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ABSTRACT

This thesis investigates the problem of producing power using a single-phase induction 

machine.  Single-phase induction motors are typically nonsymmetric two-phase motors, also 

called split-phase motors, with a main winding and an auxiliary winding.  We consider the control 

of power delivered by the main winding through the auxiliary winding.  A state-space model of an 

asymmetric split-phase generator has been developed.  This model is used to characterize and 

identify a 1/3 hp induction machine.  The parameters are used to predict suitable operating 

regions for the generator.  It is found that there exists a viable operating region in a band just 

above the synchronous speed of the motor.  Four control algorithms are presented.  The first is a 

simple open-loop algorithm for a sinusoidal reference signal.  The second is a controller based on 

the inverse-G adaptive algorithm.  The third is an algorithm featuring an adaptive estimate of the 

system frequency response.  Finally, a PI control method is considered for situations where the 

phase of the generated voltage does not need to be controlled.  Simulated and experimental 

results are presented for each of the control algorithms.  The closed-loop algorithms were able to 

track a desired reference.  These algorithms were also able to reject a disturbance caused by a 20 

percent increase in speed.
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CHAPTER 1

INTRODUCTION

1.1    Problem Statement  

This research focuses on the development of a method to obtain usable electric power 

from commercially available single-phase induction machines (SPIM).  There exists an extensive 

collection of research papers investigating the phenomenon of self-excitation in induction 

machines.  However, it is difficult to extract power from the machines due to the inherent 

instability and nonlinearity of the self-excitation phenomenon.  The current project considers 

controlled generation when a signal excitation voltage is applied to the auxiliary phase of a 

nonsymmetric machine and power is produced on the main winding.  The goal of this research is 

to develop a control algorithm that produces 120 V at 60 Hz across the generating phase of the 

machine.  It is assumed that the speed of the rotor is a measured quantity and can be adjusted 

close to the synchronous speed.

1.2    Importance of the Problem  

Single-phase induction machines (SPIM) are one of the most ubiquitous types of power 

converter.  Although they are called single phase machines, most are actually nonsymmetric two-

phase machines.  They are attractive because they are inexpensive, low-maintenance, and 

lightweight when compared to their synchronous cousins.  An important development of the 

research is a method to model and identify asymmetric single-phase machines.  There are 

standardized tests for the parametrization of symmetric SPIMs, but no such tests exist for 

asymmetric machines.  The proposed parameter identification method can be applied to any 
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induction machine and can be automated.

This research in the control of residential power generation using off-the-shelf induction 

machines is particularly relevant given recent interest in alternative energy technology.  Although 

residential generation solutions exist, single-phase induction generators may provide similar 

performance at a fraction of the cost.  Furthermore, these machines are readily available as 

surplus or salvage and could be utilized as generators in developing countries where access to 

electrical power is limited.

1.3    Review of Previous Work  

The idea of using a voltage-source inverter to control the electrical output of an induction 

generator was first proposed in a paper by Novotny, Gritter, and Studtmann in 1977 [1].  This 

paper develops equivalent circuit models for the inverter-generator system.  This paper uses an 

inverter to control the power drawn from a three-phase induction generator operating in the self-

excited mode.  The paper does not provide any experimental results.  Results were obtained much 

later by Murthy in 1993 [2].  Murthy also extended the analysis to consider self-excited single-

phase machines.  The work was continued by Olorunfemi Ojo at Tennessee Technological 

University in a series of papers from 1995 to 2001.  Ojo's most significant contribution to the 

work is to use the inverter to excite the auxiliary phase of the machine [4].  This inverter-assisted 

topology is qualitatively different than self-excited generation.  In this configuration, there is a 

linear relationship between the voltage applied at the excited phase and the voltage produced by 

the generating phase.  An additional feature of this topology is that control is performed on only a 

single phase so only one inverter is needed.  Furthermore, the voltage generated by the machine 

will have fewer induced harmonics.  In [5], Ojo explores the effect of different loading on this 

generator's performance.  He explores the effect of more advanced modulation schemes in [6]-[8]. 

Finally, Ojo uses the inverter-generator topology to identify the parameters of an induction 
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machine [9].  Despite his thorough investigation of this topology, Ojo never attempted closed-

loop control of the inverter-generator system.



CHAPTER 2

PARAMETER IDENTIFICATION

The first step in any control problem is to develop an accurate representation of the plant.  

This chapter presents a state-space model of an asymmetric induction machine.  This model is 

then simplified to examine operation when one phase is left open while an excitation voltage is 

applied across the opposite phase.  Two frequency response functions are identified as a function 

of these state-space parameters. One frequency response corresponds to a winding impedance and 

the other corresponds to the transmittance from one winding to another.  Parameters are 

determined by fitting measured frequency response functions using least-squares algorithms.  

Finally, the model is expanded to include parameter identification when an RC load is attached in 

parallel to the generating winding.

2.1   Asymmetric Induction Machine Model  

Begin by considering the two-phase induction motor shown in Fig. 1.  The rotor windings 

are assumed to be identical, but the stator windings may be different from each other. The rotor 

windings typically represent a squirrel-cage rotor, rather than actual windings.

Based on the geometry of the motor, the total flux linkages in the four windings are 

assumed to be of the form
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Figure 1: Two-phase induction motor

ψS A=LA iS A+M A cos( np θ ) iR X −M Asin (n pθ )iR Y

ψS B=LB iS B+M B sin(n p θ ) iR X+M A cos (n pθ )iR Y

ψ R X =LRiR X +M A cos( n pθ )i S A+M B sin( np θ ) iS B

ψR Y =LRiRY−M B sin( np θ ) i S A+M B cos( n pθ )i S B

(1)

It is assumed that there is no mutual inductance between stator windings A and B or 

between rotor windings X and Y.  The electrical equations for the stator and rotor windings are 

given by

d ψS A

d t
=v S A−RA iS A ,

d ψ S B

d t
=v S B−RB iS B

d ψ R X

d t
=v R X−RR iR X =−RR iR X ,

d ψ R Y

d t
=v RY −RR i RY =−RR iR Y

(2)

where the right side of the last two equations assume that the rotor windings are short-circuited.  

Combining (1) and (2) gives a set of four equations which may be organized in the following 

form

i

i

i
i

SB

RY
RX

SA

q



6

(
LA 0 M A cos (n p θ ) −M A sin(n p θ )

0 LB M B sin (n p θ ) M B cos(n p θ )

M A cos(n p θ ) M B sin (n p θ ) LR 0
−M A sin (n p θ ) M B cos(n p θ ) 0 LR

) d
d t (

iS A

iS B

iR X

iRY
)=

(
v S A−RA iS A+n p ω M A(i R X sin (n p θ )+iR Y cos(n p θ ))

v S B−RB iS B−n p ω M B (i R X cos(n p θ )−i RY sin(n p θ ))

−RR iR X+n p ω (M A iS A sin (n p θ )−M B iS B cos(n p θ ))

−RR iRY +n p ω(M Ai S A cos(n p θ )+M B iS B sin (n p θ ))
)

(3)

The rotor currents can be described in a coordinate frame attached to the stator, so that

(i R A

i R B
)=(cos (n p θ ) −sin (n p θ )

sin (n p θ ) cos (n p θ ) )(iR X

i RY
) (4)

Applying this transformation, the electrical equations of the motor become

(
L A 0 M A 0
0 LB 0 M B

M A 0 LR 0
0 M B 0 L R

) d
d t (

iS A

iS B

iR A

iR B
)=(

vS A−RA iS A

vS B−RB iS B

−RR iR A−n p ω( LR iR B+M B iS B )

−RR iR B+n p ω( LR iR A+M A iS A )
) (5)

2.2   Parameter Identification without Load  

Now, consider operation on a single phase, A, with the other phase left open.  Thus,

iSB = 0.  The speed is assumed to be constant.  The system can then be studied with Laplace 

transforms, so that

(
sL A+RA s M A 0

s M A s LR+RR n p ω LR

−n p ω M A −n pω LR s LR+RR
)(

iS A

iR A

iR B
)=(

v S A

0
0 ) (6)

while

v S B=s M B iR B
(7)

Let the determinant of the matrix be

D ( s)=( s LA+RA )(( s LR+RR )
2+(n p ω LR )

2 )−s M A
2 ( s( s L R+RR )+(n p ω )2 L R)

(8)

Then
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(
i S A

i R A

i R B
)=(

( s LR+RR)
2
+(n p ω LR )

2

−M A( s( s LR+RR )+(n p ω )2 LR )

n p ω M A RR
) v S A

D( s )
(9)

and

v S A=
D( s )

( s LR+RR )
2
+(n p ω L R)

2 i S A , i R B=
n p ω M A RR

( s LR+RR )
2
+(n p ω LR)

2 i S A
(10)

If we define the impedance ZA(s) of phase A and the transmittance GAB(s) from the current in A to 

the voltage in B, we have

v S A=Z A( s)i S A , vS B=GA B( s)iS A
(11)

where

Z A( s)=( s LA+RA )−s M A
2 s( s LR+RR)+(n p ω)2 LR

( s LR+RR )
2
+(n p ω LR )

2
(12)

GA B( s)=
s n p ω M A M B RR

( s LR+RR )
2
+(n p ω LR )

2
(13)

Knowing the two transfer functions ZA and GAB, it is possible to determine the following 

five constants

C1=
n p ωM A M B RR

LR
2 ,C 2=

RR

LR

,C3=(n p ω )
2 ,C 4= LA ,C5=RA

(14)

Indeed, then transfer functions (18) and (19) can be expressed as

Z A( s)=(C 4 s+C5 )−
C1 s

C2√C3

s2+C2 s+C 3

( s+C2 )
2
+C3

(15)

GA B( s)=
C1 s

( s+C2 )
2
+C 3

(16)

and the constants C1 … C5  are uniquely determined from the transfer functions. For 

nonsymmetric motors, phases A and B can be swapped to obtain two more parameters: RB and LB 

(as well as validation of the two common parameters, C1 and C2).

First, the method was tested with a symmetric machine so that its results could be 
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compared to those of conventional methods.  The symmetrical split-phase induction motor was 

mechanically coupled to a dc motor.  The test motor had the nameplate data given in Table 1.

A sinusoidal excitation voltage was applied to phase A of the generator and, for a fixed 

mechanical speed, this excitation frequency was swept from 5 Hz to 100 Hz. For each excitation 

frequency, the current through phase A and the voltage generated across phase B were measured. 

The magnitude and the phase of these signals at the excitation frequency were calculated on a 

data acquisition and processing board.

Two tests were performed in order to demonstrate the repeatability of the technique for 

different speeds. The first test was performed at 1200 RPM and the second at 3600 RPM. For 

each test, Bode plots of the measured impedance and transmittance were prepared.  Transfer 

functions (15) and (16) were manually fitted to the data.  The resulting Bode plots are displayed 

in Figs. 2 and 3.

From the definitions in (14), four motor parameters can be identified.  Note that all of the 

parameters of a squirrel-cage induction machine cannot be independently determined.  The 

parameters are displayed in Tables 2 and 3.  For comparison, the parameters of the motor 

obtained using classical standstill and synchronous tests are shown in Table 4.  Agreement 

between the results is very good.

A set of tests was also performed for an asymmetric machine at 2400 RPM.  The resulting 

Bode plot with the excitation applied across the auxiliary winding is shown in Figure 4.  The 

Bode plot with the excitation across the main winding is shown in Figure 5.  Each fit was 

obtained using a least-squares algorithm. The parameters are displayed in Tables 5 and 6.

TABLE 1. NAMEPLATE OF SYMMETRICAL MOTOR

Volts Phases Power Speed

24 VAC 1 7.5 W 3350 RPM
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Figure 2: Fit of magnitude and phase of transmittance (left) and impedance 
(right) data for 1200 RPM.  The data are shown by the dotted line, the fit is 

shown by the solid line.

Figure 3: Fit of magnitude and phase of impedance (top) and transmittance 
(bottom) data for 3600 RPM. The data are shown by the dotted line, the fit is 

shown by the solid line.
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TABLE 2. MEASURED PARAMETERS FOR 1200 RPM

RA LA RR/LR M2/LR

48.9 Ω 0.365 H 69.0 Ω/H 0.316 H

TABLE 3. MEASURED PARAMETERS FOR 3600 RPM

RA LA RR/LR M2/LR

48.9 Ω 0.350 H 69.0 Ω/H 0.302 H

TABLE 4. PARAMETERS MEASURED USING CLASSICAL TESTS

RA LA RR/LR M2/LR

49.5 Ω 0.332 H 72.3 Ω/H 0.280 H

Figure 4: Fit of magnitude and phase of impedance (right) and transmittance 
(left) data for auxiliary-winding excitation.  The rotor velocity was 2400 RPM.
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Figure 5: Fit of magnitude and phase of impedance (right) and transmittance 
(left) data for main-winding excitation.  The rotor velocity was 2400 RPM.

TABLE 5.  PARAMETERS OBTAINED USING AUXILIARY-WINDING EXCITATION
RA LA RR/LR MA

2/LR MAMB/LR

5.38 Ω 0.199 H 0.103 Ω / H 0.177 H 0.098 H

TABLE 6.  PARAMETERS OBTAINED USING MAIN-WINDING EXCITATION
RB LB RR/LR MB

2/LR MAMB/LR

1.34 Ω 0.122 H 0.136 Ω / H 0.113 H 0.096 H

2.3   Generator Model with Load  

Next, consider operation when a load is connected in parallel with the generator.  Adding 

a capacitor C and a resistor R in parallel to phase B of the system described by (5) gives the 

following modified equations.

E
d x
d t

=F x+G u (17)

where
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E=(
LA 0 M A 0 0
0 LB 0 M B 0

M A 0 LR 0 0
0 M B 0 LR 0
0 0 0 0 C

), x=(
iS A

iS B

iR A

iR B

vS B

)
F=(

−RA 0 0 0 0
0 −RB 0 0 1
0 −n p ωM B −RR −n p ω LR 0

n p ωM A 0 n p ω LR −RR 0
0 −1 0 0 −1 /RL

)
G=(

1
0
0
0
0
), u=v S A

(18)

In the Laplace domain, the vector transfer function H(s) from VSA(s) to X(s) is given by

H ( s)=( E s−F )−1 G (19)



CHAPTER 3

OPERATING CONDITIONS

The next step of the research is the identification of viable operating regions.  A region is 

considered viable if more electrical power is produced than consumed.  The size of the viable 

region is determined by several factors, including load, capacitance, and mechanical frequency.  

The large number of variables involved makes the identification of these regions non-trivial.  

Once a viable region is identified, an operating point within the region must be selected.  

Operating points could be chosen to provide maximum power, to provide optimum efficiency, or 

to satisfy other design requirements.

This chapter uses the model developed in the previous section to estimate the viable 

region of an induction generator with an RC load.  The simulation is confirmed with experimental 

power data.  The final section of the chapter argues for operating the system around the point 

where the real power consumed by the excited phase is zero.

3.1   Viable Region Estimation  

The transfer function defined in (19) can be used to estimate the power generated by the 

machine.  Assuming a sinusoidal voltage is applied to winding A,

v S A(t )=Asin (ωe t ) (20)

The following power variables can be computed.

P A=
A2

2
R[ H1 ( j ωe )]

(21)

QA=
−A2

2
I [H 1( j ωe)]

(22)
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PB=
A2

2
R[ H 2( j ωe)H 5(− j ωe )]

(23)

QB=
−A2

2
I [H 2 ( j ωe )H5 (− j ωe) ]

(24)

These transfer functions are dependent on electrical frequency, mechanical frequency, 

load resistance and load capacitance.  In order to restrict the design space, the electrical frequency 

was selected to be 60 Hz and VSB = 110 Vpk.  The load resistance was chosen to be

RL = 100 Ω.  This was a choice of necessity as the converter used to drive the prime mover began 

to behave unpredictably at heavier loads.  A load capacitor was placed in parallel with the load 

resistance, C = 200 μF.  The size of the capacitor was selected based on an estimate of the 

reactive power requirements of the generating phase.  This leaves the mechanical frequency, ω, as 

the only undetermined parameter.

Using Matlab, values of PA, QA, PB, and QB were calculated for a range of ω.  Parameters 

for the calculation were taken from Table 5.  The total power generated by both phases of the 

machine is shown in Figure 6.  The computation predicts a viable region just above the 

synchronous speed of the generator, 188.5 rad/sec.  The region is approximately 30 rad/sec wide 

and peak power is delivered at approximately 207 rad/sec.  The real and reactive power of the 

excited phase is shown in Figure 7.  It is important to note that the computation predicts that 

power can be either consumed or generated by the excited phase.

3.2   Verification of Power Curves  

In order to confirm the computation, an experiment was performed.  Phase A of the 

induction generator was connected to the grid via a variac.  The mechanical frequency of the 

machine was manually adjusted using a laser tachometer and then the generated voltage was 

regulated to 110 Vpk.  This  procedure was performed for ten speeds above the synchronous speed 

of the motor.  At each point, the power consumption of the machine was measured using a
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Figure 6: Predicted total power generated by an asymmetrical induction machine

Figure 7: Predicted real and reactive power consumed by phase A
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 Voltech PM1000 Power Analyzer.  The total power generated is plotted alongside the predicted 

values in Figure 8.  Figure 9 shows the active and reactive power consumed by the excited phase.

The data are in good agreement with the predicted values.  The data follow the trend of 

the simulation.  The maximum deviation from the predicted total power generated is 32 percent.

3.3   Selection of Operation Point  

Once the feasible region is identified, the next step is to choose an operating point within 

the region.  As shown in Figure 7, the point PA = 0 appears within the range of viable frequencies 

at approximately ω = 193.25 rad/sec.  This is an attractive operating point since the excited phase 

does not consume any real power.  A battery could supply the reactive power to the phase.  

Changes to the state of charge of the battery could be obtained through small speed adjustments 

around the operating point.  This is especially significant if the generator is designed to be 

operated off-grid.  This operating point is also attractive because the excited phase does not 

generate any real power.  If a standard off-the-shelf amplifier is used for the controller, it will not 

be able to regenerate power.  Power flowing back to the amplifier will cause significant 

distortions in the input voltage.  The alternative to these amplifiers is to design an ad hoc power 

converter to control power flow between the battery and generator.  This is unattractive since it 

would  increase the cost and complexity of the design.  Due to these properties, PA = 0 was chosen 

as the operating point for the control design.
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Figure 8: Total power generated by the induction machine

Figure 9: Real and reactive power generated by phase A



CHAPTER 4

CONTROL DEVELOPMENT

The final phase of the project was the development of methods to produce a controlled 

voltage across the generating phase of the machine.  This problem presents several challenges.  

First, the system is highly resonant.  This means that a pair of poles is near the jω-axis and the 

system is close to instability.  Another challenge is that transfer function of the plant is dependent 

on the mechanical velocity.  Changes in this velocity can cause the system to depart significantly 

from original conditions.  Finally, the model includes equations for the rotor currents.  In practice, 

these currents cannot be measured.  The robust controller must function without knowledge of 

these currents and uncertainties in the parameters, speed, and load.

Four controllers have been considered: an open-loop controller, two adaptive controllers 

and a PI controller.  The first three controllers are designed to match the amplitude and phase of a 

reference signal.  The ability to track both the amplitude and the phase is important in order to 

connect the generator to the grid.  The PI controller is designed to generate a sinusoidal voltage at 

a desired amplitude.  This method is applicable to systems operating as stand-alone generators 

where phase is not a consideration.  All four methods are discussed in detail below.  The analyses 

are based on steady-state sinusoidal responses.

4.1    Open-Loop Control  

The system is assumed to be described by

 y (t )=P ( s )[u (t )] (25)

where y(t) is the plant output, u(t) is the control input, and P(s)[(·)] denotes the time-domain 
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output of the plant with transfer function P(s). In this context, u is the voltage applied to the 

auxiliary phase (vSA) and y is the voltage at the main phase (vSB).  The plant is assumed to be 

stable. The objective is for the plant output to track a sinusoidal reference signal

r (t )=r ccos (ωe t )+r s sin(ωe t ) (26)

where rc, rs are reference parameters determining the magnitude and phase of the reference signal, 

and ωe is the frequency of the reference signal.  Specifically,and ωe=2 π 60. The control signal is 

chosen to be

 u (t )=uccos(ωe t )+u s sin(ωe t ) (27)

where uc, us are control parameters to be determined.

For fixed control parameters, the steady-state output of the plant is

ys s=P R(uc cos(ωe t )+u s sin (ωet ))+P I (−uc sin(ωe t )+us cos (ωe t )) (28)

where PR, PI are the real and imaginary parts of the plant’s frequency response evaluated at ωe. It 

follows that yss(t) = r(t) for all t if uc, us are equal to the so-called nominal control parameters

(u c
*

u s
*)=G*−1(r c

r s
) (29)

where G* is given by

G*=( PR P I

−P I PR
) (30)

In practice, equation (27) may be implemented as a control algorithm with

(uc

us
)=G−1(r c

r s
) (31)

where G is an estimate of the matrix G∗.  This algorithm will work well if precise estimates of PR 

and PI are known.  Estimates can be computed from the model of section 3.1, but depend on 

speed and load parameters.
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4.2    Adaptive Algorithm for Known Plant  

The first adaptive method is the so-called inverse-G adaptive algorithm [16], which is a 

special case of the filtered-x LMS algorithm in signal processing.  This method searches for 

control parameters that minimize the error between the reference signal and the plant output. For 

this purpose, it is convenient to define

r v=(r c

r s
) , uv=(uc

us
) ,w( t )=(cos(ωe t )

sin(ωe t )) (32)

so that

r (t )=wT ( t )r v ,u ( t )=wT (t )uv , y s s=wT (t )G* u v
(33)

in steady state.  The adaptive algorithm for uv is then defined as

u̇v( t )=2 g G−1 w (t )( r( t )−y (t )) (34)

where g > 0 is an arbitrary adaptation gain to be adjusted for optimal performance.

A motivation for (34) can be found using the theory of averaging.  A simplified 

explanation follows.  Approximating y by its steady-state value for fixed control parameters

r (t )− y ( t )≃wT (t )( r v−G* uv )
(35)

Neglecting sinusoidal terms of frequency 2ωe (to be “averaged” by the differential equation for 

uv), one has

2 w(t )wT (t )≃I (36)

where I is the identity matrix and therefore

2 w( t )(r ( t )− y ( t ))≃rv−G* uv
(37)

With these approximations

u̇v( t )=g G−1G * (uv
*−uv )

(38)

In ideal conditions (G = G*),

u̇v( t )=g (uv
*−uv )

(39)
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so that the control vector converges to the nominal vector with the dynamics of a first-order 

system with dimension 2 and poles at s = −g. The advantage of the algorithm is that convergence 

to the nominal vector still occurs if G = G*, as long as stability is preserved. In general, the 

stability of the system is determined by the roots of

det ( s I−gG−1 G*)=0 (40)

which remain in the open left-half plane if G is sufficiently close to G*.

4.3    Adaptive Algorithm with Plant Adaptation  

The second adaptive algorithm is a simplified form of the algorithm by Pigg and Bodson 

[17].  This simplification occurs because the reference parameters rc, rs are known and do not 

need to be estimated.  The algorithm is obtained by defining a vector of plant parameter estimates 

x, whose nominal value is

x*=(PR

P I
) (41)

The control law is defined from the parameter estimates as if they were the nominal parameters, 

i.e.,

uv=G−1 r v
(42)

with

G=( x1 x2

−x2 x1
) (43)

Then, (35) can be rewritten as

2 w(t )( r( t )− y (t ))≃rv−W x* (44)

where

W =( uc us

−us uc
)= 1

x1
2+x2

2 (x 1 r c−x 2 r s x1 r s+x 2 r c

x 1 r s+x2 r c −x1 r c+x2 r s
) (45)
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Next, define the error signal

ea=W x−r v+2 w(t )( r (t )− y (t )) (46)

Within approximations made earlier, the error signal is equal to

ea=W ( x−x* ) (47)

so that the error vector ea is related linearly to the parameter error, and standard gradient or least-

squares algorithms can be used for parameter estimation. For example, a gradient algorithm is 

given by

ẋ=−g W T e a
(48)

where g > 0 is an adaptation gain to be selected arbitrarily. The algorithm is nonlinear because W 

is a function of x. However, it is guaranteed to be stable because

d
d t

∣x−x *
∣
2

= −2 g ( x−x*
)
T W T e a

= −2 g (W ( x−x* )T W ( x−x* ))

= −2 g∣W ( x−x*
)∣

2

≤ 0

(49)

Further, the parameter error and the tracking error converge to zero if W is nonsingular, which 

requires that rc or rs ≠ 0. There is a potential problem in the computation of u if x1
2 + x2

2 = 0, but it 

can be avoided by replacing the computation of uv by

uv=
1

max ( ε , x1
2+x 2

2) (
x1 r c−x2 r s

x1 r s+x 2 r c
) (50)

where ε is a small positive number such that ε < x1
*2 + x2

*2.

4.4   PI Control  

The previous three controllers considered tracking the magnitude and phase of a reference 

sinusoid.  The controller design can be simplified when the phase is unimportant.  A 

straightforward approach is to calculate the difference between a measured amplitude and a 
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reference amplitude and then apply the techniques of PID controller design.  The problem is 

reduced to calculating a continuous, accurate estimate of the amplitude of the generated voltage.

One solution to obtain the envelope of a signal is to use a diode detector.  These types of 

detectors were common in early AM radios.  Unfortunately these types of detectors are sensitive 

to noise and have an asymmetric voltage response.  The diode detector was found to be unsuitable 

for this application due to these drawbacks.

Another way of calculating the amplitude is to define an estimate of the generated 

voltage,

ŷ (t )= y ccos (ωt )+y s sin (ωt ) (51)

The values of yc and ys are updated by performing the continuous averaging defined below.

ẏc=g ( y ( t )− ŷ (t ))cos (ωt ) (52)

ẏs=g ( y (t )− ŷ ( t ))sin (ωt ) (53)

where g > 0 is a gain that represents the “memory” of the filter. The amplitude of the estimate is 

simply Y =√( y c
2
+ y s

2
).



CHAPTER 5

SYSTEM SIMULATION

The next step in the design process was to develop simulation models to test the validity 

of the control algorithms.  This chapter presents Simulink simulations of each of the control 

methods discussed in the previous chapter.  The simulations all use a solver based on the Euler 

method.  The step size of the solver was set to 0.0001 seconds in order to correspond to the 

sampling frequency of the experimental equipment.  The reference signal was chosen to be

r (t )=r ccos (ωt )+r s sin (ωt )=110cos (2π 60 t ) (54)

Note that the amplitude of the reference voltage is 110 Vpk instead of 110 VRMS.  The smaller 

reference was used because the amplifier used for the experiments began to saturate at 150 Vpk.  

The voltage was slightly derated to avoid clipping leading to unwanted distortion.

The first step was to develop a suitable model of the induction generator. The state-space 

model of the generator presented in 2.3 was coded in Simulink.  This system is shown in

Figure 10.  Parameters for the model were taken from Table 5.  The mechanical frequency was set 

to be 1845 rpm under load.  This places the system near the operating point discussed in

section 3.3.

5.1   Open-Loop Control  

The open-loop control method was the first system simulated.  The Simulink block 

diagram of the system is shown in Figure 11.  For the given reference signal, (30) yields

uc = -51.15, us = 50.36.  The results of the simulation are shown in Figure 12.
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Figure 10: Simulink model of the induction generator

Figure 11: Block diagram of the open-loop control algorithm
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Figure 12: Simulation results of the open-loop algorithm

The simulation produces 110 V across the generating winding as expected.  The rise time of the 

system is approximately 0.1 seconds.  The predicted gain of the system can be calculated by 

measuring the amplitudes of the steady-state voltages.

G S S=
(V B )
(V A)

=
110
74.3

=1.48 (55)

5.2   Adaptive Algorithm for Known Plant  

The second algorithm simulated was the adaptive algorithm for known plant introduced 

in 4.2.  The Simulink block diagram of the system is shown in Figure 13.  The results of the 

simulation are shown in Figure 14.  The system settles to 110 V as expected.  The system is only 

slightly slower than the open-loop method.  It also exhibits more overshoot than the open-loop 

method.  The overshoot can be eliminated by reducing the gain, but this increases the rise time of 

the system.



Figure 13: Block diagram of the adaptive algorithm for known plant
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Figure 14: Simulation results of the adaptive method for known plant

5.3   Adaptive Algorithm with Plant Adaptation  

Next, the algorithm for unknown plant was simulated.  This system consists of three 

subsystems: the induction machine, the error estimator (46) and a gradient descent algorithm (48). 

A block diagram of the system is shown in Figure 15.  The adaptation gain was set to 

g = 0.00005.  The results are shown in Figure 16.

Since the plant parameters are initialized exactly, this algorithm converges extremely 

rapidly. The response will be much slower in practice.

5.4   PI Control  

Finally, the PI control method discussed in 4.4 was implemented in Simulink.  The 

feedback gains were set to KP = 0.5 and KI = 8.5.  The averaging gain was set to g = 150.  This



Figure 15: Block diagram of the adaptive algorithm with plant adaptation
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Figure 16: Simulation results of the adaptive method for unknown plant

 gain was made much larger than the feedback gains in order to ensure that the dynamics of the 

averaging filter did not interfere significantly with overall system performance.  A block diagram 

of the system is shown in Figure 17.  The results of the simulation are shown in Figure 18.  The 

PI controller responds much more rapidly than the other algorithms - even though the adaptive 

controllers have exact knowledge of plant parameters.
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Figure 17: Block diagram of the PI control method

Figure 18: Simulation results of the PI controller



CHAPTER 6

EXPERIMENTAL RESULTS

6.1   Experimental Setup  

An experimental testbed was built in order to test the control methods described in 

Chapter 4.  The testbed consisted of a prime mover connected to a generator via a spider 

coupling.  Both machines were manufactured by the Worldwide Electric Corporation.  The prime 

mover had the nameplate data shown in Table 7.  The three-phase voltage required by the prime 

mover was provided by a GE 300 Mini adjustable frequency drive.  The 300 Mini is a V/f drive 

and therefore the speed of the motor is poorly regulated under varying torque.  Figure 19 shows 

the speed response due to a 110 Vpk step in the generated voltage.  The measurements were 

obtained using a Compact Instruments laser tachometer.  The data were filtered using a six-pole 

Butterworth low-pass filter with a 40 Hz cutoff.  The filter does not introduce any significant 

dynamic response.  The wringing of the motor drive is evident in many of the experimental 

responses.  This behavior can be eliminated by initializing the speed of the motor nearer its 

steady-state value.  This would mean operating the system farther from the operating point 

chosen in Chapter 3.

TABLE 7. NAMEPLATE DATA OF PRIME MOVER

Power Speed Phases Hz Voltage

1/2 HP 3450 RPM 3 60 Hz 208-230/460 V
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Figure 19: Response of the motor drive system to a step change in torque

The generator under test had the nameplate data shown in Table 8.  The start capacitor of the 

generator was removed in order to provide access to the auxiliary phase of the machine.  Both of 

the machines were fastened to a heavy metal plate for stability.  The setup is shown in Figure 20.

The excitation signal was generated using an onboard digital-to-analog converter of a 

dSPACE DS1104 controller board.  This signal was passed to a power amplifier.  The generated 

voltage was measured using the analog-to-digital converter on the DS1104.

In order to compare with the simulations presented in Chapter 5, the speed of the prime 

mover was set near 1845 rpm under load. This was difficult in practice due to the nature of the 

drive.  As before, the reference was set to rc = 110, rs = 0.

TABLE 8. NAMEPLATE DATA OF GENERATOR UNDER TEST

Power Speed Phases Hz Voltage

1/3 HP 1725 1 60 115/230 V
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Figure 20: Experimental setup

6.2   Open-Loop Control  

The open-loop control method was the first implemented.  The results of the experiment 

are shown in Figure 21.  An estimate of the amplitude of the generated voltage, Y, is included in 

the plot.  The estimate is calculated using (52) and (53), but is not used in the control law.  The 

steady-state gain of the system can be calculated as before

G S S=
(V B )
(V A)

=
110
83.9

=1.31 (56)

This is approximately 11 percent less than the theoretical value.  Note that the model predicts 

overdamped behavior when the system exhibits slightly underdamped responses.  This behavior 

is due to oscillations in the speed of the generator-motor system.
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Figure 21: Response of the open-loop control algorithm

6.3   Adaptive Algorithm for Known Plant  

Next, the adaptive method for known plant was implemented in C and loaded on to the 

dSPACE system.  The adaptation gain was set to g = 3.  The results are shown in Figure 22.  The 

experiment was repeated at a slower speed to obtain the response shown in Figure 23.  Larger 

gains improve the transient response of the generator, but introduce steady-state oscillations to the 

output.

It is also informative to examine the response of the algorithm to variations in the plant 

parameters.  The speed of the generator, ω, is the only parameter that can vary significantly 

during normal operating conditions.  The generator was started and allowed to reach steady state 

at a speed of 1800 rpm.  The mechanical frequency was increased to 2160 rpm and the system 

was allowed to return to steady state.  The resulting transients are shown in Figure 24.  The 

maximum voltage deviation is five percent.
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Figure 22: Response of the adaptive algorithm for known plant

Figure 23: Response of the adaptive algorithm for known plant at slower speed
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Figure 24: Response of the adaptive algorithm for known plant for a step change 
in speed  at t = 0.65 sec.

6.4   Adaptive Algorithm with Plant Adaptation  

The third experiment implemented on the system was the adaptive algorithm for an 

unknown plant.  The adaptation gain was set to g = 0.0001.  The initial values of the parameters 

x1 and x2 were estimated using the real and imaginary parts of the transmittance.  The response of 

the controller to a step reference is shown in Figure 25.  The peak overshoot of the controller is 

approximately 148 V.  This is a significant overshoot and could damage connected loads.  The 

adaptive action of this method is apparent in Figure 26.  The controller's estimate of the system 

transfer function converges to x1 = -0.54, x2 = -0.77.  A larger adaptive gain causes these estimates 

to converge quicker, but introduces more overshoot to the system.

The experiments were repeated at a slower speed to reduce drive dynamics.  The step 

response of the controller is shown in Figure 27.  The overshoot is reduced to approximately five 

percent.  Once again, the controller's response to a step change in plant parameters was tested by 

increasing the speed of the generator from 30 Hz to 36 Hz.  The results are shown in Figure 28.
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Figure 25: Results of the adaptive algorithm for unknown plant

Figure 26: Plant estimates of the adaptive controller for unknown plant
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Figure 27: Response of the adaptive algorithm for unknown plant at slower speed

6.5   PI Control  

The PI control method discussed in section 4.4 was implemented in a similar fashion.  

The gain used in the amplitude estimator was chosen to be g = 150.  The selected feedback gains 

were kP = 0.5 and kI =6.5.  The results of the experiment are shown in Figure 29.  Larger values of 

g increase the response time and decrease the maximum overshoot.  However, if g is too large it 

causes steady-state oscillations in the output voltage.  Once again, the experiment was repeated at 

a slower speed.  The results of the slower experiment are shown in Figure 30.  The rise time of 

the response is in good agreement with the simulation presented in Figure 18.

The response of the PI controller to a change in the plant parameters was also 

investigated.  Figure 31 shows the response of the system to a 20 percent increase in speed at t = 

1.5 sec.  Since the action of the controller is faster than the acceleration of the prime mover, there 

is no significant change in the generated voltage.
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Figure 28: Response of the adaptive algorithm for unknown plant to step change 
in speed

A final experiment was performed to examine the behavior of the generator under 

different loading conditions.  The 100 Ω load resistor was replaced with a universal motor.  The 

reactive power requirements of the motor are more typical of residential loads.  Figure 32 shows 

the response of the system to a step in voltage.  The inductance of the motor coils allows the load 

to increase gradually, eliminating some of the overshoot.  The same gains were used for each of 

the experiments.
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Figure 29: Response of the PI controller

Figure 30: Response of the PI controller at slower speed
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Figure 31: Results of the PI controller to a step change in speed

Figure 32: Response of the PI controller with an inductive load



CHAPTER 7

CONCLUSIONS

This thesis examined the problem of producing a controlled voltage from a single-phase 

induction machine.  A state-space model of a SPIM was presented.  The parameters of a 

symmetric induction machine were obtained by fitting data to this model.  These estimates were 

in good agreement with measurements taken using standard tests.  The method was used to 

identify the parameters of each phase of an asymmetric induction machine.

In order to predict power generation, the state-space model was expanded to include an 

RC load connected across the main phase.  The identified parameters were used to estimate the 

operating region.  It was concluded that power can be produced in a limited region above the 

synchronous speed of the motor.  Power is produced by both phases of the machine in most of the 

operating region.  The point PA = 0 was chosen as the operating point in order to eliminate costly 

power electronics.

Finally, four control methods were investigated.  The three closed-loop algorithms were 

able to reliably track a reference voltage.  Furthermore, each control algorithm was robust to a 20 

percent increase in speed.  In practice, the adaptive algorithm for unknown plant was faster than 

the adaptive algorithm for known plant.  Variations in the speed of the system caused dangerous 

transients when the adaptive algorithm for known plant was used.   In both cases, the adaptation 

gain can be increased to speed up the response, but this comes at the cost of greater transients on 

the line.  In situations where phase is not a consideration, the PI control method is preferable.  It 

responds faster than either adaptive method.

Further research could focus on methods to improve the transient response of the 
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generator.  This could be done by incorporating some form of closed-loop speed control, allowing 

the system to remain near its optimal operating speed.  Alternately, the system could employ 

closed-loop current control.  This would allow the current to be gradually increased, improving 

the transient performance of the drive.
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