transverse strain, axial strain-transverse strain, volumetric strain-axial strain,
volumetric strain-transverse and the axial stress-volumetric strain curves of concrete in a
uniaxial, biaxial or triaxial compression state of stress occurs as a result of axial strain-
induced damage, i.e.. micro-crack growth at the paste-aggregate interface.

In this dissertation, the axial stress-volumetric strain, volumetric strain-axial strain,
and the volumetric strain-transverse strain curves of the concrete in a uniaxial and triaxial
compression state of stress typical of unconfined concrete sections and FCC sections are
studied in order to describe the nonlinear compressive behavior of unconfined and
concrete sections confined by the FRP jacket, as shown in Figure 7.3.

A negative volumetric strain indicates that the concrete section experiences
volumetric contraction, whereas, a positive volumetric strain indicates volumetric

expansion.

Circular Concrete Sections

The normalized axial stress f,./f., versus axial and radial strain curve plotted in
Figure 7.5 is plotted in Figure 7.10(a) versus the volumetric strain &, of Eq. (7.59). For

confined and unconfined circular concrete sections the volumetric strain &, is given as:
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& = _(gc tE T+ 56) = _(Ec + 2‘E‘r) = _(gc + Ea) (7.60)

Using Vv, of Eq. (7.26) and v, of Eq. (7.30), the above volumetric strain &, can be

rewritten as:
g, =—(e. +2¢,.)=€.(2v, -1)=€.(v, -1) (7.61)

It can be observed from Figure 7.10(a) that the unconfined concrete core approaches

its unconfined compressive strength, f. — f,, as the volumetric strain &, — 0. This is
a result of unrestrained volumetric expansion of the unconfined concrete cores when
&,>0as f. - f., andas & - &.,. For a circular section, a value of &, >0 occurs
as V, - 1/2, &. - &./2,v, - 1.0 and &, — &, as can be seen from Egs. (7.28) and

(7.59). In Figure 7.10(b), the volumetric strain curve of an unconfined concrete section

is plotted versus the axial strain and radial strain in the section.

FRP-Confined Concrete Sections
Using the strain relationships of Egs. (6.19) and (6.54)-(6.55), the average volumetric

strain £, of Eq. (7.59) in the FCC section can be determined from the average transverse

strains £p and £y and the average area strain £, of Eq. (7.36) as follows:
& = _(‘gc tépt ‘SH) = _[‘gc +t&p (l + 0'5)] = _(‘gc + ‘ga) (7.62)

Using Egs. (7.38) and (7.39), the previous relationship can be rewritten in terms of

the diagonal jacket strain £ ; as follows:
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Figure 7.10 Plot of a typical (a) normalized axial stress versus volumetric strain and

(b) volumetric strain versus axial and transverse strain of unconfined

concrete in compression.
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g, =-le. +Bugj )= |Bv; -1 (7.63)

The diagonal jacket strain & ;, at the instant of zero volumetric strain (i.e., £, =0) is
defined herein as the average volumetric diagonal jacket strain (é’ I )VO ; and is found by

setting £, =0 and &, = (£C) for £. # 0 in Eqgs. (7.62) and (7.63), which yield:

vol

(¢ )VO == (€chor (7.64)

Using the strain relationships on Egs. (6.58)-(6.60), the minor (£B )vol and major
(E H )V ,; dilation strains of the FCC section at the instant of zero volumetric strain can be

given in terms of the jacket volumetric strain &, of Eq. (7.64) as follows:

(€8 )0 = /3% (¢ )vo, (7.65)
(1), = [%J(g e (7.66)
J

The diagonal Poisson’s ratio V ;, at the instant of zero volumetric strain, is defined
as the volumetric diagonal Poisson’s ratio (I/ j )VO -
This Poisson’s ratio can be determined by setting &, =0, &; = (5 I )vol’ and

£. =(e.),,; in Eq. (7.63), which yield:
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(V j )VO, = {ﬁj = (7.67)
vol

&

Using Eqgs. (7.34) and (7.35), the volumetric Poisson’s ratio along the minor (I/ B )v ol

and major (V H )V ,; dimensions of the FCC section is given in terms of the volumetric

diagonal Poisson’s ratio (I/ i )vol of Eq. (7.67) as follows:

_ | €B 1 1
=L = \v. = 7.68
(VB )vol ( £, JVOZ ,B] (V] )vol ’gjlga ( )
__|£B _G9s(, ) - _0O¢
(VH )vol - (EC jvo! IBJ (VJ )vol B.Bi (7.69)

Volumetric Dilation Rate

The volumetric dilation rate ¢/, of an unconfined or FRP-confined concrete section is
defined as the tangent slope of the volumetric strain &, versus the &, strain curve of the

section in compression, and is given by:

¢,
0,

¥, = (7.70)

where the subscript 7 indicates an arbitrary strain direction, where n =¢,r,8,d,H,or B.

Circular Concrete Sections

In Figure 7.11, the tangent slope of the volumetric strain &, curves plotted in Figure

7.10(b) is plotted versus the axial £, and transverse strain &, of a typical concrete

member in compression.
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Figure 7.11 Plot of a typical volumetric dilation rate versus axial and transverse strains

of an unconfined concrete in compression.
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These tangent slopes in the axial and transverse strain direction of the volumetric

curves of Figure 7.10(b) of a circular concrete section are defined as the axial ¢, and

transverse {/,. volumetric dilation rates, respectively, and are given by:

¢, 6(£c +& + 59)

_0s, __ oy —1=u -1 7.71

l//c agc GEC He Ha ( )

v, _ds, =_a(£c+£r+€e):L_2=2(L_1j (7.72)
aé‘r agr /'IC /'la

As can be observed in Figure 7.11, the axial volumetric dilation rate ¢, of Eq.
(7.71), of the circular unconfined concrete section approaches its maximum value at axial
strains near the peak axial compressive strain &., of the concrete core. The minimum
transverse volumetric dilation rate ¢/, of Eq. (7.72) tends to occur near the peak

transverse strain &,,, .

FRP-Confined Concrete Sections
For the FRP-confined cross-sections shown in Figure 7.3, the axial ¢, and
transverse volumetric dilation rates along the minor (/g and major ¢/ dimensions of

the FRP-confined concrete sections are given by:

ole -ole. +ey +&
Ve = a(ez): (caej] B):NH+NB‘1:/JB(1+‘7£)‘1 (7.73)

Wy = a(‘gv)avg _ —a(gc &y +€B): 1 ~(+a,) (7.74)
B dep ocp Hp ‘
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P _
v - (&g _ —0le. +ey +e5) =[ ! J,)[,B (7.75)

0y 0y a.

where the axial ¢/, and transverse volumetric dilation rates (/p and (/j; are the tangent

slopes of the volumetric strain &, versus the axial £., and the minor £p, and major &,

transverse strain curves, respectively.

The diagonal jacket volumetric dilation rate ¢ j is defined as the tangent slope of the

volumetric strain &, versus the diagonal jacket strain € ;, and is given by:

v, :6(5v)avg :—O(EC + &y +£B):L_lga (7.76)

Using Eqgs. (7.52)-(7.54), (7.60)-(7.63), and (7.76), the volumetric dilation rates ¢/ of
Eq. (7.73), ¢ g of Eq. (7.74), and ¢y of Eq. (7.75) can be found in terms of the diagonal

jacket dilation rate 4/; of Eq. (7.51) as follows:

0(80) 1y

Ve = s,

= Bt -1 (7.77)

&) e B

_Oag _Pj 7.78

Yp 683 u ( £) ( )

wH:aaev _ 0, _ B _a+ (7.79)
EH  QL0Ep O U, e

In this chapter it was determined that the geometry of the FCC section and stiffness of

the FRP jacket, introduced in Chapters 4-6, influence the Poisson’s ratio (V;, Vg, and
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Vg ), the dilation rate or tangent Poisson’s ratio (4, tp,and 4), the area strain €, the

area Poisson’s ratio V,, and dilation rate £/, the volumetric strain £,, and volumetric

dilation rates (¢, ¢,., Y iy . g, and ¢ ;) of the FRP-jacketed section shapes considered

in this dissertation.



CHAPTER 8

TRANSVERSE AND DIAGONAL DILATION MODEL
OF CONCRETE SECTIONS CONFINED BY
FIBER-REINFORCED POLYMER

JACKETS

In this chapter, a series of damage-based strain relationships are introduced for
modeling the dilation behavior of rectangular, square, circular, and elliptical concrete
columns confined by FRP jackets. The dilation model requires the definition of a series
of dilation relationships that describe the increase in damage in the cross section in terms
of the geometric and mechanical properties of the FRP jacket and concrete core, as
discussed in Chapters 4-7. The assumptions made in Chapters 5 and 7 are also applicable

to the analytical dilation model introduced herein.

Dilation Behavior of Concrete in Compression
A series of typical compressive stress-strain curves of normal weight, normal
strength, FRP-confined concrete (FCC) cylinders are plotted in Figure 8.1 of FRP jacket

having low, moderate, and high effective jacket stiffness C, of Eq. (4.13) or normalized
stiffness K j, of Eq. (4.18). In this figure, the stress-strain curves of concrete are plotted

versus the axial strain &, on the right side of the vertical axis, and versus the transverse

dilation strain &, on the left-hand side.
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Figure 8.1  Plot of typical normalized axial stress versus transverse and axial strains

curves of FRP-confined concrete cylinders section in compression.
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In Figure 8.2, a typical absolute transverse strain |£,,| of the concrete cylinder stress-
train curves, shown in Figure 8.1, is plotted versus the axial strain &.. The initial slope

shown in Figure 8.2 up to an axial strain of 0.001 is the initial dilation rate 4,, of Eq.

(7.8) or Eq. (7.12) of the circular FRP-confined concrete (CFCC) section. As can be
observed from both Figures 8.1 and 8.2, the second slope of the bilinear stress-strain
curves of the FCC section increases as the relative stiffness of the confining elastic FRP
jacket increases. This bilinear behavior is a result of the increase in the lateral kinematic
restraint provided by the restraining (confining) elastic FRP jacket, as measured by the

transverse effective stiffness (C " of Eq. (4.14) or the normalized effective stiffness

je),
(x Je)sh of Eq. (4.19).

At high levels of axial compressive strains, i.e., at &. >>¢&,,,

the slope of the

absolute transverse strain versus axial strain curves of Figure 8.2 decreases as the FRP
jacket stiffness increases. This effect is also a result of an increase in the lateral restraint
provided by the confining elastic FRP jacket. Unconfined and confined concrete is

considered to be in a plastic compressive behavior when the axial compressive strain &,
in the concrete is greater than the unconfined peak compressive strain &.,, i.e., when

&

C>£

o0 » as shown in Figures 8.1 and 8.2.

In Figure 8.3(a), a typical absolute diagonal jacket strain ‘é’ j‘ versus axial strain &,

curve ( the ‘8 j‘ - &, dilation curve) of a section confined by a moderate stiffness FRP

jacket is shown.
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164

In Figure 8.3(b) the axial strain &, versus absolute diagonal jacket strain ‘é‘ j| curve

(the é’c-‘f j‘ dilation curve) is shown, i.e., the inverse of the dilation curve of Figure

8.3(a). In this figure the curve shown is the inverse transverse strain-axial strain curve.
For a circular section, the inverse Poisson’s ratio /v, is defined as:

& _ € £,

1 1
= = (8.1)
Vl” Vj Ej 5,, 59

where v; is the secant Poisson’s ratio of an FCC section of Eq. (7.33) and v, is the

secant Poisson’s ratio of a circular concrete section of Eq. (7.28). For unconfined and

confined circular concrete sections &, =€g =&p =€y =€; =&, /2, where &,, &g,
EB. €[ &) and &, are the radial, hoop, minor, major, diagonal jacket and area strains,

respectively, which are terms previously introduced in Chapters 6 and 7.

The inverse secant Poisson’s ratio along the minor 1/Vz and major /vy dimensions

of the FCC section and the inverse jacket diagonal secant Poisson’s ratio l/l/ j of

rectangular (RFCC), square (SFCC), oval (OFCC), including oval shape-modified
(OSM) sections, circular (CFCC), including circular shape-modified (CSM) sections, and

elliptical (EFCC), including elliptical shape-modified (ESM) sections, are given by:
T T T TT_ s T (8.2)

where Vg, Vy ,and v are the minor, major, and jacket diagonal Poisson’s ratios of the

FRP-confined concrete section, introduced in Eqgs. (7.34), (7.35), and (7.33), respectively.
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Figure 8.3  Plot of a typical (a) absolute transverse strain versus axial strain and (b)
axial strain versus transverse strain curves of an FRP-confined concrete

cylinder section in compression.
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In Chapters 5 and 6 it was established that for a circular concrete section

ESEg=Ep=Ey =E; =&, /2; this chapter is concerned only with modeling the

diagonal dilation of the FCC section shown in Figure 7.3. As a result, the strain
transformation relationships introduced in Chapters 6 and 7 are applicable to rectangular,

square, oval , circular, and elliptical FCC sections.

curve (the &.-

A typical axial strain &, versus absolute jacket diagonal strain ‘8 j‘

‘é’ j‘ curve) of an FRP-confined concrete member is shown in Figure 8.4(a). This curve

is subdivided into a linear and a nonlinear component. The nonlinear component of the

Sc-‘s j‘ curve, which is shown as a cross-hatched area in Figure 8.4(a), represents the
amount of degradation that the internal structure of the FRP-confined concrete core
exhibits as a result of a remolding of its internal structure, as it undergoes unrestrained

axial strain-induced extension, growth and nucleation of micro-cracks and/or voids (as

damage progresses) prior to fully engaging the lateral kinematic restraint provided by the

&

confining elastic FRP jacket. The linear component of the &,.- j‘ curve, which is shown

as a vertically hatched area in Figure 8.4(a), represents the amount of degradation of the
concrete’s internal structure that is restrained by the confining elastic FRP jacket as the

axial strain-induced damage in the confined concrete core progresses.

The effective axial strain 5; at a given jacket diagonal strain £; can be found from

the geometry of the &,.-

& j‘ curve of Figure 8.4(a), and using the inverse jacket diagonal

secant Poisson’s ratio 1/ v, of Eq. (8.2) and the plastic dilation rate 4 i of Eq. (7.25), as

follows:
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b & 1 1
Ec =" |=€&-t ::9]' - (83)
Hip Y

where 1/ I/'j is the inverse effective jacket diagonal secant Poisson’s ratio at a given

effective axial strain é‘; and corresponding jacket diagonal strain €} it represents the

secant slope of the effective axial strain é’; versus the absolute jacket diagonal strain &

curve (the 8(': -‘E | curve) shown in Figure 8.4(b). Using Eq. (8.3), the inverse effective

jacket diagonal secant Poisson’s ratio 1/ I/'J- is given by:

_HjpTVj

1
. (8.4)
vi o ViHip

Graphically, the inverse effective secant Poisson’s ratio 1/ I/'J- of Eq. (8.4) is the
difference in slope between the inverse Poisson’s ratio 1/ V; and the asymptotic plastic

slope 1/ Hjp , as shown in the 5c"5 curve of Figure 8.4(a). Solving for the effective

i

Poisson’s ratio I/'J- in Eq. (8.4) yields:

14

] :[ ViHjp
J =y
Hijp =V

J for vV # Hjp (8.5)

As shown in Figure 8.4 when v; - 4, plastic dilation commences and I/'j - 0.

As aresult, the limit of V; # 1/, is imposed in Eq. (8.5).
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axial strain curve and (b) nonlinear component of FRP-confined concrete

section in compression.
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The geometric terms that are used to describe the shape of the Sc-‘f j| curve of

Figure 8.4(a) are plotted in Figure 8.5. In this figure £/}, is the initial diagonal dilation

rate of Eq. (7.19); :U’jo is the effective initial jacket diagonal dilation rate; (I/ j )sec is the
jacket diagonal secant Poisson’s ratio evaluated at the axial strain &., and corresponding
diagonal strain £ ,; (I/'j )Sec is the effective jacket diagonal secant Poisson’s ratio;

(I/ i )pk is the localized jacket diagonal peak Poisson’s ratio evaluated at the localized

'

peak axial strain (EC ) Dk and corresponding jacket diagonal strain (E I )pk; (I/ i )pk is the

effective jacket diagonal peak Poisson’s ratio. The mathematical relationships of these
geometric terms of the diagonal strain-axial strain curve of Figure 8.5 are introduced in

what follows.

The initial inverse diagonal dilation rate 1/ H o 1s the initial tangent slope of the &_-

‘8 ;| curve of Figure 8.5(a), which can be found using the initial inverse diagonal dilation

rate U j, of Eq. (7.20) as follows:

L:—(E_C] = 1 = qc (8.6)
tio \&a), Bilug), Bilun), '

where (,UB ) , and (,uH ) , are the minor and major initial dilation rate of the FRP-
confined concrete section of Egs. (7.17) and (7.19), respectively; B ; is the shape

diagonal strain coefficient of Eq. (6.59), summarized in Table 6.1.
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From analysis of é’c-‘é‘ ;| curve of Figure 8.6(a), using the definition of the effective
Poisson’s ratio 1/ (I/ i )' of Eq. (8.5), and recognizing that in the elastic regime prior to

cracking V , = U, , the effective inverse initial dilation rate 1/ :U'jo is the difference in

slope, between the initial tangent slope 1/ Hj, » and the final plastic slope 1/ Hjp . In
addition, the inverse effective initial jacket dilation rate 1/ ,u'jo is the initial tangent slope
of the nonlinear portion of the typical é‘;—‘é‘ j‘ curve of the FRP-confined concrete

section shown in Figure 8.6(b). As a result, the effective initial jacket dilation rate ,u'jo

is given by:

. £ il
Hijo = _{_{] S P ), 8.7)
€ ), Fip Fjo

The jacket diagonal secant Poisson’s ratio (I/ i )Sec of the typical axial stress-axial

strain and axial stress-diagonal strain curves of FRP-confined concrete sections shown in

Figure 8.7(a), is defined as:

V)., = ‘[ gjOJ 8.8)

From analysis of the £c-|£d| and & —|£d| curves of Figure 8.7, the effective peak

'
axial strain £, is given by:
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Definition of (a) the initial dilation rate and (b) initial effective dilation
rate of the dilation curve of an FRP-confined concrete section in

compression.
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€co =~ =&co * =€jo (8.9)
(v -)Sec Hip Hijp (Vj jsec

where the inverse effective secant Poisson’s ratio 1/ (V'J )sec of Eq. (8.9) is the difference

between the inverse secant Poisson’s ratio 1/ (I/ j )sec and the inverse plastic dilation rate

&

1/, , as can be observed in the &,- j‘

curve of Figure 8.7(a).

Graphically, the inverse effective secant Poisson’s ratio 1/ (I/’j )sec is the difference in

slope between the secant slope 1/ (I/ i )Sec and the final plastic slope 1/ Hp , as shown in

the Sc-‘s j‘ curve of Figure 8.7(a) at the instant when £. =€, and £; =€;,. In

addition, the inverse effective secant Poisson’s ratio 1/ (I/’j )Sec is the secant slope of the

E.-

£ j‘ curve of Figure 8.7(b) at the instant when 5; = E'CO and £; =&,

Using Eq. (8.9), the effective secant Poisson’s ratio (I/'J )sec is given by:

(V’j )sec _ _(a joJ _ (V J )sec Hjp for (vj )Sec % Uy (8.10)

€co) Hjp~ (Vj )sec

The localized peak diagonal Poisson’s ratio (I/ of the typical axial stress-axial

J ) Pk
strain and axial stress-diagonal strain curves of an FRP-confined concrete section, shown

in Figure 8.8(a), is defined as:
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(Vj)pk = —[::—f] k (8.11)
p

where (é’c ) Pk is the localized peak axial strain; (E j)pk is the corresponding peak

diagonal strain. From analysis of the &.-|& j‘ and € —|£d| curves of Figure 8.8, the

effective localized peak axial strain (é"c ) ok is given by:

B I 0 pk _ 11
Ehe={ | =Tt ] ey
pk

As shown in of Figure 8.8, the inverse effective localized peak Poisson’s ratio

I/(VJ )p " of Eq. (8.12) is the difference between the inverse jacket peak Poisson’s ratio

l/(l/ i )pk and the inverse jacket plastic dilation rate 1/ Hjp - Graphically, the inverse

effective peak Poisson’s ratio I/(V’] )pk is the difference in slope between the peak slope

l/(v i )pk and the final plastic slope 1/ Hjp of the £.-|€ j‘ curve shown in Figure 8.8(a)

at the instant when &£, = (é’c ) Dk and £; = (8 I )pk' In addition, the inverse effective

secant Poisson’s ratio I/(I/'j )pk is the slope of the E'c -‘é’ ;| curve of Figure 8.8(b) at the

instant when &, = (gc )pk and £; = (gj )pk'

Using Eq. (8.12), the effective peak Poisson’s ratio (VJ )p " is given by:
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section.
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' E; (Vj) i« Hip
(V') :_[_{} S for 4, > v} 8.13
J 1 pk gcpkm Jp =\ pk (8.13)

For FCC sections confined by low to moderate stiffness FRP jackets that exhibit
volumetric expansion during their loading history, the volumetric diagonal Poisson’s

ratio (I/ j )val of Eq. (7.67), which is defined as the Poisson’s ratio of the FRP-confined
concrete section at the instant of zero volumetric strain, e.g., £, =0, can be found from

&

curve of Figure 8.9(a) [refer to Egs. (7.59)-(7.69)]. In this figure

analysis of the &.- j‘

the effective volumetric axial strain (SC )v ,; at the instant of zero volumetric strain

£, =0 is given by:

' £ (f ) 1 1
e =50 = Lol = e;) - (8.14)

v U J Iyol U (v )

Jp Jp 7 hot
where (Ec )v o, and (E I )vo , are the axial and corresponding diagonal volumetric strains at
the instant of zero volumetric strain, respectively. The volumetric strain &, is defined in
Egs. (7.62) and (7.63) and (g )wl in Eq. (7.64).

The inverse effective volumetric Poisson’s ratio 1/ (V'j)vol of Eq. (8.14) is the
difference between the inverse volumetric Poisson’s ratio 1/ (V J-) and the inverse

vol

plastic dilation rate 1/ Hjp »as shown in Figure 8.9.
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Figure 8.9  Definition of (a) the volumetric Poisson’s ratio and (b) the effective
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Graphically, the inverse effective volumetric Poisson’s ratio 1/ (V'J )ml is the

difference in slope between the volumetric slope 1/ (I/ J-) and the final plastic slope

vol

1/ Hjp , as shown in the é’c-‘é’ ;| curve of Figure 8.9(a) at the instant when &£, = (Ec )v ol

and &€; = (5 ) . In addition, the inverse effective volumetric Poisson’s ratio 1/ (V'-)
J J Ivol J ol

is the secant slope of the &, -‘8 curve of an FRP-confined concrete section shown in

i

'

Figure 8.9(b) at the instant when é’; = (e‘c )v o and €; = (E I )vol' Using Eq. (8.14), the

effective volumetric Poisson’s ratio (I/ j )VO ; is given by:

—_|cJ _ N\ J ]
("j)voz ) { J ) Vi) # 23 (8.15)
vol ’ujp I hot

Dilation Model for FRP-Confined Concrete Sections

£j‘ and &,.-

Due to the nonlinearity of the &, - £ j‘ curves shown in Figures 8.4-8.9,

a simple continuous mathematical relationship is sought for which the following

geometrical conditions apply:

1. Atvery small axial and diagonal strains as £.,£; — 0, the initial slope of £’c -|& j‘ is

given by the effective initial dilation rate 1/ :U'jo , where:

oc. 1
_(6;} =— (8.16)
T e -0 Hjo
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2. When the diagonal jacket strain &; is equal to the localized peak diagonal jacket

strain (8 I )pk’ the slope of €. -|& j‘ curve is equal to zero, where:

de,
_(a::} =0 (8.17)
51-:

3. At infinitely large diagonal strains as &; — —oo, the effective axial strain é’;

approaches the value of zero where:
(ff':)g.q-oo 0o (8.18)

4. At infinitely large diagonal strains as &; — —co, the slope of E'c-‘é’ ;| curve

approaches the value of zero where:

ag'c

- 0o

[aej} (8.19)
£, »—®

A simple continuous mathematical relationship that can accurately model the
nonlinearity of the é"c-‘é‘ ;| curve as shown in Figures 8.4-8.9 and which meets the
conditions imposed in Egs. (8.16)-(8.19) is the Popovics (1973) fractional model for
concrete, modified herein in terms of the effective axial strain £’C and diagonal strain £

introduced in Egs. (8.3)-(8.15), where the effective inverse effective jacket diagonal
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Poisson’s ratio 1/ I/'j or secant slope of the E'c -& j‘ curve of Figures 8.4(b) and 8.5(b) is
given as:
1 e, 1 Vi
— ==X |= ! (8.20)
Vj gj (V") y]
J pk gj
vy 1)+ e

where J/; is the diagonal curvature parameter of the Popovics-based fractional model

(1973). This curvature parameter determines both the rate of softening of the ascending

portion and the rate of decay of the descending portion of the £'c -|E j‘ curve and is given
by:
1
M, (Vj)pk ( . ) .
yj_ 1 1 —( ’) ' for Vj pkiﬂ]o (821)
1 1 j k jO
:ujo Vpk P

Graphically, the above diagonal curvature parameter Vi of Eq. (8.21) is the ratio of
the initial effective slope 1/ ,u'jo and the difference between the initial effective slope

1/ :U'jo and effective peak slope I/(V’] )pk of the 8(':-8 ; curve, shown in of Figures

8.4(b) and 8.5(b).
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The ratio of the effective peak Poisson’s ratio (I/J )p " to the effective initial dilation

rate :U’jo is defined as the peak dilation parameter y,; where:

Yok = (8.22)

Using the effective initial dilation rate :U’jo of Eq. (8.7) and the effective peak
Poisson’s ratio (I/j )pk of Eq. (8.13), the peak Poisson’s ratio (Vj )pk of Eq. (8.11) can be

rewritten in terms of the peak dilation parameter y,; of Eq. (8.22), as follows:

. _ 5_] _ ypk:ujolujp
(vj )pk { :. ka o, (ypk m (8.23)

Using the peak dilation parameter ), of Eq. (8.22), the diagonal curvature

parameter J/; of Eq. (8.21) can be rewritten as:

= ypk
ypk_l

f (8.24)

Using the diagonal curvature parameter ); of Eqgs. (8.21) and (8.24) and the peak

dilation parameter ), of Eq. (8.22), the fractional dilation model of Eq. (8.20) can be

rewritten as:
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T R 1 1
== T (8:25)
Vj gj :Ujo yPk_l ] J

_(Vj‘l)” Ejr

pk

In the development of the diagonal dilation model introduced in Egs. (8.5)-(8.25),

both the axial volumetric strain (£c )v ,; and the localized peak axial strain (£c ) ok have

not been determined; this is accomplished as follows.

The ratio of the axial volumetric strain (é’c )V o, to the unconfined peak compressive

strain &., 1s defined as the volumetric strain ratio a,,,; where:

(8.26)

The ratio of the localized peak axial strain (£c ) ok 10 the unconfined peak

compressive strain €, is defined as the peak strain ratio & ,,; where:

(Ec ) pk

EC o

a =

ok (8.27)

From analysis of the EC-‘é‘ ;| curve of Figure 8.10(a) of a typical concrete section
confined by a low stiffness FRP jacket for which (I/ i )VO ; <Hjp <p My, and using &

of Eq. (8.27), the intercept peak axial strain (80 ) Pk is given by:
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. U —(v~)
k Jp J I pk
— Pz, ——— (8.28)
Hjp
From analysis of Figure 8.10(b) and using a,,; of Eq. (8.26), the intercept

volumetric axial strain (&, )v o/ 18 given by:

vol ~

(‘90) = (‘gc )vol + % =Ayo1€co {/JJp;[—(VJ)volJ (8.29)

Assuming that for concrete sections confined by a low stiffness FRP jacket, the peak

strain ratio @, of Eq. (8.27) is approximately equal to one (&, =1.0), and equating
Eqgs. (8.28) and (8.29), where (80 ) k= (80 )vol’ the volumetric strain ratio a,,,; of Eq.

(8.26) can be approximated by:

(£C)vol 0 'UJP ’ujp _'L[jo

b=
€co Hjp ~ (Vj )wz Hjp * Hjo (Vpk -1)

vol —

(8.30)

Substituting the inverse effective diagonal Poisson’s ratio model 1/ I/'j of Eq. (8.25)
into Eq. (8.5), solving for the inverse diagonal Poisson’s ratio 1/ v, of Eq. (8.2), setting
v, = (Vj)vol’ setting £ = (gj)vol ==0y1€co (Vf)vol using a,,,; of Eq. (8.30), setting

(8 j) =0 préeo (I/ i )pk using @, of Eq. (8.27), and solving for the peak strain ratio

a pi » yield:
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Figure 8.10 Definition of (a) the peak intercept axial strain and (b) volumetric
intercept axial strain of the dilation curve of an FRP-confined concrete

section.
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&
a pik :( C)Pk Hapaye (8:31)
co
;) |
ay =7l s ap =y u,ta;) [ﬂjp _(Vj)vol] (8.32)
Vilok
a
ac = B , ap =a ac (8.33)
ViBity =asly; =)

where the coefficients a 4, ap, ap, and ap are used to simplify the solution for the

peak strain ratio @, of Egs. (8.27) and (8.31).
Considering that the effective initial diagonal dilation rate ,u'jo of Eq. (8.7) and the
effective peak Poisson’s ratio (VJ )pk of Eq. (8.13), both depend on the diagonal plastic

dilation rate 4, of Eq. (7.25) of the FCC section; the peak dilation parameter ), of

Eq. (8.22) can be approximated by:

(v’-) (V ) = —
Tipk _ V7 pk | Hjp “Hjo | Hy ~ Hei

Ypk — ' - -
g Hjo Hjo Hip _(Vj)pk /Jci(zluu _1)

(8.34)

Based on the definition of the asymptotic diagonal plastic dilation rate (,,, of Eq.

(7.23) and the unconfined dilation rate 4, =1.40 of Eq. (7.23), the above approximation

indicates that the effective stiffness (K of Eq. (4.19) or the transverse stiffness

je)sh

(C je)sh of Eq. (4.17) of the FRP jacket and the Poisson’s ratio of the unconfined

concrete core, 1.e., U, and L, , are solely responsible for the dilation behavior of the
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FRP-jacketed concrete throughout its compression loading history. In addition, for an

unconfined circular concrete section for which (K " =0, Eq. (7.23) yields

jel,
Hyp = My =1.40, Eq. (8.30) yields a,, =1.0, and Eq. (8.31) yields a,; =1.0 when

Vi of Eq. (8.34) is used. As a result, the proposed dilation relationships introduced

herein indicate that volumetric expansion of the unconfined concrete begins to occur, i.e.,

&, 20, as the unconfined concrete approaches its peak unconfined compressive strength

feo and strain &.,, which is in agreement with Pantazopoulou and Mills(1995) and

0 °
Pantazopoulou (1995) for the general concrete model.

The curvature coefficient ), of Eq. (8.34) is considered a material constant that is

affected by the initial Poisson’s ratio or dilation rate of the unconfined concrete material

H.; =V,.;. This indicates that the dilation behavior (Poisson’s ratio V. and dilation rate
M) of the concrete material is significantly affected by the initial elastic properties of
the concrete material, i.e., V;.

For normal-strength concrete V,; is influenced by the water-cement and aggregate-

cement ratio (Anon 1964, Imran 1994) of the concrete material and can range between

0.15<v.; <0.30. Based on this range of v, the curvature parameter y,; of Eq. (8.34)
can range between 2.03 <.y, <4.63, with the higher value corresponding to the lower

value of V., and viceversa. For V., =020 and p, =140, Eq. (8.34) yields

Vpk =3.33. For convenience a value of y,; =77 is used herein. For cases in which the
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initial Poisson’s ratio V; of the concrete material is known, the curvature parameter

of Eq. (8.34) can be evaluated and substituted for 72 in the following relationships.

Using )y, =77 in Eq. (8.24), indicates that that the diagonal curvature parameter J/;

of Eq. (8.21) can be rewritten as:
Vi=—— (8.35)

The ratio of the diagonal volumetric Poisson’s ratio (I/ i )ml to the plastic dilation

rate [ ;, is defined as the volumetric dilation parameter y,,,; where:

Yvol = Fiky (8.36)
Hjp

Using the peak dilation parameter y,; of Eq. (8.34) and the volumetric dilation

parameter J,,,; of Eq. (8.36), the peak Poisson’s ratio (l/ j)pk of Eq. (8.23) and the

volumetric strain ratio a,,,; of Eq. (8.30) can be rewritten as:

Aol =

(‘%)vol :( 1 j Hip =~ Hjo

(8.37)
3 1= Vol Hip +(7T—1) Hjo

co

For an unconfined circular concrete section that above relationships assumes that

volumetric expansion of the unconfined concrete core occurs when (é’c )V ol = €co (e

a,, =1.0), which is supported by experimental evidence (Imran 1994, Pantazopoulou

and Mills 1995). For FRP-confined sections the above relationship predicts that the axial
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strain at which volumetric expansion occurs increases, i.e. @,,; >1.0, as the confining

stiffness of the restraining FRP jacket increases (an increase in confinement). This
behavior is supported by experimental evidence of actively confined concrete (Imran
1994, Imran and Pantazopoulou 1996) and FCC sections (Mirmiran 1999, Saenz 2004,

Yan 2007).

Substituting the peak dilation parameter )/, of Eq. (8.34) and the volumetric strain

ratio a,,; of Eq. (8.37) into the peak strain ratio @, of Eq. (8.31) yields:

apk—

_(gc)pk :( Vool ’:u{p

, ac 8.38
Eco 1_yvol (Vj)pk ( )

The previous relationships for the peak strain ratio @, of Eq. (8.31) and (8.38) are
undefined when 4, < (I/ i )vol or Vo >1.0. A value of @, of Eq. (8.38), evaluated at
a volumetric dilation parameter y,,,; of Eq. (8.36) approximately equal to one y,,,; =1.0

or within the range 0.95< y,,; <0.98 can be used without incurring a significant loss in

accuracy of the nonlinear component of the proposed dilation model of Eq. (8.25).

Solving for the inverse jacket diagonal Poisson’s ratio 1/ v; in(Eq. 8.5) yields:

1 [e)_ 1 1
—= -{—J =t (8.39)

The term 1/ I/'j of Eq. (8.39) is governed by the dilation model of Eq. (8.25), this term

represents the degradation that the FCC core experiences as a result of the remolding
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process that its internal structure endures, due to unrestrained axial strain-induced
damage prior to full activation of the kinematic restraint provided by the confining elastic

FRP jacket. The term 1/ Uy of Eq. (8.39) represents the amount of degradation of the
concrete’s internal structure that is restrained by the confining elastic FRP jacket.
Substituting the inverse effective diagonal Poisson’s ratio 1/ I/'j model of Eq. (8.25)
into the inverse diagonal Poisson’s ratio 1/ V; of (Eq. 8.39) the whole axial strain &,
versus jacket diagonal strain £; curve (the £.-&; curve) of the FCC section of Figures

8.4 and 8.5 can be modeled using the following fractional dilation model:

L:_f_czl(lj I bt (8.40)
v, £ :u’jo -1 | m(r-1) | . '

Jp

1 0
— = e (8.41)
Hjo \9¢;

Taking the derivative of the inverse diagonal secant Poisson’s ratio 1/ v, of Eq.
(8.40), with respect to the diagonal jacket strain £, yields the inverse diagonal dilation

rate 1/ , as follows:
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(1)
1-| 5
1) (e ) 1 ( 1 jz (gj)pk 1
L = + (8.42)
Hi) \9&; ) pj,\TT-1 m(m) | Hip
e
-1 (gj)pk

Manipulation of Eq. (8.40) and (8.42) yields the diagonal jacket Poisson’s ratio V;

and the diagonal dilation rate £/; of the FRP-confined concrete section, as follows:

77/ (r-1)
Hoobtyy |1+ (1)
) (gj) Ve
v &2 ! (8.43)
I \e, ) 7/(m-1) ]
| &
Hip + Hjo |1+ (1=1) (g 5
(1) T
ptiolr=1) [1+(-1) |
agj (gj)pk
= = E (8.44)
o {afcj ) ) P
|1 2 +tolm-1) 1+ (1)
(gj)pk (gj)pk

The jacket diagonal peak strain (8 i )pk can be found using the peak strain ratio @,

of Egs. (8.38), the peak dilation parameter ), of Eq. (8.34), and the diagonal peak

Poisson’s ratio (Vj )pk of Eq. (8.23), as follows:
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(8.45)

:ujolujp
:ujp +:uj0(ﬂ_1)

(gj )pk = _mpk5c0|:

The previous dilation model assumes that the dilation of FCC sections is a function of
the kinematic restraint provided by the confining elastic FRP jacket and the initial

dilation properties (V. and ;) of the concrete core. (Also, refer to the strain

relationships introduced in Chapters 6 and 7.)

In the diagonal dilation rate model u i of Eq. (8.44), the maximum diagonal jacket

dilation rate (,u I )max of the FCC section is obtained by taking the derivative of the jacket

diagonal dilation rate U i of Eq. (8.44) with respect to the diagonal strain &, i.e.,

Au; /O, and setting du; /de; =0 for £; #0. As a result, the maximum diagonal

dilation rate (,u j) can be found when & ; / (5 ')pk =1+ ¥k 1s substituted into the

max J

diagonal dilation rate u I of Eq. (8.44).

The proposed analytical transverse dilation model introduced in this dissertation is
unlike the empirical dilation models introduced by other researchers in the past, which
include: the empirical fractional dilation model introduced by Mirmiran and Shahawy
(1997b); the empirical trilinear model introduced by Carey (2002); the transverse
confining stress-dependent empirical models introduced by Fam and Rizkalla (2001),
Fujikake et al. (2004), Binici and Mosalam (2007) and Teng et al. (2007); and the
empirical volumetric strain-dependent dilation model introduced by Monti and Nistico

(2007).
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The distinguishing feature for the proposed analytical dilation model is that it uses the
concept of diagonal dilation of the FRP-confined concrete core and describes the increase
in damage (dilation) in the cross-section in terms of the mechanical and geometric
properties of both the concrete core and the confining FRP jacket.

In this dissertation, the confined concrete core is considered to be a restraint sensitive
material rather than a pressure sensitive material, as is typically assumed in the analysis
of confined concrete. As a result, the proposed dilation model considers that the dilation
behavior of the FRP-confined concrete depends only on the lateral kinematic restraint
provided by the thin elastic FRP jacket at the surface of the confined concrete core, rather
than on the passive confining pressure provided by the restraining FRP jacket that results

from transverse dilation of the FRP-confined concrete core.



CHAPTER 9

AN EXTENDED MOHR-COULOMB FAILURE CRITERION

FOR CONFINED CONCRETE

One of the goals of this research is to introduce a theoretically sound mechanics-
based stress-strain model, applicable to rectangular, square, oval, circular, and elliptical
concrete beam-columns confined by bonded FRP jackets (BFCC sections) or cast in place
FRP tubes (CFFT sections). This model requires an analytical yield surface or failure
envelope that defines the confinement effectiveness of actively or passively confined
concrete in a triaxial compression state of stress.

The geometric and mechanical properties of the aforementioned FRP-jacketed
sections introduced in Chapter 4, the transverse and diagonal equilibrium relationships
introduced in Chapter 5, and the strain compatibility relationships introduced in Chapter
6 are included in the development of a Mohr-Coulomb-based failure criterion for

confined concrete, FRP-confined concrete in particular.

Confinement Effectiveness of FRP-Confined Concrete
Currently, there is a lack of stress-strain models that can accurately model the non-

linear compressive behavior of rectangular, square, oval, circular, and elliptical concrete
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sections confined by bonded FRP jackets (BFCC) or cast in place FRP tubes (CFFT),
generally referred to as FRP-confined concrete (FCC) sections in this review.

In the analysis of laterally confined concrete members, it is assumed that the increase
in strength due to passive confinement provided by the restraining transverse
reinforcement or jacket is governed by an experimentally determined confinement

effectiveness of the confining element k.., given as:

fie
k,, =2 9.1
foo ©-h

where f., and f_.. are the peak compressive strength of the unconfined and confined

concrete core, respectively. The increase in the compressive strength of the actively or
passively confined concrete is typically assumed to be governed by the following Richart

et al. (1928) relationship:

fcc:fc0+kl( r) 9.2)

kl — fcc _fco

7 (9.3)

where f, is the average transfer confining stress provided by the confining element and
ky 1s the average confinement effectiveness coefficient.

The confinement effectiveness k.. of Eq. (9.1) can be rewritten in terms of the
average confinement stress ratio k. = f,./f., and the confinement effectiveness

coefficient k; by dividing Eq. (9.2) and Eq. (9.3) by the unconfined compressive strength

feo 25
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kee === =1+kk, (9.4)

co

(9.5)

The above relationship correlates well with experimental test data of plain and
reinforced concrete sections actively confined by hydrostatic fluid pressure and passively
confined concrete sections confined by transverse steel reinforcement, steel jackets, as
well as FRP jackets.

For plain concrete sections in a uniform triaxial compression state of stress (i.e.,

biaxially confined concrete), for which 0| >0, =03 = f,., Richart, et al. (1928) found
that the value of the confinement effectiveness coefficient k; is in the range of
3.50 <k £5.50. The upper value corresponding to concrete subjected to low confining

stresses f,. and the lower value corresponds to highly confined concrete, with an average

value of (kl) 4.10. o0y, ,0, and 03 are the major, intermediate and minor

avg =
compressive stresses in the confined concrete, for which shearing stresses vanish and
compression is considered positive.

In the analysis of biaxially confined concrete cylinder tests performed by Imran

(1994), the range of the confinement effectiveness coefficient & was 2.50 <k <6.50.
The higher values of k; occur at low levels of confinement, and the lower values at high

levels of confinement, with an average value of (kl) =4.10, which is in agreement

avg

with Richart et al. (1928).
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In the past, many investigators described the variation of the confinement

effectiveness coefficient k; of Eq. (9.3), in terms of the applied confining stress f,,
while mostly ignoring the contributions of the applied axial compressive stress f,. at
failure of the confined concrete core (i.e., f,.).

The confinement effectiveness coefficient k; of the confined concrete is typically
plotted versus the applied transverse confining stress f,., as shown in Figures 9.1-9.3, or
versus the confinement ratio &, = f,./f., as shown in Figures 9.4-9.6. This behavior is

a result of the inherent decreasing nonlinear relationship between the confinement

effectiveness coefficient k|, with respect to the confining stress f, or confinement stress
ratio k,, as shown in Figures 9.1-9.6. Several researchers in the past have introduced

empirical relationships for k; in the form of a decreasing power relationship as follows:

ky =ay(f, ) (9.6)

ky = ay(k, )" (9.7)

where ay, ap, a3 , and a4 are empirical constants that have no physical meaning. Eq.
(9.6) was introduced by Saatcioglu (1992) and Eq. (9.7) by Newman and Newman
(1971). Both Egs. (9.6) and (9.7) with a, =a4 =0 are the special case for a constant
confinement effectiveness coefficient &, a concept first introduced by Richart et al.

(1928), an assumption that is not supported by experimental data, as can be observed in

Figures 9.1-9.6, which reflect the experimental fact that for confined concrete, k;

decreases with increasing axial and transverse confining stress f,. or stress ratio %,..
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cylinders performed by Imran (1994).
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Experimental and analytical confinement effectiveness coefficient versus

transverse confining stress of biaxially confined medium-strength concrete

cylinders performed by Imran (1994).
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Figure 9.3  Experimental and analytical confinement effectiveness coefficient versus
transverse confining stress of biaxially confined high-strength concrete

cylinders performed by Imran (1994).
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Figure 9.4  Experimental and analytical confinement effectiveness coefficient versus
confinement stress ratio of biaxially confined low-strength concrete

cylinders performed by Imran (1994).
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Figure 9.5  Experimental and analytical confinement effectiveness coefficient versus
confinement stress ratio of biaxially confined medium-strength concrete

cylinders performed by Imran (1994).
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Figure 9.6  Experimental and analytical confinement effectiveness coefficient versus
confining stress of biaxially confined high-strength concrete cylinders

performed by Imran (1994).



204

The data points plotted in Figures 9.1-9.6 are the experimental data of biaxially

confined concrete cylinder tests performed by Imran (1994) for which

0, >0, =03 =f,. From these figures, it can be observed that the confinement

effectiveness coefficient k| decreases nonlinearly as the transverse confining stress f, or

stress ratio k, increases. This is the basis for utilizing the negative a, and a4 exponents
in the empirical relationships of Egs. (9.6) and (9.7).

The compressive stress at failure of the confined concrete core f,. is plotted versus
the transverse confining stress f, in Figures 9.7-9.9. The confinement effectiveness
k.. 1s plotted versus the confinement stress ratio k, as shown in Figures 9.10-9.12. The

data points plotted in Figures 9.7-9.12 are the experimental data points of biaxially
confined concrete cylinder tests performed by Imran (1994). From these figures, it can

be observed that at high levels of transverse confinement, the compressive stress f,.. and
the confinement effectiveness k.. appear to be a linear function of the confining stress
f, and the confinement stress ratio k,, respectively. As a result of the nonlinear
relationship between the confinement effectiveness coefficient k; and the transverse
confining stress f, of Figures 9.1-9.3, or the confinement stress ratio &, of Figures 9.4-

9.6, an analytical failure criterion for confined concrete must capture the nonlinear

relationships between k; and f, or k; and k, at low confinement levels and also
capture the essentially linear relationship between the compressive strength f,.. and the

transverse confining stress f, at high confinement levels, as shown in Figures 9.7-9.9.



120

205

[{e]
o

w
o
I

Compressive Strength (MPa)
(e}
o

o

Analytical (9.34)
A Imran (fco=21.2 MPa)

—~ 150

5 10 15 20 25
Tranverse Confining Stress ( MPa )

(@)

—_—
N
o

©
o
L

[e2]
o
L

301

Compressive Strength (MPa

o

A Imran (fco=28.6 MPa)

o

5 10 15 20 25
Transverse Confining Stress (MPa)

(b)
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Figure 9.11 Experimental and analytical confinement effectiveness versus confinement
stress ratio of biaxially confined medium-strength concrete cylinders

performed by Imran (1994).
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Figure 9.12 Experimental and analytical confinement effectiveness versus confinement

stress ratio of biaxially confined high-strength concrete cylinders

performed by Imran (1994).
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The analytical failure criterion must also capture the linear relationship between the

confinement effectiveness k.. and the confinement stress ratio k,., as shown in Figures
9.10-9.12, and the combined effects of the applied axial stress f,. and applied or resultant

transverse confining stress f,, in order to describe the compressive behavior of

uniaxially and biaxially confined concrete.

Pramono and Willam (1989), Menetrey and Willam (1995), Xie et al. (1995) and
Fujikake et al. (2004) introduced a series of relationships based on the Leon (Romano
1969) or the Hoek and Brown (1980) parabolic model for the failure envelope of concrete
in a triaxial compression state of stress. This includes the cases of uniaxial tension,
tension-compression, and tension-tension stress states given by the following three-

parameter parabolic relationship:

2 ' ' '

A% 4 gy D 4 as =0 98)
fCO fCO

g1~ 03

fCO

where 0] and 03 are the minor and major principal stresses in the concrete core with
tension considered positive. When compared to the principal compressive stresses 0y,
g, and g3, 0, =-03, 0, =—0,, and g3 =—0y. Also, () i1s the intermediate

principal stress.
Pramono and Willam (1989) found that the ultimate strength envelope of concrete can

be described by considering that the constants in the parabolic model of Eq. (9.8) are
a3 =0, a4 = (kt2 —1)/kt ,and a5 =-1.0. k, is defined as the ratio of the uniaxial

tensile strength f;, to the uniaxial compressive strength f., of the concrete core as:
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Jto
Jeo

;=

(9.9)

Menetrey and Willam (1995) found that the ultimate strength envelope of concrete
can be described by considering that the constants in the parabolic model of Eq. (9.8) are
a3 =0, ay = (kt2 —1)/kt [3e/(e +1)], and a5 =-1.0, where e is the eccentricity of an
elliptical function which is further discussed in this chapter. Fujikake et al. (2004) used
Pramono and Willam’s (1989) model to describe the ultimate strength envelope of FRP-

confined concrete with &, =0.08.

Xie et al. (1995) found that for the case of high-strength concrete, the terms a3 and
as in Eq. (9.8) are empirical constants of the concrete core which were found to depend
on the unconfined compressive strength of the concrete core f,,, and the term a4 is an
empirical constant that depends on both the unconfined compressive f., and tensile

strength f;, of the concrete material.

In the modified Leon (Romano 1969) or Hoek and Brown (1980) parabolic failure
criterion of Eq. (9.8), the influence of the intermediate principal compressive stress g, is

omitted similar to the Tresca and Mohr-Coulomb condition of maximum shear. In
addition, the three-parameter parabolic formulation for the ultimate strength envelope of
Eq. (9.8) combines the two-parameter Mohr-Coulomb friction law and the one-parameter
tension cut-off condition of Rankine. Although the parabolic type ultimate strength
envelope of Eq. (9.8) can accurately describe the cases of uniaxial tension, tension-

compression, tension-tension stress, and triaxial compression stress states, a direct
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solution for the minor principal stress 03 cannot be obtained in terms of the major

principal stress Ji without iteration.

In this research a noniterative ultimate strength envelope of the concrete material is
obtained by treating the restraint sensitive concrete material as a frictional-cohesive
material whose ultimate strength criterion is governed by a Mohr-Coulomb type failure

envelope for frictional-cohesive materials subjected to uniform biaxial confinement, i.e.,

03 =0, or 0y =0,. For confined concrete, the kinematic restraint is provided by

either active hydrostatic compressive stresses or passive confining stresses provided by a
transverse confining element, such as FRP jackets.
In what follows, a series of mathematical relationships are introduced to describe the

variation of the confinement effectiveness coefficient &; and the confinement

effectiveness k.., with respect to the applied axial stress f,. and the applied transverse

ceo
confining stress f,, while minimizing or eliminating the number of empirical

coefficients such as those introduced in Egs. (9.1)-(9.9).

Confinement Effectiveness of Confined Concrete: A Soil
Mechanics Approach
The structure of the concrete material within the confined concrete core can be
considered a heterogeneous material consisting of granular aggregates (i.e., crushed stone
aggregate or gravel and sand), a binding material (i.e., cement paste), and pores. The
concrete material in a uniaxial tension, tension-compression, and tension-tension, biaxial

or triaxial compression state of stress behaves as a cohesive-frictional material and
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exhibits similar compressive and dilation behavior as that exhibited by granular cemented
soils, i.e., soils that exhibit a uniaxial tensile capacity.

The confined concrete core is a restraint sensitive material that is composed of
granular materials (i.e., angular crushed rocks, well-graded gravels, and dense sands) plus
a binding agent (i.e., cement paste). As the internal structure of the confined concrete
core is subjected to very large compressive strains, it becomes damaged as a result of
internal crack growth, aggregate crushing and shifting, void compaction, and nucleation.

As damage in the internal structure of the concrete core increases, it undergoes a
remolding process in which its internal structure essentially degrades to that of its
constituent materials. This is a result of the degradation of the adhesion provided by the
binding cement paste from internal crack growth, void compaction, and nucleation (i.e.,
as damage progresses).

At high levels of axial and transverse deformations, the mechanical response of the
remolded concrete core depends on the resistance provided by a combination of
aggregate sliding, shifting, rolling, and crushing that develops during the axial and
transverse deformation of the concrete core.

The concrete material is treated as an isotropic, homogenous Mohr-Coulomb
frictional-cohesive granular material with some interparticle attraction or cohesion that is
provided by the binding cement, whose resistance to deformation is contingent upon the

shear strength of the material 7.. This shear strength depends on the average
interparticle attraction or apparent cohesion ¢, of the concrete core and the resistance to

interparticle slip called the coefficient of friction of the concrete core .., that is given

by:
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I.=c.+t0,U, (9.10)
or

U, =—< =tang, (9.11)
00

n

where 0, is the normal stress on the failure shear plane, as shown in Figures 9.13 and
9.14; v, 1is the coefficient of internal friction of the concrete core; @. is the average

angle of internal friction of the concrete core. The above relationships describe a
maximum shear strength failure envelope of the concrete material as shown in Figures
9.13 and 9.14.

For a Mohr-Coulomb-based maximum shear strength envelope to properly model the
behavior of concrete in a triaxial compression state of stress, it must also include the
cases of uniaxial tension, tension-compression, and tension-tension stress states and shall
satisfy the following conditions:

1. It should represent a close fit to the experimental data

2. It should have simple identification of the model parameters

3. It should pass through the point of uniaxial tension, i.e., when 03 = —| J1o

, O = 0

4. It should pass through the point of uniaxial compression, i.e., when 03 =0,
o= / co

5. It should fit the failure envelope of concrete in a triaxial compression state of stress,

as shown in Figure 9.15 in which 05 20, 0| = f,,.

This is accomplished herein by considering that the concrete material behaves similar

to similar compressive and dilation behavior as that exhibited by granular cemented soils.
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Figure 9.13 Plot of typical Mohr-Coulomb failure envelope of a frictional cohesive

material.
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material showing pertinent terms, (b) Mohr’s circle and definition of oy,

03 and the angle of inclination of the failure shear plane &, .
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Figure 9.15 Plot of typical failure envelope of a frictional cohesive material in the

major principal and minor principal compressive stress region.
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A concrete prism subjected to a triaxial compression state of stress for which

0| >0, = 03, uniaxial compression tests for which g; =20 and 0, =03 =0, uniaxial
tension tests for which g =0, =0, and 03 <0, and uniform biaxial confinement for
which 0, =03 = f, is considered herein.

Referring to the Mohr’s circle of Figure 9.14(b), the normal stress o,, and the shear
stress 7. on the failure shear plane are given in terms of the minor 03 and major 0

principal compressive stresses in the concrete core as follows:

7, :%sm(wg) (9.12)

+ —_—
g, =21 203 + 1793 005(28,) (9.13)
6, = 45° +% 9.14)

where . and ¢@. are the average angle of inclination of the failure shear plane and the

angle of internal friction of the confined concrete, respectively, as shown in Figure
9.14(b). In this research, a relationship is sought for concrete subjected to a triaxial

compression state of stress in which the major principal compressive stress O] is
determined in terms of the minor principal compressive stress g3 . This is accomplished
using the following trigonometric relationships:

tan2(6?c)=tan2(45° +&j :M (9.15)
2 1-sing.
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tan(@ ) = tan[45 % j [*sing, = COS.(DC (9.16)
2 cos @ 1-sin@.
5 I R ) _l-sing
tan” (. ) = tan (45 —fj =cot*(6,) = m (9.17)
_ o @ _ cos@. _1-sing.
tan(J,. ) = tan| 45 =cotlf,. )= = 1
an( C) an[ 2 j 0 ( C) 1+sing, cos@. ©.18)

Thus setting the minor 03 = f,. and major 0] = f,.. compressive stresses in Egs.

(9.10)-(9.13), using the previous trigonometric relationships and solving for g yields:

o =2, _cosq. +o l+sing.
1-sing. l1-sing.
_ [ cos@. J (1+sm¢)cj (9.19)
=2c,
1-sing. 1-sing.
—2cctan( )+frtan2( )

Setting the oy = f,.. and 03 = f,., the above relationships can be rewritten as a

generalized two-parameter modified Mohr-Coulomb (MMC) failure envelope for

confined as follows:
yyoy—Bro3 -1=0 (9.20)

where ), and Jé; 4 are material parameters that measure the cohesive and frictional

strength of the concrete subjected to a biaxial or triaxial compression state of stress. The

Richart et al. (1928) failure criterion of Eq. (9.2) is the case for which y, = 1/ f., and

ki =p r / Yy =4.10. The material parameters ) and B  of the concrete material are
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determined as follows. The apparent cohesion of the confined concrete core c. of Egs.
(9.10) and (9.19) can be determined from the uniaxial unconfined compression test.
Setting o0y = f.. = f., and 03 = f,, =0 and substituting f.. = f,, and f, =0 into
Eq. (9.19) yield:

_ 1 (l—sinqoc

c = —
C co
2 cos @

J :%fco COt(ec) (9.21)

Substituting Eq. (9.21) into Eq. (9.19) yields a relationship for the peak compressive
strength f,.. similar to the Richart et al. (1928) relationship of Eq. (9.2) or a confinement
effectiveness k. relationship similar to that of Eq. (9.4). Utilizing Egs. (9.2), (9.19), and
(9.21), the confinement effectiveness coefficient k; of Egs. (9.2) and (9.6) can be
rewritten in terms of the angle of internal friction of the concrete core ¢,. or the angle of
inclination of the failure shear plane &,. and the coefficient of friction v, of the concrete
core as follows:

_l+sing,
l-sing.
= tan? (6.)

. 2
_[1+sing.
COS @ ]

2
:Mj

(9.22)

l-sing.

2
=i+ P +u.]
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The previous confinement effectiveness coefficient k; also applies to concrete in a
triaxial compression state of stress for which g; >0, >3, which corresponds to the

case of rectangular, oval, and elliptical FCC sections, since the MMC criterion introduced

herein ignores the effects of the intermediate compressive stress 0, .
The angle of internal friction of the confined concrete core ¢. can be determined in
terms of the confinement effectiveness coefficient k| of Eq. (9.22) as follows:

g =sin”![ 221 (9.23)
ky +1

In the analysis of concrete in a biaxial or triaxial compression state of stress, the
combined effects of the applied axial stress f,. and transverse confining stress f, are
typically ignored in the development of maximum or ultimate strength criterion for
confined concrete. In order to capture these combined effects, a series of analytical
relationships are introduced using a MMC failure envelope, that combines the two-
parameter Mohr-Coulomb friction law of limited shear stress and the one-parameter

Rankine tension cut-off condition as follows.

As shown in Egs. (9.10) and (9.11), shear failure of the confined concrete core T,
occurs when the normal stress in concrete g, and the angle of internal friction ¢, reach

a critical combination. Based on the definition of the normal stress on the failure shear

plane g, of Eq. (9.13), failure of the concrete core in a triaxial compression state of
stress occurs due to shear failure of the concrete, i.e., when 7 =7, or when equality of

Egs. (9.2) and (9.12) occurs. The occurrence of higher values of k; at low levels of
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confinement, as evidenced in the Richart et al. (1928) and Imran (1994) investigations,
can be attributed to the following.

The uniaxial compression case for which 03 =0 and 07 = f,, and the uniaxial
tension case for which g3 =—f; and 0; =0 are considered herein. For these cases Egs.
(9.10)-(9.19) predict that the uniaxial shear strength 7, , the apparent uniaxial cohesion
¢, » the uniaxial coefficient of internal friction v,,, the uniaxial angle of internal friction

@, » and the uniaxial confinement effectiveness coefficient (k; )u are given by:

1, =c, +(0,),0 (9.24)
ftO fCO
¢, =—-2to_=Jco [
Ty N (9.25)
1
(an )u :Efco [1 +COS(2914 )] (9-26)
v, = o7, =tan @ 9.27
“ a0, " ©.27)
@ =90°—2tan"' Jk, ; 6, :45°+% (9.28)
l+sing, _ 1
k =_ " =__
(), =1 s (9.29)
foo 0-0.32(£,, )3 (9.30)

where the uniaxial tensile strength of the concrete f,, can be determined by uniaxial
tensile tests or it can be estimated using Eq. (9.30) with f,., in MPa units (Raphael 1984)

with compression being positive.



224
For an wunconfined concrete compressive strength ranging between
17 MPa< f., <55 MPa, using f;, of Eq. (9.30) and &, of Eq. (9.9), k, ranges
between 0.08 <k, <0.12. Also, for this range of concrete compressive strengths
0.15<c,/f,, <0.18, 51.1°<g, <57.7°, 1.24<u, <1.58 and 8.06< (k;), <11.90.
This indicates that at low levels of confinement, as k,, — 0, the confined concrete core
behaves similar to unconfined concrete, and the confinement effectiveness coefficient k;
approaches the value of the uniaxial confinement effectiveness coefficient (kl )u of Eq.
(9.29), [i.e.,as k. — 0, ky — (k1), =1/k; 1.
As previously indicated and as shown in Figures 9.1-9.6, the assumption of a
constant confinement effectiveness coefficient k; at all levels of confinement is not

supported by the experimental data. The experimental data of triaxial compression tests

by Richart et al. (1928) and Imran (1994) suggest that at low levels of confinement k;

approaches the value of the uniaxial confinement effectiveness coefficient (kl )u of Eq.

(9.29). At high levels of confinement k; approaches an asymptotic value, which will be
referred to herein as the basic confinement effectiveness coefficient (k; )b of the dry
concrete material. This indicates that for concrete in a uniaxial or triaxial compression
state of stress, k; is bounded by the following range (kl )b >k 2 (kl )u :

The nonlinearity of the confinement effectiveness coefficient kj, as can be observed

in Figures 9.1-9.6, can be attributed to the inherent nonlinearity of the Mohr-Coulomb
failure envelope for granular frictional-cohesive materials. The curvature of this failure

envelope can be attributed to remolding of the concrete’s internal structure as axial strain-
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induced damage progresses. As a result, the shear strength 7. of the confined concrete
core is a nonlinear function of the normal stress o, of Eq. (9.13) (or of the major g and
minor 03 principal compressive stresses), where the shear strength 7. of Egs. (9.10) and

(9.12) can be rewritten as:

g~

r,=c,+o, tang =21 % in(26,) 9.31)

In Eq. (9.31), the apparent cohesion c,. (i.e., apparent intercept shear stress) of the
concrete material is given by the unconfined cohesion, ¢, of Eq. (9.25). Using o, of
Egs. (9.13), ¢, of Eq. (9.25), 1. of Eq. (9.31) and solving for both the major ) and

minor g3 principal compressive stresses in terms of the normal stress g, yield:

o, =2¢,\[ky + 03k (9.32)
o3 = 20, ~ feokiki (1 +C056€) (9.33)

(ki +1)+ (kg = 1)eos(26,)

Setting the major principal compressive stress 0] in the confined concrete core equal
to the ultimate strength of the confined concrete core f,.. (i.e., 0] = f..), the confined
concrete strength f,.. of Eq. (9.2) can be found in terms of minor principal compressive
stress 03 by substituting the uniaxial cohesion intercept ¢, of Eq. (9.25) into Eq. (9.32)

and setting g1 = f,. in Eq. (9.32), which yields:

fcc :fco\/ktkl +J3k1 (9'34)
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The previous analytical compressive strength of biaxially confined concrete is plotted
as a solid curved versus the confining stress in Figures 9.7-9.9 of actively confined
concrete cylinders performed by Imran (1994). From these figures it can be observed
that the analytical compressive strength of Eq. (9.34) can accurately predict the

compressive strength f.. of biaxially confined concrete, for which oy >0, =03 = f,,

of varying uniaxial compressive strengths f,., at all confinement levels.
Substituting the confined concrete strength f,.. of Eq. (9.34) into the confinement

effectiveness of the confined concrete core k.. of Eq. (9.4) yields:

kee = Jee - kiky + k3ky (9.35)
feo
O3
ky == (9.36)
feo

where k3 is the minor principal compressive stress ratio. The previous relationship
indicates that confinement effectiveness k.. can be found in terms of the uniaxial tensile-
uniaxial compressive strength ratio k; of Eq. (9.9), with f,, estimated using Eq. (9.30)
and k| of Eq. (9.22).

The confinement effectiveness k.. of biaxially confined concrete of Eq. (9.35) is

plotted versus the confining stress in Figures 9.10-9.12 of actively confined concrete
cylinders performed by Imran (1994). From these figures it can be observed that the

analytical confinement effectiveness k.. of Eq. (9.35) can accurately predict the
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confinement effectiveness of biaxially confined concrete of various uniaxial compressive
strengths £, .

The confinement effectiveness k.. of Eq. (9.35) is somewhat similar to that
introduced in Eq. (9.4); k.. of Eq. (9.35) yields k.. of Eq. (9.4) for unconfined concrete
only, i.e., only when k3 =03 =0 and when k| = (kl )u . As aresult, it can be stated that

for confined concrete in a triaxial compression state of stress, for which

o, >0, =03 = f,, the confinement effectiveness k.. of Eq. (9.35) can be considered to
be the lower bound value of k. and k.. of Eq. (9.4) its upper bound value.

Solving for the MMC concrete material parameters  , and B r of Eq. (9.20) in Eq.

(9.34) yields:
14 :; 9.37
! fco\/ktkl ( )
1 [k
Br=kyr=—|— (9.38)
4 ! fco kt

The above material parameters also apply to plain concrete in a triaxial compression

state of stress for which ;] > g, > 03, which corresponds to the case of rectangular,
oval, and elliptical FCC sections which have an aspect ratio a;, of Eq. (4.2) greater than
unity, i.e., g, >1.0.

Solving for the confinement effectiveness coefficient k| of biaxially confined

concrete in Egs. (9.32) and (9.34) yields:
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2
) 2
ki = \/4(Cu ) + 40103 - zcu - kt + 4kcck3 Y kt (9.39)
: 20, 2k

The above solution applies to cylindrical concrete section for which

0| >0, =03 = f,. In addition, the above solution was determined using the fact for
unconfined and confined concrete in compression k; is bounded by (kl )b <k < (kl )u .
The experimental data points shown in Figures 9.1-9.6 are the experimental
confinement effectiveness coefficients k; calculated using Eq. (9.39). The experimental
values of the angle of internal friction of the confined concrete core ¢. of Eq. (9.23),
determined using the experimental k; data points previously mentioned, are plotted in
Figures 9.16-9.18 versus the transverse confining stress f,, =03, and in Figures 9.19-

9.21 versus the confinement stress ratio k, = kj.

Angle of Internal Friction of Plain Concrete
The nonlinearly decreasing relationship between the angle of internal friction of the

confined concrete core ¢. and the minor principal confining stress 03 or stress ratio ks,

as shown in Figures 9.16-9.21, is a result of remolding of the concrete’s internal
structure, that results from axial strain-induced damage (i.e., dilation). At very large axial
compressive stresses and strains, the concrete’s internal structure becomes damaged as a
result of internal crack growth, aggregate crushing and shifting, void compaction and
nucleation, and decohesion (loss of adhesion provided by the binding cement paste) as it

essentially degrades to that of its constituent granular materials.
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Figure 9.16 Experimental and analytical internal friction angle versus confining stress
of biaxially confined low-strength concrete cylinders performed by Imran

(1994).
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Figure 9.17 Experimental and analytical internal friction angle versus confining stress

of biaxially confined medium-strength concrete cylinders performed by

Imran (1994).
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Figure 9.18 Experimental and analytical internal friction angle versus confining stress

of biaxially confined high-strength concrete cylinders performed by Imran

(1994).
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Figure 9.19 Experimental and analytical internal friction angle versus confinement

stress ratio of biaxially confined low-strength concrete cylinders

performed by Imran (1994).
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Figure 9.20 Experimental and analytical internal friction angle versus confinement
stress ratio of biaxially confined medium-strength concrete cylinders

performed by Imran (1994).
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Figure 9.21 Experimental and analytical internal friction angle versus confinement
stress ratio of biaxially confined high-strength concrete cylinders

performed by Imran (1994).
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At high levels of axial and transverse deformations, the mechanical response of the
remolded confined and unconfined concrete core depends on the resistance provided by a
combination of aggregate sliding, shifting, rolling, and crushing that develops during the

axial and transverse deformation of the concrete core.

The nonlinearity of the Mohr-Coulomb shear strength 7., as shown in Figures 9.13
and 9.15, is due to de-cohesion of the concrete’s rock-like structure as axial strain-
induced damage accumulates, as is evident in the experimental confinement effectiveness
coefficient k; and the angle of internal friction ¢, plots of Figures 9.1-9.6 and 9.16-
9.21, respectively.

Both the shear strength of the concrete core 7. of Eq. (9.12) and the normal stress
0, of Eq. (9.13) are a function of the angle of inclination of the failure shear plane 8. of
Eq. (9. 14) and the angle of internal friction ¢. of the concrete core that has a nonlinear

relationship with respect to the applied stresses, as shown in Figures 9.16-9.21.

In order to properly capture the compressive behavior of confined concrete, this
nonlinear relationship is taken into consideration in the extended Mohr-Coulomb (EMC)
failure criterion for concrete, presented herein, which combines the modified Mohr-
Coulomb (MMC) failure criterion previously discussed with a degrading friction angle

model presented in what follows.

Degrading Friction Angle Model for Confined Concrete

A nonlinear variation of the angle of internal friction ¢,. versus the applied transverse
confining stress f, was observed of Figures 9.16-9.18 or versus the transverse stress

ratio k, in Figures 9.19-9.21. From these figures it can be observed that the angle of



236

internal friction ¢@. of the concrete core is a nonlinear stress-path dependent material
property that depends on the magnitude of the applied stresses (o,, 0| or 03), where
the angle of internal friction @, is separated into two distinct components: (1) a constant
basic angle of internal friction ¢, considered a material constant, and (2) a stress-

dependent angle of dilatancy ¢);;; (Maksimovic 1989,1996) as follows:

b= Y (9.40)

The basic angle of internal friction of the concrete material ¢, of Eq. (9.40) is
considered to be a stress-path-independent material constant (i.e., ¢, is independent of
01,05, and 0,). At very high confining stresses, the behavior of the confined concrete

core is mostly governed by friction and aggregate particle breakage occurring at existing
micro- and macro-crack interfaces. The basic angle of internal friction of the concrete

core ¢, represents the residual angle of shearing resistance of the rock-like concrete

material, which is mobilized at very high normal stresses at which dilatancy effects are
suppressed (Maksimovic 1989,1996).

For uniaxially and biaxially confined concrete, the confinement effectiveness

coefficient k; of the confined concrete falls within the range of (k| )b <k < (k )u
Using the definition of the angle of internal friction ¢. of Eq. (9.23), the range of the
angle of internal friction ¢. of Eq. (9.40) indicates that for unconfined and confined
concrete ¢). should be in the range of ¢, <@. <¢,. This range for the angle of internal

friction ¢, applies to a minor principal compressive stress 03 in the range of
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0< 03 <o and a resultant major principal compressive stress 0] in the range of
feo S0p <00, For this range of stresses, the lower bound value of @. =¢, in Egs.
(9.23) and (9.40) is the basic angle of friction ¢, of the concrete core, whereas the upper
bound value is . = ¢, , where ¢, is the uniaxial angle of internal friction of Eq. (9.28).

At very low levels of confinement, as g3 = f,, — 0, the angle of dilatancy ¢; of
Eq. (9.40) approaches the value of ¢; = (% —%) (ie,as g3 - 0, @ — (% —%),
and @. - @,). At very high levels of confinement, i.e., as g3 — o, the angle of
dilatancy ¢; diminishes and approaches the value of ¢;; =0, ie., as g3 - o,
@it » 0,and @ — @,.

The angle of dilatancy ¢; of Eq. (9.40) represents the degradation of the concrete’s

internal structure that occurs as a result of de-cohesion of the rock-like structure of the
concrete material as axial strain-induced damage accumulates. This increase in internal

damage contributes to an apparent degradation of the angle of internal friction ¢. of the

concrete.

At low and moderate levels of active confinement, k, =k3 <0.40, the angle of
dilatancy ¢);; represents the effects of dilatancy of the confined concrete as damage in

the internal structure of the partially restrained concrete core is dominated by a
combination of internal micro-crack growth at the paste-aggregate interface, macro-crack
growth through the aggregate, fine and coarse aggregate crushing and rolling, and de-
cohesion provided by the cement paste (Imran 1994, Sfer et al. 2002). At high levels of

active confinement, k, = k3 >0.40, the angle of dilatancy ¢);;; represents the effects of
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alterations in the microstructure of the highly restrained concrete core that are dominated
by collapse and compaction of the pore structure of the concrete (Imran 1994, Imran and

Pantazopoulou 1996, Sfer et al. 2002).

For passively confined concrete, the angle of dilatancy ¢); represents the effects of
alterations to the internal structure (de-cohesion and internal cracking) of the concrete
core due to axial strain-induced damage, which depends on the lateral kinematic restraint
provided by the confining element, be it closely spaced transverse steel reinforcement or
steel jacket (Pantazopoulou 1995) or an FRP jacket (Moran and Pantelides 2002a,b, Yan
and Pantelides 2006, Saenz and Pantelides 2007).

The curvature of the failure envelope of confined concrete can be attributed to
remolding of the concrete’s internal structure as the axial strain-induced damage (de-
cohesion and internal cracking) progresses. As a result of this process, the angle of

internal friction of the concrete core ¢. of Eq. (9.40) is assumed to be a nonlinear
function of the applied stress (7,,, 0}, or 03), in which ¢;; of Eq. (9.40) is assumed to

be governed by the following hyperbolic-type degrading friction angle model, as shown

in Figure 9.22, similar to the Maksimovic (1989,1996) hyperbolic model, where @;; is

given by:

o —(ox), (9.41)

(@), = E2 %0 (9.42)



239

(o )l. Applied Stress

Figure 9.22 Geometry of generalized degrading friction angle model for concrete.



240

where @ is the reference initial angle of friction at the instant when the applied stress o

is equal to the initial reference stress (Jk )i (ie,op = (Jk )l.); (Jk )m 'b is the median-
1

angle stress corresponding to the median-angle of internal friction (@n ) » Of Eq. (9.42).
The above dilatancy angle model applies to concrete subjected to an applied stress

O in the range of (Jk )i <0) <, as shown in Figure 9.22. In what follows it is

demonstrated that the proposed degrading frictional model of Egs. (9.40)-(9.42) reduces
to the normal stress-dependent Maksimovic (1989, 1996) hyperbolic degrading friction

angle model previously mentioned.

Normal Stress-Dependent Dilatancy Angle Model
The degrading dilatancy angle model of Egs. (9.41) and (9.42) in combination with

Eq. (9.40) yield the Maksimovic (1989, 1996) model only when the reference initial

angle of friction ¢@ occurs at the instant of zero normal stress, i.e., when
(o) ;= (0,) ; =0, i.e., cohesionless soils. The dilatancy angle model of Egs. (9.41) and

(9.42), applies to cohensionless frictional materials such as noncemented sands, silts, or

gravels, and to frictional cohesive materials such as concrete since the concrete exhibits a
uniaxial tensile capacity |f to| >0, and it exhibits a positive apparent uniaxial cohesion
intercept, ¢, >0, as indicated in Eq. (9.25).

For concrete in a tension-compression, uniaxial compression, and triaxial

compression state of stress, the resultant normal stress ¢, in the concrete core is in the
range of 0< 0, <, as shown in Figure 9.23. For this range of normal stresses the

angle of dilatancy of the concrete material ¢; of Eq. (9.41) can be rewritten as:
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Figure 9.23  Geometry of normal stress-dependent degrading friction angle model for

concrete.



242

D = %o — &
e 9 (9.43)
( I’l)mob
+
(@) =252 (9.44)

where (Jn )m b is the median-angle normal stress corresponding to the median-angle of
o

internal friction (gam ) op for a normal stress 0, in the range of 0< 0, <; ¢, is the

initial angle of internal friction at the instant of zero normal stress, i.e., when g, =0.

The normal stress-dependent degrading angle model of Egs. (9.43) and (9.44), in
combination with Eq. (9.40), is similar to the model originally proposed by Maksimovic
(1989,1996) for cohesionless soils and rock discontinuities, i.e., for granular materials

that exhibit little or no tensile capacity (i.e., f;, U0 and for which ¢, [J0).

The median-angle normal stress (Jn )mo 5 of Eq. (9.43) can be found in terms of the

normal stress at failure of the unconfined concrete (Un )u of Eq. (9.26) by setting
@ =@, and O, = (J Y )u in Eq. (9.43), using Eq. (9.40), and solving for the median-

angle normal stress (J n ) Mop * which yields:

@)y, =(00), [%j (9.45)

The median-angle normal stress (J n) of Egs. (9.43) and (9.45) is considered to

Mobp

be a function of the unconfined cohesion ¢, of Eq. (9.25) as follows:
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(9.46)

where k., is a normal stress parameter, which is determined as follows. Solving for the
unconfined cohesion ¢, in both Egs. (9.32) and (9.46) and recognizing that for
unconfined concrete oy = f.,, 03 =0 and k = (kl )u =1/k; , and solving for the
median-angle normal stress (Jn )mo 5 of Egs. (9.43) and (9.46) yield:

1 k
(0'71 )mob = Efco (ka_t)z (9.47)

Equating the median-angle normal stress (J " ) .. of Egs. (9.45) and (9.47), using

ob

(J p )u of Eq. (9.26), and solving for the initial angle of friction ¢, at the instant of zero

normal stress yield:

2
=9t (wu - )[l + COS(ZHu )] (k;:) (9-48)
t

Substituting the median-angle normal stress (Jn )mo b of Eq. (9.47) and the initial

angle of friction ¢, of Eq. (9.48) into the angle of internal friction ¢. of Eq. (9.43)

yields:

=0 +vula -o) (9.49)
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1+ [1 + cos(26’u )] (ka )2

kt
Vail = > (9.50)
(knko)
1+2,[Fn=0)
kt
g
k, == (9.51)
feo

where y;; is a dilatancy parameter and k,, is the normalized normal stress.
The normal stress parameter k, of Egs. (9.46)-(9.48) and (9.50) can be found based

on the uniaxial tensile strength of the concrete material f;, as follows. For concrete in a

uniaxial tension state of stress 07 =0, O03= —|fto , @ =@ =90°, and

6. =45 +@./2 =6, =90°, as shown in Figure 9.15. Substituting these values into the
relationships for the normal stress on the failure shear plane g, of Eq. (9.13) and the
failure shear stress 7, of Eq. (9.12) yields o, = (Jn )t = —| fto| and 7, =7, =0,

respectively.

Substituting g, = (an )t = —| fm| into the relationship for the angle of internal friction
@. of Eq. (9.43), setting @. = ¢ =90°, and solving for the initial angle of internal

friction ¢, yield:

1 |]pt0|

@ =9+ (2 -a) (9.52)

A

where @ =90° is the tensile angle of separation of the concrete material.
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Substituting the mean angle normal stress (Un) of Eq. (9.47) into Eq. (9.52),

mop
equating Egs. (9.52) and (9.48), and solving for the mean angle normal stress parameter

kg yield:

Cy \/k_t(@_%)

@y 2k - )+ (@ - )1 +c05(28, )]

kg = (9.53)

The above mean angle normal stress parameter k, can be substituted into Eq. (9.48)
to find the initial angle of friction ¢, at the instant of zero normal stress, when o, =0.

In addition, ¢, can also be found by substituting (Un) of Eq. (9.45) and f,, of Eq.

Mmop
(9.30) into Eq. (9.52). In the development of the ultimate failure envelope of the concrete
material of Egs. (9.40)-(9.53), the basic angle of friction ¢, is the only unknown term in
the extended Mohr-Coulomb (EMC) criterion developed herein, which combines the
modified Mohr-Coulomb (MMC) criterion previously discussed with the degrading
friction angle models presented herein. This basic friction angle ¢, is determined in
what follows.

At very large confining stress and at high levels of axial and transverse deformations,
the confined concrete material is expected to behave similar to sandy and gravelly soils
subjected to very large confining stresses. Maksimovic (1996) has shown that for coarse

granular soils like limestone sand @, [136°; 32.7°< @, <34° for crushed Basalt (an
aggregate used in normal-weight concrete Attard and Setunge 1996); ¢, =32.7° for
gravel; ¢, =36.4° for sand and gravelly soil; and ¢, =37.8° for very dense sand. This

would indicate that the type of large aggregate used (be it crushed stone or gravel), the
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aggregate size and gradation, and gravel-to-sand ratio can have a significant influence on

the basic angle of internal friction ¢, of normal-weight dry concrete; based on the
previous values, this basic angle of internal friction ¢, is expected to range between

33° < @, <37°, with an average value of (%) 03s°.

avg
Based on the analysis of tests of plain concrete in a triaxial compression state of stress
performed by Imran (1994), an average value of the basic angle of internal friction of

@ = (% )avg =35° is used in Egs. (9.39)-(9.52) and is plotted as solid curves in Figures

9.1-9.6 and 9.16-9.21. Based on these findings and the typical range of the basic angle of
granular soils given by Maksimovic (1996) previously listed and the stress path
independency of the concrete core (Imran 1994), it is assumed that the basic angle of

internal friction ¢, of normal-weight concrete in a triaxial compression state of stress, be

it active confinement provided by fluid pressure or passive confinement provided by a

restraining transverse reinforcement, including transverse steel, steel jacket, or FRP
jackets, can be approximated by ¢, =35°.

The extended Mohr-Coulomb (EMC) failure envelope as developed in Egs. (9.10)-
(9.39) in combination with the hyperbolic degrading friction model of Eqgs (9.40)-(9.53)
can accurately capture the ultimate failure envelopes of normal-weight concrete in a
triaxial compression state of stress. This EMC ultimate strength model developed herein
satisfies the following conditions:

1. It passes through the point of uniaxial compression

2. It passes through the point of uniaxial tension
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3. It describes the typical nonlinear failure envelope of concrete in a triaxial
compression state of stress, as shown in Figures 9.1-9.12
4. It approaches the hydrostatic state at very large confining stresses (i.e., as
Oy, =03 - ®, 0] - 0y =03).
One of the drawbacks of the Maksimovic (1989, 1996)-type normal stress degrading
friction angle model of Egs. (9.43)-(9.53) in combination with Eq. (9.40), is that it

describes the EMC ultimate strength failure envelope in terms of the normal stress g, on

the failure shear plane. As shown in Eq. (9.13), this depends on a critical combination of

the major 0; and minor O3 principal compressive stresses and the normal stress-
dependent angle of inclination of the failure shear plane 6, of Eq. (9.19). As aresult, a
direct solution for the major principal compressive stress 0 cannot be obtained in terms
of the minor principal compressive stress 03, thus requiring an indirect iterative or

incremental solution as follows.

Solving for the resultant normal stress on the shear plane o, and defining the
normalized normal stress as k, =0, /f., yield a relationship between the normalized

normal stress and the minor principal stress ratio k3 of Eq. (9.36) as follows:

k, = Tn =—k?3 (k1 +1)+ (kl —1)cos(29c)+%(1 +cos HC) (9.54)
co 3

Solving for the normal stress on the shear plane o, in Eq. (9.43), using the median-

angle normal stress (Jn) of Egs. (9.45), the normalized normal stress k, of Eq.

Mop

(9.54), and equating both relationships yield the following equality which can be solved
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in terms of the applied minor principal compressive stress 03 and the angle of internal

friction ¢.:

- - k kk
(k”)”(% %J(Z—z}Z{(klﬂh(kl_l)cos(w‘fh g, (Lreos@) =0 (955)

where (k,, )u = (o, )u /fco 1is the normalized unconfined normal stress. The above
equality indicates that for a normal stress-dependent degrading friction angle model an
iterative (indirect) solution for the angle of internal friction ¢. is required. A
noniterative (direct) solution for ¢. can be found in terms of the applied minor principal

compressive stress 03 as follows.

Minor Principal Compressive Stress-Dependent Dilatancy
Angle Model
In the analysis of concrete sections in a triaxial compression state of stress, it is best

to describe the ultimate strength envelope of the confined concrete in terms both the
major g; and minor O3 principal compressive stresses in the confined concrete core, as
shown in Egs. (9.20) and (9.34)-(9.39); this is preferable to describing the ultimate
strength in terms of the normal stress g,,, since it leads to a rather simple degrading
friction angle model, introduced in what follows.

The variation of the angle of dilatancy as described in ¢; of Eq. (9.39) throughout
the compressive loading history of the confined concrete core can be found in terms of

the minor principal compressive stress g3 or compressive stress ratio k3 of Eq. (9.36).
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Solving for the applied minor principal compressive stress 03 in Eq. (9.33) and using k3

of Eq. (9.36) yield a relationship between the normalized normal stress defined as

k, =0,/ f. andthe minor principal stress ratio k3 as follows:

o3 _ 2(k,, ) =k sky (1+ cos8,.)

Jeo ) [kl +1]+[k1 —1]cos(290)

ky = (9.56)

Both Egs. (9.54) and (9.56) indicate that at failure of the confined concrete, the
normal stress 0, on the failure shear plane and the applied minor principal compressive
stress 05 are proportional to each other, i.e., 0, U g3 or k,, U k3 and vice versa. Thus,
the hyperbolic-type degrading friction model of Egs. (9.41) and (9.42) can also be written
in terms of the minor principal compressive stress 03 or stress ratio k3, which is
accomplished in what follows.

Substituting the minor stress ratio terms k3, (k3 )i’ and (k3 )mib in place of the

applied stress terms Oy, (J ;A )i and (Jk) respectively, in Eq. (9.41), yields a

mip’

relationship for the angle of dilatancy @; in terms the minor compressive stress ratio k3

of Eq. (9.36) as follows:

= “4-9a
Yai1 =
ks = (k3); 9.57)
1+
where (k3 )mi 5 is the reference median-confinement ratio corresponding to the median-

angle of internal friction (@n )ib of Eq. (9.42), as shown in Figure 9.24.
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Figure 9.24 Plot of angle of internal friction versus (a) minor principal compressive

stress and (b) minor principal compressive stress ratio, including

geometry.
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For unconfined concrete in uniaxial tension and compression, and confined concrete

in a triaxial compression state of stress, the minor principal compressive stress 03 is in
the range of f,, <03 <o or —k; < k3 <o, as shown in Figure 9.24. Thus setting the
reference minor principal compressive stress ratio (k3 ) . =—k; and setting the reference

initial angle of friction @ as ¢ = ¢ and the reference median-confinement ratio (k3)

mip
as (ks )mib = (ks )mtb in Eq. (9.57) yield:
it = “h"%
L+ ks + k; (9.58)
(k3 )mtb +ky
+

(@), =225 2% (9.59)

_. 249 -9
(k3),n,, _kt£ " J (9.60)
where (k3 ) mp is the median angle minor principal stress ratio at the median angle of

internal friction (@n )tb , as shown in Figure 9.24. Egs. (9.58)-(9.60) apply when 03 is in
the range of f;, <03 <o or —k, Skz <.

For low-to-medium-strength normal-weight concrete with f., ranging between
17 MPa < f., <55, with a tensile strength ratio k,, determined using f;, of Eq. (9.30)
and k, of Eq. (9.9), in the range of 0.084 < k; < 0.124, with a uniaxial angle of internal

friction ¢, in the range of 51.2°< ¢, <57.7°, the median angle minor principal stress

ratio ratio (k of Eq. (9.60) is in the range of 0.048 < (k <0.056.
3 mp 3 mp

my
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The combination of the modified Mohr-Coulomb (MMC) criterion introduced in Egs.
(9.12)-(9.39) and the minor principal compressive stress-dependent degrading friction

angle model ¢. of Egs. (9.40) and Eqgs. (9.56)-(9.61), yields what is referred to herein as

the extended Mohr-Coulomb (EMC) criterion for actively and passively confined, FRP-

confined concrete in particular.

Excess Pore Water Pressure Effects

For the case of normal-weight FRP-confined concrete (FCC) cylinders, an average

value of (kl)avg =4.10 (i.e., (goc )avg =37.4°) was found to apply to bonded FRP-

confined concrete (BFCC) cylindrical sections (Nanni and Bradford 1995, Wu and Xiao
2000, Moran and Pantelides 2002a) at high levels of confinement, i.e., when

0.4<k3 <1.0. From the analysis of concrete-filled FRP tube (CFFT) cylinders tests

performed by Mirmiran (1997) and Saafi et al. (1999), an average value of

(k1) gy =2-33 was found (i.e., (@), =23.5%).

avg

The lower values of (k) avg Of (@) avg of CFFT sections in comparison to that of

BFCC sections can be attributed to the presence of excess pore water in the concrete core.
For BFCC sections, the FRP-wrapped concrete is typically allowed to dry to its natural
moisture content, whereas for CFFT sections the cast-in-place FRP jacket serves as a
barrier against evaporation of the nonhydrated water (i.e., bleed water) at the perimeter
surface of the concrete member. As a result, in CFFT sections, the remaining bleed water
remains in suspension in the concrete mix and may become trapped within the voids of

the concrete’s structure. The presence of pore water has a significant weakening
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influence on the strength of the concrete material, which increases as the confining stress
increases (Imran 1994).

For FCC sections, this weakening influence is a result of an increase in the pore water
pressure which acts against the concrete’s internal structure and weakens the
effectiveness of the concrete core in sustaining the applied load. An increase in the pore
water pressure results from an increase in the passive confining stresses provided by the
restraining elastic FRP jacket as dilation of the confined concrete core progresses; this
weakening effect increases as the passive confining stress provided by the retraining FRP
jacket increases.

The presence of excess pore water can be accounted for in the analysis of FCC in
Egs. (9.39) and Egs. (9.42)-(9.58), with the use of an effective confinement effectiveness

coefficient (k;) pw » given as:

(k1) pyy =npw + A =npy )k (9.61)

where npp is the pore water pressure parameter of the granular concrete core where
0 <npy <1.0, which is somewhat analogous to the degree of saturation of the concrete
material. The lower value of npy =0 corresponds to dry concrete and npy =1.0 to
saturated concrete, and for 0 <npy <1.0 corresponds to partially saturated concrete.

The pore water pressure parameter of the concrete material can be found based on the

confinement effectiveness coefficient of the confined concrete core by solving for npy

in Eq. (9.61), which yields:
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(03 )pW 0 (kl )pW —k
03 l—kl

npy =1- (9.62)

where (o3) py 18 the effective confining stress including the effects of excess pore water
pressure and (kl ) pw 1s the effective confinement effectiveness including pore water

pressure effects.

The average pore water pressure parameter of FRP-confined concrete sections can be
determined from the average effective confinement coefficients of BFCC and CFTT
sections by evaluating the angle of internal friction of dry normal-weight concrete with

feo ranging between 17 MPa< f., <55 MPa, k, of Eq. (9.9) ranging between
0.084 <k, <0.124, and ¢, of Eq. (9.28) ranging between 51.1°< ¢, <57.7°.

Using these values of k, and ¢, , a basic angle of friction of dry concrete of ¢, =33°

and a unity minor principal stress ratio, i.e., k3 =1.0, in the degrading friction angle

model of Egs. (9.58)-(9.60), yield a friction angle ¢. in the range of 378" < @ < 38.6
and a confinement effectiveness coefficient k; in the range of 4.17 < k; <4.32.
Substituting these values of k; and the average confinement effectiveness of BFCC
sections of (kl ) P = (kl) avg = 4.10 into Eq. (9.62) yields a pore water pressure
parameter of the FCC section npy in the range of 2.2% < npy < 6.6%. Substituting

(kl) P =(k1) avg =2.33 into Eq. (9.63) and the aforementioned range of k; values

yields npy, in the range of 58.1% < npy <59.9% for CFFT sections.
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The lower value of pore water pressure parameter npy of the surface applied or
bonded FRP jackets is because prior to the application of the FRP jacket, the concrete is
typically allowed to dry to its natural moisture content, as previously mentioned. The
higher value of npy for CFFT sections is because the FRP jacket serves as a barrier
against evaporation of the nonhydrated water, which increases the degree of saturation of
the concrete material and, hence, results in increasing the presence of excess pore water
within the voids of the concrete, which has a significantly detrimental effect in decreasing
the apparent strength of an FCC section due to the presence of excess pore water
pressure.

The pore water pressure parameter npyy of the confined concrete section depends on
the water-cement ratio and can range between 0.01<npy <0.20 for dry to partially

saturated concrete. When concrete is not allowed to dry to its natural water content, such
as submerged concrete, wet or fog-cured concrete, or concrete exposed to a high
humidity environment, the pore water pressure parameter npy is in the range of
0.20<npp <1.0. This indicates that under a triaxial compression state of stress, FCC
sections behave more like dry and low partially saturated concrete and CFFT sections
more like highly saturated concrete.

In the analysis of BFCC sections, an average value of n, =3.0% is recommended for
surface applied or bonded FRP-jacketed concrete in which the natural moisture content of
is low. For cast in place FRP-jacketed (CFFT) sections, an average value of n, =59.0%

1s recommended.
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The effective basic confinement effectiveness (k; )b . can be found by substituting

(k1) = (k1) pjy = (k1),, and @ =@, into Egs. (9.23) and (9.61), which yield:

(k1)pe = npw + A =npy k1), (9.63)
-l (kl)be_l -l (”PW_I)"'(I_”PW)(kl)b
Phe 730 [—(kl Jse +1} [(anw)m—npm(kl ) O

where @, is the effective basic angle of internal friction, including pore water pressure
effects. The effects of excess pore water pressure on the compressive behavior of the
confined concrete core must be considered; this can be accomplished by substituting
@, = @ of Eq. (9.64) in the degrading friction angle model introduced in Egs. (9.40)
through (9.60).

In Figure 9.25 the variation of the angle of internal friction of a circular concrete
section having a compressive strength of 40 MPa is plotted versus the minor principal

compressive stress ratio k3 of Eq. (9.36) for —k; <k3 <1.5 and pore water pressure
parameters of npy =5.0%, npy =30.0%, and npy =60.0%.

The detrimental effects of excess pore water pressure is more evident on the increase
in compressive strength of confined concrete, as is shown in the plot of the confinement
effectiveness k.. of Eq. (9.35) versus the transverse confinement stress ratio, as shown
in Figure 9.26.

From these figures it can be observed that the value of the pore water parameter has

no significant effect on the friction angle ¢. and the confinement effectiveness

coefficient at low levels of transverse confinement.
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Figure 9.26  Plot of confinement effectiveness coefficient versus minor principal
compressive stress ratio of concrete with varying pore water pressure

parameters.
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At high levels of transverse confinement, an increase in the pore water parameter

(degree of saturation) has a significant detrimental effect on the friction angle ¢. and
confinement effectiveness coefficient k;, and the confinement effectiveness k.. as the

confining pressure becomes large.

Triaxial Extended Mohr-Coulomb Failure Criterion for Concrete

The failure surface of a Mohr-Coulomb material in principal stress space is plotted in
Figure 9.27; from this figure it can be observed that the Mohr-Coulomb criterion models
the failure envelope of concrete as a conical failure surface with an irregular hexagonal
base section with sharp corners, which is not supported by experimental evidence. The
typical failure surface of concrete in principal stress space is a cone with a noncircular
base section, as is plotted in Figure 9.28.

In this research a mathematical model is developed in which the minor principal
compressive stress-dependent two-parameter extended Mohr-Coulomb criterion (EMC)
for concrete is incorporated into a triaxial failure surface for concrete with a noncircular
base section, such as that shown in Figure 9.28, rather than an irregular hexagon base
section as shown in Figure 9.27.

The proposed two-parameter EMC model, which is an extension of the modified

Mohr-Coulomb (MMC) criterion of Eq. (9.20) with a degrading friction angle, is

dependent upon the major g; and minor g3 principal compressive stresses and ignores

the effects of the intermediate compressive principal stress 0, on the strength of the

confined concrete in a nonuniform triaxial compression state of stress.
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Figure 9.27  Plot of typical Mohr-Coulomb-type triaxial failure surface of concrete in

principal stress space.
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Figure 9.28  Plot of typical triaxial failure surface of concrete in principal stress space.
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This is the main weakness of a Mohr-Coulomb-base criterion, including the MMC
and EMC yield criteria. This obstacle can be easily overcome by transforming the Mohr-
Coulomb-type principal stress-criterion into a yield surface or yield function with a

noncircular base section as follows:

'

f(al,a'z,ag): 0 (9.65)

where 0y, 0,, and 03 are the principal stresses, for which tensile stresses are

considered positive. The principal compressive stresses 0|, 0, and 03, and the

principal stresses Ji, 0'2, and 0'_;, depend only on the load being applied and are not

influenced by the choice of coordinate axis (x, v, z) or any particular orthogonal

coordinate system, and as a result they are considered as stress invariants.

The principal stress yield surface of Eq. (9.65) can be written in terms of the three

basic invariants of the stress tensor /},1,, /5 and the second J, and third J3 deviatoric

stress invariants as follows:
f(1y,7,,73)=0 (9.66)

where the first /|, second /5, and third /5 basic invariants of the stress tensor also have

the same magnitudes for all choices of coordinate axis (x, y,z). These invariants are

given in terms of the principal stresses 07, 05, and g3 as follows:

_0110, t03
3

I (9.67)



263
I, = —(Jia'z + 0"20':’5 + Jéai) (9.68)

I3 =0,0,0% (9.69)

The second J, and third J5 deviatoric stress invariants can also be given in terms of

the principal stresses Ji , O '2 , and 0"3 and the three basic invariants of the stress tensor

11,1,, 15 as follows:

(9.70)

1=Loi-s-3)o b i -}k -1 -

9.71)
I I +2(11)3

27

:[3+

The principal stress invariants 0y, 0, and 03 can also be transformed into the

Haigh-Westergaard coordinates as follows:

Ui 1 £ . cos(@%ﬂ
Oy =—=1¢p+.|=p cos(@ - —j (9.72)
(TR 3 3
cos| @+ T

where ¢ is the hydrostatic stress invariant which represents the distance of the
hydrostatic projection from the origin, p is the deviatoric stress invariant that represents

the polar radius or orthogonal distance of the stress point from the hydrostatic axis, and &
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is the deviatoric polar radius, which is often referred to as the angle of similarity or the
polar angle.

This polar angle describes the direction of the deviatoric stress invariant o from the
projection of the principal axis onto the deviatoric plane, as is shown in Figure 9.29.
6 =0 corresponds to triaxial extension, biaxial compression, or uniaxial tension stress
states, and @ =277/3 corresponds to uniaxial/triaxial compression and biaxial tension
stress states.

These Haigh-Westergaard coordinates are given in terms of the first basic stress

invariant /| and the second J, and third J3 deviatoric stress invariants as follows:

I

e

p=42J, (9.74)

7 =%cos_1 {3\/5—]3] (9.75)

$= (9.73)

2(/5 )3/2

The principal stress yield surface of Eq. (9.65) can be written in terms of the above

Haigh-Westergaard coordinates as follows:
f(é.p.6)=0 (9.76)

The principal stress invariants Ui , 0'2 ,and O 3 can be written in terms of the Haigh-

Westergaard coordinates using the transformation relationship of Eq. (9.72) as follows:
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03

(b)

Figure 9.29 Plot of (a) Haigh-Westergaard coordinate system, (b) deviatoric plane or

section.
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+ \/%p cos(é?) (9.77)

+ —pcos(&’—z—J (9.78

L[ 2
o —\/§+\/;pcos(9+ 3] (9.79)

The yield function of a Mohr-Coulomb-type criterion, including the MMC and EMC
criteria introduced herein, can be expressed in terms of the major Ui and minor O 3

principal stresses using Eq. (9.65) as follows:

4 ;05)+ 01+93) i) - o) =0 ©9.30)

The previous yield function can also be expressed using Eq. (9.25) as:

{fcoa\l’/EJ[l :;su(lct(fi)} {ﬂf/@}[l ;cfsl?q(g)} ~1=0 (9.81)

Substituting the Haigh-Westergaard transformation relationships for Ji of Eq. (9.77)

and 0'3 of Eq. (9.79) into the above yield function yields:

L e e ol R

The above Haigh-Westergaard representation of a Mohr-Coulomb-type criterion also

yields a deviatoric section with an irregular hexagon shape as shown in Figure 9.30.
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Figure 9.30  Plot of typical deviatoric section of a Mohr-Coulomb-type yield criterion.
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The Mohr-Coulomb-type criterion of Eq. (9.82) can be transformed into a yield
surface with a smooth noncircular deviatoric section (Menetrey 1994), modified herein

using ¢, of Eq. (9.25), that matches the Mohr-Coulomb deviatoric section only at the

compressive P, and tensile p, meridians as shown in Figure 9.31 as follows:

ARSI e

The term #(6,e) of Eq. (9.83) is a radial function that describes the shape of the

deviatoric trace and the radial distance from the hydrostat. The radial function r(H, e)
utilized herein is that introduced by Papanikolopoulos and Papadrakakis (2006), which
transforms the circular trace of the deviatoric polar radius ,0(49) into a triple symmetric
smooth deviatoric trace of the yield function.

This radial function is defined in the sextant 0<6<7/3 and extends to all polar

directions 0< 8 <27 due to symmetry and is given by:

r(@,e)= e+cosf—1 (9.84)
cos 8 [4(1 —e)(cos@-1) + 1)] .

where e defines the eccentricity or out-of-roundness of the deviatoric trace where
0.50<e<1.0.
For a pressure sensitive material such as concrete, the eccentricity e introduced in

Eqgs. (9.83) and 9.84) is defined as the ratio between the polar radius of the tensile p, and

the compressive p,. meridian as follows:
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(b)

Figure 9.31 Plot of deviatoric stress projections of eccentricity: (a) e =0.667 and (b)

e=0.875.
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e=-L (9.85)

The radial deviatoric function r(G, e) of Eq. (9.84) cannot exactly trace the irregular
hexagonal shape of the Mohr-Coulomb-type deviatoric section, but it can exactly match

the tensile o, and compressive 0. polar radius by using the above definition of

eccentricity e, as shown in Figure 9.31, which is plotted, or a deviatoric section
described by p. r(@, e), with a unity compression meridian (i.e., p. =1.0), and the

irregular hexagonal deviatoric section of the Mohr-Coulomb criterion having an
eccentricity e =0.667 and e =0.875.
In Figures 9.32 and 9.33 the shape of the deviatoric section of a Mohr-Coulomb-type

criterion of various eccentricities with a unity compression meridian (i.e., p. =1.0) is

shown. From these figures it can be observed that at low eccentricities the deviatoric
section becomes triangular as e — 0.50 (see Figure 9.32), and hexagonal as e — 1.0
(see Figure 9.33).

As shown in Figure 9.32(a), when e =0.50, the shape of the deviatoric section is that
of the Rankine yield criteria for tensile cracking; when e =1.0 it describes the hexagonal
deviatoric section of the Tresca maximum shear stress criterion for materials exhibiting
insensitivity to hydrostatic pressure, as shown in Figure 9.33(b).

For eccentricities e ranging between 0.50<e<1.0, the shape of the deviatoric
section becomes an irregular hexagon that resembles a distorted triangular shape at small

eccentricities as e — 0.50.
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(2) (b)

() (d)

Figure 9.32  Plot of deviatoric stress projections of the Mohr-Coulomb yield criterion
of various eccentricities: (a) e =0.500, (b) e=0.550, (¢c) ¢=0.667, and

(d) e=0.750.
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pt :pc \

(b)

Figure 9.33  Plot of deviatoric stress projections of the Mohr-Coulomb yield criterion

various eccentricities: (a) e =0.875 and (b) e=1.0.
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As the eccentricity increases, the essentially triangular deviatoric section achieves an

irregular hexagonal shape that becomes more uniform as e — 1.0, as shown in Figures
9.32 and 9.33.

In reference to Figures 9.34 and 9.35, it can be observed that at low eccentricities the

deviatoric section described by o, r(H, e), with a unity compression meridian (i.e.,
P, =1.0) becomes triangular as e — 0.50 and circular as e — 1.0. When e =0.50, the

deviatoric trace function V(H, e) of Eq. (9.84) describes the deviatoric section of the
Rankine yield criteria for tensile cracking.

When ¢=1.0, the radial function r(6,e) of Eq. (9.84) describes the deviatoric
section of the Huber-Mises yield criteria for materials exhibiting insensitivity to
hydrostatic pressure, since for e=1.0, @. =0°, which corresponds to a frictionless
material.

The radial function r(¢9, e) of Eq. (9.84) cannot exactly trace the irregular hexagon

shape of the Mohr-Coulomb deviatoric section, but it can be calibrated to exactly match

the tensile o, and compressive p,. polar radius when the eccentricity is given by

(Menetrey 1994):

(9.86)

In reference to Figures 9.34 and 9.35 and Eq. (9.86), it can be observed that for low

eccentricities the deviatoric section of a Mohr-Coulomb-type criterion becomes triangular

as e —» 0.50,1.e, when @. =@ :900, and hexagonal as e — 1.0, i.e., when ¢. =0,
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(c)
(d)

Figure 9.34 Plot of deviatoric stress projections of various eccentricities: (a)

e =0.500, (b) ¢=0.550, (c) e=0.667, and (d) e=0.750.
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(b)

Figure 9.35 Plot of deviatoric stress projections of various eccentricities: (a) e =0.875

and (b) e=1.0.
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When 0.50 <e <1.0, the deviatoric section of the Mohr-Coulomb-type criterion can
evolve from a distorted triangular section to an irregular hexagon, since 0 < @. <90°.

As shown in Figure 9.36 for the MMC criterion, the deviatoric section of the
concrete material evolves from a triangular section to an irregular hexagonal section
having a constant eccentricity e as a result of the assumption of a constant angle of

internal friction ¢. of the concrete material, which as previously indicated, is not

supported by the experimental evidence.

As shown in Figure 9.37 for the EMC criterion, the deviatoric section of the concrete
material evolves from a triangular section to an irregular hexagon section having a
variable eccentricity e as a result of the hydrostatic stress-dependent angle of internal

friction ¢. of the concrete material assumption included in the EMC criterion.

For dry normal-weight concrete the angle of internal friction ¢@. is in the range of

@ <@ <@,, where @ is the angle of separation with a value of @ =90° and ¢, is the

basic or residual angle of shearing resistance of dry concrete with an average value of

@ =35°.
This indicates that for dry normal-weight concrete, the eccentricity e of Eq. (9.86),

included in the radial function V(H, e) of Eq. (9.84), varies between 0.50<e<0.68 for
@ <@. <@,. The lower value of e =0.50 corresponds to Ji = f10s @ =@ =90°, and
fotO/\/g, and the upper value e=¢, =0.68 corresponds to ¢ = Ji =03 =,

@. =@, =35°. e is the basic eccentricity of dry normal-weight concrete.
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Figure 9.36  Plot of deviatoric stress projections of the MMC criterion for concrete.
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Figure 9.37 Plot of deviatoric stress projections of the EMC criterion for concrete.
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For normal-weight concrete having an unconfined compressive strength ranging

between 17 MPa< f., <55 MPa, the uniaxial angle of internal friction ¢, of Eq.
(9.28) is in the range of 51.2° < @, <57.7°. For this range of compressive strengths the

eccentricity e, of the unconfined concrete (i.e., for §=-f,, / NE ) varies between
0.56<e¢, <0.59, which is also obtained by substituting ¢. =¢, into e of Eq. (9.86).
The lower value of e=e, =0.56 corresponds to the higher strength concrete and
e=e, =0.59 to low strength concrete.

At high levels of confinement, the eccentricity of highly confined normal-weight wet
concrete with a pore water pressure parameter npy of 50% is e=e,, =0.78.
Essentially dry concrete having a pore water pressure parameter npp of 5% has an
eccentricity of e =ep, =0.678 at high levels of confinement. This indicates that for high

moisture content concrete at high levels of confinement, the deviatoric section of the
concrete has a more rounded triangular shape when compared to that of dry concrete, as
is shown in Figure 9.34(c) and (d), respectively. e, is the effective eccentricity of
highly confined wet concrete, which is found by substituting the pore pressure parameter
npy into Eq. (9.63), substituting (k;),, of Eq. (9.63) into Eq. (9.64), and substituting
@, of Eq. (9.64) into Eq. (9.86) with @. =@,

The smooth Mohr-Coulomb-type criterion of Eqgs. (9.83)-(9.86) can be further

simplified using the following generalized two-parameter triaxial extended Mohr-

Coulomb (TEMC)-type failure criterion for concrete as follows:
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Vp+BpE=1=0 (9.87)

The above two-parameter TEMC criterion simplifies the Mohr-Coulomb failure
criterion of Eqgs. (9.82) and (9.83), as it broadens the applicability of the MMC and EMC

criterion by including the sensitivity of the concrete’s behavior to the intermediate
principal stress 0, for concrete subjected to a triaxial compression state of stress, as well

as the sensitivity of the angle of internal friction ¢. of the EMC model.

The above material parameters }_/ r and ,E r apply to plain concrete in a triaxial

compression state of stress for which 0, 20, 203 or 0y 20, 205 with 0| = -03,

0, =—0,, and 03 =—-0]. The case of 0] >0, > 03 corresponds to rectangular, oval,

and elliptical FCC sections which have an aspect ratio ag, of Eq. (4.2) greater than

unity, i.e., a, >1.0; the case of g; = 0, > 03 corresponds to circular and square FRP-
confined concrete sections which have a unity aspect ratio, i.e., ', =1.0
The effects of the intermediate principal stress o '2 on the compressive strength of the

confined concrete are considered herein for rectangular, oval, and elliptical FCC sections,

which have an aspect ratio a,, of Eq. (4.2) greater than unity (i.e., ag >1.0 or

H,. > B,_). For these sections, the effectively confined concrete core is in a nonuniform

biaxial confinement state of stress, i.e., 0] >0, >03, as a result of the nonuniform

effective transverse stiffness of the FRP jacket, since for these sections (E je ) > (E je ) 'L

(Eje )B was defined in Eq. (4.15) and (Eje )H in Eq. (4.16).
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The nonuniform transverse stiffness of the FRP jacket affects the transverse and

diagonal dilation of the FCC section, as measured by the diagonal £ ;, minor £g, and
major £ transverse dilation strains in the FCC section, as indicated in Chapters 4-6.

The material parameters J_/ r and Z’ f of the proposed two-parameter TEMC
criterion of Eq. (9.87) are given in terms of the material parameters 124 of Eq. (9.37) and
Jé;  of Eq. (9.38) of the generalized two-parameter MMC yield criteria of Eq. (9.20) as

follows:

y, = V(J; f ] (é]ﬁ:z—m} (9.88)
LTS N e R == B

The deviatoric section of the generalized two-parameter TEMC criterion of Eq.
(9.87)-(9.89), using the radial function r(é’, e) of Eq. (9.84) and the eccentricity e of Eq.
(9.86) is plotted in Figure 9.38.

When the confined concrete core is subjected to uniform biaxial confinement, i.e.
when Ui =U'2 >Jé, the generalized two-parameter TEMC criterion of Eq. (9.87)
reduces to the EMC criterion, which combines the generalized two-parameter MMC
criterion of Eq. (9.20) and the minor principal compressive stress o0z dependent

degrading friction angle model of Eq. (9.40) and Egs. (9.56)-(9.61).
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Figure 9.38 Plot of deviatoric stress projections of the TEMC criterion for concrete.
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The smooth Mohr-Coulomb-type criterion of Egs. (9.83)-(9.85) is similar to the
Menetrey (1994) smooth coulomb yield criterion, in which the eccentricity e of Eq.
(9.89) is considered a constant throughout its loading history, as shown in Figure 9.39,
i.e, a constant angle of internal friction which is in disagreement with the experimental
evidence, as was demonstrated in Figures 9.16-9.21. Kang and Willam (1999)
considered that the eccentricity e of Eq. (9.86) is a hyperbolic empirical function of the

hydrostatic stress invariant ¢ of Eq. (9.73), i.e., e=f (E ), which allows the shape of the

deviatoric section to expand from triangular to circular shapes with increasing
compressive hydrostatic pressure.

In the TEMC criterion for concrete in a triaxial compression state of stress,
introduced herein, the eccentricity e of Eq. (9.86) is considered to be a nonlinear

function of the minor principal compressive stress 03. This is a direct result of the

hyperbolic relationship introduced in the minor principal compressive stress-dependent
degrading friction angle model of Eq. (9.40) and Egs. (9.58)-(9.60). As a result, the
proposed TEMC model allows the shape of the deviatoric section to expand from
triangular to rounded triangular shapes with increasing compressive hydrostatic pressure,
as shown in Figure 9.38.

The detrimental effects of excess pore water on the compressive behavior of the
concrete in a triaxial compression state of stress are included in the TEMC model, as
shown in Figures 9.25, 9.26, and 9.34(d) as ¢. —» @, with ¢,, being the effective basic
angle of internal friction of Egs. (9.63) and (9.64). Excess pore water pressure affects the
roundness of the deviatoric section due to the reduction in the angle of internal friction

@. , as demonstrated in Figures 9.25 and 9.26.
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Figure 9.39 Plot of deviatoric stress projections of the smooth Mohr-Coulomb

criterion with a constant eccentricity e.
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Determination of the Intermediate and Minor Compressive
Stress in FRP-Confined Concrete Sections

The proposed EMC and TEMC models for plain concrete in a triaxial compression
state of stress require the determination of the minor 03 and intermediate 0, principal
compressive stresses in the biaxially confined concrete section. Thus far this chapter has
included a generalized Mohr-Coulomb model for confined plain concrete; its
applicability is extended herein for the cases of rectangular (RFCC), square (SFCC), oval
(SFCC), circular (CFCC), and elliptical (EFCC) FRP-confined concrete (FCC) sections

in compression confined by a continuous linear elastic FRP jacket.
As was demonstrated in Chapters 4-6, the transverse and diagonal equilibrium of the
FRP-confined concrete depends on the effective transverse stiffness of the FRP jacket,

(E je ) P of Eq. (4.15), and the shape of the FRP-jacketed section.

For the aforementioned FCC sections, the minor 03 and intermediate 0, principal

compressive stresses can be found from the vertical and horizontal equilibrium of the

confined concrete core bounded by the major H g, minor By, and diagonal D core

dimensions of the confined concrete and the diagonal equilibrium of the FCC section as
shown in Figures 9.40-9.44.

The main core diagonal D, can be found using Egs. (5.11) or (5.16), with the
diagonal parameter X, of Eq. (5.11) summarized in Table 5.1. The major H g, and
minor By, core dimensions can be found using Eq. (5.26), using the angle of inclination

6, of the main diagonal D, of Eq. (4.1).
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D

(b)

Figure 9.40. Main FRP-confined concrete core in a rectangular section: (a) typical

section geometry and (b) diagonal equilibrium.
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(b)

Figure 9.41 Main FRP-confined concrete core in a square section: (a) section geometry

and (b) diagonal equilibrium.
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(b)

Figure 9.42 Main FRP-confined concrete core in an oval section: (a) section geometry

and (b) diagonal equilibrium.
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Main FRP-confined concrete core in a circular section: (a) section

geometry and (b) diagonal equilibrium.
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(b)

Figure 9.44 Main FRP-confined concrete core in an elliptical: (a) section geometry and

(b) diagonal equilibrium.
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As shown in these figures, the aspect ratio a;, of rectangular FCC sections is
ay, =H,./B, >1.0, for square and circular sections a;, =1.0, and for elliptical sections

ag, >1.0. For rectangular sections H g, By, and Dy can be found using Eqgs. (5.24),

(5.25) and (5.26), respectively; for square FCC sections using Egs. (5.30), (5.31), and
5.32, respectively; for oval sections using Egs. (5.34), (5.35), and (5.26), respectively;

and for both circular and elliptical FCC sections using Eqs. (5.37), (5.38), and (5.39),
respectively. As shown in Figures 9.40-9.44, H ., B., and D, are the overall major,
minor, and diagonal dimensions of the FCC section, respectively. In addition, 8; is the
angle of inclination of the main diagonal D,. as given by Eq. (4.1).

In these figures ( fa ) o, 1s the diagonal confining stress perpendicular to the main

diagonal Dy, at a given diagonal jacket strain & ;, which can be found using Egs. (5.7)

and (5.12). In addition, (Td )sh is the diagonal shear stress along the main diagonal,

which can be found using Egs. (5.8), (5.10), and (5.14).

The effectively confined concrete core within the elastic FRP jacket concrete, as
shown in Figure 9.45, has a generalized rectangular shape as shown by the dashed lines
in Figures 9.40-9.44. This generalized rectangle shown in Figure 9.45(a) can be
separated into four triangular wedges having the dimensions shown in Figure 9.45(b).

From Figure 9.45(b), H,, By, /2, and Dy, /2 are the vertical, horizontal, and

diagonal dimensions, respectively, of the triangular wedges on the right- and left-hand

sides. For the top and bottom triangular wedges, H, /2, Bg,, and D, /2 are its

vertical, horizontal, and diagonal dimensions, respectively.
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(b)

Figure 9.45 Main FRP-confined concrete core: (a) typical geometry and (b) triangular

wedge geometry.
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As shown in Figure 9.46, the diagonals in the effectively confined triangular wedges

are subjected to a diagonal effective confining stress ( fae ) o = ke ( fu ) ., perpendicular
to the diagonal of the triangular wedges and an effective shear stress (Tde ) o = ke (T d ) h
along the main diagonal Dy, /2. k, is the confinement effectiveness of the FRP jacket,
as defined in Eq. (4.8) and summarized in Table 4.2. For rectangular sections k, is
given by Eq. (4.29), Eq. (4.32) for square sections, and k, =1.0 for oval, circular, and

elliptical sections.
As shown in Figure 9.46, the vertical faces of the left and right triangular wedges are

subjected to an effective minor principal stress 03, = k,03, and the horizontal faces of
the top and bottom wedges are subjected to an effective intermediate principal stress
05, =k,07.

The effective intermediate principal stress 0, can be found from the vertical

equilibrium of the top or bottom wedge shown in Figure 9.47, where:

Dy, [(f de )5 ©08(64 )+ (74 ), sin(6, )] ~02.Bg =0 (9.90)

The effective diagonal shearing stress (T de ) ¢, Of Egs. (5.10) and (5.14) can be found
by recognizing that in Eq. (5.26) By, = Dy, cos(Hd) and using (fde )sh of Eq. (5.12), the
diagonal equilibrium coefficient (gl/ d ) ¢, Of Eq. (5.13), and the diagonal shear equilibrium
cioefficient ( T)sh of Eq. (5.15). Substituting this effective diagonal shearing stress
(Tde ) ¢, nto Eq. (9.90) and solving for the effective intermediate principal stress 05,

yields:
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Figure 9.46 Definition of stresses on the triangular wedges of the effectively confined

concrete core in an FRP-confined concrete section.
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Figure 9.47 Geometry and stresses on the top triangular wedge of the effectively

confined concrete core in an FRP-confined concrete section.
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03¢ = (fe) g1 + tan(6, ) tan (6, )] (9.91)

where 8, is an FRP jacket shape-dependent angle, which can be found using Eq. (5.27),
using both the jacket angle 8, and the diagonal angle 8;. In addition, both 8, and &

are summarized in Table 5.2, and are shown in Figures 5.6-5.10 and 9.40-9.44.

Using (fde)sh of Eq. (5.12) and (t//d )sh of Eq. (5.13) in the above relationship

yields:

T2 =(Eje ), W02) 9.92)

W2)g = Wa) 1 +ay, tan(6y)] 9.93)

where (4[/2 )sh is the intermediate principal stress coefficient. This coefficient is
evaluated using (t//d ) o Of Eq. (5.13) using X, of Eq. (5.11) and is summarized in
Table 5.1. This intermediate principal stress coefficient is summarized in Table 9.1 for

the FCC sections considered in this dissertation.

The diagonal jacket strain in the FRP-confined concrete section £; of Eq. (9.92) can

be found in terms of the axial compressive strain &, using the FRP jacket stiffness-
dependent diagonal dilation model introduced in Chapter 8, using the diagonal Poisson’s
ratio model of Eq. (8.43).

Defining the normalized effective intermediate principal stress as Ko, =6,/ feo

using 0, of Eq. (9.92),(E Je)B of Eq. (4.15), (C . of Eq. (4.17), and K, of Eq

)

(4.18) yield:



Table 9.1 Summary of the nondimensional intermediate

principal stress coefficient (4[/2 )sh of various FRP-

confined concrete sections.

FRP jacket Intermediate Principal Stress
shape Coefficient ((//2 ) h
Rectangular

_ [ash + tan(6, )] cos(8,)cos(6))

Y
w2l 1-2a,[1-sin(6, )]
Oval Same as rectangular with 2a i= or
2y
(ll/ ) _ [a’sh + tan(@a) sin(@d)cos(t?b)
2l ag, +sin(g,)-1
Square J2
(‘//2 )Sh =
- b-2)
Circular (‘//2 )sh =1.0

(Same as elliptical with 8; =45° and ag, =1.0)

Elliptical — (,) , =2 cos(8, )cos(y Jary +tan(8), )]
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Ky, = §2e = (Kje )Sh (V2 )sh €j (9.94)
2, ),
(2)g = (sz = (va)plt+a tan(6y )] 9.95)

where (y2 ) ¢, 18 the normalized intermediate stress coefficient, (Vd ) ¢, 1s the diagonal

equilibrium coefficient of Eq. (5.19), and Cy, is the jacket reinforcement ratio coefficient

of Eq. (4.12), summarized in Table 4.1.

The effective minor principal stress 03, can be found from the horizontal

equilibrium of the left or right wedge, shown in Figure 9.48, where:

Dy, [(f de ) Sin(0) = (74e ), cos(6 )] —03.Hg, =0 (9.96)

Recognizing that Hg, =Dy, sin(Hd) (see Eq. (5.26)), and using (fde)sh of Eq.
(5.12), (@4),, of Eq. (5.13), (74),; of Egs. (5.10) and (5.14), (7 ), of Eq. (5.15), and

solving for effective minor principal stress 03, in the previous relationship yield:

T30 =(fige ) g1 = c0t(6; )tan (63 )] (9.97)

Using (fde)sh of Eq. (5.12) and (t//d )sh of Eq. (5.13) in the above relationship
yields:
03 =Eje) ,W3) g€, (9.98)

@3)g = Wa)gul1 - cot(6, ) tan(6, )] (9.99)
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Figure 9.48 Geometry and stresses on the right triangular wedge of the effectively
confined concrete core in an FRP-confined concrete section; left wedge

similar.
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where (1,03 ) ¢, 18 the minor principal stress coefficient.
Defining the normalized effective minor principal stress as K3, = 03,/ f,, and using
03, of Eq. (9.98),(E},) , of Eq. (4.15), (eF )Sh of Eq. (4.17) and K, of Eq. (4.18)

yield:

K3, = ?e =(K ), 05)e; (9.100)
2(y3),
(v3)g = (CSZ b= ()t~ cot(8, )tan(8, )] 9.101)

where (y3 ) ¢, 18 the normalized minor principal stress coefficient..
Using the intermediate 0,, and minor 03, effective principal stresses of Egs. (9.92)

and (9.98), the principal stress ratio o, = 05,/03, is given by:

_ 0-26 _ (‘/’2 )Sh _ (y2 )sh _ _
= = = =00 = By, —1 9.102
03¢ (‘/’3)sh (V3)sh e ! ( )

ag

The previous relationship indicates that the principal stress ratio a, of an FCC
section is a function of the section aspect ratio a;, of Eq. (4.2) and the transverse strain
ratio ac of Eq. (6.19). Because both a;, and a. are a function of the geometry of the
FRP-confined concrete section, it can also be stated that the principal stress ratio @, is a

function of the geometry of the confining elastic FRP jacket. In addition, the principal

stress ratio @' is greater than or equal to unity, i.e., &, =1.0, since both a;, =21.0 and

a. 21.0. Furthermore, the effective minor principal stress 03, in the FCC section can
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be found in terms of the effective intermediate principal stress 0,, using the principal
stress ratio @5 of Eq. (9.102) or vice versa.

For the FCC sections considered herein that are confined by an elastic FRP jacket

having an effective transverse confining stiffness of the FRP jacket (E je ) 5 of Eq. (4.15)

that are subjected to an axial compressive stress £,., and resultant diagonal jacket strain

€;, determined using the FRP jacket stiffness-dependent diagonal dilation model

introduced in Chapter 8, the minor principal compressive stress 03, in the FRP-confined

concrete section can be determined using Eq. (9.98). The intermediate principal

compressive stress 0,, can then be determined using the principal stress ratio a, of Eq.

(9.102).

In reference to Eq. (9.102) and to FCC sections subjected to equibiaxial confinement,
i.e., sections with a unity aspect ratio a, =1.0, such as square and circular FCC
sections, the major principal compressive stress 0] can be found using the extended
Mohr-Coulomb (EMC) criterion for concrete with the effective minor principal 03, of

Eq. (9.98). This indicates that for circular (CFCC) and square (SFCC) sections, the EMC
model can be used to find a direct (noniterative) solution for the major principal

compressive stress 0; in terms of the effective minor principal compressive stress 03, .

For concrete sections subjected to nonuniform biaxial confinement, i.e., sections with

an aspect ratio ag; >1.0 such as rectangular (RFCC), oval (OFCC), and elliptical
(EFCC) sections [refer to a, of Eq. (9.102)], an indirect (iterative) solution for the

major principal compressive stress 0 can be found using the TEMC criterion for
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concrete with the effective minor principal 03, of Eq. (9.98) and the intermediate

principal stress 05, of Eq. (9.92) determined using the principal stress ratio @, of Eq.
(9.102).

Unlike the EMC criterion, the TEMC criterion requires an iterative solution for the
major principal compressive stress Oj; this solution can be easily implemented in a

spreadsheet-type program or incorporated into a finite element analysis program. In this

dissertation a spreadsheet solution is used in the analysis of FCC sections in compression.



CHAPTER 10

UNIAXTAL COMPRESSIVE CONSTITUTIVE MODEL
FOR CONCRETE SECTIONS CONFINED BY
FIBER-REINFORCED POLYMER

JACKETS

In this chapter, a series of stress-strain relationships are introduced for modelling the
uniaxial compressive stress-strain behavior of rectangular, square, circular, and elliptical
concrete columns confined by fiber-reinforced polymer (FRP) jackets. The stress-strain

model introduced herein takes into consideration the effects that the FRP jacket shape

has:

1. On the mechanical properties of the confining elastic FRP jacket introduced in
Chapter 4

2. On the transverse and diagonal equilibrium of the FRP-confined concrete section,

introduced in Chapter 5

3. On the strain compatibility relationships introduced in Chapter 6

4. On the transverse and diagonal dilation of FRP-confined concrete section, as
discussed in Chapters 7 and 8

5. On the passive transverse confining stresses provided by the confining FRP jacket

as introduced in Chapter 9.
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Uniaxial Stress-Strain Model for FRP-Confined Concrete
The compressive stress-strain behavior of the FRP-confined concrete (FCC) sections
considered herein is modeled by an incremental Popovics (1973)-type fractional secant
modulus model for FRP-confined concrete, which will be developed in what follows.

For a given FCC section subjected to a uniform axial compressive strain &. and
resultant transverse jacket diagonal strain & s the average compressive stress f,. in the

confined concrete core can be determined as follows:
_ _ 1
Je =EE. = — Ecgj (10.1)

where E. is the average axial secant modulus of the confined concrete and V; is the
diagonal Poisson’s ratio of the FRP-confined concrete section, which is determined using

the diagonal dilation model introduced in Chapter 8.

At a given axial compressive strain &, in the FCC section, the diagonal Poisson’s

ratio V; can be found iteratively by solving for the resultant diagonal expansive strain £

in the FRP jacket in Eq. (8.43), with the pertinent terms defined in Egs. (8.20)-(8.45). A

noniterative solution for the diagonal Poisson’s ratio VV; can be found using the Poisson’s

ratio model of Eq. (8.43) by assuming a diagonal expansive strain £; in the FRP jacket

and finding the corresponding axial compressive strain £, in the FCC section using Eq.
(7.32).

The average axial secant modulus of the FRP-confined concrete E. can be found

based on the applied axial compressive strain &£., using the following incremental
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Popovics (1973)-type fractional secant modulus model for FRP-confined concrete. The
average axial compressive stress-strain behavior of FRP-confined concrete sections
considered herein, that exhibit either strain-softening or strain-hardening behavior as
shown in the normalized axial stress versus normalized axial strain Figure 10.1(a) and

Figure 10.1(b), respectively, is governed by the following fractional model:

n
E. Je_ Eee S (10.2)
Ee £, cc

nee ~1+ e

cc
E. _Jee (10.3)

ECC
1
n. =

“ e (10.4)

where E .. is the secant modulus of the confined concrete at the ultimate compressive

strength f,.. and strain &£.. of the confined concrete core; n,.. is the curvature parameter
of the Popovics (1973)-type fractional model of Eq. (10.2).

In the above model, compressive stresses and strains are considered positive. In
addition, E_, is the initial modulus of elasticity of the FRP-confined concrete section of
Eq. (7.16), determined using the initial Poisson’s ratio V.; and modulus of elasticity E;

of the unconfined concrete core, and the initial dilation rate along the minor dimension of

the FCC section, (15 )O of Eq. (7.17).
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When the experimental values of unconfined concrete are unknown, the tangent
modulus of elasticity E,; and the peak compressive strain &, of the unconfined concrete

can be estimated based on the unconfined compressive strength f,., as follows (Collins

etal. 1993):

E.; =33201., +6900 (10.5)
fCO [ nu j
g, =2eo| Tu (10.6)
o ECi l’lu -1
n, = 0.80+(%) (10.7)

where n, is a curvature parameter of the unconfined concrete core. In the above
relationships, E.; and f,., are expressed in MPa units. When the experimental values of
unconfined concrete are known (E., f., and &.,), the curvature parameter of the

unconfined concrete core n,, can be determined as:

_fCO

3 Egec =

Eco (10.8)

For the case of equi-biaxially confined concrete sections, square and circular FRP-
confined concrete sections in particular, the ultimate compressive strength of the FRP-

confined section can be found using the two-parameter extended Mohr-Coulomb (EMC)

model introduced in Chapter 9 and setting f.. =0}, where 0y is the major principal
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compressive stress in the confined concrete core, in which compressive stresses and
strain are considered positive.

For concrete in a nonuniform biaxial confinement state of stress, which is the case of
rectangular and elliptical FRP-confined concrete sections, the ultimate compressive

strength of the FRP-confined section f.. can be found by utilizing the two-parameter

triaxial extended Mohr-Coulomb (TEMC) model introduced in Chapter 9, and setting

fee = —03 =07, where g3 is the minor principal stress with tension considered positive.

Recently, Fujikake et al. (2004) recognized that an ultimate strength criterion for
actively confined concrete, such as the parabolic Leon criterion (Pramono and Willam
1989) of Eq. (9.8), cannot accurately describe the uniaxial stress-strain behavior of
concrete under a continuously increasing confining stress, which occurs in FRP-confined
concrete sections. As a result, Fujikake et al. (2004) introduced a reduced maximum
strength criterion after the FRP-confined concrete first reaches the Leon criterion.

In this dissertation, a different approach is taken by applying the EMC or TEMC
failure criterion for confined concrete to the case of passively confined concrete, FRP-

confined concrete sections in particular. It is assumed that the axial stress f,. or
normalized axial stress k. =f./f,, in FRP-confined concrete asymptotically
approaches the analytical ultimate strength f.. or confinement -effectiveness
kee = fee/ feo When the axial strains in the confined concrete reaches the peak

compressive strain £.. or &. =&.., in which f.. is determined using either the

ceo

proposed EMC (circular and square FCC sections) or the TEMC (rectangular, square,
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oval, elliptical and circular FCC sections) ultimate strength criterion introduced in

Chapter 9.

At the instant when f,. = f.. or k. =k_.., it is assumed that the axial compressive
strain £, in the confined concrete reaches the peak compressive strain &£.. or &. = &...
The ultimate compressive strain &.. occurring at the ultimate compressive strength f,..

is determined as follows (Mander et al. 1988):
Ece =€co [1 + R(kcc - 1)] (10.9)

where R is the strain ductility ratio of concrete under constant (biaxial or uniaxial)

confinement, which is defined as:

koo =1
10.1
by o1 (10.10)
&£
kg :gﬁ (10.11)
co

where k. is the strain effectiveness of the confined concrete core. In the definition of
the strain ductility ratio R of Eq. (10.10), the terms (kcc - 1) and (kgc —1) represent the

percentage increase in ultimate compressive strength and peak compressive strain in the
confined concrete, respectively.

The strain ductility ratio of the confined concrete R of Eq. (10.10) is considered
equal to R=5.0 (Richart et al. 1928), when the section is subjected to uniform
equibiaxial confinement, which will be referred to as the equi-biaxial confinement

ductility ratio Rp. =5.0. This is the case of concrete cylinders actively confined by
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hydrostatic fluid pressure or passively confined concrete in which the confining element
provides an essentially uniform equi-biaxial confining stress, typical of circular FRP-
confined concrete (CFCC) sections (i.e., when ag, — 1.0 and k, =1.0). When the
confined concrete core is subjected to a uniform uniaxial confining stress, i.e., 0] = 03
with 0, L0, the strain ductility ratio of the uniaxially confined concrete R =3.0

(Darwin and Pecknold 1977), which will be referred to as the uniaxial confinement

ductility ratio R,. =3.0. Due to the shape of rectangular FRP-confined concrete

(RFCC) sections with rounded corners, including square FRP-confined concrete (SFCC)
sections, the FRP-confined concrete core is subjected to nonuniform transverse confining

stress; as the confining efficiency of the FRP jacket k, — 1/3 which occurs as the aspect

ratio @, increases and/or the jacket corner aspect ratio @ ; decreases. For high aspect
ratio @, >>2, RFCC sections with small corner radii for which @; -~ 0 and &k, — 1/3,

both the confinement effectiveness k.. and strain effectiveness k. approach a unity

value, i.e., k...kgs — 1.0. In addition, for high aspect ratio RFCC sections, the minor

ceo
principal stress 03, — 0 and the principal stress ratio @, of Eq. (9.102) increase

nonlinearly as &, increases. For high aspect ratio RFCC sections the strain ductility

ratio of the lightly confined or essentially unconfined concrete approaches a unity value,

with R, — 1.0, where R, is the strain ductility ratio of the unconfined concrete. This
also occurs in high aspect ratio, @, >>2 and k, =1.0, elliptical FRP-confined concrete
(EFCC). In reference to the strain ratio a, of Eq. (6.52), the aspect ratio a; of Eq.

(4.2) and the principal stress ratio a, of Eq. (9.102), for an EFCC section with
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ag, 21.0, the principal stress ratio is given by a, = ashz and a, =1.0 for circular

sections.
For RFCC sections with low-aspect ratios, the confining efficiency of the FRP jacket

k., — 1.0, which occurs as the RFCC section becomes more rounded, as the aspect ratio
Qg decreases and approaches a unity value (i.e., as @, — 1.0) and as the jacket corner
aspect ratio @ ; increases and approaches a value of 0.50 (i.e., as @; — 0.50); hence the

strain ductility ratio of the RFCC section approaches the value of the equi-biaxial

confinement ductility ratio Rp. =5.0. In addition, for low-aspect ratio RFCC sections,
as the section aspect ratio approaches a unity value (i.e., as a; — 1.0), the intermediate
principal stress 0, approaches the value of the minor principal stress 0,, — 03, (i.e.,
0,5, — 03,), and the principal stress ratio @, of Eq. (9.102) approaches a unity value
gy =0,,/03, - 1.0. This indicates that the strain ductility ratio of FCC sections Ry, ,
depends on the FRP jacket shape. As a result, Ry, is assumed to be governed by the

following hyperbolic relationship:

Ry, —R
Ry, = R, i o = Ru) s Yr=—" (10.12)

Y R ke
where (/p 1s an FRP jacket shape-dependent ductility coefficient that measures the effect

that the FRP jacket shape has on the strain ductility of the confined concrete; the strain

ductility ratio R, of Eq. (10.12) is plotted in Figure 10.2 versus the ductility coefficient

Yr.
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Wr=1.0 Jacket Ductility Coetticient

Figure 10.2 Plot of strain ductility ratio versus jacket ductility coefficient of FRP-

confined concrete.
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The previous relationship indicates that R, is proportional to the confinement
efficiency k, of the confining FRP jacket and inversely proportional to the principal
stress ratio @, of Eq. (9.102). This strain ductility ratio is applicable to FRP-confined

concrete subjected to uniform biaxial confinement (circular sections and low-aspect ratio
elliptical sections) and to sections subjected to nonuniform biaxial confinement (square,
rectangular and high aspect ratio elliptical sections).

For rectangular (including square and circular) FRP-confined concrete sections, and

elliptical (including circular) FRP-confined concrete sections, R, [11.0. Substituting
R, =1.0 and Rp. =5.0 into Ry, of Eq. (10.12) yields the following for RFCC, SFCC,

CFCC, and EFCC sections:

Rsh:1+4(k—ej:1+4[ ke j (10.13)
ag Bsp —1

For EFCC (including CFCC) sections for which k, =1.0 and a, =a’sh2, Eq.

(10.13) can be rewritten as:

Ry, =1+{ 42J (10.14)

For circular sections for which k£, =1.0, ag =10, and a5, =1.0, R, of Egs.
(10.13) and (10.14) yield the equi-biaxial confinement ductility ratio of Rp. =35.0,

whereas for very high aspect ratio RFCC and EFCC sections, it approaches the

unconfined ductility ratio of R, =1.0.
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For the FCC sections considered herein, the ultimate compressive strain &,.. in the

FCC section is found by substituting R = R, into Eq. (10.9) which yields:
Ece = €co [1+Rsh (kcc _1)] (10.15)

The plastic strain ductility ratio R, of the FCC section is defined as:

P ke =1

(10.16)

(10.17)

kg, =—F (10.18)

In the plastic strain ductility ratio R, of Eq. (10.15), the terms (kcp - 1) and (kép - 1)

represent the percentage increase in plastic compressive strength and strain, respectively.
Plastic compressive behavior is assumed to occur at any given plastic compressive

strength f., and strain €,, where &., < &, < €., and corresponding plastic diagonal

expansive jacket strain £ ;, in the FCC section, where ‘é‘ jo‘ < ‘é’ E ‘é’ ju" In addition,

k

¢p 18 the plastic confinement effectiveness; kg, is the plastic strain effectiveness; €, is
the jacket dilation strain corresponding to the unconfined peak compressive strain &.,;

and €, is the ultimate jacket dilation strain corresponding to the ultimate compressive

strain &£, , at failure of the FRP jacket.
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The difference between Ry, of Eq. (10.12) and R, of Eq. (10.16) is that the latter is
applicable to any plastic axial compressive stress fcp and strain £, in the FCC section,

whereas R, is defined only when f. = f.. or k. =k, and when &, =¢&_.. of Eq.

(10.11).

The plastic strain ductility coefficient &'y is defined herein as the ratio between the
FRP jacket shape-dependent strain ductility ratio Rg;, of Eq. (10.11) and the plastic strain

ductility ratio R, of Eq. (10.16):

(10.19)

When ap =1.0 the stress ratio k. in the FCC section asymptotically approaches the
analytical confinement coefficient k... This is illustrated in Figures 10.3-10.5, in which

the normalized axial stress k. is plotted versus the effective minor principal stress ratio
k3e -

The cases shown are for sections concrete exhibiting strain-softening compressive
behavior, as shown in Figures 10.3 and 10.4, and sections which exhibit strain-hardening
as shown in Figure 10.5. From these figures it can be observed that at a very small
plastic strain &

in the FCC section near the peak unconfined strain &.,, i.e., when

cp o

Ecp L &¢p, the plastic strain ductility coefficient ap of Eq. (10.19) has a very large value
as a result of the low value of the plastic strain ductility ratio R p of Eq. (10.16), ie., a

low plastic strain effectiveness kép of Eq. (10.18).
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Figure 10.3  Axial stress ratio and strain ductility ratio versus minor principal stress

ratio of an FRP section confined by a low stiffness FRP jacket exhibiting

strain-softening compressive behavior.
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Figure 10.4 Axial stress ratio and strain ductility ratio versus minor principal stress

ratio of an FRP section confined by a moderate stiffness FRP jacket

exhibiting strain-hardening compressive behavior.
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When the axial strain ratio k. strain approaches a unity value, i.e., when

ke =kg, =1.0 or when £, L &, the strain ductility coefficient ap decreases as the

FRP jacket stiffness increases; this is due to an increase in the kinematic restraint
provided by the confining elastic FRP jacket which curtails the dilation behavior of the

concrete core as it approaches its peak unconfined compressive strain £,.,, corresponding

jacket dilation strain £ ;,, and confinement stress 03, .

At a high plastic compressive strain £, , jacket strain € ;,, and confinement stress
03, , the resultant plastic strain ductility coefficient &g decreases at a smaller rate; 1.e.,

the plastic strain ductility ratio R, increases at a larger rate, as the stiffness of the FRP

jacket increases. This increase in the plastic strain ductility ratio R, is also a result of an

increase in the jacket’s ability to control the dilation of the confined concrete core, thus

resulting in a larger increase in the plastic compressive strain &., with respect to an

cp

increase in the plastic compressive strength fcp and confinement effectiveness k., , due

cp>
to a reduction in the FRP jacket strain £ at a given axial strain £.. The rate of increase
of the plastic compressive strength fcp is proportional to the rate of increase in the FRP
jacket strain £, the plastic dilation rate /4, of Eq. (7.25), and the plastic Poisson’s ratio
V p of the FCC section.

Both the plastic dilation rate f;, (i.e., the slope of the Poisson’s ratio curve) or

plastic Poisson’s ratio V ;,, decrease as the FRP jacket stiffness increases. As indicated in

Chapter 7, the plastic dilation rate W ip of Eq. (7.25) is inversely proportional to the FRP



319

jacket stiffness. The FRP jacket stiffness also affects the plastic Poisson’s ratio V ;, of
the FCC section. As the jacket Poisson’s ratio V; decreases, either the jacket dilation

strain £; decreases or the axial compressive strain £, increases [refer to v; of Eq.

(7.32)].

The incremental stress-strain model of Eqs. (10.1)-(10.18) can capture the strain-
softening behavior of low FRP jacket stiffness confined concrete, the essentially elasto-
plastic behavior of moderate FRP jacket stiffness confined concrete, and the strain-
hardening behavior of high FRP jacket stiffness confined concrete, as shown in Figures
10.3-10.5. The increase in compressive strength and strain ductility of FRP-confined
concrete is attributed to the lateral kinematic restraint provided by the confining FRP
jacket and is evaluated using the triaxial extended Mohr-Coulomb (TEMC) criterion
introduced in Chapter 9.

The axial strain-induced dilation of FCC sections is assumed to be governed by the
FRP jacket stiffness-dependent fractional dilation model of Chapter 8. In the stress-
strain model developed in this dissertation, the only experimentally obtained coefficients
in the proposed TEMC criterion are the average values of the basic angle of friction of

dry concrete, ¢, =35° included in the degrading friction angle model introduced in
Chapter 9, the diagonal plastic dilation rate 4 ;, of Eq. (7.24), and the pore water

pressure parameter npy of Eq. (9.62).

Stress-Strain Model Implementation
The damage-based stress-strain model can be implemented using the following steps

shown in summarized in the flow charts of Figures 10.6-10.9, and Tables 10.1-10.3:
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Figure 10.9 Flow chart of proposed uniaxial stress-strain model-Part IV.
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Table 10.1  Summary of geometric properties of the
FRP-confined concrete section required in

the stress-strain model.

Properties Term Reference
Unconfined concrete k, Eq. (9.9)
cy, Eq. (9.25)

@, Eq. (9.28)

Be Eq. (9.64)

(@), Eq. (9.59)

(k3m ) b Eq. (9.60)

Egec Eq. (10.8)

n, Eq. (10.8)

FRP jacket (e )B Eq. (4.15)
(Ce) sn Eq. (4.17)

(& o) s Eq. (4.18)

ag Eq.(7.10)




Table 10.2  Summary of geometric properties of the
FRP-confined concrete section required in
the stress-strain model.

Term Reference Term Reference
D, Eq. (4.3) 6, Eq. (4.1)
ag, Eq. (4.2) aj; Eq. (4.2)
k, Table 4.2 Cy, Table 4.1
Dy, Eq.5.11 Xsh Table 5.1
6, Table 5.2 6, Table 5.2
ac Eq. (6.19) ,Bj Table 6.1
B Eq. (7.15) B, Eq. (7.39)

(w2),, Table 9.1 a, Eq. (9.102)

(w5 )sh Eq. (9.102) Ry, Eq. (10.12)
Yr Eq. (10.12)
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Table 10.3  Summary of FRP-confined concrete
properties.
Term Reference Term Reference
Ego Eq. (7.16) (5), Eq. (7.17)
Hjo Eq. (7.20) Hrp Eq. (7.23)
Hip Eq.(7.25  [v;) =~ Eq.(7.67)
Mo Eq. (8.7) ac Eq.(8.33)
V; Eq. (8.35) Vvol Eq. (8.36)
Aol Eq. (8.37) a i Eq. (8.38)
le; )pk Eq. (8.45)
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Step (1) Input the material (FRP jacket and concrete) properties and FRP-confined
section geometry, and calculate the mechanical and geometric terms shown in the flow
diagram of Figure 10.6

Step (2) Utilize the flow diagram of Figure 10.7-10.9 to model the uniaxial stress-

strain behavior of FRP-confined concrete sections.

Parametric Study
The purpose of this parametric study is to examine how the proposed constitutive
stress-strain model introduced herein responds to variations in the values of the various
parameters including material properties, geometric and mechanical properties of the
FCC section, and shape-dependent dilation and stress-strain parameters.

This includes the effects of the concrete material properties, such as the initial

Poisson’s ratio V., the initial modulus of elasticity E. of Eq. (10.5), the peak

ci»
unconfined compressive strain &., and strength f,,, and the effective basic angle of

internal friction ¢, of the concrete material are considered.

Variation of the FRP jacket properties such as jacket stiffness K ;. of Eq. (4.18), the
aspect ratio a, of the rectangular (RFCC) and elliptical (EFCC) FCC section of Eq.
(4.2), the jacket corner ratio @ jof the RFCC section of Eq. (4.4), and the plastic dilation
rate [ ;, of Eq. (7.24) are studied.

Variation of the strain ductility ratio Ry of Eq. (10.12), a stress-strain model specific

parameter, is considered in this parametric study. The FCC sections that serve as a basis

of this parametric study are the following:
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Case 1: A circular FRP-confined concrete section (CFCC) confined by a circular
FRP jacket having a 305 mm diameter section.
Case2: A rectangular FRP-confined concrete (RFCC) section with a minor

dimension B, of 305 mm, a unit aspect ratio a, = H./B,. =1.0 (i.e., a square section),
and a jacket corner ratio @ ; = R; / H,. =5.0%, where H_ is the major jacket dimension

and R; is the jacket corner radius.

The aforementioned FCC sections have an unconfined compressive strength of 41.4

MPa, an elastic modulus calculated using E. of Eq. (10.5), an unconfined peak
compressive strain using &, of 0.002 mm/mm, i.e., &, =0.002, with the curvature

parameter n, of Eq. (10.7), a tensile strength ratio k, = | ol fc0| of Eq. (9.9), with f;,

of Eq. (9.30), a basic angle of friction of ¢, =35°, a pore water pressure parameter 7 py

of Eq. (9.62) and (9.63) of npy =5.0 percent, an effective basic angle of friction
@ =34.1° found using Eq. (9.64), and an initial Poisson’s ratio of v, =0.20. These
sections are assumed to be confined by an FRP jacket having a transverse modulus £ ; of
82.7 MPa and a jacket rupture strain of £ ;,, =8.50 mm/m.

Unless otherwise noted, the cases considered in the parametric study include sections

confined by low stiffness FRP jackets with K ;. =10.0 and high stiffness jackets with
K. =30.0. In the parametric study of the proposed model, the only parameters that

change in value are those that are affected by the parameter being considered.
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Concrete Material Properties
Initial Poisson’s Ratio

The effects that the initial Poisson ratio V.; has on the stress-strain model introduced

herein for the CFCC section of Case 1 is plotted in the axial stress-strain curves shown in
Figure 10.10; Figure 10.11 shows the axial stress-strain curves for the RFCC section of
Case 2. The Poisson’s ratios considered in this parametric analysis are V., =0.15 and

V. =0.30, which are considered to be the lower and upper bound values, respectively, of

the initial Poisson’s ratio of concrete materials. As can be observed in these figures, the

initial Poisson’s ratio V;, is predicted to have no significant effect on the stress-strain

curve of the CFCC or RFCC section.
The most noticeable influence predicted by the model is that as V. increases, the
ultimate axial strain ratio (kg )u (i.e., at &, =&, ) experiences a slight decrease; this

results in a decrease in the strain ductility of the confined concrete core. This is apparent
for both low and high stiffness FRP-jacketed sections and is predicted to be independent
of the FRP jacket shape. A slight decrease in the ultimate stress ratio (kC )u or ultimate
axial stress f,, is predicted to occur as V; increases. This effect is more apparent in

RFCC sections confined by high stiffness FRP jackets, than in circular sections.

The analytical model predicts that for a given plastic strain ratio kép , the normalized
plastic stress ratio value k., slightly increases as the initial Poisson’s ratio V; increases.

This indicates that a slight increase in the strain energy in the FRP-confined concrete is

predicted to occur at any given plastic strain ratio k g as V; doubles in value.
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Figure 10.10 Axial stress-axial strain ratio curves of a circular concrete section confined

by a (a) low stiffness and (b) high stiffness FRP jacket with various initial

Poisson’s ratio.
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Figure 10.11 Axial stress-axial strain ratio curves of a rectangular concrete section

confined by a (a) low stiffness and (b) high stiffness FRP jacket with

various initial Poisson’s ratio.
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Initial Modulus of Elasticity

The effects that the initial modulus of elasticity E_; of the concrete core has on the
proposed stress-strain model for the CFCC section of Case 1 is plotted in the axial stress-
strain ratio curves shown in Figure 10.12. and in Figure 10.13 for the RFCC section of

Case 2. The initial modulus of elasticity E_.; values considered in this section of the

parametric analysis is multiples of E_ of Eq. (10.5), which are 0.75E.;, E_;, and

ci» ci»

1.25E,;.

As can be observed in Figure 10.12, a slight increase in the axial failure strain ratio
(kg ) , (e, at €. =&, ) and ultimate stress ratio k., is predicted to occur as the initial
modulus of elasticity E_; increases for both low and high stiffness CFCC sections. This
results in a small increase in strain ductility of the confined concrete as both (kg ) , and
(kc )u increase.

The analytical model predicts that for FCC sections exhibiting an essentially bilinear
strain-hardening compressive stress-strain behavior, such as those shown in Figure
10.12, the initial slope and the slope of the plastic strain curve increases slightly as E;
increases. This indicates that the model predicts a proportional relationship between the
plastic slope of the sections exhibiting a bilinear strain-hardening behavior and the initial

modulus of elasticity E; of the concrete core.
In RFCC sections, the analytical model predicts that an increase in the initial modulus
of elasticity E,; results in a significant decrease in the ultimate strength ratio k., , as

shown Figure 10.13, for both high stiffness and low stiffness rectangular FRP-jacketed

sections.



333

1.20 +
0.60 —+
0.30

oley ssaiS [eIxy

0.00 &

Axial Strain Ratio

2.0 40 . 6.0 8.0
Axial Strain Ratio

0.0

(b)

Figure 10.12 Axial stress-axial strain ratio curves of a circular concrete section confined

by a (a) low stiffness and (b) high stiffness FRP jacket with various initial

modulus of elasticity.
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Figure 10.13 Axial stress-axial strain ratio curves of a rectangular concrete section
confined by a (a) low stiffness and (b) high stiffness FRP jacket with

various initial modulus of elasticity.
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For sections exhibiting a strain-softening compressive behavior, typical of RFCC
sections with a small corner radius, as shown in Figure 10.13, the model predicts that in

the plastic region of the stress-strain curve (i.e., when k. >1.0) and the axial stress ratio

k. at a given plastic axial strain ratio kg, decreases as E; increases. This implies that
an inversely proportional relationship is predicted between the axial plastic stress fcp

and the initial modulus E.; for sections exhibiting strain-softening compressive behavior.
This also indicates that the model predicts a decrease in the strain energy in the RFCC
section at a given plastic axial strain ratio kép as E; increases. Analysis of Figures
10.12 and 10.13 indicates that the effects that initial modulus of elasticity E,.; has on the

analytical stress-strain curve of an FCC section is shape-dependent.

The effects of the elastic modulus £, on the analytical stress-strain curve of
elliptical sections with an aspect ratio of a; =1.5 and a;, = 2.0 that are confined by a

high stiffness K ;, =30.0; FRP jacket are investigated in Figures 10.14(a) and (b),

respectively. From these figures it can be observed that as both the aspect ratio a;, of
the elliptical section and E_; increase, the ultimate stress ratio k., is predicted to

decrease at a faster rate. An increase in the strain ductility of the FRP-confined concrete

section is forecasted to occur as E; increases, due to an increase in the ultimate stress

ratio k., . This effect is predicted to be independent of the elliptical section aspect ratio.
In Figures 10.15(a) and (b) the effects that the elastic modulus £, has on the

analytical stress-strain curve of rectangular sections with aspect ratios of a; =1.25 and

ag, =1.50 confined by high stiffness FRP jackets are investigated.
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stiffness FRP jacket having a section aspect ratio of (a) 1.25 and (b) 1.50

with various initial modulus of elasticity.
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The analytical model predicts that as both the aspect ratio a; of the RFCC section
and E_; of the concrete increases, the ultimate stress ratio k., decreases at a faster rate;

this effect is in contradiction with that predicted for EFCC sections. The decrease in
strain ductility of RFCC sections is predicted to be dependent on the section aspect ratio.
Based on analysis of Figures 10.12-10.15, it can be stated that the analytical model
predicts that the shape of the FRP-jacketed section has a significant effect on the shape of
the axial compressive stress-strain curve of the FRP-jacketed section; this is supported by

experimental evidence.

Unconfined Peak Compressive Strain

The effects that the unconfined peak compressive strain &, has on the stress-strain
behavior predicted by the analytical stress-strain model introduced herein is plotted in the
axial stress-strain ratio curves shown in Figure 10.16 for the CFCC section of Case 1 and
in Figure 10.17 for the RFCC section of Case 2. The unconfined peak compressive

strain £., considered in this section of the parametric analysis are multiples of

Eqo =0.002, which are 0.75&,,, €

co> €co»and 1.25¢€,.,.
As shown in Figure 10.16, the model predicts that for CFCC sections an increase in

the unconfined peak compressive strain &, results in a decrease of the ultimate strain

ratio (kg )u (i.e., at & =&, ) and a slight increase in ultimate axial stress ratio k., , for

cu »
both high stiffness and low stiffness CFCC sections. This effect is most notable in low
stiffness circular FRP-jacketed sections. This indicates that a decrease in the strain

ductility of the confined concrete is predicted to occur as &, increases.
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For an FCC section exhibiting an essentially bilinear strain-hardening compressive
stress-strain behavior, such as those shown in Figure 10.16, the slope of the plastic strain

ratio curve is predicted to increase as &, increases; this indicates that a proportional

relationship exists between the plastic slope of the stress-strain curve and the peak

unconfined compressive strain &£, of the concrete core. For FCC sections experiencing

a bilinear strain-hardening behavior, the plastic slope of the analytical stress-strain curve
is proportional to the FRP jacket stiffness and can be affected by the unconfined peak

compressive strain e, of the concrete core, as shown in Figure 10.16.

In rectangular sections, the model predicts that as &£, increases, the ultimate axial
strain ratio (kg ) , decreases, as shown in Figure 10.17, whereas the ultimate axial stress
ratio k., slightly increases for high stiffness rectangular FRP-jacketed sections. For low

plastic strain ratios kép , a decrease in the energy of the RFCC section is predicted to
occur for both low and high stiffness FRP jackets. At high plastic strain ratios kép ,a

decrease in the strain energy of the RFCC section is predicted to occur for a low stiffness
RFCC section and a slight increase for high stiffness RFCC sections, as &, increases.
The model predicts that for FCC sections exhibiting a strain-softening compressive
behavior, as shown in Figure 10.17 for rectangular sections, an increase in the
unconfined peak compressive strain &£, significantly affects the shape of the analytical
plastic stress-strain curve of the RFCC section.

Based on analysis of Figures 10.16 and 10.17, it can be stated that the analytical

model predicts that the shape of the FRP-jacketed section has a significant effect on the
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shape of the axial compressive stress-strain curve of the FRP-jacketed section; this is

supported by experimental evidence.

Unconfined Peak Compressive Strength

The effects that the unconfined peak compressive strength f,., has on the stress-
strain behavior predicted by the analytical stress-strain model introduced herein is plotted
in the axial stress-strain ratio curves shown in Figure 10.18 for the CFCC section of
Case 1 and in Figure 10.19 for the RFCC section of Case 2. The unconfined peak
compressive strengths considered in this section of the parametric analysis are

feo =13.8 MPa, f., =27.6 MPa, and f., =41.4 MPa.

As shown in Figure 10.18, the model predicts that for CFCC sections an increase in
the unconfined peak compressive strength f,., has no significant effect on the stress-
strain behavior of the circular sections confined by either high or low stiffness FRP
jackets. This indicates that no significant increase in strain energy occurs in CFCC
sections exhibiting strain-hardening compressive behavior.

In RFCC sections, the model predicts that as f,, increases both the ultimate axial
strain (kg )u and strength k., ratio decrease, as shown in Figure 10.19, which indicates

a decrease in strain energy in the RFCC section as f,, increases. This effect is in

contradiction with the effects predicted in CFCC sections exhibiting strain-hardening
behavior, as shown in Figure 10.18. As a result, it can be stated that the analytical model

predicts that the effect of the peak unconfined compressive strength f., is FRP jacket

shape-dependent and appears to be independent of the FRP jacket stiffness.
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Effective Basic Angle of Internal Friction

The effects of the effective basic angle of internal friction ¢, of the concrete core on

the stress-strain behavior of FCC sections predicted by the analytical stress-strain model
introduced herein are plotted in the axial stress-strain ratio curves shown in Figure 10.20
for the CFCC section of Case 1 and in Figure 10.21 for the RFCC section of Case 2.

The effective basic angles of internal friction ¢,, considered in this section of the

parametric analysis are determined using a pore water pressure parameter npy of Egs.

(9.62) and (9.63) of npy =12.5 %, npy =25.0 and npy =50.0, which result in

Be =32.7°, @, =30.2°, and @,, =23.7°, respectively, found using @, of Eq. (9.64).

As can be observed in Figures 10.20 and 10.21, the model predicts that for CFCC
and RFCC sections a decrease in the effective angle of internal friction @,,, i.e., as the
pore water pressure parameter npyy increase, results in a decrease in the ultimate axial
stress ratio k., (i.e., at f. = f., )

For the CFCC sections that exhibit an essentially bilinear strain-hardening
compressive behavior and RFCC sections that exhibit a strain-softening behavior, such as
those shown in Figures 10.20 and 10.21, the slope of the plastic strain curve is predicted
to decrease as the pore water pressure parameter npy increases, i.e., when @,
decreases. This indicates that an inversely proportional relationship between the plastic

slope of the stress-strain curve and the effective basic angle of internal friction ¢, of the

concrete core is predicted.
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Figure 10.20 Axial stress-strain ratio curves of a circular concrete section confined by
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parameters.
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As a result, the plastic stress ratio kcp at a given plastic axial strain ratio kép

increases as @, increases, which indicates an increase in strain energy in the CFCC and

RFCC sections is predicted to occur regardless of the FRP jacket stiffness.

This forecasted behavior is supported by experimental evidence, as concrete-filled
FRP tubes (CFFT) exhibit a decrease in the plastic slope in comparison with bonded
FRP-jacketed (BFCC) sections with similar FRP jacket stiffness, as will be demonstrated

in the comparison with experimental results.

FRP Jacket Properties

FRP Jacket Stiffness

The effect that the FRP jacket stiffness K ;, of Eq. (4.18) has on the stress-strain

model introduced herein is plotted as an axial stress-strain ratio curve in Figure 10.22(a)

for the CFCC section of Case 1, and in Figure 10.22(b) for the RFCC section of Case 2.
From analysis of Figure 10.22(a) it can be observed that for CFCC sections the

model predicts that as the FRP jacket stiffness increases, both the ultimate stress ratio

k., and strain ratio (kg )u increase. The model makes similar predictions for RFCC

sections, as shown in Figure 10.22(b). An increase in the FRP jackets stiffness results in

which results in

an increase in the ultimate axial strain ratio (kg )u and stress ratio k., ,

an increase in the strain ductility of the FRP-jacketed section.

At high axial plastic strains (i.e., at kg = kép > 2.0), the slope of the stress-strain

curve increases as the FRP jacket stiffness increases for a section experiencing a strain-

hardening behavior, as shown in Figure 10.22(a) for CFCC sections.
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For sections experiencing a strain-softening behavior, as shown in Figure 10.22(b)
for RFCC sections, the model predicts that the plastic slope can change from a negative
plastic slope to a positive slope as the FRP jacket stiffness increases. Thus, at high axial
plastic strains, the model forecasts that that the stress-strain behavior of the FCC section
can change from that of a section exhibiting a strain-softening behavior to that of a
section exhibiting strain-hardening as the stiffness of the FRP jacket increases.

As a result, it can be stated that the analytical model predicts that the effect that the

FRP jacket stiffness K j, of Eq. (4.18) has on the compressive behavior of FRP-confined
concrete sections is independent of the FRP jacket shape.

In order to accurately predict the shape of the uniaxial stress-strain curve of the FCC
sections the model must adequately predict the effect that the FRP jacket stiffness K, of

Eq. (4.18) has on the compressive behavior of the FCC sections considered in this

dissertation; this will be demonstrated in the comparison with experimental test results.

Jacket Aspect Ratio

The effect that the section aspect ratio ag; of Eq. (4.2) has on the stress-strain
behavior of FCC sections predicted by the analytical model introduced herein is plotted
in the axial stress-strain ratio curves shown in Figure 10.23 for an EFCC section of Case
1, and in Figure 10.24 for an RFCC section of Case 2.

The cases considered in this parametric study are for sections with aspect ratios of

ag =10, ay, =15, andag, =2.0, with a constant jacket corner radius for the RFCC

sections considered.
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Figure 10.23 Axial stress-strain ratio curves of an elliptical concrete section confined by
(a) low and (b) high stiffness FRP jacket with various section aspect

ratios.
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Figure 10.24 Axial stress-strain ratio curves of a rectangular concrete section confined

by (a) low and (b) high stiffness FRP jacket with various section aspect

ratios.
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From these figures it can be observed that the analytical model predicts that an

increase in the jacket aspect ratio @y, results in a decrease in both the ultimate stress &,
and strain (kg )u ratio. This indicates that a decrease in the strain ductility of the

confined concrete is predicted for both EFCC and RFCC sections as @, increases. As

shown in Figures 10.23 and 10.24, this effect is more pronounced as the stiffness of the
FRP jacket increases. This forecasted behavior is supported by the experimental
evidence of RFCC and EFCC sections, as will be demonstrated in the comparison with
experimental compressive tests. Analysis of Figures 10.23 and 10.24 indicates that for a

given plastic axial strain ratio kép , a decrease in the strain energy of the confined
concrete is predicted to occur as @ increases. This is due to the decrease in the plastic
stress ratio kcp at any given plastic axial plastic strain ratio kép. This effect is predicted

to be independent of the stiffness and shape of the FRP jacket. In order to accurately
predict the shape of the uniaxial stress-strain curve of the FCC sections, the model must

adequately capture the effects that the FRP jacket aspect ratio a;, of Eq. (4.2) has on the

compressive behavior of the FCC sections considered in this dissertation.

Jacket Corner Aspect Ratio
The effect that the jacket corner aspect ratio @ ; of Eq. (4.4) has on the stress-strain
behavior of RFCC sections predicted by the analytical stress-strain model introduced

herein for Case 2 is plotted in the axial stress-strain ratio curves shown in Figure 10.25,

and for a RFCC section of Case 2 with a section aspect ratio g, =2.0 is plotted in

Figure 10.26.
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Figure 10.25 Axial stress-strain ratio curves of a square concrete section confined by (a)

low and (b) high stiffness FRP jacket with various jacket corner aspect

ratios.
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The cases shown in these figures are for RFCC sections confined by an FRP jacket

having jacket corner aspect ratios @ ; of a; =0.05, a; =0.25, anda; =0.50, which is

a; =0.50 for the SFCC section and a; =0.05, a; =0.15, anda'j =0.25 for the

RFCC section considered in this parametric study.

From these figures it can be observed that the analytical model predicts that an

increase in the jacket corner aspect ratio @ ; results in an increase in the ultimate strength

ratio k., and a slight increase in the ultimate axial strain ratio (kg )u , which indicates an

increase in the strain ductility of the confined concrete is predicted for SFCC and RFCC
sections.  This predicted compressive stress-strain behavior is supported by the
experimental evidence of SFCC and RFCC sections, as will be demonstrated in the
comparison with experimental results.

The analytical model forecasts that the shape of the analytical plastic stress-strain
curve of the FCC section can shift from that of a section exhibiting a strain-softening
behavior to that of a section exhibiting strain-hardening behavior by increasing the jacket

corner aspect ratios & ;, as shown in Figures 10.25 and 10.26; this effect is predicted to
be independent of the rectangular FRP jacket aspect ratio and stiffness. In the plastic

region of the stress-strain curve, the model predicts that the plastic stress ratio kcp at a

given plastic axial strain ratio kép increases as & ; increases. This indicates that an

increase in strain energy at a given plastic axial strain ratio kép is predicted to occur as

a :

j increases and was found to be independent of the rectangular FRP jacket aspect ratio

and stiffness.
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In order to accurately predict the shape of the uniaxial stress-strain curve of the FCC

sections, the model must adequately predict the effects that the jacket corner aspect ratio

a ; of Eq. (4.4) has on the compressive behavior of RFCC sections.

Plastic Diagonal Dilation Rate

The effect that the plastic diagonal dilation rate 4, of Eq. (7.25) has on the stress-
strain behavior of FCC predicted by the analytical stress-strain model introduced herein
for an CFCC section of Case 1 is plotted in the stress ratio-strain curves shown in Figure
10.27 and for an RFCC section of Case 2 in Figure 10.28. The plastic diagonal dilation

rates U, considered in this section of the parametric study are 0.75u jp» Mjp, and
1.254,. As can be observed in Figures 10.27 and 10.28, the model predicts that for
CFCC and RFCC sections an increase in the plastic diagonal dilation rate 4, results in

a decrease of the axial failure strain ratio (kg )u (i.e., at & =&, ), which results in a

decrease in the strain ductility of the FRP-confined concrete.

An increase in the ultimate strength ratio k., (i.e., at f. = f,, ) is predicted for both
high stiffness and low stiffness CFCC and RFCC sections. The increase is smaller for
CFCC sections with high stiffness FRP jackets. The analytical model forecasts that for a
CFCC section exhibiting an essentially bilinear strain-hardening compressive behavior,
such as those shown in Figure 10.27 for CFCC sections, the slope of the plastic strain

curve increases as [, increases. This indicates that a proportional relationship is

predicted between the plastic slope of the stress-strain curve and plastic diagonal dilation

rate /4, , this effect is supported by the experimental evidence.
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Figure 10.27 Axial stress-strain ratio curves of a circular concrete section confined by
(a) low and (b) high stiffness FRP jacket with various plastic dilation

rates.
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Figure 10.28 Axial stress-strain ratio curves of a rectangular concrete section confined

by (a) low and (b) high stiffness FRP jacket with various plastic dilation

rates.
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For sections exhibiting a strain-softening compressive behavior, as shown in Figure

10.28 for rectangular sections, the model predicts that an increase in 4, affects the

shape of the analytical plastic stress-strain curve of the RFCC section.
From these figures it can be observed that in the plastic region of the stress-strain

curve, the axial stress ratio k. at a given plastic axial strain ratio kép increases as U j,

increases, independent of the FRP jacket shape or stiffness. This implies that a

proportional relationship is predicted between the axial plastic stress fcp and [, ; this is
a result of an increase in the corresponding FRP jacket strain £ ; [refer to Eqs. (7.32) and
(7.54)], and diagonal confining stress ( Sde ) ¢ Of Eq. (5.12), which results in an increase
in the confinement effectiveness k.. of Eq. (9.35) with g3, of Eq. (9.100).

An increase in fcp at a given kép implies that an increase in strain energy is
predicted to occur by the proposed analytical model as 4, increases; this effect is also

predicted to be independent of the FRP jacket shape and stiffness. This explains why the

diagonal dilation is used in this dissertation as a basic model.

Stress-Strain Model Parameters
Strain Ductility Ratio

The effect that the strain ductility ratio Ry, of Eq. (10.12) has on the stress-strain
behavior of FCC sections predicted by the analytical stress-strain model introduced

herein are examined. The stress ratio-strain curves of the CFCC section of Case 1 is

plotted in Figure 10.29 and in Figure 10.30 for the RFCC section of Case 2.
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Figure 10.29 Axial stress-strain ratio curves of a circular concrete section confined by

(a) low and (b) high stiffness FRP jacket with various strain ductility

ratios.
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It is apparent in these figures that the strain ductility ratio R, of the proposed

analytical stress-strain model has a significant effect on the plastic region of the predicted

axial stress-strain ratio curve. The model predicts that as R increases, the normalized

plastic stress kcp at a given normalized plastic axial strain kép increases. This effect is

less pronounced as the strain ductility ratio Ry, of the model approaches the value of the
equi-biaxial confinement ductility ratio Rj. (i.e., as Ry, — Rp. =5.0) and as the FRP

jacket stiffness increases.

The analytical model forecasts that the shape of the analytical plastic stress-strain
curve of the FCC section can shift from that of section exhibiting a strain-softening
behavior to that of a section exhibiting strain-hardening behavior by increasing the strain

ductility ratio Ry, as shown in Figures 10.29 and 10.30.

The amount of strain-hardening is predicted to be independent of the FRP jacket
shape, aspect ratio, and stiffness. In order to accurately predict the shape of the uniaxial
stress-strain curve of the FCC section the model must adequately predict the value of the

strain ductility ratio R, of Eq. (10.11) for all the FCC jacket shapes considered in this

dissertation.
The following is a ranking of the parameters that were predicted to affect the
compressive behavior of FCC section the most:

1. The FRP jacket stiffness K ;,, which is affected by the jacket transverse modulus

je>
E ;, the jacket thickness 7, and the unconfined concrete compressive strength 1.,

2. The plastic dilation rate /4, , which depends on the FRP jacket stiffness K ;,
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3. The FRP jacket shape, which includes the effects of the section aspect ratio a,

and jacket corner aspect ratio @ ;

4. The strain ductility ratio Ry, of the FCC section, which affects the slope of the
plastic region of the FCC section and appears to depend on the FRP jacket shape

5. The pore water pressure parameter npy, which is affected by the type of FRP
jacket application, bonded (BFCC) or unbonded (CFFT) FRP jackets, and the degree
of saturation (moisture content) of the confined concrete core, which influences the
effective basic angle of internal friction ¢, of the concrete core.
This ranking will be demonstrated in the following comparison with experimental

tests of elliptical (EFCC), circular (CFCC), rectangular (RFCC), and square (SFCC),

FRP-confined concrete sections.

Comparison with Experimental Tests
The effectiveness that the proposed uniaxial stress-strain model has in predicting the

compressive behavior of the FCC section will depend on the model’s ability to predict the

effects that the concrete material properties such as initial modulus of elasticity E;,

initial Poisson’s ratio V,; and peak unconfined compressive strength f., and train &.,,

and effective basic angle of internal friction ¢j,, have on the stress-strain curve of the

FRP-confined concrete section.
Due to the analytical nature of the proposed model, it should be able to accurately

predict the effects that the FRP jacket properties, such as the FRP jacket stiffness K ;,

(including the plastic dilation rate W i) jacket aspect ratio @y, jacket corner aspect
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ratio @ ;, the FRP jacket shape (elliptical, circular, oval, square, or rectangular) and FRP

jacket construction, i.e., bonded (BFCC) or unbonded (CFFT) FRP jacket, have on the
compressive behavior of the FRP-confined concrete section.

The first goal of this dissertation as outlined in Chapter 3 was to develop an analytical
unified damage-based model for the analysis of rectangular, square, oval, circular, and
elliptical FCC sections that can capture their dilation and compressive behavior. This is
accomplished herein with the introduction of a minimal number of empirical curve-fitting

parameters, limited to three parameters:

1. The empirical plastic dilation f,,, of Eq. (7.23) which was determined from the

transverse dilation and axial deformation of CFFT and BFCC concrete cylinder

tests, as described in Chapter 7

2. The pore water pressure parameter npy, of Eq. (9.62) that was found to have an

average value of npy =59.0% for CFFT sections, determined from the analysis

of CFFT cylinder tests performed by Mirmiran (1997), as described in Chapter 9

3. The basic angle of internal friction ¢, of Eq. (9.40), a material property of

normal-strength normal-weight concrete, with an average value of ¢, =35° for

dry concrete, determined from the analysis of hydrostatically confined concrete
cylinder tests performed by Imran (1994), as described in Chapter 9.

In what follows, the results of the analytical uniaxial stress-strain model developed

herein are compared to the experimental stress-strain and dilation behavior of FRP-

confined concrete sections of different FRP jacket shapes, confined by FRP jacket of

varying stiffness, varying unconfined concrete compressive strength, varying section

aspect ratios @y, (EFCC and RFCC sections), varying jacket corner aspect ratios @ ;
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(RFCC and SFCC sections only), and different FRP jacket construction (bonded or
unbonded). The stress-strain model introduced in this dissertation has not been calibrated
to match the compressive stress-strain behavior or dilation behavior of the FCC sections
previously mentioned. This indicates that the model predictions are blind predictions of
the compressive and dilation behavior of the FCC sections considered in these
comparisons.

The predictions presented herein are based on the reported section and FRP jacket

geometry, the mechanical properties of the FRP jacket, i.e., jacket modulus £; and
thickness 7, and the unconfined concrete properties, i.¢., f.,. The initial modulus of

elasticity E.; = E., used in the analysis was selected to match the experimental
modulus. The unconfined peak compressive strain &, of Eq. (10.6) was determined
based on matching the experimental compressive stress in the FCC section at an axial
strain &, within the range of 0.0012<¢&,<0.0016. The unconfined curvature
parameter n,, was then calculated from Eq. (10.8) using the estimated initial modulus
E; and unconfined peak compressive strain £.,. This was done in order to ensure that
the influences that both £, and &., have on the predicted stress-strain behavior,

outlined in the parametric study and shown in Figures 10.12-10.17, are minimized in the

stress-strain curves predicted by the analytical model.

Circular FRP-Confined Concrete Sections
The compressive stress-strain behavior predicted by the analytical stress-strain model
is compared with the uniaxial compressive tests of circular concrete cylinders tests

confined by either bonded (BFCC sections) or unbonded (CFFT sections) FRP jackets
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performed by several investigators. The BFCC sections that are part of this comparison
include the tests performed by Picher et al. (1996), Xiao and Wu (2000), Rochette and
Labossiérre (2000), and Teng and Lam (2004) of medium-strength normal-weight
concrete cylinders confined by circular FRP jackets. The CFFT sections with FRP
jackets that are part of this comparison include the tests performed by Mirmiran (1997).

The results of the analytical model introduced herein are first compared to
experimental stress-strain behavior and dilation behavior of the concrete cylinder tests
perform by Xiao and Wu (2000). The CFCC section considered in this comparison is
specimen H3-3P-3. In Figure 10.31 the results of the analytical model are compared to
the axial stress-axial strain shown in the right-hand quadrant and axial stress-transverse
strain curve in the left-hand quadrant. From this figure it can be observed that the
analytical model can accurately predict the experimental compressive stress-strain
behavior.

In Figure 10.32 the analytical axial strain-absolute transverse strain curves predicted
by the transverse dilation model of Eq. (8.43) and pertinent terms introduced in Chapter 8
are compared to the experimental test results of specimen H3-3P-3. As can be observed
in this figure, the analytical transverse dilation model of Chapter 8 can accurately predict

the shape of the transverse dilation curve of this circular FCC cylinder test. In Figure

10.33 the analytical and experimental Poisson’s ratio V; of Eq. (7.33) is plotted versus

the axial and transverse strain of specimen H3-3P-3. In Figure 10.34 the analytical and

experimental dilation rate f; of Eq. (7.51) is plotted versus the axial and transverse

strain of specimen H3-3P-3, where the analytical dilation rate curve is that predicted by

Eq. (8.44).



368

Exp. H1-3P-3

- - — Analytical

e

80.0
60.0

" (BJIND) SSmS [BIXY

0.000 0.005 0.010 0.015
Axial Strain

-0.005

-0.010

Transverse Strain

Figure 10.31 Analytical and experimental axial stress versus axial and transverse strain

curves of concrete cylinder test specimen H3-3P-3 performed by Xiao and

Wu (2000).
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From these figures it can be observed that the analytical transverse dilation model of
Chapter 8 can accurately predict the shape of the Poisson’s ratio and transverse dilation
rate curves of cylindrical FRP-confined concrete sections. The experimental dilation rate
curve shown in Figure 10.34 is a smooth dilation rate curve that was developed from the
experimental data in order to minimize the noise introduced by the data acquisition
hardware used in these experiments.

Poisson’s ratio is the secant slope of the axial versus transverse strain curve, and the
dilation rate is the tangent slope of the axial versus transverse strain curve, as discussed in
Chapter 7. The Poisson’s ratio and dilation rate curves shown in Figures 10.33 and
10.34 are the secant and tangent slopes of the transverse dilation curve shown in Figure

10.32.

In Figure 10.35 the analytical and experimental volumetric strain &,,,; of Eq. (7.62)
is plotted versus the axial and transverse strain of specimen H3-3P-3. In this figure it can
be observed that the proposed analytical dilation model introduced in Chapter 8 can
accurately predict the shape of the volumetric strain curves of cylindrical FCC sections.
This figure demonstrates that the analytical model can accurately predict instant when

volumetric expansion begins to occur, i.e., when &,,,; 00 for £, >0. Zero volumetric

strain occurs when the volumetric strain curves cross the horizontal axis of Figure 10.35.

The analytical axial volumetric strain (5c ) o) can be found using Eq. (8.37), the

transverse volumetric strain (é‘ j) using Eq. (7.63), with the volumetric Poisson’s ratio

vol

(V j )vol evaluated using Eq. (7.66).
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transverse strain curves of concrete cylinder test specimen H3-3P-3

performed by Xiao and Wu (2000).
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A negative volumetric strain indicates that the FRP-confined confined concrete core
is experiencing volumetric contraction, whereas a positive volumetric strain indicates that
it experiences volumetric expansion.

In Figure 10.36 the analytical and experimental volumetric dilation rates ¢, of Eq.

(7.70) are plotted versus the axial and transverse strain of specimen H3-3P-3. The

experimental and analytical axial volumetric dilation rate (/. of Eq. (7.7.) is plotted on
the right-hand side of the vertical axis versus the axial compressive strain £.. In this

figure the transverse volumetric dilation rate j of Eq. (7.76) is plotted on the left-hand

side of the vertical axis versus the transverse jacket dilation strain £ ;. The experimental

j .
volumetric dilate rate curve shown in this figure is based on the smooth dilation rate

curve of Figure 10.34.

The axial volumetric dilation rate (/. is the average tangent slope of the volumetric

strain versus axial strain curve shown on the right-hand side of the vertical axis of Figure

10.36. In addition, the transverse volumetric dilation rate ¢/ ; is the tangent slope of the

volumetric strain versus transverse strain curve plotted on the left-hand side of the
vertical axial of Figure 10.36. From this figure it can be observed that the analytical
transverse dilation model of Chapter 8 can accurately predict the shape of the volumetric
dilation rate curves of cylindrical FRP-confined concrete sections.

In Figure 10.37 the analytical and experimental plastic strain ductility ratio R, of

Eq. (10.16) is plotted versus the axial and transverse strain of specimen H3-3P-3. In this
figure it can be observed that the proposed analytical stress-strain model can predict the

shape of the plastic strain ductility ratio R, curves of cylindrical FCC sections.
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Figure 10.36 Analytical and experimental axial and transverse volumetric dilation rate
curves of concrete cylinder test specimen H3-3P-3 performed by Xiao and

Wu (2000).



376

8.0 -
ke [
£ 6.0 +
2
g L
3
E 40 T
<
& L
L
% 20 1 Exp. H_3-3P-3
= —O— Analytical
0.0 ¢} . } - } - } - !
-0.010 -0.005 0.000 0.005 0.010 0.015
Transverse Strain Axial Strain

Figure 10.37 Analytical and experimental plastic strain ductility ratio versus axial strain
and transverse strain curves of concrete cylinder test specimen H3-3P-3

performed by Xiao and Wu (2000).



377

From analysis of the analytical and experimental curves shown Figures 10.31-10.37
it can be stated that the proposed incremental uniaxial stress-strain model can accurately
predict the experimental stress-strain behavior and transverse dilation behavior of FRP-
confined concrete cylinders.

The ability of the proposed stress-strain model in predicting the uniaxial compressive
stress-strain behavior and transverse dilation behavior of circular FRP-confined sections
is further demonstrated in the following comparisons with experimental tests of FRP-
confined concrete cylinders.

The compressive stress-strain behavior predicted by the proposed analytical model
introduced herein is compared to the experimental compressive stress-strain behavior of
the concrete cylinder tests performed by Picher et al. (1996) for specimens C-0 and C-12
in Figure 10.38.

Comparisons of the analytical model predictions with the experimental stress-strain
behavior of FRP-confined concrete cylinder tests performed by Xiao and Wu (2000) are
shown in Figures 10.39-10.41.

The analytical and experimental axial stress-transverse strain and axial stress-axial
strain curves plotted in Figure 10.39 are for the concrete cylinder tests results of low-
strength concrete specimens L1-1P-3 and L1-2P-3.

The stress-strain curves plotted in Figure 10.40 are the concrete cylinder tests results
and analytical predictions of medium-strength concrete specimens M1-2P-2 and M1-3P-
1. The stress-strain curves plotted in Figure 10.41 are the concrete cylinder tests results

and analytical predictions of high-strength concrete specimen H1-3P-1.
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Figure 10.38 Analytical and experimental axial stress versus axial strain curves of

concrete cylinder test specimen (a) C-0 and (b) C-12 performed by Pitcher

et al. (1996).
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Figure 10.40 Analytical and experimental axial stress versus axial strain curves of

medium-strength concrete cylinder test specimen (a) M1-2P-2 and (b) M1-

3P-1 performed by Xiao and Wu (2000).
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The first terms in the specimen designation indicates the concrete compressive
strength where L1 indicates low-, M1 medium-, and H1 high-strength concrete; the
second terms indicate the number of carbon FRP (CFRP) layers: 1P indicates one layer,
2P two layers, and 3P 3 layers; the third term indicates the specimen number in the tests
series. For a given concrete strength, an increase in FRP jacket thickness indicates an

increase in the FRP jacket stiffness K ;, of Eq. (4.18).

The effects that the increase in the FRP jacket stiffness has on the compressive
behavior of FRP-confined concrete cylinders are plotted in Figure 10.42 for the low-
strength concrete cylinders tests and in Figure 10.43 for the medium-strength concrete
cylinder tests. From these figures it can be observed that the proposed analytical model
can predict and capture the beneficial effects that an increase in the stiffness of the
confining FRP jacket has on the compressive behavior of cylindrical plain concrete
sections as is evidenced by the experimental results shown in Figure 10.42(a) and
10.43(a). The effects that an increase in compressive strength of the concrete core has on
the compressive behavior of FRP-confined concrete cylinders, having similar FRP jacket
stiffness, is investigated in Figure 10.44. The medium-strength concrete cylinder test
specimen M1-2P-2 is confined with an FRP jacket having an effective stiffness of

K, =30.4 and with K, =27.5 for the high-strength concrete cylinder test specimen

H1-3P-1.

Analysis of Figure 10.44(b) indicates that the proposed analytical stress-strain model
can capture the effects that the increase in the compressive strength of the concrete core
has on the compressive stress-strain behavior of cylindrical FRP-confined concrete

sections, as evidenced by the experimental results shown in Figure 10.44(a).



383

80.0 T
Y
. N
£ 600 T cx—E
= -0
= -
4 PN
B 400 1 -
S
»
< Exp. L1-1P-3
200 +
—A— Exp. L1-2P-3
0.0 : : : : : : : : : |
0.000 0.005 0.010 0.015 0.020 0.025
Axial strain (mm/mm)
(a)
80.0 T
o
5 600 T ~
By
=
wn
6
=]
7]
s
»
< = Ana. L1-1P-3
—A— Ana. L1-2P-3
00 A : : : : : : : : : |
0.000 0.005 0.010 0.015 0.020 0.025
Axial strain (mm/mm)
(b)

Figure 10.42 Axial stress-axial strain curves of low-strength concrete cylinder tests

performed by Xiao and Wu (2000) with FRP jackets of various

thicknesses: (a) experimental and (b) analytical.
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The plastic slopes of the axial stress-axial strain curves shown in Figure 10.44 are
essentially equal. This is because the specimens considered are confined by FRP jackets
having similar FRP jacket stiffness K ;. ; this is evidenced by the plastic slopes of both
the experimental and analytical stress-strain curves shown in Figure 10.44.

In Figure 10.45, the experimental compressive stress-strain behavior of the FRP-
confined concrete cylinder tests performed by Rochette and Labossiérre (2000) for
specimen C-100-2 is compared to the compressive stress-strain behavior predicted by the
proposed analytical model introduced herein.

The compressive stress-strain behavior predicted by the proposed analytical model
introduced herein is also compared to experimental stress-strain behavior of the FRP-
confined concrete cylinder tests performed by Teng and Lam (2004) in Figure 10.46.

These figures indicate that the proposed analytical model can accurately predict the
compressive behavior of circular concrete sections confined by both carbon (CFRP) and
glass (GFRP) FRP jackets, as shown in Figures 10.46(a) and 10.46(b), respectively.

In Figures 10.47 and 10.48, the compressive stress-strain behavior predicted by the
proposed analytical model introduced herein is compared to experimental compressive
stress-strain behavior of cast in place FRP tubes (CFFT) cylinder tests performed by
Mirmiran (1997).

These figures indicate that the proposed analytical model can accurately predict the

compressive behavior of cylindrical plain concrete sections confined by an unbonded

(CFFT) glass FRP jacket of low stiffness K je =22.1 of specimen DC-11 shown in

Figure 10.47(a).
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The specimen DC-21 that is confined by a moderate stiffness K ;, =36.6 FRP jacket

shown in Figure 10.47(b) and of specimen DC-31 that is confined by a high stiffness

K ;o =49.6 FRP jacket shown in Figure 10.48.

These figures show that the proposed analytical stress-strain model can accurately
predict the uniaxial stress-strain behavior of cylindrical plain concrete sections confined
by cast in place (CFFT) FRP jackets, typically referred to as unbonded FRP jackets.

The effects that FRP jacket construction has on the compressive behavior of FRP-
confined concrete is investigated in Figure 10.49. FRP jacket construction can be
surface-bonded FRP-confined concrete (BFCC) or it can be cast in place concrete-filled
FRP tubes (CFFT).

In this figure, the analytical axial stress ratio k. = f,./ f,, is plotted versus the axial
strain ratio kg = €./, of the FRP-confined concrete cylinder specimen M1-2P-2
tested by Xiao and Wu (2000) is compared to the analytical curve of the FRP-confined
concrete cylinder specimen DC-11 tested by Mirmiran (1997) that is confined by a cast in
place (CFFT) FRP tube.

These concrete cylinder tests were selected since they are confined by an FRP jacket

having an identical stiffness; specimen M1-2P-2 has an effective stiffness of K ;, =22.5,

and specimen DC-11 has K ;, =22.1.

From analysis of Figure 10.49 it can be observed that at a given plastic axial

compressive strain, i.e., when kg >>1.0 or &.>>¢ the bonded FRP-jacketed

co>
cylindrical concrete section exhibits a greater increase in compressive strength, i.e., an

increase in strain energy, than a cast-in-place FRP-jacketed section.
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cylinders confined by cast in place FRP jacket (DC-11) tested by
Mirmiran (1997) and by bonded (MP-2P-2) FRP jacket tested by Xiao and

Wu (2000) that are confined by similar stiffness FRP jackets.
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For a given axial plastic compressive stress for which kg >>1.0 or £, >>¢,,, the

co>
cast-in-place (CFFT) FRP jacketed section exhibits a significant increase in plastic
compressive strain, i.e., an increase in strain ductility, when compared to that experienced
by the bonded (BFCC) FRP-jacketed section. As a result, for new construction, a cast-in-
place concrete-filled FRP tube (CFFT) construction may be warranted when an increase
in strain ductility is the desired feature in the FRP-confined concrete section.

For existing or new cast-in-place concrete sections, surface-bonded (BFCC) FRP
jacket construction can provide a significant increase in strength and ductility. Care must
be taken when selecting the required FRP jacket thickness or stiffness, since low stiffness
FRP-jacketed sections can experience premature jacket rupture due to stress
concentrations at the jacket-to-concrete interface, as a result of the axial strain-induced
transverse dilation of the confined concrete core.

The difference in behavior between BFCC and CFFT can be attributed to the
presence of excess pore water in the FRP-confined concrete core. For the case of BFCC
sections, the FRP-wrapped concrete is typically allowed to dry to its natural moisture
content.

For CFFT sections the cast-in-place FRP jacket serves as a barrier against evaporation
of the nonhydrated water (i.e., bleed water) which can remain in suspension in the
concrete mix and often becomes trapped within the voids of the concrete’s structure. The
presence of pore water has a significant weakening influence on the strength of the
concrete material, which is a result of an increase in the pore water pressure, which acts
against the concrete’s internal structure and weakens the effectiveness of the concrete

core in sustaining the applied load.
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An increase in the pore water pressure results from an increase in the passive
confining stresses provided by the restraining elastic FRP jacket as dilation of the
confined concrete core progresses; this weakening effect increases as the passive
confining stress provided by the retraining FRP jacket increases (Imran 1994).

As demonstrated in Figures 10.31-10.49 the proposed uniaxial stress-strain model for
FRP-confined concrete sections can accurately capture the essentially bilinear
compressive stress-strain behavior that circular FRP-confined concrete sections
experience throughout entire axial compressive loading or deformation. The bilinear
behavior of the FRP-confined concrete section is a result of the constant kinematic
restraint that is provided by the confining elastic FRP jacket, which curtails the transverse
dilation of the confined concrete core.

As established in the parametric study [refer to Figure 10.22] and as supported by the
experimental evidence introduced herein, as shown in Figures 10.42-10.44, an increase

in the FRP jacket stiffness K ;, of Eq. (4.14) can result in an increase in strain ductility

and in strain energy. In addition, for FRP-confined concrete sections experiencing strain-
hardening behavior, the plastic slope of the stress-strain curve is proportional to the FRP
jacket stiffness as indicated in the parametric study, as demonstrated in Figure 10.22 and
as supported by the experimental evidence in Figures 10.42-10.44.

In what follows, shape effects are considered in the comparison of the proposed
analytical model with the experimental compressive behavior of elliptical (EFCC),
circular (CFCC), rectangular (RFCC), and square (SFCC) FRP-confined concrete

sections.
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Elliptical FRP-Confined Concrete Sections

The compressive stress-strain behavior predicted by the proposed analytical stress-
strain model is compared with the uniaxial compressive tests of plain elliptical FRP-
confined concrete (EFCC) tests confined by bonded (BFCC) FRP-jackets performed by
several investigators. These include compressive tests of normal-strength normal-weight
EFCC sections performed by Teng and Lam (2002) and shape-modified rectangular
concrete sections confined by elliptical FRP jackets performed by Yan (2005).

In Figures 10.50-10.53, the compressive stress-strain behavior predicted by the
proposed analytical model introduced herein is compared to experimental stress-strain
behavior of elliptical FRP-confined concrete sections performed by Teng and Lam
(2002).

The stress-strain curves shown in Figure 10.50 correspond to the series I tests of
circular (a/b=1.0) and elliptical (a/b=5/4) FRP-confined concrete sections, shown in
Figure 10.50(a) and (b), respectively.

The stress-strain curves shown in Figure 10.51 correspond to the series II tests of
circular (a/b=1.0) and elliptical (a/b=5/4) FRP-confined concrete sections, shown in
Figure 10.51(a) and (b), respectively.

The stress-strain curves shown in Figure 10.52 and Figure 10.53 correspond to the
series V tests of circular (a/b=1.0) and elliptical (a/b=5/4) and (a/b-5/3) FRP-confined
concrete sections, shown in Figure 10.52(a), (b), and Figure 10.53, respectively.

From Figures 10.50-10.53, it can be observed that the proposed analytical stress-
strain model can accurately predict the uniaxial stress-strain behavior of elliptical

concrete sections confined with elliptical FRP jackets.
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elliptical concrete section tests performed by Teng and Lam (2002).
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The model also accurately predicts the effects that the elliptical FRP jacket aspect

ratio ag; of Eq. (4.2) has on the uniaxial compressive behavior of elliptical FRP-

confined concrete sections.
The designation a/b of the elliptical specimens tested by Teng and Lam (2002), as
shown in Figures 10.50-10.53, refers to the aspect ratio of the elliptical FRP-confined

concrete section g, = H,./B,. of Eq. (4.2), with H,. =2a and B, =2b.

In Figure 10.54 and 10.55, the compressive stress-strain behavior predicted by the
proposed analytical model introduced herein is compared to the experimental stress-strain
behavior of shape-modified rectangular concrete sections confined by carbon and glass
elliptical FRP jackets performed by Yan (2005).

The stress-strain curves shown in Figure 10.54 correspond to the shape-modified
square concrete section confined by a circular carbon FRP jacket, as shown in Figure
10.54(a), and a shape-modified rectangular concrete section with an aspect ratio of

Qg =3.0 confined an elliptical carbon FRP jacket, as shown in Figure 10.52(b).

The stress-strain curves shown in Figure 10.55 correspond to the shape-modified
square concrete section confined by a circular glass FRP (GFRP) jacket, as shown in
Figure 10.55(a) and a shape-modified rectangular concrete section with an aspect ratio of
g, =3.0 confined by an elliptical glass FRP (GFRP) jacket, as shown in Figure
10.55(b). From these figures it can be observed that the proposed analytical stress-strain

model can accurately predict the uniaxial stress-strain behavior of shape-modified

rectangular and square sections confined by elliptical FRP jackets.
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Figure 10.54 Analytical and experimental axial stress-axial strain curves of (a) square
and (b) rectangular shape-modified concrete sections confined by carbon

elliptical FRP jackets performed by Yan (2005).
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As shown in Figures 10.54-10.55, the proposed analytical model can predict the

effects that the FRP jacket aspect ratio a;, of Eq. (4.2) has on the uniaxial compressive

behavior of shape-modified rectangular (SMR) (including square) sections confined by
shape-modifying elliptical (ESM) and circular (CSM) FRP jackets.

Analysis of Figures 10.50-10.55 indicates the proposed analytical model can predict
the uniaxial compressive stress-strain behavior of elliptical FRP-confined concrete
sections, be it surface-bonded FRP jacket construction (Teng and Lam 2002) or
prefabricated circular or elliptical FRP jacket used as a cast-in-place FRP form that shape
modifies rectangular (including square) sections (Yan 2005). Also, these figures
demonstrate that the proposed analytical model can predict the FRP jacket’s aspect ratio
effects on the uniaxial compression behavior of EFCC sections, as was demonstrated in
the parametric study of Figure 10.23 and supported by the experimental evidence, as

shown in Figures 10.48-10.53.

Square FRP-Confined Concrete Sections

The compressive stress-strain behavior predicted by the proposed analytical stress-
strain model is compared with the uniaxial compressive tests of plain square FRP-
confined concrete (SFCC) tests confined by bonded (BFCC) and unbonded (CFFT) FRP-
jackets with rounded corners performed by several investigators. These include
compressive tests of SFCC sections with bonded carbon FRP (CFRP) jackets performed
by Rochette and Labossiérre (2000), Lam and Teng (2003b) and SFCC sections with
cast-in-place (CFFT) rectangular glass FRP (GFRP) jackets performed by Mirmiran et

al. (2000).
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The compressive stress-strain behavior predicted by the proposed analytical model
introduced herein is compared to the experimental stress-strain behavior of 152 mm
square FRP-confined concrete sections performed by Rochette and Labossiérre (2000) in
Figure 10.56.

The stress-strain curves plotted in Figure 10.56(a) are for a 152 mm square specimen
with rounded corners having an average radius of 5 mm, with a jacket corner aspect ratio

a; of Eq. (4.4), of a; =3.3%, whereas the stress-strain curve of Figure 10.56(b)

corresponds to a square section with 38 mm corner radius, with a jacket corner aspect

ratio of a;= 25.0%.

In Figures 10.57-10.58, the compressive stress-strain behavior predicted by the
proposed analytical model introduced herein is compared to the experimental stress-strain
behavior of 152 mm square FRP-confined concrete sections with rounded corners,
performed by Lam and Teng (2003b).

In Figure 10.57, the compressive stress-strain behavior predicted by the proposed
analytical model introduced herein is compared to the experimental stress-strain behavior
of 152 mm square sections confined by a single layer carbon FRP (CFRP) jacket with a

corner radius of 15 mm corner radius (& ; =9.9 %), as shown in Figure 10.57(a), and 25
mm corner radius (& j =16.5%), as shown in Figure 10.57(b).

In Figure 10.58, the analytical and experimental stress-strain curves of a 152 mm
square section confined by a double layer carbon FRP (CFRP) jacket with a 15 mm

corner radius (@ ; =9.9 %) are shown.
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Figure 10.56 Analytical and experimental axial stress-axial strain curves of square FRP-
confined concrete sections with corners having a radius of (a) 5 mm and

(b) 38 mm performed by Rochette and Labossiérre (2000).
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The stress-strain curves shown in Figures 10.56-10.58 indicate that analytical model

can accurately predict the effects that an increase in the jacket corner aspect ratio @ ; of

Eq. (4.4) has on the uniaxial compressive behavior of square (SFCC) sections, as was
demonstrated in Figure 10.25.

In Figures 10.59 and 10.60, the compressive stress-strain behavior predicted by the
proposed analytical model is compared to the experimental stress-strain behavior of 152
mm square concrete filled FRP tube (CFFT) sections, with 6.35 mm corner radius

(a; =4.2%), performed by Mirmiran et al. (2000).

The experimental stress-strain curves of the square concrete sections confined by a
single- and double-layer bonded (BFCC) carbon FRP (CFRP) jacket, shown in Figure
10.61(a), are compared to the analytical stress-strain predictions shown in Figure
10.61(b) of the tests performed by Lam and Teng (2003b). In these figures it can be
observed that the proposed stress-strain model can accurately predict that the stress-strain
behavior of FCC sections having identical geometries can change from that of a section
exhibiting a strain-softening behavior to that exhibiting strain-hardening as the FRP

jacket stiffness K je of Eq. (4.18) increases.

The experimental stress-strain curves of the square CFFT concrete sections confined
by a 6 ply and 10 ply GFRP jackets performed by Mirmiran et al. (2000), shown in
Figure 10.62(a), are compared to the analytical stress-strain shown in Figure 10.62(b).
These figures show that the proposed analytical stress-strain model can predict the effects

that an increase in the FRP jacket stiffness K ;. has on the compressive behavior of

square CFFT concrete sections with identical section geometries.
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Figure 10.59

Analytical and experimental axial stress-axial strain curves of square
(CFFT) concrete section confined by a (a) 6 ply and (b) 10 ply glass FRP

jacket, performed by Mirmiran et al. (2000).
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Figure 10.60 Analytical and experimental axial stress-axial strain curves of square
(CFFT) concrete section confined by a 14 ply glass FRP jacket, performed

by Mirmiran et al. (2000).
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Figure 10.61 Axial stress-axial strain curves of square (BFCC) concrete section

confined with carbon FRP jackets of varying thickness, performed by Lam

and Teng (2003b): (a) experimental and (b) analytical.
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Figure 10.62 Axial stress-axial strain curves of a square (CFFT) concrete section

confined by glass FRP jackets of varying thickness, performed by

Mirmiran et al. (2000): (a) experimental and (a) analytical.
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In Figures 10.61 and 10.62 it is demonstrated that the proposed analytical model

accurately predicts that an increase in the FRP jacket stiffness K j, results in an increase

in the peak and ultimate compressive stresses and strains in the square FCC sections, as
was demonstrated in the parametric study of Figures 10.22 and 10.23 and supported by
the experimental evidence, as shown in Figures 10.61 and 10.62.

Analysis of Figures 10.59-10.62 indicates that the effects that an increase in FRP
jacket stiffness has on the compressive behavior of square FCC section is independent of
the FRP jacket construction, be it bonded (BFCC) or unbonded (CFFT) FRP-confined

concrete sections.

Rectangular FRP-Confined Concrete Sections

The compressive stress-strain behavior predicted by the proposed analytical stress-
strain model is compared with the uniaxial compressive tests of plain rectangular FRP-
confined concrete (RFCC) tests confined by bonded (BFCC) FRP-jackets with rounded
corners performed by Lam and Teng (2003b).

In Figure 10.63, the compressive stress-strain behavior predicted by the proposed
analytical model introduced herein is compared to the experimental stress-strain behavior

of 152 mm x 255 mm, i.e., @, =1.68, rectangular FRP-confined concrete sections with
rounded corners having a corner radius of 15 mm (a; =6.7%), plotted in Figure
10.63(a), and 25 mm (a ; =11.1%), plotted in Figure 10.63(b). The stress-strain curves

shown in Figure 10.63 indicate that the proposed analytical model can predict the effects

that an increase in the jacket corner aspect ratio @ ; of Eq. (4.4) has on the uniaxial

compressive behavior of rectangular (RFCC) sections.
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Figure 10.63 Analytical and experimental axial stress-axial strain curves of rectangular

concrete sections confined by carbon FRP jacket with (a) 15 mm and (b)

25 mm corner radius, performed by Lam and Teng (2003b).
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The proposed model accurately predicts the effects that an increase in the FRP jacket

stiffness K ;, of Eq. (4.18) has on the compressive behavior of the rectangular FRP-

confined concrete sections previously mentioned.
For rectangular (RFCC) and square (SFCC) FRP-confined concrete sections the

model accurately predicts that an increase in the jacket corner aspect ratio a; can

significantly improve the uniaxial compressive behavior of these FRP-jacketed shapes by
increasing both the strain energy and strain ductility of the section. An increase in the

jacket corner aspect ratio & ; in RFCC and SFCC sections has many beneficial effects.

. results in an increase in the

For any RFCC section aspect ratio @y, an increase in @

confining efficiency k, of Eq. (4.8), summarized in Table 4.1. For a given RFCC or

SFCC section geometry rounding of the corners also increases the effective FRP jacket

stiffness K ;. of Eq. (4.18), as shown by the effective jacket transverse stiffness (C je )sh

of Eq. (4.14) and the reinforcement ratio coefficient Cg;, of Eq. (4.17), summarized in
Table 4.2.

For rectangular (RFCC) and elliptical (EFCC) FRP-confined concrete sections the
model accurately predicts the effects that the section aspect ratio a; has on the uniaxial
compressive behavior of these FRP-jacketed shapes.

In order to attain similar performance as a square (SFCC) FRP-confined concrete
section in a rectangular (RFCC) section, the RFCC section requires an increase in the
thickness ¢ j of the FRP jacket and/or an increase in the jacket corner aspect ratio a s
which in a reinforced concrete section is limited to small corner radius due to the

presence of corner bars and transverse steel reinforcing.
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The use of rectangular FRP jackets should be limited to small section aspect ratios, in

the range of 1.0 < a; < 2.0, while maximizing the jacket corner aspect ratio & ;. The

-
use of large aspect ratio rectangular jackets, i.e., for a;, > 2.0, with small corner radius,
is not recommended, since premature rupture of the FRP jacket can occur due to stress
concentrations near the corners of the RFCC section. In addition, for large aspect ratio
rectangular FRP jackets, the jacket experiences an increase in the transverse dilation of
the confined concrete core along the major dimensions of the rectangular jacket, as
compared to the dilation that occurs along the minor dimension; this is reflected in the
transverse strain ratio az of Eq. (6.19).

In order to increase the effectiveness of the confining FRP jacket in a rectangular or
square concrete section, the section can be shape-modified to be confined by either
elliptical (rectangular sections) or circular (square sections) FRP jackets, as was
demonstrated by Yan (2005).

In order to attain similar performance as a circular (CFCC) FRP-confined concrete
section from an elliptical (EFCC) section, the EFCC section requires an increase in the

FRP jacket thickness ;. The use of elliptical FRP-confined concrete sections limited to

small jacket aspect ratios @, , in the range of 1.0 < a;, < 2.0, is recommended.

The transverse dilation of the elliptical and rectangular FRP jackets is proportional to

the section aspect ratio; this is reflected in the transverse strain ratio @, of Eq. (6.19) and
the jacket shape-dependent angles 8, and &, summarized in Table 5.2. In addition, the

confinement effectiveness k.. of the FRP jacket decreases significantly as the aspect
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ratio g, of the rectangular and elliptical FRP jacket increases; this is reflected in the
principal stress ratio a, of Eq. (9.102).

The confined concrete within the elliptical or rectangular jackets having high aspect
ratios experiences a small increase in stress, as the state of stress in the confined concrete
cores approaches that of concrete in a biaxial compression state of stress. The smaller the

aspect ratio g, of the FRP jacket, the more effective the jacket is in confining the

concrete core, since at low aspect ratios, the state of stress of the confined concrete
approaches that of concrete in a triaxial compression state of stress due to a more uniform
biaxial confinement provided by the FRP jacket. This occurs as the shape of the FRP
jacket approaches that of a square jacket in RFCC sections or a circular jacket in EFCC
sections.

For FRP-confined concrete sections having identical FRP jacket stiffness K ;, and

concrete material properties, the proposed analytical model predicts that the most
effective FRP jacket shape is a circular (CFCC) FRP-jacketed section, since the confined
concrete core in a circular section is subjected to uniform biaxial confinement. The
second most effective jacket shape is an elliptical (EFCC) jacketed section with low to

moderate aspect ratios, i.e., 1.0<ag, <2.0, followed by a square (SFCC) jacketed

section; the least effective FRP jacket shape is a large aspect ratio rectangular (RFCC)

FRP jacket section with small corner radius.



CHAPTER 11

PERFORMANCE-BASED DESIGN OF FRP JACKETS
FOR PLASTIC HINGE CONFINEMENT

OF CONCRETE COLUMNS

The encasement of concrete in fiber reinforced polymer (FRP) composite jackets can
significantly increase the compressive strength and strain ductility of reinforced concrete
columns, and the structural system the columns are part of, be it a building or a bridge.
Analysis and design of FRP-confined concrete members require an accurate estimate of
the performance enhancement due to the confinement provided by FRP composite
jackets. An analytical design procedure is presented herein for predicting the behavior of
reinforced concrete columns confined with either bonded FRP-confined concrete (BFCC)
sections or concrete-filled FRP tubes (CFFT) or unbonded FRP composite jacketed
sections.

This chapter describes the use of the damage-based uniaxial stress model for plain
FRP-confined concrete introduced in Chapters 1 through 10 that is incorporated into a
performance-based design procedure for determining the mechanical properties of the
FRP jacket required to achieve a target performance during a seismic event.

Rehabilitation of existing concrete structures using advanced FRP composite
materials is gaining attention due to the need for repair of the existing infrastructure.

Rehabilitation is undertaken either for strengthening or upgrading the seismic
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performance of existing reinforced concrete buildings and bridges to significantly
improve their axial and flexural behavior during a seismic event. In particular, buildings
and bridges that were designed using outdated and inadequate seismic codes can benefit
significantly from seismic retrofit using FRP composites.

The use of advanced FRP composite materials for improving the shear strength and
ductility capacity of reinforced concrete members, in particular the use of confinement
systems utilizing FRP composite jackets, has become a popular structural retrofit option
for the design engineer in regions of high seismicity (Pantelides et al. 1999, 2001).
Considerable research has been carried out on the use of FRP composite jackets for
seismic retrofit of reinforced concrete columns and bridge systems (Saadatmanesh et al.
1994, Seible et al. 1997, Xiao and Ma 1997, Pantelides et al. 1999, 2001, Ozbakkaloglu
and Saatcioglu 2006, 2007), for improving the flexural behavior of structural members
(Haragli 2005, Binici and Mosalam 2007, Mosalam et al. 2007), and for improving axial
compressive behavior of structural members (Demers and Neale 1999, Mathys et al.
2005, Tastani et al. 2006, Eid et al. 2008, 2009).

The presence of FRP composite jackets within the plastic hinge region of a reinforced
concrete beam-column element can induce the development of ductile flexural behavior,
while inhibiting premature lap splice, anchorage, or shear failure of a reinforced concrete
column; this type of behavior is desirable for concrete sections subjected to cyclic lateral
loads such as those that occur in a seismic event.

Seible et al. (1995, 1997) introduced a strain energy-based design procedure for the
plastic hinge confinement of reinforced concrete columns that utilizes the Mander et al.

(1988) strain energy model for steel-confined concrete. Monti et al. (2001) introduced a
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multivariate regression analysis-based upgrading index design procedure that utilizes the
Mander et al. (1988) confinement model and the Pantazopoulou (1995) dilation and
stress-strain model for the design of FRP jackets for plastic hinge confinement of
reinforced concrete columns.

In the analytical design procedure introduced in this dissertation, the performance
enhancement in compressive strength and strain ductility of FRP-confined concrete is
expressed in terms of the internal damage-based stress-strain model previously
introduced in Chapter 10. In addition, the design methodology introduced herein will
expand upon the concept of upgrading indexes, introduced by Monti et al. (2001). Unlike
the FRP jacket design procedures presented by Seible et al. (1995, 1997) and Monti et al.
(2001), no immediate consideration is given to the unknown increase in compressive
strength due to the passive confinement provided by the confining elastic FRP jacket.
The design approach presented herein is different in that it is based on the strain ductility
increase provided by the confining FRP jacket and is thus a strain-based approach using
performance-based design principles.

The objective of the design procedure proposed herein is to find a series of
relationships for the mechanical properties of FRP jacket (i.e., jacket thickness and FRP
material type) required for upgrading the performance of reinforced concrete structures in
areas of high seismicity by improving their ductile behavior by means of confinement of
the plastic hinge region. In this procedure, no consideration is given to the additional
confinement and enhanced strain ductility provided by the available hoop reinforcement.
This can be justified because in many areas, corrosion damage of hoop reinforcement can

be at such an advanced stage (Pantelides et al. 1999, 2001), and depending on the
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building period, the spacing and arrangement of the transverse steel are such that their
contribution can be ignored (Demers and Neale 1999).

An as-built reinforced concrete column or a new reinforced concrete column with a
minimal transverse steel reinforcement of a given length L. in single (Figure 11.1) and
double (Figure 11.2) curvature bending are considered.

The displacement ductility of the as-built column (,uA ) o €an be found by performing
a moment-curvature analysis of the reinforced concrete cross section. Assuming a

bilinear behavior, in which linear elastic behavior occurs up to the stage of first yield and

that plastic behavior (rotation) is concentrated at the center of the plastic hinge (Priestley

and Park 1987), as shown in Figures 11.1-11.3, the displacement ductility, (,UA ) x> OF
the as-built column within a rigid system can be approximated by:
A A, 1 Ap
(Iu ) = =% :1+—=A +—[(/,I¢) —1] 3A [1_ (111)
& lex [Ay }ex A - Co “ 3 20
® ®
(,Uqa)ex:(q)”J =1+(¢—pJ (11.2)
y ex y ex
M
)lex=[ ”J (11.3)
M)’
ex
L
A, =L 11.4
g [Lc ] (4
L
Cop =— (11.5)
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where Cg 1s the column curvature coefficient, L. is the column clear span, and
L, = M/V is the column shear span; for single curvature bending Cqp =1.0, and for
double curvature bending Cq =0.50. In addition, (1) o 18 the ultimate displacement
ductility factor of the as-built column; (Au ) o 18 the analytical maximum displacement of

the as-built column corresponding to either crushing of the concrete core or the
displacement corresponding to a 20% reduction in lateral load capacity from the

maximum value, whichever is less; (A y )ex is the analytical yield displacement of the as-

built column; (,uq, ) o 18 the ultimate curvature ductility factor of the as-built column; and

Aex 1s the moment capacity ratio of the as-built column; (M and (M u ) o are the

y )ex
yield and ultimate moment capacity of the as-built column, respectively. Also, (CDM) is

ex

the analytical maximum curvature of the as-built column section; (CD y )ex is the analytical
yield curvature of the as-built column section; L, is the analytical length of the plastic

hinge; and A, is the normalized plastic hinge length given by Panagiotakos and Fardis

(2001):

L
A, :[L—”J:o.lch, +0.0l4as[ (11.6)

c

S yedbl ]
LC’

where ), and dp,; are the expected yield strength and bar diameter of the longitudinal

steel reinforcement, respectively; a; is the reinforcing slippage coefficient, where

ag =1.0 if slippage in the plastic hinge region is possible, and a¢ =0. Otherwise, the

use of a; =1.0 is recommended herein.
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A reinforced concrete column of a given length L. with a flexible-base in single
(Figure 11.4) and double (Figure 11.5) curvature bending are considered. Using the
moment-curvature curve of Figure 11.3 and the load displacement curves of Figure 11.6,

the displacement ductility of the as-built column (/lAf) in a flexible structural system

ex

can be found in terms of the rigid-base displacement ductility (,uA ) or Of Eq. (I1.1)as

follows:

JAg A
(//A.f')ex:(Auj] =1+[Aif] =1+ [(a),.. 1] (11.7)
W) ox W) ox
Ayp =By + D (11.8)
Apr =Bp +8 s (11.9)
Ag =Aps+Aes (11.10)
1+ 008
C, = Bp _T+epce (11.11)
1+% 1+Ce
A,
Agg /]ex_l
Co=—8 ; c,= & 11.12
Ay (#n ),y —1 ( )

where (Auf )ex is the ultimate displacement of the as-built column in a flexible system;

Ay is the yield displacement of the as-built column in a flexible system that is divided

into the column yield displacement A, and the elastic displacement due to system

flexibility A,, of Eq. (11.8).



427

Moments Curvatures

Displacements

Figure 11.4 Plot of moment, curvature, and displacement diagrams of a cantilevered

reinforced concrete element with flexible-base.



428

Moments Curvatures

7 7 7 77 7 7 7

V 7 7 7 7 7 7 7 7
u

Displacements

2
s,

Figure 11.5 Plot of moment, curvature, and displacement diagrams of a reinforced

concrete element in double curvature with flexible-base.



429

Transverse
Shear

—

y
Ayf

\
\
\
\
- i
A Displacement
A u

AW

Figure 11.6 Comparison of typical bilinear load displacement curves of a typical

reinforced concrete element with rigid and flexible-base.



430

In addition, A, is the plastic displacement of the column in a flexible system that is
divided into the column plastic displacement A, and the plastic displacement due to

system flexibility A, ; of Eq. (11.9). Also, A, is the displacement due to system

ps

flexibility that is divided into an elastic A, and a plastic A ¢ displacement component,

as given in Eq. (11.10). These displacements components are shown graphically in
Figure 11.6.

The C; term in Egs. (11.7) and (11.11) is a system flexibility coefficient that

accounts for the elastic flexibility of the existing structure (i.e., soil-structure interaction,
beam-column connection, beam flexibility, footing-column connection, etc.), where

typically 0.68 < C, <1.0. A flexibility coefficient of C; =1.0 indicates a rigid support
(e, Agg =A ) =0); the lower bound flexibility coefficient Cy =0.68 corresponds to
an as-built column with a low ductility capacity for which (,UA ) ex =20, and a low
moment capacity ratio for which A,, =1.05, with an elastic deformation of the system
A,; that accounts for one-half of the overall elastic deformation A v (i.e.,
Co =Dy /A yr =0.50). The term ¢, represents the ratio of the percentage increase in
flexural capacity versus the plastic displacement ductility 1, =4, /A y of the as-built

column.
In what follows, a rehabilitation design methodology is proposed for a rigid-base
system which is modified to include the effects of system flexibility on the displacement

demands imposed on the existing reinforced concrete column, during a seismic event.
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Upon reviewing the as-built drawings, taking into consideration the period of
construction and performing a sectional analysis of the existing reinforced concrete
column, the design engineer can recognize that the existing column has inadequate
ductile capacity, for which (,UA ) ox <2.0. It is then established that upgrading of the
existing column may be required to achieve a desired level of performance during a

seismic event. Thus by selecting a given target ultimate displacement ductility (/JA )up

of the column to achieve a ductile performance during a seismic event, the design

engineer can establish a target displacement upgrading index /, that is defined as:

Ip = lkn)y (11.13)
(:UA)ex
A i 0.50.
(), ={ﬁ] = Aup +a[(ﬂcp)up -1] 3/1p(1- pj (11.14)
up
—_ MU
A -{My l{p (11.15)
(0]
(o), = [‘D—ZL (11.16)

where (Au ) up target maximum displacement of the FRP-upgraded column corresponding

to either crushing of the concrete core at fracture of the FRP jacket, or the displacement
corresponding to a 20 % reduction in lateral load capacity from the maximum value,

whichever is less; (A y )up analytical yield displacement of the FRP-upgraded column;

and A, is the moment capacity ratio of the as-built column; (M y )up and (M u )up are
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the yield and ultimate moment capacity of the FRP-upgraded section, respectively. Also,

(CDu )up and (CD y)up of Eq. (11.16) are the analytical ultimate and yield curvature of the

rigid-base FRP-upgraded section, respectively.

As was established by Monti et al. (2001) and verified herein, at low curvatures, the
presence of the FRP jacket does not significantly affect the analytical yield curvature,
yield displacement, or yielding moment capacity of the reinforced concrete column,

which indicates that (P y)up Ofe,) . (& y)up 0fa,) . and (M, )up O(m,) . Asa
result, the selected target displacement of the FRP-upgraded column (Au )up of Eq.

(11.14) is given by:

A 1 0.501
(tn)y, =| 2| =Ny +—[(ﬂq>)u —1] 30, 1-——F (11.17)
P A Co P Co
Y Jup
A, = P -1 (11.18)
" (Mu)ex Aex

where A, is the ultimate moment capacity ratio of the FRP-upgrade column, this ratio

represents the increase in moment capacity of the FRP-upgraded column. Depending on

the effective stiffness of the confining FRP jacket K je of Eq. (4.18), /\up of Eq. (11.18)

is in the range of 1.0 <A, <1.50, with A, =1.50 corresponding to a concrete column

confined by a high stiffness FRP jacket, and A, =1.0 when no upgrade is provided.

In order to account for the flexibility of the system, the target displacement upgrading

index of the flexible system /s is given by:
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Y )u,,

Ipr =

Of m (11.19)

A
(/fAf)up:[ L

Ayf

J =1+Cy [(ﬂa)up —1] (11.20)
up

where (,uAf )up is the displacement ductility of the upgraded column in a flexible system.

Using the target displacement upgrading index of the flexible system /5, of Eq. (11.19),

the displacement ductility of the existing flexible system (,uAf) of Eq. (11.6) and the

ex

displacement ductility of the upgraded column (,uAf )up of Eq. (11.20) and solving for the

target displacement ductility of the upgraded column (,UA )up of Eq. (11.14) yield:

A, In —1
(ﬂA)up{ﬁJ :l+]Af[(/JA)ex_1]+( Aés J (11.21)
up

Substituting the displacement ductility of the existing rigid-base column (,uA ) o OF

Eq. (11.1) into the displacement ductility of the existing flexible system (,uAf) of Eq.

ex

(11.6) and solving for the curvature ductility of the existing column (/Jq, ) o Yield:

(o), :(&j =1+(C¢j Cs(l_/]ex)"'[(luA)ex _1] (11.22)
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Solving for the target curvature ductility of the upgraded column (,uq, )up in Eq.

(11.17) yields:

(ucp)up:(&] =1+(C¢j bl =1 (11.23)

0.501
AP(I— pj
Co

where in the above relationship the displacement ductility of the upgraded column

(,uA )up of Eq. (11.21) is substituted into (11.23). This indicate that the target curvature
ductility of the FRP-upgraded column (,uq, )up can be obtained in terms of the selected
displacement upgrading index of the flexible system /5s of Eq. (11.19) and the

displacement ductility of the as-built column (,UA ) o Of Eq. (11.1), which is determined
from a nonlinear section analysis of the existing column.
Once the target displacement upgrade index of the flexible system /p I of Eq.

(11.19) is selected to achieve a given target displacement ductility (/JA )up of the column,

a curvature upgrading index /g, of the reinforced concrete column can be determined

using Eqs. (11.22) and (11.23)as follows:

(o), @ui®y) _ Eq.(11.23)
(o)., (q;u/qu) Eq.(11.22)

ex

(11.24)
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The previous target curvature upgrading index /¢ is determined based on the target

displacement upgrading index [ Af of Eq. (11.19). Using the assumptions of plane

sections remaining plane and considering that at yielding (GJ y )up U (GJ y )ex , the curvature

upgrading index /¢ of Eq. (11.24) can be further simplified as:

Ip = = = (11.25)

where (Ecu) and (cu) are the ultimate compressive strain and neutral axis depth of

ex ex
the as-built column, respectively, which are known quantities determined by the design

and (cu ) are

engineer during a sectional analysis of the as-built section. Also, (Ecu) up

up
the target ultimate compressive strain and neutral axis depth of the FRP-upgraded
column, respectively, which are unknown properties of the FRP-upgraded column.

Solving for the unknown ultimate curvature ((Du )up of the FRP-upgraded section in Eq.

(11.25) yields:

gcu —_ gcu
(—cu J —Icp( ., ] (11.27)
up ex

On the left-hand side of Egs. (11.26) and (11.27) are the unknown target ultimate

compressive strain (é‘cu) and neutral axis depth (cu )u » of the FRP-upgraded column.

up

and (cu) are

On the right-hand side of these equations, the known parameters (Ecu) ox

ex



436
determined from a section analysis of the existing as-built reinforced concrete column.

The unknown target ultimate compressive strain (é’cu )up and neutral axis depth (cu )up

of the FRP-upgraded column can be found by rearranging equation Egs. (11.26) and

(11.27), which yields the following strain ductility upgrading index /. :

(ECM )up
I, = Gl I1g (11.28)
(cu )up
IC - (cu )ex (1 1 .29)

where [, is the neutral axis upgrading index, an unknown geometric parameter of the

upgraded FRP-confined concrete section.
In this investigation, a parametric study was performed using a moment-curvature-
based analytical model of the as-built and FRP-upgraded circular concrete sections in

order to obtain a numerical relationship for the unknown neutral axis upgrading index /.

of (11.29), in terms of the target curvature upgrading index /4 of Egs. (11.24) and

(11.25), where:
I.=F(Ig) (11.30)

where F denotes a functional relationship between unknown neutral axis upgrading index

I, and the target curvature upgrading index /g . It should be noted that when no upgrade
is provided, all upgrading indexes have a unity value, i.e., [ =1, =1¢p =Ip =1.0. In

this parametric study, the performance enhancement due to confinement provided by
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bonded carbon (CFRP) and glass (GFRP) FRP jackets in the potential plastic hinge

region is assessed. A list of the parameters considered in the parametric study are given

in Table 11.1.

In Figure 11.7 a series of typical normalized flexural capacity, M=M / M, versus
curvature ductility fgp = CD/ ®, curves corresponding to the curvature range of

0<®<®, of an as-built (unconfined) and FRP-upgraded circular column sections are
shown. In this figure, it can be observed that as the normalized stiffness of the FRP

jacket K, increases, the normalized ultimate moment capacity of the FRP-upgraded

section slightly increases and the curvature ductility of the columns is significantly
increased by the presence of the confining FRP jacket. The range of FRP jacket stiffness

K

je 1810.0= K, <25.0 for low stiffness and 25.0 <K, <60.0 for high stiffness FRP

jackets.

In Figure 11.8 a series of typical normalized neutral axis height ¢ = ¢/ D, versus

curvature ductility Ugp = GJ/ ® ), curves corresponding to the curvature range of
®, <® <P, of an as-built and an FRP-upgraded circular column section are shown. In

this figure, it can be observed that as the stiffness of the FRP jacket K , increases, the

normalized neutral axis height at failure ¢, =c¢, /D, decreases nonlinearly.
In Figure 11.9 the neutral axis upgrading index /. of Eq. (11.29) of the concrete

columns considered in this parametric study are plotted versus the curvature upgrading

index /g evaluated using Eq. (11.25).



438

Table 11.1  Parameters considered in the assessment of the performance
enhancement due to confinement provided by FRP jackets in the

potential plastic hinge region.

Parameters Range
Column
Column Diameter (DC) (mm) 460, 610, 915
Unconfined concrete strength (f..,) (MPa) 28,34, 41
Longitudinal steel strength (,fyl) (MPa) 275,410
Axial load ratio (n) 0.10, 0.20, 0.30
Longitudinal steel reinforcement ratio (psl) 0.01, 0.02, 0.03
Cover (mm) 38
FRP Jacket
Normalized FRP jacket stiffness (K je) 15, 30, 60, 100
Glass FRP hoop modulus (E j) (GPa) 25,35
Carbon FRP hoop modulus (E j) (GPa) 80, 125
Ultimate transverse jacket strain (é‘ ju) (mm/m) 8.5,12.5,15.0

where:
h :P/(Acfco) 5 Pst = Asl/Ac
P = Axial compressive load in the column
A, = n(Dc )2 /4= Gross column area

Ay = Longitudinal steel area
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From this figure it can be observed that as curvature upgrading index /¢ increases,
the neutral axis upgrading index /. tends to decrease nonlinearly. As shown in Figure
11.10, the maximum value of the neutral axis upgrading index /. of /. =1.0 occurs
when /¢ =1.0, i.e., when no upgrade is provided. The solid line plotted in this figure is

the best fit curve determined from regression analysis, in which the unknown neutral axis

upgrading index /. is defined in terms of the target curvature upgrading index /¢, as:

I, =1-020(1¢ —1)*38 (11.31)

The above empirical relationship was found to have a coefficient of correlation of
R? [197.0 % and a standard deviation of & = 2.60x10 2.

In Figure 11.10, the numerically obtained strain ductility upgrading index evaluated
using /. of Eq. (11.28) is plotted versus the curvature upgrading index /¢ evaluated
using Eq. (11.25). In this figure, the strain ductility upgrading index [/, obtained by
substituting the neutral axis upgrading index /. of Eq. (11.31) from regression into Eq.

(11.28) 1s also plotted as a solid curve. From this figure, it can be observed that with the
use of Eqgs. (11.28) and (11.31) the relationship between the strain ductility upgrading
index [, and the target curvature upgrading index /¢ can be accurately predicted.

In the parametric study performed herein, the assumptions of (a) plane sections

remaining plane, (b) perfect bond between the reinforcing steel and concrete, and (c) no

buckling of longitudinal steel reinforcing were made.
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In a typical column subjected to transverse shear, the assumption of plane sections
remaining plane may not apply due to the presence of inclined shear cracks, which can
induce an increase in steel stresses and strains beyond those predicted by the plane
sections hypothesis. Also, at high levels of axial compressive strains, buckling of
longitudinal steel reinforcement in the potential plastic hinge region may occur if the FRP
jacket does not provide adequate lateral restraint to prevent buckling of the steel
reinforcement. In addition, at high levels of axial tensile strains, bond degradation of the
lap-spliced longitudinal reinforcement in the potential plastic hinge region may occur if
the FRP jacket cannot adequately curtail the transverse dilation of the confined concrete
core and cover.

The presence of transverse shear and a strain gradient may significantly affect the
dilation behavior of the concrete core when compared to that of a circular concrete
column subjected to monotonically increasing concentric axial load or deformation. In
the development of Eq. (11.31) the effects of strain gradient, transverse shear, and bond
degradation of the lap splice, among others, were ignored in the analysis. As a result, for
design purposes, it is recommended that a conservative value of the target ultimate

compressive strain, (5cu )up, be obtained by conservatively estimating the target neutral

axis upgrading index /. of Eq. (11.31) as follows:

1, =1.08-0.20(I¢ -1)°*% <1.0 (11.32)

The above relationship represents a mean plus three standard deviation prediction of

the neutral axis upgrading index /., when /g =21.04 and /. =1.0 otherwise. The

results of the above relationship are plotted as heavy dashed curves in Figures 11.9 and
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11.10. As shown in these figures, by substituting the neutral axis upgrading index /. of
Eq. (11.32) into the strain ductility upgrading index [/, of Eq. (11.28) a conservative

estimate of the target ultimate compressive strain (Ecu )up is obtained, as will be shown in

the design examples.

Substituting the neutral axis upgrading index /. of Eq. (11.29) into the strain
ductility upgrading index [/, of Eq. (11.28) and solving for the target ultimate

compressive strain (Ecu )up , in the FRP-confined concrete yield:

(‘gcu )up =I.1o (‘gcu )ex (11.33)

The target ultimate compressive strain (5cu )up can also be obtained in terms of the

design ultimate jacket diagonal strain (E in the FRP-confined concrete section by

using the definition of the jacket Poisson’s ratio V; of Eq. (7.32). Setting £; = (é‘ u )up ,

E. = (é‘cu )u D and v; =V, in Eq. (7.32) and solving for the target ultimate compressive

strain (&, )up yield:

P (11.34)

where V j,, is the unknown target ultimate diagonal dilation Poisson’s ratio. In Chapter 8

it was established that at high axial plastic compressive strains & where

cp>?
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Eco S<Egp S €y, the Poisson’s ratio V; of the FRP-jacketed section approaches the
plastic jacket dilation rate t;, of Eq. (7.23). This indicates that at high axial

compressive strains V ;,, L4/, . Inaddition, the diagonal plastic dilation rate 1/, of Eq.

(7.23) was determined to be a function of the normalized effective stiffness of the FRP

jacket K ;. of Eq. (4.18) and the geometry of the FRP-confined concrete section, as

discussed in Chapter 4.

The diagonal plastic dilation rate W i of Eq. (7.23) can range between
Vei S Hjp S V2, with the upper value corresponding to essentially unconfined concrete,
1e.,as K je = 0, and the lower value corresponds to a linear elastic behavior which can
occur as K, — o. Thus setting V;, =4, in Eq. (11.34), substituting the target

ultimate compressive strain (5cu )up of Eq. (11.33), and solving for the diagonal plastic

dilation rate 4, yield:

E .
=- =- (11.35)

When compared to the ultimate tensile strain € 5, of standard tensile coupon tests, the

actual rupture strain of the confining FRP jacket &£, can occur at much lower strains
(Eid et al. 2008) due to stress-concentrations at the jacket to concrete interface due to
axial strain-induced damage (internal cracking, aggregate sliding or crushing, void
compaction, or nucleation) of the confined concrete and at the rounded corners of

rectangular FRP-jacketed sections. &y, is defined as the ultimate strain in the confined
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concrete section along the major dimension of the FRP jacket. The jacket failure strain

ratio K is defined as:
Ke =—— (11.36)

where the above jacket failure strain ratio A ranges between 0.35< k. <0.95 with an
average value of k. =0.70 (Demers and Neale 1999, Mathys et al. 2005, Tastani et al.

2006, Ozbakkaloglu and Saatcioglu 2007, Eid et al. 2009). The above jacket failure

strain ratio K is approximated as:

K —=0.707
£ £ > (11.37)

The above relationship estimates that failure of a FRP jacket occurs when

Epy =0.707€ 5, . The diagonal strain in the FRP jacket &,, corresponding to the

ju>

ultimate jacket strain £y, , is given by:

_(/31]
Eju =| == |€Hu (11.38)

where [ ; 1s the transverse strain coefficient defined in Eq. (6.54) and summarized in

Table 6.1, and a, is the transverse strain ratio defined in Eq. (6.52). As shown in

Chapter 6, both 5; and a, depend only on the geometry of the FRP-confined section.
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the diagonal failure strain

Using Egs. (11.37) and (11.38) and setting (gju )up =€y,

(8 Ju )up of the confining FRP jacket can be can be given in terms of the ultimate coupon

tensile strain € g, as follows:

(fju )u = Q(ﬁ}fﬁ, (11.39)

Using the diagonal plastic dilation rates u i of Eq. (7.23) and (,U i )up of Eq.

(11.35), using (&, )up of Eq. (11.38) and setting £;, = (u;, )up and K ;, = (K je)up and

solving for the effective stiffness of the upgrading FRP jacket (K je )up yield:

(cye)
Je 2=V,
(Kse),, ==—=3s 2va (11.40)
fco Jp up _Vci
t.
- J
(Cje)up -(—Hc jkecsth (11.41)

where (C je )up is the effective confining stiffness of the upgrading FRP jacket; f., is the

unconfined peak compressive strength of the concrete core;, V; is the initial Poisson’s

ratio of the concrete core where typically 0.15<v. <0.25 and a value of V. =0.20 is

recommended herein; 7; is the FRP jacket thickness; E; is the transverse modulus of the

confining FRP jacket; k, is the confining efficiency of the FRP jacket, defined in Eq.

(4.8) and summarized in Table 4.1; Cj, is the jacket reinforcement ratio coefficient
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defined in Eq. (4.12) and summarized in Table 4.2. In order to properly mitigate the
transverse dilation of the confined concrete core to provide adequate restraint against
unrestrained dilation of the confined concrete core and to provide adequate restraint
against premature buckling of the vertical steel reinforcement in the reinforced concrete

column, a minimum FRP jacket stiffness of K ;, =15.0 is recommended herein.

Substituting (C je )up of Eq. (11.41) into Eq. (11.40) and solving for the minimum

required thickness of the upgrading FRP jacket (t j )up yield:

(t j )up 0 (K je )up (%] (11.42)

where the normalized effective stiffness of the upgrading FRP jacket (K je)up is

determined using Eq. (11.40). The previous relationship indicates that in order to obtain
a certain level of performance in the reinforced concrete beam-column element, as

measured by the target displacement upgrading index of the flexible system /5, of Eq.

(11.19) and the target curvature upgrading index /¢ of Eqgs. (11.24) and (11.25), the

required thickness (t j )up of the FRP jacket depends on the shape and the geometry of the

FRP-confined section as measured by the confining efficiency k, of Eq. (4.8), the FRP
jacket shape-dependent reinforcement ratio coefficient Cg;, of Eq. (4.12), and the major
dimension /. of the FRP-confined section.

The target FRP jacket thickness (t j )up also depends on the mechanical properties of

the concrete core as measured by its unconfined compressive strength f., and the
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mechanical properties of the FRP jacket as measured by its average transverse modulus

E; and diagonal failure strain (E u )up.

As shown in Egs. (11.35)-(11.42), the information required to determine the FRP
jacket design thickness is (1) the geometry of the concrete section or new FRP jacket, (2)

the unconfined concrete core strength f,.,, (3) the material properties of the selected FRP

jacket; and (4) the ultimate design FRP jacket strain (E Ju )up, determined based on the

type of FRP jacket material (CFRP or GFRP) selected by the design engineer.

Damage-Based Design Procedure
If the evaluation of the as-built reinforced concrete column indicates that the
calculated ductility demand on the column exceeds its ductile capacity, retrofit of the as-
built column may be required to achieve a ductile performance during a seismic event.
The design of the FRP jacket for plastic hinge confinement can be achieved as follows:
1. Determine the geometrical and mechanical properties of the as-built column. Perform
a section analysis to determine the moment-curvature behavior of the as-built column

section; find the yield curvature @, and the moment capacity ratio A., of Eq.

y
(11.3).

2. Determine or estimate the plastic hinge length using A, of Eq. (11.4), the column
curvature coefficient Cq of Eq. (11.5), and the system flexibility C; coefficient of
Eq. (11.11).

3. Perform a pushover analysis to determine (,UA ) ox = (Au /A y)ex of Eq. (11.1) using

(,LIA )ex = (Auf /A W )ex of Eq. (11.7). Estimate (,Uq) ) o Of Eq. (11.22) and calculate
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(CDu ) ox = (,uq,CD y )ex . Determine (cu ) o corresponding to (CDu ) o and find the
analytical ultimate compressive strain (£cu ) ox = (cuCDu ) o Of the as-built column.
Select the target displacement upgrading index /[ Af of Eq. (11.19), estimate the
increase in moment capacity of the FRP-upgraded column using A, of Eq. (11.18),

and determine the target curvature ductility (/th ) up of Eq. (11.23).

. Estimate the target curvature upgrading index /¢ of Eq. (11.24). Estimate the
neutral axis upgrading index /. of Eq. (11.32) and the target ultimate compressive
strain (é’cu )up using Eq. (11.33).

. Determine the geometric properties of the FRP jacket including the FRP jacket aspect
ratio 'y, of Eq. (4.2); the jacket corner aspect ratio &' ; of Eq. (4.4) (rectangular and
square jackets only); the confining efficiency k, of the FRP jacket as summarized in
Table 4.1; the jacket reinforcement ratio coefficient Cg; of the FRP jacket as

summarized in Table 4.2; the transverse strain coefficient [ '/ summarized in Table

6.1; and the transverse strain ratio @, of Eq. (6.52).

Select the lower bound material properties of confining FRP jacket including the

design jacket hoop modulus £; and design tensile coupon failure strain &g, .

Estimate the jacket diagonal failure strain (8

ju),, of Ea. (1138) and the target

diagonal plastic dilation rate (,u i )up using Eq. (11.35).

. Estimate the effective stiffness of the upgrading FRP jacket (K of Eq. (11.40).

ey
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9. Determine the minimum required thickness of the FRP jacket, (t j )up using Eq.

(11.42).

Design Examples
Circular FRP-Upgraded Concrete Column
The as-built and FRP-upgraded reinforced circular cantilevered concrete columns
tested by Seible et al. (1997), with the experimental and analytical properties summarized
in Table 11.2 are considered in this design example.

Section analysis of the as-built column indicates that the yield curvature is
D, = 7.08x10 ®rad / mm and Aoy =1.0. The normalized plastic hinge length of Eq.
(11.4) is estimated as /11, =0.12+(0.014)(303)(1 9)/3658=0.142 or a plastic hinge length of
L, =520 mm.

For this cantilevered column the curvature coefficient is Cy, =1.0 and the system
flexibility coefficient is approximated as Cg =0.90. The pushover analysis and
experimental test results indicate that as-built column experiences a displacement
ductility of approximately (/JAf )ex = (Auf I8y )ex =2.2.

The ultimate curvature ductility of the as-built column (/J(D ) o Of Eq. (11.22) is

estimated as:

@, 1 0.9(1-1)+(2.2-1) 1.20
ox = =1+ =1+ ——=437 (1143
(o) [ ] (3 E‘D-9){o.142(1—o.50 0.142) 0.356 (11.43)

y ex
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Table 11.2  Column specifications and details of cantilevered reinforced concrete
columns confined by FRP jackets in the potential plastic hinge region
performed by Seible et al. (1997).
Circular Rectangular
Properties Section Section
Section Column Height (L,.) 3.658 m 3.658 m
Column Shear Span (Lv) 3.658 m 3.658 m
Column Depth (H c) 610 mm 730 mm
Column width (B, ) 610 mm 489 mm
Concrete strength (fco) 34.45 MPa 34.45 MPa
Longitudinal reinforcing diameter 19 mm 25 mm and
(d bl ) 22 mm
Axial Load (P,) 1,780 KN 1,780 KN
Corner radius (R} ) 305 mm 25 mm
FRP jacket Jacket Modulus (£ j) 124 GPa 124 GPa
Ultimate Strain (5 fu ) 0.010 mm/mm 0.010 mm/mm
FRP jacket Thickness (t j) 5.1 mm 10.2 mm
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From the moment-curvature analysis of the section, the curvature ductility of the
existing column is found as ®,, = (g )edey = 4.37(7.08x10_6): 3.09x107° rad/mm.

This corresponds to a neutral axis depth of C, =208.2 mm and an ultimate strain of

(Ecu) oy = (cu®y),, =208.2(3.09x107%) = 0.00633 mm/mm.

Upgrading the displacement ductility of the as-built column with a minimum target

displacement ductility of (/IAf )up =1Ipr (/JAf )ex =8.0 or a displacement upgrading index
of Ipr = (,UAf )up / (,uA f ) ox = 3.64 yields the displacement ductility of the upgraded

column (,uA )up of Eq. (11.21):

A 3.64-1
(1p) ={ ”fJ =1+3.64[ﬂ2.2—1)+( : j=8.30 (11.44)
WD, w” 0.90

Assuming an increase in moment capacity A, =1.25 yields an ultimate upgrading

curvature of (,Uq) )up of Eq. (11.23):

Py 1 8.30-1.25 7.05
oo, :H[_j =1+ =1885 (114
ok (q)y l,p 3 {0.142(1—0.50(0.142)) } 0395 (11.45)

This results in a curvature upgrading index of /¢ =18.85/4.37 =4.31 of Eq. (11.24)

and a neutral axis upgrading index 7, =1.08-0.20(4.31-1)"% =0.765<1.0 of Eq.

(11.32). Using Eq. 11.33 yields the ultimate compressive strain in the FRP-confined

concrete (€qy ), Of (Ecu ),y = Telo (Ecu ) =(0.765)(4.31)(0.00633) = 0.0209 mm/mm.
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For a coupon failure strain of €5 =-0.010 mm/mm, considering that for a circular
section ,8j =ag =k, =1.0, and using Eq. (11.37) and (11.38) the ultimate design jacket

strain is given by &;, = &g, :—(0.707)(0.010):—0.00707 mm/mm. The diagonal

Ju

plastic dilation rate (1)~ of Eq. (11.35) yields () ~ =0.00707/0.0209=0339.

Calculating the normalized effective stiffness of the upgrading FRP jacket (K using

W,

Eq. (11.40) yields:

(k) =35 /M ~1|=68.44 (11.46)
up 0.339-0.20

Using the material properties of the confining continuous carbon FRP jacket, where

Ej =124 GPa and k, =1.0, and calculating the required FRP jacket thickness (t j )up

using Eq. (11.42) yield:

VoL 610(34.45)) _
(t])up (68.44)(—2(124000)] 5.80 mm (11.47)

This is approximately 13.7% larger than the 5.1 mm jacket used in the cantilevered
reinforced concrete column test by Seible et al. (1997), which performed to a
displacement ductility of approximately fa =10.0. This indicates that the proposed
performance-based design procedure can yield a conservative design for the plastic hinge
confinement of reinforced concrete columns in combined axial load and flexure. If a

glass FRP jacket is selected with a modulus of elasticity of 27.0 GPa, a jacket thickness
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of (t j )up =26.2 mm would be required. This thickness represents a 460% increase in

thickness of the confining FRP jacket when compared to the carbon FRP jacket design.
The analytical stress-strain curve of the circular cantilevered reinforced concrete
column test by Seible et al. (1997), evaluated using the section properties and dimensions
listed in Table 11.2, is plotted in Figure 11.11. From this figure it can be observed that
the FRP-confined concrete experiences a significant increase in axial compressive strains,
which is responsible for the significant increase in ductility experienced by the circular
FRP-upgrade reinforced concrete section tested by Seible et al. (1997). These analytical
stress-strain curves were used in an analytical incremental moment-curvature-based
pushover analysis of the circular FRP-confined cantilevered reinforced concrete column.
The results of the analytical pushover analysis are compared to the experimental load-
displacement curve in Figure 11.12. From this figure it can be observed that the
proposed analytical stress-strain model introduced in Chapter 10 in combination with the
spreadsheet-based analytical pushover model developed herein can accurately predict the

pushover curve of the circular cantilevered reinforced concrete column test.

Rectangular FRP-Upgraded Concrete Column

The as-built and FRP-upgraded rectangular cantilevered reinforced concrete columns
in single curvature tested by Seible, et al. (1997), with the experimental and analytical
properties summarized in Table 11.2 are considered in this design example. A section

analysis of the as-built column indicates that the yield curvature is

®, =5.01x10 rad /mm and A, =1.0.
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Figure 11.11 Comparison of the uniaxial stress-strain curves of the unconfined and
FRP-confined concrete within the plastic hinge region of the circular

cantilevered reinforced concrete columns tested by Seible et al. (1997).
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The normalized plastic hinge length of Eq. (11.4) is estimated as

/1p =0.12+ (().()14)(303.2)(25)/3658: 0.149 or a plastic hinge length of L, =545 mm. For

a cantilevered column in single curvature, the curvature coefficient is Cyp =1.0; the

system flexibility coefficient is approximates asC; = 0.90.

Analytical pushover analysis and tests results indicate that a displacement ductility of

the as-built column of approximately three, i.e., (/JAf) = (Auf /A yf)ex =3.0. The

ex

ultimate curvature ductility of the as-built column (/Jq) ) o OF EQ. (11.22) is estimated as:

o) =[$_2L =1+(3(01-9)J{0.149(1 —(3.;(1))(0.149)) }H 0.3273 =637 (11.48)

From the moment-curvature analysis of the section, the curvature ductility of the
existing column is found as @, = (g )exCDy = 6.37(5.01x10_6)= 3.19x10™> rad/mm.
This corresponds to a neutral axis depth of C,, =171.6 mm and an ultimate strain of

(Ecu)oe = (cu®y),, =171.6(3.19x107) = 0.00547 mm/mm.

Upgrading the displacement ductility of the as-built column with a minimum target

displacement ductility of (,UAf )up =8.0 or a displacement upgrading index of

Ipne = (,uAf )up / (,uA f ) o = 2.67 yields the displacement ductility of the FRP-upgraded

column (zp )up of Eq. (11.21):
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A 2.67-1
(,UA)up :[AufJ :1+2.67Eﬂ3—1)+( 0.90 j=8.19 (11.49)
Y up :

Assuming an increase in moment capacity A, =1.25 yields an ultimate upgrading

curvature of (,qu; )up of Eq. (11.23):

¢ . - . .
bioly=| 5 :1{1} B =1+ 21961 (11.50)
®y )y 3] 0.149(1-0.5010.149) 0373

This results in a curvature upgrading index of /¢ =19.61/6.37 =3.08 using Eq.
(11.24) and 7, =1.08-0.20(3.08—1)*3® =0.816 <1.0 using Eq. (11.32). The ultimate
compressive strain the FRP-confined concrete (é’cu )up is found using Eq. (11.33) where
(€cu)yp = 1eT o (Ecu )y = (0.816)(3.08)(0.00547) = 0.0137 m/mm.

Using column dimensions and the FRP coupon failure strain of &5 =-0.010
mm/mm listed in Table 11.2, calculating the transverse strain coefficient S ; summarized
in Table 6.1 as 5; =0.796, the transverse strain a, of Eq. (6.52) as a, =1.181, and

substituting these terms into the ultimate design jacket strain along the major dimension

g, of Egs. (11.36) and (11.37) yields &5, = —(0.707)(0.010) = =0.00707 mm/mm and

substituting it into Eq. (11.38) yields the ultimate diagonal jacket strain &£, of

€ ju =—(0.00707)(0.796/1.181) = 0.00477 .
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Calculating the diagonal plastic dilation rate (,u-

jp), ©of Ea. (1135) yields

Wjp),, =0.00477/0.0137=0347, and the normalized effective stiffness of the

upgrading FRP jacket (K of Eq. (11.4) yields:

je)up

(k) =35 /M—l = 65.59 (11.51)
up 0.347-0.20

Using the material properties of the confining continuous carbon FRP jacket, where
Ej =124.0 GPa, the FRP jacket geometric properties k, =0.464 and Cg; =2.453
calculated using the relationships listed in Table 4.1 and Table 4.2, respectively, and

calculating the minimum FRP jacket thickness (t j )up using Eq. (11.42) yields:

(;) =6593 730(34.45) =117 mm (11.52)
up 0.464(2.453)(124000)

This is approximately 14.6% larger than the 10.2 mm carbon FRP jacket used in the
cantilevered reinforced concrete column test by Seible et al. (1997), which performed to a

displacement ductility of approximately pp =8.0. If a glass FRP (GFRP) jacket is

selected with a modulus of elasticity of 27.0 GPa, a 53.7 mm thick GFRP jacket would be
required.

The stress-train behavior of the rectangular FRP-confined concrete core ,confined by
a 11.70 mm carbon FRP jacket having the FRP jacket properties, the unconfined concrete
properties and section dimension listed in Table 11.2, is compared to the stress-train

curve of the unconfined concrete section in Figure 11.13.
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Figure 11.13 Comparison of the uniaxial stress-strain curves of the unconfined and
FRP-confined concrete within the plastic hinge region of the rectangular

cantilivered reinforced concrete columns tested by Seible et al. (1997).
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From this figure it can be observed that the rectangular FRP-confined concrete
section experiences a significant increase in ultimate axial compressive strain, which is
responsible for the increase in displacement ductility experienced by the rectangular
FRP-upgrade reinforced concrete section tested by Seible et al. (1997).

The increase in the compressive strength of the FRP-confined concrete core, as
shown in Figure 11.13, is due to the continuously increasing passive confining pressure
provided by the rectangular elastic FRP jacket that results from the axial-strain-induced
transverse dilation of the FRP-confined concrete core.

The analytical stress-strain curve of the rectangular cantilevered reinforced concrete
column test by Seible et al. (1997), evaluated using the properties and dimensions listed
in Table 11.2, was used in an analytical incremental moment-curvature-based pushover
analysis of the rectangular FRP-confined cantilevered reinforced concrete column.

The results of the analytical pushover analysis are compared to the experimental load-
displacement curve in Figure 11.14. From this figure it can be observed that proposed
analytical stress-strain model introduced in Chapter 10 in combination with the
spreadsheet-based analytical pushover model developed herein can accurately predict the
pushover curve of the rectangular cantilevered reinforced concrete column test.

In the analytical design procedure presented herein, no consideration is given to the
unknown increase in axial compressive strength in the FRP-confined concrete, since this
increase in strength is as secondary effect that results from the axial strain-induced
dilation of the FRP-confined concrete core and resultant transverse confining stresses

provided by the elastic FRP jacket as transverse dilation progresses.
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The proposed design approach is in contrast with those provided in both the strain
energy-based design procedure by Seible et al. (1995, 1997) and the multivariate
regression analysis upgrading index-based design procedure by Monti et al. (2001), in
that it is based on the strain ductility increase that results from the constant kinematic
restraint provided by the confining elastic FRP jacket and is thus a strain-based approach
using performance-based design principles.
As was demonstrated herein, the information required to determine the minimum FRP
jacket thickness within the plastic hinge region of a reinforced concrete section is (1) the
geometry of the concrete section or new FRP jacket; (2) the unconfined concrete core

strength f,.,, (3) the material properties of the selected FRP jacket; and (4) the FRP

material and jacket shape-dependent design FRP jacket strain £ ;, .



CHAPTER 12

CONCLUSIONS

In this research a unified theoretical mechanics-based stress-strain model was
developed that can accurately describe the compressive and dilation behavior of several
common types of FRP-jacketed concrete column sections, using the concepts of diagonal
dilation and equilibrium of FRP-confined concrete and a Mohr-Coulomb-type failure
surface for confined concrete.

The model can accurately describe the axial compressive behavior and axial strain-
induced dilation behavior of FRP-confined concrete sections of various cross sectional
shapes including circular, square, rectangular, elliptical, and oval. In this model, the
general concepts of elasticity, damage mechanics, and plasticity theory are included in a
mechanics-based stress-strain model that considers the macro structural effects of the
increase in internal damage (i.e., increase in dilation) and the beneficial effects
contributed by the kinematic restraint provided by the confining elastic FRP jacket.
Unlike existing confinement models for FRP-jacketed concrete, the model uses the fact
that dilation behavior of FRP-confined concrete depends on the lateral kinematic restraint
provided by the thin elastic FRP jacket, rather than on the passive confining pressure
provided by the restraining FRP jacket.

The effective confining stiffness, confinement efficiency, and reinforcement ratio of

various FRP-confined sections as well as shape-modified cross sections with FRP jackets
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were developed. These properties influence significantly the dilation and compressive
behavior of FRP-confined sections.

The dilation and axial compressive behavior of FRP-confined concrete sections was
found to depend on the following geometric parameters: (a) the FRP jacket shape, (b) the
aspect ratio of the cross section, (c) the angle of inclination of the main diagonal of the
cross section, (d) the jacket corner aspect ratio for square, rectangular, and oval cross
sections, and (e) the shape of the effectively confined concrete core.

An analytical transverse dilation model was developed whose distinguishing feature
is that it uses the concept of diagonal dilation of the FRP-confined concrete core and
describes the increase in damage (dilation) in the cross section in terms of the mechanical
and geometric properties of both the concrete core and the confining FRP jacket. The
model considers that the dilation behavior of the confined concrete depends only on the
lateral kinematic restraint provided by the thin elastic FRP jacket at the surface of the
confined concrete core, rather than on the passive confining pressure provided by the
restraining FRP jacket that results from transverse dilation of the confined concrete core,
as is typically assumed in the analysis of FRP-confined concrete.

In this research an ultimate strength envelope of the concrete material is obtained by
treating the restraint sensitive concrete material as a frictional-cohesive material whose
ultimate strength criterion is governed by a Mohr-Coulomb type failure envelope for
frictional-cohesive materials.

A simple two parameter Mohr-Coulomb-type criterion was introduced to describe the
increase in compressive strength that the confined concrete cores experiences as a result

of axial strain-induced dilation and resultant passive confining pressure provided by the
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restraining elastic FRP jacket. This ultimate strength model introduced herein satisfies
the following conditions: (a) it passes through the point of uniaxial compression, (b) it
passes through the point of uniaxial tension, and (c) it describes the typical nonlinear
failure envelope of concrete in a triaxial compression state of stress.

This model includes the sensitivity of the concrete’s behavior to the intermediate
principal stress for concrete subjected to a triaxial compression state of stress, it models
the effects of the confining hydrostatic pressure on the angle of internal friction of the
concrete material, and includes the weakening influence that excess pore water has on the
compressive strength of the confined concrete core. The ability to predict the beneficial
effects that the intermediate principal stress has on the compressive strength of the
confined concrete is essential in accurately predicting the compressive behavior of FRP-
confined concrete sections, rectangular, oval and elliptical sections in particular. For
these FRP jacket shapes, as the section aspect ratio increases, the confined concrete core
is subjected to an increasing nonuniform biaxial confinement state of stress that results
from a non-uniform dilation of the confined concrete core.

In this analytical stress-strain model for FRP-confined concrete, the only
experimentally obtained coefficients are: (a) the average value of the basic angle of
friction of dry concrete, (b) the FRP jacket stiffness-dependent diagonal plastic dilation
rate of the confined concrete core, and (c) the pore water pressure parameter which
considers the detrimental effects that excess pore water has on the compressive behavior
of confined concrete.

A theoretical design procedure was developed for estimating the required FRP jacket

thickness for concrete column sections of various shapes confined by FRP jackets,
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subjected to combined axial compression and flexure, to achieve a certain performance
level based on the expected displacement and curvature ductility demand imposed on the
reinforced concrete column during a seismic event. In this design procedure, no
consideration is given to the unknown increase in axial compressive strength in the FRP-
confined concrete, since this increase in strength is considered to be a secondary effect
that results from the axial strain-induced dilation of the confined concrete core and
resultant transverse confining stresses provided by the confining elastic FRP jacket as
transverse dilation progresses. This design procedure is unlike existing FRP jacket
design procedures, in that it is based on the increased strain ductility that results from the
lateral restraint provided by the confining elastic FRP jacket and is thus a strain-based
approach using performance-based design principles.

It is hoped that the present stress-strain model will contribute to the knowledge of the
mechanisms involved in the compressive and dilation behavior of FRP-confined concrete
and that the performance-based design procedure will be used in the analysis, design and

retrofit of existing reinforced concrete structures in areas of high seismicity.
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