THE SIMPLE TRIOD

KAY HELEN HACHMUTH

THE SIMPLE TRIOD

by

Kay Helen Hachmuth

A thesis submitted to the faculty of the University of Utah in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mathematics

University of Utah
August, 1961

LIBRARY
UNIVERSITY OF UTAH

This Thesis for the Masters Degree by

Kay Helen Hachmuth

has been approved August, 1961

Chairman, Supervisory Committee

Reader, Supervisory Committee

Reader, Supervisory Committee

ACKNOWLEDGENENT

I would like to express my sincere appreciation for the time and guidance Dr. C. E. Burgess has given me during the writing of this thesis. I also wish to thank Dr. Nelson and Dr. Davis for their help as members of my committee.

Kay Hachmuth

SECTION I

INTRODUCTION

In this thesis we wish to show that in a metric space a
continuum M is a simple triod if M contains three points a, b, and c such that every point of $M-(a+b+c)$ separates M and a, b, and c do not separate M, and we wish to give some properties of this continuum.

It will first be helpful to know something of the simple arc, usually called an arc. A continuum T is a simple arc if there exist two points $a_{\text {_ }}$ and b of T such that every point of T - ($a+b$) separates T but \underline{a} and b do not separate T. By a
method of proof similar to that used in Theorem 2.1 of this thesis, it can be shown that if p is a point of $T-(a+b)$ and $T-p$ is the sum of two mutually separated sets H and K, then H and K contain a and b respectively. Here we show that if M is a continuum and p is a point of $M-(a+b+c)$, then all three of a, b, and c cannot be in the same one of the two mutually separated
sets. This fact is used to prove that M is irreducible among
a, b, and c, which is similar to the fact that an arc is irreducible between its end points. After we show that M is a triod, we use some properties of the arc to show that M has some of the properties of an arc, such as, an arc does not contain a simple closed curve, and for each pair of points of an arc there is a point of the arc which separates the two points. The following definitions will be used without specific
reference to them.

Definition 1. A continuum is a compact connected set in a
metric space.

Definition 2. A continuum Q is said to be irreducible
between the points \underline{a} and b if Q contains $\underline{a}+b$ and no proper
subcontinuum of Q contains $\underline{a}+b$ 。

Definition 3. If H, K, and T are proper subsets of the connected point set Q and $Q-T$ is the sum of two mutually
separated sets containing H and K respectively, then T is said to separate H from K in Q.

Definition 生. A continuum T is a simple arc if there exist two points \underline{a} and b of T such that every point of $T-(a+b)$ separates T but a and b do not separate T.

Definition 2. A simple triod is the sum of three arcs such that there exists a point x which is the intersection of each two of the three arcs and which is an end point of each arc.

Definition 6. A continuum which is the sum of two simple arcs having just their end points in common is called a simple closed curve.

The following basic theorems will be assumed without proof, and in some places they will be used without specific reference to them.

Theorem 1.1. If Q is a connected subset of two mutually separated sets, then Q is a subset of one of these two sets.

Theorem 1.2. If Q is a continuum intersecting two disjoint closed sets H and K, then Q contains a continum Q^{\prime} which is irreducible between H and K.

Theorem 1.3. If Q is an irreducible continum between two disjoint closed sets H and K, then $Q-H$ and Q - K are connected.

Theorem l.4. If Q is an irreducible continum between two disjoint closed sets H and K, then every point of $H \bullet Q$ is a limit point of $Q-H$ and every point of $Q_{0} K$ is a limit point of $Q-K$.

Theorem 1.5. If T is a connected subset of the connected point set Q and Q - T is the sum of two mutually separated point sets H and K, then $H+T$ and $K+T$ are connected.

Theorem 1.6. If the point c separates the point a from the point b in the connected point set Q, then b does not separate a from c in Q.

Theorem 1.7. If a point p separates a continuum Q into two mutually separated sets H and K, then $H+p$ and $K+p$ are continua.

Theorem l.8. A simple arc does not contain a simple closed curve.

The main theorem developed here (Theorem 2.3) can be obtained as a consequence of Theorem 1.1 in Chapter V of Whyburn's Analytic Topology [3]. However, Whyburn's theorem follows a more general development than we have undertaken here. Also, in Whyburn's book can be found the theorems we have stated above about arcs and irreducible continua, and original sources can be found in some of the references in Whyburn's book.

An expository development of the properties of an arc which we use here can be found in a thesis by Kenneth Hillam [1]. Also a similar development of irreducible continua can be found in a thesis by Ernest Milton [2].

Throughout this thesis, we will let M be a continuum which contains three points a, b, and c such that every point of M - (a+b+c) separates M and no one of the points a, b, and c

SECTION II

Theorem 2.1. If p is a point of $M-(a+b+c)$ and $M-p$ is the sum of two mutually separated sets A and B, then neither A nor B contains all three of the points \underline{a}, b, and c.

Proof. Suppose that all three of the points a, b, and c are in the same one of the sets A and B, say in A.

Let N be a countable dense set in $M-(a+b+c)$, and let
$p_{1}, p_{2}, p_{3}, \ldots$ be the points of M_{0} As B contains some point of N, let n_{1}, be the least integer so that $p_{n_{1}}$ is in B. Now $M-p_{n_{1}}=A_{1}+B_{1}$, where A_{1} and B_{1} are mutually separated and the point a is in A_{1}. Since \underline{a} is in A_{1} and $A+p$ is a continuum in $A_{1}+B_{1}$, it follows that $A+p$ is a subset of A_{1}. Hence a, b, and c are in A_{1}, and B_{1} is a subset of $B_{\text {. }}$

Let n_{2} be the least integer so that $p_{n_{2}}$ is in B_{1}. Now $M-p_{n_{2}}=A_{2}+B_{2}$, where A_{2} and B_{2} are mutually separated and the point a is in A_{2}. It can be shown, as above, that \mathfrak{a}, b, and c
are in A_{2} and that B_{2} is a subset of B_{1}. By continuing this
process, we obtain a sequence of points $p_{n_{1}}, p_{n_{2}}, \cdots$, a
sequence of sets A_{1}, A_{2}, \ldots, and a sequence of sets B_{1},
B_{2}, ... such that for each $i(i>1)$:
(1) n_{i} is the least integer such that $p_{n_{i}}$ is in B_{i-1};
(2) $M-p_{n_{i}}$ is the sum of the two mutually separated sets A_{i} and B_{i} where A_{i} contains a, b, and c;
(3) B_{i} is a subset of B_{i-1};
(4) $A_{i}+p_{n_{i}}$ is a subset of A_{i+1}.

It follows that, for each $i, B_{i}+p_{n_{i}}$ is a closed subset of B_{i-1}. Hence the sets $B_{1}+p_{n_{1}}, B_{2}+p_{n_{2}}$, ... have a point x in common. Since x is in each B_{i}, x is different from a, b,
and c. Therefore $M-x=A_{x}+B_{x}$, where A_{x} and B_{x} are mutually separated and \underline{a} is in $A_{x^{\circ}}$ As above, it follows that $A+p$ is a subset of A_{x} so that a, b, and c are in A_{x}. Since no $p_{n_{i}}$ is in all sets of the form $B_{j}+p_{n_{j}}$ and x is common to all,
x is not in the sequence $p_{n_{1}}, p_{n_{2}}, p_{n_{3}}, \cdots$... Suppose some point $p_{n_{k}}$ of $p_{n_{1}}, p_{n_{2}}, \ldots$ is in B_{x}, then x separates a from $p_{n_{k}}$. But $M-p_{n_{k}}=A_{k}+B_{k}$, where A_{k} and B_{k} are mutually separated and A_{k} contains a while B_{k} contains x. So $p_{n_{k}}$ separates a from x. As this is contrary to Theorem l.6, it follows that no point of $p_{n_{1}}, p_{n_{2}}, p_{n_{3}}, \ldots$ can be in B_{x}. There is some point p_{t} of N in B_{x} and there exists an integer s such that $n_{s}<t<n_{s+1^{\circ}} \quad$ Then $M-p_{n_{s}}=A_{s}+B_{s}$, where A_{s} and B_{s} are mutually separated and a, b, and c are in A_{s} while $p_{n_{s+1}}$ and p_{t} are in B_{s}. The next point in the sequence $p_{n_{1}}, p_{n_{2}}$,
$p_{n_{3}}, \ldots$ is $p_{n_{s+1}}$ and n_{s+1} is the least integer such that $p_{n_{s+1}}$
is in $B_{s^{\circ}}$ But $t<n_{s+1}$, which means n_{s+1} was not a minimum.

This is a contradiction. Therefore neither of the sets A and

B contains all three of the points a, b, and c.

Theorem 2.2. The continuum M is irreducible among the points
a, b, and c; that is, no proper subcontinuum of M contains a, b, and c.

Proof. Suppose some proper subcontinuum J of M contains a,
b, and c;then lit p be a point of $M-J$. Now p is different
from a, b, and c since a, b, and c are in J. Hence $M-p$
$=A+B$, where A and B are mutually separated. By Theorem 2.1,
neither A nor B contains all three of a, b, and c ; so we will
consider the case where \underline{a} is in A and b and c are in B. Since
J contains a and is a connected subset of $M-p$, it follows that
J is a subset of A. But b and c are in J and this involves the contradiction that b and c are in A. Therefore M is irreducible among a, b, and c.

The following eight lemmas are used in proving that M is a simple triod.

Lemma 1. If M contains an arc from a to b, then M is a simple triod.

Proof. Suppose $\overparen{a b}$ contains the point c, then it follows from Theorem 2.2 that $\widehat{a b}=M$. But c does not separate M, whereas every
point of $\overparen{a b}-(a+b)$ does separate $\overparen{a b}$. Therefore the point c is not in $\overparen{a b}$. Now since M is a continuum, M contains an irreducible subcontinuum Q from the point c to $\widehat{a b}$.

Let $Q^{s}=Q-\overparen{a b}$ and let x be a point of $Q^{s}-c$. Suppose x fails to separate Q, then $Q-x$ is connected. Since $x \neq \underline{a}, b, c$,
it follows that $M-x=A_{1}+B_{1}$, where A_{1} and B_{1} are mutually
separated and A_{1} contains a. Then since $\overparen{a b}$ is a subset of $M-x, \overparen{a b}$ is a subset of A_{1} so that A_{1} contains both a and b.

It follows from Theorem 2.1 that B_{1} must contain the point c,
and since $Q-x$ contains c and is connected, $Q-x$ is a subset
of $B_{1^{\circ}}$ Hence $\overparen{a b}$ and $Q-x$ are mutually separated. But since
M is irreducible among a, b, and c, it follows that $M=\overparen{a b}+Q$.
Hence x is common to $\overparen{a b}$ and Q, contrary to the choice of x in $Q^{?}$.

This means that any point that fails to separate Q other than c
is in $\frac{\text { ab. }}{}$

Suppose two points z and y of Q - c fail to separate Q.

Then z and y are in $\overparen{a b}$ and they are limit points of Q^{p}.

There is an arc $\overparen{a z}$ from a to z and an arc by from b to y such that $\overparen{a z} \cdot \overparen{b y}=\varnothing$ (if not reverse z and y). Since $\overparen{a z} \cdot \overparen{b y}=\varnothing, \overparen{a b}$ $\neq \overparen{a z}+\overparen{b y}$, and so there is some point e in $\overparen{a b}$ which is not in $\overparen{a z}+\overparen{\text { by }}$. Then $Q^{\prime}+\overparen{a z}+\overparen{b y}$ is connected since Q^{p} is connected, and $Q^{\prime}+\overparen{a z}+\overparen{b y}$ contains a, b, and c. The point e is neither a, b, nor c, so $M-e=A_{2}+B_{2}$, where A_{2} and B_{2} are mutually separated and A_{2} contains a. Since A_{2} contains and and $Q^{\prime}+\overparen{a z}+\widehat{b y}$ is connected, A_{2} contains $Q^{?}+\overparen{a z}+\overparen{b y}$. Hence a, b, and c are in A_{2}, contrary to Theorem 2.1. Therefore only one point d of Q - c fails to separate Q. Since Q contains at least two nonseparating points, d and c are these two, and hence Q is an arc from c to d. The point d is in $\overparen{a b}$, so $\overparen{a b}$ contains an arc, ad from a to d and an arc $\overparen{b d}$ from b to d such that $\overparen{a d} \overparen{b d}=d$. This gives M as the sum of three arcs $\overparen{a d}, \overparen{b d}$, and $\overparen{c d}$ such that d is the intersection of each two of them. Hence M is a simple trod.

Lemma 2. If M contains no arc from a to b and K is a proper subcontinuum of M irreducible from a to b, then there is an arc in M which is irreducible from c to K.*

Proof. Since M is irreducible among a, b, and c, K cannot contain c. Since K is not an arc, there is a point d of $K-(a+b)$ which fails to separate K. Now $M-d=A+B$, where A and B are mutually separated and \underline{a} is in A. Then since $K-d$ is connected, it is a subset of A, and so b is also in A. By Theorem 2.1, the point c must be in B. It follows that $B+d$ is a continuum which contains both d and c.

Suppose $B+d$ is not an arc from c to d. Then some point x of $B-c$ fails to separate $B+d$. Since $x \neq d$, x is not a point of K. Hence $B+d-x+K$ is connected. But $M-x$ is not connected, and $M-x=B+d-x+K$.

This contradiction shows that $B+d$ must be an arc from c to
d. Furthermore, $B+d$ is irreducible from c to K since $K \cdot(B+d)=d$ 。

[^0]Lemma 2. If K is a subcontinuum of M irreducible from a to b, d is a point of K, and $\overparen{c d}$ is an arc in M irreducible from c to K, then every point of $K-(a+b+d)$ separates K.

Proof. Suppose some point x in $K-(a+b+d)$ fails to separate K; then $K-x$ is connected. By Theorem 2.2, M is irreducible among \mathfrak{a}, b, and c, so $M=K+$ Cd. Since the point d is in $K-x$ and $K \cdot \overparen{C d}=d$, © being irreducible from c to K, it follows that $K-x+\overparen{c d}$ is connected. Since $x \neq \underline{a}, b, c$, then by definition $M-x$ is not connected. But this involves a contradiction as $M-x=K-x+$ ed. Therefore, every point of $K-(a+b+d)$ separates K.

Lemma 4. If M contains two intersecting arcs such that one
of them contains a and the other contains c, then M is a triode.

Proof. Let $\overparen{a d}_{2}$ and $\overparen{c d}_{1}$ be arcs containing a and perspectively such that $\overparen{a d}_{2}$ and $\overparen{c d}_{1}$ have a point x in common. Then $\overparen{a d}_{2}+\overparen{c d}_{1}$ contains an arc from a to c. Hence it follows from Lemma 1 that M is a simple triode.

Lemma 5. The continuum M contains two proper subcontinua K_{I} and K_{2} such that K_{1} is irreducible between some pair of the points a, b, and c and K_{2} is irreducible between some other pair of these points.

Proof. Let p_{1} be a point of $M-(a+b+c)$. Then $M-p_{1}$
$=A_{1}+B_{1}$, where A_{1} and B_{1} are mutually separated. By Theorem 2.1,
a, b, and c cannot all three be in one of the sets A_{1} and B_{1}.
Let us consider the case where \underline{a} and b are in A_{1} and c is in B_{1}.
Now $A_{1}+p_{1}$ is a proper subcontinuum of M which contains a and
b. Therefore M contains a proper subcontinuum K_{1} which is
irreducible between a and b.

If K_{1} is an arc, then by Lemma $1, M$ is a triod; and thus a
proper subcontinuum K_{2}, of M, irreducible from b to c can be
found. But if K_{1} is not an arc, then by Lemma 2, there is an $\operatorname{arc} \overparen{c o d}_{1}$ irreducible from c to K_{1}. By Lemma 3, every point of $K_{1}-\left(a+b+d_{1}\right)$ separates K_{1}. Choose a point p_{2} of $K_{1}-\left(a+b+d_{1}\right)$ 。

Now $K_{1}-p_{2}=A_{2}+B_{2}$, where A_{2} and B_{2} are mutually separated and A_{2} contains a while B_{2} contains b, since K_{1} is irreducible between a and b. Either A_{2} or B_{2} contains d_{1}, say B_{2} does. Then $B_{2}+p_{2}$ is a continuum containing b and d_{1}. Now B_{2} $+p_{2}+\overparen{c d}_{1}$ is a proper subcontinum of M containing b and c. Therefore M contains a proper subcontinuum K_{2} irreducible between b and c 。

Lemma 6. If M is not a triod and M contains irreducible subcontinua K_{1} and K_{2} from a to b and from b to c respectively, and arcs $\overparen{C d}_{1}$ and $\overparen{a d}_{2}$ irreducible from c to K_{1} and from a to K_{2} respectively, such that d_{1} and d_{2} fail to separate K_{1} and K_{2} respectively, then $K_{1} \supset a d_{2}$ and $K_{2} \supset c d_{1} \cdot *$

Proof. Since, by Theorem 2.2, M is irreducible among a, b, and c, it follows that $M=K_{1}+\overparen{C d}_{1}$ and $M=K_{2}+{\overparen{\operatorname{ad}_{2}}}$. Since M is not a triod, $\overparen{c d}_{1}$ and $\overparen{a d}_{2}$ do not intersect. Therefore K_{1} must contain $\overparen{\text { ad }}_{2}$ and K_{2} must contain $\overparen{\text { cd }}_{1}$.

* Refer to footnote on page 12.

Lemma 7. If in Lemma 6, H_{1} is an irreducible continuum in K_{1} from d_{2} to b, then $H_{1} \circ \overparen{a d}_{2}=d_{2}$.

Proof. Since H_{1} is an irreducible continuum from d_{2} to b, $H_{1}-d_{2}$ is connected and contains b. Now $K_{1}=H_{1}+$ ad $_{2}$, since K_{1} is irreducible from a to b. By Lemma $4, H_{1}$ must contain d_{1} because K_{1} contains d_{1} 。

If H_{1} nad $\neq \mathrm{d}_{2}$, then same point x of H_{1} is in $\overparen{\mathrm{ad}}_{2}$ such that
$x \neq a, d_{2} . \quad$ Since $\overparen{a d}_{2}-d_{2}$ is connected, $H_{1}-d_{2}+\overparen{a d_{2}}-d_{2}+\overparen{c d_{1}}$
is connected. But this is $M-d_{2}$ which in not connected.
Therefore $H_{1} \cdot \overparen{a d}_{2}=d_{2}$.

Lemma 8. If M is not a triod, then M contains a proper
subcontinuum H such that H has the same properties as $M_{0} *$

Proof. Let K_{1} and K_{2} be irreducible proper subcontinua in M from a to b and from b to c respectively. Since M is not a triod, it follows from Lemma 1 that there exists points d_{1} and d_{2} which lie in but fail to separate K_{1} and K_{2} respectively. Then

[^1]by Lemmas 2 and 3 , there exist arcs $\overparen{\alpha_{1}}$ and $\overparen{a d}_{2}$ irreducible from c and a to K_{1} and K_{2} respectively. And by Lemma $6, K_{1} \supset \overparen{a d}_{2}$ while
K_{2} つ cd ${ }_{1}$ 。 Then let $\mathrm{H}=\mathrm{H}_{1}+\mathrm{H}_{2}$ where H_{1} and H_{2} are irreducible continua in K_{1} and K_{2} from b to d_{2} and from b to d_{1} respectively. Hence H is the sum of two continua with a common point b, so H is a continuum.

Suppose some point d_{4} of H, where $d_{4} \neq d_{1}, d_{2}, b$, fails to separate H. Then $H-d_{4}$ is connected, and by Lemma 7, $H-d_{4}$ $+\overparen{a d}_{2}+\overparen{c d}_{1}$ is connected. Since M is irreducible among a, b, and $c, M=\overparen{a d}_{2}+\overparen{C d}_{1}+H$. This means $M-d_{4}=H-d_{4}+\overparen{a d}_{2}+\overparen{c d}_{1}$.

But $M-d_{4}$ is not connected. Therefore d_{4} must separate $H_{\text {. }}$
Since H is a continuum, at least two of the points d_{1}, d_{2}, and b
fail to separate H. Suppose one of these does separate H. Then
all but two points of H separate H. Hence H is an arc and contains
$\overparen{a d}_{2}+\mathrm{H}$ an arc containing a and b . Thus by Lemma $1, \mathrm{M}$ would be a simple triod, but M is not a triod. Therefore d_{1}, d_{2}, and
b do not separate H, but every point of $H-\left(b+d_{1}+d_{2}\right)$ separates H.

Theorem 2.3. The continuum M is a triod.

Proof. Suppose M is not a triod. Them M contains two proper subcontimua K_{1} and K_{2} satisfying the conclusion of Lenma 5. Consider the case where K_{l} is irreducible between a and b and K_{2} is irreducible between b and c .

If one of K_{1} and K_{2} were an arc, then by Lemma $1, M$ would be a triod. Therefore neither K_{1} nor K_{2} is an arc. Hence there is a point d_{1} of K_{1} where $d_{1} \neq a, b$, such that $K_{1}-d_{1}$ is connected, and there is a point d_{2} of K_{2}, where $d_{2} \neq b, c$, such that $K_{2}-d_{2}$ is connected. It follows from Lemmas 2 and 3 that there is an arc cd $_{1}$ in M irreducible from c to K_{1} and there is an arcad in M irreducible from a to K_{2}. The arcs
$\overparen{a d}_{2}$ and $\overparen{c d}_{1}$ have no point in common since, if they did, by
Lemma 4, M would be a triod.

Since K_{1} and K_{2} are continua, and by Lemma $6, K_{1} \supset \overparen{a d_{2}}$ and
$\mathrm{K}_{2} \supset \overparen{\mathrm{~cd}}_{1}$, then K_{1} contains an irreducible subcontinuum H_{1} from d_{2} to b and K_{2} contains an irreducible subcontinuum H_{2} from d_{1} to
b. Let $\mathrm{H}=\mathrm{H}_{1}+\mathrm{H}_{2}$ 。 Then by Lemma 8, and its proof, H is a continuum such that every point of $H-\left(d_{1}+d_{2}+b\right)$ separates H whereas d_{1}, d_{2}, and b do not separate H.

If there is an arc from any one of d_{1}, d_{2}, b to one of the other two, then M contains an arc containing two of a, b, and c and so is a trod by Lemma 1. For example, if there is an arc $\overparen{d_{1} d_{2}}$ from d_{2} to d_{1}, then ${\overparen{c d_{1}}}_{1}+\overparen{d}_{1} d_{2}+\overparen{a d}_{2}$ is an arc containing a and c. Therefore, there is no arc from one of d_{1}, d_{2}, b to one of the remaining two. Now H contains two proper subcontinua N_{1} and N_{2} satisfying the conclusion of Lemma 5.

We will consider two cases which will take care of all
possibilities. First the case where N_{1} is irreducible from
d_{1} to b and N_{2} is irreducible from d_{2} to b. Since N_{2} is not an arc, there exists a point t_{1} of $N_{2}-\left(d_{2}+b\right)$ such that $N_{2}-t_{1}$ is connected. It follows from Lemmas 2 and 3 that there is an arc $\overparen{d}_{1} t_{1}$ in H irreducible from d_{1} to N_{2}. The set H is a subset of K_{1} since $H \circ \overparen{C d}_{1}=d_{1}$ (Lemma 7) and $M=K_{1}+\widehat{\text { cd }}_{1}$. Therefore N_{2} is a subset of K_{1}. Since $\overparen{d_{1} t_{1}}+\overparen{\text { ed }}_{1}$ contains $\overparen{C d}_{1}$ as a proper subset, then $N_{2}+\overparen{a d}_{2}$ is a proper subset of K_{1}. But $N_{2}+\overparen{a d}_{2}$ is a continuum containing \underline{a} and b and cannot be a proper subset of K_{1} since K_{1} is irreducible between \underline{a} and b. Therefore M is a triad.

The second case is where N_{1} is irreducible from d_{1} to d_{2}
and N_{2} is irreducible from d_{2} to b. Now since N_{2} is not an arc, there exists a point t_{2} of $N_{2}-\left(d_{2}+b\right)$ such that $N_{2}-t_{2}$ is connected. It follows from Lemmas 2 and 3 that there is an arc $\overparen{d}_{1} t_{2}$ in H irreducible from d_{1} to N_{2}. The set N_{2} is a subset of K_{1} since H is a subset of K_{1}. Since $\overparen{c d}_{1}$ is a proper subset
of $\overparen{d}_{1} t_{2}+{\overparen{c d_{1}}}_{1}$, then $N_{2}+\overparen{a d}_{2}$ is a proper subset of K_{1}. But $N_{2}+\overparen{a d}_{2}$ is a continuum and contains \underline{a} and b which contradicts the fact that K_{1} is irreducible between \underline{a} and b. Therefore M is a triod.

Theorem 2.4. There exists a point p of $M-(a+b+c)$ such that $M-p=A+B+C$, where A, B, and C are mutually separated and A contains a, B contains b, and C contains c.

Proof. Since M is a triode, there is a point x such that M is the sum of three arcs $\overparen{a x}, b \overline{b x}$, and $\overparen{e x}$, where x is the intersection of each two of them. Then $M-x=(2 x-x)+(6 x-x)$ $+(\widehat{c x}-\mathrm{x})$. These three sets are mutually separated and each contains one of a, b, and c 。

Theorem 2.5. If e and f are two distinct points of $M-(a+b+c)$, then there exists a point p of M such that $M-p=A+B$, where A and B are mutually separated and A contains e while B contains f.

Proof. Since M is a trod, there is a point x such that M
is the sum of three arcs $\overparen{a x}, \overparen{b x}$, and $\overparen{c x}$, where x is the intersection of each two of them. If both e and f are in one of the arcs $\overparen{a x}, \overparen{b x}$, and $\overparen{C x}$, say in $\overparen{a x}$, then there exists a point p of ax such that $\overparen{a x}-p=A_{1}+B_{1}$, where A_{1} and B_{1} are mutually separated and A_{1} contains e while B_{1} contains f. Either A_{1} or B_{1} contains x, say A_{1} does. This means that B_{1} contains a. Then $M-p=A_{2}+B_{2}$, where A_{2} and B_{2} are mutually separated and B_{2} contains x. Since $A_{1}+C x+b x$ is connected and contains x but not p, it is a subset of B_{2}. This set contains b and c, so A_{2} must contain a by Theorem 2.1 and therefore, A_{2} must contain B_{1}. Hence e is in B_{2} and f is in A_{2}. Suppose e and f are in different arcs of $\overparen{a x}, \overparen{b x}$, and $\overparen{c x}$, say e is in $\overparen{a x}$ and f is in $\overparen{b x}$ but neither e nor f is x. Then $M-x=(\widehat{a x}-x)+(\overparen{b x}-x)+(\underset{a x}{ }-x)$ such that $\overparen{a x}-x, \overparen{b x}-x$, and $\overparen{C x}-x$ are mutually separated. Since e is in $\overparen{a x}-x$ and f is in $\widehat{b x}-x$, the point x separates e from f in M.

Theorem 2.6. The continuum M does not contain a simple
closed curve.

Proof. Suppose M contains a simple closed curve J. Since M is a trod, $M=a x+b x+\overparen{a x}$, where x is the intersection of each two of these three arcs. From the proof of Theorem 2.4, $M-x=(2 x-x)+(b x-x)+(c x-x)$ where these three sets are mutually separated. Since J is a simple closed curve, J - x is connected. Hence $J-x$ is a subset of one of the sets $\overparen{a x}-x$, $\overparen{b x}-x$, and $\overparen{c x}-x$, say it is a subset of $\overparen{a x}-x$. Then J is a subset of ax. But an arc cannot contain a simple closed curve by Theorem l.8. Therefore M does not contain a simple closed curve.

BIBLIOGRAPHY

1. Hillam, K. L., Some Properties of Arcs and Simple Closed Curves (Thesis), University of Utah, May, 1956.
2. Milton, E. H., Irreducible Continua (Thesis), University of Utah, June, 1961.
3. Whyburn, G. T., Analytic Topology, New York, 1942.

[^0]: * Our complete development will show that the hypothesis of Lemma 2 is false. However, we find that this lemma is useful in developing a proof of our main theorem.

[^1]: * Refer to footnote on page 12.

