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ABSTRACT 
 

For more than twenty years, the introduction of reliability-based analysis into 

roadway geometric design has been investigated. This type of probabilistic geometric 

design analysis is well suited to explicitly address the level of variability and randomness 

associated with design inputs when compared to a more deterministic design approach. In 

this study, reliability analysis was used to estimate the probability distribution of 

operational performance that might result from basic number of lanes decisions made to 

achieve a design level of service on a freeway. The concept is demonstrated using data 

from Interstate 15 and Interstate 80 in Utah. The basic traffic count data used for analysis 

were obtained from Utah Department of Transportation (UDOT). To account for the 

uncertainty in the design inputs, statistical distributions were developed and reliability 

analysis was carried out using Monte Carlo simulation. A statistical software Minitab was 

used to develop statistical distributions of design inputs involving variability from the 

traffic count data. Minitab was also used to run Monte Carlo simulation by generating 

random samples of the design inputs. The outcome of this probabilistic analysis is a 

distribution of vehicle density for a given number of lanes during the design hour. The 

main benefit of reliability analysis is that it enables designers to explicitly consider 

uncertainties in their decision-making and to illustrate specific values of the distributions 

that correspond their target level of service (e.g., the 65th through 85th percentile density 

corresponds to the design level of service). The results demonstrate how uncertainty in 

estimates of K (i.e., the percent of daily traffic in the design hour), directional 
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distribution, percent heavy-vehicles, and free-flow speed significantly contribute to the 

variation in the vehicle density on a freeway. 
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CHAPTER 1 

 

 

INTRODUCTION 

 
 

Road geometric designers must deal with the challenge of designing for a broad 

range of driver, vehicle and roadway conditions and capabilities (1). In other words, there 

is variability in design inputs and design controls that influence design criteria and design 

decisions. As noted in Porter (1), variability in factors that influence design decisions 

have traditionally been addressed implicitly in civil engineering disciplines. Average 

values are used if the variability in certain parameters influencing design is insignificant.  

Conservative values are used if the variability is “large,” the case with road geometric 

design. The level of variability in road design input parameters is expected to be large 

because of their aleatory variability (i.e., natural randomness). Currently, the method used 

in roadway geometric design is deterministic. The design requirements are based on 

American Association of State Highway and Transportation Officials (AASHTO) Green 

Book, a geometric design policy which provides deterministic standards (e.g., minimum 

stopping sight distance required by vehicle travelling at design speed to stop without 

colliding with an object in the roadway). Road designers sometimes assume that roads 

meeting current roadway design standards are appropriately safe. This is referred to as 

nominal safety (2). Experienced designers know there is likely some level of uncertainty 

in the estimates of the design criteria, but it is not quantified. Probabilistic design 

approaches have been successfully incorporated into other design disciplines (e.g., 
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probabilistic damage control approach for seismic design of bridges subjected to 

earthquakes) to explicitly address this variability and uncertainty.  The idea has also been 

explored in the road design literature using reliability concepts, but it is yet to be 

implemented in U.S. design practice.  

The reliability of a highway or street can be defined as the probability that it will 

perform as intended in a given situation and on a repeated basis (e.g., hour-to-hour, day-

to-day, year-to-year). There have been several previous studies that have incorporated 

reliability analysis into highway geometric design issues. These studies followed a “limit 

state design” concept, taken from structural engineering, which applies the concept of a 

“safety margin” to highway design in a quantitative way (3-4). A research program that 

focused on incorporating travel time reliability into highway design, construction, and 

management was also executed as part of the Strategic Highway Research Program 2 

(SHRP 2). Although the application of reliability analysis to road design issues appears to 

be promising, published work on introducing probabilistic concepts to current design 

policies, criteria, and practice is relatively limited at this time.  

Design Level of Service (LOS) criteria vary by location and highway type and are 

based on assessments of the drivers’ perceptions of quality of service and acceptable 

levels of congestion (5). Designers generally assess the design LOS for volumes in the 

design hour, which may have a definition that varies by area type.  For example, it is 

typical for the design hour volume in rural areas to correspond with the thirtieth (30th) 

highest hourly volume in the design year.  The 30th highest hourly volume in the design 

year tends to reflect the higher end of recurring morning and afternoon peak hour 

volumes.  The one-hundredth (100th) highest hourly volume is more common in urban 
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areas.  Design year traffic volumes may be based on 20 to 25 year projections stemming 

from either base traffic counts (more common to rural areas) or calibrated travel demand 

models (more common to urban areas). The uncertainty involved in design year 

projections of the traffic-related characteristics that will ultimately influence whether or 

not a design will maintain the design LOS over a design period is significant.  Therefore, 

design decisions that incorporate these traffic-related projections are a logical application 

of a probabilistic framework.  Basic number of lanes on a freeway is one such decision. 

Basic number of lanes is “a minimum number of lanes designated and maintained over a 

significant length of a route, irrespective of the changes in traffic volume and lane 

balance needs” (5, 6). It is the constant number of lanes assigned to a route, exclusive of 

auxiliary lanes (5, 6). This study develops a comprehensive framework for evaluating the 

effect of variation and uncertainty in design inputs (e.g., percent of daily traffic in design 

hour, directional distribution, percent heavy vehicles, free-flow speed) on the resulting 

variation in vehicle density and LOS of a freeway under different basic number of lanes 

alternatives. The variation in the design inputs is explicitly addressed using statistical 

distributions derived from observed freeway data collected from urban and rural sections 

of Interstate 15 and Interstate 80 in Utah. Figure 1 illustrates the reliability approach 

applied in this work. 

 This work presents an alternative approach to road geometric design. This 

approach is fully sensitive to the broad range of drivers, vehicles, and roadway conditions 

by utilizing the stochastic nature of these factors in the design process.  
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Figure 1 Reliability Based Highway Design Framework 

 

There are five chapters which summarize the content and work of this thesis; 

together they provide a full view on how reliability analysis can be applied in road 

geometric design. Chapter 1 provides the introduction of why a probabilistic approach is 

applicable to roadway design. Chapter 2 summarizes the literature review of probabilistic 

analysis and the related studies on reliability theory. Chapter 3 discusses the general 

methodology for estimating a probability distribution of operational performance that 
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might result from basic number of lanes decisions made to achieve a design level of 

service on a freeway. It also describes the software that is used to implement the 

framework. Data collection is also described in Chapter 3. Chapter 4 presents the results 

obtained from Monte Carlo simulation that is a part of the probabilistic analysis, as well 

as interpretation of the results. It also includes the results from deterministic analysis 

approach to provide a basis for comparison between two approaches. The thesis comes to 

a conclusion with Chapter 5, which summarizes the thesis outcomes, presents discussion 

and provides recommendations from this research. 

 



 

 

 

 

 

 

CHAPTER 2

 

 

LITERATURE 

 
 

This chapter presents a review of the several studies related to the development 

and application of probabilistic analysis to highway geometric design. The first section 

presents background information that involves a theoretical discussion of some issues 

related to reliability theory in highway design. The second section provides a review of 

relevant research materials in the literature. 

 
2.1 Background 
 

2.1.1 Geometric Design Process 
 

The term “geometric design” pertains to the dimensions and arrangements of the 

physical features of a highway (7). These include horizontal alignment, vertical 

alignment, cross-section, grades, interchanges, and other physical features that 

significantly affect highway operation, capacity, drainage and safety. The conventional 

approach to roadway design was from the design methods that were first codified in the 

1930s with the publication of A Policy on Highway Classification (8). So, in the late 

1930s, national design policies and were introduced into highway geometric design. 

AASHTO’s A Policy on Geometric Design of Highways and Streets (5) is at the core of 

this conventional approach. Its design criteria are based on a lot of research and empirical 

data relating driver, vehicle, and roadway characteristics. In other words, an effective 
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highway or street design should be able to satisfy the purpose for which it is designed, for 

a wide variety of users under a wide variety of operating conditions. 

 
2.1.2 Current Design Practice 

 
The current geometric design process requires establishment of fundamental 

design controls (e.g., area type, terrain, functional classification, traffic volume, design 

vehicle) and selection of design speed. Design parameters are dependent upon many 

variables such as vehicles’ speeds, deceleration rate, driver perception reaction time, and 

acceleration capabilities. They represent wide ranges of driver and vehicle characteristics 

as well as variable operating conditions. For the current geometric design of roads and 

highways, engineers calculate the minimum values of these design parameters using 

“conservative values” for the variables. For example, AASHTO’s Green Book (5) criteria 

may incorporate a “safe” percentile value for a parameter (e.g., 15th percentile 

deceleration rate, 95th percentile reaction time), and that percentile value may be 

inconsistent across criteria and does not represent the entire range of circumstances.  

 
2.2 Reliability Theory 
 

2.2.1 Stochastic Components in Highway Design 
 

Highway geometric design is a multiphased process, with each phase requiring a 

specific body of knowledge, expertise, and analysis in order to create a solid foundation 

of engineering decisions (9). Similar to other civil engineering disciplines, each design 

phase entails some assumptions and predictions that contribute to uncertainty in the 

design process. Highway operation from a motorized vehicle perspective consists of four 

important components: the driver, the vehicle, the road, and the environment. Driver-
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related factors such as driver behavior, expectations, perception, visual reception, and 

control on the vehicle involve variability. Similarly, vehicular factors such as weight, 

size, and type of vehicle, acceleration, deceleration, and rolling resistance of the vehicle 

involve variability. Thus, transportation engineers must design facilities to accommodate 

drivers who possess a wide range of skill levels and characteristics, as well as vehicles 

with different static, kinematic, and dynamic characteristics. It is therefore necessary to 

have a method that addresses the randomness of each of the variables in the development 

of design parameters. 

 
2.2.2 Probability Theory in Geometric Design 
 

A probabilistic approach to design includes considering all uncertainties in a 

problem as well as examining all possible conditions, outcomes, and consequences. 

Mayer (10) was the first to propose the shift from deterministic to probabilistic approach 

in engineering design. Ang and Cornell (11) developed the use of probabilistic tools in 

structural design in the 1970s. Reliability analysis is an application of probabilistic 

analysis. 

  
2.2.3 Limit State Design 
 

The procedure of applying reliability methods in structural engineering is 

summarized below. In structural design, probabilistic design is done by explicitly 

considering the uncertainties in different variables and ensuring that a reasonable margin 

of safety is achieved. Structural reliability depends on the resistance and the load. For a 

properly designed structure, the probability of having applied loads greater than or equal 

to the resistance of structure is very small. The condition where the applied load is greater 
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than or equal to the resistance of structure is called the “limit state” of the structure. The 

variable names have been changed from load and resistance to demand and supply to 

reflect a more general limit states design rather than an application for structural 

engineering. This is computed with the help of two random variables, supply (S) and 

demand (D) in the performance function G (12): 

                                                           G = S – D                                                          (2.1) 

 
2.2.4 Probability of Failure 
 

In highway geometric design, supply refers to the group of input variables that are 

related to the design characteristics of a facility. Demand refers to the driver and vehicle 

requirements that need to be accommodated (13). In the design, when the demand 

exceeds the supply, the system is said to have failed or been not in compliance with the 

design parameters. This is termed as probability of failure (Pf), which is the probability 

that the demand will exceed the supply or that a specific design would not meet 

requirements (e.g., the required sight distance is greater than available sight distance) 

(14). 

Figure 2 is a graphical representation of the system of Equation 2.1 with the 

corresponding probability of failure and the safety margin. The probability of failure 

corresponds to the region where the function is negative. Then, the reliability equals one 

minus the probability of failure. 

The true meaning of reliability is “the concept of dependability, successful 

operation or performance, and the absence of failures” (15). Reliability of a highway or 

street can be defined as the probability that it will perform as intended in a given situation 

and on a repeated basis (e.g., hour-to-hour, day-to-day, year-to-year). 
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Figure 2 Basic Components of Performance Function 
 

 
2.3 Previous Studies Related to Reliability Design 
 

Faghri and Demetsky (16) applied the principles of reliability and risk assessment 

in a model for the evaluation of at-grade road-railway crossings. The model predicts the 

frequency of crash occurrence by taking into account all the variables that have some 

influence on the crash event. Variables such as driver skill, perception time, 

environmental conditions, and random crash causes are considered to be stochastic. The 

mathematical principles of reliability and risk assessment were used to establish a hazard 

index for a crossing on the basis of the probability that an accident would occur at the 

crossing. The probabilistic nature of the model is seen as a valuable tool in measuring 

hazard indices for road-railway crossings, explicitly considering uncertainty. 
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Navin (3) introduced the concept of reliability analysis in highway geometric 

design using the limit state design concept to achieve a more “consistent” road design. A 

“consistent” design of a highway, as when designing a structural system, is done by 

considering the whole of the highway as a unit. In other words, the reliability of the 

whole structure is a function of reliability of the individual elements that compose the 

structure. Another work of Felipe (12) also stated that a good knowledge of the reliability 

of the individual elements is essential to design a “consistent” highway. Navin (4) 

adapted the structural terminology to the highway design domain by designating the 

probability of failure as the probability of noncompliance (Pnc). 

Easa (17) applied probabilistic analysis in computing the intergreen interval 

(yellow plus red clearance) at signalized intersections. In this analysis, the approach 

speed, reaction time, deceleration rate, and the vehicle length are considered to be 

random variables. Similarly, Easa (18) also developed a probabilistic model for the 

intersection sight distance, where design speed, perception-reaction time, and friction 

coefficient are the random variables. Instead of the common use of percentile values of 

design variables, the proposed method uses the moments of probability distributions i.e., 

mean and variance, of all these random variables. First-order probabilistic analysis is 

used to measure the randomness associated with these design variables in analyzing the 

design of intergreen interval and sight distances at the intersections (18-19). The method 

also accounted for the correlations among the component random variables. 

Researchers have applied principles that follow the limit states design approach 

used by structural and geotechnical engineers in the transportation safety context. Felipe 

(12) performed controlled experiment and field observations to develop the “limit state 
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design” concept for highway horizontal curves. These measurements allowed one to 

collect actual information on the basic variables involved in the driving process of 

horizontal curves. A computer program Reliability Analysis (RELAN) was used to 

perform First Order Reliability Method (FORM) analysis for passenger cars subjected to 

skidding by comparing the expected lateral acceleration supplied by the road to the 

expected lateral acceleration demanded by the vehicle-driver. Probability of 

noncompliance was also computed by comparing the expected radius supplied by the 

highway to the expected radius demanded by the car-driver system. Thus reliability 

analysis was used to measure margin of safety and Pnc on horizontal curves. Zheng (7) 

demonstrated that reliability theory is not only useful in road design stage but can also be 

used to assess possible safety issues related to a highway location. The methodology in 

his research involved evaluating margin of safety for a particular roadway geometric 

design by incorporating the variables such as vehicle dynamics, human factor 

consideration, operational experience, road-vehicle interaction, and pavement 

performance, all of which involved uncertainty. 

Richl and Sayed (14) applied reliability analysis techniques on a series of 

horizontal curves. They studied the effect of median width along curved highway 

segments in order to understand the risk of sight distance restrictions. The probability 

distributions of input variables were obtained from previous, relevant studies. Monte 

Carlo simulation was used to develop “supply” and “demand” distributions. The 

probability of being unable to stop within the available sight distance was calculated with 

varying horizontal sight distance restrictions for two highway alignments.  
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El Khoury and Hobeika (20) applied reliability theory in analyzing the risk 

indices involved in Passing Sight Distance (PSD) calculations on two-lane, two-way 

roads. Microscopic simulation was used to replicate the passing maneuvers on these 

roads. The probability distribution of PSD was determined by accounting for variations 

of all the contributing parameters in PSD formulation and implementing a Monte Carlo 

simulation. The levels of risk were identified for the various available values of the PSD 

distribution and also the current PSD standards. 

Sarhan and Hassan (21) used a reliability-based design approach to calculate the 

probability of three-dimensional (3D) sight distance limitations. This approach was 

applied to horizontal curves overlapping with flat grades, crest curves, and sag curves. A 

Sight Distance Evaluation System (SDES) was used to calculate the available sight 

distance and it was checked against the required stopping sight distance on a road 

segment. Probability of Hazard (POH) was also estimated as the probability that available 

sight distance was less than required stopping sight distance. 

Ismail and Sayed (22) presented a general framework for developing probabilistic 

highway design criteria, which deals with the uncertainty associated in the design inputs. 

This study focused on modifying typically used design models by adding calibration 

factors that would yield consistent Pnc values to crest vertical curve design. A calibrated 

design model would then have all the reliability analysis results codified in terms of 

calibration factors. The mathematical form of the calibration factors was constructed so 

that it compensates for the precalibration distribution of design safety levels. Ismail and 

Sayed (23) also used reliability analysis to predict the safety impacts of sight distance 

restrictions on horizontal curves. It was done by analyzing two sites, on road segments 
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with constrained roadside environment in British Columbia. FORM is used to calculate 

Pnc that might result when the supply term and demand term are available sight distance 

and required stopping sight distance, respectively. 

Ismail and Sayed (24) presented a probabilistic analysis methodology that enables 

the re-dimensioning of different geometric elements located on highway segments with 

restricted sight distance. It also provides a decision mechanism for efficient use of 

available right-of-way for new highway construction. Previous work by the authors 

Ismail and Sayed (23) presented a methodology for risk assessment. But, this work 

presents a methodology for risk-optimization for highway segments constructed in 

restricted right-of-way. You et al. (2) applied reliability analysis in the design of 

horizontal curves. In the literature, the performance function is usually formulated on the 

basis of failure mode of vehicle skidding only (2). In this study, the risks associated with 

the design are based on failure modes of vehicle skidding and rollover in the performance 

functions of cars and trucks, respectively. The study considered vehicle speed, friction 

coefficient, and radius to be random variables, and super elevation and vehicle 

parameters to be deterministic. They took into account all the possible combinations of 

the design variables and calculated the probability of vehicle skidding or rollover. 

Shin and Lee (25) presented first order reliability techniques to analyze and 

optimize minimum radii of roadway horizontal curves. It was based on vehicle dynamics 

and their applications mainly focused on exit ramps and interchanges. The work 

investigated the probabilities of rollover and sideslip for the minimum radius guided by 

AASHTO Green Book, using FORM and limit state functions, respectively.  
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2.4 Research Objective 
 

The objective of this study is to demonstrate a reliability-based geometric design 

approach to making decisions regarding the basic number of lanes on freeways.  The 

uncertainty involved in design year projections of traffic-related characteristics that 

influence number of lanes decisions provides a logical application of a probabilistic 

framework.  This study adds to the existing knowledge base by developing and executing 

reliability analysis of geometric design in an operational context.  Previous studies 

focused mainly on safety-related concerns (e.g., available versus required sight distance, 

probability of vehicle skidding and rollover). The framework and results will allow 

designers to explicitly consider the probability distribution of operational performance 

that might result from different basic number of lanes decisions. The proposed approach 

is demonstrated using data from urban and rural segments of Interstate 15 and Interstate 

80 in Utah.



 

 

 

 

 

 

CHAPTER 3

 

 

METHODOLOGY 

 
 

This chapter describes the general methodology for estimating a probability 

distribution of operational performance. The first section presents the proposed 

methodology, software used, and data collection details. The second section presents a 

detailed discussion of developing distributions of input parameters to fit observed data. 

 
3.1 Proposed Approach 
 

In the design of roads and highways, decisions regarding the basic number of 

lanes on a freeway are one of the major design decisions. Traditionally, highway design 

policies, manuals, and guidelines have specified “one” value for each of the design inputs 

involved in making these decisions. There is, however, an inherent uncertainty involved 

in these design inputs that influence basic number of lanes design decisions as well as in 

the operational outcomes. Probabilistic analysis is well suited to address the uncertainties. 

The first stage in the proposed reliability approach is determination of the reasonable 

distribution shape for the relevant design inputs. While current deterministic approaches 

rely on a single deterministic value for each parameter, the proposed reliability approach 

utilizes the full distribution shape for the parameter values.  

Hence, to implement the reliability analysis in a freeway basic number of lanes 

context, stochastic variables that affect vehicle density and LOS were identified (e.g., 
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design year daily traffic, percent of daily traffic in design hour, directional distribution, 

percent heavy vehicles, and free-flow speed). The method used to quantify the inherent 

uncertainty in these “input variables” is described in this section. The form of uncertainty 

relevant to roadway geometric design variables is aleatory uncertainty, which involves 

natural randomness in a process. The parameters do not take either one value or the other 

(like accident occurrence, which is referred to as epistemic uncertainty), they have a 

range of values. Hence they are said to have aleatory variability. Epistemic uncertainty is 

the scientific uncertainty in the model of a process and is due to limited data and 

knowledge. This type of uncertainty was not considered in the present study. A single 

probabilistic representation describes the aleatory uncertainty. Thus, the aleatory 

uncertainty is evaluated for each input variable using a set of statistical distributions. This 

study utilized observed data to select appropriate statistical distributions for each input 

variable. To estimate vehicle density of a facility in the design hour, the basic freeway 

segment methodologies described in the Highway Capacity Manual (HCM) (26) were 

used. 

 
3.1.1 Average Annual Daily Traffic 
 

Estimated traffic growth rates used to project a base year average annual daily 

traffic to the design year have a significant amount of uncertainty, but the level of 

uncertainty is difficult to quantify.  Growth rate uncertainty will not be addressed in this 

work, but will be the focus of future work.  This work assumes a reasonable estimate of 

the Average Annual Daily Traffic in the design year (               ) as a starting 

point. 
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3.1.2 Design Hourly Volume 
 

The Design Hourly Volume       is important for highway planning and  

design purposes because it generally represents the volume of recurring traffic during 

peak hours. To get the design hourly volume,                 is multiplied by the 

proportion of daily traffic expected to occur in the design hour (K). When looking at a 

graph of the highest hourly volumes at a counting station, those at the highest end tend to 

be outliers with a steep slope. However, at some point the slope starts to flatten out. This 

is shown in Figure 3. 

 

 

Figure 3 Relation between Peak Hour and Average Daily Traffic Volumes on Rural 

Arterials: From A Policy on Geometric Design of Highways and Streets, 2004, by the 

American Association of State Highway and Transportation Officials, Washington, 

D.C. Used by permission 
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Through years of experience, engineers have seen that the thirtieth highest hourly 

volume (30 HV) often occurs near that point where the slope flattens and represents the 

higher end of recurring morning and afternoon peak hour volumes (27). Specific 

practices vary. The 30th highest hourly volume in the design year may be more common 

to rural areas, while the one-hundredth (100th) highest hourly volume may be more 

common in urban areas.  This detail does not have an impact on the objective of this 

paper, which is to demonstrate a reliability-based geometric design approach.  The 

concept of 30th highest hourly volume is therefore incorporated into the calculations for 

both rural and urban areas. K is therefore selected to be the ratio between the 30th highest 

hourly volume of the year and the annual average daily traffic. The design hour volume is 

then calculated using Equation 3.2: 

                                                                                                         (3.2) 

where     = proportion of the daily traffic in the 30th highest hour of the design year. 

 
3.1.3 Directional Design Hourly Volume 

 
Highway traffic volume varies with respect to location of the facility and direction 

of traffic flow (28). A roadway with a high percentage of traffic in one direction during 

the peak hours may require more directional lanes than a roadway having the same 

AADT, but with a directional split closer to 50 percent. This percentage of traffic in the 

peak direction during the design hour is referred to as the directional distribution (D). 

Hence, the directional distribution is simply the proportional split of the total traffic 

volume in two opposite directions during any particular time period. Directional 

distribution, when multiplied with design-hour volume, results in Directional Design 

Hour Volume (DDHV), and is shown in Equation 3.3: 
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                                                                                                               (3.3)  

 
3.1.4 Demand Flow Rate 

 
The DDHV for the design year should be the basis of the geometric design and is 

expressed in units of vehicles per hour. It is the traffic volume that is expected to use a 

highway segment during the design hour (30th highest hour, in this case) of the design 

year in the peak direction. The basis for freeway segment analysis using HCM 2010 

methodologies is the peak 15-minute rate of flow, expressed in the equivalent number of 

passenger cars per hour per lane.  This is estimated using Equation 3.4: 

                                                   
    

          
                                                           (3.4) 

where V = demand flow rate under equivalent base conditions (pc/hr/ln); 

 PHF = peak-hour factor; and 

     = adjustment factor for presence of heavy vehicles 

 N = number of lanes in each direction 

The peak hour factor represents the variation in traffic flow within an hour. It 

represents the most critical period for operations and has the highest capacity 

requirements. Observations of the traffic flow indicate that the flow rates found in the 

peak 15-minute period within an hour are often not sustained throughout the whole one-

hour period (26). 

 
3.1.5 Heavy Vehicle Factor 

 
Heavy vehicles are generally categorized as trucks, buses, or recreational vehicles 

(RVs). The number of heavy vehicles on a highway impacts highway planning, roadway 

capacity, traffic operations, safety, and pavement performance (29). The factor that 
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represents the effect of heavy vehicles present in the traffic stream is the heavy vehicle 

adjustment factor (fHV). Since the 1965 version of the HCM, the impact of heavy vehicles 

has been described in terms of Passenger Car Equivalencies (PCEs). They are used in the 

analysis procedures to convert mixed traffic stream volumes into equivalent passenger 

car volumes. PCE was defined as “the number of passenger cars displaced in the traffic 

flow by a truck or bus, under the prevailing roadway and traffic conditions” (30). The 

current definition of PCE in the HCM 2010 is similar, “the number of passenger cars that 

will result in the same operational conditions as a single heavy vehicle of a particular 

type under specified roadway, traffic, and control conditions” (31). According to HCM 

2010, the heavy vehicle adjustment factor is shown in Equation 3.5:  

                                                
 

                   
                                              (3.5) 

where     = heavy vehicle adjustment factor 

              = truck proportion 

              = recreational vehicles (RVs) proportion 

              = truck PCE 

              = recreational vehicles (RVs) PCE 

RVs were excluded from the present analysis due to the lack of adequate RV data.  RVs 

do not represent a significant portion of traffic on Utah highways, so their exclusion is 

not expected to have any practical impact on the findings. Hence, in the present research, 

the impact of RVs will be ignored; the focus will be on    and   .  

 
3.1.6 Free-flow Speed 

 
Free-flow Speed (FFS) is defined in Chapter 10 of the HCM as the theoretical 

speed when the density and flow rate on the study segment are both zero. It is the average 
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speed (S) at which through automobile drivers travel under low-volume conditions. It is 

intended to represent travel speeds that drivers choose when not impended by other 

traffic along any facility. FFS is influenced by the alignment and the cross section of the 

roadway as well as by roadside features (32). It plays a major role in the estimation of the 

density and LOS by influencing the selection of the appropriate speed-flow curve, and 

therefore influencing the average speed estimate for a given demand volume. In other 

words, S is a function of free-flow speed as shown in Equation 3.6: 

                                                                                                                            (3.6) 

 
3.1.7 Density 

 
Given the input values described in the previous sections, the next stages of an 

operational analysis include the determination of density and LOS estimates in the design 

hour. The uncertainty associated with design-year projections of traffic-related 

characteristics will ultimately result in uncertainty in density and LOS estimates. The 

demand flow rate and the estimated average speed are used to determine the density of 

traffic stream. It is given by Equation 3.7:  

                                     
 

 
  

            

             
                                             (3.7) 

Density then directly determines level of service for a given number of lanes. The 

right hand side variables of the various relationships will be referred to here as the input 

parameters. Thus, the purpose of the first stage in the proposed reliability-based approach 

is to determine the distributions of the input parameters. Once the input parameters are 

available, we can incorporate these distributions into the design relationships to get an 

output distribution for the left hand side parameter. In a deterministic approach, the 

estimate for the left hand parameter (density, in this case) is “one number.” However, in 
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the proposed reliability approach, we get a full distribution of possible density values. 

Thus, the left hand side parameter is referred to in the proposed approach as the output 

value distribution, or the intermediate value. The analytical determination of the output 

value distribution is made by means of Monte Carlo simulation.  

To demonstrate the ideas presented so far, consider the relationship that is 

presented in Equation 3.7 that results in an estimate of density. In this equation, the input 

parameters that are likely to have some level of error or uncertainty are K30, AADT, D, S, 

PHF, and fHV. The natural uncertainty and variability is represented in this study using a 

set of statistical distributions for selected variables. This thesis focuses on the uncertainty 

in K30, D, S, and fHV estimates and the effects on the uncertainty in the density and level 

of service estimates.   Observed data, combined with the Minitab software, were used to 

select appropriate statistical distributions for each of these input variables. 

 
3.2 Minitab 
 

Minitab is a statistics package developed at Pennsylvania State University in 

1972. It is user-friendly statistical software that can assist a user in developing 

distributions of the design inputs involving variability. Goodness-of-fit statistics in 

Minitab help to identify the “best-fitting” distributions. This software provides two 

goodness-of-fit tests: Anderson-Darling for the maximum likelihood and least squares 

estimation methods and Pearson correlation coefficient for the least squares estimation 

method. These goodness of fit measures help users in comparing the fit of alternative 

distributions.  
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3.2.1 Anderson-Darling Test 

 
The Anderson-Darling (AD) statistic is a measure of how far the plot points fall 

from the fitted line in a probability plot. The statistic is a weighted squared distance from 

the plot points to the fitted line with larger weights in the tails of the distribution. A 

smaller Anderson-Darling statistic indicates that the distribution fits the data better. AD is 

one among the best distance tests for small samples (33). 

This test is implemented using a well-defined series of steps. First, assume a 

prespecified distribution (e.g., Lognormal). Then, estimate the distribution parameters 

(e.g., mean and variance) from the data. Such a process yields a null hypothesis (H0) that 

the data for a variable fits the assumed distribution with the estimated distribution 

parameters. The negation of the assumed distribution (or its parameters) is the alternative 

hypothesis (Ha). Using the dataset, test the hypothesized (assumed) distribution. Finally, 

H0 is rejected whenever any one of the elements composing H0 is not supported by the 

data with a defined level of confidence.  

 
3.2.2 Pearson Correlation Coefficient 

 
The software calculates a Pearson (P) correlation coefficient for least squares 

estimation. If the plot points on a probability plot fall on a straight line, then the 

distribution will fit the data well. The correlation measures the strength of the linear 

relationship between X and Y variables on a probability plot. The X variables are the 

observed data and the Y variables are the data generated according to the distribution that 

is prespecified and the observed data is being checked against. The correlation will range 

between 0 and 1, and higher values indicate a better fitting distribution (34). Minitab 

statistical software is used to run Monte Carlo simulations as part of the analysis. This 
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simulation uses repeated random sampling to simulate the data (input variables in this 

case) and gives a distribution of the output quantity (density in this case). 

 
3.3 Data Collection, Description and Analysis 
 

The proposed methodology was tested using data from urban and rural sections of 

Interstate 15 and Interstate 80 in Utah. In this section, data sources are described. 

Generally, traffic data are collected at permanent Automatic Traffic Recorder (ATR) 

stations. ATRs continuously record the distribution and variation of the traffic flow by 

hours of the day, days of the week, and months of the year from year to year. The traffic 

information collected is used to estimate K-factor, D-factor for each permanent ATR 

location. The basic traffic count data used for analysis here were obtained from the Utah 

Department of Transportation (UDOT). UDOT provided an Excel file containing traffic 

data of 14 ATR sites on Interstate 15 and Interstate 80 in Utah for the years 2002 through 

2012. Of the 14 total sites, seven sites were located inside the urban boundary and seven 

sites were located outside the urban boundary (i.e., in rural areas). For UDOT’s 14 ATR 

sites, data were available on an hourly basis and area type was associated with each site. 

This study relies on data from all 14 locations. There were some instances of incomplete 

traffic data for some ATR’s for a variety of reasons (e.g., ATR is turned off, out of 

service, etc.), but the missing data did not impact the ability to conduct the reliability 

analysis as described below. The potential data sources for different input variables are 

shown in Figure 4. 

 
3.4 Distributions of Input Variables Involving Uncertainty 
 

The values of the input variables were calculated using the data from Interstate 15 

and Interstate 80 in Utah. The uncertainty of these parameters was addressed by  
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Figure 4 Potential Data Sources 

 

developing distributions to fit the observed data.  As noted above, this particular work 

focuses on the uncertainty in K30, D, S, and fHV estimates. 

 
3.4.1 K-factor 

 
The Utah data contained directional hourly volumes for every day for each ATR 

site. The directional hourly volumes are summed together to get the hourly volumes of 

each site. The thirtieth highest hourly volume for every year was identified for each ATR 

site.  Then the value of K30 was calculated as the ratio of thirtieth highest hourly volume 

to the AADT of each year. The calculated values of K30 for the ATR sites in urban and 

rural area are shown in Table 1. 
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Table 1 Values of K30 for ATR Sites in Urban and Rural Areas 

URBAN AREA 
ATR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

306 0.097 0.097 0.095 0.092 0.098 0.098 0.101 0.097 0.095 0.087 0.095 
315 0.095 0.096 0.095 0.095 0.092 0.089 0.095 0.091 0.093 0.094 0.094 
340 - - 0.108 0.104 0.102 0.101 0.101 0.105 0.102 0.101 0.098 
348 - - - - - - 0.095 0.097 0.097 0.097 0.097 
611 0.095 0.095 0.098 0.097 0.096 0.098 0.099 0.099 0.097 0.091 0.098 
612 - 0.090 0.091 0.093 0.091 0.089 0.098 0.091 0.087 0.094 0.095 
621 - - - - 0.095 0.095 0.092 0.092 0.095 0.095 0.096 

RURAL AREA 
ATR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

309 0.124 0.125 0.124 0.122 0.116 0.113 0.116 0.100 0.123 0.123 0.084 
310 0.131 0.134 0.132 0.131 0.130 0.125 0.130 0.138 0.137 0.133 0.131 
313 0.146 0.149 0.139 0.139 0.138 0.137 0.145 0.147 0.146 0.150 0.148 
318 0.120 0.124 0.124 0.123 0.113 0.116 0.120 0.126 0.126 0.125 0.104 
401 0.127 0.124 0.115 0.116 0.115 0.111 0.119 0.117 0.118 0.122 0.123 
403 0.139 0.144 0.135 0.133 0.134 0.132 0.137 0.142 0.143 0.146 0.141 
513 0.125 0.134 0.128 0.128 0.127 0.125 0.133 0.134 0.135 0.140 0.130 

 

The K-factors are considered to represent typical traffic demand on similar 

roadways (35). It is currently widely recognized that despite “design hour” procedures 

and guidelines, roadways perform “better” or “worse” than the operational criteria for 

which they were designed. This is because of the fact that there are uncertainties or  

variation in the estimated design hourly volumes because there is uncertainty in the 

estimate of K. Thus, K was treated as a random variable having a mean    and standard 

deviation   . When performing reliability analysis, a distribution must be chosen to 

model the data. The more closely the distribution fits the data, the more likely the 

reliability statistics will accurately describe the variable. In addition, a well-fitting model 

can be used to make reasonable projections when extrapolating beyond the range of data.  

There is no strong theoretical support behind the distribution selection for K, D, 

and fHV; the distribution selections were instead guided by empirical testing as well as the 
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practicality of implementing the distributions in the Monte Carlo method. The empirical 

tests done for the distribution selection included the Anderson-Darling test and the 

Pearson Correlation coefficient test. The data were input into Minitab and AD and P-

values were determined for all the distributions. A distribution with a relatively lower AD 

value and a higher P value indicated a better fitting distribution, given that the P value is 

greater than 0.05. The goodness of fit test (i.e., AD and P test) and the probability plot for 

different distribution alternatives for K are shown in Table 2 and Figure 5, respectively. 

A distribution is considered to be the best fit if the data points exactly follow the 

straight line in Figure 5. It is seen that there are a few outliers and no distribution 

exactly fits the data. Hence, the distribution in which the data points roughly follow a 

straight line and have relatively better AD and P values is selected as the recommended 

distribution, given the threshold P value is met. The selection of the distribution itself for 

each variable did not impact the research objective of demonstrating a reliability-based 

approach in making highway geometric design decisions. 

The finalized statistical distributions for K obtained from the analysis in Minitab 

for the ATR stations in urban and rural areas are shown in Figure 6. 

 
Table 2 Goodness-of-fit Test Statistics for Different Distributions for K 

URBAN AREA 
DISTRIBUTION AD P LRT P 

Normal 0.483 0.222  
Lognormal 0.437 0.289  

Gamma 0.437 >0.250  
Exponential 27.085 <0.003  

RURAL AREA 
DISTRIBUTION AD P LRT P 

Normal 0.359 0.442  
Lognormal 0.656 0.084  

3-parameter Lognormal 0.350 * 0.0009 
Box-Cox Transformation  ( λ = 3; Normal) 0.383 0.390  

- Asterisk (*) : p-value cannot be calculated for the distribution; LRT P - Likelihood Ratio Test 
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(A) URBAN AREA 

 

(B) RURAL AREA 

 

Figure 5 Probability Plot for K-factor in A) Urban and B) Rural Areas for Different 

Probability Distributions 
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(A) URBAN AREA – LOGNORMAL DISTRIBUTION 

 

(B) RURAL AREA – NORMAL DISTRIBUTION 

 

Figure 6 Finalized Statistical Distributions for K in A) Urban and B) Rural Areas 
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The natural variation in K30 was best represented by a lognormal distribution in 

urban locations and by a normal distribution in rural locations. The descriptive statistics 

for K30 for urban and rural locations are shown in Table 3. 

In urban areas, distribution of the data appears to be roughly symmetric and is 

modeled with a Lognormal distribution. K30 is influenced by the timing of trips during 

the day. K30 will be lower on roads which serve many trip making purposes distributed 

throughout the day (35). As the roads in an urban area provide an opportunity to serve 

many types of trips, the K values are lower in urban area (while the AADT values are 

generally higher).  

In rural areas, distribution of the data appears to be symmetric and is modeled 

with a Normal distribution. Roads which serve few purposes during defined times of the 

day will normally exhibit high K values (35). This could be the reason for higher values 

of K in rural areas than urban areas.  

After selecting the distribution based on the above mentioned steps, no further 

tests were conducted. For example, in the above case, a normal distribution was selected 

as a good fit for K-values in rural areas. The reason for the values of skewness and  

kurtosis not being zero for normal distribution might be because of outliers in the data. 
 
 
3.4.2 Directional Distribution 

 

The Utah data had directional volumes for every hour for each ATR site. For the 

thirtieth highest hour identified, the higher percentage of traffic in a direction was 

calculated to represent the directional distribution. The values of directional distribution 

for the ATR sites in urban and rural area are provided in Table 4. 
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Table 3 Descriptive Statistics for K in Urban and Rural Areas 

URBAN AREA 
MEAN St 

DEV 

SKEWNESS KURTOSIS MINIMUM 1st 

QUARTILE 

MEDIAN 3rd 

QUARTILE 

MAXIMUM 

0.096 0.004 0.3655 0.8544 0.086 0.093 0.095 0.097 0.1079 
         
95% CI for Mean 0.0947 0.0967     
95% CI for Median 0.0949 0.0968     
95% CI for StDev 0.0034 0.0048     

RURAL AREA 
MEAN St 

DEV 

SKEWNESS KURTOSIS MINIMUM 1st 

QUARTILE 

MEDIAN 3rd 

QUARTILE 

MAXIMUM 

0.128 0.012 -0.6705 1.5861 0.083 0.122 0.128 0.137 0.1497 
         
95% CI for Mean 0.1258 0.1312     
95% CI for Median 0.1249 0.1324     
95% CI for StDev 0.0103 0.0142     
CI – Confidence Interval 

 
 

Table 4 Values of D for ATR Sites 

URBAN AREA 
 

 

ATR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

306 0.506 0.510 0.523 0.521 0.534 0.528 0.523 0.538 0.580 0.566 0.543 
315 0.600 0.576 0.595 0.592 0.587 0.567 0.611 0.518 0.555 0.579 0.506 
340 - - 0.631 0.522 0.616 0.502 0.587 0.502 0.587 0.539 0.519 
348 - - - - - - 0.513 0.500 0.509 0.522 0.504 
611 0.604 0.535 0.613 0.602 0.595 0.607 0.543 0.561 0.583 0.640 0.583 
612 - 0.511 0.505 0.539 0.562 0.541 0.576 0.545 0.558 0.557 0.568 
621 - - - - 0.516 0.511 0.500 0.516 0.503 0.562 0.507 

 
RURAL AREA 

 

ATR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

309 0.588 0.649 0.677 0.704 0.694 0.524 0.679 0.503 0.676 0.510 0.524 
310 0.696 0.689 0.564 0.658 0.626 0.573 0.633 0.669 0.606 0.548 0.725 
313 0.617 0.692 0.622 0.687 0.522 0.722 0.687 0.633 0.702 0.613 0.745 
318 0.639 0.579 0.554 0.602 0.617 0.690 0.539 0.542 0.548 0.571 0.611 
401 0.511 0.684 0.545 0.555 0.666 0.562 0.619 0.730 0.636 0.548 0.629 
403 0.579 0.659 0.603 0.578 0.642 0.560 0.587 0.678 0.552 0.714 0.632 
513 0.609 0.559 0.536 0.623 0.595 0.622 0.600 0.631 0.526 0.692 0.664 
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The directional distribution varies during the hour, day and month of the daily 

peak volume hours and also with the road type (36). Land use impacts, travel patterns, 

capacity, and queuing are some of the factors that are uncertain and affect the directional 

distribution of traffic. Hence directional distribution (D) was also treated as a random 

variable with mean    and standard deviation     The final, recommended distribution 

was selected based on the AD and P goodness-of-fit test statistics previously described. 

The goodness of fit test (i.e., AD and P test) and the probability plot for different 

distribution alternatives for D are shown in Table 5 and Figure 7, respectively. 

The finalized statistical distributions for D obtained from the analysis in Minitab 

for the ATR stations in urban and rural areas are shown in Figure 8. The natural variation 

in D is best represented by a two-parameter Exponential distribution in urban locations 

and by a Normal distribution in rural locations. The descriptive statistics for D for urban 

and rural locations are shown in Table 6.  

 
Table 5 Goodness-of-fit Test Statistics for Different Distributions for D 

URBAN AREA 
 

DISTRIBUTION AD P LRT P 

Normal 1.301 <0.005  
Lognormal 1.242 <0.005  

2-parameter Exponential 1.197 0.055 0.000 
Exponential 25.503 <0.003  

    
RURAL AREA 

 
Normal 0.660 0.082  

Lognormal 0.690 0.069  
3-parameter Lognormal 0.689 * 0.638 

Box-Cox Transformation  ( λ = 0.5; 
Normal) 

0.663 0.080  

- Asterisk (*) indicates that p-value cannot be calculated for the distribution 
- LRT P - Likelihood Ratio Test 
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(A) URBAN AREA 

 

 
(B) RURAL AREA 

 

 
Figure 7  Probability Plot for Directional Distribution in A) Urban and B) Rural 

Areas  



35 

 
 

(A) URBAN AREA – 2-PARAMETER EXPONENTIAL DISTRIBUTION 

 

 
 

(B) RURAL AREA – NORMAL DISTRIBUTION 

 

 
Figure 8 Finalized Statistical Distributions for D in A) Urban and B) Rural Areas 
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Table 6 Descriptive Statistics for D in Urban and Rural Areas 

URBAN AREA 
MEAN St DEV SKEWNESS KURTOSIS MINIMUM 1st 

QUARTILE 

MEDIAN 3rd 

QUARTILE 

MAXIMUM 

0.551 0.038 0.3997 -0.9788 0.500 0.516 0.543 0.583 0.6402 
 

95% CI for Mean 0.5412 0.5604     
95% CI for Median 0.5268 0.5633     
95% CI for StDev 0.0328 0.0467     

 
RURAL AREA 

MEAN St DEV SKEWNESS KURTOSIS MINIMUM 1st 

QUARTILE 

MEDIAN 3rd 

QUARTILE 

MAXIMUM 

0.618 0.062 0.032 -1.0218 0.503 0.561 0.619 0.676 0.745 
         
95% CI for Mean 0.6036 0.6320     
95% CI for Median 0.6008 0.6332     
95% CI for StDev 0.0540 0.0744     

 CI – Confidence Interval 

 
3.4.3 Heavy-Vehicle Adjustment Factor (fHV) 

 
The heavy vehicle adjustment factor has inherent uncertainty because of  

1) Uncertainty in the heavy vehicle volume estimates (i.e., PT) and  

2) Uncertainty in passenger-car equivalencies (i.e., ET).  

The values of     for the ATR sites in urban and rural area are shown in Table 7. 

Uncertainty in heavy vehicle volumes is due to the difficulty of quantifying effects of 

region and area populations and demand (37). Uncertainty in PCEs is due to roadway 

conditions, such as terrain type, and traffic conditions, such as flow rate and heavy 

vehicle percentage (38). This study considered the uncertainty in heavy vehicle volumes 

in this phase. The PCE value of trucks was assumed to be a constant value of 1.5 for this 

analysis, and was taken from the HCM for level terrain. In the extended analysis shown 

in the later phase, the uncertainty in PCE values was also considered. These two types of 

uncertainties would completely address the randomness of heavy vehicle adjustment 

factor, which is shown in the extended analysis section. 



37 

 
 

Table 7 Values of fHV for ATR Sites 

URBAN AREA 
ATR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

306 - 0.791 0.971 0.909 0.939 0.866 0.905 0.913 0.885 0.930 - 
315 - 0.901 0.962 0.966 0.962 0.962 0.957 0.957 0.943 0.877 - 
340 - - 0.966 0.957 0.957 0.935 0.935 0.935 0.935 0.935 - 
348 - - - - - - 0.922 0.873 0.930 0.885 - 
611 - 0.858 0.952 0.909 0.948 0.866 0.893 0.901 0.851 0.901 - 
612 - 0.901 0.943 0.943 0.939 0.943 0.939 0.909 0.877 0.851 - 
621 - - - - 0.917 0.922 0.922 0.922 0.881 0.881 - 

RURAL AREA 
ATR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

309 - 0.803 0.787 0.775 0.813 0.806 0.803 0.810 0.813 0.810 - 
310 - 0.897 0.885 0.877 0.870 0.873 0.873 0.877 0.909 0.862 - 
313 - 0.847 0.943 0.935 0.930 0.922 0.873 0.897 0.901 0.830 - 
318 - 0.816 0.851 0.893 0.844 0.840 0.781 0.781 0.781 0.855 - 
401 - 0.897 0.897 0.866 0.897 0.901 0.905 0.913 0.922 0.922 - 
403 - 0.881 0.885 0.877 0.866 0.870 0.866 0.870 0.889 0.885 - 
513 - 0.877 0.877 0.870 0.862 0.866 0.866 0.877 0.889 0.889 - 

 

The values of     were calculated based on Equation 3.5, using the ranges of 

heavy vehicle percentages observed at the ATR sites. 

Hence      was considered to be a random variable with mean      and standard 

deviation     . The final, recommended distribution was selected based on the AD and P 

goodness-of-fit test statistics previously described. The probability plot for different 

distribution alternatives (i.e., normal, lognormal, Weibull, gamma, and exponential 

distributions) for      is shown in Figure 9. The goodness of fit test (i.e., AD and P test) 

for      is shown in Table 8. These distributions only apply for the uncertainty in heavy 

vehicle volumes which are based on the data from the ATR stations. It was clearly seen 

in Figure 9 that Weibull distribution follows the straight line in the graph. The graphs, 

combined with AD and P test were used to make a selection of fHV distribution in urban 

and rural areas. 
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(A) URBAN AREA 

 

 
(B) RURAL AREA 

 

 
Figure 9 Probability Plot for fHV in A) Urban and B) Rural Areas 
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Table 8 Goodness-of-fit Test Statistics for Different Distributions for fHV 

URBAN AREA 
DISTRIBUTION AD P LRT P 

Weibull 0.406 >0.250  
Lognormal 0.901 0.020  

Gamma 0.866 0.026  
Normal 0.790 0.038  

RURAL AREA 
Exponential 26.325 <0.003  

Weibull 0.616 0.105  
2-parameter Exponential 8.492 <0.010 0.000 

3-parameter Weibull 0.704 0.031 0.583 
- LRT P - Likelihood Ratio Test 

 

A Weibull distribution was selected to represent the variability in fHV for both 

urban and rural locations. The descriptive statistics for     for urban and rural locations 

are shown in Table 9. In urban areas, distribution of the data is skewed to the left and 

modeled with a Weibull distribution. The finalized statistical distributions for     

obtained from the analysis in Minitab for the ATR stations in urban and rural areas are 

shown in Figure 10. 

 
Table 9 Descriptive Statistics for fHV in Urban and Rural Areas 

 
URBAN AREA 

MEAN St 

DEV 

SKEWNESS KURTOSIS MINIMUM 1st 

QUARTILE 

MEDIAN 3rd 

QUARTILE 

MAXIMUM 

0.917 0.037 -0.904 1.032 0.790 0.891 0.921 0.943 0.9708 
 

95% CI for Mean 0.9070 0.9273     
95% CI for Median 0.9090 0.9346     
95% CI for StDev 0.0313 0.0459     

 
RURAL AREA 

MEAN St 

DEV 

SKEWNESS KURTOSIS MINIMUM 1st 

QUARTILE 

MEDIAN 3rd 

QUARTILE 

MAXIMUM 

0.866 0.041 -0.5686 -0.3134 0.775 0.844 0.873 0.897 0.9434 
 

95% CI for Mean 0.8553 0.8762     
95% CI for Median 0.8658 0.8803     
95% CI for StDev 0.0352 0.0503     

CI – Confidence Interval 
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(A) URBAN AREA – WEIBULL DISTRIBUTION 

 

 
 

(B) RURAL AREA – WEIBULL DISTRIBUTION 

 

 
Figure 10 Finalized Statistical Distributions for fHV in A) Urban and B) Rural Areas 
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Figure 10 shows that fHV values are more concentrated on the right side (i.e., 

higher values of fHV). Higher values of fHV relate to the lower values of percent of trucks. 

The lower percent of trucks in the urban area can be justified for the reason that the main 

truck routes in Utah mostly pass through outside urban boundaries. In rural areas, 

distribution of the data is skewed to the left, but lesser than the urban area. It is also 

modeled with a Weibull distribution. 

 
3.4.4 Average Speed (S) as a Function of Free-flow Speed 

 
As noted above, Free-flow Speed (FFS) plays a major role in the estimation of the 

density and level of service by influencing the selection of the appropriate speed-flow 

curve, and therefore influencing the average speed estimate for a given demand volume. 

Even under similar roadway conditions, drivers select a range of speeds based on the road 

characteristics. All vehicles do not travel at the same speed because of the variation in 

driver and vehicle characteristics i.e., some driver-specific differences are present in the 

perception of speed and control of the vehicle as well, which causes additional variation 

in free-flow speeds (39). This kind of variation can be approximated by the normal 

distribution. The Utah ATR data did not include any information on the speeds. 

McLean (40) has given an overview of FFS studies on two-lane highways. He 

concluded that the desired speeds of cars can be “reasonably well represented by a 

normal distribution with mean of about 56 to 62 mph and a coefficient of variation of 

about 0.11 to 0.14.” This results in a standard deviation of around 6 to 9 mph. 

Accordingly, in this work, the mean and standard deviation of the speeds were 

approximated to a value of 65 to 70 mph and 7-10 mph for urban and rural areas, 

respectively. Hence, free-flow speed was considered to be a random variable with mean 
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     and standard deviation       The random numbers in the normal distribution were 

generated in Excel using the “norminv” function. The distributions were generated in 

Minitab software according to the generated random numbers. The descriptive statistics 

for free-flow speeds for urban and rural areas are shown in Table 10. The distributions for 

free-flow speeds in urban and rural locations are shown in Figure 11.  

As mentioned earlier, the selection of the distributions of K, D, and fHV was based 

purely on empirical testing and the feasibility of implementing the distribution in the 

Monte Carlo method. These distributions were used to demonstrate the intended objective 

of applying reliability analysis in highway geometric design decisions. The choice of the 

distributions did not impact the ability to draw conclusions in a broader context. The 

selected distribution and statistics (mean and standard deviation) for all the design inputs 

discussed in this section are shown in Table 11. 

 
Table 10 Descriptive Statistics for Free-flow Speeds in Urban and Rural Areas 

URBAN AREA 
 

MEAN St 

DEV 

SKEWNESS KURTOSIS MINIMUM 1st 

QUARTILE 

MEDIAN 3rd 

QUARTILE 

MAXIMUM 

69.33 7.633 0.086 -0.130 47.67 64.381 69.046 74.284 89.534 
 

95% CI for Mean 68.379 70.280     
95% CI for Median 68.043 69.956     
95% CI for StDev 7.017 8.367     

RURAL AREA 
 

MEAN St 

DEV 

SKEWNESS KURTOSIS MINIMUM 1st 

QUARTILE 

MEDIAN 3rd 

QUARTILE 

MAXIMUM 

66.71 9.094 0.124 0.093 39.425 60.192 66.599 71.831 93.887 
 

95% CI for Mean 65.659 67.776     
95% CI for Median 65.447 67.840     
95% CI for StDev 8.405 9.908     
CI – Confidence Interval 
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(A) URBAN AREA – NORMAL DISTRIBUTION 

 

 
 

(B) RURAL AREA – NORMAL DISTRIBUTION 

 

 
Figure 11 Statistical Distributions for Free-flow Speeds in A) Urban and B) Rural 

Areas 
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Table 11 Selected Distributions, Mean, and Standard Deviation of Input Variables 

DESIGN INPUT 
DISTRIBUTION 

AND DESCRIPTIVE 

STATISTICS 
URBAN AREA RURAL AREA 

K30 

Distribution Lognormal Normal 
Mean 0.095 0.128 
Stdev 0.004 0.012 

D 

   
Distribution 2-parameter Exponential Normal 

Mean 0.551 0.617 
Stdev 0.038 0.062 

   

FFS 

Distribution Normal Normal 
Mean 69.33 66.71 
Stdev 7.633 9.094 

    
 Distribution Weibull Weibull 

fHV Mean 0.917 0.865 
 Stdev 0.037 0.041 



 

 

 

 

 

 

CHAPTER 4

 

 

RESULTS 

 
 

This chapter presents the vehicle density results obtained from Monte Carlo 

simulation, as part of the probabilistic approach to determining basic number of lanes on 

freeways.  It also provides examples of basic number of lanes analysis using the current 

deterministic approach. This is done to provide a basis for comparison between the two 

approaches. 

 
4.1 Density Estimation 
 

Density, speed, and flow are the three critical parameters for traffic analysis (41). 

Density is the number of vehicles divided by the length of the road segment. Density 

estimation provides important information for road planning, and traffic control. Traffic 

density estimation or prediction is considered to be difficult because density cannot be 

predicted with certainty as “one number.” Contributors to the disturbance term in density 

estimation include location, weather, land-use type, and vehicle types, and driver 

characteristics. Further, lane-changing behavior affects lane-wise density significantly. 

This work considered the disturbances in overall density estimation and not lane-wise 

density, in particular. 

As previously discussed, the LOS for a freeway segment is determined from 

estimates of traffic density. LOS qualitatively describes the operating conditions of a 
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roadway based on factors such as speed, travel time, maneuverability, delay, and safety 

(31). The level of service of a facility is designated with a letter, A to F, with A 

representing the best operating conditions and F, the worst.  

Designers and transportation agencies face decisions on whether design 

alternatives with a certain basic number of lanes will result in “acceptable” operations.  

Comparisons of estimated LOS to a design LOS provide critical insights to these 

decisions.  Estimates for density and LOS resulting from the traditional application of 

HCM methodologies are “one number” and “one letter.”  However, the uncertainty 

involved in design year projections of traffic-related characteristics will ultimately result 

in uncertainty in density and LOS estimates in the design hour.  This uncertainty could 

influence whether or not a design alternative maintains the design LOS over the design 

period. In this study, the variability of the vehicle density and LOS resulting from 

uncertainty in the traffic-related variables is obtained by means of Monte Carlo 

simulation.  This provides designers with an explicit, quantitative understanding of what 

the range in operational performance resulting from design decisions is likely to be. 

Vehicle density was also determined by the current deterministic approaches so the 

meaning of results obtained from the two approaches could be compared. 

 
4.2 Method I: Reliability – Based Method 
 

4.2.1 Monte Carlo Simulation 
 

Monte Carlo simulation is widely used to simulate the behavior of various 

systems, with significant uncertainty in inputs. It is a probabilistic technique that uses a 

large set of random numbers or samples to measure uncertainty. It requires the 

knowledge of the distributions of the input variables and a performance function to 



47 

 
 

correlate this distribution with vehicle density. The objective is to generate a sample for 

each one of these input variables from a distribution that has already been identified. 

Random sampling may be performed using Minitab’s random data functionality. Hence, 

random samples are generated for the inputs, according to their underlying distributions. 

As applied in this case, the Monte Carlo simulation generated 100,000 sets of random 

input values based on the selected statistical distributions developed to obtain a 

distribution of the vehicle density. The simulations then provide a good representation of 

the vehicle density under various uncertainties. The example of a Monte Carlo simulation 

is shown in Figure 12. 

Design year AADT values of 75,000 and 14,000 and PHF values of 0.92 and 0.88 

were assumed for an urban and rural segment, respectively. These represented average 

AADT values for the Interstate 15 and Interstate 80 segments used to develop the 

statistical distributions of input variables.  For a given number of lanes, vehicle density 

was then computed using Monte Carlo simulation as part of the proposed 

 

 

Figure 12 Example of a Monte Carlo Simulation 
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reliability-based framework. It is now possible to analyze the distribution of the 

simulated output variable (vehicle density, in this case). The analysis provides a better 

understanding of how much variability in the output can be expected in normal operating 

conditions. The results are presented in Table 12, which includes descriptive statistics of 

density distributions and selected percentile values for densities.  Density distributions for 

two, three, and four directional travel lanes on the urban segment with 75,000 vehicles 

per day and for two, and three travel lanes on the rural segment with 14,000 vehicles per 

day are shown in Figure 13 and 14, respectively.  

In Figure 13 and Figure 14, the x-axis and y-axis refer to the vehicle density in 

terms of pc/mi/ln and frequency of vehicle density, respectively. In other words, Figures 

13 and 14 are the histograms for vehicle density of the travel lanes. Vehicle density 

values range from 10-52 pc/mi/ln in urban areas and 2-22 pc/mi/ln in rural areas for 

different number of lanes alternatives. 

 
Table 12 Statistics and Percentile Values of Vehicle Density for Different Number of 

Lanes Alternatives 

URBAN AREA 
Number 

of Lanes 

Avg. 

density 

(pc/mi/ln) 

Standard 

deviation 

50
th

 

percentile 

75
th

 

percentile 

95
th

 

percentile 

99
th

 

percentile 

Probability 

that design 

LOS C is 

not met 

2 34.285 5.481 33.506 37.268 44.362 50.898 97.24% 
3 22.857 3.654 22.337 24.845 29.574 33.932 17.28% 
4 17.143 2.740 16.753 18.634 22.181 25.449 0.77% 

 
RURAL AREA 

Number 

of Lanes 

Avg. 

density 

(pc/mi/ln) 

Standard 

deviation 

50
th

 

percentile 

75
th

 

percentile 

95
th

 

percentile 

99
th

 

percentile 

Probability 

that design 

LOS B is 

not met 

2 11.130 2.321 10.868 12.468 15.307 17.825 0.92% 
3 7.420 1.547 7.246 8.312 10.205 11.884 0% 
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URBAN AREA 

(A) DENSITY DISTRIBUTION FOR TWO DIRECTIONAL LANES 

 

(B) DENSITY DISTRIBUTION FOR THREE DIRECTIONAL LANES 

 

(C) DENSITY DISTRIBUTION FOR FOUR DIRECTIONAL LANES 

 

Figure 13 Vehicle Density Distributions for A) Two Directional Lanes, B) Three 

Directional Lanes, C) Four Directional Lanes in Urban Areas 
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RURAL AREA 

(A) DENSITY DISTRIBUTION FOR TWO DIRECTIONAL LANES 

 

(B) DENSITY DISTRIBUTION FOR THREE DIRECTIONAL LANES 

 

Figure 14 Vehicle Density Distributions for A) Two Directional Lanes, B) Three 

Directional Lanes in Rural Areas 

 

4.2.2 Monte Carlo Simulation using Microsoft Excel 

 
The vehicle density of a facility due to uncertainty in the input parameters was 

also obtained by Microsoft Excel to verify the results from Minitab. Microsoft Excel is 

used to calculate vehicle density from Monte Carlo simulation using the probability 

distributions developed for the input parameters. The inputs for carrying this analysis are 

K, D, fHV, and FFS. These inputs are similar for urban and rural areas, with difference in 

the probability distributions for the input parameters. 
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The inputs for urban area are as follows: 

 The percent of daily traffic in the design hour K, where       1       
   

 Directional distribution of traffic D, where         2      
   

 Heavy vehicle adjustment factor      where       3(         
 ) 

 Average speed as a function of free-flow speed FFS, where 

       4          
   

Number of simulations, K= 100,000. For K = 1 to 100000, the following 

methodology was used: 

1. Based on the underlying distribution parameters, mean and standard 

deviation (  and    of the individual inputs, generate a set of random 

samples using the probability density functions for the input variables. 

2. The values for AADT and PHF were assumed to be the same as described 

above. 

3. Use Equation 3.7 to calculate the vehicle density for the simulation from 

this set of random samples. 

Calculate the histogram, mean, variance, and percentile values for the vehicle 

density from the results over 100000 simulation runs. Figure 15 shows the distributions 

of the simulated vehicle density generated by Microsoft Excel for urban and rural areas. 

An urban roadway with three travel lanes in each direction and rural roadway with two 

travel lanes in each direction were selected to compare results obtained from Minitab and 

Microsoft Excel.  

                                                           
1
 Lognormal 

2
 2-parameter Exponential 

3
 Weibull 

4
 Normal 
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Figure 15 Vehicle Density Histograms for A) Three Lanes in Urban Areas and B) 

Two Lanes in Rural Areas from Microsoft Excel 

A 

B 
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As observed in Figures 13 through 15, the vehicle density obtained from the two 

applications is very similar. This verifies the accuracy of the estimations in Minitab. 

Obviously, the value and spread of the vehicle density is greater in urban areas than rural 

areas. In addition, a clear pattern of randomness propagation can be observed in the 

distribution of the vehicle density. It should be noted that, the input distributions will vary 

with different facilities, and the resulting vehicle density distributions will also vary. 

 

4.2.3 Extended Analysis 

 
The uncertainty involved in the heavy vehicle adjustment factor was quantified in 

this work, firstly, by considering the uncertainty in the heavy vehicle volume estimates. 

The work in this section allows for the quantification of uncertainty in fHV by also taking 

into account the uncertainty associated with the passenger car equivalencies. The HCM 

recommends a PCE = 1.5 for level basic freeway segments, which is assumed in this 

study. However, Umama Ahmed (42) stated that this value was true when the truck 

presence did not exceed 3%. Higher PCE values were identified at higher truck presence 

levels. However, not enough data were available to study this phenomenon for definite 

conclusions. Thus, the previously stated finding of PCE factors based on the percentage 

of heavy vehicles by Umama Ahmed (42) was considered in this study. This is done to 

include the variation in the values for PCEs of trucks with the variation in percentage of 

trucks. The values for the passenger car equivalent factor relation with heavy vehicle 

percentage in traffic stream are given in Table 13. These values are used for the PCEs of 

trucks to completely quantify the uncertainty involved in computing the heavy vehicle 

adjustment factor. 

One problem with Minitab is that the worksheet window in Minitab uses a fixed 
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Table 13 PCE Factor Relation with Heavy Vehicle Percentage, Data from Umama 

Ahmed (42) 

 Vehicle Class 4 and above 

Heavy Vehicle percentage Headway (Seconds) Passenger Car Equivalent  

>0-3% 2.14 1.50 

3-6% 2.32 1.62 

6-9% 2.48 1.74 

>9% 2.51 1.76 

 
 

structure that is more difficult to manipulate than in spreadsheet programs like Microsoft 

Excel. Hence, Microsoft Excel is used for this analysis. The first step in the analysis is to 

identify the distributions for percent of trucks in urban and rural areas. Based on the data 

obtained from UDOT website, the percent of trucks followed a 2-parameter exponential 

distribution and lognormal distribution in urban and rural areas, respectively. Then, 

random samples of percent heavy vehicles are generated based on the distributions, and 

then the PCE values for different percentages of trucks are assigned according to the 

values given in Table 13. Thus, the value of fHV was calculated based on:  

 Uncertainty in heavy vehicle volumes and  

 Uncertainty in PCE values of trucks.  

The vehicle density is calculated using Equation 3.7 for the simulation from the 

set of random samples with the new fHV. Density values for this simulation for urban and 

rural areas are shown in Table 14.  
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Table 14 Statistics and Percentile Values of Vehicle Density for Different Number of 

Lanes Alternatives with the New fHV 

URBAN AREA 
Number 

of Lanes 

Avg. 

density 

(pc/mi/ln) 

Standard 

deviation 

50
th

 

percentile 

75
th

 

percentile 

95
th

 

percentile 

99
th

 

percentile 

Probability 

that design 

LOS C is 

not met 

2 35.138 6.021 34.209 38.333 46.262 53.562 97.62% 
3 23.425 4.014 22.806 25.555 30.841 35.7086 22.11% 
4 17.569 3.011 17.105 19.166 23.131 26.781 1.42% 

 
RURAL AREA 

Number 

of Lanes 

Avg. 

density 

(pc/mi/ln) 

Standard 

deviation 

50
th

 

percentile 

75
th

 

percentile 

95
th

 

percentile 

99
th

 

percentile 

Probability 

that design 

LOS B is 

not met 

2 11.776 2.513 11.492 13.215 16.317 19.086 1.92% 
3 7.850 1.675 7.661 8.810 10.878 12.724 0% 
 
 

4.3 Method II: Current Deterministic Approach 
 

Deterministic analysis does not explicitly consider uncertainties in input variable 

values. As mentioned earlier, in a deterministic sense, there exists only “one 

number/value” for density from a deterministic approach.  The vehicle density is 

calculated using Equation 3.7, by inserting “one value” for each of the input parameters. 

The values of AADT and PHF were assumed to be the same as above (i.e., 75,000 

vehicles per day and 0.92 for the urban segment and 14,000 vehicles per day and 0.88 for 

the rural segment). Values for K30, D, FFS, and f HV were taken to be the mean values of 

the variable distributions used in the reliability-based approach.  The density values 

estimated for different number of lanes alternatives, and the resulting LOS, are presented 

in Table 15. Example density calculations for three directional travel lanes in an urban 

area and two directional travel lanes in a rural area are shown: 

For an urban area: 
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Table 15 Values of Vehicle Density and LOS for Different Number of Lanes 

Alternatives 

URBAN AREA 
Number of lanes Density (pc/mi/ln) LOS 

2 33.914 D 
3 22.609 C 
4 16.956 B 

RURAL AREA 
Number of lanes Density (pc/mi/ln) LOS 

2 10.886 A 
3 7.257 A 

 
 

           
          

             
  

                   

                    
               

For a rural area: 

          
          

             
  

                   

                    
               

 

4.4 Discussion 
 

4.4.1 Discussion of Results: Urban Segment 
 

The top half of Table 12 provides information on the probability distribution of 

operational performance that might result from basic number of lanes decisions made to 

achieve a design level of service on an urban freeway in flat terrain with a design year 

AADT of 75,000 vehicles per day.  The results account for uncertainty in estimates of 

K30, D, FFS, f HV. The design LOS for this urban freeway segment is C.  The segment 

would be expected (i.e., on average) to operate at LOS D with a density of 34 pc/mi/ln if 

two lanes per direction were provided.  There is a 3% chance that the segment would 

operate at or better than the design LOS of C; a little more than a 25% chance that the 

segment would operate at a LOS E; and a 5% chance that the segment would operate at 

LOS F with two lanes per direction.     
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The segment would be expected to operate at LOS C with a density of 23 pc/mi/ln 

with three lanes per direction.  There is an approximately 83% chance that the segment 

would operate at or better than the design LOS of C; a little more than a 16% chance that 

the segment would operate at a LOS D.  There is a very minimal chance (i.e., less than 

1%) that the segment would operate at LOS E.  There is a 99% chance that the segment 

would operate at LOS C or better with four directional lanes.  This includes a 75% 

chance that the segment would operate at LOS B or better.  

 
4.4.2 Discussion of Results: Rural Segment 
 

The bottom half of Table 12 provides information on the probability distribution 

of operational performance that might result from basic number of lanes decisions made 

to achieve a design level of service on a rural freeway in flat terrain with a design year 

AADT of 14,000 vehicles per day.  As with the urban area analysis, the results account 

for uncertainty in estimates of K30, D, FFS, f HV.  The design LOS for this rural freeway 

segment is B.  The segment would be expected (i.e., on average) to operate at a high LOS 

B with a density of 11 pc/mi/ln with two lanes per direction.  There is a 50% chance that 

the rural segment would operate at LOS A and a very minimal (i.e., less than 1% chance) 

that the rural segment would operate worse than LOS B with two lanes per direction.  

Given the low design year AADT, an LOS A is expected with three lanes per direction 

with only 1% chance of operating at LOS B. 

 
4.4.3 Discussion of Results: Extended Analysis 
 
 Table 14 provides information on the probability distribution of operational 

performance that might result from basic number of lanes decisions made to achieve a 
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design level of service on an urban and rural freeway. This analysis considers the 

uncertainty associated with passenger car equivalencies in fHV estimation, with a design 

year AADT of 75000 in urban area and 14000 in rural area per day. As with the former 

analysis, the results account for uncertainty in estimates of K30, D, FFS, f HV. The 

uncertainty associated with fHV in the former analysis was partially quantified by 

accounting for uncertainty in heavy vehicle volume estimates. In this section of extended 

analysis, the uncertainty of fHV is fully quantified by accounting for the uncertainty in 

PCE’s along with heavy vehicle volume uncertainty. The results from extended analysis 

show that the average vehicle density value for urban and rural area for different number 

of lanes alternatives increases almost by 1pc/mi/ln when compared to the value obtained 

through former analysis.  

Greater variations in the values of density were not seen because of the fact that 

PCE values were based on the headway and percent of trucks. The percent of trucks in 

urban and rural areas is mostly higher than 9% in this study. This results in a PCE value 

of 1.76, applicable to almost all the observations. Hence, there was only a slight increase 

in the density value. This analysis would have been significant in situations where there 

is a greater range in the value of percent of trucks. 

 
4.4.4 Comparison of Results: Probabilistic and Deterministic Approach 

 
As noted earlier, “one number” and “one letter” represent the estimates for 

density and level of service in a deterministic analysis. Density is considered to be a 

“possible range” in probabilistic analysis. For example, the deterministic analysis 

indicates a design LOS C, with a density of approximately 23 pc/mi/ln on the urban 

segment in flat terrain with three lanes per direction.  Recall from the probabilistic 



59 

 
 

approach that the segment would be expected (i.e., on average) to operate at LOS C with 

a density of 23 pc/mi/ln with three lanes per direction.  However, the probabilistic 

approach provides the following additional details:  

 There is an approximately an 83% chance that the segment would operate 

at or better than the design LOS C;  

 There is a little more than a 16% chance that the segment would operate at 

LOS D; and  

 There is a very minimal chance (i.e., less than 1%) that the segment would 

operate at LOS E. 

In other words, there would be about a 17% chance that three directional lanes 

would not be sufficient in the design year to maintain the design level of service.  The 

designer would have this possibility to weigh against other performance information, 

trade-offs, impacts, and costs when making the ultimate number of lanes decisions. 



 

 

 

 

 

 

CHAPTER 5

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 
 

This chapter summarizes the work carried out in this study and the findings of the 

reliability analysis performed. Recommendations for future improvements in the analysis 

are also presented in this section. 

 
5.1 Summary 
 

Designers have to deal with the challenge of designing for a broad range of driver, 

vehicle, and roadway conditions and capabilities. In other words, there is natural 

randomness associated with the input variables. While almost all the factors involved in 

geometric design process (i.e., speed, friction, reaction time, etc.) are stochastic in nature 

and are fully distributed among the road users, the current deterministic approach relies 

on a single value to represent each factor (43). This study proposes a methodology to 

explicitly address the level of variability and uncertainty associated with the design 

inputs, in the context of probabilistic analysis. This approach utilizes a full distribution of 

input parameters and attempts to achieve a reliable road geometric design. A literature 

review conducted as part of this work showed that previous studies focused mainly on 

safety-related concerns (e.g., available versus required sight distance, vehicle skidding 

and rollover) and not in an operational context. 
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The objective of this work is to demonstrate a reliability-based geometric design 

approach that incorporates the uncertainty associated with traffic-related characteristics to 

making decisions regarding the basic number of lanes on freeways. This analysis is 

executed in an operational context. This work was tested using the data from the State of 

Utah. Data were obtained from 14 ATR sites on Interstate 15 and Interstate 80 for the 

years 2002 through 2012. For all the 14 ATR sites, data were available on an hourly basis 

and UDOT ATR maps were used to associate area type with each site. Probability 

distributions were identified for each of the design input variables using the obtained data 

for both urban and rural freeway segments. Then, the contributions of uncertainty in the 

traffic-related variables to the variation of vehicle density were evaluated using Monte 

Carlo simulation.   

Monte Carlo simulation was an effective method for implementing the 

probabilistic analysis approach. As applied in this case, the Monte Carlo simulation 

generated 100,000 sets of random input values based on the selected statistical 

distributions of traffic characteristics that were developed to obtain a distribution of the 

vehicle density.  

 
5.2 Findings 
 

The analysis presented here in this work offers a rational framework for 

addressing the uncertainty in the geometric design process. Designers can use this 

method to explicitly consider uncertainty in the evaluation of vehicle density and LOS 

(i.e., operational performance). This research provides a different perspective on the 

development and usability of a performance-based design approach. The methodology is 

a step towards not only allowing a check and feedback of highway operational 
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information at highway geometric design stage, but of also being able to explicitly 

consider the impact of design decisions on the future variability in operational 

performance. Several conclusions are drawn from the analysis and discussions are 

presented: 

For the urban case study: 

 The proportion of daily traffic in the design hour, the 30th highest hour, 

(K30) ranged from 0.09 – 0.11. 

 The probability that the value of directional distribution (D) exceeded 0.55 

was 47%. 

 The probability of having LOS C or better was 3% if two lanes per 

direction are provided and increased to a value of 83% if three lanes per 

direction are provided. 

 The probability of operating at LOS B or better was 75% if four 

directional lanes are provided. 

For the rural case study: 

 The proportion of daily traffic in the design hour (K30) in this study ranged 

from 0.08 – 0.15. 

 The probability that the value of directional distribution of traffic (D) 

exceeded 0.70 was 9%. 

 The probability of having LOS B or better was 99% if two lanes per 

direction are provided. 

 Probability of having LOS A or better was 50% if two directional lanes 

are provided. 
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The probability of not meeting design LOS increases as the basic number of lanes 

decreases. Based on the probability values in the output distribution of density, scenarios 

corresponding to a specified “worst case”, “expected case”, and “best case” are easily 

determined. 

Uncertainty is present in every stage of highway geometric design and can be best 

addressed through a probabilistic framework. The results indicated that uncertainty in 

input variables has important effects on the probability distribution of the operational 

performance on a freeway. The uncertainty was attributed to the aleatory variability (i.e., 

natural randomness) in the input variables. Instead of just “one number” for density and 

“one letter” for LOS, the designer would instead have estimates of the chance (i.e., 

probability) that the design LOS will or will not be met in the design year. This 

information could then be weighed against other considerations (e.g., trade-offs, impacts, 

costs, right-of-way constraints) when making basic number of lanes decisions. 

 
5.3 Future Work 

 

This work adds to the existing knowledge base by developing and executing 

reliability analysis of geometric design in an operational context. The framework allows 

designers to explicitly consider the probability distribution of operational performance 

that might result from different basic number of lanes decisions. While the research 

conducted here offers valuable information and represents a significant departure from 

much of the research in this area, there are a variety of ways in which the data and the 

proposed methodology can be improved. The analysis in the paper can be further 

improved by 
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 Incorporating uncertainty involved in the projection of AADT by 

considering annual growth rate as a random variable; 

 Incorporating uncertainty into the PCEs of trucks, due to different truck 

performance characteristics based on truck weight and power.  

 Accommodating the likely variation in PHF, which is affected by land-use 

change, traveler behavior changes, and other known and unknown factors;  

 Incorporating actual free-flow speed data as well as speed-flow 

relationships;  

 Testing the methodology for a broader range of area type, traffic volume 

combinations as well as in different operational settings (e.g., providing 

auxiliary lanes, selecting maximum vertical grade, selection of intersection 

control type and lane arrangement); 

 Repeating the research on other freeway segments to determine if the 

results can be generalized; and 

 Incorporating uncertainty involved in lane-wise density by taking into 

account the lane changing behavior of vehicles, which affects lane-wise 

density significantly.
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